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Abstract

Three methods are used to predict the ion concentrations of a particular station using

the concentrations of the other stations, for the data produced by the National Acidic

Deposition (NADP) Network/ National Trends Network (NTN), during the period of

1983-86. We relate the degree of predictability to the quality of the data. Stations are

ranked in the order in which they would be dropped if the network were, hypothetically,

to be reduced in size. The agreement of the ranks given by different methods is assessed.

Our study uses monthly volume weighted mean concentrations for each of the three

selected ions, investigated one at a time. Since there a large number of stations (86 for

hydrogen, 81 for each of the remaining ions) and only 48 months, analyses was carried

out on clusters of stations. It was not possible to perform an ordinary regression analysis

with a lot of missing data, so the analysis is done with missing values replaced by their

estimates.
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CHAPTER 1

BACKGROUND

1.1 Introduction

The National Deposition/National Trend Network (NADP/NTN) is one of the net-

works which collect rainfall chemistry data in different locations in the U.S. Each

location is called a station and is identified by a station code. Details of the network

and the data are given in the next section. The goal of this study is to assess how well

the rainfall chemistry of a particular station can be predicted from chemistries of other

stations. This information might be used to reduce the size of the network, if the need

arises, by dropping from the network a station whose rainfall chemistry is satisfactorily

predicted from other stations' rainfall chemistries. The rainfall chemistries studied are

the concentrations of 3 ions, namely hydrogen, sulfate and nitrate. In the following

section, we discuss the nature of acidic deposition and its effect on biota.

Various methods of predicting one station's chemistry from others are considered,

namely, ordinary regression, regression using a Bayesian approach and Stone's cross

validatory procedure. Descriptions of each method are included in the next chapter.

Each month's rainfall chemistry at a particular station is predicted from the rest using

each method, one at a time. This is, in turn, used to get a prediction error for each

month, one at a time, for that particular station. The average squared prediction error

at each station is used to assess each station's predictability. The smaller its average

squared prediction error, the easier the prediction of a station. Stations are ranked by

the above criterion. In this way we can rank the stations in the order in which they

might hypothetically be dropped from the network, if necessary. Finally the rankings

from the three different methods plus the rankings of Wu and Zidek (1992) from an

entropy based approach are compared. A brief review of this entropy approach is given
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in Section 1.3. For more details, see Wu and Zidek (1992).

1.2 Effect of Surface Water Chemistry to Biota

The two main negatively charged ions that play a major role in the process of acidic

deposition are sulfate and nitrate. These ions combine with hydrogen ions to form

acidifying chemical compounds (sulfuric and/or nitric acid).

Acidic deposition causes surface water to lose its acid neutralizing capacity (ANC),

which results in increased acidity (lower pH) and increased inorganic aluminum, which

is toxic to aquatic organisms.

The extent to which acidic deposition causes surface water acidification is determined

by the process occurring in the surrounding watershed. When water moves through the

watershed, various processes change their chemical composition. The most prominent

processes that take place are those that neutralize acids and release base cations (posi-

tively charged ions such as calcium and magnesium). One of these processes is mineral

weathering, in which minerals gradually dissolve with the passage of time. The other is

a reaction in which the ions are exchanged in the soil, that is, the acidic hydrogen ion

entering the soil is absorbed in the soil, replacing absorbed base cations, which in turn

are released to the water.

As most surface waters are well buffered, with pH values between 6.5 and 8.0, waters

in which acid neutralizing and acid generating processes are nearly in balance are most

likely to be affected by acidic deposition.

Acidic deposition on surface water increases sulfate. The trend in many areas is that

sulfate concentration increases as the rate of acidic deposition increases. However the

nitrates remain low; although nitrate is a very important compound in acidic deposition,

most watersheds retain it efficiently because of its importance in plant nutriency. On the

other hand as acid inputs to a watershed increase, there is a nearly universal response
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of increase in magnitude of acid neutralizing reactions that produce base cations. In

watersheds almost all of the acid input is neutralized, with no change in pH or ANC

of the surface waters. Even in the most sensitive waters, a substantial fraction of the

acid input is neutralized by the processes that release base cations. As ANC and pH

decrease, aluminum increases. When pH declines, aluminum, which is found in nearly

all soil minerals, is leached from the soils, causing concentrations levels in lakes and

streams to rise. Dissolved organic carbons tend to decrease with increase in acid input.

This process reduces the decline in ANC and pH, thus partially making up for increased

acidity.

The harmful effects on aquatic life are not caused by ANC change alone, because

aquatic organisms respond to many factors. Other factors affecting aquatic organisms

are the change in pH and the release of calcium caused by acidification. The change in

pH is the main variable that affects aquatic life.

Aluminum concentrations are always low in non-acidic waters. When the pH value

decreases below 5.5, the concentration of aluminum increases, very often to toxic levels.

Both a decrease in pH and an increase in aluminum can cause acidification toxic to fish

and other biota.

In very dilute systems, low calcium levels could be stressful to fish, although in

these waters the concentration of base cations increases in response to acidic deposition.

Elevated base cations, especially calcium, may partially mitigate the toxic effects of low

pH and high aluminum. Therefore, as surface water acidifies, the resulting combination

of hydrogen ions, aluminum, and calcium determines the biological effects.

Some types of organisms are sensitive to the chemical changes that accompany acid-

ification and thus can not grow, survive, or reproduce in acidified water. As acidity

increases, these acid-sensitive species perish, resulting in the decline of species richness.
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Phenomenon of surface water chemistry and its effect on biota have been of much

concern to researchers. Data are collected all over the world to enable researchers to

come up with definite conclusions about the response of aquatic life to acidification.

Detail on acidic deposition is found in the National Acid Precipitation Assessment Pro-

gram, 1990 Integrated Assessment Report.

1.3 Network and Data Description

The NADP/NTN is one of the networks in the U.S. which collect data on acidic

deposition. This network collects weekly wet precipitation samples at more than 200

stations. These precipitation chemistry samples are analyzed by the Central Analytical

Laboratory at the Illinois State Water Survey in Chicago, where ion concentrations are

measured. Finally the data are transferred to the Acidic Deposition System (ADS) data

base. This data base was established by the U.S. Environmental Protection agency at

the Northwest Laboratory in the U.S. to provide an integrated centralized data base

for the data collected by atmospheric deposition networks in North America. For more

details about the NADP/NTN network and ADS refer to Olsen and Slavish ( 1986).

Our study uses monthly volume weighted mean ion concentrations rather than weekly

means since there is a large number of weeks with no precipitation. The analysis is done

on one ion at a time using stations with less than five missing monthly volume weighted

means. As a result only 86 stations are used for the hydrogen ion analysis, and 81

stations in the analysis of the remaining ions. The data included in this study were

collected between 1983 and 1986 inclusive, so a total of 48 monthly volume weighted

means are used in the analysis. Because of the small number of monthly volume weighted

means relative to the number of stations, it is necessary to restrict our analysis to small

clusters of stations and proceed from cluster to cluster. The clusters given by Wu and

Zidek (1992) are used. Clustering was done for each ion separately using the k-means
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algorithm of Hartigan and Wong (1979). Given k, the number of clusters, the method

seeks to find k clusters so that the within-cluster sums of squares are minimized. The

method proposed by Krzanowski and Lai (1988) was used to select k, the number of

clusters for each ion. The numbers, k, selected by the method in this study for different

ions, range from three to six. The cluster sizes range from 2 to 47 stations. A logarithmic

transformation of the data was performed prior to the analysis. In certain clusters with

more than 20 stations the number of complete records over all stations is less than the

number of stations in the cluster. For example, the number of complete records in one

of the sulfate clusters with 36 stations is 19. So for the analyses presented in this thesis,

the missing values are replaced by their estimates. More about the estimation of missing

values appears in Section 1 of Chapter 2.

1.4 Review of the Entropy Approach

The purpose of an environmental monitoring network may be difficult to specify

precisely. This presents a dilemma for the designer of such a network. Caselton and

Zidek (1984) argue that the purposes of any network are in essence the reduction of

uncertainty about some aspect of the world. They conclude that a rational design must

minimize entropy, a measure of uncertainty.

The theory of entropy and its potential role in assessing the quality of the data

generated by an existing network are described by Caselton, Kan and Zidek (1990).

If X is an uncertain, i.e. random, quantity or vector of such quantities, and f is the

probability density function of X, then the uncertainty about X is expressible by the

entropy of X's distribution, i.e. by H (X) = E[ — log f(X)1h(X)], where, according to

Jaynes (1963), h is a "measure" representing complete ignorance. The inclusion of h in

this definition of entropy makes this index of uncertainty satisfy the natural requirement

of being invariant under one-to-one transformations of the scale of X. Although the
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uncertainty about X is regarded as being of primary interest, often its distribution is

determined by the conditional density of X, f (•I0), given an unspecified parameter, 0,

which is of interest in its own right. In this case the total uncertainty of (X, 0) must be

indexed. Conditional on the available data, the total uncertainty is then indexed by the

total entropy, defined by

H (X , 0) = —E [log[
f (X, Oldata)

]Idata
i

(1)h(X , 0)

where the expectation is taken over both X and 0, and

f (X, Oldata) = f (X10 , data)r(Oldata), 	 (2)

(01clat a) being the posterior distribution of 0.

To assess the performance of stations in the network using the entropy approach, it

is supposed that hypothetically, a specified number of stations, u, is to be dropped from

the network and only g coordinates of X will be measured in future, with u g = p,

where p is the number of stations. After rearranging subscripts as necessary, let X =

(U, G) where U and G denote, respectively, the u and g dimensional vectors of values

corresponding to the stations which are to be "ungauged" and "gauged". The process of

measurement will eliminate the uncertainty about G assuming the measurement error

to be negligible. The amount of uncertainty so eliminated would be MEAS defined

by MEAS  = — E[log[f (Giclata) I h(G)fidata]. The set of g stations would be chosen to

maximize this entropy (MEAS). It can be shown that this same set of g stations can

be found by minimizing PRED + MODEL, the residual uncertainty remaining after

G is observed, where P RED = —E[log[f (UI0 ,G, data)! h(U)]Iclata] and MODEL =

E[—log[f (0IG, data) I h(0)]Idataj.

The g stations that maximize MEAS are considered to produce high quality data.

On the other other hand, the u stations that maximize PRED + MODEL (the residual

uncertainty after G is observed) are regarded as producing low quality data.
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Wu and Zidek (1992) apply this theory to assess the quality of the same data set

as in our study. The analysis was done one ion at a time, since there are ion-to-ion

differences in data quality. The stations were clustered and the entropy analysis done

within each cluster. This was necessary because the number of stations is greater than

the number of observations (48 volume weighted ion concentration means). If the size of

the network were, hypothetically, to be reduced, then only the selected g stations would

be retained.

In the implementation of the entropy theory, Caselton et al (1992) and Wu and

Zidek (1992) found it was not computationally feasible to find the best subset of g

gauged stations among all p stations in the cluster. Thus a stepwise suboptimization

procedure was used. The first step consisted of finding p — 1 stations which maximize

MEAS. The station left out would be the first one to be dropped from the network,

hypothetically speaking. The next step was to find the p — 2 stations among the p — 1

selected stations in the first step which maximize MEAS, and this yielded a second

station which might hypothetically be terminated. This process continued until just

one station was hypothetically left in the network. This exercise left the stations in

ranked order, starting with the station having the lowest quality data and finishing with

the station having the highest quality data.

Looking at the rank order within clusters, the station identified as having highest

quality data is, in most cases, geographically isolated from the rest of the stations in

the cluster. This seems reasonable since gauging such a station would be expected

to substantially reduce the uncertainty. We may conclude that the entropy approach

is promising as a way of assessing the quality of the data. But this approach has

shortcomings. Entropy is a complex measure of uncertainty and therefore unintuitive.

In addition we do not know how outliers might affect the ranking of the stations. Since
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the entropy approach is not based on a predictive model it does not yield a method

which could actually be used to predict the ion concentrations of the stations which

would be dropped from the network.

To address these shortcomings, a different approach is taken here to determine the

relative quality of the environmental data. In this approach, a station is considered to

yield high quality data if its observations are difficult to predict from observations of

other stations. We do not mean to suggest that we are discrediting the entropy approach

but rather we are aiming at developing a better understanding of it.
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CHAPTER 2

METHODS FOR PREDICTING ONE STATION'S RECORDS FROM

THE OTHERS

2.1 Introduction

A multiplicity of plausible objectives can be foreseen for any data collection network,

and at the same time some important future uses of the data may not be foreseen. This

poses a dilemma as quality represents fitness for intended use (see Caselton, Kan and

Zidek, 1990). As noted in the Introduction, to circumvent this difficulty, Wu and Zidek

(1992) use an entropy based approach to assess the relative quality of the data produced

by each station in a data gathering network, specifically that network which is the the

subject of our study.

The goal of the present study is similar to that of Wu and Zidek (1992) except that

we use a concept other than entropy to define data quality. Like Wu and Zidek (1992),

we look at the data quality for each station as the amount of additional information

provided by the data in that station. However we define the amount of information as

the extent to which the data from a particular station can be predicted from that of the

other stations. A station whose data are hard to predict is considered as adding much

information to the network. We would interpret such a station's data as being of high

quality. By a similar argument, stations whose data are easily predicted are thought

to add little information, which we interpret to mean the data are of low quality. We

could argue that, if there is a need to reduce the size of the network, the stations with

low quality data should be dropped out of the network first.

The methods used in this study to predict one station's rainfall chemistry records

from the others are ordinary regression, regression using the Bayesian approach and

Stone's cross-validatory assessment method (See Stone, 1973). Cross validation is used
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to assess the performance of all the methods.

In all three methods, regression models are constructed to predict the ion concen-

tration of station j from the ion concentrations of the remaining stations in a cluster.

Months are considered as replicates. For instance, the ordinary regression method re-

sults in a regression model for each month i = 1, , 48 and each station j = 1, , p,

where p is the size of the cluster. For fixed i and j the regression model is constructed

using the remaining 47 months as replicates. Thus, there are p parameters to be es-

timated from 47 "replicates". The values of p range from 2 to 47 and, in some of the

larger clusters, p is close to and sometimes even greater than the number of months with

complete observations. For example, in one of the sulfate clusters with p = 36, there

are only 19 months for which all the station values are available. It is not possible to

perform an ordinary regression analysis when there are only 19 — 1 = 18 cases available

to estimate 36 parameters. So our analysis is done with missing observations replaced

by their estimates at the outset: for each cluster, we produce an X matrix of logarith-

mically transformed ion concentrations with no missing entries. These completed data

sets are used for all methods to achieve consistency.

Our strategy for estimating missing observations is discussed in the next section. The

last three sections of this chapter discuss in detail the three methods used to predict a

station's rainfall chemistry from the others.

2.2 Estimation of Missing Observations.

Various methods for estimating missing observations have been proposed by different

authors. Afifi and Elashof (1961) suggest filling in the missing observations for each

variable by that variable's mean. Another method uses regression instead. A variable

with missing observations is regressed on the other variables in the study, using only

complete cases. Regression is done separately for each variable with missing values.
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The estimated regression model is used to impute the missing values. This method is

discussed by Buck (1960) as well as Afifi and Elashof (1961). Stein and Shen (1991)

regressed the logarithm of sulfate concentrations on the amount of precipitation and the

month of the year when precipitation occurred. The model fitted by least squares was

used to impute the missing sulfate values.

A modified regression strategy was used in this study to impute the missing values.

Each station with missing values was regressed on the other stations using only complete

records. But as we saw above, in some of the clusters the number of complete records

was less than the number of parameters to be estimated. So the regression method

needed some modifications before it could be applied to our data. These modifications

are found in a BMDP program, which estimates missing values. The program is called

"Description and estimation of missing data" and is abbreviated as "PAM".

This method uses stepwise regression to select the variables to be used. First, the

variable most correlated with the variable with missing values is chosen to enter into the

regression equation. If the chosen variable meets the "F-to-enter" criterion (explained

below), then the next variable is chosen. The variable chosen next is the one with

the highest partial correlation with the variable with missing values, with the partial

correlation conditional on the variable already used in the equation. This variable must

also meet the "F-to-enter" criterion. Additional variables are chosen in the same manner

until all variables which meet the "F-to-enter" criterion have been used. If, during

stepwise regression, no variables satisfy the criterion for admission into the regression,

the mean of the variable with missing values is used to fill in that variable's missing

values.

The "F-to-enter" criterion is motivated by an approximate test of the coefficient of

any predictor variable. That is, the square of the ratio of the predictor's regression
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coefficient to its standard error is approximately distributed as an F statistic with one

degree of freedom for the numerator. The square of this ratio is compared with the pre-

set "F-to-enter" limit. If the square is greater than this limit, the variable has satisfied

the "F-to-enter"criterion. For further details on this program, refer to BMDP Statistical

Software, 1983 edition, page 217 and Frane (1978b).

2.3 Ordinary Regression Using Cross-Validatory Assessment

Ordinary regression using cross-validatory assessment is one of the methods used in

this study to assess how well each station's rainfall chemistry can be predicted from the

chemistry records of other stations. In this study the sample is divided into two parts.

The first part is used for estimation while the second part is for assessment. The size of

the estimation subsample is taken to be n — 1 (with n = 48) and that of the prediction

subsample to be 1. These are the same subsample sizes used by Stone (1973).

We proceed as follows. One station is selected and its data values designated as

the predictands. The remaining station records provide the predictors. Once a station

is fixed, we set aside one month's record from among the n = 48 monthly records,

and treat this as a "future" month for prediction. Now the data for the remaining 47

months are used as a "training set"; a linear model is fitted by ordinary least squares,

using the 47 months as replicates. The estimated regression equation is then used to

predict the ion concentration of the future month for the designated station, with the

remaining stations' concentrations for that month as predictors. The selected month is

now replaced by another and the process repeated until all 48 months have played the

role of the future month. In this way we obtain 48 predictions and 48 prediction errors

for the designated station. That station is now replaced by another from the cluster

and the whole exercise repeated. A new station now provides the predictands and this

continues until all stations in the cluster have played the designated role. At this point
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we can assess the efficacy of ordinary regression and the relative difficulty of predicting

the records of the various stations from the others.

To state our procedures more precisely let p be the number of stations in a cluster

and n = 48 the number of months in the study. Further let :

x ii be the logarithmically transformed ion concentration for the i th month

in the j th station,

X = (xis ), i = 1,2, ... ,n , j = 1,2, ..., p, be the n x p observation matrix,

= (x ii ,	 , x ip),i = 1,	 , 48, and X. = (x ij ,	 , xnj ) t , j = 1, ...,p,

X-4 be the matrix X with column vector X.i deleted,

• be the matrix X with row vector Xi. deleted,

X-ij be the matrix X with both column and row vectors Xi and Xi . deleted,

• be the column vector X. with the i th month deleted,

Xi- ' be the row vector Xi. with the i th station deleted,

• be the matrix X -ij with a column of ones added as the first column,

be the row vector	 with one added as a first element.

For fixed j and i = 1,2, ... ,48 the dependence of X..7 i on X -ij ,1 is modeled as

3
=	 1 +	

( 3 )

where	 is a 47 x 1 column vector,	 is a 47 x p matrix, /3 is the p x 1 vector

of regression coefficients and U is a 47 x 1 column vector of random errors. Denote the

estimated regression coefficients (which depend on i and j) and predicted value of x ij

by andand XESTJ , respectively. Then ;3: is multiplied by )0' 1 to get XESTi.i . The

prediction error made in predicting x is is given by x i; — XESTi; and denoted by

13



Both XESTij and PEii are on a logarithmically transformed scale. Each station yields

a vector of 48 elements for both predicted values and prediction errors, one element for

each month. The average of the squared prediction errors for each station is used to

assess how well each station's rainfall chemistry can be predicted from that of the other

stations. For fixed station, j, let .1a be the set of indices for which xij was not imputed,

that is, the set of i's for which xij was not missing in the original data set. Then,

the average of the squared prediction errors for station j is calculated using prediction

errors only for months i in I. Since the x i; values for the months with i .13 were

imputed using regression, the prediction errors from these months are omitted from the

average to avoid misleadingly small estimates of the prediction error. Now if we denote

the average squared prediction error of station j by APE; , then

APE.; = (E PEij)/(48 — kj),	 (4)
JET,

where ki is the number of months for which station j had missing data. Stations are

ranked using APE. Within a cluster the station with the minimum value of APE is

ranked first and has the lowest quality data according to the criterion described above.

The station with the highest quality data is the one with maximum APE and is ranked

last.

2.4 Regression Using a Bayesian Approach

In the previous section, a least squares approach is used to estimate the unknown

regression coefficients in predicting one station's ion concentrations from the others. But

if prior information about the regression coefficients is available, then this information

should be exploited to find improved regression coefficient estimates. In this section, we

assume that such prior information exists. Specifically, when station j and month i are

fixed, the model

X cor = X cor r + (I ,

	

(5)
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is assumed, where X,,,„ denotes the matrix of data values centred about station averages.

Prior knowledge on the regression coefficients, (flu, , Pp') is expressed in terms of a

density which is exchangeable, where p' = p — 1. That is, prior knowledge of the

regression coefficients would be unaltered by any permutation of the suffixes. This

implies that our opinion of p; is the same as that of pg .

This idea of exchangeability derives from the work of de Finetti (1964). Lindley and

Smith (1971) apply this idea and give explicit expressions for the Bayesian estimates.

They use the mixture approach to construct an exchangeable prior distribution of the

parameters of interest. This mixture approach is supported by Hewitt and Savage

(1955). To give a simple example from Lindley and Smith (1971), suppose E(y110) = 0,

and E(0 1 ) = II, with var(y2 10) = cr 2 and var(Oi ) = T 2 . If it is assumed that the O's are

exchangeable, then, P, the prior distribution on 0, is of the form

n
PO f) = P(19t1/1)d0(11), (6)

,=i

where P(•111) and OH are arbitrary measures. In the language of Lindley and Smith

(1971), this example is a two stage-model. If in turn, depends on unspecified "hyper-

parameters", then we can have a three stage-model. The choice of the number of stages

to be used depends on the individual.

Lindley and Smith (1971) consider the linear regression model of the form,

Y=Ted-U, (7)

where the prior opinion on Q is exchangeable. We modify their approach by first "cen-

tering" the data about their mean to eliminate the need for an intercept coefficient in

Equation 7. Because of the exchangeability assumption, we can not include the intercept

in the regression, since its inclusion would make the exchangeability assumption unre-

alistic. To be precise, after setting aside the values for the "future month", we subtract
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each station's mean (based on 47 months) from each station's concentrations. Then

we work with these corrected values. This forces the regression line to pass through

the origin. We apply Lindley and Smith's method (1971) with the regression model of

Equation 5, where = X t — 1(E koi x k3 )/47 and 1 is a 47 x 1 vector all of whosej

elements are 1. Each station's values in X;oirjr are obtained from the corresponding sta-

tion's values in X -ij in the same way as X.,0171 r.i . The resulting Bayesian estimate of 13,

,Q*, is then used to calculate the prediction of station j during month i, by,

ii; = (E x0/47 +	 (8)
koi

where Xc7rri. is obtained from	 by subtracting from each element of X27-3 the appro-

priate station average.

Suppose

, a- 2 , cr,3 	N (. X ;,,?r , 0-2	 (9)

where In , is the n' x n' identity matrix and n' = 47. Assume O t = (01 , ... , 9) is

exchangeable and that

,3:71, 4	 N(, 4).
	 (10)

Assuming vague prior knowledge for 	 Lindley and Smith (1971) give an explicit ex-

pression for the Bayesian estimate as

O.* =	 + k((X co t4) t X jr)- 1 ( 1.p , 	(ip')

where k = Q21 , ,3 is the usual least squares estimate, p' is the number of parameters,

and Jp, is a matrix of dimension p' x p', all of whose elements are 1.

In practice a2 and cr,i will be unknown, and they can be estimated from the data.

To estimate a 2 and 4, it is now assumed that a 2 and ai23 , which are independent of 0

and are independently distributed as

v /0.2	 xv2	 (12)
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voAo/a 20	 x2, ,	 ( 13)

(see Lindley and Smith, 1971), where v, A, vo and Ao are prior parameters. The joint

distribution of X -i j) e.14 a-2 and ap2 is given bycorr. 

(0.2)-1/2nexpf _(xc—oirr. —	 dy(xc-oirr.; — xcT,i7.3,.,#)1(20- 2 )} x

	

(4) -112Pexp{—(g —	 — 1)1(24)} x

(0- 2 ) - 2 (P+ 2) exp{—vA/(2a2 )} x (4) - 1 ("+2) ex p{ — v	 I (2a-P}	 (14)

Integrating the joint distribution with respect to e, one calculates the posterior

distribution of 0, u 2 and • 20 , which is proportional to

	(a2 ) _1/2(.+,+2) exp[_ { , A pc_07.2 ,4
 —
	 i3)t(x_i — x.c_02,,,,q)}1(20.2)]

	X COTT	 COT T.3

101
	x(o.i2,3) ,./*+,,A-n exp[_ { ,„A, E (ok — #.) 2 1/(2a 20 )],	 (15)

k=1

where 0.	 (E7;:_ i 13k) (p'). Using the results in Equation 11 and the modal equations

for a 2 and ar23 from the posterior distribution, we get the Bayes estimates of 13, •2 and

20"

	0.* =	 + k*((x;o1r37-) tXc—otrjr ) -1 	— (4 1 )/P1)}:0)

S 2

	

=	 vA (X;oirr.i — X;oirjritT) t (X;;irr. i — X	 ,3*)} I (n' v + 2),

711

2 = { VO APL^ (Qk 13.' ) 2 } API VO 1)7
	 (16)

k=1

where k* = s 2/s4. Lindley and Smith (1971, p17) suggest that the parameters v and vo

may well be small positive numbers and that, in any case, the solution is very insensitive

to changes in these numbers, so that they may be set to zero. In the example in Lindley

and Smith (1971), the values of v and vo were set to zero as well as was the starting

value of k*. The resulting equations were solved iteratively, starting with initial values

for s 2 and 4 or by setting the starting value of k* to zero. The initial value of 0* was
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found via (16) and then used to find the next values of s 2 and 3 2 , and so on. However,

if v and vv are set to zero and if during iteration, the values of the estimates of the

A's become close to each other, then .5 20 becomes very close to zero. Hence k* = ,2 /,2

becomes very big. This can result in an overflow in the computer calculations. From

(16), it can be seen that /3* 0 as k* oo. Thus if a small estimate of /3 is used

in our prediction model, Equation (8), the prediction will be close to the the station's

average. Because of the problem of overflow, we suggest two alternatives of estimating

8. The first alternative is to set voilt o in the last Equation of (16) to a small number

such that vo is negligible and can be ignored in the denominator of the same expression.

This modification keeps the estimate, Sp, bounded away from zero in the iterations. The

second alternative is to not iterate, but rather to pick a value of k* and use it in the

first Equation of (16) to calculate the estimate, /3*.

Because we do not have grounds to prefer one of the alternatives over the other,

both are used. In the first alternative, which we will call Bayesian regression alternative

(1), the initial value of k* is chosen to be zero, as in Lindley and Smith (1971). In

subsequent iterations, vf3 A0 is set equal to 0.1, with vo negligible, so that

7/1

S 20 = {O.1 E(QZ — 0 .*)}1(p + 1).
k=1

In the second, non-iterative alternative which we will call Bayesian regression alternative

(2), we take

S 
= x—i

k	 corr..? —	 Xcorr.j X;o174 13. n + 2 )—

s 20 =	 ()k — 13.) 2 /(" — 1).
k=1

However for a cluster of size two the second alternative can not work, because after

fixing a station, there is only one station as a predictor, and thus p' = 1, and s 20 is

undefined.
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These two approaches are applied to our data to give the Bayesian estimates of

the regression coefficients for each data set constructed by fixing station j and month

i, and using the remaining 47 months to construct a model for the prediction of the

ion concentration of station j. For fixed station j and month i, we get the Bayesian

estimate /3*. This 13* is used to calculate the predicted value of x ii , denoted by 4. We

get the prediction error made by predicting x ii , namely xis — 4. For each station j, we

obtain the vector of 48 predicted values and prediction errors, one for each month. The

average of the squared prediction errors for station j, calculated using only the months

which were not imputed, is used to give the assessment of the station's predictability.

For each cluster, stations are ranked using the average of the squared prediction error.

The station with the minimum average squared prediction error is ranked first, and is

considered as having the lowest data quality. Similarly, the station with the maximum

average squared prediction error is ranked last and considered as having the highest data

quality. The results are included in the Appendix and the discussion is in Chapter 3.

2.5 Stone's Procedure

Both the ordinary regression method and regression based on a Bayesian procedure,

for predicting rainfall chemistry of a particular station from the chemistries of the other

stations, were discussed in the previous two sections. These methods were assessed by

cross-validation. If it is accepted in advance that cross-validation will be used in this

way, then the ordinary least squares and the Bayesian predictors can be modified to

do well in the intended assessment. The resulting predictor differs markedly from that

produced by the previous two methods. It is due to Stone (1973) and we include it in

our study as a competitor to the first two methods.

Stone's procedure begins by choosing a statistical predictor, which is a function of

the data, (y i , t i) i = 1,	 , n, and a parameter denoted by a. Here tf = (t il , . , t i„).
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The parameter, a, is estimated from the data by cross-validation, using a loss function.

This loss function is also used to calculate C+, an assessment of the prediction efficiency.

The score is constructed by calculating yi , a statistical predictor of y i based on the data

set (yi, ti), 1 = 1, , n, 1 i. The assessment score, C+, is the average of the losses

incurred from estimating yi by

We apply Stone's method to each station in a cluster. That is, for each fixed station

j, we take n = 48, is = p —1, yi = x i; and t! = XiTi , the vector of ion concentrations of

the remaining stations in month i. Stone's procedure yields a linear model for predicting

station j's ion concentrations from the other stations', and a score, C;F, which assesses

the predictability of station j. These scores are then used to rank the stations within a

cluster.

In Section 3 of his paper, Stone (1973) gives a number of statistical predictors which

can be used in different problems. In the case of the present study, the statistical

predictor of Stone's Example 3.3 is appropriate. Letting ,5 = {1, , n} the statistical

predictor based on (yi ,	 i E s, is given by:

a, s) = ay + (1 — a)(y. E bk(tik — t•c)),
	 (17)

where	 :7; Ei yi , and the f.k = n	 1 tik, and the bk 's are the estimated regression

coefficients in the least squares multiple regression of y on t. The parameter, a, in the

statistical predictor, is estimated via cross-validation, using squared error loss. That is,

a is chosen to minimize :

n

C(a) n E(yi —	 a, s -1 )) 2 	(18)

where s' = {1,	 , n}/{i}. The value of a so obtained is denoted by a+ (s), and the

resulting model is Equation 17 with a = a+ (s).
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Stone gives the explicit form of a+ (s) corresponding to the selected statistical pre-

dictor and loss function as

ri2 	nri(yi — y)	 r 	ri 	n(yi —
c'+(s) 	(1 — Aii) 2 	(n — 1)(1 — A ii) jj/ 	—	 (n — 1) if 	(19)t_i

where ri is the it' residual in the least squares multiple regression using the data (y i , t i ),

i E ,s, and

A = T(VT) -1V,

where T is the design matrix corresponding to this regression.

The cross-validatory assessment employs C+, which is calculated as follows. For

each i = 1,	 , n, the statistical predictor of Equation 17 is constructed as described

above, but using the reduced data set (yk, tk), k E	 . Thus for each i, we have a

cross-validatory choice of a, a+(s -i ), and an estimate of y i, (t i , cx+	 s-i). The

assessment of predictability is given by

n
C+ = n E(Yi Mi,a+ (s -1),s -i )) 2 .	 (20)

This statistical predictor and assessment procedure are applied in the present study

to each station. The station whose predictability score, C -P, is lowest is the most easily

predicted, so it is considered to have low quality data according to this assessment

procedure. Similarly a station with a larger value of C;E . is hard to predict, and thus is

considered to be producing data of high quality. Stations are ranked from low to high

according to this definition of their data quality. Discussion of the results is given in

Chapter 3. The rankings are given in the Appendix.
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CHAPTER 3

ASSESSMENT OF THE NETWORK AND THE AGREEMENT OF THE

METHODS

The methods described in Chapter 2 were used to assess the quality of the data

described in Section 2 of Chapter 1, obtained over the period, 1983-86; and the results

are presented in this section. The data used in this study were collected by the National

Deposition/National Trend Network (NADP/NTN) which we discussed in Section 2 of

Chapter 1. The NADP/NTN network stations used in this study are tabulated in the

Appendix. For reasons given in Section 1 of Chapter 2, we use the data with missing

values replaced by their estimates as described in Section 2 of Chapter 2. After filling

in the missing values by their estimates, we have a total of 48 volume weighted monthly

average concentrations for each station and ion, and these average concentrations are

used in all the methods.

In Section 2 of Chapter 1, we discussed the nature and the effect of acid deposition.

Our study involves the concentrations of three ions, namely: hydrogen, sulfate and

nitrate. The data were logarithmically transformed, to achieve a more nearly Gaussian

data distribution and to be consistent with the earlier work done on the same data set.

The clusters from the study by Wu and Zidek (1992) are used.

Our results for sulfate ion concentrations will be discussed in detail to illustrate our

findings. This ion is selected for detailed consideration, so that one can compare our

results with those from the entropy based analysis of Wu and Zidek (1992) where the

same ion was selected for detailed discussion. Alongside this focused discussion we shall

be commenting generally on all the ions and their clusters.

Data for sulfate ion concentrations yield 3 station clusters with 37, 36 and 8 stations.

Tables A1.2(a)-A1.2(c) in the Appendix give the ranks of the stations for each cluster
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determined by the methods used in our study and those given by entropy analysis. Also

included in the tables are the average squared prediction errors, an index of quality used

to rank stations. The corresponding measure used to rank stations in entropy analysis

is not included in the tables, because it is not comparable to average prediction error.

To focus our discussion, consider the third sulfate cluster which contains 8 stations,

with identification codes 037a, 059a, 061a, 074a, 078a, 271a, 281a, and 354a. The cor-

responding station names can be found in the Appendix. Table 3.1 below (identical

to Table A1.2(a) in the Appendix, but reproduced here for convenience) contains the

ranks and average prediction errors for the 8 stations in the cluster. Since this cluster

contains 8 stations, a rank of 8 corresponds to the best station, a rank of 7 to the second

best station, and so on. Four of the stations in the cluster (half the cluster size) are

given the same ranks by all the methods. The station with identification code 037a is

ranked first by the three methods used here, as well as by the entropy analysis. For this

station, the average squared prediction errors produced by ordinary regression, regres-

sion using the Bayesian approach and Stone's cross-validatory assessment method are

respectively, 0.1484, 0.2242 and 0.1483. This means that this station (Glacier National

Park, Montana) has the lowest quality (most easily predicted) data according to the

four methods. If there were a need to reduce the size of the network, this station might

be considered first for possible termination. Two other stations in the cluster compete

for "best". Identification codes for these stations are 281a and 354a, with respective

names Bull Run, Oregon, and St. Mary Ranger Station, Montana. Bull Run, Oregon,

is ranked best by the ordinary regression method and Stone's procedure, while both

the Bayesian alternative approaches and entropy rank it second best. St. Mary Ranger

Station, Montana, is ranked best by both the Bayesian alternatives approaches and

entropy, while ordinary regression and Stone's procedure rank it second best.
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Table 3.1: Average Squared Prediction Errors and Ranks in One of Sulfate Cluster

station methods

code

Regression Bayesian 1 Bayesian 2 Stone Entropy

APE rank APE rank APE rank APE rank rank

037a 0.1484 1 0.1343 1 0.1334 1 0.1483 1 1

059a 0.3091 5 0.2683 5 0.2711 5 0.2836 5 4

061a 0.2537 4 0.2354 4 0.2403 4 0.2279 4 5

074a 0.4518 6 0.3693 6 0.3812 6 0.4096 6 6

078a 0.1796 2 0.1635 2 0.1659 2 0.1610 2 2

271a 0.2498 3 0.1979 3 0.1983 3 0.2276 3 3

281a 0.5258 8 0.4044 7 0.4604 7 0.5398 8 7

354a 0.5053 7 0.4773 8 0.4767 8 0.4472 7 8

In general, the four different methods do not give the same best station. However,

as can be seen from the table above, the difference is not very important, since a station

ranked best by one method is either ranked best or second best or third best by the

other methods. Similarly, the ranks for the intermediate stations do not have significant

differences. There is no cluster where a station is identified as the best by one method,

and the poorest by the other methods. If it were literally necessary to select the best

single station it would be necessary to pay careful attention to its selection. One might

well face a decision problem, and other nonstatistical issues might be invoked to resolve

the conflict. For example, the geographical positions of the stations might be taken into

consideration.

It is not unusual for different methods, adopted for a single purpose, to give different

results, or for different judges to give different ranks to various contestants. But it is

important that there be a reasonably strong association between the ranks given by the
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different methods. Below we use association measures to give a more precise assessment

of the agreement of the ranks from the five methods.

We use association measures to assess the degree of agreement between pairs of

ranking methods and among all five ranking methods. This is done within each cluster.

The ten pairwise associations we consider are for ordinary regression with the Bayesian

regression alternative (1) approach, ordinary regression with the Bayesian regression

alternative (2) approach, ordinary regression with the Stone's procedure, ordinary re-

gression with the entropy approach, the Bayesian regression alternative (1) approach

with the Bayesian regression alternative (2) approach, the Bayesian regression alter-

native (1) approach with the Stone's procedure, the Bayesian regression alternative (1)

approach with the entropy approach, the Bayesian regression alternative (2) with Stone's

procedure, Bayesian regression alternative (2) with entropy and Stone's procedure with

entropy approach. We test the null hypothesis that the rankings are random against the

alternative hypothesis that a direct association exists between the ranking methods.

For pairwise associations, Spearman's coefficient of rank correlation is used. The

test statistic is R = 1 — 6 D?/(p3 — p), where D i is the the difference between

the two ranks given the i t ' station, and p is the number of stations in the cluster.

The value of R lies between -1 and 1, where a value of -1 means perfect disagreement

or inverse association and a value of 1 means perfect agreement or direct association,

which is of interest in our study. A value of zero indicates there is no association, that

is neither agreement nor disagreement. For p < 30 exact p-values for the calculated

values of R are given in Table I of Gibbons (1976) while for larger values of p , p> 30,

an approximate normal distribution is used to calculate the p-values. (R-/p —1 is

approximately standard normal under the null hypothesis)

For the five different ranking methods, Kendall's coefficient of concordance is used to
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test the same hypothesis of no association. Three different test statistics are available.

The first of these, denoted by S, measures the departure from lack of agreement and is

given by,

S = 7E[C; — k(p + 1)/21 2 ,	 (21)
J.1

where Ci is the sum of rankings of the jth station and k = 5 is the number of ranking

methods. This quantity is expected to be small if there is no agreement and big if a

positive association exists. But it is difficult to have an intuition about the size of S, so a

second test statistic denoted by W is used. W is a relative measure of association, defined

by W S/S*, a ratio of the observed measure of departure from lack of agreement, S,

to S*, where S* is given by

S* = lE[jk k(p + 1)121 2 .	 (22)

S* is the value of S under perfect agreement. The value of W lies between 0 and

1, where a value of 0 means no association and a value of 1 means perfect agreement.

Accordingly, large values of W call for rejection of the null hypothesis in favor of the

alternative. Since the test statistic, S, is a monotonically increasing function of W, and

is large when W is large and zero when W is zero, the appropriate p-values are the right

tail probabilities. Table K of Gibbons (1976) gives exact right-tail probabilities for S

for p = 3, k < 8, and p = 4, k < 5.

For combinations of p and k that are not covered by that table, an equivalent test

statistic to S and W, denoted by Q, is used. Either of the following two expressions can

be used to calculate Q:

Q	 k(p —1)W,

Q = 12S I kp(p + 1).	 (23)

The distribution of this test statistic, Q, can be approximated by the chi-square distri-
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bution with p — 1 degrees of freedom for large k. As with the test statistic S, Q is also

a monotonically increasing function of W, so the appropriate p-values are also the right

tail probabilities. Details of the association test procedures for both pairwise and any

number, k, of ranking methods is found in Gibbons (1976).

The association measures for all the clusters and all the ions are given in Tables A2.1-

A2.3 in the Appendix. The entries in the table are R for pairwise associations or W

for all five ranking methods, Q or S for all four ranking methods, depending on which

statistic is used to calculate the p-value and, the p-values. Table 3.2 below (identical to

Table A2.2(c) in the Appendix but given a different label to be consistent within this

chapter) contains the association measures for the third sulfate cluster with 8 stations.

Table 3.2: Association measures for the third sulfate cluster

methods being compared R or W Q p-value

regression versus Bayesian 1 0.976 - 0.000

regression versus Bayesian 2 0.976 - 0.000

regression versus Stone 1.000 - 0.000

regression versus entropy 0.952 - 0.001

Bayesian 1 versus Bayesian 2 1.000 - 0.000

Bayesian 1 versus Stone 0.976 - 0.0000

Bayesian 1 versus entropy 0.976 - 0.000

Bayesian 2 versus Stone 0.976 - 0.000

Bayesian 2 versus entropy 0.976 - 0.000

Stone versus entropy 0.952 0.001

all methods 0.981 34.3333 0.000

The values of R and W for this cluster are greater than 0.9. Also the p-values are

less than or equal to 0.001. These results give evidence for the rejection of the null

27



hypothesis of random ranking in favor of the alternative hypothesis. That is, in this

cluster the ranks of the stations given by the all five methods have a strong agreement.

Looking at the association measure, W, for all rankings, in all the clusters, we see that,

for most of the clusters, W is greater than 0.8 and the p-value is less than 0.001 . This

indicates good agreement of the ranks from all the methods. Results for nitrate show

a different pattern from that discussed above. The association measures for nitrate

clusters are relatively low. For example, for one of nitrate clusters with 41 stations W

is 0.5. But the p-value for this cluster is small (0.00001) so this gives grounds to reject

the random ranking hypothesis in favor of the alternative. Generally small clusters of

size less than five have large association measures but relatively large p-values. But this

cannot be used to support the null hypothesis of random ranking, since these clusters

have inadequate sample sizes to yield a reliable conclusion.

This study was motivated by the results of the entropy analysis. The entropy ap-

proach seems to work well in ranking stations on the basis of data quality, but it is

not intuitive. So we seek an intuitive method which gives ranks close to those from

entropy analysis; it could be used in combination with the entropy approach to get a

better understanding of the data. The scatterplots of the p-values against cluster sizes

and relative measures, R, against cluster sizes are used to find out which of the meth-

ods used here is in close agreement with the entropy analysis and to see if agreement

depends on cluster size. The plots are done ion-by-ion. Scatterplots for all the ions are

included in the Appendix. Figures 3.1(a) and Figure 3.1(b) below are scatterplots for

respectively, the relative measure of agreement, R, against cluster sizes and the p-values

against cluster sizes for sulfate ion.

From Figure 3.1(a) we see that the line corresponding to the Bayesian alternative

(1) and entropy is above the other lines and the next highest line is the one correspond-
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ing to Stone's procedure and entropy. This means that the agreement, as measured by

R, between the Bayesian alternative (1) and entropy is higher than for the others. In

addition, the corresponding line in Figure 3.1(b) is below the other lines. This indicates

that the p-values for this comparison are smaller than for the others. These observa-

tions suggest that the ranks produced by the Bayesian alternative (1) approach agree

with those produced by entropy more often than the others. The same phenomenon is

observed with the hydrogen ion rankings except for one cluster in which the ordinary

regression and entropy comparison has a bigger value of R and a lower p-value. But this

one cluster among the six clusters of hydrogen cannot change our conclusion. That is,

even for hydrogen, the Bayesian alternative (1) approach and Stone's procedure agree

strongly with entropy. Nitrate gives exceptional results. For this ion Stone's procedure

seems to rank last in agreement with entropy, but the Bayesian alternative (1) once

again shows strong agreement with entropy.

The scatterplots indicate that there is no consistent relationship between agreement

and cluster size.

The need for diagnostic checking is one of the reasons which motivated this study of

various approaches to assessing data quality. We need to know more about the predicted

values and the prediction errors. We acquire this knowledge by comparing the boxplots

of the predicted values to those of the observed values, and by studying the boxplots of

the prediction errors.

For each cluster, we look at two sets of boxplots. One set of boxplots shows the

observed and predicted values from all four methods used in this study. For easy reading,

we frame the five boxes for each station separately with the station identification code

above the frame. The first boxplot in each frame is for the observed values, while the

second, third, fourth and fifth represent the predicted values from respectively, ordinary
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regression, regression using the Bayesian alternative (1) approach, regression using the

Bayesian alternative (2) approach and Stone's procedure. The second set of boxplots

shows the prediction errors from the four methods used. The same format as above

is repeated. The four consecutive boxes in each small frame represent the prediction

errors for each given station, where the first boxplot in a group is for the prediction errors

from the ordinary regression method, the second and third boxes are, respectively, for

alternative 1 and alternative 2 of the Bayesian approach while the last boxplot represents

the prediction errors from Stone's procedure.

Boxplots for all the clusters are included in the Appendix. Both sets for the third

sulfate cluster are included in this chapter for easy reference, and are labelled 3.2(a)

and 3.2(b) for consistency within the chapter. Figure 3.2(a) is for the boxplots of the

observed and predicted values, while figure 3.2(b) is for the boxplots of the prediction

errors.

From Figure 3.2(a) we see that the dispersion of the predicted values is less than

that of the observed values. Among the predicted values from different methods, those

from Stone's procedure have the smallest dispersion, followed by those from the Bayesian

alternative (1) approach. A careful examination of the plot indicates that the predictions

of Stone's procedure are pulled toward the center of the data. In other words, Stone's

procedure shrinks the prediction towards the center of the data. This phenomenon is

strong in other clusters. Also, in other clusters, the Bayesian alternative (1) approach

reveals the same shrinkage behavior. On the other hand the predicted values from the

ordinary regression method have the widest dispersion and sometimes a dispersion wider

than the observed values. This might be caused by outliers.

From Figure 3.2(b), the boxplots for prediction errors, we see that the prediction

errors from the ordinary regression method have the widest dispersion, while the other
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three methods produce prediction errors with almost the same dispersion. But in other

clusters there are some features which are not present in the cluster we have highlighted

in our discussion. In particular, the dispersions of the prediction errors from the Bayesian

alternative (1) are sometimes smaller than those from Stone's procedure. In general,

however, the Bayesian alternative (1) approach and Stone's procedure compete for the

distinction of having prediction errors with smallest dispersion.
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CHAPTER 4

DISCUSSION AND CONCLUSION

In the analysis of the monthly ion concentrations of stations in the NADP/NTN, we

attempted to determine which station's ion concentrations were most accurately pre-

dicted from the other stations' concentrations. However, our analyses did not answer

the question completely, due to three things. First, the predictability of stations were

ranked within cluster, rather than across the entire network. Secondly, our analyses

were conducted ion by ion. Thirdly, our different methods of prediction (ordinary re-

gression, Bayes regression, and Stone's cross-validatory regression) resulted in different

rankings. It may not be possible to completely resolve these three issues with this data

set. However, we have gotten a clear picture of the relationship between the entropy

approach and our prediction methods.

For each ion the analysis was done in clusters, each of size less than 48. This analysis

by cluster makes the comparison of stations in different clusters impossible. But we argue

that, since ion concentrations in different clusters are statistically different, we would

not expect stations in different clusters to do well in predicting each other. However we

cannot determine a single worst station from the network, since each cluster gives its

own worst station. We suggest a tentative solution to this problem: to take the worst

station from a larger cluster to be the overall network worst station. Since a station to

be dropped out should be redundant, it seems logical to think of a redundant station

coming from a larger cluster. Alternatively one might use geographical knowledge to

make the decision. If one could accurately estimate missing values in the original data

set, then one could use the weekly average concentrations with missing values replaced

by their estimates. This would give us more than the 48 months as replicates, allowing

analysis of the entire network, and hence give only one worst station for each ion. We
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think this idea is feasible since Sten, Shen and Styr (1992) have used multiple regression

to impute missing daily sulfate concentrations. The same problem would arise if we

would want the overall network best station. We do not consider this problem to be of

as much concern as the first one, since the need to retain only one station in a network

is not realistic. But if there are reasons to identify the overall network best station, then

other issues like geographical positions might be invoked in selecting the best station.

We did not carry out a formal analysis to compare each station's ranking in different

ions, so we cannot say that, for instance, all of a particular station's ion concentrations

are difficult to predict. So we cannot give a strong statement, but we have traced worst

and best stations for all sulfate clusters and have given their ranks for each ion using the

different prediction methods. Table 4.1 contains the ranks of the selected stations for

the different ions. Since the clustering depends upon the ion under study, when looking

at the rank of a station, we should note the cluster size to judge whether a station is

towards the worst or the best position. From this table we see that the worst station

as given by one ion is not necessarily the worst for another ion, and similarly for the

best station. But some of the stations are put in the same category in either two of

the ions or in all three ions. By category, we mean a ranking towards either the worst

or best position. For example the station with identification code 025a is towards the

worst position category in sulfate and nitrate while the station with identification code

163a is in the same category (towards the worst) in all three ions. Wu and Zidek (1992)

found ion-to-ion differences in station clustering and station ranking. They pointed out

that those differences might be informative and so resisted the use of a multivariate

analysis at this stage. However, a multivariate analysis might give some indication of

the simultaneous predictability of all of a station's ion concentrations.
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Table 4.1: The Ranks of the Selected Stations in Different Ions.

ion method

station identification code

025a 249a 068a 281a 163a 037a

regression 1 36 37 8 1 1

Stone 2 36 36 7 1 1

sulfate Bayesian 1 1 36 29 7 5 1

Bayesian 2 1 36 37 7 1 1

cluster size 36 36 37 8 37 8

regression 27 33 18 20 6 1

Stone 32 26 19 5 2 4

hydrogen Bayesian 1 31 24 19 6 2 4

Bayesian 2 32 24 19 6 2 4

cluster size 33 33 20 20 18 20

regression 10 7 20 30 11 27

Stone 2 28 20 31 4 19

nitrate Bayesian 1 8 14 20 30 6 16

Bayesian 2 7 4 19 31 5 26

cluster size 41 41 31 31 31 31

For the analysis of each ion within a cluster the different prediction methods' rankings

did not always agree. In Chapter 3 we discussed the agreement of the station rankings

from different methods in each cluster for each ion. It was found that the degree of

agreement is reasonably high. We are interested in knowing which of the three ranking

methods used in our study agrees strongly with those from the entropy based analysis

of Wu and Zidek (1992). We found in Chapter 3 that the ranks from regression using

a Bayesian alternative (1) approach agree with those from the entropy based approach
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more often than the others. This implies that if, by using the entropy approach, a station

found to be producing data of low quality is terminated, then in the future, regression

using the Bayesian alternative (1) approach can be used to predict ion concentrations

of the deleted station.

The close agreement of the ranking based on entropy analysis and the ranking from

the methods used in our study reflects the relationship between the degree of the sta-

tion's predictability and the amount of uncertainty reduced by the inclusion of a station

into the network. That is, a station which is easily predicted will generally not notice-

ably reduce uncertainty when added into the network. Such a station is considered as

producing data of low quality. On the other hand a station which is hard to predict

will generally greatly reduce uncertainty when added into the network. Such a station

is considered as producing data of high quality.

This exercise of ranking stations, starting with the worst station to the best station

does, not mean that there is a worst station in an absolute sense. When we look at

the trend of the average squared prediction errors (APE), we see that there is not

much difference among the APE's for the first few worst stations. But the difference

becomes sharper as we move towards the best station. Figure 4.1, a scatterplot of the

average prediction errors (of cluster 1 of sulfate ) against the ordered rankings, supports

this fact. Another fact revealed by this figure is the close agreement of the average

prediction errors from Stone's procedure and the regression using a Bayesian alternative

(1) approach. These two methods have low average prediction errors when compared

with the other methods. Scatterplots for other clusters for all three ions are included in

the Appendix. This ranking exercise, as pointed out by Wu and Zidek (1992), can only

be used to suggest the station which could be closed if there were budgetary constraints.
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APPENDIX

Table A1.1(a) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 1 of Hydrogen

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

015a 1.9848 16 1.0338 15 1.1952 15 1.0514 15 15

017a 0.6188 8 0.3383 6 0.3962 7 0.3787 7 5

024a 2.23042 17 1.2851 17 1.4310 17 1.2975 17 17

030a 0.37024 3 0.2929 4 0.3007 4 0.3143 4 7

036a 0.5956 7 0.4432 8 0.4952 9 0.4828 9 8

049a 0.3846 4 0.2732 3 0.2858 3 0.2965 3 3

051a 1.1721 13 0.6348 13 8179 13 0.7802 13 13

052a 0.5551 6 0.4543 9 0.4610 8 0.4527 8 10

053a 0.7862 11 0.5383 10 0.5945 11 0.6120 10 11

076a 0.9970 12 0.5514 11 0.7170 12 0.6206 11 9

077a 1.7739 15 1.1356 16 1.2522 16 1.1314 16 16

163a 0.3159 1 0.2261 2 2425 2 0.2370 2 2

252a 0.4828 5 0.3616 7 0.3893 6 0.3747 6 6

253a 0.3353 2 0.2160 1 0.2363 1 0.1979 1 1

258a 0.6336 9 0.3220 5 0.3720 5 0.3331 5 4

268a 1.3925 14 0.7729 14 0.9564 14 0.9725 14 14

283a 0.7388 10 0.5531 12 0.5669 10 0.6377 12 12

339a 2.5667 18 1.9549 18 1.8939 18 1.6876 18 18
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Table A1.1(b) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 2 of Hydrogen

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

010a 1.0896 15 0.6209 13 o.7394 13 0.8512 14 14

011a 0.9865 12 0.5561 12 0.6864 12 0.7569 13 10

012a 1.7235 17 1.0377 16 1.3725 17 1.2563 17 16

016a 1.0326 14 0.7130 15 0.7983 15 0.7188 12 13

037a 0.3457 5 0.2518 4 0.2723 4 0.2668 4 4

038a 2.3707 19 1.4686 18 1.8701 18 1.4813 18 18

059a 0.6713 8 0.3935 7 0.4654 7 0.3520 7 6

061a 0.1679 1 0.1211 1 0.1266 1 0.1220 2 1

062a 3.4879 20 1.6470 20 2.2785 20 1.9624 20 20

068a 2.2189 18 1.6361 19 1.9070 19 1.6308 19 19

074a 0.3380 4 0.2929 5 0.2939 5 0.2885 6 8

078a 1.0004 13 0.5332 11 0.6751 11 0.6500 11 11

172a 0.1815 2 0.1264 2 0.1282 2 0.1001 1 2

173a 0.7678 10 0.4809 9 0.5937 10 0.5093 9 9

255a 1.3043 16 1.0602 17 1.1346 16 1.0255 16 17

271a 0.1905 3 0.1457 3 0.1520 3 0.1532 3 3

279a 0.7196 9 0.4438 8 0.5664 9 0.6342 10 7

280a 0.8923 11 0.6490 14 0.7683 14 0.9509 15 15

281a 0.3760 6 0.3082 6 0.3118 6 0.2765 5 5

354a 0.5384 7 0.5012 10 0.4830 8 0.4112 8 12
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Table A1.1(c) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 3 of Hydrogen

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

007a

035a

070a

1.1711

2.0774

1.2163

1

3

2

1.1696

1.5934

1.1539

2

3

1

1.1837

1.5712

1.1760

2

3

1

1.1278

1.8186

1.1095

2

3

1

1

3

2

Table A1.1(d) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 4 of Hydrogen

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

004a 0.5734 1 0.4583 1 0.4688 1 0.5149 1 1

029a 3.5054 10 2.2386 10 2.6179 10 2.3558 9 9

034a 0.8194 6 0.7349 8 0.7374 7 0.7552 7 8

071a 1.7075 9 1.4480 9 1.5129 9 2.4643 10 10

166a 0.7058 4 0.6485 5 0.6552 5 0.5889 2 2

254a 0.8472 7 0.7255 7 0.7419 8 0.7550 6 4

273a 0.7375 5 0.6436 4 0.6527 4 0.6293 3 6

275a 0.7041 3 0.6008 2 0.6105 2 0.6944 5 3

282a 0.6755 2 0.6275 3 0.6359 3 0.6629 4 7

349a 0.8792 8 0.6991 6 0.7233 6 0.8074 8 5
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Table A1.1(e) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 5 of Hydrogen

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

020a 0.4309 15 0.1250 10 0.1601 7 0.1851 12 12

021a 1.2228 30 0.6873 33 0.7766 33 0.5594 31 31

022a 0.5742 19 0.2189 16 0.3526 14 0.2292 16 22

023a 0.3755 13 0.1311 12 0.1838 10 0.1721 9 9

025a 0.9739 27 0.5283 31 0.7410 32 0.6173 32 26

028a 1.1945 29 0.4046 28 0.6830 27 0.5428 29 32

031a 0.7658 24 0.1811 14 0.3620 15 0.1566 7 20

032a 0.5223 18 0.1411 13 0.1724 8 0.1700 8 13

033a 0.6182 21 0.1816 15 0.3987 18 0.1735 10 16

039a 1.7682 32 0.2804 23 0.4872 20 0.4494 28 30

040a 0.3632 11 0.1001 7 0.1820 9 0.2355 17 10

041a 1.0391 28 0.2714 22 0.4540 19 0.28484 21 23

046a 0.2554 5 0.0919 5 0.1358 5 0.1256 4 2

047a 0.3441 10 0.1139 8 0.1947 11 0.17474 11 6

055a 0.2656 6 0.0948 6 0.2010 12 0.0984 3 7

056a 0.1266 2 0.0892 4 0.1034 3 0.0972 2 3

058a 0.4510 16 0.0849 3 0.1181 4 0.1857 13 4

063a 0.3636 12 0.1302 11 0.2541 13 0.2176 15 14

064a 0.1625 3 0.0806 2 0.0923 2 0.1259 5 8
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Table A1.1(e) Continued

station

code

regression Bayesian  1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

065b 0.1201 1 0.0645 1 0.0905 1 0.0961 1 1

073a 1.7031 31 0.2712 21 0.7115 29 0.5487 30 27

075a 0.3038 8 0.1238 9 0.1473 6 0.1546 6 11

161a 0.6085 20 0.5617 32 0.6372 25 0.7598 33 33

164a 0.7928 25 0.2387 18 0.3891 16 0.4198 27 24

168a 0.3324 9 0.4531 29 0.6983 28 0.3153 22 19

171a 0.6740 23 0.5213 30 0.6705 26 0.2420 18 17

249a 2.2977 33 0.2988 24 0.5887 24 0.4195 26 22

251a 0.4256 14 0.3009 25 0.5016 22 0.3832 25 28

257a 0.9505 26 0.2470 20 0.4876 21 0.3260 24 18

272a 0.6684 22 0.2424 19 0.5166 23 0.2503 20 21

277a 0.2901 7 0.3835 27 0.7221 30 0.1886 14 5

285a 0.2542 4 0.2363 17 0.3905 17 0.2461 19 15

350a 0.4782 17 0.3247 26 0.7305 31 0.3239 23 25

Table A1.1(f) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 6 of Hydrogen

station regression Bayes'anl Stone entropy

code APE rank APE rank APE rank rank

160a 1.5016 1 1.5016 1 1.4745 1 1

278a 1.9126 2 1.9125 2 1.8781 2 2
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Table A1.2(a): Average Squared prediction Errors and Ranks for the Stations

in Cluster 1 of Sulfate

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

004a 0.4139 6 0.1514 3 0.2577 7 0.1512 8 5

010a 0.5927 12 0.3185 25 0.3822 14 0.2303 15 20

01la 0.8626 21 0.2037 16 0.5076 21 0.4108 30 16

012a 0.9378 24 0.4955 34 0.6559 27 0.4509 33 33

029a 0.6013 13 0.2853 22 0.4086 16 0.2763 20 22

030a 0.4442 7 0.3079 24 0.3234 11 0.2680 18 24

034a 0.4524 8 0.1286 2 0.2102 3 0.1356 4 7

035a 0.7034 16 0. 3696 30 0.4618 18 0.3128 23 25

036a 0.5708 10 0.1943 13 0.3089 9 0.1424 6 9

038a 0.6547 15 0.1985 15 0.3573 13 0.2309 16 17

039a 0.9386 25 0.4242 32 0.6640 28 0.4877 35 36

052a 0.7357 17 0.2816 21 0.4071 15 0.3000 22 21

068a 3.1738 37 0.3626 29 1.5558 37 0.5189 36 31

070a 1.7942 35 0.4356 33 0.9571 35 0.4019 29 35

071a 0.8449 20 0.3428 28 0.6376 25 0.3743 28 32

076a 0.9870 26 0.1917 12 0.5618 24 0.2728 19 14

077a 1.1916 31 0.3854 31 0.6642 29 0.3134 31 27

160a 1.2444 32 0.6412 35 0.7963 33 0.7200 37 37

163a 0.1773 1 0.1577 5 0.1482 1 0.1185 1 10
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Table A1.2(a) Continued

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

164a 0.3223 5 0.1818 11 0.2514 6 0.2022 10 13

166a 0.6382 14 0.2902 23 0.4827 20 0.2271 14 8

172a 0.7576 18 0.2284 17 0.3448 12 0.2814 21 29

173a 0.3154 3 0.1681 7 0.2182 4 0.1789 9 2

252a 0.3208 4 0. 1746 9 0.2260 5 0.1285 2 6

253a 0.8422 19 0.1529 4 0.4661 19 0.1419 5 11

254a 1.3770 34 0.2710 20 0.6783 30 0.3467 26 23

255a 1.1435 30 0.6489 37 0.7348 31 0.4369 32 30

257a 0.5785 11 0.1604 6 0.3167 10 0.2579 17 4

258a 0.1.0605 27 0.1800 8 0.5520 22 0.2261 12 18

268a 1.1218 29 0.6447 36 0.9270 34 0.4865 34 34

273a 0.2449 2 0.1973 14 0.1844 2 0.1504 7 3

275a 0.8560 22 0.2527 18 0.6461 26 0.2268 13 12

278 1.3028 33 0.3208 26 0.7546 32 0.3410 24 28

279a 2.3086 36 0.2603 19 1.1182 36 0.3448 25 26

280a 0.9371 23 0.3369 27 0.5617 23 0.3590 27 19

282a 1.1098 28 0.1778 10 0.4526 17 0.2030 11 15

349a 0.4750 9 0.1192 1 0.2893 8 0.1321 3 1
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Table A1.2(b): Average Squared Prediction Errors and Ranks for the Stations

in Cluster 2 of Sulfate

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

017a 1.3291 34 0.1449 23 0.5271 34 0.2528 28 29

020a 0.1888 4 0.0608 2 0.1078 4 0.0843 1 3

021a 0.3333 14 0.1646 26 0.1762 12 0.1181 7 21

022a 0.5234 22 0.1127 17 0.2933 23 0.1222 9 19

023a 0.4187 17 0.1028 12 0.2672 19 0.1168 6 14

024a 0.6716 28 0.1069 14 2899 21 0.1224 10 17

025a 0.1418 1 0.0576 1 0.0901 1 0.0849 2 4

028a 0.3180 12 0.2334 32 0.2201 16 0.2571 29 34

031a 1.3176 33 0.1814 29 0.4555 32 0.2687 31 28

032a 0.6416 27 0.1403 22 0.2983 25 0.1907 22 23

033a 0.4842 19 0.0987 10 0.2341 18 0.1457 13 9

040a 0.4650 18 0.0824 8 0.2211 17 0.2070 23 32

041a 0.3411 16 0.1044 13 0.1637 8 0.1551 15 12

046a 0.1753 2 0.0724 4 0.1288 6 0.1203 8 5

047a 0.2546 7 0.1173 18 0.1725 11 0.1658 20 13

049a 1.1425 32 0.2818 35 0.3762 28 0.3556 33 33

051a 0.6200 26 0.1074 15 0.3843 30 0.2287 26 15

053a 1.3871 35 0.2607 34 0.6844 35 0.2801 32 31
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Table A1.2(b) Continued

station

code

regression Bayesian 1 Bayesian  2 Stone entropy

APE rank APE rank APE rank APE rank rank

055a 0.1759 3 0.0710 3 0.1091 5 0.1058 3 2

056a 0.3197 13 0.0774 6 0.2069 15 0.1463 14 6

058a 0.5563 24 0.1076 16 0.3542 27 0.1588 17 11

063a 0.2831 10 0.1369 21 0.1696 10 0.2126 24 16

064a 0.2331 6 0.0800 7 0.0904 2 0.1114 5 20

065b 0.2114 5 0.0877 9 0.1069 3 0.1113 4 1

073a 0.4927 20 0.1788 27 0.3248 26 0.3566 34 26

075a 0.3340 15 0.0737 5 0.1616 7 0.1614 19 7

161a 0.3083 11 0.1519 25 0.1645 9 0.1581 16 27

168a 0.9466 31 0.2448 33 0.4810 33 0.3853 35 35

171a 0.5840 25 0.1354 20 0.3917 31 0.1766 21 22

249a 1.9059 36 0.4026 36 0.8033 36 0.5058 36 36

251a 0.9152 30 0.1861 30 0.2904 22 0.2146 25 30

272a 0.2783 9 0.1025 11 0.1894 13 0.1289 11 8

277a 0.2635 8 0.1335 19 0.1986 14 0.1449 12 10

283a 0.5486 23 0.2327 31 0.3832 29 0.1608 18 25

285a 0.5149 21 0.1798 28 0.2947 24 0.2379 27 24

350a 0.8198 29 0.1493 24 0.2854 20 0.2680 30 18
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Table A1.2(c): Average Squared Prediction Errors and Ranks for the Stations

in Cluster 3 of Sulfate

station

code

Regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

037a 0.1484 1 0.1343 1 0.1334 1 0.1483 1 1

059a 0.3091 5 0.2683 5 0.2711 5 0.2836 5 4

061a 0.2537 4 0.2354 4 0.2403 4 0.2279 4 5

074a 0.4518 6 0.3693 6 0.3812 6 0.4096 6 6

078a 0.1796 2 0.1635 2 0.1659 2 0.1610 2 2

271a 0.2498 3 0.1979 3 0.1983 3 0.2276 3 3

281a 0.5258 8 0.4044 7 0.4604 7 0.5398 8 7

354a 0.5053 7 0.4773 8 0.4767 8 0.4472 7 8
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Table A1.3(a): Average Squared Prediction Errors and Ranks for the Stations

in Cluster 1 of Nitrate

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

004a 3.044 40 0.1882 9 0.1.2349 38 0.182 15 29

011a 1.999 33 0.3615 26 0.6625 28 0.217 24 32

012a 0.752 14 0.6384 39 0.6911 29 0.326 36 39

020a 2.109 34 0.2576 18 0.7614 34 0.157 8 3

021a 0.999 20 0.2444 15 0.7079 30 0.261 30 17

022a 1.815 30 0.4309 32 0.5707 24 0.210 20 11

023a 0.660 11 0.2570 17 0.3090 12 0.161 9 7

024a 0.782 15 0.4638 34 0.4864 17 0.298 33 37

025a 0.613 10 0.1856 8 0.2672 7 0.095 2 2

031a 1.738 29 0.3347 24 0.4893 18 0.192 17 30

032a 0.461 8 0.2451 16 0.2904 9 0.235 27 20

033a 0.555 9 0.1725 7 0.3006 10 0. 155 6 12

038a 1.471 26 0.6027 37 0.5710 25 0.217 23 21

040a 2.632 37 0.1124 3 0.7176 31 0.162 10 33

041a 0.701 13 0.3007 21 0.3036 11 0.211 21 18

046a 1.522 27 0.1496 4 0.3389 13 0.132 3 5

047a 0.850 17 0.2017 11 0.5010 21 0.171 11 6

051a 1.823 31 0.5791 36 0.7359 33 0.296 32 22
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Table A1.3(a) Continued

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

053a 1.173 21 0.4834 35 0.8777 35 0.417 39 40

055a 0.393 4 0.1682 5 0.2056 5 0.151 5 4

056a 0.952 19 0.1925 10 0.4903 19 0.178 13 10

058a 0.401 5 0.2761 20 0.2590 6 0.172 12 8

063a 0.246 3 0.2021 12 0.1865 3 0.156 7 14

064a 1.462 25 0.1712 6 0.5427 23 0.186 16 13

065a 0.227 2 0.1086 2 0.1122 2 0.134 4 1

076a 0.860 18 0.3605 25 0.4248 16 0.210 19 15

077a 2.716 38 0.7553 40 1.8189 40 0.343 37 38

161a 0.435 6 0.2675 19 0.2726 8 0.234 26 25

166a 0.844 16 0.3775 29 0.5725 26 0.219 25 23

168a 2.435 36 0.4186 31 0.8832 36 0.314 35 31

171a 2.760 39 0.3222 22 0.6364 27 0.201 18 27

249a 0.436 7 0.2332 14 0.2053 4 0.241 28 35

251a 1.265 23 0.3682 27 0.5335 22 0.472 40 36

252a 1.705 28 0.6175 38 0.7186 32 0.284 31 28

253a 2.374 35 0.3954 30 0.9132 37 0.211 22 24

258a 1.263 22 0.2126 13 0.3455 14 0.181 14 16
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Table A1.3(a) Continued

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

272a 1.437 24 0.3252 23 0.4922 20 0.255 29 19

273a 1.920 32 0.8116 41 1.4461 39 0.298 34 34

277a 3.651 41 0.3754 28 1.8964 41 0.512 41 41

283a 0.106 1 0.0525 1 0.0539 1 0.094 1 9

285a 0.684 12 0.4368 33 0.3922 15 0.370 38 26

Table A1.3(b) Average Squared Prediction Error and Ranks for the Stations

in Cluster 2 of Nitrate

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

010a 0.777 4 0.2596 8 0.4208 8 0.299 5 8

017a 0.341 1 0.2267 2 0.2502 1 0.235 1 3

028a 1.511 16 0.8503 26 1.0421 18 0.477 14 10

029a 0.791 5 0.2202 1 0.3050 4 0.465 13 2

030a 2.351 24 0.3922 13 0.9411 16 1.133 27 21

036a 1.201 12 0.3111 9 0.5561 10 0.368 7 6

037a 3.059 27 0.4473 16 1.5074 26 0.659 19 20

049a 1.400 14 0.9118 27 1.2118 25 0.745 21 27

052a 0.569 3 0.2420 5 0.2613 2 0.251 2 5

068a 1.910 20 0.5580 20 1.044 19 0.704 20 26

070a 2.112 22 0.4465 15 0.9874 17 0.394 9 24

071a 0.866 8 0.3748 11 0.4883 9 0.390 8 14
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Table A1.3 (b) Continued

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

073a 1.626 17 0.5946 21 0.8578 14 0.502 15 15

078a 1.421 15 0.4677 17 0.5850 12 0.644 18 13

160a 1.670 18 1.0074 29 1.1883 23 1.023 25 28

163a 1.164 11 0.2510 6 0.3503 5 0.280 4 11

164a 0.393 2 0.2272 3 0.2668 3 0.310 6 7

173a 1.104 9 0.2545 7 0.5617 11 0.403 10 1

254a 1.728 19 0.4967 18 0.8702 15 0.587 17 12

255a 2.831 26 0.3751 12 1.1103 21 0.412 11 16

257a 0.850 7 0.3524 10 0.4157 7 0.453 12 17

268a 2.190 23 1.9298 31 1.9351 29 1.628 30 29

271a 4.333 31 0.3952 14 1.6762 27 0.516 16 18

275a 1.338 13 0.6996 24 1.1334 22 1.077 26 22

278a 2.420 25 0.9904 28 1.2061 24 1.249 29 31

279a 3.426 28 0.7868 25 1.7865 28 1.209 28 19

280a 3.694 29 0.5129 19 2.1104 30 0.872 22 23

281a 4.231 30 1.0187 30 2.4678 31 1.850 31 30

282a 0.811 6 0.2357 4 0.0.4108 6 0.278 3 4

349a 1.921 21 0.6867 23 1.0605 20 0.887 23 9

354a 1.155 10 0.6291 22 0.7954 13 0.997 24 25
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Table A1.3(c) Average Squared Prediction Errors and Ranks for the Stations

in Cluster 3 of Nitrate

station

code

regression Bayesian 1 Bayesian 2 Stone entropy

APE rank APE rank APE rank APE rank rank

059a 0.982 4 0.9444 4 0.9478 4 1.005 4 4

061a 0.911 3 0.8603 3 0.8442 3 0.858 3 3

074a 0.653 2 0.6563 2 0.6572 2 0.737 2 2

172a 0.400 1 0.3996 1 0.4045 1 0.371 1 1
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Table A2.1(a): Association Measures for Cluster 1 of Hydrogen

methods being compared R or W Q p-value

regression versus Bayesian 1 0.952 - 0.00004

regression versus Bayesian 2 0.967 - 0.00003

regression versus Stone 0.961 - 0.00004

regression versus entropy 0.911 - 0.00008

Bayesian 1 versus Bayesian 2 0.989 - 0.00002

Bayesian 1 versus Stone 0.996 - 0.00002

Bayesian 1 versus entropy 0.981 - 0.00003

Bayesian 2 versus Stone 0.994 - 0.00002

Bayesian 2 versus entropy 0.967 - 0.00003

Stone versus entropy 0.975 - 0.00003

all methods 0.975 82.923 0.000

Table A2.1(b): Association Measures for Cluster 2 of Hydrogen

methods being compared R or W Q p-value

regression versus Bayesian 1 0.973 - 0.00001

regression versus Bayesian 2 0.982 - 0.0.000009

regression versus Stone 0.970 - 0.00001

regression versus entropy 0.938 - 0.00002

Bayesian 1 versus Bayesian 2 0.994 - 0.000007
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Table A2.1(b): Continued

methods being compared R or W Q p-value

Bayesian 1 versus Stone 0.980 - 0.000009

Bayesian 1 versus entropy 0.980 - 0.000009

Bayesian 2 versus Stone 0.986 - 0.000008

Bayesian 2 versus entropy 0.967 - 0.00001

Stone versus entropy 0.967 - 0.00001

all methods 0.979 93.011 0.0000

Table A2.1(c): Association Measures for Cluster 3 of Hydrogen

methods being compared R or W S p-value

regression versus Bayesian 1 0.50 - 0.500

regression versus Bayesian 2 0.50 - 0.500

regression versus Stone 0.50 - 0.500

regression versus entropy 1.00 - 0.167

Bayesian 1 versus Bayesian 2 1.00 0.167

Bayesian 1 versus Stone 1.000 0.167

Bayesian 1 versus entropy 0.50 - 0.500

Bayesian 2 versus Stone 1.00 - 0.167

Bayesian 2 versus entropy 0.50 - 0.500

Stone versus entropy 0.50 - 0.500

all methods 0.76 38 0.024
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Table A2.1(d): Association Measures for Cluster 4 of Hydrogen

methods being compared R or W Q p-value

regression versus Bayesian 1 0.927 - 0.000

regression versus Bayesian 2 0.939 - 0.000

regression versus Stone 0.879 - 0.001

regression versus entropy 0.673 - 0.019

Bayesian 1 versus Bayesian 2 0.988 - 0.000

Bayesian 1 versus Stone 0.830 - 0.002

Bayesian 1 versus entropy 0.745 - 0.009

Bayesian 2 versus Stone 0.818 - 0.003

Bayesian 2 versus entropy 0.697 - 0.015

Stone versus entropy 0.782 - 0.005

all methods 0.862 38.804 0.000012

Table A2.1(e): Association Measures for Cluster 5 of Hydrogen

methods being compared R or W Q p-value

regression versus Bayesian 1 0.637 - 0.00016

regression versus Bayesian 2 0.618 - 0.00024

regression versus Stone 0.739 - 0.000015

regression versus entropy 0.810 - 0.000002

Bayesian 1 versus Bayesian 2 0.945 - 0.0000
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Table A2.1(e): Continued

Bayesian 1 versus Stone 0.839 - 0.0000011

Bayesian 1 versus entropy 0.811 - 0.0000022

Bayesian 2 versus Stone 0.813 - 0.0000021

Bayesian 2 versus entropy 0.753 - 0.00001

Stone versus entropy 0.881 - 0.00000029

all methods 0.828 132.42 0.0000

Table A2.1(f): Association Measures for Cluster 6 of Hydrogen

methods being compared R or W S p-value

regression versus Bayesian 1 1.0 - 0.5

regression versus Bayesian 2 1.0 - 0.5

regression versus Stone 1.0 - 0.5

regression versus entropy 1.0 - 0.5

Bayesian 1 versus Bayesian 2 1.0 - 0.5

Bayesian 1 versus Stone 1.0 - 0.5

Bayesian 1 versus entropy 1.0 - 0.5

Bayesian 2 versus Stone 1.0 - 0.5

Bayesian 2 versus entropy 1.0 0.5

Stone versus entropy 1.0 0.5

all methods 1.0 8 -
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Table A2.2(a): Association Measures for Cluster 1 of Sulfate

methods being compared R or W Q p-value

regression versus Bayesian 1 0.705 - 0.000015

regression versus Bayesian 2 0.919 - 0.000

regression versus Stone 0.752 - 0.000004

regression versus entropy 0.713 - 0.000012

Bayesian 1 versus Bayesian 2 0.726 - 0.0000086

Bayesian 1 versus Stone 0.793 - 0.0000014

Bayesian 1 versus entropy 0.847 - 0.0000002

Bayesian 2 versus Stone 0.755 - 0.0000039

Bayesian 2 versus entropy 0.697 0.000018

Stone versus entropy 0.780 - 0.0000019

all methods 0.815 142.61 0.0000

Table A2.2(b): Association Measures for Cluster 2 of Sulfate

methods being compared R or W S p-value

regression versus Bayesian 1 0.973 - 0.000011

regression versus Bayesian 2 0.982 - 0.0000093

regression versus Stone 0.970 - 0.000012

regression versus entropy 0.938 - 0.000022

Bayesian 1 versus Bayesian 2 0.994 - 0.0000074
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Table A2.2(b) : Continued

Bayesian 1 versus Stone 0.980 - 0.0000096

Bayesian 1 versus entropy 0.980 - 0.0000096

Bayesian 2 versus Stone 0.986 - 0.0000086

Bayesian 2 versus entropy 0.967 - 0.000012

Stone versus entropy 0.967 - 0.000012

all methods 0.979 93.011 0.0000

Table A2.2(c): Association Measures for Cluster 3 of Sulfate

methods being compared R or W Q p-value

regression versus Bayesian 1 0.976 - 0.000

regression versus Bayesian 2 0.976 - 0.000

regression versus Stone 1.000 - 0.000

regression versus entropy 0.952 - 0.001

Bayesian 1 versus Bayesian 2 1.000 - 0.000

Bayesian 1 versus Stone 0.976 - 0.0000

Bayesian 1 versus entropy 0.976 - 0.000

Bayesian 2 versus Stone 0.976 - 0.000

Bayesian 2 versus entropy 0.976 0.000

Stone versus entropy 0.952 0.001

all methods 0.981 34.3333 0.000
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Table A2.3(a): Association Measures for Cluster 1 of Nitrate

methods being compared R or W Q p-value

regression versus Bayesian 1 0.394 - 0.0064

regression versus Bayesian 2 0.877 0.0000

regression versus Stone 0.082 - 0.3

regression versus entropy 0.455 - 0.002

Bayesian 1 versus Bayesian 2 0.587 - 0.00010

Bayesian 1 versus Stone 0.033 - 0.4

Bayesian 1 versus entropy 0.638 - 0.000027

Bayesian 2 versus Stone 0.108 - 0.2

Bayesian 2 versus entropy 0.572 - 0.00015

Stone versus entropy 0.241 - 0.06

all methods 0.514 102.73 0.0000

Table A2.3(b): Association Measures for Cluster 2 of Nitrate

methods being compared R or W Q p-value

regression versus Bayesian 1 0.65 - 0.00018

regression versus Bayesian 2 0.897 - 0.00000047

regression versus Stone 0.0411 - 0.4

regression versus entropy 0.664 - 0.00014

Bayesian 1 versus Bayesian 2 0.829 - 0.0000029
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Table A2.3(b): Continued

Bayesian 1 versus Stone 0.002 - 0.49

Bayesian 1 versus entropy 0.799 - 0.0000059

Bayesian 2 versus Stone 0.083 - 0.32

Bayesian 2 versus entropy 0.772 - 0.000012

Stone versus entropy 0.102 - 0.28

all methods 0.567 85.059 0.0000

Table A2.3(c): Association Measures for Cluster 3 of Nitrate

methods being compared R or W S p-value

regression versus Bayesian 1 1.0 0.042

regression versus Bayesian 2 1.0 - 0.042

regression versus Stone 1.0 - 0.042

regression versus entropy 1.0 - 0.042

Bayesian 1 versus Bayesian 2 1.0 - 0.042

Bayesian 1 versus Stone 1.0 - 0.042

Bayesian 1 versus entropy 1.0 - 0.042

Bayesian 2 versus Stone 1.0 - 0.042

Bayesian 2 versus entropy 1.0 - 0.042

Stone versus entropy 1.0 - 0.042

all methods 1.0 125 0.0018
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Table A3: Names and Identification Codes for the Sites Included in the Study

site ID site name site ID site name

004a Fayetteville, Arkansas 070a K-Bar, Texas

007a Hopland (Ukiah), California 071a Victoria, Texas

010a Rocky Mt. Net park, colorado 073a Horton's Station, Virginia

011a Manitou, Colorado 074a Olympic Nat.park, Washington

012a Pawnee, Colorado 075a Parsons, West Virginia

015a Bradford Forest, Florida 076a Trout Lake, Wisconsin

016a Everglades Nat.Pa, Florida 077a Spooner, Wisconsin

017a Georgia Station, Georgia 078a Yellowstone, Wyoming

020a Bondville, Illinois 160a Alamosa, Colorado

021a Argonne, Illinois 161a Salem, Illinois

022a Southern Ill U, Illinois 163a Caribou (a), Maine

023a Dixon Springs Illinois 164a Bridgton, Maine

024a NIARC, Illinois 166a Fernberg, Minnesota

025a Idiaana Dunes, Indiana 168a Huntington, New York

028a Elkmont, Tennessee 171a WalkerBranch, Tennessee

029a Mesa Verde, Colorado 172a American Samoa, American Samoa

030a Greenville Station, Maine 173a Sand Spring, Colorado

031a Douglas Lake, Michigan 249a Bennington, Vermont

032a Kellogg, Micigan 251a NACL, Massachusetts

033a Wellston, Michigan 252a Ashland, Missouri

034a Marcell, Minnesota 253a University Forest, Missouri

035a Lamberton, Minnesota 254a Forest Seed Ctr, Texas
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Table A3: Continued

036a Meridian, Mississippi 255a Newcastie, Wyoming

037a Glacier Nat. Park, Montana 257a Acadia > 11/81, Maine

038a Mead, Nebraska 258 Chassell, Michigan

039a Hubbard Brook, New Hampshire 268a Warren ZWSW, Arkansas

040a Aurora, New York 271a Headquarters, Idaho

041a Chautauqua, New York 272a Purdue U Ag Farm, Indiana

046a Bennett Bridge, New York 273a Konza Prairie, Kansas

047a Jasper, New York 275 Iberia, Louisiana

049a Lewiston, North Carolina 277a East, Massachusetts

051a Piedmont Station, North Carolina 278a Give Out Morgan, Montana

052a Clinton Station, North Carolina 279a Bandelier, New Mexico

053a Finley (a), North Calorina 280 Cuba, New Mexico

055a Delaware, Ohio 281a Bull Run, Oregon

056a Caldwell, Ohio 282a Longview, Texas

058a Wooster, Ohio 283a Lake Bubay, Wisconsin

059a Alsea, Oregon 285a Washington Xing, New Jersey

061a H.J. Andrews, Oregon 339a Bellville, Georgia

062a Teddy Roosevelt NP, North Dakota 349a Southeast, Louisiana

063a Kane, Pennsylvania 350 Wye, Maryland

064a Leading Ridge, Pennsylvania 354a St. Mary Ranger St, Montana

065b Penn State, Pennsylvania

068a Grand Canyon, Arizona
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Figure Al .1(a): Boxplots of Observed and Predicted Values for Cluster 1 of Hydrogen

Legend:
obs=observed, reg=ordinary regression, bay1=regression using a Bayesian alternative (1) approach,

bay2 = Bayesian alternative (2) approach, st= Stone's procedure



0

r)

0

in
O

stobs	 reg	 bay 1	 bay2

0

obs	 rag	 bay 1	 bay2	 at obs	 reg	 bay 1	 bay2 at

method methodmethod

283a

I

04

I	 I	 yEls
i

0

04

obs	 reg	 beyl	 bay2	 st

method

339a

obs	 reg	 beyl	 bay2	 st

obs	 reg	 bay 1	 bay2

Figure A1.1(a): Continued
252a	 253a	 258a

	
268a

method
	

method
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obs=observed, reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2 = Bayesian alternative (2) approach, st= Stone's procedure
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Legend:
obs=observed, reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2 = Bayesian alternative (2) approach, st= Stone's procedure
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Figure A1.1(c): Boxplots of Observed and Predicted Values for Cluster 3 of Hydrogen
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obs=observed, reg=ordinary regression, bay1=regression using a Bayesian alternative (1) approach,
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Figure A1.1(d): Boxplots of Observed and Predicted Values for Cluster 4 of Hydrogen
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Legend:
obs=observed, reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2 = Bayesian alternative (2) approach, st= Stone's procedure
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Figure A2.1(d): Boxplots of Prediction Errors for Cluster 4 of Hydrogen
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Figure A2.2(a): Boxplots of Prediction Errors for Cluster 1 of Sulfate
017a 020a 021a 022a

4iBimi4E0
0

method

023a

I	 I ÷

method

024a
mehod

025a

4p4aE#1*

method

028a

ITIE13+÷
0 0

method

031a

I 	T
 	 Eti I	 11=1

I	 •
4-36+2E*40

Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,
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Figure A2.2(b): Boxplots of Prediction Errors for Cluster 2 of Sulfate
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reg=ordinary regression, bay1=regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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reg=ordinary regression, bay1=regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure



Figure A2.3(a): Boxplots of Prediction Errors for Cluster 1 of Nitrate
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Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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Legend:
reg=ordinary regression, bay1=regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,
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Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,
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Figure A2.3(b): Boxplots of Prediction Errors for Cluster 2 of Nitrate
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Legend:
reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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reg=ordinary regression, bayl =regression using a Bayesian alternative (1) approach,

bay2= regression using a Bayesian alternative (2) approach, st= Stone's procedure
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