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Abstract

Investigation of a possible relationship between air quality and human health in the community
of Prince George, British Columbia was undertaken after a public opinion poll in 1972 discov-
ered that poor air quality was the number one concern of the residents of Prince George. An
analysis which attempted to identify such relationships using a data set including air quality
measurements and hospital admissions for the period April 1, 1984 to March 31, 1986 is dis-
cussed in Knight, Leroux, Millar, and Petkau (1988). A similar analysis using emergency room
visits during the same period rather than hospital admissions is described in Knight, Leroux,
Millar, and Petkau (1989). The data set described here was collected to carry out a follow-up
study to the emergency room visits analysis.

The main part of the analyses carried out involved the use of Poisson regression models
with a minor extension to account for over-dispersion in the data. The results of the analysis
were not consistent with either the earlier study or with the expectations of the investigators.
For example, higher levels of one of the air quality variables was found to be associated with a
decrease in the number of emergency room visits for respiratory disease in the winter, but an
increase in emergency room visits for respiratory disease in the fall. A mechanism to explain
such effects is difficult to imagine. These counter-intuitive results motivated a simulation study
to assess the methods used in the analysis and to compare these to other possible estimators

and test statistics that can be employed in the analysis of over-dispersed Poisson data.
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Chapter 1

The Prince George Study

Motivation for this work was provided by the analysis of a data set collected in Prince George,
British Columbia, to study the possibility of associations between the ambient levels of air
pollution and human health as measured by the rates of emergency room visits for respiratory
illnesses. Investigation of such a possible relationship was undertaken after a public opinion
poll in 1972 discovered that poor air quality was the number one concern of the residents of
Prince George, ahead of such issues as crime, alcohol abuse and recreation facilities. Although
monitoring of air quality parameters has been carried out at several monitoring stations in
Prince George since 1980, most attempts to study this issue have compared hospital admissions
rates and/or mortality rates in Prince George to those in other communities in British Columbia
rather than attempt to identify an association between ambient levels of air pollution in Prince
George and human health.

An analysis which did attempt to identify such relationships using a data set including air
quality measurements and hospital admissions for respiratory illnesses for the period April 1,
1984 to March 31, 1986 is discussed in Knight, Leroux, Millar, and Petkau (1988). A similar
analysis for the same period based on emergency room visits rather than hospital admissions
is described in Knight, Leroux, Millar, and Petkau (1989). The data set described here were

collected to carry out a follow-up study to the emergency room visits analysis.
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1.1 Data Set Description

Three measures of air quality were monitored and the daily numbers of visits to the emergency
room (ER) for respiratory related illnesses were recorded during the period April 1, 1986 to
March 31, 1988. In addition, meteorological data in the form of temperature and maximum
relative humidity was collected.

Description of the relationship between the pollution variables and the ER visits was the
goal of the study. However, meteorological and temporal information was also included as
potential explanatory factors so that any relationships discovered with pollution variables could
reasonably be attributed to the pollution itself and not to some other factor that might underly

both pollution and ER visits.

1.1.1 Emergency Room Visits Data

Each visit to the emergency room at Prince George Regional Hospital by a resident of Prince
George over the two year period from April 1, 1986 to March 31, 1988 was originally classified
according to 35 diagnostic categories potentially related to respiratory illness. These 35 cate-
gories were grouped into four broad categories which we will refer to as Asthma, Bronchitis+,
Ear, and Others. Only the classification according to these four broad categories was available
in the data set provided to us. A total of 8,079 visits were included in the study and there was

one visit in at least one of the four respiratory categories on every day except January 15, 1987.

1.1.2 Air Pollution Data

Data on three air quality parameters were available:
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TRS — measured via a continuous monitor with readings subsequently converted to
hourly averages. The average of these hourly averages becomes the daily

average and this was the summary used.
TSP - measured via a 24 hour vacuum sample once every six days.
SO2 — measured via a continuous monitor in the same fashion as TRS. The daily

average was the summary used.

1.1.3 Meteorological Data

The meteorological data consisted of daily summaries for each of the following parameters:
Temperature — the average of 24 hourly readings in degrees Celsius.

Maximum Relative Humidity — the largest of 24 hourly readings.

1.2 Methodology for the Prince George Study

The main part of the analyses carried out involved the use of Poisson regression models (or
log-linear models). We give a brief description of these models and then describe an extension

of Poisson regression models, which was required for the modelling of emergency room visits.

1.2.1 Poisson Regression

The Poisson regression model is a special case of a larger class of models referred to as gener-
alized linear models (GLMs), the theory of which is derived largely from the properties of the

exponential family of distributions. Thus before we describe the Poisson regression model in
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detail, a brief discussion of the exponential family and GLMs seems appropriate (see McCullagh
and Nelder, 1989, for a more detailed description).

For a random variable Y in the exponential family with canonical parameter 6 and (known)
nuisance parameter ¢, we may write its density function as f(y;8) = ezp{(y8 — b(0))/a(¢) +
¢(y;#)}. Denote the mean value of Y as u, which is related to the parameter 8 by the function
0 = g(p). We will refer to the function g(-) as the link function.

For making inference about 8 we introduce the log-likelihood function, the log of the above
density function, which we denote [(#). In the case of n independent observations Y; (¢ =
1,...,n), with possibly different canonical parameters, the joint log-likelihood is given by I(8) =

1 1:(6;). In GLMs a linear model is specified for the parameters 8; of the form 6; = g(u;) =
X3 (where B is a vector of p<n parameters and X; is the i** row of an n x p design matrix).
It is then possible to estimate 8 via maximum likelihood by taking the derivative of the joint
log-likelihood with respect to each of the parameters, equating the resulting p equations to zero
and solving for the parameters of interest. These estimators have several nice characteristics
including a limiting multivariate normal distribution with mean vector equal to 3*, the true
value of the vector of parameters, and covariance matrix equal to the inverse of the Fisher
Information matrix corresponding to the joint distribution of the ¥; (¢ = 1,...,n).

Now consider a Poisson random variable Y. We write the density function of Y as f(y; ) =
(e7#u¥)/y! or equivalently as f(y;u) = ezp{ylogu — pu — logy!}. The latter form allows us to
identify the Poisson distribution as a member of the exponential family with 8 = logy (and
therefore link function given by g(-)=log(-)), b(8) = u, a(¢) = 1, and c(y; ¢) = —logy!.

The motivation behind using the Poisson regression model for the Prince George study lies



Chapter 1. The Prince George Study 5

in the intuitively reasonable assumption that the daily numbers of emergency room visits follow
Poisson distributions with possibly different means. The mean number of visits on a given day
will be described by a function of the available covariate information up to and including that
day, which includes temporal variables such as day of the week and month, the meteorological
variables, daily temperature and maximum humidity, and the pollution variables, TSP, TRS

and SO,. The use of Poisson regression depends on the following basic assumptions:

(a) the expected number of visits on a given day depends explicitly only on time, meteorology

and pollution and not on the number of visits on past days.

(b) daily visits are conditionally independent given the temporal, meteorological and pollution

covariates.

The assumption that the expected number of visits does not depend explicitly on past visits
seems to be a reasonable starting point in this situation. However, more general models in
which the mean depends explicitly on past visits could be considered as well.

Suppose now that ¢; is a vector of temporal covariates, m; is a vector of meteorological
covariates and s; is a vector of pollution covariates for day i; s; and m; can include values of
pollution or meteorology prior to day ¢ as well as those values on day ¢. If y; is the number of
emergency room visits on day ¢ (: =1,2,...,731) for a particular diagnostic class, the log-linear

model assumes that y; has a Poisson distribution with mean u; where
logp; = a+t/T +m/6 + s;'vy

with @, 7, § and 7y unknown parameters (7, § and v are vectors having the same length as t;, m;

and s; respectively). The components of the parameter v give the relative changes in expected
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visits on a given day (that is, with temporal and meteorological covariates fixed) associated with
changes in the pollution variables. In particular, for small changes in the pollution variables,
from s; to s; + A;, exp(Aly) — 1 ~ Aly gives the percentage change in the corresponding
expected visits.

In order to account for possibly different patterns of emergency room visits for the different
diagnostic categories, the basic model is generalized by allowing different parameters a, 7, §
and v for the different diagnostic categories, and thus describing the expected number of visits

for category j (j =1,2,3,4) on day ¢ by the equation
log pij = a; + tiT; + mié; + siv;.

To fit the above model into the framework described for GLMs let po= (pt, pb, u, 1h)t and
B = (at, 7%, 8%, 4t)t where here a = (a1, 02,a3,a4)t, 7 = (71,74, 74, 78)?, and so on. Then, if X
is the appropriate design matrix containing all of the covariate information, our model can be
expressed as logu = X 3.

In addition to assuming the observations to be conditionally independent given the co-
variates, we assume that data from different diagnostic categories is independent, so that the
joint likelihood is simply the product of the marginal Poisson distributions. Thus the joint
log-likelihood is:

4 731
1B) =D [yijlog pij — pij — log gij!] .
j=1i=1
For ease of notation, it will be more convenient to write the above log-likelihood using one

subscript. We order the y;;’s as yy,..., Y2024, With the #;’s numbered correspondingly. Now
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express the joint log-likelihood as:
2924
I(8) = Y [y:log pi — pi ~ log y!]. (1.1)
i=1
To obtain maximum likelihood estimating equations for the parameters in 3 (suppose there

are p parameters in §), we differentiate the expression in (1.1) with respect to each of the p

components of 3 and equate the resulting derivatives to zero to arrive at:

ol &y — i\ Opi .
%:2;( ﬂiu)a—gjzo; 17=1,..p. (1.2)

Note that our model assumes p; = ezp{X;53}, or log yt; = X;. Thus, (1.2) can be rewritten as

o 2924
A=) (h—p)Xij=0; j=1,..,p. (1.3)
i=1

The resulting estimators, §, are asymptotically normal, with mean vector given by 8*, the true

value of the vector of parameters, and covariance matrix equal to
-1
0%
—E|— .
052

o 2 o2
_a—IB2 = Xl:XiX,‘,u,i = -E W .

Given the solution to (1.3), the fitted values, ji; = ezp{X;4}, may be substituted in the

In this case

above expression to obtain an estimate of the asymptotic covariance matrix. Using these fitted

values, the deviance is then defined to be —2 times the log-likelihood, or
2924
dev. = -2 Z (¥ilog fi; — fi; — log y;!].
i=1

For a fitted model with p parameters and a joint likelihood from n independent observations,

the degrees of freedom associated with the deviance is n — p. By taking the difference in the
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deviances of two fitted models, one of which is nested within the other, we may form a likelihood
ratio statistic that can be compared to its limiting chi-square distribution to examine if the
smaller model constitutes a significant deterioration in fit compared to the larger model.

The Pearson residuals are defined to be

(i — i)

Hi

=

These quantities are often used for diagnostic purposes in the same way the residuals from an
ordinary regression (assuming normality) are used. We may also use these residuals to form
a goodness-of-fit statistic, the familiar Pearson X2, by summing the squares of these Pearson
residuals. Another potential use of the Pearson X? emerges in the following section dealing

with over-dispersion.

1.2.2 Accounting for Over-Dispersion

The extension of the Poisson regression model to be described concerns accounting for over-
dispersion. Suppose that the variance of the daily visits given the temporal, meteorological and
pollution variables is greater than the mean; in this situation the emergency room visits data are
said to be “over-dispersed”. Over-dispersion represents a violation of the Poisson assumption
underlying the Poisson regression model, which requires that the variance and mean be equal.
One way to handle over-dispersed data is to introduce a dispersion parameter ¢ > 1 and assume
that the variance of the visits on day 7 is ¢u;. We now describe the procedure for statistical
inference in this new model.

The parameter vector § which appears in the specification of the daily mean visits rates

is estimated exactly as for the model without a dispersion parameter, i.e. by maximizing the
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Poisson log-likelihood function of (1.1). However, when assessing the statistical significance of
estimated parameters it is necessary to take into account the dispersion parameter. To describe
how this is done in the context of model selection (the dispersion parameter must also be taken
into account when evaluating the standard errors of estimated parameters), assume that we
begin with a model containing a number of parameters (the full model) and wish to test the
viability of another model which is nested within the full model (the reduced model). Under our
independence assumptions, the difference in the deviances for the two models is approximately
distributed as ¢ times a x? random variable with degrees of freedom given by the difference
in the degrees of freedom associated with the two deviances. Thus the difference in deviances
must be divided by an estimate of the dispersion parameter before it can be compared to the x2
distribution to assess whether reduction from the full model to the reduced model is permissible.

One choice of an estimate of the dispersion parameter is the ratio of the sum of squared
Pearson residuals, the Pearson X? statistic, to its degrees of freedom (McCullagh and Nelder,
1989, p.200), both determined under the full model. Another estimate, which is often very close
to the previous one, is the ratio of the deviance to its degrees of freedom, also under the full
model. For this data the estimate based on the deviance was used; this leads to the following

statistic for testing whether reduction from the full model to the reduced model is permissible:

Aldev. — deviance (reduced) — deviance (full)
. deviance (full)/df (full) ’

this statistic is compared to the x? distribution with degrees of freedom given by Adf =

df (reduced) — df (full).

The Poisson regression model with unspecified dispersion parameter is a particular case of a
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class of models called “quasi-likelihood” models, so-named because the likelihood which is used
to obtain estimates, the Poisson likelihood in our case, is not the true likelihood for the data
but plays the role of a likelihood and so is called a quasi-likelihood. Quasi-likelihood models

are discussed in more detail in Chapter 2.

We now describe the results of the analysis of the Prince George data using the methods

described above.

1.3 Results of the Data Analysis

The possibility of over-dispersion in a series of counts can be judged by the index of dispersion:

n — 1)variance
X2 - ( ) ,

mean

where n is the sample size, 731 in this case. Under sampling from a Poisson distribution, X?

has an approximate chi-squared distribution with n— 1 degrees of freedom and can be converted

to an approximate standard normal variable by z = v2X2 — \/2(n — 1) — 1.

The results for the emergency room visits data are presented the following table:

category | mean variance X2 z
Asthma 0.76 0.80 763 0.87
Bronchitis+ 1.54 3.36 1593 18.2
Ear 3.62 6.92 1395 14.6
Other 5.13 14.2 2027 25.5

Except for the Asthma category, these exhibit a large degree of over-dispersion relative to
the Poisson distribution; the values of z given in the above table clearly reflect extreme over-
dispersion for the categories Bronchitis+, Ear and Other. In fact, these distributions exhibit

the pattern of a mixture of Poisson distributions, having higher than expected numbers of very
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small and very large counts, at the expense of moderate counts. This over-dispersion must be
taken into account in the data analysis.

As mentioned previously, we must allow for the possibility that emergency room visits de-
pend on factors other than just pollution, such as temporal and meteorological effects. These
covariates were considered first, and model reductions were attempted to find a model which
parsimoniously describes these effects. The pollution covariates were then added to the model
and model reductions were attempted to identify the pollution covariates which had a substan-

tial effect on emergency room visits for respiratory illness.

1.3.1 Temporal and Meteorological Effects

The first step of the analysis involved the incorporation of adjustments for temporal effects.
The full model for the log of the visits rate included separate effects for each of the 12 months
and each of the 7 days of the week for each diagnostic category. Attempted model reductions to
common month or common day-of-the-week effects, that is common across all four diagnostic
categories, resulted in unacceptably large changes in adjusted deviance and therefore the full
collection of separate effects for each diagnosis was retained as the temporal model.

Next, the meteorological covariates (temperature and maximum relative humidity) were
added to the temporal model at lags of 0 to 3 days; that is for any ¢ = 4,...,731 we allow
for the possibility that meteorology at times ¢, 2 — 1, ¢ — 2 and ¢ — 3 might affect the rate of
emergency room visits at time . We first allow for separate effects at each lag for each of the
four seasons, winter (December to February), spring (March to May), summer (June to August)

and fall (September to November), but with each of these effects common to all four diagnostic
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categories. Based on our model reduction criterion, these separate season effects were found to
be unimportant compared to common effects across seasons for each lag.

When separate meteorological effects at each lag for each diagnostic category were consid-
ered, we found unacceptable increases in adjusted deviance when attempting to simplify the
separate temperature effects to common effects. On the other hand, only common maximum
humidity effects were needed. Thus our model which adjusts for possible temporal and meteoro-
logical effects included separate diagnosis effects for month, day-of-the-week and temperature,

and common maximum humidity effects.

1.3.2 Respiratory Visits and TRS

We next investigated a model which expresses the daily emergency room visits rates for any

particular diagnosis category as

log visits rate on day ¢ = temporal effects + meteorological effects +

Yolog TRS; + v11og TRS;_1 + 72 log TRS;_2 + v3log TRS;_3.

Here the effects of each of the TRS values are common across diagnosis categories; we also
considered models involving separate effects for the four diagnosis categories or separate effects
for the four seasons. For all models fitted, the temporal and meteorological effects had the
same structure as previously identified. In what follows, we will abreviate this structure as the
tem /met model.

We started with separate effects for each diagnostic category but found the reduction to

common effects acceptable and furthermore removal of the TRS effects altogether resulted in
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only a negligible deterioration in the fit. The following table examines separate TRS effects for

each season, where as before the separate season effects are common to all diagnostic categories:

model terms | deviance d.f. A’dev. A df.
tem/met effects + separate season TRS effects 3827 2804 18.4 12
tem/met effects + common TRS effects 3852 2816 1.7 4
tem/met effects only 3855 2820

Reduction to common effects leads to an increase in adjusted deviance of 18.4 versus a
decrease of 12 in the number of parameters which is not so easily dismissed (p=0.11). Unfor-
tunately the estimated effects from the full model present a confusing picture as we see in the

following table which presents those estimates which are greater than one standard error in

magnitude:

effect coefficient  s.e.
Winter Lag 0 -0.026 0.020
Spring Lag 0 -0.027  0.026
Summer Lag 0 0.043 0.028
Winter Lag 2 -0.035 0.023

Summer Lag 2 -0.035 0.029

Looking at the effects at each lag we get the suggestion there may be some TRS effect at lags
of 0 and 2 days. Unfortunately the effects from one lag to the other are not consistent and
furthermore, it is difficult to understand why higher levels of TRS should be associated with
higher numbers of emergency room visits at some times of the year and lower numbers at other
times of the year. These results may not be particularly surprising since the overall reduction in
adjusted deviance for going from the full model to one with the tem/met effects only (p=0.20)
indicates that the separate effects in the above table could be large simply by chance.

However, we could also examine the effects grouped by season as in the following table:
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Lag I Winter Spring Summer Fall
0 -0.026 -0.027  0.043 -

-0.035 - -0.035 -

W N =

where the dashes represent estimated effects which are less than their standard error. Looking
down the columns of this table we see the possibility of a negative cumulative effect in Winter.
Accordingly we now present results for a model which includes a single cumulative effect (an

average of the logarithm of the lag 0 to lag 3 pollution measurements) for each of the four

seasons:
model terms [ deviance d.f. A’dev. A df.
tem/met effects + separate season TRS effects 3827 2804 6.7 12
tem/met effects + cumulative TRS effects 3837 2816 134 4
tem/met effects only 3855 2820

While there is little difference in the fit of the separate season effects model and the cumu-
lative effects model, the cumulative TRS effects constitute a substantial improvement in the fit
over the tem/met only model (A’dev.=13.4, Ad.f.=4, p=0.001). The estimates and standard

errors of these cumulative effects are presented in the following table:

effect coefficient  s.e.
Winter -0.060 0.023

Spring -0.002 0.033
Summer 0.009 0.034
Fall 0.075 0.030

These effects suggest that an increase in the level of TRS is associated with a decrease in the
number of emergency room visits for respiratory disease in the winter, but an increase in the

number of emergency room visits for respiratory disease in the fall. This model provides a more
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parsimonious description of the effect of TRS on emergency room visits for respiratory disease

than the season effects model, yet a mechanism to explain such effects is difficult to imagine.

1.3.3 Other Analyses of Pollution Covariates

Similar analyses were carried out for SO, (as well as TRS and SO; simultaneously) and for
TSP. Details of the model reductions and results can be found in McNeney and Petkau (1991).
These analyses proceeded in the same fashion as the TRS analysis described above, and similar
problems were encountered; that is, the parameter estimates obtained in the final models were

such that no plausible explanation for their structure came to mind.

1.4 Questions Raised by the Analysis

The results of the data analysis described above make it difficult to come up with a reasonable
and coherent explanation of the effects of air pollution on human health based on this data set.

There are many possible reasons for our results, such as:

(1) the air pollution data do not accurately represent the exposure of the residents of Prince

George to pollutants,

(2) emergency room visits for respiratory illnesses are poor indicators of the effects of air

pollution on human health,
(3) some other important factor was not considered in the analysis, or
(4) the method of analysis is potentially misleading.

With respect to the last item, the following questions come to mind:
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(a) Is the estimate of the scale parameter, ¢, used in this analysis, namely dev(iafl(lfsuf)ull ,a

. Pearson X?(full),
good estimate, or should we have used () ?

(b) Is the change in adjusted deviance criterion appropriate for model reduction in this situ-

ation?

(c) Are statistics other than the adjusted deviance better for testing hypotheses concerning

the regression parameters when over-dispersion is present?

(d) Given the amounts of over-dispersion in the emergency room visits series, are the estimates

of the model parameters and standard errors accurate?

These questions motivated the simulation study we describe in Chapters 3 and 4. Be-
fore proceeding to the simulation study, Chapter 2 presents a more detailed description of
quasi-likelihood theory and the estimating equations obtained from this theory for estimating
regression and dispersion parameters. We also discuss some of the test statistics available for
testing the significance of regression parameters. Finally, over-dispersed Poisson regression is

discussed as a special case of quasi-likelihood.



Chapter 2

Methodology

In this section we describe the aspects of maximum likelihood theory (in the context of GLMs)
which motivate the theory of quasi-likelihood first proposed by Wedderburn (1974) and also
discussed by McCullagh and Nelder (1989, Chapter 9). In particular, we are interested in the
estimating equations and test statistics derived from this theory. We also discuss the application

of quasi-likelihood to the analysis of the Prince George data.

2.1 Quasi-Likelihood in Generalized Linear Models

Recall the log-likelihood for a single random variable in the exponential family
I(8) = (y0 - b(6))/a() + (y; $).

Maximum likelihood theory assumes sufficient regularity conditions to ensure that the following
relations hold
ol 0%l a1\ 2
E[%] = 0; and E[a?] +E [('8—0') ] =0.

In this discussion we will assume these conditions hold. The derivative of the log-likelihood is

l/08 = (y — b'(8))/a(¢), therefore E(d!/d8) = 0 implies that E(Y') = b’(8). We also have

o _ ¥(0) ] _ o)
W_a(qﬁ) so that _E[802]_a(¢)'

17
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Finally

N o [(r=veny 1,
E[(ao) ] =E [( ) } =g
which leads to the expression Var(Y') = b”(8)a(¢).

Rewriting the log-likelihood in terms of the mean p, we have [(6) = I(g(x)) and

o _ oo
o 000y’
so that
o _(1=b0) 2 _y-t0
o\ a(¢) Jou  a¢)3
Since
. i —_ ab,(e) —_ 6_/1/
u="5'(0) and b"(8) = 56 88

the score function S(u) = g—}b can be rewritten as S(u) = (y — E(Y'))/Var(Y'). Note the follow-

ing properties of the score function:

1. E(S) = 0,

1

2. Var(§) = E(S?) = ryasrE(Y - 0 = varmy»

aSy _ 1
3- _E(W) — W.
Now consider a random variable Y for which we do not specify a distribution but only

suppose it has mean value p and a variance that is related to u by some function V(u; ¢) where

¢ is an unknown parameter. Then if V(u; @) correctly specifies the variance, the function

Y —p)

Ui 9) = Yoo

has similar properties to a score function resulting from a log-likelihood in that:
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1. E(U*) =0,

2. Var(U*) = E(U*?) = pofm B(Y - 1) = vy

8U"

2V (u:9)
_ 1 R Y: _ 1
W) = [C(#;d’) (¥ —n \[}2(u;¢) ] T V(ué)

Since most asymptotic likelihood theory is based on the above three properties, we might

expect the integral of U* to behave like a log-likelihood. We refer to the integral

Quimd) = [ Uit o)t = ﬁj’(t 3

if it exists, as the quasi-log-likelihood or simply the quasi-likelihood. For n independent obser-

vations having the same unknown parameter ¢ we have the quasi-likelihood

Qn(y; 1, 8) =Y Quis 1ir &)

i=1
where now y and u are vectors of length n. As in GLMs, the mean vector u is assumed to be

related to the regression parameters by the link function g(p) = X8.

2.1.1 The Estimating Equations

As in the case where we have a true likelihood, the approach with a quasi-likelihood is to differ-
entiate @}, with respect to each of the components of § and equate the resulting p derivatives to
zero to obtain maximum quasi-likelihood estimators for the parameters. If ¢ were known, then

under the assumption that p; = exp{X;3}, we would solve the following estimating equations:

. _0Qn (yi—pi)Opi . _
U](ﬂ7¢) - aﬁ] Z V(ﬂz,¢) 8,3] 01 J= 1’---,1" (24)

We will refer to the p-dimensional vector (Uy, ..., Up)" as UP.
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Because ¢ is unknown, we must introduce an additional estimating equation. This equation
is based on the obvious notion that the variance function V(u;; ¢) should reflect the true vari-
ances of the observed y; (denote these 0?). Thus, ¢ should be estimated so that V(u;; ¢), the
model-based variance, agrees well, in some sense, with the true variance o?. Only estimates of
the true variances are available from the data, so a sensible estimate of ¢ is provided by the

solution to the “moment” equation

U8, ¢) = zn: [%% - 1] =0. (2.5)

=1

To correct for the bias resulting from the simultaneous estimation of the p regression parameters,

Breslow (1984) suggests modifying this equation slightly to

p (i) (n-p)|
U%(B,¢) = ; [ Vrd) - ] =0 (2.6)

in place of (2.5).

Given an initial estimate of ¢ we may use (2.4) to obtain an estimate of 3. This estimate of
B can then be used in (2.6) to estimate ¢. This procedure is iterated to obtain the joint solution
(B, ¢) to the estimating equations (2.4) and (2.6). Subject to regularity conditions (Inagaki,
1973; White, 1982) this joint solution converges in probability, as the number of observations
increases, to (§*,¢*) where 8* is the true value of g, and ¢* is the value of ¢ which satisfies

the limit equation

lim,,_,
> ; V(ﬂnd’)
To motivate the limiting distribution of the estimator (3, ) consider the following. Let

= (B, 4)t and let U(8) = (UF',U?)t, where UP is the vector form of the equations given

by (2.4) and U? is given in (2.6). While (2.6) is not a maximum quasi-likelihood equation,
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we may consider (2.4) and (2.6) as moment-type estimating equations. The derivation of
the asymptotic properties of (5, ) will proceed along the same lines as the derivation of the
properties of maximum likelihood estimators, although some modifications are required.

The fact that 8 is the solution to U(f) = 0 along with the Mean Value Theorem allows us

to write the Taylor series expansion of U(#) about the point 8* as

ou

0=U@) =UE)+ 55|

(0 - 0*)’

where each of the p + 1 elements of ™ are between the corresponding elements of 6 and 6*.
Re-arrangement allows us to write this as

Vn(d—6*) = (—%%Lmyl %U(O*). (2.7)

Under mild regularity conditions, § will converge in probability to 6* (see Moore 1986,
Theorem 1, p.586). Then, since 8™ is between 6 and * and U /36" is a sum of n independent

components, we have

, 13 U6 . 1_9u()
_>n-—>oo_nZE ot —nlggo_n 0ot ’

n 00% [gm

Z (w

where here the subscript i refers to the contribution of the i* observation; ¢ = 1,...,n and the
expectation is taken with respect to the true value 6* under the assumption that y = ezp{X 3}

correctly specifies the mean. Now —E[9U(6*)/96"] is a (p+ 1) X (p+ 1) matrix of the form

A, b,
¢ d, |’
where

QU___ (Y; — pi) Opi
A= P = o {ZV(ut,as*)aﬂL_
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i 1 (9,u, opi (Y wi) Opi OV Ou;
=E
2 Vi) 68 95, + Z ¢ VE(jus; %) 9B i 0P,

- 1 Opidpi
Z < V(ui;6*) 98 9B,

’

(Yi — pi) Opi (Yi—ps) iV
[Z V(pi;¢) 08 } [Z V3(ui; ¢*) 98 8¢] =0

Y RN R R
«=" 5 [E{V(ui;cﬁ*) n }L

and
0 = (Yz — Ni)2 (n - p) }} n (Yz — le.)2 aVv n 0.2 oV
dn P —E— —_ = E e, e, —_ —_
o¢ [2{ V(pis ¢) n o g{ V2 (s o ,gf Vi(pis 6) 99|,
Now consider the other random vector entering (2.4):
1 n Yi—pi
1. V7 2451 Vigrg) '8%
—=U(0") =
N L yn (Yimpi)? (n—p)
v S=1 |V (ugi60) n

Assuming the regression model correctly specifies the mean, we have

1 0
E —=U(6") = o2 n— :
\/ﬁ ( \/_Et 1 [V(u' i6%) L np)] )

By the definition of ¢* and provided regularity conditions hold (see Moore 1986, Lemma 1,

p-585), it follows that this random vector has a limiting multivariate normal distribution

v(old 7))

where B = lim,,_, o, %Bn is the normed limit of

_ . DTV = ) Ot | <= [(Yi — i) O
B, =E(U°U”) =E [Z[v(p,,¢)aﬂ],zl[v(u.,qb)aﬂ]}

1=1
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Because the observations are assumed to be independent, this reduces to

2L (Vi = pi)? Opi 6/«] " g2 Opidw
B,=F|S LT Hi)ORiOp ) N~ 0 OHiOpi
[E V3(pis¢*) 08 98¢, 2 V2(pi; ¢*) 08 9"

=1 g+
For our purposes, the forms of e and f are of no consequence.

Combining these results with Slutsky’s theorem we have

\/ﬁ(é-o*)—d*N(O’[ﬁ 2}—1[5 f]([ﬁ 2]_1)),

L4, ¢=1lim, o %cn, and d = lim, o0 %dn. As

Aol [ 4 o
et d - _%”_A—l da-1 1’

the asymptotic variance of /n(f — 8*) is

At 0 |[B e At o
—gA™t g | e f|| -gat g1

The asymptotic covariance matrix for /(3 — B*) is the upper left-hand p X p sub-matrix of

where A = lim,,_,o

the above matrix, namely A~! BA~!. Note that this is exactly the covariance matrix one would
obtain for the estimation of # based on the estimating equations (2.4), with ¢ fixed at ¢*
rather than estimated; the asymptotic covariance for 8 is unaffected by the estimation of ¢.
This occurs despite the fact that 3 and ¢ are, in general, correlated (the entries of the upper
right-hand px1 vector of the above matrix need not be zero); it is a result of the fact that the
px1 vector by, has all p elements identically equal to 0, that is, E[%Uﬁ] = 0. Note further that
if the function V(u;; ¢) correctly specifies the variances o2, then A = B and \/ﬁ(ﬁ — (*) has
asymptotic covariance matrix given by A1,

Thus we can consider two estimates of the asymptotic covariance of §; the first is model-

based and assumes that V(u;; ¢) correctly specifies the variances. Denote this estimate Sy =
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A;! where A, is A, with y; replaced by the fitted values fi; = p;(X;; ﬁ,) and ¢* replaced by

$. The second estimate we refer to as the empirical estimate. Denote this £ = A71B, A1

where

(yi — f:)* 04i; O
E Y V(i ¢) 05 9B

The idea of using an empirical covaiance matrix in connection with misspecified models has
been developed by numerous authors, including White (1982), Royall (1986), Liang and Zeger

(1986), and Carroll and Rupert (1988, Section 4.3.2).

We now have estimating equations for 8 and ¢ which yield consistent estimators and we
have an expression for the asymptotic covariance of \/E(B — $*). In the next sub-section, we

use this information to form statistics to test the significance of the regression parameters.

2.1.2 Test Statistics for Hypotheses Regarding Regression Parameters

Consider the p-dimensional vector 3 partitioned into 8; and f; of dimensions p; and p; re-
spectively. Here the point is to think of 8, as parameters which have fixed values 8§ (usually
zero) under some null hypothesis H,. We will refer to the model where all of the parameters

= (B, B5)! are estimated as the full model, and the model where S3; is estimated when [ is
set to its hypothesized value 35 as the reduced model.

Under H,, the random vector (§; — 43) has a limiting multivariate normal distribution with
mean 0 and covariance Y55 which is estimated by Y42, the lower right-hand p, x py sub-matrix
of either £ps or £g. We therefore have model-based and empirical versions of a test statistic
we refer to as the Wald test where we compare the test statistic (G2 — 83)¢ 55 (82 — 33) to the

x?m) distribution.
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Another possible type of test, one that does not require fitting of the full model, is the
score test. Recall from Section 2.1.1 that E[%] =0; j = 1,...,p. With sufficient regularity
conditions, this implies that for any sequence of estimates 3 converging to 3* the statistics
UP(B,$) and UP(J,4*) are asymptotically equivalent. This can be seen by comparing the
following two asymptotic expansions:

1 oUP

ﬁmlqsn\‘/_(ﬂ B )+;—8_¢7

__1_ﬁ~~—__ﬁ 16U n"__*
7=V (,B,¢)—\/_U (B¢ )+ = == 5 V(g - ¢%), (2.8)

B71,¢™

and

1 1o, 1 0U° ~ 5 g
TRV B9 = =V 8+ | VB8 (29)

B8™2

for some g™ (i=1,2) between B and B* and similarly for some ¢™. The right-hand side of
these equations are of the same form except for the final term in (2.8). But, as n gets large,
V/n(é — ¢*) converges in distribution while %8Uﬁ /O0¢, which is an average of independent
components, converges to its expectation which is 0. Also, recall from Section 2.1.1 that the
asymptotic covariance matrix of \/ﬁ(ﬁ — %) does not depend on how, or even if, ¢ is estimated
so that the distributions of the random vectors /(3 — 3*) are the same in both (2.8) and
(2.9). This shows that the random vectors defined by the left-hand sides of (2.8) and (2.9)
have the same asymptotic mean and variance. Therefore, in what follows we may suppose that
the estimator of 3 is based on the estimating equations (2.4) alone, with ¢ fixed at its limiting
value ¢*.

Now we consider the maximum quasi-likelihood estimates under the reduced model. With
UP partitioned into components UP! and UP2 of dimension p; and p, respectively, let Greq

denote this estimator, namely the solution to UP1{(8, 85})!, #*] = 0. We wish to determine the
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asymptotic distribution under the null hypothesis of the score statistic for testing H,: B = f33.

To accomplish this, first examine the expansion

. £ -
0= UP(Brea) = UP(B*) + %UT (1 = B1)
1 ﬁ{"l

and the corresponding expression for the score statistic

3 QU
B2 — J7B2( 3> -
U (ﬂred) =U (IH ) + 8,31

(61— B7)
B2

where 81" (i=1,2) are between §; and ;. Rearranging (2.10) we get

- UH -1
(Br—-0B7)=— [ ] Ut (p"),

which, substituted into (2.11), allows us to write

U B2

—LUﬁ2(,Bred) = % [Uﬂz(ﬁ*) _ 3

7n

aUﬁlJ_l P :l
um(g)] .
ﬂmz [aﬂl ﬁI"l

As n — oo we have

%Uﬁ%ﬂ*) 4 N(0, By), %Uﬁl(ﬂ*) < N(0, Bry),

and
B2 B
pics I P Lk BT
n (?,31 ﬁm2 n 8ﬂ1 ﬁml
1 1

(2.10)

(2.11)

where the matrices Ayy, A1, Bi1, and B, are the appropriate submatrices of the matrices 4

and B. It follows that the asymptotic distribution of this score statistic is multivariate normal

with mean 0 and covariance matrix

1 _
Var, [%‘Uﬁ"’(ﬁred)] = By — An A7l Bi2 — By A7 Aps + Ag AT'Bi1 AT A (2.12)
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If the variance function correctly specifies the variances, then A = B and (2.12) reduces to the

usual expression
1 -
Var,, [ﬁUﬁz (/Bred)] = Az — An A7l Ars. (2.13)

Therefore we can obtain a model-based estimate of the asymptotic covariance matrix by
substituting A, for A in (2.13) or an empirical estimate by substituting A,, for 4 and B, for B
in (2.12). The score test for testing H,: 8, = (3 is given by comparing U (B,eq)E~"1UP2(B,eq)
to the X%pz) distribution where ¥ is our particular choice of the covariance matrix estimate.

The final type of test statistic we will consider is a deviance or likelihood ratio statistic.
Recall the quasi-log-likelihood Qn(y;u,¢) = Y vy Q(vi; ii, ). Define the deviance under the
full and reduced models as -2Q,(y; p(X, B full)s q~5) and -2Q,(y; p(X, [3,6,1), <2>) respectively, where

the estimate @ is obtained under the full model in both cases. The deviance statistic is then

Adev. = 2[Qn(y;,u‘(XaBred)7 J)) - Qn(y;/‘(X7Bfull)7 43)]

which should behave like a log-likelihood ratio and thus have an approximate X(sz) distribution

(McCullagh and Nelder, 1989, p. 471).
In the next section, we will examine the specifics of applying these tests for the significance

of regression parameters to the case where we have over-dispersed Poisson data.

2.2 Test Statistics for Hypotheses in Over-Dispersed Poisson Regression

In Section 1.2 the estimating equations and scaled deviance test statistic for over-dispersed

Poisson regression were presented as an extension of Poisson regression. This extension was
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necessary because all inference which requires estimates of variability, such as tests of hypothe-
ses, will be in error if the over-dispersion is not taken into account, even though reasonable
amounts of over-dispersion have very little effect on estimation of the regression parameters by
ordinary Poisson regression (Cox, 1983).

We saw that an easy way to accomplish this was to introduce a dispersion parameter ¢ to
model this extra variability. In quasi-likelihood this is equivalent to specifying the variance of
the observed data to be described by V(u;,#) = ¢u; for the ith observation. In this case, for

the link function g(u) = log i equations (2.4) and (2.6) of Section 2.1.1 become

Ui(B,¢) = %"—i)xij =0; forj=1,..,p, (2.14)
=1

U*(B,4) = i [(yi ;uf")z -z ~ p} =0, (2.15)

i=1
where u; = ezp{X;3}. Note that ¢ may be factored out of (2.14) and that the estimate of ¢
obtained from (2.15) is Pearson’s X? statistic (using the Pearson residuals defined in Section
1.2) divided by its degrees of freedom. An alternate estimate of ¢ which is thought to be very
similar is to replace X2 by the deviance given by the joint Poisson likelihood under the full
model, which for this discussion we denote G2. For this formulation, it is immediate that the
estimates of 3 do not depend on the estimated value of ¢; in other words, we may use the usual
Poisson estimating equations for # and estimate ¢ afterwards with either of the two methods

described above. Clearly this approach has considerable appeal over an approach involving

specification of a variance function in which ¢ cannot be factored out.
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With the choices V(ui; @)= ép; and p; = exp{X;3}, then from Section 2.1.1 the model-

based estimate of the covariance matrix of J is given by £37 = A1 where

Z 1 (9,uzalhzz 1~Xt XﬁXeXﬂ— _IZX,-tXiﬂi
2 V(i 9) 08 08 | & o =

where the X; are the row vectors corresponding to the i* row of X. Note that ¢ may be
factored out of A, and the resulting covariance matrix is exactly ¢ times that obtained from
Poisson regression.

Alternately, the empirical estimate of the covariance matrix of Bis given by g = A; y: fi; 1

where

(y, #t) 3#: 3#: (?/ teXiB x. o XiB — —2 - ~ N2yt
Xz PXieh = (v — fi) X Xi.
Z 1 V(iii; ¢) 08 95 z_; B2l 2 ;

Note that the factors ¢ appearing in A, and B, cancel out in the expression for L.

Considering these two estimates of the covariance matrix and using either é=X? [d S punt
or ¢ = G;u” /d.£.z1 leads to three possible versions of the Wald test; two model-based and one
empirical.

We can similarly examine three versions of the score test. The two model-based versions use
the expression given in equation (2.13) for the variance with A, appropriately partitioned and
the score vector as given by the p; equations of the form (2.14) which correspond to parameters
with some hypothesized value under H,. The resulting statistic could use either of the estimates
of ¢ described above. The empirical score test, on the other hand, uses the empirical covariance
matrix of the form described by (2.12) with A, and B, appropriately partitioned. Examination

of the expressions involved in this statistic reveals that the ¢ terms disappear here also due to

cancellation.
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Finally, we may consider two versions of the deviance test. The expression for the quasi-
likelihood is simply the Poisson log-likelihood divided by an estimate of ¢. Therefore our

deviance tests, often referred to as scaled deviance tests, are given by

i
:°

Adev. = %i (yiloy( )= (i - ﬂio))

i=1
where fi; are the fitted values under the full model and f;° are the fitted values under the
reduced model. Note that the best estimate of ¢ (using either X2/d.f. or G/d.f.) will be the
one obtained under the full model since this model has the best estimates of y;.

Now that we have discussed some of the methods available for modelling and making infer-
ence about parameters in over-dispersed Poisson data, we wish to address the questions raised
in Section 1.4 and examine the performance of these procedures in a context similar to that
encountered in the Prince George study. A simulation study designed to answer these questions

is described in Chapter 3.



Chapter 3

A Simulation Study Related to the Prince George Study

Recall the methodological issues which arose in the Prince George study as described in Sec-
tion 1.4:

(a) Is the estimate of the scale parameter, ¢, used in this analysis, namely dev(ia}r(lgl(leufull ,a

] Pearson X*(full),
good estimate, or should we have used dL.(full)

(b) Is the change in adjusted deviance criterion appropriate for model reduction in this situ-

ation?

(c) Are statistics other than the adjusted deviance statistic better for testing hypotheses

concerning the regression parameters when over-dispersion is present?

(d) Given the amounts of over-dispersion in the emergency room visits series, are the estimates

of the model parameters and standard errors accurate?

In this chapter we outline the purpose and procedures of a simulation study designed to
address these questions. The primary goal of the simulation study was to examine the behavior
of the model reduction test statistics described in Section 2.2 in contexts similar to the Prince
George study (items (b) and (c)). Secondary goals were to examine the performance of estimates

of over-dispersion parameters as well as of estimates of regression coefficients and their standard

31
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errors (item (d)). Of particular concern were the effects of varying amounts of over-dispersion
and misspecification of the variance function on this performance.

In particular, we will:
1. Compare the scaled deviance, score and Wald tests for model reduction.
2. Compare the parameter estimates to the simulated values.

3. Compare empirical and model-based estimated standard errors to the standard deviations

of the estimated parameters.

However, as an essential preliminary to the main thrust of our simulation study, we must
first consider the question of how the over-dispersion parameter should be estimated (item (a)).
As already mentioned, two possibilities are via G2/d.f. (as was done in the Prince George
study) and X?/d.f. Results presented in Section 4.1 provide a clear indication that the latter is
preferred, and this estimate is therefore employed in all subsequent work. In particular, the only
version of the scaled deviance model reduction test considered is the one where ¢ is estimated
by X?/d.f. Both empirical and model-based versions of the Wald statistic will be evaluated, but
only the empirical score test will be evaluated; the latter test is reported to perform well even
in the presence of over-dispersion and with misspecified variances (see Breslow, 1990). To carry
out these comparisons, a variety of data configurations, all intended to be qualitatively similar
to the context of the Prince George study, will be simulated. Different data configurations
will correspond to different log-linear models for the mean levels of the observed counts and
different amounts of over-dispersion. In all cases, the model fit to the simulated data will be

that of over-dispersed Poisson regression; that is, estimation of the regression coefficients will
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be based on the estimating equations (2.14) which result from an assumed variance function of
the form V(u;; ¢) = du;.

The simulation study will not be concerned with the possible misspecification of the log-
linear model for p; (the regression function), but will examine the effects of misspecification of
the variance function. For this purpose we define the “correct” variance to be V(u;; ¢) = ¢u;, the
model to be used in the fitting, and the “misspecified” variance to be V(u;; ¢) = p; + (¢ — 1)p?.
The latter variance function arises from thinking of the datum y; as being sampled from a
distribution which is, conditional on the value of an unobserved variable };, Poisson with mean
A3 if A; is considered to be sampled from a distribution with mean p; and variance (¢ — 1)u?,
then the marginal distribution of y; has mean p; and variance y; + (¢ — 1)p?.

This simulation study differs in several respects from a study carried out in a different
context by Breslow (1990). Firstly, Breslow’s study only considered simulated data with mean
values no smaller than 2. In the Prince George study the Asthma series had many zero values
and a mean value of only about 0.75. In the current study we wish to investigate the possibility
that such a series could lead to poor performance of the estimators or test statistics. Another
difference is that Breslow was concerned with a 3x4 factorial design with n replicates per cell
(and a single continuous covariate) whereas our study will be concerned with one or more
long data series similar to the series available for the Prince George study. This difference
is perhaps not as great as it first appears because all the data in Breslow’s simulations were
generated under the hypothesis that the column factor of the 3x4 design had no effect. The
result is that, in effect, three data series of length 4n are being considered and for n = 144

(the largest value Breslow considered) the length of the series is comparable with the length
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we will employ (700). The last key difference is that the current study is only concerned with
test statistics and estimating equations based on an assumed variance function V(u;;¢) =
ou;. We will examine the performance of these test statistics and estimating equations using
data generated under “correct” and “misspecified” variance functions, both for a single data
series and for three series with differing amounts of over-dispersion (to represent the separate
diagnostic categories), keeping in mind that the methods used will provide only a single overall
estimate of ¢. In contrast, Breslow generated each of his data sets under the variance function
V(pi; ) = ;i + (¢ — 1)p? and then examined the performance of the estimating equations and

test statistics based on this variance function and also based on V(ui;¢) = opu,;.

3.1 The General Simulation Procedure

The simulation procedure, or sampling experiment, consists of three phases: generating the
data, fitting a full model, and fitting one or more reduced models. All calculations are carried

out in the programming language C.

3.1.1 Generating the Data

The data generated are to represent the main qualitative features of the data analyzed in the
Prince George study. To accomplish this we will generate time series of 700 independent over-
dispersed Poisson observations. We may choose to generate a single series (Sections 4.2 and
4.4) or we may generate three separate series (Sections 4.3 and 4.5).

Each data set to be generated requires a choice of a log-linear model for the mean p; of the

form log p; = X;f3, a choice of the variance function to be used in the simulation, and a choice
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of the value for the over-dispersion parameter ¢.

Over-dispersion in the data is introduced through gamma-mixtures of Poisson random vari-
ables. To generate the datum y;, it is most convenient to think of our situation as follows.
Let log u; = X;G and let there be a random variable v; which has a gamma distribution with
mean 1 and variance V;. Then for each i=1,...,700 we first generate a realization of the gamma
random variable v; and then generate a realization of a Poisson random variable with parameter
vip;. The resulting observations are negative binomial, with mean u; and variance u; + p?V;.
The choice V; = (¢ — 1)/u; leads to simulated data with the “correct” variance function ¢p;,
whereas the choice V; = (¢ — 1) leads to simulated data with the “misspecified” variance func-
tion p; + (¢ — 1)u?. Note that both variance functions reduce to the usual Poisson variance

when ¢ = 1, and in this case the Poisson variates were generated directly.

3.1.2 Fitting the Full Model

We fit the full model to obtain estimates of the parameters 3 w11 USing an iterative method for
solving the estimating equations (2.14) of Chapter 2. We then estimate ¢ using the Pearson
X? statistic divided by its degrees of freedom. In contrast to Breslow (1990), when we obtain
an estimate of ¢ which is less than one, we do not adjust that estimate to be equal to one.
In our situation the dispersion parameter is only a nuisance parameter used to account for
dispersion. It is not necessarily thought to arise from the variance of a mixing distribution
(which would require values of ¢ > 1); that is to say, under-dispersion is not ruled out. Using
this estimate, both the empirical and the model-based estimates of the covariance matrix of

3 tuil are calculated (allowing the empirical and model-based Wald tests to be evaluated), as
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well as the scaled deviance under the full model.

3.1.3 Fitting the Reduced Model

Next, the reduced model is fit to obtain estimates of the parameters f,.q. The empirical
estimate of the covariance matrix of B,q is calculated and used in the calculation of the score
statistic. We also calculate the scaled deviance using the estimate of ¢ from the full model so
that the scaled deviance statistic for testing the model reduction may be computed.

The general procedure described above of generating data, fitting full and reduced models,
calculating estimates and standard errors, and calculating the model Wald, empirical Wald,
empirical score and scaled deviance test statistics is repeated 1000 times for each particular
specification of the log-linear model, choice of V(u;; ¢) and value of ¢.

In the following section the specific log-linear models, and the choices for the parameters

in these models, as well as the levels of over-dispersion utilized in this simulation study are

discussed.

3.2 The Specifics of the Simulation Study

As mentioned in Section 3.1.1, we may choose to simulate either a single series of data, or
three separate series to be modelled simultaneously. The single series simulations are small
enough, in terms of the computing time required to generate the data and fit a model, to allow
an investigation of the effects on the estimators and test statistics of varying both the level of
dispersion and the simulated mean values. The three series simulations recreate an important

feature of the data analysed in the Prince George study, namely separate series with possibly
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different amounts of dispersion (we chose to use three series here instead of four as in the Prince
George study simply to reduce the computing time).

The overall mean values of the series and the levels of over-dispersion to be considered in
these simulations (whether in a single series or in three) was based on the data series from the
Prince George study. To recap the approximate mean values of those series and to get a rough

idea of how much dispersion was present, we have the following table:

mean variance variance/mean

Asthma 0.76 0.80 1.05
Bronchitis+ 1.54 3.36 2.18
Ear 3.62 6.92 1.91
Other 5.13 14.2 2.77

From the above, the values 0.75, ezp{0.7}(x 2.01) and ezp{1.6}(~ 4.95) were chosen as
possible overall mean values for the series to be simulated. In the single series simulations we
will carry out sampling experiments using each of these values, and we will use the three values
together as the overall mean levels in the three series simulations.

Based on the third column of the above table, the values 1, 2 and 3 seem to be reasonable
levels of over-dispersion to consider, although the estimates of ¢ for each series would be smaller
than the ratio of the variance to the mean (¢ = a—l—f- Si(yi — 1:)?/ ii; is less than variance/mean
= =1 3 .(¥i—¥)?/7 in general). We also wish to simulate the value 1.4 since this is very close to
the overall estimate of the dispersion parameter from the Prince George study, and a simulated
value ¢ = 5 is of possible interest as an “extreme” amount of over-dispersion.

In the single series simulations, sampling experiments using each of these levels of dispersion
are carried out at each possible mean level, with the exception that ¢ = 5 is only simulated

when the mean level is exp{1.6} (using ¢ = 5 with lower mean values would result in series with
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mostly zeros and only a few large values; this situation is too extreme and is not of particular
interest in this thesis). In the three series simulations we chose two different combinations of
dispersion parameters. The first is the triplet (1,2,3) which we refer to as combination I. These
values seem like a plausible representation of the level of over-dispersion encountered in the
Prince George study. We also consider the triplet (1.4,2,5), which we refer to as combination
II, in order to examine the performance of the estimators and test statistics in a situation with
a large amount of dispersion (relative to the amounts encountered in the Prince George study).

Thus sampling experiments will be carried out using the following choices of overall mean
values and dispersion parameters:

Single Series Simulations

¢
Mean Value | 1 14 2 3 5
0.75 vV VoV YV X
ezp{0.7} v vV Vv X
ezp{1.6} v v vV VvV

X = no sampling experiment carried out

Three Series Simulations
Combination of ¢
Mean Values 1=(1,2,3) 1I=(1.4,2,5)
(0.75,exp{0.7},exp{1.6}) | Vv V4

The models used for generating the data should, in some sense, reproduce the main features
of the data encountered in the Prince George study. We first describe some very simple models
that are used to generate single series of data before we attempt to reproduce the more com-
plicated features of the Prince George study data. The simplest models to be considered are

for a single series with the mean value of the j** observation given by

p; = exp{B + vz;}, j=1,..,700 (3.16)
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where [ is the overall effect and v is the coefficient corresponding to the covariate z; =
sin(47j/700), used to simulate a pollution variable with a regular annual cycle. To simulate
data under the reduced model, one with no pollution, the choices for the simulated coefficients
are § = log0.75, 0.7, or 1.6 (with 4 = 0), corresponding to series with overall mean levels 0.75,
ezp{0.7}, and exp{1.6} respectively. To simulate data under the full model, one with pollution
included, only 8 = log0.75 is used but three different values of ¥ are considered (v = 0.05, 0.10
or 0.15). The simulations using models of the form (3.16) to generate data are referred to as
the one series simple case.

These simple models are also extended to a three series simple case with the mean of the

jt* observation in the i** series given by
pi; = exp{Bi + vox; + viz;} i=1,2,3;, j=1,..,700. (3.17)

where f; is the overall effect for the i** diagnostic category, 7o is the common pollution effect
and v; is the pollution effect specific to the i** diagnosis (with ¥3 = 0 for identifiablility).
This parameterization with a common and separate pollution effects is utilized to facilitate the
score test by allowing the hypothesis of common pollution effects to be stated as H: 7; = 0
for ¢« = 1,2,3. For the alternate parameterization 7! = 79 + v; for ¢ = 1,2,3, the same
hypothesis would take the more usual form of H: 7{ = 74 = 4% (which can be tested by
the Wald or scaled deviance tests). In these simulations the simulated values of the f§; are
B1 = log0.75, B = 0.7 and f3 = 1.6. The null model (no pollution effects) follows from setting
Yo = 11 = Y2 = 73 = 0. We may also simulate data sets with a common pollution effect (we

use 70 = 0.1, 11 = y2 = v3 = 0), or with separate pollution effects (we use 7o = 0.1, 7; = 0.1,
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2 = —0.2 and 43 = 0).

The j** observation in the more complicated models with a single series has mean described

by

4
pj = exp{f + E TeSk + 725} (3.18)
k=1

where the s; are indicators designed to represent four “seasons” of equal length (+1 day),
within each of our two “years” of 350 observations and z; is the sinusoidal pollution covariate
just as in the simple case. The seasonal structure is the only attempt made in this thesis to
recreate the temporal structure of the data in the Prince George study and no attempt is made
to recreate the meteorological structure. For the purpose of simulating data under the reduced
(or null) model, the values 7 = 0.25, 7, = 0.25 and 73 = —0.5 (with 74 = 0 for identifiability)
were used with one of 8 = log0.75, 0.7, or 1.6. For the full model (one with pollution included)
only 8 =1og0.75 is used with one of vy = 0.05, 0.10 or 0.15. The simulations based on models
described by (3.18) include seasonal effects and are referred to as the one series complicated
case.
As with the simple simulations, the one series complicated models are extended to a three
series complicated case with the mean for the jt* observation in the i** series given by
4
pij = exp{Bi + Y Tiksk + v0z; + viz;} (3.19)
k=1
where §; is the overall effect for the i** diagnostic category, Ti; is the effect of “season” k in
diagnosis %, 7o is the common pollution effect, and 7; is the pollution effect specific to the it

diagnostic category. The values of the coefficients used in the simulations are:
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,31 = 10g075 ﬂg =.70 ,33 = 1.6
11 = 0.2 T21 = 0.2 T31 = 0.2
Ti2 = 0.2 T2 = 0.2 T32 = 0.3

13 = —-0.2 T3 = -0.4 T33 = —0.4
T14=0 T24=0 T34 =0

There were no compelling reasons for the above choices for the season effects other than
to make them separate effects; that is, different for each series. As in the three series simple
case, the null model (no pollution) corresponds to 49 = y; = 72 = 3 = 0 while the common

pollution effect model uses simulated values 79 = 0.1, 737 = 72 = 93 = 0, and the separate

pollution effects model uses yo = 0.1, 7; = 0.1, 42 = —0.2 and v3 = 0.

41

The results of fitting the models from each of these four cases (with the various possible

choices of simulated coefficients, variance function, and dispersion parameter ¢) are presented

in Chapter 4. We begin Chapter 4 with a comparison of the possible estimators of ¢ (as the

remainder of the study depends on a choice of estimator of ¢). For this comparison, only the one

series simple case models were needed as these provide a strong indication that the estimator

X?/df. is preferable to G2/d.1.



Chapter 4

Results of the Simulation Study

In this chapter we describe the results of the investigation of the performance of the estimators

and test statistics. We begin with the comparison of possible estimators for ¢.

4.1 Estimating the Dispersion Parameter ¢

Of particular interest in this comparison are any shortcommings in the performance of the
estimator ¢g = G?/d.f. used in the Prince George study and the possibility that use of the
alternate estimator ¢x = X?2/d.f. in the scaled deviance model reduction test statistic might
have led to different conclusions than those sketched in Chapter 1.

For this investigation single series of data were generated according to the simple model
given by (3.16) using one of the three possible values of 8. Only the reduced model (set v = 0)
was used to generate data, so that u; does not depend on i. As we shall see, the results in even
this most simple of cases indicates the estimator ¢y = X2/d.f. is preferable. Table 1 presents
the mean values and standard deviations of the estimates of ¢ obtained from the two estimators
based on the results of fitting the reduced model. Part A of the table contains the results when
the correct variance function is used to simulate the data, while part B presents the results for
the misspecified variance function, along with the values ¢* where ¢°u; = u; + (¢ — 1)u?. The

values ¢* are the estimated values of ¢ we should see if our incorrectly specified model is still

42
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correctly accounting for the extra variability; that is, ¢* is the amount of dispersion in the data

in terms of the variance function V(u;; ¢) = ¢u; used in the estimating equations.

Table 1. Mean Values of Estimates (+ Standard Deviation) in 1000 Simulated Data Sets.

A. Correct Variance Function.

Simulated ¢

Simulated # Estimator 1 1.4 2 3 5
log0.75 ox 1.002 (.055) 1.401 (.096) 2.001 (.174) 2.996 (.337) -
%) 1.108 (.039) 1.349 (.057) 1.642 (.086) 2.018 (.136) -
0.70 bx 0.998 (.056) 1.400 (.084) 2.002 (.134) 2.983 (.235) -
o 1.137 (.059) 1.515(.074) 2.010 (.097) 2.700 (.139) -
1.60 bx 0.998 (.052) 1.399 (.076) 2.006 (.118) 3.001 (.208) 4.985 (.378)
da 1.046 (.056) 1.447 (.075) 2.035 (.108) 2.938 (.162) 4.537 (.246)
B. Misspecified Variance Function.
Simulated ¢
Simulated 8 Estimator 1 1.4 2 3 5
log 0.75 ¢° 1 1.3 1.75 2.5 -
ox 1.000 (.053) 1.300 (.086) 1.749 (.135) 2.497 (.255) -
%] 1.107 (.038) 1.292 (.051) 1.526 (.072) 1.844 (.112) -
0.70 ¢° 1 1.806 3.014 5.028 -
qéx 1.005 (.054) 1.799 (.114) 2.992 (.248) 5.041 (.535) -
%] 1.143 (.057) 1.854 (.088) 2.705 (.147) 3.823 (.244) -
1.60 ¢* 1 2.981 5.953 10.906 20.812
dx 1.002 (.054) 2.979 (.201) b5.948 (.503) 10.867 (1.14) 20.66 (2.95)
lYe, 1.050 (.058) 2.919 (.159) 5.226 (.310) 8.150 (.552) 12.17 (1.08)

In part A of the table the estimator ¢x provides good estimates of ¢, on average, at all levels

of dispersion. The estimator ¢g appears to slightly overestimate ¢ at low levels of dispersion

and underestimate ¢ in the presence of large amounts of dispersion. The largest differences in

the estimators occur when the level of dispersion is very high relative to the mean value (see,

for example, the simulations with 8 = log0.75 and ¢ = 3). In part B the estimator ¢x yields
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good estimates of ¢*, on average, whereas d¢ produces very poor estimates when the level of
over-dispersion is high. Note that in both parts of Table 1, except perhaps when ¢=1, the
estimator ¢x generally appears substantially more variable than ¢g. This suggests that for
some of the simulated data sets, ¢x may differ noticably from the simulated value of ¢ (and
may be worse than ng) although on average it is clearly superior to ¢g.

To answer the key question of how these differences affect the model reduction test statistics
we use the above data sets (generated under the simple model log y; = ) to evaluate the scaled
deviance statistic using either ¢g or ¢x based on the full model given by (3.16). This model
reduction, a test of the hypothesis H: ¥ = 0, is intended to be an over-simplified representation
of the model reductions tested in the Prince George study. The plots in Figures 1, 2, 3 and
4 present the values of three test statistics; the scaled deviance using @g, the scaled deviance
using ¢x and the empirical score test (which does not depend on an estimate of ¢, see Section
2.2), versus the quantiles of the chi-squared distribution with 1 degree of freedom. Results
are presented only for a simulated mean of 0.75 and for ¢ = 1,1.4,2 and 3; the results for
the other combinations of # and ¢ are qualitatively similar. These plots are intended to judge
how well the test statistics agree with their predicted asymptotic distribution. The score test
is included to allow comparison with a test statistic that has been reported (in a somewhat
different context) to perform reasonably well even in the presence of over-dispersion (Breslow
1990). This statistic is also useful for comparison in this situation because it does not involve
an estimate of the dispersion parameter.

We see that for data sets generated under either the correct variance function (Figures 1

and 2) or the misspecified variance function (Figures 3 and 4), the use of the estimator ¢g
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Figure 2. Comparison of Estimators of Phi: Correct Variance Simulations (Phi=2 or 3)
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Figure 3. Comparison of Estimators of Phi: Misspecified Variance Simulations (Phi=1 or 1.4)
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Figure 4. Comparison of Estimators of Phi: Misspecified Variance Simulations (Phi=2 or 3)

G2 estimator of phi
mean=0.75 and phis2

X2 estimator of phi
mean=0.75 and phi=2

Score test
mean=0.75 and phi=2

®
© - g
s .g
. ] o
3 2 /
& ° -
<« / g‘
5
: o
o o/
; ; ‘; : I'O ; ; 8 I'O 0 4 8 8 10
quanties of chi square(1) quantiles of chi square(1) quantiles of chi square(1)
G2 estimator of phi X2 estimator of phi Score test
mean=0.75 and phi=3 mean=0.75 and phi=3 mean=0.75 and phi=3
'y
w
2] *1
° 2
3
g e 4
3 2
H i
& ®
2 4 :‘é, 3 .
-.—‘ ..-' /-
- P >
7 s 1 ~ b P
d ° ~ 7/
w4 ‘/
o 4 o 4 o 4
2 ‘ . 8 10 4 [} 8 10 0 4 [ 8 10

quantiles of chi square{1)

quantiles of chi square(1)

quantiles of chi square(1)




Chapter 4. Results of the Simulation Study 49

causes the scaled deviance test statistic to reject too often at higher levels of over-dispersion.
The scaled deviance test using the estimator ¢x and the empirical score tests agree reasonably
well with their predicted asymptotic distributions, except for obvious departures at the most
extreme values. Similar plots for the other values of # show the same departures of the scaled
deviance statistic using $¢ from its predicted asymptotic distribution while the scaled deviance
using ¢x and the empirical score tests perform well.

Recall that the estimator @x is the most natural estimator of the two, arising as the moment
estimate of ¢, whereas ¢ was used because it was more convenient and thought to generally
agree closely with ¢x. The limited results presented above indicate that ¢ may not agree well
with ¢x and that the latter is preferable, especially when substantial amounts of dispersion
are present in the data. Therefore, in the simulations which follow, when an estimate of ¢ is
required we will always use ¢x.

With reference to the Prince George study, the question that arises is: Would this improved
estimator have led to different conclusions? It appears that use of ¢x would not have changed
the nature of the results outlined in Chapter 1. For the pollutant TRS, in the situations where
we rejected the null hypothesis in favor of a more complex alternative, ¢y was evaluated and
found to be smaller than #¢ (although the results of Table 1 would suggest that ¢x is generally
larger than ¢g), thus the null hypothesis would still be rejected. It appears quite likely the
model reduction process would have led to the same final models and very similar final sets of
estimates.

We now begin to examine the performance of the estimators for parameters and their stan-

dard errors, and the test statistics outlined in Section 2.2.
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4.2 The Simple Case with a Single Series

For a single series we generate data under the reduced model (7 = 0) corresponding to equation
(3.16) at the different possible mean levels and amounts of over-dispersion to be considered.

Table 2 presents the mean values of the estimated regression coefficient under the reduced

model.

Table 2. Mean Values of Estimates of 3.

A. Correct Variance Function.
Simulated ¢

Simulated 8 1 14 2 3 5
log 0.75 -0.287 -0.288 -0.288 -0.289 -
0.7 0.699 0.700 0.699 0.696 -
1.6 1.601 1.600 1.600 1.599 1.598

B. Misspecified Variance Function.
Simulated ¢

Simulated 8 1 14 2 3 5
log 0.75! -0.288 -0.289 -0.290 -0.287 -
0.7 0.700 0.698 0.695 0.702 -
1.6 1.600 1.601 1.600 1.598 1.592

! log0.75 ~ —0.288

For the simulations under the correct variance function, the estimates of 8 are very close
to the simulated values, even in the presence of substantial amounts of dispersion; the same is
true in the misspecified variance simulations. This may not be surprising since in this situation
the estimate of u = exp{f} is just an average of the observed data.

Table 3 summarizes the estimates of the variability of the estimates of 8 under the reduced
model. In this table, “Simulated” standard error refers to the standard deviation of the 1000
parameter estimates. The details of parts A and B of Table 3 are very similar. In all cases the

empirical and model-based estimates are identical to three decimal places — even for extreme
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amounts of over-dispersion. Nor is any difference in the variability of these estimates apparent.

Further, these estimated standard errors accurately reflect the actual standard deviations, even

when the variance function is misspecified. The agreement seen here between the simulated,

empirical and model-based estimates of variability is somewhat surprising. It was expected that

the model-based estimators of the covariance matrices would begin to yield poor estimates as

the dispersion increased, but this is not the case. It appears that in this simple situation the

over-dispersion in the data is being adequately accounted for, even when the variance function

is misspecified; the quantity ¢* presented in part B of Table 1 was estimated very well and

serves the purpose of accounting for the extra variability.

Table 3. Standard Deviations of Estimates of 8
and Mean Values of Estimated Standard Errors (+s.d.).

A. Correct Variance Function

Simulated ¢

Simulated 8 Method 1 14 2 3 5
log0.75 Simulated .043 .051 .062 077 -
Model .044 (.002) .052 (.002) .062 (.003) .075 (.004) -
Empirical | .044 (.002) .052 (.002) .062 (.003) .075 (.004) -
0.70 Simulated .026 .031 037 .046 -
Model .027 (.001) .032 (.001) .038 (.001) .046 (.002) -
Empirical | .027 (.001) .032 (.001) .038 (.001) .046 (.002) -
1.60 Simulated .017 .021 .024 .030 .039
Model .017 (.001) .020 (.001) .024 (.001) .029 (.001) .038(.001)
Empirical | .017 (.001) .020 (.001) .024 (.001) .029 (.001) .038(.001)
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Simulated ¢

Simulated 5 Method 1 14 2 3 5

log0.75 Simulated .042 .050 .059 .069 -
Model .044 (.002) .050 (.002) .058 (.002) .069 (.003) -
Empirical | .044 (.002) .050 (.002) .058 (.002) .069 (.003) -

0.70 Simulated .026 .036 .048 .057 -
Model .027 (.008) .036 (.001) .046 (.002) .060 (.003) -
Empirical | .027 (.008) .036 (.001) .046 (.002) .060 (.003) -

1.60 Simulated 017 .031 .041 .056 .081
Model .017 (.001) .029 (.001) .041 (.002) .056 (.003) .077 (.005)
Empirical | .017 (.001) .029 (.001) .041 (.002) .056 (.003) .077 (.005)

We now turn to the performance of the test statistics for the hypothesis H: v = 0, summa-
rized in Table 4. The observed rejection probabilities presented in this table can be considered
as averages of 1000 Bernoulli trials with success probability p, which we may approximate by
the nominal level. Thus the standard errors of the observed probabilities are approximately
/P(1 = p)/n; for nominal levels of 0.10, 0.05 and 0.01 we may expect standard errors of approx-
imately .009, .007 and .003. For the results in part A of Table 4, keeping the precision of these
observed rejection probabilities in mind, we find that they agree quite well with the nominal
levels at all mean values and even at higher levels of dispersion. We also note the observed
rejection probabilities are very similar across the four tests for each choice of mean and dis-
persion suggesting that any deviations of the observed rejection probabilities from the nominal
levels are a reflection of the particular 1000 data sets generated. The agreement between model
and empirical Wald tests was to be expected given the agreement of the two estimators of the
variances seen in Table 3. In general, the agreement among the four statistics may not be

particularily surprising either. Conventional wisdom would suggest that, over-dispersion aside,
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each of the tests should perform well with a sample size of 700 (although there was some ques-
tion if this was true when the series consist of a large number of zeros such as in the simulations
using B = log0.75). Thus, in light of how effectively the over-dispersion is accounted for, we
should not expect any of the test statistics to do poorly.

The results in the misspecified variance simulations are similar. In these simulations the
agreement between the four tests may seem particularly surprising at first; we might expect the
model-based Wald and the scaled deviance tests to do poorly since they rely on the particular
choice of variance function used to fit the data. However, considering how the choice of variance
function does not seem to matter in this simple case (as noted for Table 3), the above agreement

should not be surprising.
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Table 4. Observed Rejection Probabilities Under Reduced Model.

A. Correct Variance Function
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¢ = =14 ¢ =
Simulated # Test/Method 0.10 0.05 0.01]0.10 0.05 0.010.10 0.05 0.01
log0.75 Wald/Model 105 .041 .010 | .096 .045 .007 | .106 .053 .015
Wald/Empirical | .105 .040 .010 | .097 .046 .005 | .114 .056 .016
Score/Empirical { .102 .040 .010 | .095 .045 .005 | .111 .056 .016
Deviance/Scaled | .106 .041 .010 [ .096 .045 .008 | .108 .054 .015
0.70 Wald /Model .103 .056 .005 | .082 .046 .012].110 .062 .017
Wald/Empirical | .104 .055 .006 | .083 .046 .011|.111 .061 .017
Score/Empirical | .102 .054 .005{.082 .046 .011|.110 .060 .014
Deviance/Scaled | .103 .056 .005 | .082 .046 .013 |.110 .062 .017
1.60 Wald /Model 112 .056 .011 ] .095 .043 .004 | .087 .039 .007
Wald/Empirical | .110 .057 .012].097 .043 .004 | .091 .038 .008
Score/Empirical { .108 .057 .012 | .090 .038 .007 [ .090 .038 .007
Deviance/Scaled | .112 .056 .011 | .087 .039 .007 | .087 .039 .007
¢=3 ¢=5
Simulated # Test/Method 0.10 0.05 0.010.10 0.05 0.01
log0.75 Wald/Model 119 .056 .009 - - -
Wald/Empirical | .122 .059 .011 - - -
Score/Empirical | .117 .054 .009 | - - -
Deviance/Scaled | .121 .056 .011 | - - -
0.70 Wald /Model 114 .061 .013 - - -
Wald/Empirical | .122 .065 .012 | - - -
Score/Empirical | .119 .063 .011 | - - -
Deviance/Scaled | .114 .061 .013 | - - -
1.60 Wald/Model 103 .043 .010 | .092 .043 .009
Wald/Empirical | .096 .048 .013 |.090 .043 .009
Score/Empirical | .095 .045 .010 | .088 .043 .008
Deviance/Scaled | .103 .043 .010 | .092 .043 .009
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Table 4 B. Misspecified Variance Function

p=1 $=14 $=2
Simulated 3 Test/Method 0.10 0.05 0.01]0.10 0.05 0.01]0.10 0.05 0.01
log0.75 Wald /Model 094 .045 009 | .094 .044 .006 | .091 .045 .009

Wald/Empirical | .095 .047 .009 [ .095 .046 .007 |.092 .050 .012
Score/Empirical { .095 .046 .009 [ .094 .046 .006 | .091 .047 .010
Deviance/Scaled | .094 .045 .009 [ .095 .044 .006 | .093 .046 .009

0.70 Wald/Model 091 .050 .016 | .095 .048 .012|.107 .046 .010
Wald/Empirical | .091 .051 .016 { .091 .047 .012|.108 .046 .009
Score/Empirical | .092 .051 .015(.091 .046 .011 |.108 .043 .007
Deviance/Scaled | .091 .050 .017 | .095 .048 .012|.109 .047 .010

1.60 Wald /Model .097 .041 .007 | .103 .052 .009 |.083 .033 .004
Wald/Empirical | .097 .039 .009 {.105 .051 .010|.081 .034 .005
Score/Empirical | .096 .039 .007 | .103 .050 .009 |[.079 .033 .004
Deviance/Scaled | .097 .041 .007 [ .103 .052 .010 {.083 .034 .004

$=3 $=5
Simulated # Test/Method 0.10 0.05 0.01]0.10 0.05 0.01
log0.75 Wald/Model 112 .063 .014 | - - -

Wald/Empirical | .114 .066 .017 | - - ,
Score/Empirical | .110 .062 .015| - - -
Deviance/Scaled | .112 .064 .015| - - -

0.70 Wald/Model 101 .044 .010 - - -
Wald/Empirical |.102 .048 .011| - - -
Score/Empirical | .099 .042 .009 | - - -
Deviance/Scaled | .101 .045 .010| - - -

1.60 Wald/Model 111 .059 .014 | .102 .056 .011
Wald/Empirical | .114 .066 .016 |.104 .053 .012
Score/Empirical | .108 .059 .013 | .100 .047 .006
Deviance/Scaled | .111 .059 .014 | .102 .056 .012

In summary, for the simulation results when the data is generated under the reduced model
there is no clear difference between the empirical and model-based estimates of variances. Nor
are there any differences among the four model reduction test statistics considered. We will
look to the three series case in Section 4.3 to provide more insight into possible differences in

the estimators and test statistics in this simple situation.
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A limited number of simulations were also carried out using the full model corresponding
to (3.16) to generate the data. In particular, 1000 data sets were generated according to this
model with 8 = log0.75 and one of vy = 0.05, 0.10, or 0.15. The estimation of ¢, 5 and v were of
interest as well as power for testing the hypothesis H:y = 0. The mean values of the parameter
estimates are summarized in Table 5. First consider part A of the table, corresponding to
simulations where the data were generated with the correct variance function. In all cases (that
is, all combinations of simulated ¢ and ) the estimators yield good estimates. The mean values
of both model and empirical versions of the estimated standard errors (not presented here) are
in close agreement with the displayed standard deviations. The standard errors of the estimates
increase as the dispersion increases as would be expected. Notice that the estimates of ¢ (and
their standard deviations) are almost identical to the corresponding quantities for ¢x in part
A of Table 1 (which were based on data generated using the reduced model).

In part B, we see that # and v are estimated very well at all levels of dispersion considered.
To determine what the estimates of ¢ should be, first note that in these misspecified variance
simulations, the amount of extra variability varies as the covariate z;, and thus the mean values
pj> vary. In the present situation, the average of the ¢3 (where p;¢5 = p; + (¢ - 1)u?) for each
cell in part B of Table 5 are the same to two decimals as the values ¢* from part B of Table 1.
It is therefore reasonable that the estimates of ¢ are close to the estimates in part B of Table

1, and again ¢x is accounting for the extra variability very well.
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Table 5. Mean Values of Estimated Parameters (£ s.d.) Under Full Model.

A. Correct Variance Function

Simulated ¢

Simulated ¥y Parameter 1 1.4 2 3

0.05 ¢ 1.00 (.055) 1.40(.095) 2.00 (.178) 2.97 (.335)
B -.288 (.044) -.289 (.050) -.292 (.064) -.292 (.076)
¥ .049 (.061) .051 (.075) .050 (.087) .053 (.109)

0.10 ¢ 1.00 (.054) 1.40(.093) 1.99 (.179) 2.97 (.323)
Jé; -.288 (.042) -.290 (.051) -.291 (.063) -.293 (.076)
¥ .100 (.063) .098 (.073) .099 (.086) .102 (.110)

0.15 ¢ 1.00 (.054) 1.40 (.096) 2.00 (.171) 2.98 (.323)
Jé] -.288 (.043) -.289 (.051) -.288 (.063) -.293 (.075)
¥ 151 (.062) .149 (.072) .150 (.085) .153 (.109)

B. Misspecified Variance Function

Simulated ¢

Simulated ¥ Parameter 1 1.4 2 3

0.05 ¢ 1.00 (.055) 1.30 (.083) 1.75(.133) 2.49 (.260)
8 -.288 (.044) -.290 (.050) -.292 (.059) -.292 (.069)
¥ .049 (.061) .051 (.069) .055 (.084) .053 (.098)

0.10 ¢ 1.00 (.054) 1.30(.082) 1.75(.134) 2.49 (.258)
B -.288 (.042) -.290 (.050) -.290 (.056) -.294 (.069)
¥ .100 (.063) .102 (.068) .099 (.083) .104 (.102)

0.15 ¢ 1.00 (.054) 1.30(.084) 1.75(.137) 2.50 (.255)
I} -.288 (.043) -.291 (.049) -.291 (.058) -.291 (.070)
0% 151 (.062) .151 (.071) .150 (.081) .151 (.100)
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The observed rejection probabilities under the alternative hypothesis are shown in Table 6

below. The results presented in part A show no difference in the power of the four statistics.
For a given value of v, the observed rejection probabilities decrease as the amount of dispersion
increases (the increased variability in the data makes it more difficult to detect an effect).
The results in part B are very similar. In general, for given values of ¥ and ¢ > 1, the
rejection probabilities are slightly higher in the misspecified variance simulations compared to
the correct variance simulations. Note that for values of p; < 1, such as in these simulations

using B = log0.75 and 7 no larger than 0.15, the value of y; + (¢ — 1)u? (the variance under
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the misspecified formulation) is less than the value of ¢u; (the variance under the correct
formulation). Therefore from our earlier observation that the power decreases as the amount of
variablility in the data increases, we should expect the rejection probabilities in the misspecified
variance to be higher than the correct variance simulations for these values of v and ¢.

In summary, from the results of the simulations under the full model (Tables 5 and 6) the
estimates of ¢ appear reasonable and the regression parameter estimates are close, on average, to
the simulated values. There are also no indications of any differences in the power of the four
test statistics considered. Further, estimated standard errors from the model and empirical
estimators (not presented) were similar, both being very close, on average, to the simulated

values.
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Table 6. Observed Rejection Probabilities Under Full Model.

A. Correct Variance Function
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¢=1 =14 ¢=2 =3
v Test 0 05 .o01|.10 05 01 7(.10 .05 .01].10 .05 .01
.05 Wald/Mod. |.205 .117 .033 |.194 .114 .041|.152 .090 .025 |.152 .089 .025
Wald/Emp. | .204 .117 .035)} .197 .119 .040 | .155 .090 .027 | .151 .086 .025
Score/Emp. { .202 .116 .034 | .197 .118 .038 | .154 .086 .024 | .147 .079 .024
Dev/Scaled | .205 .117 .033|.194 .117 .041].153 .092 .026 | .156 .092 .025
.10 Wald/Mod. | .490 .374 .164 | .348 .247 .116 | .295 .205 .070)}.253 .165 .059
Wald/Emp. | .489 .372 .171].351 .253 .119|.298 .207 .076 | .266 .159 .065
Score/Emp. | .487 371 .164 | .353 .249 .111}.296 .203 .072 | .260 .156 .060
Dev/Scaled | .490 .374 .164 | .349 .247 .117|.296 .207 .074 |.253 .166 .060
.15 Wald/Mod. | .786 .685 .445 | .661 .522 .296 | .529 .404 .186 | .391 .274 .135
Wald/Emp. | .788 .687 .445| .663 .521 .297 | .527 .411 .187 | .402 .274 .136
Score/Emp. | .788 .683 .439 | .662 .518 .287 | .527 .408 .182 | .395 .269 .128
Dev/Scaled | .786 .685 .448 | .663 .523 .300 { .531 .405 .190 ) .391 .277 .136
B. Misspecified Variance Function
¢=1 =14 ¢ =2 =3
v  Test 0 05 01 ].10 W05 .01)].10 .05 .01].10 .05 .01
.05 Wald/Mod. | .205 .117 .033|.193 .111 .024 | .176 .108 .030 | .165 .090 .021
Wald/Emp. | .204 .117 .035|.195 .111 .028 | .174 .112 .032|.161 .087 .020
Score/Emp. | .202 .116 .034 | .189 .107 .026 | .169 .109 .030 | .157 .082 .018
Dev/Scaled | .205 .117 .033|.194 .111 .025|.177 .110 .032|.165 .093 .021
.10 Wald/Mod. | 490 .374 .164 | .407 .291 .123 | .336 .236 .087 |.291 .195 .073
Wald/Emp. | 489 .372 .171( .410 .299 .131 ] .333 .241 .097 |.294 .203 .074
Score/Emp. | 487 .371 .164 | .409 .300 .122 | .328 .233 .088|.291 .192 .066
Dev/Scaled | 490 .374 .164 | .410 .292 .123|.336 .237 .088 |.291 .195 .073
.15 Wald/Mod. | .786 .685 .445 | .680 .579 .337|.585 .455 .218|.470 .340 .158
Wald/Emp. | .788 .687 .445 | .683 .574 .342 | .587 .455 .222| 481 .342 .162
Score/Emp. | .788 .683 .439 | .681 .565 .333 | .584 .450 .209 | .473 .333 .148
Dev/Scaled | .786 .685 .448 [ .680 .580 .339 | .586 456 .219 | .472 .342 .160
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4.3 The Simple Case with Three Series

The results discussed in this section are for three separate series of data generated according
to log-linear models given by (3.17) with one of the two combinations of dispersion parameters
described in Section 3.2 (combination I or II) and one of the two possible variance functions.
For the null model (y0 = 91 = 72 = ¥3 = 0) the parameter values 1 = log0.75 (= -0.288),
B2 = 0.7 and 3 = 1.6 are used to generate the data. The resulting data series are then fit using
this same log-linear model. The mean values of the estimated parameters from 1000 simulated
data sets generated under each of the four possible scenarios (2 combinations of ¢ x 2 variance

formulations) are presented in Table 7.

Table 7. Mean Values of Parameter Estimates.

Variance Function

A. Correct B. Misspecified
Combination of ¢ | Combination of ¢

Parameter I II I 11
¢ 1.997 2.799 4.964 8.333
£ -0.288 -0.289 -0.289 -0.287
B2 0.699  0.699 0.701  0.700
B3 1.599  1.599 1.598 1.594

Intuitively the estimates of ¢ should be approximately equal to the average of the three
dispersion values associated with the three generated data series in each of the 1000 data
sets leading to the results in each of the four scenarios. These averages are 2.0 (combination
I, correct variance), 2.8 (combination II, correct variance), 4.97 (combination I, misspecified
variance) and 8.37 (combination II, misspecified variance). We can see that in each of the four
scenarios, the estimates of ¢ are very close to these corresponding averages. The estimates of

the regression parameters are also excellent in all four scenarios.



Chapter 4. Results of the Simulation Study 61

Table 8 presents the standard deviations of the parameter estimates and the mean values of
the estimated standard errors for the regression parameters. In each column of this table the
empirical estimates agree very well with the simulated standard deviations but the model-based
estimates are most often quite different. The latter are much too large for the parameter 3,
corresponding to the series where the simulated dispersion is lower than the average of the
three series, and too small for 83 corresponding to the series where the simulated dispersion
is larger than the average of the three series. For the regression parameter f;, first consider
the correct variance simulations. We find that with combination I of ¢’s the standard errors
for B, are about right; this appears to be because the simulated ¢ for this series is equal to
the average of the ¢’s for all three series. However, using combination II of ¢’s the simulated
¢ for series 2 is smaller than the average of the ¢’s for all three series and the model-based
standard error is distinctly larger than the standard deviation of the parameter estimates. In
the misspecified variance simulations, we also find the model-based standard error to be larger
than the standard deviation of the parameter estimates because the simulated ¢ for series 2
is smaller than the average of the ¢’s in these cases. Clearly the empirical estimator is better
in each of these cases (for both combinations of ¢ and for both variance formulations) and
accurately reflects the true variability of these parameter estimates, even with the misspecified

variance function.
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Table 8. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (+s.d.).

Variance Function
A. Correct B. Misspecified
Combination of ¢ Combination of ¢
Parameter Method I I I II
¢ Simulated .084 144 .399 .976
£ Simulated .042 .052 .042 .050
Model .062 (.002) .073 (.003) | .097 (.004) .126 (.008)
Empirical | .044 (.002) .052 (.002) | .044 (.002) .050 (.002)
Ji )} Simulated .038 .038 .046 .047
Model .038 (.001) .045 (.001) | .059 (.003) .077 (.005)
Empirical | .038 (.001) .038 (.001) | .046 (.002) .046 (.002)
Ji 5 Simulated .029 .037 .054 .079
Model .024 (.001) .028 (.001) | .038 (.001) .049 (.002)
Empirical | .029 (.001) .038 (.001) | .056 (.003) .077 (.004)
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Using the data generated under the reduced model, the levels achieved by the four test
statistics under study are examined by considering an alternative model that allows for a com-
mon “pollution” effect (y1 = y2 = 73 = 0, but 7o possibly not zero). The hypothesis to be
tested is H: 79=0. Table 9 presents the observed rejection probabilities of each of the four test
statistics. The precision of the observed rejection probabilities, which should be kept in mind
when interpreting these results, are the same as those reported in Section 4.2. Consider first the
correct variance simulations. In the model reductions for the correct variance simulations, the
model-based tests (model Wald and scaled deviance) clearly reject too often while the rejection
probabilities for the empirical tests (empirical score and empirical Wald) agree quite well with
the nominal levels based on the predicted X?l) critical values. A similar pattern is apparent

in the misspecified variance simulations, although the departure of the model-based tests from
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the nominal levels is considerably more exaggerated than in the correct variance simulations.

Table 9. Observed Rejection Probabilities: Common Pollution to No Pollution Model.

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I II 1 II
Test 0.10 0.05 0.01)0.10 0.05 0.01}0.10 0.05 0.01)0.10 0.05 0.01

Wald/Mod | .159 .099 .019 |.173 .102 .039 | .180 .104 .045] .226 .139 .060
Wald/Emp | .114 .057 .004 | .110 .058 .014 | .089 .054 .016 |.108 .062 .012
Score/Emp | .114 .056 .004 | .109 .058 .014 | .088 .053 .012|.102 .057 .011
Dev/Scaled | .159 .099 .018 | .172 .102 .039 | .180 .104 .044 | .227 .139 .060

Thus in this multiple series situation (without any pollution effects at this time) we find a
clear difference between the empirical and model-based estimates of variance, with the empirical
estimator being preferable. Correspondingly we find that the model-based test statistics are
inferior to the empirical test statistics. Given the differences in the variance estimates, the
fact that the empirical Wald is preferable to the model Wald test is not surprising. Nor is it
surprising that the empirical score test performs well in all cases since it performed well even
under misspecified variances in the study described in Breslow (1990). What is interesting is
the very close agreement agreement between the model Wald and scaled deviance tests and
between the empirical score and empirical Wald tests. Conventional wisdom would suggest
the Wald tests might be inferior to the other two tests, but we see that the model Wald gives
observed rejection probabilities that are almost exactly the same as the scaled deviance test and
the empirical Wald gives observed rejection probabilities that are almost exactly the same as
the empirical score test. It seems that the test statistics which rely on a dispersion parameter

to account for extra variability perform poorly, while those that estimate the extra variability



Chapter 4. Results of the Simulation Study 64

empirically perform much better.

A set of simulations with data generated according to the model with a common pollution
effect (71 = v2 = 73 = 0, but 7o non-zero in (3.17)) were also carried out. Recall that the
value chosen for < is 0.10. Table 10 presents the mean values of the parameter estimates for
the data sets generated in this fashion. The estimates of the f; are very good in each column
of the table as are the estimates of 9. The estimates of ¢ are close to the estimates seen in
Table 7 as we would expect given that in each case, the average of the dispersions is close to

the averages encountered in the simulations under the null hypothesis.

Table 10. Mean values of Parameter Estimates.

Variance Function

A. Correct B. Misspecified
Combination of ¢ | Combination of ¢

Parameter I II I II
¢ 1.998 2.799 4.970 8.325
B -0.289 -0.292 -0.288 -0.292
B 0.699 0.701 0.699 0.699
B3 1.599  1.599 1.597 1.591
Yo 0.100 0.101 0.098  0.098

The standard deviations of the above estimates and the mean values of the estimated stan-
dard errors for the regression parameters are given in Table 11. The model-based estimates of
the standard errors for the 3; show the same behavior as in Table 8 with the estimate being too
large when the parameter corresponds to a series with simulated ¢ lower than ¢ and too small
when the parameter corresponds to a series with simulated ¢ larger than ¢. The empirical
estimator on the other hand, agrees very well with the simulated standard deviations. Notice
that the model-based estimates of the standard error of 7 are too low throughout the table.

Recall that the rejection probabilities were too high for the model-based test statistics in Table
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9. This suggests that the standard errors of the estimates of v were lower than expected in

the simulations under the null hypothesis as well.

Table 11. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (+s.d.).

Variance Function
A. Correct B. Misspecified
Combination of ¢ Combination of ¢
Parameter Method I II I 1I
¢ Simulated .086 .144 395 967
b1 Simulated .043 .053 .040 .052
Model .062 (.002) .073 (.003) | .097 (.004) .126 (.008)
Empirical | .044 (.002) .052 (.002) | .044 (.002) .050 (.002)
B2 Simulated .038 .038 .046 .049
Model .038 (.001) .045 (.001) | .059 (.003) .077 (.005)
Empirical | .038 (.001) .038 (.001) | .046 (.002) .046 (.002)
B3 Simulated .029 .037 .058 .079
Model .024 (.001) .028 (.001) | .038 (.001) .049 (.002)
Empirical | .029 (.001) .038 (.001) | .056 (.003) .077 (.004)
Yo Simulated .030 .038 055 076
Model .027 (.001) .032 (.001) { .043 (.002) .056 (.003)
Empirical | .031 (.001) .038 (.002) | .054 (.002) .072 (.006)

We now examine the results of evaluating the four test statistics based on an alternative
hypothesis that includes common and separate “pollution” effects for each series. Thus these
model reductions, from the model with separate effects to the one with a common pollution
effect (which was used to generate the data), represent the separate to common effects reductions
described in the Prince George study. Note that these tests, the results of which are summarized
in Table 12, are the first discussed in this thesis involving reduction by more than one parameter

(and are thus the first that involve estimates of covariance in the Wald and score test statistics).



Chapter 4. Results of the Simulation Study 66

In the correct variance simulations the empirical test statistics achieve levels close to the
nominal rejection probabilities with combination I of ¢ and still quite close with combination
IT (keeping in mind the precision of these observed rejection probabilities discussed above).
The levels of the model-based test statistics are clearly too low under both combinations of ¢.
Even with the misspecified variance formulation, the empirical test statistics achieve levels close
to nominal; while the rejection probabilities may be slightly too large at the 0.10 level under
combination II, overall the agreement is good. The levels of the model-based test statistics are
far too low at the 0.10 and 0.05 nominal levels under both combinations of ¢, although it is not

clear how they do at the 0.01 level.

Table 12. Observed Rejection Probabilities: Separate to Common.

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I II I II
Test 0.10 0.05 0.01 {0.10 0.05 0.010.10 0.05 0.01)0.10 0.05 o0.01

Wald/Mod | .076 .035 .006 | .062 .026 .001 |.067 .036 .005]|.056 .029 .009
Wald/Emp | .100 .051 .011 |[.092 .049 .010|.104 .057 .006 | .117 .052 .014
Score/Emp | .099 .049 .008 | .088 .049 .008 | .100 .055 .006 | .113 .051 .010
Dev/Scaled | .077 .035 .006 [ .062 .027 .001 |.067 .036 .006 | .056 .030 .009

We also examine the power of the four tests in this multiple series situation in Table 13
by considering the reduction from the common pollution effect to no pollution effects (the null
model). The power for the two model-based tests are virtually identical throughout the table
and the two empirical tests achieve similar power. However, the rejection probabilities for the
model-based tests are higher than the empirical tests presumably as a result of the standard

error of g being underestimated in the former tests (see Table 11).
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Table 13. Observed Rejection Probabilities: Common to Null.
Variance Function
A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I I I I

Test 0.10 0.05 0.01 {0.10 0.05 0.01|0.10 0.05 0.01|0.10 0.05 0.01
Wald/Mod | .958 .925 .834 | .891 .827 .687 |.695 .598 .404 | .542 .447 .271
Wald/Emp | .941 .890 .751 | .837 .767 .537|.570 445 .226|.399 .293 .111
Score/Emp | .941 .891 .751|.837 .765 .535|.567 .436 .213].394 .283 .100
Dev/Scaled | .958 .925 .835 | .891 .828 .688 |.695 .599 .406 | .542 .447 .274

The final model to be considered for generating data in this three series simple case is

the model with separate pollution effects. Recall the value chosen for g is again 0.10, while

v1 =0.10, 92 = —0.20 and v3 = 0. Results of fitting the full model to these data sets are

summarized in Tables 14, 15 and 16 which follow.

The mean values of the parameter estimates (see Table 14 below) are very close to the correct

values, even in the misspecified case with substantial amounts of dispersion. The estimates of ¢

are very close to the values seen in Tables 7 and 10, which is still to be expected because, even in

the misspecified variance simulations, the average of the dispersion values over the entire 2100

observations is approximately equal to the averages in the corresponding simulations under

either the null or the common pollution effect model.
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Table 14. Mean Values of Parameter Estimates.

Variance Function
B. Misspecified

A. Correct

Combination of ¢

Combination of ¢

Parameter I I 1 I

¢ 1.997  2.799 4.962 8.326
Jo1 -0.290 -0.289 -0.290 -0.289
B2 0.699 0.700 0.700 0.698
B3 1.598 1.597 1.595 1.593
%Yo 0.098 0.102 0.102 0.096
01 0.101  0.096 0.100 0.102
¥2 -0.195 -0.200 -0.197  -0.195
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The estimates of the standard errors are summarized in Table 15. In each of the columns

of this table the empirical estimator is very close, on average, to the simulated standard devia-

tions. Again the model-based estimator overestimates the standard errors for parameters which

correspond to the series with dispersion lower than ¢ (most notably 8; and ;) and underes-

timates the standard errors corresponding to the series with dispersion larger than é (most

notably (33). It would seem that the low rejection probabilities in Table 12 for the model-based

test statistic can be explained by the general overestimation of the standard error of ;.
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Table 15. Standard Deviations of Estimates
and Mean Values of Estimated Standard Errors (+s.d.).

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
Parameter Method I II 1 II
¢ Simulated .085 142 393 966
Ji 1 Simulated .044 .054 .042 .050
Model .062 (.002) .073 (.003) | .098 (.004) .127 (.008)
Empirical | .044 (.002) .052 (.002) | .044 (.002) .050 (.002)
B2 Simulated .039 .037 .047 047
Model .038 (.001) .045 (.001) | .059 (.003) .077 (.005)
Empirical | .038 (.002) .038 (.001) | .046 (.002) .046 (.002)
03 Simulated .029 .039 .056 .076
Model .024 (.001) .028 (.001) | .038 (.001) .049 (.002)
Empirical | .029 (.001) .038 (.001) | .056 (.003) .077 (.005)
o Simulated .042 .054 .078 113
Model .034 (.001) .040 (.001) | .054 (.002) .069 (.007)
Empirical | .041 (.002) .054 (.003) | .079 (.005) .109 (.011)
" Simulated 074 .090 .098 133
Model .094 (.003) .111 (.004) | .148 (.006) .191 (.011)
Empirical | .075 (.003) .090 (.003) { .100 (.004) .130 (.009)
Y2 Simulated 071 .076 .102 131
Model .063 (.002) .075 (.002) | .100 (.004) .129 (.007)
Empirical | .067 (.002) .076 (.003) | .102 (.005) .127 (.012)

69



Chapter 4. Results of the Simulation Study 70

Table 16. Observed Rejection Probabilities: Separate to Common.

Variance Function

A. Correct Variance Function B. Misspec. Variance Function
Combination of ¢ Combination of ¢
I II I II
Test 0.10 0.05 0.010.10 0.05 0.010.10 0.05 0.01]0.10 0.05 0.01

Wald/Mod | .936 .890 .741 (.870 .786 .558 | .621 .465 .222|.340 .218 .088
Wald/Emp | .962 .932 .822 | .944 .889 .747|.911 .858 .685|.880 .791 .593
Score/Emp | .962 .929 .818 | .945 .888 .745|.909 .854 .671 | .879 .786 .578
Dev/Scaled | .936 .891 .743|.870 .789 .560 | .623 .468 .227 | .341 .218 .088

In Table 16 we examine the power of the four test statistics under consideration in testing
the reduction from the separate pollution effects simulated in these data sets to a model with a
common pollution effect. The model-based test statistics have lower power than the empirical
tests in all of the above cases. The difference is most noticable in the cases where the standard
errors of v; were seriously overestimated, such as the misspecified variance simulations.

In all of the simulations in this three series simple case, in contrast to the one series sim-
ulations, it is clear that the empirical estimate of the covariance matrix for the regression
parameters is superior to the model-based estimate. As for the observed levels of the four test
statistics under consideration, we find that the model-based test statistics reject too often in
some instances, and not as often as predicted by theory in other cases, whereas the empirical
test statistics always achieve levels close to the nominal rates. Throughout we have found very
close agreement between the model Wald and scaled deviance tests and between the empirical
score and empirical Wald tests. It appears that, in these simple simulations, the two model-
based test statistics that rely on a dispersion parameter to account for the extra variability
perform poorly, while the empirical test statistics (which do not rely on the correctness of a

specified model to estimate the variance-covariance matrix) perform much better.
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4.4 The More Complicated Case with a Single Series

We now wish to study the performance of the estimators and test statistics when we generate
data using the more complicated model for a single series, described by (3.18), that includes
season effects. For the purpose of simulating data under the reduced model, the values 73 =
72 = 0.25, 73 = —0.5 and 74 = 0 (with ¥ = 0) were used. Table 17 presents the mean values
of the parameter estimates from fitting the reduced model to each of the 1000 simulated data

sets.

Table 17. Mean Values of Estimated Parameters Under Reduced Model.

A. Correct Variance

Simulated ¢
Simulated § Parameter 1 1.4 2 3 5
log0.75 ¢ 1.00 139 1.98 2.96 -
B8 -.291 -.286 -.295 -.292 -
T 253 245 253 .247 -
Ty 252 .238  .250 .253 -
T3 -498 -.513 -.513 -.520 -
0.70 ¢ 997 140 1.99 298 -
B8 .699 .697 .698 .695 -
5 246 250 247  .252 -
o 250 .253 250 .250
T3 -499 -501 -.501 -.508 -
1.60 3 997 140 2.01 298 4.97
I} 1.60 160 160 1.60 1.60
T 251 .249  .247 251  .246
T2 250 .250 248 .249 .251
T3 -.503 -.501 -.502 -.504 -.499
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Table 17 B. Misspecified Variance

Simulated ¢
Simulated § Parameter 1 14 2 3 5
log 0.75 ¢ 1.00 131 1.77 2.54 -
B -.287 -.292 -.297 -.296 -
T 245 246 256 .248 -
T 246 251 .258  .256 -
T3 -.507 -.503 -.503 -.507 -
0.70 ¢ 1.00 1.83 3.07 5.15 -
Jo} 702 695 .699  .698 -
5] 247 253 244 246 -
T2 245 254 244 248
T3 -.505 -.501 -.506 -.502 -
1.60 ¢ 1.00 3.06 6.15 11.22 21.09
Jo) 1.60 160 160 1.59 1.58
T 249 2562 249 252  .263
Ty 248 249  .248  .255 .258
T3 -.500 -.500 -.505 -.497 -.495

In part A of the table, the correct variance simulations, the estimates ¢ are very close to
the simulated values in each column of the table. The regression parameter estimates (4 and
7;) are also quite good (correct to 1 decimal) even when dispersion is high relative to the mean.
There are cases where the estimates appear to be a bit off (for example, the simulations with 3
=10g0.75 and ¢ > 1.4), but the regression parameter estimators have substantially higher vari-
ances than in the simple simulations of the previous sections (compare the standard deviations
of these estimates provided in Table 18 below with those in Table 3), so it is not unreasonable
that the mean value from 1000 simulated data sets differs slightly from the simulated value.

We now consider the misspecified variance results in part B of the above table. Here the
values of ¢ are roughly what they were in the one series simple case. This follows because the
four seasons are like four short series with different mean levels and therefore different levels of

dispersion. Results from the three series simple simulations (Section 4.3) suggest the average
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of those levels of dispersion is what is being estimated estimated by the overall estimator .
Because the 7; were chosen so that } ;7 = 0, the average is approximately the same as the
amount of dispersion in the one series simple simulations of Section 4.2 (slightly different because
the mean levels of the four “series” don’t quite average out to the overall mean; y_; exp{8 + ;}
does not equal exp{}";(8 + 7:)} = exp{B}). Thus the estimates of ¢ in the above table are as
we would expect. More importantly, the mean values of the regression parameter estimates are
quite close to the simulated values at all levels of dispersion and for all choices of 3.

The standard deviations of the parameter estimates and the mean values of the standard
errors of the regression parameters are summarized in Table 18. In the correct variance simu-
lations (part A of the table), the empirical and model-based estimators are very close to each
other in all cases, and agree well with the actual standard deviations of the parameter estimates.
There is one instance ( = 1og0.75 and ¢ = 3) when the mean values of the estimated standard
errors for all the regression parameters are slightly lower than the standard deviations. This
could be a suggestion that the estimators underestimate the standard errors when there is a
large amount of dispersion and low overall mean level, but could also just be chance. In any
case, there is no strong evidence that the empirical estimator particularly underestimates the
standard errors in general as expected a priori (based on conventional wisdom), or at least
not any more so than the model-based estimator. Overall there is no real difference in these
estimated standard errors. Note however that the model-based estimated standard error is
uniformly less variable than that based on the empirical estimator (although the difference is

small in this particular situation).
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In the misspecified variance simulations there may be a problem with the model-based
estimator similar to the problems in the three series simple case simulations of Section 4.3. If we
think of the four seasons as four short series, then under the misspecified variance formulation,
the four series, with different mean levels, have different amounts of dispersion. In particular,
the simulated dispersion for the data in the third season will be quite a bit lower than for the
other seasons. The “overall” estimate ¢ will be larger than the amount of dispersion simulated
for this season which might explain why the model-based estimates of standard errors for 73 are
too high on average. This same argument would suggest that the standard errors for #; and 7,
would be too low since these “series” have the highest means and therefore the most dispersion
so that ¢ will be lower than the amount of dispersion simulated in these series. There is some
suggestion of this as well in part B of Table 12.

As for the empirical estimator, overall it appears to estimate the standard deviations of
the parameters much better than the model-based estimator. There is no clear evidence that
this estimator consistently underestimates the standard errors of the regression parameters
although whenever the average of the empirical estimates differs to any appreciable extent from

a simulated standard deviation, this average does appear to be too low.
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Table 18. Standard Deviations of Estimates and Mean Values of Estimated Standard Errors (+s.d.).

A. Correct Variance Function

Simulated ¢

Simulated 4 Parameter Method 1 1.4 2 3 5
log0.75 ¢ Simulated .056 .097 175 .326 -
B Simulated .086 .103 124 .153 -
Model .088(.004) .103(.006) .123(.009) .150(.012) -
Empirical | .087(.006) .103(.008) .123(.011) .150(.015) -
T Simulated 118 .135 .165 .206 -
Model .117(.005) .138 (.006) .165 (.009) .201(.013) -
Empirical | .116(.006) .137 (.007) .164 (.010) .200(.014) -
Ty Simulated 115 .135 .164 .205 -
Model .117(.005) .138 (.006) .165 (.009) .201(.013) -
Empirical | .116(.006) .137 (.007) .164 (.010) .200(.014) -
T3 Simulated .142 .166 .205 .258 -
Model .143(.007)  .168(.009) .202(.012) .247(.019) -
Empirical | .142(.008) .168(.010) .201(.014) .244(.021) -
0.70 ¢ Simulated .056 .087 .136 .245 -
B Simulated .055 .064 077 .093 -
Model .053(.002) .063(.003) .075(.004) .092(.005) -
Empirical | .053(.003) .063(.004) .075(.005) .092(.007) -
T Simulated .074 .087 .097 121 -
Model .071(.002) .084 (.003) .100 (.004) .123(.005) -
Empirical | .071(.003) .084 (.004) .100 (.005) .122(.006) -
T2 Simulated 072 .085 101 123 -
Model .071(.002) .084 (.003) .100 (.004) .123(.006) -
Empirical | .071(.003) .084 (.004) .100 (.005) .122(.006) -
T3 Simulated .089 .103 123 .153 -
Model .087(.003) .103(.004) .123(.005) .150(.007) -
Empirical | .086(.004) .102(.005) .122(.006) .149(.009) -
1.60 ¢ Simulated .054 .078 122 .200 .388
] Simulated .034 .042 .047 .060 077
Model .034(.001) .040(.001) .048(.002) .059(.002) .076(.004)
Empirical | .034(.002) .040(.002) .048(.003) .059(.004) .076(.005)
T Simulated .046 .056 .062 .081 105
Model .045(.001) .054 (.002) .064 (.002) .078(.003) .101(.004)
Empirical | .045(.002) .053 (.002) .064 (.003) .078(.004) .101(.005)
Ty Simulated .045 .054 .063 .079 .102
Model .045(.001) .054 (.002) .064 (.002) .078(.003) .101(.004)
Empirical | .045(.002) .053 (.002) .064 (.003) .078(.004) .101(.005)
73 Simulated .057 .067 .078 .100 .126
Model .055(.002) .065(.002) .078(.003) .096(.004) .123(.006)
Empirical | .0565(.002) .065(.003) .078(.003) .095(.005) .123(.007)




Chapter 4. Results of the Simulation Study

Table 18 B. Misspecified Variance Function

Simulated ¢
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Simulated 4 Parameter Method 1 14 2 3 5
log0.75 ¢ Simulated .052 .087 .140 253 -
B8 Simulated .088 .101 .116 139 -
Model .087(.005) .100(.006) .117(.008) .140(.011) -
Empirical | .087(.006) .099(.008) .115(.009) .137(.013) -
T Simulated 119 137 .162 .196 -
Model .117(.005) .134 (.006) .156 (.008) .186(.011) -
Empirical | .116(.006) .135 (.007) .157 (.009) .190(.012) -
To Simulated 118 .136 .165 .192 -
Model .117(.005) .134 (.006) .156 (.008) .186(.011) -
Empirical | .116(.006) .134 (.007) .157 (.009) .189(.012) -
T3 Simulated .140 157 .185 208 -
Model .143(.007)  .163(.009) .191(.011) .228(.016) -
Empirical | .142(.008) .158(.010) .178(.011) .207(.015) -
0.70 ¢ Simulated .054 120 .261 .525 -
8 Simulated .055 .072 .094 125 -
Model .053(.002) .072(.003) .093(.005) .121(.009) -
Empirical | .053(.003) .071(.005) .091(.007) .118(.011) -
ra Simulated 073 .100 132 172 -
Model .071(.002) .096 (.004) .125 (.006) .161(.009) -
Empirical | .071(.003) .097 (.005) .128 (.007) .165(.010) -
Ty Simulated 071 .099 .130 .165 -
Model .071(.002) .096 (.004) .125 (.006) .161(.009) -
Empirical | .071(.003) .098 (.004) .127 (.007) .165(.011) -
T3 Simulated .090 111 .146 A77 -
Model .087(.003) .118(.005) .152(.008) .197(.012) -
Empirical | .087(.004) .109(.005) .136(.008) .173(.011) -
1.60 ¢ Simulated 057 209 525 1.23 2.96
] Simulated .034 .059 .084 118 .155
Model .034(.001) .059(.002) .084(.005) .114(.008) .157(.014)
Empirical | .034(.002) .058(.004) .082(.006) .110(.010) .152(.017)
) Simulated .047 .083 118 .165 217
Model .045(.001) .079 (.003) .112 (.005) .152(.008) .210(.015)
Empirical | .045(.002) .081 (.004) .115(.006) .156(.010) .215(.017)
n Simulated .046 .081 119 .159 214
Model .045(.001) .079 (.003) .112 (.005) .152(.008) .210(.015)
Empirical | .045(.002) .081 (.004) .115 (.006) .156(.010) .215(.018)
T3 Simulated .055 .090 122 .164 221
Model .055(.002) .097(.004) .137(.007) .186(.013) .256(.020)
Empirical | .055(.002) .087(.004) .120(.006) .159(.012) .218(.018)
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In the next table we present the observed rejection probabilities for the four test statistics
under study in each of the combinations of # and ¢ considered above. Here the alternate
model (to be fit to the data sets generated under the reduced model) includes the sinusoidal
“pollution” covariate. In the correct variance simulations the model Wald and scaled deviance
tests give almost identical results in all simulations. The empirical tests are not as similar
(either to each other or to the model-based tests), but overall there appears to be little to
distinguish any of the tests. The observed rejection probabilities are reasonably close to the
nominal levels in almost all cases. Possible exceptions might be the simulations with 8 = 1.60
and either of ¢ = 1 or ¢ = 3, but these are likely just chance deviations from the nominal levels.

In the misspecified variance simulations we also find the model Wald and scaled deviance
tests to be almost identical in their observed rejection probabilities. In general the score test
appears most conservative and it seems to get more conservative (relative to the others) as the
amount of dispersion increases. This makes it look like it is performing better than the others
when the others reject too often and it looks worse when the others reject at about the nominal
rate.

As a side note, based on the model-based standard errors of Table 18, we might look carefully
at the empirical Wald test to see if it rejects too often, since it seemed the empirical estimates of
the standard errors of some of the #; were too small, which might imply that the standard errors
of the coeflicient of the pollution covariate could be underestimated. The empirical Wald test
does reject more often than the score test in general, but it occasionally rejects less often than
the model-based tests so that no general conclusion regarding its performance can be reached

from these results.
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Table 19. Observed Rejection Probabilities Under Null Hypothesis.

A. Correct Variance Function
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p=1 =14 ¢ =2
Simulated # Test/Method 0.10 0.05 0.01]0.10 0.05 0.01]0.10 0.05 0.01
log 0.75 Wald /Model .093 .060 .011}.112 .056 .012).110 .052 .014
Wald/Empirical | .098 .063 .013 |.114 .057 .010|.115 .053 .012
Score/Empirical | .098 .062 .012|.112 .055 .009 |{.110 .047 .011
Deviance/Scaled | .093 .060 .011}.111 .058 .012].110 .053 .014
0.70 Wald/Model 100 .052 .014 | .099 .045 .008 | .098 .052 .013
Wald/Empirical | .101 .049 .012|.102 .044 .010|.101 .056 .011
Score/Empirical | .095 .047 .012].099 .044 .010 {.097 .053 .011
Deviance/Scaled | .100 .052 .014 | .099 .044 .008 | .098 .052 .013
1.60 Wald/Model 115 .054 .011).092 .040 .011}.109 .053 .009
Wald/Empirical | .121 .055 .011 |.091 .041 .012|.111 .053 .010
Score/Empirical | .119 .053 .010 | .091 .041 .010 [.109 .053 .008
Deviance/Scaled | .115 .055 .011|.092 .040 .011 |{.109 .054 .009
¢=3 p=5

Simulated 8 Test/Method 0.10 0.05 0.01 [0.10 0.05 0.01

log0.75 Wald/Model 112 .062  .012 - - -

Wald/Empirical | .118 .066 .016 - - -

Score/Empirical | .111 .059 .011 | - - -

Deviance/Scaled | .113 .062 .012 | - - -

0.70 Wald/Model 099 .048 .009 | - - -

Wald/Empirical | .107 .048 .013 | - - -

Score/Empirical | .101 .045 .007 | - - -

Deviance/Scaled | .100 .047 .009 | - - -

1.60 Wald/Model 121 062 .014 | .105 .048 .010

Wald/Empirical | .125 .063 .015 (.108 .057 .012

Score/Empirical | .123 .057 .014 | .106 .051 .009

Deviance/Scaled | .121 .062 .014 | .106 .049 .010
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Table 19 B. Misspecified Variance Function
$=1

¢p=14 ¢
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Simulated 5 Test/Method 0.10 0.05

0.01|0.10 0.05 0.01]0.10 0.05 0.01

Tog0.75 Wald/Model 110 .051
Wald/Empirical | .113 .055
Score/Empirical | .111 .052
Deviance/Scaled | .110 .052

0.70 Wald/Model 095

Deviance/Scaled | .095

1.60 Wald/Model 101 .051
Wald/Empirical | .102 .054
Score/Empirical | .102 .053

.049
Wald/Empirical | .098 .051
Score/Empirical | .095 .051
.049

.005 | .112 .049 .004 | .111 .058 .010
005 | .111 .047 .004 | .112 .059 .007
.005 | .110 .042 .004 | .109 .055 .005
.005 | .112 .049 .004 | .111 .059 .010

.009 | .105 .049 .010].109 .060 .013
.013 | .103 .048 .008 | .099 .055 .015
.011 | .100 .046 .007 | .094 .057 .013
.009 | .105 .048 .009 | .109 .060 .013

.010 } .102 .053 .013 | .105 .052 .010
.011 { .102 .046 .011 | .098 .046 .008
.010 | .099 .045 .010 | .092 .045 .008

Deviance/Scaled | .101 .051 .010|.103 .053 .013].104 .053 .011
=3 6=5
Simulated # Test/Method 0.10 0.05 0.01]0.10 0.05 0.01
log0.75 Wald /Model 113 .059 .010 - - -
Wald/Empirical | .110 .056 .010 [ - - -
Score/Empirical | .102 .052 .007 | - - -
Deviance/Scaled | .113 .060 .011 | - - -
0.70 Wald/Model 102 .052 .018 - - -
Wald/Empirical | .093 .049 .014 | - - -
Score/Empirical | .087 .046 .013| - - -
Deviance/Scaled | .103 .053 .018 [ - - -
1.60 Wald/Model .108 .056 .016 | .112 .056 .018
Wald/Empirical | .104 .050 .017 | .110 .056 .018
Score/Empirical | .100 .046 .013 | .103 .049 .015
Deviance/Scaled | .108 .057 .016 | .114 .057 .018

We now consider the simulations under the full model (with pollution included). As in the

simple case simulations, we chose to simulate data using only # = log0.75 but with one of

~ = 0.05, 0.10 and 0.15. Table 20 presents the mean values of the estimated parameters from

the simulated data sets generated under the above model.
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Table 20. Mean Values of Estimated Parameters Under
Alternative Hypothesis.

A. Correct Variance Function

Simulated ¢
Simulated v Parameter 1 14 2 3
0.05 ¢ 1.00 1.40 197 294
B8 -.293 -.295 -.311 -.303
51 254 253 274  .256
T 249 251 276  .254
T3 -497 -.503 -.503 -.513
0% .054 .051 .038 .055
0.10 () 1.00 139 197 294
B -.289 -.287 -.304 -.306
T 246 237 259  .258
T2 247 244 .260 259
T3 -.506 -.511 -.510 -.515
v 103 .104  .097  .098
0.15 ¢ 1.00 1.40 1.98 2.94
B8 -.289 -.304 -.300 -.299
5] 248 271 260  .252
Ty 247 272 259  .259
T3 -498 -.511 -.515 -.532
0% 154 1132 147 144

B. Misspecified Variance Function

Simulated ¢
Simulated ¥ Parameter 1 14 2 3
0.05 ¢ 1.00 1.31 1.77 254
B -.293 -.295 -.296 -.293
T 254 253 .250 235
T2 249 252 254 246
T3 -497 -.504 -.504 -.515
v 054 .050 .050 .056
0.10 ¢ 1.00 131 1.79 2.56
B -.280 -.294 -295 -.291
5] 246 250 .248 240
T2 247 251 255 241
T3 -.506 -.505 -.504 -.516
v 103 104 0101 .102
0.15 ¢ 1.00 1.32 1.79 2.57
B -.280 -.298 -.294 -.303
m 248 254 246  .252
To 247 263 246 257
T3 -498 -.501 -.502 -.496
¥ 154 145 149 155
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Before interpreting these results, note that there is non-negligible collinearity between the
continuous pollution covariate and the seasonal indicators. If, in our simulations, two ex-
planatory variables have a substantial positive correlation, one of the corresponding regression
parameters could be estimated to be larger than its simulated (or true) value, while the other
could be estimated to be smaller than its simulated value, with little effect on the goodness-
of-fit. Similarly, both could be estimated to be larger than the simulated values if negatively
correlated. Such deviations from the true values, beyond the normal variation we would expect,
lead to more variability from one set of fitted parameters to another than if the predictors were
not collinear. The sample correlations are approximately 0.52 between the pollution variable
and each of the indicators for the first and second season, and —0.52 between the pollution vari-
able and the indicator for the third season. While such correlations are not a major concern,
they must be kept in mind when examining the results of these simulations.

For the correct variance simulations, the mean values of the regression parameter estimates
are generally close to their simulated values, considering how big the standard deviations of the
parameter estimates are (and thus the standard error of the average of the parameter estimates
as an estimate of the true mean, see Table 21). However, in the cases v = 0.05, ¢ = 2 and
v = 0.15, ¢ = 1.4 the averages of the estimates of 71 and 7, exceed the simulated value by more
than two standard errors (while the estimate of 4 is too small). In the case y = 0.15, ¢ = 3
the estimate of 73 is too small (a large negative value that differs from the true value by more
than two standard errors) with the estimate of v slightly too small, although it differs from the
true value by less than one standard error. Note how the pattern of over and underestimation

agrees with what we might expect when the pollution variable is positively correlated with the
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first two season indicators and negatively correlated with the third. But there is also a hint of a
pattern in the estimates of 73 which has no such plausible explanation; in general, as ¢ increases
across the table, 73 appears to decrease (become a more negative value). The observations in
the third season have the lowest mean values, and as the amount of dispersion increases, there
will be more and more zero values among these observations. We might infer that for large
enough amounts of over-dispersion, this could be causing the estimator to underestimate the
season effect, but with the low degree of precision in the averages of the parameter estimates
we can not conclude whether this is the case, or if the deviations from the simulated values are
just chance.

In the misspecified variance simulations, the regression parameters estimates are very good;
in fact, they appear somewhat better than in the correct variance case. The estimates of ¢ seen
in parts A and B of this table are similar to those in Table 17.

The standard deviations of the parameter estimates in the 1000 simulations and the mean
values of the standard errors of the regression parameters are summarized in Table 21. As in
part A of Table 18, under the correct variance formulation the model and empirical estimates
are very similar. Both estimators are very close to the standard deviations of the parameter
estimates when the dispersion is 1 or 1.4. For simulated dispersions of 2 or 3, the averages of
the estimates are not as close to the simulated values but the differences can be explained by

the variability of the observed standard deviations and the estimated standard errors.
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Table 21. Standard Deviations of Estimates Under Alternative Hypothesis
and Mean Values of Estimated Standard Errors (&s.d.).

A. Correct Variance Function

Simulated ¢

Simulated ¥ Parameter Method 1 1.4 2 3

0.05 ¢ Simulated .054 .099 .166 .326

] Simulated 122 149 A77 221
Model 125(.005) .148(.007) .176(.009) .215(.014)
Empirical | .124(.007) .147(.010) .175(.015) .214(.024)

T Simulated .209 .255 .300 374
Model 212(.007) .251(.010) .298(.013) .364(.020)
Empirical | .211(.012) .249(.017) .296(.026) .362(.041)

T2 Simulated .210 .246 .305 373
Model 213(.007) .251(.010) .298(.013) .365(.020)
Empirical | .211(.012) .249(.018) .296(.026) .364(.042)

T3 Simulated 143 171 194 .261
Model 145(.007)  .172(.009) .205(.012) .251(.019)
Empirical | .144(.008) .171(.011) .203(.014) .247(.021)

¥ Simulated .138 .166 .203 .243
Model .139(.005) .164(.007) .205(.012) .238(.013)
Empirical | .138(.007) .163(.009) .203(.014) .238(.021)

0.10 ¢ Simulated .054 .096 173 321

B Simulated 126 .151 172 224
Model 126(.005) .148(.007) .177(.009) .216(.014)
Empirical | .125(.008) .147(.011) .175(.015) .214(.023)

T Simulated .210 .255 287 .380
Model .212(.008)  .250(.010) .298(.013) .364(.019)
Empirical | .210(.012) .248(.018) .295(.026) .361(.040)

T2 Simulated 217 .250 .289 .385
Model 212(.008) .250(.010) .299(.013) .364(.019)
Empirical | .211(.012) .249(.018) .295(.026) .360(.041)

T3 Simulated 144 174 215 .261
Model .147(.007)  .174(.009) .209(.013) .255(.020)
Empirical | .147(.008) .173(.011) .207(.015) .251(.021)

¥ Simulated 139 .166 .188 .249
Model .138(.005) .163(.006) .195(.009) .237(.012)
Empirical | .138(.007) .162(.010) .193(.014) .236(.022)

0.15 ¢ Simulated .054 .096 178 .332

] Stmulated 128 150 174 223
Model .126(.005) .149(.007) .177(.010) .216(.015)
Empirical | .125(.008) .148(.011) .176(.016) .215(.024)

™ Simulated 220 .251 284 372
Model 211(.007) .250(.010) .298(.013) .363(.020)
Empirical | .210(.012) .248(.017) .296(.027) .361(.040)

T2 Simulated .216 .248 .292 374
Model 211(.007)  .250(.010) .298(.013) .363(.020)
Empirical | .211(.012) .248(.018) .297(.026) .361(.040)

T3 Simulated 152 175 .222 .266
Model .149(.007)  .177(.010) .212(.014) .259(.020)
Empirical | .149(.008) .176(.011) .210(.015) .255(.022)

Y Simulated 141 161 .186 .243
Model .138(.005)  .163(.006) .194(.008) .236(.013)
Empirical | .137(.007) .162(.010) .193(.014) .235(.021)
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Table 21 B. Misspecified Variance Function

Simulated ¢

Simulated ¥ Parameter Method 1 1.4 2 3
0.05 ¢ Simulated .053 .086 144 .259
B Simulated 122 .145 .169 197
Model 125(.005) .143(.007) .167(.008) .199(.012)
Empirical | .124(.007) .142(.010) .166(.013) .199(.020)
L Simulated .209 .245 .292 .351
Model 212(.007) .243(.009) .282(.012) .338(.017)
Empirical | .211(.012) .243(.017) .285(.023) .343(.037)
T2 Simulated .210 .253 .290 .345
Model 213(.007) .243(.010) .283(.012) .338(.017)
Empirical | .211(.012) .243(.017) .286(.024) .343(.037)
T3 Simulated .143 .163 .189 212
Model 145(.007)  .166(.009) .194(.011) .232(.016)
Empirical | .144(.008) .159(.009) .179(.011) .208(.014)
¥ Simulated .138 .167 191 227
Model .139(.005) .159(.006) .185(.008) .221(.011)
Empirical | .138(.007) .159(.009) .186(.013) .225(.020)
0.10 ¢ Simulated .054 .085 143 .264
B Simulated 126 145 172 .203
Model 126(.005)  .144(.007) .168(.009) .201(.012)
Empirical | .125(.008) .143(.010) .167(.014) .199(.020)
T Simulated .210 244 .295 .350
Model .212(.008) .243(.009) .283(.012) .339(.016)
Empirical | .210(.012) .244(.017) .285(.024) .343(.037)
T2 Simulated 217 247 295 .349
Model 212(.008) .243(.009) .283(.012) .339(.017)
Empirical | .211(.012) .243(.017) .286(.025) .342(.037)
T3 Simulated 145 171 190 .220
Model 147(.007)  .169(.009) .197(.012) .237(.017)
Empirical | .147(.008) .162(.010) .182(.01) .210(.015)
¥ Simulated 139 .160 193 227
Model .138(.005) .159(.006) .184(.008) .221(.010)
Empirical | .138(.007) .159(.009) .187(.013) .225(.019)
0.15 ¢ Simulated .054 .084 .146 .259
g Simulated 120 .148 170 .207
Model 126(.005)  .145(.007) .168(.009) .203(.012)
Empirical | .125(.008) .144(.010) .166(.013) .199(.019)
n Simulated .202 .252 .289 .348
Model 212(.008) .243(.009) .283(.012) .340(.017)
Empirical | .210(.012) .244(.017) .284(.023) .342(.035)
T2 Simulated .204 .251 .296 .346
Model .212(.008)  .243(.009) .283(.012) .340(.017)
Empirical .211(.012) .244(.017) .285(.024) .343(.035)
T3 Simulated .148 .168 .183 226
Model .150(.007) .172(.009) .200(.013) .241(.017)
Empirical | .149(.008) .164(.010) .183(.012) .211(.014)
¥ Simulated .136 .165 194 .224
Model .138(.005) .158(.006) .184(.008) .221(.011)
Empirical | .137(.007) .159(.009) .187(.013) .226(.019)
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To estimate the variance of the observed standard deviations, note the following. Because re-
gression parameter estimates are asymptotically normal, if §; is a regression parameter estimate
from the i simulated data set and  is the average of these estimates, then 0=2 Y ;(f; — 5)2,
where o2 represents Var(é;), should have approximately a x2_, distribution. It follows that the
sample variance of these estimates should have variance roughly equal to 204/(n — 1). Using
the delta method we arrive at the approximation Var(s) = 2/[2(n — 1)].

Using this approximation, observed standard deviations of s = 0.3 and s = 0.2 would
have standard errors of approximately 0.0067 and 0.0045 respectively. The mean values of
the estimated standard errors will have approximate standard errors given by their standard
deviations (enclosed in brackets in the table) divided by v/1000. When ¢ is 2 this can be as
large as .027/+/1000 = 0.0009. With these precisions in mind, the observed differences between
the variance estimates and the standard deviations are not too large.

Another approach to determining whether the model-based and empirical standard errors
approximate the simulated standard errors can be based on the increased precision provided by
generating more data sets for a given choice of v and ¢. The following table summarizes the
results of the simulations for the case ¥ = 0.10 and ¢ = 2 as displayed in part A of Table 21,

and the results of five repeats of the simulation experiment using the same v and ¢.
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Parameter Method original repeat 1 repeat 2 repeat 3 repeat 4 repeat 5 | average
B Simulated 172 .169 182 .180 A77 179 177
Model 177 177 77 A77 177 177 177
Empirical 175 175 176 176 176 175 176
m Simulated 287 293 311 .307 .296 .298 299
Model .298 .299 .299 .298 .298 .298 .298
Empirical 295 .296 .296 297 295 .296 .296
T2 Simulated .289 .289 304 .299 297 .300 .296
Model 299 .299 .299 .299 .298 .299 .299
Empirical 295 .296 297 297 297 296 296
T3 Simulated 215 .206 209 215 207 215 211
Model .209 .209 209 .209 .208 209 .209
Empirical 207 207 207 207 207 207 207
0l Simulated .188 .196 .196 197 194 192 194
Model 195 195 .195 195 .194 .195 195
Empirical 193 194 194 193 194 194 194

From the above table we note that in each simulation experiment, the mean values of
the model and empirical estimates of the standard errors are very close to the average of the
simulated standard deviations across the columns of the table. This confirms that the model
and empirical estimators do a good job of estimating the standard deviations of the parameter
estimates.

We now examine part B of Table 21 corresponding to the simulations using the misspecified
variance formulation to generate the data. Here we seem to be seeing the same pattern as in
the simulations using data generated with the reduced model (part B of Table 18). The model-
based estimates appear too large for regression parameters which correspond to “seasons” with
lower than average dispersion and too small for parameters which correspond to “seasons” with
larger than average dispersion. In this situation, with a single pollution covariate, there is
no clear picture of under or overestimation of the standard errors of 7. However, one might

speculate that if the pollution covariate were associated with one of the seasons (such as a
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season X pollution interaction) the standard errors of the regression parameter might be under
or overestimated, depending upon which season the covariate was related to, and this could lead
to unexpected results. As for the empirical estimator, the results suggest the possibility that the
standard errors of the regression parameters tend to be underestimated in these simulations.
Of course, when making these observations we should keep in mind the possibility that the
observed standard deviations of the parameter estimates may differ somewhat from the true
standard deviations. A similar exercise to that carried out in the correct variance simulations
was carried out for these simulations under the misspecified variance for the same combination

v = 0.10 and ¢ = 2. The final column of the table which follows shows the averages of the 6

simulation experiments.

Parameter Method original repeat 1 repeat 2 repeat 3 repeat 4 repeat 5 | average
B Simulated 172 .165 .164 A71 .168 167 .168
Model .168 167 .168 168 .168 167 .168
Empirical 167 .166 .166 .167 .166 .166 .166
5 Simulated 295 .289 287 .288 282 291 .289
Model .283 .282 .283 .282 .282 .282 .282
Empirical .285 .285 .284 .286 .285 .285 .285
P Simulated | .295 .288 .286 293 .286 .289 .290
Model .283 .283 .283 .283 .283 .283 .283
Empirical .286 .285 .285 .286 .285 285 .285
T3 Simulated .190 189 185 .182 .188 190 187
Model 197 196 197 197 197 197 197
Empirical .182 .180 181 181 181 .181 181
0% Simulated .193 .193 192 .185 .190 195 191
Model .185 184 184 184 184 .184 184
Empirical 187 187 187 187 187 187 187

The final column of this table suggests the model-based estimator does underestimate the

standard errors for 1y and 7, and overestimate the standard error for 3. We may also note that

the standard error of 4 is underestimated by the model-based estimator in these simulations.



Chapter 4. Results of the Simulation Study 88

This part of the table is also consistent with the observation that the empirical estimator appears
to slightly underestimate the standard errors. Whether this is true for other combinations of v
and ¢ remains speculation.

In summary, for the correct variance simulations, both the model-based and the empirical
estimators of standard errors perform well. However in the misspecified variance simulations,
there is some evidence that the model-based estimator does not perform well and that the

empirical estimator may underestimate the standard errors slightly.
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Table 22. Observed Rejection Probabilities Under Alternative Hypothesis.

A. Correct Variance Function

89

=1 ¢p=14 ¢ =2 =3
¥  Test d0 05 01].10 05 .01 ] .10 .05 .01 ] .10 .06 .01
.05 Wald/Mod. | .121 .065 .014 | .116 .062 .014 | .121 .066 .012 | .115 .063 .020
Wald/Emp. | .124 .069 .015 { .120 .062 .012 | .127 .072 .014 | .113 .066 .020
Score/Emp. | .124 .070 .014 | .116 .063 .012 | .126 .067 .013 [ .110 .063 .017
Dev/Scaled | .121 .065 .014 | .116 .062 .014 {.122 .067 .013 | .115 .064 .022
.10 Wald/Mod. | .185 .104 .027 ) .170 .102 .030 | .130 .060 .016 ) .150 .087 .018
Wald/Emp. | .196 .110 .030 ( .171 .103 .034 | .129 .068 .018 | .159 .085 .019
Score/Emp. | .196 .108 .028 | .167 .100 .032 | .130 .068 .016 | .156 .081 .017
Dev/Scaled | .185 .108 .027|.176 .104 .030 | .131 .061 .017 ] .151 .089 .020
.15 Wald/Mod. | .298 .191 .076 | .201 .126 .038 | .195 .111 .019 ) .165 .087 .027
Wald/Emp. | .300 .189 .081 | .205 .134 .039 | .188 .115 .027 | .161 .095 .025
Score/Emp. | .299 .190 .080 | .206 .131 .040 | .190 .114 .027 | .159 .093 .023
Dev/Scaled | .299 .192 .076 | .206 .128 .040 | .196 .113 .019 | .167 .092 .028
B. Misspecified Variance Function
=1 ¢p=14 ¢=2 ¢=3
¥ Test 0 .05 .01 f .10 .05 .01 .10 05 .01 (.10 .06 .01
.05 Wald/Mod. | .121 .065 .014{.136 .075 .019 |.120 .062 .018|.122 .052 .012
Wald/Emp. | .124 .069 .015 | .129 .079 .023 | .117 .062 .018 [ .118 .047 .011
Score/Emp. | .124 070 .014}.129 .076 .020 | .116 .058 .016 ) .111 .042 .007
Dev/Scaled | .121 .065 .014 | .137 .076 .019 |.122 .063 .018|.121 .053 .013
.10 Wald/Mod. | .185 .104 .027 | .165 .092 .031 | .167 .096 .024 | .142 .078 .016
Wald/Emp. | .196 .110 .030 | .159 .090 .034 | .165 .099 .020 | .135 .074 .012
Score/Emp. | .196 .108 .028 } .159 .089 .032 | .161 .097 .019 | .129 .068 .012
Dev/Scaled | .185 .108 .027 | .165 .095 .031 | .168 .097 .024 | .145 .080 .018
.15 Wald/Mod. | .298 .191 .076 { .253 .166 .055 | .219 .136 .047 | .190 .106 .027
Wald/Emp. | .300 .189 .081 | .253 .166 .055 | .212 .137 .048 | .184 .105 .024
Score/Emp. | .299 .190 .080 | .250 .163 .052 ] .207 .133 .046 | .179 .104 .022
Dev/Scaled | .299 .192 .076 | .254 .167 .056 | .221 .138 .048 | .191 .109 .028

The power of the four test statistics under study to detect the simulated pollution effect

is summarized in Table 22; this table is similar in nature to Table 6 for the one series simple

simulations. The results of the correct variance simulations suggest very low power for all test

statistics in this more complicated case (only marginally higher than the nominal levels for the

smallest simulated value of %), but this is not surprising given the variability of the estimates
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of 7 compared to their simulated values. As in Table 6 the power of the tests tends to decrease
as the amount of dispersion increases. The test statistics show similar rejection probabilities in
the misspecified variance simulations. As in Table 6, the rejection probabilities, in general, are
slightly higher in the misspecified variance simulations than in the correct variance simulations
because for each simulated value of ¢, there is less dispersion in the data under the misspecified
variance formulation. Thus, except for the fact that the rejection probabilities are lower in Table
21 than in Table 6 due to the larger standard errors of 7y in these more complicated simulations,
the test statistics perform similarly in the simple and complicated simulations with one series.

We now summarize the findings of these simulations using the more complicated model for
a single series of data. Estimates of ¢ and of the regression parameters are relatively unaffected
by the presence of over-dispersion although the estimators of these parameters became more
variable as expected. Standard errors of the regression parameters were accurately estimated
with either the model-based estimator or the empirical estimator when the data was generated
using the correct variance formulation, but there is some evidence the model-based estimator
performs poorly when the misspecified variance formulation was used to generate data. The
empirical estimator appeared to do better in the misspecified variance simulations but it seemed
to underestimate the standard errors when the level of dispersion was large relative to the overall
mean level (this was not so apparent in the simulations under the reduced model reported in
Table 19, but was more readily seen in the simulations under the full model reported in Table
21). In these simulations the problems with estimating the standard errors did not translate into
problems with the model-based test statistics. This is in contrast to the simple case simulations

with three series where poor performance of the model-based estimator of variances appeared
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to result in poor performance of the model-based test statistics. There were no detectable

differences among any of the four test statistics under study.
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4.5 The More Complicated Case with Three Series

The last case to be considered is the simulations based on (3.19) describing the more complicated
case with three series. Recall that the simulated values for the mean and temporal parameters

were:

,31 = 10g075 ,32 =.70 ﬂ3 =1.6
™M1 = 0.2 T21 = 0.2 T31 = 0.2
T12 = 0.2 T2 = 0.2 T32 = 0.3

T3 =-02 Tm3=-04 m33=-04
T41=0 T42=0 T43=0

The first simulations to be considered use the null model (79 = y1 = 72 = 73 = 0) to
generate data. The mean values of the parameter estimates from fitting the null model to these
data sets are summarized in Table 23. For the correct variance simulations, we see that in both
combinations, & is again estimated to be the average of the dispersions. The mean values of

the regression parameter estimates are close to the simulated values.

Table 23. Mean Values of Parameter Estimates.

Variance Function
A. Correct B. Misspecified
Combination of ¢ | Combination of ¢
Parameter I II )| II
¢ 1.998 2.785 5.157  8.676
1 -0.294 -0.292 -0.291 -0.300
B2 0.695 0.697 0.692 0.700
iR 1.597 1.594 1.595 1.575
11 0.204  0.203 0.197  0.205
T12 0.204 0.198 0.197 0.211
T13 -0.198 -0.199 -0.195 -0.193
1 0.205 0.198 0.205 0.203
T22 0.204 0.201 0.206 0.200
T23 -0.397 -0.397 -0.397 -0.407
T31 0.202 0.199 0.198  0.217
T32 0.305 0.304 0.302 0.321
T33 -0.396 -0.398 -0.395 -0.396
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In the misspecified variance simulations, the estimates of ¢ are in the same neighborhood as
the estimates in the three series simple simulations. This is expected because the average of the
levels of dispersion over all seasons in all series in these simulations is very close to the average
of the three levels of dispersion in the three series simple simulations. The mean values of the
regression parameter estimates are fairly close to the simulated values. Any deviations from
the simulated values that we see here are likely random error due to the substantial amount of
variability in the data sets, especially in the simulations using combination II.

We now turn our attention to the standard deviations of the above estimates and the mean
values of the estimated standard errors povided in Table 24. As in the three series simple case, in
the correct variance simulations, the model-based standard errors for the parameters associated
with the first series (8, and ;) are too large. This is a result of using the estimate ¢ (estimated
using data from all three series) to calculate the standard error for parameters corresponding to
a series where the simulated dispersion is lower than . Analogously, we see that the standard
errors for 33 and 73; are too small. For the regression parameters corresponding to series 2,
we also find predictable results. Using combination I, the standard errors for 32 and my; are
about right because the simulated ¢ for this series is equal to the average of the ¢ for all three
series. However, using combination II, the simulated ¢ for series 2 is smaller than é and we see
that the model-based standard errors are larger than the standard deviations of the parameter

estimates.
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and Mean Values of Estimated Standard Errors (+s.d.).

Table 24. Standard Deviations of Estimates

Variance Function

A. Correct

B. Misspecified

Combination of ¢

Combination of ¢

Parameter Method 1 II I II
¢ Simulated .084 .140 .407 973
iy Simulated .085 105 .081 .103
Model .124 (.006) .146 (.009) | .198 (.011) .258 (.019)
Empirical | .087 (.006) .103 (.008) | .087 (.006) .100 (.008)
B Simulated .076 .074 .092 .091
Model 075 (.003) .089 (.004) | .121 (.007) .156 (.011)
Empirical | .075 (.005) .075 (.005) | .092 (.007) .092 (.007)
2y Simulated .058 074 111 157
Model .048 (.002) .057 (.002) | .077 (.005) .101 (.009)
Empirical | .058 (.004) .075 (.005) | .111 (.010) .153 (.018)
1 Simulated 115 141 107 .136
Model .167 (.006) .197 (.009) | .268 (.013) .348 (.023)
Empirical | .118 (.006) .139 (.007) | .118 (.006) .136 (.007)
Tig Simulated 111 .141 113 140
Model 167 (.006) .197 (.009) | .268 (.013) .347 (.023)
Empirical | .118 (.006) .139 (.007) | .118 (.006) .135 (.007)
T13 Simulated .130 .154 125 .150
Model .145 (.007) .218 (.010) | .295 (.015) .384 (.025)
Empirical | .130 (.006) .154 (.008) | .130 (.007) .147 (.008)
To1 Simulated .106 .105 .133 124
Model .102 (.003) .120 (.004) | .164 (.008) .211 (.014)
Empirical | .101 (.005) .101(.005) | .128 (.007) .128 (.007)
Too Simulated 101 .102 .130 125
Model 102 (.003) .120 (.004) | .164 (.008) .211 (.013)
Empirical | .101 (.005) .101 (.005) | .128 (.007) .128 (.007)
Ta3 Simulated .115 114 .138 .138
Model 119 (.004) .141 (.006) | .192 (.010) .248 (.016)
Empirical | .119 (.006) .118 (.008) | .135 (.007) .135 (.008)
731 Simulated .081 .099 .163 .216
Model .065 (.002) .077 (.002) | .104 (.005) .136 (.009)
Empirical | .079 (.004) .102 (.005) | .156 (.010) .216 (.018)
Tag Simulated 077 .098 .158 212
Model .063 (.002) .075(.002) | .102 (.005) .133 (.008)
Empirical | .077 (.003) .100 (.005) | .156 (.010) .216 (.018)
T33 Simulated .092 119 .166 .225
Model .076 (.002) .090 (.003) | .122 (.006) .160 (.011)
Empirical | .092 (.004) .119 (.007) | .159 (.010) .218 (.018)
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The empirical estimates, on the other hand, are very good for all parameters (and at both
levels of dispersion). There are only small differences between the empirical estimates and the
observed standard deviations and there is no indication here that this estimator consistently
underestimates the standard errors. Given the precision of the observed standard deviations and
the average of the standard errors (discussed in the previous section), the observed differences
can be explained by chance.

In the misspecified variance simulations, it is even more apparent that the model-based
estimator of the standard errors performs poorly while the empirical estimates are quite good.
One could not say that the empirical estimates are consistently too low in these simulations.

Table 25 summarizes the observed rejection probabilities of hypothesis tests for a common

pollution covariate (H: 7o = 0) using the data generated under the reduced model.

Table 25. Observed Rejection Probabilities: Common to Null Model.

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I II I IT
Test 0.10 0.05 0.01)0.10 0.05 0.01]0.10 0.05 0.010.10 0.05 0.01

Wald/Mod | .135 .081 .016 | .180 .108 .033 | .206 .147 .056 [ .247 .153 .058
Wald/Emp | .101 .047 .006 | .112 .055 .014 |.116 .058 .021|.108 .056 .017
Score/Emp | .099 .045 .006 | .112 .054 .010{.112 .057 .018 |.102 .053 .016
Dev/Scaled | .135 .081 .016 |.180 .108 .033 |[.206 .146 .056 | .246 .153 .058

In the correct variance simulations we find that with both combinations of ¢, the empirical
test statistics do reasonably well, achieving levels close to the nominal rejection probabilities.
The model-based tests reject too often in the simulations using the first combination of ¢ and

even more so with the second combination. Notice again how very similar the results are for the
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two model-based tests. As in Table 24, this overall pattern is even more clear in the misspecified
variance simulations.

Thus in this three series complicated case we find that the parameter estimates are adequate
as are the empirical estimates of the standard errors. However, as in the three series simple
case, we find that the model-based estimator of standard errors performs poorly, presumably as
a result of using a single estimate of ¢ when in fact different amounts of dispersion are simulated
in each series. This poor performance of the model-based estimator appears to carry through
to the model-based test statistics. This should be expected in the case of the model-based Wald
test but it is interesting that it is also true of the scaled deviance test.

We now consider simulations using a model which includes the pollution covariate common
to all three series; the simulated value is 49=0.1. The results summarized in Table 26 indicate
that using either of the variance formulations, the overall effects and season effects are estimated
just as well as they were in the null simulations. The mean values of the estimates of the

pollution parameter are also close to the simulated value of 0.1.
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Table 26. Mean Values of Parameter Estimates.

Variance Function

A. Correct B. Misspecified

Combination of ¢ | Combination of ¢
Parameter I II I II
¢ 1.997 2.789 5.202 8.686
51 -0.293  -0.299 -0.294 -0.299
B2 0.695 0.695 0.694 0.694
B3 1.601  1.597 1.593 1.589
1 0.203 0.212 0.205 0.202
T2 0.202 0.208 0.201  0.205
T13 -0.195 -0.193 -0.198 -0.192
To1 0.203  0.204 0.201  0.200
T22 0.200 0.199 0.201  0.200
To3 -0.397 -0.400 -0.402 -0.402
T31 0.196 0.198 0.200 0.192
T32 0.297 0.302 0.301 0.289
T33 -0.407 -0.402 -0.406 -0.400
Yo 0.103 0.101 0.098 0.103
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A summary of the standard deviations of the above parameter estimates as well as the mean

values of the estimated standard errors of the regression parameters are presented in Table 27.

For the correct variance simulations, as in Table 24, the model-based standard errors for £,

and 7y; are overestimated while those for 83 and 73; are underestimated. Using combination I

of ¢, the model-based standard errors for 3, and 72; are about right (as expected, see above).

With combination II of ¢, the model-based standard errors for (3, are only slightly too large

and somewhat surprisingly, only that for 723 is too large (recall that in Table 24 T3, 752 and

T23 were all overestimated on average). We also see that the model-based standard errors for

~o are underestimated. This is consistent with the larger than expected rejection probabilities

in Table 25 for the model-based Wald test. The empirical estimates, on the other hand, are

very good for all regression parameters.
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and Mean Values of Estimated Standard Errors (+s.d.).

Table 27. Standard Deviations of Estimates

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
Parameter Method 1 11 I 1I
¢ Simulated .083 .140 423 .987
51 Simulated .100 124 .119 152
Model 133 (.006) .158 (.009) | .215 (.012) .279 (.021)
Empirical | .100 (.006) .119 (.007) | .121 (.006) .148 (.011)
B2 Simulated .087 .097 122 .149
Model .087 (.003) .103 (.004) | .140 (.008) .181 (.012)
Empirical | .089 (.005) .094 (.005) | .123 (.007) .143 (.011)
B3 Simulated .076 .095 .036 .192
Model .063 (.002) .074 (.002) | .102 (.005) .132 (.008)
Empirical | .075 (.005) .095 (.006) | .138 (.012) .188 (.022)
1 Simulated 156 .186 .200 .266
Model .185 (.006) .218 (.008) | .297 (.014) .385 (.024)
Empirical | .147 (.005) .176 (.007) | .201 (.011) .257 (.020)
T12 Simulated .150 .180 .196 .266
Model .185 (.006) .217 (.008) | .298 (.014) .385 (.024)
Empirical | .147 (.005) .176 (.007) | .201 (.011) .257 (.020)
T13 Simulated .130 159 .130 161
Model .190 (.007) .226 (.010) | .307 (.016) .397 (.027)
Empirical | .134 (.007) .159 (.009) | .134 (.007) .150 (.008)
™1 Simulated .133 .149 .206 .256
Model 128 (.003) 151 (.004) | .207 (.009) .267 (.015)
Empirical | .134 (.005) .148 (.006) | .207 (.012) .253 (.021)
T22 Simulated 132 .150 .209 264
Model 129 (.003) .152 (.004) | .208 (.009) .268 (.015)
Empirical | .134 (.005) .149 (.006) | .208 (.012) .254 (.021)
T23 Simulated 119 .120 136 .140
Model 123 (.004) .145 (.006) | .199 (.010) .257 (.017)
Empirical | .122 (.006) .122 (.006) | .137 (.007) .137 (.007)
™ Simulated .120 .151 219 311
Model 101 (.002) .120 (.003) | .163 (.006) .212 (.011)
Empirical | .118 (.007) .148 (.010) | .224 (.020) .303 (.038)
Ta2 Simulated 121 149 225 .309
Model 101 (.002) 120 (.003) | .163 (.006) 212 (.011)
Empirical | .118 (.007) .148 (.010) | .225 (.021) .306 (.040)
Ta3 Simulated 094 120 162 228
Model .078 (.002) .093 (.003) | .127 (.006) .164 (.011)
Empirical | .096 (.005) .123 (.007) | .160 (.010) .217 (.017)
Yo Simulated .070 .086 127 179
Model .061 (.001) .072 (.002) | .098 (.004) .127 (.006)
Empirical | .068 (.003) .084 (.004) | .127 (.010) .171 (.018)
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In the misspecified variance simulations, the model-based standard errors for 3; and the
71; are overestimated while those for B3 and the 73; are underestimated. The model-based
standard errors for 32 are overestimated with both combinations of ¢ while the standard errors
for 757 and 722 appear quite good compared with the standard error of 753 which is clearly
overestimated. These results are similar to the correct variance results but are again different
from the results of the simulations using the null model as summarized in Table 25. As for 7,
the standard error for this parameter appears to be underestimated on average, just as it was
in the correct variance simulations.

The empirical estimates are close to the simulated values with combination I, but there is a
hint the estimates are too low on average with combination II (although keeping the precisions of
the estimates and standard deviations in mind, the differences seen here could be just chance).
The empirical estimates seem to approximate the simulated standard deviations better here
than they did in the single series complicated simulations (for data generated with the model
including the pollution effect; see Table 21). The simplest explanation for the poorer results in
the one series complicated case would be that in those simulations we considered much higher
levels of dispersion relative to the overall mean value (8 = log0.75) than in this three series
case and these higher levels of dispersion contribute to underestimation of the standard errors.

The levels of the four test statistics in a model reduction from separate pollution effects for
each series to a common effect using the data generated with a common pollution effect are
summarized in Table 28. Under both variance formulations and for both combinations of ¢,
the empirical test statistics adhere reasonably well to the nominal levels, but the model-based

tests do not reject as often as they should. For the model-based Wald test this would suggest
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the standard errors for the separate pollution effects are overestimated (for at least one of the

parameters). Again the model Wald and scaled deviance tests perform almost identically.

Table 28. Observed Rejection Probabilities: Separate to Common.

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I II I II
Test 0.10 0.05 0.01 j0.10 0.05 0.01}0.10 0.05 0.01}0.10 0.05 0.01

Wald/Mod | .074 .032 .008 | .056 .027 .004 |.054 .028 .010 |.055 .027 .004
Wald/Emp | .096 .053 .012].108 .050 .004 |.117 .058 .016 | .098 .057 .014
Score/Emp | .093 .050 .009 | .106 .046 .004|.111 .058 .013}.097 .054 .011
Dev/Scaled | .074 .032 .008 | .058 .028 .004 | .053 .028 .010 | .056 .028 .004

The powers of these tests to detect the common pollution effect represented by the simulated
value of 49=0.10 are summarized in Table 29. In both variance formulations the model-based
tests reject more often than the empirical tests (as expected given the underestimation of the
standard errors of 7o and the consistent similarity of performance of the model Wald and scaled
deviance tests). Predictably, the rejection probabilities decrease as ¢ increases.

Table 29. Observed Rejection Probabilities: Common to Null.

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I II I II
Test 0.10 0.05 0.0110.10 0.05 0.01]0.10 0.05 0.01|0.10 0.05 0.01

Wald/Mod | .522 417 .224 | 433 .334 .168 | .335 .233 .102|.295 .219 .115
Wald/Emp | .451 .340 .147 | .338 .233 .083 | .205 .112 .043 | .181 .118 .047
Score/Emp | .451 .340 .143 (.338 .230 .082 |.203 .108 .042(.171 .113 .038
Dev/Scaled | .522 .418 .225|.434 .334 .168 | .336 .234 .103 | .298 .219 .115

The final model we will consider for the more complicated simulations with three series will

be the most general one which includes separate pollution effects for each series. The simulated
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values were 79=0.1, v1=0.1, y2=-0.2 and y3=0. We begin as always with a table summarizing

the mean values of the parameter estimates from 1000 simulated data sets generated with the

above model.

Table 30. Mean Values of Parameter Estimates.

Variance Function

A. Correct B. Misspecified

Combination of ¢ | Combination of ¢
Parameter I 11 I II
¢ 1.994 2.789 5.187 8.664
B -0.289 -0.295 -0.299 -0.289
Ji ) 0.694 0.695 0.695 0.698
B3 1.601 1.595 1.595 1.569
T11 0.198  0.203 0.204 0.188
T12 0.203  0.202 0.205 0.193
T13 -0.209 -0.201 -0.191  -0.202
T 0.203  0.205 0.196 0.195
To2 0.203 0.203 0.203 0.192
T23 -0.393 -0.400 -0.392  -0.399
T31 0.200  0.200 0.193 0.228
T32 0.299  0.302 0.298 0.323
Ta3 -0.405 -0.401 -0.407 -0.402
Yo 0.100 0.101 0.100 0.087
7 0.099 0.103 0.106 0.124
Y2 -0.200 -0.202 -0.195 -0.186

The estimates of 3; and 7;; are very similar to those in Tables 23 and 26 for both correct and
misspecified variance formulations. In the correct variance simulations, the estimates are very
good for 79, 71 and 72, as they are in the misspecified variance simulations using combination I of
¢. However the estimates of these pollution parameters differ noticably from the true values in
the simulations using combination II of ¢, although the differences are not too great considering
the amount of variability in the simulated data which is reflected in the standard deviations

of these parameter estimates as shown in Table 31. Note that the predictor corresponding to
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the overall pollution effect is not orthogonal to the predictors corresponding to the separate
effects. The mean values of the parameter estimates in a reparameterized model with orthogonal
predictors representing three separate pollution effects, as opposed to a main effect and two
separate effects, would generally be closer to the simulated values (although the standard errors
of those estimates would be smaller). In that case the interpretation of the table would remain
the same as above; that is, the mean values of the estimates differ from the simulated values
but are within acceptable limits considering the precisions of these mean values.

In the correct variance simulations the mean values of the model-based standard errors for
B; and 7;; provided in Table 31 are very similar to those observed in Table 24 as one would
expect. Recall that following the simulations with a common pollution effect (Table 27) there
was some question about the model-based standard errors for 79; and 722 (they were noticably
overestimated for combination IT in Table 24 but did not appear to be overestimated in Table
27). The results in the above table and Table 24 agree with the conclusion that standard errors
are underestimated (overestimated) on average for parameters that correspond to data series
with more (less) dispersion than the estimate $. We note that the estimated model-based
standard error for the parameter v, appears quite a bit larger than it should be. This would
explain the large observed rejection probabilities for the model-based Wald tests (relative to
the empirical) seen in Table 29. The empirical estimates of the standard errors for the pollution

parameters look very good in these correct variance simulations.
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and Mean Values of Estimated Standard Errors (%s.d.).

Table 31. Standard Deviations of Estimates

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
Parameter Method I II I II
¢ Simulated .084 .143 416 1.05
M Simulated 127 .145 122 142
Model .178 (.006) .211 (.010) [ .287 (.015) .370 (.026)
Empirical | .125 (.008) .148 (.010) | .126 (.008) .143 (.010)
B2 Simulated .108 .108 .139 .133
Model 108 (.003) .127 (.004) | .174 (.009) .224 (.015)
Empirical | .107 (.007) .107 (.007) | .133 (.010) .134 (.011)
Bs Simulated .084 103 .165 232
Model .069 (.002) .082 (.003) | .112 (.005) .145 (.009)
Empirical | .084 (.005) .108 (.007) | .164 (.016) .224 (.026)
11 Simulated 213 244 .207 .242
Model 297 (.009) .352 (.013) | .480 (.022) .620 (.040)
Empirical | .210 (.013) .247 (.017) | .210 (.012) .242 (.016)
T12 Simulated 212 .250 .207 .241
Model 298 (.009) .353 (.013) | .481 (.022) .621 (.040)
Empirical | .210 (.012) .248 (.017) | .210 (.012) .242 (.016)
Ti3 Simulated 134 .165 139 .154
Model .196 (.008) .233 (.013) | .317 (.016) .409 (.029)
Empirical | .138 (.007) .164 (.010) | .139 (.007) .154 (.009)
21 Simulated .185 .188 .236 232
Model 185 (.005) 218 (.007) | .298 (.014) .385 (.024)
Empirical | .184 (.012) .183 (.013) | .230 (.019) .231 (.020)
T22 Simulated .189 .186 .238 .230
Model .186 (.005) .220 (.007) | .300 (.013) .387 (.025)
Empirical | .184 (.012) .184 (.013) [ .231 (.019) .232 (.020)
T23 Simulated .109 115 .140 136
Model 115 (.004) .136 (.005) | .186 (.010) .240 (.017)
Empirical | .115 (.006) .114 (.006) | .134 (.007) .134 (.007)
T31 Simulated 144 171 .284 .400
Model 116 (.003) .137 (.004) | .188 (.007) .243 (.012)
Empirical | .141 (.009) .182 (.013) | .316 (.032) .387 (.052)
T32 Simulated 142 170 .289 .404
Model 116 (.003) .138 (.004) | .188 (.007) .244 (.012)
Empirical | .141 (.009) .182 (.013) | .287 (.031) .392 (.051)
T33 Simulated .095 124 .159 231
Model .078 (.002) .093 (.003) | .127 (.006) .165 (.012)
Empirical | .095 (.005) .123 (.007) | .160 (.010) .217 (.017)
Yo Simulated .092 113 181 .266
Model 075 (.002) .089 (.002) | .122 (.004) .157 (.008)
Empirical | .092 (.005) .119 (.007) | .187 (.016) .256 (.029)
7 Simulated .165 195 .220 313
Model .207 (.005) 245 (.008) | .334 (.014) .431 (.026)
Empirical | .164 (.006) .199 (.008) | .231 (.014) .301 (.025)
T2 Simulated .156 165 .235 .303
Model .143 (.003) .169 (.004) | .230 (.009) .298 (.017)
Empirical | .152 (.006) .169 (.007) | .240 (.014) .297 (.026)
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With the misspecified variance simulations we again find the model-based standard errors
for B; and 7;; to be very similar to the corresponding standard errors in Table 24. As in the
correct variance case, the model-based standard error for 7, is overestimated. The empirical
estimates are also quite good even in the simulations using combination II of ¢. There are some
parameters for which the empirical estimator produces estimated standard errors which are on
average too low but there is no clear indication of underestimation in this situation.

Finally, in Table 32, we present the observed rejection probabilities to evaluate the power
of the four test statistics in the multiple parameter reduction from separate pollution effects to

a common effect.

Table 32. Observed Rejection Probabilities: Separate to Common.

Variance Function

A. Correct B. Misspecified
Combination of ¢ Combination of ¢
I II I II
Test 0.10 0.05 0.01 {0.10 0.05 0.010.10 0.05 0.010.10 0.05 0.01

Wald/Mod | .358 .236 .102 [.274 .168 .045|.120 .064 .012 |.086 .047 .014
Wald/Emp | 441 319 .144 1 .396 .290 .121 |.350 .234 .076 |.336 .226 .080
Score/Emp | 441 .315 .134 | .390 .286 .115|.340 .224 .072(.325 .219 .071
Dev/Scaled | .359 .238 .102].275 .168 .045|.120 .064 .012|.086 .047 .014

The model-based test statistics have lower power than the empirical test statistics in this
table. Recall that the model-based estimator overestimated the standard errors for 74 (while the
standard errors for v, were about right). This overestimation would explain why the rejection
probabilities for the model-based Wald test are lower than for the empirical tests and, as usual,
the scaled deviance test gives rejection probabilities that are almost identical to those for the

model-based Wald test.
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The results of the simulations under the alternative hypotheses in this more complicated
case with three series are qualitatively very similar to the results of the simple simulations with
three series. We found that the estimator of ¢ performed adequately in estimating the average
level of dispersion and that the regression parameter estimator did well for all parameters
including the “pollution” parameters that were of most interest. We also found the empirical
estimator of the variances to perform well in these simulations. The underestimation of standard
errors apparent in the more complicated case with a single series was not so clearly apparent
in these three series simulations, possibly because the levels of dispersion considered in this
section were not as large relative to the overall mean levels as they were in the single series
simulations where, in the simulations using the full model to generate data, only 8 = log0.75
was considered with values of ¢ as large as 2 or 3. The model-based estimator of variance
performed very badly in these three series simulations because the models did not allow for the
possibility that different series may have different amounts of dispersion. Thus in a sense, the
variance was actually misspecified in all the simulations (even those labelled “correct variance”).
The model-based test statistics considered also seemed to suffer from the misspecification of
the variance function. When considering the levels of the model-based statistics, they rejected
too often in some instances and less often than they should have in others. The empirical tests,

even the empirical Wald test, achieved levels much closer to the nominal levels.
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Discussion

The analysis of relationships between air pollution and human health data from Prince George
provided the motivation for carrying out a simulation study designed to evaluate the per-
formance of possible variance estimators and test statistics available for making inference in
over-dispersed Poisson models.

Moderate amounts of over-dispersion are reported to have little effect on the estimation of
regression parameters (Cox, 1983), however the extra variability must be taken into account
when estimating variances or testing hypotheses. In the Prince George study, over-dispersion
was accounted for via a dispersion parameter ¢ (common to all of the data series) which was
estimated by the deviance, G2, divided by its degrees of freedom. To adjust for this over-
dispersion, standard errors of the regression parameters were multiplied by the square root of
the estimate ¢ = G?/d.f. and the usual likelihood ratio test (based on a Poisson likelihood),
or deviance statistic, for testing the viability of a reduced model nested within a larger model,
was divided by ¢. Proceeding with this methodology, models were fit to the emergency room
visits data that included temporal, meteorological and the pollution parameters of primary
interest. The final models, resulting from the model reduction procedures (for example, the final
model for the pollutant TRS), included parameter estimates whose interpretation suggested

that higher levels of pollution were related to lower numbers of emergency room visits for
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respiratory illness. Such counter-intuitive results raised questions about the appropriateness
of the methodology and motivated a simulation study. This study was designed to investigate
the possibility that the amounts of over-dispersion encountered in the Prince George study
were large enough (relative to the mean levels of the data series) to affect the estimation of
regression parameters, and to examine the performance of other possible variance estimators
and test statistics that could be employed in the analysis of such over-dispersed Poisson data.

An alternate estimator of the dispersion parameter involving the Pearson X? statistic,
bx =X2/d 1., was discussed and was found to be superior to the estimator é¢. In addition
to the model-based estimator of the covariance matrix of the estimated regression parameters
described in the methodology for the Prince George study, an empirical estimator, which does
not rely on the correct specification of the variance function, was described. The two estimators
of the covariance matrix give rise to two versions of the Wald test as alternatives to the scaled
deviance test used in the Prince George study for determining if certain parameters (such as
pollution effects) contribute to the fit of the model. An empirical score statistic, suggested in
Breslow (1990), which uses the estimating equations themselves for inference in over-dispersed
Poisson models, was also considered.

In the simple simulations described first in this thesis, the regression parameter estimates
were all very close to the simulated values, even when data were simulated with large amounts
of over-dispersion and with a misspecified variance function. The simple simulations with only
one series of data did not show any clear differences between the estimators of the variances
nor between the test statistics. With the three series simple simulations, the variance function

used to fit the data assumed a common ¢ whereas a separate ¢ applies in the simulation of each



Chapter 5. Discussion 108

series. Thus the variance function was always misspecified, even for the simulations labelled
“correct variance”. It appears that in this situation, the model-based estimator overestimates
(underestimates) the standard errors for regression parameters corresponding to series with
simulated dispersion smaller (larger) than the estimated dispersion (which is the average of
the simulated values from the three series). We found that, when considering the levels of the
test statistics, the observed rejection probabilities of the model-based test statistics often did
not approximate the nominal rates well whereas the empirical test statistics always achieved
levels close to nominal. We found an interesting agreement between the model Wald and scaled
deviance tests, as well as between the empirical score and empirical Wald tests.

Using the more complicated model for a single series of data, estimates of ¢ and of the
regression parameters were relatively unaffected by the presence of over-dispersion although the
estimators of these parameters became more variable and may have been affected by collinearity
between some of the predictors. Standard errors of the regression parameters were accurately
estimated with either the model-based estimator or the empirical estimator when the data were
generated using the correct variance formulation, but there was some evidence the model-based
estimator performs poorly when the misspecified variance formulation was used to generate
data. It was hypothesized that the problem with the model-based estimator was similar to
the problem in the three series simple case. The observations in different seasons of the one
series complicated case had different mean values and therefore, under the misspecified variance
formulation, had different amounts of dispersion (a situation similar to four separate series
generated with the correct variance function). The empirical estimator appeared to do better in

the misspecified variance simulations but seemed to underestimate the standard errors when the
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level of dispersion was large relative to the overall mean level. In these one series complicated
simulations, the problems with the model-based standard errors did not translate into poor
performance of the model-based test statistics; this is in contrast to the simple case simulations
with three series. There were no detectable differences among any of the four test statistics
under study in this one series complicated case.

The results of the simulations in the more complicated case with three series were very
similar to the results of the simple simulations with three series. The estimator of ¢ performed
adequately in estimating the average level of dispersion and the regression parameter estimators
did well for all parameters including the “pollution” parameters that were of primary interest.
The empirical estimator of the variances also performed well in these simulations. The under-
estimation of standard errors apparent in the more complicated case with a single series was
not so clearly apparent in the three series simulations, possibly because the levels of dispersion
considered were not as large relative to the overall mean levels. The model-based estimator
of variance performed very badly in the three series simulations because, again, the models
used to fit the data did not allow for the possibility of differing amounts of over-dispersion in
the different series. The model-based test statistics considered also seemed to suffer from the
misspecification of the variance function. When considering the levels of the statistics, these
tests did not achieve the nominal rates. The empirical tests, even the empirical Wald test,
achieved levels much closer to the nominal levels.

Overall, it appears solutions of the score equations produce good estimates of regression
parameters in a situation with levels of over-dispersion similar to those in the Prince George

study. The empirical estimator of the covariance matrix of the regression parameters appears
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preferable to the model-based estimator which relies on correct specification of the variance
function. It appears that in situations where the variance function is misspecified, the two
model-based test statistics which rely on a single estimated over-dispersion parameter may
perform poorly. This is in sharp contrast to the empirical test statistics which always performed
well in this study. An interesting side note to the investigation of the test statistics was a very
close agreement between the two model-based tests throughout the simulation study.

Only brief speculations were made regarding the possibility that different, and perhaps
more appropriate, methods would have led to different conclusions in the Prince George study.
It appears that, on average, the estimators of the regression parameters would yield correct
estimates of the effects of pollution on emergency room visits, but it is unclear whether empirical
estimates of the standard errors or an empirical test statistic would have led to a different set

of final parameters in the models.
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