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Abstract

The classical estimators of multivariate location and scatter for the normal

model are the sample mean and sample covariance. However, if outliers are present

in the data, the classical estimates can be very inaccurate and robust estimates

should be used in their place. Most multivariate robust estimators are very difficult

if not impossible to compute, thus limiting their use. I will present some simple

approximations that make these estimators computable.

Robust estimation down weighs or completely ignores the outliers. This is not

always best because the outliers can contain some very important information

about the population. If they can be identified, the outliers can be further inves

tigated and an appropriate action can be taken based on the results. To detect

outliers, a sequential multivariate scale-ratio test is proposed. It is based on a

non-robust estimate and a robust estimate of scatter and is applied in a forward

fashion, removing the most extreme point at each step, until the test fails to indi

cate the presence of outliers. We will show that this procedure has level c when

applied to an uncontaminated sample, is uneffected by swamping or masking and

is accurate in detecting outliers. Finally, we will apply the scale-ratio test to sev

eral data sets and compare it to the sequential Wilk’s outlier test as proposed by

C. Caroni and P. Prescott in 1992.
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1 Introduction

The outlier problem has been around for many years. Interest in the subject has

been like a roller-coaster ride ranging from periods of intense research to periods of no

research. Intuitively, an outlier is an observation which deviates from the the rest of

the data to such an extent that it arouses suspicion about its underlying distribution.

The non-outlying data will be referred to as the core data. It is assumed that the core

data contains more than 50% of the observations in the sample. I will further classify

an outlier into at least one of two possible categories, an extreme observation and a

contaminant. An extreme observation is a point that lies on the convex hull of the

data set. There are two extreme observations in one dimension, the maximum and the

minimum. In higher dimensions, the number of extreme observations is quite arbitrary.

A contaminant is an observation that is generated from a different distribution than

that of the core data. With this definition, it is possible for a contaminant to lie in the

middle of the core data but we will assume that all points that are more extreme than

a contaminant, relative to some suitable standardization, are themselves contaminants.

Our main goal is to detect only those outliers that are contaminants.

In lower dimensions, graphical techniques can be used to detect potential outliers. In

univariate samples, the boxplot identifies an outlier as an observation that lies beyond

some cutoff point based on the median and inter-quartile range. In two and three

dimensions, outliers can be detected by scatterplots and spin plots respectively but the

degree of outlyingness is based on the judgement of the observer. Unfortunately, once

the dimension is greater than three, no graphical tool exists to identify outliers.

Multivariate outliers appear in two forms, the gross outlier and the more subtle

structural outlier. The gross outlier is an observation that appears to be outlying in

one or more of the original variables. If boxplots are made of these variables then the
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gross outliers will be detected. The structural outlier may not appear to be an outlier

in any of the original variables but is outlying relative to the covariance structure of the

core data. It may not appear in any of the pairwise scatterplots or three-way spin plots

either. In fact, it may only be noticeable if all dimensions of the data are considered

simultaneously. This is illustrated for three dimensions in Figure 1.

By suitably rotating the data, a structural outlier can be converted into a gross

outlier. Therefore a structural outlier in higher dimensions may be graphically detected

if the data are rotated by an orthogonal transformation before the plotting is done. If

the true underlying distribution is multivariate normal or elliptically contoured, then

the eigenvectors of the true covariance structure for the core data will be the best

transformation to use, but this assumes that the outliers are already known. Estimating

the covariance structure may help if the outliers are not too damaging, but in certain

situations the outliers can distort the classical estimates in such a fashion that the

eigenvectors can actually disguise the outliers instead of revealing them. See Figure 2

for an example of this. Random orthogonal transformations can be used in the hope

that at least one of them will reveal the outliers, but this approach is inefficient because

the outliers may only appear in a small fraction of the transformations and therefore,

a large number would have to be generated to ensure a high probability of selecting an

appropriate projection.

Given that outliers cannot always be detected through graphical means, one must

resort to other methods. There are two general approaches to the problem, diagnostic

tests and robust methods of analysis. They attack the problem from opposite points of

view and, oddly enough, the advantages of one method tend to be the disadvantages of

the other.

The main advantage of a diagnostic test is that it detects the outliers and allows the
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investigator to decide how the observation should be dealt with. This is a great advan

tage because not all outliers are spurious observations. Sometimes the most important

information about a sample is contained in the outliers and discarding or ignoring them

does more harm than good. Unfortunately, the accuracy of diagnostic tests is very

suspect and these inaccuracies can seriously affect their performance. The inaccuracies

occur because most diagnostic tests require an advanced knowledge of the number of

outliers present in the data. This is mainly due to the masking and swamping effects

that outliers can have on the testing procedures. Masking is caused when several out

liers are close enough together that the removal of some but not all of them results

in little improvement in the scatter estimate for the sample. Therefore, if the test is

conducted for fewer than the true number of outliers present in the data, the test may

not detect any outliers at all. When the test is conducted for more than the true num

ber of outliers, masking cannot occur. However, under these conditions, the test may

still be significant and therefore all the good points that are falsely included with the

outliers will be incorrectly labelled as outliers. This is known as the swamping effect.

Applying a diagnostic test in a sequential manner will not help either, because a forward

procedure cannot avoid the masking problem and a backward procedure cannot avoid

the swamping problem.

Robust procedures are designed for the case of several outliers. They can be applied

when only an upper bound for the number of outliers is known and they are not affected

by the masking effect. They usually result in good estimates for the core data when the

sample is contaminated but usually lack efficiency when the sample is uncontaminated.

The main problem with robust procedures is that they down-weight or completely ignore

the outliers. This takes some of the control out of the investigators hands because

the robust procedures decide how the outliers will be dealt with. Furthermore, any
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information contained in the outliers is lost.

Since each method is strong where the other is weak, the two approaches to the

outlier problem should be combined to produce a diagnostic test that is immune to the

effects of masking. This test could then be applied sequentially in a forward fashion to

not only detect the outliers but to indicate the number present as well. Furthermore,

the test should only have to be applied until it fails to detect the presence of an outlier

because it should not be fooled by masked outliers.

In this thesis, I will propose a robust diagnostic tool for detecting outliers in a

multivariate context. This tool, which I call the multivariate scale-ratio test, is based

on the relative size of two multivariate estimates of scatter, one sensitive to outliers

the other highly robust. The size of a matrix can be measured in several ways. The

most common is the determinant but others such as the largest eigenvalue will also

be considered. Another problem facing this procedure is the computation of a robust

multivariate estimates of scatter. Several proposed estimators exist but all that possess

a high breakdown point, are computationally prohibitive. To deal with this problem,

I propose approximations to these estimators that are relatively easy to compute and

appear to cost very little in terms of performance. The properties of the multivariate

scale-ratio test will be investigated through several Monte Carlo simulations. These

will provide some evidence about the asymptotic distribution, power and other proper

ties of the test. Finally the multivariate scale-ratio test will be compared to its main

competitor, the multivariate Wilk’s outlier test. For comparative purposes, the Wilk’s

outlier test will be applied in the sequential fashion proposed by Caroni and Prescott

[3] in 1992. The comparison will be made by applying the two tests to several real and

synthetic data sets in order to evaluate their relative performances.
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Figure 1: Outliers in 3-dimensions that are Hidden in 2-dimensions
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2 Concepts, Definitions and Notation

In this section, we will fix the notation used in the thesis and define a few basic

concepts that will be used later. The notation is summarized in Table 1 while the

concepts are presented in formal definitions.

2.1 Equivariance and Invariance

We begin by defining several forms of equivariance and invariance.

Definition 1 Suppose we have x1,... ,x,. Let a be a vector in W°, c be a constant, F

be an othogonal p x p matrix and A be a nonsingular p x p matrix. Then a location

estimator T is said to be

1. location equivariant if T(xi + a,.. .,x + a) = T(xi,. . . ,x,) + a;

2. scale equivariant if T(cxi,. . . , cx,) = cT(xi,. . . , x,);

3. orthogonal equivariant if T(Fxi + a,... ,Px + a) = FT(x1,.. . ,x,) + a;

4. affine equivariant if T(Ax1 + a,... ,Ax + a) = AT(x1,. . . ,x,) + a;

and a scale estimator S is said to be

1. location invariant if S(x1 + a,.. . ,x, + a) = S(xi,.. . ,x,);

2. scale equivariant if S(cxi,.. . ,cx,) = IcIS(xi,... ,x);

3. orthogonal equivariant if S(Fxi + a,... ,I’x + a) = FS(xi,. . .

4. affine equivariant if S(Ax1 + a,... ,Ax + a) = AS(x1,.. . ,x)A’.

We want an estimator to possess these properties because the parameters that they

estimate also possess them. However, as we will see later, sometimes it may be necessary

to relax the affine equivariance condition in order to make the estimator computable.

7



_______

Table 1: Notation

Symbol Meaning

p-dimensional Euclidean space.

V or matrices or vector valued random variables.

x or 7 p-dimensional vectors.

x’ or E’ the transpose of a vector ot matrix.

a square root matrix such that v’2v’2= V

VI the deteminant of the matrix V.

Lvi the greatest integer less that or equal to y.

c1 the standard normal distribution function (univariate).

the standard normal density function (univariate).

x a chi-square distribution with p degrees of freedom.

13n,m a beta distribution with parameters n and m.

Fey the upper a quantile from a specified distribution.

1A(x) an indicator function of the set A.

independent and identically distributed from

med(x) median of x1,. . . x

mad(x2) median absolute deviation from the median of x2

MVE minimum volume ellipsoid

MCD minimum covari ance determinant
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2.2 Concepts of Robustness

Next, we turn our attention to robust statistics. We begin by defining what we mean by

a contaminated sample. A contaminated sample is drawn from a mixture distribution

FE,H = (1—e)F+eH where F is a p-dimensional distribution with mean ji and covariance

, H is any other p-dimensional distribution and e < 1/2 is a positive constant.

Definition 2 A samplex1,... ,x, is said to be contaminated ifx, i 1,..., n, F€,H

and both H and e are unknown.

If H has moments to the second order or e 0 then F,jj has moments to the second

order. If the latter is true then FE,H = F and the moments are /1 and , otherwise if H

has moments then the moments of FE,H are given in Fact 1.

Fact 1 Suppose F is a p-dimensional distribution with mean j7 and covariance J and

H is any other p-dimensional distribution with mean 0 and covariance I’, e E [0, 1/2) is

a constant and X is distributed as FE (1 — e)F + eH, then

(1)EX = (1 —e)/i+eO

(2)Var(X) = (1 — e)D + eF + e(1 — c)(JZ — 0)(/i — 0)’.

Proof

(1) f°° xdFE(x) = f°°, xd[(1 — e)F(x) + eH(x)j

= (1- e) f xdF(x) + ef xdH(x) = (1- e)j +

(2) f° xx’dF -ExEx’ = f xx’d[(l - e)F(x) +eH(x)] -((1- e)7+J)((l -

= (1 — e) f°° xx’dF(x) + ef xx’dH(x)
—

(1 — e)2/ — e2Oö
— 2e(1 —

= (1- e)(f xx’dF(x)
-

ji’) + e(f0 xx’dH(x)
- ) + (1- e)/ji’ + e

_(1_2e+e2)j7i7!_e2tX_2e(1 —e)jO

= (1 — e) + eI’ + e(1 — e)(7’ + 00’ — 2/to’)

=(1-c)J+eP+e(1-e)(/t-J)(/t-)’

9



If H does not have moments and e> 0 then F,H will not have moments either. This

implies that for any level of contamination e> 0, the moments of F,H can be changed

to any value, even infinite or undefined, by choosing an appropriate contaminating

distribution H.

Using F, we can define several measures of robustness for a given estimator T.

Definition 3 The maximum bias of T for a given level of contamination e is defined

by

B(qT) = sup IIT(F,H) — T(F)II
F,ff

Plotting B(e; T, F) verses e produces the maximum bias curve [16]. This curve car

ries a lot of information about the robust properties of the estimator. Two important

robustness quantities that can be derived from B(e, T) are the breakdown point and the

gross error sensitivity of an estimator.

Definition 4 The breakdown point of T is defined by

= inf {e : B(e, T) = x}

In other words, the breakdown point is the smallest level of contamination that can

cause T(Fe,H) to be arbitrarily far from T(F).

Definition 5 The gross error sensitivity is defined by

GES
— dB(e; T)
— de

It measures the maximum effect that an infinitesimal amount of contamination can have

on T. It can also be used as a linear approximation to maximum bias when e is near

zero.

To measure the sensitivity of T to an infinitesimal amount of contamination from

an arbitrary distribution H, we use the influence function.
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Definition 6 The influence function of T for a contaminating distribution H is given

by

IF(H; T, F) = •

T(Ff,H)— T(F)

for distributions H for which the limit exists. It can be seen that

sup IF(H;T,F)I GES.
H

A larger value of IF(H; T, F) means that the estimator T is more greatly influenced by

contamination with H.

11



3 Robust Estimation of Multivariate Location and

Scatter

To estimate the location and scatter of a multivariate distribution F, one uses the

sample mean vector t and sample covariance matrix S defined as

=xi/n (1)

S = - - - 1). (2)

Unfortunately, if the sample contains some contaminating elements, then x and S can

perform very poorly. For example consider the contaminated distribution F€,H as defined

in Section 2. For this case E(X) = (1
—

)/i + O and Var(X) = (1
—

+ d’ + (1 —

— — 0)’. So, if one wishes to estimate the location and scatter of F and one

observes x1,. . . , x F, then and S can be extremely inaccurate. Therefore, these

estimators are unreliable and a different method is needed to ensure accurate estimates.

Suppose that k of the n points in the sample come from the distribution H and

the exact k points are known. Then one simply removes these points and estimates

the parameters of F directly, using ic and S on the remaining points. However, the

underlying distribution of each point as well as the exact number of contaminants is

usually unknown and therefore diagnostic tools must be used to estimate these values.

See Section 4 for details on how this is done in a multivariate context.

A second method of estimating the location and scatter of F is to use robust tech

niques. The main advantage of this method over the previous is that only an upper

bound on k need be known for the techniques to work. The disadvantage is that some

of the desirable properties of the estimate have to be sacrificed in order that others may

be maintained. In the univariate context the trade-off occurs between robustness and
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efficiency. In the multivariate situation, one must also consider computational efficiency

and the equivariance of the estimator. If a desirable property must be sacrificed, which

one should it be? There is no clear solution here and different people will argue for

different estimators.

3.1 M-Estimators

The first robust estimators were called M-estimates because they were based on a gen

eralized maximum likelihood score function. The univariate M-estimate of location was

proposed in 1964 by Peter Huber. M-estimates were later generalized to estimate scale

and location and scale simultaneously. To define the univariate M-estimate, one begins

with maximum likelihood estimation. Suppose we have x1,. . . , N(1t,2), then the

maximum likelihood estimate of location when the scale is known is the root t of the

equation

=0,

where /Ls(x) = x, the maximum likelihood estimate of scale when the location is known

is the root v to the equation

_PLS() =b,

where pLs(x) = x2 and b = 1, and the maximum likelihood estimate of location and

scale is the vector (t, v) that satisfies

—ZbLs() =0 and —ZPLS() =b (3)

simultaneously. M-estimates are a generalization of the maximum likelihood estimates

to a class of functions (x) and p(x) which satisfy the following properties:

1. (x) is odd with at most a finite number of discontinuities;
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2. p(x) is even, differentiable almost everywhere and p(O) = 0;

3. p(x) is strictly increasing on [0, c) and constant on [c, oo);

4. >0.

M-estimates of location are unbiased at the uncontaminated model and have a break

down point of 1/2 if sup Iib(x)I < , zero otherwise. They can be very efficient but

this usually carries a heavy price in terms of the maximum bias curve. M-estimates of

location are asymptotically normally distributed with a rate of convergence. The

M-estimate of scale has a breakdown point of b/M against outliers and 1 — b/M against

inliers where M = sup p(x). They also converge to a normal distribution at a /T rate

and are consistent at the uncontaminated model, but they cannot obtain good efficiency

while still maintaining a high breakdown point against outliers. M-estimates of location

and scale will have a positive breakdown point against outliers only if both &(x) and

p(x) are bounded.

As seen above and s2 are special cases of M-estimators. They are efficient but

have a breakdown point of zero. The estimators t = med(x) and v = mad(xi) =

medx — tI/’(3/4) are the other extreme for M-estimators. These are obtained by

?bmed(X) sgn(x), bmed(0) = 0 and

0 ‘(1/4) < x <

Pmad(X) = 1/2 x = 1/4 or x =

1 otherwise.

One can easily verify that b f pmad(x)q(x)dX = 1/2. The median and the mad are

highly robust in terms of the maximum bias curve and have a breakdown point of 1/2

but are very inefficient at the normal model. To achieve an M-estimator that is robust

and whose location estimator is relatively efficient, a compromise is needed between the

14



two extremes. This is done by defining & and p so that they behave like bLs and pLs

for small values of x but become constant like med and Pmad when x is large. Huber [9]

combined the extremes to obtain the following class of functions

x if 121 c, x2 if 121 < k,
?1(x) = and p(x) = (4)

c sgn(x) otherwise, k2 otherwise,

where 0 <c, k < oo. The balance between efficiency and robustness is controlled by the

constants c and k. Note that (t, v) —* (, s) as c, k —f : and t —* med(x) as c —÷ 0.

Some people prefer to have b = p’ because this holds for the maximum likelihood

estimate. A set of functions that satisfy this criterion are Tukey’s biweight functions

defined by

T
x(1 — 2(x/c)2 + (x/c)4) if lxi c,

(x) and
0 otherwise.

T
x2(3 — 3(x/k)2 + (x/k)4) if xl k,

Pk(x) =

otherwise.

Like Huber’s function, Tukey’s function has the maximum likelihood estimator as a

special case, but for any c < , the function i7bi redescends to zero.

M-Estimates can be generalized to higher dimensions and, in 1976, Maronna [15]

did just that. M-estimators of multivariate location and scatter are defined in a similar

fashion as in the univariate context. They are the solution (, ) to the following system

of equations

u1 ({(xi — t)’V’(x —
t)}’I2) (x — t) = 0, (5)

u2 ((xi — t)’V’(x — t)) (x — t)(x — t)’ — V = 0, (6)

where u1 and u2 are functions defined for s 0 satisfying, for V = SS’,

— t)i)S1(x — t) = 0,
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Eu2(jS’(x
— t)I2)[S(x — t)][S(x — t)]’ = Ii,.

In addition,

1. u1(s) and u2(s) are nonnegative, nonincreasing, and continuous for s 0;

2. /(s) = su(s) is bounded for i = 1,2;

3. I’(s) is strictly increasing in the interval where 2(S) < K = sup>02(s) and

constant iii the regions where ‘2(S) = K;

4. so such that &2(S) > p, and Ui(S) > 0 for s so;

5. a> 0 such that for every hyperplane H, PF(H) 1 — p/K — a.

Maronna shows, under certain conditions, that the estimates are unique, consistent,

asymptotically normal, affine equivariant and relatively easy to compute. However, the

breakdown point is less than (p + i)_i. Therefore these estimates do not perform well

in higher dimensions if the level of contamination is large.

3.2 S-Estimators

S-estimates were originally developed, in the regression context, by Rousseeuw and

Yohai in 1984 [23}. To describe these estimators, it is best to consider the special case

of estimating univariate location and scale. Suppose we have x1,. . . , N(t, u2) then

the S-estimates of location and scale is the vector (t, v) such that v is minimized subject

to the constraint,

p(xi-t)E[p(x-/L)] (7)

where p(x) and b are defined as in the case of M-estimates of scale. In fact, for a

fixed location, an S-estimate is exactly an M-estimate of scale and, like the M-estimate,

has the maximum likelihood estimate as a special case by defining pLs(x) x2. The
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other extreme is obtained when Pmve = 1 —1125,75j(x) and b = 1
— (Ln/2j + 1)/n are

used. If the location is fixed to be the median, then the corresponding M-estimate of

scale will be the mad. However, as an S-estimate, Pmve defines the SHORTH which is

the most robust univariate estimator of location and scale with respect to minimizing

the maximum bias among all M-estimators of scale [17]. The distribution of the scale

estimate converges weakly to a normal distribution at a rate of but the distribution

of the location estimate converges at a rate of to a non-normal distribution. Both

estimates are extremely inefficient at the normal model.

The properties of S-estimates are similar to the properties of M-estimates of scale.

They are consistent at the uncontaminated model, possess a breakdown point of b/M

against outliers and 1 — b/M against inliers, where Al = sup p(x) and they cannot

achieve a high breakdown point and good efficiency at the same time. The other main

problem with S-estimates is their asymptotic distribution. If p is not smooth enough, the

estimates can converge at a slower rate to a non-normal distribution as demonstrated by

the SHORTH. An asymptotically normal estimate is preferable but only if the breakdown

point of Pmve can be maintained. The boundedness of p is necessary and sufficient to

maintain a positive breakdown point and p(x) being twice continuously differentiable is

a sufficient condition for asymptotic normality at a rate. Tukey’s biweight function,

(x/k)2(3- 3(x/k)2 + (x/k)4) if x
pc(X) = (8)

1 otherwise,

possesses all these properties.

Davies [5] generalized S-estimates to the multivariate context in 1987. They are

defined as the vector and the positive definite matrix ‘(i that minimize IVI subject to

-p [{(xi — t)’V1(x_t)}”2] = b, (9)
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where p : [0, oo) —* [0, cx) is strictly increasing on [0, c) and constant on [c, oc) and

b = Ep {{(x -

-

[12].

Multivariate S-estimates are affine equivariant, consistent at the uncontaminated

model, possess a breakdown point of b/M against outliers and 1 — b/M against inliers,

where M = sup p(x), but, like their univariate counterparts, they cannot achieve a high

breakdown point and good efficiency at the same time and they onverge at a slower

rate to a non-normal distribution if p is not smooth enough. Again, one seeks a p

function which is bounded above as well as twice continuously differentiable. Tukey’s

biweight function, defined in (8), does the job. Unfortunately, the distribution of y

(x — j7) depends on the dimension of x thus causing the tuning constant c to

change as well. This can cause problems if the distribution of y is difficult to compute.

Fortunately, the normal case is one in which the calculation can be done because y ‘

when x r N(7, ). Substituting y into p and letting k = c2, (8) becomes

(y/k)(3 — 3y/k + (y/k)2) if y k
pk(y) = . (10)

1 otherwise

The expected value for a given k is

k 3z 3z2 z3
E(pk(y))=f (T_+)dx+f dx

Setting E (pk(y)) = b and solving for k, we get k such that

k/3z 3z2 z3 ‘\i+j T_--+_1)dx=b. (11)

Table 2 contains the tuning constant k = c2 for certain values of b and p.

In 1989, Lopuhaä [12] showed that an S-estimate can also be defined as the solution

to the equations

— t)’V1(x — t)}”2] (x — t) = 0, (12)
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Table 2: Constant k for Tukey’s biweight function

dimension p

b 1 2 3 4 5 6 7 8 9 10

.10 26.86 55.86 84.8 113.8 142.8 171.8 200.8 229.7 258.7 287.7

.25 8.63 19.62 30.6 41.5 52.5 63.4 74.3 85.3 96.2 107.2

.50 2.40 7.08 11.9 16.8 21.6 26.5 31.4 36.2 41.1 46.9

[{(xi — t)’V’(x — t)}h/2](x1—t)(x—t)’—v [{(xi — t)’V1(x — t)}112jV = 0,

(13)

where u(x) = ‘çb(x)/x, v(x) = x(x)—p(x)+b and ‘i,b(x) is the derivative of p(x). These

equations are very similar to (5) and (6), which means that there is a solution which

Jiasahreakdowirpointliliatis af, most 1 / (p + 1) However, tb reisatJeasi_oneother

solution which has a breakdown point of b/M, where M = sup p. The global minimum

of (9) is one of the high breakdown solutions. Therefore, one should minimize (9) rather

than solve (12) and (13) because the former guarantees the solution to be one of high

breakdown if the global minimum is reached.

Unfortunately, S-estimates are computationally expensive because they involve the

minimization of an implicitly defined, non-convex function. If the function is convex

then the breakdown point of the S-estimate is zero. The possibility of multiple minima

means that the minimum obtained need riot be the best (although it will have a high

breakdown point). A good starting point can increase the probability of reaching the

global minimum but this would require a robust estimate of location and scatter which

is exactly what we seek in the first place.

In 1983, Rousseeuw proposed the first S-estimate of multivariate location and scatter
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with a positive breakdown point called the minimum volume ellipsoid estimator or MVE.

The MVE is the multivariate version of the SHORTH and is based on an ellipsoid of

minimal volume which covers at least Ln/2J + 1 points of the data. The centre of

the ellipsoid is the location estimate, while the rescaled ellipsoid is the corresponding

covariance estimate. The MVE is affine equivariant with a breakdown point of ([n/2J —

p + 1)/n. Unfortunately, the MVE is not computable for any reasonable sample size

because of the combinatorial explosion. For example, a sample size of 50 in 2 dimensions

has over iO’ ways to choose 27 distinct point from the sample. The MVE is computed

by finding the one that yields the ellipsoid of minimal volume. A second way to. compute

the MVE is to minimize pmve(Z) = 1
— l[o,x2 1(z), where z = (x —

—

/1) and

x = {z : x(x) = 1 — a}. Asymptotically b = 1/2, however for finite samples

b = 1 — [(n + p + 1)/2J /n to guarantee a solution. To find a local minimum, let

alone the global minimum, is very difficult because the function to be minimizedis

discontinuous and nonconvex. However, the MVE can be approximated through the

following resampling scheme:

1. Select a subsample that contains exactly p + 1 distinct points indexed by J =

{ii,...,i÷i};

2. Compute

= x and C = — )‘(x
—

iEJ PiEJ

3. Set V = mjCj where rrij = med(x — j)C’(x
— j)’ for i = 1,. . . ,

4. Compute Vjl = m,ICj.

The resampling is repeated for many J after which the one with the smallest determinant

IVjI is retained; call this subsample I. The final estimates are j and kV1, where

Ic = x,.5 makes the scatter estimate consistent at the multivariate normal model.
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The total number of subsamples drawn is n-i, which is selected to ensure a high

probability that at least one subsample will not contain any contaminants. Since the

subsamples are drawn independently, the probability that there is at least one good

subsample in in is given by 1 — (1 — j3)m, where

— ((1 — E)n)!(n
—

p — 1)!

is the probability of drawing a good sample from the data and n is the number of con

taminants in the data. Observe that 3 = P(X = 0), where X follows a hypergeometric

distribution with parameters n, (1 — )n,p+ 1. It is easily shown that 3 —* (1— )+1 as

n —* oo. Furthermore, the breakdown point for the MVE implies that < 1/2, otherwise

the estimate will break. Therefore, the probability of getting a good sample when the

level of contamination is unknown is approximately equal to 1 — (1 — l/2P+1)m From

setting this probability to 99% and solving for rn, one obtains a lower bound on the

number of subsamples needed. To verify that this is, in fact a lower bound, one must

consider the exact breakdown point, = 1 — ([n/2j — p + 1)/n and to calculate the

true value of m, say rn0, then show that m0 in for all n < cc and lim, m0 = m.

Table 3 contains m0 for several sample sizes and dimensions as well as the asymptotic

approximation or lower bound.

Like the SHORTH, the MVE does not behave well asymptotically. Its distribution

converges weakly to a non-normal distribution at the slow rate of To improve this

rate, Rousseeuw also proposed the minimum covariance determinant estimator or MCD.

The calculation of the MCD is identical to the MVE except that the final estimator is the

mean vector and rescaled covariance matrix of the [n/2j +1 points inside the MVE. The

MCD has all the robust properties of the MVE and it converges to a normal distribution

at the rate of

The resampling scheme used to calculate the MVE can also be used to calculate
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Table 3: subsamples such that P(# good samples 1) = 99%

sample dimension

size 1 2 3 4 5 6 7 8 9 10

25 13 21 41 54 100 112 203 192 341 270

100 15 32 60 119 211 414 702 1376 2236 4377

1000 16 35 71 143 283 566 1116 2232 4373 8731

10000 16 35 72 145 292 585 1171 2343 4679 9356

100000 17 35 72 146 293 587 1177 2355 4710 9422

cc 17 35 72 146 293 588 1176 2356 4714 9430

other S-estimates. To see this, one simply writes the IvIVE in the form of an S-estimate,

using the function Pmve as defined in Section 3.2. Furthermore, by letting = .C such

that = 1, the MVE becomes the vector and the positive definite symmetric matrix

.2O that minimize s subject to

Pmve

JI
_t))

=1- [(n+p+l)/2j/n (14)

In this form, the resampling approximation to the MVE becomes the mean and rescaled

covariance of the subsample that minimizes s. Furthermore, since any S-estimate can

be written in this form by replacing Pmte by the appropriate function p and 1— [(n+p+
1)/2j/n by the appropriate value b, the resampling scheme can be used to approximate

any S-estimate. Computationally, this is not very attractive because a non-linear func

tion must be solved m times in order to compute the estimate. But this can be avoided

by modifying the algorithm in a way similar to that proposed by Yohai and Zamar [29]
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in the case of regression estimates. Consider

h(slt,C) - Jp
(V(x - t)’C’(x - t))

(15)

It is easy to verify that h(st, C) is a decreasing function. Therefore, if h(soIt, C) > b

then will have to be increased. This implies that s need not be calculated for each

subsample because if our current minimum value for s is 80 and h(soIt, C) > b then 8o

will not be updated because the new value of s will be greater than so. Using this fact,

the following modification is proposed for the resampling algorithm.

1. Calculate an initial value and V.

2. ForJinl,...,m,

(a) select subsample J containing exactly p + 1 distinct points,

(b) compute

1 1 — —tj
= 1

x, and C = — (x — t)’(x — ti),
iEJ

(c) rescale C so that ICj = 1,

(d) if h(soIt, C) < b then:

i. s, = {s : h(sltj, Cj) =

ii. t = tj;

iii. ‘‘ =

3. return and V.

With this modification, the expected number of times that needs to be updated is of

the order log(m). To show this, let

1 if h(s0jt3,C) <6
Y3—

o otherwise
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Observe that the number of times that needs to be updated is , where

r=ZYj.

Using the properties of expected values it is clear that E(i) = E(Y). Since each

subsample is drawn independently and

= minh(sIt,C1)= b, for i = 1,.. .,j,

= 1) 1/j with equality as n —÷ 00, which implies that E(Y) < 1/j, and,

therefore, E(i) <(1/j) log(m).

The only possible difficulty with this algorithm is the updating of However, I

claim that this will be a relatively easy task because it is a function of a single variable,

the solution is bounded below by zero and above by and, if one imposes the sufficient

condition for asymptotic normality, the function will be twice continuously differentiable.

Therefore, a Newton-Raphson routine can be used to find the solution. Furthermore, it

will converge quite rapidly because the solution is unique (see Section 3.1), and bounded.

The uniqueness is guaranteed because t, C is an M-estimate of scale.

To use this method, a starting value is needed for The usual approach is to set

= {s h(sti,Ci) = b}. I suggest using = {s : h(sI,S/ISI”°) = b} because

it forces the S-estimate to beat the classical estimate. If it does not then the location

estimate becomes x and the scatter becomes sgS/jS’h’. Furthermore, if the probability

of beating the classical estimate is fi then the covariance of the location estimator

becomes (1 — ,6)S + 3St. Since x is the most efficient estimator for the uncontaminated

model, the efficiency of the location estimator has been improved. The estimated scatter

is also slightly improved because the estimated correlation structure receives the same

benefits as the location estimator. Unfortunately, the scale estimate does not because it

is an M-estimate and, therefore, not very efficient unless a low breakdown point is used.

24



This starting point should also work if the sample is contaminated because there is a

high probability that at least one of the subsamples will contain all good points. This

subsample alone should cause .so to be updated thus changing the location, correlation

and scale estimates.

3.3 r.-Estimators

A drawback of S-estimates is that they cannot achieve a high breakdown point

and high efficiency at the same time. Yohai and Zamar [28] addressed this problem in

1988 with the introduction of r-estimates. A r-estimate is an adaptive multiple of an

M-estimate of scale. In the simple case of univariate location and scale, let

r2(t)
= s

P2
(;)t)

(16)

where s(t) is an M-estimate of scale defined for a given t, as the solution to

(xI_t)
=

P2 defines another M-estimate which is usually different from s() and b2 is the normal

izing constant for P2. Instead of minimizing s(t) over t, r(t) is minimized. The value

that minimizes r(t) is the location estimate and r() is the scale estimate. r-estimates

of regression can be defined in an analogous way.

In 1990, Lopuhaä generalized r-estimates to the multivariate context. He defined

them to be the vector and matrix

V = P2 {{(x - )‘O’(x
- )}1/2]

(17)
2

where and O are the vector and positive definite symmetric matrix that minimize

ci {t2 [{(x - t)’C1(x- t)}h/2]} (18)
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subject to

‘ — t)’C(x — t)}h/2] = b1. (19)

r-estimates are a generalization of S-estimates. Indeed, if p P2 and b1 = b2 then

(17) reduces to a multivariate S-estimate as defined in Section (3.2). This implies that

the classical mean and covariance as well as the MVE are special cases of T-estimates.

However, in practice p and b1 are taken to be quite different from P2 and b2 so that high

breakdown and good efficiency can be combined. Pi controls the breakdown properties

of the r-estimate provided that

2p2(x) — xp(x) > 0, for x> 0 (20)

and P2 is bounded. In fact, it can be shown that for this case, the breakdown point

against outliers is given by b1/M1 where M1 = sup p’. (20) is needed to guarantee that

(18) is strictly increasing in the magnitude of C. P2 alone controls the efficiency of the

estimate. To see this, consider the univariate case with P1 defining any estimate with a

50% breakdown point and let P2 = p as defined in (4) then

lim r2 = lim
s2(t) u (x_— 2

= 1
(x — t)2

k—*c k—too n i=1 ‘ s(t) ) n j1

which defines the classical estimates.

The other properties of r-estimates depend on p1, b1, P2 and b2 simultaneously. If

b1 and b2 are chosen so that p and 2 each defines a consistent S-estimates then the

resulting r-estimate will also be consistent. As for the asymptotic distribution of the

r-estimate, one must consider the multivariate S-estimate for and as defined by (12)

and (13), where the functions

u(x)
= Ai(x) +B2(x)

and v(x) = Ai(x) + B2(x) — 2b2{pi(x) — b1}

depend on the data through

A =1Z2p2(yj) —
y1b2(yj) and B =
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where yj = — t)’C1(x — t). The asymptotic behaviour of the actual r-estimators

and can be obtained from that of and [12].

The r-estimate is computationally more difficult than the S-estimate because it is

the solution of a constrained minimization problem. However, a resampling scheme

similar to the one derived for S-estimators also works for r-estimators. Consider

h(sit,C) =

(\/(xi _t)’C’(xi_t))
(21)

and

_________________

h2(sit, C) = P2
- t)’C’(x - t))

(22)

where ICI = 1. With this notation the r-estimator becomes the vector and matrix

V s2Ch2(s,O)/b2

where and are the vector and positive definite symmetric matrix that minimize

.s2h2(sjt, C) subject to hi(sit, C) = b1. Therefore for each subsample of size p + 1,

the mean t and rescaled covariance C such that = 1 are used to compute k =

.s2h2(sIt,C) subject toh1(sIt,C) = b1. The subsample that produces the smallest k

is used to approximate the r-estimate.

Like the algorithm for the S-estimate, the equations need not be solved for each

subsample because of the monotonicity of h1 (sit, C) ands2h2(sit, C), see (20). Suppose

our current minirnium is k0 = sgh2(soto, C0) and we have t and C from the next

subsample drawn. If hi(soIt, C) > b and sgh2(sot, C) > Ic0 then the subsample cannot

produce the minimum because must be increased to satisfy (19), hi(sit, C) is a

decreasing function of s, guaranteeing thats2h2(sjt, C) > k0 because it is an increasing

function of s. Therefore the resampling algorithm for the T-estimate works as follows.

1. Calculate an initial value for Ic0 = sh2(sojto, C0).

27



2. ForJinl,...,m,

(a) select subsample J containing exactly p + 1 distinct points,

(b) compute

ZiEJXi —tj
= 1

and Cj = —(x—xj)(x—xj),
iEJ

(c) rescale C so that ICjj 1,

(d) if hi(sotj, Cj) < b or sgh2(sotj, Cj) < ko then:

= s : h(sIt2,C) =

ii. t,, = t;

iii. C =

iv. if sh2(st,C) < ko then:

A.

B. to = t;

C. Co=C;

D. Ic0 = .sh2(sjt,C);

3. V0 = C0k/b2,

4. return to and Vo.

The expected number of times that (18) needs to be solved, appears to be quite difficult

to compute and is left as the subject of further research.

3.4 Stahel-Donoho Estimator

Another multivariate estimator of location and scatter with a high breakdown

point was obtained in 1981 by Stahel [27] and independently by Donoho [7] in 1982.

28



To calculate this estimator, called “outlyingness-weighted mean and covariance”, one

begins by defining a measure of “outlyingness” for x E RT’

v’x, — med(v’x)Iu= sup . (23)
IIvlI=1 mad(v x)

Next, one defines a weight function w [0, cx) — [0, oo) such that w(x) is decreasing

and xw(x) is bounded for x > 0. Finally one combines w = w(u) and x to calculate

the following weighted mean vector and covariance matrix

= (24)

—n 2( •( •+!

v — Lj1 Wj R (25)
—

Donoho [7] shows that (24) is affine equivariant and has a breakdown point of ([(n +

1)/2] — p)/n which tends to 1/2 as n — oo, provided that no more than p points of

x1,. . . , x lie in a (p — 1) dimensional affine subspace. Similarly, one can show that the

same properties hold for (25). The asymptotic behaviour of the estimators such as rate

of convergence, limiting distribution and consistency have not been investigated yet.

The motivation for the definition of u is the classical Mahalanobis distance defined

by

Iv’x — V’x)
1 —rn = sup = -/(x — x)’S (x — x) (26)

IIvII=1 SD(v x)

Unfortunately, u cannot be expressed in a form that is easy to compute because unlike

the SD, there is no known multivariate covariance estimator whose univariate equivalent

is the mad. Therefore, all directions in 7?? must be searched in order to compute a single

u. Obviously this cannot be done.

In 1990, Patak [20] proposed a modification to Stahel-Donoho estimator that is easy

to compute. The method is iterative with the weights for the (k + i)st iteration being

updated by the principal components of Sk, as calculated in the kt iteration of the
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algorithm. Suppose we have Sk and weights W then the (k + l)st step of the algorithm

works as follows:

1. Set a,, j 1,... ,p equal to the eigenvectors of Sk;

2. Let w2j = w(u3), where w : [0, ) —* [0, ) is such that w(x) is decreasing, xw(x)

is bounded for x> 0 and u23 —

Q T +TAJk+1_rTP
.

— 11j1

4. If Wk+l > wk then Wk+l =

5. t,c = z:’=1Wx/ W1

6. Sk+1 >(Wk+1)2(x
— tk+1))(X — tk+1)’/Zi(TV)2.

The weights, after convergence, are used to compute the final estimates and ‘( as

defined in (24) and (25). The convergence of the algorithm is guaranteed because the

weights are decreasing functions bounded below by zero. There could be a problem if

all the weights converge to zero but Patak showed that at least p + 1 points that do

not lie in a lower dimensional hyperplane will have weights greater than zero so the

estimators will not collapse or become singular. £ is consistent, orthogonal equivariant,

and possesses a breakdown point of ([n/2] — p)/ri. ‘(‘ is also orthogonal equivariant,

possesses a breakdown point of ([n/2] — p)/n but is only consistent to within a constant

k that depends on the underlying distribution and the particular weight function used.

k can be quite difficult to compute in general so I recommend estimating it from the

data. Let p define an M-estimate of scale, then k can be estimated by A which is the

solution to

__________________

i ((xi - t)’V’(x - t)) =
(27)

It follows from the properties of M-estimates that V is consistent.
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The above algorithm describes how Sk+1 is computed from Sk. However one needs

an initial estimate of covariance S0, which can be calculated through the following

algorithm.

1. Set W°= 1, i=1,...,n;

2. For k = 1 to m,

(a) randomly generate a1 N(O, I) and normalize;

(b) calculatea2,..., a € 1?Y such that aa = 1 <i <j p;

(c) compute w w(n);

(d) let Wk HP wj

(e) if WV < W then W

3. to = Wx/ W;

4. S0 T’V2(x — to)(x — t0)’/ >n q2

The number of iterations (m) is quite arbitrary. It is used to control computational

efficiency. Small m means a very efficient estimate from a computational point of view

but the starting point can be extremely poor. If we let m get large, the starting point

will be excellent. In fact

lim to = t and jim S0 = V
m-*co m-

as defined in (24) and (25) respectively, but these estimators are computationally pro

hibitive. Therefore m must be chosen to optimize the algorithm in terms of speed and

quality of the initial estimates. In his thesis, Patak sets n = lOp. However it might be

more realistic to allow the data to determine the number of iterations. For example, if
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the weights do not change significantly after a predetermined number of iterations then

stop and use the current value of So.

Another modification to this procedure is to centre the data first by some location

estimate i. This location estimator should be independent of the covariance estimator

and possess all the properties of . Thus, it must be consistent, orthogonal equivariant

and have a breakdown point of 1/2 asymptotically. The Li location estimator [12],

defined by

argmin
— TI

has all the required properties. When the modified procedure is carried out, the data

are assumed to be centred and therefore, tk = 0 and med(ax) = 0 by assumption.

This estimate was originally proposed in the context of principal component analysis

and for that purpose, orthogonal equivariance is enough. However, as an estimator of

muitivariate location and scatter, one would prefer an affine equivariant estimate. Sk

is not affine equivariant because it depends on the principal components of Sk_1. S0 is

not affine equivariant either because it uses an orthogonal basis at each iteration. Even

if the calculation of S0 is modified to skip this step, it is still not affine equivariant

because, in general,

Ia’x — med(a’x3)I Ia’Axi — med(a’Axj)I
mad(a’x) mad(a’Ax)

for an arbitrary affine transformation A. In order to obtain affine equivariance, the

direction a must be transform to a direction b such that

Ia’x — med(a’x3)I jb’Ax — med(b’Ax)
mad(a’xj — mad(b’Ax)

This implies that b = (A’)’a. So, the algorithm can be made affine equivariant if the

transformation A is known. This is usually not the case so we attempt to estimate it.
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The covariance structure of the data is central to estimating a transformation A. If

the structure is known before and after the transformation then one can estimate A by

S/2S;’/2 = AS2S;h/2 = A where y = Ax. When S is unknown, it can assumed to

be I and A becomes S/2.

This method works great if the data are uncontaminated, but certain types of con

tamination can destroy the estimated transformation in such a fashion that the direction

of the outliers has a lower probability of being searched. Thus, there appears to be no

easy way to make the algorithm affine equivariant and robust.

Example 1 The sample yi,. . . , Y4o, with = (500,0) and S, = I is added to the

sample x1,. .. , x60, with = (0, 0) and Sr = I. The final covariance structure is

60000 0 0.00408 0
S = and S”2 =

0 1 0 1

-

If a = (0.8,0.6) then the outliers appear to be approximately OO standard units away

from the centre. However S’2a = (0.00327,0.6) and the outliers now appear to be

anound 2.72 standard units from the centre.
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4 Detection and Testing of Outliers

For the above estimators to work, one only needs a bound on the amount of

contamination in the sample. If this bound is not exceeded then the estimators will

perform reasonably well. However, these estimators yield no information about the

sample itself. They do not estimate nor do they indicate which points are the outliers

if any are present at all. If the sample is clean and the underlying distribution is normal

then the best estimators of location and scatter are the sample mean and covariance.

Therefore it would be wise to check if the sample is contaminated and use the appropriate

estimator based on the results. The decision can be made through various techniques

of detecting and testing for the presence of outliers.

In order to detect a multivariate oiitlier, we must have some notion of “extreme”.

One such notion is the statistical norm X2 defined by X2 = (x — — j7), where

x comes from a distribution with mean and covariance . If the statistical norm is too

large then the point is considered to be an outlier. Too large depends on the distribution

of X2. For example if x is normally distributed then X2 follows a x distribution and

too large is is defined as X2 > x where = {x : x(x) = 1 — a}. Unfortunately,

the statistical norm assumes the true location and scale are known.

When the true location and scale are unknown, the statistical norm can be estimated

by replacing the parameters with accurate estimates. Suppose, we have x1,. . . ,x,, y

F, x/n = 5 and — — —1) = S. Then the sample Mahalanobis

distance D2 = (y — )‘S;’(y
—

can be used to approximate X2. If F is a normal

distribution then D2 follows a scaled distribution with scaling factor k = (n2 —

1)p/(n — p)n. Therefore, to detect all the outliers in a sample, z1,. . . ,z4, one can

apply the above procedure to the of n + 1 partitions of the data defined by removing

the point from tha sample, considering that observation to be y while the remaining
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n points play the role ofx1,. . . , x,. Mathematically, the partition is defined as y =;

and

zj j=1,...,i—1,
(28)

zj+1 j=i,...,n.

Next, one calculates D for the th partition and declare those points such that D/k>

to be outliers. The reason for excluding y from the calculation of x and S is to

ensure that the F distribution holds. If D = (y — )‘S’(y — k) is used instead of D2,

where is the mean of the entire sample and S is the covariance of the entire sample,

then the distribution of D is unknown and will have to he derived in order to establish

an accurate bound for outlier detection.

Now assume that x1,. . . , x, y F6, and we wish to check if y is an outlier. D2

does not work anymore because we have inaccurate estimates of /1 and . Using robust

estimates, say t and V, to calculate V2 = (y
— t)’V;1(y— tx), one can solve this

problem except that the distribution of V2 must be derived. Robust estimates work

because they are, to a great degree, independent of the outliers in the sample. If one

wishes to detect the outliers for an entire sample, then one can calculate V for each

partition as defined by (28) and declare the points for which V is beyond a certain

cutoff point, to be outliers. However, the time needed to calculate n robust values of t

and V can be quite substantial. Therefore, t and V should be calculated only once,

using the entire sample, and D! = (y — t)’V1(y — t) used instead of V2. This works

because the distributions of the statistic needs to be derived before either can be used

and removing an outlier from the sample before the robust estimates are calculated will

not change them by much.

Outlier detection does not differentiate between extreme observations and contami

nants. In fact, for any fixed cutoff point, we can guarantee the detection of at least one

outlier in a clean sample, by increasing the sample size. For example, in a clean sample
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of size 200 with c .01, the probability of at least one observation being detected as

an outlier is approximately 1 — 0.99200 = 0.866. The advantage of testing a sample for

outliers is that regardless of sample size, a good observation will only be rejected with a

specified level o. However, the disadvantage is that a contaminant is only rejected with

a probability 3, which depends on the particular type of contamination and test being

used.

4.1 Tests based on Wilk’s Lambda

The classical approach to testing and detecting multivariate outliers is based on the

iidWilk s Lambda statistic used in a MANOVA set up. Suppose x1,.. . , x F,, such that

k of the n points in the sample come from H. Suppose the sample is permuted so that

these points are x1,.. . , One wishes to test the null hypothesis,

lid
- -H0:x-Ffor=1,...,n,

against the alternative

Hfori=1 ... k
x

Ffori=k+1,...,n.

Under H0, the sufficient statistic is A = (n — 1)S where S is the classical sample

covariance matrix defined on page 12, however if H1 is true then the sufficient statistic

for F is A(k) = =k+1(X — c(k))(x — X(k))’ where X(k) Zjk+I x/(n — Ic). There

are several possible test statistic, all of them based on the eigenvalues of AA where

the it1 eigenvalue of AA is (1 + j) for i = 1,. .
.
,p. Wilk’s lambda defined as

A = H(1 + ))‘ = IAAj’ is the generalized likelihood ratio test. A can also be

defined as lAki/IAI and in this form it can be seen that A rejects H0 when it is too

small because

n—k k

A = A(k) +
—

—
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A is known to have good power when H is a N(/1*, ) distribution and the null distri

bution is either known or can be closely approximated. The null distribution depends

on the sample size and number of suspected outliers. Let denote the value of A

for a p dimensional sample of size n with a k-outlier configuration. The distributions

of and are very straight forward. follows a/3(n—p—1)/2,p/2 distribution

while is distributed like a 13n—p—2,p random variable. More generally, can be

expressed in terms of the product of (k + 1)/2 beta random variables [8].

Other possible test statistics such as Roy’s largest root defined as ). max()

and Hotellings T = \, tend to be less powerful than A and have unknown null

distributions.

When the true outlier configuration is unknown but the exact number present is

known, an outlier test can still be performed. This is done by calculating A for all

M n!/k!(n—k)! possible configurations and usin&the one that minimizes A to identify

the possible outliers. Unfortunately the distribution of min(Ak) is unknown and the p

value is therefore based on a conservative bound given by the Bonferroni inequality.

Another disadvantage of this method is the substantial time needed to calculate A for

all possible outlier configurations. For example, if n = 50 and Ic = 10, the total number

of outlier configurations possible is over ten billion, of which only one will contain all n—k

good points in a single partition. in the univariate case, this problem can be avoided

because the sample can be ordered resulting in only k + 1 of the M configurations as

possible candidates for the true outlier configuration. Unfortunately, there is no accurate

way to order a multivariate sample unless the true location and scatter are known.

The assumption that Ic is known is another serious weakness of this method because

in practice it usually is unknown. An upper bound on k can always be assumed because

if Ic > Ln/2] then F would be considered to be the contaminating distribution and
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H would be considered to be the true distribution. Now assume that one knows that

k <m then an outlier test can be performed by considering all n!/k!(n — k)! possible

outlier configurations. For each configuration, the p-value is calculated for and

the most statistically significant configuration is used to identify the number of outliers,

and the particular points that are considered as possible outliers. Whether or not these

are true outliers is again decided using the Bonferroni inequality.

In 1992, Caroni and Prescott [3] suggested that Wilk’s outlier test be applied se

quentially assuming that there are at most m outliers in the data. Starting with a

single outlier, is computed by removing the point from the sample. The statis

tic D1 = min(A,,1)is saved and the observation that corresponds to the minimum,

x(1), is removed from the sample. The procedure is then applied to the reduced sample

x1),. .

. ,x’i1. After rn repetitions of the procedure, one produces a sequence of statis

tics Dm,Dm_i,. . . ,D, where D = minA
• 1 -1) and there correspondingn z,p,

n—i+1

observations X(m),.. . , X(1). Comparing Dm, Dm_i,. . .
, D1 against the appropriate crit

ical values ‘km,.. . , ., where ), =

____

_, the number of outliers declared by
2 ‘2’n+1—

the sequential procedure is the highest value r such that Dr < .k- or zero if none are

significant. Caroni and Prescott show that the sequential Wilk’s outlier test has a type

I error which is only slightly conservative for the sought level a if testing for the (k + i)st

outlier when only k exist in the data. Furthermore, the test will be reasonably powerful

when only a single outlier remains because at that point, the test becomes equivalent

to the generalized likelihood ratio test. Applying the test in a forward fashion makes it

immune to the effects of swamping. However, since it is based on classical methods, it

will be very vulnerable to the effects of masking. This vulnerability exposes the main

weakness with the sequential Wilk’s outlier test. If the outliers are masking one another,

the sequential method may detect several good data points and ignore the true outliers
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altogether. The error is amplified even further if the test actually declares some of these

points to be true outliers. See Section 6 for an example of the effect of masking on this

test.

4.2 The Scale-Ratio Test

The scale-ratio test was developed in the univariate set up by Le and Zamar ([13])

in 1991. The test statistic is a ratio of two scale estimates, &, which is sensitive to

outliers, and ô, which is highly robust. The test statistic is defined as v = ö/à and the

null hypothesis is rejected when v is too large. Le and Zamar derive the asymptotic

distribution of the scale-ratio test as well as conditions on the estimates, & and ô- so

that a Pitman efficient test is obtained.

There are several possible extensions of the scale-ratio test to the multivariate setup.

One such generalization is based on the ratio of determinants.
- For example, suppose,

we have two estimates of scatter for the same sample, , which is highly sensitive to

outliers, and which is highly robust. Summarizing the size of each matrix by its

determinant, we define the multivariate scale ratio test to be

Vo=’/fI (29)

It should be noted that V0 reduces to v2 when p 1.

Another measure of the relative size of a matrix are its eigenvalues. Suppose

has eigenvalues .. > with corresponding eigenvectors é1,. . . , é and has

eigenvalues i > ... > with corresponding eigenvectors ê1,. . . , ê, then a test statistic

in this case can be defined as

17* = rnax/ (30)

However Vmax may lack power because ê, and ê, need not point in the same direction.

We will illustrate this through an example.
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Example 2

20 80 20

01 01 04

Suppose we have a two dimensional sample with covariance structure D. A single outlier

is added to expand the scale of one of the co-ordinates by a factor offour. If the contam

ination occurs in the first co-ordinate, the covariance structure becomes and V =

However if the contamination occurs in the second co-ordinate, the covariance structure

becomes 2 and V* = 2. Therefore V* can lack power under certain situations.

A third possible measure of the relative size of two matrices is

ö2(a’x)
Vmax

= ItHaià2(a’x)
(31)

where & and ô- are univariate estimates of scale. If &2 and ô2 are the univariate versions

of and , respectively and these covariance estimators are affine equivariant then

reduces to

T4nax max
aa

= maxb’2”2b (32)
IIaII1 a’a IIbII=i

1/2 1/2 .where b = a/I all. Therefore, “max is equa.1 to ) which is equal to the largest

eigenvalue of =
If at least one of these estimators is not affine equiv

ariant then Vax Vmax only. It should also be noted that there are some univariate

estimators, such as the mad, that do not have a multivariate equivalent. Therefore,

Vax defines a larger class of test statistics than 4nax• However, in general Vax cannot

be computed directly if an equivalent Vmax does not exist because all directions of 1V’

would have to be searched in order to compute it. Therefore, one should use Vmax to

approximate Vax wherever possible.

The best statistic to use for the multivariate scale-ratio test will depend on the

asymptotic distribution and local power versus a specific alternative hypothesis. Another
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problem is to choose the specific estimators and E. In the univariate case, Le and

Zamar show that if & and & are M-estimates of scale such that — = 16(x4 — 6x2), for

some 0, then the test is Pitman efficient.

Unfortunately, multivariate M-estimates of scale have a breakdown point of at most

l/(p + 1). Therefore a different estimator must be used. Any of the multivariate es

timators proposed in section (3) will work, however, the best one is an area of further

research.

The scale-ratio test tests the hypothesis

jidHo:x-.-N(,u,) forz=1,...,n

vs H1 at least one x H (33)

However, if the test rejects, there is no indication of how many or which points are

contaminants, This problm is solved by applying the scale-ratio test in a forward se-

quential fashion. If the test reject H0 then the point with the largest robust Mahalanobis

distance D = (x1 — t)’’(x — t), where t is the location estimate that corresponds

to J, is removed and the test is re-applied to the remaining points. This procedure is

repeated until the test does not reject H0 or 50% of the points have been removed. If

the latter happens then one should question the assumption of normality in the null

hypothesis.

If each test in the sequence is performed at level c then the overall level of the

sequential scale-ratio test is also c. This is obvious since the probability of not rejecting

the first point is 1 — a and no more tests will be conducted if this happens. Furthermore,

the probability of rejecting at least one good point when there are k outliers in the data

is less than or equal to a, assuming that max D corresponds to an outlier if one is still

present. This assumption will be verified in Section 5 through simulation. A formal

proof is the subject of further research. However, under this assumption, the above
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statement holds because the probability of rejecting a good point after all the outliers

have been removed is o and the probability of removing all the outliers is less than or

equal to one.

Another possible hypothesis that can be tested by the scale ratio test is

H0 :x, ildN()

vs H1:x1H (34)

where H is any non-normal distribution. The test works in this case because the robust

covariance matrix is tuned and the cutoff points are set for a normal distribution. If

the data are non-normal then the robust estimate will tend to under-estimate the true

covariance of a heavy tailed distribution and over-estimate the covariance of a short

tailed distribution. The bias in the robust estimates is large enough to cause the test to

reject if H is sufficiently different from a normal distribution. The test is applied only

once for this alternative and if the null hypothesis is rejected then the only conclusion

is that the xi’s are not normally distributed.

The scale-ratio test can also be modified to work for other distributions besides the

normal. To do this, one must calculate proper cutoff points for the test statistic. It may

also help to re-tune the robust estimator of scale to fit the true distribution of the data.

Some information about the computer implementation of the scale-ratio test, sequen

tial Wilk’s outlier test as well as the approximation algorithms of the robust estimators

is available on page 70 in the appendix.
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5 Properties of the Scale-Ratio Test

Before the scale-ratio test can be applied, the estimators and E must be chosen.

In all cases = S, the classical sample covariance matrix defined by (2). For 1 we will

consider two possible estimators, (a) an S-estimate with p(x) defined by (8) and

a breakdown point of 50%, and (b) a Stahel-Donoho estimator, approximated by

Patak’s algorithm, with

w(x)
= 1 if X X,niJn(zi,O.99)

0 otherwise

subject to >w(x) < n and ic defined by (8) with b = 1/2. Furthermore, both Vo and

Vmax as given by (29) and (32) respectively, will be considered as possible test statistics.

The first order of business is to calculate the cutoff points for the scale-ratio test.

This is done by comp-uting the appropriate test tatistic for 10000 N(O-, I) sarnple of

size n and estimating the cutoff points by the appropriate order statistic. The mean can

be 0 and the covariance can be I without loss of generality because the estimators are

equivariant to rotations and translations. The results are tabulated in Tables 4-7 for

various sample sizes up to 300, p = 2, 3,4 and c = .05, .025, .01. Other estimated cutoff

points are presented with the specific application in Section 6. It should be noted that

the theory of order statistics tells us that the estimated cutoff points {ê} are normally

distributed with parameters

— F’ 1 2 — cr(1
— d

— a(1
—

of,)
— ‘

— nf2 [F-’(1
—

cj)] an
— nf [F’(1

—
aj)] f {F’(1 — a)]

where aj > cj, F is the true distribution of the test statistic and f is the density of the

test statistic.

Both E8 and >2 are random variables for a given data set because both estimates

contain a random element. The S-estimate uses a random subset of all possible sub
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samples of size p + 1 while the Stahel-Donoho estimate is based on random projection

in 7V’. The variability of the estimates is of interest because it can have a significant

effect on their performance. If the cv = s/i, coefficient of variation, is too large then

the approximation will be too imprecise and possibly lack power because of this added

variability. Simulations indicate that the cv for Y, is quite a bit smaller that the cv

for . Both are acceptable when the sample is uncontaminated but the cv for E ap

pears to increase dramatically with the level and the magnitude of the contamination.

Also, asymmetric contamination appear to be more damaging than symmetric. The

cv for is only mildly affected by the presence of contamination. The cv for each

estimator is summarized in Tables 8 and 9 for p = 2, c = 0, .05, .25, n = 40, 80, 120 and

H = N(3, .01), N(6, .01), N(0, 3), N(0, 6).

Next, I consider the asymptotic distribution of the test statistics. This is done

through a Monte Carlo simulation of 5000 replicates under the null hypothesis. For

various sample sizes, a probability histogram is plotted with an appropriate normal

curve overlaid. The parameters for the normal curve are estimated from the sample

itself. The plots for a sample size of 1000 in 2 dimensions are shown in Figure 3 for

the four test statistics considered in this section. All of them appear to follow the

normal curve quite closely. Therefore, for larger sample sizes, the cutoff points need

not be approximated. Instead, a p-value can be computed based on the appropriate

normal curve. Computing the asymptotic mea.n and variance of the test statistic, the

rate of convergence as well as a formal proof of the asymptotic distribution are areas of

further research. However, the parameters of the normal curve can be estimated more

accurately with fewer replicates than the appropriate order statistics. An estimated

p-value is another advantage of the normal approximation.

Finally, we consider the power of the scale-ratio test. The test is applied 1000 times
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to random samples of various sizes, dimensions, contamination types and contamination

levels in order to estimate the power under these conditions. Keeping all but one factors

fixed, the power as function of the changing factor is produced. A plot of this function for

each test statistic will help us decide which is best for a given situation. Plotting power

as a function of dimension is not done because the contamination type also depends on

the dimension. Therefore, the results presented in this section are for the 2-dimensional

case oniy. However, similar results appear to hold in higher dimensions as well. The

power curves appear in Figure 4 are for a significance level of 0.01.

Six situations are considered for power calculations. First, a single outlier is added

to 99 2-dimensional normal observations to make a sample of size 100. The magnitude

of the outlier is increased and the power for a significance level 0.01, is plotted in the top

left corner of figure 4. The top right plot corresponds to a sample of size n independent

and identicallydistributed observations that come from F(x,y)= (1 e1)(1 — eM).

The power is plotted as a function of sample size. This situation is considered as an

example of the sensitivity of the scale-ratio test to non-normal distributions. If a short

tailed distribution is used is substituted for the double exponential distribution, the

scale-ratio test appears to retain its sensitivity. The middle two plots explore the power

of the scale-ratio test when the the sample contains some symmetric contamination.

Power as a function of contamination level and sample size are considered here. The

bottom two plots are the same as the middle two except that the contamination is

asymmetric.

The plots indicate that the test defined by E. is more sensitive than the test defined

by
. However, for the two test statistics Vo and Vmax perform similarly. It

is not surprising that V0 is more powerful when facing symmetric contamination and

less powerful for asymmetric, but V0 also appears to be more sensitive to the normal
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assumption. Another interesting feature is that Vo performs slightly better than Vm

when there is only one or two outliers and their deviations are not too extreme.
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Table 4: Cutoff Points for Vo using ,

Dimension and level

Sample 2 3 4

Size .05 .025 .01 .05 .025 .01 .05 .025 .01

25 1.709 1.972 2.316 1.627 1.842 2.104 1.541 1.756 2.073

30 1.570 1.757 2.045 1.508 1.673 1.913 1.436 1.621 1.890

35 1.484 1.638 1.873 1.453 1.603 1.807 1.382 1.522 1.698

40 1.445 1.582 1.778 1.399 1.530 1.686 1.376 1.513 1.682

45 1.405 1.526 1.696 1.366 1.468 1.643 1.316 1.419 1.568

50 1.374 1.490 1.638 1.324 1.421 1.552 1.287 1.388 1.525

55 1.340 1.445 1.574 1.292 1.382 1.509 1.260 1.342 1.439

611 1.329 L41ft 1.529 1.287 1.379 1.509 1.26 1.33 1.445

80 1.256 1.329 1.411 1.231 1.294 1.368 1.205 1.266 1.341

100 1.218 1.277 1.345 1.192 1.247 1.316 1.174 1.231 1.290

120 1.199 1.248 1.316 1.174 1.221 1.286 1.150 1.197 1.259

140 1.179 1.225 1.283 1.161 1.200 1.260 1.148 1.192 1.239

160 1.166 1.206 1.255 1.143 1.184 1.230 1.131 1.167 1.209

180 1.158 1.194 1.244 1.142 1.179 1.223 1.122 1.156 1.196

200 1.147 1.181 1.229 1.129 1.165 1.208 1.118 1.147 1.186

220 1.139 1.174 1.225 1.122 1.156 1.192 1.111 1.140 1.176

240 1.134 1.165 1.204 1.117 1.148 1.184 1.109 1.134 1.166

260 1.121 1.154 1.189 1.112 1.141 1.174 1.101 1.126 1.158

280 1.120 1.151 1.187 1.107 1.133 1.166 1.097 1.121 1.149

300 1.114 1.143 1.179 1.106 1.133 1.164 1.094 1.118 1.147
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Table 5: Cutoff Points for 4nax using

Dimension and level

Sample 2 3 4

Size .05 .025 .01 .05 .025 .01 .05 .025 .01

25

30

35

40

45

50

55

60

80

100

120

140

160

180

200

220

240

260

280

300

2.410

2.071

1.887

1.734

1.645

1.566

1.512

1.462

1.336

1.266

1.233

1.201

1.187

1.172

1.160

1.149

1.141

1.131

1.128

1.121

2.806 3.469

2.354 2.828

2.098 2.399

1.929 2.161

1.810 2.034

1.688 1.867

1.630 1.803

1.569 1.711

1.403 1.498

1.326 1.397

1.277 1.332

1.242 1.302

1.224 1.267

1.203 1.246

1.188 1.227

1.179 1.216

1.167 1.199

1.153 1.182

1.149 1.181

1.141 1.168

2.998

2.439

2.119

1.901

1.792

1.689

1.603

1.552

1.375

1.288

1.248

1.220

1.193

1.177

1.161

1.148

1.142

1.134

1.127

1.121

3.497 4.400

2.801 3.352

2.382 2.755

2.083 2.362

1.972 2.183

1.825 1.999

1.722 1.904

1.646 1.795

1.454 1.532

1.343 1.405

1.293 1.354

1.261 1.309

1.222 1.266

1.211 1.248

1.187 1.229

1.173 1.206

1.164 1.194

1.156 1.179

1.146 1.173

1.139 1.162

3.445 4.081

2.704 3.129

2.347 2.626

2.029 2.250

1.878 2.072

1.741 1.876

1.646 1.761

1.590 1.691

1.397 1.469

1.299 1.353

1.249 1.291

1.216 1.250

1.197 1.229

1.176 1.199

1.162 1.186

1.150 1.173

1.142 1.161

1.133 1.152

1.122 1.141

1.117 1.135

5.085

3.689

3.019

2.533

2.287

2.068

1.907

1.861

1.563

1.413

1.340

1.289

1.270

1.232

1.215

1.204

1.189

1.178

1.162

1.157
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Table 6: Cutoff Points for using

Dimension and level

Sample 2 3 4

Size .05 .025 .01 .05 .025 .01 .05 .025 .01

25 1.521 1.726 2.061 1.266 1.403 1.598 1.152 1.237 1.363

30 1.442 1.596 1.843 1.254 1.364 1.508 1.163 1.251 1.377

35 1.379 1.519 1.699 1.234 1.320 1.449 1.170 1.253 1.358

40 1.336 1.456 1.619 1.236 1.318 1.419 1.164 1.245 1.327

45 1.311 1.413 1.550 1.224 1.309 1.419 1.175 1.255 1.355

50 1.297 1.392 1.530 1.222 1.295 1.401 1.178 1.251 1.343

55 1.281 1.362 1.480 1.212 1.289 1.391 1.159 1.220 1.306

60 1.258 1.339 1.457 1.206 1.274 L361 1.156 L214 L23

80 1.220 1.280 1.361 1.185 1.237 1.309 1.155 1.208 1.272

100 1.195 1.245 1.321 1.163 1.213 1.276 1.138 1.187 1.249

120 1.178 1.226 1.288 1.150 1.195 1.247 1.130 1.165 1.208

140 1.165 1.209 1.261 1.139 1.177 1.219 1.126 1.161 1.208

160 1.154 1.192 1.238 1.132 1.168 1.217 1.118 1.151 1.193

180 1.144 1.181 1.232 1.125 1.160 1.199 1.112 1.141 1.183

200 1.139 1.175 1.21.5 1.118 1.147 1.187 1.106 1.132 1.169

220 1.131 1.164 1.199 1.118 1.146 1.188 1.102 1.130 1.158

240 1.122 1.152 1.190 1.110 1.141 1.173 1.098 1.124 1.155

260 1.121 1.149 1.182 1.106 1.131 1.162 1.097 1.119 1.146

280 1.114 1.143 1.181 1.106 1.133 1.160 1.093 1.116 1.146

300 1.112 1.139 1.172 1.101 1.128 1.160 1.090 1.113 1.140
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Table 7: Cutoff Points for Vmax using E

Dimension and level

Sample 2 3 4

Size .05 .025 .01 .05 .025 .01 .05 .025 .01

25 3.000 3.802 4.771 1.974 3.247 5.019

30 2.470 2.995 3.731 1.100 1.385 3.005

35 2.114 2.537 3.175 1.079 1.114 1.635

40 1.926 2.287 2.887 1.074 1.102 1.153

45 1.752 2.111 2.512 1.073 1.099 1.138

50 1.630 1.966 2.399 1.071 1.093 1.130

55 1.479 1.745 2.182 1.067 1.090 1.120

60 1.423 1.750 2.142 1.061 1.079 1.105

80 1.186 1.419 1.706 1.058 1.073 1.093

100 1.123 1.225 1.486 1.053 1.067 1.085

120 1.100 1.153 1.378 1.048 1.063 1.079

140 1.092 1.125 1.265 1.045 1.057 1.073

160 1.083 1.109 1.176 1.042 1.052 1.067

180 1.076 1.101 1.159 1.041 1.052 1.064

200 1.071 1.089 1.121 1.039 1.048 1.062

220 1.064 1.082 1.107 1.038 1.046 1.056

240 1.061 1.079 1.102 1.036 1.044 1.054

260 1.059 1.073 1.094 1.034 1.042 1.053

280 1.057 1.072 1.094 1.033 1.041 1.050

300 1.055 1.068 1.090 1.032 1.040 1.050

1.038 1.061

1.039 1.060

1.040 1.058

1.041 1.057

1.041 1.058

1.042 1.057

1.038 1.051

1.038 1.050

1.036 1.047

1.034 1.044

1.032 1.040

1.031 1.040

1.029 1.037

1.026 1.034

1.026 1.032

1.025 1.031

1.024 1.030

1.023 1.029

1.022 1.028

1.022 1.027

1.108

1.091

1.080

1.079

1.079

1.077

1.069

1.068

1.060

1.056

1.052

1.049

1.046

1.043

1.041

1.037

1.038

1.035

1.035

1.033
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Table 8: Coefficient of Variation for 50% biweight S-estimate

Table 9: Estimate

Contamination Sample Size

Type Level 40 80 120

None 0.007 0.002 0.002

N(3,.01) .05 0.019 0.020 0.016

N(6,.01) .05 0.054 0.052 0.052

N(3,.01) .25 0.042 0.034 0.025

N(6,.01) .25 0.108 0.115 0.114

N(0,3) .05 0.010 0.005 0.001

N(0,6) .05 0.028 0.023 0.018

N(0,3) .25 0.027 0.012 0.007

N(0,6) .25 0.049 0.025 0.019

Coefficient of Van ation for Stahel-Donoho

Contamination Sample Size

Type Level 40 80 120

None 0.004 0.002 0.001

N(3,.01) .05 0.002 0.002 0.001

N(6,.01) .05 0.001 0.001 0.001

N(3,.01) .25 0.007 0.009 0.002

N(6,.01) .25 0.003 0.002 0.001

N(0,3) .05 0.003 0.002 0.001

N(0,6) .05 0.005 0.001 0.001

N(0,3) .25 0.006 0.003 0.002

N(0,6) .25 0.003 0.002 0.001

51



U
,

0 I4 0

,j aq (

St
ah

el
-D

on
oh

o
E

st
im

at
or

St
ah

el
-D

on
oh

o
E

st
im

at
or

CD CD c’J 0

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

D
et

er
m

in
an

t

S-
E

st
im

at
or

CD CD C’
J

o

_
_
_
_
_
_
_

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

0.
95

1.
00

1.
05

1.
10

M
ax

im
um

E
ig

en
va

lu
e

S-
E

st
im

at
or

z 0 0 > 0 0 C
l)

C,
)

C,
) 0 C
l)

C, -
t. 0

0 C,
J

0

0.
95

1.
00

1.
05

D
et

er
m

in
an

t
M

ax
im

um
E

ig
en

va
lu

e



Figure 4: Power Curves for the Scale-Ratio Test

n=100, p=2, 1 outlier

2 4 6 8 10

Magnitude

n=100, p=2, mu=O,
Var=3 in each co-ordinate

p=2, Double Exponential

/
/

/
/

/
/

/

50 100 150 200 250 300

Sample Size

p=2, 5% Symmetric Outliers

0

a,
0

CD
0

3
0
0

0

c’J
0

0
0

0

a,
0

CD
0

3
0
0

0

c’J
0

0
0

0

a,
0

0

3
0
U

0

0

0
0

0
3
0
U

a
3
0
U

a,
3
0

U-

0

a,
0

CD
0

0

0

0
0

0

Co
0

0

0

0

0
0

0

0

CD
0

0

0

0
0

/
/

0.02 0.04 0.06 0.08

Level of Contamination

0.10

n=100, p=2, mu=3,
Var=.O1 in each co-ordinate

50 100 150 200

Sample Size

250 300

/
/

p=2, 5% Asymmetric Outliers

/

— — — — -

,
,/

/

—
—--

0.02 0.04 0.06 0.08

Level of Contamination

0.10 50 100 150 200 250 300

Sample Size

53



6 Applications of the Scale-Ratio Test

In this section, the scale-ratio test will be applied to several data sets for the purpose

of outlier detection. This includes an estimate of the number of outliers present as well

as the identity of the bad observations. I will also compare the scale-ratio test to the

sequential Wilk’s outlier test. For the applications considered, I will use the scale-ratio

test defined by 2rn’ and V0 as the robust estimator and test statistic, respectively. This

one is chosen because it appears to have reasonable power against most alternatives.

The comparison begins by applying the scale-ratio test to the transportation cost

data given in Johnson and Wishern [11]. These data are considered because Caroni and

Prescott [3] use them in their paper. The purpose of this example is to show that the

scale-ratio test produces similar results to the V/ilk’s outlier test in situations where the

Wilk’s test works well. The data appear in Table 10, the pairwise plots along with a

few spin plots are in Figure 5, the results for the sequential Wilk’s outlier test appear

in Table 11 and the results for the scale-ratio test appear in Table 12.

The results of the two tests are very similar. The extreme points are selected in the

same order. Observation 9 is the most extreme followed by observation 21 and then

observation 36. Both tests agree that that observation 9 is a definite contaminant and

observation 36 is not. However, they disagree about observation 21. The Wilk’s outlier

test rejects this point at .025 level hut not at .01 while the scale-ratio test rejects at

.10 but not .05. The plots indicate that observation 21 is an outlier and therefore, the

scale-ratio test does not appear to he quite as powerful as the Wilk’s test for this sample.

The next application for outlier detection comes from the Eastern Lake Survey [6].

The data are extracted for the state of Pennsylvania and the chloride concentration,

flouride concentration and sulfate concentration are considered in the log scale. The

nitrate concentration is not used because it contains too many missing values. The
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Figure 5: Scatterplots and Spin Plots for the Transportation Data
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Table 10: Transportation Cost Data: U.S. dollars per mile

Obs Fuel Repair Capital Ohs Fuel Repair Capital

1 16.44 12.43 11.23

2 7.19 2.70 3.92

3 9.92 1.35 9.75

4 4.24 5.78 7.78

5 11.20 5.05 10.67

6 14.25 5.78 9.88

7 13.50 10.98 10.60

8 13.32 14.27 9.45

9 29.11 15.09 3.28

10 12.68 7.61 10.23

11 7.51 5.80 8.13

12 9.90 3.63 9.13

13 10.25 5.07 10.17

14 11.11 6.15 7.61

15 12.17 14.26 14.39

16 10.24 2.59 6.09

17 10.18 6.05 12.14

18 8.88 2.70 12.23

19 12.34 7.73

20 8.51 14.02

21 26.16 17.44

22 12.95 8.24

23 16.93 13.37

24 14.70 10.78

25 10.32 5.16

26 8.98 4.49

27 9.70 11.59

28 12.72 8.63

29 9.49 2.16

30 8.22 7.95

31 13.70 11.22

32 8.21 9.85

33 15.86 11.42

34 9.18 9.18

35 12.49 4.57

36 17.32 6.86

11.68

12.01

16.89

7.18

17.59

14.58

17.00

4.26

6.83

5.59

6.23

6.72

4.91

8.17

13.06

9.49

11.49

4.44
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Table 11: Wilks Outlir Test Applied to the Transportation Data

Sample Point Wilk’s Critical Values

size selected statistic .01 .025 .05 .10

36 9 0.481 0.558 0.592 0.619 0.648

35 21 0.577 0.548 0.583 0.611 0.640

34 36 0.706 0.539 0.574 0.602 0.632

Table 12: Scale-ratio Test Applied to the Transportation Data

Sample Point Scale-ratio Approximate Critical Values

size selected statistic .01 .025 .05 .10

36 9 2.167 1.787 1.578 1.435 1.296

35 21 1.321 1.818 1.616 1.449 1.308

34 36 0.968 1.917 1.638 1.466 1.319
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Table 13: Wilk’s Outlier Test Applied to the Lakes Anion Data

Sample Point Scale-ratio Approximate Critical Values

size selected statistic .01 .025 .05 .10

106 33 0.786 0.813 0.828 0.840 0.852

105 98 0.814 0.811 0.827 0.839 0.851

104 69 0.875 0.810 0.826 0.838 0.850

sample size for this subset is 106. A spin plot of the data indicates that observation 33

and 98 are probably outliers with observation 69, 29, 61 and 77 as possible candidates as

well. The Q — 9 plots of the marginal variables indicate that the most serious departure

from normality occurs in the chloride ion which appears to be heavy tailed. The other

two appear to follow the normal distribution quite closely. The scatterplots and a few

spin plots appear in Figure 6, the results for the Wilk’s outlier test are in Table 13 and

the results for the scale-ratio test are in Table 14.

Again, the two tests seem to be in close agreement. The only difference is that the

Wilk’s outlier test only rejects observations 33 and 98 as outliers where as the scale-ratio

test also includes 69 in this category.

The next example is used to demonstrate the vulnerability of the Wilk’ outlier test

to the effects of masking. It also serves as a demonstration that the scale-ratio test does

not have the same weakness. The data are fictitious with obvious but severely masked

outliers. The data appear in Table 15, the results of the Wilk’s outliers test are in Table

16 and the results for the scale-ratio test are in Tablesmask.

Knowing that there is at most 5 outliers in the data, the Wilk’s Outlier test is applied

6 times to the data, the points detected as potential outliers are, in order of detection,

x12,x1,x2,x11,x8and x13. By looking at the data it is clear that the true outliers are
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Figure 6; Scatterplots and Spin Plots for the Lakes Data

69

a * •* • 96

•
•• S••”•

••*

•**•
*

*
* • *

29

36

0 1 2 3 4

Chloride Ion

69

98

*29

36

C;J

C
0

— 0

0
U

C

p

p
CO

It)

CV
C
0

a, p
CV

-c

a

0

p
a,

In

CV
C
0

a, P
CV

0
U

P

CV

0

C,

CJ

0

cJ

CV

0

96

:** te•t:.•*

•_:*:.*.** *20

36

0 1 2 3 4

Chloride Ion

96

‘ *

** * 69
4*t::*..**

•j:t> **

.29 ** *
••t* —

36

-2 0 2 4

36

• 29*

*
* LhEkide

**

: •S4hate
*

*

98

-2 0 2 4

36

69

29

-4.0 -33 -3.0

Sulphate Ion

-2.5 -2 -1 0 2

59



Table 14: Scale-ratio Test Applied to the Lakes Anion Data

Sample Point Scale-ratio A p proxi mate Critical Values

size selected statistic .01 .025 .05 .10

106 33 1.632 1.314 1.236 1.182 1.130

105 98 1.387 1.318 1.243 1.188 1.135

104 69 1.232 1.217 1.245 1.191 1.133

103 29 1.185 1.314 1.247 1.192 1.136

Table 15: Masked Outlier Data

obs X 37 ohs x y obs x y

1 0.393

2 -1.721

3 0.700

4 0.050

5 -0.383

6 -1.605

7 -1.292

8 0.586

9 -0.327

-2.193

1.086

0.035

-0.028

-0.696

0.434

0.451

-0.879

0.886

10 0.136

11 1.160

12 2.023

13 -0.516

14 0.693

15 -0.304

16 -0.558

17 0.430

18 -1.012

19 0.827 0.516

20 -0.953 0.436

21 1000.044 1000.079

22 999.912 999.971

23 1000.121 1000.158

24 999.951 1000.079

25 1000.158 1000.194

-0.287

-1.042

-2.296

0.728

-0.638

-0.913

0.177

0.536

0.363
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Table 16: Wilk’s Outlier Test Applied to the Masked Outlier Data

Sample Point Wilk’s Critical Values

size selected statistic .01 .025 .05 .10

25 12 0.665 0.491 0.533 0.568 0.605

24 1 0.788 0.477 0.520 0.555 0.593

23 2 0.773 0.461 0.505 0.542 0.581

22 11 0.748 0.445 0.490 0.527 0.567

21 8 0.808 0.427 0.473 0.511 0.552

20 13 0.771 0.409 0.455 0.494 0.536

x21,. . . , x25. None of the detected points are significant but this still demonstrates a

severe lack of power when the outliers mask each other. If Wilk’s outlier test is applied

in a non-sequential fashion, the correct 5 points are detected as the potential outliers

and A5 = 0.000000736 is highly significant. The problem with applying Wilk’s Outlier

test directly comes from the swamping effect. See Caroni and Prescott [3] for an example

of this.

When the scale-ratio test is applied to the same data, the outliers, in order of detec

tion, are x25,x23,x21,x24 and x22. The test is highly significant for these 5 points and

declares them all to be contaminants but when the test is applied to the remaining 20

observation x1 is detected as the extrme observation but it is not rejected as a contam

inant. For this extreme example, the scale-ratio test yields a correct result while the

Wilk’s outlier test is completely fooled.

The final example is designed to show the sensitivity of the Wilk’s Outlier test to

the number of suspected outliers. The data consist of 50 observations in 4 dimensions.

Observations 46 through 50 are structural outliers that do not appear in any of the 3-

61



Table 17: Scale-ratio Test Applied to the Masked Outlier Data

Sample Point Scale-ratio Approximate Critical Values

size selected statistic .01 .025 .05 .10

25 25 342515.530 2.376 1.962 1.711 1.492

24 23 382872.985 2.447 2.018 1.754 1.512

23 21 399269.468 2.473 2.085 1.796 1.529

22 24 319646.961 2.565 2.123 1.848 1.553

21 22 254922.959 2.749 2.201 1.889 1.589

20 1 1.042 2.724 2.245 1.908 1.600

dimensional spin plots or 2-dimensional scatterplots. Figure 7 shows the 6 scatterplots.

The results of the Wilk’s outlier test are in Table 18 while the results for the scale-ratio

are in Table 19.

The Wilk’s Outlier test is affected by masking in this situation but not completely

fooled by it. However, a single application of the Wilk’s outlier test indicates no outliers.

Therefore, if the level of contamination is unknown, an investigator may apply the test

once then stop because it yields an insignificant result. The scale-ratio test, on the

other hand, is unaffected by the masking and indicates an outlier problem with the first

application of the test. This may not seem very serious because the Wilk’s test is very

significant after 4 applications hut there could be several layers of masked outliers in

the data resulting in a swing from insignificant to significant results as the test works

through each layer of contamination.

The above examples demonstrate the performance of the scale-ratio test. It ap

pears to work as well as the Wilk’s outlier test when the outliers are not masked and

dramatically out performs the Wilks outlier test when the outliers are masked.
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Figure 7: Scatterplots for a 4-dimensional Data Set with hidden Outliers
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Table 18: Wilks Outlier Test Applied to the Hidden Outlier Data

Sample Point Wilk’s Critical Values

size selected statistic .01 .025 .05 .10

50 47 0.727 0.619 0.647 0.669 0.692

49 50 0.666 0.614 0.642 0.664 0.687

48 48 0.620 0.607 0.636 0.658 0.682

47 49 0.446 0.601 0.630 0.653 0.677

46 46 0.008 0.594 0.624 0.647 0.671

45 34 0.771 0.588 0.617 0.641 0.665

Table 19 Scale-ratio Test Applied to the Hidden Outlier Data

Sample Point Scale-ratio Approximate Critical Values

size selected statistic .01 .025 .05 .10

50 50 272.123 1.522 1.385 1.292 1.197

49 48 246.926 1.510 1.376 1.295 1.199

48 47 213.242 1.533 1.389 1.289 1.193

47 49 158.282 1.532 1.401 1.298 1.185

46 46 88.168 1.550 1.401 1.304 1.198

45 34 0.920 1.546 1.414 1.309 1.202
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7 Conclusions and Recommendations

The limitation of graphical techniques for detecting outliers illustrates the need for

other methods of outlier detection in higher dimensions. This doesn’t mean that the

outliers tests should be blindly applied in higher dimensions. In fact, exploratory data

analysis should always be carried out before any tests are conducted. This will help in

the detection of obvious outliers as well as revealing some basic symmetries in the data

such as univariate normality or elliptical contours in the bivariate margins.

After the exploratory analysis is done, outlier tests can be conducted for the struc

tural outliers. The assumption of multivariate normality for the Wilk’s outlier test and

the scale-ratio test is not very limiting because the univariate margins can be converted

to near normality before either test is applied. This does not even guarantee bivariate

normality let alone p-variate normality but non-normal univariate margins does guar

antee non-normal margins in higher dimensions.

Robust estimation plays an important role in the scale-ratio test because the robust

estimator is responsible for the resistance of the test against the masking effect. I have

never suggested that robust estimation should be used in place of classical estimation.

In fact, I suggest that the robust estimates be used only as part of a diagnostic tool to

detect the outliers. Once the outliers have been detected, investigated and dealt with

properly, classical estimates can be used based on the new information. This should

result in a highly efficient and robust method of dealing with outliers.

The sequential application of the scale-ratio test or the Wilk’s outlier tests is respon

sible for the resistance to the swamping effect. The resistance comes from the removal

of the outliers before the next step is conducted. When no outliers remain in the data,

the test should no longer be significant.

The specific test to use is not clear. I recommend using the scale-ratio test over
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the Wilk’s or sequential Wilk’s outlier test because it is unaffected by swamping or

masking. However, the best scale-ratio test is an area of further research. Of the four

combinations I tried, I found V0 based on as defined in Section 5 to be the best

because it appears to have greater power than the others in most situation an it appears

to be asymptotically normally distributed.

The cutoff point need to be investigated further. They seem to decrease as the sample

size and dimension increases. I believe a smooth curve will fit through the cutoff point

for a given c level allowing them to be estimated by a simple formula. The asymptotic

normality also allows for the modelling of the mean and variance of the cutoff points as

another way of estimating their values for larger sample sizes.

If the critical values are ignored, the scale-ratio test can be used as a method of

ordering multivariate data in terms of extremeness from the centre. Once the data has

been ordered one can investigate a percentage of the most or least extreme poirits.

As for the approximation to the multivariate robust estimators, I think these appear

to work quite well as they are but further research could be used to improve them.

For example, the Stahel-Donoho estimator can be used to increase the probability of

selecting a subsample that contains all good point, for the calculation of an S-estimate or

a r-estimate, by sampling each point based on the weight assigned by the Stahel-Donoho

estimator.
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Appendix: Computer Implementation

Most of the software used in this thesis was written by the author in the C language

and run on a Sun workstation. The model of workstation used was either a Sparc2,

Sparci, or SparcELC. The one exception to this was the Wilk’s sequential outlier test

routine which was written in Splus3.O.

The core routines manipulate matrices in one way or another. Since several proce

dures require the eigenvalues of a matrix, any procedure that could be calculated from

the spectral decomposition of a matrix was calculated this way. The spectral decompo

sition routine comes from Numerical Recipes in C [21]. The specific routines are TRED2

and TQLI. The uniform deviates were generated by the RANDOM function built in to

the standard C library on a Sun computer, a Nevton-Raphson routine was used to solve

for the constants in Table 2 and for the scale in the S-estimate approximation algorithm,

Romberg integration was used for the expected vaLue of the biweight function for a given

k, and the quicksort sorting algorithm was used to sort any data that needed sorting.

The Newton-Raphson, Romberg and quicksort routines were written by the author.

The code is available upon request. However, it is undocumented at this time and

it may not compile properly on any machine other than a Sun workstation.
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