
INCORPORATING SEMANTIC INTEGRITY CONSTRAINTS

IN A DATABASE SCHEMA

l)y

Heng-Li Yang

B. Sc., National Chiao Tung University, 1978

M. Commerce, National Cheng Chi University, 1980

M. Sc. (Computer Science), Pennsylvania State University, 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

THE FACULTY OF COMMERCE AND BUSINESS AI)MINISTRATION

We accept this thesis as conforming

to the required sta dard

THE UNIVERSITY OF BRITISH COLUMBIA

August 1992

© Heng-Li Yang, 1992

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of OJIcL 8usiui esc Ad,nmis*iatioJ%
The University of British Columbia
Vancouver, Canada

Date 6’, /792

DE-6 (2/88)

Abstract

A database schema should consist of structures and semantic integrity constraints. Se

mantic integrity constraints (SICs) are invariant restrictions on the static states of the

stored data and the state transitions caused by the primitive operations: insertion, dele

tion, or update. Traditionally, database design has been carried out on an ad hoc basis

and focuses on structure and efficiency. Although the E-R model is the popular concep

tual modelling tool, it contains few inherent SICs. Also, although the relational database

model is the popular logical data model, a relational database in fourth or fifth normal

form may still represent little of the data semantics. Most integrity checking is distributed

to the application programs or transactions. This approach to enforcing integrity via the

application software causes a number of problems.

Recently, a number of systems have been developed for assisting the database design

process. However, only a few of those systems try to help a database designer incorporate

SICs in a database schema. Furthermore, current SIC representation languages in the

literature cannot be used to represent precisely the necessary features for specifying

declarative and operational semantics of a SIC, and no modelling tool is available to

incorporate SICs.

This research solves the above problems by presentillg two models and one subsystem.

The E-R-SIC model is a comprehensive modelling tool for helping a database designer in

corporate SICs in a database schema. It is application domain-independent and suitable

11

for implementation as part of an automated database design system. The SIC Repre

sentation model is used to represent precisely these SICs. The SIC elicitation subsystem

would verify these general SICs to a certain extent, decompose them into sub-SICs if

necessary, and transform them into corresponding ones in the relational model.

A database designer using these two modelling tools can describe more data semantics

than with the widely used relational model. The proposed SIC elicitation subsystem can

provide more modelling assistance for him (her) than current automated database design

systems.

U’

Table of Contents

Abstract ii

List of Figures xi

Acknowledgement xii

1 Introduction 1

1.1 Database Design 1

1.2 Semantic Integrity Constraints 3

1.3 SICs, “Constraints” and Transactions 4

1.4 Enforce Semantic Integrity Constraints via Application Software 8

1.5 Embed Semantic Integrity Constraints in a Database 10

1.6 The Research Questions, Objectives, Methodology and Scope 12

1.7 Contributions 17

1.8 The Dissertation Outline 19

2 Review of Previous Work 20

iv

2.1 SIC Classification.

2.1.1 Classification Based on

2.1.2 Classification Based on

2.1.3 Classification Based on

2.1.4 Classification Based on

2.1.5 Classification Based on

2.1.6 Classification Based on

2.1.7 Classification Based on

2.1.8 Classification Based on

2.2

2.3

2.4

2.5

Explicitness

Applied Objects

Operation Type

Precondition

Certainties of SICs

Violation Action

Enforcement Schedule .

Dynamics

21

21

22

25

26

26

28

29

31

34

34

38

40

41

3 A Model for Representing Semantic Integrity Constraints

3.1 An Overview of the Representation Model

3.2 SIC Name

43

4351

2.1.9 Summary of Comments on SIC Classification

SIC Representation

SIC Verification

SIC Reformulation and Decomposition

Automated Database Design Aids for Eliciting SICs

v

3.3 Certainty Factor (F) 53

3.4 Object (0) 54

3.5 Operation Type (T) 55

3.6 Precondition (C) 55

3.7 Predicate (P) 56

3.8 Violation Action (A) 57

4 The Application of the SIC Representation Model 61

4.1 Completeness of a SIC Specification for Database Design 61

4.1.1 Not Fewer Components 63

4.1.2 No More Components 69

4.2 SIC Abstractions 76

4.3 Database Management 80

4.3.1 SIC Management 80

4.3.2 Other Aspects of Database Management 84

5 An Extended E-R Model Incorporating Semantic Integrity Constraints 86

5.1 Problems with Previous E-R Models 86

5.2 An Overview of the E-R-SIC Model 88

vi

5.2.1 Primitive Modelling Constructs 88

5.2.2 Data Abstractions 92

5.2.3 Basic Properties of SICs 97

5.3 Entity Attribute SICs 104

5.4 Entity SICs 106

5.5 Relationship SICs 109

5.5.1 Necessary Conditions 112

5.5.2 Sufficient Conditions 118

5.6 SICs Implied by Implicit Relationships and Data Abstractions 20

5.7 Summary of the E-R-SIC Model 124

6 The Application of the E-R-SIC Model 130

6.1 An Example of Using the E-R-SIC Model 130

6.2 Potential Pitfalls of Using the E-R-SIC Model . . . 137

6.3 Data Integrity Semantic Completeness 140

7 A Proposed Database Design Aid for Eliciting SICs 144

7.1 An Overview of the SIC Elicitation Subsystem . . . 145

7.2 SIC Verification . 149

rjj

7.2.1 Consistency and Nonredundancy Rules for SIC Types 155

7.3 SIC Reformulation and Decomposition 157

7.3.1 Representation of Generic SICs 161

7.4 Transforming SICs to Relational Form 165

8 Conclusions and Further Research 170

8.1 Conclusions and Contributions 170

8.2 Future Research Extensions to this Dissertation 172

Bibliography 176

Appendices 193

A BNF Descriptions of the SIC Representation Model 193

B Summary of the Predicates used in this Research 198

B.1 Input Predicates 198

B.2 Manipulation Predicates 203

C BNF Descriptions of the Simplified Format 210

D SIC Type Classification in the E-R-SIC Model 213

viii

E Examples of Heuristics 225

F Verification of Aggregate Attribute SICs and Cardinalities 227

F.1 Simple Tests on Aggregate Attribute SICs 227

F.2 Algorithms for Verifying Cardinalities 228

G Consistency and Nonredundancy Rules for SIC Elicitation Subsystem 231

H SIC Reformulation and Decomposition Algorithms 236

11.1 Find the Relevant Object and Operation Components 236

H.2 Write the Proper Precondition and Predicate Components 240

H.3 Suggest the Violation Action Component 245

H.4 Generate the SIC Name 246

I Some Examples of SIC Reformulation and Decomposition 248

J Generic SIC Representation in the E-R-SIC Model 254

K Algorithms Transforming SICs to Relational Form 266

K.1 Transform the SIC Representation 266

IK.2 Construct SIC Name Sets for the Foreign Key Update 269

ix

L Some Examples of Transforming SICs to Relational Form 270

M Generic SIC Representation in the Relational Model 276

x

List of Figures

1.1 A Proposed Automated Database Design Subsystem for Eliciting SICs . 16

5.1 Grouping: Member (M), Derived Set (DS), Indexing Entity (I), Indexing

Relationship (R) 97

5.2 A Line Layout Context 110

5.3 A Sta.r Layout Context 111

5.4 A Loop-2 Layout Context 111

5.5 A Loop-n Layout Context 112

5.6 What is in the database? 125

5.7 Single Entity Attribute SICs 126

5.8 Single Entity SICs 127

5.9 Relationship SICs 128

5.10 SICs Implied by Implicit Relationships and Data Abstractions 129

6.1 All Example: A Car Dealership Database. 131

xi

Acknowledgement

I wish to take this opportunity to express my sincere gratitude to all members of my

dissertation committee, Professor Alvin Fowler, Dr. Robert C. Goldstein, Dr. Veda C.

Storey, Dr. Yair Wand, and Dr. Carson Woo. In particular, I am especially indebted to

my research supervisor, Dr. R. C. Goldstein, for his patience, support and countless hours

of valuable discussions. I am also grateful to Dr. V. Storey because she suggested this

great research topic and gave her opinions all the way. Many thanks go to Dr. Y. Wand

for his critical and stimulating comments. I appreciate Dr. C. Woo for his comments

on the dissertation organization and Professor Al. Fowler for his practical suggestions.

In addition, I would like to thank my friend, Dr. Hsueh-Ming Hang, and all staff of the

inter-library loa.n division of UBC Library, for their helping collect the related literature

in the early stage of this research. Finally, I thank my parents for their love and support

all the time.

xii

Chapter 1

Introduction

1.1 Database Design

Database management systems (DBMSs) have been available for more than two decades.

However, database design has also been recognized as a task with a high level of com

plexity ([Obretenov, et al., 1988]) and has often been referred to as an art rather than a

science ([Holsapple, et al., 1982]). Database design is the process of modelling the infor

mation requirements of a real-world application and mapping them onto an underlying

DBMS. Database design must go through the following phases: (1) information require

ment elicitation, during which requirements for knowledge of a real-world application are

determined; (2) conceptual database design, which produces a high-level representation

of the requirements independent of the DBMS that will be used, e.g., the output might

be expressed as an Entity-Relationship (E-R) model; (3) logical database design, which

produces a logical schema that corresponds to the data model of the chosen DBMS, e.g.,

the output might he expressed as a relational data model; and (4) physical database

design, which transforms the logical design into a form that is suitable for the given

hardware and DBMS, and considers efficiencies of storage and processing.

Traditionally, database design has been carried out on an ad hoc basis ([Bouzeghoub

et al., 1985], [Goldstein, 1985j). It has usually been performed by a human “database

1

Chapter 1. Introduction 2

design expert”. The weaknesses of the traditional approach are that: (1) it is a difficult

task and expert database designers are scarce; and (2) the design of a database is done by

someone who is unfamiliar with the application domain, instead of end-users ([Storey and

Goldstein, 1991]). Recently, a number of computerized systems have been developed for

assisting the database design process ([Ram, 1989], [Storey and Goldstein, 1990]). Some

of those can be classified as knowledge-based or expert systems; others are automation

tools. Those systems are designed for assisting conceptual and/or logical design processes.

Some even provide help for physical database design. Automation of database design

process can help overcome the problems of the above traditional approach by codifying

the database design methodology in a computer program.

However, some major problems remain. First, only a few of the above automated

systems try to help a database designer incorporate semantic integrity constraints in

a database schema ([Yang and Goldstein, 1989]). Many types of semantic integrity

constraints have never been identified by any system. Furthermore, as observed by

Troyer [1989, p. 423], “constraints often considered as first class citizens in the conceptual

modelling seem to become pariahs during the transformation [from a conceptual schema

to a relational schema]”. Second, those automated systems usually only consider database

states and static properties. They seldom consider the behaviour of a database, that is,

the state transitions and dynamic properties. Some systems (e.g., E2R [Kozaczynski

and Lilien, 1988] and EXIS [Yasdi and Ziarko, 1987]) model the behavioral semantics by

transaction modelling or event modelling. Dynamic semantic integrity constraints, which

place restrictions on database transitions, have not really been treated as constraints on

data.

Chapter 1. Introduction 3

1.2 Semantic Integrity Constraints

Semantic integrity is concerned with the logical meaning (i.e., the intension) of stored

data and preserving the correctness of database contents even though users and applica

tion programs try to modify it incorrectly ([Fong and Kimbleton, 1980], [Fernandez, et

al., 1981]). A database schema consists of structures and semantic integrity constraints

(hereafter abbreviated as SICs) ([Tsichritzis and Lochovsky, 1982], [Frost, 1984]). The

structure part tells us relatively little information other than the basic structure what

elementary items of data are grouped into what larger units; but the SIC part provides

information about all allowable occurrences — current and future ([Morgenstern, et al.,

1989]). These SICs express data integrity semantics, that is, the part of the meaning of

stored data needed to determine correctness. They are invariant restrictions on the static

states of the stored data and the state transitions caused by the primitive operations:

insertion, deletion, or update. They express what is and is not allowed in the part of the

universe that is represented by the stored data’.

Traditional database design techniques focus on structure and efficiency. The rela

tional database model is the popular logical data model with a good theoretical founda

tion. Data dependency (e.g., functional dependencies, and multivalued dependencies) the

ory has been well-formalized in the literature (e.g., [Delohel, 1978], [Ullman, 1982]). How

ever, data dependencies only capture part of semantic integrity. A relational database in

fourth or fifth normal form may still represent little of the data semantics, that is, the

meaning of stored data. In addition, as observed by Kent [1979, p. 127], “The assurnp

tion teiids to be that functional dependencies (if specified at all) have been used during

the design phase of the database to insure that relations are in third normal form, and

‘SICs also provide information that can be used to determine the most appropriate structure for the
schema.

Chapter 1. Introduction 4

then discarded. They do not seem to be present at run time to explain the semantic

structure of the data.”

Limitation of SICs Although a database with embedded SICs would be more correct

than the same one without SICs, the absolute correctness of the database is still not

guaranteed. For instance, a user might incorrectly update the salary of an employee but,

as long as it was within the range allowed by the SICs, it would still be accepted by

the DBMS2.Also note that enforcement of a SIC is based on the assumption that all

data already stored in the database are correct. If we know that some data were entered

incorrectly, the related SICs may need to be turned off in order to correct these errors3.

In addition, SICs are passive restrictions on data. By incorporating violation actions

to alter other objects when a SIC is violated, one can make the database more active

([Morgenstern, 1983]). However, a SIC can only trigger some action when it is violated.

1.3 SICs, “Constraints” and Transactions

The reader should be cautious that in the literature the word “constraints” is sometimes

used to include all abstract relationships between objects in an information system, e.g.,

the correctness of mapping to physical storage, and those preserving reliability, concurrent

consistency, and security. The SICs discussed in this dissertation are a proper subset of

2Similarly, Thompson [1989, P. 95] points out that “a semantic database does not, and cannot,
provide meaning, or strong-semantics, but it provides contexts within which it is possible for data to be
meaningful”. He names these contexts as weak-semantics. This dissertation does not adopt that term,
but the reader should be cautious of the limitation.
3For instance, if a SIC states “salary never decreases”, an update from $12,000 to $10,000 will be

rejected. However, it is possible that the $12,000 was entered incorrectly the first time. The SIC must
be turned off in order to correct the input error.

Chapter 1. Introduction 5

these more general “constraints” (e.g., [Shepherd and Kerschberg, 1986]) “laws”, or “sub-

laws” ([Paulson, 1989], [Wand and Weber, 1988; 1989; 1990]). The following are some

kinds of “constraints” that are not dealt with in this research.

Other Database Constraints In a database management system, there are at least

four major aspects to the prevention of errors in a database environment: reliability,

concurrent consistency, security, and semantic integrity ([Hammer and McLeod, 1975],

[Eswarn and Chamberlin, 1975]). Reliability is concerned with errors due to the mal

functioning of system hardware or software. Concurrent consistency is the prevention of

inconsistencies that may arise due to concurrent processing (in which multiple processes

concurrently operate on shared data). Security deals with preventing users from access

ing and manipulating the data in unauthorized ways. Although unauthorized updates

to the database are sometimes said to violate the “integrity” of the system, this type of

error is a security problem and is not considered in this research.

Non-database Constraints Database design is part of information system develop

ment, which is the process of modelling a portion of the real world and transforming it

into an implemented artifact to deal with information processing functions in an organi

zation. SICs are facts about the stored data ([Oren, 1985]) and are used to capture data

integrity semantics ([Dampney, 1988]). However, data integrity semantics do not include

all information system semantics, that is. knowledge represented in the information sys

tem. Some constraints are inherent to application programs or transactions rather than

data ([Flemming and Halle, 1989, p. 140]).

Chapter 1. Introduction 6

Transaction Modelling Data-oriented system modelling has long been criticized

for focusing only on static properties of an information system. There is ongoing research

on how to add dynamics to data-oriented modelling. For example, the ACM/PCM (Ac

tive and Passive Component Modelling) uses SHM+ (the Extended Semantic Hierarchy

Model) to include both structural and behavioral properties ([Brodie and Ridjanovic,

1984].) The popular conceptual modelling tool, the E-R model, has also been extended

to model behavioral aspects of the real world by defining transactions or events (e.g.,

applying the Petri Nets technique [Sakai, 1983a], [Solvberg and Kung, 1986]). A trans

action, sometimes called an application-oriented operation (e.g., “hire”) ([Casanova and

Furtado, 1984]), consists of one or more database querying and/or altering primitive op

erations that must be treated as an atomic unit, and reflects changes and “happenings”

in the real world. In transaction modelling, transaction specifications often include pre

conditions and post-conditions. The pre-conditions specify what must be true before the

transaction can be applied. The post-conditions specify the actions to be taken and the

test-conditions that should be true after the transaction.

Transaction-driven Constraints An information system is an artifact that relies

on transactions to track changes in the real world. SICs place logical restrictions on

stored data and are independent of any particular transaction. Transaction-driven con

straints are inherent to transactions rather than data, and assure consistency between

the information system and the real world. A transaction-driven constraint requires that

when a change or “happening” occurs in the real world, a transaction must be performed

4Similarly, there are some information system development methods, e.g., the Z approach ([Spivey,
1988]) and VDM (Vienna Development Method) ([Jones, 1986]) to express formal specifications of static
and dynamic aspects of information systems by modelling transactions or events.

Chapter 1. Introduction

to modify the database faithfully. For example, pre-conditions of a transaction may in

clude some procedural or manual checks (e.g., issuing a message to ask whether there

are signed documents or calls from customers). They are more prone to change as an

organization evolves. They might include rules on some objects (e.g., virtual fields) in

the information system that are not modelled as stored data in the database. They are

likely to require a great deal of human checking since they may involve non-data objects

(e.g., the above mentioned signed documents).

Note that because a transaction consists of primitive operations, it must also con

form to all of the SICs on data. It might be inefficient to enforce SIC checking when a

transaction is performed. It is possible to design an algorithm to transform SICs into the

pre-conditions and post-conditions of transactions. For example, Lipeck [19861 describes

some general rules for these transformations based on his temporal logic language for dy

namic SICs. In fact. most of the usual pre- or post-conditions of transactions discussed

in the database literature are transformed SICs rather than true transaction-driven con

straints.

To illustrate, consider the following example. A clerk receives a telephone call from a

customer to place an order. A transaction-driven constraint stipulates that a transaction

“new-order” must be performed. It may stipulate that the transaction must be performed

exactly according to the memo written by the clerk or the cassette recording of the call.

In addition, it may stipulate that the transaction should be performed immediately by

the clerk or in batch during the night by a computer operator. If the transaction is to

be performed, a record of the order is to be “inserted” into the database. SICs would

then check the attributes of an order, the existence of the customer in the database,

etc. However, since SICs are intensional expressions, they do not, in general, restrict

when an order must be put into the database or to whom the order should be shipped,

chapter 1. Introduction 8

etc. In this example, in practice, it would also be impossible to use a SIC to increase

automatically the customer’s account balance by the total price of the order unless all

past orders and payments are kept in the database to allow evaluation of an invariant

formula among these objects5. Sending a bill to a customer may also involve a number

of transaction-driven constraints in addition to SICs.

1.4 Enforce Semantic Integrity Constraints via Application Software

In traditional data modelling, database design is concerned with the structure of the data

and most integrity checking is left to the application programs (procedures). Fernandez,

et al. [1981, p. 109] identify the problems of relying on application programs for integrity

checking as follows.

• Checking is likely to be incomplete because the application programmer may not

be aware of the semantics of the complete database;

• Each application program must trust other programs that modify the database —

one rogue program could corrupt the whole database;

• Code to enforce the same SICs occurs in a number of programs, wasting program

ming effort and risking inconsistencies;

5One should note that statement-i “the new customer balance is equal to its old balance plus total
price of the order” is not an invariant assertion of a SIC for updating Customer.Balance. That statement
is specific for the transaction, New_Order, to update the Customer.Balance, and does not apply to other
transactions (e.g., a new payment by the customer or an update of the Order. TotaiPrice), which also
access these same data objects (i.e. Customer.Balance or Order. TotaiPrice). The invariant formula in
this example would be that Cttstomer.Balance is equal to the sum of Order. TotaiPrice minus the sum
of PaymenLAmount. However, this formula will normally be inefficient to check. For efficiency reasons,
we may transform this formula into pre- or post-conditions on transactions. For example, statement-i
would be a post-condition of the New-Order transaction.

Chapter 1. Introduction 9

• The criteria for integrity are buried in procedures and are therefore hard to under

stand and control;

• Primitive operations (update, insert, and delete) performed by users of high-level

query languages cannot be controlled.

Fleming and Halle [1989, p. 140] state that traditional modelling methods typically

leave the definition of SICs to application development rather than to database develop

ment. This application-driven method raises three dangers as outlined below:

• A user may define the SICs too narrowly, reflecting only the needs of the immediate

application;

• Multiple users interested in different applications may have different perspectives

on SICs. Thus they may define inconsistent or even conflicting SICs as part of the

application specifications;

• Maintaining correctness and consistency across SICs implemented via multiple ap

plications may be extremely difficult (or impossible) to accomplish as applications

evolve and new applications arrive.

In summary, Fernandez et al., and Fleming and Halle identify the disadvantages of

enforcing integrity via the application software as: incomplete, inconsistent, redun

dant, incorrect, hard to understand and control, and difficult to maintain.

Using the database embedded SIC approach will overcome these disadvantages.

Chapter 1. Introduction 10

1.5 Embed Semantic Integrity Constraints in a Database

Database Approach Compared to traditional information processing before the de

velopment of database concepts, the database approach is claimed to have the following

advantages [Goldstein, 1985, p. 8]:

• Controlling data duplication and inconsistency;

• Facilitating the sharing of data among applications;

• Assisting the coherent management of data as a basic organization resource;

• Increased programmer productivity;

• Increased applications’ reliability;

• Enabling quick, economical response to ad hoc requests for information;

• Protecting data from damage or unauthorized access;

• Providing data independence.

It is not surprising to find that the disadvantages of enforcing integrity via the appli

cation software criticized by Fernandez et al., and Fleming and Halle are similar to the

disadvantages to distributing stored data to separate files instead of a database. The full

advantages of the “true database approach” are still not achieved if only the corporate

wide “data” are included in the database, but the corporate-wide SICs are distributed

to separate application programs.

Chapter 1. Introduction 11

Behavioral Modelling As stated in the previous section, research has been ongoing

to enhance data-oriented system modelling by incorporating some behavioral modelling

methods to model the state transition and dynamic properties of an information sys

tem. Some researchers claim that transaction modelling is part of database design (e.g.,

[Brodie, 1986], [Brodie and Manola, 1989]). Some researchers even propose using trans

action specifications to replace SIC specifications (e.g., [Abiteboul and Vianu, 1985],

[Lipeck, 1986]). However, even if we agree that a “complete” database design includes

transaction modelling, there would be some disadvantages of distributing SICs to sepa

rate transactions (e.g., redundancy and maintenance problems) that are similar to the

case of distributing SICs to separate application programs. Both dynamic and static

SICs are logical restrictions on data and should be embedded in a database.

In summary, this research assumes that transaction modelling is still valuable, but

SIC specifications are fundamental to behavioral modelling. The position of this research

is similar to the idea of having both specifications in the BASIS approach ([Leveson et al.,

1983]), the idea of hierarchical levels of database specifications proposed by de Castilho,

et al. [1982] and Casanova and Furtado [1984], and the hierarchical specification layers

used in the CADDY design environment ([Hohenstein and Hülsmann, 1991]). That is, a

“complete” database design will produce the two levels of specifications as follows.

1. First-level specifications form the database schema that consists of structures and

SICs. These are data-driven and tend to be more fundamental (stable) since they

are not affected by the addition or deletion of transactions;

2. Second-level specifications consist of the specifications of transactions. The pre

conditions and post-conditions provide an effective way of implementing SICs and

may contain some transaction-driven constraints.

Chapter 1. Introduction 12

Knowledge-based Perspective Databases have been criticized for lacking abstract

knowledge6 ([Wong and Mylopoulos, 1977], [Bubenko, 1980]), and inference capabilities

([Wong and Mylopoulos, 1977], [Brodie, 1986]). Recently, the development of knowledge-

based systems (KBS) provides useful insights for database research. Some researchers

(e.g., Jarke and Vassiliou [1984], Missikoff and Wiederhold [1986], and Kennedy and Yeh

[1990]) have recognized that a KBS can provide a DBMS with better semantic modelling,

reasoning ability, improved user interface, etc. A special type of system, expert database

system, has been proposed to integrate a knowledge-based system (expert system) with a

database system ([Missikoff and Wiederhold, 1986]). The approach to embedding SICs in

the database fits this new trend. SICs are abstract knowledge that can be used to provide

deductive capabilities to a database, that is, make a DBMS appear more “intelligent”.

An obvious example is the case where SICs are used to reduce knowledge-based query

evaluation costs ([Brodie, 1986]). For example, some queries can be answered using oniy

the semantics expressed through SICs ([Chakravarthy, et al., 1987]).

1.6 The Research Questions, Objectives, Methodology and Scope

Recently, a number of semantic data models (e.g., [Hull and King, 1987], [Peckham and

Maryanski, 1988]) have been proposed to overcome the weaknesses of traditional data

models (i.e., the hierarchical, network, and relational models) in modelling the semantics

of the real world. However, semantic integrity constraints have not received the attention

they deserve. The relational model is still the most popular logical data model. Almost

all research on semantic integrity constraints in the literature is confined to exploring

6Bubenko [1980] defines two kinds of knowledge: (a) concrete knowledge is seen as facts, statements
concerning individual phenomena, entities or relationships in the model of the environment; (b) abstract
knowledge denotes such information which augments our interpretation of concrete information and by
which we can draw inferences, conclusions of other facts.

Chapter 1. Introduction 13

the efficient enforcement (checking) methods for a few kinds of SICs in a relational

database or deductive database. No suitable language exists to represent the features

of SICs precisely: certain or uncertain; for what data object; operation-independent or

operation-dependent; conditional or unconditional; strong, soft or self-correcting; and

static or dynamic7.

Research Questions Based upon the above observation, this research addresses the

following questions:

Is it possible that the features of SICs can be precisely represented by some

language when using an E-R model for conceptual modelling and a relational

model for logical modelling?

Can we provide a model to incorporate the necessary SICs in a database

schema during conceptual modelling?

Can we help a database designer capture these SICs by providing automated

tools?

Research Objectives To answer the above research questions, the following specific

objectives were established.

1. To develop a precise SIC Representation model for specifying the components

of a SIC. Since current languages are not sufficient to represent the features of a

7These features are described in detail in Chapter 2. An operation-dependent SIC is the one that
must hold for some object upon some operations, but not upon other operations. Violating a strong SIC
would cause errors — reject the operation. Violating a soft SIC would only get a warning message.

Chapter 1. Introduction 14

SIC when the structure part of a schema is in the E-R model or in the relational

model, this research will first present a SIC Representation model that is extended

and modified from the model proposed by Fernandez et al. [1981], Date [1983], and

Bertino and Apuzzo [1984].

2. To develop a comprehensive modelling tool, called the E-R-SIC model, for in

corporating the necessary SICs during conceptual modelling. Since the traditional

E-R model contains only a few inherent SICs, this research proposes a comprehen

sive model, which is an extended E-R model, for incorporating SICs in a database

schema.

3. To propose conceptually the SIC elicitation subsystem of an automated

database design system for helping a database designer capture the necessary

SICs. The SIC Representation model and the E-R-SIC model are complementary.

The captured SICs are represented in terms of the Representation model. The SIC

Representation model is a language or representation tool to represent SICs. Its

function is similar to the E-R diagram that we use to represent the structural part

when using an E-R model. Both the models are application domain-independent

and are suitable for implementation as part of an automated database design sys

tem. Some problems, for example, the procedure to query the database designer

to identify SICs, verification of the captured SICs for consistency and nonredun

dancy, reformulation and decomposition of a general SIC into operation-dependent

sub-SICs, and transformation of the SICs referencing entities and relationships

into corresponding ones referencing relations, need to be solved in order to have a

workable automated database design system. A SIC originally obtained from the

database designer may be general, i.e., it may be relevant to several objects on

various operations. Decomposing such a SIC is to rewrite it into several sub-SIGs

Chapter 1. Introduction 15

represented in terms of the SIC Representation model. Each of them is only rele

vant for one object on one access operation — that is, it is operation-dependent.

The purpose of decomposition is not only to let the database designer know clearly

what precise implications of a general SIC would be, but also to reformulate the

original SIC into several formats that can be efficiently enforced later.

Research Methodology Methodologically, this research has two components. The

first is model building to develop two models. The second is algorithm designing to

develop algorithms to verify, decompose, and transform SICs.

Research Scope Figure 1.1 illustrates the scope of this research. This research is

primarily concerned with semantic integrity constraints in the conceptual design phase

and how they are translated into SICs in the logical design phase. In particular, it

focuses on the Entity-Relationship model and its transformation into a relational model

because of the popularity and wide-sprea.d adoption of these as conceptual and logical

data modelling tools, respectively.

A complete automated database design system would include a structure subsystem

for constructing the structural entities, relationships, and relations, and a SIC elicitation

subsystem for eliciting the SICs. The construction of the structure part of the schema

is not the focus of this research although the SIC elicitation subsystem would need the

constructed E-R diagram as input.

The proposed approach in this research is different from Codd’s ([Codd, 1979]) al

though the purpose of capturing more meaning may be the same. Codd proposed a new

data model RM/T to extend (indeed replace) the relational model. This research retains

SIC specifications
for E-R model

-

____________________________ _________

-.

Transaction :
Design I
Tool : Transactions rograms i

pre condition an dithte ity Maintenance Subsysten [lnterity Maintenance Subsysten
post-condition I I

specifications L E H Data Structure Relational Data Structure
of transactions B-H DBMS Relational DBMS
for E-R mode

pre-condition and post-condition
specifications of transactions

I for relational model

Note that some general SICs needs to be first decomposed into precondition and predicate components before verifying them.

Legend: dash lines and boxes are beyond the scope of this research.

Chapter 1. Introduction 16

An Automated Database Design System

Proposed SIC Elicitation Subsystem

Interface
between

two
Subsystems

DB specification
in the extended

E-R model

Structure Subsystem

Structure
Elicitation
Interface

E-R
Reqviremen,,,,,/

DB Designer

Heuristics

Consistency & Nonredundancy
Rules for Different

SIC Types

E-R-STC Model

doonain- independent
knowledae

semantic integrity
constraints

transaction-driven
constraints

SIC
specifications
for relational

model

Figure 1.1: A Proposed Automated Database Design Subsystem for Eliciting SICs

Chapter 1. Introduction 17

the traditional relational model because of its popularity, but proposes to include the

necessary SICs in addition to relation structures in a relational schema. The output of

the proposed SIC elicitation subsystem would be SIC specifications, which are suitable

for either the E-R model or the relational model. There should be an integrity main

tenance subsystem in a traditional E-R DBMS8 or relational DBMS. Some functional

requirements (e.g., regarding SIC enforcement schedules and SIC inheritance, etc.) of

this integrity maintenance subsystem are discussed in Chapter 4. However, in general,

how this integrity maintenance subsystem would work is a future research topic beyond

the scope of this dissertation. It is also assumed that the DBMS would support inheri

tance mechanisms.

This research does not address transaction modelling. The database designer may

later input transaction-driven constraints and SIC specifications to a transaction design

tool to produce the pre-conditions and post-conditions of transactions, which would be

performed in an E-R DBMS or relational DBMS.

This research neither empirically tests the “usefulness” of using database embedded

SICs versus the traditional enforcing integrity via the application software nor tests the

“usefulness” of using the proposed automated database design system. The empirical

research is a future research topic.

1.7 Contributions

The contributions of this research are both theoretical and practical.

The theoretical contributions include the following:

8] is assumed that there are some (probably experimental)]JBMSs to define and manipulate data
objects directly in the E-R model.

Chapter 1. Introduction 18

1. This research provides a model to represent precisely the features of a SIC.

2. This research also develops a model to incorporate the necessary SICs in a database

schema. The approach is to model dynamic as well as static SICs in the database

rather than in transactions or programs. The gap between traditional database

modelling and application programming (transaction modelling) will be bridged by

the two models presented in this research.

3. The work on reformulating and decomposing a general SIC into sub-SICs, and

transforming them from an E-R schema into a relational schema may be interesting

to the computer science discipline because the current literature has explored these

problems for only a few kinds of SICs.

On the practical side, the contributions of this research include the following:

1. The proposed automated database design system would help a database designer

not only design the database structure but also include the necessary SICs.

2. This research provides a foundation for overcoming the well-known problem of

representing data integrity semantics in current relational database systems. The

resulting database would have the advantages of embedded SICs, e.g., greater con

sistency, deductive capabilities, etc. The SIC representation would facilitate the

efficient enforcement.

3. A database designer would find that modelling data integrity semantics becomes

his (her) responsibility and right. Important business rules and even heuristics can

enter the database schema in an early database design phase — conceptual mod

elling. Applica.tion programmers could focus on information system semantics other

Chapter 1. Introduction 19

than data semantics, and need not worry about SIC checking in their individual

programs.

4. This research provides a starting point for future empirical research to test the

usefulness of using database-embedded SICs versus the traditional approach of

enforcing integrity via application software.

1.8 The Dissertation Outline

This chapter has given the definition of SICs, described the motivations, methodology,

scope and contributions of this research. Chapter 2 briefly reviews work on SICs in the

literature. Chapter 3 introduces the SIC Representation model for representing SICs

uniformly and precisely. Chapter 4 describes how the SIC Representation model can be

applied. Chapter 5 proposes the E-R-SIC model for incorporating SICs in a database

schema. Chapter 6 gives an example of the use of the E-R-SIC model and discusses related

issues and usefulness. Chapter 7 conceptually proposes a SIC elicitation subsystem to

help the database designer use the E-R-SIC model and the SIC Representation model.

Finally, Chapter 8 offers conclusions and describes how future researchers can extend

this dissertation. A series of appendices is attached to provide related materials in detail

and give some examples.

Chapter 2

Review of Previous Work

As briefly mentioned in Chapter 1, an automated database design system would first

elicit general SICs from a database designer, then verify and reformulate (decompose

if necessary) them in some representation language for the database structural schema

represented in the E-R model, and finally transform them into corresponding ones in the

relational model. This chapter reviews previous work on related aspects of producing

SICs.

The literature on SICs is rich. Most research concentrates on classifying and efficiently

enforcing SICs rather than capturing and incorporating them in a database schema. In

addition, most research discusses SICs in the context of relational or deductive databases

rather than the databases in the conceptual level of E-R schema. Therefore, transfor

mation from the SIC representations in the E-R model into corresponding ones in the

relational model has not been explicitly discussed in the literature although some existing

automated database design systems may perform it for a few types of SICs that they

identify. Section 2.1 first reviews the different ways to classify SICs because the clas

sification can help understand the important SIC features so that we can incorporate,

represent and enforce them properly. Section 2.2 reviews previous research on languages

for representing SICs. Section 2.3 reviews how verification of SICs has been dealt with

in the literature. Section 2.4 reviews previous research on reformulating SICs. Finally,

20

Chapter 2. Review of Previous Work 21

Section 2.5 reviews how SICs are handled by existing automated database design systems.

2.1 SIC Classification

In the literature, there are a number of different ways to classify SICs.

2.1.1 Classification Based on Explicitness

One way to classify SICs is based on their explicitness from the perspective of the data

model in use. SICs can be inherent, explicit or implicit ([Tsichritzis and Lochovsky,

1982], [Brodie, 1983], [Brodie, 1984], [Davis and Bollriell, 1989]). Inherent constraints are

integral parts of the structure of a data model (e.g., record relationships in the hierarchical

data model are structured as trees; tuples in the relational data model are not duplicated

and the ordering of tuples is not important). Explicit constraints are defined explicitly by

some specification mechanism; for example, a database designer might explicitly specify

that the salary of any employee must be less than $1,000,000. Finally, implicit constraints

are logical consequences derived from inherent or explicit constraints; for example, the

transitive closure of functional dependencies can be deduced from a subset of functional

dependencies.

Discussion A data model with rich inherent SICs would relieve the database designer

from specifying many SICs explicitly. From this perspective, neither the E-R model

nor the relational model is a good modelling tool for designing a database since both

models, especially the relational model, contain very few inherent SICs. However, they

are widely used for other reasons. It is one of the motivations of this research to help

Chapter 2. Review of Previous Work 22

the database designer identify and precisely specify explicit SICs. A database designer

and an automated database design system need to know the inherent SICs of the data

model (e.g., the E-R model) that they use. Otherwise, it is likely that these inherent

SICs would be lost when the structural schema of the conceptual model is transformed

into the logical model (e.g., the relational model). Both inherent and explicit SICs should

be represented properly at the conceptual design phase and transformed into a logical

schema. Given a set of inherent and explicit SICs, the database designer should also

be aware of the derived consequences, i.e., implicit SICs, to verify its consistency and

non-redundancy.

2.1.2 Classification Based on Applied Objects

Classification of SICs based on applied objects is the most common classification and

is concerned with the data objects to which a SIC applies ([Eswarn and Chamberlin,

1975], [Fong and Kimbleton, 1980], [Fernandez et al., 1981], [Tsichritzis and Lochovsky,

1982], [Date, 1983], [Weber, et al., 1983], [Simon and Valduriez, 1984]). There are three

categories of these SICs:

1. Strong data type constraints: Strong data type constraints (also called domain

constraints) are applied to a single data item, for example, a field or an attribute.

They include the following:

(a) Value constraints specify the range of acceptable values of a data item (e.g.,

within some numerical bounds or an enumerated set) and whether a null value

is allowed.

Chapter 2. Review of Previous Work 23

(b) Norivolatility constraints declare whether a data item value can be changed

([Kozaczynski and Lilien, 1988]).

(c) Extended format constraints permit specifications of data type, length, and

format (mask) pattern;

(d) Legal operation constraints limit the operations that can be performed on a

given domain ([Eswarn and Chamberlin, 1975], [Fong and Kimbleton, 1980]);

for example, two dates cannot be multiplied.

2. Record (tuple) constraints: Record constraints apply to an individual record (an

occurrence in terms of the E-R model). For example, in each payroll record,

Gross_Salary should be greater than Deductions. One interesting kind of record

constraint is the case where the value of one field in a record is conditional on

the values of other fields ([Benci et al., 1976]). For example, Salary is equal to

Base_Salary plus Bonus. In this example, regardless of whether the value of Salary

is entered by a user or computed by the system itself, as long as this value is ex

plicitly stored, the integrity constraint must hold. If the conditional attribute is

not explicitly stored, it is a virtual invariant, derived item because one data item

is defined as a function of another ([Etzion, 1989]).

3. Set constraints: Set constraints apply to a set of records (occurrences). They may he

based on built-in aggregate functions (e.g., average, minimum, count). Therefore,

they are sometimes called aggregate constraints ([Tsichritzis and Lochovsky, 1982])

or set function constraints ([Dogac et al., 1985]). They may be based on comparison

(e.g., exclusion or inclusion) of one set to another. For example, the set of managers

must be contained in the set of employees. These records (occurrences) may belong

to the same relation (entity) type or different relation (entity) types. From this

Chapter 2. Review of Previous Work 24

observation, some researchers (e.g., [Fong and Kimbleton, 1980]) further classify

them into relation constraints and multi-relation constraints.

Discussion This categorization reminds us that all objects in a database — attributes,

entity and relationship occurrences and types in the E-R model, columns, relation tuples

and types in the relational model may have related SICs that need to be identified

and represented. However, there are two controversial points.

• Should we capture legal operation constraints? Note that this kind of “constraint”

borrows the notion of abstract data types ([Goldstein, 1985]), and the “operations”

are basic arithmetic or string operations that may be performed on value domains,

not the database primitive manipulation operations. This research will not consider

these “constraints” because they do not conform to the SIC definition. This kind

of “constraint” is relevant only if the data object is manipulated by some restricted

“operations” (e.g., arithmetic or date operations). It is not a restriction on static

database states or state transitions.

• Should we capture extended format constraints? One may argue that the specifi

cation of data type, length, and format of an attribute is a syntactic rather than

a semantic issue. However, this research includes extended format constraints as

part of SICs for the following two reasons. (1) The semantics of an attribute are

based on the syntax we agree to use. For example, the meaning of a salary range

from $1,000 to $50,000 in integers is different from that of the same range of real

numbers. (2) SICs in this research are attached to the stored data rather than real

world objects. A database designer would specify a SIC in terms of the interests of

the application and include the data in the format that is meaningful to it.

Chapter 2. Review of Previous Work 25

2.1.3 Classification Based on Operation Type

SICs that are concerned with database operations can be classified as operation-dependent

or operation-independent constraints ([Eswarn and Chamberlin, 1975], [Fernandez et al.,

1981], [Weber, et al., 1983]).

• operation-independent: A constraint is operation-independent if it must hold for

some object on all access operations, although for efficiency reason it may be

enforced only on some operations.

• operation-dependent: A constraint is operation-dependent if it must hold for some

object on some access operations, hut not on other access operations.

Discussion We only need to consider three kinds of operation types: insertion, deletion

and update because a retrieval (query) operation does not change any data. An update

operation is on an attribute of an entity, relationship occurrence, or relation tuple, but

not on the whole entity, relationship occurrence, or relation tuple. It is also the only

applicable operation on an attribute. Therefore, if a SIC is relevant to an attribute, it is

operation-dependent. For an entity, relationship occurrence, or relation tuple, there are

two possible operations insertion and deletion. It appears that in the real world if a SIC

applies to an entity, relationship occurrence, or relation tuple, it is likely to be operation

independent. Operation-dependent constraints (e.g., “a project can be deleted only if its

budget is equal to zero”) seem to be relatively less common. This may explain why

previous research pays only little attention to them. However, the possible relevance to

specific operations creates a special requirement on the SIC representation language.

Chapter 2. Review of Previous Work 26

2.1.4 Classification Based on Precondition

According to Fernandez et al. [1981], SICs based on the precondition for enforcement can

be classified as either conditional or unconditional. Conditional constraints are enforced

only when certain preconditions are met. For example, the salary of an employee who

has worked for less than three years must not be over $30,000. Unconditional constraints

are always enforced.

Discussion Whether a SIC is conditional or unconditional is also relative to the ob

ject concerned. It seems that the research of Fernandez et al. [1981] is the only work

that classifies SICs in this way. However, this categorization perspective places another

requirement on the SIC representation language — the context under which the SIC is

applicable should precisely be represented.

2.1.5 Classification Based on Certainties of SICs

SICs can be classified as certain or uncertain ([Oren, 1985], [Morgenstern et al., 1989]).

A certain constraint specifies some fact about the data semantics that is assumed to be

absolutely true (e.g., “the height of a person is greater than zero” [Oren, 1985]). An

uncertain constraint is one that is generally true, but there is a slight probability that it

can be violated (e.g., “the weight of a person is less than 200 kgs”). Certain and uncertain

constraints lie on a continuum. Wiederhold [Morgenstern et al., 1989] identifies four levels

with respect to the degree of certainty and absoluteness of constraints:

1. absolute truths that arise in the physical world and in the database; for example,

an employee has a birth date.

Chapter 2. Review of Previous Work 27

2. rigid situational rules that do not change often; for example, each employee is

assigned to one department.

3. business rules that may change often; for example, a manager’s salary is greater

than the salary of his or her subordinates.

4. heuristics; for example, employees are usually assigned to projects that match their

specialities.

A more sophisticated proposal such as defining and maintaining “measure(s) of accuracy”

may be possible ([Eswarn and Chamberlin, 1975]). Violation of a certain constraint may

be rejected as an error, whereas violation of an uncertain constraint may only cause a

diagnostic message. Therefore, uncertain constraints are sometimes called soft constraints

([Eswarn and Chamberlin, 1975]).

Discussion This classification is another perspective that has not drawn much atten

tion. Since it is likely that an organization might have a number of uncertain but useful

constraints, there should be some way to represent them.

Note that the four levels of certainty mentioned by Wiederhold ([Morgenstern et al.

1989]) are in fact classified by two kinds of “uncertainty” exception and perma

nence. “Heuristics” may have exceptions. “Absolute truths”, “rigid situational rules”,

and “business rules” have no exceptions. If there is any exception, the “rules” should

be modified to accommodate the exception and the “modified rules” have no exceptions.

These levels differ on their permanence the “uncertainty” of how often they may be

changed.

Should SIC specifications include both “uncertainty” of exception and “uncertainty”

Chapter 2. Review of Previous Work 28

of permanence? The “permanence” information may he useful for SIC management

during database usage. However, the organizational environment is turbulent and con

stantly changing. The permanence of a rule is not easily decided in advance when a

database designer designs a database. Therefore, this research does not include this kind

of information.

2.1.6 Classification Based on Violation Action

SICs based on the violation action, i.e., what would happen if the SIC is to be violated,

can be classified as strong, soft, or self-correcting ([Weber et al., 1983]). If a strong

constraint is violated, the operation is rejected and the user receives an error message.

If a soft constraint is violated, the user only receives a warning. If a self-correcting

constraint is violated, its error correcting action is executed.

Discussion In the published literature, [Weber et al., 1983] is the only research that

classifies SICs according to their violation actions although there is other research that

discusses alternative violation actions. Violation actions are classified into the three cate

gories given below, which are synthesized from previous research ([Hammer and McLeod,

1975; 1976], [Hammer and McLeod, 1976], [Casanova and Tucherman, 1988] and [Fleming

and Halle, 1989]).

1. Reject — reject the requested database operation, signalling an error.

2. Warning — allow the requested database operation, but issue a warning.

3. Corrective Action — perform a corrective action; that is, an auxiliary procedure

known as a triggered action ([Fernandez et al., 1981]). Usually, it causes the DBMS

Chapter 2. Review of Previous Work 29

to insert, delete, or update other objects.

For referential integrity constraints, e.g., E.A C F.B, where E.A is a foreign key of

a relation E and F.B is the primary key of another relation F, the corrective action

can be further classified as:

(a) Propagate for example, insert a referenced tuple or delete the referencing

tuples.

(b) Nullify for example, set the referencing attributes in the referencing tuple

to null.

(c) Default for example, set the referencing attributes in the referencing tuple

to predefined default values.

(d) Others — for example, triggers or other procedures that are domain specific.

Note that “nullify” and “default” are special cases of “propagate”.

Traditionally, a SIC is strong by default. However, this classification is important to

remind a database designer that it is not necessary that if a SIC is violated, the operation

is just rejected. There are other options that can be specified at database design time.

2.1.7 Classification Based on Enforcement Schedule

SICs based on the enforcement time, i.e., when the SIC is enforced, can be classified

as immediate or deferred (e.g., [Eswarn and Chamberlin, 1975], [Fong and Kimbleton,

1980], [Fernandez et al., 1981], [Date, 1983], [Weber, et al., 1983]). Immediate constraints

are enforced immediately after each database operation. Deferred constraints are not

enforced until the end of a transaction. It may also be possible to permit the user to

Chapter 2. Review of Previous Work 30

switch integrity checking ON or OFF that is, to have user-invocable constraints ([Foug

and Kimbleton, 1980], [Bertino and Apuzzo, 1984], [Weber. et al., 1983]).

Discussion A number of researchers discuss this categorization. However, different

specification levels should not be mixed up. This categorization is useful when considering

the enforcement of SICs, or designing transaction specifications. Fernandez et al. [1981]

allow the precondition component of their original model to specify whether the SIC

is to be applied immediately or deferred to the end of a transaction or to a periodic

audit. However, Bertino and Apuzzo [1984] treat the enforcement schedule separately as

decided by an integrity maintenance subsystem because they believe that the enforcement

schedule of a SIC depends upon the transactions or programs that are executing. Their

example may be helpful to understand their arguments:

A SIC: “each employee working on project P125 must earn less than $3,000.”

Suppose that now the database contains an employee entity occurrence who

is in department D55, and works on project P125.

Consider a transaction: first update the salary of all employees in D55 to

$3, 500; then re-assign the project of all employees in D55 to P200.

This transaction should be correct.

Based upon the above observation, Bertino and Apuzzo [1984] propose a criterion:

Basically, an integrity constraint is enforced at the end of the transaction, if

attributes present in the constraint are modified by more than one update statement

Chapter 2. Review of Previous Work 31

in the transaction. Otherwise, the constraint is enforced after each tuple

update, if it is in class Cl [i.e., tuple constraints], or after each update-

request, if it is in class C2 [i.e., relation constraints] or C3 [i.e., multi-relation

constraints].

Furthermore, the enforcement schedule can be more sophisticated and more efficient.

Lafue [1982] proposes that constraint checking can be delayed until the dependent in

stances become of interest9. That strategy is called by Morgenstern [1986] “propagation

when used.” Between immediate propagation and “propagation when used” is an in

termediate strategy that has been referred to by Morgenstern [1986] as opportunistic

propagation, both in the sense of doing the work of constraint propagation when the

computer is idle, and in the sense of using priority ranking of the constraints to select

the order in which they should be considered for propagation.

Thus, because the enforcement schedule is closely related to transaction modelling

and enforcement implementation efficiency strategies, it should not be included in SIC

specifications. Neither should be the option to switch integrity checking ON or OFF.

2.1.8 Classification Based on Dynamics

SICs based on their dynamics can be classified as static or dynamic ([Eswarn and Cham

berlin, 1975], [Bracchi et al., 1979], [Fong and Kimbleton, 1980], [Fernandez et al., 1981],

[Date, 1983], [Bertino and Apuzzo, 1984], [Brady and Dampney, 1984], [Heuser and

Richter, 1986]). Static constraints specify correct database states. Transitional (dynamic)

constraints characterize valid state transitions, i.e., are concerned with ‘admissibi1ity” of

°A dependent variable is a variable that can be operated on by the constraint, i.e., by a violation
action.

Chapter 2. Review of Previous Work 32

a database state sequence.

There are two major kinds of transitional constraints mentioned in the literature

([Fong and Kimbleton, 1980]): (1) old/new transitional constraints that restrict an update

of an attribute during which its “old” value is to be changed to a “new” value (e.g.,

“new salary must be greater than old salary”); (2) nonexistence/existence transitional

constraints that restrict either a nonexistence to existence transition or an existence to

nonexistence transition (e.g., “only if the account balance is zero, can the account be

deleted”).

Some dynamic constraints (e.g., [de Castilho et al., 1982], [Casanova and Furtado,

1984], [Ehrich et al., 1984], [Kung, 1984] and [Lipeck, 1986]), which are often neglected

by researchers, illclude:

• constraints on a sequence of operations: some operations must happen in a

specific sequence or at the same time. For example, “ownership of a car must be

passed from a manufacturer to a dealer first, before it may be passed to a purchaser”.

• constraints involving time explicitly:

1. SICs having some explicit time restriction or time-triggering condition. For

example, we may have “an employee cannot receive a salary raise during his

(her) first 6 months in the company”, or “at 0:00 on 1/1/1993, increase the

salary of each employee by $1,000.,’

2. Time-triggered or restricted SICs depending on past generations of data and,

thus reference historical data at some specific time point. For example, we may

have “the price of any product at any time cannot be more than 5% higher than

its price one year ago.”

Chapter 2. Review of Previous Work 33

Discussion Both static and dynamic SICs are important to preserve the logical mean

ing of stored data. A database designer should capture the necessary dynamic SICs

and have some language to represent them. Constraints on a sequence of operations are

not easily captured and represented as SICs. This may explain why researchers often

either neglect them or model them by transactions or events. However, they are the

consequences of enforcing some SICs if specified properly.

Note that an operation-dependent SIC is also a dynamic SIC. Old/new transitional

constraints and nonexistence/existence transitional constraints are important. However,

one should not define them too narrowly. That is, old/new transitional constraints are

special cases of the update transitional constraints, which do not necessarily involve

the old/new comparison. Nonexistence/existence transitional constraints are also special

cases of the deletion/insertion transitional constraints, which may involve more than one

object.

In order to capture and represent SICs having explicit time restriction, in a real time

environment, we would need a special system variable Current_time to register the

current clock time’0, and explicit time-valued attributes in the entity or relationship. In

a non-real time environment, those become ordinary data-driven constraints involving

some time-valued attributes. If we wish to capture and represent SICs using historical

data in general, we would need time-stamped generations of data. This research does

riot explore the last kind of SIC since a database keeping time-stamped generations of

data is both unusual and expensive to implement.

101t is assumed that a DBMS has access to a clock that registers both current date and time. Cur
rent..time can be thought of as an attribute of a special system entity type. Because constraints may
be affected by the normal advance of time, we assume that the operating system can be instructed to
signal the DBMS integrity maintenance subsystem when a pre-specified time is reached.

Chapter 2. Review of Previous Work 34

2.1.9 Summary of Comments on SIC Classification

In the literature, researchers describe different SIC categorization schemes for diverse

purposes — discussing data models, incorporating, representing, and enforcing SICs.

For incorporating and representing SICs adequately, the most important categoriza

tion schemes are: (1) certain or uncertain, (2) the classification on applied objects,

(3) operation-independent or operation-dependent, (4) unconditional or conditional, (5)

strong, soft or self-correcting, and (6) static or dynamic . These categorizations are too

rudimentary to serve as a modelling tool for incorporating SICs. However, they are very

important for precisely representing SICs since they provide a feature listing of a SIC.

Without any explicit description, one could only assume the given SIC to be certain,

related to all objects mentioned in that SIC, operation-independent, unconditional, and

strong.

2.2 SIC Representation

SQL is a generally accepted relational database language. However, only very few SICs

are mentioned in the ISO SQL standard. The implied violation action of a SIC is to set

SQLCODE negative. That is, it causes an error. Other SIC features, such as whether

the SIC is operation-independent or operation-dependent, unconditional or conditional,

certain or uncertain, are not specified.

The SQL standard has two levels and one addendum [van der Lans, 1989]. The

specified SICs are as below:

1. SQL Level 1 Standard: It only specifies data types and length of data items.

NOT NULL must be specified in every column definition in a CREATE TABLE

Chapter 2. Review of Previous Work 35

statement.

2. SQL Level 2 Standard: In addition to data types, it allows the designer to

specify whether a data item is UNIQUE and whether it can be NULL.

3. SQL with Addendum:

• In addition to the above, it allows specification of a value range by using the

CHECK specification for a data item;

• By using the CHECK specification separately (e.g., CHECK (YEAR-OF-

BIRTH < YEAR-JOINED)), tuple constraints can be specified;

• Few set constraints have been included:

— Referential constraint is provided by using FOREIGN KEY (column list)

REFERENCES (table name);

— UNIQUE or PRIMARY KEY specification

A number of researchers propose alternative languages to represent more SICs. Some

are variants of first order logic (FOL) languages, for example, the many-sorted first-order

predicate calculus applied by Furtado et al. [1981]; the constraint equation proposed

by Morgenstern [1983; 1984a; 1984b; 1986]; the equation statements suggested by Cos

madakis and Kanellakis [1985]; the first order formulas used by Reiter [1984; 1988],

Henschen et al. [1984], and Urban and Delcambre [1989]. These FOL family languages

are purely declarative. The operations to be checked are treated as an implementation

problem. No violation action is specified. The constra.ints are assumed to be certain.

Furthermore, these FOL languages cannot represent some kinds of SICs, e.g., operation

dependent or dynamic SICs. Other researchers (e.g., [de Castilho et al., 1982], [Casanova

and Furtado, 1984], [Ehrich et al., 1984], [Kung, 1984] and [Lipeck, 1986]) propose an

Chapter 2. Review of Previous Work 36

extension of FOL — temporal logic that may include explicit “state” or “time” param

eters. They invent some special temporal quantification or a list of modalities (e.g.,

always, until, heretofore, sometime) to model dynamic SICs. One potential problem of

these temporal logic languages is that they may not be easily understood and imple

mented.

Others just extend the original SQL proposals, but do not follow the SQL standard.

For example, Hammer and McLeod [1975] state that the syntax of their language is

“rather similar” to SEQUEL. Bertino and Apuzzo [1984] propose a 5-component model

to specify SICs and state that their language is a “simple extension” to SQL. Date

[1983] applies a language of his own — very loosely based on the PL/I version of UDL

(Unified Database Language) and describes [1987] some proposed extensions of the base

SQL standard. These SQL extensions are more precise and powerful for representing

SIC features than the SQL standard. Among these, the language model proposed by

Bertino and Apuzzo [1984] and the similar one by [Fernandez et al., 1981]” may be

capable of representing the SIC features mentioned above except for certainties. However,

neither work carefully elaborates what would be in each component12.In addition, SICs

represented in their original model may not be efficiently enforced if we compare the

representation to Date’s UDL [Date, 1983] that uses the idea of a cursor to facilitate SIC

enforcement on occurrences.

The certainty feature of SICs has not been properly represented. The term fuzzy

integrity constraints has appeared in the fuzzy database literature (e.g., [Zvieli and Chen,

“However, [Fernandez, et al., 1981] does not describe what is really their language — first order logic
or SQL.
‘2For example, The model proposed by Fernandez, et al., [1981] allows to specify the enforcement

schedule as a part of precondition of a SIC. The model proposed by Bertino and Apuzzo [1984] allows
the options to switch a SIC ON/OFF. However, as discussed in the previous section, these should not
be in a SIC specification.

Chapter 2. Review of Previous Work 37

1986], [Raju and Majumdar, 1988]). However, its meaning may have not been fully

explored. Raju and Majumdar [1988] classify fuzzy relations in relational databases

into two categories. A type-i fuzzy relation captures the impreciseness in the asso

ciation among entities, e.g., the certainty of John liking the course AT is 80%. A

type-2 fuzzy relation produces further fuzzy semantics by allowing the domain of an

attribute to be a set of fuzzy sets, e.g., “allowing salary of John to be in the range

$40, 000 to $50, 000 and that of Mary to be a fuzzy set, However, their fuzzy in

tegrity constraints only attach some fuzzy modifiers, e.g., “very”, “more or less” to an

assertion by choosing some “fuzzy resemblance relation”, for example, “for any job, em

ployees having approximately equal experience should have approximately equal salaril’ or

“any items having approximately equal order-date should have more or less equal delivery

date”. This kind of SIC does not capture the “impreciseness” of a SIC itself. For ex

ample, “any items having approximately equal order-date should have more or less equal

delivery date” is a SIC that is true with certainty 75%. RESTRICT is another language

to consider the certainties of SICs ([Oren, 1985]). However, it simply uses a special op

erator “?“ to represent an uncertain assertion, e.g., “SALARY(PERSON) <? 150000”.

This approach has only two levels of certainty certain and uncertain.

In addition, all of the languages mentioned above represent SICs in the relational

model, not in the E-R model. It is desirable to have a uniform language to represent

all SICs in the E-R model and in the relational model. It would be easier for system

analysts, database designers, and programmers to learn, comprehend and communicate

with each other if there is a uniform language for both the conceptual modelling and

logical modelling phases.

Chapter 2. Review of Previous Work 38

2.3 SIC Verification

It is suggested ([Bracchi et al., 1979] and [Morgenstern et al., 1989]) that it is necessary

to verify a set of SICs based on some criteria: completeness, correctness, consistency,

nonredundancy, no unexpected implicit constraints, and insensitivity to order.

In the database literature, no substantial results have been published that assure that

a set of SICs is complete and correct, which would need both application-domain and

general world knowledge.

If the SIC representation is not precise enough to capture the restriction intention,

the enforcement outcome of a set of SICs may depend upon the order in which particular

constraints are executed. Other remaining criteria — consistency, nonredundancy and no

unexpected implicit constraints — are closely related although their verification difficulty

may be increasing. Redundancy occurs in a set of constraints if some constraints subsume

other constraints. It would be an issue only if we are concerned with efficient enforcement

of a set of constraints. To assure that a set of SICs has no unexpected implicit constraints

would require a database designer to understand well the closure of the set, i.e., all those

consequences derived from the specified SICs. It requires that the database designer

make judgements as to whether an implicit constraint is unwanted. The fundamental

and most important issue is the consistency problem. Constraints are consistent if there

exists a database state or a state transition that is allowable with regard to all of the

restrictions. Unfortunately, the consistency problem has been described (e.g., [Meersman,

1988]) as a difficult one. SICs are either tacitly assumed to be consistent, or only some

of them are verified for consistency. For example, Kung [1984] [1985] presents a tableaux

method to check the consistency of restricted first-order SICs. Bry and Manthey [1986]

describe two basic approaches to extending refutation methods into procedures to check

Chapter 2. Review of Previous Work 39

consistency of closed and function-free first-order SICs. Brodie [1978] mainly relies on

an actual database to verify the consistency of some static SICs. Lenzerini and Nobili

[1987] have contributed much to the consistency problem for cardinality constraints. In

summary, past researchers have oniy tried to verify very few types of SICs for consistency.

Furthermore, the redundancy problem of SICs has never been directly addressed in the

literature. Nor has the issue of unexpected implicit constraints been explored for arbitrary

SICs.

The major reason for this is that it has been known (e.g., [Nillson, 1980]) that even

the “logical implication” of first order logic predicates is “undecidable” or only “semi-

decidable” 13 In this research, in order to cover more types of SICs, expressions in the

precondition and predicate of a SIC could include not only first order, but also higher

order logic. The full verification of consistency and non-redundancy of all SICs relates

to the fundamental issue of computer science and mathematics — constructing a Turing

machine to decide whether an arbitrary language is acceptable. Such an issue would be

NP-complete in nature (i.e., putatively having exponential time complexity)14.

Based on current techniques, we cannot verify a set of arbitrary SICs for consistency

and nonredundancy. However, it is possible to classify SICs into several different types

and analyze at least some of them for consistency and non-redundancy. Some researchers

have tried it, but only for very few types of SICs and produced relatively rudimentary

results (e.g., Troyer [1989] verified five types of SICs for consistency in the Binary Re

lationship model, Furtado et al., [1988] verified two types of SICs for consistency in the

‘3A property is semi-decidable if algorithms can be constructed that are guaranteed to report the
respective property after finite (but indefinite) time if applied to a set that actually has this property,
but possibly run forever otherwise.

141t is shown ([Aho, et al., 1974]), [Papadimitriou and Steiglitz, 1982]) that even the “satisfiability
problem” of Boolean formulas — whether a Boolean formula can be made true by some truth assignment
to its variables is NP-Complete.

chapter 2. Review of Previous Work 40

E-R model).

2.4 SIC Reformulation and Decomposition

The reformulation and decomposition of a general SIC into several sub-SICs is related to

previous work on efficiently checking SICs, an important research topic in the database

literature. A naive approach is to perform the modification and then check whether the

new database state satisfies all SICs. Such an approach is called full integrity constraint

checking ([Ling, 1986]) or total integrity checking ([Nakano, 1983]).

Full SIC checking is time-consuming. Researchers have proposed a number of more

efficient SIC checking techniques or algorithms. For example, Stonebraker [1975] con

siders monitoring immediate static SICs and elementary database updates by applying

the “query modification” technique. Niacolas [1982] and Kobayashi [1984], respectively,

present a simplification algorithm that transforms static SICs into simplified forms. Hsu

and Imielinski [1985] provide a simplification method for transactions, and also for SICs

expressed in the prenex normal form of relational tuple calculus. Ling and Rajagopalan

[1984] propose a method for eliminating avoidable checking of integrity constraints ex

pressed in first order predicate calculus. Ceri and Widom [1990] present a labelling algo

rithm to derive automatically the set of operations that may cause constraint violation

for any given SIC expressed in a SQL-based language.

Basically, the above efficient algorithms are derived from the syntactic structure of a

SIC specification. Some researchers (e.g., [Qian and Wiederhold, 1986], [Qian and Smith,

1987]) go further to propose transformational mechanisms that exploit knowledge about

the application domain and even database physical organization structure to reformulate

SICs into semantically equivalent, but more efficient ones. Bernstein et al. [1980] has

Chapter 2. Review of Previous Work 41

proposed improving SIC checking efficiency by ma.intainillg some redundant data (e.g.,

minima and maxima of certain sets).

All the above work is based upon the assumption that the current database state

satisfies all SICs that have been specified. This type of checking is called incremental

integrity constraint checking ([Nakano, 1983], [Ling, 1986]).

The purpose of previous work on SIC decomposition is mainly to make SIC checking

more efficient. Some of them only attach a set of operations, which may cause constraint

violation, to a SIC. Others rewrite the original SIC into a set of sub-SICs that is semanti

cally equivalent to the original SIC. However, one should note that when a general SIC is

decomposed into sub-SICs, it is possible that the sub-SICs might have different violation

actions. Thus, these sub-SICs are also part of database specifications rather than just

for implementation efficiency.

In addition, the previous algorithms are only suitable for few types of SICs in some

restricted languages.

2.5 Automated Database Design Aids for Eliciting SICs

Yang and Goldstein [1989] survey twenty automated database design systems to inves

tigate how SICs have been included. Many systems (e.g., 12S [Kawaguchi et al., 1986];

SA-ER [Carsnell and Navathe, 1987]; ACME [Kerstern et al., 1987]) do not attempt

to identify SICs at all. Some systems (e.g., SECSI [Bouzeghoub and Gardarin, 1984;

Bouzeghoub et al., 1985; Bouzeghoub and Metais, 1986]; RIDL* [Troyer, 1989]; E2R

[Kozaczynski and Lilien, 1988]; CHRIS [Furtado et al., 1988]; Gambit [Bragger et al.,

1984]; EXIS [Yasdi and Ziarko, 1987]; TSER [Hsu et al., 1988]; PROEX [Obretenov et

Chapter 2. Review of Previous Work 42

al., 1988]; Modeller [Tauzovich, 1989]; EDDS [Choobineh, 1985 Choobineh et al., 1988];

OICSI [Rolland and Proix, 1986; Cauvet et al., 1987; Proix and Rolland, 1988]; and

Database Generation Tool [Maryanski et al., 1984; Maryanski and Hong, 1985]) do pro

vide some mechanisms for eliciting and representing SICs. However, only a few types

of SICs are identified. Most of them are the common SICs, e.g., incidence constraints,

totality constraints, or inherent to data abstractions. No system provides a model to

guide the incorporation of SICs.

The SIC representation of some systems is as arcs in a semantic network (e.g., OICSI)

in logic (e.g., Gambit), or rules (e.g., CHRIS, EDDS). Some SICs are even represented as

preconditions/post-conditions of transactions or events rather than data SICs (e.g., E2R,

EXIS). Some SIC features mentioned above are not explicitly represented. Gambit may

be the one that represents them most explicitly. However, in Gambit, the responsibility

for knowing the operation type on which a SIC must be checked rests with the database

designer.

The discussions of SIC verification reported for these systems are either nonexistent

or tend to be somewhat rudimentary.

Chapter 3

A Model for Representing Semantic Integrity Constraints

This chapter presents a language, called the SIC Representation model, to represent

the features of a SIC that are mentioned in Section 2.1.9.

3.1 An Overview of the Representation Model

The SIC Representation model integrates and formalizes the ideas of Fernandez et al.

[1981], Bertino and Apuzzo [1984], and Date [1983]. This model specifies precisely fea

tures of a SIC. The original model proposed by Fernandez et al., and Bertino and Apuzzo

has been extended to include a measure of certainty, and some of their original concepts

have been modified. The cursor concept in UDL proposed by Date has also been incor

porated into the model.

The model represents a constraint in terms of six components: Object (0), Op

eration Type (T), Precondition (C), Predicate (P), Certainty Factor (F) and

Violation Action (A). In addition, each constraint is given a descriptive name. The

justification of including these six components is provided in Chapter 4. This chapter

only gives the description of the model.

Using this model, a SIC is represented as:

43

Chapter 3. A Model for Representing Semantic Integrity Constraints 44

SIC-Name

CERTAINTY F (Certainty Factor)

FOR 0 (Object)

ON T (Operation Type)

IF C (Precondition)

ASSERT P (Predicate)

ELSE A (Violation Action)

In terms of the usual production rule syntax, the above whole statement (except for

SIC-Name) is interpreted as:

with certainty F

IF(O,T,C) THEN

(IF NOT P THEN A)

SIC-Name is used as an identifier that conveys some meaning of a SIC. It is not essential

to the Representation model.

The following example, named as project_employeeminimum_salary for convenience,

will be used for illustration. Suppose that there is an Employee entity, and a Work_for

relationship in the E-R model and the corresponding Employee, and Work_for relations

in the relational model’5. A SIC might state “if an employee works for any project, his

(her) salary should be greater than $10,000’. This SIC can be decomposed into several

sub-SICs represented in the Representation model. Each sub-SIC is operation-dependent

and only relevant to a single object. In addition to the related sub-SICs on the update

of Work_for’s primary key, two sub-SICs are:

‘5That is, a separate relation, Work_for, is assumed for simplifying the comparison of our model to
other work in the literature since they only deal with the relational model.

Chapter 3. A Model for Representing Semantic Integrity Constraints 45

— one for Employee.Salary on update;

— one for Work_for on insertion

The first one may be represented as the following.

Employee. Salary- U-RshipDepEnt Val- (Workfor)

CERTAINTY certain

FOR Employee.Salary

ON update

IF 3 Work_for, rship_occ_part(Work_for, “Employee”, Employee)

ASSERT Employee.Salary> 10000

ELSE reject

Interpretation: The first line is the SIC name. It indicates that this is a SIC

for Employee.Salary on update and it is a “RshipDepEntVal” type because it

asserts that the existence of a relationship (Work_for) depends on the value of

an entity attribute (Employee.Salary). The rship_occ_part is an assertion that

stands for “relationship occurrence participant”. In this example, it is used

to specify the Work_for occurrence in which the currently checked Employee

occurrence participates with the entity type, “Employee”. This SIC states

that with 100% certainty, when an Employee.Salary occurrence is to be up

dated, if the Employee participates in at least one Work_for, his or her Salary

must be greater than $10,000. Otherwise, the update operation is rejected.

Note that the database designer might choose “propagate(delete(Work_for))”

as the violation action. In that case, the propagation action might imply that

if the organization could not afford the minimum salary for an employee, it

Chapter 3. A Model for Representing Semantic Integrity Constraints 46

could not require that the employee be associated with any project (so the

current Work_for occurrence must also be deleted).

The restriction intention of a SIC represented by this model is expressed as the pred

icate component (P) separately. Its other components precisely specify the SIC features

listed in Section 2.1.9. These are:

1. certain or uncertain: indicated by the component F — certainty factor;

2. applied data: shown in the component 0 — object;

3. operation-dependent: a SIC represented in this model is always operation-dependent,

the operation is specified in the component T — operation Type.

4. unconditional or conditional: the conditions are listed in the component C

precondition;

5. strong, soft or self-correcting: indicated by the component A violation action.

A SIC represented in this model is always dynamic in that it indicates a valid database

state transition in which the object would be manipulated by the specified operation type.

A static constraint is represented by rewriting it into one or more dynamic constraints for

the related object(s) on the operation(s) that could cause unallowed database state(s).

The reasons for doing this are as follows:

• Because some constraints are inherently dynamic, this allows uniform representa

tions for all kinds of constraints.

• Enforcement efficiency can be greatly increased by knowing which operations can

cause constraint violations.

Chapter 3. A Model for Representing Semantic Integrity Constraints 47

• Violation actions may be different depending on the operation types causing con

straint violations.

The usual approaches to representing a SIC mix up several components in one state

ment and do not explicitly describe the above features. Taking a SIC represented in a

traditional language, one could only assume that it is 100Yo certain; related to all objects

mentioned in that SIC; applicable to all primitive database access operations; uncondi

tional in all contexts; and so strong that it would cause errors if violated. For instance,

according to the language used by Ling and Rajagopalan [1984], the above example would

be expressed in the prenex normal form of the first order predicates as follows.

E ranges over Employee

J ranges over WorLfor

V E V J (E.EmpNo J.EmpNo OR E.Salary> 10000)

Evaluation:

This statement is neither precise nor powerful because of the following:

(1) It is not clear how certain this SIC would be. So, it can only be assumed

as 100%.

(2) Since E and J appear there and no operation type is explicitly specified,

it would seem that the SIC is relevant to any operation on an Employee

or a Work...for. However, in fact, it could never be violated by deletion

or insertion of an Employee, or deletion of a Work_for.

(3) It does not clearly distinguish between the condition specifying those

employees to whom the constraint would apply (those working for some

project(s), i.e., the condition “E.EmpNo = J.EmpNo”) and the assertion

Chapter 3. A Model for Representing Semantic Integrity Constraints 48

on the salary of those employees (i.e., the expression “E.Salary> 10000”).

(4) Since no violation action is specified, it can only be assumed as “reject”.

The representation in the SIC Representation model is also more precise than the

original models presented by Fernandez et al. [1981], and Bertino and Apuzzo [1984].

According to the model presented by Bertino and Apuzzo [1984], the above example

would be expressed by a single SIC in which the object component may include “Em

ployee” and “Work_for” and the operation component may include “update” and “insert”.

It implicitly means that the SIC is asserted on the insertion of an Employee or Work_for

and the updates of any attribute of an Employee or Work_for.

In addition, the representations in terms of the Representation model have some ad

vantages that will be described in detail in the next chapter. In short, the certainty

factor introduces fuzzy semantics, facilitates knowledge-based query processing and pro

vides deductive capabilities. The identified object and operation type are useful for

efficient enforcement and together with the violation action, they provide different per

spectives for specifying and enforcing a general SIC. The separation of precondition from

predicate allows natural and precise representation of a SIC. The explicit representations

of the object, operation type and precondition components are useful for applying SIC

abstractions (that are introduced in Section 4.2).

These six components and the naming convention of the SIC Representation model

are described in the following sections. Detailed BNF (Backus-Naur Form) descriptions

of the model are given in Appendix A. The rest of this section describes briefly the

notation and the allowed expressions in this language.

Chapter 3. A Model for Representing Semantic Integrity Constraints 49

Expressions First order logic and higher order logic expressions, arithmetic expres

sions and date expressions, are allowed in the precondition and predicate components.

They may consist of quantifiers V (for all), (there exists), logical connectives

“A” (conjunction), “V” (disjunction), “—i” (negation), but not the “—÷“ (implication)

connective since it has been separated as the precondition. They may also contain ag

gregate functions: e.g.. avg, count, max, mm, sum, or other user-defined aggregation

functions. In addition, a special pair of functions, old and new, are used. The new/old

function in SIC references the new/old value of the referenced object after/before check

ing the SIC. An implemented integrity maintenance subsystem of a DBMS must assure

the correct functioning of the new and old functions6.One set expression is also allowed:

set{Ei some restriction(s)}. This is read as for all E1 satisfying “some restriction(s)” 17

The special predicates used with the SIC Representation model are summarized in the

Appendix B18.

Subscript Notation This research uses a subscript to simulate the “cursor” in Date’s

UDL to emphasize that a SIC is enforced on an occurrence although it is specified in

tensionally for an entity/relationship/relation type. A cursor in UDL is an object whose

value is (normally) the address of some specific record in the database ([Date, 1983]).

Since a SIC is enforced on an occurrence, if there are other occurrences of the same entity,

‘61f the SIC is checked immediately, it references the new/old value of the referenced object after/before
the operation. However, if the SIC is deferred to be checked at end of transaction, it references the
new/old value of the referenced object after/before the transaction.
‘7The keyword set can be omitted. This notation is adopted from an “integrity constraint definition

language” [Gardarin and Melkanoff, 1979].
181n addition, this research follows the Prolog naming convention that a variable is written as a word

beginning with a capital letter and an atom is written as a word beginning with a lower case. The only
exceptions are keywords (CERTAINTY, FOR, ON, IF, ASSERT and ELSE) and the SIC name in the
first line, which are character strings in nature, not variables.

Chapter 3. A Model for Representing Semantic Integrity Constraints 50

relationship or relation type referred in the precondition or predicate component, differ

ent subscripts will be used to distinguish them. The one to he checked is referenced by

attaching a default subscript 0, e.g., E0. Variables with subscripts other than 0 (e.g., E1)

represent any occurrence of the same object (e.g., E) type. In terms of programming lan

guage, the one with subscript 0 refers to the particular inserted/deleted/updated “value”

to be checked; those with subscripts other than 0 are “variables” of the same object type.

If there is only one occurrence (i.e., the one to be checked) referred in the precondition

and predicate components, the default subscript 0 is omitted. In any case, we do not use

a subscript in the object component because the variable in that component is used to

indicate that the SIC is applicable to any occurrence of the specified type.

An example from Date [1983] will help to clarify the above subscript idea. Suppose

that there is a relationship Supply in the context of “Supplier Supply Part”; and a SIC

requiring that “any quantity value of a supply must not be more than 5 percent greater

than the average of all such values”. One of the required SICs is represented by the Rep

resentation model as below, in which Supply1.Qty stands for any Supply. Qty occurrence.

The assertion in its predicate component requires that each of other Supply. Qty’s must

satisfy the average property when an occurrence is to be deleted.

Supply-D-AggFcn- (Supply. Qty)

CERTAINTY certain

FOR Supply

ON deletion

ASSERT -‘(Supplyi.Qty> 1.05 x avg({Supplyi.Qty Supply1 Supplyo}))

ELSE reject

Legend: Supplyo indicates the value of Supply occurrence currently checked.

Chapter 3. A Model for Representing Semantic Integrity Constraints 51

3.2 SIC Name

SIC name is not counted as a component in the Representation model since it is not

essential. A database designer may freely use other naming conventions, such as the

simple one Ii, 12, ... used in the literature ([Bertino and Apuzzo [1984], and [Date,

1983]), or some application dependent conventions. In this research a concatenated

character string is used as a SIC name for conveying some of the meaning of a SIC and also

for serving as its unique identifier. This convention allows the SIC elicitation subsystem of

an automated database design system (introduced in Chapter 7) to generate a SIC name

automatically by incorporating an abbreviated application domain-independent SIC type

and some application information (object type, operation type and related object type

set). A SIC name contains five parts. The general format is like:

ObjectType-OperationType-SICType- (RelatedObjectTypeSet)-SequenceNo

For example. from “Employee. Salary- U-RshipDepEnt Val- (Work_for)” we know that

this SIC should be checked on the update of Employee.Salary because the existence of a

Work_for relationship occurrence depends on its value.

1. The Object Type (e.g., Employee.Salary) is the specific type name of an attribute,

entity, relationship, or relation for which this SIC is asserted. It corresponds to the

component 0 in the SIC.

2. The Operation Type is either U, I, or D representing update, insertion, or deletion,

respectively. Similarly, it corresponds to the component T in the SIC.

Chapter 3. A Model for Representing Semantic Integrity Constraints 52

3. The SIC Type is the abbreviation of a SIC type conveying some application domain-

independent meaning; e.g., “Totality” (if an entity occurrence exists, it must partic

ipate in some minimum number of relationship occurrences of the specified type),

“RshipDepEntVal” (the existence of a relationship depends on an attribute value

of an entity type). By applying the E-R-SIC model (introduced in Chapter 5), we

can classify SICs into a number of domain-independent SIC types.

4. The Related Object Type Set includes those object types that appear in the pre

condition and predicate components of a SIC and can supplement the meaning

of the SIC type. A SIC name may not have this part if there is no such ob

jects. For example, there is no other object type related to an absolute cardi

nality constraint for an entity type, which restricts the maximum number of oc

currences of the entity type that can exist in a database. However, in the above

project_employee_minimum_salary example, it may be useful to know which rela

tionship type (i.e., Work_for) depends on the attribute (i.e., Employee.Salary). For

domain constraints on the insertion of an entity, although all the attributes of the

entity are referenced in the SIC, they need not be included in its SIC name since

it is implied by the SIC type “Domain”.

5. The Sequence No is a positive integer number. In a complicated application, it is

possible that the above parts would not be sufficient to distinguish one SIC from

others. In that case, as a last resort, a sequence number starting with 1 will be

added.

Chapter 3. A Model for Representing Semantic Integrity Constraints 53

3.3 Certainty Factor (F)

A certainty factor, F, which does not appear in Fernandez et al. [1981] and Bertino and

Apuzzo [1984], is introduced in the Representation model. A certainty factor is closely

related to the predicate (P) and violation action (A). It may be attached to SICs in the

following alternative ways:

1. Ratio Scales: A ratio scale to measure the certainty of a SIC is needed if we would

use the certainty factor to provide deductive capabilities under uncertainty. The

certainty factor is defined to have a value between 0% and 100%. Any SIC with a

certainty factor less than 100% can only have “warning”, “conditionallyieject”, or

“conditionally_propagate” as its violation action. The value of the certainty factor

is based on the experience of the database designer. If the value is too low, it

implies that the SIC is very unlikely to hold in the database and is less useful in

providing semantic information.

2. Ordinal Scales: If we are only interested in traditional databases and there are

a number of uncertain SICs, an ordinal scale to measure the certainty of a SIC

is needed. This ordinal scale would be used to rank the certainty of SICs in the

same “family” (in terms of the same restriction intention, but different levels of

stringency) when verifying and enforcing them. The certainty factor might be

defined to have a value between 1 and 10 if there are at most 9 uncertain SICs

for the same “family” of SICs. Any SIC with a. certainty factor less than 10 is an

uncertain SIC.

3. Two levels: It is possible that a database designer would like to specify at most

one uncertain SIC for a restriction intention because an organization is mainly

chapter 3. A Model for Representing Semantic Integrity Constraints 54

concerned with SICs with 100% certainty. In this case, two discrete levels of cer

tainty are enough. In this case, “uncertain” (i.e., certainty 100%) would have

a “warning”, “conditionally_reject”, or “conditionally_propagate” violation action

whereas “certain” (i.e., certainty = 100%) would have a corresponding “reject”, or

“propagate” violation action.

4. Fuzzy terms: It is also possible to attach a fuzzy term, e.g., “usually”, “some

times”, as the certainty factor if that term has been properly specified to be equiv

alent to a specific certainty ratio number (e.g., “usually” may be equivalent to

80%).

3.4 Object (0)

O represents the data object to which the SIC applies. In the E-R model, it corresponds

to any occurrence of the specified attribute, entity, or relationship type. In the relational

model, it corresponds to any occurrence of an attribute or a relation type, i.e., a column,

or tuple. The E.A or R.A is used to refer to the attribute A of entity E or relationship

(relation in the relational model) R. Note that an attribute is treated as an object in

this model since it would make the SIC clearer and it is possible that a constraint is

relevant to an update of an attribute, but not the insertion/deletion of its related entity,

relationship, or relation. For example, in the above project_employee_minimum_salary

example, it is not relevant to the insertion or deletion of an Employee although it is

relevant to the update of an Employee.Salary.

Chapter 3. A Model for Representing Semantic Integrity Constraints 55

3.5 Operation Type (T)

The operation type, T, (also called the access type [Bertino and Apuzzo, 1984]) specifies

the types of database manipulation operations to which the SIC is applicable. Only three

operation types need to be considered — insertion, deletion, or update. Note that a

SIC is never relevant to a retrieval (query) operation.

The data definition operations, i.e., “creation” or “destruction” of an entity, relation

ship, or relation type, are also excluded’9.A database designer should design a database

to include those necessary object types according to the information requirements. How

ever, whether an object type should be in a database schema is not a SIC. Destroying

an object type is concerned with the database reorganization. In the case of database

reorganization, destroying an object type may have different implications in different sit

uations. For example, destroying a type may occur because this type ceases to exist in

the real world or just because the organization will no longer keep the super-type (e.g.

Person) information, hut is still interested in its subtypes (e.g. Employee). The database

designer needs to be involved to discover the changed information requirements. The

different situations cannot be foreseen and automated in the database design phase.

3.6 Precondition (C)

The precondition (C) specifies the implicit or explicit presuppositions of a SIC. If

it is not satisfied, it would cause the predicate of the SIC to be either undefined or

irrelevant. For example, in the above project_employee_minimum_salary example, the

SIC for Employee.Salary on update is irrelevant to any employee who does not work for

‘9So the language represented by this model is not a relationally complete query language.

Chapter 3. A Model for Representing Semantic Integrity Constraints .56

any project. It also identifies the object (0) in the context of this SIC. In the above

example, the SIC for Work_for on insertion would have the precondition as “ Employee,

rship_occ_part(Work_for, “Employee”, Employee)” to indicate the Employee occurrence

participating in the specific Work_for occurrence. If a SIC has no precondition, the

keyword IF may be omitted.

3.7 Predicate (P)

The predicate (P) is the assertion for the database state transition when the object

(0) is to be manipulated by the operation (T). If it is true, the operation (T) on the

object (0) is allowed to be performed. For an attribute other than primary key20, the

predicate should involve the attribute itself. For an entity, relationship, or relation, the

predicate involves its attributes, aggregate attributes (e.g., average value), or related

other entities and/or relationships (relations in the relational model). Since a SIC places

logical restriction on data, its predicate component should contain invariant assertions

on the related objects rather than procedural statements of programs.

The precondition and predicate are both expressions that control whether the viola

tion action will be invoked. The precondition specifies the general state of the database

that makes the constraint relevant. The predicate specifies something that must be true

about the object after the operation. The justification of having both components is

described in detail in Chapter 4.

20We have this exception because in the relational model and traditional E-R model, primary keys
play the role of “surrogates”. The tipdate of a primary key of an entity/relationship/relation may imply
the deletion of an old entity/relationship/relation followed by the insertion of a new one.

Chapter 3. A Model for Representing Semantic Integrity Constraints 57

3.8 Violation Action (A)

The violation action (A) specifies how the system is to behave if the predicate P is false

when the SIC is checked. In order to have precise meaning for a single SIC, it is desirable

to have a single violation action (or a deterministic series of well-defined actions) rather

than a complex procedure with many choices. The violation action may be specified as

follows.

1. “warning” — allow the access operation, but issue a warning.

2. “reject” reject the access operation, signalling an error.

3. “propagate” allow the access operation, but perform a related corrective action

to restore the database to a correct state.

4. “conditionally_reject” or “conditionally_propagate” — request confirmation from the

user to ignore the SIC; the processing of the access operation is suspended until

the user indicates either to ignore the SIC or to take the violation action (reject

the access operation, or allow the operation but propagate to perform a corrective

action).

Discussion on Propagation Traditionally, the violation action of a SIC is just a

rejection. A warning action indeed turns off the enforcement of the SIC except for

generating a message. A propagation action changes other objects in the database. Date

[1983] indicates that integrity rules may he considered important special cases of triggered

procedures21.In discussing semantic integrity constraints, Fernandez et al. [1981] mention

the following problems raised by the trigger mechanism.

21Other application areas for triggered procedures include virtual fields, security, etc. [Date, 1983]

Chapter 3. A Model for Representing Semantic Integrity Constraints 58

(1) Integrity or security violation within auxiliary procedures could result in

a never-ending sequence of invoking procedures.

(2) The proper access rights of the invoked procedures are an issue: Should

these be the rights of the invoker of the triggering maintenance operation

or the rights of the DBA who specified the auxiliary procedure?

(3) Triggering of maintenance procedures results in a somewhat confusing

division of responsibility between the user (or the programmer) and the

DBA. For example, who should update the count of employees on inserting

a new employee? The system or the programmer?

The problem of security or access rights is beyond the scope of this research22.Besides,

as stated before, the intention of this research is not to propose an approach to replacing

the transaction or application programming. If the intention of the violation action

is just to maintain a correct database state, there is no reason that we would need a

complex violation action. Therefore, although in principle a “violation action” could

be very complex, in this research it is generally a single action or a deterministic series

of well-defined actions. The responsibility of programmers to write proper application

programs to update data is not changed23.

If the violation action is to propagate to insert some other objects, establishing the at

tribute values of those objects might become a problem. It is not possible for a database

designer to know all these values during database design. Those values that cannot be

known by an automated database design system will be assumed to be “null” (i.e., “un

known”). This may violate other SICs if some unknown attribute values (e.g., part of

22llowever, this unsolved security problem raised by Fernandez et al. [1981] might also be one argument
against complex violation actions.
23llowever, now a DBMS becomes more powerful to detect programming errors of programmers and

takes violation actions. Programmers need not check SICs because the DBMS will do that.

Chapter 3. A Model for Representing Semantic Integrity Constraints 59

key of a relationship) are not allowed to be “null”. There are two approaches to dealing

with this problem. In the first approach, the violation action “reject” rather than “prop

agate(insert(O1))” must be specified. In the second approach, the propagating insertion

is allowed. Compared to the first approach, the second approach is more powerful. Even

if the propagating insertion is finally “rejected” due to other SICs, it is easier for the

user to understand why the original insertion operation is rejected. It also leaves open

the possibility of designing an enhanced integrity maintenance subsystem of DBMS that

will prompt the user to supply the unknown attribute values or obtain them from some

other sources ([Casanova and Tucherman, 1988]).

Two-valued Logic Note that the violation action is taken only when the predicate,

not the precondition, is What would happen if a database allows null values? A

null value can have at least two interpretations: “unknown” and “not applicable”. In this

research, “null” is only allowed to represent “unknown” because the “not applicable null”

should not appear in a well-defined, properly-normalized database with clear semantics24.

In principle, some warning messages can be issued25 if the predicate is evaluated to be

unknown. However, since the “unknown” values will eventually become “known”, they

will be checked at that time. If they violate SICs, appropriate actions will he taken

24The existence of “not applicable null” in some attributes of an entity, relationship. or relation
indicates that these attributes do not apply to all occurrences. It implies that some subtypes should
be specified in order to clarify the semantics. In the literature (e.g., [Lee, 1988]) there are two other
interpretations of “null”. Lee states that, for example, with regard to John’s spouse, the null value may
mean: (1) literal interpretation “null” (e.g., the spouse name is “null”); (2) sense of “none” (e.g., John
is a person, but he has no spouse); (3) “not applicable” because spouse is not an attribute of the object
(e.g., John is the name of a building, not a person); (4) “unknown”. Note that the first interpretation is
the result of bad implementation of “null”. “Null” should be represented by an unambiguous symbol in a
database. The second and third interpretations are also results of a bad database design — the semantics
are not clear because some attributes are not defined for some occurrences of the specific “type”. In the
above example, there should be two types, Person and Building, to avoid the third interpretation. The
subtype Married_Person should be defined to avoid the second interpretation. In this research, the “not
applicable null” interpretation includes both the above second and third interpretations.
25These are termed “weak violations” by Ho [1982].

Chapter 3. A Model for Representing Semantic Integrity Constraints 60

then. Therefore, in this research, for simplification, it is assumed that if the predicate

is evaluated to be unknown, no violation action will be taken immediately. By taking

such a position, the verification of SIC consistency can be simplified from 3-valued (true,

false, unknown) to 2-valued (true, false) logic.

Chapter 4

The Application of the SIC Representation Model

This chapter describes how we can apply the SIC Representation model for database

design and management. In Section 4.1 it is claimed that by applying this model we can

represent precisely the features of any SIC. In Section 4.2 SIC abstractions are introduced

to facilitate SIC specification and management. The usefulness of the Representation

model in SIC abstraction is also discussed. In Section 4.3 the application to database

management is briefly described.

4.1 Completeness of a SIC Specification for Database Design

Su & Raschid [1985] and Shepherd Kerschberg [1986] suggest that “constraints” must

explicitly specify both declarative semantics as well as process oriented or operational

semantics. Declarative semantics correspond to logical formulas describing relationships

between objects in a database. The information needed to check that these relation

ships are true or to maintain these relationships is the operational semantics. It is also

suggested that the “constraint” formalisms must provide information along the lines of

WHAT, WHEN, WHERE and HOW if they are to be complete. Although our SICs are

only a proper subset of their “constraints” (refer to Section 1.3), the same formalism with

some modifications can be applied to examine the completeness of a SIC specification.

61

Chapter 4. The Application of the SIC Representation Model 62

1. Operational and Declarative Semantics. In the Representation model, the

predicate (P) and certainty factor (F) components specify the invariant declarative

semantics among data objects. The operation type (T) is relevant to the operational

semantics to check these invariant facts. The violation action (A) specifies the

operational semantics that are needed to maintain these assertions. In addition,

the object (0) and precondition (C) components supplement both declarative and

operational semantics to assert and check these invariant assertions. The certainty

factor (F) also provides some operational semantics since the highest certain SIC

should be enforced first.

2. WHAT, WHEN, WHERE and HOW. The Representation model specifies:

• WHAT the SIC requires — its invariant assertions (predicates, P) and cer

tainty (certainty factor, F).

• WHEN the SIC is to be checked these assertions should be checked when

some primitive access operation (T) (update, deletion, insertion) is performed

on the data.

• WHERE the SIC occurs — these assertions are applicable to some data object

(0) in some contexts (preconditions, C).

• HOW the system should behave in the case of these assertions being violated

(violation action, A).

Therefore, the Representation model provides declarative and operational semantics

of a SIC specification. It also provides a SIC specification along the lines of WHAT,

WHEN, WHERE, and HOW. The rest of this section further explores whether we would

exactly need these six components in order to represent completely declarative and oper

ational semantics of a SIC specification and express precisely its features — can we have

Chapter 4. The Application of the SIC Representation Model 63

fewer or do we need more?

4.1.1 Not Fewer Components

The strengths of the Representation model are that it is precise enough to express the

features of a SIC; uniform for all kinds of SICs; and powerful enough to offer a corrective

action rather than simply reject the operation violating the SIC. As mentioned in the

previous chapter, traditional languages do not explicitly describe all features included in

the Representation model. A SIC represented in a traditional language could only be

assumed as 100% certain, related to all objects mentioned in that SIC; applicable to all

primitive database access operations; unconditional in all contexts; and so strong that

its violation would cause errors. It is beyond question that the predicate (P) component

is absolutely needed. Other components need to be further discussed.

Object (0) Depending on the language used to represent a SIC, a number of objects

may be mentioned. However, the declarative and operational semantics of the constraint

may not be relevant to some of these objects. In the project_employee_minimum_salary

example of Chapter 3, the constraint is not relevant to the Project that may be mentioned

if it is declared in a natural language. Neither is it relevant to the Employee if it is

represented in a pure first order logic such as the one used by Ling and Rajagopalan

[1984]. Consider another example. Suppose we have a constraint: “if an employee works

for any project, his (her) salary cannot decrease”. This constraint is only relevant to the

Employee.Salary, not Employee, Project or Work_for. In order to have precise declarative

and operational semantics for a SIC, it is necessary to specify explicitly for which object

this SIC is asserted. Since in this model a SIC is applied to a single operation, which can

only manipulate a single object, it is sufficient to assert only for this object.

Chapter 4. The Application of the SIC Representation Model 64

Operation Type (T) If a constraint is relevant to an entity, relationship, or relation,

but not an attribute, and is operation-dependent, the explicit specification of its operation

type is needed. If the constraint is operation-independent, there are still two advantages

(in addition to improving enforcement efficiency) to specifying the operation type:

• First, explicitly expressing which operation could cause constraint violation pro

vides the valuable operational semantics and clarifies the restriction intention (declar

ative semantics) of the SIC. It would be desirable to have a conceptual picture of

the consequence of constraint enforcement even in the database design phase. It

would also be helpful for later designing transaction specifications. For example,

given the constraint “the total number of employees cannot exceed 200”, it is helpful

to know that its restriction is only relevant to the insertion of an employee although

the original constraint is operation-independent.

• Second, it is impossible to specify the violation action without referring to a specific

operation type. When a general SIC is rewritten into several sub-SICs for separate

objects in terms of the Representation model, their objects, operations, and possibly

different violation actions provide useful declarative and operational semantics

necessary conditions for operations on the objects in the object component and

sufficient conditions for propagated operations on related objects.

However, for a SIC asserted on an attribute, the explicit operation type specification is

redundant since update is the only possible manipulation operation type. In this case,

we explicitly specify it only for clear and uniform representation.

Chapter 4. The Application of the SIC Representation Model 65

Precondition (C) One may argue that it is unnecessary to separate precondition

from predicate in terms of pure logical expressiveness. However, without this separa

tion. the declarative and operational semantics of the SIC a.re ambiguous. The pre

condition specifies the current database state that makes the constraint relevant; the

predicate asserts the allowable state after the operation on the object. We have seen

the project_employee_minimum_salary example in Chapter 3. Some constraints are more

naturally expressed in the IF... THEN. . . format. By explicitly separating the predicate

from the precondition, the restriction intention of the predicate becomes clearer and is

closely related to the violation action that now can be simplified to be a deterministic

series of well-defined actions (usually a single one).

Even if a constraint is not in the IF ... THEN . . . format when we first write it in

English, it may have some implicit “presuppositions”. For example, in a database con

taining Department, Employee, and Manager, a constraint might he stated in English

as SIC-6P6: “each employee must earn less than his (her) department manager”. In

that database, the above statement has two implicit presuppositions: (1) “the employee

belongs to some department”; and (2) “the department has a manager”. If these presup

positions are only true for some employees and departments, SIC-O is conditional and the

presuppositions should be explicitly represented in its precondition component. If these

are facts that are true for all employees and departments, we should have two other SICs,

each of them asserting one of the above facts in its predicate component. In addition,

these presuppositions should also be in the precondition component of SIC-O so that the

connection between a specific Employee and Manager are clear27. Each SIC would have

precise meaning.

261n this chapter, SIC-i, i=O,1,2,... are used as SIC names for simplicity.
27That is, by these preconditions, we can find the manager occurrence related to an employee or find

the employee occurrences related to a manager. However, these are not the restriction intention of the
above SIC.

Chapter 4. The Application of the SIC Representation Model 66

The precise context specifications in the precondition are also needed to provide

operational semantics when enforcing some related SICs. Suppose we have two SICs

for Employee.Salary on update.

SIC-i

CERTAINTY certain

ASSERT Employee. Salary 100,000

ELSE propagate(update(Department .Budget))

SIC-2

CERTAINTY certain

ASSERT Employee.Salary 150,000

ELSE reject

When updating the salary of an employee to be $180,000, we would have an enforce

ment problem — which violation action should be taken. The problem is caused by the

imprecise representation of SIC-i. The original restriction intention of these two SICs is:

“the salary of an employee should be less than or equal to $100,000, otherwise, if it is not

too high, we can increase the department budget; but if it is higher than $150,000, we can

only reject it”. The precondition of SIC-i should include an expression, “Employee.Salary

< 150,00U’8.

28Alternatively, we can use an expression, “checkpreSIC(SIC-, Employee.Salary”, that checks the
pre-SIC, SIC-2, for Employee.Salary and returns true if the pre-SIC is satisfied. One SIC’s (say SIC-i)
precondition may be the precondition and predicate of other SICs (say, SIC-2, SIC-3). SIC-2 and SIC-3
may be called as the pre-SICs of SIC-i. If a data object violates the pre-SICs, SIC-i becomes irrelevant
to further testing.

Chapter 4. The Application of the SIC Representation Model 67

Violation Action (A) Without the violation action component, all SICs could only

be assumed to be strong. The SIC specifications would be less powerful since they could

not include self-correcting or soft SICs.

Certainty Factor (F) If a database designer only considers certain SICs, he or she

would not need the certainty factor component. However, the purpose of introducing cer

tainty factors in database specifications is to represent more data semantics — including

fuzzy semantics. If the certainty factor component was not included in the Represen

tation model, all SICs would be assumed to be 100% certain — no exceptions. The

violation action of a SIC would be either a rejection or a corrective action. Systems

with only such SICs contain less declarative semantics since the fuzzy semantics are lost.

They have also been criticized as too rigid to “deal with unusual, atypical, or unexpected

occurrences”, and “it is not possible to allow violations of integrity constraints to per

sist without turning off completely the checking of those constraints” ([Bordiga, 1985]).

Having considered such possibilities and in order to avoid such criticisms, a database

designer might specify too few SICs or too “generous” ones. The inclusion of certainty

factors in the Representation model provides a mechanism for accepting data violating

the assertions of some uncertain constraints — the introduction of “controlled incon

sistency” For example, a database designer may specify a SIC for employee’s salary

as “Employee Salary < $1, 000,000” even though few employees in an organization have

salary greater than $100,000 Such a SIC would not catch common data entry errors,

e.g., misplaced or omitted decimal points. Employing a certainty factor, he (she) might

specify two or more SICs for the same object on the same operation. For example:

SIC-1: with 100% certainty, Employee.Salary $1,000,000

SIG-2: with 90% certainty, Employee.Salary < $100,000

Chapter 4. The Application of the SIC Representation Model 68

SIC-3: with 80% certainty, Employee.Salary < $50,000

SIC-2 and SIC-3 are fuzzy (uncertain) semantic integrity constraints. If they are

violated, different warning messages might be issued.

One may wonder since the certainty factor component relates closely to the violation

action, we might only need the latter. However, we may lose some semantics if we only

have the violation action component:

• Suppose that we only have at most one uncertain SIC for each restriction intention.

It might be acceptable to keep only the violation action component if we can assure

that the violation actions would correctly be specified and be consistent with their

“implicit” certainty factors.

• Suppose that we have a number of uncertain SICs. In the above example, SIG-2 and

SIC-3 should have measures of certainty at least on an ordinal scale. Otherwise,

we cannot know whether these SICs are inconsistent29.In addition, when enforcing

a set of uncertain SICs, some ordering is needed. The most certain SIC in the

same “family” (in terms of the same restriction intention, but different levels of

stringency) should be checked first since its violation is more likely to cause the

database to be inconsistent, the second certain one is then checked, etc. If an

occurrence violates the higher certain SIC, the remaining SICs with lower certainty

in the same “family” need not be checked. Without the certainty factor, we would

lose some declarative and operational semantics.

29ff the SIC-S were with certainty 95%, SIC-S and SIC-S would become inconsistent. Note that SICs
represented in this model are consistent if there exists a database state transition that is allowable with
regard to all of the restrictions, i.e., considering all their components except for violation actions.

Chapter 4. The Application of the SIC Representation Model 69

Conclusion Based on the above arguments, we can conclude the following:

If we wish to have uniform and precise representations for all kinds of SICs,

it is necessary to have all six components of the Representation model.

4.1.2 No More Components

Is it possible that more components are needed to represent declarative and operational

semantics of a SIC or express its features? In the following, some possible proposals are

discussed.

Enforcement Schedule Shepherd and Kerschberg [1986] suggest that a “constraint”

formalism should include when a constraint is to be checked -— after every transaction

or at audit time. Note that their discussion corresponds to the classification based on

the enforcement schedule described in the Section 2.1.7. As discussed in that section, the

enforcement schedule is a transaction-driven specification. It is impossible to specify the

enforcement schedule of a SIC as another component in the level of database schema.

Permanence As also discussed in the Section 2.1.5, the permanence of a SIC is not

easily decided in advance since the organizational environment is changing. The perma

nence of a SIC is closely related to SIC maintenance rather than database design or SIC

enforcement. If a SIC is still in a database schema, it should be enforced anyway. Its

permanence information adds no more declarative or operational semantics. Therefore,

this “permanence” information is not included in the Representation model.

Chapter 4. The Application of the SIC Representation Model 70

Object Type, Set, or Occurrence The object component in the Representation

model means that the SIC is applicable to any occurrence of the specified object type.

Occurrences are fundamental things in the database, and insertion, deletion, and update

are primitive operations on them. The integrity problems caused by data definition

operations (destruction or creation) on data object types are not the focus of this research.

Any SIC that involves data manipulation operations on higher levels of objects, e.g.,

types, or sets, is finally enforced at the occurrence level. Therefore, the explicit indication

of the level to which the SIC is applied would add no more declarative or operational

semantics.

Static or Dynamic As mentioned in Section 2.1.8, researchers have also discussed

static and dynamic constraints. Should we explicitly specify a SIC as static or dynamic?

As described in Chapter 3, the Representation model is indeed transition-oriented; that

is, all SICs represented in terms of the Representation model are basically dynamic. The

fundamental premise is as below.

Premise 4.1 The current database state is semantically correct.

A database state is semantically correct if it can be constructed starting from an empty

database by a sequence of valid database primitive operations (insertions, deletions, or

updates). A database operation is valid if the state transition caused by it satisfies the

SICs that exist at the time the operation is performed. We assume that a database is ini

tially empty. Over time, object occurrences are inserted into the database, then updated,

and finally probably deleted. Before ai occurrence is manipulated, the old database state

is semantically correct. A SIC is specified so that the database transition caused by its

primitive operation would bring the database to a new semantically correct state. Any

Chapter 4. The Application of the SIC Representation Model 71

“static constraint” is represented by rewriting it into one or more dynamic constraints for

the related object(s) on the operation(s) that could cause unallowed database state(s).

By doing so, we do not lose its declarative semantics, rather, proper operational seman

tics are attached. It is unnecessary to indicate whether the original constraint is dynamic

or static in this model.

In addition, a constraint on a sequence of operations is not a “real” SIC in terms of

the SIC Representation model. Instead, it is the consequence of enforcing several SICs.

For example, in order to model “a car must be owned by a manufacturer before it can be

owned by a dealer’, given that there are Manufacturer_Ownership and Dealer_Ownership

relationships, and Car, Manufacturer, and Dealer entities, we would need four SICs:

Manufacturer_ Ownership-I-RshipExclusive- (Dealer_Ownership)

CERTAINTY certain

FOR ManufacturerOwnership

ON insertion

IF Car, rship_occ_part (Manufacturer_Ownership, Car)

ASSERT —di DealerOwnership,

rship_occ_part(Dealer_Ownership, Car)

ELSE reject

Chapter 4. The Application of the SIC Representation Model 72

Dealer_ Ownership-I-RshipExciusive- (Manufacturer_Ownership)

CERTAINTY certain

FOR Dea1erOwnership

ON insertion

IF Car, rship_occ_part (Dealer_Ownership, Car)

ASSERT - ManufacturerOwnership,

rship_occ_part (Manufacturer_Ownership, Car)

ELSE reject

Dealer_Ownership-I-RshipBeforeRship- (ManufacturerOwnership)

CERTAINTY certain

FOR Dea1erOwnership

ON insertion

IF Car, rship_occ_part (Dealer_Ownership, Car)

ASSERT ManufacturerOwnership,

rship_occ_part (old(ManufacturerOwnership), Car)

ELSE reject

Manufacturer Ownership-D-Rship TriggerRship- (Dealer Ownership)

CERTAINTY certain

FOR ManufacturerOwnership

ON deletion

IF Car, rship_occ_part (Manufacturer_Ownership, Car)

ASSERT DealerOwnership,

rship_occ_part(Dealer_Ownership, Car)

ELSE propagate(insert (Dealer_Ownership))

Chapter 4. The Application of the SIC Representation Model 73

Interpretation:

These SICs restrict the relationships for a single Car. The first two SICs

specify that Dealer_Ownership and Manufacturer_Ownership are exclusive.

The third SIC restricts Manufacturer_Ownership to have existed at the time

Dealer_Ownership is being created. Thus, these first three SICs require that if

a Dealer_Ownership exists, then Manufacturer_Ownership must have existed

in the past (and must no longer exist now). The fourth SIC requires that

when a Manufacturer_Ownership is to be deleted, a Dealer_Ownership must

be created. These four SICs together restrict Manufacturer_Ownership and

Dealer_Ownership to exist in sequence. These SICs are independent of any

transactions. However, because of them, the order of the related transactions

is restricted. The sequence restriction on transactions is naturally guaranteed

if we specify completely SICs on data. It need not be worried about at the

level of transaction specification.

For example, let us consider the following four possible transactions. Transaction-

2 (which can be called Transfer_Car transaction to convey the application

meaning) can only be performed after Transaction-i (which can be called

Produce_Car transaction)30.Note that Transaction-3 and Transaction-4 are

not allowed to be performed. Transaction-3 would be rejected because either

(i) if Transaction-i was not executed before, executing Transaction-3 would

violate the third SIC; or (ii) if Transaction-i was executed before, execut

ing Transaction-S would violate the second SIC. Transaction-4 would also be

rejected due to the fourth SIC.

30llowever, the Transaction-2 may never be performed — that is, a car may be always in the hand of
a manufacturer. Whether the Tran.action-2 should be performed would depend upon the happenings
in the real world. Also, note that since all these related SICs are enforced at the end of Trarisaction-2,
we can switch the order of those two database operations inside it.

Chapter 4. The Application of the SIC Representation Model 74

Transaction-i

BeginTransaction

insert (Manufacturer_Ownership)

End Transaction

Transaction-S

Begin Transaction

delete (Manufacturer_Ownership)

insert (Dealer_Ownership)

End Transaction

Transaction-S

Begin Transaction

insert (Dealer_Ownership)

End Transaction

Transaction-4

Begin Transaction

delete(Manufacturer_Ownership)

End Transaction

A SIC with explicit time restriction is still a data-driven constraint though it may

involve a special system variable Current_time that registers the current clock time. For

example, to model the SIC: “an employee cannot receive a salary raise during his or her

first 6 months in the company”, an Employee entity must have a HireDate attribute, and

the SIC will be:

Chapter 4. The Application of the SIC Representation Model 75

Employee. Salary- U- TimeRestrict Transition- (Current_time, Employee. HireDate)

CERTAINTY certain

FOR Employee. Salary

ON update

IF Current_time < Employee.HireDate + “6 months”

AS SERT new(Employee. Salary) old(Employee . Salary)

ELSE reject

This kind of SIC may only occur in an environment in which the event that causes

manipulation of the involved objects is processed in real time so that the Current_time

in the computer matches the event time in the real world. Otherwise, Current_time must

be replaced by a time-valued attribute that records the external event time, and the

SIC becomes an ordinary data-driven constraint. In the above example, if the request to

update Salary is not processed in real time, the expression in the precondition component

would be: “Salary UpdateRequest.Date < Employee.HireDate + “6 months”.

Conclusion Four possible proposals to incorporate more components in the Repre

sentation model have been discussed. They suggest either some things that cannot be

specified in a database schema, or others that add no more declarative or operational

semantics of a SIC. Given these six components we can represent any kind of SIC that

is mentioned in the literature, and list its features precisely. These six components suf

ficiently provide the declarative and operational semantics of a SIC what should be

true in the database, and the information to check and maintain those assertions. Thus,

we conclude the following:

Chapter 4. The Application of the SIC Representation Model 76

It is sufficient to have these six components of the SIC Representation model

to represent a SIC precisely.

With this SIC Representation model, the database designer can represent the data

integrity semantics properly during conceptual modelling.

4.2 SIC Abstractions

One may be concerned that there would be a huge number of SICs represented in terms

of the Representation model in an actual database. However, the explicit component

separation in the Representation model allows us to apply abstraction concepts to reduce

the number of SICs that must he specified using the full Representation model.

SIC Aggregation Assume that 01 and Ti are the data object and operation type for

SIC-i, respectively; and Ui and Ti, where i= 2,3, ..., are the data object and operation

type for SIC-i, respectively. SIC-i (called aggregate-SIC) is the aggregation of other

SICs (called component-SICs) if

• 01 contains all Oi’s as components;

• the operation Ti on 01 can be conceptually thought of as the combination of

operations Ti on Ui;

• component-SICs and aggregate-SIC are sub-SICs decomposed from the same gen

eral SIC.

An aggregate-SIC may have its own assertions and violation action. The enforcement

of an aggregate-SIC can be simulated by checking all of its component-SICs and its

Chapter 4. The Application of the SIC Representation Model 77

own assertions. If an object violates any component-SIC, the violation action of the

aggregate-SIC will be taken. Thus, we can use a special logical predicate (checkeomSlC,

see Appendix B.2) to refer to all its component-SICs by their names in the aggregate-

SIC and avoid having to write the same assertions explicitly for 01 on Ti. One example

is that the domain constraint on insertion of an entity can he simulated by checking

the domain constraint of updating its attributes (from unknown values to some values).

We would have SICs asserting not-null, value, unique, etc., for each of its attributes on

update. These assertions need not be repeated for the entity on insertion.

SIC Specialization Assume that 01 and Ti are, respectively, the object and operation

type for SIC-i; and 02 and T2 are, respectively, the object and operation type for SIG-2.

SIC-2 is the specialization of SIC-i if 02 is a specialization (i.e., sub-type) of 01, and

T1=T2.

The specialized SIC would inherit assertions from its parent SIC with the proper

variable substitution (02 for 01). Thus, representation of the specialized SIC can be

omitted unless it has special restrictions. The specialized SIC’s own assertions can only

refine its parent SIC’s assertions, but not overwrite them. For example, suppose that

the database designer defines SIC-i for Employee.Salary on update: “(Employee.Salary

> 1000) A (Employee.Salary < 120000)”. The SIC representation for Manager.Salary

on update is not needed unless there are special restrictions (e.g., “(Manager.Salary>

15000)”).

SIC Association A SIC is a set of other SICs if conceptually the enforcement of

the set-SIC is the same as the enforcement of all of its member-SICs and nothing

more. The violation action of the “set-SIC” is dummy because if an object violates any

Chapter 4. The Application of the SIC Representation Model 78

member-SIC, the violation action of that member-SIC will be taken. Thus, we can use

a special logical predicate (checkmemSlG, see Appendix B.2) to refer to all its member

SICs by their names in the “set-SIC” and avoid having to write the same representations

of the member-SICs explicitly for the object asserted by the “set-SIC”. The concept of

SIC association may be useful for SIC enforcement in a DBMS. For example, all SICs

for the same object on the same operation may be grouped as a “set-SIC” or several

“set-SICs” according to their certainty factors and/or scheduling requirements. This

kind of “set-SIC” is not a new type of SIC. However, in SIC specifications, conceptually,

a SIC on updating the primary key of an entity (or relationship, or relation) can be

simulated as two “set-SICs” that refer to SICs for deleting the corresponding old entity

(relationship, or relation), and inserting a corresponding new entity (relationship, or

relation), respectively.

Generic SICs By applying the above abstraction concepts, we can reduce the number

of SICs that must be specified explicitly using the Representation model. The concept

of generic SICs is introduced to reduce the number of required explicit representations

even further. Assume we have the following generic object types:

— (1) Entity* is the generalization (i.e., union) of all entity types that are defined by the

database designer. Entity*.Attribute* is the generalization of all attributes of all

entity types that are defined by the database designer.

— (2) Relationship* is the generalization of all relationship types that are defined by the

database designer. Relationship .Attribte is the generalization of all attributes of

all relationship types that are defined by the database designer.

These generic object types are conceptual modelling objects. They do not actually exist in

a database. That is, neither data definition operations nor data manipulation operations

Chapter 4. The Application of the SIC Representation Model 79

will actually be applied to them. However, we can write some common SIC types (e.g.,

domain constraints) for them. These SIC representations for generic object types can

be called generic SICs (SICs for specific object types can be called specific SICs in

contrast). The precondition component of a generic SIC includes logical predicates3’

(refer to Appendix B.1) to indicate clearly the contexts where the SIC type is applicable

(e.g., the fact that two entity types are exclusive) and/or identify the related information

(e.g., its primary key, etc.) of the object type for which the SIC type applies. Suppose

that we keep the constraint information for specific object types as logical predicates in

the database (e.g., in the data dictionary). Also suppose that the DBMS would support

SIC inheritance properly. Since all object types defined by the database designer are sub

types of these generic object types, if they satisfy the preconditions of some generic SICs,

these SICs would be applied to them by the principle of SIC specialization. Thus, these

generic SICs serve as “templates” for common SIC representations and are expected to

be inherited by specific object types32. We would need only one representation for each

SIC type (e.g., two entity types are exclusive) in a database regardless of the number

of specific object types to which the SIC type applies. The advantage of this approach

is to reduce the possibly huge number of explicit representations of SICs so that the

conceptual structure and future maintenance (management) of SICs become easier. In

addition, since generic SICs can be pre-defined in an automated database design system,

31These logical predicates in the precondition component of a generic SIC contain some uninstan
tiated variables. (For example, Primary_Key is a variable in the logical predicate entity(Entity*
Primary_Key) These variables will be instantiated when a specific entity type (e.g., Employee)
has the constraint information to satisfy the precondition and inherit the SIC. (For example, the above
Primary_Key can be instantiated to be “Empld” if the database designer has specified Employee as an
entity type with the primary key “Empld”, that is, the assertion entity(”Employee”, “Empld”, ...) has
been given.)
32The idea here is similar to the following simple case. In a database, there are entity types Employee,

Customer, Supplier, etc. Though the Person entity type does not actually in the database, we can write
some SICs for Person, which would be inherited by the specific entity types (e.g., Customer). The level
of our Entity* type is still higher than Person.

Chapter 4. The Application of the SIC Representation Model 80

the consultation to elicit SICs would be more efficient. Section 7.3.1 will describe in

detail how to apply generic SICs for representing some SIC types that are identified

during conceptual modelling.

Usefulness of the Representation Model It is necessary to identify the object and

operation type when applying SIC aggregation or specialization abstractions. The explicit

component separation in the SIC Representation model helps identify these components

easily. In addition, the representation of generic SICs relies heavily on the precondition

component. Most SIC types (e.g., two entity types are exclusive) only apply to some

specific object types. The precondition component of such a generic SIC indicates the

conditions for the specific object type where the SIC type is applicable. A few SIC types

(e.g., domain constraints) are common to all entity types. In that case, the precondition

component of a generic SIC is used to identify the relevant object in this context so that

its variables can be instantiated with proper values when a specific object type inherits

the SIC.

4.3 Database Management

In this section, some possible applications of the SIC Representation model to database

management rather than database design will be briefly mentioned.

4.3.1 SIC Management

A DBMS should include an integrity maintenance subsystem to enforce SICs. Some

previous research (e.g., [Hammer and McLeod, 1975] and [Bertino and Apuzzo, 1984])

Chapter 4. The Application of the SIC Representation Model 81

have proposed the functional structure of this integrity maintenance subsystem. Instead

of fully describing its structure, this dissertation briefly discusses its major functions

enforcing and maintaining (adding or removing) SICs. With regard to SIC enforcement,

the focus is on the basic checking strategy (the enforcement schedule) and on the violation

actions.

SIC Enforcement If all accesses to the database are through transactions, the DBMS

would enforce SICs through pre- and post-conditions on transactions. The integrity

maintenance subsystem would only maintain SICs, and would not be responsible for

enforcing them. If it is possible to access the database using primitive operations or if no *

pre- or post-conditions have been specified for a transaction, the integrity maintenance

subsystem would determine which SICs must be enforced and when.

If the checking of a SIC is not at the end of the transaction, it should be done before

the intended database operation is to be performed, not after it. While examining the

assertions in the precondition and predicate components of a SIC, the effect of its specified

operation type should be taken into account. The Bertino and Apuzzo’s [1984] original

criteria of deciding when a SIC must be enforced with regarding to a transaction are

modified as below:

Basically, a SIC is enforced at the end of the transaction, if the set of objects

in all components of the SIC is affected (updated, inserted, or deleted) by

more than one update, insertion, or deletion statement in the transaction.

Otherwise, the SIC is enforced on each occurrence update, insertion, or dele

tion, if it is a SIC involving only one entity/relationship occurrence or tuple;

or on each update, insertion, or deletion-request, if it is a SIC involving one or

Chapter 4. The Application of the SIC Representation Model 82

more than one set of occurrences or tuples belonging to the same or different

entity, relationship types, or relations.

The violation action of a SIC might become a part of a transaction. In determining

the enforcement schedule of SICs, the related propagation actions should he considered

too. For example, suppose a transaction includes action-i, action-2, action-3, ..., and

suppose that SIG-i is only affected by action-i and has a violation action violation-action

1. Therefore, SIC-i is enforced immediately. If action-i violates SIG-i, violation-action-i

becomes part of the transaction. If SIC-2 is affected by action-S and violation-action-i,

it should be enforced at the end of transaction. If the transaction is rolled back for any

reason, the related propagation actions should also be undone and if a related propagation

action aborts, the transaction must be rolled back too.

In most modern DBMS, there is a recovery mechanism that is responsible for recov

ering the database from many possible failures, e.g., transaction failures, system-wide

failures, media failures ([Date, 1983]). We assume that the integrity maintenance sub

system cooperates with this recovery mechanism to keep information in a log required

for undoing an operation request The information needed in the log is similar to that

for recovery, e g, (i) identification of each modification (update, insertion, or deletion)

statement, (ii) identifers of the occurrences affected b each statement, and (iii) for each

occurrence updated, the old occurrence value A special requuement on the log for defer

ring SIC checking until the end of transaction is the following. If the SIC contains new/old

functions, the old values of the objects should be logged at the beginning of the transac

tion even if the values are not referenced by any transaction statement. For example, we

may have a SIC to restrict old(snm(Employee.Salary)) new(snm(Employee.Salary)),

but a transaction does not reference or operate on “siim(Employee.Salary)”.

Chapter 4. The Application of the SIC Representation Model 83

If the violation action of the related SIC is “warning”, the intended access operation is

allowed, but a warning message would be issued. If the violation action is “propagate”,

the access operation would also be allowed, but a related corrective action would be

performed (some message may also be issued). If the violation action is “reject”, the

access operation would be rejected, an error code would be raised, and some explanation

message describing the occurrences in violation of the SICs would also be given. In this

latter case, if the transaction has proper exception-handling procedures, this error would

be handled as planned (e.g., change the operation in some way and resubmit it, or skip

the operation). Otherwise, the integrity maintenance subsystem would cooperate with

the recovery mechanism to rollback the transaction automatically.

The SIC Representation Model SIC representation in terms of the Representa

tion model would facilitate their enforcement since the necessary operational semantics

are included. The checking is usually limited to the occurrence (that is currently manip

ulated by the operation in the operation component) of the object type (in the object

component). The database state that makes the checking relevant is unambiguously de

scribed (in the precondition component). The necessary corrective action is also clearly

specified (in the violation action component). The certainty factor component serves as

the ordering factor when checking a group of SICs in the same “family”. Other imple

mentation mechanisms (e.g., keeping redundant minimum or maximum data value) can

be used to improve efficiency further.

SIC Maintenance After a database is populated, there is a maintenance problem

a new SIC may he added or an old SIC may be removed. Suppose that no time-stamped

past generation of data is kept. In principle, deleting a SIC does not affect the current

Chapter 4. The Application of the SIC Representation Model 84

database state. Inserting a SIC can affect the current database state only if the SIC is

relevant to some object(s) on insertion. If the organization decides the new SIC will not

be applicable to the existing data, it should be explicitly stated in the SIC33. In that

case, even if the new SIC is asserted on “insertion”, the current database state need not

be checked. Otherwise, a complicated procedure is needed to simulate insertions of all

occurrences of the related object (asserted by the new SIC) and settle possible violations.

It may be easier to maintain SICs represented in the Representation model since their

operation type components are explicitly expressed.

4.3.2 Other Aspects of Database Management

The introduction of certainty factors in the Representation model brings some advantages

to other aspects of database management. The first is to support flexible management.

The second is to facilitate intelligent query processing.

Flexible Management By allowing uncertain SICs, we would decrease the serious

rigidity of SICs criticized by Brodiga [1985]. Although those SICs are uncertain, their

violation might still convey some information. Usually warning messages are issued.

The purpose of issuing warning messages is twofold. First, specific occurrences that

violate an uncertain SIC deserve further examination either interactively or in batch to

assure that the real organizational situation is reflected. Note that the enforcement of

a good uncertain SIC will generate warning messages for those, likely erroneous, (but

comparatively a few) cases without interfering with the processing of routine cases. This

corresponds to the idea of exception reporting. Second, if warning messages are often

33For example, if a new restriction on employees salary is published on “1991/2/1” and is only
applicable to new employees, it should be attached the precondition: Employee.Hiredate “1991/2/1”.

Chapter 4. The Application of the SIC Representation Model 85

issued for a SIC34, the organization might need to reevaluate its organizational policy,

which might invoke SIC maintenance.

Knowledge-based Query Optimization and Deductive Capabilities One advan

tage of introducing certainty factors in the Representation model is to facilitate query

processing. An uncertain SIC is similar to a heuristic for directing query processing

to the mostly likely objects first in an attempt to reduce response time. Furthermore,

uncertain SICs can be applied to provide deductive capabilities under uncertainty. For

example, from some sources we have the input data as “with 90% certainty, a ship is a

tanker, i.e., Ship. Type=tanker”. If we have a SIC “with 80% certainty factor, a tanker

carries oil (i.e., if Ship. Type=tanker then Ship. Cargo=oil)” , we can conclude that with

72% (i.e., 90% x 80%) certainty, the Ship.Cargo may be oil. Thus, this approach allows

the Representation model to apply to expert database systems (i.e., the integration of

knowledge based systems and database systems) as well as traditional database systems.

34For a SIC involving aggregate functions, it is possible that even if one warning message is issued only
once, the organizational policy needs to be re-evaluated because violating such a SIC might imply that
a number of occurrence exceptions have happened so far owing to the nature of aggregate functions. For
example, there might be two SICs such as SIc-4: with 100% certainty. avq(Employee.Saiary, < $25,000
and SIC-5: with 90% certainty, avg(Ernployee.Saiary) $20,000. but no other SICs on Empioyee.Salary.
Then, a single violation for SIC-5 might imply that many employees have too high salary, the salary
policy may need to be reevaluated.

Chapter 5

An Extended E-R Model Incorporating Semantic Integrity Constraints

This chapter proposes a conceptual modelling tool, called the E-R-SIC model, for

incorporating SICs. Section 5.1 describes the shortcomings of previous E-R models for

dealing with SICs. Section 5.2 introduces the primitive constructs and data abstractions

of the E-R-SIC model and describes the basic properties of SICs. Sections 5.3 to 5.6

explore SIC properties in more detail. Section 5.7 summarizes the E-R-SIC model in

some figures.

5.1 Problems with Previous E-R Models

Existing database design methodologies based on the E-R model provide little support

for incorporating SICs. Rather, they are treated as unessential accessories to conceptual

modelling.

The E-R model was originally proposed by Chen [1976]. It has three primitive con

structs: entity, relationship and attribute. More recently, researchers (e.g., [Smith and

Smith, 1977a], [Smith and Smith, 1977b], [Teorey et al., 1986]) have extended Chen’s

original E-R model to provide some powerful data abstractions, e.g., generalization, ag

gregation, association, etc. Very few SICs are discussed in the Chen’s original E-R model:

86

Chapter 5. An Extended E—R Model Incorporating Semantic Integrity Constraints 87

• An incidence constraint requires that the existence of a relationship occurrence

always depends on the existence of the participating entity occurrences ([Furtado,

et al., 1988]).

• The existence of an occurrence of a weak entity type depends on some occurrence(s)

of another entity type ([Chen, 1985]).

• The maximum cardinality specifies the maximum number of occurrences of a rela

tionship that can be related to one occurrence of an entity type.

• Attributes cannot exist on their own, but are always attached to entities or rela

tionships.

• Primary keys must have unique values.

The extended E-R models proposed by previous researchers introduce a few more

SICs, e.g., minimum cardinality. However, in all cases, SICs are only considered as

accessory properties of relationship or entity types (usually a single one). For example,

researchers (e.g., Palmer[1978], Tsichritzis and Lochovsky [1982]) usually discuss the

optionality property of a relationship type (i.e., a relationship type, as a mapping, is

total or optional to an entity type). One problem with this modelling approach is that

SICs do not receive adequate attention in the conceptual design phase and are usually lost

during the transformation process from the E-R model to the relational model. SICs are

not treated as essential to conceptual modelling. Instead, they are considered mainly for

selecting the appropriate logical data structure (e.g., relations). Because some semantics

can not be considered as “properties” of a single entity or relationship type, the traditional

approach may not identify all necessary SICs. For example, consider the E-R diagram

where an entity type E is related to entity types F and G via relationship types RX and

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 88

RY, respectively. What SICs (if any) are implied by the adjacency of these relationship

types in an E-R diagram? There may he a SIC to require that an RX occurrence relating

to an E occurrence must exist if the corresponding RY occurrence exists, or conversely.

Alternatively, there may be a SIC to require that RX he exclusive to RY. Such kinds

of SICs are seldom discussed. Since SICs express restrictions on the logical meaning of

data, it is worth considering the SIC as an distinct modelling construct.

5.2 An Overview of the E-R-SIC Model

The E-R-SIC model is an extended E-R model. It can be used for incorporating SICs in

a database schema.

5.2.1 Primitive Modelling Constructs

The proposed model is application domain-independent. There are four primitive mod

elling constructs in the E-R-SIC model — entity, relationship, attribute and SIC. These

four constructs are all needed to model data semantics.

Construct Description These primitive constructs are defined as follows:

Definition 5.1 An entity is the database representation of a real-world object that can

be distinctly identified.

Definition 5.2 A relationship is the database representation of an association among

real-world objects.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 89

Definition 5.3 An attribute is the database representation of a property of a real-world

object or an association that is a function mapping an entity type or a relationship type

to values.

Definition 5.4 A SIC is a logical, invariant restriction on the static state of a database

(that is, a collection of attributes, entities and relationships), or on the database state

transition caused by an insertion, deletion, or update operation.

Entity, relationship, and SIC occurrences are classified into different types according

to some criteria. At a particular moment, certain groups of entity, relationship, or SIC

occurrences can be considered as sets in the mathematical sense, and these sets may

have some aggregate properties.

Following the arguments on page 59, the E-R-SIC model does not allow the “not

applicable null”. A database designer should properly define entity or relationship types

to avoid that problem.

A relationship type cannot be a participant in another relationship type. If a rela

tionship type participates in another relationship type, it will be modelled as an entity

type and the original E-R diagram will be changed appropriately35.

Since neither relationships nor attributes can exist without entities, and a relationship

can be modelled as an entity, the followillg is clear:

35That is, if a relationship type RX, which has two entity type participants E and F, is also a participant
in another relationship type RY, then a new entity type, say G will be used to replace the original
relationship type RX; and two new relationship types, say RE and RF, will be created to connect
this new entity type, G, with entity types E and F, respectively. The new entity type, G, becomes a
participant in the relationship type RY.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 90

Entity is the most fundamental construct among attribute, entity, and rela

tionship.

Weak Entity Type The existence of an occurrence of a weak entity type depends

on the existence of some occurrence(s) of another entity type the “regular” entity

type. An existence subset [Webre, 1983] is the subset of occurrences of the regular entity

type upon which a weak entity occurrence is dependent. The E-R-SIC model requires

that the above relationship be explicitly specified in order to make clear the “dependence

semantics” — the existence subset for each weak entity occurrence36.

Time The E-R-SIC model does not model “time” as an entity type37. That is,

time-stamped past generations of data are not modelled. However, there may be SICs

applied to some time-valued attributes, temporal sequences between object occurrences,

or the special system variable, Current_time.

Simplifying Assumptions For simplification, there are two assumptions on relation

ships.

361n the literature there is a related discussion on another term, weak relationship. However, note that
researchers use that term to imply diverse meanings. For example, Tsichritzis and Lochovsky [19821 use
it to mean the relationship between a weak entity type and its related regular entity type. Scheuermann
et al. [1980] classify weak relationships into two types. Their second type should be modelled by
an association abstraction. Their first type (also see [Dogac and Chen, 1983]) implies a special SIC,
which is called Critical_Relationship_Occurrence SIC in this research. That is, the existence of
an occurrence of an entity type E depends upon the existence of exactly one critical occurrence of a
relationship type R, via which it related to another entity type F. An occurrence of E cannot exist if
its related critical relationship occurrence of R does not exist though it may still participate in other
occurrences of R. For example, each employee should be assigned to at least two projects, and exactly one
of these would be critical. In order to model such a situation, the relationship type R should have a special
attribute, e.g., “Criticality”, which is a binary variable to indicate whether a relationship occurrence is
critical.

371f we model “time” as an entity type, all other entities and relationships would connect with “time”
via at least two special relationship types “has_creation time” and “has_deletion time” ([Studer,
1988]). The E-R diagram would become very complicated.

chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 91

No Ternary or Higher Degree of Relationships Ternary relationships and rela

tionships of higher degree are not discussed in this dissertation because of their additional

complexity38. Instead, ternary relationships or relationships of degree greater than two

are simulated using binary relationships ([Kent, 1977])39.

No Recursive Relationships The relationships discussed in this dissertation are

binary relationships involving two distinct entity types. Recursive relationships, which

are relationships involving only one entity type, are simulated by binary relationships.

That is, one or two40 subtypes will be created for the entity type participating in a

recursive relationship type. Such a simulation avoids the need to attach an explicit “role”

when referencing an entity type participating in a relationship type. These subtypes also

make the semantics clearer in most cases41. When an entity type is required to participate

in both roles of a recursive relationship, such a distinct subtype, although it may be

redundant, will be helpful for understanding the semantics. We may have some problems

when an entity type is required to participate in both roles of a recursive relationship

38For example, the cardinality specifications are more complicated. In a ternary relationship, there
are twelve pairs of minimum and maximum cardinalities according to the cardinality definition given by
Lenzerini and Santucci [1983].
39That is, in the case of ternary relationships among entity types, the first binary relationship is

formed between two entity types, the second binary relationship is then formed to connect the first
binary relationship with the remaining entity type. Since the participants of a relationship type should
be entity types, the above means that the first binary relationship should become an entity type. For
example, suppose that there is a ternary relationship Order among three entity types, Parts, Ware
houses, and Suppliers. We will model the situation as four entity types, Parts, Warehouses, Allocation,
Suppliers, and three binary relationship types connecting Allocation with Parts, Warehouses, Suppliers,
respectively. Allocation is a new entity type converted from the original binary relationship between
Parts and Warehouses.
400ne subtype is sufficient to replace a recursive relationship with a binary relationship although a

database designer may prefer to have both. For example, in the relationship type Supervise, “Employee
(0, *) Supervise Employee (0, *)‘ where * stands for some positive number other than 0, one subtype
(e.g., Supervisor) is sufficient.
41Compare to an extreme case where there is only one entity type “Thing” in the database and all

relationships are recursive.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 92

and those two roles are not distinct42. However, such cases are very idiosyncratic. For

simplification, this research is limited to handling binary relationships with two distinct

entity types.

5.2.2 Data Abstractions

A data abstraction is a simplified description of a system that suppresses specific details

while emphasizing those pertinent to the problem. Like other extended E-R models in

the literature, the E-R-SIC model provides three kinds of data abstractions: inclusion,

aggregation, and association.

Inclusion Abstraction

The inclusion abstraction concept ([Goldstein and Storey, 1990]) encompasses classi

fication, generalization, and specialization. Classification is a form of abstraction

in which a type is defined as a collection of occurrences with common properties. Spe

cialization occurs when every occurrence of a type is also an occurrence of another type.

Specialization is indicated by the term, is_a, that is, S is_a G, where S is a subtype and G

is a super-type. It is possible to have generalization or subset hierarchies ([Teorey, et al.,

1986]). A generalization hierarchy occurs when a type is union of non-overlapping sub

types. A subset hierarchy occurs when a type is union of possibly overlapping subtypes.

Property inheritance, which means that attributes, associated relationships and imposed

SICs of the super-type are inherited by each subtype (or a type’s are inherited by its

occurrences), is the most important characteristic of the inclusion abstraction. In the

42That is the relationship is symmetric, e.g., “Persom Fri emdship Person”

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 93

case of the classification abstraction (related occurrences to types), the property inheri

tance principle has been enforced traditionally by any DBMS. This research assumes that

the DBMS (either in the E-R model or the relational model) would also automatically

implement property inheritance for the specialization abstraction. That is, the principle

of redundancy minimization. i.e., properties that can be inherited from some other en

tity type via an is_a relationship should not be stored explicitly ([Goldstein and Storey,

1990]), has been followed. Otherwise, the inherited attributes, relationships and imposed

SICs would need to be explicitly and redundantly stored for each specific subtype and

other SICs would be required to assure that these properties have been really “inher

ited”! However, there is one exception to the use of redundancy minimization principle.

Although the primary key of the super-type may not be chosen as the primary key of the

subtype, it is indeed an attribute and candidate key of the subtype. In order to make the

semantics of a subtype entity clearer and have the same related SIC(s) regardless of the

choice of the primary key, the primary key of the super-type is suggested to be stored in

the subtype.

Aggregation Abstraction

Aggregation is an abstraction that allows a relationship between objects (i.e., attributes,

entities, relationships) to be considered as a higher level object ([Smith and Smith,

1977b]). The term, component_of, is used to indicate the aggregation, that is, C corn

poneritof A, where C is a component and A is an aggregate. The E-R-SIC model pro

vides composite entity aggregation that is an abstraction in which an entity contains

other dependent entities and some attributes as real components43.The aggregate entity

431n addition to composite entity aggregation, aggregation abstractions can be classified into four
other kinds based on discussions about aggregation in the literature. (1) Attribute aggregation is the
abstraction in which an attribute may be defined as the aggregation of attributes. This research does

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 94

“owns” these other entities ([Lee and Lee, 1990]). That is, the existence of these other

entities is dependent on their aggregate and are owned by exactly one aggregate (i.e.,

the cardinalities of any component in the component_of relationship are always (1,1)).

Although some researchers argue that in aggregation the inheritance is upwards ([Brodie,

1983, p. 576], [Mees and Put, 1987], [Potter and Kerschberg, 1988]), this research ar

gues that it is probably more suitable to state that the aggregate “owns” components

and components “own” their attributes, so the aggregate “owns”, rather than “inher

its”, components’ attributes. For example, we may state “a car owns engine.weight,

engine, brand, and brake. brand, etc. “.

Association Abstraction

Association is the abstraction in which a collection of member objects is considered

as a higher level (more abstract) object ([Brodie, 1983]). The term member_of is

used to indicate the association, that is, M member_of 5, where M is a member and S

is a set. Brodie [1983] states “as with aggregation, the inheritance goes upward” and

some researchers (e.g., Mees and Put [1987]) even state that association may support

both upward and downward inheritance. This research takes the position that there is

no inheritance in association. That is, is distinguished from type and a “set” in

association is considered to represent a pure mathematical set.

not consider the hierarchical structure of attributes. (2) Simple entity aggregation is the abstraction
in which an entity is defined by aggregation of attributes. This is the traditional entity concept. (3)
Complex entity aggregation is the abstraction in which an entity is defined by aggregation of attributes,
other independent entities, and probably sets. The aggregate object does not really “own” them as
components. That is, the cardinalities of these “components” in the component_of relationship may
not be (1,1). This aggregation may convey less semantics because these “relationships” between the
aggregate object and its “components” are all implicitly named as “component-of”. Therefore, the E-R
SIC model does not adopt it. (4) Relationship aggregation is the abstraction in which a “relationship” is
obtained by aggregation of entities and some attributes. It is just another way to represent a relationship.

chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 95

Before Brodie mentioned association, dos Santos et al. [1980] had already proposed a

useful data abstraction “correspondence”, which was later referred to by Furtado and

Neuhold [1986] as “grouping”. Grouping is more general than association. It creates

a group of sets, i.e., grouping is an abstraction that defines a new entity type in which

each occurrence is a set formed from a collection of occurrences of the source entity type.

According to the correspondence idea in [dos Santos et al.,1980}, a group of sets is

formed by an indexing mechanism. Applying the idea of correspondence, the E-R-SIC

model provides three kinds of associations as below.

1. Natural Set Association: A set, S, is defined to contain all occurrences of an

entity Mtype. Classification is the indexing mechanism to form a set. For example,

we have: “Employee member_of Employees” where Employees is a set consisting of

all Employee occurrences in the employee type; or “Department member_of Depart

ments “.

If these sets only have attributes that are derived from those of their members, their

explicit representations may be redundant and may not be efficient after considering

the enforcement of SICs. However, there may be a priori attributes, for example,

Employees.Representative. In the whole database, there are a number of such sets,

e.g., Employees, Departments. Since they may have different derived attributes and

a priori attributes, they form different entity set types containing a single occur

rence, respectively. This association abstraction relationship, memberof, should

not have its own attributes and need not be explicitly represented.

2. Indexing Derived Set Association: This is the original correspondence abstrac

tion discussed by dos Santos et al. [1980]. The indexing mechanism44 can be an

44Formally, Furtado and Neuhold [1986] define grouping as below. “If T designates some entity set

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 96

indexing attribute that is an attribute of the indexed entity type, or an indexing

entity type that is related to the indexed entity type via an indexing relationship

type. An example is cosets of employees of the same age, where Employee.Age is the

indexing attribute for the indexed entity type Employee. If the indexing attribute

is an attribute that disallows null (“unknown”), the cosets obtained by grouping

would form a partition of the indexed entity type occurrences. Another example is

shown in Figure 5.1, where DSis the indexing derived set (e.g., cosets of employees

who work_for the same project), M (e.g., Employee) is the indexed entity type, I

(e.g., Project) is the indexing entity type, and R (e.g., Work_for) is the indexing

relationship. Grouping is a powerful abstraction. There may be more than one

indexing type, which can be combined with indexing attributes as the indexing

mechanism. Although we can get a group of sets from the indexing mechanism, we

may only be interested in some of these (e.g., the set of employees who work_for

project p100).

In general, this association abstraction relationship, member_of does not have its

own attributes and need not be explicitly represented. This kind of set has some

attributes derived from the indexed entity type, some are defined a priori. Two

kinds of attributes in a set are important for membership derivation: the indexing

attribute (e.g., Employee.Age) and the primary key of the indexing entity type (e.g.,

Project. Id).

3. Enumerated Set Association: There is no indexing mechanism in this kind of

association because the database designer does not know or does not care about

and T1,T2, ..., T, are either value sets associated with T or entity sets related via some relationship with
T, then the Grouping operator denoted by T1,T2, ..., T {T} constructs a new (grouped) entity set TG
where each element is a set of entities of T such that inside of one such set all entities have the same
values and related entities from the entity sets T1 , T2, ..., T associated. The types T1,T2, ..., T will be
called indexing types, T the basis.”

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 97

_

rof DS

I

Figure 5.1: Grouping: Member (M), Derived Set (DS), Indexing Entity (I), Indexing
Relationship (R)

the indexing entity types or attributes. The set membership can only be explicitly

enumerated by the member_of relationship.

5.2.3 Basic Properties of SICs

Based upon the ontological concepts of Bunge’s formalism, Wand and Weber ([1988];

[1989]; [1990]) develop a formal model of the deep structure of an information system.

Their work begins with a fundamental premise that is an adaptation of Newell and

Simon’s [1976] physical symbol system hypothesis. Although as described in Section 1.3

the SICs in this research are only parts of their “laws”, we can borrow this premise to

develop the SIC concept.

Premise 5.1 A physical-symbol system has the necessary and sufficient properties to

represent real-world meaning.

Chapter 5. An Extended E-R Model Incorporating Sernantic Integrity Constraints 98

An information system is a physical-symbol system. A database is part of an infor

mation system and consists of attribute, entity and relationship occurrences. In order

to represent data integrity semantics, there may be constraints restricting the existence

or change of these occurrences. Some constraints may specify necessary conditions that

must hold for an occurrence to exist, not exist or change in a database. Other constraints

specify sufficient conditions, which if true, imply that an occurrence must exist, not exist,

or change in a database. Thus, we can interpret a constraint as follows.

A SIC is an assertion a sufficient or necessary condition for an occur

rence of an attribute, entity, or relationship type to exist, not exist, or change

in a database.

What are these conditions?

• Although these conditions are usually specified for an entity or relationship type or

its attributes, they are actually restrictions on the insertion, deletion, or update of

its occurrences in a database, rather than on the addition or removal of the type

from the database schema.

• A SIC is defined intensionally in a database schema rather than extensionally. The

conditions apply to an occurrence by virtue of the fact it belongs to an entity,

relationship, or attribute type. However, the conditions for entities or relationships

may only be relevant to some occurrences of the specified type. These occurrences,

indeed, can be considered to belong to an “implicit subtype”.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 99

Reasons of having implicit subtypes. By applying the classification abstraction

([Schrefi et al., 1984]) those entity/relationship occurrences with common prop

erties form an entity/relationship type; and by the principle of property inheri

tance every entity/relationship occurrence should have exactly all the attributes

of the entity/relationship type and conform to the SICs associated with the en

tity/relationship type ([Knuth et al., 1988]). However, these occurrences may not

be “homogenous”. That is, there may be special SICs on some occurrences. One

could create a subtype for only those special occurrences. By taking this approach

(similar to [Dampney, 1988]) we could avoid a number of special types of SICs as

sociated with “implicit subtypes”. However, since there may be a number of such

special SICs, there would have to be a corresponding number of such subtypes in

a database. The organization may have no intrinsic interest in these explicit “sub

types”. In this research, the subtypes will be created only if they are meaningful

to the organization or if they are needed to eliminate recursive relationships. That

is, we have the following premise:

Premise 5.2 The occurrences of each entity or relationship type are not homoge

nous; that is, they have different attribute values, and are related to different oc

currences of other objects.

This implies that a database designer could not specify all entity and relationship

types such that all occurrences of each type satisfied the same set of SICs. That is,

“implicit subtypes” with unique SICs always exist.

An entity subtype may be implicitly defined by restricting attribute values of its

occurrences or by requiring occurrences to participate in some relationship types45.

451n another semantic data model, SDM, there are four ways to define “sub-classes”: attribute-defined,
user-specified, set operator-defined, and existence-defined ([Hammer and McLeod, 1981], [Urban and Del
cambre, 1986]). A user can decide what occurrences the subtype will contain. From the SIC perspective,

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 100

A relationship subtype may by implicitly defined by restricting attribute values of

its occurrences, by requiring its participating entity occurrences to participate in

some other relationship types, or by restricting attribute values of its participating

entity occurrences. A condition for an entity or relationship type can be considered

as the definition of an implicit subtype if there are other conditions and this condi

tion provides a criterion to decide whether an occurrence satisfies other conditions

(that are special SICs for the “implicit subtype”).

• These conditions may be positive or negative. A positive condition requires that

something must happen. A negative condition requires that something must

happen. For attributes, by simply reversing the comparison operator (e.g., reversing

“not E.A> value” to “E.A < value”), we could consider only positive conditions.

However, we must consider both positive (e.g., participate_in) and negative (e.g.,

not participate_in) conditions for relationships.

• These conditions may be simple assertions, or complicated arithmetic formulas.

To be considered a single SIC, a condition should be “atomic”, i.e., indivisible.

Otherwise, it is really two or more SICs. That is, usually we need not consider

conjunctions of conditions. However, there may be some “further restrictions” that

are conditions on some basic restrictions. For example, there may be a SIC such

as, “if the salary of an employee is greater than $40,000, he (she) must participate

in some project, which is projecti”, in which the last part of the statement is a

further restriction on the participation in a project.

• These conditions may only require that any one occurrence of a specific type ex

ist, or more strictly, may require that at least, at most, or some exact number of

the semantics are embedded in the user’s mind and it is left to the user to maintain the database in order
to reflect real-world changes. If a subtype is defined by some set operation, the definition is explicit.
The ideas of the “attribute-defined” and “existence-defined” “sub-classes” in SDM are adopted here.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 101

occurrences of the specific type exist. That is, the restriction may be qualitative

or quantitative. Since an attribute type has exactly one occurrence per entity or

relationship occurrence, no quantitative requirement is placed on attributes. The

quantitative requirements are more important for a relationship type. They are

the relative cardinalities of a relationship type — restrictions on the minimum,

maximum, or exact number of relationship occurrences in which an occurrence of

the specified entity type participates; or requirements that for each occurrence of

the specified entity type, all occurrences of the other entity type relate to it via the

relationship type.

• These conditions may directly restrict the value of an attribute of a single entity or

relationship occurrence, or may restrict the aggregate value of an attribute for a set

of entity or relationship occurrences. All occurrences of an entity or relationship

type (or its “implicit” subtype) naturally form a set (although the database designer

may not explicitly define it). The most important set properties are the counting

number, minimum, maximum, summing and average values.

• Although a condition may be asserted for occurrences of one entity or relationship

type, it might also be for occurrences of a group of types taken together.

• These conditions may explicitly involve time to restrict or trigger the existence,

nonexistence, or change of an occurrence, or may assert a temporal sequence be

tween the existence of occurrences46.

46Without time-stamped past data, the temporal requirement would imply “no time lag” between the
existence of adjacent occurrences in a sequence of objects.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 102

Systematic Modelling A naive approach to modelling SICs would enumerate all nec

essary and sufficient conditions for the existence, nonexistence and change of the occur

rences of each attribute, entity, and relationship type. However, if a SIC involves several

objects, we need not specify it several times. For example, suppose that a SIC requires

that if an RX occurrence exists for an occurrence of the specified entity occurrence, an

RY occurrence must also exist. We would specify this SIC when we identify necessary

conditions for the existence of RX. Although the existence of RX is also a sufficient con

dition for the existence of RY, it need not be incorporated again as a general constraint if

we properly represent the above SIC (i.e., by decomposing it into two sub-SICs in terms

of the Representation model). It would be desirable to be able to guarantee that all

conditions on all objects have been completely covered although we need not explicitly

consider all kinds of conditions for each object. The systematic modelling procedure

proposed in the remainder of this chapter and the decomposition algorithms proposed

in Chapter 7 are used to achieve this goal. By applying the procedure described in Sec

tions 5.3 to 5.6 a database designer can model SICs systematically by first considering

the necessary and sufficient conditions for the existence, nonexistence, and change of each

attribute of each entity and each whole entity in isolation, and then examining the whole

E-R diagram by considering each explicit or implicit relationship.

Representation Languages Although SICs incorporated by the E-R-SIC model can

directly be represented in terms of the SIC Representation model, it is suggested that

they are first represented in a simplified format using rules or expressions. The purpose

of using this simplified format language is to represent the precondition and predicate

components first in a language that is closer to natural language. The relevant objects and

operation types can be derived from the simplified format by applying the algorithms

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 103

introduced in Chapter 7. The certainty factor and violation action specifications are

closely related to the objects and operation types, and can be added later.

The simplified format contains the preconditions, predicates, and some operation

type information (by the keywords, is_to_be_deleted, and is_to_be_updated for operation-

dependent SICs), hut not the certainty factor and violation action. For example, we may

represent a requirement on the salary of any programmer first in the simplified format

as:

if Employee. Title= “programmer”

then Employee.Salary 18000.

BNF descriptions of the simplified format are described in Appendix C. For convenience,

this dissertation describes a SIC as being in rule format if it can be written by using the

keywords if and then (and the “if” condition part is not empty) in the simplified format.

Since a relationship type name usually can be a verb phrase, when a relationship type

is discussed, its participating entity types will be mentioned too. Because a relationship

type involves two entity types, we need a with_respect_to keyword to clarify to which

entity type we are referring47. An assertion may have a temporal modifier (before or

previously) in a rule describing a temporal sequence requirement between the existence

of the object in this assertion and the existence of the object in another assertion. If a

“before” modifier is attached to an assertion, the assertion must be true for its involved

object at the time another assertion is becoming true48. If a “previously” modifier is

attached to an assertion, at the time the assertion becomes false for its involved object,

47For example, “if with_respect_to E, E RX F then with_respect_to E, -‘(E RY F)” is a SIC to assert
that RX and RY are mutually exclusive relative to E only.
48For example, we may have: “if Dealer Own Car then Manufacturer Possess Car before”.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 104

another assertion must become true49.

SICs written in the simplified format should be later reformulated in terms of the

SIC Representation model by applying the algorithms introduced in Chapter 7. Most of

designer-specified SICs are general SICs. These general SICs must then be decomposed

into several operation-dependent sub-SICs in terms of the Representation model. For

example, the static constraint in the simplified format shown on the preceding page will

be represented as three operation-dependent SICs — one each on update of Salary, update

of Title, and insertion of Employee. At this time, the certainty factor and violation action

specifications are added.

SIC Types The E-R-SIC model can be used to classify SICs into a number of domain-

independent SIC types. This SIC type classification facilitates development of SIC consis

tency and nonredundancy rules that can be applied to make SIC elicitation more efficient.

It also allows us to present generic SICs for some common SIC types so that the number

of SICs that must be specified using the Representation model can be greatly reduced.

Appendix D provides a detailed description of this classification.

5.3 Entity Attribute SICs

First examine necessary and sufficient conditions for the existence/nonexistence/change

of each attribute of each entity in isolation.

Necessary Conditions An attribute cannot become nonexistent once it exists. There

fore, we only need to consider necessary conditions for its existence and change.

49For example, we may have: “if Manufacturer Possess Car previously then Dealer Own Car”.

Chapter 5. An Extended E-R Model Incorporating Scmantic Integrity Constraints 105

Associated Entity Type SICs If an attribute exists, its value may be restricted

to be in a data type and in some range, and/or may be specified as not-null that means

the “unknown” value is not’ allowed. In addition, its value must be expressed in some

specified format that is meaningful to the organization. If an attribute is allowed to be

updated, it must be specified as changeable. All attributes (including primary keys) of

relationships or entities are updatable unless declared otherwise. If it can be updated,

there may be special SICs restricting the pairs of before and after values.

Associated Entity Set SICs Because an attribute type is defined as a function

from an entity type to value, it has only one occurrence per entity occurrence, i.e., it

is single-valued, not multi-valued. We need not consider the attribute set. However,

because an attribute belongs to an entity, there may be some SICs restricting entity set

properties. They may require that each attribute value he unique. The restrictions on

minimum, maximum, summing, or average value of the attribute in an entity set may

also be specified.

Primary Key Problem In the E-R-SIC model, following the traditional E-R

model and relational model, there is no internal identifier (“surrogate”) to represent

an entity or relationship. Rather, some attribute or combination of attributes is used as

the primary key. Unfortunately, this overloading causes the semantics implied by an up

date of a primary key to be ambiguous it may imply a simple update of an attribute

or it may imply the deletion of an “old” entity (relationship or tuple) followed by an

insertion of a “new” one. The update of a primary key is allowed in the E-R-SIC model.

However, the SICs related to deletion and insertion must be enforced.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 106

Time Restriction There may be some SICs restricting a time-valued attribute.

The expression of such SICs may involve an explicit Current_time variable50.

Sufficient Conditions An attribute type is included by a database designer to satisfy

organizational needs. Because the “not applicable null” is not allowed, for each entity

occurrence, there is at least one attribute occurrence. Therefore, no SICs can be expressed

as sufficient conditions for the existence or nonexistence of an attribute considered in

isolation.

If we consider a single attribute in isolation, neither is there any sufficient condition

for attribute change except time-triggering. That is, an increment of the Current_time

might trigger an update to an attribute. For example, at 0:00 on 1/1/1993, increase the

salary of each employee by $1,000.

5.4 Entity SICs

Examine necessary and sufficient conditions for the existence/nonexistence/change of

each whole entity type in isolation.

Necessary Condition

Entity Type SICs If an entity occurrence exists, there may be a formula5’among

its attributes. In general, any entity occurrence can be deleted to reflect the real world

50For example, Current_time (Employee.FirstWorkDate + “2 years”) is an expression to assert a
rule that “each employee must have at least 2 years working experience”.

511f there is more than one attribute appearing in an expression, we call that expression a formula.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 107

situation. However, there may be SICs that require some of its attributes to have certain

values before the deletion may take place.

Entity Set SICs Because an entity occurrence belongs to an entity set, there may

be SICs restricting set properties. They may specify the maximum number of occurrences

of an entity type that are allowed to exist in the database. The concatenated values of

some attributes may be required to be unique. Some aggregate values of attributes

may be required to be interdependent52,or more strictly, satisfy a formula. There is no

restriction on the minimum number of occurrences that can exist in the database because

in the beginning there are no occurrences, and we should allow that an entity type may

have no occurrences temporarily even after the database is already populated.

There are some further complicating factors such as the following:

The First Complicating Factor Implicit Subtype The single attribute SICs

in Section 5.3 and the SICs mentioned above in this section may be conditional. That is,

they may include conditions that can be thought of as defining “implicit subtypes”. If

we consider a single entity type in isolation, the only way to define “implicit subtypes” is

by some range restrictions or formulas involving its attribute values. It is possible that

a SIC (e.g., nonvolatility, value restrictions, etc.) applies to a single attribute only for

a specified “implicit entity subtype”. It is also possible that a SIC (e.g., restriction on

the maximum number of occurrences, etc.) applies to an occurrence only because this

occurrence belongs to a specified “implicit entity subtype”.

specifications

52For example, if min(E.A1)> vi then avg(E.A2) > v2.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 108

The Second Complicating Factor Time Restriction There may be SICs

that restrict other attributes when time-valued attributes satisfy certain conditions. As

time passes, the restriction will either finally disappear or come into force53. These

explicit time restrictions may be added to all SICs mentioned in this section and in

Section 5.3. It is possible to combine time restrictions and “implicit subtypes” factors in

a single SIC.

The Third Complicating Factor — Temporal Sequence among Attributes

There may be some temporal conditions among the attributes of an entity. They may

require that an entity occurrence’s attributes must satisfy a certain condition at the

time one of its other attributes is going to acquire some value54. It is also possible to

require that if its other attribute(s) satisfied a certain condition in the past (and no longer

satisfies it now), one of its attribute must take some value.

Sufficient Conditions An entity type exists in the database only because the database

designer includes it in order to satisfy the interests of the organization. It would be very

unusual to have a SIC requiring a specific entity occurrence to exist or not to exist

in a database. Therefore, we exclude the possibility of expressing a SIC as a sufficient

condition for the existence or nonexistence of an entity occurrence considered in isolation.

If we consider a single entity type in isolation, neither is there any sufficient condition

for entity change except time-triggering. That is, for an entity occurrence, an increment

of the Current_time might trigger an update to one of its attributes if its other attributes

53For example, we may have a SIC like “an employee cannot receive a salary raise during his (her) first
6 months in the company”, or “if an employee has worked for at least two years, he (she) must have at
least 10 vacation days”.
54For example, we may have a SIC: “if E.A1=vl then E.A=v2 before”.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 109

satisfy some condition(s).

5.5 Relationship SICs

Now traverse an E-R diagram and consider the necessary and sufficient conditions for the

existence/nonexistence/change of each relationship. In terms of topology, the important

local contexts describing how relationships and entities are connected together in an E-R

diagram are55: line, star, loop-2, and loop-n. Each relationship type is in one or more of

these contexts. When incorporating SICs for a relationship, the database designer needs

to recognize its contexts.

Definition 5.5 If an entity type participates in a group of relationship types, it is a

sharing entity type to them.

Definition 5.6 If in a part of an E-R diagram, each entity type participates in at most

two relationship types and there is no cycle (loop) among these entity types, e.g., Fig

ure 5.2, each of these relationships is in a line context.

Definition 5.7 If there is a sharing entity type participating in three or more relation

ship types and there is no loop among these entity types, e.g., Figure 5.3, each of these

relationships is in a star context.

Definition 5.8 If there is a loop between two entity types, i.e., two or more relationships

exist between two common entity types, e.g., Figure 5., each of these relationships is in

a ioop-2 context.

551f we allowed explicit recursive relationships, they would be in the loop-i context.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 110

£

_____ _____

F

++

__

Hi

Figure 5.2: A Line Layout Context

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 111

Figure 5.3: A Star Layout Context

E

RZ RX RY

F

Figure 5.4: A Loop-2 Layout Context

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 112

E

_____ _____

H

_____ _____

F

Figure 5.5: A Loop-n Layout Context

Definition 5.9 If there is a loop among n3 entity types, e.g., Figtre 5.5, each of these

relationships forming the loop is in a loop-n context.

5.5.1 Necessary Conditions

It is necessary to examine the necessary conditions for one or multiple occurrences of

a single relationship type t.o exist (not exist/change), and for occurrences of a group of

relationship types to co-exist.

Single Relationship Type SICs

First we focus on a single relationship type.

Focus on Attributes A relationship is similar to an entity because it can have its own

attributes in addition to the primary keys from the participating entities. Therefore, a

relationship can have single attribute SICs similar to those discussed in Sections 5.3 and

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 113

single relationship SICs56 such as those of Section 5.4. Since a relationship’s attributes are

usually few, such SICs are not common. However, it is possible that there may be some

more complicated SICs57 because the definition of an “implicit relationship subtype”

could be based on some conditions on one or both participating entity occurrences (e.g.,

having some attribute values, or participating in some other relationship types), or some

formula involving the attributes of the relationship and its participating entities.

Focus on Association In another sense, a relationship is much different from an

entity because a relationship occurrence represents the association between two entity

occurrences.

Inherent SIC First, an inherent SIC is that the relationship occurrence’s partici

pating entity occurrences must exist.

Restricted-connecting Set There may be some restrictions on constructing a

relationship, i.e., the necessary conditions for the existence of a relationship occurrence.

Definition 5.10 Suppose that the relationship type R connects the entity types E with

F. The restricted-connecting set of an entity occurrence of E in the relationship type

R is those occurrences of F that the entity occurrence of E is allowed to be related to via

R.

561n contrast to an entity type, absolute maximum cardinality for a relationship type need not be
considered although some researchers mention it. As shown by [Lenzerini and Santucci, 1983], the
absolute maximum cardinaJity of a relationship is bounded by the absolute maximum cardinalities and
relative maximum cardinalities of participating entity types.
57For example, there might be a SIC stating that “if Employee Work_for Project, Project_Id=plOO

then Work_for.Hours 50”.

chapter ö. An Extended E-R Model Incorporating Semantic Integrity Constraints 114

Normally, a DBMS would not know the restricted-connecting set of each entity occur

rence in each relationship since a SIC is seldom specified extensionally. However, there

may be some general business rules that restrict intensionally the restricted-connecting

sets. The restrictions may be positive or negative. The restrictions on the freedom to

construct a relationship include:

1. One-side condition. The restriction may be on one entity type. It would im

ply that some occurrences of each participating entity type are not allowed to

participate in the relationship type. That is, their restricted-connecting sets are

undefined. The relationship type R is in fact defined on some “implicit entity sub

type(s)” of E or F. The “implicit entity subtypes” may be defined positively, i.e.,

as occurrences having some specific attribute values, having attributes satisfying

some formula, participating in some other relationship types; or negatively, i.e., oc

currences not participating in some other relationship types. We need to consider

possible disjunctions of conditions in a star context because there are at least two

other relationship types58.

2. Two-side condition. The restrictions may be coupling conditions on both entity

types at the same time. If these are positive restrictions, they are stronger than the

above one-side restriction. If these are negative restrictions, they are weaker than

the above one-side restriction. Although all occurrences of each participating entity

type, E or F, may be allowed to participate in the relationship type, they are not

freely connected together. An example of a positive restriction is that each occur

rence of an “implicit subtype” of E can only connect with those occurrences of some

“implicit subtype” of F. An example of a negative restriction is that each occur

rence of an “implicit subtype” of E cannot connect with those occurrences of some

58For example, in Figure 5.3, we may have: “if E RX F then (E RY G) V (E RZ H)”.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 115

“implicit subtype” of F. The “implicit entity subtypes” on both sides of a relation

ship may be defined interdependently as occurrences having some specific attribute

values59,having attributes satisfying some formula, participating in some other

lationship types (e.g., occurrences of E participating in RX and their connected

occurrences of F participating in RY at the same time)60. Some SICs described in

the literature are just special cases. For example, a Subset_Relationship SIC

([Palmer, 1978]) in a loop-2 context61 and the necessary conditions for the com

position of relationships ([Lenzerini and Santucci, 1983], [Azar and Pitchat, 1987])

in a loop-n context62,are special cases requiring that the specific occurrences of F

connecting with an occurrence of Evia other relationship types (e.g., RY, RZ) be in

the restricted-connecting sets of the occurrence of E. An Exclusive_Occurrence

SIC ([MaFadden and Hoffer, 1988]) in a loop-2 context63 is also a special case re

quiring that the specific occurrences of F connecting with an occurrence of E via

the other relationship type (e.g., RY) llQ be in the restricted-connecting set of the

occurrence of E.

3. Intra-relationship condition. It is possible that we can define a restricted-

connecting set based on some properties of the relationship type. For example, we

may define a restricted-connecting set of an occurrence of E by requiring that if some

occurrences (e.g., having some attribute values) of Fare in the restricted-connecting

set, some other occurrences (e.g., having some other attribute values) must or must

not be in the set. A relationship type may also be symmetric or transitive.

59For example, in a relationship Drive connecting Driver with Vehicle, even if it is total on both sides,
some drivers (e.g., with class 5 driver-licence) can only drive some vehicles (i.e., with gross weight
10,900 kgs).

°°For example, there may be a SIC that state: if Employee Is_Allocated Car then if Employee Work_for
Project then Car IsJnsured Collision_[nsurarice
61For example, in Figure 5.4, we may have: “if E RX F then E RY F’.
62For example, in Figure 5.5, we may have: “if E RX F then (E RY H) A (H RZ F)”.
63For example, in Figure 5.4, we may have: “if E R F then -(E RX F)”.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 116

The fundamental properties of any relationship type are assumed by default to

be irreflexivity, asymmetry, and intransitivity. However, some relationships may

be reflexive, symmetric, or transitive. The reflexivity of a relationship will not

be discussed in this research because it is quite unusual in a traditional database.

Symmetric64 or transitive65 relationships may occur in a specialization hierarchy,

that is, when the two involved entity types belong to the same super-type; or one

is a super-type (e.g., Employee), and the other is its subtype (e.g., Manager).

There are some further complicating factors such as the following:

1. The first complicating factor temporal sequence conditions. A SIC

may require that for a relationship occurrence of a specified type to exist, one of

its participating entity occurrences must have attributes with certain values, or

participate (or not participate) in other relationship type(s) at the time it is going

to participate in this relationship. Those occurrences of other relationship types

are allowed to be deleted after insertion of this relationship.

2. The second complicating factor — quantitative requirements. For a rela

tionship occurrence to exist, there may be a quantitative restriction on the max

imum number of relationship occurrences of the same relationship type, in which

one involved entity occurrence has participated — that is the relative maximum

cardinality to the specified entity type. If a necessary condition for the existence

of a relationship involves other relationship type(s), there may be some special

quantitative requirements that are cardinalities of those other relationship types66.

64Some examples of such relationship types are: Sibling_of, Married_to, Partner_of.
65Some examples of such relationship types are: Sibling_of, Ancestorof, Supervise, Partner_of.
66For example, there may be a SIC such as, “if RX, E RX F then exactly 3 RY, E RY G”.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 117

3. The third complicating factor — multiple occurrences. The above only

considers necessary coilditions for the existence of one relationship occurrence.

However, there may be some necessary conditions for the existence of multiple

relationship occurrences of the same type relative to a sharing entity occurrence67.

Group Relationship Type SICs

The above focuses on the necessary conditions for the occurrences of a single relationship

type although sometimes several relationship types may be involved in the conditions.

In a star context, there are several relationship types with a sharing entity type. If

several occurrences of different relationship types co-exist, there may he some necessary

conditions to require that the sharing entity must participate in some other relationships,

have some attribute values, or there may he a formula among some attributes of the

sharing entity and those relationships.

Relationships Involved in Defining “Implicit Entity Subtypes”

It is necessary to review those single attribute SICs in Section 5.3 and Single Entity SICs

in Section 5.4 in the presence of relationships. For example, it is possible that a SIC

(e.g., nonvolatility, value restrictions, etc.) applies to a single attribute only because its

associated entity participates in some relationship(s). It is also possible that a SIC (e.g.,

restriction on the maximum number of occurrences, etc.) applies to an entity occurrence

only because the occurrence participates in some relationship(s).

67For example, there may be a SIC such as, “if 3 exactly 3 RX, B RX F then 3 RY, B RY G”.

Chapter 5. An Extended E-R. Model Incorporating Semantic Integrity Constraints 118

5.5.2 Sufficient Conditions

As stated in Section 5.2.3, if a SIC requires the existence of an occurrence of one rela

tionship type to depend on the existence of an occurrence of the other relationship type,

it would be incorporated when identifying necessary conditions for the existence of the

occurrences of the first relationship type. At this step, we need not specially incorporate

it as a sufficient condition for the existence of the occurrences of the other relationship

type. However, other SICs may specify sufficient conditions for a relationship to exist

involving the existence of an entity occurrence, time-triggering, or temporal sequence

requirements. They are as follows.

The Existence of an Entity There may be SICs to require that if an entity occurrence

exists, it must participate in a specified relationship type. In this case, the existence of a

relationship occurrence might be thought of as a necessary condition for the existence of

an entity occurrence. However, since “entity” is a more fundamental construct it is more

natural to think that the existence of an entity occurrence is the sufficient condition for

the existence of a relationship occurrence. There are some further complicating factors

such as the following:

1. The first complicating factor implicit subtype. It is possible that a rela

tionship type must exist only for an “implicit entity subtype”. In this case, the def

inition of an implicit entity subtype may be based on the values of its attributes68.

68j this case, the only focus is the existence of an entity. We need not consider SICs related to an
“implicit entity subtype” that is defined as occurrences participating in other relationship types. Those
SICs have been covered when we consider necessary conditions for the existence of other relationship
types.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 119

2. The second complicating factor — quantitative requirements. We may

require not only the existence of any occurrence of the specified relationship type,

but also specify the number of such occurrences. These are two kinds of relative

cardinalities69:the requirement of the minimum number of relationship occurrences

in which an occurrence of the specified entity type must participate; or the require

ment that for an occurrence of the specified entity type, all occurrences of the other

entity type are required to connect with it via this relationship type. Combining

this factor with the first factor, we would have cardinalities for an “implicit entity

subtype”7°

3. The third complicating factor — further restrictions. It is possible that

there may be further restrictions on the existence of a relationship in addition to the

cardiiialities. A SIC may require that if an occurrence of one entity type exists, it

must participate in some minimum number of occurrences of a specified relationship

type, and there are further restrictions placed on the relationship attribute value(s),

or on the occurrence(s) of the other participating entity type. SICs related to

a weak entity type7’ and a Critical_Relationship_Occurrence SIC72 are just

special cases73.

69Note that as described in the previous section, a relative maximum cardinality is a necessary con
dition for the existence of a relationship occurrence. The exact number of the cardinalities is the
conjunction of the requirements of the minimum and maximum cardinalities.
70Again note that some subtype cardinalities, which are related to the entity participating in other

relationship types, have been considered in the previous section.
71By the semantics of the weak entity, the relationship type R, via which the weak entity type is

dependent upon a regular entity type, is total to the weak entity type and its key is fixed. The fixed
retention restricts the key of relationship from updating. Note that the relative cardinalities of the weak
entity in the relationship type R are not necessarily (1,1), it may be (c,d) where d is a number greater
than c, and c greater than 1. For example, a child as a dependent may have both father and mother as
employees in a company.

72A Critical_Relationship_Occurrence SIC requires the totality constraint to the specified entity
type and the existence of exactly one critical relationship occurrence.
T3There are many other examples such as Stronger Totality Constraints (refer to Appendix D).

Chapter 5. An Extended E-R Model Incoiporating Semantic Integrity Constraints 120

4. The fourth complicating factor — a group of relationship types. We may

not require the existence of an occurrence of a specific relationship type for any

occurrence of the specified entity type. Instead, we may require the existence of

one relationship occurrence among a group of relationship types. Combining this

factor with the above factors, we might have a more complicated SIC.

Time-Triggering A single relationship, like an entity in isolation, may have time-

triggered SICs to trigger its update.

Temporal Sequence Conditions It is possible to require that if an entity occurrence

had some attribute value(s) in the past and no longer has it now, it must participate in

some relationship(s). In the case of a group of relationship types, if some relationship(s)

existed in the past, once it is deleted, other relationship(s) may he required to exist now.

5.6 SICs Implied by Implicit Relationships and Data Abstractions

In general, the E-R-SIC model requires us to express explicitly all relationship types

in an E-R diagram. Even in cases involving an ID dependency74,is_a or component_of

relationships where the candidate key of one entity provides information about a related

entity, the relationship type is required to be specified to make the semantics clearer.

There are some exceptions (e.g., the cases that two entity types are exclusive; an entity

type may be formed by set operations on other entity types; or member_of relationships

except for in the enumerated set association) that there is a SIC between some entity

74An entity type (e.g., E) has “ID dependency” on other entity types if this entity type cannot be
uniquely identified by its own attributes and has to be identified by its relationship types to the other
entity types ([Chen, 1985]). The entity type E needs the key of some other entity type (e.g., F) as a
part of its key.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 121

types, but we need not express the relationship type explicitly because no suitable rela

tionship type can be specified or the relationship is derivable. This section considers the

SICs implied by these “implicit” relationship types. In addition, this section discusses

the SICs implied by data abstractions since they are special relationships.

Specialization Abstraction The specification of a specialization abstraction, “S is_a

G”, implies that the relative cardinality constraints of is_a must be S (1,1) and G (0,1)

([Goldstein and Storey, 1990]). Because the primary key of G (say G. Gkey) is a candidate

key of 5, there is a necessary condition, in addition to the existence of participating entity

occurrences, for a relationship is_a to exist, i.e., S. Gkey=G. Gkey.

Entity Types in a Specialization Hierarchy In a specialization hierarchy, two

entity types may be exclusive, or an entity type may be formed by set operations (inter

section, union, or difference) on other entity types ([Biller and Neuhold, 1978]). It is not

natural to define a relationship to express the exclusion between two entity types. Neither

is there an explicit relationship to express the set operations although is_a relationships

among those entity types should be specified.

• SICs implied by exclusion between entity types. Suppose that two entity

types E, F are exclusive and Ekey is their common candidate key. It implies a SIC

written in the simplified format as: if E.Ekey= Value then -i(F.Ekey_—Value).

• SICs implied by set operations on entity types. Suppose E is formed by the

operation on two entity types F, G and Ekey is the common candidate key among

7It is not meaningful to discuss exclusion or set operations if those entity types are not in the same
hierarchy. In addition, if those entity types formed by set operations do not have special attributes or
participate in special relationships, they may be redundant.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 122

E, Fand G.

— F = F fl G. There are some SICs implied by the isa relationships between

the subtype (E and the super-types F, G, respectively. In addition, it implies

‘if (F Ekey= Value) A (G Ekey= Value) then E Ekey— Value”

— E = F U G There are some SICs implied by the is_a relationships between the

the subtypes F, G and the super-type F, respectively In addition, it implies

“if E Ekey== Value then (F Ekey= Value) V (G Ekey= Value)”

— E = F — G There are some SICs implied by the is_a ielationships between the

subtype (E) and the super-type (F), and the exclusion between E and G. In ad

dition, it implies “if F.Ekey= Value then (E.Ekey= Value) V (G.Ekey= Value)”.

Inheritance Conflict Problem An inheritance conflict may occur when two or

more super entity types of a single specialization type have some attribute(s) with the

same name(s). In such a case, there should be a further higher level super-type of which

these super-types are subtypes. However, the organization may not be interested in this

higher level super-type. If these attributes are really semantically different, we just prefix

their names with the super-type names and no SIC needs to be specified. However, if

their semantics are the same, the subtype should inherit only one of these attributes and

there must be an integrity constraint to maintain the equality of those attributes’ values.

In addition, the SICs associated with the super-types must not be inconsistent with each

other, otherwise, the multiple inheritance will cause the subtype to be empty.

Aggregation Abstraction The specification of a composite entity aggregation, C

component_of A, implies that the cardinalities of component_of should be either C (1,1)

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 123

component_of A (O,n) or C (1,1) component_of A (n,m), where 77 1 and m n76.

Because a candidate key of C is formed by the primary key (say A.Akey) of A plus

probably some other attributes, there is a necessary condition, in addition to the exis

tence of participating entity occurrences, for a relationship component_of to exist, i.e.,

C.Akey=A.Akey.

Association Abstraction Association (grouping) is a powerful abstraction, but its

implied SICs are complicated. In all cases except for the enumerated set association, the

member_of is implicit since it can be derived. Their aggregate SICs should be specially

dealt with77. Suppose that agg_fcn stands for an aggregate function, Derived_Att is an

attribute of the set, Att is its corresponding attribute of the members.

1. Natural Set Association: Suppose that in the M memberof Ms, the memberof

is implicit. We would have “Ms.Derived_Att=aggfcn(M.Att,)”. In addition, an

occurrence of Ms cannot be deleted if it, as a set, is not empty.

2. Indexing Derived Set Association;

• Only involving one indexing type: Suppose that in Figure 5.1, for M

memberof DS, the indexing entity type is I with the key I.Ikey, the indexing

761f the component C (e.g., Automatic_window_controller) is just relevant to the aggregate A (e.g.,
Car), the aggregate A may have 0 or up to n components C. If the component C (e.g., Engine) is
characteristic or identifying to the aggregate A (e.g., Car), component_of is total to the aggregate A.
(Reference to [dos Santos, et al., 1980] for the formal definitions of “relevant”, “characteristic”, and
“identifying”.) In either case, the component_of relationship should always be total to the component
C. In some applications, some “components” can exist independently, e.g., an engine may be sold as a
separate part. It would be better to define a subtype of the original “component” type to include those
components that cannot exist independently so that the semantics become clearer. For example, we
may have a type Engine and its subtype ComponenL engine that belongs to cars. Those components are
different from other occurrences in terms of behavioral constraints and structural attributes.
77The cardinalities of member_of in the case of natural set association and indexed set association can

be derived from the relative cardinalities of other relationship and absolute maximum cardinalities of
entities. So, they need not be considered.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 124

relationship is R, member_of is implicit. We would have:

“DS.Derived_Att=agg_fcn({M.Att M R I, DS.Ikey=I.Ikey})”.

• Only involving indexing attributes: Suppose that in M memberof DS,

M.Iridex is the indexing attribute, member_of is implicit. We would have:

“DS. Derived_Att=agg_fcrq’{ M. Att DS. Index=M. Index}J’.

In both cases, an occurrence of DS cannot be deleted if it, as a set, is not empty.

In addition, DS.Ikey (or DS.Index) cannot be updated.

3. Enumerated Set Association: In this case, M member_of ES, the member_of is

explicit. That is, we have:

“ES.Derived_Att—agg_fcn({M.Att) M M_member_of_ES ES})”.

5.7 Summary of the E-R-SIC Model

Figures 5.6 to 5.10 give a summary of the E-R-SIC model.

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 125

E-R Diagram

Attributes?

DB Designer SICs?
Entities?

think: Relationships?

±
Construct Definition:

Definition 5.1: An entity is the database representation of a real-world object
that can be distinctly identified.

Definition 5.2: A relationship is the database representation of an association among
real-world objects.

Definition 5.3: An attribute is the database representation of a property of a real-world object
or an association that is a function mapping an entity type or a relationship
type to values.

Definition 5.4: A SIC is a logical, invariant restriction on the static state of a database (that is,
a collection of attributes, entities, and relationships), or on the database state
transition caused by an insertion, deletion, or update operation.

Observation:
• Entity, relationship, and SIC occurrences are classified into different entity, relationship, and

SIC types according to some criteria.
• At a particular moment, certain groups of entity, relationship, or SIC occurrences can be

considered as sets in the mathematical sense, and these sets may have some aggregate properties.
• Entity is the most fundamental construct among attribute, entity, and relationship.
Simplifying Assumptions:

No ternary relationships or relationships of higher degree.
No recursive relationships.

Data Abstractions: inclusion (classification, generalization), aggregation, and association.

Premise 5.1: A physical-symbol system has the necessary and sufficient properties
to represent real-world meaning.

Interpretation: A SIC is an assertion — a sufficient or necessary condition — for an occurrence
of an attribute, entity, or relationship type to exist, not exist, or change in a database.

Premise 5.2: The occurrences in each entity or relationship type are not homogenous; that is, they
have different attribute values, and are related to different occurrences of other objects.

Implication: A database designer could not specify all entity and relationship types such that
all occurrences of each type satisfied the same set of SICs.
That is, “implicit subtypes” with unique SICs always exist.

What are SICs that should be incorporated?

Figure 5.6: What is in the database?

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 126

Diagram

DB Designer

think:

Examine each attribute of each entity in isolation.
(That is, imagine a hypothetical situation:
examine each attribute, say E.A1, and suppose that it is the only “object”
of interest at this moment.)

Consider:

Are there necessary conditions that must hold
for E.A1 to exist, not exist, or change in the database?

What are these necessary conditions:

• associated single entity type SICs?
existence: value, null, etc.?

— change: changeable, new/old value pair?
• associated whole entity set SICs?
— unique?
— aggregate value?
• because we choose it as the primary key?
• because of time restriction?

Are there sufficient conditions, which if true, imply that
E.A1 must exist, not exist, or change in the database?

What are these sufficient conditions: none except for time-triggering?

Figure 5.7: Single Entity Attribute SICs

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 127

Diagram

DB Designer

think:

Examine each whole entity in isolation.
(That is, imagine a hypothetical situation:
examine each whole entity type, say E, and suppose that it is the only “object”
of interest at this moment.)

Consider:

Are there necessary conditions that must hold
for an E occurrence to exist. not exist, or change in the database?

What are these necessary conditions:
• single entity type SICs?
— existence: a formula among attributes?
— change: deleted entity attributes?
• whole entity SICs?
— the restriction on the maximal number of occurrences?
— concatenated values of some attributes are unique?
— a formula involving aggregate value(s)?

aggregate values are interdependent?
• because of an implicit subtype?
• because of time-restriction?
• because of temporal sequence among attributes?

Are there sufficient conditions, which if true, imply that
an E occurrence must exist, not exist, or change in the database?

What are these sufficient conditions: None except for time-triggering?

Figure 5.8: Single Entity SICs

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 128

E-R Diagram

DB Designer

think:

Examine each relationship type, say R, and consider its context in the whole E-R diagram.
What are the contexts that each relationship is in the E-R diagram: line, star, loop-2, and loop-n?

Consider:
What are necessary conditions that must hold

for an R occurrence to exist, not exist, or change in the database?
What are these necessary conditions:
• single relationship SICs?

similarly to a single entity, focus only on its attributes:
* each of its single attribute has conditions in Figure 5.7?
* the whole relationship has conditions in Figure 5.8?

but could be more complicated since an implicit relationship type may be defined based on
its participating entities or there may be a formula among those attributes of
the relationship and its participating entity?

— focus on its role as an association between entities:
* inherent SIC: its participant entity must exist?
* restricted-connecting set:

one-side, two-side of its participating entities, or intra-relationship condition?
© complicating factors:

1. temporal conditions on relationships or the values of entity attributes?
2. quantitative requirements on occurrences of the same or different relationship types?
3. existence of multiple relationship occurrences of the same type?

• group relationship type SICs: conditions for occurrences of several relationship types to coexist?
• relationships involved in defining “implicit entity subtypes”, so review Figures 5.7 and 5.8 again?
Are there sufficient conditions, which if true, imply that

an R occurrence must exist, not exist, or change in the database?
Some are covered as necessary conditions on other relationships, what are other sufficient conditions?
• the existence of an entity?

© complicating factors:
1. because of implicit entity subtypes?
2. quantitative requirements on the existence of the relationship occurrences?
3. further restrictions on the existence of the relationship occurrences?
4. the existence of one relationship occurrence among a group of relationship types?

• Time-triggering?
• Temporal sequence conditions?

Figure 5.9: Relationship SICs

Chapter 5. An Extended E-R Model Incorporating Semantic Integrity Constraints 129

E-R Diagram

DB Designer

think:

Is there any SIC implied by some “implicit” relationships?

If there is a SIC between any two entity types,
in general we should express the involved relationship type explicitly in the E-R diagram.

In what situations would we have some “implicit” relationship types?

• these entity types are in the same specialization hierarchy?
— two entity types are exclusive?

one entity type is the intersection of other entity types?
— one entity type is the union of other entity types?

one entity type is the difference between two entity types?
— multiple inheritance conflict problem?

What are SICs implied by data abstractions?

• generalization: S (1,1) is_a G (0,1),
a necessary condition for is_a S. Gkey=G. Gkey

• aggregation: C (1,1) component_of A (0,n) or A (n,m), n 1, m n
a necessary condition for component_of— C.Akey=A.Akey

• association and grouping: member_of may be implicitly represented except for
the enumerated member_of;
the involved relationships and entities are tightly related;
SICs are complicated

Figure 5.10: SICs Implied by Implicit Relationships and Data Abstractions

Chapter 6

The Application of the E-R-SIC Model

This chapter begins with a hypothetical example to show how the E-R-SIC model can

be applied. Potential pitfalls of using the E-R-SIC model are then discussed. Finally, we

discuss the usefulness of the E-R-SIC model.

6.1 An Example of Using the E-R-SIC Model

Description Suppose that we have an example called car_dealer.database_design. The

E-R diagram in shown in Figure 6.1. The database is intended to keep track of each

car from the time it is ordered from the factory through its sale to a customer and

subsequent service history as long as the car is serviced by that dealership. Information

about a (potential) customer is also kept. For simplicity, the possibility that a customer

might transfer his (her) car to other persons is not considered.

Attributes The attributes are not shown in the first level of the E-R diagram.

They are as below78.

• Entity Types:

ThThe property inheritance principle is assumed. Therefore, the inherited attributes, e.g., Salesper
son.Salary, are not listed.

130

Chapter 6. The Application of the E-R-SIC Model 131

is..a

Figure 6.1: An Example: A Car Dealership Database

Chapter 6. The Application of the E-R-SIC Model 132

— Person: SIN (key, i.e., social insurance number), Name, Sex, Address, Phone.

— Customer: SIN (key).

— Employee: EmpJd (key, i.e., employee identification number), Salary, Hire_Date.

— Salesperson: Empld (key), BasicSalary, Commissioll.

— Mechanic: EmpJd (key).

— Car: Engine_No (key), Model, Year, Regular_Price, Cost.

— Part: Code (key), Name, Price, Cost, Qty_on_hand, Reorder_Point, Date_Last_Used.

— Service: Sequence_No (key), Date, Charge, Part_Fee, Labor_Fee, Discount_Amt.

• Relationship Types:

— Pre_Sell: no attributes.

— Own: no attributes.

— Sell: Discount_Rate, Total_price, Sell_Date.

— Maintained_by: no attributes.

— Installed_in: Qty_Used (i.e., the number of the related part installed during

a service).

— Work_on: Hours (i.e., how much hours a mechanic spends on a service).

The example does not include all SIC types. In addition, only some of the relevant

SICs are illustrated. The SICs are written in the simplified format according to the BNF

in Appendix C.

Entity Attribute SICs Each attribute of each entity may have some SICs requiring

it to be not-null, to take some specified value range, data type and format. The following

two attributes are used for illustration.

Chapter 6. The Application of the E-R-SIC Model 133

• Person.SIN: there are SICs to assert that a person’s SIN must be known,

is of type non-arithmetic (i.e., may not be used in conventional arithmetic

operations) and has a format such as 123-56-789, i.e.,

is..null(Person.SIN)=no

satisfy_datatype(Person. SIN, non_arithmetic)

satisfy_format(Person.SIN, 999!999!999)

• Employee.Salary: there are SICs to assert that an employee’s monthly salary

must be known, is of type arithmetic (i.e., all of the normal arithmetic oper

ations may be performed on it in the usual way), and is in the range $1,500

and $10,000 inclusive, i.e.,

is_nuil(Employee. Salary) =no

satisfy_datatype(Employee. Salary, arithmetic)

satisfy_value(Employee.Salary, [1500 .. 10000])

Some attributes are not allowed to be updated. For example, the social insurance

number of a person cannot be updated, i.e.79,

if Person.SIN is_to_be_updated then false

Some attributes have SICs to restrict changes in value. For example, a salesperson’s

basic salary cannot decrease; and the recently used date of each part is kept up-to-date,

i.e.,

new(Salesperson .Basic..Salary) old(Salesperson .BasicSalary)

new(Part .DateLastUsed) old(Part .DatelastUsed)

791n this section, it is assumed that there is no automated database design aid. If there is such a
system, the system, rather than the database designer, would write the SICs in the simplified format for
later reformulating them in terms of SIC Representation model.

Chapter 6. The Application of the E-R-SIC Model 134

Some attribute SICs relate to the entire associated entity set, for example, each

person’s SIN is unique; and the sum of the monthly salary of employees should be less

than or equal to $1,000,000, i.e.,

unique (Person. SIN)

sum(Employee.Salary) 1000000

Entity SICs There may be some SICs that require the values of several attributes of

an entity to follow some formulas. For example, the salary of a salesperson includes two

parts — basic_salary and commission; the regular price of a car is set to have at least

25% gross profit; and for each part, its quantity on hand must be always greater than or

equal to its reorder point, i.e.,

Salesperson. Salary = Salesperson .Basic.Salary + Salesperson. Commission

Car.Cost Car.RegularYrice x 0.75

Part. Qtyon±and Part .ReorderPoint

There are some SICs to restrict entity set properties. For example, the dealer can

have at most 30 mechanics, i.e.,

count(Mechanic) < 30

There are some SICs restricting attribute values as a function of time. For example,

for those mechanics who have worked for at least two years, their salaries should not

decrease and the average should be at least $3,000, i.e.,

if (Current_time — Mechanic.Hire_Date) “2 years”

then new(Mechanic . Salary) old(Mechanic. Salary)

Chapter 6. The Application of the E-R-SIC Model 135

if (Current_time — Mechanic.Hire_Date) “2 years”

then avg(Mechanic.Salary) 3000

Relationship SICs Attributes of relationships may have similar attribute SICs. How

ever, some restrictions on attributes of one relationship are more complicated. For ex

ample, a salesperson cannot offer more than 80% of the gross profit rate of a car as a

discount rate to a customer and the total price of a sold car is equivalent to its regular

price minus discount, then adding 13% tax rate, i.e.,

if Salesperson Sell Car

then Sell.Discount_Rate (Car.Regular_Price — Car.Cost) ÷ Car.Regular_Pricex 0.80

if Salesperson Sell Car

then Sell.Total_Price Car.Regular_Price x (1—Sell.Discount_Rate) x 1.13

There are some restrictions on constructing a relationship. Some restrictions are one-

side conditions. For example, the dealer only services those cars that are first owned by

some customers that are in the database, i.e.,

if Car Maintained_by Service

then (Customer Own Car) before

Other restrictions are two-side conditions. For example, examine the loop formed

by the three relationships, Pre_Sell, Sell and Own, there are only three non-redundant

SICs to assert their dependencies: (1) if a salesperson sells a car, he (she) must have

contacted a customer, who then buys the car — there must be a “customer” involved;

Chapter 6. The Application of the E-R-SIC Model 136

any other “entity occurrences”, which are not in the “customer type”, cannot own that

car (2) a customer can own those cars that have been pre-sold by a salesperson and then

actually sold by the same salesperson; (3) if a car is sold by a salesperson and is owned

by a customer then that salesperson must have contacted that customer transfer of the

car among customers is not recorded, i.e.,

if Salesperson Sell Car

then Salesperson Pre_Sell Customer, Customer Own Car

if Customer Own Car

then Salesperson Pre_Sell Customer, Salesperson Sell Car

if Salesperson Sell Car

then if Customer Own Car

then Salesperson Pre_Sell Customer

Some conditions are complicated. For example, a part_fee including 6% tax is placed

on the parts installed in those cars that have been bought more than 5 years, i.e.,

if Part Installed_in Service,

Car Maintained_by Service,

Salesperson Sell Car,

Service.Date — Sell.Date > “5 years”

then

Service.Part_Fee = sum({MCharge Part Installedln Service,

MCharge= Part.Price x InstalledJn.QtyUsed x 1.06})

Chapter 6. The Application of the E-R-SIC Model 137

There can also be SICs expressing sufficient conditions for relationships. Those are

the relative minimum cardinalities in Figure 6.1. For example, any service should have

at least one mechanic working on it, i.e.,

V Service, Work_on, Mechanic Work_on Service

SICs in a Specialization Hierarchy There are some SICs implied by implicit re

lationships. For example, an employee cannot be both a mechanic and a salesperson,

i.e.,

if Mechanic.EmpJd=Value

then —i (Salesperson .EmpJd=Value)

There are also some SICs implied by is_a relationships. For example, “each mechanic

is an employee” implies that relative cardinalities — Mechanic (1,1) is_a Employee (0,1),

and a necessary condition for an is_a occurrence to exist —

Mechanic. EmpId—Employee. EmpId.

6.2 Potential Pitfalls of Using the E-R-SIC Model

There might be some potential pitfalls that need to be avoided when using the E-R-SIC

model.

Pitfall 1: Inconsistent and Redundant SICs Inconsistent or redundant SICs might

be specified. For instance, in the car_dealer_database_design example, if the database de

signer specified that “if Salesperson Pre_Sell Customer then (Salesperson Sell Car)”, it

Chapter 6. The Application of the E-R-SIC Model 138

would be inconsistent with “if Customer Own Car then Salesperson Pre_Sell Customer,

Salesperson Sell Car”. If the database designer specified: “Salesperson.Basic_Salary

2000”, “Salesperson. Commission 500”, and “Employee.Salary < 2OO”, these SICs

would be inconsistent because Salesperson.Salary would then have the lower bound $2,500

that is greater than the upper bound of Employee.Salary. If the database designer spec

ified “if Customer Own Car then Salesperson Sell Car”, it is redundant since it is sub

sumed by “if Customer Own Car then Salesperson Fre_Sell Customer, Salesperson Sell

Car”. It becomes more difficult to detect such inconsistencies and redundancies as the

number of SICs gets larger. There needs to be some automated tools to help detect them

or prevent them in advance although this issue may not he completely solvable.

Pitfall 2: Imprecise or Incomplete SIC Representation The simplified repre

sentation format in the preceding section should only be used as a convenient way of

initially incorporating SICs rather than as a formal way of eventually representing them.

Although the simplified representation format might be more natural to a database de

signer, it is not precise. Recall that there are six components in the SIC Representation

model. In most cases, the simplified representation only contains precondition and predi

cate components. For operation-dependent SICs, object and operation type components

are also specified. Even in that case, other important specification information (the cer

tainty factor and violation action) is still missing. In order to represent any SIC precisely,

we need some algorithms to reformulate it (decompose it if necessary) in terms of the

Representation model.

We do not take the naive approach of enumerating all conditions for all objects ex

plicitly. For example, a general SIC represented in the simplified format, “if E RX F

then E RY 0”, would be incorporated when we consider necessary conditions for the

Chapter 6. The Application of the E-R-SIC Model 139

existence of RX. We do not incorporate it again as a sufficient condition for the existence

of RY. However, if we decompose the original general SIC, there would be two sub-SICs

represented in the Representation model:

one for RX on insertion, whose violation action would be “reject” or

“propagate(insert (RY))”

— the other for RY on deletion, whose violation action would be “reject” or

“propagate(delete(RX))”

Note that the first sub-SIC in terms of the SIC Representation model is a necessary

condition for the insertion of RX, and is also a sufficient condition for the insertion of

RY if the violation action is “propagate(insert(RY))”. The second sub-SIC is a necessary

condition for the deletion of RY, and is also a sufficient condition for the deletion of

RX if the violation action is “propagate(delete(RX))”. Without decomposing a general

SIC into several sub-SICs represented in terms of the SIC Representation model, the

SIC specifications would not be complete because the violation action may depend on

the object and operation causing violation. Therefore, we can conclude that the SIC

Representation model provides a complete and precise representation of SICs in the E

R-SIC model.

Pitfall 3: E-R Structure Orientation The E-R-SIC model helps a database designer

incorporate SICs based on E-R structural descriptions. However, our logical data model

is the relational model. There should be some procedure for losslessly transforming SICs

in the E-R-SIC model into corresponding ones in the relational model80.

80The “losslessly” means that, for each SIC incorporated in the E-R-SIC model placing restrictions on
occurrences of entities, relationships, or attributes, there is (are) SIC(s) in the relational model placing
corresponding restrictions on relation tuples or attributes.

Chapter 6. The Application of the E-R-SIC Model 140

Pitfall 4: Inefficient Modelling In the absence of an automated database design aid,

a database designer must specify all explicit and inherent SICs in terms of the simplified

formats as described in Appendix C. For example, in addition to specifying the entity

types, Employee and Mechanic, and the relationship type Mechanic_is_a_Employee, he

(she) needs also to specify the relative cardinalities of is_a, a necessary condition for its

existence — Mechanic.EmpId=Employee.EmpJd, and even the fundamental incidence

constraints the existence of participating entity occurrences. In general, there might

be many possible SICs given an E-R diagram. Since one SIC may involve more than

one object, the database designer needs to record what SICs have already been identified

so that they would not be incorporated again. There would be a heavy burden for the

database designer if he (she) needs to figure out all the possible SICs, verify, reformu

late, decompose, and transform them by himself (herself). It is desirable to have some

automated database design system to help the database designer model and represent

SICs.

Proposals for avoiding these pitfalls will be introduced in the next chapter (pitfall 1

is not completely avoided).

6.3 Data Integrity Semantic Completeness

In the E-R-SIC model, the SIC is the construct used to provide logical restrictions on

the structural schema, that is, on the attributes, entities and relationships. Completely

incorporating SICs depends on the correct specification of the structural schema. The

E-R-SIC model requires all relationships to be explicitly represented except for some

special cases, such as exclusion between two entity types. The explicit representation of

relationships makes the semantics clear.

Chapter 6. The Application of the E-R-SIC Model 141

Based on the assumed correct E-R structural schema, we could systematically model

SICs by considering a wide range of possible restrictions or requirements — positive

or negative, simple assertions or complicated formulas, qualitative or quantitative, time-

restricted, time-triggering, or temporal sequence requirements, implicitly/explicitly type-

related or set-related. Most SICs we consider are necessary conditions for the existence

of the occurrences of one or more attribute, entity, or relationship types. They are, by

nature, static SICs restricting the possible states of the database. A few are inherently

dynamic SICs, e.g., new_old transitional constraints; and some others are considered

as sufficient conditions. However, after decomposing them into sub-SICs in terms of the

SIC Representation model, all become dynamic and operation-dependent SICs specifying

conditions for the deletion, insertion, or update of the related objects. Since these three

operations are the only ways the database can change, those necessary conditions for

these operations completely cover the necessary conditions for existence, nonexistence

and change of an object in a database.

In addition, sufficient conditions (if any) are also incorporated because of the violation

action component of the SIC Representation model.

Whenever we find that the structural schema cannot model the data integrity seman

tics as SICs, we would need to go back and modify the E-R structure. Therefore, the

E-R-SIC model not only allows modelling the SICs completely but also forces the struc

tural schema to reflect the data integrity semantics more faithfully. The structure and

SIC parts of the resulting schema would be closely related. This would form a more suit

able and fundamental base for higher level transaction or application program modelling.

Therefore, we can conclude the following:

With the support of the SIC Representation model, the E-R-SIC model would

Chapter 6. The Application of the E-R-SIC Model 142

completely model the data integrity semantics.

There is one limitation. Although some entities or relationships may have time-valued

attributes or temporal sequence requirements, time-stamped data integrity semantics

(e.g., dealing with historical data at some specific time) in general may not he completely

modelled81.

A related discussion concerns SICs in the relational model. Suppose that the SICs in

the E-R model have been losslessly transformed into corresponding ones in the relational

model. Are there any other new SICs, e.g., data dependencies, that must be considered

in the relational model?

Data Dependency in the Relational Model Tile relational data model has well-

formalized theories. Data dependency is one of its important concepts. Uliman [1982]

defines a data dependency as “a constraint on the possible relations that can be the

current value for a relation scheme”. However, one should note that the usefulness of

data normalization theory is for designing a database directly from the relation concept,

not for capturing semantics. The partial and transitive functional dependencies imply

the embedding of independent relationships ([Makowsky, et al., 1986]). Similarly, the

existence of non-trivial multi-valued dependencies occurs when a relation represents more

than one 1:N relationship ([Kent, 1983]). These problems can be avoided if entities

and relationships are properly designed and carefully transformed into relations ([Storey,

1988]). Some researchers try to apply other dependencies, e.g., inclusion dependencies,

811n the literature, [Palmer, 1982] discusses time-dependent relationships and [Taiizovich, 1991] intro
duces lifetime cardinalities. It is not clear how the restrictions of lifetime cardinalities are applied over
the lifetime of the entities and relationships.

Chapter 6. The Application of the E-R-SIC Model 143

exclusion dependencies and co-exclusion dependencies82,to capture semantics. Exclusion

dependencies have been covered in the E-R-SIC model. Inclusion dependencies come

about because some relationships have not been explicitly represented83;and co-exclusion

dependencies occur because the SICs are not precisely represented84.Therefore, we need

not add other SICs after transforming those SICs identified by the E-R-SIC model to

corresponding ones that reference the schema in the relational model.

52Let E, F be two relations (possibly the same), and A, B, he attributes of E and F, respectively.
E[A1,... ,Am] ç F[B1,... ,B] is called an inclusion dependency ([Casanova and Vidal, 1983]). If
E[A1,... ,Am] is exclusive to F[B1,... , B,], it is called an exclusion dependency ([Casanova and Vidal,
1983]). The negation of an exclusion dependency is called a co-exclusion dependency, ([Arisawa and
Miura, 1986]).
83Take an example of [Minnila and Räihâ, 1986]: Registered_Cars/Model] CarTypes/ModelJ. There

should be some relationship, e.g., Hasmodel, between Registered_Cars and Car_Types.
84Arisawa and Miura [1986] state that what co-exclusion dependencies mean is to constrain database

when updating and sharing entities. However, there should a higher level of entity that is the super-type
of those entity types. If the SICs implied the is_a relationships between the sub-types and super-type
are precisely represented, the co-exclusion dependency constraints would be incorporated.

Chapter 7

A Proposed Database Design Aid for Eliciting SICs

In Figure 1.1 of Chapter 1 a proposed database design subsystem for eliciting SICs

is sketched. Both the SIC Representation model and E-R-SIC model are application-

domain independent. They are suitable for implementation as part of an automated

database design system. An automated database design system is needed because of the

potential heavy work load of a database designer when incorporating and representing

SICs. This chapter describes conceptually how this subsystem for eliciting SICs should

work. In the following, the term “database designer” will be used for the user of the

automated database design subsystem who may be a professional database designer or

an end-user who plays the role of the database designer to design his (her) system. Sec

tion 7.1 gives a brief overview of the elicitation subsystem. The three major functions of

the subsystem — verifying elicited SICs for consistency and non-redundancy, reformu

lating and decomposing general SICs into sub-SICs in terms of the SIC Representation

model, and transforming them into corresponding ones in the relational model are de

scribed in detail in Sections 7.2, 7.3 and 7.4, respectively.

144

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 145

7.1 An Overview of the SIC Elicitation Subsystem

Interfaces From the view of the SIC elicitation subsystem, there are two interfaces.

The first is an interface to elicit explicit constraints from the database designer in a dia

logue or by menus, etc. The second is an interface between the SIC elicitation subsystem

and the structure subsystem (e.g., the View Creation System in [Storey, 1988] and [Storey

and Goldstein, 1988]) for constructing the structural schema. From that interface, the

SIC elicitation subsystem fetches the structural descriptions in terms of the E-R-SIC

model.

Elicitation Based on these structure descriptions, the SIC elicitation subsystem will

query the database designer to obtain the attribute SICs for each attribute of each entity.

Next, whole entity SICs would he obtained for each entity. The system then traverses

the E-R diagram to detect possible relationship SICs85 and data abstraction SICs. In

a dialogue, the database designer may need to add some further restrictions on a SIC

by using expressions such as those in the simplified format (Appendix C). In general,

though, the database designer need not worry about the assertion representation syntax.

In addition, the system, rather than the database designer, would specify those inherent

SICs implied by special relationships (e.g., the is_a data abstraction).

Elicitation Knowledge It is possible that the elicitation procedure may be lengthy

because the goal is to include the complete data integrity semantics and the system has

neither common sense nor application domain knowledge. However, it is expected that

85The original structural specifications may include some traditional relative cardinalities of relation
ships. However, the exact numbers except for 0, 1 may not he known since they are irrelevant for
constructing normalized structures.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 146

the system should query the database designer based on the following knowledge:

• the E-R-SIC model to capture the possible SICs from different objects in the

(line, star, ioop-2, and loop-n) contexts of an E-R diagram;

• consistency and nonredundancy rules for different SIC types;

• heuristics from naming conventions and data types;

• specification information that the database designer has provided so far.

With consistency and nonredundancy rules for different SIC types, the subsystem

would not request, or could refuse immediately, some impossible SICs. This kind of

knowledge is introduced in Section 7.2.1 to show how it can alleviate the need for some

detailed verification.

Since there may be a large number of possible SICs, heuristics may help the subsystem

to be even more efficient in asking questions. The object data type — date, arithmetic or

non-arithmetic may suggest its volatility. For example, often a date is unchangeable. In

addition, naming conventions may hint at some SICs. For example, attributes with the

same names in the entity types linked via some relationship types may suggest the need

for SICs involving some formula between them. Appendix E contains more examples.

Verification Although full verification for consistency and non-redundancy is hard to

achieve, the elicited SICs would be verified to some extent, especially for cardinalities.

The cardinality information is important because a totality constraint might make many

possible SICs redundant or inconsistent. Section 7.2 discusses the related issues on veri

fication in detail.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 147

Reformulation and Decomposition Based on the information obtained from the

database designer, the system would represent general SICs in terms of the simplified

format described in Appendix C. Then, the system should automatically rewrite each

of the above SICs, and decompose it into sub-SICs if necessary, in terms of the SIC

Representation model. All six components plus the SIC name in the model would be

specified. The reformulation and decomposition algorithms are introduced in Section 7.3.

The default certainty factor is “certain”, but the database designer can change it to be

“uncertain” or provide specific certainty factors.

Without application domain knowledge, it is impossible for an automated database

design system to provide automatically complex and application-dependent violation

actions. For example, if we allow arbitrary violation actions, even for a SIC on update

of E.A2 with a simple formula predicate “E.A1 = E.A2 + E.A3”, the violation action

may be either a propagation to update E.A1, or update E.A3, or update both E.A1

and E.A3 (this may imply a number of choices with different ratios of E.A1 and E.A3).

The number of possible combinations of violation actions would grow rapidly as the

number of involved objects increases. The “propagate” action is helpful and powerful,

but is also costly if the set of SICs is not optimized86. In this research, it is envisioned

that the system would only provide some restricted predefined violation action choices

(“reject”, “propagate”, “conditionallyreject”, “conditionally_propagate”, or “warning”).

Most of the violation actions would be “reject”, “conditionally_reject”, or “warning” if

the system could not decide how to propagate to fix the violation. If the system decides

that a “propagate” action is feasible, it would query the database designer to determine

86An example here consists of two SICs: “SIC-i: (B RX F) V (B RY G)”; “SIC-2: if B RX F then
B RY G” attached with “propagate” actions in their all sub-SICs. Suppose that the original database
state is “RY exists, but RX does not”. A “deiete(RY)’ operation would cause the following operations to
be performed: “delete(RY)”, “propagate(insert(RX))” owing to SIC-i, “propagate(insert(RYJ)” owing
to SIC-S. A RY is forced to be inserted back although now it may connect B with a different F.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 148

whether to “propagate” or “reject”.

Generic SICs As described on page 78, we can represent some common SIC types

for the generic object (Entity*, Relationship, Entity*.Attribute*. and Relatioriship*.Attributej

to reduce the number of explicit SICs represented using the Representation model. By

doing so, we can also alleviate the need for the invocation of the reformulation and de

composition algorithms during the database design consultation session. The subsystem

should have these pre-defined representations of generic SICs. If the database designer

specifies that occurrences of an object type must satisfy one of these common SIC types

(e.g., two entity types are mutually exclusive), the related constraint information would

only be kept in a logical predicate, called an input predicate (refer to Appendix B.1,

e.g., ex_ents(ExEntSet,) storing the information that the entity types in ExEntSet are

exclusive). Such specific constraint information need not be directly reformulated or de

composed in terms of the SIC Representation model. It is expected that the specified

object type could inherit the related generic SICs. Section 7.3.1 describes these generic

SICs in more detail.

Transformation It is assumed that if a relationship type has (1,1) cardinalities rela

tive to an entity type, it would be represented by a foreign key rather than a separate

relation in the relational model. \‘Vhen the structure subsystem transforms the E-R spec

ifications into relations, the SIC elicitation subsystem should also transform the SICs in

the E-R-SIC model into corresponding ones in the relational model. The input predicates

need not be transformed. There should also be pre-defined generic SICs in the relational

model corresponding to those in the E-R-SIC model. The principles of representing rela

tionships in the relational model and the SIC transformation algorithms are introduced

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 149

in Section 7.4.

Final Outputs The final results of the consultation session would be a listing of incor

porated SIC specifications in a relational database schema. These specifications include:

(1) specific SICs, which directly apply to specific object types and are represented in

terms of the Representation model; (2) input predicates describing specific object types

to which some common SIC types apply; (3) generic SICs, which serve as the “templates”

for common SIC representations and are expected to be inherited by the specific object

types described in (2).

7.2 SIC Verification

Difficulty in Verification As discussed in Section 2.3, full verification of SICs for con

sistency and non-redundancy would need application-domain and common-sense knowl

edge. Even those aspects of verification that do not require application-domain knowledge

still pose difficult research problems because of the potential complexities of SICs. This

research discusses the issues, but does not offer general solution algorithms.

Because the interactions among SICs might, in general, be complicated87,we would

need logic theorem proving techniques (e.g., the resolution refutation method [Nilsson,

1980]). However, standard logic must be enhanced to handle the following problems.

• Attribute Value Problem. In standard logic programming theory, objects are

8TFor example, suppose that Ci, C2, CS are the preconditions of three SICs, SIC-i, SIC-2, SIC-3,
respectively; and P1, P2, P3 are their predicates, respectively. SIC-i and SIC-S are asserted for the

same object. If Ci overlaps with P2 and C3 implies C2, Pi should be the same as PS. Otherwise, they

are inconsistent — because CS implies P2 and P2 overlaps with Ci, if some occurrences satisfy C3, they

may also satisfy Ci; so CS transitively implies Pi.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 150

represented as finite terms, and the set of terms is countable (within the context

of the Herbrand Universe) ([Lassez, 1987]). Suppose that the value domains of all

attributes are discrete and finite. Then, consistency among SICs can be checked

by applying the standard logic proving technique although, for efficiency reasons,

it may be accompanied by the standard CSP (constraint satisfaction problem)

algorithms ([Mackworth, 1977; 1987]; [Mackworth and Freuder, 19851)88. However,

suppose that the values of attributes are allowed to be continuous and infinite89.

Standard logic cannot deal with the real number domain. It must be extended

to have other techniques to handle real number values and formulas. That is

the motivation for developing constraint logic programming (CLP) ([Jaffar and

Lassez, 1987]; [Cohen, 1990])°. We may apply linear programming (LP) algorithms

(e.g., the simplex method [Hillier and Lieberman, 1986]) to check the consistency

of a set of linear formulas (i.e., whether a feasible solution exists) and remove

the inconsistent value ranges (by finding the values of optimization functions —

maximization and minimization for each involved attributes)91;apply integer linear

programming algorithms if the values are restricted to be integer numbers92;and

88There are three sets of algorithms node, arc, and path algorithms. In this case, we would apply
arc algorithms to check the consistency between value constraints and a formula constraint; apply path
algorithms to check the consistency among value constraints and several formula constraints. They
can be checked in polynomial time ([Mackworth and Freuder, 1985]) although the path algorithms are
complicated.
89They may be numerical real numbers or integers; or may have date data type if date operations are

suitably defined.
90For example, one CLP representative, CLP(R) provides both expressive and computational powers

to solve linear equations and linear inequalities (by two-phase simplex algorithm) incrementally ([Jafi’ar
and Michaylov, 1987]). However, it is still a rudimentary experimental product and can only run under
UNIX-based operating systems. Other CLP languages are Prolog III ([Colmerauer, 1990]), Trilogy, and
CHIP ([Hentenryck, 1989]), etc.

91A simple algorithm used by ALICE (A Language for Intelligent Combinatorial Exploration) ([Lau
riere. 1978]) can also be applied to test the consistency between a single linear formula and the value
range constraints, and further to remove the inconsistent value ranges.

92It is not usual to have complex numbers in a database. Suppose we do have a complex number
application, Gröbner method would test whether a system of multivariate polynomial equations has a
solution over the complex numbers ([Cohen, 1990]).

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 151

apply non-linear programming algorithms to handle a set of non-linear formulas93.

However, all existing methods have some limitations. For example, if any of the

connectives between linear formulas is a disjunction (“V”), e.g., “P1 V P2”, the

simplex method is no longer applicable since “P1 V P2” may represent a non-convex

polyhedron ([Cohen, 199O]). The general integer linear programming problem

is NP-complete ([Papadimitriou and Steiglitz, 1982]). Furthermore, it is even

difficult to achieve nonredundancy. We may apply these algorithms to remove

the inconsistent values from value constraints. However, given a set of arbitrary

formulas, no existing algorithms can tell us whether a formula is redundant.

• Aggregate Function Problem. There may be some attribute SICs related to

entire entity or relationship set properties. We cannot verify these SIC specifications

without actual data. Even if they are not in rule format, at the best we can only

have some simple tests (Appendix F.1), such as: the specified maximum value of an

attribute value must be greater than or equal to its minimum value. Iii addition, as

stated, the verification for cardinality constraints is important for other relationship

SICs. Standard logic proving should be supplemented with the algorithms described

in Appendix F.2 to check consistency and nonredundancy for cardinalities.

• Incremental Verification Problem. Verification would be conducted for the

SICs in the sequence of the incorporation. Since it is desirable to identify any in

consistencies each time a new SIC is added, the SIC elicitation subsystem would

931f there are non-linear formulas and the functions are monotonically increasing or decreasing for
each involved attribute, the ALICE algorithm can be applied to check the consistency between a single
non-linear formula and value constraints.

941n addition, one should note that the simplex algorithm would take an exponential number of steps
in the worst case although in general it can be regarded as very efficient ([Papadimitriou and Steiglitz,
1982]).
9It is known that the theory of predicates with =, , , <, >, , +, x over real numbers is satisfaction

complete, i.e., every constraint is either provably satisfiable or provably unsatisfiable. However, the theory
of predicates with =, +, x over integer numbers is not satisfaction-complete ([Cohen, 1990]).

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 152

not verify the whole set of SICs oniy once, instead there would be an incremen

tal constraint satisfaction problem ([Hentenryck, 1990]), in which constraints are

incrementally added and dropped.

• Feedback from the Database Designer. It is impossible for the SIC elicitation

subsystem to achieve complete verification without feedback from the database

designer. The following are two examples.

— If the preconditions of two SICs overlap, the database designer is required to

modify these two SICs.

— If the preconditions of two SICs are not related in the syntax (i.e., they are

expressions on different objects, for example, one is on Employee.Age, another

is on Employee.Education), but their predicates are inconsistent, the system

should query the database designer as to whether it is possible that an object

would satisfy these preconditions at the same time. If it is, these two SICs are

inconsistent.

Optimization Problem Even if two constraints are neither inconsistent nor redun

dant, they might not be “optimized” — i.e., there might be a single constraint that can

replace the set of these two constraints and be enforced more efficiently. The following

are two examples.

• Given two value range constraints that are neither inconsistent nor redundant,

they may overlap. That is, there may be a single refined range to replace those two

ranges.

• A set of two constraints, “(E RX F) V (E RY G,,)”, and “if E RX F then E RY G”,

is neither inconsistent nor redundant. However, after optimization, the above set

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 153

would be replaced by a single constraint, “V E, RY, E RY G” (i.e., RY total to

E.

To get a single refined range constraint may be easy. However, in general, optimization

is more difficult than consistency and non-redundancy checking even for a small and

simple set of constraints. For its related objects, each constraint allows a set of database

states to exist. When several constraints relate to the same object, if they are consistent,

the intersection of all those sets of states is not empty. One approach to optimization is

to find this intersection set and describe it by some expressions. However, the number of

states could he large and it would be very difficult to write expressions for those states.

Issue of Unexpected Implicit Constraints Even if a set of SICs is not inconsistent

or redundant, there may still exist some unexpected implicit constraints. For example,

suppose that Supervise is a relationship type between entity types Manager and Project,

the database designer has specified the absolute maximum cardinality of Project — there

can be no more than 8 projects; and some relative maximum and minimum cardinalities

in the relationship Supervise there can be no more than one manager per project

and any manager must be assigned to a project. This set of three constraints implies an

implicit constraint — the organization can hire at most 8 managers although the database

designer does not specify it explicitly or may think that there is no upper bound on the

absolute maximum cardinality of the entity type Manager. The elicitation subsystem

needs to recognize that some SIC types may be missing, and then check the current set

of constraints to see whether such types of SICs can be derived from it. The database

designer would then be asked to judge as to whether he (she) has made some mistakes.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 154

Verification related to Certainty Factors The certainty factor component in the

SIC Representation model is a source of possible inconsistency between SICs. Suppos

ing that both SIG-i and SIC’-2 are for the same object on the same operation with the

same precondition, if the predicate of SIC-2 implies that of SIC-i (i.e., SIC-2 is more

restrictive than SIC-i), the SIC-2 should be less certain than SIC-i. Otherwise, they

are inconsistent. In addition, the certainty factor and violation action are closely related.

An uncertain SIC can only have a predefined violation action of “warning”, “condition

ally_reject”, or “conditionally_propagate”. A certain SIC can only have a predefined

violation action of “reject” or “propagate”.

Verification related to Violation Actions Furtado et al. [1988] describe a situation

where the violation actions of two SICs may be inconsistent. However, if the SICs are

precisely defined and the transaction concept is applied when enforcing them, the problem

described by Furtado et al. could not occur96. The major consistency problem caused

by the violation action component in the SIC Representation model is that the violation

actions may cause an endless enforcement cycle a “flip-flopping” behaviour between a

set of SICs described by Ceri and Widom [1990] if arbitrary actions are allowed. Ceri and

Widom suggest using a triggering graph97 to detect potential cycles. However, they leave

the responsibility of determining whether infinite triggering would actually be possible

to the database designer. It is difficult, in general, to take an arbitrary violation action

96The problem raised by Furtado et al. [1988] is as follows. Suppose that there is a relationship type
R and an entity type E, R is total to E. If the violation action of the incidence constraint, SIC-i, for
E on deletion is “propagate(delete(R))” and the violation action of the totality constraint, SIC2, for R
on deletion is “reject”, Furtado et al. claim that they are incompatible. However, note that if the SICs
are precisely defined, when the SIC-i has been violated and the deletion of the R is taken, the SIC-2
becomes irrelevant because the B occurrence has become non-existent.

971n their triggering graph, the nodes of the graph correspond to the SICs. There is a directed edge
from node SIC-i to node SIC-2, if and only if the execution of SIC-i’s violation action is likely to violate
SIC-2 (the likelihood is only in terms of objects and operation types).

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 155

and decide whether it would violate other SICs. In this research, oniy some restricted

and predefined violation actions would be suggested by the SIC elicitation subsystem.

Basically, if the violation action of a SIC is “propagate”, when the SIC is violated, it would

allow the intended operation to be performed, but would also take a simple compensatory

action to bring the database to another consistent state. With such a restriction, if those

SICs are consistent (in terms of the components other than the violation action), when

an operation violates a SIC, the database would return to a consistent state although

some operations may be undone.

Verification and Decomposition If a general SIC is not in rule format, it can be

verified for consistency and nonredundancy before decomposing it. However, a general

SIC in rule format must first be decomposed into several sub-SICs before verifying it.

These sub-SICs indicate the consequences of the general SIC that must be taken into

consideration when verifying a set of SICs. For example, if there is a general SIC, “if

Cl then P1”, where Cl and P1 are some assertions, the SIC elicitation subsystem would

not know that it is inconsistent with “if P1 then Cl” without first decomposing it.

The decomposition algorithms described in the next section can be assured to represent

correctly the sub-SICs of a given single SIC. However, the verification for consistency

and nonredundancy among the representations for jj SICs is still needed.

7.2.1 Consistency and Nonredundancy Rules for SIC Types

Since conceptually by using the E-R-SIC model, the SICs can be classified into a number

of types, some general problems of consistency and nonredundancy among those types

of SICs can be explored in advance. The results would be some rules about consistency

and nonredundancy for SIC types, which can be stored iii the knowledge base of the

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 156

elicitation subsystem in order to expedite the elicitation procedure.

Take a simple example. In Figure 6.1 of the car_dealer_database_design example, the

two relationship types, PreSell and Own, may be involved in a number of types of SICs.

For example, they may be exclusive (i.e., “if Customer Own Car then —i(Salesperson

Pre_Sell Customer)”), or one may depend on the other (e.g., “if Customer Own Car then

Salesperson Pre_Sell Customer”). Suppose that the database designer has specified that

the minimum cardinality of Pre_Sell relative to Customer is 1. With the built-in con

sistency and nonredundancy rules in Appendix G, the SIC elicitation subsystem would

automatically know that the first SIC type cannot occur and that the second SIC type is

redundant. It might be confusing to the database designer if the SIC elicitation subsys

tem asks him (her) to confirm these SICs. It would be inefficient if the database designer

inadvertently specified the above redundant or inconsistent SICs and the elicitation sub

system invoked the whole process to verify them during a consultation session.

Note that this knowledge cannot totally replace the actual verification during the

consultation, but it would reduce the number of cases that need to be verified. Kung

[1984, 1985] applies a sophisticated tableaux approach to verify a set of two SICs: “every

employee earns more than $20, 000”, and “every manager is an employee”. Since the first

is a simple value constraint for a non-key attribute and the second implies some special

relative cardinalities and the equality condition on key values of two sides of entities for

the existence of an is_a occurrence, a human database designer would know that they

cannot be inconsistent. If the SIC elicitation subsystem had similar rules, it could also

skip the detailed consistency checking process.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 157

7.3 SIC Reformulation and Decomposition

As discussed in Chapter 6, the E-R-SIC model uses the Representation model to specify

SICs. SICs should be represented in terms of the Representation model. If a SIC is only

relevant to an object on an operation, we only need to reformulate it in the Representation

model without changing its certainty. In most cases, because a SIC is relevant to several

objects on various operations, the decomposition would get several sub-SICs written in

terms of the Representation model.

The SIC elicitation subsystem would invoke the reformulation and decomposition algo

rithms, which are described in Appendix H, to reformulate and decompose SICs obtained

from the database designer. By using the E-R-SIC model, the subsystem should recog

nize all inherent SICs that are implied by the specifications (e.g., an is...a relationship)

provided by the database designer. Before invoking the reformulation and decomposition

algorithms, the subsystem should first represent these explicit and inherent SICs in terms

of the simplified formats in Appendix C, but without using the nested if. . . then rules.

Algorithms previously proposed in the literature can deal only with some restricted

types of SICs and only consider the object and operation type components. The algo

rithms in Appendix H deal with all SICs that are recognized by the E-R-SIC model. All

components in the SIC Representation model are considered.

Correctness of the Reformulation and Decomposition Algorithms It is nec

essary to assure the correctness of the proposed reformulation and decomposition algo

rithms for representing a given general SIC. The following briefly examines the algorithms.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 158

1. Same Certainty Factor. The certainty of sub-SICs cannot be lower than the

general SIC; otherwise, the enforcement of these sub-SICs cannot achieve the cer

tainty of the general SIC. Therefore. if the original general SIC is 100% certain,

its sub-SICs should also have 100% certainty. Suppose that the original general

SIC is uncertain. Since its sub-SICs may have different violation actions, some of

them may have higher certainty. Without further information, the elicitation sub

system can assume that they have at least the same certainty as the general SIC.

(Later, the database designer can change the certainty of a sub-SIC to be higher if

necessary.)

2. Relevant Object and Operation Types. The search for the relevant object

and operation types is based on the following ideas.

• An operation-dependent SIC is only relevant to one object on one operation.

For example, “if E is_to_be_deleted then .. . “is only relevant to E on deletion.

• It is desirable to remove obvious redundancies when checking objects men

tioned in a SIC. By the nature of relationship, if a relationship occurrence

exists, its participating entity occurrences must exist too (the incidence con

straint). If a general SIC is relevant to the insertion of an occurrence of a

relationship type and we have a sub-SIC for the relationship, we need not

have other sub-SICs to restrict the insertion of the occurrences of its partici

pating entity types. It is possible that some occurrences of these entity types

may not participate in any occurrence of this relationship type. The checking

of the general SIC for any occurrence of these entity types can be delayed until

it really participates in an occurrence of this relationship type. For example,

according to the algorithms, “if E RX F then E RY G” would be relevant to

RX on insertion, but not to E, F or G.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 159

• Premise 4.1 in Section 4.1.2 is adopted to avoid some operation checking.

Since by assumption, the current database state is semantically correct, we

would need to check an operation only because the database state transition

caused by the operation may violate the SIC. For example, an insertion of an

RX occurrence may violate “if E RX F then E RY G”, but a deletion of a

RX could not. Similarly, an insertion of a.n RX occurrence may violate “if 3

atieast 3 RX, E RX F then 3 RY, E RY G”, hut a deletion of a RX could

not.

• Current_time and some aggregate functions have special monotonicity prop

erties. For example, a deletion of an E occurrence may violate “max(E.A) >

Value “, but not an insertion of an E because, by the monotonicity of function

max, an insertion of a new occurrence would never decrease the aggregate

function value.

• Since a primary key is used as a surrogate to represent an entity or a relation

ship in a traditional database, its update may imply a deletion of an “old”

entity or relationship occurrence followed by an insertion of a “new” entity or

relationship occurrence. Therefore, sub-SICs related to deletion and insertion

should also be asserted on the update of a primary key.

Note that the algorithms have limited capability to identify avoidable operation

checking for SICs involving aggregate function. In addition, it is possible to incor

porate more consistency and nonredundancy rules for SIC types into the algorithms

to reduce the sub-SICs further. However, it can be claimed that the current algo

rithms correctly find the relevant object and operation types for a single SIC.

3. Proper Precondition and Predicate Components. Basically, the algorithms

just rewrite the original SIC so that it becomes more precise and suitable for each

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 160

sub-SIC. The following are some brief ideas.

• Subscripts and some special predicates (e.g., rship_occ_part) are used to make

a sub-SIC precise.

• If a sub-SIC is for an attribute on update, in general, its predicate component

contains only an assertion on the attribute requiring it to have some special

value after update.

• If a sub-SIC is for an entity or relationship and it does not only assert the

values of its attributes, in general, the precondition component is important

to identify what is the entity or relationship occurrence to be checked.

• If the constraint violation is because an entity occurrence is deleted, in general,

because of the key uniqueness, it is impossible to find another occurrence of

the same type to avoid the constraint violation (unless the constraint is one

asserting aggregate properties). However, it is possible to “reconnect” an

occurrence of one entity type with another occurrence of the other entity

type. That is, we might find another relationship occurrence to satisfy the

SIC unless both sides of the relationship are bound.

• Constraints that assert explicitly the equality of some key attributes of two

entity types, e.g.. SICs implied by an ID Dependency, is_a or componenLof

relationships, should be dealt with specially. Because the key attributes (e.g.,

SIN) of the two entity occurrences (e.g., Person and Employee) in fact reference

the same physical entity occurrence (e.g., the same physical Person), the link

should be permanent.

4. Suggested Violation Actions. As stated, because of the verification problem,

the SIC elicitation subsystem could only suggest some restricted and predefined

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 161

violation actions appropriate to the certainty of the SIC. A propagation action

can be automatically suggested by the SIC elicitation subsystem only in the case

that there are two simple assertions on two objects in the SIC. In that case, a

simple propagation action is suggested to regain a consistent database state. If the

database designer has set a certainty threshold (say 75%), any uncertain SIC with

certainty less than the threshold will be given a “warning” as its violation action

automatically.

5. Given SIC Names. A SIC name is given automatically after applying the above

algorithms and using some predefined SIC types.

Examples Some examples are included in Appendix I for illustration.

General SIC Information After decomposing a general SIC, we may still need to

link its decomposed sub-SICs together since the verification for consistency and nonre

dundancy may still be needed, and furthermore, a general SIC may later be deleted.

In addition, for documentation purposes, it may be desirable to keep the original gen

eral SIC information, which contains only the certainty factor (if not default “certain”),

precondition and predicate components. Therefore, the SIC elicitation subsystem would

need to link a general SIC and its decomposed sub-SICs together.

7.3.1 Representation of Generic SICs

The principles of the reformulation and decomposition algorithms can be similarly applied

to produce the generic sub-SICs for the generic object types Entity*, Relationship*,

Entity*.Attribute*, and Relationship* .Attribute*. However, the SIC representation for

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 162

the generic types is complicated because the data dictionary retrieval and manipulation,

and the pre-coudition contexts must be explicitly stated. The input information and

manipulation logical predicates used in generic SICs are listed in Appendix B. This sub

section introduces the representation of generic SICs for some common SIC types and

discusses the related issues. In all of the following cases, the principle of SIC specialization

allows us to omit the explicit SIC representations for specific object types if we have the

representations for generic object types.

Domain Constraint Representation SIC Aggregation and Specialization

By the principle of SIC aggregation, domain constraints on insertion of an entity/relationship

occurrence can be simulated by applying the domain constraints of all its attributes.

There are three separate sub-SICs for restricting not-null, uniqueness, and nonvolatil

ity, respectively, and another sub-SIC dealing with data-type, format, and value. For

restricting the insertion of an entity, we need one sub-SIC, which would call the above

related sub-SICs (except for the nonvolatility) for asserting attribute domain constraints.

In total, the five sub-SICs in Appendix J are sufficient to represent all domain constraints

regardless of the number of entity types and their attributes in a database. The number

of SICs that must be specified explicitly is dramatically reduced through using the SIC

abstraction concepts. Similarly, five sub-SICs are needed for relationship types and their

attributes in a database.

Primary Key Constraint Representation — SIC Association and Specializa

tion A number of SICs must be specified to capture the possible inconsistent states of a

database when updating a primary key. The SIC association and specialization concepts

will be used to reduce the number of explicit SICs required. During the database design

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 163

phase, if a SIC is identified for the insertion (or deletion) of a relationship and there

should be a sub-SIC for checking the update of a part of its key, its SIC name is added

into an associated SIC.NameSet of the affected key attribute. The SICNameSeis of

key attributes of a relationship type may be different. However, in the case of a SIC that

is relevant to the insertion (or deletion) of an entity type, all affected key attributes of

the entity have the same SICiVame_Set.

For example, suppose that we have a SIC such as “if an employee is assigned to a

project, he (she) must participate in an insurance plan”, and assume the key of the em

ployee and project are Empld and Projld, respectively. The name of the sub-SIC restrict

ing an insertion of the relationship Assigned_to would be inserted into the SIC_Name_Set

of a special logical predicate (associated_PKSICs_1) for the key attribute Assigned_to.Empld.

Note that since the non-sharing entities are not concerned, the update of another key

attribute Assigned_to.Projld of the relationship is not restricted. Similarly, the name of

another sub-SIC restricting a deletion of the relationship Insure, is inserted into Associ

atedPKSICsD for Insure.Empld.

Two “set-SICs” in Appendix J are needed for the key attributes of Relationship*.

(Similarly, there are two “set-SICs” for key attributes of Entity*.) By the principle of

SIC association, the enforcement of such a “set-SIC” is the same as the enforcement of

all of its “member-SICs”.

Other SIC Representation SIC Specialization A number of other SIC types98

can be similarly represented. Usually, these SICs types can be described in the “closed

form” of predicates, that is, without further arbitrary restrictions. If a DBMS finds

98These SIC types include: Composite_Attribute_Unique Constraint, Absolute Maximum
Cardinality Constraint of an Entity Type, “traditional” relative cardinality constraints (i.e., To
tality Constraint, and Relative Maximum Cardinality Constraint), Incidence Constraint,

Chapter 7. A Proposed Database Design Aid for Eliciting SIC’s 164

the related information on a specific entity, relationship or attribute type, e.g., symmet

ric(Married_to) indicating its symmetry, the related sub-SICs would be automatically

inherited from the generic types.

The number of such generic SICs stored in the SIC maintenance subsystem would

depend on the complexity of the application at hand. It is possible that in a special

database application all SICs can be represented as generic SICs in advance so that the

actual invocation of the reformulation and decomposition algorithms might be almost

totally avoided during the database design consultation session.

Some examples of the above generic SICs are included in Appendix J.

Some Improvements The generic SICs in Appendix J have two problems, which can

be solved as follows.

• Uniform Certainty Factors It is assumed that the generic SICs are all “certain”

by default If we consider the possibilities that a few SIC types for some specific

object types may be “uncertain”, the certainty factors need to be stored in the

input predicates for these specific object types

• Uniform Violation Actions. Because of the SIC inheritance principle, spe

cific object types would inherit the same violation actions from the generic object

types. The advantage of this is that the elicitation sub-system only needs to ask the

Symmetry Property of a Relationship, Transitivity Property of a Relationship, Sub
set_Relationship SIC, Relationships_Union Special SIC, Exclusive Relationship SIC, Exclu
sive Occurrence SIC, Not_And_Relationships SIC, Either_Existence_Relationships SIC, Re
lationship_Before_Relationship SIC, Relationship_Not_Before_Relationship SIC, Relation
ships_Join SIC, Relationships_Depends_onLoopN_Relationships SIC, Weak_Entity SIC,
ID_Dependency_Relationship SIC, Weak_Relationship SIC, Completeness_Mapping SIC,
Relationships_Intersection Special SIC, Relationship_Trigger_Relationship SIC, Exclusion
between Entity Types, Entities_Intersection Special SIC, and Entities_Union Special SIC.

Chapter 7. A Proposed Database Design Aid for Eliciting SIC’s

7.4 Transforming SICs to Relational Form

The final result of the consultation is a logical database specification implemented in

the relational model. These SICs may be later enforced by an integrity maintenaice

subsystem in a relational database system. Therefore, the incorporated SICs referencing

entities and relationships in the E-R-SIC model must be automatically transformed by the

elicitation subsystem into SICs referencing the corresponding relations in the relational

model.

Relationship Representation in the Relational Model When constructing the re

lations in the relational model by using the E-R descriptions, each entity type is naturally

represented by a separate relation. However, there are two alternatives for representing

a binary relationship type in the relational model. Some researchers favour always repre

senting a relationship type by using a separate relation rather than a foreign key because

165

database designer the violation action once for each of these common SIC types.

However, this rigidity may not be suitable for all applications. An improvement

would be to store a violation action “list” in the input predicate for each related

specific object type. The number of elements in the list corresponds to the number

of its sub-SICs. Each element is a violation action for each sub-SIC. Then the sub

SICs of a specific object type would not inherit the violation action from its generic

object type, but have its own “custom-made” violation action. Considering also

the above problem of uniform certainty factors, we may allow both the certainty

factor and the violation action in generic SICs to be variables. They would be

bound with actual values when a specific object type satisfies the preconditions.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 166

they argue that foreign keys decrease the adaptability of database designs ([Wilmot,

1984]) and “[E-R consistent relational schema] assures a greater adaptability to changes

not concerning the structure of the modeled information, such as the cardinality of re

lationships” ([Makowsky, et al., 1986, p. 321]). In addition, by adopting the separate

relation approach we would have the same SIC representations in both the E-R-SIC

model and the relational model.

However, because of access efficiency considerations, the foreign key approach still

prevails in practice. This research allows the foreign key approach to representing a

relationship type having (1,1) relative cardinalities. The cardinalities stability criterion

is adopted if there is a tie to decide which entity key will become the foreign key. Suppose

that a relationship type R relates to entity types E and F. If the relationship type R has

any attribute, it is represented by a separate relation in the relational model. Otherwise,

its representation is based on the following rules99:

1. Suppose only one of the involved entity types has (1,1) cardirialities. If E has the

(1,1) cardinalities, add the primary key of F to the E relation as a foreign key.

Otherwise, add the primary key of E to the F relation as a foreign key.

2. Suppose both entity types, E and F, have (1,1) cardinalities.

(a) The decision is based on the stability of the cardinalities. If the (1,1) cardi

nalities of F are more likely to change in the future, add the primary key of

F to the E relation as a foreign key. Otherwise, add the primary key of E to

the F relation as a foreign key.

99There is an exception. If the relationship is a relationship via which an ID Dependency happens,
an is_a or component_of relationship, the entity type with the (1,1) relative cardinalities already has the
primary key of the other entity type as its candidate key attributes. These key attributes can play both
the role of (part of) a candidate key and a foreign key. We need not add the key attributes of the other
entity type to it.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 167

(b) If the above cannot be decided, the choice is then based on the relative fre

quencies of “F of E’ or “E of F” type queries. If the query “F of E” would

be encountered more often, add the primary key of F to the E relation as a

foreign key. Otherwise, add the primary key of F to the F relation as a foreign

key.

(c) If neither of the above can be decided, the choice depends on the last resort

— how the database designer specifies the relationship, “F R F” or “F R F”.

It is based on the heuristic that future queries may be similar to the way the

database designer states the relationship although he (she) may not admit it.

If originally the relationship is expressed by the database designer as “F R

F”, add the primary key of F to the F relation as a foreign key. Otherwise,

add the primary key of E to the F relation as a foreign key.

3. In all other cases, construct a separate relation for the relationship.

SIC Representation in the Relational Model Although we allow the foreign key

approach to representing relationships in the special cases of (1,1) cardinalities, this kind

of representation is only for query and processing efficiency. The semantics should be

the same as in the E-R-SIC model. Therefore, the entity and relationship descriptions

would still be stored in the data dictionary of a relational database. There would also be

the same classification of SIC types. However, the adoption of the foreign key approach

would cause some semantic confusion because now a relation could represent an “entity”,

or “relationship”, or even both. In this research, if a relation represents both an entity

type and one or more relationship types, it is deemed a special entity type with some

information kept in the data dictionary. The associated special information specifies the

relationship types hidden in it (by adding the key of the other entity type(s) to it as

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 168

a foreign key) and the relative cardinalities of the other entity type(s) in this hidden

relationship type’°°.

The (1,1) cardinalities of one entity type in a relationship type would cause some SICs

to be redundant or inconsistent. In addition, some SICs in the E-R representation need

not be transformed when constructing relations because either they do not mention an

explicit relationship or the relationship representation is not relevant to them’°1. These

SIC’s representation in the relational model would be the same as corresponding ones in

the E-R-SIC model.

The Algorithms The general transformation algorithms for transforming SICs in

the E-R-SIC model into SICs referencing the corresponding relations in the relational

model are described in Appendix K. It is relatively simple to transform the relationship

name and the manipulation predicates of its participating entities102. However, in ad

dition to the primary key update problem, in the relational model we have a problem

of the update of foreign key attributes owing to the well-known semantic overload issue.

The update of any attributes of a foreign key would imply the deletion of an old relation

ship occurrence and the insertion of a new one. The SIC association and specialization

concepts can be applied here too.

‘°°That is, two related “relationship_participant” predicates would be deleted and a new “relation
ship_hidden_entity” predicate will created by the SIC elicitation subsystem.

‘°‘Some of these SIC types are: all single entity attribute SICs, all entity SICs, SICs on a single
relationship’s attributes, Entitieslntersection Special SICs, Entities_Union Special SICs. In
addition, if a relationship is declared to be complete, usually the relative cardinalities of any involved
entity type should not be (1,1). Otherwise, the other side of the entity type can only have exactly one
occurrence, which is not practical. Therefore, the Completeness_Mapping SIC usually need not be
transformed.
‘°2By taking the foreign key approach to representing relationships, some SICs would become redun

dant. For example, we do not need a SIC requiring the relative maximum cardinality to be 1 for the
“entity” relation in which the relationship is now hidden because the foreign key is single-valued. The
algorithms would also remove them.

Chapter 7. A Proposed Database Design Aid for Eliciting SICs 169

Examples corresponding to the ones in the E-R-SIC model are included in Appendix L

for illustration.

Generic SICs It is also desirable to apply the SIC abstraction concept here to

represent generic SICs. In principle, we can apply the above transformation algorithms to

transform the generic SICs in the E-R-SIC model into corresponding ones in the relational

model although the references to some new information from the data dictionary may

be needed. However, the foreign key approach would need additional sets of predefined

sub-SICs. Because now relationship representation is not uniform, we need to consider

each of the three possible relation representations for each relationship. If a sub-SIC

involves two relationships, it would have nine possible combinations of representations;

if it involves three relationships, the possible combinations would become twenty-seven

although some impossible cases can be excluded103.

Such an analysis and preparation of pre-defined generic SICs could be carried out

for SIC types involving only a few relationships. However, it becomes impossible when

a SIC type may involve an unknown number of relationships (e.g., the intersection of

relationships). In those SIC types, we would be forced to pre-define generic SICs only

for the simple cases having at most three relationships involved.

Some of these SICs representations in the relational model are included in Appendix M

for illustration.

103For example, suppose that we have an Exclusive_Relationship SIC, such as RXIIRY relative to
E where RX type connects the entity types E with F, and BY connects the entity types E with G. We
would know that E cannot have (1,1) cardinalities in either RX or RY. So we need not consider those
impossible representations for relationships RX and BY — adding the primary key of F or G as the
foreign entity of E. However, F may have (1,1) cardinalities iii RX; and G may have (1,1) cardinalities
in RY too. So we would need two more sets of representations for the predefined sub-SICs in addition
to the original one in the E-R-SIC model.

Chapter 8

Conclusions and Further Research

8.1 Conclusions and Contributions

Conclusions This research has presented two models. The E-R-SIC model is a com

prehensive modelling tool for helping the database designer systematically incorporate

semantic integrity constraints that are relevant to attributes, entities, and relationships

in a database. The SIC Representation model is used to represent precisely the features

of these SICs. The declarative and operational semantics of each SIC are specified. By

using these two models, the data integrity semantic constraints on the allowable states

and state transitions can be completely modelled and properly represented in a database

schema. The focus of database designers will be changed from traditionally emphasizing

only structure, functional dependencies, efficiency, etc. to describing data semantics.

In a database, the number of explicit SICs specified using the Representation model

would not be huge because of the application of SIC abstractions and the representation

of generic SICs. These SICs could be efficiently enforced because of the characteristics

of the SIC Representation model.

Both the Representation model and the E-R-SIC model are application-domain inde

pendent. They are suitable for implementation as part of an automated database design

170

Chapter 8. Conclusions and Further Research 171

system. Conceptually, this research proposes a SIC elicitation subsystem. The SIC elici

tation subsystem would detect where general SICs may he needed and prompt a database

designer to confirm or provide them. The subsystem would automatically decide for what

data objects and on what database operations these SICs should be enforced, reformu

late them (decompose them into sub-SICs if necessary) in terms of the Representation

model, and suggest some violation actions. The subsystem would have some built-in con

sistency and nonredundancy rules for different SIC types, would verify the consistency

and nonredundancy of SICs to some extent and transform them into corresponding ones

in the relational model. This kind of automated database design system would provide

more assistance to a database designer in modelling the data semantics.

Contributions Most previous SIC research concentrates on classifying and efficiently

enforcing a few types of SICs. Current languages do not represent all features of a

SIC precisely. Existing automated database aids do not provide adequate facilities for

incorporating SICs into a design. This research contributes to our understanding of

database semantic integrity. On the theoretical side, there are the following contributions:

1. The SIC Representation model is defined to represent precisely the necessary fea

tures for specifying declarative and operational semantics of a SIC.

2. The E-R-SIC model is proposed to incorporate dynamic and static SICs in a

database schema rather than in transactions and programs.

3. Algorithms are provided to reformulate and decompose SICs elicited using the E

R-SIC model, and to transform them into corresponding ones in the relational data

model.

chapter 8. Conclusions and Further Research 172

On the practical side, there are the following contributions:

1. A SIC elicitation szzbsystem has been proposed to help the database designer design

SICs in addition to the structure part of a database schema.

2. This research provides a foundation for overcoming the well-known problem of

representing data integrity semantics in current relational database systems. The

resulting database would have the advantages of embedded SICs as described in

Chapter 1. The SIC representation would facilitate the efficient enforcement.

3. Although not empirically tested, we may conjecture that the information system

conceptual design would more completely and systematically include data and in

formation system semantics. The database designer would be able to model more

data integrity semantics, thereby reducing the need for this information to be in

cluded in application programs. This research provides a starting point for future

empirical tests.

8.2 Future Research Extensions to this Dissertation

This dissertation is part of a research program at the University of British Columbia to

formalize the database design process and make databases more intelligeilt. There are

many areas for further research to extend this dissertation. Some of these are suggested

below.

• Non-binary Relationships. Currently, the E-R-SIC model assumes all relation

ship types to be binary. It is assumed that a database designer would know how

Chapter 8. Conclusions and Further Research 173

to use binary relationships to simulate non-binary ones (including recursive rela

tionships, ternary relationships and relationships of higher degree). This restriction

could be relaxed to allow the database designer to model non-binary relationships

directly.

• Development and Implementation of Efficient Algorithms to Assure the

Consistency, Nonredundancy, and Even Optimization of SICs. To prove

the consistency, nonredundancy and optimization of arbitrary SIC statements is

still an open issue. In addition, to design and implement those verification algo

rithms needs more research. These are challenges for researchers in the fields of

management information system, computer science, and mathematics.

• Integration of SICs Elicited from Multiple Sources. This dissertation is

based on a simplified assumption of a single database designer. View integration or

synthesis is an important topic in database design research. Previous research (e.g.,

[Wagner, 1989]) have addressed this issue without considering SIC specifications. It

is also possible that the SICs need to be obtained from several database designers.

Future researchers may address this complicated issue.

• Programming Implementation. Future research would need to implement the

proposed SIC elicitation subsystem. Then the produced SIC elicitation subsystem

must be merged with a system to construct the structure of a schema (e.g., the

View Creation System [Storey, 1988]) to provide the complete database schema

design assistance to a database designer. It is also desirable to incorporate it with

a view integration system (e.g., AVIS [Wagner, 1989]) and a future SIC integration

system in the case that multiple sources for a database specification are needed. A

complete automated database design system needs to be implemented.

Chapter 8. Conclusions and Further Research 174

• Add-on Knowledge, Capabilities and Features of the SIC Elicitation Sub

system. Based on the E-R-SIC model proposed in this research, future researchers

may add some common-sense, domain-dependent, and organization-dependent knowl

edge to the proposed automated database design system to make it more intelligent

and provide more efficient and effective assistance for a database designer. Ideally,

the system may have a learning capability so that it can accumulate knowledge

each time it is used. It is also desirable to provide some natural language facilities

and graphical interface so that a database designer can more easily describe entities

and relationships, and directly design an E-R database on the screen.

• Transaction Modelling. In order to capture transaction-driven semantics and

check the SICs related to transactions more efficiently, specifications of transactions,

i.e.. user-predefined operations, need to he specified. Future research may propose

algorithms to transform SICs identified by the E-R-SIC model to the pre-conditions

and post-conditions of transactions.

• Application of SICs in an Expert Database System. As stated earlier, SICs

can be used to facilitate intelligent query evaluation and provide deductive capa

bilities. Further research may explore how to include and apply SICs represented

by the Representation model in an expert database system.

• Design and Management of an Integrity Maintenance Subsystem in the

Relational Database. Very few kinds of SICs are enforced in commercial re

lational database systems. One reason for this is probably concern for efficiency.

Based on SIC specifications identified in this research, future researchers may de

sign an integrity maintenance subsystem to enforce SICs efficiently in a relational

database. The management of SICs, i.e., the insertion or deletion of SICs, af

ter the database is populated should be carefully taken into consideration. Some

Chapter 8. Conclusions and Further Research 175

administrative procedures may need to be invented to handle the “change of SICs”.

• Empirical Research for Testing “Usefulness”. Future empirical researchers

may test two kinds of usefulness. The first is the usefulness of using database em

bedded SICs versus the traditional approach of enforcing integrity via application

software. The second is the usefulness of the design approach adopting an auto

mated database design system compared with the manual design approach (without

any assistance of an automated design system) to incorporate the necessary SICs

for embedding in a database. The automated database design system proposed in

this dissertation can be taken as a tool.

Bibliography

[1] Abiteboul, S., and Vianu, \7, “Transactions and Integrity Constraints”, PTOC. of
the Second ACM SIGA CT-SIGMOD Symposium of Principles of Database Systems,
Portland, Oregon, May 1985, pp. 193-204.

[2] Aho, A. V., Hopcroft, J. E., and Ulirnan, J. D., The Design and Analysis of Com
puter Algorithms, Addison-Wesley, Reading, Mass., 1974.

[3] Arisawa, H., and Miura, T., “On the Properties of Extended Inclusion Depen
dencies”, Proc. of the Twelfth International Conference on Very Large Data Base,
Kyoto, August 1986, pp. 449-457.

[4] Azar, N., and Pichat, E., “Translation of an Extended Entity-Relationship Model
into the Universal Relation with Inclusion Formalism”, in Entity-Relationship (the
Fifth International Conference on E-R Approach, France, 1986) edited by S. Spac
capietra, Elsevier Science Publishers B.V. (North-Holland), 1987, pp. 253-268.

[5] Benci, E., Bodart, F., Bogaert, H., and Cabanes, A., “Concepts for the Design of a
Conceptual Schema”, in Modelling in Data Base Management Systems, edited by
G.M. Nijssen, North-Holland Publishing Co., 1976, pp. 181-200.

[6] Bernstein, P. A., Blaustein, B. T., and Clarke, E. M., “Fast Maintenance of Se
mantic Integrity Assertions Using Redundant Aggregate Data”, Proc. of the Sixth
International Conference on Very Large Data Base, 1980, pp. 126-136.

[7] Bertino, E., and Apuzzo, D., “Integrity Aspects in Data Base Management Sys
tems”, Proc. Trends é4 Applications, Gaithereshurg, Maryland, 1984, pp. 43-52.

[8] Biller, H., and Neuhold, E. J., “Semantics of Data Bases: The Semantics of data
Models”, Information System, Vol. 1 No. 3, 1978, pp. 273-292.

[9] Borgida, A., “Language Features for Flexible Handling of Exceptions in Information
Systems”, ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,
pp. 565-603.

[10] Bouzeghoub, M., and Gardarin, G., “The Design of An Expert System for Database
Design” in New Applications of Data Bases, edited by G. Gardarin and E. Gelenbe,
1984, pp. 203-223.

176

Bibliography 177

[11] Bouzeghoub, M., Gardarin, G., and Metais, E., “Database Design Tools: An Expert
System Approach:”, Proc. of the Eleventh International Conference on Very Large
Data Base, Stockholm, August 1985, pp. 82-95.

[12] Bouzeghoub, M., and Metais, E., “SECSI: An Expert System Approach for
Database Design”, in Information Processing 86, edited by H.J. Kugler, Elsevier
Science Publishers B.V. (North-Holland), 1986, pp. 251-257.

[13] Bracchi, G., Furtado, A., and Pelagatti, G., “Constraints Specification in Evolu
tionary Data Base Design”, in Formal Models and Practical Tools for Information
Systems Design, edited by H.-J. Schneider, North-Holland Publishing Co., 1979,
pp. 149-165.

[14] Brady, L. I., and Dompney, C. N. G., “Dynamics of Database Semantic Integrity
or Managing the Meaning of Data”, Proc. of the Australian Computer Conference,
Sydney, November 1984, pp. 82-96.

[15] Bragger, R. P., Dudler, A., Rebsamen, J., and Zehnder, C. A., “Gambit: An Inter
active Database Design Tool for Data Structures, Integrity Constraints and Trans
actions”, International Conference on Data Engineering, Los Angeles, California,
August 1984, pp. 399-407.

[16] Brodie, M. L., Specification and Verification of Database Semantic Integrity, Ph.D.
Thesis, University of Toronto, 1978 (also as Technical Report CSRG-91, April
1978).

[17] Brodie, M. L., “Association: A Database Abstraction for Semantic Modelling”, in
Entity-Relationship Approach to Information Modelling and Analysis (the Second
International Conference on E-R Approach, 1981), edited by P. P. Chen, Elsevier
Science B.V. (North-Holland), 1983, pp. 577-602.

[18] Brodie, M. L., “On the Development of Data Models”, in On Conceptual Modelling,
edited by M.L. Brodie, J. Mylopoulus and J.W. Schmidt, Spring-Verlag, 1984, pp.
19-47.

[19] Brodie, M. L., “Database Management: A Survey”, in On Knowledge-Base Man
agement Systems, edited by M.L. Brodie and J. Mylopoulus, Springer-Verlag, 1986,
pp. 201-218.

[20] Brodie, M. L., and Manola, F., “Database Management: A Survey”, in Foun
dations of Knowledge Base Management: Contributions from Logic, Databases,
and Artificial Intelligence Applications, edited by J. W. Schmidt and C. Thanos,
Springer-Verlag, 1989, pp. 205-234.

Bibliography 178

[21] Brodie, M. L., and Ridjanovic, D., “On the Design and Specification of Database
Transactions”, in On Conceptual Modelling, Edited by M.L. Brodie, J. Mylopoulos,
and J. W. Schmidt, Spring-Verlag, 1984, pp. 277-306.

[22] Bry, F., and Mauthey, R., “Checking Consistency of Database Constraints: a Logi
cal Basis”, Proc. of the Twelfth International Conference on Very Large Data Base,
Kyoto, August 1986, pp. 13-20.

[23] Bubenko, J. A., “Information Modeling in the Context of System Development”,
Information Processing 80, edited by S. H. Lavington, North-Holland Publishing
Co., 1980, pp. 395-411.

[24] Carsnell, J. L., and Navathe, B. “SA-ER: A Methodology that Links Struc
tured Analysis and Entity-Relationship Modelling for Database Design”, in Entity-
Relationship (the Fifth International Conference on E-R Approach, France, 1986)
edited by S. Spaccapietra, Elsevier Science Publishers B.V. (North-Holland), 1987,
pp. 381-397.

[25] Casanova, M. A., and Furtado, A. L., “On the Description of Database Transition
Constraints Using Temporal Languages”, in Advances in Database Theory, Vol. 2,
edited by H. Gallaire, J. Minker and J.M. Nicolas, Plenum Press, New York, 1984,
pp. 211-236.

[26] Casanova, M. A., and Tucherman, L., “Enforcing Inclusion Dependencies and Ref
erential Integrity”, Proc. of the Fourteenth International Conference on Very Large
Data Base, California, 1988, pp. 38-49.

[27] Casanova, M. A., and Vidal, V. M. P., “Towards a Sound View Integration”, Proc.
of the Second ACM SIGACT-SIGMOD Symposium of Principles of Database Sys
tems, Atlanta, George, March 1983, pp. 36-46.

[28] Cauvet, C., Proix, C., and Rolland C., “A Knowledge Base for an Information
System Design Tool”, in Methodologies for Intelligent Systems, edited by Z.W.
Ras, and M. Zemankova, Elsevier Science Publishing Co. Inc., 1987, pp. 56-63.

[29] Ceri, S., and Widom, J., “Deriving Production Rules for Constraint Maintenance”,
IBM Research Report, RJ 7348, March 1, 1990. (A short version appears in Proc.
of the 16th VLDB Conference, Australia, 1990, pp. 566-577).

[30] Chakravarthy, U. S., Minker, J., and Grant, J., “Semantic Query Optimization:
Additional Constraints and Control Strategies”, in Expert Database Systems, edited
by L. Kerschberg, Benjamin/Cummings Pub. Co. Inc., 1987, pp. 345-377.

Bibliography 179

[31] Chen, P. P.. “The Entity-Relationship Model — Toward a Unified View of Data”,
ACM Transactions on Database Systems, Vol. 1 No. 1, December 1976, pp. 9-36.

[32] Chen, P. P., “Database Design Based on Entity and Relationship”, in Principles of
Database Design, Vol. 1: Logical Organization, edited by S.B. Yao, Prentice-Hall,
1985, pp. 174-210.

[33] Choobineh, J., “Form Driven Conceptual Data Modelling”, Ph.D. Dissertation,
Dept. Management Information Systems, University of Arizona, 1985.

[34] Choobineh, J., Mannino, M. V., Nunamaker, J.F., and Konsynski, B.R., “An Ex
pert Database Design System Based on Analysis of Forms”, IEEE Transaction on
Software Engineering, Vol. 14, No. 2, February 1988, pp. 242-253.

[35] Codd, E. F., “Extending the Database Relational Model to Capture More Mean
ing”, ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979, pp.
397-434.

[36] Cohen, J., “Constraint Logic Programming Languages”, Communications of the
AGM, Vol. 33, No. 7, July 1990, pp. 52-68.

[37] Colmerauer, A., “An Introduction to Prolog III”, Communications of the ACM,
Vol. 33, No. 7, July 1990, pp. 69-90.

[38] Cosmadakis, S. C., and Kanellakis, P. C., “Equation Theories and Database Con
straints”, Proc. of the 17th Annual ACM symposium on Theory of Computing,
Rhode Island, May 1985, pp. 273-284.

[39] Dampney, C. N. G., “Specifying a Semantically Adequate Structure for information
Systems and Databases”, in Entity-Relationship Approach (the Sixth International
Conference on E-R Approach, New York , Nov. 1987), edited by S. T. March,
Elsevier Science Publishers, B.V. (North-Holland), 1988, pp. 165-188.

[40] Date, C. J., An Introduction to Database System, Vol. II, Addison-Wesley Publish
ing Co., Reading, Massachusetts, 1983.

[4].] Date, C. J., A Guide to the SQL Standard, Addison-Wesley Publishing Co., Read
ing, Massachusetts, 1987.

[42] Davis, J. P., and Bonnell, R. D., “Modelling Semantic Constraints with Logic in
the EARL Data Model”, The Fifth International Conference on Data Engineering,
Los Angeles, California, February 1989, pp. 226-233.

Bibliography 180

[43] de Castilho, J. M. V., Casanova, M. A., and Purtado, A. L., “A Temporal Frame
work for Database Specifications”, Proc. the Eighth International Conference on
Very Large Data Base, Mexico City, Mexico, 1982. pp. 280-291.

[44] Delobel, C., “Normalization and Hierarchical Dependencies in the Relational Data
Model”, ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978,
pp. 201-222.

[45] Dogac, A., and Chen P. P., “Entity-Relationship Model in the ANSI/SPARC
Framework”, in Entity-Relationship Approach to Information Modelling and Anal
ysis (the second International Conference on E-R Approach, 1981), edited by P.P.
Chen, Elsevier Science B.V. (North-Holland), 1983, pp. 357-374.

[46] Dogac, A., Chen P. P. and Erol, N., “the Design and Implementation of an Integrity
Subsystem for the Relational DBMS RAP”, in the Fourth Conference on Entity-
Relationship Approach, Chicago, Illinois, October 1985, pp. 295-302.

[47] dos Santos, C. S., Neuhold, E. J., and Purtado, A. L., “A Data Type Approach to
the Entity-Relationship Model”, in Entity-Relationship Approach to System Anal
ysis and Design (the First International Conference on E-R Approach), edited by
P. P. Chen, North-Holland Publishing Co., 1980, Pp. 103-119.

[48] Ehrich, H. D., Lipeck, U. W., and Gogolla, M., “Specification, Semantics, and
Enforcement of Dynamic Database Constraints”, Proc. of the Tenth International
Conference on Very Large Data Base, Singapore, August 1984, pp. 301-308.

[49] Eswarn, K. P., and Chamberlin, D. D., “Functional Specifications of a Subsystem
for Data Base Integrity”, Proc. the Second International Conference on Very Large
Data Base, Framingham, Massachusetts, September 1975, pp. 48-68.

[50] Etzion, 0., “PARDES — a Model for Supporting Derivation Closure”, Working Pa
per, Computer and Information Sciences Department, Temple University, Philadel
phia, Pennsylvania, 1989.

[51] Fernandez, E. B., Summers, R. C., and Wood, C., Database Security and Integrity,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1981.

[52] Fleming, C. C., and Halle, B. V.,Handbook of Relational Database Design, Addison
Wesley Publishing Co., Reading, Massachusetts, 1989.

[53] Fong, E., and Kimbleton, S. R., “Database Semantic Iitegrity for a Network Data
VIanger”, AFIPS Proceedings of National Computer Conference, (Vol. 49), Califor
nia, May 1980, pp. 261-268.

Bibliography 181

[54] Frost, R. A. (ed).,Database Management Systems, Granada Publishing Ltd., Lon
don, 1984.

[55] Furtado, A. L., dos Santos, C. S., and de Castilho, J. M. V., “Dynamic Modelling
of a Simple Existence Constraint”, Information Systems, Vol. 6, 1981, pp. 73-81.

[56] Furtado, A. L., and Neuhold, E. J., Formal Techniques for Data Bases Design,
Springer-Verlag, Berlin, 1986.

[57] Furtado, A. L., Casanova, M. A., and Tucherman, L., “The CHRIS CONSUL
TANT”, in Entity-Relationship Approach (the Sixth International Conference on
E-R Approach, New York , Nov. 1987), edited by S. T. March, Elsevier Science
Publishers, B.V. (North-Holland), 1988, pp. 515-532.

[58] Gardarin, G., and Melkanoff, M., “Proving Consistency of Database Transactions”,
Proc. of the Fifth International Conference on Very Large Data Base, Brazil, Oc
tober 1979, pp. 291-298.

[59] Goldstein, R. C., Database: Technology and Management, John Wiley & Sons,
1985.

[60] Goldstein, R. C., and Storey, V. C., “Data Abstraction: The Impact on Database
Management”, Working Paper, Faculty of Commerce and Business Administration,
The University of British Columbia, October 1990.

[61] Goldstein, R. C., and Wagner, C., Manual of Instruction Database Software for Mi
crocomputers, Faculty of Commerce and Business Administration, The University
of British Columbia, December 1988.

[62] Hammer, M. M., and McLeod, D. J., “Semantic Integrity in a Relational Data
Base System”, Proc. the Second International Conference on Very Large Data Base,
Framingham, Massachusetts, September 1975, pp. 25-47.

[63] Hammer, M. M., and McLeod, D. J., “A Framework for Data Base Semantic In
tegrity”, Proc. the Second International Conference on Software Engineering, San
Franciso, California, October 1976, pp. 498-504.

[64] Hammer, M. M., and McLeod, D. J., “Database Description with SDM: A Semantic
Database Model”, ACM Transaction on Database Systems, Vol. 6, No. 3, September
1981, pp. 351-386.

[65] Hentenryck, P. V., Constraint Satisfaction in Logic Programming, MIT Press, Mas
sachusetts, 1989.

Bibliography 182

[66] Hentenryck, P. V., “Incremental Constraint Satisfaction in Logic Programming”,
in Logic Programming: Proc. of the Seventh International Conference, edited by
D. H. D. Warren and P. Szeredi, 1990, PP. 189-202.

[67] Henschen, 1. J., McCune, W. W., and Naqvi, S. A., “Compiling Constraint-
Checking Programs from First-Order Formulas”, in Advances in Database Theory,
Vol. , edited by H. Gallaire, J. Minker and J. M. Nicolas, Plenum Press, New
York, 1984, pp. 145-169.

[68] Heuser, C. A.. and Richter, G.. “On the Relationship between Conceptual Schema
and Integrity Constraints on Databases”, in Database Semantics (DS-1), edited
by T. B. Steel, Jr. and R. Meersman, Elsevier Science Publishers, B.V. (North
Holland), 1986, pp. 27-39.

[69] Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, the fourth
edition, Holden-Day, 1986.

[70] Ho, H. C., “Integrity Control in a Relational Database”, Technical Report
S.O.C.S.828, School of Computer Science, McGill University, Montreal, Canada,
March 1982.

[71] Hohenstein, U. and Hülsmann, K., “A Language for Specifying Static and Dynamic
Integrity Constraints”, in the Tenth International Conference on E-R Approach,
San Mateo, California, October, 1991, (proceedings edited by T.J. Teorey), pp.
389-416.

[72] Holsapple, C., Shen, S., and Whinston, A., “A Consulting System for Database
Design”, Information System, Vol. 7, No. 3., 1982, pp. 281-296.

[73] Hsu, A., and Imielinski, T., “Integrity Checking for Multiple Updates”, Proc. of
ACM SIGMOD International Management of Data, Austin, Texas, May 1985, pp.
152- 167.

[74] Hsu, C., Perry, A., Bouziane, M. and Cheung, W., “TSER: A Data Modelling
System using the Two-Stage Entity-Relationship Approach” ,in Entity-Relationship
Approach (the Sixth International Conference on E-R Approach, New York, Novem
ber 1987), edited by S. T. March, Elsevier Science Publishers, B.V. (North
Holland), 1988, pp. 497-514.

[75] Hull, R., and King, R., “Semantic Database Modelling: Survey, Applications, and
Research Issues”, ACM Computing Surveys, Vol. 19, No. 3, September 1987, pp.
201-260.

Bibliography 183

[76] Jaffar, J., and Lassez, J-L., “Constraint Logic Programming”, 14th Annual SCM
Symposium on Principles of Programming Languages, Munich, West Germany, Jan
uary 1987, PP. 111-119.

[77] Jaffar, J., and Michaylov, S., “Methodology and Implementation of a CLP system”,
Proc. of 4th International Conference on Logic Programming, edited by J-L. Lassez,
MIT Press, 1987, pp. 196-217.

[78] Jarke, M., and Vassiliou, Y., “Databases and Expert Systems: Opportunities and
Architectures for Integration”, in New Applications of Databases, edited by G.
Gardarin and E. Gelenhe, Academic Press London, 1984, pp. 185-201.

[79] Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall, 1986.

[80] Kawaguchi, A., Taoka, N., Mizoguchi, R., Yamaguchi, T., and Kakusho, 0., “An
Intelligent Interview System for Conceptual Design of Database”, Proc. ECAI 1986.

[81] Kennedy, A. J., and Yen, D. C., “Enhancing a DBMS Through the Use of an
Expert System”, Journal of Information Management, Spring 1990, Pp. 55-61.

[82] Kent, W., “Entities and Relationships in Information”, in Architecture and Mod
els in Data Base Management Systems, edited by G.M. Nijssen, North-Holland
Publishing Co., 1977, pp. 67-91.

[83] Kent, W., “Limitations of Record-Based Information Models”, ACM Transactions
on Database Systems, Vol. 4, No. 1, March 1979, pp. 107-131.

[84] Kent, W., “A Single Guide to Five Normal Forms in Relational Database Theory”,
Communications of the ACM, Volume 26, No. 2, February 1983, pp. 120-125.

[85] Kerstern, M. L., Weigand, H., Dignum, F., Boom, J., “A Conceptual IViodelling
Expert System”, in Entity-Relationship (the Fifth International Conference on E
R Approach, France, 1986) edited by S. Spaccapietra, Elsevier Science Publishers
B.V. (North-Holland), 1987, pp. 35-48.

[86] Kim, M.-J., Lee, W.-U., and Derniame, J.-C., “Automatic Relational Data Base
Designs by Transformation of the Entity-Relationship Model”, IEEE the Second
International Conference on Computer and Application, Beijing, China, 1987, pp.
418-425.

[87] Knuth, E., Hannák, L., Radó, P., “A Taxonomy of Conceptual Foundations”, in
Data and Knowledge (DS-2), edited by R.A. Meersrnan and A.C. Sernadas, Elsevier
Science Publishers, B.V. (North-Holland), 1988, pp. 205-219.

Bibliography 184

[88] Kobayashi, I., “Validating Database Updates”, Information Systems, Vol. 9, No.
1., 1984, pp. 1-17.

[89] Kozaczynski, W., and Lilieri, L., “An Extended Entity-Relationship (E2R)
Database Specification and its Automatic Verification and Transformation into
the Logical Relational Design”, in Entity-Relationship Approach (the Sixth Inter
national Conference on E-R Approach, New York , November, 1987), edited by S.
T. March, Elsevier Science Publishers, B.V. (North-Holland), 1988, pp. 533-549.

[90] Kung, C. H., “A Temporal Framework for Database Specification and Verification”,
Proc. of the Tenth International Conference on Very Large Data Base, Singapore,
August 1984, pp. 91-99.

[91] Kung, C. H., “A Tableaux Approach for Consistency Checking”, Information Sys
tems: Theoretical and Formal Aspects, edited by A. Sernadas, J. Bubenko, Jr., and
A. Olive, 1985, pp. 191-207.

[92] Lafue, G., “Semantic Integrity Dependencies and Delayed Integrity Checking”,
Proc. the Eighth International Conference on Very Large Data Base, Mexico City,
Mexico, 1982, pp. 292-299.

[93] Lassez, C., “Constraint Logic Programming”, BYTE, August 1987, pp. 171-176.

[94] Lauriere, J. L., “A Language and a Program for Stating and Solving Combinatorial
Problems”, Artificial Intelligence, Vol. 10, No. 1, 1978, pp. 29-127.

[95] Lee, R. M., “Logic, Semantics and Data Modelling: An Ontology”, in Data and
Knowledge (DS-2), edited by R. A. Meersman and A. C. Sernadas, Elsevier Science
Publishers, B .V. (North-Holland), 1988, pp. 221-243.

[96] Lee, K., and Lee, S., “An Object-Oriented Approach to Data/Knowledge Mod
elling Based on Logic”, The Sixth International Conference on Data Engineering,
California, February 1990, pp. 289-294.

[97] Leuzerini, M., and Nobili, P., “On the Satisfiahility of Dependency Constraints
in Entity-Relationship Schema”, Proc. the Thirtieth International Conference on
Very Large Data Base, Brighton, 1987, pp. 147-154.

[98] Lenzerini, v1., and Santucci, G., “Cardinality Constraints in the Entity
Relationship Model”, in Entity-Relationship Approach to Software Engineering (the
Third International Conference on E-R Approach, California, 1983), edited by C.
G. Davis, S. Jajodia, P. A. Ng and R. T. Yeh, Elsevier Science Publishers B. V.
(North-Holland), 1983, pp. 529-549.

Bibliography 185

[99] Leveson, N. G., Wasserman, A. I., and Berry, D. M., “BASIS: A Behavioral Ap
proach to the Specification of Information Systems”, Information Systems, Vol. 8,
No. 1, 1983, pp. 15-23.

[100] Ling, T.-W., “Integrity Constraint Checking in Deductive Database using the Pro-
log not-Predicate”, Tech. Report, DISCS Pub. No. NOTRA7/86, National Univer
sity of Singapore, July 1986.

[101] Ling, T.-W., and Rajagopalan, P., “A Method to Eliminate Avoidable Checking
of Integrity Constraints”, Proc. Trends é4 Applications, Gaithereshurg, Maryland,
1984, pp. 60-68.

[102] Lipeck, U. W., “Stepwise Specification of Dynamic Database Behaviour”, Interna
tional Conference on Data Engineering, Washington, D.C., May 1986, pp. 387-397.

[103] Lockemann, P. C., “Object-Oriented Information Management”, Decision Support
System, 5, 1989, pp.79-102.

[104] Mackworth, A. K., “Consistency in Networks of Relations”, Artificial Intelligence,
Vol. 8, 1977, pp. 99-118.

[105] Mackworth, A. K., and Freuder, E. C., “The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems”, Artificial
Intelligence, Vol. 25, No. 1, January 1985, pp. 65-74.

[106] Mackworth, A. K., “Constraint Satisfaction”, Encyclopedia of Artificial Intelli
gence, edited by S. C. Shapiro, J. Wiley & Sons, N.Y., 1987, pp. 205-211.

[107] MaFadden, F. R., and Hoffer, J. A., Data Base Management, the second edition,
Benjamin/Cummings Publishing Co. Inc., 1988.

[108] Makowsky, J. A., Markowitz, V. M., Rotics, N., “Entity-Relationship Consistency
For Relational Schemas”, Proc. International Conference on Database Theory,
(Lecture Note in Computer Science V. 243) edited by G. Ausiello, and P. Atzeni,
Springer-Verlag, 1986, pp. 306-322.

[109] Maunila, H., and Räihä, K-J, “Inclusion Dependencies in Database Design”, The
Second International Conference on Data Engineering, Los Angeles, California,
February 1986, pp. 713-718.

[110] Maryanski, F., Francis, S., Hong, S., and Peckham, J., “Generation of Conceptual
Data Models”, Working Paper, Computer Science and Engineering Department,
University of Connecticut, 1984.

Bibliography 186

[111] Maryanski, F., and Hong, S., “A Tool for Generating Semantic Database Applica
tions”, IEEE COMPSAC, Chicago, Illinois, October 1985, PP. 368-375.

[112] Meersman, R., “Towards Models for Practical Reasoning about Conceptual
Database Design”, in Data and Knowledge (DS-2), edited by R. A. Meersman
and A. C. Sernadas, Elsevier Science Publishers, B.V. (North-Hollalld), 1988, pp.
245-263.

[113] Mees, M., and Put, F., “ Extending a Dynamic vIodelling Methods using Data
Modelling Capabilities: The Case of JSD”, in Entity-Relationship (the Fifth Inter
national Conference on E-R Approach, France, 1986) edited by S. Spaccapietra,
Elsevier Science Publishers B.V. (North-Holland), 1987, Pp. 399-418.

[114] Missikoff, M., and Wiederhold, G., “Toward a Unified Approach for Expert and
Database Systems”, in Expert Database Systems (Proceedings from the first Inter
national Workshop), edited by L. Kerschberg, Benjamin/Cummings Publishing,
1986, pp-383-399.

[115] Morgenstern, M., “Active Databases as a Paradigm for Enhanced Computing En
vironments”, Proc. the Ninth International Conference on Very Large Data Base,
Italy, 1983, pp. 34-42.

[116] Morgenstern, M., “CONSTRAINT EQUATIONS: Declarative Expression of Con
straints with Automatic Enforcement”, Proc. the Tenth International Conference
on Very Large Data Base, Singapore, August 1984a, pp. 291-300.

[117] Morgenstern, M., “A Concise Compatible Representation for Quantified Con
straints in Semantic Networks”, AAAI-84, Proc. of National Conference on Ar
tificial Intelligence, Texas, August 1984b, pp. 255-259.

[118] Morgenstern, M., “The Role of Constraints in Databases, Expert Systems, and
Knowledge Representation”, in Expert Database Systems, edited by L. Kerschberg,
Benjamin/Cummings Publishing Co., 1986, pp. 351-368.

[119] Morgenstern, M., Borgida, A., Lassez, C., Maier, D., and Wiederhold, G.,
“Constraint-Based Systems: Knowledge about Data”, in Expert Database Systems
(Proc. from the Second International Conference on EDS), edited by L. Kerschberg,
Benjamin/Cummings Publishing Co., 1989, pp. 23-43.

[120] Nakano, R., “Integrity Checking in a Logic-Oriented ER Model”, in Entity-
Relationship Approach to Software Engineering (the Third International Confer
ence on E-R Approach, California, 1983), edited by C. G. Davis, S. Jajodia, P. A.
Ng and R. T. Yeh, Elsevier Science Publishers B. V. (North-Holland), 1983, pp.
551-564.

Bibliography 187

[121] Newell, A., and Simon H. A., “Computer Science as Empirical Inquiry: Symbols
and Search”, Communications of the ACM, Volume 19, March 1976, PP. 113-126.

[122] Nicolas, J.-M., “Logic for Improving Integrity Checking in Relational Data Bases”,
Acta Informatica, 18, 1982, pp. 227-253.

[123] Nilssori, N. J., Principles of Artificial Intelligence, Tioga Publishing Company,
1980.

[124] Obretenov, D., Angelov, Z., Mihaylov, J., Dishlieva, P., and Kirova, N., “A
Knowledge-Based Approach to Relational Database Design”, Data é4 Knowledge
Engineering, 3, 1988, pp. 173-180.

[125] Oren, 0., “Integrity Constraints in the Conceptual Schema Language SYSDOC”,
the Fourth Conference on Entity-Relationship Approach, Chicago, Illinois, October
1985, pp. 288-294.

[126] Palmer, I. R., “Practicalities in Applying a Formal Methodology to Data Analysis”,
in Data Base Design Techniques I: Requirements and Logical Structures, edited by
S. B. Yao, et al., Spring-Verlag, Berlin, 1982, pp. 147-171.

[127] Papadirnitriou, C. H., and Steiglitz, K., Combinatorial Optimization: Algorithms
and Gomplexity, Prentice-hall, N.J., 1982.

[128] Paulson, D., Reasoning Tools to Support System Analysis and Design, Unpublished
Ph.D. Dissertation, The University of British Columbia, Vancouver, B.C., Canada,
1989.

[129] Peckham, J., and Maryanski, F., “Semantic Data Models”, ACM Computing Sur
veys, Vol. 20, No. 3, September 1988, pp. 153-189.

[130] Potter, W. D., and Kerschberg, L., “A Unified Approach to Modelling Knowledge
and Data”, in Data and Knowledge (DS-), edited by R.A. Meersman and A.C.
Sernadas, Elsevier Science Publishers, B.V. (North-Holland), 1988, pp. 265-291.

[131] Proix, C., and Rolland, C., “A Knowledge Base for Information System Design”, in
Data and Knowledge (DS-2), edited by R.A. Meersman and A.C. Sernadas, Elsevier
Science Publishers, B.V. (North-Holland), 1988, pp. 293-306.

[132] Qian, X., and Wiederhold, G., “Knowledge-based Integrity Constraint Validation”,
Proceedings of the Twelfth International Conference on Very Large Data Base,
Kyoto, 1986, pp. 3-12.

Bibliography 188

[133] Qian, X., and Smith, D. R., “Integrity Constraint Reformulation for Efficient Vali
dation”, Proceedings of the thirteenth International Conference on Very Large Data
Base, Brighton, 1987, pp. 417-425.

[1341 Raju, K., and Majumdar, A. K., “ Fuzzy Functional Dependencies and Lossless
Join Decomposition of Fuzzy Relational Database Systems”, AGM Transactions
on Database Systems, Vol. 13, No. 2, June 1988, pp. 129-166.

[135] Ram, S., “Automated Tools for Database Design: Sate of the Art”, Working Pa
per, Dept. of Management Information Systems, College of Business and Public
Administration, University of Arizona, 1989.

[136] Reiter, R., “ On the Integrity of Typed First Order Data Bases”, in Advances
in Database Theory, Vol. 1, edited by H. Gallaire, J. Minker and J. M. Nicolas,
Plenum Press, New York, 1984, pp. 137-157.

[137] Reiter, R., “On Integrity Constraints”, Proc. of the Second Conference on Theo
retical Aspects of Reasoning about Knowledge, 1988, pp. 97-111.

[138] Rolland, C., and Proix, C., “An Expert System Approach to Information System
Design”, in Information Processing 86, edited by H. J. Kugler, Elsevier Science
Publishers B.V. (North-Holland), 1986, pp. 241-250.

[139] Sakai, H., “On the Optimization of an Entity-Relationship Model”, 3rd USA-
JAPAN Computer Conference, San Francisco, California, October 1978, pp. 145-
149.

[140] Sakai, H., “A Method for Entity-Relationship Behaviour Modelling”, in Entity-
Relationship Approach to Software Engineering (the Third International Conference
on E-R Approach, California, 1983), edited by C. G. Davis, S. Jajodia, P. A. Ng and
R. T. Yeh, Elsevier Science Publishers B. V. (North-Holland), 1983a, pp. 111-129.

[141] Sakai, H., “E-R Approach to Logical Database Design”, in Entity-Relationship
Approach to Software Engineering (the Third International Conference on E-R
Approach, California, 1983), edited by C. G. Davis, S. Jajodia, P. A. Ng and R. T.
Yeh, Elsevier Science Publishers B. V., North Holland, 1983b, pp. 155-187.

[142] Scheuermann, P., Schiffner, G., and Weber, H., “Abstraction Capabilities and In
variant Properties Modelling within the Entity-Relationship Approach”, in Entity
Relationship Approach to System Analysis and Design (the First International Con
ference on E-R Approach), edited by P. P. Chen, North-Holland Publishing Co.,
1980, pp. 121-140.

Bibliography 189

[143] Schrefl, M., Tjoa, A. M., and Wagner, R. R., “Comparison-Criteria for Semantic
Data Models”, International Conference on Data Engineering, 1984, pp. 120-124.

[144] Segev, A., “Transitive Dependencies”. in the Surveyors’ Forum of AM Computing
Surveys, Vol. 19, No. 2, June 1987, pp. 191-193.

[145] Shepherd, A., and Kerschberg, L., “Constraint Management in Expert Database
Systems”, in Expert Database Systems (Proc. form the First International Work
shop), edited by Larry Kerschberg, Benjamin/Cummings Publishing Co., 1986, pp.
309-331.

[146] Simon, E., and Valduriez, P., “Design and Implementation of an Extendible In
tegrity Subsystem”, ACM-SIGMOD Proc. International Conference on Manage
ment of Data, Boston, Massachusetts, June 1984, pp. 9-17.

[147] Smith, J. M., and Smith, D. C. P., “Database Abstractions: Aggregation and Gen
eralization”, ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977a,
pp. 105-133.

[148] Smith, J. M., and Smith, D. C. P., “Database Abstractions: Aggregation”, Com
munications of the ACM, Vol. 20, No. 6, June 1977b, pp. 405-413.

[149] Solvberg, A., and Kung. C. H., “On Structural and Behavioral Modelling of Re
ality”, in Database Semantics (DS-1), edited by T.B. Steel, Jr. and R. Meersman,
Elsevier Science Publishers, B.V. (North-Holland), 1986, pp. 205-221.

[150] Spivey, J. M., Understanding Z, Cambridge University Press, 1988.

[151] Stonebraker, M., “Implementation of Integrity Constraints and Views by Query
Modification”, Proc. of ACM SIGMOD International Management of Data, San
Jose, May 1975, pp. 65-78.

[152] Storey, V. C., View Creation: An Expert View Creation System for Database
Design, Ph.D. Dissertation, Faculty of Commerce and Business Administration,
University of British Columbia, Vancouver, B.C., Canada, October 1986, ICIT
Press,1988.

[153] Storey, V. C., and Goldstein, R. C., “A Methodology for Creating User Views
in Database Design”, AC’M Transactions on Database Systems, Vol. 13, No. 3,
September 1988, pp. 30.5-338.

[154] Storey, V. C. and Goldstein, R. C., “Design and Development of an Expert
Database Design System”, International Journal of Expert Systems: Research and
Applications, Vol.3, No.1, 1990, pp. 31-63.

Bibliography 190

[155] Storey, V. C., and Goldstein R. C., “Knowledge-Based Approaches to Database
Design”, Working Paper, University of Rochester, 1991.

[156] Studer, R., “A Conceptual Model for Physical and Logical time”, in Entity-
Relationship Approach (the Sixth International Conference on E-R Approach, New
York , Nov. 1987), edited by S. T. March, Elsevier Science Publishers, B.V. (North-
Holland), 1988, pp. 223-235.

[157] Su, S. Y. XV., and Raschid, L. “Incorporating Knowledge Rules in a Semantic
Data Model: An Approach to Integrated Knowledge Management”, the Second
Conference on Artificial Intelligence Application, Miami, Florida, December 1985,
pp. 250-256.

[158] Tauzovich, B., “An Expert System for Conceptual Data Modelling”, in the Eighth
International Conference on E-R Approach, Toronto, Canada, October 1989.

[159] Tauzovich, B., “Towards Temporal Extensions to the Entity-Relationship Model”,
in the Tenth International Conference on E-R Approach, San Mateo, California,
October. 1991, (proceedings edited by T. J. Teorey). pp. 163-179.

[160] Teorey, T. J., Yang, D., and Fry, J. P., ‘ A Logical Design Methodology for Re
lational Databases Using the Extended Entity-Relationship Model”, Computing
Surveys, Vol. 18, No. 2, June 1986, pp. 197-222.

[161] Thompson, J. P., Data with Semantics: Data Models and Data Management, Van
Nostrand Reinhold, N.Y., 1989.

[162] Troyer, 0. D., RIDL*: A Tool for the Computer-Assisted Engineering of Large
Databases in the Presence of Integrity Constraints”, Proc. of ACM SIGMOD In
ternational Management of Data, Oregon, June 1989, pp. 418-429.

[163] Tsichritzis, D. C., and Lochovsky, F. H., Data Models, Prentice-Hall Inc., 1982.

[164] Ullman, J. D., Principles of Database Systems, the second edition, Computer Sci
ence Press, Rockville. Maryland, 1982.

[165] Urban, S. D., and Delcambre, L. M. L., “An Analysis of the Structural Dynamic,
and Temporal Aspects of Semantic Data Models”, The Second International Con
ference on Data Engineering, Los Angeles, California, February, 1986, pp. 382-389.

[166] Urban, S. D., and Delcambre, L. M. L., “Constraint Analysis for Specifying Per
spectives of Class Objects”, The Fifth International Conference on Data Engineer
ing, Los Angeles, California, February 1989, pp. 10-17.

Bibliography 191

[167] van der Lans, R. F., The SQL Standard — A Complete Reference, originally in
Dutch, translated into English by Andrea Gray, original Dutch published by Aca
demic Science, Schoonhoven, 1988 (translated English version published by Prentice
Hall, 1989).

[168] Wagner, C., View Integration in Database Design Unpublished Ph.D. Dissertation,
The University of British Columbia, Vancouver, B.C., Canada, April 1989.

[169] Wand, Y., and Weber, R., “An Ontological Analysis of Some Fundamental Infor
mation Systems Concepts”, Proc. of the Ninth International Conference on Infor
mation Systems, Minneapolis, Mn., 1988, pp. 213-225.

[170] Wand, Y., and Weher, R., “An Ontological Analysis of Some Systems Analysis
and Design Methods”, in Information Systems Concepts — An In-Depth Analysis,
edited by E. Falkenberg and P. Lindgreen, North-Holland Publishing Co., Amster
dam, 1989, pp. 79-107.

[171] Wand, Y., and Weber, R., “Toward a Theory of the Deep Structure of Information
Systems”, Proc. of the Eleventh International Conference on Information Systems,
Copenhagen. December 1990.

[172] Weber, W., Stucky, W., and Karszt, J., “Integrity Checking in Data Base Systems”,
Information Systems, Vol. 8, No. 2, 1983, pp. 125-136.

[173] Webre, N.W., “An Extended Entity-Relationship Model and its Use on a Defense
Project”, in Entity-Relationship Approach to Information Modelling and Analysis
(the second International Conference on E-R Approach, 1981), edited by P. P.
Chen, Elsevier Science, (North-Holland Publishing Co.), 1983, pp. 173-193.

[174] Wilmot, R. B., “Foreign Keys Decrease Adaptability of Database Designs”, Com
munications of the ACM, Vol. 27, No. 12, December 1984, pp. 1237-1243.

[175] Wong, H. K.T., and Mylopoulos, J., “Two Views of Data Semantics: A Survey of
Data Models in Artificial Intelligence and Database Management”, INFOR, Vol.
15, No. 3, October 1977, pp. 344-383.

[176] Yang, H.-L., and Goldstein, R. C., “Identification of Semantic Integrity Constraints
for Database Design”, Working Paper, 89-MIS-021, Faculty of Commerce and Busi
ness Administration, The University of British Columbia, 1989.

[177] Yang, H.-L., “Semantic Integrity Constraint Representation Model: Some Illustra
tive Examples”, Working Paper, Faculty of Commerce and Business Administra
tion, The University of British Columbia, February 1992.

Bibliography 192

[178] Yasdi, R., and Ziarko, W., “Conceptual Schema Design: A Machine Learning
Approach”, in Methodologies for Intelligent Systems, edited by Z. W. Ras and
M. Zemankova, Elsevier Science Publishers Co., 1987, pp. 379-391.

[179] Zvieli, A., and Chen, P. P., “Entity-Relationship Modelling and Fuzzy Databases”,
The Second International Conference on Data Engineering, Los Angeles, California,
February 1986, pp. 320-327.

Appendix A

BNF Descriptions of the SIC Representation Model

This appendix provides a summary of the syntax of the SIC Representation model used
in this research. The following usual BNF meta-symbols are used: < > { } [
If a terminal symbol happens to be identical to a meta-symbol, it will be written within
a pair of escape symbols, e.g., :j representing the terminal

<SIC statement> [<SIC name>]
CERTAINTY <certainty factor>
FOR <object type name>
ON <operation type>
[IF <assertions>]
ASSERT <assertions>
ELSE <violation action>

<SIC name> ::= <object type name> -< operation abbreviation>-
<SIC type>[-< optional part>]

SIC type is specified by the automated database design system or the database
designer using some conventions.

<optional part> <related object type set> [-<sequence number>]

<object type name> ::= <entity type name>
<relationship type name>

I <relation type name>
<attribute type name>

<attribute type name> <entity type name>.< attribute name>
I <relationship type name> .< attribute name>

<relation type name>.<attribute name>

Entity type name, relationship type name, relation type name, and attribute name
are all specified by the database designer, and by convention, begin with a capital
letter.

<operation abbreviation> ::= I D U

193

Appendix A. BNF Descriptions of the SIC Representation Model 194

<related object type set> ::= (<related object> {, <related object>})

<related object> :: <object type name> <Prolog variable>

Prolog variable is any name beginning with a capital letter or an underline sign
(following the Prolog convention). In this case, it is used to represent a single
object type name or a set including some object type names.

<sequence number> 1 2 I 3

Note that they are positive integer numbers.

<certainty factor> ::= <binary certainty factor>

I <fuzzy certainty factor>
<certainty number>

<binary certainty factor> ::= certain uncertain

Note that “certain” is equivalent to the ratio certainty number 100%, “uncertain”
expresses an unknown ratio certainty number that is less than 100%.

<fuzzy certainty factor> ::= usually I sometimes

Note that the database designer would specify these fuzzy certainty factors to be
equivalent to some certainty numbers (for example, “usually” may be set to 80%).

<certainty number> ::= <ordinal certainty number>
<ratio certainty number>

<ordinal certainty number> 1 2 3

Note that they are positive integer numbers.

<ratio certainty number> ::= 1% I ... I 100%

Note that they are positive real number from 1% to 100% inclusive and are repre
sented in percentage.

<operation type> ::= insertion deletion I update

<assertions> : — [<quantifier> <variable> <and_connective>]
<assertion_and_list> [<or_connective> <assertions>]

<assertion_and_list> :: <expression> [<and_connective> <assertion_and_list>]

<expression> ::= (<assertions>)
<not> (<assertions>)
<logical predicate>
<set expression>
<arithmetic expression>
<date expression>

Appendix A. BNF Descriptions of the SIC Representation Model 195

<logical predicate> ::= <predicate name>[(< argument> {,<argument>})]

Predicate name is any name beginning with a lower-case letter following the usual
Prolog convention. The built-in logical predicates for storing or manipulating in
formation in data dictionary are listed in Appendix B.

<not> not j —

<and_connective> ::= A

<or_connective> ::= V

<quantifier> ::= V I
<argument> ::= <constant> <EntRshipRel variable value>

I <arithmetic simple expression>
<date simple expression>

<constant> ::= <numeric constant>
<string>
<atom>

I <date constant>

Atom is the same as in Prolog, i.e. it is made up of letters and digits, and begins
with a lower-case letter; string is a character string.

<numeric constant> ::= <integer number> <real number>

<date constant> ::= <time point> <time interval>

Time point is a specific date following any date representation convention within a
pair of double quotation marks (“) (the system takes responsibility for deciphering
the input string and interpreting it as a date); time interval is a period represented
by a real number following onetime unit, i.e., second(s), minute(s), hour(s), day(s),
month(s), and year(s) within a pair of quotation marks (““); e.g., “3.5 hours”.

<variable> : — <EntRshipRel variable> <other_variable_except_ERR>

<EntRshipRel variable> = <entity type name> [<subscript>]
<relationship type name> [<subsipt>]
<relation type name> [<subscript>]

<subscript> ::= 0 1 2
Note that they are non-negative integer numbers.

<other_variable_except_ERR> : : = <attribute variable>

I <Prolog variable>

Appendix A. BNF Descriptions of the SIC Representation Model 196

<attribute variable> ::= <entity type name> [<subsipt>J.< attribute name>
I <relationship type name> [<subscript>] . <attribute name>

<relation type name> <subscript>]. <attribute name>

<set expression> : := [set] {< variable> :j: <expression>}

<arithmetic simple expression> [<positive_negative_sign>] <arithmetic term>

{ <arithmetic_plus_minus> <arithmetic term> }
<arithmetic term> ::= <arithmetic subterm>

{ <arithmetic_times_divide> <arithmetic subterm> }
<arithmetic subterm> :: <numeric constant>

<other variable value>
I <aggregate function> (<other variable value>)
count(<EntRshipRel variable value>)
<aggregate function>(<set expression>)
(<arithmetic simple expression>)
[<exponential operator> (<arithmetic simple expression>)]

<other variable value> ::= <other_variable_except_ERR>
new(< other_variable_except_ERR>)

I old(< other_variable_except_ERR>)

<EntRshipRel variable value> ::= <EntRshipRel variable>
new(<EntRshipRel variable>)

I old(<EntRshipRel variable>)

<positive_negative_sign> ::= + —

<arithmetic_plus_minus> ::= + —

<arithmetic_times_divide> ::= x I /
<exponential operator> ::=

<aggregate function> ::= sum avg miii max count
<user-defined aggregate function>

<arithmetic expression> ::= <arithmetic simple expression>
[<not>] <comparison operator> <arithmetic simple expression>

<comparison operator> ::= < > = I
<date simple expression> [<positive_negative_sign>] <date subterm>

{<date operator> <date subterm>}

Appendix A. BNF Descriptions of the SIC Representation Model 197

<date subterm> ::= <date constant>
<other variable value>
<date function>.(<other variable value>)
(<date simple expression>)

<date operator> :: + —

<date function> : : = year month I day minute second

<date expression> ::= <date simple expression>
[<not>] <comparison operator> <date simple expression>

<violation action> <rejection> <propagation> warning

<rejection> ::= reject conditionallyreject

<propagation> : : = propagate(<propagated_action>)
I conditionally_propagate(<propagated_action>)

<propagated_action> : : = insert (<variable>)
delete(<variable>)
insert_all(< variable>)

I delete_all(<variable>)

I insert(<entity role type>, <variable>)
I delete(<entity role type>, <variable>)

I insert_all(<entity role type>, <variable>)
I delete_all(<entity role type>, <variable>)
I update(<variable>, <arithmetic simple expression>)
I update(<variable>, <date simple expression>)

<entity role type> “<entity type name>”
I <Prolog variable>

Prolog variable is used to represent an entity type name in this case.

Appendix B

Summary of the Predicates used in this Research

This appendix provides a summary of the logical predicates used with the SIC Rep
resentation model. The listing is not intended to be comprehensive. All the “input
predicates” (in Appendix B.1) and most of the “manipulation predicates” (e.g., ent_occ,
in Appendix B.2) are used only in conjunction with generic SICs. Other manipulation
predicates (e.g., rship_occ_part, is_null) are represented as Prolog “sub-procedures”, which
are convenient for SIC representation. However, it is possible to represent a specific SIC
without using any of these predicates.

B.1 Input Predicates

The following predicates are suggested by this research for conveying semantic informa
tion about a database. They are used by a database designer to indicate that there are
some integrity constraints on specific objects, which would inherit relevant generic SICs.
They are information provided by the database designer and stored in a database.

• The predicate domain(Domain_Name, Data_Type, Format, Value_Range) is used
to define a user-defined domain, Domain_Name, e.g., money, location; its system
pre-defined Data_Type, e.g., arithmetic, date, non_arithmetic; its format; and value
range. Stating that a data type is of type arithmetic if all of the normal arithmetic
operations may be performed on it in the usual way. Specifying a data with a
nonarithmetic data type implies that the data may not be used in conventional
arithmetic operations. Following the idea of the EBASE system to simplify the
database designer’s work ([Goldstein and Wagner, 1988]), no format specification
is needed for date and arithmetic data type domains. For nonarithmetic data
types, the format is comprised of four basic symbols enclosed in the pair of quota
tion marks:

A for an alphabetic character, i.e., A to Z, a to z, period or blank;
9 for a numeric character, i.e., 0 to 9;

for any special character, e.g.,
- / ,. [] { } ! etc. or blank;

X for an alpha-numeric character (i.e., any of the above).
If a format contains a string of one type of character, it can be expressed more

198

Appendix B. Summary of the Predicates used in this Research 199

concisely as “7©X”, which means “XXXXXXX”. The range is expressed as a con
tinuous range from Beginning_value to End_value in the format of [Beginning_value

End_value], or an enumerated set. Following the usual mathematic convention,
the symbols are used here as follows: “[“ means the beginning of a closed range,
i.e., including the Beginning_value; “]“ means the end of a closed range, i.e., includ
ing the End_value; “(“ means the beginning of an open range, i.e., excluding the
Beginning_value; “)“ means the end of an open range, i.e., excluding the End_value.
The special symbol ““ is used if there is no upper or lower bound.

• The predicate attribute(Entity/Relationship_Type, Attribute_Name, Domain_Name,
Special_Value_Range, Null?, Unique?, Candidate_Key_Attribute?, Changeable?) is
used to specify information about an attribute of an entity or relationship type.
Domain_Name is its value domain definition. Special_ Value_Range is its specific
value range information (e.g., Employee.Salary has the domain of money with the
specific value range between $2,000 and $100,000). The four binary variables, Null?,
Unique?, Candidate_Key_Attribute?, Changeable? indicate whether the attribute is
allowed to he null, unique, a part of a candidate key, and changeable.

• The predicate entity(Entity_Type, Primary_Key, Composite_Key_Set,
Absolute_Max_Cardinality) is used to describe Entity_Type. Primary_Key specifies
its primary key. Composite_Key_Set is a set comprised of all composite keys (includ
ing primary and non-primary composite keys). Absolute_Max_Cardinality specifies
the maximum number of occurrences that are allowed in the Entity_Type.

• The predicate relationship_participant (Relationship_ Type, Entity_Type,
Min_ Cardinality, Max_ Cardinality) specifies Relationship_Type’s participant, En
tity_Type, and the usual relationship cardinalities relative to it. This predicate is
used for each relationship in the E-R-SIC model. In the relational model, it is used
for those relationships that are separately represented. If a relationship is hidden
in an entity relation, its two related relationship_participant predicates are deleted,
and another relationship_hidden_entity predicate is created (see below).

• The predicate relationship_hidden_entity(RelationshipType, Entity Type 1, ForeignEnt
Type, MinCard2, MaxCard2) is used in the relational model to indicate that Re
lationship Type is represented via a foreign key in the EntityTypel relation. It also
indicates that relative minimum and maximum cardinalities of ForeignEnt Type in
the Relationship Type are MinCard2 and MaxCard2, respectively.

• The predicate symmetric(Relationship) is used to indicate that a relationship is
symmetric.

• The predicate transitive (Relationship) is used to indicate that a relationship is
transitive.

Appendix B. Summary of the Predicates used in this Research 200

• The predicate subset_rship ((Rship Type 1, Ent Type 1, Ent Type2), (Rship Type2, Ent
Type3, EntType4)) is used to indicate that the first relationship type is a subset of
the second relationship type in the sense that Ent TypeS and EntType are the par
ticipants in the second relationship type corresponding respectively to EntTypel
and Entlkjpe2 in the first relationship type. Usually, EntTypel is the same as
EntType3, and EntType2 is the same as EntType. However, it is possible that
EntTypel and Ent TypeS are different subtypes of a super-type, and EntType2 and
EntType are different subtypes of another super-type (these two super-types may
be the same). In that case, if an occurrence El of EntTypel connects with an oc
currence E2 of EntType2 in RshipTypel, an EntType3 occurrence, corresponding to
the super-type occurrence of El, should also connect with an EntType$ occurrence,
corresponding to the super-type occurrence of E2 in RshipType2.

• The predicate rships_union_condition((SuperRship, EntType 1, Ent Type2),
SubRshipSet) is used to indicate a necessary condition for the case that the first
relationship type is the union of the other relationship types that are in the set,
i.e., the second argument of the predicate is a set in the form of {(SubRshipi,
EntTypei, EntTypej)}, i,j= 1,2, ..., i j. Similarly to the case of the predicate
subset_rship, usually EntTypei’s are the same as EntTypel, and EntTypej’s are the
same as EntType2. It is also possible that EntTypei’s and EntTypel are different
subtypes of a super-type, and EntTypej ‘s and EntType2 are different subtypes of
another super-type (these two super-types may be the same). In that case, if
there is an SnperRship occurrence connecting an occurrence El of EntTypel with
an occurrence E2 of EntType2, there should be at least one S’ubRshipi occurrence
connecting an EntTypei occurrence, corresponding to the super-type occurrence of
El, with an EntTypej occurrence, corresponding to the super-type occurrence of
E2.

• The predicate rships_intersect_condition ((SubRship, Ent Typel, EntType2),
SuperRshipSet) is used to indicate that the first relationship type is the intersection
of the other relationship types that are in the set. The second argument of the pred
icate, SnperRshipSet, is a set in the form of { (SuperRshipi, EntTypei, EntTypej)},
i,j= 1,2, ..., i=/ j. Similarly to the case of the predicate rships_union.condition,
this kind of SIC may occur in a specialization hierarchy. In that case, for each of
SuperRshipi to have an occurrence connecting an EntTypei occurrence, correspond
ing to a common super-type occurrence (say, Ek), with its EntTypej occurrence,
also corresponding to a common super-type occurrence (say, Fk), there should be
an SnbRship occurrence connecting an EntTypel occurrence, corresponding to Ek,
with an EntType2 occurrence, corresponding to Fk.

• The predicate ex_rships(ExRshipSet), where ExRshipSet has the form of { (Rshipl,
SharingEntl), (Rship2, SharingEnt2)}. The SharingEntl and SharingEnt2 are
usually the same. In this case, the predicate is used to indicate that an occurrence of

Appendix B. Summary of the Predicates used in this Research 201

the sharing entity type is allowed to participate in only one of these two relationship
types. The SharingEnti and SharingEnt2 may be different subtypes of a super-type
in a specialization hierarchy. In that case, this predicate is used to indicate that if
an occurrence E of a sharing entity type participates in one of these two relationship
types, the occurrence of the other sharing entity type, corresponding to the super-
type occurrence of E, cannot participate in the other relationship type.

• The predicate ex_occ(ExoccRshipSet), where ExoccRshipSet has the form of
{(RshipTypel, EntTypel, EntType2), (RshipType2, EntType3, EntType4)}, is used
to indicate that there should not be any common occurrences of these two rela
tionship types in the sense that EntType3 and EntType are the participants in the
second relationship corresponding respectively to the EntTypel and EntType2 in
the first relationship. Similarly to the case of the predicate ex_rships(ExRshipSet,),
EntTypel and EntType3 may be different subtypes of a super-type and EntType2
and EntType4 may also be different subtypes of another super-type.

• The predicate not_andrships(NotAndRshipSet), where NotAndRshipSet has the
form of {(Rshipi, SharingEnti)}, i=1,2 Similarly to the case of the predi
cate ex_rships(ExRshipSet), the SharingEriti’s are usually the same for Rshipi’s.
In this case, the predicate is used to indicate that an occurrence of the sharing
entity type cannot participate in ll of these relationship types. The SharingEnti’s
may also be different subtypes of a super-type in a specialization hierarchy. In that
case, at least one SharingEnti occurrence, corresponding to the same super-type
occurrence, cannot participate in its Rshipi.

• The predicate either_rships(EitherRshipSet), where EitherRshipSet has the form
of { (Rshipi, SharingEnti)}, i=1,2, Similarly to the case of the predicate
ex_rships(ExRshipSet), the SharingEnti’s are usually the same for Rshipi’s. In this
case, the predicate is used to indicate that an occurrence of the sharing entity type
must participate in at least one of these relationship types. If the SharingEnti’s
are different, at least one occurrence of SharingEnti, corresponding to the same
super-type occurrence, must participate in its Rshipi. It is desirable to have two
sub-types of these SICs with different violation actions; one for the case with only
two relationships, and one for the case with more than two relationships. However,
the predicate can be the same.

• The predicate before((Rshipl, SharingEnti), (Rship2, SharingEnt2)) is used to
indicate that at the time an occurrence of SharingEnti is going to participate
in Rshipl, the occurrence of SharingEnt2, corresponding to the same super-type
occurrence, must participate in Rship2.

• The predicate not_before((Rshipl, SharingEntl), (Rship2, SharingEnt2)) is used to
indicate that at the time an occurrence of SharingEntl is going to participate in
Rshipl type, the occurrence of SharingEnt2, corresponding to the same super-type
occurrence, must participate in Rship2.

Appendix B. Summary of the Predicates used in this Research 202

• The predicate rships_join(RshipTypei, EntTypei, EntTypeN), RshipList,) is used
to indicate that if there is a linking path via those relationship types in RshipList
to connect two entity occurrences in EntTypei and EntTypeN together, these two
entity occurrences must be connected via RshipTypei. RshipList is an ordered
set (list) in the form of (RshipTypei, EntTypej, EntTypek) where i, k= 2, 3,
N and j= 1, 2, ..., N_i. It is a necessary condition for asserting that Rship
Typei is the join of these RshipTypei’s, that is, RshipTypei[EntTypei,EntType=
Rship Type2[Ent Type 1, Ent Type2J N Rship Type3[Ent Type2, Ent Type3j N . . . N

RshipTypeN[EntTypeN_i,EntTypeI\. Since its representation is complicated, the
unusual cases in a specialization hierarchy are not considered.

• The predicate rship_dep_loopn_rships((RshipTypei, EntTypei, EntTypeN),
RshipList) is used to indicate that if an occurrence of RshipTypei exists, there
should be a linking path via other relationship types in RshipList to connect its
participating entity occurrences (in EntTypei and EntTypeN) together. RshipList
is an ordered set (list) in the form of (RshipTypei, EntTypej, EntTypek) where i, k=
2, 3, ..., N and j= 1, 2, ..., Ni. Both this and the above rshipsjoin predicates
are needed to guarantee that RshipTypei is the join of these RshipTypei’s.
That is, Rship Type 1 [EntTypei,Ent TypeI\ Rship Type2[Ent Typei, Ent Type2] N
Rship Type3[EntType2, Ent Type3] N . . . N Rship TypeN[Ent TypeN..i , Ent TypeIV]. Since
its representation is complicated, the unusual cases in a specialization hierarchy are
not considered.

• The predicate weak_entity(EntityType, Relationship Type) is used to indicate that
the entity type is weak and Relationship Type is the one that it depends on.

• The predicate id_depend(EntityType, KeyAttSet, Relationship Type) is used to indi
cate that because of the semantics of Relationship Type (e.g., implying ID depen
dency or as an is_a relationship, etc.), EntityType incorporates the primary key of
the other participating entity type as (part of) its candidate key attributes Key
AttSet.

• The predicate critical_rship (Relationship Type, EntType, CriticalAtt) is used to in
dicate that not only Relationship Type is total to Ent Type, but also exactly one
critical relationship occurrence exists for each occurrence of Ent Type. CriticalAtt is
a binary attribute in Relationship Type to indicate whether a relationship occurrence
is critical.

• The predicate completeness_mapping(RelationshipType) is used to indicate that a
relationship type is complete, which means that for each occurrence of one entity
type, all occurrences of the other entity type must relate to it via this relationship
type.

• The predicate rship_trigger_rship((Rshipi, SharingEnti), (Rship2, SharingEnt2))
is used to indicate that if an occurrence of Rshipi, in which an occurrence E of

Appendix B. Summary of the Predicates used in this Research 203

SharirigEriti participated, existed in the past (and no longer exist now), the Sharin
gEnt2 occurrence corresponding to the super-type occurrence of E must participate
in Rship2.

• The predicate ex_ents(’ExEntSet, is used to indicate that the two entity types in
the set are exclusive. The ExEntSet contains only two entity types. If three or
more entity types are mutually exclusive, we can specify more than one exents
predicate.

• The predicate ents_intersect_condition(SubEnt Type, SuperEntSet) is used to indi
cate a necessary condition for the case that SubEnt Type is the intersection of the
entity types in the set, SuperEntSet. That is, for each of the entity types in Super
EntSet to have an occurrence with the same candidate key value, there should be
a corresponding occurrence with this candidate key value in SubEnt Type.

• The predicate ents_unioncondition(SuperEnt Type, SubEntSet) is used to indicate
a necessary condition for the case that the SuperEntType is the union of the entity
types in the set, SubEntSet. That is, for any occurrence in SuperEnt Type, there
should be at least one corresponding occurrence with the same candidate key value
in one of those entity types that are in SubEntSet.

B.2 Manipulation Predicates

The following predicates are used to manipulate the information contained in the input
predicates. In order to represent all generic SICs mentioned in this dissertation, an au
tomated database design system should have at least these built-in predicates. In the
following, only the functioning of these predicates is described. The actual Prolog code
is not provided except for those complicated recursive predicates — join_list_oki and
join_list_ok2. All predicates are applicable to the E-R representation and the relational
representation unless explicitly stated otherwise. The Prolog representation of an occur
rence would include its associated entity or relationship type and its primary key (e.g.,
(“Person”, “123-456-789”)).

• The predicate “rship_occ_part(R,RoleType,E,i’ is used to evaluate whether an entity
occurrence E participates in a relationship occurrence R with the Role Type. Note
that usually the entity type of E is the same as the Role Type. However, in a
specialization hierarchy the entity type of E may be E Type and the Role Type may
be FType, where EType and FType have a common super-type. In that case,
the predicate means that the F occurrence in F_Type, which corresponds to the E
occurrence in the E_Type, participates in the relationship occurrence R.
For example, if a SIC originally obtained from the database designer refers to a

Appendix B. Summary of the Predicates used in this Research 204

relationship such as “E R F’ and E is the oniy sharing entity type, it will be
written as rship_occ_part(R, “E”,E) in its sub-SICs.
The exact functioning of this predicate “rship_occ_part(R,RoleType,E)” is as follows.
Role Type must be instantiated.
(1)Suppose that both Rand Eare instantiated. (la) Suppose E_Type is the same as
Role Type. This predicate checks whether the primary key value of the occurrence
E and the corresponding key attributes of the occurrence R are equivalent. It
returns false if they are not equivalent or if the corresponding key attributes of the
occurrence R are null. (ib) Suppose EType is different from Role Type. It traverses
a specialization hierarchy to find the corresponding occurrence in Role Type and
check that occurrence with R.
(2) Suppose that E is uninstantiated, R is instantiated. It returns the occurrence
participating in R with Role Type as E. No traverse of a specialization hierarchy
would be performed.
(3) Suppose that Eis instantiated, R is not. It returns the R (Rs when backtracking)
in which E participates with the Role Type.

• The predicate ent_occ (Entity_Type, E) is used to evalilate whether an E is an oc
currence of Entity_Type, or used to fetch any one occurrence E from Entity_Type.
If E is null, the logical value of this predicate is undefined. It does not traverse a
specialization hierarchy to find the corresponding entity occurrence. For example,
enLocc(”Manager”, Engineer) would be false though the mentioned engineer may
also appear in the manager entitytype.

• The predicate rship_occ(Relationship_Type, R) is used to evaluate whether R is an
occurrence of Relationship_Type, or used to fetch any one occurrence from Rela
tionship_Type. If R is null, the logical value of this predicate is undefined.

• The predicate att_occ(E, Att_Name, E.A) (or att_occ(R, Att_Name, R.A)) is used
to get the value of an attribute occurrence E.A (or R.A) of an entity occurrence
E (or relationship occurrence R). If Att_Name is a key attribute of a relationship
type, att_occ can be used to reference its value.

• The predicate comp_atts_occ(E, Comp_Att, E. C) is used to get the value of a com
posite attribute occurrence, that is, by applying a “concatenate” operator to the
attribute values in the ordered set, Comp_Att.

• The predicates satisfy_datatype(E.A, Data_Type), satisfy_format(E.A, Format), sat
isfy_val’ue(E.A, Range), are used to determine whether E.A satisfies the correspond
ing data_type, format, value, respectively.

• The is_null(’x) predicate is evaluated to be true if and only if x is “null”.

• The is_not_nullfr,,) predicate is evaluated to be true if an only if x is not “null”.

Appendix B. Summary of the Predicates used in this R.esearch 205

• The false predicate is used to indicate that the assertion is absolutely false. That
is, it is used to indicate that the attempted data operation the operation T
component in the SIC Representation model — is not allowed.

• The predicate concatenate(Stringl, String2, Resulting_String) is used to construct
ResultingString by appending String2 after Stringi.

• The predicate substring(String, Beginning_Position, End_Position,
Resulting_Substring) is used to get Resztlting_Substring from Beginning_Position to
End_Position of String.

• The predicate concatenate_SlCname(Stringl, Variable, String2, Resulting_SlCname)
is used to construct Resulting_SlCname by appending the value of Variable after
String], and then concatenating with String2.

• The predicate checkcomSlC(Component_SIC_Name, Checked_Occurrence) calls a
SIC named Component_SIC_Name to check whether Checked_Occurrence satisfies
it; if not, the violation action of the calling SIC (rather than Component_SIC_Name)
will be taken. (The SIC aggregation concept is applied.)

• The predicate checkmemSlC(Member_SIC_Name, Checked_Occurrence) calls a SIC
named Member_SIC_Name to check whether Checked_Occurrence satisfies it. The
violation action of the Member_SICName will be taken if the Checked_Occurrence
violates it. (The SIC association concept is applied.)

• The predicate not_empty(Set,) is used to test whether Set is empty.

• The predicate belongs_to(Element, Set) is used to test whether Element is in Set.

• The predicate is_compatt(Att, Comp_Key_Set) is used to test whether an attribute
belongs to a composite key. It is different from belongs_to because C’omp_Key_Set
may be a coset — its elements are also sets containing some attributes.

• The predicate part_of_comp_key(Att, Comp_Key_Set, Comp_Keyl) is used to get a
composite key Comp_Keyl, which consists of the attribute Att, from Comp_Key_Set.

• The predicate remove_from_set(Element, SourceSet, ResultingSet) is used to indi
cate that ResultingSet is the result of removing Element from SourceSet.

• Some special predicates to process a list are needed in handling a Relation
ships_Join SIC or Relationship_depends_on_LoopN_Relationships SIC. In
the following, RshipListis an ordered set (list) in the form of (RshipTypei, EntTypej,
EntTypek) where i, j, k= 1, 2, ..., N.

— The predicate precedes (RshipTypej, RshipTypei, RshipList) is used to find the
relationship type, Rship Typei, which precedes the relationship type,
Rship Typej, in RshipList.

Appendix B. Summary of the Predicates used in this Research 206

— The predicate follows (RshipTypej, RshipTypek, RshipList) is used to find
RshipTypek, which follows the relationship type, RshipTypej, in RshipList.

— The recursive predicate join_list_oki (FirstEntType, LastEnt Type, FirstEntOcc,
LastEntOcc, RshipList) is used to test whether the relationship occurrence
connecting the FirstEntOcc of the FirstEnt Type with the LastEntOcc of the
LastEntType is equal to the join of a series of entity occurrences participating
iii RshipList.

— The recursive predicate join_list_ok2(Rship Typej, EntTypeji, Ent Typej2,
FirstEntOcc, EntOccjl, EntOccj2, LastEntOcc, RshipList) is another recur
sive predicate. One relationship occurrence of RshipTypej, j=1,2,... in RshipList,
via which EntOccjl of EntTypejl connects with EntOccj2 of EntTypej2, is
given. This predicate is used to test whether it is possible to produce a re
lationship occurrence, via which FirstEntOcc connects with LastEntOcc, and
which is equal to the join of corresponding occurrences of these relationship
types in RshipList with the given relationship occurrence.

Since these two recursive predicate are complicated, their detailed Prolog represen
tations are given as below.

%special recursive predicate in Prolog:
% for R = Ri rxl R2 r1 R3...
% joindist_oki is to test whether
% the given occurrence in R connecting FirstEntOcc with LastEntOcc is equal to
% the join of the corresponding occurrences in Ri, R2,
%
% join_list_ok is to test whether
% for the given occurrence in Rj connecting Entoccji with EntOccj, j=i,2,...
% it is possible to produce a pair of (FirstEntOcc,LastEntOcc)
% that is equal to the join of the corresponding occurrences in Ri, R2,
%

% join_list_oki: all variables are inputs
join_list_oki (FirstEntType, LastEntType, FirstEntOcc,
LastEntOcc, [(RshipTypei, FirstEntType, EntTypei) IRestListi) :-

FirstEntType LastEntType,
RshipOcci, rship_occ (RshipTypei, RshipOcci),

rship.occpart (RshipOcci, FirstEntType, FirstEntOcc),
ent.occ(EntTypei, EntOcci),
rshipocc_part (RshipOcci, EntTypei, EntOcci),
joinlistoki (EntTypei, LastEntType, EntOcci, LastEntOcc, [Restbist]).

Appendix B. Summary of the Predicates used in this Research 207

join_list_okl (LastEntType, LastEntType, LastEntOcc, LastEntOcc, [j).
%

% joirt_list_ok2: FirstEntOcc and LastEntOcc are output variables,
% others are input variables
joinlist_ok2 (RshipTypej, EntTypej 1, EntTypej2, FirstEntOcc. EntOccj 1, EntOccj 2,
LastEntOcc, RshipList):
join..first_lialf(RshipTypej, EntTypej 1, EntOccj 1. FirstEntOcc, Rshipbist),
joinJastha1f(RshipTypej, EntTypej 2, EntOccj 2, LastEntOcc, RshipList).

% join_first_half: FirstEntOcc is an output variable, others are input variables
% precedes(+RshipTypej. -RshipTypei, +List) is the predicate to find
% the Rship Typei that precedes Rship Typej in the List.
join_first_half(RshipTypej, EntTypej 1, EntOccj 1, FirstEntOcc, RshipList)
precedes(RshipTypej, RshipTypei, RshipList),

RshipOcci, rship_occ(RshipTypei, RshipOcci),
rshipocc_part (RshipOcci, EntTypej 1, EntOccj 1),
ent_occ(EntTypei, EntOcci),
rship_occ_part (RshipOcci, EntTypei, EntOcci),
join_first_half(RshipTypei, EntTypei, EntOcci, FirstEntOcc, RshipList).

join.first_half(RshipTypej, EntTypej 1, EntOccj 1, EntOccj 1, Rshipbist)
-, precedes (RshipTypej, RshipTypei, RshipList).

% join_last_half: LastEntOcc is an output variable, others are input variables;
% follows(+RshipTypej, -RshipTypek, +List) is the predicate to search for
% the RshipTypek that follows RshipTypej in the List.
join_last_half(RshipTypej, EntTypej 2, EntOccj2, LastEntOcc, RshipList) :-

follows (RshipTypej, RshipTypek, Rshipbist),
RshipOcck, rship_occ (RshipTypek, RshipOcck),

rship_occ_part(RshipOcck, EntTypej2, EntOccj2),
entocc(EntTypek, EntOcck),
rship_occpart (RshipOcck, EntTypek, EntOcck),
joinlast_half(RshipTypek, EntTypek, EntOcck, LastEntOcc, RshipList).

join_last_half(RshipTypej, EntTypej2, EntOccj 2, EntOccj 2, RshipList) :-

—, follows (RshipTypej, RshipTypek, RshipList).

• The following four predicates are used to store related SICs for updating the pri
mary key of Relationship_Type or Entity_Type. If a SIC is relevant to the insertion

Appendix B. Summary of the Predicates used in this Research 208

(or deletion) of Relationship_Type, its name is added into the SIC_Name_Set in
the associated_PKSICs_I (or associated_PKSICs_D) predicate of the affected key
attribute PKAtt. Each affected key attribute, PKAtt, of Relationship_Type has its
own associated_PKSICs_I (or associated_PKSICs_D) predicate. In the case that a
SIC is relevant to the insertion (or deletion) of Entity_Type, there is only one as
sociated_PKSICs_I (or associated_PKSICs_D) predicate, which is related to each of
its primary key attribute.

— predicates used to store the related SICs for the key attributes of Relation
ship_Type:
associated_FKSICs_I(Relationship_Type, PKA tt. SIC_Name_Set)
associated_FKSICs_D(Relationship_Type, PKA tt, SIC_Name_Set)

— predicates used to store the related SICs for the key attributes of Entity_Type:
associated_PKSICs_I(Entity_ Type, SIC_Name_Set)
associated_PKSICs_D(Entity_Type, SIC_Name_Set)

• The predicate foreign_key(Rship Type, EntOcc, ForeignEntType, FKAtts_val’ue) is
used in the relational model to get the foreign key value FKAtts_value of EntOcc
connecting with an occurrence of ForeignEnt Type in the relationship Rship Type.

• The predicate foreign_ent_occ(RshipType,E,F) is used in the relational model to
evaluate whether the primary key of an F occurrence appears as a foreign key in
an occurrence E because of the relationship type, Rship Type. The Rship Type is
needed because there may be more than one relationship type between two entity
types. The entity types with which E and F participate in Rship Type need not
be explicitly included in this predicate. From the relationship name Rship Type,
the reference to relationship_hidden_entity(Rship Type, EntTypel, EntType2, Cmin,
Cmax) would show that E takes the role EntTypel and F takes the role of Ent
Type2. The exact functioning of this predicate “foreign_ent_occ(RshipType,E,F)”
is as follows.
Rship Type must be instantiated.
Suppose that we have relationship_hidden_entity(Rship Type, EntTypel, Ent Type2,
Cmin, Cmax).
(1)Suppose that both E and F are instantiated. (la) Suppose the entity type of E,
EType, is the same as EntTypel and the entity type of F, FType, is the same as
EntType2. This predicate checks whether the foreign key value of the occurrence E
and the corresponding key attributes of the occurrence F are equivalent. It returns
false if they are not equivalent or if the corresponding key attribute of the occur
rence E is null. (ib) Suppose either EType is different from EntTypel or FType is
different from EntType2, or both are different. It traverses a specialization hierar
chy to find the occurrence in EntTypel corresponding to E and the occurrence in
EntType2 corresponding to F, and then checks them.
(2) Suppose that F is uninstantiated, E is instantiated. It only returns F with the

Appendix B. Summary of the Predicates used in this Research 209

value of the occurrence in EntType2 whose primary key appears in E as a foreign key
owing to Rship Type. No traverse on specialization hierarchy would be performed.
(3) Suppose that Fis instantiated, Eis not. It returns those E (Es when backtrack
ing) taking the role of EntTypel connecting with F taking the role of EntType2.

• The predicate which_foreign (EntType, RoleTypel, Role Type2, EntOcci, EntOcc2,
EntOcci, FEntOcci) is used to check which of entity types, Role Typel or Role Type2,
should be Ent Type where the relationship type is hidden, and assign these entity oc
currence variables properly. This predicate is used to reduce the possible predefined
sub-SICs in the relational model since we handle the entity links in specialization
hierarchy implicitly and for some SICs (e.g., Subset_Relationship SIC, Exclu
sive_Occurrence SIC) the information about the corresponding involved pairs of
sharing entity types are stored in some order.
EntOcci and EntOcc2 are the occurrences playing Role Typel and Role Type2, re
spectively. EntType is the entity type where the relationship between Role Typel
and Role Type2 is hidden. EntOcci is an occurrence of EntType, FEntOcci is the
corresponding foreign entity occurrence. When calling this predicate, Ent Type,
Role Typel, RoleType2 should be already instantiated. Either the pair of EntOcci,
EntOcc2 or the pair of EntOcci, FEntOcci is already instantiated, but not both.
This predicate performs the following:
(1) if EntType=RoleTypel, EntOcc2 should be the foreign entity occurrence, then
unify EntOcci with EntOcci, and unify FEntOcci with EntOcc2 (that is, (la) if
EntOcci, EntOcc2 are already instantiated, then set EntOcci=EntOccl,
FEntOcci=EntOcc2, (ib) if instead, EntOcci, FEntOcci are already instantiated,
then set EntOccl=EntOcci, EntOcc=FEntOcci);
(2) conversely if EntType=RoleType2, EntOcci should be the foreign entity occur
rence then unify EntOcci with EntOcc2, and unify FEntOeci with EntOcci;
(3) otherwise, return false.

• The predicates associated_FKSICs_I(Entity_ Type, FKAtt, SIC_Name_Set) and as
sociated_FKSICs_D(Entity_Type, FKAtt, SIC_Name_Set) are used in the relational
model to store related SICs for updating the foreign key attribute FKAtt of En
tity_ Type.

Appendix C

BNF Descriptions of the Simplified Format

This appendix provides a summary of the syntax of the simplified format that is used in
this research to represent the preconditions and predicates of a general SIC elicited from
the database designer. Since this description is similar to the precondition and predicate
components of the SIC Representation model, some definitions refer to Appendix A. The
BNF’ meta-symbols and escape symbols used here are the same as those of Appendix A.

<SIC description> ::= if [with_respect_to <focused entity type names>,]
<assertions> [previously]
then [with_respect_to <focused entity type names>,]
<assertions> [before]
if [with_respect_to <focused entity type names>,]
<assertions> [previously]
then <SIC description>

I <assertions>

<focused entity type names> ::= <entity type name>
(<entity type name>, <entity type name>)

<assertions> : : = [<quantifier> <variable> <and_connective>]
<assertion_and_list> [<or_connective> <assertions>]

Note that the BNF definitions of or_connective and and_connective are the same as
in Appendix A.

<quantifier> ::= V
I 3 [<numerical modifier>] [different]

<numerical modifier> ::= at_least <some number>
at_most <some number>

I exactly <some number>

<some number> ::= 1 2 3

Note that they are non-negative integer numbers.

210

Appendix C. BNF Descriptions of the Simplified Format 211

<assertion_and_list> : : = <expression> [<and_connective> <assertion_and_list>]

Note that this BNF definition is the same as in Appendix A except for the under
lying definition of expression, which is redefined as below.

<expression> ::= (<assertions>)
<not> (<assertions>)
<entity type name> <relationship type name> <entity type name>

I <EntRship type name> is.to_be_deleted
<attribute type name> is_to_beiipdated

I <logical predicate>
<set expression>
<arithmetic expression>
<date expression>

Entity type name, relationship type name and attribute type name have the same
name convention — beginning with a capital letter — as those in Appendix A. The
definitions of not and date expression are the same as those in Appendix A. The
definitions of set expression and arithmetic expression are almost the same as the
corresponding ones in Appendix A except for their underlying definitions of variable
and arithmetic subterm, which will be redefined below. The major differences are
that neither subscript nor relation type name is used; and the new and old func
tions are only applicable to <attribute type name>. Only some of the logical pred
icates in Appendix B are applicable here. These are, satisfy_datatype(<attribute
type name>, Data_Type), satisfy_format(<attribute type name>, Format), sat
isfy_val’ae(<attribute type name>, Range), is_null(<attribute type name>),
is_not_null(<attribute type name>), false, and belongs_to(Element, Set), etc. Be
cause subscripts are not used, the simplified format uses a special predicate
nnique(<attribute type name>{,<attribute type narne>}), which is not used in the
SIC Representation model (so, it is not in Appendix B). It checks whether a par
ticular attribute or combination of attributes does not actually contain duplicate
values in a database. When the SIC is represented in the SIC Representation
model, this special predicate will be replaced with a count function and appropri
ate subscripts will be attached to its associated entity (by applying the algorithms
in Appendix H.2).

<EntRship type name> ::= <entity type name>
<relationship type name>

<variable> <EntRship type name> <other_variable_except_ER>

<other_variable_except_ER> : : = <attribute type name>
<Prolog variable>

Appendix C. BNF Descriptions of the Simplified Format 212

<arithmetic subterm> : = <numeric constant>
<other variable value>

I <aggregate function>(<attribute variable value>)
count (< EntRship variable value>)
<aggregate function> (<set expression>)
(<arithmetic simple expression>)
[<exponential operator> (<arithmetic simple expression>)]

The definitions of numeric constant, aggregate function, arithmetic simple expres
sion, exponential operator are all the same as in Appendix A. The main difference of
the definition of arithmetic subterm is that we use EntRship variable value instead
of EntRshipRel variable value.

<other variable value> ::= <other_variable_except_ER>
new(<attribute type name>)

I old(<attribztte type name>)

<EntRship variable value> ::= <EntRship type name>

Note that the new and old functions are not applicable here. We can directly use
EntRship type name instead of defining EntRship variable value. The reason for
defining this is to compare it with Appendix A.

Appendix D

SIC Type Classification in the E-R-SIC Model

This appendix provides a classification of SIC types used in the E-R-SIC model. Al
though the listing is not comprehensive, it covers different SIC types that can occur in
various contexts of an E-R diagram, and also includes those SICs mentioned in the liter
ature. We can use these SIC types to write generic SICs and store some consistency or
nonredundancy rules for them in the elicitation subsystem.

Notation The following notation will be used in examples.

• E, F, G, H, I, ... are used to denote entities.

• R, RX, RY, RZ, Ri, R2, R3, ... beginning with “R” are used to denote relation
ships.

• E.A, E.Ai, E.A2, F.B, F.Bi, F.H2, R.A, ... are used to denote attributes of
entities or relationships. Gurrent_time is the system variable to monitor the current
clock.

• v, vi, v2, ... are used to denote values.

• comp_op, comp_opi, ... are used to denote =, , , , <,>.

• ariop, ari_opi, ... are used to denote +, —, x,

• agg_fcn, agg_fcnl, ... are used to denote the aggregate functions, e.g., sum, avg,
mm, max, count.

SIC Types There are four categories of SIC types.

• SIC Types Focusing on Attributes of a Single Entity or Relationship
Type.

213

Appendix D. SIC Type Classification in the E-R-SIC Model 214

• SIC Types Focusing on a Relationship as an Association. These are neces
sary conditions for the existence of one or more relationships because relationships
are “associations” linking entities. Different contexts, line, star, ioop-2, and loop-n
should be considered when identifying SIC types.

• Sufficient Conditions for the Existence of Relationship(s). These are suffi
cient conditions for the existence of one or more relationships because relationships
are “associations” linking entities.

• SIC Types for Entities without Explicit Relationships. There are some
SICs for a group of entities because of some “implicit relationships”.

Each of them is described in detail as below.

• SIC Types Focusing on Attributes of a Single Entity or Relationship
Type.

1. Domain Constraint: declares the value; extended format; nonvolatility104;
data type of an attribute of an entity or relationship type; whether it can be
null; and if it should be unique.

It is possible to specify this kind of constraint for an “implicit entity or re
lationship subtype”. For example, a Subtype_Nonvolatility Constraint
requires that an attribute of any occurrence of the specified “implicit entity
or relationship subtype “ be not changeable. We may also require that an
attribute have some value range if there are restrictions on the values of other
attribute(s), e.g., Conditional_Value SIC such as:
if E.Ai compopi vi, . .. then E.A2 comp.op2 v2.

Constraints on the attributes of an entity or relationship occurrence could be
more complicated. In that case, we would have the following.

2. Formula SIC: requires that a formula105 exists among attributes of any oc
currence of the specified entity or relationship type. For example, we may
have:
(E.Ai) comp_op ((E.A2) ari_opi (E.A3,) ari_op2 (scalar_value)),...
If the formula involves non-numeric data-types, string predicates may be
needed.

104 “Nonvolatility” is interpreted in a strict sense. If an entity is inserted with some null attribute
values, they have to stay null if “nonvolatile” is declared for them.
‘°5Recall that if there is more than one attribute appearing in an expression, we call that expression

as a formula.

Appendix D. SIC Type Classification in the E-R-SIC Model 215

There may be some conditions on a formula requiring that it hold only for an
“implicit entity or relationship subtype”. For example, we may have:
if (E.A1) comp_opi ((E.A) ari_opi (E.A3) ari_op2 (scalar_value)),...
then (E.A4) compop2 (E.A5) ariop3 (E.A3)

3. Aggregate_Attribute SIC: restricts the aggregate attributes of the whole
entity or relationship set, for example, agg_fcn(E.A) comp_op v.
If the data type of the attribute E.A is numeric, we may have:
aggfcn(E.A) comp_op E.A, such as, “any salary value of an employee must
not be more than 5 percent greater than the average of all such values”.

Some complicated cases may occur. For example, there may he a SIC (called
Aggregate_Attribute_Formula SIC) requiring some formula among the
values of aggregate attributes of the entity or relationship set. There may be
a restriction (called Interdependent_Aggregate_Attributes SIC) on the
aggregate value of an attribute if some other attributes have some aggregate
values, e.g.,
if (aggfcn1(E.A3) compop2 v2,), ... then (aggfcn2(’E.A3) compop3 uS)

It is also possible only for occurrences of the specified “implicit entity or rela
tionship subtype” that there is a restriction on an aggregate value (called
Subtype_Aggregate_Attribute SIC), an aggregate attribute formula (called
Subtype_Aggregate_Attribute_Formula SIC), or the requirement of the
coexistence of some aggregate attributes (called SubtypeJnterdependent_
AggregateAttributes SIC).

4. Composite_Attribute_Unique Constraint: requires the concatenated val
ues of some attributes (which form a composite key) of an entity type to be
unique.

5. Old_New Transitional Constraint: restricts the pairs of values before and’
after an update of an attribute of the specified entity or relationship type. It
is also possible to have this kind of constraint for a specified “implicit entity
or relationship subtype”.

6. Primary_Key SIC: requires enforcing a set of SICs related to deletion and
insertion of an entity or relationship when an attribute, which is (part of) the
primary key, is updated.

7. Deleted_Object_Attribute SIC: restricts the values of attributes of any
occurrence of the specified entity or relationship type before this entity or
relationship occurrence can be deleted. For example, “a project can be deleted
only if its budget is zero”. It is an operation-dependent SIC that is relevant
only to the deletion operation. It is also possible to have this kind of constraint
for a specified “implicit entity or relationship subtype”.

8. Absolute Maximum Cardinality Constraint of an Entity Type: re
stricts the maximum number of occurrences of an entity type that can exist in

Appendix D. SIC Type Classification in the E-R-SIC Model 216

a database. If it is infinite, it is not a restriction. The notation ““ is used to
denote either the infinite, or the case that it is not infinite in the mathematical
sense, but there is no restriction on the maximum cardinality.

9. SIC Involving Current_Time: either restricts a time-valued attribute of
the specified entity or relationship type within some range relative to Gur
rent_Time; places restrictions on other attributes when time-valued attribute(s)
satisfy some condition(s) relative to Current_Time; or requires the propagation
to update the value(s) of some attribute(s) of the specified entity or relation
ship type while updating the Currenttime.

It may only occur in an environment in which the event that causes manip
ulation of the involved database object(s) is processed in real time so that
the Current_time in the computer matches the event time in the real world.
Otherwise, Current_time in all of the above must be replaced by a time-valued
attribute that records the external event time, and these constraints become
ordinary data-driven constraints.

— Attribute SIC with Current_Time Restriction:
(a) Restriction on a time-valued attribute relative to Current_Time: Four

examples are given here to illustrate the various cases.
* Cases 1 and 2 — the increase of Current_time will never violate the

SIC under the assumption that the current database is semantically
correct:

i. Case 1 the time-valued attribute represents a past fact rela
tive to Current_time: If “Employee.FirstWorkDate” is the first
date of Employee working on related jobs, Currenttime (Em
ployee.First WorkDate + “2 years”) is an expression to assert that
“each employee must have at least 2 years working experience”.

ii. Case 2 the time-valued attribute represents a future expectancy
relative to Current_time: If the “Part.ExpectedArrDate” is the ex
pected arrival date of a Part ordered from Suppliers, Current_time

(Part.ExpectedArrDate — “10 days”) is an expression to assert
that “the expected delivery time of a part must be no more than
10 days”.

* Cases 3 and 4 — the increase of Current_time may violate the SIC:
i. Case 3 the time-valued attribute represents a past fact relative

to CurrenLtime: We may have an expression Current_time
Account_Receivable.Date + “10 years” to assert a rule that “an
account_receivable cannot be older than 10 years”.

ii. Case 4— the time-valued attribute represents a future expectancy
relative to Current_time: If Drug.Expiration_Date is the date that
a Drug will expire, Current_time < (Drug.ExpirationDate — “2

Appendix D. SIC Type classification in the E-R-SIC Model 217

weeks”) is an expression to assert a rule that “a drug must be
valid for at least 2 weeks”.

(b) Restriction on other attributes when time-valued attributes satisfy
some conditions: When time passes, the restriction will either disap
pear or come into force. For example,
if Current_time (Employee.HireDate + “6 months”)
then old(Employee. Salary) > new(Employee. Salary)
is an expression to assert a rule that “an employee cannot receive a
salary raise during his(her) first 6 months in the company”.
Another example is: “if an employee has worked for at least two years,
he (she) must have at least 10 vacation days”.

— Current_Time_Triggered SIC on Attributes: It triggers some opera
tion while updating the Current_time. For example, at 0:00 on 1/1/1993,
increase the salary of each employee by $1, 000.

10. Temporal Conditions Among Attributes: requires that some attribute(s)
of an occurrence of the specified entity or relationship type must satisfy a
certain condition, at the time one of its other attribute is going to acquire
some value. For example, we may have: if E.A1 comp-op vi then E.A2 comp
op v2 before. Alternatively, this type of SIC may require that if its other
attribute(s) satisfied a certain condition in the past (and no longer satisfies it
now), one of its attributes must take some value. For example, we may have:
if E.A1 comp-op vi previously then E.A2 comp-op v2.

• SIC Types Focusing on a Relationship as an Association.

1. Incidence Constraint: allows a relationship occurrence to exist only if the
participating entity occurrences exist.

2. One_Side_Necessary_Condition for a Relationship Type: restricts the
existence of any occurrence(s) of the specified relationship type because there
are conditions on one of its participating entity types. Different layouts of E-R
diagrams (line, star, loop-2, or loop-n contexts) may have different conditions.
Some examples include:

— Relationship_Depends_on_Relationship SIC: requires that for a re
lationship occurrence to exist, one of its participating entity occurrences
must participate in the other relationship type. It may happen in line,
star, or loop-2 contexts. For example, in a star context, Figure 5.3 (on
page 111), we may have:
if E RXF
then ERYG
or
if E RXF
then (ERYG) V (ERZH)

Appendix D. SIC Type Classification in the E-R-SIC Model 218

Note that stating “if RX then RY’ is equivalent to stating “RX only-if
RY’. An example is “Customers (F Use Products (E” (i.e., RX only-if
“Factories (G) Make Products (E”(i.e., RY). Sakai ([1983b]) states that
RX is existentially dependent on RY and there is a hierarchical ordering
of the entity types.

— Relationship_Depends_on_Entity_Value SIC: requires that for a re
lationship occurrence to exist, one of its participating entity occurrences
must have some attribute value(s) satisfying a specified restriction. For
example, in Figure 5.2, we may have
if E RXF
then (E.Ai comp.opi vi) V (E.A2 comp.op2 v2)

— Exclusive_Relationship SIC: requires that given two relationship types,
for a relationship occurrence to exist, one of its participating entity oc
currences must not participate in the other relationship type. These two
relationship types RX and RYare exclusive (denoted as RXIRY), and are
called excluding relationships relative to the entity ([Palmer, 1978], [Koza
czynski and Lilien, 1988]). It may happen in any context. For example,
in the context of Figure 5.2, we may have:
if E RXF
then —i(E RY G)
An example is where a storeroom is used either for storing raw materials
or for storing finished goods, but never for both.

— Not_And_Relationships SIC: requires that given a group of relation
ship types with a sharing entity type, for a relationship occurrence to
exist, its participating entity occurrence of the sharing entity type must
not participate in all of the other relationship types. That is, no occur
rence of the sharing entity type can participate in all the relationship
types. It can only happen in a star context, e.g., in Figure 5.3, we may
have:
if ERXF
then ((E RY G) A (E RZ H))

If there are only two relationships involved, it reduces to an
Exclusive_Relationship SIC.

— Some constraints are special because of temporal conditions:
* Relationship_Before_Relationship SIC: requires that for a rela

tionship occurrence to exist, one of its participating entity occurrences
must participate in another relationship type at the time it is going
to participate in this relationship type. For example, in Figure 5.2,
we may have:
if ERX F
then E RY G before

Appendix D. SIC Type Classification in the E-R-SIC Model 219

It requires that RY must exist at the time RX is going to be in
serted. However, there is no restriction on the deletion of RY after
RX exists. A Relationship_Depends_on..Relationship SIC re
quires that when RX is inserted, RY exists (that is, RX and RY can
be generated concurrently) and if RY is deleted, RX must be deleted
too.

* Entity_Attributei3efore_Relationship SIC: requires that for a
relationship occurrence to exist, the attributes of one of its partic
ipating entity occurrences must satisfy some conditions at the time
it is going to participate in this relationship type. For example, in
Figure 5.2, we may have:
if ERXF
then ((E.Ai compop vi) V (E.A2 comp_op2 v2)) before

An example is that “for a person to participate in a life-insurance
relationship, his (her) age must be less than 65”. Note that we do
not care what attribute values this entity occurrence will have after it
participates in the relationship.

* Relationship_Not_Before_Relationship SIC: requires that for a
relationship occurrence to exist, one of its participating entity occur
rences must pç participate in another specific relationship type at
the time it is going to participate in this relationship type.

3. Two_Side_Necessary_Condition for a Relationship Type: restricts the
existence of any occurrence(s) of the specified relationship type because there
are conditions on both participating entity types at the same time. Differ
ent layouts of E-R diagrams (line, star, ioop-2, or loop-n contexts) may have
different conditions. Some examples include:

— Pair_Relationships SIC: requires that for a relationship occurrence to
exist, if one of its participating entity occurrences participates or does not
participate in some specific relationship type, the other participating en
tity occurrence must or must not participate in other specific relationship
type(s). For example, in Figure 5.2, we may have:
if ERXF
then if E RY G

then FRZH
— Pair_Values SIC: requires that for a relationship occurrence to exist,

if one of its participating entity occurrences has certain attribute values,
the other participating entity occurrence must have some specific attribute
values. For example, in Figure 5.2, we may have:
if E RXF
then if (E.A compopi vi)

Appendix D. SIC Type Classification in the E-R-SIC Model 220

then (F.B compop2 v2)

For example, if Employee Is_Allocated Car then
if Employee.Rank= “president” then Car.Brand= “BMW”.

— ID_Dependency_Relationship SIC: requires that if an entity type E
incorporates the primary key (e.g., F.Fkey) of the other entity type F as
part of its candidate key (because of a relationship type implying an “ID
dependency” or because of an is_a, or component_of special relationship
type), for an occurrence of the relationship type to exist, its participating
entity occurrences should have a condition: E.Fkey=F.Fkey.

— Pair_Condition SIC: requires that for a relationship occurrence to exist,
there are some conditions involving the attributes of both of its partici
pating entity occurrences. For example, in Figure 5.2, we may have:
if E RX F
then (E.A1 comp.opl (F.B ariop E.A2)),

— Subset_Relationship SIC: requires that for an occurrence of the spec
ified relationship type to exist, its two participating entity occurrences
must be connected via another relationship type ([Palmer, 1978]). That
is, RX C RY, implying that RX occurrences are included in RY occur
rences, or stated in a different way, RX only-if RY. It can only happen in
a ioop-2 context. For example, Owns C Entitled-to-Drive implies that if
a person owns a car, he (she) must be entitled to drive it.

— Exclusive_Occurrence SIC: requires that for an occurrence of the spec
ified relationship type to exist, its two participating entity occurrences
must be connected together via any occurrence of another relation
ship type ([MaFadden and Hoffer, 1988]). It is a special case, but weaker
than Exclusive_Relationship SIC.

— Relationships_Union Special SIC: requires that for an occurrence of
the specified relationship type to exist, its two entity occurrences must be
connected together via any one of other relationship types. It can only
happen in a loop-2 context and is a necessary condition for the union of
relationships, e.g., RX = RY U RZ. The semantics that one relationship
(e.g., RX is the union of the remaining relationships imply this type of
SIC and Subset_Relationship SICs (e.g., RY RX, etc.).

— Relationships_Intersection Special SIC: requires that given a group
of relationship types in a set SuperRshipSet and another relationship type
SnbRship, for each of the relationship types in SnperRshipSet to have an
occurrence connecting the same pair of entity occurrences, there should
be an SubRship occurrence connecting this pair of entity occurrences. It
can only happen in a loop-2 context and is a necessary condition for the
intersection of relationships, e.g., RX = RYnRZ. The semantics that one
relationship (e.g., RX) is the intersection of the remaining relationships

Appendix D. SIC Type Classification in the E-R-SIC Model 221

imply this type of SIC and Subset_Relationship SICs (e.g., RX C RY,
etc.).

— Relationships_Join SIC: requires that if there is a linking path via
some relationship types to connect two entity occurrences together, those
two entity occurrences must be connected via another relationship type.
It can only happen in a loop_n context and is a necessary condition for
relationship composition, denoted by, e.g., RX = RY N RZ ([Lenzerini
and Santucci, 1983], [Azar and Pichat, 1987]). For example, in Figure 5.5,
we may have:
if(ERYH)A (HRZF)
then ERXF
In fact, this is another special case of Pair_Relationships.

— Relationship_Depends_on_LoopN_Relationships SIC: requires that
for a relationship occurrence to exist, there is a linking path via other re
lationship types to connect its participating entity occurrences together.
It can only happen in a loopn context and is another necessary condition
for the composition of relationships. For example, in Figure 5.5, we may
have:
if E RXF
then(ERYH)A (HRZF,)

Sakai [1978] states that if RX is transitively dependent on RY and RZ
and it lacks (nonkey) attributes, it is redundant and could be eliminated.
However, Segev [1987] argues that some relationships that appear to be
redundant may, in fact, carry semantic information and thus cannot be
eliminated without losing information content, and even if it is redundant,
there may be a choice of which relationships to eliminate and that this
choice should be made during physical design.

4. Intra_Condition for a Relationship Type: restricts the existence of any
occurrence(s) of the specified relationship type because of other occurrences
of the same relationship type. For example, we may have the following.

— Symmetry and Transitivity Properties of a Relationship: In the
following, entity types E and F should be in a specialization hierarchy.
A relationship type R is symmetric if the following condition is true: “if
any occurrence Occi of an entity type E is related via an R occurrence to
an occurrence Occ2 of the other entity type F, then an occurrence of the
E type, corresponding to the same super-type occurrence of Occ2, is also
related via another R occurrence to an occurrence of the F type, corre
sponding to the same super-type occurrence of Occi.” Some examples of
such relationship types are: Sibling_of, Married_to, Partner_of.

A relationship type R is transitive if the following condition is true: “if
any occurrence Occi of an entity type E is related via an R occurrence to

Appendix D. SIC Type Classification in the E-R-SIC Model 222

an occurrence Occ2 of the other entity type F, and an occurrence of the E
type, corresponding to the same super-type occurrence of Occ2, is related
via a second R occurrence to an occurrence Occ3 of the F type, then the
Occi is also related via a third R occurrence to the Occ3.” Some ex
amples of such relationship types are: Sibling_of, Ancestor_of, Supervise,
Partner_of.

— Relative Maximum Cardinality Constraint: restricts the existence
of a relationship occurrence because an occurrence of one its participating
entity type can only participate in some maximum number of occurrences
of the same relationship type.

This restriction may only apply to a specified “implicit entity subtype”
(it is a SubtypeRelative_Maximum_Cardinality Constraint). This
restriction may become weaker because there are further conditions on
the other entity type that relates to the specified entity type via the rela
tionship type (it is a Weaker_Relative_Maximum_Cardinality Con
straint). There may also be a SIC (that can be called
S ubtype_WeakerJtelative_MaximumCardinality Constraint) in
cluding both the complicated cases.

5. Group_Relationships SIC: requires that if occurrences of a group of rela
tionship types exists, there must be some conditions on the values of attributes
of those relationships or their sharing entity. For example, in Figure 5.2 or
5.3, we may have
if(ERXF)A (ERYG)
then (E.A1 compop (RY.B1 ariop RX.B2))
Or, they may depend upon many other relationships, for example, we may
have:
if(ERXF)/\ (ERYG)
then (E RZ H) V (E RS I) V

• Sufficient Conditions for the Existence of Relationship(s): requires that
given some conditions, one or more occurrences of the specified relationship type(s)
must exist. It includes some special cases that are often mentioned in the literature.

1. Totality Constraint: requires that if an entity occurrence exists, it must
participate in some minimum number of occurrences of the specified relation
ship type. A relationship type is total to one entity type if each occurrence
of the entity type must participate in at least one relationship occurrence106.
It is desirable to know an exact number (e.g., 1, 2, 5, etc.) as the relative
minimum cardinalities for entity types if there exist such SICs. The minimum
cardinality 0 is not a SIC.

‘°6Some researchers use by other terms, e.g., [Palmer, 1982] states that the relationship is “mandatory”,
and [Kim et al., 1987] states that the relationship is “obligatory”.

Appendix D. SIC Type Classification in the E-R-SIC Model 223

A relationship type may be only total to some specified “implicit entity sub
type”. That is a Subtype_Totality Constraint. A total constraint require
ment may become stronger because there are some conditions on the other
entity type that relates to the specified entity type (it is a Stronger_Totality
Constraint). There may also be a SIC (that can be called
Subtype_Stronger_Totality Constraint) including both complicating cases.

There may also some further restrictions on the relationship occurrences. For
example, a Weak_Entity SIC requires that a relationship type, via which the
weak entity type is dependent upon a regular entity type, is total to the weak
entity type and its key is fixed. A Critical_Relationship_Occurrence SIC
requires the totality constraint to the specified entity type and the existence
of exactly one critical relationship occurrence.

2. Completeness_Mapping SIC: requires that if an entity occurrence exists,
it must be related to occurrences of the other entity type via the specified
relationship type ([Webre, 1983]).

A relationship type may be only complete to some specified “implicit entity
subtype”. That is, Subtype_Completeness_Mapping SIC. A complete
mapping requirement may also become weaker because there are some condi
tions on the other entity type that relates to the specified entity type (it is
a Weaker_Completeness_Mapping SIC). There may also be a SIC (that
can be called Subtype_Weaker_Completeness_Mapping SIC) including
both complicating cases.

3. Either_Existence_Relationship SIC: requires that if one entity occurrence
exists, it should participate in at least one (or some specified number of) occur
rence(s) among a group of relationship types. For example, in a star context,
Figure 5.3, each E occurrence may be required to participate in at least one
relationship occurrence among the relationship types RX, RY and RZ.

There are some variants of this type, e.g., the cases considering an “implicit en
tity subtype”, different quantitative requirements on relationship occurrences,
or having further restrictions. For example, in Figure 5.3, each E occurrence
may be required to participate in at least either one RX occurrence, two RY
occurrences or four RZ occurrences.

4. Relationship_Trigger_Relationship SIC: requires that if some relation
ships existed in the past (and no longer exist now), other relationships must
exist. For example, in Figure 5.2, we may have:
if E RY G previonsly
then ERXF

5. Entity_Value_Trigger_Relationship SIC: requires that if the value(s) some
attribute(s) of an entity occurrence satisfied a certain condition in the past

Appendix D. SIC Type Classification in the E-R-SIC Model 224

(and no longer satisfy now), the entity occurrence must participate in some
minimum number of occurrences of the specified relationship type. For exam
ple, we may have:
if E.Al comp-op vi previously
then ERXF

• SIC Types for Entities without Explicit Relationships.

— SIC Types for Entities in a Specialization Hierarchy.

1. Exclusion between Entity Types: requires two entity types to be
exclusive.

2. Entities_Intersection Special SIC: requires that given a group of en
tity types El, E2, ..., En having a common candidate key Ekey, for each
of El, E2, . . . EnJ entity types to have any occurrence with the same
candidate key value, there should be an occurrence with this candidate
key value in the specified entity type En. That is, “if (Ei.Ekey= Value) A
(E2. Ekey= Value) A ... then En. Enkey= Value “. It is a necessary condition
for En = El fl E2fl

3. Entities_Union Special SIC: requires that given a group of entity types
El, E2, ..., En having a common candidate key Ekey, for any occurrence
in the specified entity type En, there should be at least one corresponding
occurrence with the same candidate key value in one of other entity types.
That is, “if E.Ekey_— Value then (El.Ekey=Value) V (E2.Ekey= Value) V

“. It is a necessary condition for En = El U E2U

— Association Abstraction SIC: requires that a set occurrence cannot be
deleted if it is not empty; two kinds of derived attributes in a set — the
indexing attribute and the key of the indexing entity type — cannot be up
dated; and some formulas involving aggregate functions on attribute(s) of the
member entity type although there is no implicit relationship type member_of.

Appendix E

Examples of Heuristics

This appendix presents some heuristics that can be used to reduce the effort required to
use the SIC elicitation subsystem. The listing shows only some examples; it is far from
complete.

1. Two heuristics may be applied to elicit oldnew transitional constraints.

• If an attribute is numeric, the subsystem may inquire whether it is monoton
ically increasing or decreasing on update.

• If an attribute has an enumerated value set, there may be update transitions
that are not allowed. For example, the value of Marriage status cannot be
updated from “single” to “widowed”, or divorced”, nor conversely.

2. An attribute with the “date” data type may be unchangeable. More precisely, we
should state that historical dates are usually unchangeable. However, the subsystem
needs to know the meaning of the date in order to know whether it is historical.

3. Based on domains of attributes, the subsystem may suggest some possible entity
SICs, e.g., Formula SICs, to the database designer. For example, if an entity
has several attributes with the same domain “money”, there may be a formula
SIC involving these attributes. However, without application domain knowledge,
the subsystem would have to ask the database designer to confirm whether such a
constraint is needed and provide the necessary details.

4. The subsystem may have a lexicon containing the names of common relationship
types with symmetry or transitivity property. However, the subsystem still needs to
ask the database designer to confirm it. For example, the relationship “Married_to”
is usually symmetric. However, if it is between two entity types Woman and Man
(or Wife and Husband), it would not be symmetric. Another example is that the
relationship Supervise (or Manage) is usually transitive. However, if the database
designer in fact defines the relationship to be “directly supervise (or manage) “, it
would not be transitive.

5. A heuristic to detect excluding relationships or time sequencing between relation
ships is:

225

Appendix E. Examples of Heuristics 226

If two relationships, which are adjacent in an E-R diagram, are named by the
database designer using the same verb phrase, they usually imply exclusion or
even time sequence among them. For example, the names of the relationships,
Customer..OwnsCar, Dealer.Owns..Car are created by using the same verb phrase
“Owns “.

If those relationships (e.g., Customer_Owns_SavingAccourit and
Customer_Owns_CheckingAccount) are not exclusive nor have time sequencing, it
may be the following case.

6. A heuristic to detect a Groupd{elationships SIC is:
Suppose that an entity type is connected to a group of relationship types. Examine
attribute names, but omit their prefixed entity or relationship names. If there is
a common attribute name other than Id or Name among either (1) the sharing
entity type and these relationship types or (2) the sharing entity type and its re
lated other entity types, it is likely that there is a formula between those attributes.
An example is Inventory. Qty— sum (Supply. Qty) — sum(Sales. Qty) in the context
of two relationship types, Supply and Sales, sharing the same entity type, Inven
tory. Another example is Customer.AccountBalance = SavingAccount.Balance +
CheckingAccount.Balance in the context of a Customer owning two entity types,
SavingAccount and CheckingAccount.

Appendix F

Verification of Aggregate Attribute SICs and Cardinalities

This appendix discusses the extent to which we can verify SICs involving aggregate
attributes, and provides algorithms to verify absolute and relative cardinalities given by
the database designer.

F.1 Simple Tests on Aggregate Attribute SICs

Suppose that we have some aggregate attribute SICs, each of which is a simple assertion
to restrict the aggregate value of an attribute. At best, we can only have some simple
tests, such as:

Suppose E.A is an attribute between vi and v2; avg(E.A) is specified to be
between MinAvg and MaxAvg; sum(E.A) is specified to be between MinSum
and MaxSum; the maximum absolute cardinality of E is specified as Abs C-
max. The following should be true:
vi MinAvg MaxAvg v2;
vi MinAvg MinSum MaxSum (AbsCmax x MaxAvg) (AbsCmax
x v2).

If there is a SubtypeAggregate_Attribute SIC on E.A, the following
should be true:
vi subtype’s mm subtype’s max v2;
subtype’s MaxSum < MaxSum;
subtype ‘s count(E) < Abs Cmax

The general Interdependent..Aggregate_Attributes, Aggregate_Attribute_
Formula, SubtypeAggregate_Attribute..Formula, etc. cannot be verified concep
tually.

227

Appendix F. Verification of Aggregate Attribute SICs and Cardinalities 228

F.2 Algorithms for Verifying Cardinalities

1. Verification of “traditional” relationship cardinalities:

• A relative minimum cardinality of 0 is not a constraint. Therefore, if a SIC
exists, for each involved entity type in a relationship, its relative cardinalities
must be:
1 relative minimum cardinality relative maximum cardinality.

• Suppose that the relative maximum cardinality of entity type E through a
relationship R to entity type F is Cmax, and absolute maximum cardinality
of F is Ab..max. Then, Cmax Ab.max.

• A set of cardinality constraints may be inconsistent in the loop-2 and loop-n
contexts.
Given a group of relationship and entity types with their relative cardinalities,
do the following check.

(a) Associate each entity type Ei with a special variable Ei#.
(b) For each relationship type Ri, do the following. Suppose that Ri connects

two entity types Ej, Ek; and the minimum and maximum cardinalities of
Ej and Ek in Ri are, respectively, (Cminj, Cmaxj) and (Cmink, Cmaxk).
That is,

Ej(Gminj, Gmaxj) Ri Ek(Gmink, Gmaxk,).

— If Cmaxj is not ““ and Cmink is not 0, construct the following in
equality:
Cmaxj x Ej// Cmink x Ek#

— If Cmaxk is not “<“ and Cminj is not 0, construct the following in
equality:
Cmaxk x Ek# Cminj x Ej

(c) Solve all the above inequalities for the special variables Ei#’s under the
restriction of each Ei# > 0.

(d) If there is no solution, the cardinalities are inconsistent07.

107 Observe these inequalities. If the cardinaiities are consistent, the designed database can be pop
ulated. Then there is at least one solution for these inequalities: assigning to each Ei# the value
corresponding to the number of occurrences of Ei in the database. Formally, Lenzerini and Nobili
([1987]) have proved that there exist solutions for all those inequalities if and only if the cardinalities
are consistent. Note that their inequalities contain another set of variables R# because they prove that
it is true for any degree of relationships (not restricted to binary relationships). However, in the case of

Appendix F. Verification of Aggregate Attribute SIGs and Cardinalities 229

• Cardinality constraints can interact with other SICs. A special interaction is
with a Subset_SIC. Suppose we have relationship type “RX C RY” between
the entity types, E and F. Then, for either E or F, both minimum cardinality
and maximum cardinality in RX should he less than or equal to those in RY,
respectively. If either E or F has (1,1) in both RX a.nd RY, RX and RY would
contain the exactly same occurrences108.They should be merged and a new
relationship type will be created.

• Verification of Completeness_Mapping SIC: Suppose that a relationship
type R is specified to be complete relative to an entity type E. Certainly
it is also complete relative to its other entity type F by the symmetry of
this SIC. The relative maximum cardinality of E in R must be equal to the
absolute maximum cardinality of F. Otherwise, they are inconsistent. There
is a similar condition between the relative maximum cardinality of F and
absolute maximum cardinality of E.

2. Verification of Stronger, Weaker, and Sub-type Cardinalities: When we
consider cardinalities with regard to Subtype_Totality Constraint (SubGmin),
SubtypeRelative..MaximumCardinality Constraint (Sub.. Cmax),
Stronger_Totality Constraint (Stronger..Cmin),
Weaker_Relative_Maximum_Cardinality Constraint (Weaker.. Cmax),
Subtype_Stronger_Totality Constraint (S’ub..Stronger Cmin), and
SubtypeWeakerJ{elativeMaximumCardinality Constraint (Sub.. Weaker
C’max), verification becomes complicated.

• The following should be true if these cardinality constraints are not redundant
and are consistent with each other.

— For the same “subtype”,
1 Cmin < Sub..Cmin SubCmax < Cmax

— For the same “further restriction”,
1 Stronger_Cmin < Weaker_Cmax,
Stronger..Cmin < Cmin,
Weaker_Cmax < Cmax.

binary relationships, if we can assure that each pair of the relative maximum cardinality is greater than
or equal to relative minimum cardinaiity, those inequalities containing the R# variables can be reduced
to our inequalities. Lenzerini and Nobili have also proposed another way to detect inconsistency for
cardinajities by discovering cycles with special “weights” in an E-R diagram.
‘°8Prove it by contradiction as follows. We already know that RX C RY. Now suppose that entity type

B has (1,1) in both relationship types, RX and RY. If an RY occurrence, via which an occurrence el of
B type connects with an occurrence fi of F type, does not belong to RX type, then el must connect
another occurrence f2 of F type via the relationship type RX. Otherwise, it would violate the totality
constraint of RX to B. Then, by RX C RY, el must also connect with f2 via the relationship type RY.
It would violate the maximum constraint of RY relative to E unless fi = f2. So, we would also have RY
çRX.

Appendix F. Verification of Aggregate Attribute SICs and Cardinalities 230

— For the same “subtype”, and the same “further restriction”,
Stronger_ Cmin< Sub_Stronger_ Cmin Sub_ Weaker_ Cmax< Weaker_ Cmax,
SubStronger..Cmin < SubCmin,
SubWeakerCmax < Sub.Cmax.

• In the contexts of loop-s, loop-n, if cardinalities have been specified for “im
plicit subtype(s)”, the Lenzerini and Nobili’s inequalities should be tested by
using the proper cardinality values.

— For example, in the context of ioop-2 where two relationship types RX
and RY exist between two entity types E and F, the database designer
may consider an implicit subtype of E, and give the Sub.Cmin, Sub_Cmax
of RX and RY relative to F, StrongerCmin, StrongerCmax of RX and
RY relative to F. There may be potential inconsistencies between these
cardinalities.

— Another example in the context of loop-n has a loop linking entity types
F, F, G and H, through four relationship types RX, RY, RZ and RS,
consecutively. The database designer may consider implicit subtypes of
adjacent entity types, F and F. Now the proper values for testing the
above inequalities would be:

Sub_StrongerCmin, Sub_WeakerCmax of RX relative to F and F,
SubCmin, SubCmax of RY relative to F,
Stronger_Cmin, Weaker_Cmax of RY relative to G,
Cmin, Cmax of RZ relative to G, and H,
Stronger_Cmin, Weaker_Cmax of RS relative to H,
Sub_Cmin, SubCmax of RS relative to F.

Appendix G

Consistency and Nonredundancy Rules for SIC Elicitation Subsystem

The following rules could be stored in an elicitation subsystem for capturing SICs. These
rules are used to expedite the elicitation and verification procedure. By using them,
the subsystem could sometimes avoid the need to invoke a sophisticated logic verification
algorithm. In other cases, they eliminate the need to ask the database designer to confirm
some SICs that are “obviously” inconsistent or redundant. The listing here is illustrative
rather than complete. In the following, E, F, G, H, I, ... are used to denote entity types.
The R, Ri, R2, R3, ... are used to denote relationship types.

1. If an attribute is declared to be non-changeable (i.e., a Nonvolatility constraint)
there should be no other update SICs asserted for it.

2. A composite key constraint is consistent with domain constraints if each component
attribute of a composite key is declared to be not-null.

3. Incidence constraints are always needed and unlikely to be inconsistent with other
SICs. We need not verify them for consistency and non-redundancy.

4. A Relationship_Depends_on_Relationship SIC could be redundant or could
be reduced to another SIC if any involved relationship is total. If there is a negative
condition asserted for the involved relationships, specifying this type of SIC would
be inconsistent.

• If Ri is total to E, the SIC, “if E Ri F then F R2 G”, is subsumed by the
totality constraint R2 total to E. On the other hand, if R2 is total to F,
this SIC is trivially true.

• The SIC relative to F, “if E Ri F then E R2 G”, or “if F R2 G then E Ri
F”, is inconsistent with an Exclusive_Relationship SIC, R1IR2, that is “if
F Ri F then -i(’E R2 G,)”.

• If we have two SICs relative to F, “if F Ri F then E R2 G” and “if F Ri F
then F R3 H”, they are inconsistent with either an Exclusive_Relationship
SIC

— R2IR3, or a NotAnd_Re1ationship SIC — “-((E Ri F) A (F R2
G) A (E R3 H))”.

231

Appendix G. Consistency and Nonredundancy Rules for SIC Elicitation Subsystem 232

• If we have two SICs, “if E Ri F then E R2 G” “E R2 G then E R3 H”,
they are inconsistent with a Not_And_Relationship SIC, “—i((E Ri F) A
(E R2 G) A (E R3 H))”.

• Both “if with_respect_to E, B Ri F then with_respect_to E, B R2 F” and “if
with_respect_to F, E Ri F then with_respect_to F, E R2 F” become redundant
if a SubsetJtelationship SIC, Ri C R2, i.e., “if B Ri F then E R2 F” has
been specified.

• If we have further restrictions, they may he redundant because they may be
implied by another SIC. For example, the further restriction “(F R3 H)” in
the SIC, “if E R2 G then (B Ri F) A (F R3 H)”, is redundant if there is
another SIC to require “if B Ri F then F R’ H”.

• If Ri is total to B, the SIC, “if B Ri F then (B R2 G) V (B R3 H)”, reduces
to an Either_Existence_Relationship SIC “(B R2 G) V (B R3 H) “. This
SIC is also subsumed by either of the following:
— R2 total to B (i.e., V E, R2, E R2 G),
— R3 total to E (i.e., V E, R3, E R3 H),
— “if B Ri F then E R2 G”,
— “if ER1 FthenER3H”.
This SIC is inconsistent with a set of two Exclusive_Relationship SICs
R1IIR2 j, R1WR3.

5. An Exclusive_Relationship SIC, R1IIR2, is inconsistent with the set of totality
constraints — both Ri .4 R2 are total to B. If RiIR2 and only one (say Ri) of
the relationships is total to E, the database designer needs to disconnect the other
relationship (i.e., R2) type from E since it becomes unrelated to B; otherwise, they
are inconsistent.

6. An Exclusive_Occurrence SIC becomes redundant when an Exclusive_
Relationship SIC has been specified. However, it can exist when the set of totality
constraints, both Ri R2 are total to E, has been specified.

7. A NotAndRelationships SIC, ‘-i((E Ri F) A (B R2 G) A (B R3 H))”,
becomes redundant when any pair of the involved relationships is exclusive, i.e.,
R1WR2, R2IR3, or R3IRi. It is inconsistent with the set of totality constraints
all involved relationships Ri, R2, and R3 are total to E. If only one relationship,
say R3, is total, it reduces to a Not_And_Relationship SIC among the remain
ing ones (or an Exclusive_Relationship SIC if there are two remaining). It is
not meaningful that only one of the relationship types (say, R3) is not total since
“—R3” would imply that the R3 relationship type should be disconnected.

8. An Either_Existence_Relationship SIC, “(B Ri F) V (B R2 G) V (E R3 H)”,
becomes redundant when any one of these involved relationship is total to E. It is
also redundant when a proper subset of these relationships has been declared to

Appendix G. Consistency and Nonredundancy Rules for SIC Elicitation Subsystem 233

have an Either_Existence_Relationship SIC. A S ubtypeEither_Existence
Relationship SIC, “if (E.Ai compop vi) then (ER1 F) V (ER2 G) V (ERSH)”,
becomes redundant when the related sub-Cmin (the subtype minimum cardinality)
of any one of these involved relationships to E is greater than or eqilal to 1. It
is inconsistent with the set of three Relationship_Depends_on_Entity_Value
SICs:
“if E Ri F then —‘ (E.Ai comp_op vi) “,

“if E R2 G then —‘ (E.Ai compop vi)”,
and “if E R3 H then -i (E.Ai compop vi)”.

9. A Pair_Relationships SIC, “if (E Ri F) then if ((E R2 G) then (F R3 H))”,
is redundant when R3 is total to F. When R2 is total to E, it reduces to a Re
lationship_Depends_on_relationship SIC, “if (E Ri F) then (F R3 H)”. This
SIC may be redundant or needs to be modified when there are some Relation
ship_Depends_on_Relationship SICs. For example, if we have “if (E Ri F)
then (F R3 H)”, the above SIC becomes redundant; if we have “if (E Ri F) then
(E R2 G)”, the above SIC reduces to “if (E Ri F) then (F RS H)”. However, in
case that there are further restrictions on R2 and R3, the consistency needs to be
checked during the consultation and is also hard to verify.

10. A Relationship_Before_Relationship SIC, “if E Ri F then (E R2 G) before”,
is redundant when R2 is total to E. It is not meaningful when Ri is total to E.
If the database designer specifies a time sequence cycle among some relationships
(e.g., “if E Ri F then (E R2 G) before”, “if E R2 G then (E R3 H) before”, “if
E R3 H then (E Ri F) before”), the insertion of all of the relationships can only
performed in a single transaction. It is possible that the database designer has
made a mistake to assert the logical meaning of these relationship types. This
type of SIC can exist when either a Relationship_Depends_on_Relationship,
Subset_Relationship SIC, or an Exclusive_Relationship SIC, etc. has been
specified for the related relationships Ri and R2.

11. A Relationship_Not_Before_Relationship, “if (E Ri F) then (E Rn Y) be
fore” is inconsistent with the totality constraint that Rn is total to E, or “if E Ri
F then (E Rn Y) before”, or a set of SICs: “if E Ri F then (E R2 G) before”, “(E
R2 G) then (E R3 H) before “, “if E R3 H... “, “if E Ri X then E Rn Y before “. It
is not meaningful when Ri is total to E. However, it is allowed to exist when either
a Relationship_Depends_onRelationship, Subset_Relationship SIC, or an
Exclusive_Relationship SIC, etc. has been specified for the related relationships
Ri and R2.

12. If a Group_Relationships SIC is specified, the verification is complicated.

• The SIC, “if (E Ri F) A (E R2 G) then (E R3 H)”, is redundant when R3 is
total to E. It reduces to “if (E R2 0) then (E R3 H)” when Ri is total to E. In

Appendix G. Consistency and Nonredundancy Rules for SIC Elicitation Subsystem 234

addition, when both Ri and R2 are total to E, it is subsumed by a totality con
straint — R3 is total to E. It is inconsistent with a Not_And_Relationships
SIC, “—((E Ri F) A (E R2 G) A (E R3 H))”.

• Two SICs, “if (E Ri F) A (E R2 G) then E R3 H” and “if (E Ri F) A (E
R2 G,) then E R4 I”, are inconsistent with R3IR4, or “—i((E Ri F,) A (E R2
G) A (E R3 H) A (E R I))”.

• Two SICs, “if (E Ri F) A (E R2 G) then (E R5 J)” and “if E R5 J then E
R6 K”, are inconsistent with “-‘ ((E Ri F) A (E R2 G) A (E R5 J) A (E R6
K))”.

• If this type of SIC has the disjunction of assertions in the “then” part, it would
be further complicated and needs a case analysis to verify consistency.

— The SIC, “if (E Ri F) A (E R2 G) then (E R3 H) V (E R7 L)”, is
inconsistent with a set of two Not_And_Relationships SICs: “— ((E
Ri F) A (ER2 G)A (ER3H))” and “-((ERi F) A (ER2 G) A (ER7

— Two SICs, “if (E Ri F) A (E R2 G) then (E R3 H) V (E R7 L)”, and “if
(E Ri F) A (E .112 G) then (E R8 M) V (E R9 N)” are inconsistent with ei
tlier a set of four exclusive relationships: R311R8, R3WR9, R7IR8, R7IR9;
or a set of four Not-And-Relationships SICs:
“-((E Ri F) A (E R2 G) A (E R3 H) A (B R8 M))”,
“—i((E Ri F) A (E R2 G) A (E R3 H) A (E R9 N))”,
“-‘((ER] F) A (E R2 G) A (E R7 L) A (E R8 M))”
and “—i((ER1 FA (ER2 G) A (ER7L)A (ER9N,))”.

— Similarly, two SICs, “if (E Ri F) A (E R2 G) then (E R3 H) V (E R7
L)”, and “if (B Ri F) A (E R2 G,) then (E R9 N)” are inconsistent with
either a set of two exclusive relationships: R3 jR9, R7IR9; or a set of two
NotAnd_Relationships SICs:
“—i ((E Ri F) A (B ff2 0) A (E ff9 H) A (E R9 N))”,
and “-i((E Ri F) A (B R2 G) A (E R7 L) A (B R9 N))”.

— Three SICs, “if (ER1 F) A (E R2 G) then (E R3 H) V (E R’7 L)”, “if E
R3 H then E R9 N”, and “if B R7 L then B R5 J”, are inconsistent with
a set of two Not_And_Relationships:
“-((ERJF)A(ER2G)A(ERSH)A(ER9N))”,
and “—((E Ri F) A (E R G) A (E R7 L) A (E R5 J))”.

13. A Relationships_Join SIC, “if (E Ri F) then (E R2 H) A (H R3 F)”, is not

redundant even if either R2 or R3 is total to the related entities. It is inconsistent
with the Exclusive_Relationship SIC among any pair of Ri, R2, ff9.
If we have this SIC, two Relationship_Depends_on_Relationship SICs, “if (B
Ri F) then (B R2 H)” and “if (B Ri F) then (H R3 F) “, are redundant.

Appendix G. Consistency and Nonredundancy Rules for SIC Elicitation Subsystem 235

14. The Symmetry, and Transitivity Properties of a relationship would not be
inconsistent with other SICs in the above.

15. If Ri is total to E, a Relationship_Depends_on_Entity_Value SIC, “if (E Ri
F) then (E.A comp_op v)” reduces to “(E.A comp_op v)”.

16. A Weak Relationship SIC or a weak entity type requires the presence of the
specification totality constraints.

Appendix H

SIC Reformulation and Decomposition Algorithms

This appendix proposes algorithms for reformulating general SICs in the simplified format
of Appendix C and decomposing them, if necessary, into operation-dependent sub-SICs
as defined by the Representation model. Before applying the algorithms, the subsystem
takes the responsibility of writing all general SICs in the simplified format of Appendix C.
The if ... then ... rule format should be used if possible. For example, although the
format “‘—‘ P V Q”is equivalent to “if P then Q” in logic, the rule format should be
used. If a general SIC is originally written by using a nested rule (i.e., if ... then if
• . . then ...), it should be rewritten by using only one pair of “if” and “then” keywords.
Decomposed sub-SICs have the same certainty factor as their general SICs.

H.1 Find the Relevant Object and Operation Components

1. If the system variable Current_time appears in a general SIC, a sub-SIC for Cur
rent_time on update will usually be required. However, there are two following
exceptions because the increase of Current_time will never violate the SIC.

(a) The SIC is in rule format and Current_time appears on the left hand side of
“s” in the “if” part.

(b) The SIC is not in rule format (or the SIC is in rule format but Current_time
is in the “then” part), and Current_time appears on the left hand side of ““.

2. If an attribute (say E.A) is mentioned in a SIC, the SIC is usually relevant to it
on update. However, if any of the following cases occurs, the SIC would j be
relevant to it.

(a) The attribute has been declared to be unchangeable (i.e., there is a SIC “if
E.A is_to_be_updated then false”).

(b) The SIC contains a pair of new and old special functions with arguments of
other attributes, not this attribute.

(c) The SIC contains the keyword is_to_be_deleted.

(d) The attribute is in the “then” part and the modifier “before” is attached to it.

236

Appendix H. SIC Reformulation and Decoinposition Algorithms 237

(e) The attribute is in the “then” part and there is a modifier “previously” in the
“if” part.

(f) The attribute is a candidate key and is referenced by a special formula in the
“if” part of the SIC. This formula involves the same attribute name of another
entity type (e.g., E.A=F.A) to link the specific mentioned entity type occur
rences (e.g., E and F that corresponds to the same physical entity occurrence
(e.g., G) in a specialization hierarchy.

3. Suppose that a general SIC has been found by the above steps to be relevant to an
attribute.

(a) Suppose that the relevance of the SIC to the attribute is because the
attribute is an argument of an aggregation function. In general, the SIC is
also relevant to its associated entity or relationship on insertion. However,
if any of the following cases occurs, the SIC would be relevant to the
associated entity or relationship on insertion.

i. The SIC is the one that declares the attribute to be unchangeable.
ii. The SIC contains a pair of new and old functions.

iii. The SIC contains an “previously” modifier in its “if” part or a “before”
modifier in its “then” part.

In addition, if the attribute belongs to an entity a.nd the SIC is also relevant
to the insertion of one mentioned relationship in which the entity participate,
the SIC is relevant to the entity on insertion.

(b) Suppose that the SIC is relevant to the attribute because the attribute is an
argument of an aggregation function. In general, the SIC is relevant to its
associated entity or relationship on both insertion and deletion. However, if
the assertion including the attribute is in the form of “agg_fcn(E.A) comp_op
arithmetic_simple_expression”, where “agg_fcn” is an aggregate function and
“comp_op” is a comparison operator (for a comp_op (e.g., “>“) prefixed with
a “not” or “—i”, first properly replace the comparison operator (e.g., ““))
the following would be exceptions:

i. Suppose that the aggregate function is either max or count:
• If the comparison operator is either “>,“, the SIC is only relevant

to the mentioned entity/relationship on deletion, not insertion.
• If the comparison operator is either “<,“, the SIC is only relevant

to the mentioned entity/relationship on insertion, not deletion.
ii. Suppose that the aggregate function is mm:

• If the comparison operator is either “>,“, the SIC is only relevant
to the mentioned entity/relationship on insertion, not deletion.

• If the comparison operator is either “<,<“, the SIC is only relevant
to the mentioned entity/relationship on deletion, not insertion.

Appendix H. SIC Reformulation and Decomposition Algorithms 238

iii. If the aggregate function is sum and if it can be assumed that the attribute
values to be summed are all positive, the sub-SICs are the same as the
case of either max or count.

In all other cases (e.g., the comparison operator is “=“ or “f’, or the aggregate
function is “avg”), the SIC is relevant to its associated entity or relationship on both
insertion and deletion. However, similarly, if the attribute belongs to an entity and
the SIC is also relevant to the insertion of one mentioned relationship in which the
entity participate, it is pj relevant to the entity on insertion.

4. Suppose that a SIC contains the keyword “is_to_be_deleted”. The SIC is only rele
vant to the entity or relationship that is to be deleted.

5. Suppose that a SIC does not contain the keyword “is_to_be_deleted”.

(a) Consider its mentioned relationships.

i. Suppose that in the “if” part of a SIC there is an assertion containing a
relationship (say R). In general, the SIC is relevant to the relationship on
insertion. However, if any of the following cases occurs, the SIC would be
relevant to it on deletion, not insertion.

• A “not” or “—i” has been attached to the assertion.
• An “d at_most” numerical quantifier has been attached to the relation

ship R or there is a “count(R) < Number” or “count(R) Number”
assertion, but no “not” or

• A modifier “previously” has been attached to the assertion.
If there is an “d exactly” numerical quantifier or “count(R)=Number”
assertion, the SIC would be relevant to the relationship on both insertion
and deletion.

ii. Suppose that the “then” part of a SIC or a SIC, which is not in rule format,
contains an assertion referencing to a relationship. In general, the SIC is
relevant to the relationship on deletion. However, if there is a “before”
modifier attached to it, or if there is an “previously” modifier appearing
in the “if” part of the SIC, this SIC is not relevant to it. In addition,
if any of the following cases occurs, the SIC would be relevant to it on
insertion, not deletion.

• A “not” or “—i” has been attached to the assertion.
• An “ at_most” numerical quantifier has been attached to the rela

tionship or there is a “count(R) < Number” or “count(R) Number”
assertion, but no “not” or

• A “quantifier has been attached to the relationship, but no “not”
or —

Appendix H. SIC Reformulation and Decomposition Algorithms 239

If there is an “ exactly” numerical quantifier or “count(R)—_ Number”
assertion, the SIC would be relevant to the relationship on both insertion
and deletion.

(h) Consider its mentioned entities. If there are relationships involved in the form
of “entity_typel relationship_type entity_type2” of a SIC, do not consider the
non-sharing entities. The sharing entities are those entities which:
— appear in at least two assertions as a participant of relationships or as an
owner of an attribute in either “if” or “then” part if there is no “with_respect_to”
modifier; or

are only those in the “with_respect_to” modifiers.
For example, in the case of “if (E RX F) then (E RY G)”, E is a sharing entity,
F and G are not. In the case of “if (E RX F) then (E RY H) A (F RZ H)”,
all entities E, F, and H are sharing entities. In the case of “if with_respect_to
E, (E RX F) then with_respect_to E, (E RY F)”, E is a sharing entity, but F
is not. If those involved entity types are in the same specialization hierarchy,
the sharing entity types may be different in syntax. For example, assume that
some mangers do not supervise employees, we may have
“if with_respect_to Manager, (Manager Supervise Employee)
then with_respect_to Employee, —l (Employee Participate Union)”
It means that if a manager supervises employee(s), he (she) cannot, as an
employee, participate in a union. Here the “sharing” entity type Manager in
the relationship Supervise corresponds to Employee in the relationship Par
ticipate. A more complicated case would need a list of sharing entity types
in some order and their corresponding sharing entity types in the same order.
For example,
“if with_respect_to (Teacher, Student), (Teacher Instruct Student)
then with_respect_to (Worker, Manager), —‘ (Manager Supervise Worker)
This is an exclusive occurrence example which means that “if a teacher in
structs a student, the student cannot, as a manager, supervise the teacher as
a worker” (but the other way around may be permitted). Here the sharing en
tity types are: Teacher corresponding to Worker, and Student corresponding
to Manager.

i. Suppose that in the “if” part of a SIC there is an assertion referencing
to an entity. In general, the SIC is relevant to the entity on insertion.
However, if the SIC is relevant to the insertion of a relationship in which
the entity participates, the SIC is relevant to the entity on insertion.

ii. Suppose that the “then” part of a SIC or a SIC, which is not in rule format,
contains an assertion referencing to an entity. In general, if the assertion
is not on its attribute(s), the SIC is relevant to the entity on deletion.
If any of the following cases occurs, the SIC would be relevant to it on
insertion, not deletion. However, if the SIC is relevant to the insertion
of a relationship in which the entity participate, it is not relevant to the

Appendix H. SIC Reformulation and Decomposition Algorithms 240

insertion of the entity; similarly, if the SIC is relevant to the deletion of
a relationship in which the entity participate, it is not relevant to the
deletion of the entity.

• A “not” or “-“ has been attached to the assertion.
• An “ at_most” numerical quantifier has been attached to the entity or

there is a “count(R) < Number” or “count(R) Number” assertion,
but no “not” or

• A ‘V” quantifier has been attached to the entity, but no “not” or

(c) If there is a SIC including an aggregate function because of the natural as
sociation or indexing derived set association, the SIC is also relevant to the
entity, as a set object, on deletion.

6. Suppose that by the above steps, a general SIC is found to be relevant to the
insertion or deletion of a relationship R or entity E. If its primary key is also
explicitly mentioned in the SIC, skip this step. Otherwise, do the following.

(a) Suppose that the SIC only contains attributes of the relationship type R or en
tity type E. In general, we need not consider the primary key update problem.
However, there is an exception. If there is a keyword “is_to_be_deleted”, the
SIC is relevant to any of the key attributes of the relationship R or entity E
on update. The proper SIC name (refer to Appendix H.4) should be recorded
in its “associated_PKSIC_D” predicate.

(b) Suppose that the SIC also contains attributes of other than the relationship
type R or entity type E; or contains assertions directly referencing R or B.

i. If the SIC is relevant to the insertion or deletion of the relationship R,
it would also be relevant to the update of any of its key attributes that
relates to its sharing entities. The proper SIC name (see Appendix H.4)
should be recorded in its “associated_PKSIC_I” or “associated_PKSIC_D”
predicate (see Appendix B.2). It is not relevant to the update of the
relationship’s key attributes that relate to non-sharing entities.

ii. If the SIC is relevant to the insertion or deletion of the entity B, it would
be also relevant to the update of any of its primary key attributes. The
proper SIC name (see Appendix H.4) should be recorded in its “associ
ated_PKSIC_I” or “associated_PKSIC_D” predicate.

H.2 Write the Proper Precondition and Predicate Components

1. If there is any aggregate function with the attribute E.A or R.A as an argument,
properly attach subscripts to the entity or relationship owning the attribute. That
is, suppose agg_fcn is an aggregate function, do the following (similarly, for the
R.A).

Appendix H. SIC Reformulation and Decomposition Algorithms 241

• change “agg_fcn(E.A)” to “agg_fcn(Ei .A) “;

• change “agg_fcn(E.A) comp_op arithmetic_simple_expression involving E.A “)
to “agg_fcn({Ei.A E1.A E0.A}) comp_op arithmetic_simple_expression in
volving E0 . A “.

2. Suppose that the special predicate unique is used.

• If it contains only one argument, e.g., “unique(E.A)”, change it to
“count({Ei I E1.A =

• If it contains more than one argument, e.g., “unique(E.A1, E.A2)”, change it
to “count({Ei I comp_atts_occ(Eo, Comp_Key, CurrentCompAtts Value),

comp_atts_occ(F1, Comp_Key, AnyCompAtts Value),
CurrentCompAtts Value=AnyCompAtts Value})=1 “,

where Comp_Key (e.g.,{E.A1, E.A2}) is a set containing those argumeilts in
the predicate unique.

3. If there is a relationship expression “Entity_Occi Rship_Occ Entity_Occ2”, e.g., “E
R F”, rewrite it for sharing entities by using a special predicate
“rship_occ_part(Rship_ 0cc, Role_Type, Sharing_Entity_ 0cc)” that is used to evaluate

whether a Sharing_Entity_Occ participates in a relationship occurrence Rship_Occ
with the Role_Type.

• If there is no “with_respect_to” modifier, the Role_Type is the same as the entity
type of F.

• If there are “with_respect_to” modifiers with a common entity type, the Role-
Type would be the entity type in these modifiers.

• If those entity types in the “with_respect_to” modifiers are different, the re
lationship expressions would be written with the same entity variable, but
different Role Types. For example, supposing that we have “if withrespectto
F, E RX F then with_respect_to G, G RY H”, the first relationship expression
would be written as “rship_occ_part(RX, “F”, F) “, the second relationship
expression would be written as “rship_occ_part(RY, “G”, F) “,

• If the entity types in “with_respect_to” modifiers are in ordered lists, there
would be two pairs of “rship_occ_part” assertions with same entity variables
taking their Role_Types in the corresponding order. For example, given “if
with_respect_to (E.F), E RX F then with_respect_to (H, G), G RY H”, we would
have the following four assertions:
“rship_occ_part(RX, “F”, F) “,

“rship_occ_part(RY, “F”, F) “,

“rship_occ_part(RY, “H”, E) “, and
“rship_occ_part(RY, “G “, F) “.

Appendix H. SIC Reformulation and Decomposition Algorithms 242

4. Omit any quantifier “V” or “s” of the SIC unless there is an “at_least”, ‘at_most”,
“exactly”, or “different” following an “3” quantifier.

5. Rewrite numerical quantifiers. That is, for all numerical quantifiers on any rela
tionship R, do the following.

• change “3 at_least Number R” to “count(R) Number”;

• change “3 at_most Number R” to “count(R) Number”;

• change ‘S exactly Number R” to “count(R,) = Number”.

A subscript may be attached to R in a later step.

6. If a “before” modifier is attached to an assertion referencing an object, apply an
old function to that object and delete the “before” modifier.

7. Suppose that a general SIC is found to be relevant to an attribute (say E.A or R.A)
by applying the algorithm in Appendix H.1.

(a) If the sub-SIC declares the attribllte to be non-updateable, the predicate would
only include “false “. All other assertions are in the precondition component
to identify the attribute.

(b) In other cases, the predicate component would usually only have the assertion
(say Q) containing the attribute (E.A or R.A) for which we are reformulating.
That is,

i. If the original general SIC contains only an arithmetic expression Q, leave
it as the predicate.

ii. Suppose that the original general SIC is in rule format.
• If Q is in the “if” part, negate it and move it to the predicate compo

nent. Leave the further restrictions (if any) on Q in the precondition
component. Negate all the original assertions in the “then” part of
the general SIC, and move them to “AND” with the precondition
component.

• If Q is in the “then” part, leave it as the predicate component, move
(but not negate) the further restrictions (if any) oii Q to “AND” with
the precondition component.

(c) If the subscript 1 has been attached to its entity or relationship no matter
whether it is attached to this attribute (e.g., agg_fcn(E1.A)) or other attributes
(e.g., agg_fcn(E1.B)) of the same entity or relationship owing to the aggregate
functions mentioned in step 1, attach the subscript 0 (i.e., E0.A) to its asser
tions other than those involving aggregate functions.

Appendix H. SIC Reformulation and Decomposition Algorithms 243

(d) If the original general constraint is to assert explicitly the equality of some
key attributes of two entity types, it should be dealt with specially. In the
precondition component of the sub-SIC for the involved key attribute of one
entity on update, the old function is used to search for the corresponding
occurrence of the other entity before updating. Its predicate component should
require the new values of the corresponding key attributes of the two entity
types to be equivalent.

8. Suppose that a general SIC is found to be relevant to a relationship R or entity E
by applying the algorithm in Appendix H.l.

(a) If the SIC only contains assertions referencing to attributes of the relationship
R or entity E, keep the original format that the system obtains from the
database designer as the precondition and predicate components of the sub-
SIC for the relationship R or entity E.

(b) Suppose that the SIC also contains assertions referencing to attributes of other
than the relationship R or entity E, or contains assertions directly on the
relationship R or entity E.

i. Suppose that the SIC is found to be relevant to the entity E on insertion.
In general, the sub-SIC for the entity keeps the original format. However,
if the assertion (say, Q) containing the entity is in the “then” part with
a “not” or “-“, rewrite the original format — negate and move the Q to
the precondition component, negate and move all other assertions in the
original “if” part to the predicate component.
Replace any “count(E)” with “ E1, count(E1}”.

ii. Suppose that the SIC is found to be relevant to the entity B on deletion.
Rewrite the original format so that the assertion containing the entity E
is in the precondition component.

iii. Suppose that the SIC is found to be relevant to the relationship R on
insertion. In general, keep the original format. However, if the “if” part
originally does not contain those “rship_occ.part”s of the sharing entities
regarding to the relationship R, add them to the precondition component
to identify this specific relationship R. If a “rship_occ_part” assertion is
originally in the “then” part with a “not” or “—‘“ attached to it, rewrite
the original format so that the assertion is in the precondition component.
Replace any “count(R)” with “ R1, count(Ri) “.

iv. Suppose that the SIC is found to be relevant to the relationship R on
deletion.

A. Suppose that there is “ different R” in the original format.
Replace ‘8 different R” with ‘8 R1, R1 R0 “.

In its precondition component, replace the relationship variable R
with R0.

Appendix H. SIC Reformulation and Decomposition Algorithms 244

In its predicate component, replace the relationship variable R with
R1.

B. Suppose that it is not the above case A, and the assertion(s) rship_occ_part
containing this relationship R is (are) in the “if” part.
Keep the original format after removing any “previously” modifier.
Replace any “count(R)” with “ R1, R1 R0, count(Ri)”.

C. Suppose that it is not the above case A, and the assertion(s) (e.g., say
Q) containing this relationship R is (are) in the “then” part.
• Suppose that for maintaining semantic integrity it is possible to find

other occurrences to replace the one to be deleted. That is, origi
nally the relationship expression does not contain an “ at_most”
numerical quantifier; and the SIC is not relevant to the all key at
tributes of the relationship. (For example, a Subset_Relationship
SIC is relevant to the whole relationship key.)
— The original assertions in “if” part are in the precondition com

ponent.
— In addition, add one copy of the assertion(s) Q containing this

relationship R variable with a subscript 0 at the beginning of the
precondition component to be in conjunction with other asser
tions.

— If originally Q is a part of further restrictions on some assertions
(say Qsome), move (but not negate) Qsome, after removing their
numerical quantifiers or count aggregate functions, to the pre
condition component. Rearrange them in a reverse order and put
them behind the assertion Q.

— Replace the assertion(s) Q (that may include the “count” aggre
gate function) in the “then” part with the one containing this
relationship variable with a subscript 1, and add the assertion “

— The further restrictions (if any) on Q are kept unchanged in the
predicate component.

For example, suppose that Qo is the assertion(s) containing R0, and
Qi is the assertion(s) containing R1. If originally we have “if Q W
then Q V QX V QY V ... “, the precondition component would be
“Qo A Q W”, and the predicate component would be “Qi V QX V
QY V ... “. If originally we have “if QW then QX A QY A Q A
QZ A ... “, where Q Y contains a numerical quantifier “ at_least”,
the precondition component would be “Qo A QY A QX A Q W”,
where QY is the QYafter removing the quantifier, and the predicate
component would be “Qi A QZ A ... “.

• Suppose that it is not possible to find other occurrences to replace
the one to be deleted.

Appendix H. SIC Reformulation and Decomposition Algorithms 245

— Move (but do not negate) Q and all its further restrictions to the
precondition component.

— If after doing the above, we find that the predicate component
contains only the assertion “false”, negate all the assertions in
original “if” part and move them to the predicate component.

v. Although in the above we have mentioned placing an “a” quantifier on
a variable with a subscript 1, an “a” quantifier on a variable in other
cases is optional. Without an explicit quantifier, an “s” quantifier can
be automatically assumed on any variable in that assertion. We may
explicitly express the quantifier just for clarity. No explicit quantifier
need be placed on the object for which we are writing precondition and
predicate components. We may place an explicit “s” quantifier on an
unknown variable when it is its first time to be included in any assertion.
For example, if we are writing precondition and predicate components for
R and we need an assertion rship.occ...part(R, “E”, E), we may place an
explicit quantifier on E, i.e., ‘S E”.

H.3 Suggest the Violation Action Component

1. A sub-SIC with certainty less than 100% (in a ratio scale), not 10 (supposing that
the database designer specifies 10 as the highest in an ordinal scale), “uncertain”
(in 2 levels), or fuzzy terms (e.g., “sometimes”) would have at least two alternative
violation actions: “warning” and “conditionally_reject”. However, if the database
designer has specified a certainty threshold, those sub-SICs with certainty less than
the threshold would only have one violation action — “warning”.

2. A sub-SIC with certainty 100% (in a ratio scale), 10 (if it is the highest in an ordinal
scale), or “certain” (in 2 levels) would have at least one alternative violation action

“reject”.

3. Suppose that there are only two assertions on two objects (e.g., “if (E RX F) then
(E RY G)”) in the SIC.

(a) Suppose that these two assertions are both for relationships or entities (say
RX, RY, not attributes. Both its sub-SICs would have propagation as an
alternative violation action. That is, a certain sub-SIC could have an al
ternative — ‘propagate”; and an uncertain sub-SIC could have “condition
ally_propagate “.

i. In a sub-SIC for one object, the propagated operation type is opposite
to the relevant operation of the other object found by the algorithm in
Appendix H.1.
For example. supposing that the general SIC is “if (E RX F) then (E

Appendix H. SIC Reformulation and Decomposition Algorithms 246

RY G,) “, the violation action in the sub-SIC for RX on insertion could be
“propagate(insert(RY)) “; supposing that the general SIC is “if (E RX F)
then — (E RY G,) “, the violation action in the sub-SIC for RX on insertion
could be “propagate (delete (RY))”.

ii. If there is an “ at_least” numerical quantifier attached to the assertion
containing the object to be propagated or there is a “courit(Rship Type)
Number” assertion in the sub-SIC, use the “insert_all” or “delete_all” as
the propagated operation to indicate that there are explicit quantitative
requirements when propagating to insert or delete the object occurrences.

iii. If the object to be propagated is an entity occurrence, specify into/from
which entity type this occurrence is to be inserted or deleted. That is, we
would need “propagate (insert(Ent Type, F,))” or “propagate (delete(EntType,
F))” where the Ent Type is the entity type with which E participates in a
related relationship in the sub-SIC. This Ent Type is the one appeared in an
assertion “rship_occpart(Rship pe,EntType,E)”or “ent_occ(EntType, E)”
in the predicate or precondition component of the sub-SIC.

(b) Suppose that one of the assertions is for an attribute. Similarly, the sub-SIC for
the attribute would have an alternative to propagate to insert or delete an en
tity or relationship. The other sub-SIC for the entity or relationship could have
“propagate(update(E.A, arithmetic_simple_expression))” as an alternative only
if the assertion of the attribute is “E.A = arithmetic_simple_expression”.

(c) Suppose that two assertions are both for attributes, say E.Ai and E.A2. The
sub-SIC for E.A2 (or E.Al) could have an alternative: “propagate(update(E.Al,
arithmetic simple expression_i))” (or “propagate (update (E.A2, arithmetic sim
ple expression_2)) “) only if those two assertions are
“E. Al = arithmetic_simple_expression_i”
and “E.A2 = arithmetic_simple_expression_2 “;

or there is a single assertion such as “E.Ai = E.A2”.

4. In the case that there are two alternative violation actions in a sub-SIC, ask the
database designer to choose one.

H.4 Generate the SIC Name

1. The “ObjectType, OperationType” in the SIC name can be decided by the system
after applying the above algorithms.

2. The “SICType” and “RelatedObjectTypeSet” depend on the predefined SIC types
(e.g., those in Appendix D). If there are some further restrictions on some pre
defined SIC types, in general, all the objects appeared in the further restrictions
are included in the “RelatedObjectTypeSet”. However, the entity type names need

Appendix H. SIC Reformulation and Decomposition Algorithms 247

not be included if the names of their attributes have been included. Neither would
the entity type names be included if a relationship type is mentioned and both of
its participant entity types are concerned (e.g., SubsetRelationship SIC). No
duplicate object names are included.

3. For some complicated applications, if the system finds that it cannot distinguish
two SIC names by the previous steps, a “SeqenceNo”is added.

Appendix I

Some Examples of SIC Reformulation and Decomposition

This appendix contains four examples of reformulating and decomposing general SICs.

Conditional_Value SIC:
Suppose that there are only two attributes involved, such as,

if E.A1 comp_opi vi
then E.A2 compop2 v2
where comp_opi or comp_op2 denotes =, , , <, or>.
This type of SIC is represented by the following three sub-SICs.

E.A2- U-Conditional Value-(E.Ai)
CERTAINTY certain
FOR E.A2
ON update
IF E.A1 comp.opi vi
ASSERT E.A2 comp.op2 v2
ELSE reject

E. A i-U-ConditionalValue- (E. A 2)
CERTAINTY certain
FOR E.Ai
ON update
IF E.A2 -‘ compop2 v2
ASSERT E.A1 -, compopi vi
ELSE reject

248

Appendix I. Some Examples of SIC Reformulation and Decomposition 249

E-I-CoriditionalVal’ue-(E.Al, E.A2)
CERTAINTY certain
FOR E
ON insertion
IF E.Al compopl vi
ASSERT E.A2 compop2 v2
ELSE reject

Appendix I. Some Examples of SIC Reformulation and Decomposition 250

Relationship_Depends_onltelationship involving 3 entity types:
For example, in Figure 5.2 (on page 110):
if E RXF
thenERYG
There are two decomposed sub-SICs to represent this type of SIC.

RX-I-RshipDepRship3E- (E, R Y)
CERTAINTY certain
FOR RX
ON insertion
IF E, rship_occ_part(RX, “E” ,E)
ASSERT RY, rship_occ_part (RY, “E” ,E)
ELSE reject or propagate(insert(RY))

RY-D-RshipDepRship3E- (E, RX)
CERTAINTY certain
FOR RY
ON deletion
IF E, rship_occ_part(RY0,”E”,E),

3 RX, rship_occ_part(RX, “E” ,E)
ASSERT 3 RY1, RY1 RY0,

rship_occ_part(RY1, “E” ,E)
ELSE reject or propagate(delete(RX))

Appendix I. Some Examples of SIC Reformulation and Decomposition 251

Relationship-Depends-on-Relationship involving 4 entity types:
In Figure 5.3, we may have

if E RX F
then(ERYG)V (ERZH)

RX-I-RshipDepRship4E-(E, RY, RZ)
CERTAINTY certain
FOR RX
ON insertion
IF E, rship_occ_part(RX,”E”,E)
ASSERT (RY, rship_occ_part(RY,”E”,E)) V

(RZ, rship_occ_part(RZ, “E” ,E))
ELSE reject

R Y-D-RshipDepRshipE-(E, RX, RZ)
CERTAINTY certain
FOR RY
ON deletion
IF E, rship_occ_part(RY0,“E” ,E),

RX, rship.occ_part(RX, “E” ,E)
ASSERT (RY1, RY1 RY0, rshipoccpart(RY1,”E”,E)) V

(RZ, rship_occ..part(RZ, “E” ,E))
ELSE reject

RZ-D-RshipDepRshipE-(E,RX, RY)
CERTAINTY certain
FOR RZ
ON deletion
IF E, rship_occ_part(RZ0,”E”,E),

3 RX, rship_occ_part(RX, “E” ,E)
ASSERT (3 RY, rship_occpart(RY, “E” ,E)) V

(3 RZ1, RZ1 RZ0, rship_occ_part(RZ1,”E”,E))
ELSE reject

Appendix I. Some Examples of SIC Reformulation and Decomposition 252

S ubtype..Stronger....Totality.Cardinality:
For example, in the context of Figure 5.2, we may have:

if3 RY, ERYG
then 3 atieast SnbCmin RX, E RX F,

3 RZ, FRZH

RY-I-SubStrongTotal-(E,F,RZ,RX)
CERTAINTY certain
FOR RY
ON insertion
IF 3 E, rship_occ_part(RY, “E” ,E)
ASSERT 3 RX, rship..occ_part(RX, “E” ,E),

3 F, rship_occ_part (RX, “F” ,F),
3 RZ, rship_occ_part(RZ,”F”,F),
count(RX) Sub.Lmin

ELSE reject

RX-D-S’ubStrong Total- (E, F, R Y, RZ)
CERTAINTY certain
FOR RX
ON deletion
IF 3 E, rship_occ_part (RX0,“E” ,E),

3 RY, rship_occ_part(RY, “E” ,E)
ASSERT 3 RX1, RX1 RX0,

rship_occ_part(RX1, “E” ,E),
3 F, rship_occ_part (RX1,“F” ,F),
3 RZ, rship_occ_part(RZ,”F”,F),
count(RX1) Sub..Cmin

ELSE reject

Appendix I. Some Examples of SIC Reformulation and Decomposition 253

RZ-D-SubStrong Total- (E, F, RY, RX)
CERTAINTY certain
FOR RZ
ON deletion
IF 3 F, rship_occ_part(RZ0,“F” ,F),

3 RX, rship..occ_part(RX, “F” ,F),
3 E, rship_occ_part(RX,”E” ,E),
3 RY, rship..occpart(RY,”E”,E)

ASSERT 3 RZ1, RZ1 RZ0,
rship_occ_part(RZ1, “F” ,F)

ELSE reject

Appendix J

Generic SIC Representation in the E-R-SIC Model

This appendix contains a partial listing of generic SIC representation in the E-R-SIC
model for illustration. If there are two alternative violation actions, the system will
query the database designer to choose one. Please refer to [Yang, 1992] for other generic
SICs mentioned in Section 7.3.1.

Domain Constraint:

Emtity* -I-Domain
CERTAINTY certain
FOR Entity*

ON insertion
IF entity(Entity*, PrimKey, CompJ<eySet, AbMax.Card)
ASSERT set{AttName I

attribute(“Entity”, AttName, Domain,
SpecialVRange, Null?, Unique?, Key?, Changeable?) },

att_occ(Entity*, AttName, EntAttOcc),
concatenate..SlCname(“Entity.”, AttName,

“U-DomNull”, AttDoznainSlCl),
checkcornSlC(AttDomain5lC 1, EntAttOcc),
concatenate_SlCname(Entity*., AttNarne,

“U-DomTypeForVal”, AttDomainSlC2),
checkcomSlC(AttDomainSlC2, EntAttOcc),
concatenate.SICname(Entity*., AttName,

“U-DomUnique”, AttDomainSlC3),
checkcomSlC(AttDomainSlC3, EntAttOcc)

ELSE reject

254

Appendix J. Generic SIC Representation in the E-R-SIC Model 255

Entity* .Attribute*
- U-DomNull

CERTAINTY certain
FOR Entity* .Attribute*

ON update
IF attribute(Entity*, Attribute*, Domain, SpecialVRange,

Null?, Unique?, Key?, Changeable?),
Null?=no

ASSERT isnot_null(Entity* .Attribute*)

ELSE reject

Entity* Attribute*
- U-Dom TypeFormat Val

CERTAINTY certain
FOR Entity* .Attribute*

ON update
IF is..notjiull(Entity*.Attribute*),

attribute(Entity*, Attribute*, Domain, SpecialVRange,
Null?, Unique?, Key?, Changeable?),

domain(Domain, DataType, Format, ValueRange)
ASSERT satisfyAatatype(Entity* .Attribute*, DataType),

satisfy.iormat (Entity* .Attribute*, Format),
satisfy_value(Entity* .Attribute*, SpecialVRange),
satisfy_value(Entity* .Attribute*, ValueRange)

ELSE reject

Entity* Attribute*
- U-Dom Unique

CERTAINTY certain
FOR Entity* .Attribute*

ON update
IF attribute(Entity*, Attribute*, Domain, SpecialVRange,

Null?, Unique?, Key?, Changeable?),
Unique?=yes

ASSERT count(set{Entity I Entity.Attribute* = Entity.Attribute*})= 1
ELSE reject

Appendix J. Generic SIC Representation in the E-R-SIC Model 256

Entity*.Attribute* U-DomChange
CERTAINTY certain
FOR Entity*.Attribute*

ON update
IF attribute(Entity*, Attribute*, Domain, SpecialVRange,

Null?, Unique?, Key?, Changeable?),
Changeable?=no

ASSERT false
ELSE reject

Appendix J. Generic SIC Representation in the E-R-SIC Model 257

Primary.Key SIC:

Entity .Attri bute*
- U-PrimKeySurroDel

CERTAINTY certain
FOR Entity* .Attribute*

ON update
IF entity(Entity*, Prim_Key, Comp_Key_Set, Ab_Max_Card),

associated_PKSICs_D (“Entity”, SIC_Name_Set),
belongs_to(“Attributes”, Prim_Key)

ASSERT set{SIC_Name I belongs_to(SICNarne, SIC_Name_Set) },
checkmemSlC(SIC_Name, old(Entity*))

ELSE reject

Entity* A ttribute*
- U-PrimKeySurrolns

CERTAINTY certain
FOR Entity* .Attribute*

ON update
IF entity(Entity*, Prim_Key, Comp_Key_Set, Ab_Max_Card),

associated_PKSICs_I(Entity*, SIC_Name_Set),
belongs_to(Attribute*, Prim_Key)

ASSERT set{SIC_Name belongs_to(SIC_Name, SICName_Set) },
checkmemSlC(SIC_Name, new(Entity*))

ELSE reject

Appendix J. Generic SIC Representation in the E-R-SIC Model 258

Absolute Maximum Cardinality Constraint of an Entity Type:

Entity* -I-Abs Card
CERTAINTY certain
FOR Entity*

ON insertion
IF entity(Entity*, PrimaryJKey, Composite_Key_Set,

AbsiVIax.Card),
Abs_MaxCard

ASSERT Entity,
count(Entity) AbsMaxCard

ELSE reject

Appendix J. Generic SIC Representation in the E-R-SIC Model 259

Incidence Constraint:

Relatioriship* -I-Incidence- (Ent Type)
CERTAINTY certain
FOR Relationship*

ON insertion
IF relationship_participant(Re1ationship*, EntType,

MinCardinality, Max.Cardinality)
ASSERT EntOcc, entocc(EntType, EntOcc),

rship_occ_part (Relationship*, EntType, Ent 0cc)
ELSE reject or propagate(insert (EntType,EntOcc))

Entity* -D-Incidence- (Rship Type)
CERTAINTY certain
FOR Entity*

ON deletion
IF relationship_participant (RshipType, Entity*,

MinCardinality, Max_Cardinality)
ASSERT

— (Rship0cc, rshipocc(RshipType, Rshipocc),
rship_occ_part (Rshipocc, Entity*, Entity*))

ELSE reject or propagate(delete(RshipOcc))

Appendix J. Generic SIC Representation in the E-R-SIC Model 260

Siibset.Relationship SIC: There are two decomposed sub-SICs to represent this
type of SIC as below.

Relationship* -I-RshipSubset- (AnotherRship Type)
CERTAINTY certain
FOR Relationship*

ON insertion
IF subset .rship((Re1ationship* ,RoleType 1 ,RoleType2),

(AnotherRshipType,RoleType3 ,RoleType4)),
rship_occ_part (Relationship*, RoleType 1 ,Ent Occi),
rship_occ_part (Relationship*, RoleType2, EntOcc2)

ASSERT RshipOcc, rship..occ(AnotherRshipType ,RshipOcc),
rship_occ.part (RshipOcc, RoleType3 ,EntOcc 1),
rship_occ_part (RshipOcc, RoleType4 ,EntOcc2)

ELSE reject or propagate(insert (RshipOcc))

Relationship* -D-RshipSubset- (AnotherRship Type)
CERTAINTY certain
FOR Relationship*

ON deletion
IF subseLrship((AnotherRshipType,RoleType3,RoleType4).

(Relationship* , RoleType 1, RoleType2)),
rship_occ_part (Relationship*, RoleType 1, Ent 0cc 1),
rship_occ_part (Relationship*, RoleType2, EntOcc2)

ASSERT (RshipOcc, rship...occ(AnotherRshipType,RshipOcc),
rship_occ_part (RshipOcc, RoleType3, EntOcci),
rship_occ_part (RshipOcc, RoleType4, Ent Occ2))

ELSE reject or propagate(delete(RshipOcc))

Appendix J. Generic SIC Representation in the E-R-SIC Model 261

Relationships.Union Special SIC:
The following sub-SICs assert that if SuperRship then (SubRshipl V S’ubRship2...).

Relationship* -I-Rship Union- (SubRships)
CERTAINTY certain
FOR Relationship*

ON insertion
IF rships_union_condition((Relationship* ,RoleTypel ,RoleType2),

SubRships),
rship_occ_part (Relationship*, RoleType 1, Ent 0cc 1),
rship_occ_part (Relationship*, RoleType2, Ent Occ2)

ASSERT 3 SubRshipOcc, rship...occ(SubRship,SubRshipOcc),
belongs_to((SubRship ,RoleType3 ,RoleType4), SubRships),
rship_occ_part (SubRshipOcc, RoleType3 ,EntOcc 1),
rship_occ_part (SubRshipOcc, RoleType4 ,EntOcc2)

ELSE reject

Appendix J. Generic SIC Representation in the E-R-SIC Model 262

Relationship* -D-Rship Union- (SuperRship, OtherSubRships,,)
CERTAINTY certain
FOR Re1ationship
ON deletion
IF rships_union_condition((SuperRship,RoleType 1 ,RoleType2),

SubRships),
belongs_to((Re1ationship* ,RoleTypei ,RoleTypej), SubRships),
rship_occ_part (Relationship*, RoleTypei, Ent 0cc 1),
rship_occ_part (Relationship*, RoleTypej, EntOcc2),

SuperRshipOcc,
rship_occ(SuperRship,SuperRshipOcc),
rship_occ_part (SuperRshipOcc, RoleTypel ,EntOccl),
rship_occ_part (SuperRshipOcc, RoleType2 ,Ent Occ2)

ASSERT remove.Iromset(SubRships,
(Relationship* ,RoleTypei,RoleTypej), OtherSubRships),

AnotherRship0cc,
rship_occ(AnotherSubRship, AnotherRshipOcc),
belongs_to((AnotherSubRship,RoleTypek,RoleTypel),

OtherSubRships),
rship_occ_part (Anot.herRshipOcc, RoleTypek,Ent Occi),
rship_occ..part (AnotherRship0cc, RoleTypel, Ent Occ2)

ELSE reject

Appendix J. Generic SIC Representation in the E-R-SIC Model 263

Exclusive_Relationship SIC:

Relatioriship -I-RshipExcinsive- (SharingEntl. SharingEnt2, AnotherRship Type)
CERTAINTY certain
FOR Relationship*

ON insertion
IF exships(ExRshipSet),

belongs_to((Re1ationship* , SharingEnt 1), ExRshipSet),
3 AnotherRshipType, AnotherRshipType Re1ationship*,
belongs_to((AnotherRshipType,SharingEnt2), ExRshipSet),
rship.occ_part (Re1ationship, SharingEnt 1 ,Ent 0cc)

ASSERT
—‘ (3 RshipOcc, rshipocc(AnotherRshipType,RshipOcc),
rship_occ_part (RshipOcc, SharingEnt2 ,Ent 0cc))

ELSE reject or propagate(delete(Rshipocc))

Appendix J. Generic SIC Representation in the E-R-SIC Model 264

Totality Constraints:

Entity* -I- Totality- (Rship Type)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationship_participant (RshipType, Entity*, Cmin, Cmax),

Cminl
ASSERT RshipOcc, rshipocc(RshipType,RshipOcc),

rship_occ_part (RshipOcc, Entity*, Entity*),

count(RshipOcc) Cmin
ELSE reject or propagate(insert_all(RshipOcc))

Relationship*D Totality- (Ent Type)
CERTAINTY certain
FOR Relationship*

ON deletion
IF relationship_participant(Re1ationship*, EntType, Cmin, Cmax),

Cmin 1,
rship_occ_part (Re1ationship, EntType, Ent 0cc)

ASSERT Relationship,
Relationship Re1ationship,
rship_occpart (Re1ationship, EntType, EntOcc),
count(Relationship) Cmin

ELSE reject or propagate(delete(EntType,EntOcc))

Appendix J. Generic SIC Representation in the E-R-SIC Model 265

Relative Maximum Cardinality Constraint:

Relationship* J-RshipMaxCard- (Ent Type)
CERTAINTY certain
FOR Relationship*

ON insertion
IF relationship_participant (Re1ationship*, EntType, Cmin, Cmax),

Cmax
ent_occ(EntType, EntOcc),
rship_occ_part (Relationship, EntType, Ent 0cc)

ASSERT Re1ationship,
rship_occ_part (Relationship, EntType, Ent 0cc),
count(Relationship) Cmax

ELSE reject

Appendix K

Algorithms Transforming SICs to Relational Form

This appendix proposes algorithms to transform SIC representations in the E-R-SIC
model into corresponding ones in the relational model.

K.1 Transform the SIC Representation

1. Examine the relationships mentioned in a sub-SIC in the E-R-SIC model. If all the
relationships mentioned in that sub-SIC are represented by separate relations, do
nothing its representation in the relational model is the same as in the E-R-SIC
model.

2. Suppose that the sub-SIC is a Primary_Key SIC. For each relationship type
(say R) that is represented by a foreign key in an entity relation type (say B), do
the following.

(a) Transform the components of the precondition aid predicate.

i. In general, do the following.
• Replace all assertions in which R appears, e.g., rship_occ_part(R, Ro

leType,E), where E is any entity occurrence variable, with
foreign_ent_occ(”R”, H, E). If R has a subscript (either 0 or 1) in some
assertion, H should be attached with the same subscript in that asser
tion. If an old function is applied to R in the rship_occ_part assertion,
apply the old function to H in the foreign_ent_occ assertion.

• Suppose that a subscript is attached to H according to the above step
and H is also a participant in another relationship (say RA).
— If its rship_occ_part(RA, Role Type,H) assertion is in the precondi

tion component, attach a subscript 0 to H in that assertion.
— If its rship_occ_part(RA, Role Type,H,) assertion is in the predicate

component, attach a subscript 1 to H in that assertion.
• Replace “count(R)” with “count(H)” (use the same subscript if any).
• Replace any quantifier on R with the same quantifier on H (and use

the same subscript if any).

266

Appendix K. Algorithms Transforming SICs to Relational Form 267

ii. However, suppose that there is an assertion requiring an entity occurrence
of the other entity type (say G) to participate in some occurrence (say,
R) of the same relationship type R with the entity type H. That is, there
is an assertion such as rship_occ_part(R, “H”, G).
For such kind of R, do the following instead of (i).

• Replace all assertions in which R appears, e.g., rship_occ_part(1, Ro
leType,F,), where F is any entity occurrence variable, with
foreign_ent_occ(”R”, G, F). If R has a subscript (either 0 or 1) in some
assertion, G should be attached with the same subscript in that asser
tion. If an old function is applied to R in the rship_occ_part assertion,
apply the old function to G in the foreign...ent_occ assertion.

• Suppose that a subscript is attached to G according to the above step
and G is also a participant in another relationship (say RB).

— If its rship_occ_part(RB, Role Type, G) assertion is in the precondi
tion component, attach a subscript 0 to G in that assertion.

— If its rship_occ_part(RB, Role Type, G) assertion is in the predicate
component, attach a subscript 1 to G in that assertion.

• Replace “count(R)” with “count(G7’ (use the same subscript if any).
• Replace any quantifier on R with the same quantifier on H (and use

the same subscript if any).

(b) In the object component, if the object happens to the relationship R, replace
R with H otherwise, do nothing.

(c) In the violation action component, if the action is not to propagate some
operations of R, do nothing; otherwise, do the following.

• Replace the argument (R) of the propagated operation (e.g., delete) with
the pair, (“H”, H) (e.g., propagate(delete(“H”, H)).

• Replace the argument (R) of the propagated operation (e.g., delete) with
the pair, (“H”, G) (e.g., propagate(delete(“H”, G,)).

(d) Transform the SIC name.

i. If R is the first part (i.e., R is the object to be checked), replace it with
H. In addition, add R to the RelatedObjectTypeSet. If originally H is in
the RelatedObjectTypeSet, remove it from that set.

ii. If R is not the first part, it must already be in the RelatedObjectTypeSet.
Keep it and also add H to it.

(e) Examine the transformed sub-SIC. Delete any foreign_ent_occ predicate that
has the equivalent second and third arguments (e.g., “foreign_ent_occ(”R”, H,
H)” or “foreign_ent_oce(”R”, G, Gd”), that is, its foreign entity relation is the
same as the entity relation that the relationship R is hidden. Also, if there
are duplicate quantifiers, only keep the first one.

Appendix K. Algorithms Transforming S’ICs to Relational Form 268

(f) Suppose that the primary keys of E and F are E.Ekey and F.Fkey, respectively.
After doing the above, check the transformed sub-SIC.

• If any of the following occurs, the transformed sub-SIC is redundant, so
remove it.

— Its predicate component becomes empty.
— Its predicate component contains a single assertion count(Hi) compop

Number, or count(Gi) comp_op Number, where comp_op is a “=“, “<“

or ““, and Number is a positive integer number (e.g., 1).
— Its precondition component has an assertion foreign_ent_occ(”R”, H,

E), and its predicate component contains only H.Ekey=E.Ekey.
— Its precondition component has an assertion foreign_ent_occ(“R”, G,

F), and its predicate component contains only G.Fkey=F.Fkey.
• If the predicate component contains a count(H) 1 assertion (no sub

script other than 0 is attached to R), change it to “is_not_null(H.Ekey)”.
• If the predicate component contains a count(G) 1 assertion (no sub

script other than 0 is attached to G). change it to “is_not_null(G.Fkey)”.

3. Suppose that the sub-SIC is a. Primary_Key SIC and the involved relationship R
is represented by adding the primary key of an entity type E to another entity type
H as a foreign key. Also, suppose that the primary keys of E and H are E.Ekey
and H.Hkey, respectively. If the sub-SIC is for R.Hkey and we already have a
Primary_Key SIC representation for H.Hkey, delete this sub-SIC representation
(because we will merge the related SIC_Name_Sets according to the algorithm in
Appendix K.2). Otherwise, perform the following transformation.

(a) In the precondition and predicate components, replace “old(R)” and “new(R)”
with “old(H)” and “new(H)”, respectively.

i. If the sub-SIC is for R.Ekey, replace associated_PKSICs_I(”R”, “Ekey”,
SIC_Name_Seti) and associated_PKSICs_D (“R “, “Ekey “, SIC_Name_Set2)
with associated_FKSICs_I(“H”, “Ekey “, SIC_Name_Seti) and
associated_FKSICs_D (“H”, “Ekey”, SIC_Name_SeL2), respectively.

ii. If the sub-SIC is for R.Hkey, replace associated_PKSICs_I(”R”, “Hkey”,
SIC_Name_SetS) and associated_PKSICs_D (“R “, “Hkey “, SIC_Name_Seti)
with associated_PKSICs_I(“H”, SIC_Name_Set3) and
associated_PKSICs_D (“H”, SIC_Name_Set4), respectively.

(b) In the object component, change “R.HkeJ’ (or “R.Ekey”) to “H.Hkey” (or
“H.Ekey”).

(c) Change the SIC name by replacing “R.Hke/’ (or “R.Ekey”) with “H.Hke1/’
(or “H.Ekey”) in its first part and adding R to its RelatedObject TypeSet.

Appendix K. Algorithms Transforming SICs to Relational Form 269

K.2 Construct SIC Name Sets for the Foreign Key Update

For each relationship type (say R) that is represented by adding the key of one entity
type (say F) to another entity relation type (say B) as a foreign key, do the following.

1. Put the SIC names (if any) in the original SIC_Name_Set of the associated_FKSICs_I
predicate of R’s key attributes, which are related to F’s key attributes, into the
SIC_Name_Set of the associated_FKSICs_I predicate (see Appendix B.2) of H after
properly changing the SIC names.

2. Similarly, put the SIC names (if any) in the original SIC_Name_Set of the as
sociated_PKSICs_D predicate of R’s key attributes, which are related to F’s key
attributes, into the SIC_Name_Set of the associated_FKSICs_D predicate of H after
properly changing the SIC names.

3. Merge the SIC names (if any) in the original SIC_Name_Set of the
associated_FKSIs_I predicate of R’s key attributes, which are related to the key
attributes of H, with the SIC names in the associated_FKSICs_I predicate of H after
properly changing the SIC names.

4. Similarly, merge the SIC names (if any) in the original SIC_Name_Set of the as
sociated_PKSICs_D predicate of ifs key attributes, which are related to the key
attributes of H, with the SIC names in the associatedPKSICs_D predicate of H
after properly changing the SIC names.

Appendix L

Some Examples of Transforming SICs to Relational Form

This appendix contains three examples of transforming the SICs of Appendix I in the
E-R-SIC model into corresponding ones in the relational model.

Relationship...Depends.onRelationship Involving 3 entity types:
For example, in the context of Figure 5.2 (on page 110):

if E RX F
thenERYG
The representation of sub-SICs in the E-R-SIC model is shown on page 250.

There are four possible sets of representations in the relational model:
Representation 1: Both RX and RY are represented by separate relations. The two sub
SICs are exactly the same as those in the E-R-SIC model.

Representation 2: RX is hidden in the entity relation F, but RY is represented by a
separate relation.

F-I-RshipDepRship3E- (E, RY, RX)
CERTAINTY certain
FOR F
ON insertion
IF E, foreign_ent_occ(”RX”,F,E)
ASSERT RY, rship_occ_part(RY, “E” ,E)
ELSE reject or propagate(insert (RY))

270

Appendix L. Some Examples of Transforming SICs to Relational Form 271

RY-D-RshipDepRship3E- (E, RX, F)
CERTAINTY certain
FOR RY
ON deletion
IF E, rship_occ_part (RY0,“E” ,E).

F, foreign_ent_occ(”RX”,F,E)
ASSERT d RY1, RY1 RY0,

rship_occ_part(RY1,“E” ,E)
ELSE reject or propagate(delete(“F” ,F))

Representation 3: RY is hidden in the entity relation G, hut RX is represented by a
separate relation.

RX-I-RshipDepRship3E-(E,RY, G)
CERTAINTY certain
FOR RX
ON insertion
IF E, rship_occ_part(RX, “E” ,E)
ASSERT G, foreignent.occ(“RY” ,G,E)
ELSE reject or propagate(insert(“G” ,G))

G-D-RshipDepRship3E- (E, RX, RY)
CERTAINTY certain
FOR G
ON deletion
IF E, foreign_ent_occ(”RY”,Go,E),

RX, rship_occ_part(RX, “E” ,E)
ASSERT aG1,G1G0,

foreign_ent occ(“RY” , G1,E)
ELSE reject or propagate(delete(RX))

Appendix L. Some Examples of Transforming SICs to Relational Form 272

Representation 4: RX is hidden in the entity relation F, and RY is hidden in the
entity relation G.

F-I-RshipDepRship3E- (E, RY, RX, G)
CERTAINTY certain
FOR F
ON insertion
IF E, foreign_ent_occ(“RX” ,F,E),
ASSERT G, foreign_ent.occ(“RY” ,G,E)
ELSE reject or propagate(insert(“G” ,G))

G-D-RshipDepRship3E- (E, RX, R Y, F)
CERTAINTY certain
FOR G
ON deletion
IF 3 E, foreign_ent_occ(“RY” ,G0,E),

3 F, foreign_ent_occ(“RX” ,F,E)
ASSERT 3G1,G1Go,

foreignent_occ(“RY” ,G1,E)
ELSE reject or propagate(delete(“F” ,F))

Appendix L. Some Examples of Transforming SICs to Relational Form 273

Relationship_Depends_onl{elationship — Involving 4 entity types:
In the Figure 5.3, we may have

if E RX F
then (ERYG) V (ERZH)
The representation of sub-SICs in the E-R-SIC model is shown on page 251. Since, if
such a SIC exists, E cannot have (1,1) cardinalities in any of the above relationship types,
there are eight possible combinations of representations. Oniy one is listed here, where
all relationship types are represented by foreign keys.

F-I-RshipDepRshipE- (E,RY,RZ,RX, G, H)
CERTAINTY certain
FOR F
ON insertion
IF E, foreign_ent_occ(“RX” ,F,E)
ASSERT (G, foreign_ent_occ(”RY”,G,E)) V

(H, foreign_ent_occ(“RZ” ,H,E))
ELSE reject

G-D-RshipDepRship4E- (E, RX, RZ, RY, F, H)
CERTAINTY certain
FOR G
ON deletion
IF E, foreign_ent_occ(”RY”,Go,E),

F, foreign_ent_occ(“RX” ,F,E)
ASSERT (G1, G1 G0, foreign_ent_occ(”RY”,G1,E))V

(H, foreign_ent_occ(“RZ” ,H,E))
ELSE reject

H-D-RshipDepRship4E- (E,RX, R Y,RZ,F, G)
CERTAINTY certain
FOR H
ON deletion
IF E, foreign_ent_occ(“RZ” ,H0,E),

F, foreign_ent_occ(“RX” ,F,E)
ASSERT (G, foreign_ent_occ(”RY”,G,E)) V

(H1, H1 H0, foreign_enLocc(”RZ”,H1,E))
ELSE reject

Appendix L. Some Examples of Transforming SICs to Relational Form 274

Subtype..Stronger_Totality Constraint:
For example, in the context of Figure 5.2, we may have:

ifd RY, ERYG
then 9 atieast Snb_Cmin RX, E RX F,

9 RZ, FRZH

The representation of sub-SICs in the E-R-SIC model is shown on page 252. Here only
one possible representation in the relational model is listed. Suppose that in the relational
model, RY is represented by a foreign key of G, RX is represented by a foreign key of
F, RZ is represented by a foreign key of H. (It would be not a subtype_stronger_totality
constraint if F has (1,1) cardinalities in RZ.)

G-I-SubStrong Total- (E, F, RZ, RX, R Y, H)
CERTAINTY certain
FOR G
ON insertion
IF 9 E, foreign_ent_occ(“RY” ,G,E)
ASSERT 9 F, foreign_ent_occ(“RX” ,F,E),

9 H, foreigri_ent_occ(“RZ” ,H,F),
count(F) SubCrnin

ELSE reject

F-D-S’abStrong Total- (E, RY, RZ, RX, 0, H)
CERTAINTY certain
FOR F
ON deletion
IF 3 E, foreign_ent_occ(’RX”,Fo,E),

3 G, foreign_erit_occ(“RY” ,G.E)
ASSERT 3 F1, F1 F0,

foreign_ent_occ(“RX” ,F1 ,E),
3 H, foreign_ent_occ(”RZ” ,H,F1),
count(Fi) SubCmin

ELSE reject

Appendix L. Some Examples of Transforming SICs to Relational Form 275

H-D-SubStrong Total- (E, F, RY, RX, RZ)
CERTAINTY certain
FOR H
ON deletion
IF F, foreign_ent_occ(“RZ” ,H0,F),

3 E, foreign_ent_occ(“RX” ,F,E)
3 G, foreign_ent_occ(“RY” ,G,E)

ASSERT 3H1,H1H0,
foreign_ent_occ(”RZ” ,H1,F)

ELSE reject

Appendix M

Generic SIC Representation in the Relational Model

This appendix contains a partial listing of SIC representations for generic Relationship*,
Entity*, Relationship*.Attribute*, and Entity*.Attribnte* in the relational model for illus
tration. If there are two alternative violation actions, the system will query the database
designer to choose one. Please refer to [Yang, 1992] for more examples of generic SICs in
the relational model.

Incidence Constraint:

Entity* -I-Incidence- (ForeignEnt Type,)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationship_hidden_entity(RshipType, “Entity”,

ForeignEntType, Cmin,Cmax)
ASSERT foreign_ent_occ(RshipType, Entity*, FEntOcc),

d FEnt0cc, ent_occ(ForeignEntType, FEnt0cc)
ELSE reject or propagate(insert (ForeignEntType ,FEnt0cc))

Entity* -D-Incidence- (Rship Type, Ent Type)
CERTAINTY certain
FOR Entity*

ON deletion
IF relationship.hiddenentity(RshipType, EntType,

Entity* ,Cmin,Cmax)
ASSERT

—‘ (Ent0cc, ent_occ(EntType, Ent0cc),
foreign_ent _occ(RshipType, Ent Occ,Entity*))

ELSE reject or propagate(delete(EntType,Entocc))

276

Appendix M. Generic SIC Representation in the Relational Model 277

Subset_Relationship SIC:
In this SIC type, it is impossible that an entity type has cardinalities (1,1) in both re
lationship types (nor could each of the corresponding entity types in a specialization
hierarchy have (1,1) in its relationship type). There are four sets of representations in
the relational model for this type.
Representation 1: Both relationships are represented by separate relations. In this case,
the sub-SICs are exactly the same as those in the E-R-SIC model.

Representation 2: The subset relationship is represented by a foreign key, the super-set
is not. It covers two possible combinations. (For example, if R is the subset relationship
type between entity types E and F, it can be represented by a foreign key either in E or
in F.)

Entity -I-RshipSubset- (Rship Type, A notherRship Type)
CERTAINTY certain
FOR Entity
ON insertion
IF relationshipJmidden_entity(RshipType, Entity*,

EntType2, Cminl,Cmaxl),
subsetship((RshipType,RoleType 1 ,RoleType2),

(AnotherRshipType, RoleType3 ,RoleType4)),
relationship_participant(AnotherRshipType, RoleType3,

Cmin3, Cmax3),
EntOcc2, foreign_ent_occ(RshipType ,Entity* ,Ent Occ2),

whichioreign(Entity*, RoleTypel, RoleType2,
EntOcci, EntOccj, Entity*, EntOcc2)

AS SERT RshipOcc, rshipocc(AnotherRshipType,RshipOcc),
rship_occ_part (RshipOcc, RoleType3, Ent Occi),
rship_occ_part (RshipOcc, RoleType4, EntOccj)

ELSE reject or propagate(insert(RshipOcc))

Appendix M. Generic SIC Representation in the Relational Model 278

Relationship* -D-RshipSnbset- (AnotherRship Type, Ent Type 1)
CERTAINTY certain
FOR Relationship*

ON deletion
IF subset_rship((AnotherRshipType,RoleTypel ,RoleType2),

(Relationship* ,RoleType3 ,RoleType4)),
relationshipjiiddenentity(AnotherRshipType,

EntTypel, EntType2, Cminl,Cmaxl),
relationship_participant (Re1ationship*, RoleType3,

Cmin3, Cmax3),
rship_occ_part (Relationship*, RoleType3, Ent Occ3),
rship_occ_part (Relationship*, RoleType4, Ent Occ4),
which.ioreign(EntType1, RoleType 1, RoleType2,

EntOcc3, EntOcc4, EntOcci, FEntOcci)
ASSERT — foreign.entocc(AnotherRshipType ,EntOcci,FEntOcci)
ELSE reject or propagate(delete(EntTvpel ,EntOcci))

Appendix M. Generic SIC Representation in the Relational Model 279

Representation 3: The super-set relationship is represented by a foreign key, the
subset is not. It covers two possible combinations.

Relationship* -I-RshipSubset- (AnotherRship Type)
CERTAINTY certain
FOR Relationship*

ON insertion
IF subset _rship((“Re1ationship” ,RoleType 1 ,RoleType2),

(AnotherRshipType,RoleType3 ,RoleType4)),
relationship_participant (Relationship*, RoleType 1,

Cminl, Cmaxl),
relationshipJiidden_entity(AnotherRshipType,

EntType3, EntType4, Cmin4,Cmax4),
rship_occ_part(Relationship*, RoleTypel ,EntOccl),
rship_occ_part (Relationship*. RoleType2, EntOcc2),
which.Joreign(EntType3, RoleType3, RoleType4,

EntOcci, EntOcc2, EntOcci, FEntOcci)
ASSERT foreign_ent_occ(AnotherRshipType,EntOcci,FEntOcci)
ELSE reject or propagate(insert (EntType3 ,Ent Occi))

Entity* -D-RshipSubset- (Rship Type, AnotherRship Type)
CERTAINTY certain
FOR Entity*

ON deletion
IF relationship_hidden_entity(RshipType, Entity*,

EntType4, Cmin3,Cmax3),
subseLrship((AnotherRshipType,RoleType 1 ,RoleType2),

(RshipType,RoleType3,RoleType4)),
relationship_participant (AnotherRshipType, RoleType 1,

Cminl, Cmaxl),
foreign_ent_occ(RshipType ,Entity* ,Ent Occ4),
which_foreign(Entity*, RoleType3, RoleType4,

EntOcci, EntOccj, Entity*, EntOcc4)
ASSERT

-,

(3 RshipOcc, rshipocc(AnotherRshipType,RshipOcc),
rship_occ_part(RshipOcc, RoleTypel, EntOcci),
rship_occ_part (RshipOcc, RoleType2, EntOccj))

ELSE reject or propagate(delete(RshipOcc))

Appendix M. Generic SIC Representation in the Relational Model 280

Representation 4: Each relationship is represented by a foreign key in different entity
types. It covers two possible combinations.

Entity* -I-RshipSubset- (AnotherRship Type, R ship Type, Ent Type3)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationshipJaidden_entity(RshipType, Entity*,

EntType2, Cminl ,Cmaxl),
subset ship((RshipType,RoleType 1 ,RoleType2),

(AnotherRshipType ,RoleType3 ,RoleType4)),
relationship.hidden..entity(AnotherRshipType,

EntType3, EntType4, Cmin4,Cmax4),
foreign_ent _occ(RshipType,Entity* ,Ent Occ2)

ASSERT foreign_ent _occ(AnotherRshipType,Ent Occ2 ,Entity*)
ELSE reject or propagate(insert(EntType3 ,EntOcc2))

Entity* -D-RshipSnbset- (Rship Type, A notherRship Type, Ent Type])
CERTAINTY certain
FOR Entity*

ON deletion
IF relationship_hidden_entity(RshipType, Entity*,

EntType4, Cmin4,Cmax4),
subset_rship((AnotherRshipType ,RoleType 1 ,RoleType2),

(RshipType,RoleType3 ,RoleType4)),
relationshipJiiddenentity(AnotherRshipType,

EntTypel, EntType2, Cmin2,Cmax2),
foreign_ent_occ(RshipType,Entity* ,Ent Occ4)

AS SERT —l foreignent_occ(AnotherRshipType,EntOcc4 ,Entity*)
ELSE reject or propagate(delete(EntTypel ,EntOcc4))

Appendix M. Generic SIC Representation in the Relational Model 281

Relationships_Union Special SIC:
The actual representations in the relational model are not listed here. We only discuss
how many representations there would be. Suppose that we have three relationships
RX RY U RZ between entity types E and F. E (or F) cannot have (1,1) cardinalities
in both super-relationship (RX) and one of the sub-relationships (RY or RZ). However,
it can have (1,1) cardinalities in both RY and RZ. Therefore, there are 17 possible
combinations. They can be classified into 7 different sets of SIC representations.

1. Representation 1: All relationships have separate relational representations.

2. The super-relationship is represented by a separate relation. and:

• Representation 2: Only one sub-relationship is represented by a separate re
lation. It covers 4 possible combinations.

• Representation 3: Both sub-relationships are represented by foreign keys in
the same entity type. It covers 2 possible combinations.

• Representation 4: Both sub-relationships are represented by foreign keys in
different entity types. It covers 2 possible combinations.

3. The super-relationship is represented by a foreign key, and:

• Representation 5: Both sub-relationships are represented by separate rela
tions. It covers 2 possible combinations.

• Representation 6: Only one of the sub-relationship is represented by a foreign
key. It covers 4 possible combinations.

• Representation 7: Both sub-relationships are represented by foreign keys (cer
tainly in the same entity type, but different from the one in which the super
relationship is represented by a foreign key). It covers 2 possible combinations.

Appendix M. Generic SIC Representation in the Relational Model 282

Exclusive_Relationship SIC:
There are three sets of representations in the relational model to cover four possible com
binations:

Representation 1: Both relationships are represented by separate relations in the re
lational model. The sub-SICs are the same as those in the E-R-SIC model.

Representation 2: Only one relationship is represented by the foreign key in a non-
sharing entity type. It covers two possible combinations.

Relationship* -I-RshipExclusive- (SharingEnti, SharingEnt2, AnotherRship Type,
NonShareEnt2)

CERTAINTY certain
FOR Relationship*

ON insertion
IF exships(ExRshipSet),

belongs_to((Re1ationship*
, SharingEnt 1), ExRshipSet),

(- relationship.hiddenentity(Relationship*,

NonShareEnti, SharingEnti, Cmin2,Cmax2)),
AnotherRshipType, AnotherRshipType Re1ationship*7,

belongs_to((AnotherRshipType , SharingEnt2) ExRshipSet),
relationshipjiiddenentity(AnotherRshipType,

NonShareEnt2, SharingEnt2, Cmin4 ,Cmax4),
EntOcc2,

rship_occ_part(Relationship*, SharingEnti ,EntOcc2)
ASSERT

—‘ (EntOcc3, ent_occ(NonShareEnt2,EntOcc3),
foreignent _occ(AnotherRshipType, Ent Occ3 ,Ent Occ2))

ELSE reject or propagate(delete(NonShareEnt2,EntOcc3))

Appendix M. Generic SIC Representation in the Relational Model 283

Entity* -I-RshipEzclusive- (SharingEnti, SharingEnt2, Rship Type, AnotherRship Type)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationshipJuidden_entity(RshipType, Entity*,

SharingEnti, Cmin2,Cmax2),
ex_rships(ExRshipSet),
belongs_to((RshipType , SharingEnt 1), ExRshipSet),

AnotherRshipType, AnotherRshipType RshipType,
belongsto((AnotherRshipType,SharingEnt2), ExRshipSet),
(— relationship...hiddenentity(AnotherRshipType,

NonShareEntType2, SharingEnt2, Cmin4 , Cmax4)),
EntOcc2, ent_occ(SharingEntl, EntOcc2),

foreign_ent _occ(RshipType,Entity*,Ent Occ2)
ASSERT (RshipOcc, rshipocc(AnotherRshipType,RshipOcc),

rship_occ_part (RshipOcc, SharingEnt2, EntOcc2))
ELSE reject or propagate(delete(RshipOcc))

Appendix M. Generic SIC Representation in the Relational Model 284

Representation 3: Both relationships are represented by foreign keys in non-sharing
entity type(s), respectively.

Entity* -I-RshipExclusive- (SharingEnti, SharingEnt2, Rship Type,
AnotherRship Type, NonShareEnti, NonShareEnt2,

CERTAINTY certain
FOR Entity*

ON insertion
IF relationshipJiidden_entity(RshipType, Entity*,

SharingEnti, Cmin2,Cmax2),
ex_rships(ExRshipSet),
belongs_to((RshipType , SharingEnt 1), ExRshipSet),
3 AnotherRshipType, AnotherRshipType RshipType,
belongs_to ((AnotherRshipType , SharingEnt2), ExRshipSet),
relationshiphiddenentity(AnotherRshipType,

NonShareEnt2, SharingEnt2, Crnin2,Cmax2),
3 EntOcc2, ent_occ(SharingEntl ,EntOcc2),
foreign_ent_occ(RshipType ,Entity* ,Ent Occ2)

ASSERT
-

(9 EntOcc3,
foreign_ent _OCC (AnotherRshipType, Ent Occ3 ,EntOcc2),
ent_occ(NonShareEnt2 ,EntOcc3))

ELSE reject or propagate(delete(NonShareEnt2 ,EntOcc3))

Appendix M. Generic SIC Representation in the Relational Model 285

Totality Constraints:
If in a total constraint the relationship is represented by a separate relation, the sub-SICs
are the same as those in the E-R-SIC model. Otherwise, the sub-SICs are represented as
follows.

Entity* -I- Totality- (Rship Type)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationshipiaidden_entity(RshipType, Entity*,

FEntType, Cmin2,Cmax2)
ASSERT foreign..key(RshipType, Entity*, FEntType, FKAtts),

isioLnu11(FKAtts)
ELSE reject

Entity* -I- Totality- (Ent Type, Rship Type)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationship±idden_entity(RshipType, EntType,

‘Entity”, Cmin2,Cmax2),
Cmin2 1

ASSERT EntOcc,
foreign_ent_occ(RshipType ,Ent 0cc, Entity),
ent_occ(EntType, EntOcc),
count(EntOcc) Cmin2

ELSE reject or propagate(insertall(EntType,Entocc))

Appendix M. Generic SIC Representation in the Relational Model 286

Entity -D- Totality- (FEnt Type, Rship Type)
CERTAINTY certain
FOR Entity*

ON deletion
IF relationshipJiidden_entity(RshipType, Entity*),

FEntType, Cmin2,Crnax2),
Cmin2 1,
foreignent _occ(RshipType, Entity, FEntOcc),
ent.occ(FEntType, FEntOcc)

ASSERT Entity, Entity Entity,
foreign_ent _occ(RshipType, Entity ,FEnt 0cc),
count(Entity) Cmin2

ELSE reject or propagate(delete(FEntType,FEntocc))

Appendix M. Generic SIC Representation in the Relational Model 287

Relative Maximum Cardinality Constraint:

Entity* -I-RshipMaxCard- (FEntType,Rship Type)
CERTAINTY certain
FOR Entity*

ON insertion
IF relationshipJiidden_entity(RshipType, Entity*,

FEntType, Cmin2,Cmax2),
Cmax2 $
foreign_entocc(RshipType,Entity, FEnt 0cc),
enLocc(F’EntType, FEnt0cc)

ASSERT d Entity,
foreign_entity_occ (RshipType,Entity, FEntOcc),
count(Entityfl Cmax2

ELSE reject

