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Abstract

Suppose an airplane has a seat capacity of C, we have time T left before the airplane
will take off, the fare structure is given, and the arrival process of booking requests is
stochastic, we want to know if there is an optimal pelicy to control booking process in
order to maximize total expected revenue from this particular airplane. We formulate
the problem as a continuous time Markov decision problem. Under certain conditions the
existence and some of the properties of an optimal policy are shown. In the case where
the arrival process is a nonhomogenous Poisson it i1s shown that the optimal policy has
a very simple structure and that an e-optimal policy can be easily computed. It is also
shown that in general ‘Littlewood-type’ formula, even being used continuously overtime,

does not protect enough seats for full fare passengers and results in less total revenue.
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Chapter 1

Introduction

The deregulation of North American Airlines allows airlines to practice price competition.
On the one hand, this helps to stimulate the demand for air travelling because of the
resulting proliferation of discount fare booking classes; from managerial point of view it’s
beneficial to sell those otherwise empty seats at a discount fare. On the other hand, the
deregulation challenges airlines with a significant operational problem — the problem
of determining an optimal booking policy: a booking policy which allocates optimally
the seats of a particular airplane among the various farc classes. In other words, on the
one hand, we have the freedom to segment market through price differentiation. On the
other hand, we want to control the booking process by selling the right seats to the right

passengers at the right prices and time to maximize total revenue(Smith et al. 1992).

Prior work on this problem falls into one of two categories and correspondingly, there are
two distinct approaches to the problem. First, those work which attemp network opti-
mality, the corresponding approach incorporates some or all complications, for example,
multiple-flight itineraries, cancellations, overbookings, etc., via network flow and mathe-
matical programming(Mayer 1976; Glover et al. 1982; Wollmer 1986; Dror, Trudeau and
Ladany 1988). Second, those work which studies the problem in isolated settings, the
corresponding approach is based on some restrictive assumptions (Rothstein 1971; Little-

wood 1972; Bhatia and Parekh 1973; Richter 1982; Alstrup et al. 1986; Belobaba 1987;
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Curry 1990; Wollmer 1990a 1990b; Brumelle and McGill 1991). This latter approach is

the approach of this work.

It seems there are problems for the first approach to fully take into consideration the
stochastical nature of the problem to achieve global optimization; while the second ap-
proach may not produce globally optimal solution it does produce casily implemantable

solutions which are optimal under the assumptions they are based.

Those works which fall into the second category used either explicitly or implicitly some

or all of the following assumptions:

—_

. single flight leg: Bookings are made on the basis of a single departure and landing,.

2. independent demand: The demands for the different fare classes are mutually inde-

pendent.

3. low fare booking firsl: The lowest fare reservations requests arrive first, followed by

the next lowest, etc.
4. no cancellations: Cancellations, ‘no-show’ and overbooking are not considered.

limited information: The decision to close a class is based only on the number of

]

current bookings.

6. nested classes: Any fare class can be booked into scats not taken by bookings in

lower fare classes.

While assumption 6 is a common practice in airline reservation system today, assumptions
I through 5 arc restrictive. These sometimes overly restrictive assumptions serve the

purpose of making the problem tractable.
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In 1972, Littlewood considered the case where two classes of fares are offered. He proposed
that an airline should continue to reduce the protection level for class 1 (full fare) seats

as long as the fare for class 2 {discount) seats satisfy

p2 2 mP[X1 > pi), (1.1)

where p; denotes the fare or average revenue from the ith fare class, P[.] denotes proba-
bility, X, is full fare demand, and p, is the full fare protection level, the number of seats
protected for the full fare passengers. The intiution here is clear—accept the immediate
return from selling an additional discount seat as long as the discount revenue equals or
exceeds the expected full fare revenue from the seat. In 1982, Richter gave a marginal

analysis which proved that (1.1) gives an optimal allocation.

Wollmer(1990b), Curry(1990), and Brumelle(1991) extended Littlewood’s formula to
multiple fare case. In Brumelle’s terms, under the Assumption 1 through 6 listed above
the optimal protection levels p}, p3, ..., can be obtained by finding the solutions to the

following system of equations
p2 = piPXi > pi]
ps = pPlXy>pi 0 X+ Xs > pi
(1.2)
pry1 = pmPXi>pinXa+Xo>psn-- NX 4+ Xo+ -+ Xe > prl
where p},2 = 1,2,..., is the optimal protection level, the optimal number of seats pro-
tected, for fare class 1 through ¢. X;,i = 1,2,..., is the demands of ith class booking

requests. Note that the first of these equations is just Littlewood’s formula expressed as

an equation. We will call (1.2) Littlewood’s type formula.

Those works which fall into second category have another thing in common: they consider
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aggregate demands. In many cases, this is equivalent to eliminating time dimension from

the problem.

In practice, airlines realize that the Assumptions on which Littlewood’s formula is based
do not always hold, especially the assumption that low fare demand occurs before high
fare demand. To compensate for the consequence of the failure of this assumption, airlines
use Littlewood’s formula repeatedly during a booking period. However, Littlewood’s
formula, even being used continuously over a booking period, does not protect enough
seats for higher fare passengers, and results in less total expected revenue. Intuitively,
the assumption that low fare books first is equivalent to closing discount fare booking
permanently when full fare booking begins. So Littlewood’s formula ‘makes sure’ to
accept enough discount fare passengers before closing the discount fare class, and in

doing so it leaves too few seats to full fare passengers.

This thesis shows that a model which takes the time remaining until departure and which
allows fare classes to reopen after being closed is computationally feasible. In comparison

to Littlewood’s formula, our model results considerable improvement in revenue per flight.

This work resembles the work of Rothstein(1971) and Alstrup et al.(1986) in the sense
that the problem is formmulaled as a nonhomogenous Markovian sequential decision pro-
cess. Rothstein considered one class of passengers and Alstrup considered two classes
of passengers. Our model accomodates finite number of classes of passengers without
conceptual or computational difficulty. Both Rothstein and Alstrup discretized time
dimension on daily basis; hence to actually compute an optimal policy they aggregate

booking requests on daily basis as well. The discretizalion is practical but from the
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viewpoint of modelling the problem it is somewhat arbitrary. We treat time as a con-
tinuum and prove the existence of an optimal policy via Contraction and Monotonicily
Assumption. Further, in the casc that the arrival processes are nonhomogenous Poisson
we will show that an optimal policy has a very simple structure and that an e-optimal
policy can be found by solving a system of differential equations. The existence of an
e-optimal policy guarantees us a practical way to approach optimal at any prespecified

degree of precision.



Chapter 2

Fomulation

2.1 Assumptions

We will make the following assumptions:

e Assumption 1: single flight leg. Booking requests are begun to be accepted on the

basis of a single departure and landing.

e Assumption 2: arrival process. The arrival process is a semi-Markov process which

does not depend on any booking policy.

e Assumption 3: no cancellations, no overbookings. Cancellations, ‘no-shows’ and

overbookings are not considered.

Assumption 2 means that given a predetermined booking policy the state the system
will enter next depends on its past only through the current state of the system. We
will elaborate on this in the next section. While Assumption 1 and Assumption 3 serve
the purpose of simplifying the problem; Assumption 2 serves a double purpose: it make
the problem tractable and in many practical cascs it is true; it contains nonhomogenous

Poisson process as a special case.

Suppose we have m classes of booking requests and let the fare of ¢th class be p;, 2 =

1,2,...,m, without loss of generality we assume that p; > po > ... > pn.
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2.2 Markov Decision Process

The control of booking process can be formulated as a Markov decision process.

Arrival Process: The arrival process can be described by a sequence of random vectors
(1i,9i),t = 1,2,...; where 7; denotes the time of the ith booking request and ¢, the fare

class.

Suppose the seat inventory is o; when the ith booking request arrives, then system state

can be described by random vector w; = (g, 7, ¢:),1 = 1,2, . ..

State Space: Suppose booking requests are begun to be accepted time T before departure
and airplane has a seat capacity of C. Let initial state be wp = (o, 70, ¢0) = (C,T,0),
fare class 0 generates no revenue and is introduced only as a device to start the process;

then w2 = 1,2, ..., will take value from § defined as the following.
S={0,1,....C}x{t:0<t<T} x{1,2,...,m}.

Let s = (n,t, f) € 5. 5 is our state space and s is a point of S.

Let T > 7 > 1 > -+, by Assumption 2 we have

Pont, [} = Prirng St g =1 (7¢0) = (£, f)] (2.3)
= Pr{ﬂ'+1 < t': Piy1 = f’ , (Ti,¢i) = (taf)a(ﬂ'—hcﬁz‘—l)a-«-’(To,ﬁso)]
v = 0,1,...

Policy: Let 7(s) = Oorl for all s = (n,£,f) € S where n > 0 and #(s) = 0 for all

s = (0,t,f) € §. 7 is a policy which maps § onto I2. D = {0,1} is the action sct; an
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action 1 means to accept a booking request at a certain state and action 0 reject it. The

restriction of m(s) = 0 for all s = (0,¢, f) is because of Assumption 3.

If the current state is s = (n,t, f), then the next state will be 3’ = (n — w(n,t, f), 7, ¢');

where given s, (7/,¢’) has the distribution of (2.3} independent of «.

Transition Probability: Let

P.(s"Y = Pr(s'|s,a)
= Pr(v' =5 |w=smn(w)=a) (2.4)
= Prid =n—a,7 <t ¢ =f|w=(nt[f)r(w) =a)

i = 0,1,...

P .(5') is the probability distribution when the system is in stale s, a policy 7 is used,

and the system will transition into state s’ next. Given x, (2.4) is identical with (2.3).

2.3 The Revenue Function

Define a real valued function » on 5 x D as the following

Ms.a) = o n>0,a=1
s, =
0 otherwisc.

The system starts off at the initial state so = (C,T,0). In any state s = (n,t, f), when

an action a € {0,1} is taken, as a joint result of s and a two things happen:

1. we receive a return (s, a).
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2. the system moves to a new state s’ according to probability distribution F;4(s’).

then the above evolution starts all over again begining from state s’. More specifically, if
we accept a booking request, i.e. take action 1, we get revenue p; and the seat inventory
will be reduced by one; if we reject a booking request, 1.e. take action 0, we don’t get

any revenue and the seat inventory remains unchanged. So we have

r{s,0) = 0

r(s,1) = p;.

The revenue function of the system can be defined as

Fr(wo,wy,...) = é’"(%’: m(w;))

This is just the summation of revenues we get in the booking process of a particular

plane. Define

UW(SO) = E[Fﬂ-(w()) W, ) I Wwop = SQ]

= E[Z r{wj, m(w;)) | wo = o] (2.5)

vx(s0) = v, (C,T,0) is the expected revenue with initial state s = (C,T,0), i.e. the state

that there are C empty seats and 7' time before departure, and a policy 7 is followed.

Similarly we define

(Wi, Wig1, .. ) = Z_:_T(%'ﬂf(%))
va(s) = Efz(wi,wis1,...) |wi =]

= E[E W | w = 3] (2.6)
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vr(8) = vre(n,t, [} is the expected revenue with current state s = (n,t, f), i.e. the state
that there are n empty seats and ¢ time before departure, a booking request of class [

just arrived, and a policy 7 is followed.
Lemma 1 0 <wg{n,t, Y <np V(nt [f)eS.

This is trivially true because we cannot sell more than all the seats we have and p; 1s
the highest revenue a seat can generate; and if we don’t sell we will not get any revenue.

The significance of Lemma 1 is that it implies that v.(s) is well defined for all s € S.
Our objective is to find a policy #* which maps & onto D and generates

v*(s0) = sup vn(so),

the maximal expected revenue where s is fixed at (C, 7, 0).

2.4 The Functional Equation

Suppose 7, an optimal policy, exisls in the sense that

vt f) = ven,t, f) = sup veln,t, f) (2.7)
n = 01,...,C
0 < t<7T
f = 12,...,m

where ve(n,t, f), {n,t, f) € 5, is defined by (2.6). v*(n,t, f) is the expected revenue

when the system is at state s = (n,¢, f) and an optimal policy is followed.

Lemma 2 v*(n.t, f) is nondecreasing in seat inventory n for each fired time ¢t and fare

type f.
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proof: We need to show that v*(n + &, ¢, f) > v*(n,t, f) for each k& > 0. Suppose 7* is
an optimal policy and 7° is the policy defined by

™ (m — k,t, for m > k;

Pty = T

0 otherwise.
Then
vi(n+k,t, f) > vn(n+ kit f)=v*(n,t,f).

Lemma 2 simply says that under an optimal policy we can expect a larger revenue if
we have more seats —- a very important fact to get a simple structured optimal policy in

our context.

Let v(s) = v(n,t, f} be the solution to the following functional equation

v(s) = ag%g)l( {r(s,a +/ (s")dP;4(5)} (2.8)
s = (ntf)
s = (n - a, Q7k)

s, € 8

In order to reveal the relationship between v(s) and v*(s) we introduce some terminology.
et B be the collection of all bounded funtions from S to reals, and define a metric d on

B as

d(u,v) = sup|u(s)—v(s)|

sES
u € B
v € B

The space B is complete in this metric. Define

h{s,a,v) =r(s,a +/ NdP,.(s8). (2.9)
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We will assume A(s, a,v) satisfies ‘Contraction Assumption’ in the sensc that for some

constant ¢ such that 0 < ¢ < 1, we have

| h(s,a,u) — h(s,a,v)] < / | u(s'} — v(s") | dPsq(s)
< ed(u,v) (2.10)

forue B,ve B,ac {0,1}.

To satisly the Contraction Assumption it is sufficient to have

¢ = / dP..(s) <1 5,88 ach.

h(s,a,v) ‘inherently’ satisfies ‘Monotonicity Assumption’ in the sense that
h(s,a,u) > h(s,a,v) (2.11)

forue Bve B,u>v,a€{0,1},and s € S.

In terms of (2.9), a maximization operator A can be defined as

Av(s) = aIEI}[g,)l(} h(s,a,v) (2.12)
and (2.8) becomes
Av(s) = uv(s) (2.13)
s € 5.

(2.13) has a unique solution v(s) il Contraction Assumption is met. Further Denardo

asserts that if Monotonicity Assumption is met as well, then

v(s) = v*(s) (2.14)
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where v* is defined by (2.7) and v is the solution to (2.13).

Denardo has also shown that Contraction Assumption requirement can be relaxed to
‘N-stage Contraction Assumption’ to gurantee (2.14) to hold. In our context ‘N-stage
Contraction Assumption’ means that there is positive probability that the Nth booking
request will be the last one before the plane will take off. N can be very large as long as
it’s finite. This makes sense in reality because we cannot have infinite number of booking

requests.

Because of (2.14), we can find v*(s) by finding v{s) or vice versa; and because of the
simplicity of the action set D, if we can find v(s),for some s € § we can easily figure out

the corresponding value of the optimal policy 7(s).

2.5 Some Properties of an Optimal Policy

The functional equation (2.8) can be written out fully as the following

Tk Jo v(n, 4, k)dPl(n, ¢, k) | (n,t, £); 0];

(n,t,f) = max }(2 15)
P + Erlrcnzl f(fv(n_ 11‘]1k)dp[(n - 139‘; nataf :1]
v(0,t,f) = 0 (2.16)
(
(

U(n, Oaf) = Pr

v(0,0,f) = 0
n = 1,2,...,C

o

17)

2.18)

0 < ¢+<T
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Definc
ot f) = 3 [ om0 Pl 0. ] o 50 (2.19)

WMJ)=W+Zf — 1L, q,k)dPl(n—1,q,8) | (n,t, 31] (2:20)

where v%(n, t, f) is the expected revenue if the class f booking request is not accepted and
follow an optimal policy after ¢; v'(n,t, f) is the expected revenue if the class f booking
request is accepted and follow an optimal policy after ¢. Let’s enhance Assumption 2 by

the following

e Assumption 4: independent demand. T'he demands for the diffcrent fare classes are

mutually independent.

Assumption 2 and Assumption 4 together means that at an arrival epoch, whalever
action is taken the arrival process will start stochastically anew. It’s understood that a
policy is assumed not to affect arrival process but it can affect scal inventory and hence

affect the system state. Under Assumption 2 and Assumption 4 we will have

Pl(n—a,q, k) | (1, fia] = Plin—a,q,6) | 4 (2.21)
a € {0,1}
0 <¢g <t
E o= 1,2,....m
Define
%ﬁ=§£WWMMW%MM; (2.22)
then

v'(n,t, f) = pf+Z/ —1,¢,k)dP[(n —1,¢,k} | {]

= p;+0n—1,1), (2.23)
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the system of equations (2.15)-(2.18) is the following equivalent

v(n,t, f) = max{v®(n,t);p; +v%n —1,1)} (2.24)
WO 1) = i‘; /:v(n,q,k)dP[(n,q,k)H] (2.25)
°(0,t) = 0 (2.26)
WO(n.0) = 0 (2.27)
2(0,0) = 0 (2.28)

[ = 1L2,...,m
from the system ol equations (2.24)-(2.28) we can infer the follwoing

Corollary 1 At the state (n,t, f),n > 0, the optimal policy will accept fare f if v(n,t) <

ps +v°(n — 1,1); and reject f otherwise.

Note that if v%(n,t) < py+v%(n—1,1), then v%n,t) < p;+0v%n—1,1), 1= 1,2,..., -1,

the following can be inferred

Corollary 2 Under an optimal policy the fare classes should be nested; i.e. if we accept
[ at state (n,t, f),n > 0, we accept the fare class i,5 =1,2,..., f — 1 as well should they

come.



Chapter 3

Nonhomogenous Poisson Process

3.1 Further Assumptions

To be more specific let’s make the following Assumption 5.

e Assumption 5: arrival processes. The arrival process of tth, i = 1,2,...,m, fare
class is a nonhomogenous Poisson process {N;(t) : t < T} with intensity function
Ai(t), 0 < A;(t) < +oo, which is piecewise continuous and has directional limits at
each point £,0 < ¢ < T also these processes are independent of any policy being

used in the booking process. Let A;(¢) = LT Ailg)dg,i=1,2,....m, and

NO) = SN
MY = i)\i(t)

A) = D Ae).
i=1
{N(t) : t < T} is the Poisson process with intensity A(¢), the superposition of
arrival processes of all fare classes. If in some time interval where A(t) = 0 we can

remove this period of time from the overall booking period T beforehand, so we

will assume without loss of gencrality that A(¢) > 0.

We shall inherit all the assumptions we made in Chapter 1.

16
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Now we can write P ,(s’) explicitly in differential form

dPra(s) = Ap(g)e*=4Pld(q) (3.29)

fl = 1,27...,m

0 €< t7T
0 < ¢g<t
a € {0,1}

(3.29) is consistent with the assumption that an action taken will not alfect arrival

process but will affect the state the system will enter next. The following verifies that

the Contraction Assumption is met

¢
c= / dP,.(s") < / Ag)eMO-A@gy < 1
¢

0 < t<7T

3.2 The Solution of the Functional Equation

In this section we will solve the functional equation (2.8) for v(sq) in the nonhomogenous

Poisson case as the following

m_ fo(n, q, k) (g)eMO-A0l g
ot f) = maxd 21 do v E(0) q a0
pr+ T8 [Eu(n —1,q, k)Au(q)elMO-Mallgg
U(Oataf) =0 (331)
vm0.f) = s (3.32)
v(0.0.f) =0 (3.33)

n = 1,2,...,C

0 < t<T
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Define
m ot
W(n,t) = 3 ] v(n, ¢, ) (q)eMO-AD]gg. (3.34)
k=1 o
m ot
v'(n,t, f) = W-{—Z/ v(n — 1, q, k) A (g)eA0-2@1 44 (3.35)
k=170

In terms of (3.34) the system of equations (3.30)-(3.33) is the following equivalent

v(n,t, f) = max{v%n,t);v'(n,t, f)} (3.36)
vO(n,t) = fj /Otv(n,q,k)/\k(q)e{A(t)_A(q”dq (3.37)
vi(n,t, f) = ,‘:l+ v’(n —1,t) (3.38)
v}0,8,f) = 0 (3.39)
v2(0,¢) = 0 (3.40)
v'(n,0,f) = ps (3.41)
v(n,0) = 0 (3.42)
v} (0,0,f) = 0 (3.43)
v%(0,0) = 0 (3.44)

n = 1,2,...,C
0 < t<£T
f = 12,....m

from the system of equations (3.36)-(3.44) we can infer the same corollaties we did in

Chapter 1. It’s clear from the system of equations (3.36)-(3.44) that we only necd to

solve the following reduced system.

v(n, i, f) = max{e’(n,t);p; + v%n —1,1)} (3.45)

m

v’(n,t) = Z/ v(n, g, k) Ap(g)elMO-MNgg (3.46)
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v?(0,¢) = 0 (3.47)
v’(n,0) = 0 (3.48)
0°(0,0) = 0 (3.49)

f = 1L2,....m

We make the following derivation from (3.46)

(n,t) — VO(n,t—Al) =

™ot
= 2 [ g (gt OA g
k=1v*'"

WO(n, L~ AB)[1 — ld-Al-Ab) (3.50)

Divide both side of (3.50) by At, let At approaches 0, and apply mean-value theorem to

the first term of the righthand side we get

[v9(n, 1))’

n

where

m

kz_: v(n, t, k)Ak(t) — v°(n, t)A(t)
g: max{v®(n,t); pr + v%(n — 1, 1)} (1) — i v(n, 1) Ae(t)

m

3 max{u?(m,); pr 4 0°(n = 1,00} = (m, )} Aeft)

ki[max{l); pi +0%(n — 1,t) — v°(n, )] Au(0)
3 [ox 4+ 0°(n — 1,8) — 0%, O A (2) (3.51)
k=1

1,2,....C
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and we have used the notation that ¢ = max({a,).

It’s routine to verify that v%(n,t),n = 0,1,...,C,0 < ¢t < T, is continuous from the
definition (3.34) under the Assumption 5. This means that v1(n,?, f},n=0,1,...,C;0 <
t<T;f=1,2,...,m, is coutinuous and so is v(n,t, f[},n=0,1,...,C;0 <t <T; f =

1,2,...,m; and hence the mean-value theorem is applicable.
From (3.51) we conclude
[Won, )] >0,¥0<t<T,n=0,1,...,C. (3.52)

and from (3.34),(3.35) we get the following

Corollary 3 v(n,t, f) is nondecreasing int,0 <t <T,Vn=0,1,...,C, f=1,2,...,m.

Il at time ¢ where A\;(¢),7 = 1,2,...,m are/is discontinuous they/it will approach(es)
their/its appropriate directional limit(s) which we have assumed exist(s) as At approaches

0. At such ¢ the directional derivative of v%(n,t) satisfics (3.51).

Take (3.52) into account and if we can ever accept a booking request we should have
v%(n,t)—v%n—1,1) < py. Lemma 2 implies that we should have v%(n, {)—v%(n — 1,¢) >

0 and hence we have the following

Corollary 4 0 <vn, ) —v’(n—1,1)<p, VYVn=1,2,...,Cand0 < <T.

It’s clear now that we only need to solve (3.51) with the following initial condition to

solve the function equation (3.30)-(3.33).

%0,8) = 0 (3.53)
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v%(n,0) = 0 (3.54)

v?(0,0) = 0 (3.55)

Taking into account Corollary 4 we can write (3.51) as

(. 1)) = o1+ vo(n — 1,8) — vo(n, )] Ma(2) +
(21 + vo(n — 1,1) — vg(n, )} Aalt) +
[pr + vo(r — 1, 8) — vo(n, #)] T As(t) +
o lor + voln — 1,8) — vo(n, 6] T An(2) (3.56)
n o= 1,2.....C

0 <« t<1T,

3.3 An Algorithm

For ease of exposition let’s concentrate on the case that only two types of fares are offered,

i.e. m = 2. The multiple fare {more than 2 types of fares are offered) case is analogous.

In the two fare case equation (3.56) becomes

[, )] = [p1+0%(n = 1,8) = o%(n, )] N (2) +
[p2 +v°(n — 1,8) — O, 8)] T Au () (3.57)
n = 1,2,...,C

0 <« ¢t<T.



Chapter 3. Nonhomogenous Poisson Process 22

Define ) ) ) i
v2(0,1) To(t, U)
v?(L,1) v (t, V)
V() = ‘ VL, V() = ' (3.58)
v(n, 1) ta(l, U)
v0(C, 1) de(t,U) |
0 g wo
0 Uy wy
O=|" U= W=\ {3.59)
0 Uy Wy
L0 | ¥ | “o
where
’ﬁg(t, U) == 0
(6, U) = [p1 4 o1 — un)Ai(t) +
[,02 + tp—1 — Un]+)\2(f) (360)
n = 1,2,...,C
0 < t<T
and

—00 < Uy < +00
-0 < W, < 4o

n = 0,1,...,C
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Using (3.58)-(3.60) we can write (3.57), (3.53),(3.54),(3.55) as

VIi(t) = V(t, V() (3.61)
Voy = O (3.62)
0 < 1T

The existence and uniqueness of (3.61)-(3.62) has been established by the Contraction
Assumption; however, to develop an algorithm to solve it practically and o prove the
convergence of the algorithm we would like to use the following theorem from the theory

of differential equation which states that

Theorem 1 The initial-value problem (3.61)-(3.62) has a unique solution V(t) on [0, 7]
if V(t, V(1)) is bounded and continuous on the strip I = {(t;V} |0 < ¢ < T,V € R}

and salisfies Lipschilz condition
| VD) = VW) oS LU =W [l (3.63)
for allt € [0,T] and all U,W € REFL L is a constant and

I Nloo= max | un |-

Suppose Xy (), A2(t) are continuous then V(¢, V(¢)) is coniinous and bounded and we need

to verify that Lipschitz condition

| V£, U) =V, W) |l = max | 0,(t,U)— v,(¢t, W) |

0<n<C

< LIU=W e (3.64)

= LOISI}%)% | 2y, — Wy, |

is met.
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For any function g, if g{U/) is a linear function of U, then
| g(U) —g(W) [S L U =W o (3.65)

for some constant L/. And for any two functions gi,¢s, if they satisfy (3.65), then
max({g1, g2), 91 + g2 also satisfy (3.65) for some constant L”. This kind of reasoning can
be extended to finite number of functions; and because (3.60) only involves addition and
maximization operations of some functions which is linear in U7 we can conclude that

Lipschitz condition (3.64) is met indeed.

In the case where A{t), A2(t) are piecewise continuous and their appropriate directional
limits exist as we have assumed ( Assumption 3) Lipschitz condition is still satisfied and
V(t,V(t)) is bounded, but piecewise continuous and its appropriate directional limits
exist as well. Noting that V(¢) is continuous over the interval [0,7], we can divide
the interval [0, 7] into subintervals such that in each of these subintervals V(¢, V(1)) is
continuous; while the above theorem of ordinary differential equation asserts the existence
and uniqueness of the solution to (3.61)-(3.62) in each of these subinterval the following
theorem of ordinary differential equation asserts that the solution to (3.61)-(3.62) exists,
is unique over the interval [0, T']. So we can solve (refeq265)-(3.62) in cach subinterval of
[0, T] where the conditions of Theorem 1 is satisfied and then pieccs together a solution

to (3.61)-(3.62).

Theorem 2 Let V(t),a < t < b, be a complete solution’ to the differential equation
(3.61)-(3.62). If b # +oo and t; is a sequence such that t; — b, (t; < b), and the sequence

V(t:) has e limil ¢, then the point (b, ¢) is a boundary point.

A solution V(t),(a < ¢ < b) of the differential equation (3.61)-(3.62) is a complete solution if there
does not cxist solution V(¢) defined in a larger interval and coinciding with V(¢) for a < ¢t < &.
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To solve (3.61)-(3.62) numerically we can discretize them as the following

V() — V{(t— A = AtV — AL, V(i — At)) + of At) (3.66)
Vi) = O
0 <« t<£T
where
_ ) 1
oAt}
olA)=| (3.67)
O(Ai)
I o{ At) ]

(3.61)-(3.62) can be solved numerically by the ‘one-step’” method defined as the following

t = kAt

t; = iAt

Vi = Vioi + AtV(tiy, Viy) (3.68)
Vo = O

i = 1,2,....k
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where

ll

Vo

UD(O)
vo(1)

'U()(’n)

I 20(C)

] [

'0,;(1)

vi(n)

i ‘U,‘(C)

U,‘(O) -

26

Lk (3.69)

Theorem 3 The one step method defined by (3.68)-(5.69) is convergent in the sense

hmAt—)O;tk:ifi:red% = V(t)'

Proof: Subtracting (3.69) from (3.66) we have the following

(l

1 V(&) = Vil

(A

A

<

1.e.

| (V(#-1) — Via) +
AUV (tr-1, V{tk-1])) = VL1, V1)) + 0o(Al) |l
IV (tk-1) = Viet) lloa +
At || (V(tko1, V(te-1)) = V(tk-1, Vi-1) lloo + | 0(A2) [0
I (V(te-1) = Vim1) floo +

AtL || V{ti—1) = Vit [Joo + 0 (At)

(1 4+ ALL) | V(te-1) = Vicr oo + 0 (A1)
(1+ ALY [ V(0) ~ Vo [l +
o(At)[1 4 (1 + ALL) + -+ + (1 + AtL)"]

O(At)(

1+ AtL)* —1

AtL

L

o(At) eLt_
{m L L0
o{ At

(3.70)

Gmaro;t= figed || V(Ee) = Vi lloo= limat—o; s =t fized | V() = Vi o= 10
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It should be mentioned that the analysis of the multiple fare casc is tedious but completely

analoguous to what we have done so far.

3.4 Incremental Revenue and the Optimal Policy

To further study the structure of the optimal policy we make the following derivation.

From (3.57) we can have
(=LA = [+ —2,8) — v%n — L)JA(E) +
[p2 +v%(n —2,0) — v®(n — 1, 1)]* Aa(t) (3.71)

n = 2,3,...,C

0 < t<T.
Define
Av(n,t) = v%(n,t)—v%(n—1,1) (3.72)
0 < t<LT
n = 1,2,...,C

Subtracting (3.71) from (3.57) we get

[Av%(n,8)) = M(){A(n —1,t) — AvO(n, )} +
Aa(t){[p2 — AvO(n, )" - [p2 — Av®(n — 1,2)]*} (3.73)
0 < t<T

n = 2,3,...,C

where

(A0, 1)) = A2V
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and
(A1, )] = [«°(1, 1))
= M)l - 8001, )+
Aa(t)pa — AVY(1,8)]F
0 < t<T.
Define
Av?(n,0) = 0

AV(0,8) = p;

AUU(Oa 0) = M

n = 1,2,...,C
{3.73)-(3.75) are the lollowing equivalent

[Avo(n,t)]' = M(){Av(n - 1,1) —~ A®(n, 1)} +

Ma(t){lp2 — Av%(n, ))F - [p2 — Av®(n — 1, 1)]*}

Av®(n,0) = 0
AV0,1) = p
A(0,0) = m

0 < t<T

n = 1,2,...,C
Because v%(n,t),0 <t < T,n=0,1,...,C, is continuous we conclude

Corollary 5 Av'(n,1),0 <t <T,n=0,1,...,C, is continuous.

23

(3.74)

(3.75)

(3.76)
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From (3.76) we conclude

Corollary 6 Av%(n,t),0 <t < t,n = 0,1,...,C is nondecreasing in t with n fired if

and only if Av®(n,1),0 <t <i,n=0,1,...,C is nonincreasing in n with ¢ fized.

Define i } L
AUU(O,t) 21
Av®(1,t) 0
AV(t) = ' O=|" (3.77)
Av®(n, 1) 0
Av°(C,t) 0
[ Ado(t,U)
Az (¢, U)
AV(t, U} = ' (3.78)
Av,(t,U)
Ava(t, U)
where

A't_)n(t, U) = )\l(t){un—l - un} +

Aa(t){lp2 — wal® = {p2 — un—a]*} (3.80)
0 < t<£T

n = 1,2,...,C
Using (3.77)-(3.80) we can write (3.76) as

AV = AV(,AV(Y)) (3.81)
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AV} = O (3.82)

0 <« t<T

Since equation (3.81)-(3.82) are derived from (3.61)-(3.62), all the statements we made
about equation (3.61)-(3.62) are also valid in terms of (3.81)-(3.82); especially the solution
to (3.81)-(3.82) exists, is unique in the interval [0, T), and can be computed by the one-

step method defined as the following.

t = kAt
o= il

AV, = AVi_j+ AtV(t;, AViy) (3.83)

AV = (O

i= 1,%,...,k

7

where _ i i )
Awg(0) Av;(0)
Awy(l) Av;(1)
AV = ' AV, = ' i=1,2,... .k (3.84)
Awvg(n) Av;(n)
Awvy(C) ] Avi(C)

The one step method defined by (3.83)-(3.84) is convergent in the sense
o(Al) gbt-1 L#£0
|ave -a) < &0 Y7
oo L=0
limA;_;,O;tkzt fi;cedA‘/k' = AV(t) (385)

We are now in a position to prove the following
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Theorem 4 A1%(n,t),0 <t < T,n = 0,1,...,C, is nondecreasing in t given n and

nonincreasing in n given t.
Proof: From (3.76) we have
A0, ) =p 0<tLT
i.e. Av9(0,1) is nondecreasing in ¢; and
AvO(1,t) = o°(1,¢) —v%(0,1) = v°(1,7)
Av®(1,0) = 0
0 < t<T.

Since v%(1,t) is nondecreasing in ¢ and not greater than py, we get Av°(0,) > Av®(1,¢)

and Av°(0,t), Av®(1,¢) are nondecreasing in ¢.

Suppose k—1,% > 1 is the least integer that the theorem holds hence for some ¢ we have

the following
Av (K, t) > A2k - 1,1) (3.86)

where Av?(k — 1,1) is nondecresing in ¢. From (3.76) again we have
APk, )] = MEOAHAL (k- 1,8) — Av%(k, 1)} +
Aaft)At [z — Ak, O — [p — A6 — LY} (3.8)
Av(k,0) = 0

0 < ¢t£T

Because Av?(k, t) is continuous in the interval [0, T'], we can divide the interval [0, T} into

subintervals in each of which Av®(%,¢) is monotone in such a way that Av®(k,t) cither
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nondecreasing or decreasing. Let the subintervals be [0,4,), [t1,£2),. .., [t T], where 0 <

thh<te<... <t <T,l < o0,

(3.85) and (3.87) can not be true at the same time. If they can, we assert that Av°(k, )
can not be monotone in [0,%;). For suppose Av®(k,?) is nondecreasing in ¢, from (3.87)
we shall have [Av°(k,2)]' > 0; so Av®(k,t) < Av%(k — 1,1) and this contradicts (3.85).
Suppose Av®(k,t) is decreasing, from (3.87) we will get [AvP(k,¢)]" < 0 hence Av®(k,t) <
0 in the interval [0,1,] and this contradicts Corollary 4. We have reached a contradiction

and the theorem is proven.

Because of the continuity and monotonicity of Av®(n,¢), the n - ¢ plane is divided into
two disjoint ‘regions’:

R' = {(n,t):p,—Av(n, 1) <0,0<t<T,n=0,1,...,C}

R = {(n,t):ps— Av®(n,8) > 0,0< ¢t < Tyn=0,1,...,C}.

Corollary 7 The optimal policy will accept booking requests from class 1 only in the

‘region’ R* and accept booking requests from either classes in the ‘region’ R*.

An analoguous analysis will lead to the conclusion that in the multiple fare case, the n—i

plane will be divided into m disjoint ‘regions’:

R' = {(n,0):pa—AB0On,t) <0,0<t<T,n=0,1,...,C}
R = {(n,t) : p2 — Av°(n,t) > 0, p3 — Av¥(n,t) <0,

UStST,HZD,l,...,C}

R™ 1 = {(n,t) P P2 Avo(nat) 20, pm—1 — Auo(n,t) <0,
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0<t<T,n=01,...,0C}
R™ = {{(nyt): pmes — A°(n, ) 2 0,0<t < T 'n=0,1,...,C}
and

Corollary 8 In the mulliple fare case the optimal policy will accept booking requests from
class 1 only in the ‘region’ R' and accept booking requests from class 1 through class k,

in the ‘region’ R*, k=2,3,...,m

Because Av’(n, t) may not be strictly increasing in ¢ we want the conditions in the above

braces be met at the minimum {.

3.5 The Proof of the Convergence

Define the ‘distance’ between any two policy 7!, 7% as the following

I et =all = [ 17t ) = x¥(nt, ) |
- sz Yn,t, f) — 7 (n,t, f) | dt (3.88)

n=0 f=1
Proposition 1 For any two policy 7t and 72 if || 7' —n? ||> 0 then | v, (s0) —va2(s0) |—
0.

To prove the proposition we defline two regions as the following

Dy = {(n,t,f): =" (n,t, ) = 7*(n, L, f), (n,t, f) € S}
Dy = (ot f): 2 (b, f) # 5%ty 1), (mot, £) € S

and obviously we have

S:D1+D2.
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Further define

Iy = {t:(n,t,f) € Dyy(n,t,f)e S}

I = Ul
f

Proof: For any policy 7, let L' = max, es Psy.nfso)(81), Assumption 5 implies that

L’ < +co. Suppose || 71 — 72 ||< ¢; from (2.21) and (3-29) we can have

| vai{so) — wvq2(so) |< /S | v(s1) — va2(s1) | dPso,a'rl(so)(Sl)

< O AP
< pl-C-L’-/Idt

Ay

< 1 C-L e (3.89)

Following Section 3.4 we define

Ad(n,t) = Awvi_i(n) (3.90)
n = 0,1,...,C

(i—1)At < t<iAt

T = kAt
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or in matrix form

AD(0,1) Av;_y(0)
AB(1,1) Av;_y (1)
AV () = : - : — AV, (3.91)
Ad(n,t) Avi_y(n)
Af)(C’,t) A’U,i_l(C) ]
(= DAL < t<iAt
i= 1,2,k
T = kAt

We have proven in Section 3.4 that the monolone Av®(n,t) specifies an optimal policy
7*. We also proven that Ad(r,t) uniformly converges to Av®(n,¢). By choosing At
sufficiently small we can make A?d(n,t) monotone and such a Ao(n,t) will specify a

policy .

Theorem 5 || 7™ — % ||— 0 as At — 0.

Proof: Because AV (¢) uniformly converges to AV(t); for Av®(n,t),n =0,1,...,C,0 <
t < T we can choose At sufficiently small so that whenever Av%(n,t) < p; we can have
Ad(n,t) < p1; so Av®(n,t) and Ad(n,t) will specify an identical policy for first class

booking requests.

Similarly, from the uniform convergence we can choose At sufficiently small so whenever
Av(n,t) < p; we can have Ad(n,t) < p2; hence we need only to consider the case where

Av¥n,t) = pa, Ad(n,t) > po.



Chapter 3. Nonhomogenous Poisson Process 36

Uniform convergence implics (see Section 3.4)

| p2 — Ad(n,t) | < | po — Av%n,t) | + | Av®(n, 1) — Ad(n, ) |
< | p2 — Av¥n,t) | + o (Af)

n = 0,1,...,C

0

I

t<T

Suppose at t* we have Av®(n, #*) = py, then | p, — Ad(n, t*) | < o(Al). Let  be the time
point at which we first have p; — Ad(n,1) < 0, apparently we have | t* —{ {< At; hence
| 7*(n,t,2) — #(n,t,2) | di < At, and

| 7 —# ||[< m-C - At.
The result follows.

Corollary 9 | v.-(s¢) — vz(s0) | = 0 as At — 0, where sg = (C,T,0).

3.6 Littlewood’s Formula vs. Optimality

The optimality can be achieved by solving the differential equation either (3.61)-(3.62)
or {3.81)-(3.82) and following the optimal policy indicated thereof. In Section 3.4 we

have mentioned that ¢ — n plane be divided into two regions and the dividing ‘line’ is:
p2 — Av(n,t)=0 (3.92)
0 < t<T
n = 0,1,...,C

It’s understood that the optimality is achieved by comparing the incremental optimal

expected revenue of accepting requests from class 1 passengers only with that of accept-

ing requests from both classes. Along the dividing ‘line’ the two incremental expected

revenues are cqual.
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On the other hand, if we use Littlewood’s formula instead at time ¢ and we should protect
n seats for the booking requests of first class passengers as long as n is the maximal integer

which solves the following inequality
p2 < prP[MN(t) 2 nf (3.93)

0 < t<T

n = 0,1,...,C

where
0 TA(O) — A ()] e—[A1(©)-Ar(0)]
PM(t) 20} = 3 [41(0) = Al j_]' © (3.94)
J=n .
0 < t<T
n = 0,1,...,C.
Let
Au(n,t) = pP[N(t) 2 n] (3.95)
0 < t<£T
n = 01,...,C
Using (3.95) we can write (3.93) as the following
p2 < Ay(n,t) (3.96)

0 €< t£T

n = 0,1,...,C

It’s easy to see that Aw(n,t) is nonincreasing in n and nondecreasing in ¢. Suppose we

use Littlewood’s formula continuously overtime the following equation

p2 = Auv(n,t) (3.97)
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0 < t<TT
n = 0,1,...,C
divides the n — ¢ plane into two disjoint ‘regions’ R:,i = 1,2:
R, = {(n,t):ps—Ap(n, 1) <0,0<t<T,n=0,1,...,C}
RE = {(n,t):ps—Av(n,t)20,0<t<T,n=0,1,...,C}.

where we have used the subscript ¢ to denote the policy determined by using Litilewcod’s

formula continuously.

The policy o will accept booking requests from class 1 only in the ‘region’ R. and accept

booking requests from either classes in the ‘region’ RZ.

Let t,¢ = 0,1,... be the dividing points, the dividing ‘line’ of the two regions can be

found directly from (3.97), i.e.
pr = piP[Ni(ty) > 1] = p(1 ~ e~ Hal@-Ma(a)])

p2 = mPINi(t2) > 2] = p(1 — e~ (A1(0)-Ai(8a)] __ [A4(0) — Al(tz)]eh[Al(o)‘Al(tﬂ)])

nLTAL(0) — Aqg(t,)] e {0 Ai{tn)

P = PN() 2 0] = g1 - 3 =Rl )
J=0 ’

0 < <7

: = 1,2,...,n

n = 1,2,...,C

Define (g = 0. To further compare the optimal policy #* given by optimality equation
and the policy ¢ given by using Littlewood’s formula continuously overtime, we take the

derivative of (3.95) with respect to ¢ and get the following system of differential equations

[Av(n,t)] = [Av(n—1,t) — Av(n, t)]A(2) (3.98)
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0 <« ¢<T

n = 1,2,...,C.

Define
AQ(Oat) = M
Av(n,0) = 0 (3.99)
A_’Q(O, D) = M
0 < t<T

n = 1,2,...,C
Comparing (3.98)-(3.99) with (3.76) we conclude

[An(n, )]

IA

AV (n, 1))
Av(n,t) < Avl(n,t)
0

I

t<T

0,1,...,C

n

i.e. the dividing ‘line’ computed by Littlewood’s formula will lic below that computed
by optimality equation. In other words, Littlewood’s formula does not protect enough

seats for the first class passengers.

Let v,(n,f, f),n = 0,1,...,C,0< ¢ < T, f = 1,2 be the expected revenue when there
are n emptly seats, time ¢ before the plane will take off, a booking request of class f
passengers just arrived, and the policy ¢ is followed. To compute v,(n,t, f) we just

evaluate policy . From Section 2.3 we have

2
ve(myt, f) = pro(n,t, [} + E/ ve(n —a(n,t, f), Qai))\z’(Q)e[A(z)_Mq”dq
i=170
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ve (0,4, f) = 0
ve(n,0,f) = py
1,(0,0,f) = 0
no= 1,2,...,C
0 <« t<T

;o= 1,2

(3.100) can be written out as the following

ve(n.t,1) = p1 + il/ot ve(n — 1, ¢,1) Ai(q) M=)
and if py > p PN (1) > ]

vo(n,4,2) = p2 + il/ot vo(n — 1,4, 1) A g -40ldg
if p2 < prP[N1(¢) 2 7]

ve(n,t,2) = ilfot va(n, q, 1) Ai(q)eMI =2l gy

Define

t
v(mt) = 3 [ va(ng,i)hlg)e O 0dg

i=1

ve(0,t) = 0
ve(n,0) = py
v,(0,0) = 0

n = 12,...,C

0 <« t<T.
In terms of (3.104), (3.101)-(3.103) can be written as

ve{n,t, 1) = pr4u.(n—1,1)

40

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)
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p2+ v.{n —1,1) if p2 2 pt P[V1(2) = n|
(n,t,2) =
ve(n,t) if pg < p1 P[N1(t) = n].

From (3.104) we can derive that

2t
ve(n,t) — voln,t — Af) = Z/ vo (1, ¢, )eMOMO g _
; -4

Ve, t — At)[l — gA(t}_A(i—At}]

so we have

lO

ol )] = 3 vl L) - veln, DA
_ { P14 v(n = 1,8) — v (n, £)] (1) if o2 > p P[Mi(E) > ).
Yialpi + ve(n = 1,) — v (n, D] Ai(t)] if py < p1P[N1(t) 2 n].
o (0,8) = 0
ve(n,0) = py (3.105)
v,(0,0) = 0

To actually compute v,(n,t, f) we only need to solve the system of differential cquations

(3.105). Comparing (3.105) with (3.57) and the boundary condition (3.53)-(3.55) we

conclude

[a(n, )] < [0°(n, )

ve(n,t) < vo(n,f)
0 < t<T

n

]
\.D
IS
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i.e. The derivative of the expected revenue from policy ¢ is small than that from optimal
policy. Because two systems of differential equations have the same initial condition, we
conclude that Littlewood’s formula, even being used continuously overtime, underesti-

mates the maximal expected revenue.

The above conclusions also hold in the multiple fare case.



Chapter 4

The Directions of Further Research

[t seems immediate that the model we have developed can be extended in two directions.
First, we may be able to take cancellation and overbooking into consideration possibaly
at the cost of a more complicated state space. Second, we may remove Assumption 1,
i.e. consider multileg problem, a problem which is more realistic; but the structure of

the optimal policy, if exists, will probably be complicated to interprete.
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