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Abstract

Investigation of a possible relationship between air quality and human health in the community

of Prince George, British Columbia was undertaken after a public opinion poll in 1972 discov-

ered that poor air quality was the number one concern of the residents of Prince George. An

analysis which attempted to identify such relationships using a data set including air quality

measurements and hospital admissions for the period April 1, 1984 to March 31, 1986 is dis-

cussed in Knight, Leroux, Millar, and Petkau (1988). A similar analysis using emergency room

visits during the same period rather than hospital admissions is described in Knight, Leroux,

Millar, and Petkau (1989). The data set described here was collected to carry out a follow-up

study to the emergency room visits analysis.

The main part of the analyses carried out involved the use of Poisson regression models

with a minor extension to account for over-dispersion in the data. The results of the analysis

were not consistent with either the earlier study or with the expectations of the investigators.

For example, higher levels of one of the air quality variables was found to be associated with a

decrease in the number of emergency room visits for respiratory disease in the winter, but an

increase in emergency room visits for respiratory disease in the fall. A mechanism to explain

such effects is difficult to imagine. These counter-intuitive results motivated a simulation study

to assess the methods used in the analysis and to compare these to other possible estimators

and test statistics that can be employed in the analysis of over-dispersed Poisson data.
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Chapter 1

The Prince George Study

Motivation for this work was provided by the analysis of a data set collected in Prince George,

British Columbia, to study the possibility of associations between the ambient levels of air

pollution and human health as measured by the rates of emergency room visits for respiratory

illnesses. Investigation of such a possible relationship was undertaken after a public opinion

poll in 1972 discovered that poor air quality was the number one concern of the residents of

Prince George, ahead of such issues as crime, alcohol abuse and recreation facilities. Although

monitoring of air quality parameters has been carried out at several monitoring stations in

Prince George since 1980, most attempts to study this issue have compared hospital admissions

rates and/or mortality rates in Prince George to those in other communities in British Columbia

rather than attempt to identify an association between ambient levels of air pollution in Prince

George and human health.

An analysis which did attempt to identify such relationships using a data set including air

quality measurements and hospital admissions for respiratory illnesses for the period April 1,

1984 to March 31, 1986 is discussed in Knight, Leroux, Millar, and Petkau (1988). A similar

analysis for the same period based on emergency room visits rather than hospital admissions

is described in Knight, Leroux, Millar, and Petkau (1989). The data set described here were

collected to carry out a follow-up study to the emergency room visits analysis.

1



Chapter 1. The Prince George Study^ 2

1.1 Data Set Description

Three measures of air quality were monitored and the daily numbers of visits to the emergency

room (ER) for respiratory related illnesses were recorded during the period April 1, 1986 to

March 31, 1988. In addition, meteorological data in the form of temperature and maximum

relative humidity was collected.

Description of the relationship between the pollution variables and the ER visits was the

goal of the study. However, meteorological and temporal information was also included as

potential explanatory factors so that any relationships discovered with pollution variables could

reasonably be attributed to the pollution itself and not to some other factor that might underly

both pollution and ER visits.

1.1.1 Emergency Room Visits Data

Each visit to the emergency room at Prince George Regional Hospital by a resident of Prince

George over the two year period from April 1, 1986 to March 31, 1988 was originally classified

according to 35 diagnostic categories potentially related to respiratory illness. These 35 cate-

gories were grouped into four broad categories which we will refer to as Asthma, Bronchitis+,

Ear, and Others. Only the classification according to these four broad categories was available

in the data set provided to us. A total of 8,079 visits were included in the study and there was

one visit in at least one of the four respiratory categories on every day except January 15, 1987.

1.1.2 Air Pollution Data

Data on three air quality parameters were available:
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TRS — measured via a continuous monitor with readings subsequently converted to

hourly averages. The average of these hourly averages becomes the daily

average and this was the summary used.

TSP — measured via a 24 hour vacuum sample once every six days.

SO2 — measured via a continuous monitor in the same fashion as TRS. The daily

average was the summary used.

1.1.3 Meteorological Data

The meteorological data consisted of daily summaries for each of the following parameters:

Temperature — the average of 24 hourly readings in degrees Celsius.

Maximum Relative Humidity — the largest of 24 hourly readings.

1.2 Methodology for the Prince George Study

The main part of the analyses carried out involved the use of Poisson regression models (or

log-linear models). We give a brief description of these models and then describe an extension

of Poisson regression models, which was required for the modelling of emergency room visits.

1.2.1 Poisson Regression

The Poisson regression model is a special case of a larger class of models referred to as gener-

alized linear models (GLMs), the theory of which is derived largely from the properties of the

exponential family of distributions. Thus before we describe the Poisson regression model in
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detail, a brief discussion of the exponential family and GLMs seems appropriate (see McCullagh

and Nelder, 1989, for a more detailed description).

For a random variable Y in the exponential family with canonical parameter 9 and (known)

nuisance parameter 0, we may write its density function as f (y; 9) = exp{(y9 — b(0))/ a(0)

c(y; q)}. Denote the mean value of Y as ,u, which is related to the parameter 9 by the function

9 = g(p). We will refer to the function g(.) as the link function.

For making inference about 9 we introduce the log-likelihood function, the log of the above

density function, which we denote 1(9). In the case of n independent observations Yi (i =

1, n), with possibly different canonical parameters, the joint log-likelihood is given by 1(9) =

li(0i). In GLMs a linear model is specified for the parameters 0i of the form 0i = g(pi) =

Xifi (where /3 is a vector of p<n parameters and Xi is the i th row of an n x p design matrix).

It is then possible to estimate /3 via maximum likelihood by taking the derivative of the joint

log-likelihood with respect to each of the parameters, equating the resulting p equations to zero

and solving for the parameters of interest. These estimators have several nice characteristics

including a limiting multivariate normal distribution with mean vector equal to /3w, the true

value of the vector of parameters, and covariance matrix equal to the inverse of the Fisher

Information matrix corresponding to the joint distribution of the Yi (i = 1, ..., n).

Now consider a Poisson random variable Y. We write the density function of Y as f(y; it) =

(e —PitY)/y! or equivalently as f(y; = exp{ylog — ,u — logy!}. The latter form allows us to

identify the Poisson distribution as a member of the exponential family with 8 = log /2 (and

therefore link function given by g(•)=log•)), b(9) = fit , a(0) = 1, and c(y; 0) = —logy!.

The motivation behind using the Poisson regression model for the Prince George study lies



Chapter 1. The Prince George Study^ 5

in the intuitively reasonable assumption that the daily numbers of emergency room visits follow

Poisson distributions with possibly different means. The mean number of visits on a given day

will be described by a function of the available covariate information up to and including that

day, which includes temporal variables such as day of the week and month, the meteorological

variables, daily temperature and maximum humidity, and the pollution variables, TSP, TRS

and S0 2 . The use of Poisson regression depends on the following basic assumptions:

(a) the expected number of visits on a given day depends explicitly only on time, meteorology

and pollution and not on the number of visits on past days.

(b) daily visits are conditionally independent given the temporal, meteorological and pollution

covariates.

The assumption that the expected number of visits does not depend explicitly on past visits

seems to be a reasonable starting point in this situation. However, more general models in

which the mean depends explicitly on past visits could be considered as well.

Suppose now that ti is a vector of temporal covariates, mi is a vector of meteorological

covariates and si is a vector of pollution covariates for day i; si and mi can include values of

pollution or meteorology prior to day i as well as those values on day i. If yi is the number of

emergency room visits on day i (i =1,2,...,731) for a particular diagnostic class, the log-linear

model assumes that yi has a Poisson distribution with mean p, where

log pi = a + ti er rni'6 si'ry

with a, r, 6 and y unknown parameters (r, 6 and y are vectors having the same length as ti, mi

and si respectively). The components of the parameter 7 give the relative changes in expected
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visits on a given day (that is, with temporal and meteorological covariates fixed) associated with

changes in the pollution variables. In particular, for small changes in the pollution variables,

from si to si + Ai, exp(A',0) — 1 A'7 gives the percentage change in the corresponding

expected visits.

In order to account for possibly different patterns of emergency room visits for the different

diagnostic categories, the basic model is generalized by allowing different parameters a, T,

and y for the different diagnostic categories, and thus describing the expected number of visits

for category j (j =1,2,3,4) on day i by the equation

log fGij = cri^t'i rj

To fit the above model into the framework described for GLMs let p = (pt, /4,4 /4) t and

= (a t , rt, St, ,.yt)t where here a = (0 1 , 02 ,03 , 04 )t, T = 4, 71, Tv, and so on. Then, if X

is the appropriate design matrix containing all of the covariate information, our model can be

expressed as logy = X /3.

In addition to assuming the observations to be conditionally independent given the co-

variates, we assume that data from different diagnostic categories is independent, so that the

joint likelihood is simply the product of the marginal Poisson distributions. Thus the joint

log-likelihood is:

4 731
1(0) = E E [yii log pij — pij — log yij!] .

j=1 1=1

For ease of notation, it will be more convenient to write the above log-likelihood using one

subscript. We order the yii's as yl , ..., y2924, with the pi's numbered correspondingly. Now
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express the joint log-likelihood as:

2924

l(0) = E [yi log — — log yi!) .
i=i

To obtain maximum likelihood estimating equations for the parameters in /3 (suppose there

are p parameters in /3), we differentiate the expression in (1.1) with respect to each of the p

components of and equate the resulting derivatives to zero to arrive at:

al^
2924

Yi — Pi ) ON =
apa =^0; j = 1, ...,p.fr_1(^' (1.2)

Note that our model assumes pi = exp{XiM, or log pi = X0. Thus, (1.2) can be rewritten as

81^2924

ni3 =^(yi —^Xii^0; j = 1,...,p.^ (1.3)
"Pi^1=1

The resulting estimators, Q , are asymptotically normal, with mean vector given by /3*, the true

value of the vector of parameters, and covariance matrix equal to

L
— E ( ija212 )]

In this case

^021^2924^
821

^

— apt ^= —E ()^(902^LT.,^(902 .

Given the solution to (1.3), the fitted values, it, = exp{Xi;j}, may be substituted in the

above expression to obtain an estimate of the asymptotic covariance matrix. Using these fitted

values, the deviance is then defined to be —2 times the log-likelihood, or

2924

dev. = —2 E [yi log - - log NI .
i=i

For a fitted model with p parameters and a joint likelihood from n independent observations,

the degrees of freedom associated with the deviance is n — p. By taking the difference in the
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deviances of two fitted models, one of which is nested within the other, we may form a likelihood

ratio statistic that can be compared to its limiting chi-square distribution to examine if the

smaller model constitutes a significant deterioration in fit compared to the larger model.

The Pearson residuals are defined to be

(y, — r, — .

These quantities are often used for diagnostic purposes in the same way the residuals from an

ordinary regression (assuming normality) are used. We may also use these residuals to form

a goodness-of-fit statistic, the familiar Pearson X 2 , by summing the squares of these Pearson

residuals. Another potential use of the Pearson X 2 emerges in the following section dealing

with over-dispersion.

1.2.2 Accounting for Over -Dispersion

The extension of the Poisson regression model to be described concerns accounting for over-

dispersion. Suppose that the variance of the daily visits given the temporal, meteorological and

pollution variables is greater than the mean; in this situation the emergency room visits data are

said to be "over-dispersed". Over-dispersion represents a violation of the Poisson assumption

underlying the Poisson regression model, which requires that the variance and mean be equal.

One way to handle over-dispersed data is to introduce a dispersion parameter 0 > 1 and assume

that the variance of the visits on day i is We now describe the procedure for statistical

inference in this new model.

The parameter vector which appears in the specification of the daily mean visits rates

is estimated exactly as for the model without a dispersion parameter, i.e. by maximizing the
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Poisson log-likelihood function of (1.1). However, when assessing the statistical significance of

estimated parameters it is necessary to take into account the dispersion parameter. To describe

how this is done in the context of model selection (the dispersion parameter must also be taken

into account when evaluating the standard errors of estimated parameters), assume that we

begin with a model containing a number of parameters (the full model) and wish to test the

viability of another model which is nested within the full model (the reduced model). Under our

independence assumptions, the difference in the deviances for the two models is approximately

distributed as 0 times a )(2 random variable with degrees of freedom given by the difference

in the degrees of freedom associated with the two deviances. Thus the difference in deviances

must be divided by an estimate of the dispersion parameter before it can be compared to the x2

distribution to assess whether reduction from the full model to the reduced model is permissible.

One choice of an estimate of the dispersion parameter is the ratio of the sum of squared

Pearson residuals, the Pearson X2 statistic, to its degrees of freedom (McCullagh and Nelder,

1989, p.200), both determined under the full model. Another estimate, which is often very close

to the previous one, is the ratio of the deviance to its degrees of freedom, also under the full

model. For this data the estimate based on the deviance was used; this leads to the following

statistic for testing whether reduction from the full model to the reduced model is permissible:

deviance (reduced) — deviance (full)
A'dev. =

deviance (full)/df (full)^;

this statistic is compared to the x2 distribution with degrees of freedom given by Adf =

df (reduced) — df (full).

The Poisson regression model with unspecified dispersion parameter is a particular case of a
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class of models called "quasi-likelihood" models, so-named because the likelihood which is used

to obtain estimates, the Poisson likelihood in our case, is not the true likelihood for the data

but plays the role of a likelihood and so is called a quasi-likelihood. Quasi-likelihood models

are discussed in more detail in Chapter 2.

We now describe the results of the analysis of the Prince George data using the methods

described above.

1.3 Results of the Data Analysis

The possibility of over-dispersion in a series of counts can be judged by the index of dispersion:

X 2
 = (n — 1)variance

mean

where n is the sample size, 731 in this case. Under sampling from a Poisson distribution, X 2

has an approximate chi-squared distribution with n-1 degrees of freedom and can be converted

to an approximate standard normal variable by z = VT/Y 2 — ^2(n — 1) — 1.

The results for the emergency room visits data are presented the following table:

category mean variance X 2 z
Asthma 0.76 0.80 763 0.87
Bronchitis+ 1.54 3.36 1593 18.2
Ear 3.62 6.92 1395 14.6
Other 5.13 14.2 2027 25.5

Except for the Asthma category, these exhibit a large degree of over-dispersion relative to

the Poisson distribution; the values of z given in the above table clearly reflect extreme over-

dispersion for the categories Bronchitis+, Ear and Other. In fact, these distributions exhibit

the pattern of a mixture of Poisson distributions, having higher than expected numbers of very
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small and very large counts, at the expense of moderate counts. This over-dispersion must be

taken into account in the data analysis.

As mentioned previously, we must allow for the possibility that emergency room visits de-

pend on factors other than just pollution, such as temporal and meteorological effects. These

covariates were considered first, and model reductions were attempted to find a model which

parsimoniously describes these effects. The pollution covariates were then added to the model

and model reductions were attempted to identify the pollution covariates which had a substan-

tial effect on emergency room visits for respiratory illness.

1.3.1 Temporal and Meteorological Effects

The first step of the analysis involved the incorporation of adjustments for temporal effects.

The full model for the log of the visits rate included separate effects for each of the 12 months

and each of the 7 days of the week for each diagnostic category. Attempted model reductions to

common month or common day-of-the-week effects, that is common across all four diagnostic

categories, resulted in unacceptably large changes in adjusted deviance and therefore the full

collection of separate effects for each diagnosis was retained as the temporal model.

Next, the meteorological covariates (temperature and maximum relative humidity) were

added to the temporal model at lags of 0 to 3 days; that is for any i = 4, ..., 731 we allow

for the possibility that meteorology at times i, i — 1, i — 2 and i — 3 might affect the rate of

emergency room visits at time i. We first allow for separate effects at each lag for each of the

four seasons, winter (December to February), spring (March to May), summer (June to August)

and fall (September to November), but with each of these effects common to all four diagnostic
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categories. Based on our model reduction criterion, these separate season effects were found to

be unimportant compared to common effects across seasons for each lag.

When separate meteorological effects at each lag for each diagnostic category were consid-

ered, we found unacceptable increases in adjusted deviance when attempting to simplify the

separate temperature effects to common effects. On the other hand, only common maximum

humidity effects were needed. Thus our model which adjusts for possible temporal and meteoro-

logical effects included separate diagnosis effects for month, day-of-the-week and temperature,

and common maximum humidity effects.

1.3.2 Respiratory Visits and TRS

We next investigated a model which expresses the daily emergency room visits rates for any

particular diagnosis category as

log visits rate on day i = temporal effects + meteorological effects +

7o log TRSi + 71 log TRSi—i + 72 log TRSi_2 7310g TRSi_ 3 .

Here the effects of each of the TRS values are common across diagnosis categories; we also

considered models involving separate effects for the four diagnosis categories or separate effects

for the four seasons. For all models fitted, the temporal and meteorological effects had the

same structure as previously identified. In what follows, we will abreviate this structure as the

temimet model.

We started with separate effects for each diagnostic category but found the reduction to

common effects acceptable and furthermore removal of the TRS effects altogether resulted in
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only a negligible deterioration in the fit. The following table examines separate TRS effects for

each season, where as before the separate season effects are common to all diagnostic categories:

model terms deviance d.f. A' dev. A d.f.
tem/met effects + separate season TRS effects
tem/met effects + common TRS effects
tem/met effects only

3827
3852
3855

2804
2816
2820

18.4
1.7

12
4

Reduction to common effects leads to an increase in adjusted deviance of 18.4 versus a

decrease of 12 in the number of parameters which is not so easily dismissed (p=0.11). Unfor-

tunately the estimated effects from the full model present a confusing picture as we see in the

following table which presents those estimates which are greater than one standard error in

magnitude:

effect coefficient s.e.
Winter Lag 0 -0.026 0.020
Spring Lag 0 -0.027 0.026
Summer Lag 0 0.043 0.028
Winter Lag 2 -0.035 0.023
Summer Lag 2 -0.035 0.029

Looking at the effects at each lag we get the suggestion there may be some TRS effect at lags

of 0 and 2 days. Unfortunately the effects from one lag to the other are not consistent and

furthermore, it is difficult to understand why higher levels of TRS should be associated with

higher numbers of emergency room visits at some times of the year and lower numbers at other

times of the year. These results may not be particularly surprising since the overall reduction in

adjusted deviance for going from the full model to one with the tem/met effects only (p=0.20)

indicates that the separate effects in the above table could be large simply by chance.

However, we could also examine the effects grouped by season as in the following table:
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Lag Winter Spring Summer^Fall
0
1
2
3

-0.026

-0.035

-0.027 0.043

-0.035

where the dashes represent estimated effects which are less than their standard error. Looking

down the columns of this table we see the possibility of a negative cumulative effect in Winter.

Accordingly we now present results for a model which includes a single cumulative effect (an

average of the logarithm of the lag 0 to lag 3 pollution measurements) for each of the four

seasons:

model terms deviance d.f. A' dev. A d.f.
tem/met effects + separate season TRS effects
tem/met effects + cumulative TRS effects
tem/met effects only

3827
3837
3855

2804
2816
2820

6.7
13.4

12
4

While there is little difference in the fit of the separate season effects model and the cumu-

lative effects model, the cumulative TRS effects constitute a substantial improvement in the fit

over the tem/met only model (0 idev..13.4, Ad.f.=4, p=0.001). The estimates and standard

errors of these cumulative effects are presented in the following table:

effect coefficient s.e.
Winter -0.060 0.023
Spring -0.002 0.033
Summer 0.009 0.034
Fall 0.075 0.030

These effects suggest that an increase in the level of TRS is associated with a decrease in the

number of emergency room visits for respiratory disease in the winter, but an increase in the

number of emergency room visits for respiratory disease in the fall. This model provides a more
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parsimonious description of the effect of TRS on emergency room visits for respiratory disease

than the season effects model, yet a mechanism to explain such effects is difficult to imagine.

1.3.3 Other Analyses of Pollution Covariates

Similar analyses were carried out for SO 2 (as well as TRS and SO 2 simultaneously) and for

TSP. Details of the model reductions and results can be found in McNeney and Petkau (1991).

These analyses proceeded in the same fashion as the TRS analysis described above, and similar

problems were encountered; that is, the parameter estimates obtained in the final models were

such that no plausible explanation for their structure came to mind.

1.4 Questions Raised by the Analysis

The results of the data analysis described above make it difficult to come up with a reasonable

and coherent explanation of the effects of air pollution on human health based on this data set.

There are many possible reasons for our results, such as:

(1) the air pollution data do not accurately represent the exposure of the residents of Prince

George to pollutants,

(2) emergency room visits for respiratory illnesses are poor indicators of the effects of air

pollution on human health,

(3) some other important factor was not considered in the analysis, or

(4) the method of analysis is potentially misleading.

With respect to the last item, the following questions come to mind:
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(a) Is the estimate of the scale parameter, 0, used in this analysis, namely deviance(full) d.f(full) ^a

good estimate, or should we have used Pearson X 2 (full) ?

d.f.(full)^•

(b) Is the change in adjusted deviance criterion appropriate for model reduction in this situ-

ation?

(c) Are statistics other than the adjusted deviance better for testing hypotheses concerning

the regression parameters when over-dispersion is present?

(d) Given the amounts of over-dispersion in the emergency room visits series, are the estimates

of the model parameters and standard errors accurate?

These questions motivated the simulation study we describe in Chapters 3 and 4. Be-

fore proceeding to the simulation study, Chapter 2 presents a more detailed description of

quasi-likelihood theory and the estimating equations obtained from this theory for estimating

regression and dispersion parameters. We also discuss some of the test statistics available for

testing the significance of regression parameters. Finally, over-dispersed Poisson regression is

discussed as a special case of quasi-likelihood.



Chapter 2

Methodology

In this section we describe the aspects of maximum likelihood theory (in the context of GLMs)

which motivate the theory of quasi-likelihood first proposed by Wedderburn (1974) and also

discussed by McCullagh and Nelder (1989, Chapter 9). In particular, we are interested in the

estimating equations and test statistics derived from this theory. We also discuss the application

of quasi-likelihood to the analysis of the Prince George data.

2.1 Quasi-Likelihood in Generalized Linear Models

Recall the log-likelihood for a single random variable in the exponential family

1(9) = ( ye — b(0))1 a(0) + c(y; 0).

Maximum likelihood theory assumes sufficient regularity conditions to ensure that the following

relations hold

^

E [ 019^0
l ] = 0.

'
 and E [ °21  4- E {( 81 ) 21 =0.

2^09

In this discussion we will assume these conditions hold. The derivative of the log-likelihood is

011 00 = (y — b'(9))1 a(0), therefore E(011 00) = 0 implies that E(Y) = b'(9). We also have

021 0211^b"(9)
— 

b"(0) 
 so that — E ^=^ao2^a(0)^092^a(0) •

17
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Finally

E [(M 21 , E [CY a—( 1)0;(0))) 2]^1 
— a2(0) Var Y,

which leads to the expression Var(Y) = b"(0)0(0).

Rewriting the log-likelihood in terms of the mean it, we have 1(0) =1(g(p)) and

al_ 01 00
Op = ae ap'

so that

01 iy — b'(0)1 00^y — V(0) 
ap —^a(q5) ) aµ — 40)4^•

Since

ay(^opp = b'(0) and b"(0) = 00e) . ,,

the score function S(p) = -g- can be rewritten as S(IL) = (y — E(Y))/Var(Y). Note the follow-

ing properties of the score function:

1. E(S) = 0,

2. Var(S) = E(S 2 ) = ( a- .17-71-12.E(17 — 11)2 — Vari- (Y) ,

3. -E(e)=ai&ly; -

Now consider a random variable Y for which we do not specify a distribution but only

suppose it has mean value p and a variance that is related to p by some function V(p; 0) where

(kis an unknown parameter. Then if V(µ; q5) correctly specifies the variance, the function

U* ( 17 ; Ft, 0) — 
Of — li)
17(ti; 0)

has similar properties to a score function resulting from a log-likelihood in that:
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1. E(U*) = 0,

2. Var(U*) = E(U* 2 ) = v2(1,, ;0E(17 — /1 ) 2 =
1

V (A; ek)

EiV(A;c5)1•3. —E( aµ = E [V( 1t-47) (17^V2(µ;0 1 - ve—'m
Since most asymptotic likelihood theory is based on the above three properties, we might

expect the integral of^to behave like a log-likelihood. We refer to the integral

fy^tY (y — t) 
dtQ(Y;^= j U* (Y;t, Odt = j V̂ (t;

if it exists, as the quasi-log-likelihood or simply the quasi-likelihood. For n independent obser-

vations having the same unknown parameter 0 we have the quasi-likelihood

Qn(Y;^= E^0)
i=i

where now y and p are vectors of length n. As in GLMs, the mean vector p is assumed to be

related to the regression parameters by the link function g(p) = X/3.

2.1.1 The Estimating Equations

As in the case where we have a true likelihood, the approach with a quasi-likelihood is to differ-

entiate Q T, with respect to each of the components of and equate the resulting p derivatives to

zero to obtain maximum quasi-likelihood estimators for the parameters. If 0 were known, then

under the assumption that pi = exp{XiP}, we would solve the following estimating equations:

0C2n^n (Yi^ ujo, 0) =^= E^= 0 ' ^1, p.
u1-1.7^v

(2.4)

We will refer to the p-dimensional vector (U 1 , ..., Up )' as U0 .
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Because 0 is unknown, we must introduce an additional estimating equation. This equation

is based on the obvious notion that the variance function V(pi; 0) should reflect the true vari-

ances of the observed yi (denote these an. Thus, 0 should be estimated so that V(tti; 0), the

model-based variance, agrees well, in some sense, with the true variance q. Only estimates of

the true variances are available from the data, so a sensible estimate of 0 is provided by the

solution to the "moment" equation

OP, =^
q)i=1

^2 11 = 0.^ (2.5)

To correct for the bias resulting from the simultaneous estimation of the p regression parameters,

Breslow (1984) suggests modifying this equation slightly to

WV , =^14)2 (n
i=1 V(tti;^n^j

= 0^ (2.6)

in place of (2.5).

Given an initial estimate of 0 we may use (2.4) to obtain an estimate of /3. This estimate of

/3 can then be used in (2.6) to estimate 0. This procedure is iterated to obtain the joint solution

($, ) to the estimating equations (2.4) and (2.6). Subject to regularity conditions (Inagaki,

1973; White, 1982) this joint solution converges in probability, as the number of observations

increases, to (0*, 0*) where d* is the true value of 0, and 0* is the value of 0 which satisfies

the limit equation
n^cr?

771^v(ili; 0) = 1.

To motivate the limiting distribution of the estimator (), ik) consider the following. Let

= (/3t, 0)t and let U(9) = (U0 ', PIT, where U0 is the vector form of the equations given

by (2.4) and U 4' is given in (2.6). While (2.6) is not a maximum quasi-likelihood equation,



=^ l nn aui
Bm^n i

1 n aui(r)^au(e*)
nco

E E  aot = limnoo n^aot
Bm^i=1

au
n a0t
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we may consider (2.4) and (2.6) as moment-type estimating equations. The derivation of

the asymptotic properties of ([3,i4) will proceed along the same lines as the derivation of the

properties of maximum likelihood estimators, although some modifications are required.

The fact that 8 is the solution to U(a) = 0 along with the Mean Value Theorem allows us

to write the Taylor series expansion of U(a) about the point 0* as

0 = U(a) = U(8*) + au
00t

- r),em

  

where each of the p 1 elements of Om are between the corresponding elements of 0 and 0*.

Re-arrangement allows us to write this as

‘77-20 —13*) ( _ 1 OU
■ n aot

yi
U (r).

em

 

(2.7)

  

Under mild regularity conditions, 0 will converge in probability to 8* (see Moore 1986,

Theorem 1, p.586). Then, since Oln is between a and 8* and au loot is a sum of n independent

components, we have

where here the subscript i refers to the contribution of the ith observation; i = 1,^n and the

expectation is taken with respect to the true value 0* under the assumption that p = exp{X/3}

correctly specifies the mean. Now —E[au(r)laet] is a (p 1) x (p + 1) matrix of the form

[ An bn
ctn do

where

auo^a r n (yi _
= —E^E apt^V(kti; O s') ad 0 .

ao t
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= E ^1  ON ON
VGai; 0*) 00 00t

+ E^(Yi –^°pi av °p i

o•^v2(4; 04') 013 api aot

  

E^
1 ^atLi 0,L,=

ii v(iti; 0*) 00 00t

a n (yi^)^rt  (17 — ^0,4 av] _ o— -bn = –E—  ^= E
(Pi; 0* ) " 84) 9*00 i=1 v (pi; 0) 00 0*

a n (Y iti)2 (n _ p)
cn =^[E^i*, ^

^u P 1=1^VI"^0•

and

 

n (Y pi)2 (n P)11 = V"`ri (Y /102  aydo =^{E^ Eji=i^n^
cb*^V2(14;0) 00

Now consider the other random vector entering (2.4):

n^ 2^29V
Gri 

cb* 
=

2=1• V2 (Pii 0) 00

1 \–y.,
1^ L-4.1 (,;;c•) 8/3 0*

U(r) –
\--T.^[v;;;Li 2

^( p,i;0 )^n

 

Assuming the regression model correctly specifies the mean, we have

1^ 0
E 77 U(0*) =lz_i7n)^•

^

L.-n=1 v(,e )^n

By the definition of 0* and provided regularity conditions hold (see Moore 1986, Lemma 1,

p.585), it follows that this random vector has a limiting multivariate normal distribution

N (0,[ eSt fe I)

where B = limn_,,,,, ;7_13n. is the normed limit of

71^f^ n^f^\^t
Bn = E(IP3 P3t )= E [E [ i 14)1 ^

y

P̂" 
affil Ivoli; o*) as 1=1 V(aii 0* ) 0/0

o* 
;

0*
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Because the observations are assumed to be independent, this reduces to

= E
^(Y,

 gi )2^°Pi]^it ^a?^ attiapi^B
i.iv - (4;0*)^adt e*

.^

a$ aot

For our purposes, the forms of e and f are of no consequence.

Combining these results with Slutsky's theorem we have

^Vii(o e* ) N (0,[^e fA ° 1 [ B et ^({ A 0 I ly)
ct d^ct

where A =^c = lim^le and d = lim 00 in dn . Asn n

[ A 0 
1 - 1^

[ A -1^0
^ct d^d- 1

the asymptotic variance of VT.t(ë — r) is

[

A- 1^0 I r .13 e 1 I A'^0—^d-1 [ et^— CA- 1

The asymptotic covariance matrix for ViT(S — /3*) is the upper left-hand p x p sub-matrix of

the above matrix, namely A -1 BA -1 . Note that this is exactly the covariance matrix one would

obtain for the estimation of Q based on the estimating equations (2.4), with 0 fixed at 0*

rather than estimated; the asymptotic covariance for S is unaffected by the estimation of 0.

This occurs despite the fact that Q and are, in general, correlated (the entries of the upper

right-hand pxl vector of the above matrix need not be zero); it is a result of the fact that the

pxl vector bn has all p elements identically equal to 0, that is, E[ 4 U 13] = 0. Note further that

if the function V(pi; 0) correctly specifies the variances cr?, then A = B and VTz(S — /13*) has

asymptotic covariance matrix given by A -1 .

Thus we can consider two estimates of the asymptotic covariance of /3; the first is model-

based and assumes that V(tti; 0) correctly specifies the variances. Denote this estimate 2A,/ =

9*
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A,7 1 where An is An with pi replaced by the fitted values^= pi(Xi; Si) and 0* replaced by

-(4. The second estimate we refer to as the empirical estimate. Denote this EE = An ^An-1

where

f3n^(yi — /10 2 

i=1 v2 (4; ii)) aij apt
The idea of using an empirical covaiance matrix in connection with misspecified models has

been developed by numerous authors, including White (1982), Royall (1986), Liang and Zeger

(1986), and Carroll and Rupert (1988, Section 4.3.2).

We now have estimating equations for 8 and 0 which yield consistent estimators and we

have an expression for the asymptotic covariance of fr-t(T3 — /3*). In the next sub-section, we

use this information to form statistics to test the significance of the regression parameters.

2.1.2 Test Statistics for Hypotheses Regarding Regression Parameters

Consider the p-dimensional vector /3 partitioned into /31 and /32 of dimensions pl and p2 re-

spectively. Here the point is to think of /32 as parameters which have fixed values /32 (usually

zero) under some null hypothesis H o . We will refer to the model where all of the parameters

= (#1, 13V are estimated as the full model, and the model where 131 is estimated when 02 is

set to its hypothesized value /l as the reduced model.

Under Ho , the random vector 642 — /32) has a limiting multivariate normal distribution with

mean 0 and covariance E22 which is estimated by 2 22 , the lower right-hand p2 x /32 sub-matrix

of either 2A/ or 2E. We therefore have model-based and empirical versions of a test statistic

we refer to as the Wald test where we compare the test statistic (th /36Dt (th /32 ) to the

42) distribution.



in 00, ik)^ow, 0. ) + aou; 1 OUO
VT1 (13 — n 00

— 0*), (2.8)
frii 7 4,m13m1 4,m
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Another possible type of test, one that does not require fitting of the full model, is the

score test. Recall from Section 2.1.1 that E[ i] = 0; j^1, p With sufficient regularity

conditions, this implies that for any sequence of estimates^converging to 3* the statistics

U0 (/3, ii)) and U43 ($, cb*) are asymptotically equivalent. This can be seen by comparing the

following two asymptotic expansions:

and

U1 0 13
Cb* ) =^OW, 0*) —VT/^VT/^n 0/3 V-17( - 0*)

fmz
(2.9)

  

for some Om. (i=1,2) between p- and /3* and similarly for some om• The right-hand side of

these equations are of the same form except for the final term in (2.8). But, as n gets large,

— 0*) converges in distribution while -,10UP/00, which is an average of independent

components, converges to its expectation which is 0. Also, recall from Section 2.1.1 that the

asymptotic covariance matrix of VT,(13 — /3*) does not depend on how, or even if, 0 is estimated

so that the distributions of the random vectors fii(/ — /3*) are the same in both (2.8) and

(2.9). This shows that the random vectors defined by the left-hand sides of (2.8) and (2.9)

have the same asymptotic mean and variance. Therefore, in what follows we may suppose that

the estimator of /3 is based on the estimating equations (2.4) alone, with 0 fixed at its limiting

value 0*.

Now we consider the maximum quasi-likelihood estimates under the reduced model. With

UQ partitioned into components U01 and U432 of dimension p1 and /32 respectively, let /3red

denote this estimator, namely the solution to U01[( /31,4)t ,01. 0. We wish to determine the



Chapter 2. Methodology^ 26

asymptotic distribution under the null hypothesis of the score statistic for testing Ho : 132 =

To accomplish this, first examine the expansion

auoi0 = uoiO^O P *(tired) =^°pi (141 —
(371

(2.10)

  

and the corresponding expression for the score statistic

  

(Sred) = u132 613*) + aau: (gi — 01' )or2 (2.11)

  

where Or' (i=1,2) are between 13 1 and 01. Rearranging (2.10) we get

au al— 01) =OW),Oi 
al

which, substituted into (2.11), allows us to write

ou#
(Sred) =^[02 (M)

01
2

 

[au oii -1

(9131 /3r i

 

0;n2
Ual (0*) .

 

As n oo we have

02 (04') d, N(o, B22) 
\F
-uoi (0*) L, N(0, Bii),

and

1 au ,32
m201

p An,
auoi 1+' A ll .n ath n Oth

where the matrices All , A21, B11, and B22 are the appropriate submatrices of the matrices A

and B. It follows that the asymptotic distribution of this score statistic is multivariate normal

with mean 0 and covariance matrix

1
Nrn 

A
Vary ^= B22 - A21 A a B12 - B21 Aril Al2+ ^A21 Aril B11 A111 Al2 •(Sr ed) (2.12)



Chapter 2. Methodology^ 27

If the variance function correctly specifies the variances, then A = B and (2.12) reduces to the

usual expression

Vary[

17.70 -^1
—u 2 Pred).1 = A22 — A21111711 Al2.V77,

(2.13)

Therefore we can obtain a model-based estimate of the asymptotic covariance matrix by

substituting An for A in (2.13) or an empirical estimate by substituting An for A and fin for B

in (2.12). The score test for testing Ho : 02 = QZ is given by comparing PI (Sred)2 -10.2 (Sred)

to the x
p2)

 distribution where 2 is our particular choice of the covariance matrix estimate.( 

The final type of test statistic we will consider is a deviance or likelihood ratio statistic.

Recall the quasi-log-likelihood Q n (y; ,u, = 1 Q(yi; pi, 0). Define the deviance under the

full and reduced models as -2Q n (y; 1.1(X,:j full), (7)) and -2Qn(Y; it(X, Sred), ) respectively, where

the estimate c6 is obtained under the full model in both cases. The deviance statistic is then

Adev. = 2 [Qn(Y; A(X ijred),^- n(Y; it(X f ull) , (k)]

which should behave like a log-likelihood ratio and thus have an approximate 4 2) distribution

(McCullagh and Nelder, 1989, p. 471).

In the next section, we will examine the specifics of applying these tests for the significance

of regression parameters to the case where we have over-dispersed Poisson data.

2.2 Test Statistics for Hypotheses in Over -Dispersed Poisson Regression

In Section 1.2 the estimating equations and scaled deviance test statistic for over-dispersed

Poisson regression were presented as an extension of Poisson regression. This extension was
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necessary because all inference which requires estimates of variability, such as tests of hypothe-

ses, will be in error if the over-dispersion is not taken into account, even though reasonable

amounts of over-dispersion have very little effect on estimation of the regression parameters by

ordinary Poisson regression (Cox, 1983).

We saw that an easy way to accomplish this was to introduce a dispersion parameter 0 to

model this extra variability. In quasi-likelihood this is equivalent to specifying the variance of

the observed data to be described by V(yi, 0) = 0iti for the i th observation. In this case, for

the link function g(y) = logy equations (2.4) and (2.6) of Section 2.1.1 become

UM, = E Pi ) Xij = 0; for j = 1, ...,p, (2.14)
i=1

0(0,0) =^[ (Yi Pi)2 n P 1 _ 0,
i.1^n

(2.15)

where pi = exp{X1 18}. Note that 0 may be factored out of (2.14) and that the estimate of 0

obtained from (2.15) is Pearson's X 2 statistic (using the Pearson residuals defined in Section

1.2) divided by its degrees of freedom. An alternate estimate of 0 which is thought to be very

similar is to replace X 2 by the deviance given by the joint Poisson likelihood under the full

model, which for this discussion we denote G 2 . For this formulation, it is immediate that the

estimates of do not depend on the estimated value of 0; in other words, we may use the usual

Poisson estimating equations for Q and estimate 0 afterwards with either of the two methods

described above. Clearly this approach has considerable appeal over an approach involving

specification of a variance function in which 0 cannot be factored out.
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With the choices V(iti; 0)_^and it = exp{Xi i3}, then from Section 2.1.1 the model-

based estimate of the covariance matrix of /3 is given by 2m A,7 1 where

n ^1 ^a/1i^n
An = E^aStj1 v 01„

n

xiexts = (-4-1 E
J=1

where the Xi are the row vectors corresponding to the ith row of X. Note that 0 may be

factored out of An and the resulting covariance matrix is exactly times that obtained from

Poisson regression.

Alternately, the empirical estimate of the covariance matrix of j is given by EE =

where

V2 Can iA') as 0/3t i=i cog^i.1

Note that the factors 0 appearing in An and En cancel out in the expression for EE.

Considering these two estimates of the covariance matrix and using either 0 = X 2 /d.Lfuti

or = G 2full jd.f.full leads to three possible versions of the Wald test; two model-based and one

empirical.

We can similarly examine three versions of the score test. The two model-based versions use

the expression given in equation (2.13) for the variance with An appropriately partitioned and

the score vector as given by the p 2 equations of the form (2.14) which correspond to parameters

with some hypothesized value under H0 . The resulting statistic could use either of the estimates

of 0 described above. The empirical score test, on the other hand, uses the empirical covariance

matrix of the form described by (2.12) with An and En appropriately partitioned. Examination

of the expressions involved in this statistic reveals that the 0 terms disappear here also due to

cancellation.

^( yi pi)2^_^(yi - ^x texi4xiem =^(yi — ) 2AIXi •Bn = ^
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Finally, we may consider two versions of the deviance test. The expression for the quasi-

likelihood is simply the Poisson log-likelihood divided by an estimate of 0. Therefore our

deviance tests, often referred to as scaled deviance tests, are given by

n1
Adev. = E (yi log(—) — — 140))

where Ili are the fitted values under the full model and^are the fitted values under the

reduced model. Note that the best estimate of 0 (using either X 2 /d.f. or G2 /d.f.) will be the

one obtained under the full model since this model has the best estimates of pi.

Now that we have discussed some of the methods available for modelling and making infer-

ence about parameters in over-dispersed Poisson data, we wish to address the questions raised

in Section 1.4 and examine the performance of these procedures in a context similar to that

encountered in the Prince George study. A simulation study designed to answer these questions

is described in Chapter 3.



Chapter 3

A Simulation Study Related to the Prince George Study

Recall the methodological issues which arose in the Prince George study as described in Sec-

tion 1.4:

(a) Is the estimate of the scale parameter, q5^ deviance(full), used in this analysis, namely ^ ad.f(full)

good estimate, or should we have used Pearson X 2 (full) ?

d.f.(full)^•

(b) Is the change in adjusted deviance criterion appropriate for model reduction in this situ-

ation?

(c) Are statistics other than the adjusted deviance statistic better for testing hypotheses

concerning the regression parameters when over-dispersion is present?

(d) Given the amounts of over-dispersion in the emergency room visits series, are the estimates

of the model parameters and standard errors accurate?

In this chapter we outline the purpose and procedures of a simulation study designed to

address these questions. The primary goal of the simulation study was to examine the behavior

of the model reduction test statistics described in Section 2.2 in contexts similar to the Prince

George study (items (b) and (c)). Secondary goals were to examine the performance of estimates

of over-dispersion parameters as well as of estimates of regression coefficients and their standard

31
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errors (item (d)). Of particular concern were the effects of varying amounts of over-dispersion

and misspecification of the variance function on this performance.

In particular, we will:

1. Compare the scaled deviance, score and Wald tests for model reduction.

2. Compare the parameter estimates to the simulated values.

3. Compare empirical and model-based estimated standard errors to the standard deviations

of the estimated parameters.

However, as an essential preliminary to the main thrust of our simulation study, we must

first consider the question of how the over-dispersion parameter should be estimated (item (a)).

As already mentioned, two possibilities are via G 2 /d.f. (as was done in the Prince George

study) and X 2 /d.f. Results presented in Section 4.1 provide a clear indication that the latter is

preferred, and this estimate is therefore employed in all subsequent work. In particular, the only

version of the scaled deviance model reduction test considered is the one where 0 is estimated

by X 2 /d.f. Both empirical and model-based versions of the Wald statistic will be evaluated, but

only the empirical score test will be evaluated; the latter test is reported to perform well even

in the presence of over-dispersion and with misspecified variances (see Breslow, 1990). To carry

out these comparisons, a variety of data configurations, all intended to be qualitatively similar

to the context of the Prince George study, will be simulated. Different data configurations

will correspond to different log-linear models for the mean levels of the observed counts and

different amounts of over-dispersion. In all cases, the model fit to the simulated data will be

that of over-dispersed Poisson regression; that is, estimation of the regression coefficients will



Chapter 3. A Simulation Study Related to the Prince George Study^ 33

be based on the estimating equations (2.14) which result from an assumed variance function of

the form V(iii;^= cbtti.

The simulation study will not be concerned with the possible misspecification of the log-

linear model for pi (the regression function), but will examine the effects of misspecification of

the variance function. For this purpose we define the "correct" variance to be V(pi; 0) = the

model to be used in the fitting, and the "misspecified" variance to be V(iii; 0) = + (0— 1)4.

The latter variance function arises from thinking of the datum yi as being sampled from a

distribution which is, conditional on the value of an unobserved variable Ai, Poisson with mean

Ai; if Ai is considered to be sampled from a distribution with mean pi and variance (0 — 1)4,

then the marginal distribution of yi has mean pi and variance pi + (0 — 1)4.

This simulation study differs in several respects from a study carried out in a different

context by Breslow (1990). Firstly, Breslow's study only considered simulated data with mean

values no smaller than 2. In the Prince George study the Asthma series had many zero values

and a mean value of only about 0.75. In the current study we wish to investigate the possibility

that such a series could lead to poor performance of the estimators or test statistics. Another

difference is that Breslow was concerned with a 3x4 factorial design with n replicates per cell

(and a single continuous covariate) whereas our study will be concerned with one or more

long data series similar to the series available for the Prince George study. This difference

is perhaps not as great as it first appears because all the data in Breslow's simulations were

generated under the hypothesis that the column factor of the 3x4 design had no effect. The

result is that, in effect, three data series of length 4n are being considered and for n = 144

(the largest value Breslow considered) the length of the series is comparable with the length
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we will employ (700). The last key difference is that the current study is only concerned with

test statistics and estimating equations based on an assumed variance function V(µ1; 0) =

Opi. We will examine the performance of these test statistics and estimating equations using

data generated under "correct" and "misspecified" variance functions, both for a single data

series and for three series with differing amounts of over-dispersion (to represent the separate

diagnostic categories), keeping in mind that the methods used will provide only a single overall

estimate of 0. In contrast, Breslow generated each of his data sets under the variance function

V(pi; 0) = pi + (0 — 1)4 and then examined the performance of the estimating equations and

test statistics based on this variance function and also based on V(pi; 0) =

3.1 The General Simulation Procedure

The simulation procedure, or sampling experiment, consists of three phases: generating the

data, fitting a full model, and fitting one or more reduced models. All calculations are carried

out in the programming language C.

3.1.1 Generating the Data

The data generated are to represent the main qualitative features of the data analyzed in the

Prince George study. To accomplish this we will generate time series of 700 independent over-

dispersed Poisson observations. We may choose to generate a single series (Sections 4.2 and

4.4) or we may generate three separate series (Sections 4.3 and 4.5).

Each data set to be generated requires a choice of a log-linear model for the mean pi of the

form log pi = XiO, a choice of the variance function to be used in the simulation, and a choice
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of the value for the over-dispersion parameter 0.

Over-dispersion in the data is introduced through gamma-mixtures of Poisson random vari-

ables. To generate the datum yi, it is most convenient to think of our situation as follows.

Let log = Xifi and let there be a random variable vi which has a gamma distribution with

mean 1 and variance^Then for each i=1,...,700 we first generate a realization of the gamma

random variable IA and then generate a realization of a Poisson random variable with parameter

vi pi. The resulting observations are negative binomial, with mean pi and variance pi +

The choice V = (0 — 1)/pi leads to simulated data with the "correct" variance function Ofti,

whereas the choice Vi = (0 — 1) leads to simulated data with the "misspecified" variance func-

tion pi + (0 — 1)4. Note that both variance functions reduce to the usual Poisson variance

when 0 = 1, and in this case the Poisson variates were generated directly.

3.1.2 Fitting the Full Model

We fit the full model to obtain estimates of the parameters Shin using an iterative method for

solving the estimating equations (2.14) of Chapter 2. We then estimate 0 using the Pearson

X2 statistic divided by its degrees of freedom. In contrast to Breslow (1990), when we obtain

an estimate of 0 which is less than one, we do not adjust that estimate to be equal to one.

In our situation the dispersion parameter is only a nuisance parameter used to account for

dispersion. It is not necessarily thought to arise from the variance of a mixing distribution

(which would require values of 0 > 1); that is to say, under-dispersion is not ruled out. Using

this estimate, both the empirical and the model-based estimates of the covariance matrix of

Sfun are calculated (allowing the empirical and model-based Wald tests to be evaluated), as
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well as the scaled deviance under the full model.

3.1.3 Fitting the Reduced Model

Next, the reduced model is fit to obtain estimates of the parameters fired. The empirical

estimate of the covariance matrix of fired is calculated and used in the calculation of the score

statistic. We also calculate the scaled deviance using the estimate of 0 from the full model so

that the scaled deviance statistic for testing the model reduction may be computed.

The general procedure described above of generating data, fitting full and reduced models,

calculating estimates and standard errors, and calculating the model Wald, empirical Wald,

empirical score and scaled deviance test statistics is repeated 1000 times for each particular

specification of the log-linear model, choice of V (pi; 0) and value of q4.

In the following section the specific log-linear models, and the choices for the parameters

in these models, as well as the levels of over-dispersion utilized in this simulation study are

discussed.

3.2 The Specifics of the Simulation Study

As mentioned in Section 3.1.1, we may choose to simulate either a single series of data, or

three separate series to be modelled simultaneously. The single series simulations are small

enough, in terms of the computing time required to generate the data and fit a model, to allow

an investigation of the effects on the estimators and test statistics of varying both the level of

dispersion and the simulated mean values. The three series simulations recreate an important

feature of the data analysed in the Prince George study, namely separate series with possibly
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different amounts of dispersion (we chose to use three series here instead of four as in the Prince

George study simply to reduce the computing time).

The overall mean values of the series and the levels of over-dispersion to be considered in

these simulations (whether in a single series or in three) was based on the data series from the

Prince George study. To recap the approximate mean values of those series and to get a rough

idea of how much dispersion was present, we have the following table:

mean variance variance/mean
Asthma 0.76 0.80 1.05

Bronchitis+ 1.54 3.36 2.18
Ear 3.62 6.92 1.91

Other 5.13 14.2 2.77

From the above, the values 0.75, exp{0.7}(Pe, 2.01) and exp{1.6}(::::. 4.95) were chosen as

possible overall mean values for the series to be simulated. In the single series simulations we

will carry out sampling experiments using each of these values, and we will use the three values

together as the overall mean levels in the three series simulations.

Based on the third column of the above table, the values 1, 2 and 3 seem to be reasonable

levels of over-dispersion to consider, although the estimates of 0 for each series would be smaller

than the ratio of the variance to the mean (sf/) = E (yi )2 is less than variance/meanu-T-1 i 

= > ; (y= -y)2 /y in general). We also wish to simulate the value 1.4 since this is very close to

the overall estimate of the dispersion parameter from the Prince George study, and a simulated

value 0 = 5 is of possible interest as an "extreme" amount of over-dispersion.

In the single series simulations, sampling experiments using each of these levels of dispersion

are carried out at each possible mean level, with the exception that 0 = 5 is only simulated

when the mean level is exp{1.6} (using 0 = 5 with lower mean values would result in series with
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mostly zeros and only a few large values; this situation is too extreme and is not of particular

interest in this thesis). In the three series simulations we chose two different combinations of

dispersion parameters. The first is the triplet (1,2,3) which we refer to as combination I. These

values seem like a plausible representation of the level of over-dispersion encountered in the

Prince George study. We also consider the triplet (1.4,2,5), which we refer to as combination

II, in order to examine the performance of the estimators and test statistics in a situation with

a large amount of dispersion (relative to the amounts encountered in the Prince George study).

Thus sampling experiments will be carried out using the following choices of overall mean

values and dispersion parameters:

Single Series Simulations

Mean Value 1 1.4 2^3 5
0.75
exp{0.7}
exp{1.6}

^

VA/VA/
^

x
x

x= no sampling experiment carried out

Three Series Simulations
Combination of 0

Mean Values^I=(1,2,3) I1=(1.4,2,5)
(0.75,exp{0.7},expl1.61) ,/ ^

The models used for generating the data should, in some sense, reproduce the main features

of the data encountered in the Prince George study. We first describe some very simple models

that are used to generate single series of data before we attempt to reproduce the more com-

plicated features of the Prince George study data. The simplest models to be considered are

for a single series with the mean value of the j th observation given by

//2 = exP{O 7x2 },^j^1, ..., 700
^

(3.16)
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where^is the overall effect and -y is the coefficient corresponding to the covariate xi =

sin(4irj/700), used to simulate a pollution variable with a regular annual cycle. To simulate

data under the reduced model, one with no pollution, the choices for the simulated coefficients

are = log0.75, 0.7, or 1.6 (with y = 0), corresponding to series with overall mean levels 0.75,

exp{0.7}, and exp{1.6} respectively. To simulate data under the full model, one with pollution

included, only /3 log 0.75 is used but three different values of -y are considered (7 = 0.05, 0.10

or 0.15). The simulations using models of the form (3.16) to generate data are referred to as

the one series simple case.

These simple models are also extended to a three series simple case with the mean of the

i th observation in the ith series given by

pii = exp{/3i -yoxi 7ixi}^i = 1, 2, 3; j = 1, ..., 700.^(3.17)

where Oi is the overall effect for the ith diagnostic category, 7 0 is the common pollution effect

and yi is the pollution effect specific to the ith diagnosis (with 73 0 for identifiablility).

This parameterization with a common and separate pollution effects is utilized to facilitate the

score test by allowing the hypothesis of common pollution effects to be stated as H: -yi = 0

for i = 1,2,3. For the alternate parameterization^= 70 + -yi for i = 1,2,3, the same

hypothesis would take the more usual form of H: yi = Yz =^(which can be tested by

the Wald or scaled deviance tests). In these simulations the simulated values of the^are

= log 0.75, 02 = 0.7 and /33 = 1.6. The null model (no pollution effects) follows from setting

7o = 71 = 72 = 73 = 0. We may also simulate data sets with a common pollution effect (we

use 70 = 0.1, 71 = 72 = 73 = 0), or with separate pollution effects (we use 70 = 0.1, 71 = 0.1,
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72 = —0.2 and 73 = 0).

The j th observation in the more complicated models with a single series has mean described

by

4

itj = eXp{O^7-ksk + ^yxj}
k=1

(3.18)

where the sk are indicators designed to represent four "seasons" of equal length (±1 day),

within each of our two "years" of 350 observations and xi is the sinusoidal pollution covariate

just as in the simple case. The seasonal structure is the only attempt made in this thesis to

recreate the temporal structure of the data in the Prince George study and no attempt is made

to recreate the meteorological structure. For the purpose of simulating data under the reduced

(or null) model, the values r 1 = 0.25, r2 = 0.25 and r3 = —0.5 (with r4 = 0 for identifiability)

were used with one of /3 = log 0.75, 0.7, or 1.6. For the full model (one with pollution included)

only /3 = log 0.75 is used with one of 7 = 0.05, 0.10 or 0.15. The simulations based on models

described by (3.18) include seasonal effects and are referred to as the one series complicated

case.

As with the simple simulations, the one series complicated models are extended to a three

series complicated case with the mean for the j th observation in the ith series given by

4

= exp{3i E Tiksk + -yoxi + 7ix.; }
k=1

(3.19)

where /3, is the overall effect for the i th diagnostic category, rik is the effect of "season" k in

diagnosis i, -yo is the common pollution effect, and 7i is the pollution effect specific to the ith

diagnostic category. The values of the coefficients used in the simulations are:
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01 = log 0.75 = 133 = 1.6
= 0.2 T21 = 0.2 T31 = 0.2

T12 = 0.2 T22=0.20.2 7-32 == 0.3
T13 = —0.2

T14 =00
T23 = —0.4 T33 = —0.4

r24 = 0^T34 = 0

There were no compelling reasons for the above choices for the season effects other than

to make them separate effects; that is, different for each series. As in the three series simple

case, the null model (no pollution) corresponds to 7o = 7 1 = 72 = -y3 = 0 while the common

pollution effect model uses simulated values 7o = 0.1, 7 = 72 = -y3 = 0, and the separate

pollution effects model uses -yo = 0.1, 7 1 = 0.1, 72 = —0.2 and 73 = 0.

The results of fitting the models from each of these four cases (with the various possible

choices of simulated coefficients, variance function, and dispersion parameter .0) are presented

in Chapter 4. We begin Chapter 4 with a comparison of the possible estimators of q5 (as the

remainder of the study depends on a choice of estimator of 0). For this comparison, only the one

series simple case models were needed as these provide a strong indication that the estimator

X2 /d.f. is preferable to G2/d.f.
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Results of the Simulation Study

In this chapter we describe the results of the investigation of the performance of the estimators

and test statistics. We begin with the comparison of possible estimators for 0.

4.1 Estimating the Dispersion Parameter 0

Of particular interest in this comparison are any shortcommings in the performance of the

estimator ii)G = Geld. f. used in the Prince George study and the possibility that use of the

alternate estimator 'cbx = X 2/d.f. in the scaled deviance model reduction test statistic might

have led to different conclusions than those sketched in Chapter 1.

For this investigation single series of data were generated according to the simple model

given by (3.16) using one of the three possible values of 0. Only the reduced model (set 7 = 0)

was used to generate data, so that pi does not depend on i. As we shall see, the results in even

this most simple of cases indicates the estimator cbx = X 2/d.f. is preferable. Table 1 presents

the mean values and standard deviations of the estimates of 0 obtained from the two estimators

based on the results of fitting the reduced model. Part A of the table contains the results when

the correct variance function is used to simulate the data, while part B presents the results for

the misspecified variance function, along with the values Os where 03,ui = + (0 — 1)4. The

values 08 are the estimated values of 0 we should see if our incorrectly specified model is still

42
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correctly accounting for the extra variability; that is, 0 8 is the amount of dispersion in the data

in terms of the variance function V(//i; = 0/ii used in the estimating equations.

Table 1. Mean Values of Estimates (± Standard Deviation) in 1000 Simulated Data Sets.

A. Correct Variance Function.
Simulated 0

Simulated Q Estimator 1
^

1.4
^

2
^

3
^

5
log 0.75^OX

EGG

0.70
^

4x
:(4G

1.60
(kG

1.002 (.055)
1.108 (.039)

0.998 (.056)
1.137 (.059)

0.998 (.052)
1.046 (.056)

1.401 (.096)
1.349 (.057)

1.400 (.084)
1.515 (.074)

1.399 (.076)
1.447 (.075)

2.001 (.174)
1.642 (.086)

2.002 (.134)
2.010 (.097)

2.006 (.118)
2.035 (.108)

2.996 (.337)
2.018 (.136)

2.983 (.235)
2.700 (.139)

3.001 (.208) 4.985 (.378)
2.938 (.162) 4.537 (.246)

B. Misspecified Variance Function.
Simulated 0

Simulated /3 Estimator 1
^

1.4
^

2
^

3
^

5
1^1.3^1.75

1.000 (.053) 1.300 (.086) 1.749 (.135)
1.107 (.038) 1.292 (.051) 1.526 (.072)

1^1.806^3.014
1.005 (.054) 1.799 (.114) 2.992 (.248)
1.143 (.057) 1.854 (.088) 2.705 (.147)

1^2.981^5.953
1.002 (.054) 2.979 (.201) 5.948 (.503)
1.050 (.058) 2.919 (.159) 5.226 (.310)

2.5
2.497 (.255)
1.844 (.112)

5.028
5.041 (.535)
3.823 (.244)

10.906
10.867 (1.14)
8.150 (.552)

log 0.75

0.70

1.60

Os

93X
OG

cx
(11G
Os

x
20.812

20.66 (2.95)
12.17 (1.08)

In part A of the table the estimator cx provides good estimates of 0, on average, at all levels

of dispersion. The estimator •G appears to slightly overestimate 0 at low levels of dispersion

and underestimate 0 in the presence of large amounts of dispersion. The largest differences in

the estimators occur when the level of dispersion is very high relative to the mean value (see,

for example, the simulations with /3 = log 0.75 and 0 = 3). In part B the estimator -ciSx yields
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good estimates of Os, on average, whereas (0G produces very poor estimates when the level of

over-dispersion is high. Note that in both parts of Table 1, except perhaps when 0=1, the

estimator 4r0x generally appears substantially more variable than qG. This suggests that for

some of the simulated data sets, (0x may differ noticably from the simulated value of 0 (and

may be worse than (0G) although on average it is clearly superior to ;M.

To answer the key question of how these differences affect the model reduction test statistics

we use the above data sets (generated under the simple model log pi = /3) to evaluate the scaled

deviance statistic using either ii5G, or cbx based on the full model given by (3.16). This model

reduction, a test of the hypothesis H: y = 0, is intended to be an over-simplified representation

of the model reductions tested in the Prince George study. The plots in Figures 1, 2, 3 and

4 present the values of three test statistics; the scaled deviance using C60G, the scaled deviance

using 4x and the empirical score test (which does not depend on an estimate of 0, see Section

2.2), versus the quantiles of the chi-squared distribution with 1 degree of freedom. Results

are presented only for a simulated mean of 0.75 and for 0 = 1,1.4,2 and 3; the results for

the other combinations of and 0 are qualitatively similar. These plots are intended to judge

how well the test statistics agree with their predicted asymptotic distribution. The score test

is included to allow comparison with a test statistic that has been reported (in a somewhat

different context) to perform reasonably well even in the presence of over-dispersion (Breslow

1990). This statistic is also useful for comparison in this situation because it does not involve

an estimate of the dispersion parameter.

We see that for data sets generated under either the correct variance function (Figures 1

and 2) or the misspecified variance function (Figures 3 and 4), the use of the estimator 4G
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causes the scaled deviance test statistic to reject too often at higher levels of over-dispersion.

The scaled deviance test using the estimator ii)x and the empirical score tests agree reasonably

well with their predicted asymptotic distributions, except for obvious departures at the most

extreme values. Similar plots for the other values of Q show the same departures of the scaled

deviance statistic using (1)G from its predicted asymptotic distribution while the scaled deviance

using crSx and the empirical score tests perform well.

Recall that the estimator ikx is the most natural estimator of the two, arising as the moment

estimate of 0, whereas cbG was used because it was more convenient and thought to generally

agree closely with i4x. The limited results presented above indicate thatG may not agree well

with ck x and that the latter is preferable, especially when substantial amounts of dispersion

are present in the data. Therefore, in the simulations which follow, when an estimate of 0 is

required we will always use 0x.

With reference to the Prince George study, the question that arises is: Would this improved

estimator have led to different conclusions? It appears that use of 0x would not have changed

the nature of the results outlined in Chapter 1. For the pollutant TRS, in the situations where

we rejected the null hypothesis in favor of a more complex alternative, i•x was evaluated and

found to be smaller than QG (although the results of Table 1 would suggest that qX is generally

larger than cbG), thus the null hypothesis would still be rejected. It appears quite likely the

model reduction process would have led to the same final models and very similar final sets of

estimates.

We now begin to examine the performance of the estimators for parameters and their stan-

dard errors, and the test statistics outlined in Section 2.2.
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4.2 The Simple Case with a Single Series

For a single series we generate data under the reduced model (-y = 0) corresponding to equation

(3.16) at the different possible mean levels and amounts of over-dispersion to be considered.

Table 2 presents the mean values of the estimated regression coefficient under the reduced

model.

Table 2. Mean Values of Estimates of O.

A. Correct Variance Function.
Simulated 0

Simulated /3 1^1.4^2^3 5
log 0.75 1 -0.287^-0.288^-0.288^-0.289
0.7 0.699^0.700^0.699^0.696
1.6 1.601^1.600^1.600^1.599 1.598

B. Misspecified Variance Function.
Simulated 0

Simulated /3 1^1.4^2^3 5
log 0.751 -0.288^-0.289^-0.290^-0.287
0.7 0.700^0.698^0.695^0.702
1.6 1.600^1.601^1.600^1.598 1.592

1 log 0.75;..-, -0.288

For the simulations under the correct variance function, the estimates of 0 are very close

to the simulated values, even in the presence of substantial amounts of dispersion; the same is

true in the misspecified variance simulations. This may not be surprising since in this situation

the estimate of it = exp{/3} is just an average of the observed data.

Table 3 summarizes the estimates of the variability of the estimates of 0 under the reduced

model. In this table, "Simulated" standard error refers to the standard deviation of the 1000

parameter estimates. The details of parts A and B of Table 3 are very similar. In all cases the

empirical and model-based estimates are identical to three decimal places - even for extreme
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amounts of over-dispersion. Nor is any difference in the variability of these estimates apparent.

Further, these estimated standard errors accurately reflect the actual standard deviations, even

when the variance function is misspecified. The agreement seen here between the simulated,

empirical and model-based estimates of variability is somewhat surprising. It was expected that

the model-based estimators of the covariance matrices would begin to yield poor estimates as

the dispersion increased, but this is not the case. It appears that in this simple situation the

over-dispersion in the data is being adequately accounted for, even when the variance function

is misspecified; the quantity Os presented in part B of Table 1 was estimated very well and

serves the purpose of accounting for the extra variability.

Table 3. Standard Deviations of Estimates of 0
and Mean Values of Estimated Standard Errors (±s.d.).

A. Correct Variance Function

Simulated /3 Method
Simulated q5

1 1.4 2 3 5
log 0.75 Simulated .043 .051 .062 .077

Model .044 (.002) .052 (.002) .062 (.003) .075 (.004)
Empirical .044 (.002) .052 (.002) .062 (.003) .075 (.004)

0.70 Simulated .026 .031 .037 .046
Model .027 (.001) .032 (.001) .038 (.001) .046 (.002)
Empirical .027 (.001) .032 (.001) .038 (.001) .046 (.002)

1.60 Simulated .017 .021 .024 .030 .039
Model .017 (.001) .020 (.001) .024 (.001) .029 (.001) .038(.001)
Empirical .017 (.001) .020 (.001) .024 (.001) .029 (.001) .038(.001)
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Table 3 B. Misspecified Variance

Simulated /3^Method

Simulation Study

Function
Simulated q5

52

1 1.4 2 3 5
log 0.75 Simulated .042 .050 .059 .069

Model .044 (.002) .050 (.002) .058 (.002) .069 (.003)
Empirical .044 (.002) .050 (.002) .058 (.002) .069 (.003)

0.70 Simulated .026 .036 .048 .057
Model .027 (.008) .036 (.001) .046 (.002) .060 (.003)
Empirical .027 (.008) .036 (.001) .046 (.002) .060 (.003)

1.60 Simulated .017 .031 .041 .056 .081
Model .017 (.001) .029 (.001) .041 (.002) .056 (.003) .077 (.005)
Empirical .017 (.001) .029 (.001) .041 (.002) .056 (.003) .077 (.005)

We now turn to the performance of the test statistics for the hypothesis H: y = 0, summa-

rized in Table 4. The observed rejection probabilities presented in this table can be considered

as averages of 1000 Bernoulli trials with success probability p, which we may approximate by

the nominal level. Thus the standard errors of the observed probabilities are approximately

Vp(1 - p)/n; for nominal levels of 0.10, 0.05 and 0.01 we may expect standard errors of approx-

imately .009, .007 and .003. For the results in part A of Table 4, keeping the precision of these

observed rejection probabilities in mind, we find that they agree quite well with the nominal

levels at all mean values and even at higher levels of dispersion. We also note the observed

rejection probabilities are very similar across the four tests for each choice of mean and dis-

persion suggesting that any deviations of the observed rejection probabilities from the nominal

levels are a reflection of the particular 1000 data sets generated. The agreement between model

and empirical Wald tests was to be expected given the agreement of the two estimators of the

variances seen in Table 3. In general, the agreement among the four statistics may not be

particularily surprising either. Conventional wisdom would suggest that, over-dispersion aside,
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each of the tests should perform well with a sample size of 700 (although there was some ques-

tion if this was true when the series consist of a large number of zeros such as in the simulations

using /3 = log 0.75). Thus, in light of how effectively the over-dispersion is accounted for, we

should not expect any of the test statistics to do poorly.

The results in the misspecified variance simulations are similar. In these simulations the

agreement between the four tests may seem particularly surprising at first; we might expect the

model-based Wald and the scaled deviance tests to do poorly since they rely on the particular

choice of variance function used to fit the data. However, considering how the choice of variance

function does not seem to matter in this simple case (as noted for Table 3), the above agreement

should not be surprising.
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Table 4. Observed Rejection Probabilities Under Reduced Model.
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A. Correct Variance Function

0 = 1 0 = 1.4 0 = 2
Simulated 0 Test/Method
log 0.75
^

Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.70^Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60^Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.10 0.05 0.01
.105 .041 .010
.105 .040 .010
.102 .040 .010
.106 .041 .010

.103 .056 .005

.104 .055 .006

.102 .054 .005

.103 .056 .005

.112 .056 .011

.110 .057 .012

.108 .057 .012

.112 .056 .011

0.10 0.05 0.01
.096 .045 .007
.097 .046 .005
.095 .045 .005
.096 .045 .008

.082 .046 .012

.083 .046 .011

.082 .046 .011

.082 .046 .013

.095 .043 .004

.097 .043 .004

.090 .038 .007

.087 .039 .007

0.10 0.05 0.01
.106 .053 .015
.114 .056 .016
.111 .056 .016
.108 .054 .015

.110 .062 .017

.111 .061 .017

.110 .060 .014

.110 .062 .017

.087 .039 .007

.091 .038 .008

.090 .038 .007

.087 .039 .007

0 = 3^0 = 5
Simulated )3 Test/Method
log 0.75
^

Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.70^Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60^Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.10 0.05 0.01
.119 .056 .009
.122 .059 .011
.117 .054 .009
.121 .056 .011

.114 .061 .013

.122 .065 .012

.119 .063 .011

.114 .061 .013

.103 .043 .010

.096 .048 .013

.095 .045 .010

.103 .043 .010

0.10 0.05 0.01

.092 .043 .009

.090 .043 .009

.088 .043 .008

.092 .043 .009
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Table 4 B. Misspecified Variance Function
0 = 1 

Simulated 0 Test/Method^0.10 0.05 0.01
log 0.75^Wald/Model

Wald/Empirical
Score/Empirical
Deviance/Scaled

.094 .045 .009

.095 .047 .009

.095 .046 .009

.094 .045 .009

cb = 1.4
0.10 0.05 0.01 0.10 0.05 0.01

q=22

.094 .044 .006

.095 .046 .007

.094 .046 .006

.095 .044 .006

.091

.092

.091

.093

.045

.050

.047

.046

.009

.012

.010

.009

0.70 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

.091 .050 .016

.091 .051 .016

.092 .051 .015

.091 .050 .017

.097 .041 .007

.097 .039 .009

.096 .039 .007

.097 .041 .007

.095 .048 .012

.091 .047 .012

.091 .046 .011

.095 .048 .012

.103 .052 .009

.105 .051 .010

.103 .050 .009

.103 .052 .010

.107 .046 .010

.108 .046 .009

.108 .043 .007

.109 .047 .010

.083 .033 .004

.081 .034 .005

.079 .033 .004

.083 .034 .004

0 = 3 0 = 5
Simulated 0 Test/Method
log 0.75 Wald/Model

Wald/Empirical
Score/Empirical
Deviance/Scaled

0.70 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.10 0.05 0.01 0.10 0.05 0.01
.112 .063 .014
.114 .066 .017
.110 .062 .015
.112 .064 .015

^

.101 .044 .010^-

.102 .048 .011

^

.099 .042 .009 ^-

^.101 .045 .010^-

.111 .059 .014 .102 .056 .011

.114 .066 .016 .104 .053 .012

.108 .059 .013 .100 .047 .006

.111 .059 .014 .102 .056 .012

In summary, for the simulation results when the data is generated under the reduced model

there is no clear difference between the empirical and model-based estimates of variances. Nor

are there any differences among the four model reduction test statistics considered. We will

look to the three series case in Section 4.3 to provide more insight into possible differences in

the estimators and test statistics in this simple situation.
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A limited number of simulations were also carried out using the full model corresponding

to (3.16) to generate the data. In particular, 1000 data sets were generated according to this

model with = log 0.75 and one of y = 0.05, 0.10, or 0.15. The estimation of 0, fl and y were of

interest as well as power for testing the hypothesis 11:7 = 0. The mean values of the parameter

estimates are summarized in Table 5. First consider part A of the table, corresponding to

simulations where the data were generated with the correct variance function. In all cases (that

is, all combinations of simulated 0 and 7) the estimators yield good estimates. The mean values

of both model and empirical versions of the estimated standard errors (not presented here) are

in close agreement with the displayed standard deviations. The standard errors of the estimates

increase as the dispersion increases as would be expected. Notice that the estimates of 0 (and

their standard deviations) are almost identical to the corresponding quantities for qx in part

A of Table 1 (which were based on data generated using the reduced model).

In part B, we see that # and -y are estimated very well at all levels of dispersion considered.

To determine what the estimates of 0 should be, first note that in these misspecified variance

simulations, the amount of extra variability varies as the covariate xj, and thus the mean values

pi, vary. In the present situation, the average of the 0 .3 (where pick; = pi + — 1)/2) for each

cell in part B of Table 5 are the same to two decimals as the values 4r from part B of Table 1.

It is therefore reasonable that the estimates of 0 are close to the estimates in part B of Table

1, and again cix is accounting for the extra variability very well.
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Table 5. Mean Values of Estimated Parameters (± s.d.) Under Full Model.

A. Correct Variance Function
Simulated 0

Simulated 7 Parameter 1 1.4 2 3
0.05 0 1.00 (.055) 1.40 (.095) 2.00 (.178) 2.97 (.335)

/3 -.288 (.044) -.289 (.050) -.292 (.064) -.292 (.076)
7 .049 (.061) .051 (.075) .050 (.087) .053 (.109)

0.10 0 1.00 (.054) 1.40 (.093) 1.99 (.179) 2.97 (.323)
/3 -.288 (.042) -.290 (.051) -.291 (.063) -.293 (.076)
7 .100 (.063) .098 (.073) .099 (.086) .102 (.110)

0.15 0 1.00 (.054) 1.40 (.096) 2.00 (.171) 2.98 (.323)
0 -.288 (.043) -.289 (.051) -.288 (.063) -.293 (.075)
7 .151 (.062) .149 (.072) .150 (.085) .153 (.109)

B. Misspecified Variance Function
Simulated 0

Simulated 7 Parameter 1 1.4 2 3
0.05 0 1.00 (.055) 1.30 (.083) 1.75 (.133) 2.49 (.260)

/3 -.288 (.044) -.290 (.050) -.292 (.059) -.292 (.069)
7 .049 (.061) .051 (.069) .055 (.084) .053 (.098)

0.10 0 1.00 (.054) 1.30 (.082) 1.75 (.134) 2.49 (.258)
/3 -.288 (.042) -.290 (.050) -.290 (.056) -.294 (.069)
7 .100 (.063) .102 (.068) .099 (.083) .104 (.102)

0.15 0 1.00 (.054) 1.30 (.084) 1.75 (.137) 2.50 (.255)
/3 -.288 (.043) -.291 (.049) -.291 (.058) -.291 (.070)
7 .151 (.062) .151 (.071) .150 (.081) .151 (.100)

The observed rejection probabilities under the alternative hypothesis are shown in Table 6

below. The results presented in part A show no difference in the power of the four statistics.

For a given value of y, the observed rejection probabilities decrease as the amount of dispersion

increases (the increased variability in the data makes it more difficult to detect an effect).

The results in part B are very similar. In general, for given values of y and 0 > 1, the

rejection probabilities are slightly higher in the misspecified variance simulations compared to

the correct variance simulations. Note that for values of pj < 1, such as in these simulations

using = log 0.75 and y no larger than 0.15, the value of pi + (0 - 1)p .1 (the variance under
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the misspecified formulation) is less than the value of cbiti (the variance under the correct

formulation). Therefore from our earlier observation that the power decreases as the amount of

variablility in the data increases, we should expect the rejection probabilities in the misspecified

variance to be higher than the correct variance simulations for these values of y and 0.

In summary, from the results of the simulations under the full model (Tables 5 and 6) the

estimates of 0 appear reasonable and the regression parameter estimates are close, on average, to

the simulated values. There are also no indications of any differences in the power of the four

test statistics considered. Further, estimated standard errors from the model and empirical

estimators (not presented) were similar, both being very close, on average, to the simulated

values.
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Table 6. Observed Rejection Probabilities Under Full Model.

A. Correct Variance Function

7 Test
0 = 1 0 = 1.4 0 = 2 0 = 3

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
.05 Wald/Mod. .205 .117 .033 .194 .114 .041 .152 .090 .025 .152 .089 .025

Wald/Emp. .204 .117 .035 .197 .119 .040 .155 .090 .027 .151 .086 .025
Score/Emp. .202 .116 .034 .197 .118 .038 .154 .086 .024 .147 .079 .024
Dev/Scaled .205 .117 .033 .194 .117 .041 .153 .092 .026 .156 .092 .025

.10 Wald/Mod. .490 .374 .164 .348 .247 .116 .295 .205 .070 .253 .165 .059
Wald/Emp. .489 .372 .171 .351 .253 .119 .298 .207 .076 .266 .159 .065
S core/ Emp. .487 .371 .164 .353 .249 .111 .296 .203 .072 .260 .156 .060
Dev/Scaled .490 .374 .164 .349 .247 .117 .296 .207 .074 .253 .166 .060

.15 Wald/Mod. .786 .685 .445 .661 .522 .296 .529 .404 .186 .391 .274 .135
Wald/Emp. .788 .687 .445 .663 .521 .297 .527 .411 .187 .402 .274 .136
Score/Emp. .788 .683 .439 .662 .518 .287 .527 .408 .182 .395 .269 .128
Dev/Scaled .786 .685 .448 .663 .523 .300 .531 .405 .190 .391 .277 .136

B. Misspecified Variance Function
0 = 1 0 = 1.4 0 = 2 0 = 3

y Test .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
.05 Wald/Mod. .205 .117 .033 .193 .111 .024 .176 .108 .030 .165 .090 .021

Wald/Emp. .204 .117 .035 .195 .111 .028 .174 .112 .032 .161 .087 .020
Score/Emp. .202 .116 .034 .189 .107 .026 .169 .109 .030 .157 .082 .018
Dev/Scaled .205 .117 .033 .194 .111 .025 .177 .110 .032 .165 .093 .021

.10 Wald/Mod. .490 .374 .164 .407 .291 .123 .336 .236 .087 .291 .195 .073
Wald/Emp. .489 .372 .171 .410 .299 .131 .333 .241 .097 .294 .203 .074
S core/ Emp. .487 .371 .164 .409 .300 .122 .328 .233 .088 .291 .192 .066
Dev/Scaled .490 .374 .164 .410 .292 .123 .336 .237 .088 .291 .195 .073

.15 Wald/Mod. .786 .685 .445 .680 .579 .337 .585 .455 .218 .470 .340 .158
Wald/Emp. .788 .687 .445 .683 .574 .342 .587 .455 .222 .481 .342 .162
Score/Emp. .788 .683 .439 .681 .565 .333 .584 .450 .209 .473 .333 .148
Dev/Scaled .786 .685 .448 .680 .580 .339 .586 .456 .219 .472 .342 .160
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4.3 The Simple Case with Three Series

The results discussed in this section are for three separate series of data generated according

to log-linear models given by (3.17) with one of the two combinations of dispersion parameters

described in Section 3.2 (combination I or II) and one of the two possible variance functions.

For the null model (70 = -yi = 72 = -y3 = 0) the parameter values /3i = log 0.75 (= —0.288),

/32 = 0.7 and /33 = 1.6 are used to generate the data. The resulting data series are then fit using

this same log-linear model. The mean values of the estimated parameters from 1000 simulated

data sets generated under each of the four possible scenarios (2 combinations of 0 x 2 variance

formulations) are presented in Table 7.

Table 7. Mean Values of Parameter Estimates.

Parameter

Variance
A. Correct

Function
B. Misspecified

Combination of (/)
I^II

Combination of 0
I^II

0 1.997 2.799 4.964 8.333
01 -0.288 -0.289 -0.289 -0.287
02 0.699 0.699 0.701 0.700
/33 1.599 1.599 1.598 1.594

Intuitively the estimates of 0 should be approximately equal to the average of the three

dispersion values associated with the three generated data series in each of the 1000 data

sets leading to the results in each of the four scenarios. These averages are 2.0 (combination

I, correct variance), 2.8 (combination II, correct variance), 4.97 (combination I, misspecified

variance) and 8.37 (combination II, misspecified variance). We can see that in each of the four

scenarios, the estimates of 0 are very close to these corresponding averages. The estimates of

the regression parameters are also excellent in all four scenarios.
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Table 8 presents the standard deviations of the parameter estimates and the mean values of

the estimated standard errors for the regression parameters. In each column of this table the

empirical estimates agree very well with the simulated standard deviations but the model-based

estimates are most often quite different. The latter are much too large for the parameter /9 i

corresponding to the series where the simulated dispersion is lower than the average of the

three series, and too small for 03 corresponding to the series where the simulated dispersion

is larger than the average of the three series. For the regression parameter N2, first consider

the correct variance simulations. We find that with combination I of 0's the standard errors

for 02 are about right; this appears to be because the simulated 0 for this series is equal to

the average of the 4's for all three series. However, using combination II of cb's the simulated

0 for series 2 is smaller than the average of the O's for all three series and the model-based

standard error is distinctly larger than the standard deviation of the parameter estimates. In

the misspecified variance simulations, we also find the model-based standard error to be larger

than the standard deviation of the parameter estimates because the simulated 0 for series 2

is smaller than the average of the cb's in these cases. Clearly the empirical estimator is better

in each of these cases (for both combinations of 0 and for both variance formulations) and

accurately reflects the true variability of these parameter estimates, even with the misspecified

variance function.
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Table 8. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (±s.d.).

Parameter Method

Variance
A. Correct

Function
B. Misspecified

Combination of .0
I^II

Combination of 0
I^II

0 Simulated .084 .144 .399 .976

01 Simulated .042 .052 .042 .050
Model .062 (.002) .073 (.003) .097 (.004) .126 (.008)
Empirical .044 (.002) .052 (.002) .044 (.002) .050 (.002)

/32 Simulated .038 .038 .046 .047
Model .038 (.001) .045 (.001) .059 (.003) .077 (.005)
Empirical .038 (.001) .038 (.001) .046 (.002) .046 (.002)

03 Simulated .029 .037 .054 .079
Model .024 (.001) .028 (.001) .038 (.001) .049 (.002)
Empirical .029 (.001) .038 (.001) .056 (.003) .077 (.004)

Using the data generated under the reduced model, the levels achieved by the four test

statistics under study are examined by considering an alternative model that allows for a com-

mon "pollution" effect (71 = 72 = -y3 = 0, but 7o possibly not zero). The hypothesis to be

tested is H: 70=0. Table 9 presents the observed rejection probabilities of each of the four test

statistics. The precision of the observed rejection probabilities, which should be kept in mind

when interpreting these results, are the same as those reported in Section 4.2. Consider first the

correct variance simulations. In the model reductions for the correct variance simulations, the

model-based tests (model Wald and scaled deviance) clearly reject too often while the rejection

probabilities for the empirical tests (empirical score and empirical Wald) agree quite well with

the nominal levels based on the predicted 4 ) critical values. A similar pattern is apparent

in the misspecified variance simulations, although the departure of the model-based tests from
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the nominal levels is considerably more exaggerated than in the correct variance simulations.

Table 9. Observed Rejection Probabilities: Common Pollution to No Pollution Model.

A. Correct
Combination of 0

Variance Function
B. Misspecified

Combination of 0

Test
I

0.10 0.05 0.01
II

0.10 0.05 0.01
I

0.10 0.05 0.01
II

0.10 0.05 0.01

Wald/Mod .159 .099 .019 .173 .102 .039
Wald/Emp .114 .057 .004 .110 .058 .014
S core/Emp .114 .056 .004 .109 .058 .014
Dev/Scaled .159 .099 .018 .172 .102 .039

.180 .104 .045 .226

.089 .054 .016 .108

.088 .053 .012 .102

.180 .104 .044 .227

.139 .060

.062 .012

.057 .011

.139 .060

Thus in this multiple series situation (without any pollution effects at this time) we find a

clear difference between the empirical and model-based estimates of variance, with the empirical

estimator being preferable. Correspondingly we find that the model-based test statistics are

inferior to the empirical test statistics. Given the differences in the variance estimates, the

fact that the empirical Wald is preferable to the model Wald test is not surprising. Nor is it

surprising that the empirical score test performs well in all cases since it performed well even

under misspecified variances in the study described in Breslow (1990). What is interesting is

the very close agreement agreement between the model Wald and scaled deviance tests and

between the empirical score and empirical Wald tests. Conventional wisdom would suggest

the Wald tests might be inferior to the other two tests, but we see that the model Wald gives

observed rejection probabilities that are almost exactly the same as the scaled deviance test and

the empirical Wald gives observed rejection probabilities that are almost exactly the same as

the empirical score test. It seems that the test statistics which rely on a dispersion parameter

to account for extra variability perform poorly, while those that estimate the extra variability
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empirically perform much better.

A set of simulations with data generated according to the model with a common pollution

effect (71 = 72 = 73 = 0, but 70 non-zero in (3.17)) were also carried out. Recall that the

value chosen for 7o is 0.10. Table 10 presents the mean values of the parameter estimates for

the data sets generated in this fashion. The estimates of the Oi are very good in each column

of the table as are the estimates of -y o . The estimates of 0 are close to the estimates seen in

Table 7 as we would expect given that in each case, the average of the dispersions is close to

the averages encountered in the simulations under the null hypothesis.

Table 10. Mean values of Parameter Estimates.

Parameter

Variance
A. Correct

Function
B. Misspecified

Combination of 0
I^II

Combination of 0
I^II

1.998 2.799 4.970 8.325
Ql -0.289 -0.292 -0.288 -0.292
P2 0.699 0.701 0.699 0.699
03 1.599 1.599 1.597 1.591
yo 0.100 0.101 0.098 0.098

The standard deviations of the above estimates and the mean values of the estimated stan-

dard errors for the regression parameters are given in Table 11. The model-based estimates of

the standard errors for the /3 show the same behavior as in Table 8 with the estimate being too

large when the parameter corresponds to a series with simulated q5 lower than c b and too small

when the parameter corresponds to a series with simulated 0 larger than (7,. The empirical

estimator on the other hand, agrees very well with the simulated standard deviations. Notice

that the model-based estimates of the standard error of 7o are too low throughout the table.

Recall that the rejection probabilities were too high for the model-based test statistics in Table
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9. This suggests that the standard errors of the estimates of y o were lower than expected in

the simulations under the null hypothesis as well.

Table 11. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (±s.d.).

Parameter Method

Variance
A. Correct

Function
B. Misspecified

Combination of 0
I^II

Combination of q
I^II

0 Simulated .086 .144 .395 .967

131 Simulated .043 .053 .040 .052
Model .062 (.002) .073 (.003) .097 (.004) .126 (.008)
Empirical .044 (.002) .052 (.002) .044 (.002) .050 (.002)

132 Simulated .038 .038 .046 .049
Model .038 (.001) .045 (.001) .059 (.003) .077 (.005)
Empirical .038 (.001) .038 (.001) .046 (.002) .046 (.002)

/33 Simulated .029 .037 .058 .079
Model .024 (.001) .028 (.001) .038 (.001) .049 (.002)
Empirical .029 (.001) .038 (.001) .056 (.003) .077 (.004)

7o Simulated .030 .038 .055 .076
Model .027 (.001) .032 (.001) .043 (.002) .056 (.003)
Empirical .031 (.001) .038 (.002) .054 (.002) .072 (.006)

We now examine the results of evaluating the four test statistics based on an alternative

hypothesis that includes common and separate "pollution" effects for each series. Thus these

model reductions, from the model with separate effects to the one with a common pollution

effect (which was used to generate the data), represent the separate to common effects reductions

described in the Prince George study. Note that these tests, the results of which are summarized

in Table 12, are the first discussed in this thesis involving reduction by more than one parameter

(and are thus the first that involve estimates of covariance in the Wald and score test statistics).
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In the correct variance simulations the empirical test statistics achieve levels close to the

nominal rejection probabilities with combination I of 0 and still quite close with combination

II (keeping in mind the precision of these observed rejection probabilities discussed above).

The levels of the model-based test statistics are clearly too low under both combinations of 0.

Even with the misspecified variance formulation, the empirical test statistics achieve levels close

to nominal; while the rejection probabilities may be slightly too large at the 0.10 level under

combination II, overall the agreement is good. The levels of the model-based test statistics are

far too low at the 0.10 and 0.05 nominal levels under both combinations of 0, although it is not

clear how they do at the 0.01 level.

Table 12. Observed Rejection Probabilities: Separate to Common.

Test

A. Correct
Variance Function

B. Misspecified
Combination of 0 Combination of cb

0.10
I

0.05 0.01 0.10
II

0.05 0.01 0.10
I

0.05 0.01 0.10
II

0.05 0.01

Wald/Mod .076 .035 .006 .062 .026 .001 .067 .036 .005 .056 .029 .009
Wald/Emp .100 .051 .011 .092 .049 .010 .104 .057 .006 .117 .052 .014
Score/Emp .099 .049 .008 .088 .049 .008 .100 .055 .006 .113 .051 .010
Dev/Scaled .077 .035 .006 .062 .027 .001 .067 .036 .006 .056 .030 .009

We also examine the power of the four tests in this multiple series situation in Table 13

by considering the reduction from the common pollution effect to no pollution effects (the null

model). The power for the two model-based tests are virtually identical throughout the table

and the two empirical tests achieve similar power. However, the rejection probabilities for the

model-based tests are higher than the empirical tests presumably as a result of the standard

error of 7o being underestimated in the former tests (see Table 11).
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Table 13. Observed Rejection Probabilities: Common to Null.

67

A. Correct
Combination of 0

Variance Function
B. Misspecified

Combination of 0

Test
I

0.10 0.05 0.01
II

0.10 0.05 0.01
I

0.10 0.05 0.01
II

0.10 0.05 0.01

Wald/Mod .958 .925 .834 .891 .827 .687 .695 .598 .404 .542 .447 .271
Wald/Emp .941 .890 .751 .837 .767 .537 .570 .445 .226 .399 .293 .111
Score/Emp .941 .891 .751 .837 .765 .535 .567 .436 .213 .394 .283 .100
Dev/Scaled .958 .925 .835 .891 .828 .688 .695 .599 .406 .542 .447 .274

The final model to be considered for generating data in this three series simple case is

the model with separate pollution effects. Recall the value chosen for 7 0 is again 0.10, while

71 =0.10, 72 = -0.20 and -y3 = 0. Results of fitting the full model to these data sets are

summarized in Tables 14, 15 and 16 which follow.

The mean values of the parameter estimates (see Table 14 below) are very close to the correct

values, even in the misspecified case with substantial amounts of dispersion. The estimates of 0

are very close to the values seen in Tables 7 and 10, which is still to be expected because, even in

the misspecified variance simulations, the average of the dispersion values over the entire 2100

observations is approximately equal to the averages in the corresponding simulations under

either the null or the common pollution effect model.
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Table 14. Mean Values of Parameter Estimates.

Variance
A. Correct

Function
B. Misspecified

Combination of 0 Combination of 0
Parameter I II I II
Cb 1.997 2.799 4.962 8.326
01 -0.290 -0.289 -0.290 -0.289
02 0.699 0.700 0.700 0.698
03 1.598 1.597 1.595 1.593
70 0.098 0.102 0.102 0.096
71 0.101 0.096 0.100 0.102
72 -0.195 -0.200 -0.197 -0.195

The estimates of the standard errors are summarized in Table 15. In each of the columns

of this table the empirical estimator is very close, on average, to the simulated standard devia-

tions. Again the model-based estimator overestimates the standard errors for parameters which

correspond to the series with dispersion lower than 0 (most notably th and 7 1 ) and underes-

timates the standard errors corresponding to the series with dispersion larger than 0 (most

notably 03 ). It would seem that the low rejection probabilities in Table 12 for the model-based

test statistic can be explained by the general overestimation of the standard error of 71.
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Table 15. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (±s.d.).

Parameter Method

Variance
A. Correct

Function
B. Misspecified

Combination of 0
I^II

Combination of 0
I^II

Cb Simulated .085 .142 .393 .966

01 Simulated .044 .054 .042 .050
Model .062 (.002) .073 (.003) .098 (.004) .127 (.008)
Empirical .044 (.002) .052 (.002) .044 (.002) .050 (.002)

02 Simulated .039 .037 .047 .047
Model .038 (.001) .045 (.001) .059 (.003) .077 (.005)
Empirical .038 (.002) .038 (.001) .046 (.002) .046 (.002)

03 Simulated .029 .039 .056 .076
Model .024 (.001) .028 (.001) .038 (.001) .049 (.002)
Empirical .029 (.001) .038 (.001) .056 (.003) .077 (.005)

70 Simulated .042 .054 .078 .113
Model .034 (.001) .040 (.001) .054 (.002) .069 (.007)
Empirical .041 (.002) .054 (.003) .079 (.005) .109 (.011)

71 Simulated .074 .090 .098 .133
Model .094 (.003) .111 (.004) .148 (.006) .191 (.011)
Empirical .075 (.003) .090 (.003) .100 (.004) .130 (.009)

72 Simulated .071 .076 .102 .131
Model .063 (.002) .075 (.002) .100 (.004) .129 (.007)
Empirical .067 (.002) .076 (.003) .102 (.005) .127 (.012)
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Table 16. Observed Rejection Probabilities: Separate to Common.

Test

Variance
A. Correct Variance Function

Function
B. Misspec. Variance Function

Combination of 0 Combination of 0

0.10
I

0.05 0.01 0.10
II

0.05 0.01 0.10
I

0.05 0.01 0.10
II

0.05 0.01

Wald/Mod .936 .890 .741 .870 .786 .558 .621 .465 .222 .340 .218 .088
Wald/Emp .962 .932 .822 .944 .889 .747 .911 .858 .685 .880 .791 .593
Score/Emp .962 .929 .818 .945 .888 .745 .909 .854 .671 .879 .786 .578
Dev/Scaled .936 .891 .743 .870 .789 .560 .623 .468 .227 .341 .218 .088

In Table 16 we examine the power of the four test statistics under consideration in testing

the reduction from the separate pollution effects simulated in these data sets to a model with a

common pollution effect. The model-based test statistics have lower power than the empirical

tests in all of the above cases. The difference is most noticable in the cases where the standard

errors of -yi were seriously overestimated, such as the misspecified variance simulations.

In all of the simulations in this three series simple case, in contrast to the one series sim-

ulations, it is clear that the empirical estimate of the covariance matrix for the regression

parameters is superior to the model-based estimate. As for the observed levels of the four test

statistics under consideration, we find that the model-based test statistics reject too often in

some instances, and not as often as predicted by theory in other cases, whereas the empirical

test statistics always achieve levels close to the nominal rates. Throughout we have found very

close agreement between the model Wald and scaled deviance tests and between the empirical

score and empirical Wald tests. It appears that, in these simple simulations, the two model-

based test statistics that rely on a dispersion parameter to account for the extra variability

perform poorly, while the empirical test statistics (which do not rely on the correctness of a

specified model to estimate the variance-covariance matrix) perform much better.
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4.4 The More Complicated Case with a Single Series

We now wish to study the performance of the estimators and test statistics when we generate

data using the more complicated model for a single series, described by (3.18), that includes

season effects. For the purpose of simulating data under the reduced model, the values r 1 =

r2 = 0.25, r3 = -0.5 and r4 = 0 (with y = 0) were used. Table 17 presents the mean values

of the parameter estimates from fitting the reduced model to each of the 1000 simulated data

sets.

Table 17. Mean Values of Estimated Parameters Under Reduced Model.

A. Correct Variance
Simulated 0

Simulated 0 Parameter 1 1.4 2 3 5
log 0.75 (i) 1.00 1.39 1.98 2.96 -

Q -.291 -.286 -.295 -.292 -
Ti. .253 .245 .253 .247 -

r2 .252 .238 .250 .253 -
r3 -.498 -.513 -.513 -.520 -

0.70 0 .997 1.40 1.99 2.98 -
,Q .699 .697 .698 .695 -
r1 .246 .250 .247 .252 -

r2 .250 .253 .250 .250
73 -.499 -.501 -.501 -.508 -

1.60 4 .997 1.40 2.01 2.98 4.97
13 1.60 1.60 1.60 1.60 1.60
ri. .251 .249 .247 .251 .246
T2 .250 .250 .248 .249 .251
73 -.503 -.501 -.502 -.504 -.499
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Table 17 B. Misspecified Variance
Simulated 4)

Simulated /3 Parameter 1 1.4 2 3 5
log 0.75 0 1.00 1.31 1.77 2.54 -

/3 -.287 -.292 -.297 -.296 -
Tl .245 .246 .256 .248 -
T2 .246 .251 .258 .256 -
T3 -.507 -.503 -.503 -.507 -

0.70 0 1.00 1.83 3.07 5.15 -
/3 .702 .695 .699 .698 -
Ti. .247 .253 .244 .246 -
T2 .245 .254 .244 .248
T3 -.505 -.501 -.506 -.502 -

1.60 (/) 1.00 3.06 6.15 11.22 21.09
/3 1.60 1.60 1.60 1.59 1.58
Ti .249 .252 .249 .252 .263
T2 .248 .249 .248 .255 .258
7-3 -.500 -.500 -.505 -.497 -.495

In part A of the table, the correct variance simulations, the estimates are very close to

the simulated values in each column of the table. The regression parameter estimates ( 13 and

Ti) are also quite good (correct to 1 decimal) even when dispersion is high relative to the mean.

There are cases where the estimates appear to be a bit off (for example, the simulations with /3

= log 0.75 and c > 1.4), but the regression parameter estimators have substantially higher vari-

ances than in the simple simulations of the previous sections (compare the standard deviations

of these estimates provided in Table 18 below with those in Table 3), so it is not unreasonable

that the mean value from 1000 simulated data sets differs slightly from the simulated value.

We now consider the misspecified variance results in part B of the above table. Here the

values of q5 are roughly what they were in the one series simple case. This follows because the

four seasons are like four short series with different mean levels and therefore different levels of

dispersion. Results from the three series simple simulations (Section 4.3) suggest the average
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of those levels of dispersion is what is being estimated estimated by the overall estimator sr4.

Because the ri were chosen so that E i r = 0, the average is approximately the same as the

amount of dispersion in the one series simple simulations of Section 4.2 (slightly different because

the mean levels of the four "series" don't quite average out to the overall mean; >, exp{/3

does not equal exp{E i (0 -I- TO} = exp{0}). Thus the estimates of 0 in the above table are as

we would expect. More importantly, the mean values of the regression parameter estimates are

quite close to the simulated values at all levels of dispersion and for all choices of 0.

The standard deviations of the parameter estimates and the mean values of the standard

errors of the regression parameters are summarized in Table 18. In the correct variance simu-

lations (part A of the table), the empirical and model-based estimators are very close to each

other in all cases, and agree well with the actual standard deviations of the parameter estimates.

There is one instance (0 = log0.75 and 0 = 3) when the mean values of the estimated standard

errors for all the regression parameters are slightly lower than the standard deviations. This

could be a suggestion that the estimators underestimate the standard errors when there is a

large amount of dispersion and low overall mean level, but could also just be chance. In any

case, there is no strong evidence that the empirical estimator particularly underestimates the

standard errors in general as expected a priori (based on conventional wisdom), or at least

not any more so than the model-based estimator. Overall there is no real difference in these

estimated standard errors. Note however that the model-based estimated standard error is

uniformly less variable than that based on the empirical estimator (although the difference is

small in this particular situation).
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In the misspecified variance simulations there may be a problem with the model-based

estimator similar to the problems in the three series simple case simulations of Section 4.3. If we

think of the four seasons as four short series, then under the misspecified variance formulation,

the four series, with different mean levels, have different amounts of dispersion. In particular,

the simulated dispersion for the data in the third season will be quite a bit lower than for the

other seasons. The "overall" estimate ::$. will be larger than the amount of dispersion simulated

for this season which might explain why the model-based estimates of standard errors for f 3 are

too high on average. This same argument would suggest that the standard errors for f 1 and 1:2

would be too low since these "series" have the highest means and therefore the most dispersion

so that q will be lower than the amount of dispersion simulated in these series. There is some

suggestion of this as well in part B of Table 12.

As for the empirical estimator, overall it appears to estimate the standard deviations of

the parameters much better than the model-based estimator. There is no clear evidence that

this estimator consistently underestimates the standard errors of the regression parameters

although whenever the average of the empirical estimates differs to any appreciable extent from

a simulated standard deviation, this average does appear to be too low.
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Table 18. Standard Deviations of Estimates and Mean Values of Estimated Standard Errors (±s.d.).

A. Correct Variance Function

Simulated ,8 Parameter Method
Simulated 0

1 1.4 2 3 5

Simulated .056 .097 .175 .326
Simulated
Model
Empirical

.086
.088(.004)
.087(.006)

.103
.103(.006)
.103(.008)

.124
.123(.009)
.123(.011)

.153
.150(.012)
.150(.015)

Simulated .118 .135 .165 .206
Model .117(.005) .138 (.006) .165 (.009) .201(.013)
Empirical .116(.006) .137 (.007) .164 (.010) .200(.014)
Simulated .115 .135 .164 .205
Model .117(.005) .138 (.006) .165 (.009) .201(.013)
Empirical .116(.006) .137 (.007) .164 (.010) .200(.014)
Simulated .142 .166 .205 .258
Model .143(.007) .168(.009) .202(.012) .247(.019)
Empirical .142(.008) .168(.010) .201(.014) .244(.021)

Simulated .056 .087 .136 .245
Simulated .055 .064 .077 .093
Model .053(.002) .063(.003) .075(.004) .092(.005)
Empirical .053(.003) .063(.004) .075(.005) .092(.007)
Simulated .074 .087 .097 .121
Model .071(.002) .084 (.003) .100 (.004) .123(.005)
Empirical .071(.003) .084 (.004) .100 (.005) .122(.006)
Simulated .072 .085 .101 .123
Model .071(.002) .084 (.003) .100 (.004) .123(.006)
Empirical .071(.003) .084 (.004) .100 (.005) .122(.006)
Simulated .089 .103 .123 .153
Model .087(.003) .103(.004) .123(.005) .150(.007)
Empirical .086(.004) .102(.005) .122(.006) .149(.009)

Simulated .054 .078 .122 .200 .388
Simulated .034 .042 .047 .060 .077
Model .034(.001) .040(.001) .048(.002) .059(.002) .076(.004)
Empirical .034(.002) .040(.002) .048(.003) .059(.004) .076(.005)
Simulated .046 .056 .062 .081 .105
Model .045(.001) .054 (.002) .064 (.002) .078(.003) .101(.004)
Empirical .045(.002) .053 (.002) .064 (.003) .078(.004) .101(.005)
Simulated .045 .054 .063 .079 .102
Model .045(.001) .054 (.002) .064 (.002) .078(.003) .101(.004)
Empirical .045(.002) .053 (.002) .064 (.003) .078(.004) .101(.005)
Simulated .057 .067 .078 .100 .126
Model .055(.002) .065(.002) .078(.003) .096(.004) .123(.006)
Empirical .055(.002) .065(.003) .078(.003) .095(.005) .123(.007)

0.70^0
#

T1

T2

T3

1.60
^

0
)3

Ti

T2

T3
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Table 18 B. Misspecified Variance Function

Simulated 16 Parameter Method
Simulated 0

1 1.4 2 3 5

log 0.75 0 Simulated .052 .087 .140 .253 .■.

# Simulated
Model
Empirical

.088
.087(.005)
.087(.006)

.101
.100(.006)
.099(.008)

.116
.117(.008)
.115(.009)

.139
.140(.011)
.137(.013)

II.

.■

ri Simulated .119 .137 .162 .196 ...■

Model .117(.005) .134 (.006) .156 (.008) .186(.011) .....

Empirical .116(.006) .135 (.007) .157 (.009) .190(.012) ■..

72 Simulated .118 .136 .165 .192 .1.

Model .117(.005) .134 (.006) .156 (.008) .186(.011)
Empirical .116(.006) .134 (.007) .157 (.009) .189(.012) ■

73 Simulated .140 .157 .185 .208 .1.

Model .143(.007) .163(.009) .191(.011) .228(.016)
Empirical .142(.008) .158(.010) .178(.011) .207(.015)

0.70 0 Simulated .054 .120 .261 .525
13 Simulated .055 .072 .094 .125

Model .053(.002) .072(.003) .093(.005) .121(.009)
Empirical .053(.003) .071(.005) .091(.007) .118(.011)

Ti. Simulated .073 .100 .132 .172
Model .071(.002) .096 (.004) .125 (.006) .161(.009)
Empirical .071(.003) .097 (.005) .128 (.007) .165(.010)

72 Simulated .071 .099 .130 .165
Model .071(.002) .096 (.004) .125 (.006) .161(.009)
Empirical .071(.003) .098 (.004) .127 (.007) .165(.011)

73 Simulated .090 .111 .146 .177
Model .087(.003) .118(.005) .152(.008) .197(.012)
Empirical .087(.004) .109(.005) .136(.008) .173(.011)

1.60 0 Simulated .057 .209 .525 1.23 2.96
# Simulated .034 .059 .084 .118 .155

Model .034(.001) .059(.002) .084(.005) .114(.008) .157(.014)
Empirical .034(.002) .058(.004) .082(.006) .110(.010) .152(.017)

Ti Simulated .047 .083 .118 .165 .217
Model .045(.001) .079 (.003) .112 (.005) .152(.008) .210(.015)
Empirical .045(.002) .081 (.004) .115 (.006) .156(.010) .215(.017)

Ti Simulated .046 .081 .119 .159 .214
Model .045(.001) .079 (.003) .112 (.005) .152(.008) .210(.015)
Empirical .045(.002) .081 (.004) .115 (.006) .156(.010) .215(.018)

T3 Simulated .055 .090 .122 .164 .221
Model .055(.002) .097(.004) .137(.007) .186(.013) .256(.020)
Empirical .055(.002) .087(.004) .120(.006) .159(.012) .218(.018)
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In the next table we present the observed rejection probabilities for the four test statistics

under study in each of the combinations of /3 and 0 considered above. Here the alternate

model (to be fit to the data sets generated under the reduced model) includes the sinusoidal

"pollution" covariate. In the correct variance simulations the model Wald and scaled deviance

tests give almost identical results in all simulations. The empirical tests are not as similar

(either to each other or to the model-based tests), but overall there appears to be little to

distinguish any of the tests. The observed rejection probabilities are reasonably close to the

nominal levels in almost all cases. Possible exceptions might be the simulations with /3 = 1.60

and either of 0 = 1 or 0 = 3, but these are likely just chance deviations from the nominal levels.

In the misspecified variance simulations we also find the model Wald and scaled deviance

tests to be almost identical in their observed rejection probabilities. In general the score test

appears most conservative and it seems to get more conservative (relative to the others) as the

amount of dispersion increases. This makes it look like it is performing better than the others

when the others reject too often and it looks worse when the others reject at about the nominal

rate.

As a side note, based on the model-based standard errors of Table 18, we might look carefully

at the empirical Wald test to see if it rejects too often, since it seemed the empirical estimates of

the standard errors of some of the T, were too small, which might imply that the standard errors

of the coefficient of the pollution covariate could be underestimated. The empirical Wald test

does reject more often than the score test in general, but it occasionally rejects less often than

the model-based tests so that no general conclusion regarding its performance can be reached

from these results.
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Table 19. Observed Rejection Probabilities Under Null Hypothesis.

A. Correct Variance Function
0 = 1^4 =1.41.4^0 = 2

Simulated 0 Test/Method
log 0.75 Wald/Model

Wald/Empirical
Score/Empirical
Deviance/Scaled

0.70 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
.093 .060 .011 .112 .056 .012 .110 .052 .014
.098 .063 .013 .114 .057 .010 .115 .053 .012
.098 .062 .012 .112 .055 .009 .110 .047 .011
.093 .060 .011 .111 .058 .012 .110 .053 .014

.100 .052 .014 .099 .045 .008 .098 .052 .013

.101 .049 .012 .102 .044 .010 .101 .056 .011

.095 .047 .012 .099 .044 .010 .097 .053 .011

.100 .052 .014 .099 .044 .008 .098 .052 .013

.115 .054 .011 .092 .040 .011 .109 .053 .009

.121 .055 .011 .091 .041 .012 .111 .053 .010

.119 .053 .010 .091 .041 .010 .109 .053 .008

.115 .055 .011 .092 .040 .011 .109 .054 .009

0 = 3^0 = 5
Simulated /3
log 0.75

Test/Method
Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.10 0.05 0.01
.062 .012
.066 .016
.059 .011
.062 .012

0.10 0.05 0.01

0.70 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

.099 .048 .009

.107 .048 .013

.101 .045 .007

.100 .047 .009

.121 .062 .014

.125 .063 .015

.123 .057 .014

.121 .062 .014

.105 .048 .010

.108 .057 .012

.106 .051 .009

.106 .049 .010
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Table 19 B. Misspecified Variance Function
0 = 1^0 = 1.4^0 = 2

Simulated /3 Test/Method^0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
log 0.75 Wald/Model .110 .051 .005 .112 .049 .004 .111 .058 .010

Wald /Empirical .113 .055 .005 .111 .047 .004 .112 .059 .007
Score/Empirical .111 .052 .005 .110 .042 .004 .109 .055 .005
Deviance/Scaled .110 .052 .005 .112 .049 .004 .111 .059 .010

0.70^Wald/Model^.095 .049 .009 .105 .049 .010 .109 .060 .013
Wald/Empirical .098 .051 .013 .103 .048 .008 .099 .055 .015
Score/Empirical .095 .051 .011 .100 .046 .007 .094 .057 .013
Deviance/Scaled .095 .049 .009 .105 .048 .009 .109 .060 .013

1.60^Wald/Model^.101 .051 .010 .102 .053 .013 .105 .052 .010
Wald/Empirical .102 .054 .011 .102 .046 .011 .098 .046 .008
Score/Empirical .102 .053 .010 .099 .045 .010 .092 .045 .008
Deviance/Scaled .101 .051 .010 .103 .053 .013 .104 .053 .011

0 = 3 Cb = 5
Test/Method
Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

0.10 0.05 0.01
.113 .059 .010
.110 .056 .010
.102 .052 .007
.113 .060 .011

0.10 0.05 0.01Simulated /3
log 0.75

0.70 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

1.60 Wald/Model
Wald/Empirical
Score/Empirical
Deviance/Scaled

.102 .052 .018

.093 .049 .014

.087 .046 .013

.103 .053 .018

.108 .056 .016

.104 .050 .017

.100 .046 .013

.108 .057 .016

.112 .056 .018

.110 .056 .018

.103 .049 .015

.114 .057 .018

We now consider the simulations under the full model (with pollution included). As in the

simple case simulations, we chose to simulate data using only 0 = log 0.75 but with one of

-y = 0.05, 0.10 and 0.15. Table 20 presents the mean values of the estimated parameters from

the simulated data sets generated under the above model.
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Table 20. Mean Values of Estimated Parameters Under
Alternative Hypothesis.

A. Correct Variance Function
Simulated 4

Simulated y Parameter 1 1.4 2 3
0.05 0 1.00 1.40 1.97 2.94

/3 -.293 -.295 -.311 -.303
Ti .254 .253 .274 .256
r2 .249 .251 .276 .254
T3 -.497 -.503 -.503 -.513
7 .054 .051 .038 .055

0.10 0 1.00 1.39 1.97 2.94
/3 -.289 -.287 -.304 -.306
sn. .246 .237 .259 .258
72 .247 .244 .260 .259
T3 -.506 -.511 -.510 -.515
7 .103 .104 .097 .098

0.15 Cb 1.00 1.40 1.98 2.94
/3 -.289 -.304 -.300 -.299
Ti .248 .271 .260 .252
T2 .247 .272 .259 .259
T3 -.498 -.511 -.515 -.532
7 .154 .132 .147 .144

B. Misspecified Variance Function
Simulated 0

Simulated 7 Parameter 1 1.4 2 3
0.05 0 1.00 1.31 1.77 2.54

/3 -.293 -.295 -.296 -.293
Ti .254 .253 .250 .235
72 .249 .252 .254 .246
r3 -.497 -.504 -.504 -.515
7 .054 .050 .050 .056

0.10 Cb 1.00 1.31 1.79 2.56
/3 -.289 -.294 -.295 -.291
Ti .246 .250 .248 .240
T2 .247 .251 .255 .241
T3 -.506 -.505 -.504 -.516
7 .103 .104 .101 .102

0.15 95 1.00 1.32 1.79 2.57
/3 -.289 -.298 -.294 -.303
7-1. .248 .254 .246 .252
72 .247 .263 .246 .257
T3 -.498 -.501 -.502 -.496
7 .154 .145 .149 .155
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Before interpreting these results, note that there is non-negligible collinearity between the

continuous pollution covariate and the seasonal indicators. If, in our simulations, two ex-

planatory variables have a substantial positive correlation, one of the corresponding regression

parameters could be estimated to be larger than its simulated (or true) value, while the other

could be estimated to be smaller than its simulated value, with little effect on the goodness-

of-fit. Similarly, both could be estimated to be larger than the simulated values if negatively

correlated. Such deviations from the true values, beyond the normal variation we would expect,

lead to more variability from one set of fitted parameters to another than if the predictors were

not collinear. The sample correlations are approximately 0.52 between the pollution variable

and each of the indicators for the first and second season, and —0.52 between the pollution vari-

able and the indicator for the third season. While such correlations are not a major concern,

they must be kept in mind when examining the results of these simulations.

For the correct variance simulations, the mean values of the regression parameter estimates

are generally close to their simulated values, considering how big the standard deviations of the

parameter estimates are (and thus the standard error of the average of the parameter estimates

as an estimate of the true mean, see Table 21). However, in the cases -y = 0.05, 0 = 2 and

-y = 0.15, 0 = 1.4 the averages of the estimates of 7-1 and r2 exceed the simulated value by more

than two standard errors (while the estimate of -y is too small). In the case -y = 0.15, 0 = 3

the estimate of r3 is too small (a large negative value that differs from the true value by more

than two standard errors) with the estimate of 7 slightly too small, although it differs from the

true value by less than one standard error. Note how the pattern of over and underestimation

agrees with what we might expect when the pollution variable is positively correlated with the
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first two season indicators and negatively correlated with the third. But there is also a hint of a

pattern in the estimates of r3 which has no such plausible explanation; in general, as 0 increases

across the table, r3 appears to decrease (become a more negative value). The observations in

the third season have the lowest mean values, and as the amount of dispersion increases, there

will be more and more zero values among these observations. We might infer that for large

enough amounts of over-dispersion, this could be causing the estimator to underestimate the

season effect, but with the low degree of precision in the averages of the parameter estimates

we can not conclude whether this is the case, or if the deviations from the simulated values are

just chance.

In the misspecified variance simulations, the regression parameters estimates are very good;

in fact, they appear somewhat better than in the correct variance case. The estimates of 0 seen

in parts A and B of this table are similar to those in Table 17.

The standard deviations of the parameter estimates in the 1000 simulations and the mean

values of the standard errors of the regression parameters are summarized in Table 21. As in

part A of Table 18, under the correct variance formulation the model and empirical estimates

are very similar. Both estimators are very close to the standard deviations of the parameter

estimates when the dispersion is 1 or 1.4. For simulated dispersions of 2 or 3, the averages of

the estimates are not as close to the simulated values but the differences can be explained by

the variability of the observed standard deviations and the estimated standard errors.
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Table 21. Standard Deviations of Estimates Under Alternative Hypothesis
and Mean Values of Estimated Standard Errors (±s.d.).

A. Correct Variance Function

Simulated y Parameter Method
Simulated 0 

1
^

1.4^2
^

3

0.05
^o

#

ri

r2

T3

7

.054 .099 .166 .326

.122 .149 .177 .221
Simulated
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical

Simulated
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical

Simulated
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical

.125(.005) .148(.007) .176(.009) .215(.014)

.124(.007) .147(.010) .175(.015) .214(.024)
.209 .255 .300 .374

.212(.007) .251(.010) .298(.013) .364(.020)

.211(.012) .249(.017) .296(.026) .362(.041)
.210 .246 .305 .373

.213(.007) .251(.010) .298(.013) .365(.020)

.211(.012) .249(.018) .296(.026) .364(.042)
.143 .171 .194 .261

.145(.007) .172(.009) .205(.012) .251(.019)

.144(.008) .171(.011) .203(.014) .247(.021)
.138 .166 .203 .243

.139(.005) .164(.007) .205(.012) .238(.013)

.138(.007) .163(.009) .203(.014) .238(.021)

.054 .096 .173 .321

.126 .151 .172 .224
.126(.005) .148(.007) .177(.009) .216(.014)
.125(.008) .147(.011) .175(.015) .214(.023)

.210 .255 .287 .380
.212(.008) .250(.010) .298(.013) .364(.019)
.210(.012) .248(.018) .295(.026) .361(.040)

.217 .250 .289 .385
.212(.008) .250(.010) .299(.013) .364(.019)
.211(.012) .249(.018) .295(.026) .360(.041)

.144 .174 .215 .261
.147(.007) .174(.009) .209(.013) .255(.020)
.147(.008) .173(.011) .207(.015) .251(.021)

.139 .166 .188 .249
.138(.005) .163(.006) .195(.009) .237(.012)
.138(.007) .162(.010) .193(.014) .236(.022)

.054 .096 .178 .332

.128 .150 .174 .223
.126(.005) .149(.007) .177(.010) .216(.015)
.125(.008) .148(.011) .176(.016) .215(.024)

.220 .251 .284 .372
.211(.007) .250(.010) .298(.013) .363(.020)
.210(.012) .248(.017) .296(.027) .361(.040)

.216 .248 .292 .374
.211(.007) .250(.010) .298(.013) .363(.020)
.211(.012) .248(.018) .297(.026) .361(.040)

.152 .175 .222 .266
.149(.007) .177(.010) .212(.014) .259(.020)
.149(.008) .176(.011) .210(.015) .255(.022)

.141 .161 .186 .243
.138(.005) .163(.006) .194(.008) .236(.013)
.137(.007) .162(.010) .193(.014) .235(.021)

0.10^46

rI

r2

T3

7

0.15^cb

Ti

r2

T3

7
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Table 21 B. Misspecified Variance Function

Simulated y Parameter Method
Simulated 0 

1.4^21 3

.053 .086 .144 .259

.122 .145 .169 .197
.125(.005) .143(.007) .167(.008) .199(.012)
.124(.007) .142(.010) .166(.013) .199(.020)

.209 .245 .292 .351
.212(.007) .243(.009) .282(.012) .338(.017)
.211(.012) .243(.017) .285(.023) .343(.037)

.210 .253 .290 .345
.213(.007) .243(.010) .283(.012) .338(.017)
.211(.012) .243(.017) .286(.024) .343(.037)

.143 .163 .189 .212
.145(.007) .166(.009) .194(.011) .232(.016)
.144(.008) .159(.009) .179(.011) .208(.014)

.138 .167 .191 .227
.139(.005) .159(.006) .185(.008) .221(.011)
.138(.007) .159(.009) .186(.013) .225(.020)

.126(.005) .144(.007) .168(.009) .201(.012)

.125(.008) .143(.010) .167(.014) .199(.020)
.210 .244 .295 .350

.212(.008) .243(.009) .283(.012) .339(.016)

.210(.012) .244(.017) .285(.024) .343(.037)
.217 .247 .295 .349

.212(.008) .243(.009) .283(.012) .339(.017)

.211(.012) .243(.017) .286(.025) .342(.037)
.145 .171 .190 .220

.147(.007) .169(.009) .197(.012) .237(.017)

.147(.008) .162(.010) .182(.01) .210(.015)
.139 .160 .193 .227

.138(.005) .159(.006) .184(.008) .221(.010)

.138(.007) .159(.009) .187(.013) .225(.019)

.054 .084 .146 .259

.120 .148 .170 .207
.126(.005) .145(.007) .168(.009) .203(.012)
.125(.008) .144(.010) .166(.013) .199(.019)

.202 .252 .289 .348
.212(.008) .243(.009) .283(.012) .340(.017)
.210(.012) .244(.017) .284(.023) .342(.035)

.204 .251 .296 .346
.212(.008) .243(.009) .283(.012) .340(.017)
.211(.012) .244(.017) .285(.024) .343(.035)

.148 .168 .183 .226
.150(.007) .172(.009) .200(.013) .241(.017)
.149(.008) .164(.010) .183(.012) .211(.014)

.136 .165 .194 .224
.138(.005) .158(.006) .184(.008) .221(.011)
.137(.007) .159(.009) .187(.013) .226(.019)

0.05
^0

o

Ti

T2

T3

7

Simulated
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical

0.10
^

4.
#

Ti

T2

T3

7

Simulated
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical

0.15
^

0
15'

71

r2

T3

7

Simulated
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical
Simulated
Model
Empirical

.054 .085 .143 .264

.126 .145 .172 .203



Chapter 4. Results of the Simulation Study^ 85

To estimate the variance of the observed standard deviations, note the following. Because re-

gression parameter estimates are asymptotically normal, if B t is a regression parameter estimate

from the ith simulated data set and B is the average of these estimates, then (7 -2 Ei(Oi - 6) 2 ,

where o.2 represents Var(Oi), should have approximately a x 2 _ 1 distribution. It follows that the

sample variance of these estimates should have variance roughly equal to 2a 4 /(n — 1). Using

the delta method we arrive at the approximation Var(s) o-2 /[2(n — 1)].

Using this approximation, observed standard deviations of s = 0.3 and s = 0.2 would

have standard errors of approximately 0.0067 and 0.0045 respectively. The mean values of

the estimated standard errors will have approximate standard errors given by their standard

deviations (enclosed in brackets in the table) divided by ..076 -00. When is 2 this can be as

large as .027/1005 = 0.0009. With these precisions in mind, the observed differences between

the variance estimates and the standard deviations are not too large.

Another approach to determining whether the model-based and empirical standard errors

approximate the simulated standard errors can be based on the increased precision provided by

generating more data sets for a given choice of y and 0. The following table summarizes the

results of the simulations for the case 7 = 0.10 and = 2 as displayed in part A of Table 21,

and the results of five repeats of the simulation experiment using the same y and q5.
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Parameter Method original repeat 1 repeat 2 repeat 3 repeat 4 repeat 5 average
/3 Simulated .172 .169 .182 .180 .177 .179 .177

Model .177 .177 .177 .177 .177 .177 .177
Empirical .175 .175 .176 .176 .176 .175 .176

Ti. Simulated .287 .293 .311 .307 .296 .298 .299
Model .298 .299 .299 .298 .298 .298 .298
Empirical .295 .296 .296 .297 .295 .296 .296

T2 Simulated .289 .289 .304 .299 .297 .300 .296
Model .299 .299 .299 .299 .298 .299 .299
Empirical .295 .296 .297 .297 .297 .296 .296

r3 Simulated .215 .206 .209 .215 .207 .215 .211
Model .209 .209 .209 .209 .208 .209 .209
Empirical .207 .207 .207 .207 .207 .207 .207

7 Simulated .188 .196 .196 .197 .194 .192 .194
Model .195 .195 .195 .195 .194 .195 .195
Empirical .193 .194 .194 .193 .194 .194 .194

From the above table we note that in each simulation experiment, the mean values of

the model and empirical estimates of the standard errors are very close to the average of the

simulated standard deviations across the columns of the table. This confirms that the model

and empirical estimators do a good job of estimating the standard deviations of the parameter

estimates.

We now examine part B of Table 21 corresponding to the simulations using the misspecified

variance formulation to generate the data. Here we seem to be seeing the same pattern as in

the simulations using data generated with the reduced model (part B of Table 18). The model-

based estimates appear too large for regression parameters which correspond to "seasons" with

lower than average dispersion and too small for parameters which correspond to "seasons" with

larger than average dispersion. In this situation, with a single pollution covariate, there is

no clear picture of under or overestimation of the standard errors of y. However, one might

speculate that if the pollution covariate were associated with one of the seasons (such as a
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season x pollution interaction) the standard errors of the regression parameter might be under

or overestimated, depending upon which season the covariate was related to, and this could lead

to unexpected results. As for the empirical estimator, the results suggest the possibility that the

standard errors of the regression parameters tend to be underestimated in these simulations.

Of course, when making these observations we should keep in mind the possibility that the

observed standard deviations of the parameter estimates may differ somewhat from the true

standard deviations. A similar exercise to that carried out in the correct variance simulations

was carried out for these simulations under the misspecified variance for the same combination

= 0.10 and 0 = 2. The final column of the table which follows shows the averages of the 6

simulation experiments.

Parameter Method original repeat 1 repeat 2 repeat 3 repeat 4 repeat 5 average
/3 Simulated .172 .165 .164 .171 .168 .167 .168

Model .168 .167 .168 .168 .168 .167 .168
Empirical .167 .166 .166 .167 .166 .166 .166

ri. Simulated .295 .289 .287 .288 .282 .291 .289
Model .283 .282 .283 .282 .282 .282 .282
Empirical .285 .285 .284 .286 .285 .285 .285

72 Simulated .295 .288 .286 .293 .286 .289 .290
Model .283 .283 .283 .283 .283 .283 .283
Empirical .286 .285 .285 .286 .285 .285 .285

73 Simulated .190 .189 .185 .182 .188 .190 .187
Model .197 .196 .197 .197 .197 .197 .197
Empirical .182 .180 .181 .181 .181 .181 .181

7 Simulated .193 .193 .192 .185 .190 .195 .191
Model .185 .184 .184 .184 .184 .184 .184
Empirical .187 .187 .187 .187 .187 .187 .187

The final column of this table suggests the model-based estimator does underestimate the

standard errors for r1 and r2, and overestimate the standard error for r3 . We may also note that

the standard error of y is underestimated by the model-based estimator in these simulations.
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This part of the table is also consistent with the observation that the empirical estimator appears

to slightly underestimate the standard errors. Whether this is true for other combinations of y

and 0 remains speculation.

In summary, for the correct variance simulations, both the model-based and the empirical

estimators of standard errors perform well. However in the misspecified variance simulations,

there is some evidence that the model-based estimator does not perform well and that the

empirical estimator may underestimate the standard errors slightly.
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Table 22. Observed Rejection Probabilities Under Alternative Hypothesis.

A. Correct Variance Function

7 Test
0 = 1 0 = 1.4 0 = 2 0 = 3

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
.05 Wald/Mod. .121 .065 .014 .116 .062 .014 .121 .066 .012 .115 .063 .020

Wald/Emp. .124 .069 .015 .120 .062 .012 .127 .072 .014 .113 .066 .020
Score/Emp. .124 .070 .014 .116 .063 .012 .126 .067 .013 .110 .063 .017
Dev/Scaled .121 .065 .014 .116 .062 .014 .122 .067 .013 .115 .064 .022

.10 Wald/Mod. .185 .104 .027 .170 .102 .030 .130 .060 .016 .150 .087 .018
Wald/Emp. .196 .110 .030 .171 .103 .034 .129 .068 .018 .159 .085 .019
Score/Emp. .196 .108 .028 .167 .100 .032 .130 .068 .016 .156 .081 .017
Dev/Scaled .185 .108 .027 .176 .104 .030 .131 .061 .017 .151 .089 .020

.15 Wald/Mod. .298 .191 .076 .201 .126 .038 .195 .111 .019 .165 .087 .027
Wald/Emp. .300 .189 .081 .205 .134 .039 .188 .115 .027 .161 .095 .025
Score/Emp. .299 .190 .080 .206 .131 .040 .190 .114 .027 .159 .093 .023
Dev/Scaled .299 .192 .076 .206 .128 .040 .196 .113 .019 .167 .092 .028

B. Misspecified Variance Function

7 Test
0 = 1 0 = 1.4 0 = 2 0 = 3

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
.05 Wald/Mod. .121 .065 .014 .136 .075 .019 .120 .062 .018 .122 .052 .012

Wald/Emp. .124 .069 .015 .129 .079 .023 .117 .062 .018 .118 .047 .011
Score/Emp. .124 .070 .014 .129 .076 .020 .116 .058 .016 .111 .042 .007
Dev/Scaled .121 .065 .014 .137 .076 .019 .122 .063 .018 .121 .053 .013

.10 Wald/Mod. .185 .104 .027 .165 .092 .031 .167 .096 .024 .142 .078 .016
Wald/Emp. .196 .110 .030 .159 .090 .034 .165 .099 .020 .135 .074 .012
Score/Emp. .196 .108 .028 .159 .089 .032 .161 .097 .019 .129 .068 .012
Dev/Scaled .185 .108 .027 .165 .095 .031 .168 .097 .024 .145 .080 .018

.15 Wald/Mod. .298 .191 .076 .253 .166 .055 .219 .136 .047 .190 .106 .027
Wald/Emp. .300 .189 .081 .253 .166 .055 .212 .137 .048 .184 .105 .024
Score/Emp. .299 .190 .080 .250 .163 .052 .207 .133 .046 .179 .104 .022
Dev/Scaled .299 .192 .076 .254 .167 .056 .221 .138 .048 .191 .109 .028

The power of the four test statistics under study to detect the simulated pollution effect

is summarized in Table 22; this table is similar in nature to Table 6 for the one series simple

simulations. The results of the correct variance simulations suggest very low power for all test

statistics in this more complicated case (only marginally higher than the nominal levels for the

smallest simulated value of -y), but this is not surprising given the variability of the estimates
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of 7 compared to their simulated values. As in Table 6 the power of the tests tends to decrease

as the amount of dispersion increases. The test statistics show similar rejection probabilities in

the misspecified variance simulations. As in Table 6, the rejection probabilities, in general, are

slightly higher in the misspecified variance simulations than in the correct variance simulations

because for each simulated value of 0, there is less dispersion in the data under the misspecified

variance formulation. Thus, except for the fact that the rejection probabilities are lower in Table

21 than in Table 6 due to the larger standard errors of y in these more complicated simulations,

the test statistics perform similarly in the simple and complicated simulations with one series.

We now summarize the findings of these simulations using the more complicated model for

a single series of data. Estimates of 0 and of the regression parameters are relatively unaffected

by the presence of over-dispersion although the estimators of these parameters became more

variable as expected. Standard errors of the regression parameters were accurately estimated

with either the model-based estimator or the empirical estimator when the data was generated

using the correct variance formulation, but there is some evidence the model-based estimator

performs poorly when the misspecified variance formulation was used to generate data. The

empirical estimator appeared to do better in the misspecified variance simulations but it seemed

to underestimate the standard errors when the level of dispersion was large relative to the overall

mean level (this was not so apparent in the simulations under the reduced model reported in

Table 19, but was more readily seen in the simulations under the full model reported in Table

21). In these simulations the problems with estimating the standard errors did not translate into

problems with the model-based test statistics. This is in contrast to the simple case simulations

with three series where poor performance of the model-based estimator of variances appeared
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to result in poor performance of the model-based test statistics. There were no detectable

differences among any of the four test statistics under study.
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4.5 The More Complicated Case with Three Series

The last case to be considered is the simulations based on (3.19) describing the more complicated

case with three series. Recall that the simulated values for the mean and temporal parameters

were:

Pi = log 0.75 /32 = .70 /33 = 1.6
Tii = 0.2 T21 = 0.2 731 = 0.2
T12 = 0.2 T22 = 0.2 T32 = 0.3

713 = -0.2 T23 = -0.4 733 = -0.4
T41 = 0 T42 = 0 T43 = 0

The first simulations to be considered use the null model (ryo = 71 = 72 = 73 = 0) to

generate data. The mean values of the parameter estimates from fitting the null model to these

data sets are summarized in Table 23. For the correct variance simulations, we see that in both

combinations, ii. is again estimated to be the average of the dispersions. The mean values of

the regression parameter estimates are close to the simulated values.

Table 23. Mean Values of Parameter Estimates.

Parameter

Variance
A. Correct

Function
B. Misspecified

Combination of 0
I^II

Combination of 0
I^II

4) 1.998 2.785 5.157 8.676
pi -0.294 -0.292 -0.291 -0.300
/32 0.695 0.697 0.692 0.700
/33 1.597 1.594 1.595 1.575
T11 0.204 0.203 0.197 0.205
T12 0.204 0.198 0.197 0.211
ro -0.198 -0.199 -0.195 -0.193
721 0.205 0.198 0.205 0.203
T22 0.204 0.201 0.206 0.200
723 -0.397 -0.397 -0.397 -0.407
731 0.202 0.199 0.198 0.217
732 0.305 0.304 0.302 0.321
T33 -0.396 -0.398 -0.395 -0.396
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In the misspecified variance simulations, the estimates of cb are in the same neighborhood as

the estimates in the three series simple simulations. This is expected because the average of the

levels of dispersion over all seasons in all series in these simulations is very close to the average

of the three levels of dispersion in the three series simple simulations. The mean values of the

regression parameter estimates are fairly close to the simulated values. Any deviations from

the simulated values that we see here are likely random error due to the substantial amount of

variability in the data sets, especially in the simulations using combination II.

We now turn our attention to the standard deviations of the above estimates and the mean

values of the estimated standard errors povided in Table 24. As in the three series simple case, in

the correct variance simulations, the model-based standard errors for the parameters associated

with the first series (th and ri j) are too large. This is a result of using the estimate c (estimated

using data from all three series) to calculate the standard error for parameters corresponding to

a series where the simulated dispersion is lower than 4. Analogously, we see that the standard

errors for 03 and T3i are too small. For the regression parameters corresponding to series 2,

we also find predictable results. Using combination I, the standard errors for 02 and .7-23 are

about right because the simulated 0 for this series is equal to the average of the 0 for all three

series. However, using combination II, the simulated 0 for series 2 is smaller than 4 and we see

that the model-based standard errors are larger than the standard deviations of the parameter

estimates.
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Table 24. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (±s.d.).

Parameter Method

Variance
A. Correct

Function
B. Misspecified

Combination of (g)
I^II

Combination of 0
I^II

0 Simulated .084 .140 .407 .973

th Simulated .085 .105 .081 .103
Model .124 (.006) .146 (.009) .198 (.011) .258 (.019)
Empirical .087 (.006) .103 (.008) .087 (.006) .100 (.008)

132 Simulated .076 .074 .092 .091
Model .075 (.003) .089 (.004) .121 (.007) .156 (.011)
Empirical .075 (.005) .075 (.005) .092 (.007) .092 (.007)

/33 Simulated .058 .074 .111 .157
Model .048 (.002) .057 (.002) .077 (.005) .101 (.009)
Empirical .058 (.004) .075 (.005) .111 (.010) .153 (.018)

rii Simulated .115 .141 .107 .136
Model .167 (.006) .197 (.009) .268 (.013) .348 (.023)
Empirical .118 (.006) .139 (.007) .118 (.006) .136 (.007)

r12 Simulated .111 .141 .113 .140
Model .167 (.006) .197 (.009) .268 (.013) .347 (.023)
Empirical .118 (.006) .139 (.007) .118 (.006) .135 (.007)

r13 Simulated .130 .154 .125 .150
Model .145 (.007) .218 (.010) .295 (.015) .384 (.025)
Empirical .130 (.006) .154 (.008) .130 (.007) .147 (.008)

r21 Simulated .106 .105 .133 .124
Model .102 (.003) .120 (.004) .164 (.008) .211 (.014)
Empirical .101 (.005) .101 (.005) .128 (.007) .128 (.007)

r22 Simulated .101 .102 .130 .125
Model .102 (.003) .120 (.004) .164 (.008) .211 (.013)
Empirical .101 (.005) .101 (.005) .128 (.007) .128 (.007)

723 Simulated .115 .114 .138 .138
Model .119 (.004) .141 (.006) .192 (.010) .248 (.016)
Empirical .119 (.006) .118 (.006) .135 (.007) .135 (.008)

731 Simulated .081 .099 .163 .216
Model .065 (.002) .077 (.002) .104 (.005) .136 (.009)
Empirical .079 (.004) .102 (.005) .156 (.010) .216 (.018)

732 Simulated .077 .098 .158 .212
Model .063 (.002) .075 (.002) .102 (.005) .133 (.008)
Empirical .077 (.003) .100 (.005) .156 (.010) .216 (.018)

r33 Simulated .092 .119 .166 .225
Model .076 (.002) .090 (.003) .122 (.006) .160 (.011)
Empirical .092 (.004) .119 (.007) .159 (.010) .218 (.018)
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The empirical estimates, on the other hand, are very good for all parameters (and at both

levels of dispersion). There are only small differences between the empirical estimates and the

observed standard deviations and there is no indication here that this estimator consistently

underestimates the standard errors. Given the precision of the observed standard deviations and

the average of the standard errors (discussed in the previous section), the observed differences

can be explained by chance.

In the misspecified variance simulations, it is even more apparent that the model-based

estimator of the standard errors performs poorly while the empirical estimates are quite good.

One could not say that the empirical estimates are consistently too low in these simulations.

Table 25 summarizes the observed rejection probabilities of hypothesis tests for a common

pollution covariate (H: 70 = 0) using the data generated under the reduced model.

Table 25. Observed Rejection Probabilities: Common to Null Model.

Test

Variance
A. Correct

Function
B. Misspecified

Combination of q5 Combination of q5

0.10
I

0.05 0.01 0.10
II

0.05 0.01 0.10
I

0.05 0.01 0.10
II

0.05 0.01

Wald/Mod .135 .081 .016 .180 .108 .033 .206 .147 .056 .247 .153 .058
Wald/Emp .101 .047 .006 .112 .055 .014 .116 .058 .021 .108 .056 .017
Score/Emp .099 .045 .006 .112 .054 .010 .112 .057 .018 .102 .053 .016
Dev/Scaled .135 .081 .016 .180 .108 .033 .206 .146 .056 .246 .153 .058

In the correct variance simulations we find that with both combinations of 0, the empirical

test statistics do reasonably well, achieving levels close to the nominal rejection probabilities.

The model-based tests reject too often in the simulations using the first combination of 0 and

even more so with the second combination. Notice again how very similar the results are for the
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two model-based tests. As in Table 24, this overall pattern is even more clear in the misspecified

variance simulations.

Thus in this three series complicated case we find that the parameter estimates are adequate

as are the empirical estimates of the standard errors. However, as in the three series simple

case, we find that the model-based estimator of standard errors performs poorly, presumably as

a result of using a single estimate of 0 when in fact different amounts of dispersion are simulated

in each series. This poor performance of the model-based estimator appears to carry through

to the model-based test statistics. This should be expected in the case of the model-based Wald

test but it is interesting that it is also true of the scaled deviance test.

We now consider simulations using a model which includes the pollution covariate common

to all three series; the simulated value is 7 0=0.1. The results summarized in Table 26 indicate

that using either of the variance formulations, the overall effects and season effects are estimated

just as well as they were in the null simulations. The mean values of the estimates of the

pollution parameter are also close to the simulated value of 0.1.
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Table 26. Mean Values of Parameter Estimates.

Parameter

Variance
A. Correct

Function
B. Misspecified

Combination of 0
I^II

Combination of 0
I^II

0 1.997 2.789 5.202 8.686
Al -0.293 -0.299 -0.294 -0.299
02 0.695 0.695 0.694 0.694
/33 1.601 1.597 1.593 1.589
Tii 0.203 0.212 0.205 0.202
712 0.202 0.208 0.201 0.205
ro -0.195 -0.193 -0.198 -0.192
721 0.203 0.204 0.201 0.200
722 0.200 0.199 0.201 0.200
723 -0.397 -0.400 -0.402 -0.402
731 0.196 0.198 0.200 0.192
T32 0.297 0.302 0.301 0.289
733 -0.407 -0.402 -0.406 -0.400
70 0.103 0.101 0.098 0.103

A summary of the standard deviations of the above parameter estimates as well as the mean

values of the estimated standard errors of the regression parameters are presented in Table 27.

For the correct variance simulations, as in Table 24, the model-based standard errors for pi

and nj are overestimated while those for 133 and 733 are underestimated. Using combination I

of 0, the model-based standard errors for /32 and rzi are about right (as expected, see above).

With combination II of 0, the model-based standard errors for /32 are only slightly too large

and somewhat surprisingly, only that for 723 is too large (recall that in Table 24 721, T2222 _

723 were all overestimated on average). We also see that the model-based standard errors for

-yo are underestimated. This is consistent with the larger than expected rejection probabilities

in Table 25 for the model-based Wald test. The empirical estimates, on the other hand, are

very good for all regression parameters.



Parameter Method

Variance
A. Correct

Combination of 0
I^II

0 Simulated .083 .140

fii Simulated .100 .124
Model .133 (.006) .158 (.009)
Empirical .100 (.006) .119 (.007)

/32 Simulated .087 .097
Model .087 (.003) .103 (.004)
Empirical .089 (.005) .094 (.005)

/33 Simulated .076 .095
Model .063 (.002) .074 (.002)
Empirical .075 (.005) .095 (.006)

rii Simulated .156 .186
Model .185 (.006) .218 (.008)
Empirical .147 (.005) .176 (.007)

r12 Simulated .150 .180
Model .185 (.006) .217 (.008)
Empirical .147 (.005) .176 (.007)

r13 Simulated .130 .159
Model .190 (.007) .226 (.010)
Empirical .134 (.007) .159 (.009)

rzi Simulated .133 .149
Model .128 (.003) .151 (.004)
Empirical .134 (.005) .148 (.006)

r22 Simulated .132 .150
Model .129 (.003) .152 (.004)
Empirical .134 (.005) .149 (.006)

r33 Simulated .119 .120
Model .123 (.004) .145 (.006)
Empirical .122 (.006) .122 (.006)

r31 Simulated .120 .151
Model .101 (.002) .120 (.003)
Empirical .118 (.007) .148 (.010)

r32 Simulated .121 .149
Model .101 (.002) .120 (.003)
Empirical .118 (.007) .148 (.010)

r33 Simulated .094 .120
Model .078 (.002) .093 (.003)
Empirical .096 (.005) .123 (.007)

7o Simulated .070 .086
Model .061 (.001) .072 (.002)
Empirical .068 (.003) .084 (.004)

Function
B. Misspecified

Combination of 0
I II

^

.423^.987

^

.119^.152
.215 (.012) .279 (.021)
.121 (.006) .148 (.011)

.122 .149
.140 (.008) .181 (.012)
.123 (.007) .143 (.011)

.036 .192
.102 (.005) .132 (.008)
.138 (.012) .188 (.022)

.200 .266
.297 (.014) .385 (.024)
.201 (.011) .257 (.020)

.196 .266
.298 (.014) .385 (.024)
.201 (.011) .257 (.020)

.130 .161
.307 (.016) .397 (.027)
.134 (.007) .150 (.008)

.206 .256
.207 (.009) .267 (.015)
.207 (.012) .253 (.021)

.209 .264
.208 (.009) .268 (.015)
.208 (.012) .254 (.021)

.136 .140
.199 (.010) .257 (.017)
.137 (.007) .137 (.007)

.219 .311
.163 (.006) .212 (.011)
.224 (.020) .303 (.038)

.225 .309
.163 (.006) 212 (.011)
.225 (.021) .306 (.040)

.162 .228
.127 (.006) .164 (.011)
.160 (.010) .217 (.17)

.127 .179
.098 (.004) .127 (.006)
.127 (.010) .171 (.18)
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Table 27. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (±s.d.).
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In the misspecified variance simulations, the model-based standard errors for th and the

Tli are overestimated while those for 03 and the r32 are underestimated. The model-based

standard errors for 02 are overestimated with both combinations of (1) while the standard errors

for r21 and r22 appear quite good compared with the standard error of r 23 which is clearly

overestimated. These results are similar to the correct variance results but are again different

from the results of the simulations using the null model as summarized in Table 25. As for yo ,

the standard error for this parameter appears to be underestimated on average, just as it was

in the correct variance simulations.

The empirical estimates are close to the simulated values with combination I, but there is a

hint the estimates are too low on average with combination II (although keeping the precisions of

the estimates and standard deviations in mind, the differences seen here could be just chance).

The empirical estimates seem to approximate the simulated standard deviations better here

than they did in the single series complicated simulations (for data generated with the model

including the pollution effect; see Table 21). The simplest explanation for the poorer results in

the one series complicated case would be that in those simulations we considered much higher

levels of dispersion relative to the overall mean value (0 = log 0.75) than in this three series

case and these higher levels of dispersion contribute to underestimation of the standard errors.

The levels of the four test statistics in a model reduction from separate pollution effects for

each series to a common effect using the data generated with a common pollution effect are

summarized in Table 28. Under both variance formulations and for both combinations of cb,

the empirical test statistics adhere reasonably well to the nominal levels, but the model-based

tests do not reject as often as they should. For the model-based Wald test this would suggest
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the standard errors for the separate pollution effects are overestimated (for at least one of the

parameters). Again the model Wald and scaled deviance tests perform almost identically.

Table 28. Observed Rejection Probabilities: Separate to Common.

A. Correct
Combination of 0

Variance Function
B. Misspecified

Combination of 0

Test
I

0.10 0.05 0.01
II

0.10 0.05 0.01
I

0.10 0.05 0.01
II

0.10 0.05 0.01

Wald/Mod .
Wald/Emp .
Score/Emp .
Dev/Scaled .

074 .032 .008 .056 .027 .004 .054 .028 .010 .055 .027 .004
096 .053 .012 .108 .050 .004 .117 .058 .016 .098 .057 .014
093 .050 .009 .106 .046 .004 .111 .058 .013 .097 .054 .011
074 .032 .008 .058 .028 .004 .053 .028 .010 .056 .028 .004

The powers of these tests to detect the common pollution effect represented by the simulated

value of 70=0.10 are summarized in Table 29. In both variance formulations the model-based

tests reject more often than the empirical tests (as expected given the underestimation of the

standard errors of -yo and the consistent similarity of performance of the model Wald and scaled

deviance tests). Predictably, the rejection probabilities decrease as 0 increases.

Table 29. Observed Rejection Probabilities: Common to Null.

Variance Function
A. Correct^ B. Misspecified

Combination of 0Combination of 0

Test
I

0.10 0.05 0.01
II

0.10 0.05 0.01
I

0.10 0.05 0.01
II

0.10 0.05 0.01

Wald/Mod .522 .417 .224 .433 .334 .168 .335 .233 .102 .295 .219 .115
Wald/Emp .451 .340 .147 .338 .233 .083 .205 .112 .043 .181 .118 .047
Score/Emp .451 .340 .143 .338 .230 .082 .203 .108 .042 .171 .113 .038
Dev/Scaled .522 .418 .225 .434 .334 .168 .336 .234 .103 .298 .219 .115

The final model we will consider for the more complicated simulations with three series will

be the most general one which includes separate pollution effects for each series. The simulated
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values were 70=0.1, 71=0.1, 72=-0.2 and y3=0. We begin as always with a table summarizing

the mean values of the parameter estimates from 1000 simulated data sets generated with the

above model.

Table 30. Mean Values of Parameter Estimates.

Parameter

Variance
A. Correct

Function
B. Misspecified

Combination of 0
I^II

Combination of 0
I^II

1.994 2.789 5.187 8.664
01 -0.289 -0.295 -0.299 -0.289
02 0.694 0.695 0.695 0.698
03 1.601 1.595 1.595 1.569
711 0.198 0.203 0.204 0.188
T12 0.203 0.202 0.205 0.193
T13 -0.209 -0.201 -0.191 -0.202
T21 0.203 0.205 0.196 0.195
T22 0.203 0.203 0.203 0.192
T23 -0.393 -0.400 -0.392 -0.399
T31 0.200 0.200 0.193 0.228
T32 0.299 0.302 0.298 0.323
733 -0.405 -0.401 -0.407 -0.402
7o 0.100 0.101 0.100 0.087
71 0.099 0.103 0.106 0.124
72 -0.200 -0.202 -0.195 -0.186

The estimates of /3 and T 3 are very similar to those in Tables 23 and 26 for both correct and

misspecified variance formulations. In the correct variance simulations, the estimates are very

good for 70 , 71 and 72, as they are in the misspecified variance simulations using combination I of

0. However the estimates of these pollution parameters differ noticably from the true values in

the simulations using combination II of 0, although the differences are not too great considering

the amount of variability in the simulated data which is reflected in the standard deviations

of these parameter estimates as shown in Table 31. Note that the predictor corresponding to
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the overall pollution effect is not orthogonal to the predictors corresponding to the separate

effects. The mean values of the parameter estimates in a reparameterized model with orthogonal

predictors representing three separate pollution effects, as opposed to a main effect and two

separate effects, would generally be closer to the simulated values (although the standard errors

of those estimates would be smaller). In that case the interpretation of the table would remain

the same as above; that is, the mean values of the estimates differ from the simulated values

but are within acceptable limits considering the precisions of these mean values.

In the correct variance simulations the mean values of the model-based standard errors for

/3i and r 3 provided in Table 31 are very similar to those observed in Table 24 as one would

expect. Recall that following the simulations with a common pollution effect (Table 27) there

was some question about the model-based standard errors for 7 21 and r22 (they were noticably

overestimated for combination II in Table 24 but did not appear to be overestimated in Table

27). The results in the above table and Table 24 agree with the conclusion that standard errors

are underestimated (overestimated) on average for parameters that correspond to data series

with more (less) dispersion than the estimate (7). We note that the estimated model-based

standard error for the parameter 7 1 appears quite a bit larger than it should be. This would

explain the large observed rejection probabilities for the model-based Wald tests (relative to

the empirical) seen in Table 29. The empirical estimates of the standard errors for the pollution

parameters look very good in these correct variance simulations.



Parameter Method

A. Correct
Combination of 0

I^II
4, Simulated .084 .143
$1 Simulated .127 .145

Model .178 (.006) .211 (.010)
Empirical .125 (.008) .148 (.010)

$2 Simulated .108 .108
Model .108 (.003) .127 (.004)
Empirical .107 (.007) .107 (.007)

$3 Simulated .084 .103
Model .069 (.002) .082 (.003)
Empirical .084 (.005) .108 (.007)

ni Simulated .213 .244
Model .297 (.009) .352 (.013)
Empirical .210 (.013) .247 (.017)

r12 Simulated .212 .250
Model .298 (.009) .353 (.013)
Empirical .210 (.012) .248 (.017)

ri3 Simulated .134 .165
Model .196 (.008) .233 (.013)
Empirical .138 (.007) .164 (.010)

r21 Simulated .185 .188
Model .185 (.005) .218 (.007)
Empirical .184 (.012) .183 (.013)

r22 Simulated .189 .186
Model .186 (.005) .220 (.007)
Empirical .184 (.012) .184 (.013)

r23 Simulated .109 .115
Model .115 (.004) .136 (.005)
Empirical .115 (.006) .114 (.006)

r31 Simulated .144 .171
Model .116 (.003) .137 (.004)
Empirical .141 (.009) .182 (.013)

r32 Simulated .142 .170
Model .116 (.003) .138 (.004)
Empirical .141 (.009) .182 (.013)

r33 Simulated .095 .124
Model .078 (.002) .093 (.003)
Empirical .095 (.005) .123 (.007)

'Yo Simulated .092 .113
Model .075 (.002) .089 (.002)
Empirical .092 (.005) .119 (.007)

71 Simulated .165 .195
Model .207 (.005) .245 (.008)
Empirical .164 (.006) .199 (.008)

72 Simulated .156 .165
Model .143 (.003) .169 (.004)
Empirical .152 (.006) .169 (.007)

Variance Function
B. Misspecified

Combination of ib
I^II

^

.416^1.05

^

.122^.142
.287 (.015) .370 (.026)
.126 (.008) .143 (.010)

.139 .133
.174 (.009) .224 (.015)
.133 (.010) .134 (.011)

.165 .232
.112 (.005) .145 (.009)
.164 (.016) .224 (.026)

.207 .242
.480 (.022) .620 (.040)
.210 (.012) .242 (.016)

.207 .241
.481 (.022) .621 (.040)
.210 (.012) .242 (.016)

.139 .154
.317 (.016) .409 (.029)
.139 (.007) .154 (.009)

.236 .232
.298 (.014) .385 (.024)
.230 (.019) .231 (.020)

.238 .230
.300 (.013) .387 (.025)
.231 (.019) .232 (.020)

.140 .136
.186 (.010) .240 (.017)
.134 (.007) .134 (.007)

.284 .400
.188 (.007) .243 (.012)
.316 (.032) .387 (.052)

.289 .404
.188 (.007) .244 (.012)
.287 (.031) .392 (.051)

.159 .231
.127 (.006) .165 (.012)
.160 (.010) .217 (.017)

.181 .266
.122 (.004) .157 (.008)
.187 (.016) .256 (.029)

.220 .313
.334 (.014) .431 (.026)
.231 (.014) .301 (.025)

.235 .303
.230 (.009) .298 (.017)
.240 (.014) .297 (.026)
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Table 31. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (±s.d.).
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With the misspecified variance simulations we again find the model-based standard errors

for ij and to be very similar to the corresponding standard errors in Table 24. As in the

correct variance case, the model-based standard error for 71 is overestimated. The empirical

estimates are also quite good even in the simulations using combination II of 0. There are some

parameters for which the empirical estimator produces estimated standard errors which are on

average too low but there is no clear indication of underestimation in this situation.

Finally, in Table 32, we present the observed rejection probabilities to evaluate the power

of the four test statistics in the multiple parameter reduction from separate pollution effects to

a common effect.

Table 32. Observed Rejection Probabilities: Separate to Common.

A. Correct
Combination of cb

Variance Function
B. Misspecified

Combination of

Test
I

0.10 0.05 0.01
II

0.10 0.05 0.01
I

0.10 0.05 0.01
II

0.10 0.05 0.01

Wald/Mod .358 .236 .102 .274 .168 .045 .120 .064 .012 .086 .047 .014
Wald/Emp .441 .319 .144 .396 .290 .121 .350 .234 .076 .336 .226 .080
Score/Emp .441 .315 .134 .390 .286 .115 .340 .224 .072 .325 .219 .071
Dev/Scaled .359 .238 .102 .275 .168 .045 .120 .064 .012 .086 .047 .014

The model-based test statistics have lower power than the empirical test statistics in this

table. Recall that the model-based estimator overestimated the standard errors for -y i (while the

standard errors for 72 were about right). This overestimation would explain why the rejection

probabilities for the model-based Wald test are lower than for the empirical tests and, as usual,

the scaled deviance test gives rejection probabilities that are almost identical to those for the

model-based Wald test.
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The results of the simulations under the alternative hypotheses in this more complicated

case with three series are qualitatively very similar to the results of the simple simulations with

three series. We found that the estimator of 0 performed adequately in estimating the average

level of dispersion and that the regression parameter estimator did well for all parameters

including the "pollution" parameters that were of most interest. We also found the empirical

estimator of the variances to perform well in these simulations. The underestimation of standard

errors apparent in the more complicated case with a single series was not so clearly apparent

in these three series simulations, possibly because the levels of dispersion considered in this

section were not as large relative to the overall mean levels as they were in the single series

simulations where, in the simulations using the full model to generate data, only 0 = log 0.75

was considered with values of (/) as large as 2 or 3. The model-based estimator of variance

performed very badly in these three series simulations because the models did not allow for the

possibility that different series may have different amounts of dispersion. Thus in a sense, the

variance was actually misspecified in all the simulations (even those labelled "correct variance").

The model-based test statistics considered also seemed to suffer from the misspecification of

the variance function. When considering the levels of the model-based statistics, they rejected

too often in some instances and less often than they should have in others. The empirical tests,

even the empirical Wald test, achieved levels much closer to the nominal levels.



Chapter 5

Discussion

The analysis of relationships between air pollution and human health data from Prince George

provided the motivation for carrying out a simulation study designed to evaluate the per-

formance of possible variance estimators and test statistics available for making inference in

over-dispersed Poisson models.

Moderate amounts of over-dispersion are reported to have little effect on the estimation of

regression parameters (Cox, 1983), however the extra variability must be taken into account

when estimating variances or testing hypotheses. In the Prince George study, over-dispersion

was accounted for via a dispersion parameter 0 (common to all of the data series) which was

estimated by the deviance, G 2 , divided by its degrees of freedom. To adjust for this over-

dispersion, standard errors of the regression parameters were multiplied by the square root of

the estimate ii;G = G 2 /d.f. and the usual likelihood ratio test (based on a Poisson likelihood),

or deviance statistic, for testing the viability of a reduced model nested within a larger model,

was divided by ,.. Proceeding with this methodology, models were fit to the emergency room

visits data that included temporal, meteorological and the pollution parameters of primary

interest. The final models, resulting from the model reduction procedures (for example, the final

model for the pollutant TRS), included parameter estimates whose interpretation suggested

that higher levels of pollution were related to lower numbers of emergency room visits for

106
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respiratory illness. Such counter-intuitive results raised questions about the appropriateness

of the methodology and motivated a simulation study. This study was designed to investigate

the possibility that the amounts of over-dispersion encountered in the Prince George study

were large enough (relative to the mean levels of the data series) to affect the estimation of

regression parameters, and to examine the performance of other possible variance estimators

and test statistics that could be employed in the analysis of such over-dispersed Poisson data.

An alternate estimator of the dispersion parameter involving the Pearson X 2 statistic,

.x =X2 /d.f., was discussed and was found to be superior to the estimator (7)G. In addition

to the model-based estimator of the covariance matrix of the estimated regression parameters

described in the methodology for the Prince George study, an empirical estimator, which does

not rely on the correct specification of the variance function, was described. The two estimators

of the covariance matrix give rise to two versions of the Wald test as alternatives to the scaled

deviance test used in the Prince George study for determining if certain parameters (such as

pollution effects) contribute to the fit of the model. An empirical score statistic, suggested in

Breslow (1990), which uses the estimating equations themselves for inference in over-dispersed

Poisson models, was also considered.

In the simple simulations described first in this thesis, the regression parameter estimates

were all very close to the simulated values, even when data were simulated with large amounts

of over-dispersion and with a misspecified variance function. The simple simulations with only

one series of data did not show any clear differences between the estimators of the variances

nor between the test statistics. With the three series simple simulations, the variance function

used to fit the data assumed a common 0 whereas a separate 0 applies in the simulation of each
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series. Thus the variance function was always misspecified, even for the simulations labelled

"correct variance". It appears that in this situation, the model-based estimator overestimates

(underestimates) the standard errors for regression parameters corresponding to series with

simulated dispersion smaller (larger) than the estimated dispersion (which is the average of

the simulated values from the three series). We found that, when considering the levels of the

test statistics, the observed rejection probabilities of the model-based test statistics often did

not approximate the nominal rates well whereas the empirical test statistics always achieved

levels close to nominal. We found an interesting agreement between the model Wald and scaled

deviance tests, as well as between the empirical score and empirical Wald tests.

Using the more complicated model for a single series of data, estimates of 0 and of the

regression parameters were relatively unaffected by the presence of over-dispersion although the

estimators of these parameters became more variable and may have been affected by collinearity

between some of the predictors. Standard errors of the regression parameters were accurately

estimated with either the model-based estimator or the empirical estimator when the data were

generated using the correct variance formulation, but there was some evidence the model-based

estimator performs poorly when the misspecified variance formulation was used to generate

data. It was hypothesized that the problem with the model-based estimator was similar to

the problem in the three series simple case. The observations in different seasons of the one

series complicated case had different mean values and therefore, under the misspecified variance

formulation, had different amounts of dispersion (a situation similar to four separate series

generated with the correct variance function). The empirical estimator appeared to do better in

the misspecified variance simulations but seemed to underestimate the standard errors when the
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level of dispersion was large relative to the overall mean level. In these one series complicated

simulations, the problems with the model-based standard errors did not translate into poor

performance of the model-based test statistics; this is in contrast to the simple case simulations

with three series. There were no detectable differences among any of the four test statistics

under study in this one series complicated case.

The results of the simulations in the more complicated case with three series were very

similar to the results of the simple simulations with three series. The estimator of q performed

adequately in estimating the average level of dispersion and the regression parameter estimators

did well for all parameters including the "pollution" parameters that were of primary interest.

The empirical estimator of the variances also performed well in these simulations. The under-

estimation of standard errors apparent in the more complicated case with a single series was

not so clearly apparent in the three series simulations, possibly because the levels of dispersion

considered were not as large relative to the overall mean levels. The model-based estimator

of variance performed very badly in the three series simulations because, again, the models

used to fit the data did not allow for the possibility of differing amounts of over-dispersion in

the different series. The model-based test statistics considered also seemed to suffer from the

misspecification of the variance function. When considering the levels of the statistics, these

tests did not achieve the nominal rates. The empirical tests, even the empirical Wald test,

achieved levels much closer to the nominal levels.

Overall, it appears solutions of the score equations produce good estimates of regression

parameters in a situation with levels of over-dispersion similar to those in the Prince George

study. The empirical estimator of the covariance matrix of the regression parameters appears
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preferable to the model-based estimator which relies on correct specification of the variance

function. It appears that in situations where the variance function is misspecified, the two

model-based test statistics which rely on a single estimated over-dispersion parameter may

perform poorly. This is in sharp contrast to the empirical test statistics which always performed

well in this study. An interesting side note to the investigation of the test statistics was a very

close agreement between the two model-based tests throughout the simulation study.

Only brief speculations were made regarding the possibility that different, and perhaps

more appropriate, methods would have led to different conclusions in the Prince George study.

It appears that, on average, the estimators of the regression parameters would yield correct

estimates of the effects of pollution on emergency room visits, but it is unclear whether empirical

estimates of the standard errors or an empirical test statistic would have led to a different set

of final parameters in the models.
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