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ABSTRACT

Information systems (IS) development is viewed as a process of transforming users' knowledge

about some subject matter into a computer-based system which faithfully represents that knowledge. A

critical step in this process is conceptual modelling - the development of an implementation-independent

representation of the relevant knowledge. While the importance of conceptual modelling has gained

increasing recognition, many existing conceptual models remain based on software, rather than knowledge,

constructs.

This research adopts the premise that a conceptual model should provide constructs for directly

modelling knowledge. Since the subject matter of organizational IS is typically things in organizations,

theories of concepts (classification), which deal with the structure and organization of knowledge about

things, are an appropriate source of modelling constructs. A classical theory of concepts suggests five

knowledge constructs - instance, property, concept, specialization, and composition.

The thesis develops formal definitions of each of these constructs. The notion of direct

correspondence is then used to define a conceptual information systems model called MIMIC, which

contains a corresponding set of constructs - object, attribute, class, specialized class, and composite class.

The model offers several contributions to conceptual modelling research and practice, including:

1) minimal requirements for a "good" class structure;

2) naturalness of a lattice structure for class organization;

3) refinements to the meaning of IS-A connections between classes in a lattice;

4) distinction between simple relationships and those which can be regarded as objects;

5) simple foundation for treating time in conceptual modelling; and

6) a normative model of objects under the assumption that a fundamental objective of the object

paradigm of computing is to provide a set of natural modelling constructs.
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The value of the model is further illustrated by using it as a framework to evaluate several other

conceptual modelling approaches. The results of this comparison indicate that, while other models do

support cognitive constructs to varying degrees, each is weak in supporting some elements of the classical

view of concepts. Finally, a detailed example is used to demonstrate the capability of the model for

uniformly representing knowledge across several classes of applications.
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CHAPTER 1

INTRODUCTION

1.1 TRADITIONAL VIEW OF INFORMATION SYSTEMS

In the 40 or so years since the introduction of computers to businesses, there has been a

proliferation of applications and rapid advances in both hardware and software technology. Initial

commercial uses involved primarily high-volume, transaction-oriented data processing in a few areas of

an organization (e.g., accounting and inventory). Today, applications encompass data processing,

management reporting, and decision support in all functional areas (e.g., purchasing, production,

marketing, personnel) and at all managerial levels (operational, tactical, strategic) of a firm. In addition,

advances in technology have created new opportunities and challenges in areas such as database

management and the development of knowledge-based systems.

Throughout this period, though, the accepted view of what an information system (IS) is from a 

software point of view s has remained relatively unchanged. A typical diagram of an IS, similar to those

found in introductory textbooks, is given below:

INFORMATION SYSTEM 

INPUT ----> PROCESSING ----> OUTPUT

In this elementary model, there are essentially two components: data (input and output) and

programs (processes). These are created and maintained independently and distinctly, and interact only

1 0f course, an IS may also be viewed as a social system (e.g., London, 1976), or as a physical system.
However, these aspects are outside the scope of this research.

1
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during the execution of a program. Data capture facts about the world. Programs accept input data,

transform data, and generate output data, either for storage or for use by a human or machine.

This orientation is reinforced by many of the tools and methodologies used in systems

development. For example, many high level programming languages, such as COBOL and PASCAL,

encourage the "data-program" dichotomization by separating the development of procedures and algorithms

from the development of data structures. In addition, database management systems, by emphasizing data

independence, contribute to the rift between data and programs. Furthermore, the most widely used

systems development methodologies, such as structured analysis (DeMarco, 1979), support this

programming orientation by handling processes and data quite separately during systems analysis and

design.

This traditional separation of programs and data is recognized to be a source of difficulty in

information systems development. According to Love (in Pressman, 1987):

[t]he roots of software problems may lie in the most traditional terms for describing our industry -
data processing. We have been taught that data and programs are two distinct "things" which are
somehow fundamental to our business. That partitioning may be far more detrimental than we
realize. (p. 364)

Several problems arise when the "data processing" view of IS is taken. All are rooted in the fact

that there is not a one-to-one correspondence between things in the domain being modelled (e.g., a

company) and things in the information system, in part due to the artificial separation of application data

and programs which act on that data. As a consequence, a rather significant transformation is required in

moving from domain-oriented constructs, which are familiar to the user, to software-oriented constructs

suitable for implementation.

The most obvious problem is that there is nothing in the structure of files to indicate whether the

information in a record relates to a single entity, several entities, or a relationship among several entities.

Although data fields capture the values of properties of things, a single record in a file may contain fields

describing any number of things (e.g., customers and accounts). In addition, one file may contain fields
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describing a relationship among several types of things (e.g., customers holding accounts), while another

file may describe only things from a single class (e.g., customers). Furthermore, information about a single

entity may be distributed among several files. In short, the meaning of the data has to be largely

interpreted by a user based on knowledge of the domain. As well, there is no simple way of determining

which data files may be used by which programs. There is no explicit recognition that the execution of

procedures to change data values often reflects actual or potential changes to properties of entities.

This type of problem occurs frequently in record-oriented IS (Kent, 1978; 1979). The lack of

direct correspondence between data records (and/or procedures which act on them) and distinct things in

the environment of the IS makes it difficult to build and understand systems. As Kent (1979) states:

the use of record structures depends on supplementary information, often reflected only in the
special-purpose application programs written to process the data, and which may or may not still
be remembered by the users of the data. (p. 107)

A second problem with the traditional view of IS is that there may be considerable duplication

of development effort and, also, of programs and data. Systems development projects are often undertaken

quite independently of each other. Solving the problem may be equated with writing the software to

perform a particular task. As a result, applications are developed in an ad hoc manner. New data files may

be constructed which contain data that already exist in files built for other applications2. In addition to

this obvious duplication of data, the failure to take advantage of existing systems and files may result in

unnecessary systems analysis and design efforts.

When a new application belongs to a different class from existing applications using data about

the same entities, a closely related problem can occur. Not only may data be duplicated, but new programs

2This is a problem which database research has sought to address by providing application-independent
representations of data. In particular, the reduction of duplication is a major justification for the database
approach. However, as noted earlier, databases encourage the separation of data from the procedures which
modify it. In addition, the redundancy mentioned here is more general, encompassing the duplication that
occurs when applications as diverse as transaction processing and expert systems use data about the same
entities. Such applications generally use different software technologies and data formats, leading to
duplication.
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may be developed to describe essentially the same activities as existing programs. As a result, IS

development is fragmented across different classes of applications, again resulting in redundancy in

development efforts. For example, consider a system to simulate arrivals of goods at a warehouse and

subsequent shipments to customers. A simulation generates hypothetical shipments to and from the

warehouse that can be handled in the same way as actual shipments that are processed by an existing

inventory program (e.g., replenishment and depletion of quantity-on-hand). In this case, simulation and

transaction processing constitute two classes of applications, characterized by different goals. Nevertheless,

code for processing shipments into and out of inventory may be very similar for inventory tracking and

simulation software.

In short, the traditional data processing view of IS creates problems of comprehensibility,

fragmentation, and duplication. Although these problems are most obvious in IS implementation, they also

impede earlier stages of systems development. A fundamental shift in perspective is required to support

development of IS to cope with growing user and application demands. The next two sections argue that

a logical place for the shift in perspective to originate is in systems analysis methodologies.

1.2 IMPACT OF TRADITIONAL VIEW ON SYSTEMS ANALYSIS

The view of an information system as a collection of software and data components has had a

significant influence on the nature of systems development approaches. Many analysis and design

methodologies are based on constructs closely related to files and programs Perhaps the best known of

these is structured analysis (DeMarco, 1979; Gane and Sarson, 1979), which is based on data flows and

processes which transform these data flows. However, many other approaches also appear to be heavily

influenced by implementation considerations (e.g., Jackson, 1983; Verheijen and van Bekkum, 1982: see

[011e et al., 1982; 1983; 1986] for descriptions and comparisons of a variety of methodologies).

Many methodologies fail to explicitly recognize that data and programs constitute a model or
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representation of some aspects of the domain or problem area constituting the subject matter of an

information system. Consequently, they cannot be expected to provide a representation which can be easily

understood by users who are immersed in the problem domain but are not well-versed in software

technology (Sibley, 1986). The fundamental premise of the research in this dissertation is that:

a systems analysis methodology should provide a set of constructs for directly modelling
the subject matter of information systems.

This premise is consistent with a view of IS development as the process of transforming

knowledge about a domain (e.g., an organization) into an implemented system that properly reflects that

knowledge (Wand and Weber, 1989). At early stages (referred to by terms such as conceptual modelling

and enterprise analysis), it is particularly important that descriptions be based on constructs familiar to

those who regularly deal with the subject matter and/or will be users of the implemented system. This

should facilitate the verification of specifications so that the risk of problems in later stages of

development is reduced. A methodology which conforms to the above premise will directly reflect the

constructs of the domain of information systems, giving rise to a competing view of IS as representations

of knowledge about some "world" such as an organization.

1.3 AN ALTERNATE VIEW AND RESEARCH PROBLEM

In recent years, several researchers have explicitly recognized that an IS can be viewed as a

representation of some elements of reality (Wand and Weber, 1988; Bubenko, 1986; Borgida et al., 1985;

Jackson, 1983; Nijssen, 1976). For example, Nijssen (1976) states that:

Mlle origin of an information system has to do with the need of one and usually more persons to
collect, note, process and distribute data, related to a certain part of the reality. (p. 2)

Given this view, information systems development can be regarded as the construction of a model of the

target segment of reality. Key development issues can then be addressed by determining how best to

identify and represent the important elements of the domain.
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To be more precise, though, we know reality only as we perceive and conceive it. Therefore, an

IS actually represents aspects of our knowledge (i.e., cognitive representation) of things in some part of

reality. Wand and Weber (1988) hint at this distinction by claiming that:

[amn information system is an artificial representation of a real-world system as perceived by
humans. (p.213, italics mine)

They then use this proposition to justify an ontological approach to developing a theoretical foundation

for IS. In doing so, they focus on a model of the nature of reality, implicitly assuming that perception is

selective, but does not distort. This assumption is identified by Lakoff (1987) as central to what he calls

the "objectivist paradigm". He characterizes "objectivist cognition" as follows:

Thought is the manipulation of abstract symbols. Symbols get their meaning via correspondence
to entities and categories in the world. In this way, the mind can represent external reality and be
said to "mirror nature". (p. 165)

A number of conceptual modelling methodologies have been developed which draw from

knowledge representation principles (e.g., Mylopoulos, 1991; Mylopoulos et al., 1990; Greenspan and

Mylopoulos, 1984; Hammer and McLeod, 1981; Bubenko, 1980). Despite this growth of interest in an

important early stage in systems development (e.g., Bubenko, 1986; Brodie et al., 1984), such approaches

are not explicitly or formally derived from a theory of the structure and organization of knowledge about

things, and no model has emerged as dominant among those which have been proposed. Chapter 2 reviews

a number of conceptual modelling approaches and highlights the need for greater emphasis on justifying

the choice of representation constructs.

This thesis endeavours to show that additional insight into IS development (in particular,

conceptual modelling) can be achieved by explicitly considering the nature of human cognition, especially

in the area of representing knowledge about things or entities 3 . If an IS is viewed as a representation of

human understanding of an organizational reality which is used by humans, a theory of how people

3The terms thing and entity are used interchangeably here. Both refer to existents in a reality (such
as an organization).
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represent the world can serve as a natural foundation for developing methodologies best suited for

conceptual modelling4. Such a theory need not be one of general human cognition, since information

systems represent only a small segment of human knowledge - that pertaining to things in organization s .

Moreover, since things in organizations (as well as in everyday life) are understood by classifying them

into relevant categories, a theory of concepts and classification may be adequate to deal with the

knowledge typically contained in IS.

The field of cognitive science offers a number of theories of concepts and classification that

attempt to describe the bases for organizing things in the perceived world into meaningful categories. In

general, these theories attempt to:

1) define what concepts are,

2) explain how concepts are acquired, and

3) account for the ways in which concepts help us survive by reducing complexity.

Chapter 3 describes the importance of concepts and categorization in organizing knowledge about things,

reviews three theories of concepts, and explores the suitability of one of these for representing knowledge

about things in organizations6. Given the assumption that an IS represents knowledge, a conceptual

model" developed from a cognitive foundation may be instrumental in allowing systems analysts to

construct representations that can be more easily understood by users, so that errors and omissions in

initial descriptions can be detected and corrected at minimal cost.

4If IS development is the process of transforming from knowledge of a domain to an implemented
system which represents this knowledge, the products of intermediate stages of development - including
the conceptual model - also represent domain knowledge.

5A general theory of cognition would deal also with learning, planning, and other cognitive activities.

6This knowledge constitutes the subject matter of various kinds of information systems.

'Interestingly, the term conceptual model embodies the term concept. Hence, it is somewhat surprising
that existing conceptual models do not make more explicit and rigorous use of theories of concepts
developed by cognitive scientists.
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Interestingly, one recent approach to modelling, referred to as object-oriented analysis, appears

to be implicitly based on a theory of categorization. However, a lack of agreement about exactly what the

methodology should involve, and its underlying foundations, raises the issue of whether a grounded formal

approach to defining an object paradigm can help resolve the debate over exactly what is meant by the

term object-oriented, as discussed next.

1.4 ROLE OF THE OBJECT PARADIGM

Recently, a new software paradigm has emerged and is beginning to challenge the traditional

data/program view. It is referred to in the context of programming as object-oriented programming and,

more generally, as the object paradigm (Nierstrasz, 1987; Pascoe, 1986; Stefik and Bobrow, 1986). Of

greatest interest here is the emergence of interest in object-oriented systems analysis and design (Booch,

1991; Coad and Yourdon, 1991; Bailin, 1990; Henderson-Sellers and Edwards, 1990) and object-oriented

data models (e.g., Banerjee et al., 1987; Fishman et al., 1987).

The essence of the paradigm appears to be the encapsulation of data and procedures in a single

unit or package. In addition, objects are intended to be in one-to-one correspondence with things in the

problem domain. Beyond these two principles, however, there is widespread disagreement as to what

features the paradigm should include (e.g., compare Nierstrasz, 1987 with Stroustrup, 1986).

Although the justifications most often forwarded for object constructs are technical and

implementation-based, various claims have also been made about the "naturalness" of objects, suggesting

that there may be an implicit theory of concepts underlying object-oriented approaches (e.g., Coad and

Yourdon, 1991). However, the lack of consensus on an object model may in part be due to a confounding

of technical and "naturalness" advantages. Thus, while the focus of this research is not the object

paradigm, it is proposed that a theory of concepts can be used to suggest what objects should be, resulting

in an object model that is explicitly based on the principle of providing natural representations of things
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in a domain of interest.

1.5 RESEARCH OBJECTIVES AND METHODOLOGY

In accordance with the research problem outlined above, the overall purpose of this research is

to answer the general questions:

Can a theory of concepts be used as a foundation to define a uniform formal model of
knowledge about entities that supports "direct" representation across several classes of
information systems applications?

Does such a model provide insights and guidelines for conceptual modelling relative to
existing models?

To answer these questions, the research seeks to achieve the following specific objectives:

1. To develop a precise formal (object) model for directly representing cognitive constructs.

This will provide a mechanism for directly representing knowledge about the entities in an

organization. Chapter 4 presents a formal definition of the components of the model. The purpose

of the formalization is to define a set of object constructs in precise and unambiguous terms based

on an underlying theory of knowledge (thereby providing a normative model). Appendix 1

illustrates the use of the model on several applications in a banking environment, and shows its

value in uniformly dealing with several classes of IS applications.

2. To explore the model as a tool for addressing open problems in conceptual modelling.

Existing conceptual models do not deal clearly with a number of issues related to the semantics

and usefulness of constructs such as classes, class specialization, and time. Chapter 5 identifies

several contributions of the proposed model to understanding and resolving important questions

about conceptual model semantics, and presents a number of guidelines for modelling which

emerge from this analysis.
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3. To evaluate the model by comparing it to several other conceptual modelling approaches.

The purpose of this comparison is to assess the degree to which the constructs of the proposed

model are supported by existing conceptual models which are not formally grounded in theories

of concepts. If the model is to be valuable, it should be at least as expressive as existing models,

without being more complex. Chapter 6 contains this evaluation.

The methodological approach taken in this research has two components. The first may be

described as formal model building and involves the development of a small set of constructs for

representing knowledge according to a theory of concepts. The second is model evaluation, which involves

both a discussion of the insights offered by the model for representing knowledge about a domain and an

assessment of its representation power with respect to several existing models.

1.6 EXPECTED CONTRIBUTIONS

The anticipated contributions of this research are both theoretical and practical. On the theoretical

side, the value of the work is primarily in providing a comprehensive, uniform model of knowledge which

offers a number of insights into the semantics of conceptual modelling constructs. This model provides

a vocabulary for describing a subject matter in the early stages of IS development. Additionally, it is

viewed as a model of the object paradigm that emphasizes the essence of objects in supporting direct

representation. Existing literature has provided conflicting views of what the object paradigm is and/or

should be. This thesis suggests a precise resolution based on the modelling objective of representing

concepts and instances of concepts Finally, the model provides a framework for understanding and

evaluating the constructs of existing conceptual models.

Beyond this, an important practical outcome of the research is the demonstration of the model's

usefulness in representing knowledge for several kinds of applications. In this way, the modelling
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constructs are shown to provide a uniform tool for describing several classes of applications, in which a

single object corresponds to a single instance of a concept across application areas.

Through these contributions, the work should help address the stated problems associated with the

traditional data-program dichotomy in IS. First, since the model is based on a theory of the structure and

organization of knowledge, it is expected that specifications created from it will be more easily understood

and verified by users since the constructs employed by the model reflect the theory's view of the way

people represent the world8. Second, just as human knowledge appears to be integrated, the representation

of knowledge about one thing by one object, which can participate in several types of applications,

facilitates greater integration (less fragmentation) at the conceptual modelling stage of IS development.

Consequently, use of the model may result in less duplication of development effort, and less redundancy

in resulting systems.

The work also provides a starting point from which a program of future research can be

developed. First, an implementation of the model might prove useful in reducing the "semantic gap"

between constructs oriented toward users' knowledge of a problem area and constructs used to implement

IS by providing implementation primitives which are based on the model. Second, either the model or an

implementation of it may be used as a tool for conducting experiments on the naturalness of the object

paradigm for users, a frequently claimed - but rarely justified - benefit of object-oriented computing.

Third, the model may provide a foundation for developing a methodology for object-oriented systems

analysis and design for integrated systems. This would be accomplished by further developing the

contributions and guidelines which emerge in Chapter 5, and would be valuable since it is currently not

at all clear how to handle issues such as determining appropriate classes when modelling an enterprise.

Chapter 7 summarizes contributions and limitations of the research, and outlines areas for future work.

&This will hold to the extent that the theory of concepts on which the model is based is a suitable
theory of knowledge for the domain of interest. Chapter 3 elaborates on this issue.



CHAPTER 2

CONCEPTUAL INFORMATION SYSTEMS MODELLING

2.1 INTRODUCTION

2.1.1 Conceptual Modelling and Models

It is widely recognized that the development of large-scale information systems proceeds through

a number of stages, the collection of which is generally referred to as the systems development life cycle9

(e.g., Davis and Olson, 1985; Wasserman et al., 1983). While the number and naming of these stages

varies among systems development methodologies, most approaches can be divided broadly into analysis,

design, and implementation. These stages are necessary because of the semantic gap between

implementation constructs, such as data and programs, and the constructs by which users describe the

domain modelled by the IS (Greenspan and Mylopoulos, 1984; Hammer and McLeod, 1981; Kent 1978).

Recently, the importance of developing models and languages for expressing users' understanding

of the things in a domain of interest, as an early step in IS development, has gained widespread attention

(e.g., Borgida et al., 1988; 011e et al., 1986; Brodie et al., 1984; Nijssen, 1976). The products of this

research have variously been referred to as conceptual models (Bubenko, 1986; Brodie et al., 1984),

information systems models (Bubenko, 1980), and semantic data models (Hull and King, 1987).

Despite this recognition of the importance of modelling users' knowledge about a domain, there

is no general definition of conceptual model, or of related terms. According to Bubenko (1980, p.399),

a conceptual information model is "an abstract model of the enterprise", while Schmid (1977, p.121)

describes a conceptual model as a model which "is suitable to represent somebody's interpretation of some

9For certain kinds of applications, other approaches to development, such as prototyping, may be more
appropriate (e.g., see Davis and Olson, 1985).

12
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slice of reality". Similarly, Mylopoulos (1991) states that "conceptual modelling is the activity of formally

describing some aspects of the physical and social world around us for purposes of understanding and

communication" (italics original), and views a conceptual model as a notation for expressing such

descriptions.

These definitions suggest that a conceptual model either represents reality directly or someone's

knowledge (interpretation) of it. The models reviewed in this chapter predominantly adopt the first

position, in the sense that the importance of the structure of knowledge in guiding the development of a

conceptual model is not explicitly considered. By contrast, much of this thesis advances the argument that

the second position leads to modelling insights which may be obscured when the role of human perception

and cognition is not explicitly considered. Consequently, a conceptual model is, for this discussion,

defined as a set of constructs for representing knowledge about things in some domain. A specific

representation (e.g., for a particular organization) created from such a set of constructs will be referred to

as an instance (or manifestation) of the model. In this chapter, attention is focused on the nature and origin

of the constructs proposed for a variety of conceptual models'''.

2.1.2 Importance of Conceptual Models

Conceptual models provide constructs for creating high-level, implementation-independent

representations of information about things in, or otherwise related to, organizations, in order to support

the systems development process. According to Kung and Solvberg (1986), an instance of a conceptual

model has the following uses:

/) It serves as a common reference framework, which is used during the systems analysis phase
to communicate with the future users of the system.

'6This means that there is no discussion here of techniques for using these constructs. In other words,
the methodology (or process) of conceptual modelling is not examined.
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2) It serves as a model of reality, which gives insight into the application domain. In other words,
the construction of the conceptual model enables the systems analysts to have a better
understanding of the application and the users' needs.

3) It serves as a basis upon which the design and implementation of the database can be carried
out and, against which the design and implementation can be tested.

4) It serves as a part of the documentation to be used during the maintenance phase to facilitate
modification and enhancements of the system. (pp. 146- 147)

From this characterization, it is clear that conceptual modelling is a pivotal activity in the early

stages of systems development, and that problems at this stage will be magnified later in the development

process. In short, conceptual modelling supports the development and use of information systems through

the construction of an explicit description of the things in an organization (or application), on which an

IS design and implementation are based. For this research, the second point mentioned by Kung and

Solvberg is of particular interest, as it indicates the role of conceptual modelling in representing reality

(as perceived by users).

2.13 Range of Conceptual Models

The move from implementation-dependent views of IS to more conceptual views which recognize

the role of systems in representing knowledge about reality (Abbott, 1987; Borgida et al., 1985) has been

observed in several contexts. Systems analysis and design methodologies have become concerned with

developing an abstract description of the entities to be represented in an IS, which is independent of

technology and implementation considerations (e.g., 011e et al., 1986; Borgida et al., 1985; 011e et al.,

1983; 011e et al., 1982; Nijssen, 1976). In addition, semantic data models stress the use of constructs

which are "natural" from the point of view of users (e.g., Hammer and McLeod, 1981; Shipman, 1981).

Furthermore, programming languages have moved toward ever higher levels of abstraction (Abbott, 1987;

Liskov and Guttag, 1986).
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In the remainder of this chapter, a variety of approaches to conceptual modelling are reviewed.

These are roughly classified into systems analysis methodologies (conceptual models), semantic data

models, and object-oriented models'. The review is not exhaustive, as there are dozens, if not hundreds,

of such approaches described in the literature (Hull and King, 1987; Bubenko, 1986). However, a number

of diverse models are examined in order to illustrate the important constructs and emphases of conceptual

modelling approaches. Examples used here are generally those provided by the authors. The chapter

concludes by evaluating the commonality among models, and suggests an important reason for

dissatisfaction with the current state of conceptual modelling research. Four of the models discussed here

are again considered in Chapter 6, where they are compared with the model proposed in Chapter 4.

2.2 CONCEPTUAL MODELS

In the following discussions, a somewhat artificial distinction is drawn between conceptual

modelling approaches which are part of a larger development methodology, and those which "stand alone".

The latter will be dealt with in subsequent sections on semantic data models and object-based models.

First, a number of conceptual models which are part of more comprehensive systems development

methodologies are reviewed.

11This is simply a classification which parallels three streams of literature. There is no firm distinction
between the categories apart from their evolution, with the first emerging to address the weaknesses of
earlier systems analysis methods, the second emerging from the database community to address the
limitations of traditional data models, and the third emerging from developments in programming
languages.
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2.2.1 Taxis/RML/Telos (Mylopoulos et al., 1980; Greenspan and Mylopoulos, 1984; Mylopoulos et al.,

1990; Mylopoulos, 1991) 12

The Taxis project originated with a database design language called Taxis 13 and a language,

called RML (Requirements Modelling Language), for use in the conceptual modelling of an application

(Borgida et al., 1985; Greenspan and Mylopoulos, 1984). The project has evolved to produce CML

(Conceptual Modelling Language) (Borgida et al., 1988) and, most recently, Telos (Mylopoulos, 1991;

Mylopoulos et al., 1990). The entire project covers phases from requirements specification to database

design and implementation. The core of all the above languages consists of the use of tokens to represent

individual entities, attributes to describe entities, and several abstraction mechanisms - classification,

generalization/specialization, and aggregation - to model a domain.

The main differences between RML and Telos are that (1) Telos is intended, not only for

modelling the subject matter of an information system, but also the system, development, and usage

domains', (2) Telos offers more uniformity, using the notion of a proposition to represent all knowledge

about a domain, (3) certain features, such as the kinds of attributes allowed, are fixed (or built-in) in RML,

while Telos endeavours to provide a more flexible environment in which features can be added as needed,

and (4) Telos offers a more sophisticated model of time, as well as a sublanguage for expressing rules and

constraints (Mylopoulos et al., 1990).

Uniformity and simplicity of model constructs are stressed in Telos, with two primitive units -

token (representing a concrete or abstract entity) and attribute (representing a binary association between

entities) - forming the basis for defining what are called structured objects (which describe knowledge

12A collection of early papers describing various aspects of the Taxis project is found in (Nixon, 1984).

°Hence, Taxis could also be discussed as a semantic data model. However, since the evolution of
languages in the project has increasingly emphasized conceptual modelling, a descendant of Taxis called
Telos is discussed here as a conceptual model.

"Hence, Telos is more general in scope than most conceptual models (Mylopoulos, 1990).
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pertaining to an entity). Taxis, RML, and Telos is all incorporate facilities to describe the structural and

behavioral properties of entities. Structure is expressed using a hierarchy of object classes linked by IS-A

associations. Each class is defined in terms of a number of attributes. In addition, the model also views

classes as objects. These, in turn, are classified into metaclasses, permitting facts about sets of things to

be represented. Behavioral knowledge is modelled in Telos as activities 16. Activities describe changes

to entities, may include prerequisites, and are instances of activity classes. As with object classes, activity

classes may be organized in a hierarchy.

Another important feature of Telos and its ancestors, from the point of view of providing "natural"

representation (Mylopoulos, 1991; Borgida et al., 1988), is the notion of a 1-1 correspondence between

objects and entities in the domain being modelled.

Telos extends the Taxis and RML models by including a mechanism for representing and

reasoning about temporal knowledge using time intervals as a primitive (cf. Allen, 1983).

Four features stand out in Telos and its ancestors. First, there is a strong emphasis on a uniform

approach to modelling entities (structurally) and behavior via classes (object and activity, respectively)

which are linked via IS-A associations. Thus, classification and specialization are strongly supported

abstraction mechanisms. Second, uniformity is extended by considering classes as objects and then

classifying them into metaclasses. Telos uses this notion to support infinite levels of classification. Third,

there is the notion of a 1-1 correspondence between Telos objects and entities in the domain being

modelled. Finally, while Taxis emphasizes data manipulation through transactions in modelling behavior,

RML and Telos handle behavior in a less procedural manner using events and activities, which are subject

isThis review does not consider in detail the differences among Taxis, RML, CML, and Telos. Since
the other models evolved from Taxis, there are many similarities. However, where appropriate, the
improved modelling capability of successive refinements is mentioned.

16There are some terminological differences among models in this regard. Taxis supports procedural
description of behavior through transaction, RML uses the term event to describe non-procedural
specification of behavior (and constraints), and Telos uses activities to model behavioral knowledge.
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to pre- and post-conditions.

2.2.2 NIAM (Nijssen, 1976; Verheijen and Van Bekkum, 1982)

NIAM (Nijssen's Information Analysis Method) is a modelling approach based on the structure

and flow of information in an organization. Knowledge about the structure of things in the domain of

interest (referred to in NIAM as the object system) is expressed in a binary model" which recognizes

associations between lexical and non-lexical objects and object types. Lexical objects may be viewed as

surrogates or names (e.g., the string "John"), whereas non-lexical objects are things in the domain or object

system (e.g., the person John). Lexical and non-lexical object types are classes of lexical and non-lexical

objects, respectively (e.g., Name and PERSON).

Binary associations among objects are of two kinds: bridge types and idea types. A bridge type

is a binary association between a non-lexical and a lexical object type, such as PERSON Has name

Name, and is often referred to in other models as an attribute. An idea type reflects a binary association

between two non-lexical object types, such as PERSON Employed_by COMPANY, and is more

commonly referred to as a relationship. Bridge and idea types are populated by bridges and ideas, linking

members of the respective types.

Additionally, NIAM recognizes a number of constraints on the participation of objects in ideas

and bridges. Identifier constraints restrict the cardinality of lexical/non-lexical objects (of some type) in

a binary association (more commonly referred to as cardinality constraints). Subset constraints restrict the

objects involved in one kind of binary association (e.g., presenters of papers) to be a subset of those

involved in another type of association (e.g., authors of papers). Disjoint constraints indicate that the

populations of two subtypes are mutually exclusive (e.g. ACCEPTED_PAPERS and

REJECTED_PAPERS). Total role constraints indicate that all instances of one type participate in a

171n NIAM, an instance of the model is expressed as an information structure diagram (ISD).
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certain binary association with another type (e.g. PERSON Child_of PARENT).

In addition to information structure, NIAM allows the representation of information flows and the

transformation of information by functions. The mechanism by which this is achieved in NIAM is referred

to as information flow diagrams (IFDs). These are similar to data flow diagrams (DeMarco, 1979). The

intent of this part of the model is to capture information about the changes (processing) which objects

undergo in a domain.

To summarize, NIAM is a methodology for expressing knowledge about the structure of things

in some domain via binary associations (represented in information structure diagrams). In addition,

information flow diagrams are introduced to capture processes (dynamics). However, ISDs and IFDs do

not constitute an integrated package, as they use different constructs, and behavior is not part of object

type definitions.

2.2.3 ACM/PCM (Brodie and Ridjanovic, 1984; Brodie et al., 1983; Brodie and Silva, 1982)

ACM/PCM (Active and Passive Component Modelling) is a development methodology based on

the semantic data model SHM+ (Brodie and Ridjanovic, 1984) 18. SHM+ permits the modelling of

structural properties of things in a domain. It is based on one fundamental construct, the object, and

utilizes four abstraction mechanisms19 - classification, aggregation, generalization, and association - to

relate objects.

Classification abstracts the common properties of each of a collection of objects (e.g., john

INSTANCE_OF PERSON). An object is an instance of a class if it possesses the properties defining the

"This is a good example of the fuzzy distinction between conceptual models and semantic data
models. SHM+ could as easily be discussed under the heading "semantic data models". However, it is
considered here because it is a part of the larger methodology that is ACM/PCM.

°Abstraction mechanisms permit the hiding of certain details to highlight other information. These
features constitute an important part of most conceptual and semantic models.
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class. Aggregation abstracts a collection of objects (parts) into a more complex object (e.g., <Name,

Address, Birthdate, ...> = PERSON) 20. Generalization abstracts the IS-A relationship between specialized

and more general classes (e.g., CUSTOMER IS-A PERSON). Association, which is a less widely used

abstraction, captures the "member of relationship between a set and its elements (e.g., EMPLOYEE

MEMBER_OF UNION). These abstractions and their semantics have been defined formally in SHM+ using

predicate-based axioms and functions on sets.

Together, these mechanisms form the basis for representing static (structural) knowledge about

things in a domain. In addition, transaction modelling is used to specify structural and behavioral

properties of transactions and queries. Behavioral properties of applications are supported in SHM+ by

primitive operations on objects (including insert, delete, and update), by three kinds of control abstractions

(sequence, iteration, and choice) to compose operations, and by two forms of procedural abstraction

(actions and transactions).

As with NIAM, there is an effort in ACM/PCM to capture structural and behavioral knowledge

about things, although the behavioral knowledge is closely related to the detailed specific content of

programs or procedures (i.e., the how, rather than the what, of change) and structure and behavior are not

integrated in class definitions.

2.2.4 JSD (Jackson, 1983; McNeile, 1986)

JSD (Jackson System Development) is a methodology consisting of six steps which span the

systems development process from analysis to implementation. The concern here is with the first two

steps, which involve the description of the real world, since these steps deal with the conceptual modelling

component of the method. These steps are called the entity action step and the entity structure step.

20This is more precisely called Cartesian aggregation, since the parts here are attributes instead of
objects which, in turn, possess attributes.
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In the entity action step, entities and the actions they perform and suffer are listed. JSD does

recognize some abstractions with respect to entities, such as classification in terms of common properties.

However, it does not appear to deal with generalization or aggregation. An action is defined as an event

which occurs in the real world modelled by the system. Entity actions express the behavior of entities over

time.

In the entity structure step, the ordering of actions in time is described 21 . Entity structure actually

describes the behavior of entities as events occur through the well-known control mechanisms of sequence,

iteration, and choice.

Subsequent steps in JSD relate to the design and implementation of systems. JSD does not deal

with the structural and relational properties of things, unlike most other conceptual modelling approaches.

In addition, the support for abstraction mechanisms is weak.

2.2.5 OBCM (Takagaki, 1990; Takagaki and Wand, 1991)

OBCM (Ontology-Based Conceptual Model) is an approach to information systems modelling

based on the ontology of Mario Bunge (Bunge, 1977; 1979). This work differs from other conceptual

models in two important respects. First, OBCM is built on the strong theoretical foundation provided by

Bunge's model of the nature of reality. Consequently, all the constructs introduced reflect primitives from

the underlying ontology. Second, OBCM is intended to provide a uniform modelling environment that

encompasses both conceptual modelling and implementation activities in systems development 22 .

The ontological foundation behind OBCM offers a small number of modelling constructs.

According to the ontology, the world is composed of things. A thing possesses properties, which

21Note that structure as described here bears no relation to the notion of structural attributes discussed
in relation to other models.

22For this reason, OBCM is discussed here, although it could equally well be discussed as a object-
oriented model (Section 2.4).
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determine its state. States of things are subject to law-governed changes. This means that both allowed

property values and allowed changes to property values are constrained. Things may be composed of

other things and possess emergent properties. Things may also be grouped into classes which share

common properties.

OBCM is, in turn, defined in terms of constructs which have ontological equivalents. Surrogates

represent the existence of things. The notion of a model object (or simply model) is used to describe a

view of a set of surrogates. A model object defines a class, and includes sets of state functions, law

statements, and change functions. State functions represent properties. Law statements limit the values

that may be assumed by one, or a combination of two or more, state functions. Change functions define

allowed changes to state functions. A surrogate and a model together determine what is called an object.

An object may thereby be thought of as a view of a particular thing as a member of one class (out of

many possible classes). Conversely, a surrogate may be regarded as different objects by virtue of different

models (or views) of it. For example, a given individual (whose existence is represented by a surrogate)

can be considered as a CUSTOMER by modelling a certain set of properties, including Account_ balance.

The same individual can be considered as an EMPLOYEE by modelling a different set of properties,

including Salary. In other words, the same surrogate can be combined with different models to produce

different objects. OBCM also supports the notion of composition, by which objects may compose into

others (conversely, an object may be decomposed into simpler objects).

Like several other conceptual models, OBCM supports the representation of both structural and

behavioral information. The former is achieved through state functions, which map surrogates to values,

and laws, which constrain allowed states. The latter is achieved through change functions. Furthermore,

the model supports commonly used abstraction mechanisms. Classification is formalized through a pairing

of surrogates to models. Specialization is supported via the lattice structure relating classes. Aggregation

is realized through associations among objects.
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In short, OBCM is a theoretically grounded, formal conceptual model for representing things in

a domain. A major strength is its formal relationship to a well-developed theory of the nature of reality.

A small set of ontological primitives provides a foundation for defining modelling constructs. Unlike

some other conceptual models, OBCM does not introduce ad hoc constructs to model a particular situation.

Instead, it uses only mechanisms which are fully justified from the ontology. The constructs used support

the representation of both structure and behavior and capture many widely used abstraction mechanisms.

2.2.6 Other Conceptual Models

Many conceptual models have been proposed, as indicated by a series of books (based on IFIP

working conferences) devoted to the description, comparison, and evaluation of such approaches (011e et

al., 1986; 1983; 1982). Among these models is CIM (Gustafson et al., 1982; Bubenko, 1980), which is

a formal model based on entities, entity types, and events. Entities possess attributes and participate in

relationships. This model is noteworthy for introducing a notion of time to conceptual modelling. Another

formal model which includes time modelling is the set-function (SF) model (Berztiss, 1986).

In addition to these, a number of other modelling approaches have emerged with a database focus.

These are generally referred to as semantic (or conceptual) data models. The next section reviews several

semantic models.

2.3 SEMANTIC DATA MODELS

Paralleling the emerging emphasis on conceptual modelling in the systems analysis literature has

been a movement in the database field away from machine-oriented data models and toward problem-

oriented data models (Peckham and Maryanski, 1988; Hull and King, 1987). These so-called semantic data

models have been developed to compensate for the semantic limitations of data structures in conventional

data models such as the hierarchic, network, and relational (Brodie, 1984; Kent, 1979; Kent 1978). That
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is, they are intended to allow database designers to model data in ways that correspond more closely to

users' knowledge.

Two noteworthy early models have contributed much to the field of semantic data modelling. The

binary data model (Abrial, 1974; Bracchi et al., 1976) is an early attempt to capture additional semantics

of an application by modelling relationships among things via binary associations. One advantage of binary

models is the inherent simplicity achieved by representing all associations as binary links (Tsichritzis and

Lochovsky, 1982). In addition, work by Smith and Smith (1977) highlights the importance of abstraction

mechanisms such as aggregation and specialization in capturing application semantics. While these models

are not reviewed in detail here, they have influenced many models which were subsequently developed.

A large number of semantic data models have been proposed and extensive reviews are found in

Hull and King (1987) and Peckham and Maryanski (1988). In this section, a number of prominent models

are briefly described.

2.3.1 Entity-Relationship Model and Extensions (Chen, 1976; Teorey et al., 1986)

The Entity-Relationship (E-R) model (Chen, 1976) is frequently cited as an early and important

contribution to capturing application semantics in an implementation-independent manner. The basic

constructs of the model are entities23, relationships, and attributes. An E-R diagram' documents the

logical structure of a domain by specifying entity types (sets), the attributes possessed by entities of each

type, and the binary relationships between entity types. Furthermore, relationships may also possess

attributes: however, the model does not distinguish in any way those which do from those which do not.

23Chen distinguishes between entity sets and entities (likewise between relationship sets and
relationships). Entity and relationship sets denote classes of entity and relationship instances, respectively.
As with most other discussions of the E-R model (e.g., Teorey et al., 1986), the term "set" will be omitted
from this review.

24In the E-R model, the diagramming technique is the basic representation tool.
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As well, the existence of entities of some types may be recognized to be dependent on the existence of

entities of other types. In addition, the model allows the imposition of cardinality constraints to describe

the participation of entities of various types in a relationship. One of the significant limitations of the E-R

model is that it contains no mechanism to express behavioral properties of entities.

Extensions to the E-R model have been proposed (e.g., Teorey et al., 1986). The primary goal of

these extensions has been to add abstraction mechanisms such as generalization/specialization to the

model, and to deal with n-ary relationships, as well as mandatory versus optional associations.

The E-R model is widely used as a tool in conceptual database modelling. According to Teorey

et al. (1986):

[t]he entity-relationship model has been most successful as a tool for communication between the
designer and the end user during the requirements analysis and conceptual design phases because
of its ease of understanding and its convenience in representation. (p. 198)

In addition, techniques exist for converting E-R schemata to schemata of the traditional data models. For

example, Teorey et al. discuss the conversion of an extended E-R schema to a normalized relational

schema.

2.3.2 SDM (Hammer and McLeod, 1981)

The Semantic Data Model (SDM) is, as its name suggests, a data model intended to capture the

semantics of data with a set of constructs that are claimed to be "natural" for modelling database

applications. One of the stated objectives of SDM is to "serve as a conceptual database model in the

database design process" (Hammer and McLeod, 1981, p.351). More specifically:

Our goal is the design of a higher-level database model that will enable the database designer to
naturally and directly incorporate more of the semantics of a database into its schema. Such a
semantics-based database description and structuring formalism is intended to serve as a natural
application modelling mechanism to capture and express the structure of the application
environment in the structure of the database. (p. 352)

Despite this, the authors do not indicate what constitutes "naturalness". They do present a number of
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modelling constructs but do not justify the choice of these constructs nor evaluate their naturalness.

As with other semantic models, SDM views a database as a collection of entities corresponding

to things in the application domain. Entities possess attributes, and are organized into classes, which share

common attributes. Classes are related to other classes via interclass connections.

The specific treatment of classes, attributes, and interclass connections in SDM is as follows.

Classes introduce a classification abstraction. A class consists of a set of entities, which may be concrete

objects (e.g., persons), events (e.g., transactions), names, or even classes25 (e.g., kinds of ships). Classes

are characterized in terms of member attributes, which describe each member of a class by relating it to

one or more members of the same or other classes. Classes also possess class attributes which describe

properties of the class as a whole.

SDM also distinguishes base from non-base classes. Non-base classes are defined in terms of

interclass connections to other classes (e.g., subclasses linked to superclasses by IS-A connections). SDM

recognizes two essential kinds of interclass connections, subclass and grouping connections. Subclass

connections establish IS-A links between classes. Subclasses may be defined based on common values for

an attribute (e.g., Address='Vancouver'), or on other criteria. Grouping connections are used to define

metaclasses.

Attributes in SDM are used to describe classes. The instances of a class possess a value for each

attribute of the class. A value is either an entity in the database or a collection of such entities. Attributes

may be mandatory (null values not allowed) or optional (null values allowed). In addition, an attribute may

be specified as the inverse of another attribute.

SDM does not describe entities (or classes) in terms of their behavior, or how attribute values may

(or may not) change over time. In addition, it provides a large number of convenient mechanisms (rules)

for describing how subclasses may be defined and attributes constrained. However, there is no indication

25A class of classes is generally referred to as a metaclass.
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that these are in any way complete, nor any argument as to why they are natural.

2.3.3 FDM/DAPLEX (Shipman, 1981)

The Functional Data Model (1DM) (and the accompanying data description language DAPLEX)

is a semantic data model based on functional representation. The model has two basic constructs, entity

and function. The stated goal of the model is:

to provide a conceptually natural database language. That is, the DAPLEX constructs used to
model real-world situations are intended to closely match the conceptual constructs a human being
might employ when thinking about these situations. (Shipman, 1981, p.140)

However, the authors do not indicate how this matching is achieved.

In the language DAPLEX, data are modelled as entities which are intended to directly represent

entities in the user's reality. Functions model relationships among entities (i.e., properties and other

associations). Properties may be primitive, or derived from previously defined properties.

Functions are also used to define entity types or classes (as function without arguments). Although

there is no explicit mechanism for class specialization, functions can be introduced to model this

abstraction. Also supported is function inversion, recognizing that properties may be inverses of other

properties (e.g., Child_of and Parent of). Furthermore, derived functions may be used to define various

views of a database, thereby supporting semantic relativism. Functions may also be used to enforce several

kinds of integrity constraints.

To summarize, FDM/DAPLEX is a semantic model (and data language) based on two fundamental

constructs, entity and function. Entities are intended to correspond to real-world objects. Functions play

a large role in defining properties, abstractions such as classification and generalization, and user views,

as well as in enforcing integrity constraints. FDM does not deal with representing information about the

behavior of entities. Finally, FDM has served as the foundation for Iris, an object-oriented data model (see

Section 2.4.2).
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2.3.4 Other Semantic Data Models

This review has summarized a number of important semantic data models to highlight the nature

of the constructs used and the similarities and differences among models. More extensive reviews contain

details of these and other models (e.g., Peckham and Maryanski, 1988; Hull and King, 1987). Among the

other significant models are the Semantic Association Model (SAM*) (Su, 1983), which introduces a large

number of association types (membership, aggregation, interaction, generalization, composition, cross-

product, and summarization), and the event model (King and McLeod, 1984), which supports

classification, generalization, and aggregation, as well as dynamic modelling via events.

2.4 OBJECT-ORIENTED MODELS

2.4.1 The Object Paradigm

Historically, the technologies available for constructing information systems have not been based

on a model that views an IS as a representation of knowledge. Perhaps as a consequence, the plethora of

methodologies for creating a set of user requirements for a system, and then translating these requirements

into a collection of programs, data files, and guidelines for use, have frequently failed to produce systems

which meet users needs and/or expectations.

Recently, however, a new metaphor of computing - the object paradigm - has emerged and

attracted a lot of attention, as evidenced by the proliferation of literature on the subject. For example, Kim

and Lochovsky (1989), Meyrowitz (1989; 1988; 1987; 1986), Schriver and Wegner (1987), and Sigplan

(1986) are devoted to object-oriented programming, while papers in Kerschberg (1986) and Kerckhoffs

et al. (1986) apply the paradigm to databases and simulation, respectively. This interest is at least in part

because of claims that object-oriented constructs are more "natural" than those of previous approaches.

Since the objective of this research is to develop an IS model that provides for the direct representation
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of knowledge and, hence, could reasonably be called "natural", it is useful to determine the extent to

which the object model of computing does allow for the direct representation of knowledge.

The essence of the object paradigm is the encapsulation of data and the procedures which operate

on that data in a single unit called an object (Nierstrasz, 1987; Rentsch, 1982; Robson, 1981). A second

fundamental construct is that class objects and instance objects are distinguished, with classes providing

a common form for creating instances which are in one-to-one correspondence with entities in some

domain. Other constructs are also used, such as specialization/inheritance, independence, homogeneity,

message passing, and composition. However, there is widespread disagreement as to which of these are

necessary to the paradigm (e.g., Nierstrasz, 1989; Wand, 1989; Banerjee et al., 1987; Pascoe, 1986).

The roots of object-oriented computing go back to the simulation programming language SIMULA

(Birtwistle et al., 1973). This language introduced both the ideas of encapsulation and of class/instance

distinction. Simulation applications dealing with entities serviced by physical facilities, both of which have

properties important to the application, are well-suited to modelling via objects. The other primary

contribution to object orientation was the development of the Smalltalk programming language. Through

various refinements (Smalltalk-72, Smalltalk-74, Smalltalk-80, and more recent versions) 26, additional

concepts, such as independence, homogeneity, and message passing, were introduced to provide a uniform

programming environment in which everything is represented by objects.

The object-oriented approach has been taken beyond the domain of programming languages and

simulation and used as a general modelling tool for databases and knowledge representation systems.

Database systems such as IRIS (Fishman et al. 1987; Lyngbaek and Kent, 1986) and ORION (Banerjee

et al., 1987) exhibit varying degrees of "object-orientedness". Frame-based knowledge representation

systems, such as KEE (Fikes and Kehler, 1985) and Nexpert (Neuron Data, 1988) use concepts that are

related to those available in object-oriented programming languages such as Smalltalk. In addition, the

26For a discussion of the evolution of Smalltalk, see Goldberg (1984).
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constructs have been applied more generally to the analysis and design of information systems (e.g., Coad

and Yourdon, 1991; Bailin, 1990; Henderson-Sellers and Edwards, 1990; Wirfs-Brock and Johnson, 1990).

Two uses of object constructs involving conceptual modelling are surveyed here. The first is

object-oriented data models, which are closely related to, and extend, earlier semantic data models (King,

1989). The second is the recent explosion in interest in object-oriented analysis and design.

2.4.2 Object-oriented Data Models

In recent years, there have been several research efforts aimed at developing database systems

based on object-oriented data models such as ORION (Banerjee et al., 1987), IRIS (Fishman et al., 1987),

and ENCORE (Hornick and Zdonik, 1987). In general, these models extend concepts taken from object-

oriented programming to consideration of technical issues critical in a database environment. Such issues

include persistence of objects, data integrity, data security, data sharing, changes to database schema, and

query management.

ORION (Banerjee et al., 1987) is an object-oriented data model supporting encapsulation,

classification, inheritance, and message passing, as well as composite objects (i.e., objects that are

comprised of other objects as parts and are treated as a unit for storage, retrieval, and integrity purposes),

dynamic schema evolution (i.e., changes to class definition and hierarchy), and versions. Some of the

additional features are intended specifically to meet the needs of engineering "design databases".

Other features of ORION expand on the object paradigm. For example, the model supports

multiple inheritance of properties and behavior, so that classes are arranged in a lattice or directed acyclic

graph. A special set class is predefined (instances of which are sets) to facilitate predicate-based queries

on a database. This class has messages for searching a set, adding elements, and so on.

In addition, the semantic construct PART_OF27 is captured through the specification of composite

27This corresponds to a composition abstraction.
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objects. A composite object is one with a hierarchy of exclusive component objects (i.e., no component

may belong to more than one composite object). In implementation, clustering of these composite objects

(which are often used together) on secondary storage devices reduces retrieval time. Provision is also made

for the more general concept of aggregate objects. These are loose collections of objects forming a cover

aggregation'''. Aggregate objects can represent many types of relationships among their constituents, as

criteria for membership in the aggregate can be specified by the user. Consequently, an object can

participate in many aggregate objects.

As with several other object-oriented database systems (e.g., Hornick and Zdonik, 1987), ORION

supports multiple versions of objects. This is a consequence of the particular class of applications

envisioned for the ORION system - engineering design databases.

ORION also supports the notion of a stored-value variable (for which all instances of a class take

on a specified value). This is analogous to the use of class variables in the programming language

Smalltalk (Robson and Goldberg, 1981). In addition, the use of default-value variables (for which the

instances of a class whose value for this variable is not defined take on the specified default value)

corresponds closely to the use of default values in frame-based knowledge representation schemes (Bobrow

and Winograd, 1977).

The IRIS database system (Fishman et al., 1987; Lyngbaek and Kent, 1986) is the result of another

effort to combine an object-oriented data model29 with the features necessary to form a complete database

system (e.g., transaction management, query management, concurrency control). As in other systems, IRIS

objects represent entities and concepts from the application domain. These objects are completely

28SDM (Hammer and McLeod, 1981) provides the example of a convoy of ships as such an
aggregation. In addition, this abstraction mechanism parallels what is called association in ACM/PCM
(Section 2.2.3).

291n this case, the system is based on the functional data model DAPLEX (Shipman, 1981) described
earlier (Section 2.3.3).
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described by their defined and inherited behaviors and property values, and are classified by type. Many

of the features supported by IRIS are similar to other object-oriented database systems such as ORION.

These include:

• class definitions in terms of properties and methods,

• type hierarchies and multiple inheritance,

• object independence.

Another database system based on an object-oriented model is the GemStone system (Bretl et al.,

1989). GemStone extends the Smalltalk approach to object orientation in the context of programming by

providing mechanisms for concurrency control and data integrity in a multi-user environment, and for

managing the physical storage of objects. The grounding in Smalltalk means that the system exhibits the

object-oriented characteristics of the Smalltalk programming language.

2.4.3 Object-oriented Analysis

Within the last few years, attention has been focused on object-oriented approaches to systems

analysis and design (e.g., Booch, 1991; Henderson-Sellers and Edwards, 1990; Bailin, 1989; Pressman,

1987). In particular, object-oriented constructs have been claimed to correspond to the way people

organize knowledge and, hence, to be useful for representing knowledge (Coad and Yourdon, 1991). In

this section, the main elements of the approach to analysis advocated by Coad and Yourdon is reviewed.

According to Coad and Yourdon, object-oriented analysis (OOA) borrows from both semantic data

modelling and object-oriented programming domains. The first step in OOA is identifying objects. The

approach allows for distinguishing between things that exist in the domain and a class for describing the

common attributes of a collection of things. The justification offered for identifying objects is to "match

the technical representation of a system more closely to the conceptual view of the real world" (p. 53).

Classes, once identified, are related to other classes by two abstraction mechanisms:
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specialization/generalization and whole/part (or composition). Each class is then described in terms of

attributes which define the structural properties of instances. Finally, services model the behavior of

objects in time. Services are described in terms of processing (i.e, the how, rather than the what).

On the whole, OOA contains mechanisms similar to those of other conceptual models and

semantic data models, including the notion of correspondence between entities in the domain and

surrogates (objects) in the representation, the abstraction mechanisms of classification, aggregation,

specialization, and composition (the last not being adequately dealt with in most other approaches), along

with the encapsulation of structural and behavioral knowledge.

The justification for OOA constructs centers around "naturalness". The authors explain their choice

of constructs based on "classification theory" as described in the Encyclopedia Britannica (see Coad and

Yourdon, 1991, p.1). However, there are at least two problems with the justification. First, the

classification theory constructs used are not clearly or precisely defined, and the authors do not make use

of widespread literature in cognitive science on classification or concept theory 30. Second, the

correspondence between these constructs and those of OOA is not precisely indicated.

2.5 SUMMARY

In most approaches to conceptual modelling (including semantic data models and object-oriented

analysis) described above, several themes are evident. First, there is a strong emphasis on a

correspondence between model constructs (objects, instances, and so on) and things in the domain of

interest. Second, there is widespread use of abstraction mechanisms in the various models. This suggests

the importance of abstractions in modelling knowledge about a domain. Although the exact mechanisms

30For example, Coad and Yourdon state:
It would be intellectually satisfying to the authors if we could report that we studied the philosophical ideas
behind methods of organization ... . Then, based on the underlying methods human beings use, we could
propose the basic constructs essential to an analysis method. But in truth, we cannot say that, nor did we
do it. (1991, p.16)
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vary from model to model, some conclusions are clear. Classification and (some form of) aggregation are

ubiquitous, generalization/specialization is nearly universal, but composition and association are present

in only some models. Third, there is a strong tendency to capture both structural and behavioral properties

of entities in an application, although the tendency to define classes in terms of both is less common

Despite this commonality, with the notable exception of OBCM, there has been little effort to

rigorously explain or justify the constructs chosen in any modelling approach on the basis of naturalness.

In particular, many semantic data models have been described as providing a "natural" approach to

modelling, without indicating what is meant by natural, or how naturalness is achieved in the model. Such

models have been marked by a lack of theory to support constructs used, relying instead on intuitive

appeal and convenience. OOA goes one step further by relating the model to classification theory, but

provides neither a clear description of the theory nor a precise indication of how OOA directly reflects

classification theory. On the other hand, while OBCM does present a rigorously defined set of constructs

fully supported by a comprehensive ontology, it avoids issues related to the fact that conceptual modelling

ultimately deals with representing knowledge of reality. Consequently, it may prove valuable to combine

a formal approach, as taken by OBCM, with an explicit focus on theories of the organization of

knowledge about entities, as hinted at (but not explored in detail) by OOA.

This thesis is motivated by the belief that a lack of attention to the nature of concepts and

classification hinders the development of a "natural" conceptual model. The primary claims to be

demonstrated are that a formal conceptual model can be developed based explicitly on a theory of

classification, and that such a model provides useful modelling insights. Since a basic assumption

underlying the work is that an information system represents knowledge about things in an organization,

an obvious area to look for a foundation for conceptual models is one which deals with the theory of

representing knowledge about things. To this end, Chapter 3 is devoted to a review of literature in

cognitive science/psychology dealing with theories of concepts and classification.



CHAPTER 3

CONCEPT THEORIES AND MODELLING IMPLICATIONS

3.1 CONCEPTS AS A BASIS FOR INFORMATION SYSTEMS MODELS

3.1.1 Introduction

As stated earlier, a basic assumption of this thesis is that IS development can benefit by directly

adopting the view that an information system represents knowledge about things in an organization. In

order to develop a precise model of IS which embodies this assumption, a grounding in theories of

knowledge about things is required. In this chapter, three theories of concepts, which deal with the

structure and organization of knowledge about things, are briefly reviewed. One of these theories is then

selected as a foundation for the model of knowledge that is developed in Chapter 4.

3.1.2 Reference Disciplines

Cognition is studied in many fields of research. Three fields which are most relevant and which

have provided much insight are psychology, artificial intelligence (AI) and philosophy 31 . Work in these

areas sometimes converges in a hybrid field referred to as cognitive science (e.g., Winograd and Flores,

1987; Haugeland, 1981).

While one goal of research in these fields is essentially the same (i.e., a better understanding of

cognition), the research methodologies used differ considerably. Cognitive psychology is not just a study

of cognition. It is also a methodology for conducting research, since the experimental method is the means

by which research in cognitive psychology is carried out. Artificial intelligence focuses instead on the

31Additionally, considerable work in linguistics is relevant to cognition. Such work is covered here
only to the extent that it overlaps with philosophical and psychological investigations (e.g., Lakoff, 1987).

35
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performance of machines. Insight into cognition is gained by constructing computer programs that behave

in some way as a human would under specified conditions. Finally, philosophical investigations of

cognition rely on logical arguments that provide explanations consistent with commonly observable (as

opposed to experimentally induced) human behavior.

Despite these methodological differences, there is considerable agreement between the theories of

cognition advanced in each field. Consequently, while the theories described here are taken primarily from

psychological literature, they are consistent with work done in AI, philosophy, and linguistics.

3.1.3 Cognition

For the purposes of this research, cognition is defined as:

the acquisition and use of knowledge by humans, including "all processes by which the sensory
input is transformed, reduced, elaborated, stored, recovered and used." (Best, 1986, p. 4)32

Cognitive activity is extremely varied and complex. Humans engage in such diverse activities as

perceiving, understanding perceptions by relating new experiences to existing knowledge, locating and

using relevant knowledge in diverse situations, making decisions, reorganizing knowledge based on new

experiences, making plans or establishing goals, seeking means to achieve goals, and engaging in activity

to accomplish these goals (e.g., Best, 1986; Medin and Smith, 1984; Simon, 1979; Crutchfield, 1973;

Newell and Simon, 1972).

One component of cognition critical to survival is our knowledge of things in the real world. Every

person is exposed to new things daily, and must learn to represent these things and classify them in terms

of previous experiences in order to survive. The importance of classification or categorization to human

life is widely recognized by cognitive scientists. As Lakoff (1987) states:

32The quote is actually offered by Best as a definition of cognitive psychology. However, in
accordance with section 3.1.2, cognitive psychology is here viewed more narrowly as imposing a particular
methodology - laboratory experimentation - for investigating the phenomena described above.
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Without the ability to categorize, we could not function at all, either in the physical world or in
our social and intellectual lives. An understanding of how we categorize is central to any
understanding of how we think and how we function .... (p. 6)

Similarly, Smith and Medin (1981) open their well-known book on concepts and categorization with the

statement:

Without concepts, mental life would be chaotic. If we perceived each entity as unique, we would
be overwhelmed by the sheer diversity of what we experience and unable to remember more than
a minute fraction of what we encounter. (p.1)

There appear to be two primary functions of concepts (Smith, 1978). The first is to support what

has been called cognitive economy (Bosch, 1978). By grouping many instances into a single category,

these instances are identified as being the same in certain respects. Usually, this can be taken to mean that

the instances share some set of properties, referred to as a concept. This permits reasonable questions to

be asked with respect to known instances of the concept. For example, if the concept EMPLOYEE has

as one its defining properties Department, meaning that each employee works in one department, then

it makes sense to ask "which department does x work in?", for any x who has been previously classified

as an employee. Similarly, given a new individual y, if we are told that y works in a department, we may

be able to classify y as an EMPLOYEE".

The second important role of concepts emerges from the previous statement. If an individual is

classified in a particular way on the basis of incomplete information about its properties (i.e., on the basis

of knowing only a subset of its properties), one can infer additional properties of interest that the

individual must possess. That is, possessing a subset of properties may imply that an individual possesses

another subset, all of which are defining properties of the concept. For example, people learn from

experiences with fires that they generate heat. Consequently, on observing a distant fire (by the presence

of flames), an individual "knows" that it will be hot, even if the heat is not felt at that distance. Of course,

33This holds only if EMPLOYEE, along with specializations of it such as SUPERVISOR, are the
only concepts which have the property Department. Otherwise, knowledge of additional properties may
be needed to classify an instance.
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misclassification sometimes occurs. When this happens, we may question our perception of the thing,

refine our conceptualization to either define the associated category more precisely, or develop a new

concept based on the experience.

3.1.4 Concepts and World Knowledge

Every theory of knowledge about reality makes (sometimes implicit) assumptions about the nature

of what is represented: that is, assumptions about reality. The branch of philosophy that deals with the

nature of reality is ontology. Most research in cognitive science presupposes an objectivist ontology (see

Lakoff, 1987; cf. Newell and Simon, 1976). That is, the world is assumed to consist of concrete things

or entities34 that are associated in various ways.

It is not the intent of this thesis to deal explicitly with the nature of reality. Instead, the focus is

on providing a formal description of cognitive representation that constitutes the basis for a conceptual

IS model. However, it is worth explicitly mentioning (without detailed comment) a few ontological

assumptions that underlie this research, and the implicit relationship between reality and its representation.

These assumptions are given without comment. A formal treatment of these and many more aspects of

the nature of reality can be found in, for example, the ontology of Bunge (1977;1979).

The fundamental building block of reality is the thing. Things are described by characteristics (or

properties). Collections of physical or abstract things may share some characteristics. A concept is, for

this research, defined as a mental abstraction of the common characteristics of a collection of things.

Things, in turn, are represented mentally by what are called instances. An important premise of this work

is that concepts and instances together, and their organization, make up our mental representation of the

real world. That is, they constitute our knowledge of things.

340ften, the word object is used synonymously with thing or entity. However, in this proposal, the
word object has a specialized meaning, introduced in Chapter 2, and which is refined and formalized in
Chapter 4.
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3.1.5 Components of Conceptual Representation

To represent a thing adequately, its various properties must be accounted for. For this research,

four components of knowledge are identified35.

First, perception of an individual thing leads to representation of its existence. Second, there are

various structural properties that characterize a thing (Smith, 1978; Bruner et al., 1956). Third, a thing

has physical or abstract relationships to other things (Smith, 1978). A relational property describes an

association among two or more things that holds for some period of time. This association may be

characterized by its own structural and relational properties, and by constraints on the behavior of the

participating entities. Some relationships are permanent, while others are transitory. Finally, there are rules

governing the behavior of things in various contexts (Smith, 1978). Behavioral properties determine the

allowable changes in the values of other properties. Each property of a thing belongs to exactly one of

these categories.

This view of the components of knowledge is similar to the characterization of objectivism given

by Lakoff (1987):

objectivism holds that reality is structured in a way that can be modeled by set-theoretical models;
that is, the world consists of

entities [existence]
the properties of entities [structure/behavior]
the relations holding among those entities. (p. 159)

35These components are not always explicitly recognized in the literature. However, examples of each
and their role in categorization can be found, for example, in Categories and Concepts (Smith and Medin,
1981). Chapter 4 formally defines each of these elements.
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3.1.6 IS Models and Conceptual Representation

Knowledge of things in the world may be characterized in terms of high volume and complexity.

This often makes it difficult to accurately recall large amounts of data, or to recall data about a specific

thing in a reasonable period of time. Further, knowledge tends to decay over time if not frequently used.

For these reasons, people have devised many aids to relieve the cognitive burden of "knowing the world".

One of the tools that has proved most useful and reliable in this respect is the computer.

The data and programs that inhabit a computer can be viewed as representations of knowledge

about some aspects of the real world (Abbott, 1987; Brooks, 1987). Data capture static knowledge about

things, whereas programs may describe their behavior. According to Abbott's "principle of knowledge

abstraction":

It is the domain-level knowledge embodied by a program that represents the program's only real
connection to the problem domain. (1987, p. 667)

In organizations, the knowledge contained in an IS relates to the elements of reality relevant to

the functioning of that organization. Typically, these include employees, products, customers, suppliers,

contracts, and so on. However, since we know the world only through our cognitive representation of it

(concepts and instances), an IS is ultimately a representation of a conceptual system as is any intermediate

product of IS development (e.g., an Entity-Relationship diagram). Consequently, the following working

hypothesis motivates the current research.

Working Hypothesis:

Methodologies for IS development can benefit from an IS model based explicitly and

formally on a theory of concepts.
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3.2 THEORIES OF CONCEPTS

A theory of concepts generally specifies several things. Foremost, the structure or internal

composition of cognitive abstractions, as well as the relationship between concepts and things perceived,

must be explained (Medin and Smith, 1984). In addition, mechanisms for determining whether an instance

belongs to a category are needed (Bruner et al., 1956). Furthermore, a comprehensive theory should

describe how concepts are related to other concepts in memory (Smith, 1978; Collins and Loftus, 1975;

Quillian, 1968), reflecting how things are linked in reality. Finally, a theory of concepts should offer an

explanation of how concepts are acquired36.

Theories of concepts that have been proposed in psychology, AI, and philosophy are in many ways

similar. They differ primarily in the manner of accumulating evidence to support or refute their

predictions. In particular, the three psychological theories examined here are each surrounded by a variety

of experimental evidence (see Smith and Medin, 1981 for a summary). For each theory, there is evidence

which is consistent with the theory's predictions, as well as evidence that contradicts its predictions.

3.2.1 Classical View

3.2.1.1 Theory

The oldest and most precise psychological theory of concepts has been with humans in one form

or another since the ancient Greeks. In its modern incarnation, the classical view was first detailed and

studied by Bruner, Goodnow, and Austin (1956) 37. This theory holds that a concept can be stated in

36The review of concept theories in this chapter does not discuss the position of each theory with
regard to concept acquisition.

37It should be noted that the studies reported by Bruner et al. were primarily concerned with strategies
for acquiring concepts. However, the nature of the concepts used forms a useful basis for describing the
classical view.
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terms of individually necessary and jointly sufficient conditions for membership of a thing in a category.

That is, the conditions define the concept.

To illustrate this, suppose that A designates the set of all known instances (each representing a

thing) sharing properties P1, P2, and P3. Then a new instance is classified as belonging to the concept

associated with A if and only if it has properties P1, P2, and P3. The concept, then, is the three properties.

In symbols:

C = {Pi, P2, P3 ), and

A = { alP 1(a),P2(a),P3(a)) ,

where C designates a concept and a designates an instance of A. For example, a classical definition of

a triangle is:

P1:closed figure

P2:bounded by three line segments.

Obviously, other properties characterize a triangle (e.g., sum of the angles is 180). These lead to

alternate definitions. However, the other properties of a triangle can be derived from the above definition.

From this, a looser view of necessary and sufficient conditions can be stated, in which there may be

several subsets of properties, each sufficient to classify an instance 38 . This supports classification on the

basis of incomplete information, and enables one to infer the presence of other (possibly non-observed)

properties as discussed in Section 3.1.3.

A tacit assumption of the classical view is that all concepts can be defined this way. Furthermore,

concepts can be organized hierarchically by the consideration of proper subset relations among sets of

properties (Keil, 1979). For example, the set of equilateral triangles is a subset of the set of all triangles,

and possesses properties in addition to every property possessed by all triangles (e.g., line segments are

of equal length).

38The model developed in Chapter 4 adopts this relaxed view.
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Classical concepts can also be linked by part/whole associations (see, e.g., Miller and Johnson-

Laird, 1976). In some contexts, a concept is viewed as a collection of parts or components. For example,

in an automobile manufacturing context, a car may be best thought of as a collection of parts, including

a motor, chassis, and frame. The configuration of these components, however, yields a composite concept

with emergent properties. For example, considered holistically, a car has properties, such as fuel

consumption, that are not properties of any of the components

3.2.1.2 Extensions

Bruner et al. (1956) do not fully describe what may constitute a property or attribute that may be

used to define a concept. They do, however, state that an attribute is:

any discriminable feature of an event that is susceptible of some discriminable variation from event
to event". (p.26)

It is clear from the experiments they conduct that structural properties may be used in the

definition of a concept, since the concepts they use differ on clearly discernible properties of visual

structure. For example, a structural property of a triangle is that it is a closed figure.

In addition, behavioral and relational properties can be used to define a concept (Glass and

Holyoak, 1986), as expected from the characterization of components of knowledge about things, stated

earlier. For example, the concept of STUDENT can be defined as a specialization of the concept of

PERSON. The specialization involves defining students as those instances of person that are involved in

a particular relationship with the instances of another concept called SCHOOL.

39It is clear from the context that, by "event", is meant a perception of a thing or entity. For example,
they define a "criterial variable" as "a discriminable feature ... used as a means of inferring the identity
of something." (p. 26, italics mine)
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3.2.1.3 Applicability

In the experiments described in Bruner et al., the concepts used are artificial, based on sets of

geometric figures that share certain physical properties. In other empirical work on the classical view, the

concepts used tend to be quite concrete (e.g., Armstrong et al., 1983; Bourne et al., 1976).

The use of classical concepts, in the form of technical definitions, is most obvious in domains such

as mathematics and the physical sciences. In these fields, precise definitions are needed for theory

development, experimentation, and measurement. Furthermore, the criticality of technical (formal)

definitions to a field such as mathematics demonstrates that concepts need not contain instances that

represent perceptible things in order to be subject to precise defmitions in terms of necessary and sufficient

conditions.

3.2.1.4 Limitations

The limitations of the classical view can be subdivided into two categories. First, the nature of the

concepts to which technical definitions can be applied appears limited to those representing either physical

things or abstract things which are not subjectively interpreted by the individual (Lakoff, 1987; Armstrong

et al., 1983). Thus, concepts such as honesty and fairness are not definable under the classical view (Glass

and Holyoak, 1986). Interestingly, these are concepts that would not generally be regarded as containing

identifiable things.

The second set of limitations appears more substantive. Considerable experimental work has been

done in testing the classical theory. As a result, a number of well-known criticisms have emerged (Smith

and Medin, 1981). For one thing, the theory does not account for so-called typicality effects (Armstrong

et al., 1983; Roth and Shoben, 1983; Rosch and Mervis, 1975). That is, in experiments, some instances

or specialized concepts are described as more typical of the concept than others (e.g., equilateral versus
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obtuse for triangle)40. Clearly, though, this need not be a problem with the ability to define concepts

unambiguously. Instead, typicality may be an empirical phenomenon relating to the relative frequency of

experiences with the various exemplars of a category. The level of exposure to, or familiarity with, certain

exemplars (facts) may produce such an effect (cf. Tversky and Kahneman, 1984).

In addition, Roth and Shoben (1983) have shown that the degree to which exemplars are

considered typical of a category depends on the context in which information is presented, indicating that

typicality is situation specific. Furthermore, in most of the arguments that have proposed this as a

weakness of the theory, the tests that have been used in fact compare concepts to concepts (e.g., Medin

and Smith, 1984; Rosch and Mervis, 1975). Thus, typicality, as the term has been used, often implies a

measure of the association between two concepts (as in the case of equilateral vs. obtuse triangles), and

not between an instance and a concept. Consequently, researchers should be comparing, for example,

instances of equilateral triangles and those of obtuse triangles in an attempt to assess typicality.

Another criticism of the classical view is that people have very limited success in accurately

stating necessary and sufficient conditions for membership in most categories (Medin and Smith, 1984;

Posner and Keele, 1968; Wittgenstein, 1958). This has been used to support the proposition that people

do not use such conditions to classify. However, this situation may be akin to one of recognition versus

recall. As most exam situations demonstrate, human recognition ability exceeds recall ability. Thus,

information that is represented cognitively need not be immediately articulable Similarly, a failure to state

defining conditions does not demonstrate that subjects do not use them in making classifications. A less

direct, but equally valid, test of whether people use technical definitions to classify is to measure their

success in classifying instances of well-defined concepts. Evidence ranging from laboratory experiments

(Bruner et al., 1956) to the survival and adaptation of the species suggests that people tend to be very

40Note that equilateral and obtuse are also concepts that are special cases of the more general concept
triangle. This refinement of concepts makes possible their arrangement into hierarchies (see Section 3.2.4).
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good at correctly classifying things.

3.2.1.5 Summary

Empirical work on the classical theory of concepts shows that while the theory does not account

for the observed behavior of people in all classification and concept definition tasks, there is support for

the theory as a description of our abstraction of the common elements of concrete and/or technically

definable things in the world.

Even advocates of other theories of concepts concede that the classical view is appropriate in well-

defined domains (Lakoff, 1987; Medin and Smith, 1984; McCloskey and Glucksberg, 1978). For example:

the typicality rating, verification latency, and truth judgment data do not exclude the possibility that
categories have clear boundaries. (McCloskey and Glucksberg, 1978, p. 462)

[W]hile [people] may appear to have vague and fuzzy notions about the criteria for category
membership, they could, in principle, learn more about such concepts and then be perfectly
consistent in their judgments. (p. 466)

A technical taxonomy would be an example of such an idealized category system. (p. 466)

[Under the classical view], a conceptual category is defined in terms of necessary and sufficient
conditions shared by all members. Such conditions include properties of entities and relations
holding among entities. (Lakoff, 1987, p. 166) ... Such metaphysical assumptions about physical
objects certainly won't get us into trouble when we are dealing with tables and other familiar
physical objects. (p. 175)

3.2.2 Prototype View

3.2.2.1 Theory

The prototype theory of concepts and concept formation emerged largely as a response to the

problems identified in experiments on the classical theory (Smith, 1988; Medin and Smith, 1984; Smith

and Medin, 1981). In this view, concepts are defined by prototypes, or statistical abstractions, in which

the value of each feature or property is computed as the average of the value of that feature for the known
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instances of the category (Rosch and Mervis, 1975; Rosch, 1973; Reed, 1972; Posner and Keele, 1968) 41 .

Thus, properties are no longer defining, but are probabilistic. All properties need not be shared by all

members of a category.

One interesting consequence of this theory is that concepts change as new instances are classified

but, nevertheless, become more stable as the set of instances grows (Glass and Holyoak, 1986). Thus, the

theory addresses the phenomenon of concepts from a developmental perspective (Rosch, 1973).

Membership of an instance in a category is determined by comparing a candidate instance against

the prototype, and accepting if the candidate does not differ "significantly" from the prototype. The

concept or prototype is then updated by incorporating the new instance into the average of features.

3.2.2.2 Applicability

As a developmental theory, the prototype view accounts for the types of errors that can be

observed among children during the acquisition of concepts and the modification of a concept that occurs

after a misclassification (Rosch, 1973). If a new instance differs on some important dimension from the

existing instances, the prototype must be modified to accommodate this difference.

That the theory was developed specifically in response to the empirical problems of the classical

view is evident from its ability to handle typicality effects. The prototype itself is regarded as the most

typical instance (Medin and Smith, 1984). Less typical instances are ordered by their "distance" from the

prototype (Rosch, 1973). Further, since the concepts used in tests of the theory are often not defined by

necessary and sufficient conditions (e.g., Posner and Keele, 1968), it is not surprising that people cannot

elucidate such conditions in experimental situations where statistically abstracted concepts are used.

As with the classical theory, the nature of the concepts that may be defined with a prototype

41There are several variations on prototype theory. These are encompassed in the citations given here.
The details of these differences are outside the scope of this research and, hence, are not discussed.
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theory seems to be those that abstract from physical things.

3.2.23 Limitations

The most serious problem with this theory is that most proposed versions of it do not specify how

properties are averaged42. This is especially relevant when a property is qualitative rather than

quantitative, and gives rise to the attachment of probabilities to the presence and/or values of various

properties in a given instance (Medin and Smith, 1984). Unfortunately, procedures for calculating these

probabilities are not clear. In addition, the notion of "significant" differences between a prototype and a

candidate instance is generally ill-defined in prototype theories.

Additionally, the theory is unable to account for the fact that people are capable of elucidating

necessary and sufficient conditions in many situations. In particular, sufficient conditions cannot be derived

from a prototype. Also, the theory does not appear to account for abstract definable concepts such as those

found in mathematics.

A final criticism of prototype theory as a superior alternative to the classical view (although not

strictly a limitation) is that the apparent use of typicality information to classify instances (identification

procedure) is not inconsistent with the existence of defining properties (core). In fact, experimental

subjects often believe that defining properties exist, even if they cannot state them (cf. Armstrong et al.,

1983).

42All exception is given in Osherson and Smith (1981). These authors give a formalization of prototype
theory and use fuzzy set theory to demonstrate that the formalization yields contradictions. They also point
out that the classical view, and the associated use of standard set theory, is immune to such contradictions.
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3.2.3 Exemplar View

3.2.3.1 Theory

Both the classical and prototype views regard a concept as an abstraction that is distinct from the

instances which satisfy its definition. In contrast, classification can be treated as a process whereby

candidate instances are compared to stored instances. So-called exemplar theories do not regard a concept

as an explicit abstraction. Instead, the concept is implicit in the instances of a category (Medin and Smith,

1984).

Exemplar theories hold that candidate instances are evaluated by comparing them to a collection

of existing instances that constitute a category, rather than to an abstraction of these instances.

The basis for this position comes from the Wittgensteinian notion of family resemblances

(Wittgenstein, 1958; see also Lakoff, 1987). That is, many things can be classified under a common label

even though any given pair of things in a collection have little, if anything, in common However, each

instance shares different properties with different instances of the same category'''.

3.2.3.2 Applicability

As with the prototype view, the problems incurred by people in specifying necessary and sufficient

conditions is consistent with the general theory. That is, since there is no abstraction, it is not expected

that people would be able to state defining properties for concepts. In addition, the typicality effects

reported by Rosch and her colleagues (e.g., Rosch, 1973; Rosch and Mervis, 1975) can be explained in

terms of a high degree of similarity of an instance to other instances along several dimensions.

43Wittgenstein uses the common concept of game as an example. The diversity of activities that may
be called games seems to demonstrate that there are no properties that all games share, and that it is
nonsensical to postulate a prototypical game (Wittgenstein, 1958, pp. 31-34).
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3.2.3.3 Limitations

The limitations of exemplar theories of concepts are similar to those of prototype theories. The

theories are generally ill-specified (e.g., see Glass and Holyoak, 1986; Medin and Smith, 1984). The

analogy of family resemblances gives only an intuitive understanding of the relationships among instances,

and does not appear to be easily formalizable. As with prototype theory, there is also the issue of defining

similarity and establishing cutoffs for the boundaries of a category. Finally, the theory does not account

for the ability (and necessity) to rigorously define concepts in scientific and mathematical domains.

3.2.4 Summary

The conflicting evidence on the relative merits of these different theories of concepts has led some

authors to suggest that each theory has certain strengths and is appropriate for certain situations. In

particular, Smith and Medin (1981) and Lakoff (1987) argue that different theories produce verifiable

predictions in different situations and, consequently, each may be appropriate in certain circumstances.

This factor must be considered in selecting a theory for formalizing a model of knowledge about the

organizational domains for which most IS maintain knowledge (see Section 3.3.3).

3.2.5 Semantic Organization of Concepts

A theory of concepts alone is inadequate to account for the creation and use of knowledge of the

physical world. An important cognitive activity involves recognizing various associations among concepts.

These relationships give further meaning to a concept by linking it to other concepts in certain well-

defined ways.

The branch of research that studies the nature of the organization of knowledge is called semantic

memory research, and has been pursued widely in both cognitive psychology and AI (e.g., Smith, 1978;

Collins and Loftus, 1975; Minsky, 1975; Schank and Abelson, 1971; Quinlan, 1968). Of the many theories
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proposed, some, such as the hierarchical-network model (Quillian, 1968) and the predicate-intersections

model (Meyer, 1970), adopt a classical theory of concepts. Others, such as the feature comparison model

(Smith, Shoben and Rips, 1974), appear to be based on a prototype theory of concepts. The latter are not

examined here.

3.2.5.1 Major Principles"

A theory of semantic memory endeavours to explain how we understand concepts in the larger

context of how they relate to each other. In fact, in some theories (e.g., Quillian, 1968), concepts are to

be understood entirely in terms of links to other concepts. Consequently, the major contribution of any

such theory is a set of constructs describing the nature of relationships 45. These constructs should lead

to predictions about performance on tasks that require using relationships among concepts (Smith, 1978).

One of the linkages proposed in the hierarchical-network theory of semantic organization is that

concepts are linked hierarchically. Thus, many concepts are specializations of others. The hierarchy ranges

from concepts of high generality (Keil, 1979), such as PHYSICAL OBJECT, to ones of high specificity

(Quillian, 1968), such as KITCHEN TABLE. Further, properties of higher level concepts are inherited

by all descendant concepts (Smith, 1978; Quillian, 1968). These connections are referred to in most

theories as IS-A links and lower level concepts may be called specializations. Concepts which are

specialized possess properties in addition to those of the concepts from which they descend (Smith, 1978).

A second major conceptual link is that of composition. Many concepts are composites of simpler

"'These principles are evident from an examination of the literature, but are not always identified as
such, particularly in some of the early theories. In fact, the principles are dealt with in other areas of
computer science, such as database theory, under the label of abstraction mechanisms (Smith and Smith,
1977). As noted in Chapter 2, it is interesting that work in this area is often referred to as conceptual
modelling (Brodie et al., 1984).

45Network theories of semantic memory typically represent concepts by nodes and links (relationships)
by arcs connecting nodes.
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concepts, each of which has properties and can be regarded, for some purposes, as independent of the

composite. In theories of semantic memory, these links are usually referred to as PART-OF (or HAs) links

(Smith, 1978). Thus, a CAR can be viewed as composed of a number of other things, including MOTOR,

CHASSIS, and FRAME.

A composite is not, however, a simple collection of other concepts. It has emergent properties that

are not present in any subset of components. For example, fuel consumption is a property of CAR that

is not a property of any of its components.

The third major link is essentially a catch-all covering other types of associations. These

relationships may or may not be required or permanent. That is, for any instance of a concept, they may

or may not hold, and may or may not change over time (e.g., marriage, employment, and ownership

relationships do change over time). Temporal links do not appear to be present in some theories of

semantic memory (Quillian, 1968; cf. Smith, 1978, p. 14).

3.2.5.2 Some Findings

Much of the experimental work on semantic memory has focused on measuring the "closeness"

of concepts in terms of the number of links of a particular type (usually hierarchical) that separate two

concepts (Smith, 1978; Collins and Loftus, 1975; Quillian, 1968). The general prediction of these theories

is that the closer two concepts are in meaning, the less time should be required by subjects to answer

questions that involve the relationship between the concepts involved".

The findings of this work have been mixed. While some support exists for the organization of

conceptual memory as described above (see Collins and Loftus, 1975 for a review), other work has yielded

conflicting results. In particular, response times can be shorter for pairs of items that are postulated to be

"For example, "Is a dog a mammal?" would be predicted to be answered more quickly than "Is a dog
an animal?", since there are presumably more intervening levels of concepts in the latter case.
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connected by more (transitive) links than other pairs (see Smith, 1978). This suggests at least that

knowledge can be retrieved in other than a strict hierarchical manner.

3.2.5.3 Summary

Hierarchical-network theories of semantic memory seem to be consistent with a classical theory

of concepts. In fact, the classical theory can be used to describe how concepts can be defined as

specializations, compositions, or in terms of temporal relationships among other concepts. In particular,

specializations can be defined by the addition of structural, relational, and behavioral properties to

concepts; compositions can be defined in terms of existing concepts (parts), along with emergent

properties that do not belong to any of the parts; and concepts determined by temporal relationships can

be defined by relational properties. This is dealt with formally in Chapter 4.

3.3 ON THE CONCEPTUAL REPRESENTATION OF ORGANIZATIONS

An information system exists to maintain information for use by members of an organization. The

scope of information and its use ranges from accounting data kept to satisfy legal requirements to

management reports and decision aids which support decisions critical to the survival of the organization.

An IS supports human cognitive activity by reducing both memory and processing demands on individuals

in an organization with respect to the entities about which information is maintained. Systems and

methodologies, then, need to be able to represent static knowledge about the organization, along with

information to describe the ways in which this static knowledge can be changed (e.g., Kung and Solvberg,

1986; Brodie, 1984; Verheijen and Van Bekkum, 1982).
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3.3.1 Organization Entities

An organization can be viewed as composed of entities belonging to a number of classes. These

classes are subclasses of very high level classes which describe an organization's products and the factors

that facilitate production (physical resources, human resources, financial resources), as well as groups of

entities in the environment that affect the organization's goals and performance (e.g., suppliers, customers,

fmancial institutions, governments, etc.). The knowledge about such things that an IS needs to contain can

be broken into the components of knowledge identified earlier: existential, structural, relational, and

behavioral.

3.3.1.1 Structural Properties

Much of the knowledge of the types of entities described above is factual in nature, and describes

static elements of instances of the kinds of concepts identified earlier. Employees are represented in terms

of properties such as address, birth date and salary. Products are described by such qualities as physical

attributes (e.g., size, weight), cost, and location. Other entities can be similarly described.

3.3.1.2 Relational Properties

Some information may not describe any single class of entities, but rather, possible relationships

between instances of two or more classes of things. Such relationships include contracts of various sorts -

including employment, loans, and agreements to supply certain quantities of products under certain

circumstances - as well as relationships that describe physical or logical configurations of entities, such

as the fact that a warehouse contains a certain quantity of a certain product at a particular time.
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3.3.1.3 Behavioral Properties

The behavior of organizational entities that is of interest relates to the manner in which the values

of structural and relational properties may change. In traditional IS, this behavior is implicit in the

programs that process data. It is not always explicitly recognized that these procedures represent behaviors

of things in the organization that have to be accounted for by the IS (e.g., Abbott, 1987; Kent, 1979).

3.3.2 Goals of Representation

An organization may conveniently be thought of in terms of the entities or things that comprise

it. This is essentially an "accounting" point of view. For this research, an organization is viewed as

containing a collection of things which operate together to achieve certain goals.

Within this context, an IS represents (some of) the things of interest to individuals in the

organization. The development of an IS involves transforming knowledge to a form that can be represented

and processed by a computer. As a first step in this process, a vocabulary for describing knowledge (i.e.,

a conceptual model) is needed. This model should reflect human concepts of things in the organization,

as well as individual things that are instances of these concepts. In general, the concepts of interest relate

to the aforementioned resources or assets of the organization, the external entities which affect the

decisions and performance of the organization, and relationships among various entities (e.g., contracts).

The purpose of a conceptual model, then, should be to provide constructs to represent all four

knowledge components which describe instances of concepts representing things in the organization, as

well as to represent concepts and their organization.

3.33 Suitability of the Classical View

The primary things of interest in a representation of an organization are either concrete or describe

abstract relationships among concrete things (Mattessich, 1989). Further, for legal, accounting, and
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practical purposes, it is most often the case that these things are clearly and unambiguously defined. It was

pointed out earlier that the classical theory of concepts is the best available for providing precise technical

definitions of concepts. Consequently, the classical view is chosen here as best-suited for providing a

theory of representation on which IS models can be based.

It may be posited that concepts are inherently subjective and, hence, a general theory of conceptual

representation does not account for the fact that different people may have different concepts to represent

their "world". Two arguments reduce the validity of this claim.

First, the provision of legal and/or accounting and/or technical definitions of organizational entities

increases the likelihood that different members of an organization will have the same conceptualizations

of these entities. If they do not, inconsistencies will be reflected in the behavior of these individuals and

should not be difficult to identify.

Second, there is a body of psychological research which shows that there is a nearly universal set

of ontological concepts for describing reality (Keil, 1986; 1979)47. This ontological hierarchy describes

a number of very high-level concepts, such as physical things, solids, liquids, animals, events, and so on,

from which all concepts that serve us in day to day life can be derived as specializations. Hence, there

is good reason to believe that concepts which can be defined by necessary and sufficient conditions will

be shared across members of an organization (although the specific properties of interest may vary among

organizational members). This supports an implicit assumption in information systems development that

users share a largely common view of the things in an organization (Bubenko, 1986), although different

users may be interested in different roles of the same things and, therefore, in different subsets of

properties.

47At least, this seems to be the case within a given society. A discussion of differences among societies
is contained in Women, Fire, and Dangerous Things: What Categories Reveal about the Mind (Lakoff,
1987).



CHAPTER 4

A CONCEPTUAL INFORMATION SYSTEMS MODEL

4.1 INTRODUCTION

The previous chapters have dealt with three levels or domains of analysis (Figure 4-1). At the level

of reality, there are things which possess characteristics. The level of cognitive representation (or

knowledge) contains constructs which represent reality. Finally, the level of information systems

representation" contains constructs which represent knowledge. This chapter deals with the second and

third of these levels. The objective is to present a formal conceptual information systems model for

representing knowledge about things, which conforms to the classical theory of concepts. In other words,

a "vocabulary" is defined (at the third level) on the basis of a set of constructs at the second level.

Figure 4-1: Reality, Knowledge, and Information Systems

REALITY
^

COGNITIVE
^

EXTERNAL
REPRESENTATION

^
SYMBOL IC
REPRESENTATION

"More generally, this third level can be referred to as a level of external symbolic representation. This
recognizes that the representation of knowledge need not be in a machine, but may equally well exist in
another medium, such as paper, in which some form of symbols or surrogates represent elements of
knowledge. Furthermore, this level may contain several sub-levels, such as a written description and an
implemented system.
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In order to construct this model, it is first necessary to have a precise view of the constructs of

classical concept theory, which were introduced only informally in the previous chapter. Consequently,

the next section reviews the major elements of the classical view and presents formal definitions of each.

Section 4.3 then discusses the importance of directness in developing a conceptual IS model, and

operationalizes directness in terms of a 1-1 correspondence between constructs at the cognitive and

information system levels. Section 4.4 defines the model MIMIC (Morphological 49 Information systems

Model of Instances and Concepts). In the concluding section, the model is shown to support a necessary

condition for creating good representations. As this chapter introduces considerable notation, Appendix

2 summarizes the important symbols used, organized in the order in which they are introduced here.

4.2 A CLASSICAL MODEL OF CONCEPTS

4.2.1 Basic Constructs of Classical Concept Theory

To briefly review and set the stage for the remainder of this section, the main elements of classical

concept theory, as introduced in Chapter 3, are:

1. Instance - represents the existence of an individual thing in the world

2. Property - describes an instance in terms of structure, relationships, or allowed behavior

3. Concept - abstracts the common properties of a set of instances

4. Specialization - establishes a concept as a refinement of another

5. Composition - recognizes a concept as consisting of  simpler parts and possessing emergent properties.

As this research focuses on formalizing these basic constructs, two important simplifications

°Morphological means pertaining to structure or form. Accordingly, the proposed model deals with
representing the structure or form of knowledge about things.
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influence what follows. First, issues involving the potential uncertainty of knowledge are not pursued.

For example, a person may know only that the value of a property (e.g., weight) is in a certain range (e.g.,

150 to 170 lbs) or that the value is a guess (e.g., 165 lbs). Database researchers will recognize this as a

form of closed world assumption (Reiter, 1984). This assumption is deliberately adopted in order to focus

on the task of formalizing the basic cognitive structures. Further research would be appropriate to extend

the formalism to deal with various forms of uncertainty.

The second simplification is that the model considers only the representation of knowledge about

some subject matter. In general, humans also have higher level knowledge about what is known about a

subject matter. For example, a person may know the average value of some attribute, such as account

balance, for the known instances of a class. Such metaknowledge (knowledge about knowledge) is not

directly captured by the formalism. However, if knowledge is indeed the subject matter of interest, the

definitions which follow do indirectly offer a framework for expressing knowledge about knowledge.

The constructs listed above are described in the cognitive science literature, but are not generally

clearly defined. However, in order to have a formal conceptual model that corresponds to classical concept

theory, precise definitions of each are needed. The remainder of this section is devoted to providing these

definitions. The constructs are divided into two types. The notions of instance, along with structural and

relational properties are primitive in that they are not derived from other constructs. After defining these

fundamental constructs, the derived constructs of behavioral property, class, specialization, and

composition are considered.

4.2.2 Primitive Constructs

Recall from Section 3.1.4 that reality is assumed to contain things. The basic constructs of

classical concept theory suggest that people represent the existence of individual things and have

knowledge of them in terms of structural facts and relationships with other things.
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4.2.2.1 Instance

The most basic construct of interest is the instance. An instance is a surrogate or symbol which

designates the existence of a thing. Thus, every thing "known" in some domain is known via an instance,

and there is a 1-1 correspondence (or a bijective function) between any set of instances and a set of things.

The following definitions formalize notions of identification function (1-1 correspondence) and surrogate,

and use these to define the instance construct.

Definition 1:

Let T and W denote sets of equal size, and f:T—AV denote a bijective function. f will be referred

to as an identification function of W in T.

This means that f describes a correspondence between elements of T and W.

Definition 2:

Let f:T--)W denote an identification function of W in T. An element tE T is a surrogate of WE W

iff f(t)=w.

If t is a surrogate of w, it may stand in the place of (represent) w in suitable situations. For

example, student numbers are surrogates of students in many administrative contexts in a university.

Definition 3:

An instance is a cognitive surrogate which designates a thing in the real world.

In other words, given some T, W, and a bijective function f:T—)W, an element te T is an instance
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if and only if t is a symbol at the cognitive leve150 and w (i.e., f(t)) is a thing. Similarly, T is a set of

instances if and only if W is a set of things. For example, W may be a set of students and T a set of

names, each of which uniquely identifies a student.

Postulate 1:

For any finite set of things, W, there exists a set of instances, T, and a bijective function f:T-4W.

This assumption states that a one-to-one correspondence can be established between a finite set

of things of interest in some domain, and instances in a cognitive representation of that domain. A useful

way of viewing the nature of instances as surrogates is that they represent the existence of things.

However, any things which might "actually exist" in the domain, but which have not been observed, are

not "of interest" and, therefore, are not included in W.

4.2.2.2 Properties

As defined above, an instance tells us nothing about the referent thing except that it exists. In other

words, an instance simply names its referent. In most cases, however, people have knowledge of specific

characteristics of a thing that may distinguish it from other things. In this regard, property is viewed as

the second fundamental construct in cognitive representations.

Three kinds of properties will be defined: structural, relational, and behavioral. These correspond

to the components of knowledge described in Section 3.1.5. A structural property describes an independent

aspect of all elements of a set of things which is stable over some time interval. A relational property

describes a relationship, or linkage, between elements of one or more sets of things which is stable over

50Ultimately, this means that t has some physical manifestation in the brain. However, the links
between the neurophysiology of the brain and cognition are well outside the scope of this research.
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some time interval. A behavioral property is derived from structural and relational properties, and

describes a rule for the allowable changes in the values of the other kinds of properties. Structural and

relational properties are fundamentally different from behavioral properties in that they can be used to

describe the state of instances. Behavioral properties, on the other hand, describe the allowed changes of

state that instances may undergo. Formal definitions of structural and relational property are given next.

The notion of behavioral property is defined later.

4 .2 .2.2.1 Structural Property

Structural properties describe independent qualities that assist in describing similar things.

Independence means that a structural property does not describe any association of things. For example,

knowledge about people includes knowledge about height, weight, hair color, and so on. Every human

has a value associated with each of these properties. Values are distinguished from instances in that the

latter possess properties while the former do not. Examples of values include units of measurement such

as kilograms and meters. The values of some properties may be permanent, while others may change. In

addition, properties generally describe or apply to more than one instance, as evidenced by those listed

above. Consequently, a structural property, S, of a set of instances, T, will be modeled as a finite set of

functions, each of which maps from T to a set of values, V 51 . The reasons for modelling a property as

a set of functions are discussed later (Sections 4.2.2.3 and 5.7).

51All sets of instances, values and functions dealt with here are assumed to be finite.
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Definition 4:

Let T be a set of instances, V a set of values, and S = Is i ls i :T-->V1 a set of functions. S will be

referred to as a (simple) structural property of T (Figure 4-2)52 .

Figure 4-2: Simple Structural Property

V

Example:

Weight (S) is a structural property of humans (T) since (in principle) a set of functions can be

constructed, whose domain is the set of instances representing humans" and codomain is the set of

52This may be extended to the case of composite (or emergent) structural properties. A composite (or
emergent) structural property is a set S = {s ils i :T 10...0TK-->V}. Emergent properties are considered further
in Section 4.2.3.4.

53For simplicity, a set of instances representing a set of things, W, will hereafter be referred to as the
set W. For example, the "set of instances representing humans" will be referred to as the "set of humans".
Unless otherwise specified, such statements describe the cognitive representation level.
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weight values. Weight describes the weight of every human, with each function in the set describing a

potential mapping. That is, for any instance tE T, at a given time (i.e., for some s, indicating an assignment

of weights to people), s,(t)E {xlx is a weight value).

Example:

Birthdate (S) is a structural property of humans (T) since a function s can be constructed whose

domain is the set of humans and whose codomain is the set of dates. That is, 3 s:T—>V such that s(t)E {xlx

is a date} V tE T. This means that Birthdate = {s).

The depiction of a structural property in Figure 4-2 can be equivalently described using a set of

tables, since each element of the set S in Figure 4-2 is a function. For example:

s2

The property S, then, is a set {s i ,...,sN} of such tables. As the functions have a common domain, it will

be convenient to speak of the members of the domain as possessing the property.

Definition 5:

Let S:T--)V be a structural property, and A be any subset of T. A (and each of its elements) will

be said to possess S.
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Example:

The set of adults (A) is a subset of the set of humans (T). Therefore, adults possess the properties

weight and birthdate.

In addition, A may constitute the intersection of the domains of several structural properties. Such

a set will be called a category.

Definition 6:

Let SA = S 1 ,...,SK ) denote a set of structural properties having domains T 1 ,...,TK, respectively. The

set A = T ln...nTK will be called a category on SI ..... SK (or simply a category).

Example:

The set of humans is a category determined by the intersection of a set of properties which

includes weight and birthdate.

Definition 7:

The function that describes the mapping for property S at some time 8 will be referred to as the

active function of S (at .5).

Example:

In the property illustrated in Figure 4-2, one function (e.g., s 2) describes the correct mapping at

a given time. Using a specific example, there is a single function which accurately describes the

assignment of weight to people. As weights change over time, the function which accurately describes

these assignments changes.
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There is an important distinction between the properties weight and birthdate described in the

above examples. In the case of weight, S may contain many elements (functions), while for birthdate,

S contains exactly one element. This distinguishes properties that are temporal (changeable) from those

that are atemporal (unchangeable). In the former case, the active function may change over time, while

in the latter it cannot. This distinction is represented by whether a property set contains more than one,

or just a single, function (respectively), thereby capturing the different semantics of these cases. In fact,

the treatment of time in this and subsequent definitions is implicit only (see Sections 4.2.2.3 and 5.7). That

is, while the value of a property may change (as in the weight example), time is not a parameter of

property functions 54. The fact that values of a property may change is modelled by the presence of

several elements (functions) in the property set, only one of which is active. Change, and the passage of

time, is understood by the fact that different functions from a set containing more than one element may

describe the instance. This is a simple way of distinguishing the permanent or temporal nature of property

values for a set of instances.

4.2.2.2.2 Relational Property (binary, n-ary, optional, required)

Some knowledge of instances can only be described with reference to other instances. A relational

property is an association of instances which describes an association of things. For example, common

relationships such as employment and ownership constitute knowledge of things beyond structural

properties. The former describes an association between a person and an organization. The latter describes

an association between a person (or organization) and other things.

A binary relational property, R, of a set of instances, T, is defined as a set of functions, each of

which maps from T to Q, a subset of the power set of another set of instances, T 1 (i.e., Qc p(Tl)). The

54An alternative treatment would be to model a property as a single function of both instances and
time. That is, S:TOA—N, where it denotes a set of time points.
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codomain is specified as a subset of the power set to indicate that an instance in T may be linked with

a fixed or varying number of instances of T I . For example, a relational property "has parents" links each

person with two other persons (with additional restrictions) and, therefore, the codomain of the property

is restricted to a subset of the power set of persons which contains only sets with two elements.

Definition 8:

Let T, T1 denote sets of instances, Qc (T 1 ), and R = fri lri :T—'Q} denote a set of functions from

T to Q. R will be referred to as a (simple) binary relational property of T (see Figure 4-3) 55 .

Figure 4-3: Binary Relational Property

T
^

R

55As with structural properties, the definition may be extended to composite (or emergent) relational
properties. A composite (or emergent) binary relational property is a set R =
Emergent properties are considered further in Section 4.2.3.4.
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Example:

T = {tit is a person},

T' = R i le is a company),

R = Employed_by.

Assuming a world in which there is no moonlighting, the codomain of this property is actually

a subset of Ti (which, of course, is a subset of p(T)).

As with a structural property, the depiction of a relational property in Figure 4-3 can be

equivalently described using a set of tables, since each element of the set R in Figure 4-3 is a function.

For example:

ri^ r2

t i q1 q1

t2 q2 t2 qi

t3 q3 t3 q7

The property R, then, is a set {r i ,...,rN} of such tables.

As the functions have a common domain, it will be convenient to speak of the members of the

domain as possessing the property. Specifically, any set of instances A (as well as each of its elements)

will be said to possess relational property R:T—>Q if AcT (cf. Definition 5, page 64). In other words, A

possesses R when A is a subset of the domain of R. In addition, A may constitute the intersection of the

domains, T 1 ,...,TK, of relational properties R 1 ,...,RK : that is, A = T in...nTN. In that case, A will be referred

to as a category on R' ,...,RK (cf. Definition 6, page 65). The set of relational properties possessed by A

will be denoted by RA = {R1,...,RK}.
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A binary relational property, R, is more completely described as a binary relational property of

instances in T with instances in T1 . For notational convenience, this may be written T R T' or R(T,T 1 ).

For a particular instance tE T at a particular time, the relationship is designated t where q je Qc p (V),

and je {1,...,IRI}.

Since relational properties link instances from one set with instances from another set, one can

think of "inverse" properties which describe mappings from elements of the second set to elements of the

first. For example, if Employed_by links persons with companies, there should be a relational property

Employs, which links companies with persons. Furthermore, if any person t i is employed by company t 1 1

(i.e., tl ie Employed_by(t)), then t ie Employs(t 11). This is stated more formally as a postulate.

Postulate 2:

If T R T1 , then 3 R', a relational property of instances in T 1 with instances in T (T 1 R' T), such

that for any tE T, tie T 1 , t'E R(t)^tE R'(t 1)."

Each element of the binary relational property R is a function, r j , whose domain is T, and

codomain is Q, a subset of p(T 1). Now, ri (t) describes the relationship holding at some time between an

element of T and a subset of T' (q3e Q). Several cases can be distinguished:

1) qi is restricted to a single element (including the null element).

This is the situation of the previous example where an instance t is associated with, at most, a

single element of T' at any given time. Relationships such as Married to fit this description.

2) ch may contain varying numbers of elements, depending on the active function of R.

This is the case where an instance t may be associated with several elements of T 1 at any given

56R(t) is a shorthand meaning "for every rj E R, Or, which is appropriate since every function in a
property set has the same domain.
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time, and includes relationships such as Parent_of and Supplies.

3) R contains a single element.

This means that the relationship is unchanging. The Child_of relationship satisfies this condition.

4) R may contain several elements.

In this case, various elements of R may hold over time. Supplier and Employed-by relationships

satisfy this condition.

Note that the links commonly described by the term IS-A are not considered here as relational

properties. Despite this, these associations are very important for cognitive representation (see Section 5.4).

However, the IS-A link describes a connection between sets of instances, rather than between instances,

such that all elements of one set also belong to another (more general) set. The distinction is best made

by considering the following examples.

Married(PERSON, PERSON) is a relational property. Selecting an element of the property (e.g.,

a function inj) and an instance of the domain (e.g., a person) yields meaningful descriptions such as

mi (John) = Jane. On the other hand, IS-A(EMPLOYEE, PERSON) cannot be instantiated in the same

meaningful way. The only correct instantiations are of the type IS-A i(Jane) = Jane, which does not contain

any information. Instead, IS-A links simply imply that all properties possessed by one set of instances are

also possessed (inherited) by the other.

The definition of relational property provides the basis for distinguishing between required and

optional relationships. The difference is that, for required properties, every element of T must be in a

relationship with some non-null element(s) of Ti (hence, the exclusion of the null set from the codomain

of functions in R).
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Definition 9:

Let T, T 1 be sets of instances, Qc p(T 1), and R = frj lri :T---)Q) a set of functions from T to Q. R

is referred to as a required relational property of T if (230 Q, or as an optional relational

property iff OE Q.

Example (required):

T = {xlx is a person),

T' = T,

R = Child of.

In this example, there are a number of implicit constraints on the child relation which can be used

to demonstrate how certain knowledge can be captured by the formalism. For example, for the single

function c of the unchanging property Child_of, yE c(x) Xf4 c(y), where x and y denote person instances.

That is, if x is y's child, then y cannot be x's child. Another restriction is that xo c(x). That is, a person

cannot be one's own child. Such restrictions are implicitly captured by the nature of the assignments made

by the function c.

Example (optional):

T = [xlx is a person),

T1 = T,

R = Married to.

Thus far, only binary relationships have been considered. However, many associations may involve

instances from several sets. The definition of relational property is, therefore, extended to handle arbitrary

n-ary relationships.
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Let T,T1 ,...,T1-1 be sets of instances, Qc p (T

 

...0r4), and R = {ri lri :T-4Q} a set of functions from€,•1

 

T to Q. R is referred to as an n-ary relational property of T.

Example:

T = {xlx is a supplier),

T 1 = {xlx is a project},

T2 = {xlx is a part},

R = Supplies = frj Irj :T—)Q , where Qg p (T T2

4.2.2.3 State, Change, and Time

An important part of our knowledge about things includes knowledge about how they may change

over time. This knowledge will be formalized as behavioral properties, which constrain allowed changes.

In order to formalize the notion of behavioral property, several ancillary definitions are first provided.

Change is defined in terms of events, where an event is a change in state. A state is defined as a collection

of active functions of structural and relational properties. In addition, this section offers some preliminary

comments on the treatment of time.

4 .2 .2 .3 .1 State

At a given moment, a person's knowledge about a domain is in a certain state that reflects a

potential state of known things in that domain. The usual way of describing state is in terms of the values

taken on by a set of variables at a specific time. However, using the definitions of structural and relational

properties given earlier, state can be defined in terms of the elements of the property sets that are active

at any time. These elements (functions) in turn determine values when applied to specific instances.

An important assumption of concept theory is that knowled ge of things is unavoidably linked to
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the categories to which they belong. In other words, it only makes sense to talk of the state of a thing as

an instance of a category. For example, it is meaningless to speak of the state of an instance Herbie,

without classifying Herbie as a member of PERSON, PARROT, AUTOMOBILE, or some other category.

The act of categorizing an instance identifies a set of properties it possesses, thereby providing a basis for

describing its state with respect to those properties. Furthermore, every instance of a given category will

have a state with respect to the set of properties shared by that category. Defining the state of a category

is an explicit reminder of this. Consequently, two complementary notions of state are presented. The state

of an entire category of instances is introduced as a mechanism for giving meaning to a instance level

view of state.

Definition 11:

Let T denote a category57 of instances, and PT= {P 1 ,...,Pic } denote the set of structural and

relational properties shared by T. The state of T, designated o(T), is a vector containing the active

function of each of the structural and relational properties possessed by T applied to the instances

in T:58

a(T)= <Pk>k€ 1^= <P 1 ip•••91)KiK>59 9

where pki, Pk, and the index ike 1,...,1Pk1}.

At a certain time, the state of an instance tE T is:

57 Category is defined in Definition 6 (page 65). The set of properties that intensionally defines a
category may have a special status and, in such cases, will be referred to as a concept (see Section
4.2.3.2).

58Each property in ST and RT has a domain which is a superset of T. Consequently, in considering the
state of T (and in this notation), only the application of the active function of each of the properties
possessed by T to the instances in T is of interest.

59The index ik should be read ik.
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G(t) =

At a later time, the state of t may be:

•Y(t) = <p in(t),...,pKix(t)>, where i'k#ik for at least one kE {1,...,K}.

Consequently, a(T) may also be written:

a(T) = <a(0>1ET

= <G(t),...,040>.

That is, the state of T is the joint state of the elements (instances) of T.

The following simple example illustrates the independence of structural and relational properties,

as well as the meaning of the indexing in the above definition. This example will be used to illustrate

various points through the remainder of the chapter.

Example:

Suppose GLASS is a category containing two instances: GLASS = {glassl, glass2}. The instances

of GLASS share two structural properties, S 1 = ORIENT and S2 = CONTENT, with codomains {upright,

upsidedown} and {empty, full}, respectively. GLASS also has one binary relational property, R 1 = ON,

with a set of tables, TABLES = {tablel, table2}. The potential combinations of values of the properties

of GLASS are:
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ORIENT:^t^s1 1(t)^s12(t)^s13(t)^s14(t)

glassl upright^upright^upside_down upside_down

glass2 upright^upside_down upright^upside_down

CONTENT:^t^s21(t)^s22(t)^s23(t)^s24(t)

glassl empty^empty^full^full

glass2 empty^full^empty^full

ON^t^r11(t)^r12(t)^r13(t)^r14(t)

glassl tablel^tablel^table2^table2

glass2 tablel^table2^tablel^table2

The potential states of, say, glassl are:

<s 1 / (glass 1), s2 / (glass 1 ),r 1 / (glass 1)> = <upright,empty,table 1 > (1)

<s 1 / (glass 1),s2 / (glass 1),r 13(glass 1)> = <upright,empty,table2> (2)

<s 1 / (glass 1), s23(glass 1)4.1 / (glass 1)> = <upright,full,table 1> (3)
<s l i (glass 1), s23(glass 1 ),r 13(glass 1)> = <upright,full,table2> (4)

<s 1 3(glass 1),s2 / (glass 1), r 1 / (glass 1)> = <upside_down,empty,table 1> (5)
<s 1 3(glass 1), s2 / (glass 1),r 13(glass 1 )> = <upside_down,empty,table2> (6)

<s 1 3(glass 1), s23(glass 1),r1 / (glass 1)> = <upside_down,full,table 1> (7)
<s 1 3(glass 1), s23(glass 1),r13(glass 1)> = <upside_down,full,table2>. (8)

In this example, i 1 , i2, j 1 E { 1,2,3,4}. However, it will not generally be the case that two properties

contain the same number of functions.

The potential states of glass2 can be similarly enumerated. Furthermore, by considering glassl and
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glass2 together, the potential joint states of the set GLASS can be listed`.

This example demonstrates the general independence of the states of instances in a category. The

fact that there are four functions in each of the two properties of GLASS (instead of two) indicates that

the value taken on by glassl (upright or upside_down) is independent of the value taken on by glass2.

However, by modelling properties as functions in this way, constraints on the joint states of instances with

respect to a single property can be imposed61 . For instance, it may be that both glasses are required to

be in the same orientation. This semantic constraint can be implicitly imposed by omitting both functions

s12 and s13 from the property SI .

The notion of state gives rise to two useful definitions of state space which together highlight the

role of the functions in a property set in restricting the values which may occur for properties. That is, if

particular instances have certain values for a property, other instances may be constrained to have certain

other values. For instance, the salaries of employees in a department may be constrained so that no more

than five employees may have a salary over $50,000. This eliminates certain potential functions from the

property set.

60In terms of the states of the category, joint states should be considered. However, even in this simple
case, there are 23 .23, or 64 potential joint states. For manageability, the example considers only the
potential state space of a single instance. In addition, the index numbering here does not completely
coincide with the consideration of the joint state of instances, since in the latter case, the independence
of states of different instances in a set needs to be considered. Hence, s11 could be replaced by s 12, s 1 3
could be replaced by s lo and so on, in describing the state of glassl.

61Constraints with respect to several structural or relational properties are also important, and are
considered later in the discussion of behavioral properties.
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Definition 12:

The potential (or conceivable) state space, E(t), of every instance t in a category T is the

Cartesian product of the codomains of the structural and relational properties of T. That is,

E(t) DP10 ODPK ,

where the D's denote the codomains of the respective structural and relational properties of T.

Example:

In the "glass/table" domain, the potential state space of both glassl and glass2 is given by:

{upright, upsidedown} ® {empty, full}0 {tablel, table2}.

Every instance in a category has the same potential state space with respect to the attributes on

which that category is based. In fact, this is a derived view of what it means to categorize instances based

on similarity (i.e., derived from the notion of classifying based on common properties).

Definition 12 suggests that, while the conceivable functions in a property collectively map each

element of the domain to each element of the codomain, the actual functions in a property will generally

be a subset of this.

Definition 13:

The possible state space, E(T), of a category, T, is the set of vectors formed by taking the

Cartesian product of the structural and relational properties of T. That is:

E(T) = S 1 0...0SN R 10.. .0Rm .

It will always be the case that the state of a set of instances is an element of the possible state

space (i.e., a(T)€ E(T)).
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Example:

Not all the potential states of a thing or things in a category may be possible. Suppose there is

a rule governing the states of glasses, stating that both glasses cannot be simultaneously upsidedown.

This rule implies that the potential element of ORIENT, s14 (where s 14(glass1)=s 14(glass2)=upsidedown),

is not an actual function in the property. Thus, whereas the potential state space of GLASS includes states

where both glasses are upside-down, the possible state space does not.

In addition to these restrictions, there may be restrictions on the jointly active functions of several

properties. For example, a glass may not be both upside_down and full. This is modeled implicitly by

behavioral properties (Section 4.2.3.1), which restrict changes in active functions.

4 .2 .2 .3 .2 Change

Two important kinds of change to the state of a cognitive representation are proposed. First, the

notion of state gives rise naturally to the view of an event as a state change of one or more instances in

a category. An event is described by two states - before and after - and involves a change in the active

function of one or more properties. The second kind of change involves modifying the domain of

properties. This notion of change is dealt with first.

Our knowledge of the world changes as we "become aware" (i.e., perceive the existence) of new

things. This is captured in this formulation by the creation of new instances to represent the perceived

existence of these things. In addition, knowledge of the characteristics of these entities is represented by

the properties which the new instances possess. In order for an instance to possess properties (and,

therefore, to have values for properties), it must be an element of the domain of these properties.

Consequently, the notion of domain expansion is defined to accommodate the representation of knowledge

about new entities.
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Definition 14:

Let T designate a category of instances, A a nonempty set of instances such that AnT=0,

T'=TuA, and P = {pilpi:T—W} a structural or relational property of T. A domain expansion is a

change in the domain of P such that P =

The creation of a new instance will be accompanied by a domain expansion for each of the

structural and relational properties which the new instance initially possesses. Similarly, if an entity is

perceived to no longer exist in the real world, an instance is removed from the cognitive representation.

This is modeled by the notion of domain contraction.

Definition 15:

Let T designate a category of instances, A a nonempty set of instances such that ACT, T'=T-A,

and P = {pi lpi :T—AT} a property of T. A domain contraction is a change in the domain of P such

that P = .

Example:

Consider the category GLASS = {glassl, glass2} introduced earlier (see page 75). The addition

of glass3 to the domain of ORIENT, CONTENT, and ON would be a case of domain expansion 62. On

the other hand, the removal of glass2 from the domain of these properties (for example, by smashing it)

would be an example of domain contraction.

The remaining kind of change deals with the change of state of existing instances. Events are

62This change may be relative to the glass-table system of interest, in which case glass3 may have a
previous existence, or the change may be understood as the creation (i.e., perceiving the existence) of
glass3. The distinction is made here only to show that an instance may enter or leave categories.
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defined to describe changes in the active function of one or more properties and, therefore, to describe

changes in the state of sets of instances. In the notation which follows, p kik denotes the i kth function of

the structural or relational property Pk .

Definition 16:

Let 15 = <p lii ,...,pKiK> denote a vector containing the active functions of the K structural/relational

properties 111,...,P1( of a category of instances T. An event with respect to T is a change in the

active function of at least one of P1 ,...,PK, denoted:

e: <G(T),a'(T)> =

where pi^and pkrk pkik, for at least one k=1,...,K.

This definition describes an event as a change in the state of instances in one or more of the sets

T1 ,...,TK (i.e., the domains of properties P 1,...,PK). However, the interest here is only in changes to

instances of T=T

Example:

Consider the "glass/table" domain (see page 75). Suppose that glassl is upright and full on tablel

and that glass2 is upright and empty on table2. That is, the state of the two glasses is given by the vector

a(GLASS)=<s l 1 ,s23 ,r12>.63 Further, suppose an event occurs whereby a person removes glass! from

tablel, drinks the contents and replaces it upside_down on tablel. The resultant state is cr'(GLASS) =

<s 1 3 ,s2 1 ,r12>. Using the notation introduced above, the event can be described by its before and after states:

e: <a(GLASS),•Y(GLASS)> = «s l 1 ,s23,r12>,<s 1 3 ,s2 1 ,r12>>.

63Recall from the earlier description that S'=ORIENT, S 2=CONTENT, and R 1=ON. Furthermore,
s l i (glass 1 )=upright, s l 1 (glass2)=upright, s23(glass 1)=full, s23(glass2)=empty, r 12(glass 1 )=table 1 , and
r12(glass2)=table2.
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This recognizes that there has been a state change to the category GLASS: that is, to one or more

instances of the category.

This event can also be described with respect to each glass:

e(glass 1): «s l i (glass 1 ),s23(glass 1 ),r12(glass 1 )>,<s 1 3(glass 1 ),s2 i (glass 1 ),r 12(glass 1 )»

= <<uprightfull,tablel>,<upside_down,empty,tablel>>; and

e(glass2): <<s l i (glass 1 ),s23(glass 1 ),r12(glass 1 )>,<s 1 3(glass 1 ),s2 1 (glass 1 ),r12(glass 1 )»

= «upright,empty,table2>,<upright,empty,table2»,

where the italicized values are changed by the event.

A note about the semantics of an event is in order here. The event above involves two changes

in active function. In addition, the event does not "detect" that a glass is off a table. If the codomain of

the property ON was extended to include the value nothing, one could capture intermediate stages in the

above change, and the above event could be described by two (or more) events. This is an issue of

"granularity" (or "coarseness" versus "fineness") of events, and reflects an abstraction with respect to the

granularity of knowledge. That is, if a person looks more closely at the changes involved in an event, it

is often possible to refine a single event as a series of several events. Furthermore, different people may

view the same domain with different degrees of granularity.

4.2.2.3.3 Time

The notions of state and event are very important in the handling of time in this model. There are

at least two ways to model time as it relates to the states of things. First, time may be considered a

parameter of property functions. This explicitly shows the fact that property values and, hence, states, are

time-dependent. Using this approach, a property P might be regarded as a single function P:T®0—)V,
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where T designates a set of instances, A designates a set of time points, and V designates a set of values.

However, the main drawback of this treatment is that an additional parameter is introduced which is

unlikely to vary the value of the function over many values of that parameter. In other words, P(T,O) will

be constant over many values BE A, for a fixed tE T. In addition, this treatment would not be useful for

distinguishing unchanging properties such as Birthdate, from changing ones such as Address.

A simpler way to model time-based change is by "measuring time" only through the occurrence

of events. In this view, time is not incorporated as a parameter of a property defined as a single function.

Instead, a property is modelled by a set of functions, one of which is an accurate reflection of the (real

or imagined) world with respect to that property. An event is defined as a change in the function from that

set which correctly describes the domain. This is the approach taken in this formalization. Its main

advantage is conceptual simplicity, in that time is strictly implicit (i.e., measured only by the occurrence

of events) and need not be carried as a parameter of property fiinctions 64. In addition, it provides a useful

way to distinguish changeable from unchangeable properties, the former having several functions in a

property set and the latter only one. Furthermore, this treatment allows constraints on the joint values of

a property for instances of a category to be conveniently captured through the absence of certain potential

functions from the actual set of functions that constitutes the property. For example, in the glass-table

environment described earlier, there may be a constraint that both glasses may not be on table2. This

would be reflected in the specific example by the presence of only the functions r 11 , r 12 and r 13 in the

property ON (thereby excluding the potential function r'4 from the set of actual functions, since

r14(glass1)=r 14(glass2)=table2). Chapter 5 (Section 5.7) contains a more detailed consideration of the

meaning of time in the model.

This completes the discussion of the primitive knowledge constructs. Using these, the important

64The major disadvantage of this approach is related to implementation, since the set of functions
constituting a property may be very large. Since implementation is not the immediate concern of this
research, determining potential implementation strategies is left for future research.
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derived constructs of behavioral property, concept, specialization, and composition are defined, beginning

with the notion of behavioral property.

4.2.3 Derived Constructs

4.2.3.1 Behavioral Property

In addition to knowledge about states, an important part of knowledge about things involves their

allowed behavior, or how states may change over time. However, the inclusion of behavior in defining

concepts is not precisely characterized by cognitive science researchers (e.g., Smith, 1988, p.27; Smith and

Medin, 1981, p.71). Instead, behavior is often discussed in terms of predicates such as "can fly" (as a

property of, say, birds).

Given that behavior is only informally incorporated in theories of concepts, an assumption is

needed before the notion of behavioral property can be formally defined. Thus, what follows goes beyond

what is explicitly stated in the classical theory of concepts, but is offered as an interpretation of more

informal treatments of behavior based on the preceding formulation of structural and relational properties.

The assumption is essentially that predicates such as "flies", "swims", and "walks" (Smith and

Medin, 1981, p.72) describe constraints on the ways in which instances may change state (in these cases,

properties such as position and orientation of limbs). Everyday observations suggest that the states of

things do not change arbitrarily, but behave in a manner that is to some extent regular, or even predictable.

This is expressed in the following postulate.

Postulate 3:

The changes of state that a set of instances may undergo are subject to certain restrictions.
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Consequently, behavioral properties will be defined as restrictions on changes to the active

functions of one or more structural and relational properties. That is, given a certain combination of active

functions for one or more structural/relational properties, a behavioral attribute specifies which events are

allowed with respect to these same properties.

Definition 17:

Let P1 ,...,PK denote K structural and/or relational properties with domains T I ,...,TK, respectively.

A behavioral property is a function b:P le... pK_.) p (p1(8) ...0pK) .

In other words, given a K-tuple of active functions (pl ,...,pK) of structural attributes (pkE Pk),

b(p i ,...,pK) returns a set of K-tuples of functions, thereby indicating the allowed joint changes in the active

functions of P1 ,...,PK given that p l,...,pK are active (see example following Definition 18). The structural

and relational properties affected by a behavioral property will be referred to as the parameters of that

property. Formally:

Definition 18:

Let b:P1 0...OPK—)0(P 1e...OPK) denote a behavioral property. P 1 ,...,PK will be called the

parameters of b.

The definition of behavioral property is general and several special cases are possible. For

properties having K=1, changes in the active function depend only on the current active function of that

property. When K> 1 , changes in the active functions of K properties are jointly constrained by the active

function of the remaining K-1 properties.
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Example (K=1):

In the "glass/table" world introduced earlier (see page 75), suppose that there is an arbitrary rule 65

that a single glass cannot change from upside_down to upright unless the other glass is also upside_down.

The behavioral property (i.e., the function b) is specified in the following table, where S 1 denotes the

property ORIENT, and the s11 (i=1,...,4) are the functions in the set which assign orientations to glasses 66 .

b

Element of S 1 Element of g (S 1)

s 1 1 {s',,s'3,s14}

S 12° 2 (S14)

S130 3 {S14)

S0 4 I^1^1ISDS2,S3}

Here, allowed changes to the active function of ORIENT depend only on the present active

function of ORIENT.

Example (K=2):

Suppose that there is a restriction that a glass which is upside_down must be turned upright before

being filled and a glass which is upright must be empty before it can be turned upside_down. Prohibited

by this behavioral property are all events in which any glass changes from a state in which its

ORIENTation is upside_down and CONTENT is empty (or ORIENTation is upright and CONTENT is

65This means a rule which is not inherent to the system. Arbitrary rules may be akin to "business
rules": that is, stated or implied practices followed by an organization. By contrast, the fact that a glass,
for example, cannot (normally) be upside_down and full is based on the law of gravity.

66Recall that s 1 = {<gl,u>,<g2,u>}, s2 = {<gl,u>,<g2,d>}, s 3 = kg 1 ,d>,<g2,u>}, s4 =
{<gl,d>,<g2,d>}, where gl and g2 denote the glasses, and u and d denote possible orientations.
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empty or full) to a state in which its ORIENTation is upside_down and its CONTENT is full.

This example illustrates another potential role of behavioral properties. A generalization of the

above behavioral property is that no glass may simultaneously be upside_down and full. Consequently,

a behavioral property can be useful in implicitly providing restrictions on the joint active functions of two

or more properties by prohibiting transitions to such states from any other state. This requires the

following assumption, which is adopted by the model.

Assumption:

If a behavioral property prohibits a transition to a certain state from any other state, then that

state may not be the initial state of a (set of) instances.

This assumption ensures that states which cannot be reached from other states are fully prohibited.

It follows from Definition 17 that, when K>l, T 1 ,...,TK (the domains of P 1 ,...,PK, respectively) may

be identical, partially overlapping, or disjoint. Consequently, behavioral constraints may involve

structural/relational properties outside of PT, the set of structural/relational properties shared by a set of

instances, T. For example, for PA = {PA', pA2} and pB = {pB 1 , pB2 , ,j there may be a behavioral attribute

b:P A ' OPB2-4 p (PA
 PB2), indicating that behavior is linked across categories. Later, when the notion of

concept is defined, it will be shown that a behavioral property may, therefore, "belong" to two or more

different concepts. This illustrates how the formalization goes beyond what is explicitly discussed in

theories of concepts with respect to behavior.

For example, consider a university context in which changes to the active function of the

Courses_offered property of a department may depend on the active function of the Teaching_load
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property of the faculty members in that department 67 . A department may not be able to offer added

courses if, for instance, every faculty member has a teaching load of four or more courses.

To conclude this section, an implied connection of behavioral properties to structural and relational

properties is examined. The connection is that, for a given "universe" of properties, any subset of structural

and relational properties determines a specific set of behavioral properties which affect the former. Thus,

for any category, knowledge about the state of its instances is determined by the active functions of the

structural/relational attributes possessed by those instances. Knowledge about the allowed changes of state

is determined by the set of behavioral attributes which have as a parameter structural/relationalstructuraVrelational

attribute defining the category.

To state this more precisely, if PT = (P',...,Pm is a set of structural/relational properties

(Pm:Tm—>Vm) shared by a category T = T in...nTm, there is an associated set of behavioral properties BT

= (b1 ,...,b1( } such that each bke B has at least one property Pm E P as a parameter of its domain.

Consequently, PT may also be written <PT,BT> or <ST,RT,BT> (since PT=STLAZT) to emphasize that, in any

cognitive representation, a collection of structural and relational properties "implies" a set of behavioral

properties which constrain how the active functions of the former may change: that is, This has

implications for the definition of concept in the next section.

°Such an attribute may be linked with the notion of composition (Section 4.2.3.4) in that a department
may be seen as a composite instance which has a set of faculty members as one of its components. The
allowed changes of the property of the composite are then dependent on the active functions of properties
of components. Developing this notion of linking behavioral properties which "cross categories" to
composites is left as future work, since the concept theory literature does not appear to deal with it.



88

4.2.3.2 Concept

The notion of category was introduced earlier as an extensional construct, defined as a set of

instances sharing a set of structural and relational properties. However, both the classical and prototype

theories of concepts view concepts as abstractions of the common properties of a set of instances. In these

theories, this notion of abstraction is essential to what a concept is (Medin and Smith, 1984, p.115). For

example, the concept of PERSON is distinct from knowledge of any individual human, and may be

thought of as the set of properties that is common to all humans.

As discussed in Chapter 3, the abstraction of common features or properties is an essential aspect

of managing or reducing the complexity of the world, and enables humans to categorize perceived things

according to commonality of properties (Smith, 1988). In short, people group similar things together.

Similarity will be operationalized here in terms of the sharing of properties. Two instances, t i and t2 , share

a structural or relational property, P, if t i and t2 possess P: that is, if p,(ti) and pi(t2) are defined for all

functions p i€ P. In this regard, a concept is a vehicle for expressing a group of shared properties (i.e., a

concept consists of a collection of properties shared by a non-empty set of instances), and identifying

collections of properties which are shared by sets of instances may be regarded as the fundamental task

of concept formation.

In formally defining the notion of concept, the basic objective is to provide an intension (or

abstraction) based on the sharing of properties, since we group instances based on their common

properties. In addition, there are several other requirements that the formalization must satisfy. These

requirements are proposed here as "principles of conceptualization". They are not explicitly articulated by

any of the three major theories of concepts, but are consistent with claims about the fundamental reasons

for categorizing the things we perceive: cognitive economy and inference (e.g., Smith, 1988; Lakoff, 1987;

Smith and Medin, 1981).
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Principle of Abstraction from Instances:

A concept abstracts the properties shared by a non-empty set of instances.

In perceiving the world, we classify instances according to the properties they share with others.

If a concept is defined as a set of properties, there must be a non-empty set of instances (corresponding

to real or imagined things) which possess all of these properties. Otherwise, the concept would not be

useful68 .

Principle of Maximal Abstraction:

Every property possessed by an the instances of a concept is part of the definition of that concept.

This is related to the notion of cognitive economy discussed in Chapter 3. According to Rosch

(1978, p.28), "the task of category systems is to provide maximum information with the least cognitive

effort". In other words, classifying an instance as belonging to a concept enables certain questions to be

answered about that individual. Clearly, if a concept definition omits some properties which are possessed

by all its instances, it would not be possible to answer questions related to that property when an instance

is classified. For example, there can be no concept defined only by the property Works_in_department,

since all who work in departments are persons, and therefore, share numerous other attributes. In other

words, if one can ask of an instance x, "Which department does x work in?", one can also ask "What is

x's address?", "What is x's birthdate?", and so on.

"Consider a concept such as unicorn, which has no manifestation in the real world. Such a concept
could be formed by "imagining" an instance which possesses a certain combination of properties. The
point is that instances (corresponding to real or imaginary things) form the basis for the abstraction.
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Principle of Non-redundancy:

A concept whose properties are a superset of those of each of several other concepts must contain

at least one property not in the union of the properties of these other concepts.

This means that a concept which "specializes" one or more other concepts must contain

information (i.e., additional properties) which cannot be found by considering an instance as a member

of any of the more general concepts. For example, suppose that CUSTOMER, EMPLOYEE, and

CUSTOMER_ EMPLOYEE are concepts, and the set of properties of CUSTOMER_ EMPLOYEE is

a superset of those of each of the other two. If the collection of properties defining

CUSTOMER_ EMPLOYEE is to be a "meaningful" abstraction (in the sense of permitting more

questions to be answered), it must contain at least one property that is not in the definition of either

CUSTOMER or EMPLOYEE. Otherwise, any question that can be asked of an instance of

CUSTOMER EMPLOYEE can be asked of the same instance as either an EMPLOYEE or a

CUSTOMER. This principle is based on an assumption, implicit in many theories of semantic memory

(e.g., Smith, 1978), that conceptual organization is efficient in the sense that each refined concept adds

new knowledge.

Principle of Completeness:

Given a "universe of knowledge" consisting of (1) a set of instances, (2) the set of all properties

possessed by any of these instances, and (3) a set of concepts, every property will be used in the

definition of at least one concept in that set.

This principle essentially states that no properties are omitted in the abstraction of some universe

of knowledge. If a property was not abstracted in the definition of any concept, there would be some
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questions about the set of instances possessing that property which could not be answered by classifying

those instances into any available concept. In other words, properties are a crucial classification tool, and

are not normally considered independently of the concepts they define.

Principle of Variety:

Given a "universe" of knowledge (a domain), there are many ways of conceptualizing that domain

which satisfy the first four principles.

This principle recognizes that there is no single "correct" set of concepts for abstracting one's

knowledge about a domain (cf. Lakoff, 1987). Instead, any "world view" which satisfies the previous

principles is as valid as any other. Different individuals may abstract different sets of properties to form

different concepts depending on various factors, such as the context within which the knowledge will be

used (e.g., Barsalou, 1982; Rosch, 1978) and the culture within which the individual lives (Lakoff, 1987).

However, any abstraction which violates any of the earlier principles violates some elementary assumption

about the nature and reasons for classification.

These principles are offered here as "desiderata" of conceptualization. They are based on

fundamental assumptions about why we categorize, and constitute a minimal set of conditions for deciding

whether a collection of concepts is "good" for some universe of knowledge. In what follows, the principles

are used to define two complementary constructs which give precision to the notion of a concept. A

potential concept is defined as a set of properties which embodies the principles of abstraction from

instances and of maximal abstraction, while a concept structure is defined as a set of potential concepts

which satisfies the principles of non-redundancy, completeness, and variety.

In defining concepts, it is useful to recognize the connection between a concept as an intension,
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and its extension, which is a category (Definition 6, page 65). The extension of any set of

structural/relational properties, P, is the joint intersection of the domains of these properties, and will

hereafter be denoted e(P).

To define potential concept, the following notation is used. T denotes the complete set of instances

(universe) in a cognitive representation, PT = {131 ,...,Pm } denotes the set of all structural and relational

properties possessed by any members of T, and Trn denotes the domain of 13'n (m=1,...,M). This means that

T=Tiu...ur. Finally, C = {Pl iEJ, Jc { 1,...,M} denotes a subset of PT, and e(C) denotes the extension

of C.

Definition 19:

C will be called a potential concept in T if

a) e(C)#0, and

b) (PT-C) such that T'De(C) (where T' is the domain of P').

This definition ensures that every potential concept (a) has a non-empty extension, and (b) contains

all properties possessed by all instances in its extension. Hence, it satisfies the principles of abstraction

from instances and maximal abstraction. The example given earlier, where C = {Works_in_department},

does not constitute a potential concept, since all instances which possess the property

Works in _ department also possess numerous other properties, such as Address and Birthdate (i.e., all

who work in departments are persons). Hence, the domain of the latter two properties is a superset of that

of the first.

Note that, for any C={131 ,...,PK } ,^where B denotes a set of behavioral properties. Therefore,

C may be written <P,B> or <S,R,B> to emphasize that a potential concept also includes the behavioral

properties which affect the structural/relational properties in its definition (see page 87).
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The definition of potential concept leads to a theorem about an importance characteristic of distinct

potential concepts which has implications for concept specialization (see Section 4.2.3.3). Note, first, that

two distinct potential concepts cannot have the same set of properties (else they are the same).

Theorem 1:

Two potential concepts cannot have the same extension.

Proof:

Suppose that CA= (PA 1 ,...,PAm} and CB= EPB 1 ,...,PBNI denote two potential concepts. Since CA#CB ,

there is at least one property P' (with domain T') which is in either CA or CB, but not both. Suppose

P'E CA. By Definition 19, T'=(CB) (in particular, Thte(CB)). Yet T'De(CA) since it is possessed by the

instances of CA. Therefore, e(CA)*e(CB). The result is the same if P'E CB. ■

Every person forms many concepts for categorizing instances. For a variety of reasons related to

the goal of reducing the complexity of experience (Lakoff, 1987; Medin and Smith, 1981), people identify

certain groups of properties as important. The reasons for identifying collections of properties as useful

abstractions has not been fully explained by cognitive scientists and is beyond the scope of this research.

However, it is reasonable to conclude that particular groupings are useful because they permit inferences

to be made about non-perceived properties (given perceived ones), thereby supporting adaptation and

survival (Smith, 1988).

A set of concepts used to organize knowledge about a domain will be called a concept structure.

A concept structure must satisfy the principles of non-redundancy, completeness, and variety, thereby

imposing some constraints on the nature of the potential concepts it contains.

Let T denote a "universe" of instances, PT = (131 ,...,Pm } denote the set of all structural/relational
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properties possessed by any members of T, CS = {C 1 ,...,CK} denote a set of potential concepts, and CS'

denote any subset of CS.

Definition 20:

CS is a concept structure over T iff

a) ukE (1,...,x}Ck=PT, and

b) A Jg {1,...,K} such that ujEjCi=CE CS, where CSC } for any jE J.

If CS is a concept structure, each potential concept CkE CS will be referred to as a realized concept

(or simply a concept).

By its definition, a concept structure (a) contains every property possessed by any members of T

in at least one of its concepts, and (b) contains no concept whose properties are exactly the union of the

properties of any other concepts in the structure. The second condition is important in defining concept

specialization (see Section 4.2.3.3). The definition prohibits a concept structure from containing potential

concepts which do not have at least one extra property with respect to its superconcept (if only one), as

well as potential concepts which simply contain the union of the properties of two (or more)

superconcepts.

To illustrate the definition, an example of a collection of potential concepts which may not be part

of the same concept structure is given. Suppose that CUSTOMER={Name, Address, Spouse,

Holds_account}, EMPLOYEE={Name, Address, Spouse, Experience}, and

CUSTOMER_EMPLOYEE={Name, Address, Spouse, Holds_account, Experience}. In this case,

{CUSTOMER, EMPLOYEE, CUSTOMER_EMPLOYEE} does not constitute (a subset of) a concept

structure since CUSTOMER_EMPLOYEE=CUSTOMERuEMPLOYEE. This means that, as defined here,

the potential concept CUSTOMER_EMPLOYEE abstracts no additional information with respect to the
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other concepts considered, since all questions that can be answered with respect to any instance of

CUSTOMER EMPLOYEE can be answered with respect to that instance as a member of CUSTOMER

or EMPLOYEE.

4.2.3.3 Specialization

The concept is the fundamental abstraction mechanism by which instances can be compared. In

addition, concepts can be associated with other concepts based on the degree to which they share

properties. This leads to the consideration of concept specialization.

There is a great deal of evidence suggesting that we organize knowledge about things into general

and more specialized categories. Biological taxonomies are a clear example. Keil (1979, 1986) suggests

that there is an ontological hierarchy of generic concepts common to all humans. A segment of one path

on this hierarchy is THING -4 PHYSICAL THING —> SOLID -4 LIVING THING —> ANIMAL -->

Given the definitions of potential concept and concept structure, the notion of concept

specialization can be formalized In accordance with the intuitive meaning of specialization in classical

concept theory, the following principle, which is a special case of the principle of non-redundancy, guides

the formal definition.

Principle of Refinement:

The set of properties possessed by a specialized concept is a strict superset of the set of properties

of a more general concept.

This principle is used to define specialization intensionally. Specialization also has the extensional

meaning that the instances of a specialized concept are a strict subset of those of a more general concept

and, therefore, are also instances of the latter. The definition will be shown to satisfy this condition.
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Definition 21:

Let C' and C 2 denote two concepts in a concept structure (i.e., C' and C 2 are each a set of

properties). Then, C 2 is a specialization (or subconcept) of C' (alternatively, C2 IS-A C') if

C'cC2 .

If C2 is a subconcept of C I, then C' may be referred to as a superconcept of C2. For example, if

PERSON = {Name, Address, Birthdate} and CUSTOMER = {Name, Address, Birthdate, Holds_accounts}

are two concepts in a concept structure, then CUSTOMER IS-A PERSON.

If a concept is a specialization of two or more others, it must possess added properties with respect

to the union of those of all its superconcepts. Otherwise, all questions about instances can be answered

with respect to one or more of the more general concepts. This is implied by the definitions of concept

structure and specialization, as shown by the following theorem.

Theorem 2:

Let C°, C' denote two concepts in a concept structure such that neither is a specialization of the

other. Then, if C 2 is a specialization of both C ° and C', C°uC'cC2 .

Proof:

Since C2 IS-A C ° and C 2 IS-A C', C°cC2 and C'cC2 (by Definition 21). Therefore, C 2jC°uC'.

But, by the definition of concept structure, C 2*0uC l . Therefore, C2DC°u0. ■

The definition of specialization satisfies the basic extensional intuition of specialization - that the

extension of a specialized concept is a strict subset of that of a more general one, as shown by the

following theorem.
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Theorem 3:

Let e(C 1), e(C2) denote the extensions of C 1 and C2, respectively, where C 2 IS-A C 1 . Then,

e(C2)ce(C 1).

Proof:

Since C2 IS-A C 1 , C 1cC2 (by Definition 21). Let T' denote the intersection of the domains of the

properties in (C2-C 1). Since C l is a potential concept, there is no property in (C2-C 1) whose domain is a

superset of e(C 1). Therefore, T'42e(C 1). By the definition of extension (category) (Definition 6, page 65),

e(C2) = e(C 1)nT'. Therefore, e(C2)ce(C 1). ■

The restriction that a specialized concept must possess additional properties with respect to

concepts which it specializes is not generally made in the existing concept literature. Hence, the formal

model denies two potential grounds for defining specializations. The first is the definition of subconcepts

based only on the addition of behavioral properties. An example of this might be the distinction of two

"kinds" of EMPLOYEE: those who are authorized to lay off employees versus those who are not. The

second is the definition of subconcepts based only on differentiating instances of an existing concept by

specific values of one or more structural or relational properties. An example of this might be the

distinction of two "specializations" of EMPLOYEE - those who work at the Vancouver office versus those

who work at the Seattle office. In both cases, it is proposed here that such subconcepts are useful only

if they also possess additional structural and/or relational properties. In fact, according to the model this

is the only basis for defining subconcepts. The importance and contribution of these distinctions is

discussed further in Section 5.2.

In concluding this section, some implications of the definition of specialization for behavioral
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properties are examined. Recall from the previous section that a set of structural/relational properties

implies an associated set of behavioral properties, each of which constrains changes to some properties

p^+,1C,in the former set. That is, a behavioral property is a function b:Pi^(pl 0... 0r---) specifying which

changes in active function may occur given any combination of active functions of the structural/relational

properties P 1,...,PK.

The set of behavioral properties of a concept C' is denoted 13 1 = {1:0 1 ...bm } and is implied by the

structural/relational properties in C' (Section 4.2.3.1). If C 2 is a specialization of C I , then C2 possesses

at least one structural or relational property which C' does not. Now, since each member of C 2 is a

member of C', it is subject to the behavioral properties of C'. However, when considering an instance as

a member of the specialized concept, there may be additional restrictions on behavior related to the extra

structural/relational properties: that is, 13 1c132 .

Two cases can be distinguished. First, a behavioral property of the subconcept may extend

(subsume) a behavioral property of the superconcept to incorporate restrictions with respect to an added

structural/relational property. For example, there may be a property b of C' such that

b:1310...OPK—> p (PIO...0V% and a property b* of C2 such that b*:P10...opKopK+1__> p (pl 0 ... opKopK+1)

where PK+I is a structural or relational property defining C 2 as a specialization of C'.

The semantics of b* with respect to b is as follows. For any fixed element of P",

"subsumes" b(p 1 ,...,pK). To see what this means, consider a case where b:S---> (S) and b* :SOR--> p (SOR),

where S and R denote a structural and relational property, respectively. Now, for each s iE S, b(s i)=Q i ,

where Q i denotes an element of the power set of S. That is, Q, is some subset of S, such as Q.{s i , s2 ,

s3 } . Similarly, for any s i€ S and rie R, b *(s„rj)=Q *y , where Q *y denotes an element of the power set of S®R

(i.e., some subset of S®R, such as Q a ii={(s i ,r1), (s2 ,r1), (s3 ,r3))). b* subsumes b in the sense that, for any

S iE S, the set of first elements of each pair in Qs0, denoted Q *, (i.e., {s,, s2, s 3 }), is in the above case the

same as the set Q. This means that there should not be any function s 4 in any ordered pair in Q*0.
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Otherwise, b* contradicts b when elements of the subconcept are considered as elements of the

superconcept. In this situation, b * will be said to be compatible with b.

The second case involves behavioral properties that do not extend those of the superconcept. An

example would be a property of C 2, b* :P 10...OPm0Pm+ 1-4p(P1 e...OPm®Pm+ 1), where P 1 ,...,Pm are properties

of C 1 , Pm' is an added property of C 2, and there is no attribute b:1310...OPm— (P IO_ ®Pm) of concept

C l .

4.2.3.4 Composition

The remaining major construct of classical concept theory to be formalized is composition.

Composition/decomposition is, in addition to generalization/specialization, a means of managing the

complexity of the world (e.g., Lakoff, 1987, p.273). Complex instances may be viewed as composed of

a number of component instances, each having independent properties. However, the components can be

combined to account for certain emergent properties: that is, properties ascribed to the whole, but not

present in any subset of the components (including emergent behavioral properties which may enforce

restrictions on changes of joint states in the composite). This is an important construct which recognizes

that certain things "belong" together for some purposes, but their components can be understood as things

possessing their own properties.

Intuitively, a composite concept is made up of several component concepts and, additionally,

possesses a number of emergent properties. An instance of such a concept, then, is a surrogate composed

of the surrogate of one instance of each of its components. The domain of the emergent properties of the

concept will be such surrogates69 .

69An alternative way to model composition would be to have a separate surrogate for the composite
instance that is independent of its components. One feature of such an approach would be that it would
treat the composite instance as having an existence independent of its components, in that some
components could be removed or changed without affecting the existence of the composite. By not
adopting this approach, this work takes the position that a composite instance changes if any of its
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To support the definition of a composite concept, the notions of composite (versus simple)

structural and relational properties are first introduced. A composite structural property associates a

collection of component instances from one or more categories with a unique value, and is not possessed

by any subset of the components.

Definition 22:

Let e(C 1),...,e(CK) denote the extensions of K concepts in a concept structure,

e(C)ce(C 1) ...0e(CK), V denote a set of values, and S=fs,Is i :e(C)----W). S will be called a

composite (emergent) structural property of degree K.

For example, Grade may be considered as a composite structural property of degree two. The

domain of this property is a subset of e(STUDENT) e(COURSE), where STUDENT and COURSE

denote two concepts. A grade cannot be associated with either a student or a course, but only with a

(student,course) pair.

Next, the notion of composite relational property is defined. A composite relational property

associates a collection of component instances from one or more component concepts with a unique set

of instances from one or more other concepts, and is not possessed by any subset of the components. Let

e(C 1),...,e(CK) denote the extensions of K concepts in a concept structure, e(C)Qe(C 1)0...0e(CK),

e(C"),...,e(CK+m) denote the extension of M other concepts, and Qcp(e(C K+ 1)0...0e(CK+m) (i.e. Q

contains the sets of instances which are linked to the elements of the domain) ).

components change. In addition, at any time there is a maximum of one composite of the same set of
components.
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Definition 23:

Let R =^R will be called a composite (emergent) relational property of degree K.

For example, if a student enrolled in a course is assigned a tutor for that course, Tutor may be

considered an emergent relational property whose domain is, again, a subset of e(STUDENT)0(COURSE),

and codomain is a subset of STUDENT. That is, a tutor may not be associated with just a student or a

course, since a student may have different tutors for different courses, and a several tutors may provide

help in a given course° .

A composite structural/relational property is defined on a domain which includes instances from

several concepts. These will be referred to as the components of the property.

Definition 24:

Let C1 ,...,CK be a set of concepts, e(C)ce(C 1)®... e(CK), and P be a composite property with

domain e(C). Then, C1 ,...,CK will be referred to as the components of P.

For example, the Tutor property just described has components STUDENT and COURSE.

Given a group of emergent structural and relational properties, it is possible to recognize

restrictions on the changes to the active functions of these, giving rise to the notion of composite

behavioral property.

70This example glosses over some added restrictions on the domain and codomain of such a property.
For example, a student may not be a tutor in any course which s/he is enrolled.
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Definition 25:

Let P.:(131 ,...,PK ) denote a set of composite structural and/or relational properties. A composite

behavioral property is a function b:P10...^p (P10 o PK)

An example of such a property will be given shortly.

These definitions allow the notion of a composite potential concept to be defined as a triple of

composite structural, relational, and behavioral properties.

Definition 26:

Let C be a potential concept <P,B> (i.e., P=B). C will be called a composite potential concept

of ,...,CK, if P and B are sets of composite (structural/relational and behavioral) properties and

the shared domain of the properties in P is a non-empty set71 .

Given this definition, an instance c i of C is a surrogate (c 1 i ,c2i,...,ei), where ckie Ck and

(c1 i,c2i,...,c1c1) is an element of the common domain of P 1 ,...,P7 E P. The nature of the emergent properties

implies that, at any time, there is only one instance of a composite concept having exactly the same

component instances. The implications of this are considered further in Chapter 5 (Section 5.5).

71In order for a composite concept to have a non-empty extension, the shared domain of its structural
and relational properties must contain a number of composite objects. This means that all structural and
relational properties must have the same components.
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Example:

ship, = (c 1 ,...,c1(), where

c 1 = propellerl3
c2 = hull4
c3 = motor9

The composite concept definition is:

SHIP = <P,B> = <S,R,B> where

S = (Speed, Maximum_Speed, Cargo . . .)
R = {Docked(SHIP,PORT), Captain(SHIP,PERSON) . . .) 72

B = Change_course, Change_Speed, Load, Unload . . .)

Note that some component instances (concepts) can, in turn, be composite instances (concepts).

The following postulate suggests that there is finite number of component "levels".

Postulate 4:

A composite concept can be decomposed in a fmite number of steps into primitive concepts73 .

To illustrate the idea of an emergent behavioral property on the emergent structural and relational

properties, consider shipl, in state:

«0,30,Nil,Wheat, . .>,<Docked(shipl,Vancouver),Captain(shipl,Smith), . . .».

A reasonable behavioral property would be that the value of the Speed property cannot be changed to a

72Recall that R(X,Y) means that R:X-->p(Y) is a relational property.

73A primitive concept is one which does not contain any component concepts: that is, its structural and
relational properties are simple.
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value greater than zero unless the value of the Docked property is Nil (or simultaneously changed to Nil).

For some emergent properties, there will be a formula that relates the value of the composite

property to the value of certain properties of the components. For example, the Weight of a ship is the

sum of the Weight of the components. For other properties (e.g., Cargo), there will be no such formula

relating properties of the composite to properties of the components.

From these definitions, it is clear that composite potential concepts can form a composite concept

structure which is distinct from the concept structure to which its components belong. A composite

concept structure is defined as follows.

Definition 27:

Let CS = { C 1 ,...,CK } denote a concept structure. CS will be called a composite concept structure

iff C 1,...,CK are composite concepts.

Composite concept structures will not be explored further here. However, to illustrate the

definition, consider a concept structure containing the class SHIP and various specializations. When SHIP

is considered as a composite concept, as in the previous example, the consideration of extra emergent

properties defined on subsets of its extension can generate a collection of composite concepts (SHIP and

its subconcepts, such as freighter, tanker, etc.) which constitute a composite concept structure.

This concludes the formalization of the important elements of classical concept theory. In the next

section, requirements for the translation of this model into a model of an IS for constructing "good"

representations of knowledge are discussed. Subsequently, the representing (or object) model is defined.
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4.3 ON DIRECT REPRESENTATION AND GOODNESS

Given the formalization of classical concept theory presented in the previous section and the

research objective of developing a conceptual IS model for expressing knowledge according to users

conception of a problem domain, the issue at hand is how this model should be defined. The approach

taken here is to define a set of constructs which are in direct correspondence with the formally defined

constructs of the classical theory. Directness is operationalized in terms of a 1-1 mapping between the

important elements of the classical view (as defined in the previous section) and those of the conceptual

model or representation language.

Directness is sought in order to provide a model containing representation mechanisms which

parallel or mimic the conceptual organization of knowledge about things (according to one theory). This

model should support the creation of specific representations which are "good". Goodness of representation

has been characterized in terms of four individually necessary and jointly sufficient conditions - mapping,

tracking, reporting, and sequencing (Wand and Weber, 1988). These conditions essentially ensure that a

good representation is:

1. well-defined (mapping and tracking) , and

2. well-behaved (reporting and sequencing).

Well-definedness can be taken to mean, in the context of the terminology of the previous section,

that an information system representation has the capability of capturing any state (mapping) and any

event (tracking) of a cognitive representation of reality. This allows the state of a specific representation

to parallel the state of knowledge about a domain.

Whether an information system does actually track the state of knowledge is an issue of well-

behavedness and depends on whether (i.e., reporting) and when (i.e., sequencing) changes to the state of

740f course, the definitions in the previous section are a representation of, and not actual, mental
constructs. Nevertheless, a distinction is made between the model of concepts or knowledge, and the
model of IS which deals with constructs for representing that knowledge.
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knowledge are reported to the information system. This is certainly important with respect to any

implementation, but is not of concern in developing the conceptual model. Consequently, only well-

definedness is addressed in the formulation which follows.

4.4 MIMIC: AN OBJECT-BASED INFORMATION SYSTEMS MODEL

4.4.1 Preliminaries

In this section, MIMIC (Morphological Information systems Model of Instances and Concepts)

is defined as a model to support representation of cognitive constructs. Five important constructs are

defined based on the five major elements of classical concept theory - instance, property, concept,

specialization, and composition. As in the concept model, these are divided into primitive and derived

constructs.

The model will be referred to as an object model (or model of objects). One of the arguments in

favor of object-oriented computing has been its so-called "naturalness", or correspondence to the way

people structure knowledge (Mylopoulos, 1990). However, object constructs have not been clearly related

to cognitive constructs. Under the assumption that objects represent knowledge about instances of

concepts, MIMIC is presented as a prescription for what object-oriented approaches "should" contain to

support the representation of cognitive constructs. A comparison of MIMIC to other characterizations of

the object paradigm is given in Chapter 5 (Section 5.8).

Examples are not provided here for each of the constructs as they are introduced, since they are

directly analogous to those of Section 4.2, with the difference being that they deal with the external

symbolic representation level, rather than the cognitive level (see Figure 4-1). Instead, Appendix 1

develops a detailed example from a banking domain to illustrate use of the model.
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4.4.2 Primitive Constructs

In the knowledge model, instances and properties were defined as primitives, from which the

remaining constructs were derived. Counterparts of these two basic constructs, called objects and attributes

respectively, are defined next.

4.4.2.1 Object

An object is defined as a surrogate of an instance of a concept. That is, a given set of objects is

in 1-1 correspondence with a set of instances. Recall (Definition 1, page 60) that an identification function

of a set 0 in a set T is a bijective function f:T-->0.

Definition 28:

Let T be a set of instances, 0 a set of symbols, and f an identification function of 0 in T. 0 will

be referred to as a set of objects representing T via f (or simply, 0 represents T). Furthermore,

OE 0 will be referred to as an object representing to T iff f(t)=o.

For example, T may be a set of instances representing students (i.e., T constitutes one's knowledge

of the existence of a set of students) and 0 may be a set of student numbers assigned to these instances.

Objects are, therefore, symbols which represent the existence of instances of concepts. The following

postulate assumes the existence of a set of objects to represent any set of instances of interest.
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Postulate 5:

For any finite set of instances, T, there exists a set of symbols (objects) 0 and an identification

function PT--40.

Corollary:

Let 0 denote a set of objects representing a set of instances T via the identification function 1.

Then, there exists a bijective function V': p (T)-4 p(0) such that, for each Tie go (1), with fP(V)=Os,

{f(t)hcps=0 * .

This corollary means that there is a 1-1 correspondence between p (T) and p(0) via f' and is used

later in the definition of relational attributes.

4.4.2.2 Structural Attribute

A structural attribute is a representation of a structural property. Intuitively, this means that there

is a 1-1 correspondence between sets of structural property functions and structural attribute functions,

between sets of instances and objects constituting the domains of these functions, and between sets of

values of structural properties and surrogates values of structural attributes constituting the codomains of

the functions.

In defining the construct formally, the following notation is used. S= fsi ls i :T—W1 denotes a

structural property of the set of instances T (e.g., Weight:PERSON-WEIGHT_VALUE), 0 denotes the

set of objects representing T via f:T—*O (e.g., 0 contains identification numbers), and g:V -*U denotes a

bijective function such that U is a set of symbols representing values (e.g., U is a set of symbols

designating numbers). Finally, S *=-(s *ils*; :0—*U} denotes a set of functions defined on 0 such that IS*I=ISI.
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The essence of the definition is as follows (see Figure 4-4). Consider any tE T such that s,(t)=v iE V

and g(v i)=u iE U. It is also the case that f(t)=oE O. S * will be called a structural attribute if, for each siE S,

there exists S.iE S' such that s *i(o)=ui . Definition 29 expresses this formally.

Figure 4-4: Structural Attribute

S
^

V

0
^

S *
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Definition 29:

S* is a (simple)'S structural attribute representing structural property S iff for each s,E S, 3 a

unique s*,E S * such that

s*,(f(t)) = g(s,(t)) V te T.

A set of objects, 0, sharing the set of attributes S*° , will be referred to as a category of objects on 0 (cf.

Definition 6, page 65).

Next, the existence of structural attributes to represent structural properties is postulated.

Postulate 6:

For any structural property S, with domain T, there exists a structural attribute S* with domain

0, such that 0 represents T (in the sense of Definition 28) and S * represents S (in the sense of

Definition 29).

4.4.2.3 Relational Attribute

A relational attribute is a representation of a relational property. Intuitively, this means that there

is a 1-1 correspondence between relational property functions and relational attribute functions, and

between things and surrogates (on each side of the relation). A relational attribute maps each object in a

set to a set of other objects.

75The definition can be extended to composite structural attributes (e.g., S *:0 1002—)U), which are
analogous to composite structural properties (e.g., S:T IOT2-4V) (see Definition 22, page 100).



111

The following notation is used. R=fr1 lr1 :T—>Q1 (where Qc ea (T1)) denotes a relational property of

things in T with things in T 1. 0, 0 1 denote sets of objects representing T and T', respectively, via the

identification functions f:T-40 and f i :T 1 -->0 1 , and Q`c p(0 1). Then, there exists a bijective function

P:(2—>Q* which satisfies the Corollary to Postulate 5 (page 108). Finally, R* = {ejle1:0 1 --4(2*} denotes a

set of functions defined on 0 with respect to 0 1 such that 'RI = IRI.

Definition 30:

R* is a (simple) 76 binary relational attribute representing the binary relational property R iff for

each riE R, 3 a unique eiE R* such that

r*i(f(t)) = fi P(ri(t)) V tE T (Figure 4-5).

A set of relational attributes of 0, denoted by R'°, will be referred to as a category on 0.

Postulate 7:

For any relational property R, with domain T, there exists a relational attribute R' with domain

0, such that 0 represents T (in the sense of Definition 28) and le represents R (in the sense of

Definition 30).

"The definition can be extended to define composite relational attributes.
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Figure 4-5: Binary Relational Attribute
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Extended definitions can be given to cover n-ary relationships and distinguish mandatory from

optional attributes. As these mirror the corresponding definitions of properties (Definitions 9 and 10), they

are not presented here.
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4.4.2.4 Object State and Change

4.4.2.4.1 Object State

As with the instances being represented, the objects in a representation can also be described in

terms of their state. Object states are characterized by the active functions of the structural and relational

attributes of objects OE 0 (which identify things tE T). These functions, in turn, determine values of

surrogates UE U (of ve V) or sets of objects qacQ* (of qcQ), when applied to objects OE O. The following

definitions for objects mirror corresponding state definitions of instances (Definitions 11-13).

Recall that defining the state of a category of instances is useful for emphasizing that we think

of instances by classifying them based on shared properties (see Definition 11, page 73). Therefore, object

states will similarly be described by the attributes they share. That is, it makes sense to speak of the state

of an object only as a member of a category of objects.

Definition 31:

Let 0 denote a category of objects, and P*°={P*1 ,...,P*K) denote the set of structural/relational

attributes shared by O. The state of 0, designated 0(0), is a vector containing the active function

of each of the structural and relational attributes possessed by 0 applied to the instances in 077 :

GO) = <P*k>kE [1,...,K) = <P*1 11 ,- ,P*KiK>78,

where p .k,kE rk, and the index ike

At a certain time, the state of an object of 0 is:

'Each attribute in r° has a domain which is a superset of O. Consequently, in considering the state
of 0 (and in this notation), only the application of the active function of each of the attributes possessed
by 0 to the objects in 0 is of interest.

78The index ik should be read ik .
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G(0)^<13*I i1(0),...,P*KiK(0)>.

At a later time, the state of o may be:

a'(o) = <P*In(0),...,P*Km(0)>, where i'k*ik for at least Ice (1,...,K}.

Consequently, o(0) may also be written:

a(0) = <G(0)>0E0 = <a(o 1),...,a(o10)>.

That is, the state of 0 is the joint state of the elements (objects) of 0.

Definition 32:

The potential (or conceivable) state space, denoted E(o), of each object, of 0, is the Cartesian

product of the codomains of the structural and relational attributes of 0. That is,

E(o) =

where the D's denote the codomains of the structural and relational attributes possessed 79 by 0.

By this definition, each member o of a category 0 has the same possible state space.

Definition 33:

The possible state space, denoted E(0), of a category of objects, 0, is the set of vectors formed

by taking the Cartesian product of the structural and relational attributes of 0. That is:

E(0) = P*10...OP*K.

This notion is important, since not all the conceivable states are possible. Attributes represent

properties and not all potential functions are actually contained in a property. Therefore, not all potential

79Possession of an attribute is directly analogous to possession of a property (see discussion following
Definition 5, page 64).
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functions are actually contained in an attribute set.

4 .4 .2.4 .2 Object System Change

Two important kinds of change to the state of an object representation are described. First, the

notion of state gives rise naturally to the view of an object system event as a state change of an object

or set of objects. An event is described by two states - before and after - and involves a change in the

active function of one or more attributes. The second kind of change is change to the domain of attributes:

that is, to the set of objects possessing an attribute. This latter notion of change is dealt with first.

Our knowledge of the world changes as we become aware of new entities. According to the model

of knowledge that was previously described, this "awareness" is expressed as the creation of new instances

to represent the existence of these entities. In addition, knowledge of the characteristics of entities is

represented by the properties which they possess. In order for an instance to possess properties (and,

therefore, to have values for properties), it must be an element of the domain of these properties.

Since objects are intended to represent knowledge about instances of concepts, a mechanism is

needed by which the creation of a new instance is recognized through the creation of an object which

represents it, with this object being added to the domain of every structural and relational attribute it

possesses. Consequently, the notion of object domain expansion is defined.

Definition 34:

Let 0 designate a category of objects, A a nonempty set of objects such that An0=0, 0' = OVA,

and Ps = (p*,1p* ; :0-4U) a structural or relational attribute of O. An object domain expansion is

a change in the domain of Ps such that Ps =

The creation of a new object will be accompanied by a domain expansion for each of the structural
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and relational attributes it initially possesses. Similarly, since instances may be removed from a cognitive

representation, it is necessary to recognize that objects may be removed from an external representation.

This is modeled by the notion of object domain contraction.

Definition 35:

Let 0 designate a category of objects, A a nonempty set of objects such that AcO, 0' = O-A, and

P* = fp.,Ip* i :0—>U1 a structural or relational attribute of 0. An object domain contraction is a

change in the domain of P* such that r

The remaining kind of change deals with the change of state of existing objects. Object events are

defined to describe changes in the active function of one or more attributes and, therefore, to describe

changes in the state of sets of objects (and individual objects within these sets).

Definition 36:

Let if = <p* iii ,...,p*KiK> denote a vector containing the active functions of K structural/relational

attributes P",...,P*K (with common domain 0). An object system event with respect to 0, denoted

* .e , is a change in the active functions of P*1 ,...,P*K, denoted:

e*: <45(0),a'(0)> = <17,15">,

where r = <p *In ,...,p*Kix> and en, # P*kik for at least one k=1,...,K.

This definition describes an event in terms of a change in the state of the set of all objects in the

domain of any attribute P",...,P*K. However, the interest here is only in changes to objects in 0 =

O ln...n0K, where Ok is the domain of Pk .

Given the definitions of state and event at the object level, time is given the same meaning as in
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the concept model (see Section 4.2.2.3.3). Time is dealt with further in Chapter 5 (Section 5.7).

4.4.3 Derived Constructs

4.4.3.1 Behavioral Attribute

A behavioral attribute is a representation of a behavioral property. Hence, it consists of constraints

on object system events with respect to one or more structural/relational attributes. The allowed changes

of state of representations are not arbitrary, but mirror the allowed changes of state of a concept structure

(see Definition 17, page 84).

Behavioral attributes describe the allowable events with respect to a set of structural/relational

attributes. The following notation is used. P *1 ,...,P*K denote K structural/relational attributes representing

structural/relational properties P1 ,...,PK , respectively: that is, P* 1=fp* i lp* i :O l---)V1 1. The following proposition

states that there is an identification function which maps the Cartesian product of P 1 ,...,PK to the Cartesian

product of P*1 ,...,P*K .

Proposition I:

There exists an identification function h:P

The function h can be constructed, given Postulates 6 and 7 which assume the existence of

structural/relational attributes to represent structural/relational properties.

Corollary:

There exists an identification function h : (pig 1 0 ... opK) ..4 p (p*1 0 ... op*K) .
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Using this information, behavioral attribute is formally defined as follows.

Definition 37:

Let b:131 0...OPK-3 p 0...0PK) denote a behavioral property. A behavioral attribute representing

b is a function b *:P*10...OP*K—> p (P* ...OP") such that for each xe1310...CRK :

b*(h(x)) = ho(b(x)).

The essence of this definition is to mirror the definition of behavioral property, pointing out that

from a given state of a set of objects, only certain events are allowed.

Postulate 8:

For any behavioral property b, there exists a behavioral attribute b * such that b* represents b.

In addition, the correspondence between properties and attributes means that any collection of

structural/relational attributes has an associated set of behavioral attributes which constrain changes to their

active functions.

4.43.2 Class

The class construct will be defined to mirror the definition of concept. In what follows, 0 denotes

a "universe" of objects (i.e., a set of objects representing a universe of instances, T). P*0 denotes the set

of structural/relational attributes possessed by the objects of 0. (i.e., ro represents PT). The definition

of class relies on the following theorem.
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Theorem 4:

Let C = <P,B> = <{P 1 ,...,Pm},{b1 ,...,b1(}> denote a potential concept in T. There exists a pair C *

= <P* ,B *> = <{P.1 ,...,P*m },{b*1 ,...,b*K}> of sets of structural/relational, and behavioral attributes

of 0, respectively, such that:

for each Pme P, 3 a unique P*InE P* such that P*in represents Pm,

for each bkE B, 3 a unique b*kE B * such that bak represents bk .

Proof:

The proof of the theorem follows directly from Postulates 6, 7, and 8 since, for each property of

T, there exists a corresponding attribute representing that property. For any collection of properties C, C *

can be constructed. 111

Since C* represents a potential concept, it will be referred to as a potential class.

Definition 38:

C* = <P*,B*> will be called a potential class (or potential object class) representing the potential

concept C = <P,B>.

Proposition 2:

C * satisfies

a) e(C*)*0, and

b) P`'e (P*0-0 such that O'De(C*) (where 0' is the domain of Pt').

Proof:

The potential class C * is a direct mapping of the potential concept C. Since the stated conditions

define C as a potential concept, they are preserved in the mapping. ■
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Definition 39:

Let C' = {13.1 ,...,13*K } 80 denote a potential class. e(c') = C* In...nC *1( will be referred to as the

extension of C*.

Theorem 5:

Two potential classes cannot have the same extension.

Proof:

This follows directly from the proof of Theorem 1 (page 93), given the fact that a potential class

is a direct mapping of a potential concept. ■

Given the definition of potential class, the notion of class structure can be defined to correspond

to concept structure. The definition uses a theorem about the existence of potential classes representing

potential concepts. Let 0 be a universe of objects representing a universe of instances T, ro be a set of

attributes representing the set of properties possessed by instances of T (i.e., PT), and CS = {C 1 ,...,CK

denote a concept structure over T.

Theorem 6:

There exists a set of potential classes CS' = {C *1 ,...,C*K} such that Csk represents Ck, k=1,...,K.

Proof:

From Theorem 4 (page 119), there exists a class representing each concept in CS. CS' can be

constructed to contain the set of such classes. ■

8°The behavioral attributes are dropped from the notation here, since they are not relevant to the
definition.
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Definition 40:

CS* = {C',...,C*9 will be called a class structure over O.

4.4.3.3 Specialization

Class specialization is defined to correspond to concept specialization. The essence is to recognize

that certain classes refine others by possessing additional attributes.

Definition 41:

Let C *1 , C *2 denote two classes in a class structure (each is a set of attributes). Then, C •2 is a

specialization (subclass) of C*1 (C*2 IS-A C* 1) if C* 1cC*2.

Theorem 7:

Let C*° , C *1 , and C•2 denote three classes in a class structure. Then, if C *2 is a specialization of

both C*° and C *1 , C *2DC*°uC *1 .

Proof:

Given the fact that classes in a class structure represent concepts in a concept structure, the proof

mirrors that of Theorem 2 (page 96). ■

Theorem 8:

Let e(C*1), e(C*2) denote the extensions of C *1 and C*2, respectively, where C *2 IS-A C*1 . Then,

e(C*2)ce(C*1).
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Proof:

Given that C *1 and C *2 are classes in a class structure representing concepts C 1 and C 2, the proof

mirrors that of Theorem 3 (page 97). ■

4.43.4 Composition

The remaining construct of the object model represents the notion of composite concept. This

construct is called a composite class. A composite class consists of a number of component classes and,

additionally, possesses a number of emergent attributes.

Definition 42:

Let C denote a composite concept and C * denote a class representing C. C is called a composite

class.

The existence of a class representing any concept (including composites) follows from Theorem

4 (page 119). The attributes of C are composite attributes representing the composite properties of C.

A composite object is an n-tuple containing n objects of other classes. Each object corresponds

to a component of the corresponding composite instance.

This completes the definition of the major constructs of the MIMIC model. In the next subsection,

these constructs are shown to support the creation of well-defined representations.
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4.4.4 Well-definedness of MIMIC

Proposition 3:

The MIMIC model supports the creation of well-defined representations.

To show this, it is necessary to show that

(a) any state of interest of an instance of the concept model (i.e., any state of a concept structure) can

be represented by some state of a class structure in MIMIC, and

(b) any event of interest in an instance of the concept model (i.e., any change of state of a concept

structure) can be represented by a corresponding event in a class structure in MIMIC.

MIMIC supports the correspondences: (1) Instances <---> Objects, (2) Properties <--> Attributes, and

(3) Concepts 4---> Classes. The correspondences between instances and objects, structural/relational

properties and structural/relational attributes, and concepts and classes together allow any state of interest

of an instance of the concept model to be represented by a corresponding state of MIMIC. The

correspondence between behavioral properties and behavioral attributes allows any event of interest of an

instance of the concept model to be represented by a corresponding event of MIMIC.

Appendix 1 presents a detailed example which demonstrates the use of the model in describing

three kinds of applications (transaction processing, reasoning, and simulation) in a domain. This both

shows the utility of the model, and its suitability as a basis for uniformly modelling knowledge about

different kinds of applications. In the next Chapter, a number of contributions and insights into conceptual

modelling offered by the MIMIC model are examined. This is followed in Chapter 6 by a comparison to

several existing conceptual models.



CHAPTER 5

MODELLING INSIGHTS AND PRESCRIPTIONS

5.1 INTRODUCTION

In the previous chapter, a formal model (MIMIC) was developed for representing knowledge about

things and their structural, relational, and behavioral properties. Use of the model is demonstrated in

Appendix 1. In this chapter, several contributions of MIMIC to conceptual modelling are discussed in

detail and, where applicable, practical modelling guidelines are suggested. Consequently, this chapter

complements Chapter 4 by using the constructs developed there to gain some insights into the semantics

of conceptual modelling. Subsequently, Chapter 6 compares MIMIC to several well-known approaches

to conceptual modelling, demonstrating the representation power and uniformity of the model, as well as

its usefulness as a framework for understanding other models.

The following sections discuss problems (or unresolved issues) in conceptual modelling. Each

begins by identifying a problem and reviewing its treatment in previous conceptual modelling research.

Next, the way in which MIMIC deals with the issue is examined. Consequences of the basic cognitive

assumptions of the model, as well as of the chosen formalism, are derived and the resulting implications

for understanding and resolving the issue in question are discussed. Finally, where applicable, sections

conclude with a prescription or guideline for performing conceptual modelling.

5.2 ON CRITERIA FOR DEFINING A CLASS STRUCTURE

An important task in modelling or representing knowledge is organizing representations of

individual things into categories or classes (e.g., Coad and Yourdon, 1991). This, of course, mirrors the

importance of categorization to everyday life (Lakoff, 1987; Smith and Medin, 1981). However, very few

guidelines exist to assist in this organization, and there do not appear to be any published measures of the

124
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quality81 of a class structure. Consequently, it is difficult to determine the value of possible classes such

as "the set of persons over 65" or "the set of persons who are both customers and employees".

At one extreme, there is conceivably a class for each individual in the domain. Clearly, this

nullifies an important purpose of classification: namely, to abstract what is common about a group of

things and, thereby, to provide economy of representation (see Chapter 3). At the other extreme, one

monolithic class may be defined to describe all individuals. However, this level of abstraction is too

general, and loses knowledge of important distinctions among subsets of the members of this class, since

what is common about all things is very little. In practice, people appear to favour intermediate levels of

abstraction or classification (Rosch, 1978).

More specifically, the issue considered here is that existing conceptual modelling approaches do

not provide a theoretical basis for deciding on an appropriate level of classification. This may lead to a

proliferation of "classes", many of which do not contribute to the basic function of categorization as a

mechanism which abstracts common knowledge about a set of things. Two examples from the object-

oriented programming and semantic data modelling literature are used to highlight one important aspect

of prior treatment of this issue - the lack of guidelines for determining when to form subclasses of an

existing class. In particular, neither requires that subclasses possess additional attributes with respect to

superclasses. As will be seen, this is in contrast with the nature of class specialization in MIMIC. In

addition, several other necessary criteria for a good class structure in MIMIC are discussed.

In the Smalltalk programming language (Goldberg and Robson, 1989), subclasses can be defined

without adding new instance variables and without adding or changing methods. In fact, Goldberg and

Robson state that "[n]ew variables may be declared and new methods may be added by the subclass" (p.58,

italics mine), but Smalltalk does not enforce that this must be so. In Smalltalk, subclasses which do not

en quality of a class structure is closely related to the questions of whether and why some classes
are "better" than others.
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add instance variables or methods contribute nothing to the organization of knowledge about a domain,

since instances of the subclasses do not differ in any structural or behavioral way from instances of

superclasses.

In the semantic data modelling area, SDM (Hammer and McLeod, 1981; see also Section 2.3.2

of this thesis) provides a number of guidelines for defining subclasses, each of which is discussed here

using examples provided by the authors. The first is by value of an attribute. An example is

MERCHANT SHIP, a subclass of SHIP for which the value of the attribute Type (of SHIP) is

"merchant". However, there is no requirement that the subclass be defined in terms of additional attributes.

A second basis for defining subclasses in SDM is referred to as user-controllable. Such subclasses, also,

are not based on added attributes or common values of attributes. An example is BANNED_SHIP, the

instances of which are assigned by users 82. The third criterion for defining subclasses is based on the

intersection of two existing subclasses of a third class. The example given is BANNED_OIL_TANKER,

which is the intersection of BANNED SHIP and OIL TANKER, where both of the latter are subclasses

of SHIP. SDM also permits subclasses to be defined based on the union or difference of existing classes.

In general, these are referred to as set-operator-defined subclasses. As with the previous criteria, there is

no indication that the subclasses necessarily possess additional attributes. Finally, a class may be defined

to consist of those members of an existing class that are currently the value of an attribute of another

class. An example is DANGEROUS_CAPTAIN, defined as the set containing all members of class

CAPTAIN which are currently the value of the Involved_captain attribute of any instance of the class

INCIDENT (i.e., DANGEROUS_CAPTAIN contains all captains involved in an incident). Again, there

is no requirement that the subclass must possess additional attributes.

One notable characteristic of SDM's criteria for subclass definition is that they appear quite

82Note that one could assign an attribute Status of class SHIP, one of the values of which is "banned".
In that case, the subclass BANNED_SHIP could be derived as in the first example discussed. Therefore,
it is not clear how this basis for defining subclasses differs in principle from the first.
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arbitrary. That is, there is no evidence that the criteria are, in any sense, complete and others could easily

be proposed. For example, a subclass of an existing class could be defined to consist of the instances of

the latter having values of an attribute in a certain range. Similarly, subclasses could be defined for which

certain conjunctions (or disjunctions) of conditions, such as restrictions on attribute values, are met. In

short, there are no guidelines for defining a reasonable number of useful subclasses, since the criteria

discussed above are not based on any underlying principles.

The examples show that, without appropriate criteria for defining subclasses, a proliferation of

classes may result. That is, if specializations are arbitrarily defined on the basis of the criteria above (and

perhaps others), the number of classes may be very large. More importantly, many classes may not add

to the structuring and abstraction of knowledge.

To illustrate this, consider a class SENIOR CITIZEN, defined as the set of all PERSONs such

that Age ?. 65. Unless there are additional attributes possessed by the set of people satisfying that

condition which are not possessed by PERSONs in general, the only knowledge captured by defining

SENIOR CITIZEN as a class is that the value of the attribute Birthdate for its members has a restricted

range relative to values for the more general class PERSON. This does not in fact constitute additional

information, since it is already embedded in the values of the birthdate attribute for the instances of

PERSON. That is, there is a subset of PERSON whose instances have a restricted range of values for

Birthdate. Consequently, there could also be classes of people with ages greater than one, four, thirty

nine, and so on. Without some guidelines or restrictions on the formation of subclasses, an explosion of

"classes" of dubious value can be formed. Although this observation may seem obvious, it is one not

previously made in discussions of subclass definition.

In order to provide guidelines for deciding whether to define a subclass, it is useful to first draw

a distinction between a set of objects and the extension of a class. A set of objects can be purely arbitrary

(e.g., user controllable subclasses in SDM), while the extension of a class is determined by a common set
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of attributes (i.e., intensionally). Thus, there is an asymmetry in that, while the extension of any class is

a set of objects, a set of objects does not necessarily constitute the extension of a class. The view of

classes in SDM is extensional in that a class is a set of objects.

A foundation for criteria for defining specialized classes is provided by the basic assumptions of

classification theory. The classical theory of concepts and associated theories of semantic memory suggest

that specialized concepts are different from more general ones by abstracting extra knowledge (e.g., Keil,

1979; Smith, 1978). This was codified in Chapter 4 as the principle of non-redundancy, and is understood

to mean that the specialization permits additional questions to be answered in relation to the more general

concept. In other words, knowing that an instance belongs to a category implies certain knowledge that

may not be specified when the instance is classified, and which cannot be understood simply by knowing

that the instance belongs to a more general concept.

To illustrate this notion of abstracting additional knowledge, suppose that EMPLOYEE is a

specialization of PERSON for which one of the added attributes is Department, whose value indicates

the department an employee works in. In this case, it makes sense to ask questions such as "Which

department does the employee John work in?" Clearly, this question might have different answers for

different EMPLOYEEs. This is not, in general, a sensible question to ask of PERSONs, since not all

persons are employees, and the question has no meaning for those who are not. On the other hand,

suppose that a specialized concept is defined to contain only the instances of a more general concept

having a certain value or range of values for one or more attributes. For example, one might think of

ADULT as the specialization of PERSON for which the value of Age is greater than 18 years. By itself,

this permits no additional questions to be answered with respect to the more general concept of PERSON,

since the age of a person can be determined without reference to a "specialization" such as ADULT.

Nevertheless, most people would agree that a concept such as ADULT is quite useful. However,

according to the assumption stated earlier the usefulness stems, not from the knowledge that the age of
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such individuals is greater than 18 years (or some other arbitrary number), but from the fact that society

bestows on these persons additional properties. Hence, if John is an instance of ADULT, it makes sense

(depending on the society) to ask questions such as "Does John have a driver's license?", "Which party

does John intend to vote for in the upcoming election?", "To whom is John married?", and so on". In

other words, the essence of adulthood is that some persons possess added properties with respect to other

persons. While the instances of ADULT do have a restricted range of values for the attribute Age (or

Birthdate), this alone does not permit additional questions to be answered (or inferences made).

To consider a more complex example, suppose that males and females in some country retire at

different ages. To define a subclass of PERSON called RETIRED_PERSON, one might specify a

compound condition such as "Sex=Male and Age65 or Sex=Female and Age.60". Although this

condition is a sufficient test to identify a person as retired, it misses the fundamental meaning of

"retiredness". Retired people differ from people in general since they possess additional properties (e.g.,

Company_pension), and may not be permitted to possess properties that some other persons possess (e.g.,

Employer).

These examples show that there are complementary roles of added properties and constraints on

property values in the definition of subclasses. The characterization of class membership by values of an

attribute may play an important role for humans when it comes to classifying new instances in the absence

of complete information. In fact, values of one attribute may often be the reason for acquiring certain other

attributes (as in ADULT). Hence, this may serve as a useful identification procedure (Armstrong et al.,

1983). For example, an individual can be classified as a SENIOR_CITIZEN provided that we know that

the person was born prior to a certain date. In addition, we can infer that the person possesses the added

properties of SENIOR_CITIZEN (e.g., Government_pension) even if the values of these additional

83In fact, there may be some difficulty in defining a minimum common age for which all these
properties are defined, since minimum legal driving, voting, and marrying ages may not be identical.
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properties are unknown at the time of classification. In fact, knowledge about a person's birth date may

motivate an effort to determine the values of the added attributes. To further illustrate the issue, consider

a class called ORDER, and the set of "all orders valued over $500". This set of objects does not

automatically constitute a class. However, orders meeting this condition may be subject to discounts or

special payment terms. These additional attributes can be used to define a subclass. Furthermore, the range

of values of the Amount attribute for members of the subclass is restricted to the subset of values greater

than $500. This identifies an order as belonging to the subclass.

The discussion earlier indicated that subclass definition has been handled in largely an arbitrary

fashion in existing modelling approaches. It will now be shown that MIMIC imposes a clear minimal

criterion (i.e., a necessary condition) for defining subclasses that is consistent with abstracting added

knowledge in the manner just described and, therefore, is consistent with the model as a formalization of

the classical theory of concepts. In addition, further criteria for a good class structure are reviewed.

In MIMIC, a class structure CS contains a set of classes {C 1 ,...,CK}". Each class is intensionally

defined as a set of structural/relational attributes, and satisfies the condition that Ck does not equal the

union of the attributes of any other subset of classes in CS. It follows from this that a subclass must

possess at least one additional structural or relational attribute with respect to union of the sets of structural

and relational attributes of its superclasses (Theorem 7, Chapter 4). That is, letting P, P' denote sets of

attributes a class C' = P' is a subclass of C = P only if PcP' (Definition 41, Chapter 4). It is these

additional attributes which, according to the model, permit a subclass to be defined. This restriction is

not enforced in other treatments of class specialization. In addition, this minimal criterion is consistent

with the earlier description of what specialization means. That is, a subclass always provides the basis for

answering additional questions beyond those which can be answered with respect to all superclasses.

The "*" notation (e.g., CS *) used in the previous chapter to distinguish the cognitive and object levels
has been dropped for simplicity, since the focus in this chapter is on one level only - the object level.
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MIMIC' s view of specialization can prevent a needless proliferation of classes. Although many

classes can still be formed from (random) permutations of attributes, the upper bound will be far smaller

than that possible under the looser conditions contained in modelling approaches such as SDM. In

addition, subclasses possess additional meaning when defined by added attributes, in that the class

definitions abstract further commonality of a subset of the extension of one or more superclasses.

A practical methodological implication for systems analysis (conceptual modelling) emerges from

this view. Attempts by users to specify specialized categories of things based on, say, values of

attributes85, can be followed up by asking "why?". Such probing would be aimed at eliciting additional

structural, relational, and behavioral attributes associated with the subcategories. Inability to do so should

lead to a re-examination of the need for the specialization. This constitutes a clear guideline for modelling

which is derived directly from the foundations of the model. Furthermore, if a class is claimed to be a

specialization of two or more others, the analyst should identify what additional attributes distinguish it

with respect to the union of the attributes of all superclasses. If none can be identified, the subclass is not

a good abstraction.

A Case Against Behavior-based Subclasses

The MIMIC model does not permit the definition of subclasses based solely on added behavioral

attributes. Recall that a class C = P, where P is a set of structural/relational attributes, can also be

specified C = <P,B>, where B contains all behavioral attributes constraining changes to any attribute in

P. On first glance, one might argue that for a class C=<P,B>, a subclass C'=<P,B'> might well be

defined, possessing only additional behavioral attributes (i.e., BcB').

However, according to the MIMIC formalism, the extension of a class is determined completely

85This applies also to attempts to specify categories based on other criteria, such as set operations
(intersection/union/difference) on two or more existing categories.
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by the intersection of the domains of its structural and relational attributes, as are the behavioral attributes

which constrain changes to the active functions of any structural/relational attribute. Consequently, two

classes cannot differ only on the basis of behavioral attributes. Even if behavioral constraints were not

"implied" by the set of structural/relational attributes defining a class, since they are defined on domains

of Cartesian products of structural and relational attributes (Definition 37, Chapter 4), the addition of

behavioral attributes could not restrict the extension of a class. Since a basic outcome of class

specialization is that a subclass contains strictly fewer members than each of its superclasses (Theorem

8, Chapter 4), behavioral attributes alone are not a basis for class specialization.

This result is counter-intuitive. For example, one might argue that MANAGER is a subclass of

EMPLOYEE for which changes to the value of attribute Salary can exceed 10% (presumably for other

employees it cannot) 86. However, the model prescribes that such a class can be defined only if there are

additional structural and/or relational attributes (e.g., Manages other employees). Thus, while added

behavioral attributes may accompany a subclass definitions', they are not sufficient for defining a

subclass.

In a similar vein, one might argue that EMPLOYEE can be specialized as follows. EMPLOYEEs

with Salary < $30000 receive 3% raises annually, whereas all other employees receive no raises (as part

of a pay equity plan). This appears to specialize EMPLOYEE into two mutually exclusive subclasses

based on value of Salary, with only behavior differing between the two classes. On closer examination,

however, it is clear that the information contained in such a distinction is captured by a single behavioral

attribute - one which permits increases in salary (i.e., changes in the active function of Salary which result

in increases for one or more EMPLOYEEs) only for employees with Salary<30000, given any active

86This could be interpreted to mean that EMPLOYEE has a behavioral attribute b:Salary--> p(Salary),
while MANAGER has a behavioral attribute W:Salary—> p(Salary).

"This could mean that MANAGER possesses the behavioral attribute
b':Salary®Manages-3 p (S alary0Manages).
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function of Salary. Note that it is the state of EMPLOYEEs with respect to Salary which determines

whether a raise may be given. Furthermore, all questions of interest about allowed behavior with respect

to Salary can be answered by knowing the state of an EMPLOYEE with respect to Salary.

In MIMIC, a behavioral attribute specifies allowed events given active functions of

structural/relational attributes. Consequently, the restriction on raises can be modelled as a behavioral

attribute, b:Salary—> (Salary). That is, if s l is the active function of Salary, then an event <s l ,s2> is

allowed (i.e., s2E b(s 1 )) only if, for each eE EMPLOYEE, s 1 (e)<30000 s2(e)=1.03*s 1(e) and s 1 (e)?..30000

s2(e)=s 1 (e). This attribute captures differences in behavior based on the current state of the instances of

a class. Since the distinction is naturally captured by modelling Salary as a set of functions, this

constitutes a useful additional benefit of defining structural and relational attributes as sets of functions,

rather than single functions.

In this way, a precise meaning is given to what otherwise might be a loosely- or even ill-defined

phrase such as "behavioral differences". The general notion of having different behavior is imprecise since

it may mean either that allowed changes of state of objects in a class differ depending on the current state

of objects, or that objects behave differently by virtue of possessing different structural and relational

attributes. In MIMIC, differences in behavior based on the current state of instances do not constitute

different behavioral attributes, thereby providing a more precise view of behavioral differences.

The MIMIC model suggests that structural and relational attributes are more fundamental than

behavioral attributes as a basis for classification and class specialization, since behavioral constraints are

only implicitly contained in class definitions. This conclusion emerges from the chosen formalism (using

the cognitive assumption that subclasses contain more information), and is not recognized in existing

theories of concepts (e.g., see Smith and Medin, 1981; Lakoff, 1987). In these theories, the notion of

classification by common behavior is not clearly specified, perhaps due to a lack of formalization in

specifying what properties are. In MIMIC, classes may be specialized only by considering additional
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structural and relational attributes. Since this restriction emerges from the formalism chosen (and not from

an assumption of classical concept theory), it may be that another formalism (specifically, a different

definition of behavior) might permit subclasses to be defined based solely on behavioral differences.

The inadequacy of behavioral attributes for class specialization again offers a clear modelling

guideline or prescription. Specifically, if a user informally describes a specialized category which is

characterized only by added behavioral attributes, the analyst should try to identify further

structural/relational attributes possessed by each subset of objects which "behaves differently". Such

probing would be aimed at eliciting additional structural and relational attributes which motivate the

specialization. If further attributes do not exist, the differences in behavior resulting from different states

of instances of a class can be modelled as a behavioral attribute on the existing class (as in the example

earlier of allowed salary increments being based on current salary).

This constitutes a useful mechanism to aid in defining a class structure based on a cognitive

model. However, the model contains several other necessary conditions for a class structure to be

considered "good".

The first is that a potential class abstracts the set of all attributes common to its instances

(principle of maximal abstraction). This means, for instance, that a class EMPLOYEE is not defined to

contain only the attribute Works_in_department, although this may be a condition true only of

EMPLOYEEs. The point is that people who are employees also possess numerous other attributes, such

as Birthdate and Supervisor. Some of these are possessed by virtue of the fact that EMPLOYEEs are

PERSONs (i.e., inheritance), but others, such as Supervisor, may simply have the same or a larger

domain as Works_ in _ department. The principle of maximal abstraction states that all such attributes are

to be included in a class definition. This point does not appear to be considered in other conceptual

models.
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The second condition is that a class has a non-empty extension (principle of abstraction from

instances). Although this has not been explicitly considered by other models, this may simply be because

it is such an obvious consideration. It is mentioned here merely to emphasize that classes are defined to

reflect the premise that concepts are abstracted from instances.

The third criterion deals with the nature of a class structure for representing some "universe" of

knowledge (principle of completeness). Specifically, all relevant properties which characterize the universe

of knowledge and, therefore, which are part of any concept structure on that knowledge, should be

contained in the class structure representing that knowledge. This means that every property is represented

by an attribute attached to some class.

These criteria are interesting because they allow for multiple views of the world: that is, multiple

class structures which satisfy the other principles ( this is principle of variety). This is discussed further

in the next section.

To summarize, some necessary criteria for defining a class structure have been provided, with

particular attention paid to a necessary condition for defining subclasses. That is, a subclass must possess

at least one structural/relational attribute beyond the union of the attributes of its superclasses. This leads

to a clear modelling guideline for analysts in eliciting a classification structure for a domain: namely,

search for added structural/relational attributes if a user specifies subclasses based on:

a) values of an attribute of an existing class,

b) intersection (union, difference) of the extension of two or more existing classes,

c) added behavioral attributes.

This recommendation indicates the importance of structural and relational attributes for class

specialization. While knowledge about things includes structure, relationships, and behavior, the last

element alone is not a basis for developing category refinements and, if present, must be accompanied by



136

further structural or relational attributes.

In the next section, the contribution of the model to resolving the debate over single versus

multiple inheritance is discussed.

5.3 ON CLASS STRUCTURE - HIERARCHY VERSUS LATTICE

There are varying positions in both the AI and object-oriented literatures about whether models

and systems should support a hierarchical class structure, in which a class has a single immediate

superclass, or a more general lattice structure, in which a class may have several immediate superclasses

(e.g., Goldberg and Robson, 1989; Stefik and Bobrow, 1986; Fikes and Kehler, 1985). An important

consequence of this choice is the nature of the inheritance of attributes from superclasses to subclasses.

Specifically, a hierarchical structure supports only single inheritance, while a lattice structure supports

multiple inheritance.

The issue of a hierarchical versus lattice class structure has important ramifications for conceptual

modelling, since it may affect the number and nature of classes used to model a domain. In this section,

the problem is examined and the MIMIC model is used to justify the "naturalness" of a lattice structure

for organizing classes. First, though, two examples from the programming language domain are used to

illustrate differing approaches to class specialization.

In Smalltalk (Goldberg and Robson, 1989), classes are organized in a strict hierarchy. That is, each

subclass has a single immediate superclass. Inheritance is single. In such a system, the class structure of

Figure 5-1 might be used to define a group of subclasses of VEHICLE, where Medium and

Motorization are important criteria for distinguishing classes 88 .

'Note that the subclasses must also possess additional structural/relational attributes, and that the
characterization by Medium and Motorization is merely shorthand for this. In addition, this is only
intended to be an illustrative example, and the class lattice could well be organized differently.
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Figure 5-1: A Hierarchical Class Structure

VEHICLE

LAND^WATER^AIR

A A A
MO? UL Y MWY UWY MAY UAV

Here, it is not clear why Medium (i.e., land, water, air) is used to derive the first "level" of

specialization, and Motorization (i.e., motorized, unmotorized) to derive the second, since these

dimensions are orthogonal. The structure above implies a decision about "importance" that appears to be

unjustified: namely, that Medium is more "fundamental" than Motorization. In addition, there are no

explicit classes of MOTORIZED and UNMOTORIZED vehicles, although these might well be of

interest for an application.

By contrast, a system such as LOOPS (Stefik and Bobrow, 1985), classes are organized in a

lattice. Under this approach, the example above might have the class structure of Figure 5-2:

Figure 5-2: A Lattice Class Structure

VEHICLE

MOTORIZED  UNMOTORIZED LAND WATER AIR

MLV
^
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Unlike the previous example, this recognizes a class of all MOTORIZED vehicles (as well as

UNMOTORIZED) 89 . This cannot be done in a strict hierarchical system without choosing Motorization

over Medium as the primary basis for subclass definition, in which case the classes of LAND, AIR, and

WATER vehicles are lost. Consequently, a lattice appears to be a more flexible mechanism for organizing

classes. Further indication of this in the context of MIMIC is given later.

The same issue has been raised in the semantic and object-oriented data model areas (e.g.,

Banerjee et al., 1987; Fishman et al., 1987; Hammer and McLeod, 1981). Most models support a class

lattice with multiple inheritance.

The approach taken in dealing with classification in MIMIC is derived from the principle of

abstraction from instances - the notion that concepts are defined based on shared properties of instances.

However, there is no reason why the sharing of properties must be hierarchical (Smith, 1978; Quillian,

1968). In line with the theory of concepts in which the model is grounded, the basic guideline governing

the specialization of classes in MIMIC is that a subclass must possess added attributes which permit

additional questions to be answered about objects. Since classes are defined as collections of attributes,

attributes can be combined in different ways to yield different class structures, subject to the criteria

discussed in the previous section. Furthermore, there is nothing to prevent a class from being derived from

two (or more) existing classes provided that it possesses added attributes with respect to those of all

superclasses. This is a point which is not explicitly addressed in theories of concepts and semantic

memory, but emerges from the attribute-based definition of class in MIMIC.

MIMIC defines a class as a set, P, of structural and relational attributes. If class C' = P' (or

<P',B'>, recognizing the associated behavioral constraints) is a subclass of C = P (or <P,B>), then PcP'

and BcB', and C' is said to inherit the attributes of C. That is, instances of C' possess (i.e., are in the

domain of) all the attributes of C plus some additional ones. Also, an instance of C' is an instance of C.

89These classes may or may not be disjoint.
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Now, let C" P" (or <P",B"> denote a distinct subclass of C, (i.e. Pc(P'nP")c(P'oP"). Then, by the

principle of non-redundancy a class M = <Pm,Bm> is a subclass of both C' and C" if and only if

P'uP"cPm (implying B'uB"cBm). That is, M contains all the attributes of C' and C", plus some additional

ones, and is said to inherit multiply from C' and C".

This example illustrates multiple inheritance from an intensional point of view. However, multiple

inheritance also has an extensional interpretation. Each attribute is defined over a domain of objects. An

object will typically be in the domain of many structural and relational attributes. By considering various

combinations of attributes, multiple class structures can be formed. The extension of a class is determined

by the intersection of the domains of its structural and relational attributes, as shown in Figure 5-3.

Figure 5-3: Extension of a Class

d(S1)

d(R)

d(82)

Notation

d(X) domain of attribute X

e(C) extension of class

C = -1S1, S2}, {R}, B>

Now, for any two classes C 1 and C2 with extensions e(C') and e(C2), respectively, there is a
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(possibly empty) set of objects, e(M) = e(C 1)ne(C2). If e(M) is non-empty, it may denote the extension

of a class M only if there exists at least one structural or relational attribute P m with domain d(PM), such

that Pm is not an attribute of either C 1 or C2 and e(M)cd(PM). Thus, class specialization is purely attribute-

based.

From the model, objects may be interpreted as having "roles" by their membership in several

classes (Richardson and Schwarz, 1991; Pernici, 1990; Sciore, 1989). An object may simultaneously

belong to several classes which are not in a single specialization path 9° (i.e., no class is a subclass of any

of the others in question). For example, a vehicle is both a MOTORIZED and a LAND vehicle. This

allows one to consider only the attributes which are relevant for a particular application. The model

thereby supports various "views" of an object corresponding to its membership in several classes.

There is also a second way in which MIMIC supports various views of an object. The principle

of variety states that, for a given universe of objects and attributes, there may be many class structures

which satisfy the other principles of conceptualization. For example, different individuals (or departments

in an organization) may divide the same world (objects and attributes) into distinct class structures best

suited to their needs. Hence, the model supports, not only different views of an object within a class

structure, but also different class structures for a given set of objects and attributes.

Returning to the example of Figure 5-2, it is now clear that there is extra information in this class

structure with respect to that of Figure 5-1. The sets of classes {LAND, WATER, AIR) and

(MOTORIZED, UNMOTORIZED) exhaust (and possibly partition) VEHICLE along different dimensions.

Consequently, any subclass beyond this level must be a subclass of at least (and possibly exactly) one

class from (LAND, WATER, AIR) and at least (possibly exactly) one from (MOTORIZED,

UNMOTORIZED). If either of these sets of classes partitions VEHICLE, a class at the third level is a

90A specialization path is a collection of IS-A edges linking class nodes A,B,...,K such that A IS-A
B IS-A ... IS-A K. An object always belongs to each of the classes in a specialization path.



141

subclass of exactly one class from that set. This is captured in MIMIC by virtue of the fact that if, say,

(MOTORIZED, UNMOTORIZED} partitions VEHICLE, then the intersection of the shared domain of

the added attributes defining MOTORIZED with the shared domain of the added attributes defining

UNMOTORIZED is the empty set. Therefore, any subclass of MOTORIZED cannot also be a subclass

of UNMOTORIZED (and vice versa) since MOTORIZED and UNMOTORIZED share no instances.

This approach to class specialization (and multiple inheritance) gives rise to another potential

guideline for modelling, which may be termed an instance and attribute search strategy. The analyst can

work with the user(s) to identify sets of objects and the structural and relational attributes which apply to

them. For example, specific objects could be compared to ascertain their common attributes. A provisional

decision could be made to view these attributes as the definition of a class. Subsequently, further instances

could be classified and, if necessary, attributes added or removed from the provisional class definition.

At that point, behavioral attributes can be determined based on the structural and relational attributes

defining a class. This may, in turn, uncover structural/relational attributes which were originally missed.

Such a strategy could complement one of first specifying classes and then eliciting attributes for these

classes. Motivating this guideline is an assumption that shared attributes are the fundamental basis for

classification and can support different class structures, which may change over time as needed. As a

result, identifying attributes first may be more "stable" than identifying classes first.

The class structures which are possible depend on which of two assumptions is made about the

added attributes of subclasses in a multiple inheritance context. One assumption is that a subclass

possesses added attributes with respect to the attributes of each of its superclasses. The more restrictive

assumption, and the one enforced by MIMIC, is that a subclass must possess added attributes with respect

to the union of the attributes of all its superclasses (principle of non-redundancy). The consequences of

these assumptions in terms of their impact on the possible organization of a class lattice are now

examined.
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The issue here is best illustrated with a simple example. Consider a "world" of objects, 0, and

the structural/relational attributes P1, P2, and P3 which are possessed by any of the objects in 0. Assume

that the potential classes are:

C l = {P 1 }
C2 = {P2 }
• = (1)3 1
C4 = P2}

C5 = {13 ', P3 }
• = {P2 , P3 }
• = {P l , P2, P3 }

Under the first assumption, any combination of these classes is allowed. However, under the

second, only certain class structures are possible. One class structure over 0 is CSA= {C 1 ,C2,C3 } : that is,

classes containing only a single attribute. Given this class structure, no subclasses can be defined, since

no combination of P 2, and P3 permits any additional questions to be answered with respect to the initial

classes. However, if, for example, C' and C 2 are the only classes defined to contain a single property, then

the subclasses C' (an immediate subclass of C') and C6 (an immediate subclass of C 2) may be included,

since each contains an added attribute with respect to its single superclass. This means that

CSB={C 1 ,C2 ,C5,C6 } is another class structure over 0. Alternatively, C7 may be defined as a subclass of

both C l and C2 , since it has an additional attribute with respect to the union of the attributes of C l and

C 2 (i.e., with respect to {P 1 ,P2 }). Therefore, CSC.{C 1 ,C2,C7 } is yet a third class structure over 0. The point

is that a class structure limits the classes which satisfy the principles of non-redundancy and completeness.

This simple example indicates the dominant role of attributes and the notion of a class structure

in determining how subclasses may be formed. Various class structures are possible, with the possible

subclasses depending on the classes which are defined at the highest level of a structure (i.e., those with

fewest attributes). No complete guidelines on the grouping of attributes to define classes can be offered
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here. However, reasonable guidelines and restrictions on arbitrariness have been suggested based on some

fundamental assumptions about the nature of concepts and the importance of categorization (specifically,

the sharing of attributes in a non-hierarchical manner).

In summary, MIMIC classes are formed as groupings of attributes. Class organization in the

general case can be expressed as a directed acyclic graph. The model provides an attribute-based approach

to class definition and specialization/inheritance.

5.4 ON THE MEANINGS OF "ISA"

There is considerable ambiguity in research in the AI and database communities about the use of

IS-A relationships (also called subset hierarchies, generalization hierarchies, etc.) to capture world

knowledge. This is most evident in a paper by Brachman (1983), which describes a number of different

ways in which the label IS-A has been used 91 .

The general meaning of IS-A may be conveyed as follows. Let e(A), e(B) designate the extension

of classes A and B. Then, B IS-A A iff every member of B is also a member of A (e.g., Brachman, 1983;

Mylopoulos et al., 1980). That is, e(B) is a proper subset of e(A). Figure 5-4 illustrates this with a Venn

diagram.

91This discussion focuses strictly on IS-A relationships between classes of objects and not on links
between objects and classes. For example, statements such as "STUDENT IS-A PERSON" are of interest
here, while those such as "John IS-A STUDENT" are not. The latter deal with the possession of attributes
by objects.
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Figure 5-4: Extensional Meaning of IS-A

B IS-A A

Notation

e(A) extension of class A

e(B) extension of class B

Beyond this, the single term IS-A, as used in conceptual and semantic data modelling (e.g.,

Mylopoulos et al., 1980; Hammer and McLeod, 1981) to indicate that the extension of one class is a strict

subset of the extension of another class, is semantically overloaded, since one symbol is used to describe

several kinds of subclass linkages with important differences in meaning, as shown next.

In MIMIC, classes are defined based on shared attributes. In addition, it is recognized that some

properties may be acquired and lost over the lifetime of an object. This fact is used to derive four refined

meanings of IS-A based on the temporal or permanent nature of the additional attributes defining a

subclass92 .

Although the representation level (i.e., MIMIC model) is being discussed here, everything that is said
applies also to the conceptual level due to the mapping between the levels discussed in Chapter 4.
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The cognitive premise on which the proposed refinements to IS-A are based is that instances

(representations of individual things in the world) may acquire and lose properties through domain

expansion and contraction (Definitions 14 and 15, Chapter 4). This is reflected directly in MIMIC in that

objects may acquire and lose attributes, thereby moving between classes. However, not all attributes may

be acquired/lost. Four cases exhaust the possibilities in this regard.

First, membership in a (sub)class may be always. This means that an object, when created, belongs

to and remains in the class in question as long as it exists. An example is PERSON. No objects (e.g.,

from a superclass ANIMAL) become persons subsequent to their creation, and a person is always a person

while in existence. In this case, the added structural/relational attributes are permanent93. That is, an

object is assigned to (i.e., becomes a member of the domain of) these attributes at the time it is created,

and continues to possess these attributes as long as it exists. Height, Weight, and Birthdate, are examples

of permanent attributes of class PERSON.

Second, subclass membership may be becoming. This means that an object starts out in a

superclass only, but eventually becomes (or may become) a member of a subclass and remains in that

subclass as long as it continues to exist. An example is PARENT, since a PERSON is not a parent at

birth, but if he/she becomes a parent, he/she remains so. Another example is ADULT 94. In this case, an

object in some class may acquire (i.e., enter the domain of) certain attributes at some point subsequent

to its creation. However, once these attributes are possessed by the object, they are retained for the

duration of its existence. For both PARENT and ADULT, an instance of PERSON becomes an instance

of the subclass (i.e., PARENT or ADULT) if or when it acquires the attributes distinguishing the subclass

93This does not mean that these attributes are unchanging, since the values (active functions) may
change over time.

94There is a slight difference between PARENT and ADULT, since all PERSONs become ADULTs,
but not all PERSONs become PARENTs. In other words, all PERSONs must assume the added attributes
of ADULT, but need not assume the added attributes (i.e., become) PARENTs.



146

(e.g., Has_children for PARENT). Once these attributes are acquired, however, they are retained

permanently.

Third, subclass membership may be ceasing. This means that an object starts its existence

belonging to a subclass, but at some point ceases to be a member of the subclass, and stays out (but in

some superclass of that class) for the duration of its existence. An example is CHILD. Every PERSON

is initially a CHILD. However, at some point the person ceases to be a child and never becomes a child

again. In this case, an object is created with certain attributes, but loses some of these attributes at some

point during its existence. Once these attributes are lost, they are not re-acquired. For example, every

PERSON has the added structural/relational attributes of CHILD when born (e.g., Legal_guardian), but

loses some of these (i.e., the attributes which distinguish CHILD from PERSON) at some point, thereby

losing membership in the class CHILD.

Fourth, objects may happen to be in a particular subclass. This means that an object is created

belonging to some class, but may belong and then not belong to the subclass in question several times

during its existence. Examples include CUSTOMER and EMPLOYEE. PERSONs may move in and out

of these classes several times over the course of their lives. In this case, a member of a superclass may

acquire and lose the added attributes of the subclass (perhaps several times) during its existence. For

example, CUSTOMER is based on a relational attribute Customer_of with COMPANY, and

EMPLOYEE is based on a relational attribute Employed-by with COMPANY.

This analysis reinforces the view that a single notion of IS-A is inadequate to capture the various

kinds of subclass derivations that are possible when the temporal nature of class membership is taken into

account. The definition of subclasses in the MIMIC model is based on added structural/relational attributes

and the assumption that attributes can be acquired and lost by objects. This provides a framework for

explaining and understanding the semantics of four forms of subclasses, since the cases can be

distinguished by the permanence of the added attributes of a subclass. It additionally recognizes that an
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object may move between classes over its lifetime, an issue not dealt with by many conceptual models 95 .

However, the modelling mechanisms for structural and relational attributes do not inherently indicate to

which of the four kinds an attribute belongs. Consequently, the specification of whether an attribute is

permanent, becoming, and so on, must be captured externally.

A modelling guideline emerging from this analysis is that, when attributes are specified by a user,

these should be determined to be permanent, acquirable only, losable only, or both acquirable and losable.

This captures important information about whether objects may move between classes in a lattice.

5.5 ON ASSOCIATIONS - RELATIONAL ATTRIBUTE VERSUS COMPOSITE CLASS

An important element of knowledge about a thing involves the associations (relationships) the

thing has with other things. In some cases, an association of two or more things may have properties of

its own, in which case it may be more valuable to regard the association (or composition) as a separate

thing. The issue is whether relationships with properties should be modelled differently from relationships

without properties.

In the entity-relationship model (Chen, 1976), the relationship construct is used to model both

associations with attributes of interest and those without attributes of interest. However, these two kinds

of associations are not formally distinguished. In some cases, it is difficult to decide whether something

should be modelled as an entity or as a relationship. Even if relationships with attributes are modelled as

entities, information about the allowed changes in the values of attributes of these associations cannot be

represented since the E-R model does not capture behavioral knowledge,.

95There are some additional considerations here, since the acquisition or loss of attributes is a kind of
change. In particular, if these attributes are relational, acquisition of an attribute depends on the existence
(or creation) of certain objects in other classes (e.g., acquiring Parentof accompanies the creation of a
new object of class CHILD). This is effectively a constraint on change, although not at the level of
changes to the active functions of attributes. Incorporating such information is left as a subject for further
work.
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In most modelling approaches, no distinction is made between structural and relational attributes.

All are modelled as binary associations between entities or objects (e.g., Mylopoulos et al., 1990;

Verheijen and Van Bekkum, 1982; Abrial, 1974). Such models have no notion of composition in the sense

of emergent attributes (Section 4.2.3.4). Instead, composition is often equated with Cartesian aggregation

(Hull and King, 1987; Smith and Smith, 1977), in which an object is considered as composed of its

attributes (e.g., PERSON is composed of attributes such as Height and Weight). Composition is

recognized in some object-oriented programming languages such as Loops (e.g., Stefik and Bobrow, 1986),

and in data models such as ORION (e.g., Banerjee et al., 1987). However, these do not provide clear

guidelines as to whether or not certain knowledge should be modelled by composite objects, nor is it clear

whether they enforce that a composite object must possess emergent attributes.

The cognitive assumption underlying MIMIC' s treatment of composition is that part of knowledge

includes knowing how things are linked to other things (Smith, 1978; Miller and Johnson-Laird, 1976).

Furthermore, components can be considered either as distinct things or as parts of more complex things.

The basic mechanism for expressing associations among objects in MIMIC is the relational

attribute. A simple relational attribute R is a set of functions mapping from a set of objects T' to a subset

of the power set of the Cartesian product of several other sets of objects T 2,...,TN (N.?..2): that is,

(R. ( )), where Qcp(T20...OTN)). Relational attributes link an object to one or more other objects

without ascribing any added information to this association. However, the model also provides a

mechanism for representing associations which can be viewed as objects in their own right. Such

associations possess emergent (or composite) attributes: that is, attributes associated with the collection

of objects in the association. Composite objects model these associations and composite object classes

represent the kind of association.

A composite object is a concatenation of other objects of other classes, denoted 4 1 42,...,6 (tie T i),

which possesses emergent (or composite) structural/relational attributes. The emergent structural
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attributes forming part of the definition of a composite class are of the form S:H--)V, where V denotes a

set of values, H denotes a subset of T 10... TN and is a domain of composite objects, and T 1 ,...,TN are the

extensions of the component classes of the composite. Similarly, the emergent relational attributes forming

part of the definition of a composite class are of the form R:H—>Q, where QcTN+ 10...Orl (i.e., M other

sets of objects). The emergent behavioral attributes are of the form b:1310...0PK--)p (P 10...OPK), where Pk

denotes the leh composite structural or relational attribute. These attributes are needed when there is some

information or property that can be ascribed only to the association of two or more objects. An example

of an emergent attribute is Grade, which characterizes neither a STUDENT nor a COURSE individually,

but a certain student-course pair.

Although not dealt with in theories of concepts, it seems reasonable to assume that the components

of a composite object are linked via a relational attribute. This is embodied in the following postulate.

Postulate 7:

In a composite class (object), n "complementary" n-ary relational attributes link the n component

classes (objects).

That is, a composite of instances of T 1 ,...,TN is based on relational attributes such as

R:T 1-4 g (Po ...or) 96 . For example, an ENROLMENT composite is based on an Enrolled relational

attribute of class STUDENT with class SECTION, as well as a complementary Has_enrolled attribute

of class SECTION with class STUDENT.

The model adopts a further important assumption.

96For each of the other components, there is a similar relational attribute.
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Assumption:

A given collection of objects may, at any time, form only one composite object of a particular

composite class (i.e., the object is a surrogate or identifier of a composite thing) via a single

relational attribute.

This assumption limits what may be modelled as a composite object. For example, there cannot

be two composites with parts John and UBC in a composite based on the Student relational attribute of

STUDENT'. Again, although this consequence is not explicit in the classification literature, it does have

intuitive validity, particularly when physical objects are considered. For example, a given collection of

parts may belong to only a single automobile (at any time). Interestingly, this assumption has also been

adopted by some object-oriented data models which support composition (e.g., Banerjee et al., 1987).

The assumption is embodied in MIMIC through emergent structural and relational attributes. For

example, if Amount is an emergent attribute of class DEPOSIT, it cannot be that Amount =

{a:ACCOUNTOTELLER-4POSITIVE_NUMBER}, since several deposits made be made on the same

account by the same teller. In other words, the relationship is not functional if DEPOSIT has only the

components ACCOUNT and TELLER. That is, if c 1 and t2 are components of DEPOSIT which form,

say, two deposit objects with amounts 25 and 50, it would be required that a(c 1 ,t2)=25 and a(c 1 ,t2)=50.

Consequently, the formalism 98 enforces the assumption that a given collection of objects can form only

one composite of a particular class (at any time). In order, then, to model deposits to a single account

using the same teller, an additional component class is needed, the members of which vary for a single

combination of account and teller. This recognizes that the deposits are, indeed, different objects: that is,

97However, there may be another composite of John and UBC which is, for example, based on the
Employed_by relational attribute of EMPLOYEE.

"In particular, the way in which composite objects and attributes are defined.
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they have a different existence.

In contravention of this assumption, one might argue that a composite class such as DEPOSIT

may have parts ACCOUNT and TELLER, and that several composite objects (orders) may contain the

same components (e.g., several deposits on the same account by the same teller). However, the position

taken here is that this composition is incomplete. Each deposit has a distinct existence and occurs at a

different time99 .

This view of composition has an implication for conceptual modelling activities. Each relational

attribute identified in modelling a domain should be examined to determine whether there is any

information about the association which is relevant. In such cases, a composite class is needed, with the

classes involved in the relational attribute constituting its components. The additional information about

the association can then be formalized as emergent structural/relational attributes. Subsequently, constraints

on behavior with respect to these attributes can be identified.

To summarize, the MIMIC model supports a distinction between simple associations, modelled

as relational attributes, and associations which can be viewed as objects with emergent attributes. This

distinction depends on whether the domain of structural and relational attributes is a set of objects or the

Cartesian product of several sets of objects. Associations with emergent attributes are modelled as

composite objects. Thus, a semantic difference between the two kinds of associations - one involving

attributes of the association and the other not - is captured. It can be argued that (almost) any association

may have attributes (e.g., time at which the association began) and, hence, may be modelled as a

composite object. However, for the purposes of many applications, such attributes may not be relevant.

99Consequently, one view is that the components of DEPOSIT should actually be ACCOUNT,
TELLER, and TIME, where TIME is a class of objects whose extension is a set of time points.
Philosophically, there may be problems in viewing time points as objects. Since there is no fundamental
principle in theories of concepts to resolve this issue, the best that can be said here is that treating time
points as objects may merely be a surrogate for the fact that the deposits have different existence.
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Relational attributes allow simpler modelling of situations in which no relevant attributes are "attached"

to an association.

5.6 ON THE IMPLICATIONS OF A UNIFORM FORMALISM

It is widely recognized that both structure and behavior are important for the complete modelling

of knowledge about entities (e.g., Borgida, 1984; Brodie, 1984). Behavioral knowledge indicates how the

states of things may change over time. This must, in one form or another, be incorporated along with state

knowledge in information systems if they are to accurately track knowledge of the state of the things they

represent (Wand and Weber, 1988).

In many conceptual modelling methods, behavior is modelled in a process-oriented way (and, in

some cases, is not dealt with at all). For example, NIAM (Verheijen and Van Bekkum, 1982) captures

behavior through information flows and processing. Object-oriented systems (languages and data models)

encapsulate behavior with structure through methods. Methods implement mechanisms which describe how

changes to instance variables occur and, implicitly, determine which changes may (not) occur. By contrast,

neither the E-R model (Chen, 1976; Teorey et al., 1985) nor most semantic data models (see King, 1989)

deal with behavior. An exception to the procedural treatment of behavior is found in Telos (Mylopoulos,

1991; Mylopoulos et al., 1990), which models behavior in terms of activities belonging to activity classes.

Activities describe the "what" of change, specifying pre- and post-conditions which must be satisfied

before and after a change. However, activities also contains parts which come closer to describing the

"how" of change.

The issue which emerges here is that structure and behavior are usually modelled in quite different

ways, increasing the complexity of models such as those mentioned. Since structure and behavior are both

important elements of knowledge about things, it would be simpler to have a uniform approach for

representing both. The notion of uniformity was first recognized in the Taxis model (Mylopoulos et al.,
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1980) and plays a large part in Telos. However, the notion of uniformity discussed here is at a more

abstract level, since MIMIC is completely non-procedural.

In the MIMIC model, both structural and relational attributes are defined as sets of functions (from

objects to values or sets of things, respectively). This function-based approach to modelling knowledge

is very simple. It allows the description of state by applying active functions to objects. Furthermore,

behavioral attributes are also modelled as functions. The domain of a behavioral attribute is the Cartesian

product of a number of structural and/or relational attributes, and the codomain is the power set of the

domain. A behavioral attribute thereby specifies, for any given combination of the active functions of one

or more structural/relational attributes, which events or changes can occur. Intuitively, this approach makes

sense since structure, relationships, and behavior are all elements of knowledge about things. Furthermore,

it is a parsimonious and implementation-independent approach to integrating static and behavioral

knowledge. However, it is also restricted to describing the "what" of change and not the procedural details

of "how" change is performed. In this regard, it is worth mentioning that this approach is somewhat related

to the A.-calculus and functional programming (see Backus, 1978) in hiding the procedural details of

change. According to Backus, a functional programming system "has a loosely-coupled state-transition

semantics in which a state transition occurs only once in a major computation" (p. 619). These "major

computations" appear analogous to the MIMIC notion of an event conforming to a behavioral attribute,

since the model does not contain mechanisms for describing procedurally how the change is brought about.

The primary consequence of this view is that only knowledge about allowed behavior is

represented. That is, behavioral attributes may be viewed as restrictions or laws which describe the

changes an object may or may not undergo (by virtue of belonging to a class and, therefore, possessing

the attributes defining that class) by restricting changes to the active functions of attributes of that class.

Models specifying how changes occur (e.g., through control statements) commit to a particular view of

the implementation of change (e.g., transactions in ACM/PCM and Taxis). MIMIC is more abstract than
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these models in that behavioral attributes can accommodate many concrete descriptions of how change

occurs. The model thus allows for a greater degree of freedom in later stages of system design and

implementation, as it does not impose a particular description of change mechanisms. That is, its

constructs are completely free of implementation primitives.

It may be argued that this begs the question of representing the "how" (procedures) of change.

Since, in an implemented system, programs execute the changes which can occur (i.e., implement

behavioral attributes), a detailed description of how changes are to be performed is a prelude to

implementation. However, the intent of MIMIC is to focus purely on the problem domain, rather than the

implementation domain (cf. Mylopoulos, 1990). Consequently, the model does not specify how behavior

is to be implemented. However, the functional approach to behavior does specify constraints which any

implementation (of transaction mechanisms) must adhere to, without committing the analyst to a specific

approach to the implementation. It is thus valuable as a preliminary modelling step.

In addition, it is worth noting that in discussions of methods, messages, and encapsulation in

object-oriented programming languages, there is an emphasis on hiding the "how" of behavior and creating

a protocol for communication between objects (e.g., message passing) that hides the implementation details

of methods (e.g., Goldberg and Robson, 1989). MIMIC extends this idea uniformly (back) to the

conceptual modelling phase of development by considering behavior only in terms of states before events

and potential states after events (cf. Wand and Weber, 1988), without consideration of intervening

processes.

In summary, several existing modelling methodologies recognize that both structure and behavior

are important elements of knowledge to be captured during the conceptual modelling phase of systems

development. However, these approaches often introduce different mechanisms for modelling behavior

versus structure. Such mechanisms may, for example, use standard program control structures (sequence,

iteration, and choice) that are closely linked to software (e.g., Brodie and Ridjanovic, 1984; Jackson,
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1983). The MIMIC model, on the other hand, captures behavior through functions restricting changes in

state. The uniform approach to modelling structure, relationships, and behavior is both intuitively

appealing and simple: the former because a common approach is applied to static and dynamic knowledge,

and the latter because it uses fewer modelling constructs. In practical terms, the model should be useful

as it completely removes implementation or software considerations from conceptual modelling, thereby

allowing flexibility in the later stages of designing transactions and programs to enforce behavioral

constraints.

5.7 ON THE MEANING OF TIME

Time is important in conceptual modelling because knowledge about when certain changes occur

relative to others is important to users. Specifically, there are at least two critical uses of temporal

information. First, in representing knowledge about an application, it is often necessary to capture the time

at which an event occurs (i.e., when a certain state is realized). For example, banks maintain records of

when account transactions occur, when loan payments are made, and so on. Second, temporal knowledge

is used to answer questions about intervals over which states or conditions are true. For example, the

duration of account balances is essential knowledge in determining interest earned.

Accounting for time in conceptual models is an issue which has received some attention and which

has been criticized for inadequacies (e.g., Richter, 1985; Schiel, 1985; Kung, 1983; Bubenko, 1980). The

issues appear to be closely related to general questions about modelling temporal information in

knowledge representation (e.g., Shoham, 1988; Allen, 1984; McDermott, 1982). However, this AI work

focuses on reasoning about temporal matters and, consequently, tends to develop detailed temporal logics

based on either time points or time intervals as primitives. Hence, it is not examined in detail here.

Problems in modelling time have been recognized. For example, McDermott (1982, p.101) states

that "no one has ever dealt with time correctly in an AI program, and there is reason to believe that doing



156

it would change everything." In the conceptual modelling context, Kung (1983, p.141) states that

"[a]lthough there are a large number of conceptual models, most of them fall into what is called snapshot

approaches", which do not adequately deal with time.

It is not the intent of this research to propose a complete model of time. However, since the ability

to deal with temporal information is important to many IS applications and since knowledge of temporal

relations is part of our knowledge of the world, some treatment of time in conceptual models is crucial.

This section shows that MIMIC's treatment of behavior through events implicitly incorporates a simple

treatment of time 100, and then discusses some consequences and contributions of that treatment and an

extension of it.

According to Schiel (1985), there are two views of time: absolute and relative. The absolute view

treats time as an infinite sequence of points m independent of things. The relative view claims that time

has no meaning independent of things and events, as expressed succinctly by Shoham (1988, p.1):

Of course, the passage of time is important only because changes are possible. In a world where
no changes were possible - no viruses infecting blood systems, no electrical charges changing, no
changes in program counters, not even changes in the position of the sun in the sky or the position
of the hands on our wrist-watches ... the very concept of time would become meaningless.

This "time as change" perspective is implicitly adopted in the MIMIC model, but it is also argued that the former

and latter views can be closely linked.

The basic view of time in MIMIC is derived from the primitive attribute constructs. A structural

(respectively, relational) attribute is formalized as a set of functions from a domain of objects to a

codomain containing values (respectively, sets of objects). A single active function from the set describes

the state of the domain with respect to that attribute. The state of a set of objects possessing m structural

mAny conceptual model which deals with behavior necessarily includes a rudimentary notion of time,
according to a view which sees time as change. Examples of conceptual models which explicitly deal with
time include activity and behavior modelling (Kung and Solvberg, 1986), Telos (Mylopoulos, 1991;
Mylopoulos et al., 1990), and the Set-function model (Bertziss, 1986).

ioiTime may also be construed in terms of intervals as primitives (Shoham, 1988; Allen, 1983).
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and n relational attributes is an (m+n)-tuple containing m+n active functions. The notion of change is

incorporated in the model through the replacement of active functions (of one or more attributes) with

other functions from the same attribute set. Such a replacement is termed an event. An event changes the

state of at least one object in the domain of each of the attributes affected. The model does not, at this

level, deal with the spacing of events on some interval scale. Consequently, the only notion of time

directly supported is that the passage of time is recognized by events, so that time intervals are not

recognized.

This is consistent with the previously described view of the world (or knowledge of it) in which

"time" has meaning only in that change occurs. MIMIC provides a natural mechanism for capturing this

by modelling attributes as sets of functions, whereby an active function describes the state of a set of

objects with respect to the attribute in question and may be replaced by another active function to reflect

a change in knowledge of the state of the world. If an attribute has a single function, no change may

occur. Naturally, time has no meaning with respect to such an attribute.

The model equates change in time with events. However, in general, events (in an information

system or in the real world) are not equally spaced on any interval. For example, a bank may have x

deposits to savings accounts in one day of operation and y in another day, where x*y. Furthermore, such

events may be unequally spaced through the day. Since the spacing or intervals between events is often

critical knowledge for planning or decision making 102, a mechanism to capture "distances" between

events is important in a conceptual model. Consequently, a refinement to MIMIC is needed in order to

recognize time intervals.

The notion of "unequally spaced" has meaning only in the sense that there is some standard or

102Consider a situation where customers perform deposits and withdrawals on bank accounts. The
spacing between these events helps determine factors such as teller utilization and queue lengths.
Consequently, this knowledge is critical in simulating different service options in order to decide on an
appropriate level of customer service.
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scale against which other events can be measured. Such a scale will hereafter be referred to as a clock.

In the banking example above, deposits may be made at 9:14, 9:23, 10:01, and so on. For most people,

time is measured by one or more physical (mechanical or electronic) clocks. Of course, such clocks

generally provide a discrete (or continuous) approximation of continuous change based on the rotation of

the earth. This approximation is adequate for day to day life, and certainly for business information

systems needs. It is manifested in physical events such as the movement of hands on a clock face or

changes to values on a digital display. In addition, people appear to have a notion of absolute time since

we often question whether a specific physical clock is telling us the "correct" time.

Unfortunately, the theories of concepts discussed in Chapter 3 do not offer much insight into the

concept of time and the nature of temporal knowledge. Furthermore, while the formalization of classical

concept theory in Chapter 4 does offer the simple relative view of time based on events discussed above,

this alone is inadequate to model the spacing of events. Consequently, a simple extension of the model

is considered here which, while not directly based on cognitive research, illustrates one possible way of

introducing an "absolute" notion of time which is uniform with respect to the constructs of the model

already introduced and which allows the spacing of events on an interval scale to be measured.

Two assumptions underlie what follows. The first and most important is that there is a concept

of CLOCK: that is, a standard by which other events can be measured. This assumption seems to be

essential in models of time (Richter, 1985; Bunge, 1977). The second assumption is that the clock is in

some sense "universal". This means that a given community of individuals can agree on a single common

clock, against which other (individual) clocks can be calibrated. This assumption should not cause too

much trouble given the frequency with which individuals compare "personal" time (as measured by, say,

a watch) with "actual" time (as decreed by some authority).
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These assumptions give rise to the definition of a class which will be called CLOCK'', whose

extension is a set of clocks. For simplicity, this class may be assumed to contain only a single object (i.e.,

the universal clock). CLOCK is defined in terms of a single structural attribute, along with a single

associated behavioral attribute.

The structural attribute is Time_value = ftv iltv i :CLOCK--)NUMBER}, where NUMBER is a

finite"' set of values (e.g., integers). That is, each function in Time_value is a single pair (if the class

is assumed to contain a single object) whose first element is the clock object and second element is a

value from the domain NUMBER. The behavioral attribute, Change_time, enforces the constraint:

<tv 1 ,tv2> := tv2(c) = tv 1 (c) + 1 1°5,

where c denotes the clock object. In other words, Changetime:Time_value—aime_value l°6 such that

for any i, Change_time(tv,)=tv i+1 , where tv i+1 (c)=tv i(c)+1. This class and the events on it are intended to

model our knowledge of time as represented by an ordinary clock. An event might be the discrete

movement of a second hand, or a change of numbers on a digital display. This kind of event provides a

base to which more interesting events can be associated when the relative spacing between pairs of events

(such as changes to account balances) is important. In these cases, the number of "clock tick" events, each

designating an elapsed unit of time, between a pair of other events (e.g., two deposits on an account)

provides a scale for measuring the distance between these events. Furthermore, the time at which an

instance of a class (e.g., person, deposit) is created may be an attribute of the class, the value of which

103This class makes use of the constructs of the model (i.e., objects and attributes) and, therefore, is
embedded in the model (actually, in any instance of the model) and not really an "extension" of it.

'For the purposes of this exposition, finiteness is assumed in order to impose a restricted time
horizon and preclude a continuous notion of time. Given the domain of interest (i.e., business
applications), this appears to be a reasonable restriction.

105See Appendix 1 for an explanation of this notation for behavioral attributes.

106The codomain of this attribute is a single element of the power set of Time_value: namely, the set
Time_value itself.
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is the state of the clock when the object is created.

The usefulness of this approach is that it defines a CLOCK as a mechanism for recognizing

intervals between events. When the spacing between events is important, there is information about an

event that is relevant knowledge. Consequently, records of events may be viewed as objects. This may

appear at first to be strictly an information systems issue, since records of transactions are extremely

important in IS applications for accounting and auditing purposes. However, there is a cognitive basis for

modelling records of events as objects. Specifically, people abstract information about events which

enables them to answer questions later. For example, a person making a deposit to a bank account m

has a mental record of the event, and can later provide information such as the time and amount of the

deposit. This record is thus an instance of a concept, DEPOSIT, which is an abstraction of the common

attributes of cognitive records of deposit events.

In this case, the time of an event may be a structural attribute of its record, which is assigned the

value of the state of the clock when the event object is created. Of course, the creation of an object as an

instance of DEPOSIT accompanies an event (change in the active function) affecting the Balance attribute

of class ACCOUNT, such that a particular instance of ACCOUNT has its value increased by the value

of Amount of the newly created instance of DEPOSIT.

The constraints among these actions can be specified in more detail, although this will not be done

here since it is more important at the implementation level. At the conceptual level, it is enough to know

what the connection is. This involves enforcing a requirement that a given event (e.g., a change in the

active function of Balance of class ACCOUNT) be accompanied by the creation of at least one instance

of a specific event-record class (e.g., DEPOSIT, WITHDRAWAL, TRANSFER). Consequently, the fact

that, for example, three DEPOSIT transactions (d 1 , d2 , d3) may not be equally spaced, can be captured

by comparing the "differences" in the times of occurrence (e.g., value of Time of occurrence attribute)

1°7The deposit is simply an event, or change of state, of the balance of the account.
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of consecutive deposit pairs. The term "difference" has meaning here since the value of the

Time of occurrence is a number on an interval scale._ _

In order to better understand the limited treatment of time which MIMIC offers, it is useful to

recognize that there are two possible focuses when representing temporal knowledge. The first deals with

what is presently true (representing knowledge about the state of a real or potential world). As a

conceptual model, MIMIC handles this representation through its mechanisms for describing object states,

and constraints on changes of state. In fact, the central purpose of the model is to provide these

mechanisms.

The second focus in modelling temporal knowledge deals with representing past truths. As

discussed at the beginning of this section, there are two important uses of past truths. One is to provide

answers to questions about when events occur. In the MIMIC framework, this can be captured by

maintaining a record of the event as an object, one of the attributes of which takes on the value of the

clock at the creation of the event record. The object continues to exist without changing state, and can

always be referenced to answer questions about when the corresponding event occurred. The second use

of past truths is to answer questions about intervals over which assertions or states are true. This use

illustrates an important limitation of MIMIC's treatment of time. Since MIMIC's framework for dealing

with time is not interval-based, it does not directly permit questions about time intervals (e.g., how long

did an account balance remain within a certain range?) to be answered. However, records of events

provide the basic information necessary to answer such questions, since intervals can be determined by

comparing the times at which the relevant events occurred. Nevertheless, this requires an extension of the

MIMIC model to include a reasoning mechanism, and is beyond the scope of this thesis.

To summarize, the intent of the preceding presentation is not to develop a comprehensive model

of time, as would be necessary to perform detailed temporal reasoning (e.g., Shoham, 1988), since theories

of concepts generally do not deal with how knowledge of things changes (is updated) over time. The more
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limited goal is to show that the fundamental constructs of MIMIC have a very basic model of time as

change, captured by the notion of an event. This, in turn, can be enhanced by introducing a clock to

recognize that events are not necessarily equally spaced (and also to answer questions related to the

ordering of and distance between events). Thus, for this research, time is still viewed as change, but at

the finer level of clock change and relative time becomes, with the clock as a standard, absolute.

5.8 ON THE OBJECT PARADIGM AND CONCEPTUAL MODELLING'

As Chapter 2 indicated, much attention has recently been focused on object-oriented approaches

to systems analysis and design (e.g., Booch, 1991; Coad and Yourdon, 1991; Bailin, 1990; Henderson-

Sellers and Edwards, 1990; Wirfs-Brock and Johnson, 1990). Of particular interest here is that the object

paradigm has been applied to conceptual modelling and advocated as a natural approach for representing

knowledge about a domain (Coad and Yourdon, 1991).

Notwithstanding the interest in object-based approaches, there has been widespread disagreement

about the meaning of terms such as 'object' and 'object-oriented' (e.g., Nierstrasz, 1987; Stroustrup, 1987;

Wegner, 1987; Stefik and Bobrow, 1986; Nygaard, 1986; Pascoe, 1986; Stoyan, 1984), particularly as

applied to programming. Only the concept of encapsulation seems to be universally accepted.

Classification and inheritance have also been generally embraced, but with notable exceptions (e.g.,

Lieberman, 1986). Other concepts, such as independence, homogeneity, message passing, composition and

concurrency, have varying degrees of support.

The justifications offered for these characteristics tend to center around supporting software

reusability, improving software reliability, and supporting incremental development (Meyer, 1989;

Nierstrasz, 1987). At the same time, however, arguments have been made that many of the features of the

108This section is based on joint research with Yair Wand, as described in more detail in the paper
"The Object Paradigm - Two for the Price of One?", Proceedings of the First Workshop on Information
Technologies and Systems (WITS' 91), Cambridge, MA, December 1991, 308-319.
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object paradigm support world modelling in a natural manner (e.g., Mylopoulos, 1990; Goldberg and

Robson, 1989; Stefik and Bobrow, 1986; Birtwistle et al., 1973). Hence, there is an apparent confusion

of what we (see Footnote 108) call implementation and representation advantages'. The position taken

in this thesis is that, since conceptual modelling is strictly concerned with capturing knowledge about a

domain of interest (on which an IS is based), only the elements which support the development of good

representations of a domain should be included in object-oriented conceptual models. In the context of

this research, this means that only the object constructs which support the direct representation of cognitive

constructs should be included in a conceptual model. Consequently, the remainder of this section examines

the degree to which a number of object characteristics are supported by MIMIC.

Classification/Instantiation

In most object-oriented systems, there is a clear distinction between instance objects and class

objects (e.g., Goldberg and Robson, 1989; Banerjee et al., 1987; Stefik and Bobrow, 1986). Class objects

are abstractions which describe a set of instances in terms of common characteristics (instance variables

and methods). Classes are useful for creating instances and contain the code (methods) for manipulating

the state (instance variables) of instances. The instances are have individual identity (Khoshafian and

Copeland, 1986) and are intended to be in one-to-one correspondence with entities from some domain.

The MIMIC model clearly distinguishes objects from classes. Objects are in one-to-one

correspondence with instances of concepts from some domain and possess attributes which represent

knowledge about these instances. Classes, which are in one-to-one correspondence with concepts from that

domain, are defined in terms of a collection of attributes, including a characterization of allowed behavior.

1°9In a similar vein, Mylopoulos (1990) states that "research on object-oriented databases should
address world modelling or programming, but not both" (p.13).
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Encapsulation

In most discussions of objects, class definitions encapsulate statics (e.g., instance variables) and

dynamics (e.g., methods) (e.g., Nierstrasz, 1987). That is, a complete specification of a class includes

definitions of its structure (hence, the structure of its instances), along with a description of how the states

of instances may change. Encapsulation provides a well-defined, implementation-independent interface for

accessing and manipulating object states.

In MIMIC, a class encapsulates structural and relational attributes which, in turn, imply a set of

behavioral attributes. These jointly represent the three kinds of knowledge defining concepts. The

behavioral attributes specify how the values of the structural and relational attributes may change over time

for the objects which make up the extension of the class.

Class Specialization and Inheritance

In most object-oriented systems, there is support for defining some classes to be subclasses or

specializations of others. The subclasses may possess added instance variables and methods, and often the

methods of a subclass may override those of its superclass(es). There is no general agreement as to

whether object-oriented systems should support multiple inheritance, in which a subclass has more than

one superclass and, therefore, inherits instance variables and methods from each. In any event,

specialization and inheritance support code reusability and reduced redundancy.

In MIMIC, a subclass must possess structural and/or relational attributes in addition to those of

(each of) its superclass(es). Such added properties form the basis for defining new classes. In addition,

the subclass may possess additional behavioral attributes. In the model, there is no notion of overriding

the attributes of a superclass. Furthermore, the notion of multiple inheritance follows naturally from the

way in which subclasses are defined, since a new class may possess the properties which define two or

more existing classes.
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Composition

The idea of composite objects and classes has been recognized in some object-oriented

applications, particularly in the database area (e.g., Banerjee et al., 1987). Composite objects belong to

composite classes. The latter are comprised of a number of component classes, and in addition, may

possess certain emergent instance variables and methods. Composite objects may be stored and retrieved

as a unit, thereby reducing access time.

In MIMIC, a composite class is defined in terms of (i.e., must possess) a number of emergent

attributes. The domain of these attributes consists of composite objects, which are uniquely identified as

a collection of component objects. Composite classes represent composite concepts, thereby reflecting the

knowledge that some things are composed of simpler things.

Independence

In many object-based environments, methods are the only mechanisms by which changes to the

state of objects can occur. That is, if there is no method to execute a particular change, such a change

cannot be imposed, for example, by directly manipulating instance variables. Independence is supported

by encapsulation and enhances software reliability.

In the MIMIC model, events are constrained by behavioral attributes. These attributes implicitly

determine which changes can and cannot occur. Thus, representations are independent in the sense that

allowed changes to state are embedded completely in behavioral attributes, although these attributes may

span several classes.

Communication

At least two metaphors have been used in the object literature to describe communication. Message

passing (Stefik and Bobrow, 1986; Robson and Goldberg, 1981) implies a direct request by one object
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to another. This is the most widely used approach described in object-oriented programming and databases.

A second approach involves communication through a public blackboard, or workspace, which is checked

by other objects in search of communications intended for (or applicable to) them (Tsichritzis et al., 1987).

Much of the discussion of communication in the object-oriented programming literature

understandably focuses on implementation. However, communication can be viewed conceptually as a

vehicle for supporting object independence. A communication mechanism provides an orderly protocol

which prevents objects from changing state arbitrarily and, thereby, supports independence.

MIMIC includes only a very abstract notion of communication. Behavioral attributes constrain the

allowed changes of state of objects. Any event (change in active function of one or more

structural/relational attributes) must conform to all behavioral constraints which affect these attributes. The

model distinguishes constraints on changes to (1) several attributes within a (non-composite) class, (2)

attributes across several classes, and (3) composite attributes. This may be viewed as a communication

mechanism in the abstract sense above: namely, in providing an orderly protocol which prevents object

states from changing arbitrarily. There are no implications for a particular mechanism for communication,

such as message passing.

Uniformity (Homogeneity)

Many applications of the object-oriented approach view every component of the system as an

object. For example, the syntax of Smalltalk recognizes only the sending of messages to objects. This

means that every possible value (e.g., a number) is an object and so are classes. However, the relentless

pursuit of homogeneity leads to an obvious problem of infinite regress (Nierstrasz, 1987). Hence, the

notion of an object's properties, in turn, being objects, must terminate at some level with primitive objects

that do not have properties. Nevertheless, there is obvious value in thinking about the domain in terms

of a single construct. When "everything is an object" and objects are independent, an application is



167

expected to be well-behaved. If object behavior is completely determined by its own definition and state,

and the behavior of the system is determined by communication among objects, it should be possible to

predict the state of a system at any time, given a starting state (for all objects in the system) and a

sequence of all subsequent communications. Hence, homogeneity is justified as a means of supporting

object system reliability.

From a conceptual point of view, objects are viewed as representations of entities in the world

(Coad and Yourdon, 1991, p.1; Digitalk, 1989 p.3). However, there is no compelling reason why object

state variables and behavior, along with classes, should also be objects. MIMIC does not view classes or

properties as objects, since they do not represent identifiable, independent things in the domain of interest.

It seems that the disparity between the implementation and representation views regarding homogeneity

stems from fundamentally different assumptions made by each. A system, once implemented, exists as a

composite thing in the world, and further, as a composite thing. If knowledge about this thing and its

components are modelled, they can be viewed as objects. It is important that these objects are not

necessarily representations of any real thing in the application domain (unlike customers, students,

accounts, and so on). Rather, they are implementation artifacts. In other words, from a representation point

of view, an object represents a thing or an instance in reality, while from an implementation perspective,

an object is a component of the implemented system il° .

To summarize, this section has compared the features of MIMIC with a variety of characteristics

advocated by proponents of the object paradigm. There are many similarities, suggesting that object-based

conceptual models can serve as "natural" vehicles for representing knowledge. However, there are also

some important differences, indicating that the roots of object-orientation in programming languages may

11° Of course, one implemented, the information system and its components become also part of
reality. This issue is not pursued here.
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hinder the development of object-based conceptual models if characteristics are adopted from programming

and applied to modelling the subject matter of an IS without explicitly considering their value in

representing knowledge about that subject matter.

5.9 SUMMARY

This chapter uses the constructs of the MIMIC model developed in Chapter 4 to examine several

poorly understood issues in conceptual modelling, including criteria for defining a class structure, the

naturalness of lattice class structures, the meaning of ISA, composition, the meaning of time, and the

representation value of object-oriented models. In each of these areas, MIMIC's formalism and foundation

in concept theory are used to examine the meaning of conceptual modelling constructs. In addition, a

number of specific guidelines for modelling are suggested. The analysis indicates that MIMIC's grounding

in a theory of categorization, along with its formalization, provides insights into several issues which are

not well understood in conceptual models with a less clear theoretical and formal basis.



CHAPTER 6

A COMPARISON OF CONCEPTUAL MODELS

6.1 INTRODUCTION

In Chapter 5, the contributions of MIMIC to understanding and addressing several problems in

the conceptual modelling area were examined. In this chapter, the MIMIC model is used as a foundation

to evaluate the "cognitive content" of four quite different approaches to conceptual modelling: the

Extended Entity-Relationship (EER) model (Teorey et al., 1986; Chen, 1976), Telos (Mylopoulos, 1991;

Mylopoulos et al., 1990), NIAM (Verheijen and Van Bekkum, 1982), and Object-oriented Analysis (OOA)

(Coad and Yourdon, 1991). The motivation for this evaluation is MIMIC's grounding in the classical

theory of concepts. Since MIMIC is a conceptual model for directly representing knowledge about things,

it can be used to determine the degree to which other conceptual models support the representation of

cognitive constructs, according to the classical view of concepts. The specific objectives of this chapter

are, first, to determine which constructs of the MIMIC model are supported in several conceptual

modelling methods, and, second, to examine the significance of constructs found in other models, but not

supported by MIMIC.

There is a wide range of systems development methodologies which address, to a greater or lesser

degree, the conceptual modelling stage of IS development (e.g., see Bubenko, 1986; Brandt, 1983; Floyd,

1986; Olive, 1983 for comparisons of several). Performing a useful comparison with a large number of

these would be impractical. Instead, a detailed evaluation of four models with quite different origins is

performed here in an attempt to assess the degree to which each supports the representation of knowledge

about a subject domain.

The four methods were chosen for different reasons. First, the EER model is a well-known and

widely-used tool for conceptual database design. Although it has recognized problems (e.g., its inability

169
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to capture behavioral information), the EER model does serve as a well-understood starting point for a

comparison of models. Second, Telos is explicitly intended for conceptual modelling (among other things),

and is said to be based on knowledge representation principles (Mylopoulos et al., 1990). Since MIMIC

explicitly adopts a knowledge representation approach based on concept theory, a comparison with Telos

may provide insight on the consequences of adopting different foundations for representing knowledge

about things. Third, NIAM is a well-known example of European research in the conceptual modelling

area, addressing directly the notion of modelling an enterprise or slice of reality 111 . Since much of the

impetus for conceptual modelling has come from the European research community (e.g. Nijssen, 1976;

Schmid, 1977; Bubenko, 1980) 112, consideration of some of the results of these efforts is necessary for

any evaluation of models to be representative of work that has been done. Finally, the object paradigm

and object-oriented analysis have attracted tremendous attention in recent years, in part because of claims

that such approaches allow "natural" representations of a problem domain to be constructed. A comparison

of OOA with MIMIC may provide insight into the degree to which OOA may be called natural, according

to the classical theory of concepts.

6.2 CRITERIA FOR COMPARISON

The comparison and evaluation of conceptual models and systems development methods is an

extremely difficult task (Sol, 1983). Evidence of this is found in a series of IFIP conferences on the

comparative review of information systems design methodologies (011e et al., 1982; 1983; 1986), which

together demonstrate a variety of approaches to comparing models. Among the impediments to performing

a comparison are the variety of constructs and inconsistency of terminology among methods, the lack of

111NIAM also covers other aspects of the development process which are not considered here.

112These references capture but a small sample of conceptual modelling methods. Further reviews and
comparisons are found in (011e et al., 1982; 1983; 1986).
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formalism in some models (which hinders reconciliation of constructs and terminology), and the diversity

of scope of different approaches with respect to the phases of IS development addressed (e.g., analysis

only, analysis and design, analysis through to implementation). Illustrating the first two difficulties, it is

unclear whether terminology such as entities (Chen, 1976; Jackson, 1983) and objects (Verheijen and Van

Bekkum, 1982; Mylopoulos et al., 1990) mean the same thing across models, particularly if these terms

are not formally defined. Likewise, the similarity between entity sets in the EER model (Teorey et al.,

1986) and classes in Telos (Mylopoulos et al., 1990) is difficult to assess. These difficulties are considered

explicitly in the comparisons which follow.

Sol (1983, p. 4) suggests a number of approaches to evaluating methods, including:

1. Comparison to an idealized methodology

This approach begs the questions of where the "ideal" is to be obtained and how such a judgment

is to be made. If such an ideal existed, it seems that other methods, and hence a comparison,

would not be needed.

2. Accumulation of important features from several existing approaches to use for comparison

This presumes the "goodness" of existing methodologies and their features and relies on a

subjective evaluation of the importance of the features selected.

3. Definition of a meta-model or framework within which methods can be compared

Such a model may be useful in reconciling terminology and construct differences among methods

being compared. However, the success of an evaluation will depend heavily on the quality and

expressiveness of the meta-model. In addition, since "meta-model" may be closely related to

"idealized method", this approach may encounter the same problem stated in point (1).

With respect to the second point, a number of attempts have been made to enumerate a set of

features for comparing and evaluating modelling approaches. In general, the criteria tend to focus on the
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capability of models to capture static knowledge, behavioral knowledge, and constraints on states and

behavior (Wand and Weber, 1989; Borgida, 1984)113. An example of such a checklist in the context of

data modelling is given by Brodie (1984). However, his set of criteria includes a number of issues, such

as exception handling and query facilities, which are related, not to modelling the domain, but to

modelling a database. Since these are essentially implementation-oriented, they are not discussed here.

Nevertheless, the emphasis on capturing structure, behavior, and the constraints on both, is appealing and

influences the present evaluation.

This comparison draws from the first and third approaches above. The primary interest is in

evaluating the mechanisms or constructs a model provides for representing knowledge about domain

entities (i.e., things which constitute the subject matter of a proposed information system) 114. Since

MIMIC is explicitly derived from a theory of the structure and organization of knowledge about domain

entities, it will be treated as a "benchmark" for comparing and evaluating the other models in terms of

their support for cognitive constructs. Each model is assessed in terms of mechanisms provided for

representing existence, attributes (structural, relational, and behavioral), classes, class organization

(specialization), and composition. In addition, constructs of any model which are not supported by MIMIC

are described and the significance of these differences analyzed.

Two caveats are mentioned before proceeding. First, most conceptual models do not precisely

define their constructs and, furthermore, use widely varying terminology. As a result, it is often necessary

to provide an interpretation of the meaning of some characteristic of a model in comparison to one of

MIMIC. Second, the value of the comparison is bounded by the utility of classical concept theory. The

'This may constitute a meta-model in the sense described in point (3).

"'Consequently, the analysis is restricted in two important senses. Since two of the models considered
(Telos and NIAM) address other aspects of systems development, only the parts dealing with conceptual
modelling are considered. In addition, no attention is given to guidelines for using a model, although such
prescriptions are a crucial part of the success of any model.
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limitations of the classical view as a theory of the structure and organization of knowledge (see Chapter

3) result in limitations for MIMIC. However, since all conceptual models examined here are concerned

with representing knowledge about well-defined organizational domains (for which the classical theory

of concepts provides suitable representation primitives), comparison to the MIMIC model is justified.

6.3 EXTENDED ENTITY-RELATIONSHIP MODEL (Teorey et al., 1986; Chen, 1976)

The entity-relationship (E-R) model was developed as a tool for logical data design which "adopts

the more natural view that the world consists of entities and relationships" (Chen, 1976, p. 6). The main

constructs of the model are entities (and entity sets) 115, relationships (and relationship sets), and

attributes. The model has been extended (EER) to include hierarchical links between entity sets

(generalization/specialization) and to better represent n-ary relationships (e.g., Teorey et al., 1986). This

collection of constructs is used to capture structural knowledge about things in a domain of interest,

primarily through a graphical technique which produces entity-relationship diagrams. In this section, the

use of these constructs is discussed, illustrated through examples, and compared to constructs of MIMIC.

In the EER model, entity sets denote collections of entities, where an entity "exists in our minds"

(Chen, 1976, p.11). The entity construct resembles 116 the object construct in MIMIC. Both entities and

objects represent knowledge of the existence of things in some domain117. An example of an entity

would be a symbol such as John, designating a particular human.

115This reflects Chen's original terminology. Most later discussions (e.g., Teorey et al., 1986) drop the
term set, and use the term entity to describe either an individual or set of individuals, depending on
context. However, it should be made clear that the model does distinguish instances from sets of instances.

116Throughout this discussion, terms such as "resembles" and "is similar to" are used (rather than, say,
"corresponds to"), since it is generally not possible to determine a direct correspondence between
constructs of different models.

117To be more precise, according to the original E-R model, an entity is a mental construct. However,
any description of or information about an entity is a representation and, hence, the ER model practically
deals with representations of mental constructs.
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Attributes in EER are used to characterize or capture information about entities 118 by associating

entities with values from some domain. An attribute is defined as a function from a set of entities to either

a set of values or the Cartesian product of several such sets (Chen, 1976, p.12). Hence, attributes may be

single- or multi-valued. Examples include Weight and Birthdate, which apply to entities in the set

PERSON. Each entity in an entity set possesses a value for each attribute of the entity set at any time

(e.g., Weight(John)=70). However, the notion of time and mechanisms for changes to values are not

incorporated in EER 119  An EER attribute is analogous to a structural attribute in MIMIC, with two

important differences. First, a structural attribute is a set of functions (not a single function) from a domain

of objects to a codomain of values (e.g., Weight = [w i lwi :PERSON-->POSITIVE_NUMBER)). At any

time, a single function from this set describes the actual state of knowledge. As shown in Chapter 5, time

is understood completely with respect to such changes in the active functions of attributes. Consequently,

MIMIC inherently captures the permanence of values for objects (e.g., Birthdate) with attributes that

contain a single function, and for which time has no meaning. This distinction cannot be captured in EER.

The second difference is that MIMIC requires that structural attributes be single-valued, whereas in EER,

attributes may be multi-valued. The MIMIC treatment reflects a position that there is a fundamental

difference between structure and relationships to other objects. While relationships may link an object to

several others, an object may be linked to only one value via a structural attribute.

The third major construct in the EER model is the relationship. A relationship denotes an

association between two or more entities of the same or different entity sets 120. An example would be

CUSTOMER Holds account ACCOUNT. Relationships may be mandatory or optional, and binary or

118Attributes may also apply to relationships, as discussed later.

119If the EER model was extended further to accommodate change, a model of an attribute as a
function might include time as a domain parameter, as in
Weight:PERSONOTIME-->POSITIVE_NUMBERS (Section 4.2.2.3.3).

120Relationships in EER are grouped into relationship sets.
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n-ary. In addition, cardinality constraints enforce conditions on the connectivity of entities in a relationship

(e.g., 1:1, 1:N, M:N). A Holds account relationship is 1:N (from CUSTOMER to ACCOUNT) if a

customer may hold several accounts, but each account is held by only a single customer.

Relationships in EER may reflect either of two distinct constructs in MIMIC. The first is the

relational attribute. A relational attribute is a set of functions mapping from objects in one class to sets

of objects from one or more object classes (e.g., Holdsaccount = fhi lhi :CUSTOMER-->Q1, where

Qc to (ACCOUNT)). As with structural attributes, one function from the set is active at any time, thereby

providing a treatment of time that is absent in the EER model, including an implicit specification of the

permanence of attribute values. Mandatory/optional attributes are captured by excluding/including,

respectively, the null set from the codomain of the attribute. Since R= , where Qc (T 20...OTN),

a relational attribute is labelled binary if N=2 (note that T2 may be the same as T i) and N-ary if N>2.

Furthermore, the connectivity of a relational attribute may be constrained by appropriate restrictions on

the codomain. For example, in modelling a society which does not allow polygamy, the codomain of the

relational attribute Married to is restricted to a subset of the power set of PERSON which contains only

singletons. As for M:N (and 1:1) connectivity, since every relational attribute has an "inverse", both the

attribute and its inverse may have a codomain containing only singletons (for 1:1 linkages), or a larger

subset of the power set (for M:N linkages). In other words, the EER model deals with connectivity more

explicitly than MIMIC, but the latter permits connectivity information to be captured implicitly through

constraints on the codomain of a relational attribute.

Relationships in the EER model do not, however, always correspond to relational attributes of

MIMIC since the former may possess attributes. In that case, they appear to be more similar to the notion

of composite objects in MIMIC. Since the relationship construct is used to model both relationships with

attributes and those without, it is semantically overloaded with respect to representing the elements of

classification theory. MIMIC, however, clearly distinguishes the two cases. Relationships without attributes
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are captured simply through relational attributes. On the other hand, relationships possessing attributes are

modelled as composite objects. Composite objects are objects and, therefore, possess their own attributes.

In addition, each component in a composite is connected to the other components by a relational attribute.

For example, ENROLMENT may be considered a composite class (having component classes STUDENT

and COURSE) with emergent structural attribute Grade. The instances of this class are specific student-

course combinations. The component classes are additionally linked by the relational attributes

Enrolled_ in (of STUDENT) and Hasenrolled (of COURSE). Since there is this duality between

composites and relational attributes, it is not surprising that the EER model uses the relationship construct

to represent two distinct, but related elements of knowledge.

MIMIC provides a basis for resolving the ambiguity in the EER model about whether to model

a phenomenon as an entity or as a relationship (Teorey et al., 1986). Simply, a relational attribute which

has emergent attributes with respect to the collection of objects involved in the relationship is modelled

as a composite object (in EER terms, entity) whose components are the objects involved in the relational

attribute. If there are no emergent attributes associated with the collection of objects involved, a relational

attribute captures the pertinent knowledge.

In the EER model, entities are grouped into entity sets. An example of an entity set in EER would

be EMPLOYEE, containing entities {John, Jane, Mary ...}. Although entities in an entity set possess the

same attributes, the construct is primarily extensional, and does not fully reflect the intensional notion of

a class in MIMIC. A class such as EMPLOYEE consists of a set, P, of structural and relational attributes,

and an associated set, B, of behavioral attributes (i.e., EMPLOYEE = P, where PCB), where the attributes

in P are defined on domains of objects (e.g., (John, Jane, Mary ...), (John, Paul, George ...), (John,

Jane, Frank ...)). Thus, a class is more explicitly based on a notion of shared attributes than is an entity

set. In addition, classes also have an extensional interpretation, given by the intersection of the domains

of the attributes in P. Attributes appear to play a less important organizational role in EER descriptions
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than in MIMIC.

In MIMIC, classes are organized in a class structure, which imposes certain constraints on the

classes it contains. These constraints are based on several cognitive principles, and constitute a set of

minimal conditions for the "goodness" of a set of classes EER imposes no such constraint on the

definition of a collection of entity sets.

In line with the theory of concepts on which the model is based, MIMIC incorporates both

structural and relational attributes as part of class definitions and, therefore, as part of the knowledge about

the objects in these classes. This is in contrast with EER, in which relationships are not well-tied to entity

set definitions. The presence or absence of relationships in an EER diagram does not appear to influence

the extension of an entity set, whereas the presence or absence of relational attributes explicitly affects a

class definition in MIMIC, and will generally affect the extension of that class.

As indicated above, a MIMIC class encapsulates structural and behavioral knowledge. Behavioral

attributes specify allowed changes to objects, given any active functions for specified structural and

relational attributes. Perhaps the most significant shortcoming of the EER model in representing knowledge

about a domain is its inability to capture knowledge about how things change over time. Without a notion

of behavior, the EER model is also unable to capture temporal knowledge.

A further construct of the EER model allows entity sets to be arranged in a hierarchy. Two cases

are recognized. A generalization hierarchy partitions an entity set into a collection of mutually exclusive

and collectively exhaustive subsets. An example would be LOAN and ACCOUNT as subclasses of

PRODUCT in a banking environment in which these are the only products offered. A subset hierarchy

produces potentially overlapping subsets of an entity set. An example would be CUSTOMER and

EMPLOYEE as subclasses of PERSON in a context in which employees may be customers. In the

discussion of Teorey et al. (1986), no mention is made of a more general lattice (versus hierarchy) of

entity sets. Also, the model does not indicate that specializations must possess additional attributes or
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relationships.

The MIMIC model contains a more refined mechanism for capturing IS-A associations.

Intensionally, a class is a specialization of another if it possesses one or more additional

structural/relational attributes, whose shared domain is a subset of the extension of the existing class.

Consequently, the specialized class has an extension which is a proper subset of that of the superclass. For

example, SAVING may be a subclass of ACCOUNT with the added structural attribute Interest rate.

Due to the nature of class definition in terms of attributes, a class may be a specialization of several

superclasses. This leads to a lattice structure for classes. For instance, CHEQUING may also be a subclass

of ACCOUNT (with added attributes such as Issued_ cheques), and CHEQUABLE SAVING a subclass

of both CHEQUING and SAVING with additional attributes with respect to both (such as

Minimum_balance). If there are no added structural or relational attributes (e.g., if there are only

differences in behavior between CHEQUABLE SAVING, and CHEQUING or SAVING accounts),

CHEQUABLE SAVING would not be defined as a class in MIMIC. Instead, differences in behavior

depending only on the state of an object (as opposed to the attributes it possesses) can be incorporated into

the behavioral attributes of CHEQUING or SAVING as needed (Section 5.2).

In addition, the disjointness of subclasses is captured implicitly in MIMIC if the added attributes

which distinguish two or more subclasses of an existing class (e.g., LOAN and ACCOUNT as subclasses

of PRODUCT) have disjoint domains. The subclasses are collectively exhaustive if the union of the

domains of the additional attributes is a superset of the extension of the superclass. This contrasts with

the explicit mechanism provided in EER. Furthermore, MIMIC recognizes criteria on which objects may

move between classes in a lattice (Section 5.4). EER does not provide a mechanism to recognize that

entities may move between entity sets.

In sum, EER appears to lack the ability to express the following elements of concept-based

knowledge. First, there are no mechanisms to capture behavioral knowledge or to deal with time. Second,
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there is an ambiguity with respect to modelling relational attributes and composites. Third, there is no

intensional notion of a class. Fourth, there are no criteria by which a collection of classes may be judged

"good" (i.e., no class structure). Finally, the semantics of specialization are less precise in EER than in

MIMIC. Consequently, the EER model may be viewed as a "strict subset" of MIMIC. It does not appear

to possess any representational elements which MIMIC doesn't, and does not capture some important

elements of knowledge. MIMIC also serves as a higher level framework within which the capabilities and

limitations of EER can better be understood in a well-defined way.

6.4 TELOS (Mylopoulos, 1991; Mylopoulos et al., 1990)

The Taxis project has produced several languages and tools to model large-scale, data-intensive

applications from a knowledge representation perspective (Nixon, 1984 contains a collection of early

papers on various aspects of the project). The project has evolved from a database description language

called Taxis, through a non-procedural conceptual modelling language, RML (Requirements Modelling

Language), to a more abstract knowledge representation language called Telos (Mylopoulos, 1991) 121 .

There are many similarities among these languages, along with some important differences (see Section

2.2.1). In comparing this work to MIMIC, attention is focused on Telos, since this language is most recent

and, more importantly, is explicitly intended for conceptual modelling.

One of the fundamental constructs in Telos is the token. Tokens are intended to be in direct

correspondence with, and therefore surrogates of, things in a domain of interest122 (Mylopoulos, 1991;

Borgida, 1984; Greenspan and Mylopoulos, 1984). An example would be the symbol John designating

121In addition, CML (Conceptual Modelling Language) had a brief existence as either a refined RML
or a preliminary Telos (Borgida et al., 1988).

122Using MIMIC terminology, it is more accurate to say that tokens represent knowledge of the
existence of things in the world. However, this distinction is not explicitly made in descriptions of RML
or Telos.
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a specific person. In MIMIC, objects are surrogates which represent the existence of instances of concepts.

Tokens and objects, therefore, have corresponding purposes in the respective languages.

The second fundamental construct in Telos is the attribute123. Attributes represent binary

relationships between entities and, therefore, consist of binary relationships between tokens, such as [John,

Weight, 70] 124. Attributes belong to attribute categories, such as characteristic and association.

Characteristic properties are unchanging (e.g., Birthdate), whereas association properties may change over

time (e.g., Address).

Attributes appear to substitute for two constructs in MIMIC: structural and relational attributes.

Structural attributes link objects with values. Relational attributes link objects to sets of other objects.

Values are not objects as they do not possess attributes. Both structural and relational attributes in MIMIC

may be, in Telos terminology, characteristic or association. This is implicitly reflected by whether an

attribute contains a single function (characteristic/unchanging) or more than one function

(association/changing). Telos does not distinguish structural and relational attributes, since both objects

(e.g., John) and values (e.g., 70 kg) in MIMIC are treated as tokens in Telos. Therefore, Telos does not

capture a distinction between things (which possess properties) and values (which do not).

Telos tokens belong to classes. A class is defined in terms of the attributes which are applicable

to all instances and is, therefore, an intension. In MIMIC, objects similarly belong to classes. A MIMIC

class is an intension, or specification of conditions for membership, consisting of sets of structural,

relational, and behavioral attributes. Behavioral attributes impose constraints on the allowed changes to

structural and relational attributes for the objects possessing these attributes. Since Telos does not

distinguish structural and relational attributes and, furthermore, does not encapsulate behavioral knowledge

123In Telos, all constructs are expressed as propositions. However, the discussion here deals with
specific "kinds" of propositions, such as tokens and attributes.

124This proposition is an instance of the proposition [PERSON, Weight, WEIGHT]. Consequently,
Weight may be viewed as a function from a class of tokens, to another class of tokens.
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in class definitions 125, the correspondence between Telos and MIMIC notions of class is not precise.

Furthermore, Telos does not provide criteria for evaluating a collection of classes as good. By contrast,

the notion of class structure is integral to the definition of the class construct in MIMIC.

Classes in Telos are organized in a specialization/generalization lattice. Specialized classes refine

one or more existing classes and may add attributes and/or restrict the range of values which attributes

of the superclass(es) may assume. A specialized class inherits the attributes of the classes from which it

is derived, and every instance of a class is an instance of each of its superclasses. An example would be

PERSON with attributes (Name, Address, Birthdate, ...) and a subclass CUSTOMER which inherits

Name, Address, and Birthdate, and may possess other attributes, such as Holds_account. Although it

appears that tokens may move between classes in Telos, the model does not provide a taxonomy of

"kinds" of subclasses for understanding when movements between classes may or may not occur (cf.

Section 5.4).

Classes in MIMIC are also organized in a lattice. However, the definition of class structure ensures

that a subclass can only be defined by adding attributes to an existing class. For the example above, the

subclass CUSTOMER must possess at least one additional structural/relational attribute such as the

relational attribute Holds_account, linking CUSTOMER to ACCOUNT. As in Telos, a MIMIC subclass

may have several superclasses. Furthermore, the extension of a subclass is a proper subset of the extension

of each of its superclasses. In addition, if the subclass has more than one superclass (e.g.,

CUSTOMER_ EMPLOYEE as a subclass of both CUSTOMER and EMPLOYEE), it must possess at

least one structural or relational attribute with respect to the union of the structural and relational attributes

of all superclasses (Section 5.3). Telos does not appear to enforce this constraint.

An important construct of MIMIC which does not appear to be supported by Telos is composition.

While a Telos object is an aggregation of attributes whose values are, in turn, objects which possess

125Behavior is treated separately in Telos, as discussed later.
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further attributes, this collection of objects is not treated as a whole, which is linked by some relational

attribute and possesses emergent attributes.

Earlier it was pointed out that Telos does not encapsulate behavioral attributes in class definitions.

Instead, a class/instance framework is used to deal with change 126. Knowledge about change (behavior)

is expressed in terms of activities which belong to classes. Activity classes are a mechanism for describing

change, including the addition of tokens to and the removal of tokens from classes, as well as changes to

the values of properties of tokens. Activity classes are defined in terms of inputs and outputs of the

activity (e.g., PERSON and CUSTOMER for an activity in which a person becomes a customer), pre-

and post-conditions which must be satisfied before and after the activity occurs (e.g., the potential

customer must be in class PERSON before the activity and must have the property Holds_account after

the activity), and parts which describe the actual changes at a general level (e.g., open an account). Parts

describe the "what" rather than the "how" of change. Each activity is an instance of an activity class.

Activity classes are arranged in a specialization hierarchy with inheritance. For example,

OPEN CHEQUING ACCOUNT may be an activity class specializing the class OPEN ACCOUNT

with new pre-conditions (e.g., customer must already hold a savings account) and parts (e.g., issue cheques

to accounts).

In contrast, MIMIC integrates behavior as part of the description of knowledge about things

through behavioral attributes. A behavioral attribute specifies the changes which are permitted to the

active function of one or more structural/relational attributes given any combination of active functions

for these attributes. At first glance, there seems to be little connection between behavioral attributes and

activities. However, since pre- and post-conditions may be used to describe states necessary for an activity

126Telos has been referred to as object-oriented (Mylopoulos et al., 1990). However, the framework
does not include the most commonly used indicator of object orientation: encapsulation (Nierstrasz, 1987),
since structural and behavioral knowledge about classes of entities are handled through separate
mechanisms.
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(pre-conditions) and constraints on the states which may result from an activity (post-conditions), they are

analogous to the input to (i.e., a function) and output from (i.e., a set of functions) a behavioral attribute

function in MIMIC. The parts of an activity also describe, in a non-procedural way, the nature of the

changes which occur. Nevertheless, MIMIC behavioral attributes are more abstract than Telos activities.

Closely related to behavior is the treatment of time in each model. The model of time in Telos

is based on time intervals (Allen, 1983). A time interval is associated with each proposition (token or

attribute) indicating a duration for which the proposition holds. MIMIC handles time only implicitly

through the occurrence of events. That is, the passage of time is recognized by events, and behavioral

attributes impose constraints on which events are allowed. By introducing a "clock" object, the time of

events relative to a standard enables comparisons of the distance between events to be made, and for the

duration of states to be determined (Section 5.7).

One important feature of Telos is not included in the MIMIC model. Specifically, Telos classes

may also be instances of other classes - the latter termed metaclasses. This "uniformity" is one of the most

emphasized features of the model (Mylopoulos et al., 1990). For example, a metaclass PERSON_CLASS

may include instances, such as PERSON, EMPLOYEE and CUSTOMER, which are classes. This

allows, for example, statistical and aggregate information to be attached to classes (e.g., Average_age of

EMPLOYEE, CUSTOMER, and other instances of PERSONCLASS) 127. There is deliberately no

counterpart to this feature in MIMIC, since the model is intended only for representing knowledge about

the subject matter of an information system. Meta-classes represent "knowledge about knowledge" about

the domain. Considering classes as objects (and, therefore, members of metaclasses) is appropriate only

if what is being modelled includes knowledge about knowledge. In other words, MIMIC holds that

concepts and instances of concepts differ, and need to be appropriately distinguished in the model by

12.7At least some of the information that is captured by the properties of metaclasses is implicitly
carried by the objects of a class. For example, Average_age is implied by (and can be computed given)
the ages of each instance of a class.
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differentiating classes from objects. This important difference between the models may be due to the larger

scope of Telos, which is intended not only for modelling the subject domain (e.g., knowledge about

entities in an organization), but for the information system, usage, and development domains (Mylopoulos

et al., 1990).

To summarize, Telos supports many of the elements of the cognitive model of MIMIC. However,

a few features are not supported and Telos contains one very significant departure from the MIMIC model.

Like MIMIC, Telos supports the representation a domain in terms of instances which belong to classes

that are defined intensionally. Similarly, it supports class specialization and inheritance. In addition, both

structural and behavioral knowledge can be modelled, although in a manner different from that of MIMIC.

Furthermore, the importance of time is recognized.

Telos does not, however, introduce the notion of class structure - a collection of classes which

satisfy certain cognitive principles. In addition, it does not use a uniform, function-based approach to the

description of structure, relationships, and behavior. Structural and behavioral knowledge is represented

in separate class hierarchies, and structural and relational attributes are not distinguished. Telos also adopts

a quite different approach than MIMIC for representing behavior, using pre-conditions, parts, and post-

conditions. Consequently, behavior modelling is more detailed than in MIMIC, in which behavior is

specified only in terms of which events may occur, given a particular state (with respect to one or more

structural/relational attributes). In addition, Telos does not have a mechanism to model composite things,

which consist of parts and possess emergent properties.

The most significant difference between the models is that Telos stresses uniformity in the use of

propositions and multiple levels of classification. Telos views classes as objects and introduces metaclasses

to abstract the commonality of classes. MIMIC does not support this (although it could be extended to do
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so) 128 because of the stance that the primary domain to be modelled does not include knowledge about

knowledge and, therefore, classes are to be treated differently from objects.

6.5 NIAM (Verheijen and Van Bekkum, 1982)

NIAM is a language (primarily graphical) for representing knowledge about a domain, termed the

object system. Knowledge is captured in terms of information structure and information flow,

corresponding roughly to static and dynamic knowledge. In this section, the features of NIAM are

examined to determine the model's degree of support for representing knowledge constructs.

The simplest construct in NIAM is the object. Objects are of two kinds: non-lexical and lexical.

A non-lexical object is a thing in the domain of interest (e.g. the person john_smith) 129"°. A lexical

object is a string which can be spoken and refers to a thing in the domain of interest (e.g., "John Smith").

Both non-lexical and lexical objects are classified into types. A non-lexical object type (NOLOT) is a set

of non-lexical objects (e.g., PERSON). A lexical object type (LOT) is a set of lexical objects (e.g.,

PERS ON_NAME).

The non-lexical/lexical object distinction does not correspond well to the object construct of

MIMIC. Some non-lexical objects, such as symbols denoting persons, would be modelled as objects in

MIMIC. On the other hand, other non-lexical objects, such as symbols designating dates, would be

modelled as values in MIMIC. Furthermore, lexical objects, such as strings designating names, also

correspond to MIMIC values. In short, NIAM does not clearly support the MIMIC object construct. To

128For example, classes could constitute the domain of other structural and relational attributes.
Collections of attribute with such domains could then form metaclasses.

129Actually, a non-lexical object in a NIAM description of a domain is a representation of a thing, and
not the thing itself.

130In this discussion, non-lexical objects are indicated by words in italics to distinguish them from
lexical objects, which are enclosed in double quotes.
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serve as a more direct model of knowledge, non-lexical objects must be used only to represent instances

of concepts (thereby corresponding to MIMIC objects) and lexical objects must be used only to represent

values.

The essence of the information structure component of NIAM is a collection of LOTs and

NOLOTs linked by bridge and idea types. A bridge type denotes a binary association between a NOLOT

and a LOT (e.g., PERSON Has_name PERSON_NAME). An idea type denotes a binary association

between two NOLOTs (e.g., EMPLOYEE Employed_by EMPLOYER). Bridges and ideas are members

of these types (e.g., john_smith Has_name "John Smith", john_smith Employed_by ubc).

If lexical and non-lexical objects (and types) are constrained to represent values and instances of

concepts, respectively, bridge types can be viewed as serving a similar purpose as structural attributes in

MIMIC, since a bridge type links a NOLOT with a LOT. Idea types may be viewed as similar to binary

relational attributes since an idea type links two NOLOTs. However, n-ary relational attributes, linking

objects of one class with objects of several other classes, are not supported by NIAM.

NIAM does not fully support the MIMIC class construct, since a NOLOT is substantially different

from a MIMIC class. A NOLOT is a set of non-lexical objects (e.g., EMPLOYEE = (John Mary

Jane)), and is not defined intensionally. Even if the collection of idea and bridge types involving a

NOLOT is taken as a definition of the NOLOT (which is not done in NIAM), behavioral knowledge is

not encapsulated, but is dealt with using other mechanisms (which are discussed later). Furthermore,

NIAM does not provide a mechanism for evaluating the quality of a collection of NOLOTs.

NIAM does support subtype links between NOLOTs. Subtypes inherit idea and bridge types of

supertypes and may (not must) be involved in additional bridge and idea types. It is unclear, however,

whether a NIAM subtype can have multiple supertypes. Furthermore, NIAM does not seem to account for

the movement of objects between types. Subtype links serve a similar function as subclasses in MIMIC.

However, the MIMIC subclass construct has clearer semantics, in that a subclass must possess added
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attributes and its extension is a strict subset of that of (each of) its superclass(es).

NIAM does not support a notion of composite NOLOTs having emergent properties and, therefore,

does not have a mechanism corresponding to composition in the MIMIC model.

Several kinds of constraints on information structure diagrams are introduced in NIAM. Identifier

constraints are similar to cardinality constraints of the ER model. They determine whether a member of

one type can be linked to one or more members of another type via a bridge or idea. The MIMIC model

captures this information in two ways. First, a structural attribute always links an object to a single value.

A relational attribute may link an object to several sets of one or more objects (from the same or different

classes). If the codomain is restricted to a set of singletons, a 1-1 mapping is implicitly determined. For

example, the codomain of a relational attribute, Married_to, can be constrained to contain only singletons.

Other conditions can equally well be handled (e.g., pairs, singletons and pairs, and so on). For example,

the codomain of Child of can be constrained to contain only pairs.

Subset constraints impose the condition that the objects involved in one idea or bridge type are

a subset of those involved in another. For example, if PAPER Presented by AUTHOR and PAPER

Written_by AUTHOR, then for any paper, its presenters must be a subset of its authors. MIMIC does

not have a mechanism to explicitly enforce this, since it constitutes knowledge about knowledge about the

subject matter. In other words, knowledge about the subject matter contains specific details about the

authors and presenters of papers. That this conforms to the constraint "All presenters of a paper are authors

of that paper" is an abstraction from the data, which can be recognized from a MIMIC representation, but

is not enforced as an explicit constraint of the model.

Equality constraints impose the condition that the population of objects in one binary association

is the same as that of another involving the same two object types. For example, if Starts on and

Ends on associate CONFERENCEs with DATEs, a given conference must have both (or neither). This

is not explicitly dealt with in MIMIC, but any two (or more) attributes (e.g., structural) must have values
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(i.e., the model does not deal with incomplete information).

Uniqueness constraints deal with a combination of role occurrences which uniquely identify a non-

lexical object. For example, a customer is uniquely identified by any account which s/he holds, if an

account is held by no more than one customer. This is related to the concept of a key in relational

databases. In MIMIC, an object in a class is uniquely identified by a surrogate. It may also be that some

combination of values of attributes also distinguishes an object from all others, but this is not relevant to

the purpose of the model, since implementation considerations are beyond its scope.

Disjoint constraints are used to express the knowledge that two subtypes of an object type are

mutually exclusive (e.g., subtypes ACCOUNT and LOAN of CUSTOMER). In MIMIC, two subclasses

of a class are disjoint if the intersection of the common domain of the additional attributes of one with

the common domain of the additional attributes of the other is an empty set. That is, the restriction is

imposed (i.e., can be recognized and enforced in a representation) implicitly by the extension of classes

and not by any explicit rule, since this again constitutes knowledge about knowledge.

Total role constraints enforce that every object of a certain type participates in a given role in a

binary relationship. Essentially this is similar to a prohibition of null values for an attribute or relationship.

In MIMIC, the class definitions are such that no member of a class has a null (or not applicable) value

for a structural attribute 131 . Null values are, in general, permitted for relational attributes (e.g.,

Married to), but this can be constrained for particular relational attributes by omitting the null set from

the codomain of a relational attribute if all objects in a class are to be linked to other objects via the

attribute (e.g., Child_of).

The interesting thing about most of these constraints, and their treatment in NIAM versus MIMIC,

is that they reflect knowledge about knowledge about specific things. Like Telos, NIAM captures some

1310therwise, either the attribute is not truly part of the class definition or the object in question does
not belong in the class. Values may be unknown, but MIMIC does not address representing incomplete
knowledge.
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metaknowledge by adding explicit constraints. However, MIMIC explicitly deals only with representing

base knowledge about things in a domain (where the domain does not include knowledge about

knowledge). Constraints such as those supported by NIAM are, however, recognized implicitly, in that

they can be satisfied in a specific representation. For example, a problem description for a bank contains

the information that accounts and loans are non-overlapping, since the shared domain of the extra

attributes of each class is disjoint with that of the other (e.g., accounts do not have the attribute Term,

and loans do not have the attribute Overdraft).

A second component of the NIAM model deals with change. This is handled in a process-oriented

manner through functions and information flows. Information flows contain information on the objects of

an information structure diagram. Functions transform information flows and, consequently, change the

state of a system. An information flow diagram contains a number of functions, an information base

(which is based on an information structure diagram), and a number of information flows (streams of

data).

Although it is impossible to formally compare this view of behavior to the way in which MIMIC

deals with change, it is clear that the NIAM model is much closer to traditional data processing

(implementation or software-oriented) views of information systems. Information flow diagrams are very

similar to the data flow diagrams of structured analysis (DeMarco, 1979) 132. The view of change in

MIMIC, on the other hand, is completely non-procedural. Behavioral attributes describe the events which

may occur, with no attention to how changes are carried out. The behavioral component of NIAM is

perhaps more useful as a system design tool than a knowledge modelling tool, since NIAM functions and

information bases have direct counterparts in software (programs and files).

In sum, NIAM support for the representation of most cognitive constructs (as modelled by

132This can be seen by comparing information base with data store, function with transform,
information flow with data flow, environment with source/sink.
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MIMIC) appears to be lacking. First, there is no direct counterpart to the MIMIC object. Second, there

is no distinction between structural and relational attributes. Third, behavior is modelled procedurally.

Fourth, the notion of a class as an intension encapsulating structure, relationships, and behavior, is missing.

Fifth, the issue of the "quality" of a set of NOLOTs is ignored. Sixth, the notion of specialization is not

as precise as that of MIMIC. Finally, composition is not supported.

6.6 OBJECT-ORIENTED ANALYSIS (Coad and Yourdon, 1991)

Object-oriented analysis (OOA) has emerged as a modelling technique said to be based on

principles guiding the way people organize knowledge (Booch, 1991; Coad and Yourdon, 1991).

Unfortunately, there is not a standard approach to object-oriented modelling. In this section, the practical

method advocated by Coad and Yourdon (1991) is analyzed in terms of its support for the concept theory

based constructs of MIMIC.

The basic construct in OOA is the object, which is a collection of attributes and services 133 .

Objects correspond to things in the subject domain, including "structures, other systems, devices, things

or events remembered, roles played, operational procedures, sites, and organizational units" (p. 60).

Without going into the details of each, it should nonetheless be clear that the object construct is

sufficiently general to represent both physical things (e.g., structures, devices) and abstract entities (e.g.,

events remembered, organizational units). Thus, an OOA object is very similar to a MIMIC object.

However, MIMIC uses objects to explicitly represent the existence of instances of concepts as distinct

from the properties possessed by these instances. OOA does not appear to make this distinction.

Objects in OOA possess attributes. According to Coad and Yourdon, "an attribute is some data

(state information) for which an Object in a Class has its own value" (1991, p.119). Attributes are single-

"'Service is a synonym for method or activity, and is a mechanism for describing behavior (changes
to attribute values), as discussed later.
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valued, and resemble structural attributes in MIMIC. However, unlike structural attributes, OOA neither

formally defines the construct nor specifies whether values are objects.

OOA also introduces a notion called instance connection, which consists of a mapping (along with

cardinalities) from an object to other objects. This construct is analogous to the relational attribute of

MIMIC, which maps objects to sets of other objects. However, relational attributes may be n-ary (i.e.,

connect attributes from n sets), whereas instance connections are strictly binary. In addition, the

importance of instance connections to the definition of classes in OOA is not specified.

Behavior is modelled in OOA by what is called a service. A service describes a mechanism by

which objects change state. The description of services is highly procedural (algorithmic). Hence, unlike

the abstract descriptions of allowed change that constitute MIMIC behavioral attributes, services describe

how objects change state (not simply which changes may occur).

Attributes and services together are used to define classes in OOA. A class may be viewed as a

template, or abstraction of a set of objects sharing a collection of attributes and services. As in MIMIC,

a class is intensionally defined, has an associated extension, and encapsulates structure and behavior.

However, part of the class description includes instructions for creating new instances. This use of classes

to create instances is borrowed from Smalltalk (Goldberg and Robson, 1989), and is very much an

implementation consideration. Furthermore, OOA does not develop a notion comparable to the MIMIC

class structure, for assessing the quality of a collection of classes.

OOA also introduces two structures134 for organizing classes. The generalization-specialization

structure captures IS-A linkages between classes. A specialized class inherits the attributes and services

of the more general classes from which it descends. Thus, a lattice of classes is supported. This notion

is similar to the specialization construct in MIMIC. However, MIMIC offers different criteria for defining

subclasses. OOA generally requires that a specialized class add attributes or services, except when it

134This term is not used in the same sense as class structure in MIMIC.
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specializes two or more existing classes. As discussed in Chapter 5, MIMIC does not allow specialization

based solely on added behavioral attributes. Furthermore, a subclass derived from two or more existing

classes not only inherits attributes of both, it must possess additional ones. Finally, MIMIC considers

conditions under which objects may move between superclasses and subclasses, while OOA does not.

The final construct in OOA is the whole part structure 135. A whole object (or class) is composed

of several parts. OOA allows for optional and mandatory parts. Three variations - assembly/parts,

container/contents, and collection/members - are used. It is not clear whether the whole must possess

emergent attributes and services (although the examples used suggest this). The whole-part construct

clearly parallels the composite class (or object) in MIMIC. However, MIMIC provides a precise construct,

defined in terms of emergent attributes, and further requires that the components be linked by relational

attributes.

In sum, OOA provides some support for almost all of the cognitive constructs represented in

MIMIC. The notable omission is the notion of a class structure which meets certain conditions of

goodness. However, the constructs provided are not precisely defined in OOA, and some MIMIC

constructs, such as relational attributes, specialization, and composition, capture more knowledge than their

counterparts in OOA. Furthermore, the treatment of behavior in MIMIC is more abstract (i.e., only in

terms of allowed state changes) than in OOA, since the latter introduces algorithmic specification of how

changes occur. A consequence of the precision of MIMIC is that time can be handled formally, while the

subject is not treated at all in OOA.

MIMIC may be viewed as a higher-level, formally defined companion of OOA, giving precise

meaning to constructs that are only casually introduced in OOA. This is not a criticism of OOA. On the

contrary, a casual description is probably very useful for a practical methodology that is intended to be

13500A also discusses a term called subjects as a mechanism for organizing a large model into
segments. However, this does not add to the knowledge content of a representation, but merely its
presentation, and is not discussed further here.
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directly used in building domain descriptions.

6.7 SUMMARY

This chapter has used MIMIC to evaluate the "cognitive content" of four other conceptual models.

The examination highlights the difficulty of reconciling terminology and construct differences - a

prerequisite for comparing and evaluating different approaches. Direct comparison was, in some cases,

impossible, and otherwise required assumptions to be made about the meaning of constructs in the other

models.

Nevertheless, the basic conclusion of the analysis is that EER, Telos, NIAM, and OOA support

to varying degrees the elements of concept theory on which MIMIC is based. Both EER and NIAM have

significant gaps in representing important knowledge. EER fails to incorporate behavioral modelling, while

NIAM does not distinguish structural and relational knowledge, does not encapsulate behavior with

structure, has only a weak notion of specialization, and does not handle composition. Neither EER nor

NIAM deals with time. Telos captures many of the important elements of concept theory, but does not

appear to support either encapsulation or composition. Furthermore, it introduces metaclasses to model

knowledge about knowledge, a task beyond the intended scope of MIMIC 136. OOA deals to some extent

with each of the concept theory-based constructs of MIMIC, but in a less precise manner. As a

consequence of the lack of formal treatment in OOA, it fails to capture some important semantics that are

reflected in MIMIC, such as the meaning of class specialization, and the nature of time. In short, the

comparison demonstrates that MIMIC may be viewed as a framework, or metamodel within which the

similarities and differences of other models can be better understood.

Perhaps the most telling limitation of the models surveyed here is that none consider the quality

of a class structure. One of the primary contributions of MIMIC is the use of several basic "principles of

136NIAM also represents knowledge about knowledge, but to a much lesser degree.
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conceptualization" to derive a set of minimal conditions for a given collection of (potential) classes to be

"good". The conditions which define potential class and class structure allow knowledge about a domain

to be represented in an effective (complete) and efficient (non-redundant) manner, while recognizing that

many organizations of classes for a given domain of knowledge may satisfy these conditions.

Finally, MIMIC provides a simple and implicit view of time that does not require the introduction

of additional constructs or a complex logic of time. This is not the case for any of the other models

considered, since Telos introduces a detailed temporal logic, while the other models examined do not deal

with time. While the simplicity may limit the expressiveness of the model for dealing with time, it does

focus on and operationalize the single notion of time as change (specifically, as change in active functions

of structural and relational attributes).



CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH

7.1 THESIS SUMMARY

Conceptual modelling is a critical early activity in information systems development, during which

users' knowledge about the things which constitute the subject matter of a proposed information system

is represented in an implementation-independent manner. Unfortunately, many existing systems analysis

methods (and conceptual models) are not explicitly based on theories about the ways in which people

structure and organize knowledge about things. Instead, many contain constructs which are more suitable

for modelling the implementation or software domain. This has contributed to problems of

incomprehensibility, redundancy, and duplication of effort in systems development.

This thesis helps fill the conceptual modelling "gap" by developing a conceptual information

systems model based on a theory of concepts (or classification). More specifically, the work attempts to

answer the following general research questions (Chapter 1):

1. Can a theory of concepts serve as a foundation for defining a uniform model of

knowledge that supports direct representation across several kinds of IS applications?

2. Does this model offer insights and guidelines for conceptual modelling relative to other

conceptual models?

These questions were, in tum, operationalized in terms of three basic research objectives:

1. Define the model,

2. Demonstrate the model's value as a tool for exploring open problems in conceptual modelling,

3. Evaluate the model relative to several existing conceptual modelling approaches.
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To achieve these objectives, a theory of concepts - the so-called classical view - was first

described in detail. Five fundamental constructs - instance, property, concept, specialization, and

composition - were identified (Chapter 3) and defined formally (Chapter 4). This formalism, along with

the objective of providing direct representation, provided the basis for defining a set of corresponding

conceptual modelling constructs, resulting in the MIMIC model (Chapter 4). Use of these constructs on

a hypothetical, but representative, problem domain served to highlight how the model may be used and

its uniformity in representing knowledge for several kinds of applications (Appendix 1). Subsequently, the

contributions of the model to resolving several open problems in conceptual modelling were explored

(Chapter 5). This was followed by evaluating the constructs of four existing conceptual models with

respect to those of MIMIC. The comparison indicated the model's generality and representation power and

provided a basis for understanding and comparing the constructs of other models (Chapter 6).

7.2 CONTRIBUTIONS

This research has been directed toward developing a classification theory based, formal conceptual

model. Hence, the most significant contributions are theoretical. However, the work has also yielded a

number of practical contributions, primarily in the form of implications for conceptual modelling activities

and methodologies.

7.2.1 Theoretical Contributions

As discussed in Chapter 2, previous conceptual modelling research and practice has produced

many methodologies with varying "ad hoc" constructs which have not been adequately motivated or

demonstrated to be useful. The primary contribution of this work is the development of MIMIC - a
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uniform, formal model of knowledge about things'''. Unlike many existing models, MIMIC is explicitly

and formally based on a theory of the structure and organization of knowledge about entities, and is

intended for modelling knowledge about the subject matter of an information system. As a result, a

number of insights into conceptual modelling semantics are gained.

The model introduces the notion of potential class, based on the principles of abstraction from

instances and maximal abstraction, and of class structure - a collection of potential classes satisfying the

principles of non-redundancy and completeness. A class structure is a complete representation some

universe of knowledge, in which no class is simply a combination of other classes in the structure.

Different views of the world can be supported by defining different class structures on a given set of

objects and attributes. An "asymmetry" between structural/relational versus behavioral attributes is

identified. The former provide the basis for defining classes, while allowed changes are implied by the

behavioral attributes . The naturalness of a lattice class organization is explained, and the notion of roles

within a class structure is supported by the membership of objects in several classes. The meaning of IS-A

relationships is refined in terms of the temporal or permanent nature of attributes. Guidelines are given

for modelling phenomena as either relational attributes or as composites. In addition, the merits of

uniformity in modelling structure and behavior are discussed. Furthermore, the model's position on the

meaning of time, and a simple approach to modelling time are explored.

An additional theoretical contribution comes in the form of insights into the ongoing debate over

137 In order to develop this model, the constructs of classical concept theory had first to be formalized.
In the process, a number of potential refinements to the theory emerged. The notion of a lattice of classes
is a natural consequence of the formalization of properties, but is not traditionally associated with the
classical view. The definitions of potential concept and concept structure use a few basic assumptions
about the purposes of classification to contribute to an understanding of why certain concepts are formed
instead of others. The notion of class structure further supports alternate conceptualizations of the world.
The inability of the classical view to support alternate world views has been a criticism recently levelled
against the theory (Lakoff, 1987). These insights are viewed as contributions to the reference discipline,
but are not discussed further here since they go beyond the focus of the thesis.
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the meaning of objects. Existing research has provided diverse, and sometimes conflicting, views on what

the object paradigm is or should be. MIMIC is offered as an "object model", and may contribute to

resolving the debate by highlighting that traditional justifications of the elements of the object paradigm

have mixed implementation and representation advantages. MIMIC provides a model of objects that is

based solely on the objective of directly representing knowledge about things.

A third theoretical contribution, which also has practical implications, emerges from the

demonstration of the model's applicability by using it to uniformly represent knowledge for three kinds

of applications (transaction processing, reasoning, and simulation) involving the same things. The example

demonstrates that a single modelling framework can be used to develop integrated representations: that

is, representations in which a single thing is modelled by one object which participates in several classes

of applications. This suggests that reductions in redundancy and duplication of development effort can be

achieved using the model.

Finally, the model provides a foundation for a program of future research. Although this might

not generally be considered a contribution of a piece of research, in this case the model clearly identifies

a number of important related research issues, and provides a clear foundation for being able to address

them properly. This is considered further in the last section.

7.2.2 Practical Contributions

An important practical contribution of this research emerges from the insights afforded by the

model. A number of guidelines for conceptual modelling are provided which may form the basis for a

methodology for eliciting knowledge. For example, a specialization of an existing class must possess

additional structural or relational attributes. Therefore, attempts to define subclasses on the basis of either

values of attributes or behavioral attributes can be caught and corrected. In addition, identification of

instances and attributes may be a useful complement to a more traditional strategy of identifying classes,
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since the latter may be more volatile. Furthermore, refinements in the meaning of IS-A relationships allow

more knowledge to be captured in defining specialized classes. Finally, relational attributes can serve as

a signal to look for information about the association, leading to the definition of composite classes. These

modelling prescriptions may prove useful in developing representations which are more easily understood

by users 138 .

A second practical contribution is that MIMIC serves as a metamodel against which other

conceptual models can be compared (cf. Sol, 1983). This contributes to an understanding of the strengths

and weaknesses of other methodologies from a cognitive point of view, and thereby, can support the

selection of a methodology for a given application.

7.3 LIMITATIONS

The boundaries of this research are clearly marked by two factors. The first is the scope of the

theory of concepts on which the model is based, and the second is the focus of the model on representing

knowledge at the complete exclusion of considerations related to the implementation of software and data.

These factors impose a number of limitations on the work.

First, by focusing on concept theory, other kinds of "knowledge" or cognitive structures, such as

beliefs and goals, are ignored. Consequently, concept theory does not provide a complete theory of

knowledge and the model developed is, in its current form, not applicable as a general knowledge

representation language. For example, the model does not recognize incompleteness or ambiguitym .

138Clearly, it remains as future research to demonstrate or refute this hypothesis. This is discussed in
the last section.

139Consequently, the model is not useful in explaining how people make default assumptions and
reason, given uncertain knowledge.
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While MIMIC can be extended to accommodate uncertainty140, the decision not to do so was based on

the fact that the chosen theory of concepts did not warrant its inclusion. Within the scope of applications

of interest, this limitation does not impair the intended usefulness of the model.

Second, MIMIC does not capture metaknowledge (knowledge about knowledge). By contrast with

models such as Telos (Mylopoulos, 1991; Mylopoulos et al., 1990), MIMIC supports only the

representation of what can be called base knowledge about things in a domain. Again, the model could

be extended to capture metaknowledge141 : however, such an extension could not be justified using

concept theory. Furthermore, since the domain of interest is the subject matter of a proposed information

system (e.g., an organization), the inclusion of metaknowledge would not contribute to directly

representing knowledge about the things in that domain.

Third, the model is far removed from implementation concerns. The most obvious manifestation

of this is the completely non-procedural treatment of behavioral properties. Consequently, it is not clear

how the functional description of behavioral constraints should be transformed to a procedural design and

implementation. Similarly, the explicit implementation of structural and relational attributes as "large" sets

of functions is not practical. However, these issues open the door to one path of further research involving

a direct implementation of the model, as discussed in the next section.

Finally, the model is strongly shaped by the particular theory of concepts in which it is grounded.

A model based on the quite different prototype- or exemplar-based theories would differ in important ways

from MIMIC and might, for example, lead to different conceptual modelling guidelines. Since such models

have not yet been proposed, it remains to be seen how they would compare with MIMIC.

l 'As an illustration, structural properties could be defined to map from domains of objects to
codomains containing value-certainty pairs. For example, the property Weight could be defined as

w ilw,:PERSON-->WEIGHTOCERTAINTY}, where CERTAINTY = {0,..., 100} and indicates the degree
of certainty (or belief) one has about a fact.

'For example, classes could be treated as objects which, in turn, possess attributes, and so on.
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7.4 DIRECTIONS FOR FUTURE RESEARCH

One of the contributions of this thesis is the provision of a formal, grounded basis for a significant

program of future research which builds on the model and the results obtained from it. Three

methodologically different, but complementary, research directions are mentioned here.

First, the model provides a vehicle for testing the much-vaunted "naturalness" of the object

paradigm. It has been widely claimed that object-oriented approaches more naturally reflect the way people

structure and organize knowledge about the world. However, the lack of agreement on what is meant by

the term "object" prevents appropriate tests of naturalness. MIMIC is proposed as an "object model" which

provides a small set of constructs for representing knowledge according to a specific theory of concepts.

Hence, people's ability to understand (or create) representations using these constructs can be evaluated

relative to existing conceptual modelling approaches. This work can be done in either an experimental or

field setting.

Second, a direct implementation of the MIMIC model may help to reduce the "semantic gap"

between conceptual modelling and implementation constructs. Traditionally, systems analysis

methodologies have been heavily influenced by software constructs, such as procedural programming

languages and data structures. In contrast, a direct implementation of the model would provide

implementation primitives based on cognitive constructs. This may offer advantages such as greater ease

of learning and using a system. In particular, an implementation may facilitate the creation of end-user

developed applications if users are able to build applications using constructs which parallel the way they

organize knowledge about things in the domain. Appendix 1 hints at directions for implementation by

informally describing a number of operations to build and maintain a representation.

Finally, the model suggests a number of guidelines for performing conceptual modelling: however,

these do not yet constitute a coherent methodology or comprehensive set of instructions for using MIMIC

to represent knowledge. Such a methodology will be crucial for the success transfer of the model to
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practical IS development applications. For example, although the notion of class structure provides

minimal criteria evaluating the quality of a collection of potential classes, much work remains to be done

to provide further criteria for choosing among competing class structures Similarly, further research is

needed to determine a practical way of expressing behavioral knowledge.
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APPENDIX 1

MODELLING AN EXAMPLE WITH MIMIC

A.1 INTRODUCTION

This appendix presents a small example which demonstrates the constructs of MIMIC. Elements
of the problem are introduced gradually to illustrate different components of the model in succession. The
example is taken from the banking industry and considers the activities of a branch of a commercial bank
in the provision of some services to individual (as opposed to corporate) customers. The description is
not intended to be complete, or necessarily representative of any specific bank. Instead, the aim is to
show how knowledge about important entities, such as customers and accounts, is represented using
MIMIC, and to highlight some of the important activities in maintaining knowledge about these entities.
In addition to considering transaction processing applications, support for simulation and reasoning
activities is briefly illustrated in order to demonstrate the usefulness of the model across several kinds of
applications.

In order to construct the example and illustrate the features of MIMIC, it is necessary to first
define a number of operations to create instances of the basic constructs of the model (e.g., objects,
attributes, classes). These will be used to create and maintain a representation of the problem domain.
For ease of reference, the next section restates the constructs of MIMIC. Section A.3 then describes the
operations needed to create a specific representation. Section A.4 demonstrates how the operations are
used to develop a representation of the banking example. Finally, Section A.5 describes how the model
uniformly supports representations across several kinds of applications.

A.2 REVIEW OF MIMIC CONSTRUCTS

MIMIC consists of a number of constructs which correspond to elements of the classical theory
of concepts. The fundamental constructs in MIMIC are objects and attributes. An object is a surrogate
or symbol designating the existence of an instance of a concept. Attributes are divided into three kinds.
A (simple)142 structural attribute represents a (simple) structural property, and consists of a set of
functions mapping from a common set of objects to a common set of values. A (simple) n-ary relational
attribute represents a (simple) n-ary relational property, and consists of a set of functions mapping from
a common set of objects to the power set of the Cartesian product of n-1 other sets of objects. A
behavioral attribute represents a behavioral property and consists of a function whose domain is (the
cross-product of) one (or more) structural/relational attributes and codomain is the power set of the
domain. Behavioral attributes specify allowed events (changes in the active functions of the
structural/relational attributes involved). Events cause the state of a representation to change to reflect
changes in the state of knowledge about the domain. MIMIC further recognizes that objects may acquire
and lose attributes through the notions of domain expansion and domain contraction, in which objects
are added to and removed from, respectively, the domain of a structural or relational attribute.

The model also provides for the organization of knowledge through classes. A potential class
represents a potential concept and consists of a set of structural/relational attributes with a non-empty
common domain. A class structure is a collection of potential classes for which every attribute of interest

'The model also defines composite attributes.
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belongs to at least one class, and in which no class is simply the union of the attributes of other classes
in the structure.

Given these modelling mechanisms, the objective of this appendix is to show how they can be
used to develop a representation of knowledge about a specific problem. In order to do this, however,
it is necessary to first define a number of operations which enable objects, attributes, classes, and so on,
to be constructed and which allow the state of a description to change in accordance with changes in the
state of knowledge about the application.

A.3 OPERATIONS TO CONSTRUCT A REPRESENTATION

The MIMIC model consists of a number of constructs for describing the state of knowledge about
an application, and for constraining how states may change. However, in order to represent a specific
instance (e.g., the banking example mentioned in the introduction), operations are needed to create
objects, attributes, and classes - and to allow states to be modified. In what follows, the operations are
described by first giving a simple syntax, then listing the conditions that must hold in order for the
operation to occur (pre-conditions), and finally describing the consequences of the operation (effects).

Since the objective of this exposition is simply to illustrate the use of MIMIC, the operations are
defined in a somewhat informal manner. Consequently, although they provide a basic foundation for a
future implementation of the model, they are not described with the object of providing a detailed
blueprint for implementation. Furthermore, the focus here is only on mechanisms for constructing a
representation and allowing its state to change. An implementation would obviously have to also provide
additional mechanisms for querying a representation to extract information from it.

A.3.1 Creating Objects 143

The object is the basic element in a representation created using MIMIC. Objects are simply
surrogates which designate the existence of instances of concepts. In constructing an example, objects
must be created to represent the instances of concepts that are of interest. The operation to do this is
called MAKEOBJECT. Let 0 designate the set of objects in the representation (i.e, that have already
been created: initially, 0 = }), and o designate an arbitrary symbol.

Syntax 

MAKEOBJECT(o)

Pre-condition 

oe 0 (the object has not already been created)

143The model also uses the notion of values. Since values are based on notions such as characters and
numbers, they can be assumed to be supported in any environment. Hence, it adds nothing to the
discussion here to consider operations for creating values.
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Effect

0^Ou{o} (the object is added to the existing set of objects)

This operation can be used to create both simple and composite objects, since there is no
restriction on the nature of the surrogates. Specifically, a surrogate in 0 could be a concatenation of other
elements of 0, in which case, it would be a composite object. However, to keep the discussion more
manageable, the notions of composite objects, attributes, and classes will not be considered in detail.

Note that a more complex operation could be considered here, in which objects are classified as
they are created (e.g., MAKEOBJECT(o,C), where C designates the name of a class, but not necessarily
the only one, to which the object is assigned). This presupposes that all objects will be classified when
created and that classes are defined before objects are created. However, rather than explicitly treat
classification as part of the MAKEOBJECT operation, it will be considered through the assignment of
attributes to objects and the creation of classes.

A.3.2 Creating Attributes

The creation of objects simply reflects knowledge of the existence of things. However, it is
equally important to be able to describe properties of things. Therefore, operations are needed to create
attributes. These are divided into operations for creating structural, relational, and behavioral attributes.

The operation to create a structural attribute is called MAKESTRUC. The purpose of the
operation is to create a table designating (the active function of) a structural attribute'. Let S u and Sc
designate the sets of (the active functions of) all unchangeable and changeable (respectively) structural
attributes that have been created (initially Su={ }, Sc= { }), and 0 designate the set of all objects created.
Let s = ko i,vi> i=1 ,...,1) denote a set of I object-value pairsi45, and type denote a variable which can
assume one of two values: u (for unchangeable) and c (for changeable) 146 .

Syntax

MAKESTRUC(s,type)

"Since a structural attribute is defined in MIMIC as a set of functions, more is needed before the
meaning of a changeable structural attribute (whose size is greater than one) is fully operationalized. This
is handled later in the discussion of behavior. In other words, the set of functions defining a structural
attribute is not enumerated when the attribute is created using the MAKESTRUC operation, unless the
attribute is unchangeable (e.g., Birthdate).

145The active function of an attribute is referred to using a lower case letter (s), while the upper case
equivalent (S) will be used to refer to the attribute more generally as a set of functions.

"The distinction between changeable and unchangeable attributes is made explicit here since an
operation to construct an attribute creates only the active function. Unless the attributes are subdivided
into those which may and may not change, there is no immediate way of determining whether an attributes
values may vary over time. The distinction was not needed in developing the model in Chapter 4 since,
at that level, the "changeability" of an attribute is implicit in the number of functions in the set.
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Preconditions 

O iE 0 i=1,...,I (each first element of the pairs in s is an existing object)

o i#0,, V i,JE I, i#j (no object appears in two pairs, so that s is a function)

Effect 

If type=u, Su^Suu{ s } (function is added to the existing set of unchangeable structural attributes)

If type=c,^Scu{s} (function is added to the existing set of active functions of changeable attributes)

In this operation, the (active) function is expressed as a set of pairs, where the og' s jointly
constitute the domain of the attribute. The MAKESTRUC operation provides for the creation of simple
or composite structural attributes.

The operation to create a relational attribute is called MAKEREL. The purpose of the operation
is to create a table designating the active function of a relational attribute (see Footnote 144). Let R u and
Rc designate the sets of (the active functions of) all unchangeable and changeable (respectively) relational
attributes that have been created (initially Ru= { } , Rc={ }), and 0 designate the set of all objects created.
Let r = {<01002i_> ,/} a set of I object-objectaip rs147, and type denote a variable which can assume
one of two values: u (for unchangeable) and c (for changeable).

Syntax 

MAKEREL(r,type)

Precondition

o 1i ,o2iE 0, i=1,...,I (the objects involved have already been created)

V i,jE I, i#j (no object appears as the first element in two pairs, so that r is a function)

Effect 

If type=u, Ru^Ruu{r} (function is added to the existing set of unchangeable relational attributes)

If type=c, Rc Rcu{r} (function is added to the existing set of active functions of changeable attributes)

As already noted, the operations do not allow the meaning of structural and relational attributes
to be fully captured, since attributes are formally defined in MIMIC as sets of functions. However, these
sets can be characterized implicitly by providing an operation for defining behavioral attributes. This
operation is called MAKEBEH. Behavioral attributes constrain events (changes in active function), and
will be expressed here using sentences in first-order predicate logic. Let F denote a formula of the form:

147This applies to binary attributes. For n-ary relational attributes, the second element of each pair is
a set of n-1 objects.
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F: <pi ,p2> := a sentence in first order logic,

where p i and p2 denote functions in an attribute P. This interpreted to mean that a direct transition in the
active function of P from p i to p2 is permitted only if the sentence to the right of ":=" is true when
evaluated'''. Let F denote the set of formulas that have been created (initially F = ( )).

As an illustration, suppose that an attribute Age is defined as the set of functions, Age =
The behavioral constraint may be expressed as:

F: <apai> := V of 0 1 , ai(o)= ai(o)+1 (where O lc_0).

This means that an event <a i ,ai> (i,je 1,...,K), i#j) can occur only if F is true when evaluated using
functions a ; and aj (i.e., ages change in increments of one unit). In F, a i and aj are variables for which
the specific functions involved in an event (e.g., a 2, a8) are substituted in determining if the event is
permissible (events are discussed in more detail in Section A.3.4).

Syntax 

MAKEBEH(F)

Precondition

Each term in F refers to one or more structural/relational attributes (so that the truth of the sentence is
determined by the active functions of these structural and relational attributes) 149

Effect

F Fu{F}

The MAKEBEH operation establishes F as a logical constraint (or pre-condition) on events. That
is, no event may occur if it violates F. Note that the operation to create F's does not decide whether the
sentence is a "good" description of knowledge about behavior. That is the job of the analyst.

A behavioral attribute is formally defined in MIMIC as a function. The operationalization above
can be given such a functional interpretation. Specifically, if p i and pi denote functions in a
structural/relational attribute P=Ip 1 ,p2,...,p0, PP E b(p) (or <pi ,pi> is possible) if and only if F is true when
evaluated with respect to a specific p i ,pie P (where b denotes the behavioral attribute function). In other
words, F implicitly describes (but does not enumerate) the function b that constitutes a behavioral
attribute.

148This does not mean that an indirect transition from p i to p2 is prohibited (e.g., p i -* p3^1)8 -3 p2)•

149This is left somewhat vague. The meaning becomes clearer when specific examples are considered
in Section A.4.



218

A.33 Creating Classes

Thus far, operations have been defined to create objects and attributes. The MIMIC model also
provides for the organization of knowledge through classes. Consequently, an operation is needed to
construct classes by aggregating attributes. This operation is called MAKECLASS. Its purpose is to
establish a collection of attributes as a class. Moreover, the operation explicitly places a new class in an
existing class lattice (which is expressed as a graph).

In the following, S=SuuSc and R=RuuRc. Let C designate the existing set of classes (initially
C=0), denote the active functions of structural/relational attributes P 1 ,..,PN, and G =
f<C 1 i,C21> i=1 ,....1 1 denote a class lattice (initially G={ }). G is interpreted to mean that C 11 is a subclass of
C2; (i=1,...,1). Let dom(p°) denote the domain of attribute p° (i.e., the set of first elements of the pairs in
pn)150 .

Syntax 

MAKECLASS(Cs ,p 1 ,...,pN) (Cs is a symbol designating the new class name)

Preconditions 

p 1 ,...,pN exist: that is, each p° belongs to S or R (the sets containing the active functions of existing
structural and relational attributes, respectively)

dom(p 1)n...ndom(pN)#0 (the class has a non-empty extension)

0 ps ,^SuR and p so {p 1 ,...,pN}, such that dom(p s)Ddom(p l)n...ndom(pN) (the class contains all attributes
possessed by all members)

0 a subset of classes {C 1 ,...,CK} of C such that ok=1,..,KCk =^(the class is not simply the
aggregation of attributes of some subset of existing classes)

Effects 

Cs^{p l ,...,ps }

C Cu{Cs }

For each CE C such that CcC * , <C s,C> is added to G

For each Cc C such that C *cC, <C,C s> is added to G

This operation both creates classes and adds them explicitly to the class lattice. Since the latter
is implied when is a class is defined anyway, it need not be listed as an effect, but is included here to

150Some liberty is taken here in reference to attribute names and symbols designating the active
functions of the attributes (P's versus p's). Hence, dom(p°) could equally well be written dom(P°). The
MAKECLASS operation applies to the attributes, which initially are "known" only in terms of the active
functions.
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improve clarity.
Each class created using the MAKECLASS operation is a potential class in the sense used in

Chapter 4. In addition, the constraint that the collection of classes constitute a class structure can be
imposed by requiring that the operation be repeated until all attributes that are defined are assigned to at
least one class. This exposition assumes that all attributes are defined before any classes are. In practice,
there may be some iteration between defining objects, attributes, and classes. In that case, an operation
may be needed to add newly defined attributes to a class. Since that issue depends on the approach taken
in analyzing a problem, it is not pursued here.

In practice, it will also be necessary to define operations to "destroy" objects or remove them from
the representation. Since the interest here is only in showing how a representation may be created, such
operations are not discussed.

A.3.4 Supporting Change

A representation, once created, is useful only if it changes to reflect changes in the state of
knowledge about the domain. Two kinds of change are relevant here. First, objects may acquire and lose
attributes. Consequently, objects will have to be added to the domain of attributes. The operation to
achieve this is called DOMEXP. Likewise, objects will have to be removed from the domain of
attributes. The operation to achieve this is called DOMCON. The second kind of change involves
changes of state that occur when objects take on new values for structural or relational attributes. These
changes will be effected through MAKEVENT operations.

Domain expansion is operationalized as follows. Let p denote the active function of a structural
or relational attribute P, P denote the set of (the active functions of) all existing structural/relational
attributes, and A denote a non-empty set of I pairs f<o i,x i> i=1 ,...,1 1, where the xi 's are either values (if p
belongs to a structural attribute) or sets of objects (if p belongs to a relational attribute). The DOMEXP
operation adds I pairs to the active function of an attribute.

Syntax

DOMEXP(p,A)

Pre-conditions 

pc P

o ic 0, i= 1,...,I

The 'Vs do not belong to any pairs in p

Effect

p puA

Using this framework, an object could join a class by a series of DOMEXP operations, one for
each attribute defining the class which was not previously possessed by the object (e.g., a PERSON may
become an EMPLOYEE by acquiring the added attributes which define EMPLOYEE).

The DOMCON operation has the opposite effect of DOMEXP. It removes one or more pairs
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from the active function of an attribute, reflecting that the objects involved lose the attribute in question.
Let p denote the active function of a structural/relational attribute P (i.e., p is a set of object-value pairs),
dom(p) denote the domain of p, and A a non-empty set of I objects {o 1 ,...,o1 }.

Syntax

DOMCON(p,A)

Pre-condition 

o ic dom(p), i=1,...,I

Effect 

p = p-^(the xi 's are values or sets of objects associated with the objects being removed)

Next, the notion of an event is operationalized to provide a mechanism for changing the state of
a representation. The operation MAKEVENT is defined as a state change generator. Unlike operations
to create objects, attributes, and classes, MAKEVENT is not used in creating an initial representation, but
is used to maintain the state of the representation as changes occur in the domain.

In MIMIC, an event changes the active function of one or more structural/relational attributes.
For simplicity, the operation is characterized here in terms of one attribute only. More complex changes
can be constructed using a series of these simpler MAKEVENT operations. Let p designate the active
function of an existing structural/relational attribute P, dom(p) denote the domain of p, Pc denote the set
of all changeable structural/relational attributes, and E a set of I pairs {<o i,xi> i=1 ,...a}, where the x i 's are
either values (if p belongs to a structural attribute) or sets of objects (if p belongs to a relational attribute).
Let p' designate the function formed by replacing each pair in p which has the same first element as a pair
in E (i.e., an o) with the corresponding pair in E (i.e., <o i ,xi>).

Syntax 

MAKEVENT(p,E)

Preconditions 

O IE dom(p), i=1,...,I

pc Pc (the attribute is changeable)

For each FE F (i.e., each behavioral attribute), F is true when p and p' are "substituted" into F

Effect

p' replaces p as the active function of P

To illustrate this, suppose p = ko 1 ,y 1>,<o2,v2>1 and E = {<o2 ,v3>}. The operation
MAKEVENT(P,E) produces:
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p' = {<o 1 ,v 1 >,<o2 ,v3>}

which becomes the new active function of P. The event can then be designated <p,p'>.

Using this notion of event, it is now possible to see how the logical sentence F, which expresses
a behavioral attribute, implicitly describes the set of pairs (i.e., the function) that is a behavioral attribute,
and also determines the set of functions that constitutes a structural or relational attribute. In effect, F
determines a set of pairs {<P,{Pj}ieJi>icr} (where j=1,...,IJ i1 for each i). The set of pairs is a function
(where p and the pa 's denote active functions before and after a MAKEVENT operation, respectively).
This means that an event <p,p'> can occur only if there is a pair <p,{...,p',...}> in the functional equivalent
of F.

The set of functions constituting the attribute P, then, is the set of all functions which appear
(again, this is implicit) in F (in the above case, D^D1 9 • • •^•

This concludes the description of the basic operations needed to create and maintain a
representation. Note that the operations are intended to be used at the object level first, while the
"schema" (consisting of attributes and classes) is created later (since attributes presuppose objects and
classes presuppose attributes). The next section shows how these are used to create a representation of
knowledge about things in a banking environment, which provides the basis for several kinds of
information systems. In building the example, objects are first created, then attributes and classes.

A.4 CONSTRUCTING THE EXAMPLE

A.4.1 Overview

The subject matter of the representation constructed here is a bank. Attention is focused on the
objects of interest, such as customers, employees, accounts, and loans. In addition, the effect of events
on the state of objects is demonstrated by looking at changes that result from withdrawals from accounts.
The exposition here is partial in two senses. First, only enough detail is given to illustrate how the
operations defined in Section A.3 are used to create a representation of domain knowledge. Second, only
a few instances are considered when, in reality, a bank would have many more.

A.4.2 Objects

Objects are created to represent the existence of instances of concepts. The major concepts of
interest here include persons, customers, employees, various kinds of accounts, and loans. These terms
are used very loosely at this point so that the reader gains an informal idea of the "kinds" of objects that
are being created. While users might, in practice, identify classes of objects before indicating specific
instances, the presentation here will begin by creating objects and attributes since classes can only be
defined when these are determined. Definitions of classes (in terms of the attributes they possess) are
given in Section A.4.4, and give formality to terms such as customer and savings account.

On examining this hypothetical subject matter, a number of instances are identified. These include
the persons John, Mary, Jane, Bill, Sally, Frank. Objects to represent instances are created through a
series of MAKEOBJECT operations. Initially, 0={ } (the set of objects is empty). From this starting
point



222

MAKEOBJECT(John) results in 0 = {John} 151 ,
MAKEOBJECT(Mary) results in 0 = {John, Mary},

and so on. After repeating the operation four more times

0 = {John, Mary, Jane, Bill, Sally, Frank}.

Other objects to be created represent instances of accounts and loans. The objects are created
through repeated MAKEOBJECT operations. Eventually, the set of objects is as follows:

0 = {John,Mary,Jane,Bill,Frank,S100,S101,S102,S103,S104,C200,C2014301,L302,1303}

Note that no mention has been made of the attributes possessed by the objects, and only very intuitive
reference to "classes" such as person. In practice, the analyst would probably acquire information about
classes, attributes, and objects in an iterative and interactive manner.

A.4.3 Attributes

The objects of interest each possess a number of attributes. Once the objects are created, it is
possible to create the attributes they possess. For example, a Name attribute is constructed as follows.
Let Name denote the set

{<.John,' John Doe'>, <Mary, 'Mary Williams'>, <Jane,'Jane Doe'>, <Bill, 'Bill Wilson'>,
<Sally, 'Sally Smith'>, <Frank, 'Frank Stokes'>}.

Name is created as a changeable structural attribute using the MAKESTRUC operation. Initially, S c= { }
(the set of active functions of changeable structural attributes is initially empty). Performing the operation

MAKESTRUC(Name,c) results in S c = {Name}.

The operation is repeated to create a number of other structural attributes: Address, Birthdate,
Experience, Balance, Interest_rate_paid, Term, Principal, and so on. Each time the operation invoked,
a new function is added to either the set Sc or Su. For example, Birthdate is added to Su. Initial active
functions of several of the attributes listed above are shown next using a tabular representation 152 .
Performing the MAKESTRUC operation on each of these functions produces

Sc = (Name, Address, Experience, Balance, Interest_rate_paid, ...),
Su = {Birthdate, Principal, Term, ...}.

151Throughout this example, objects will be designated by italicized words.

152These active functions will, in the case of changeable attributes, be replaced by new ones as events
occur (see Section A.4.6).



Address

John 123 Main Street

Mary 456 Walnut Crescent

Jane 123 Main Street

Bill 456 Walnut Crescent

Sally 789 Crabtree Road

Frank 159 Maple Drive

Experience

John 7

Mary 25

Sally 2

Balance

S100 500

S101 100

S102 250

S103 1000

S104 10000

C200 10

C201 150

Birthdate

John 19 09 1950

Mary 03 12 1963

Jane 15 05 1948

Bill 16 09 1960

Sally 21 04 1965

Frank 27 06 1970

223

Note that these attributes do not all share the same domain. This is relevant to the definition of classes
that is given later.
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Objects also possess relational attributes linking them to other objects. For example, a Spouse
attribute is constructed using:

MAKEREL(Spouse,c), where

Spouse = {<John, Jane>, <Mary, Bill>, <Jane, John>, <Bill, Mary>, <Sally, Nil>, <Frank, Nil>}.

Since initially Rc= { } and RU={ } , MAKEREL(Spouse) results in R c = {Spouse). The MAKEREL
operation can be repeated to create the active functions of other relational attributes, including Holds,
Handles, and Held_by. These are listed below in tabular form.

Holds

John {S100, C200 L301)

Mary {S101, 5102}

Bill {S103,C201}

Sally {L302}

Frank {S104,L303}

Handles

John {S101, S102, S103, S104, C201}

Mary {L301, L302, L303}

Sally {S100, S101, S102, S103, S104,
C200, C201}

Held_by

S100 John

S101 Mary

S102 Mary

S103 Bill

S104 Frank

C200 John

C201 Bill

L301 John

L302 Sally

L303 Frank
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Repeating the MAKESTRUC operation for these functions results in

Rc = (Spouse, Holds, Handles, ...), and
Ru = {Held_by,... ) .

There are also a number of behavioral constraints, associated with the structural/relational
attributes listed above, which restrict allowed changes in active functions. Some restrictions represent
logically necessary constraints (e.g., changes to years of experience must follow a pattern of increments
by one). Others may be viewed as corresponding to "business rules" of the organization. That is, they
reflect conventions by which the bank conducts its activity (e.g., maximum withdrawals without prior
notice on savings accounts).

Behavioral attributes are created using the MAKEBEH operation. Let F denote the set of
restrictions that have been created. Initially, F=0. Behavioral constraints are created by invoking
MAKEBEH.

In order to identify behavioral attributes, it is useful to look at structural/relational attributes, and
the restrictions on changes to their active functions. For example, the attributes Name and Address have
no general restrictions. That is, it is assumed that any string (of a "reasonable" length) may serve as the
value of Name(o) or Address(o) for an object of 0, and that changes of Name and Address are
unrestricted. On the other hand, Birthdate contains a single function. Hence, there are no behavioral
attributes, as the notion of a change in the active function is undefined.

There is, however, an assumed restriction on changes to the active function of Spouse. A person
who has a spouse will, after an event involving a change in the active function of Spouse, either have the
same spouse or have no spouse. That is, a married person cannot have another spouse without first being
in a state of having no spouse.

This restriction is expressed more precisely as a constraint on changes to the active function of
Spouse. Letting:

si designate the active function of Spouse,
s2 designate another function of Spouse (s 2 and s2 are variable here), and
dom(Spouse) designate the domain of Spouse,

the restriction is:

F1 : <s 1 ,s2> := V x,ye dom(Spouse) (x#37), s 1 (x) = y^s2(x) = y v s2(x) = Nil.

The behavioral constraint is created by invoking the operation

MAKEBEH(F 1 ).

Since initially F={ ) (the set of behavioral constraints is empty), MAKEBEH(F 1) results in F = (Fii•

If an event <s l ,s2> (a change in the active function of Spouse brought on by invoking a
MAKEVENT operation as described in Section A.4.6) satisfies this disjunctive condition, it is a permitted
event.

Similarly, for the structural attribute Experience, there is the obvious restriction that changes in
years of experience for an employee occur in increments of 1. The constraints will not be listed for all
attributes here. However, as a further illustration, a constraint on changes to the structural attribute
Balance is detailed. Assume that a customer may withdraw no more than the greater of $1,000 (or the
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account balance, if less than $1000) or 50% of the account balance of a savings account in a single
transaction. Although such a constraint may appear somewhat artificial, it does resemble commonly used
restrictions on withdrawals made without advanced notice. Letting:

b 1 denote the active function of Balance,
b2 denote another function of Balance, and
dom(Balance) designate the domain of Balance,

the constraint is:

F2 : <b 1 ,b2> := V XE dom(Balance), b2(x) min {max { b i (x)-1000,0},0.5*b l (x) } .

The constraint is imposed by performing MAKEBEH(F2), which results in F = {F I ,F2 }. The
operation is repeated for each of the behavioral constraints identified in the analysis, resulting in a set of
restrictions F = {F 1 , F2 ,...}.

A.4.4 Classes

Once all structural, relational, and behavioral attributes of interest have been created, groupings
of attributes can be formed to define classes. To this point in the example, only vague reference has been
made to the fact that objects are of various kinds (customers, accounts, etc.). The MAKECLASS
operation introduced in Section A.3 allows a class to be formally defined as a set of attributes.

The first class defined here is PERSON. Let C denote the set of classes and G the class lattice.
Initially, C={ } and G={ }. PERSON is determined to consist of the attributes Name, Address, Birthdate,
and Spouse. The operation to define the class is:

MAKECLASS(PERSON, Name, Address, Birthdate, Spouse).

The results are that PERSON = {Name, Address, Birthdate, Spouse} and C = {PERSON}. Nothing is
added to G at this point (the lattice is simply a single node). Next, the class CUSTOMER is created by
invoking

MAKECLASS(CUSTOMER, Name, Address, Birthdate, Spouse, Holds),

resulting in

CUSTOMER = {Name, Address, Birthdate, Spouse, Holds}
C = {PERSON, CUSTOMER}
G = <CUSTOMER,PERSON>} .

Next, the class EMPLOYEE is defined by invoking

MAKECLASS(EMPLOYEE, Name, Address, Birthdate, Spouse, Experience, Handles)

resulting in
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EMPLOYEE = (Name, Address, Birthdate, Spouse, Experience, Handles)
C = (PERSON, CUSTOMER, EMPLOYEE)
G = {<CUSTOMER,PERSON>, <EMPLOYEE, PERSON>}.

Note that if the operation MAKECLASS(CUSTEMP, Name, Address, Birthdate, Spouse, Holds,
Experience, Handles) is attempted in order to define a class CUSTEMP as a subclass of both CUSTOMER
and EMPLOYEE, it violates the precondition (of MAKECLASS) that a class cannot simply be the union
of the attributes of existing classes. Therefore, the operation would not be performed unless additional
attributes were specified as parameters.

The operation can be repeated to create the remaining classes of interest, including PRODUCT,
LOAN, ACCOUNT, SAVING, CHEQUING, and so on. For a quick summary, the operations to create
these classes are shown below, and the final contents of C and G are indicated. Some attributes which
are listed were not described among the attributes mentioned earlier in explaining attribute creation.

MAKECLASS(PRODUCT,Held_by)
MAKECLASS(ACCOUNT,Held_by,Balance)
MAKECLASS(CHEQUING,Held_by,Balance,Overdraft,Issued_cheques)
MAKECLASS(SAVING,Held_by,Balance,Interest_rate_paid)
MAKECLASS(LOAN,Held_by,Interest_rate _charged,Term,Principal,Remaining_balance)

When these operations are performed, the result is:

C = {PERS ON,CUSTOMER,EMPLOYEE,PRODUCT,ACCOUNT,CHEQUING,SAVING,LOAN}
G = {<CUSTOMER,PERS ON>, <EMPLOYEE,PERSON>, <ACCOUNT,PRODUCT>,

<LOAN,PRODUCT>, <CHEQUING,ACCOUNT>,<SAVING,ACCOUNT> } 153.

A.4.5 Domain Changes

The representation thus far is static. To be useful, it must change to reflect changing knowledge.
One way that knowledge changes is through the recognition and classification of new instances. The
MAKEOBJECT operation allows new objects to be created, while the DOMEXP operation allows new
objects to be added to the domain of existing attributes. For example, suppose that an object Dave is
created using MAKEOBJECT, and that the object is required to possess the attributes Name, Address,
Birthdate, Spouse, Holds. If the object Dave is to be assigned the value 'Dave Parsons' for the attribute
Name, the attribute is updated by invoking

DOMEXP(Name, { <Dave, 'Dave Parsons'>).

As a result of this operation, the Name attribute is:

153The lattice here is actually two disjoint lattices, since no persons are products.
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Name

John John Doe

Mary Mary Williams

Jane Jane Doe

Bill Bill Williams

Sally Sally Smith

Frank Frank Stokes

Dave Dave Parsons

The DOMEXP operation can be repeated for each of the other attributes possessed by Dave,
adding a row to the active functions of each. When Dave is added to the domain of these attributes, the
object is implicitly classified as a CUSTOMER (and a PERSON) since it possesses the attributes defining
both classes.

Similarly, objects may be removed from the representation to reflect that instances no longer exist
from the point of view of the application. For example, if Sally pays off the loan she holds, she may no
longer be considered a CUSTOMER. The operation

DOMCON(Holds, {Sally})

removes the pair <Sally, {L302}> from the active function of Holds, resulting in

Holds

John (S100, C200 L301)

Mary (S101, S102)

Bill {S103, C201}

Frank (S104, L303)

Note that this means that Sally is no longer a CUSTOMER, but remains in the representation as a
PERSON. If, for example, the person Sally dies, further DOMCON operations would be required to
remove the object Sally from the domain of the attributes Name, Address, Birthdate, Spouse.

A.4.6 Events

A banking environment produces a variety of changes that must be tracked. For example, there
are changes to CUSTOMER attributes such as Address and Holds. A significant group of changes in
values are those to account balances brought on by deposits to and withdrawals from accounts. For
example, suppose that the active function of the attribute Balance (of ACCOUNT) is:
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b1

S100 500

S101 100

S102 250

S103 1000

S104 10000

C200 10

C201 150

Any changes to the active function must satisfy the behavioral constraint given earlier:

F2: <b1,b2> := V XE dom(Balance), b2(x) min {max { b i (x)-1000,0 } ,0.5*b i (x) } •

Changes are brought about by invoking the MAKEVENT operation. Two examples are considered here.
In the first, the event is permitted as it does not violate F2. In the second, the event is denied as it violates
F2.

Example 1 

A withdrawal of $350 is attempted from account 5100 (which has a current balance of $500).
Using the notation introduced in Section A.3, E = {<S100,150>}. The operation

MAKEVENT(130 1 ,E)

is invoked in order to create the event. However, in order for the event to be created, it must satisfy

F2: <b1,b2> := V xe SAVING, b2(x) minfmax{b 1(x)-1000,0},0.5*b 1(x)},

where b1 is the table listed above and b 2 is the function produced by replacing the row <S100, 500> in
b 1 with <S100, 150>. Since this condition is satisfied if the MAKEVENT operation succeeds, the
operation takes place and b2 becomes the active function of Balance.

Example 2 

A withdrawal of $6000 is requested from account 5104, so that E = {<S104,4000>}. The
operation MAKEVENT(b 1 ,E) is invoked in order to create the event. However, since b 2 is the function
produced by replacing the row <S104,10000> in b 1 with <S104, 4000>, the change would violate F2.
Consequently, a precondition of the MAKEVENT operation is not met and the operation does not
succeed.

In Chapter 5 (Section 5.7), it was mentioned that records of events can be considered as objects.
This means that when a MAKEVENT operation takes place, an additional effect can be specified. This
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is to create a new object. Subsequently, a number of DOMEXP operations can be triggered to add the
object to the domains of the attributes it possesses. These attributes will, in turn, have been created using
MAKESTRUC and MAKEREL operations. Similarly, sets of these attributes can be specified using
MAKECLASS operations to create event record classes. For example, the operations

MAKESTRUC(Time,u)
MAKESTRUC(Amount,u)
MAKEREL(From_account,u)
MAKEREL(By_teller,u)

can be invoked to create attributes which allow representation of the time and amount of a withdrawal,
the account from which the withdrawal is made, and the teller who processes the withdrawal. The second
parameter takes the value u since attributes of event records are unchanging Initially, each of these
attributes may contain no pairs. Pairs are added as withdrawals occur (i.e., as MAKEVENT operations
occur). The class WITHDRAWAL may be formed by invoking the operation

MAKECLASS(WITHDRAWAL,Time,Amount,From_account,By_teller).

In the same manner, other classes of event records can be formed for kinds of other events (e.g., deposits,
transfers, loan payments).

A.5 UNIFORMITY OF THE MODEL

This section demonstrates that a representation created using MIMIC can be used for at least three
kinds of applications: transaction processing, reasoning, and simulation. The differences among the three
are argued to be in the nature of the changes that occur. In transaction processing, the objects, attributes,
and instances in a representation reflect instances representing things that exist, and domain changes and
events occur in accordance with knowledge about changes in the real world. This would be the case when
events such as deposits and withdrawals reflect actual actions of customers, as assumed in the descriptions
of the previous section. In reasoning (or expert system) applications, a common objective is to determine
whether a sequence of events that leads to a specified state is possible given the behavioral constraints
contained in the representation. In simulation, the interest is in examining the effect of hypothetical events
on certain parameters of a real or hypothetical system. In other words, the three kinds of applications
differ in terms of the nature of events (real/possible/hypothetical). In addition, they differ in terms of the
manner in which operations to create events occur (Wand and Weber, 1988). Transaction events are
triggered by input from a user interface. Reasoning events are generated by a software-based inference
engine which tries to determine whether certain combinations of events are possible. Simulation events
are generated by a software-based mechanism which invokes changes according to some random or pre-
specified temporal pattern.

The objective of transaction processing is to accurately track the state of knowledge about the
domain of interest by recording actual changes in the state of things in the domain. Events such as the
withdrawals discussed in the previous section support such tracking activity. Hence, use of MIMIC to
support transaction processing is not considered further. The remainder of this section is devoted to
showing how the constructs of the MIMIC model can support reasoning and simulation activities in the
banking example introduced earlier.

A potential reasoning application for the example used here might involve a customer's application
for a loan. Consider expanding the original description of the domain as follows. A loan application may



231

be considered an object, and is created using the operation

MAKEOBJECT(L_a_/),

where L_a_1 is a surrogate (identifier) designating a specific loan application. The MAKESTRUC and
MAKEREL operations are used to create the attributes Amount, Status, and Applicant (which may
initially be empty sets). The operation

MAKECLASS(LOAN_APPLICANT, Amount, Status, Applicant)

creates the class LOAN_APPLICANT. The attribute Status is assumed to have the codomain {accepted,
rejected, undetermined), reflecting three possible status values of an application. In order to classify the
object L_a_l as a loan application, the DOMEXP operation is invoked three times to add the object to
the active function of each of the three attributes defining the class. This example assumes that, whenever
a new application (L an) is created, the pair <I, _a _n ,und eter mine d> is added to the active function of
Status using a DOMEXP operation. The assumption plays an important role in triggering the reasoning
process, as it can trigger an examination of loan eligibility criteria expressed as behavioral constraints.

In a similar manner, a class LOAN_APPLICANT can be defined as a subclass of CUSTOMER,
with additional attributes that include Capability, Commitment, Risk, and Application. In this example,
the first three of these attributes are each assumed to have the codomain (high, moderate, low,
undetermined). When a loan application is made, a DOMEXP operation is performed on each of these
three attributes to add the customer (i.e., the value of Applicant(L_a_n)) to the class LOAN_APPLICANT.

The role of the reasoning mechanism (the details of which are not of concern here) might be to
regard the value 'undetermined' as unstable, and to identify allowed events which would change the active
functions of the attributes in question to produce more stable values (e.g., accept, reject) for the newly
created instances. That is, when a DOMEXP operation is invoked which adds an object with an
'undetermined' value to the active function of an attribute, the reasoning mechanism is also triggered, and
checks the constraints on changes to the active function in question. To illustrate this, let:

n denote an object of class LOAN_APPLICATION,
a(n) denote the object of class LOAN_APPLICANT that is the value of Applicant(n),
s1 denote the active function of Status (s 1(n)=undetermined),
s2 denote an active function of Status such that s2(n)=accept,
c denote the active function of Capability (c(x)=undetermined),
m denote the active function of Commitment (m(x)=undetermined),
r denote the active function of Risk (r(x)=undetermined).

Suppose that a constraint on events <s 1 ,s2> is as follows:

F3 : <S I ,S2> := c(a(n))=highv((m(a(n))=moderatevm(a(n))=low)Ar(a(n))=low).

Informally, this means that the status of an application may change from 'undetermined' to 'accept' if and
only if the capability of the applicant is 'high' or if the commitment is 'moderate' or 'low' and the risk
is 'low'. In order to determine if F3 is satisfied (and the event <s 1 ,s2> possible), it is necessary to
determine the values of c(a(n)), m(a(n)), and r(a(n)). Consequently, if the specification of constraints or
"rules" is complete, there will also be F's which describe conditions under which each of the attributes
Capability, Commitment, and Risk change active functions so that values for new applicant objects
change from 'undetermined' to either 'high', 'moderate', or 'low'. For example, changes to Capability
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may depend on the existing attributes Income (of CUSTOMER) and Balance (of ACCOUNT). The
specific conditions can be incorporated into behavioral constraints. For example, for the active function
to change so that the value of Capability for an individual changes from 'undetermined' to 'high', it may
be required that the salary of the application to be at least $50,000 and the account balance at least
$10,000. This might be expressed as:

F4: <Ci, C2> := Income(a(n))>_50000vE tEmcwamBalance(t)10000,

where, for a(n), c l(a(n))=undetermined and c2(a(n))=high.

Other rules could be similarly expressed using the MAKEBEH operation. For example, values
assigned to Commitment(x) may depend on values such as Number_dependents(x) and
Housing_expenditures(x). The point here is not to describe an inference mechanism, but simply to
illustrate that the MIMIC model supports the representation of knowledge for reasoning applications and
the operations described earlier allow this knowledge to be represented for a specific example.

The third type of information systems activity supported by the model is simulation. A banking
environment provides many areas in which simulations may be used to support decision making. This
example considers the effect of the number of tellers who serve customers on statistics such as teller
utilization and customer waiting time.

Some knowledge that is important in such a simulation might be of interest only for the simulation
application and, therefore, not otherwise represented. This knowledge can nevertheless be expressed by
defining new objects, attributes, and classes. Furthermore, a simulation can make use of knowledge about
the current (actual) state of entities in the representation (e.g., accounts held by a customer).

A critical part of any discrete event simulation is the generation of events. The simulation events
that are of interest for this particular problem are potential events (withdrawals, deposits, transfers).
Records of these are distinguished from those of actual transactions by their membership in a newly
defined class, S_TRANSACTION. In addition, changes in active functions (i.e., events) during a
simulation run will affect only the attributes of classes defined for the simulation (e.g., QUEUE). Hence,
the historical state of the representation of organization entities (e.g. CUSTOMERs) will not change during
a simulation run. Note that this is not a consequence of the MIMIC model, but must be enforced by
mechanisms in the software that drives the simulation.

To illustrate the use of the model in a simulation context, the example and its representation are
described as follows. The primary classes of entities of interest for the simulation are the existing classes
CUSTOMER, SAVING, and CHEQUING, along with three new entity classes: TELLER (a subclass of
EMPLOYEE), QUEUE and SERVING. In addition, there are two classes of records of simulation events.
The instances of TRANSACTION represent instances of service to a customer by a teller, while the
instances of WAIT represent instances of customers waiting in queues. These classes are defined next.

First, class QUEUE is considered. QUEUE is defined to consist of a single attribute, Contains
(indicating the customers in each queue), which is defined with the operation

MAKEREL(Contains,c).

Initially, Contains={} (each queue is empty). The class is defined using

MAKECLASS(QUEUE,Contains).

This class has a behavioral attribute constraining changes to the active function of Contains. Letting:
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c 1 denote the active function of Contains,
c2 denote another function of Contains,
x, y denote instances of QUEUE,

the restriction is:

F5: <C1,C2> := (Ci(X)-15.C2(X)Ci(X)+1)A(C2(31)=C1(Y) VyE QUEUE, y#x).

This constraint is established by invoking MAKEBEH(F5), and requires that the contents of exactly one
queue changes by exactly one element in any event on Contains.

The class SERVING has a number of instances equal to the number of tellers in the simulation.
An instance of this class can really be viewed as a "queue" of 0 or 1 elements (depending on whether the
teller is available or busy, respectively). Two attributes are defined:

MAKEREL(Teller,u),
MAKEREL(Is_serving,c).

Initially, Teller = ( ) and Is_serving = { }. The class definition is:

MAKECLASS(SERV1NG,Teller,Is_serving).

The instances of this class are in one-to-one correspondence with the instances of TELLER used in the
simulation. For example, if the single teller case (with teller t) is being simulated, there is one instance
of SERVING, g, for which Teller(g)=t.

Next, the transaction classes are defined. A single class, TRANSACTION, is defined to represent
simulation transactions. Objects in this class are records of (i.e., represent knowledge about) individual
simulation transactions. The primary attributes of interest are the customer and teller involved in the
transaction, along with the time at which the transaction begins and the time at which it ends. These last
two attributes, respectively, represent times at which (1) there is a change in the active function of
Contains of QUEUE (reducing queue size) and at which (2) there is a change in the active function of
Is_serving of SERVING. Consequently, there are two events relating to each instance of this class. First,
the attributes are defined:

MAKEREL(For_customer,u)
MAKEREL(By_teller,u)
MAKEREL(Start_time,u)
MAKEREL(Stop_time,u).

Initially, all four attributes contain the empty set. The class is defined using:

MAKECLASS(TRANSACTION,For_customer,By_teller,Start_time,Stop_time).

The remaining transaction class of interest involves the waiting of customers in queues. Each
instance of this class represents the wait of a customer in a queue. The attributes of interest involve the
specific customer, the queue, the time of entry, and the time of departure, and are defined as above (each
initially contains the empty set). The class definition is:

MAKECLASS(WAIT,Customer,Queue,Time_in,Time_out).
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The values of the last two attributes for an instance of WAIT are, respectively, times at which
there is a change in the active function of Contains (increasing queue size), and a change in the active
function of Is_serving. Furthermore, for each instance of WAIT, there is an instance of TRANSACTION
whose value for Start time is the same as the value of Time out of that instance of WAIT. Neither of
these two event classes has behavioral attributes, as the instances are unchanging.

It is also necessary to have a way of determining the time required to serve a customer. This can
be achieved by defining a class TELLER as a subclass of EMPLOYEE, with the added structural attributes
Mean_service_time, which represents the mean time for a teller to perform an activity, and
Sd_service_time, which represents the standard deviation (and possibly added relational and behavioral
attributes). The example assumes that, for each teller, the actual time required to serve a customer is
normally distributed around the mean. Each time a customer arrives at a teller for service, a value for
service time can be obtained by sampling from the normal distribution using the parameters which
describe the teller in question.

This extension of the example allows a simulation to be supported and statistics to be
captured'. Statistical data are not considered as attributes of individual or composite entities (e.g.,
waiting times of entities in queues). Instead, statistics can be calculated at the completion of a simulation
run by examining the attributes of events. The description above permits two important statistics to be
supported. First, the waiting time of a customer in the queue is simply the difference between the time
the customer leaves the queue and the time he/she enters the queue. For each entry in a queue, these two
data are the values of the attributes Time_out and Time_in for an instance of IN_QUEUE. The average
waiting time is simply the sum of these waiting times divided by the number of instances of IN_QUEUE
(the latter is equal to one half of the number of changes in the active function of Contains of QUEUE).
Second, the utilization of a teller, t, is simply the sum of the differences between the Stop_time and
Start_time attributes for each instance, s, of S_TRANSACTION for which By_teller(s)=t, divided by the
total duration of the simulation period.

The extensions of the example provided here allow the progress of customers through a simulation
to be recorded. In order to run a simulation, arrivals of customers need to be generated. Just as the user
interface was not considered in constructing a representation for transaction processing activities, the
software to generate simulation events is beyond the scope of interest here. However, in general such
arrivals would be generated by a piece of software which may simulate arrivals by sampling from some
statistical distribution, and then triggering events in the system by invoking DOMEXP, DOMCON, and
MAKEVENT operations as required by the values sampled.

To conclude, this appendix shows the way in which different kinds of applications may be
supported within a single representation (or system) using the MIMIC model, highlighting the similarities
and differences between such applications. In all three cases considered (transaction processing, reasoning,
simulation), knowledge about the structure, relationships, and potential behavior of things must be
represented. The same model constructs (object, attribute, class) can uniformly represent that knowledge.
The differences between the applications are highlighted by what is outside the scope of MIMIC: namely,
the mechanisms for generating events. In transaction processing applications, actual events are reported
through an interface with the real world system that is modelled by the information system. In reasoning
applications, the effects of possible events (as constrained by behavioral attributes) are explored by a
mechanism which seeks a certain goal state. In simulation applications, hypothetical events are generated
according to some pre-specified criteria. In each of these three cases, the mechanisms for "generating"
events are embedded in code, but this code is not described using the constructs of MIMIC.

1540f course, statistics could also be kept for transaction processing activities.



APPENDIX 2

GUIDE TO NOTATION

This appendix summarizes the important notation of Chapter 4 in the order in which it
is introduced. The terms are divided by level: that is, cognitive and object.

Cognitive Level 

T^a set of instances
V^a set of values
S^a structural property: {s i ls i :TV}
s i^an element of the structural property S
ST^a set of structural properties shared by the instances T

g (T)^the power set of the set of instances T
p (100...or)^the power set of the Cartesian product of T1 ,...,TK

Q^a subset of p^...cirK)
q^an element of Q
R^a relational property: fri lri :TQI
r.^an element of the relational property R
RT^a set of relational properties shared by the instances T
P^a structural or relational property
pkik^the ik function of the property Pk

a(T)^the state of the set of instances T: <p i ii ,...,pKiK>
a(t)^the state of an instance tE T: <p l ii (t),...,pKiK(t)>
E(t)^the potential state space of each tE T
E(T)^the possible state space of a set of instances T
e^an event: <6(T),6'(T)>
b^a behavioral property: b:P 10...OPK—> p (P 10...0PK)
C^a concept (potential or realized), denoted:

P^pl,...,pK

= <S,R,B>
= <P,B>

CS^a concept structure: {C 1 ,...,CK }
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Object  L evel 

0^a set of objects
U^a set of value surrogates
S*^a structural attribute: { s* ils* ; :0-->U}
ssi^an element of the structural attribute S *

S*0^a set of structural attributes shared by the objects 0
p (0)^the power set of the set of objects 0
p (0 10...00K)^the power set of the Cartesian product of 0 1 ,..., OK

Q s^a subset of p (0 10...00K)
q*^an element of Q*
R*^a relational attribute: {ej lr*i :0-3Q*}
r^an element of the relational attribute R*

R*T^a set of relational attributes shared by the objects 0
Ps^a structural or relational attribute
p*kik^the ik function of the attribute P* k

6(0)^the state of the set of objects 0: <p* lii ,...,p* lac>
a(o)^the state of an object of 0: <p* in (t),...,p*KiK(o)>
E(o)^the potential state space of each of 0
E(0)^the possible state space of a set of objects 0
e^an event: <6(0),6'(0)>
b*^a behavioral attribute: b*:P* 10...OP*K ---> p (P* 10...OrK)
C *^a class (potential or realized), denoted:

p*^p* 1 p*K

= <S*,R * ,B *>
= <P*,B*>

CS*
^

a class structure: {C*1 ,...,C*K }
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