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Abstract

Measurements of the stress sensitivity of the strain rate and of the strain vs stress in a

titanium-doped, "interstitial free" (IF) iron were done at three temperatures, -20, -50

and -75 °C. By application of a deformation model, based on a new theory of mobile

dislocation density, these measurements permit the determination of (1) the constants of

the power law describing the dislocation velocity as a function of the effective stress, and

(2) the mean free dislocation path, which is descriptive of parabolic strain hardening.

The theory is then used to calculate the microstructural parameters which determine

the inelastic strain rate and the deformation resistance as they evolve, over time, with

stress, stress rate and temperature. These parameters include the mobile and network

dislocation densities, dislocation velocity, and effective stress. Theoretical predictions

of the dynamic properties show excellent agreement with experiment. These properties

include: (1) the stress sensitivity of the strain rate, as influenced by stress, stress rate

and the magnitude of the stress decrease; (2) the nature and recovery time of the strain

rate following a stress decrease; (3) the relative level of hard machine stress vs strain

curves as a function of crosshead speed; -and (4) the temperature dependence of both the

microyield and macroyield stresses.
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Chapter 1

Introduction

The dynamic nature of the deformation properties of metals, as indicated by the effects

of temperature and deformation rate on their strength, is an important problem in the

theory and practice of physical metallurgy. One problem that has received much attention

over the past several decades is the strong temperature and rate dependence of the yield

and flow stresses of a-iron at low temperature. For instance [1], the yield strength of a

commercially available interstitial-free (IF) iron, pulled at a conventionally slow testing

machine rate, increases 6-fold when tested at -100 °C rather than at ambient temperature.

A similar, if smaller, increase in strength is also encountered at ambient temperature by

increasing the strain rate to about 103 s-1 [2]. Considering that most cold forming

operations are done within the range of strain rates from 100 to 103 s-1, over which

the yield stress for this material doubles, a prediction or interpretation of the material's

strength in response to either the operating parameters of a deformation process or the

external deformation variables of a mechanical test is of practical importance.

This thesis is an extension of an earlier ambient temperature investigation [3] and

is an attempt to measure and to predict the dynamic properties of IF iron at three

temperatures, -20, -50 and -75 °C. Although the technique in this investigation has been

applied to IF iron, it is believed to have wider application and may significantly advance

our quantitative understanding of inelastic deformation of other metals and alloys. In

keeping with the earlier study, no attempt is made to involve a thermally-activated flow

analysis, which emphasizes a precise mechanistic description of dislocation dynamics;

1



Chapter 1. Introduction^ 2

instead, following Johnston and Gilman [4], we obtain an empirical power law function to

describe the stress dependence of the dislocation velocity. In this present work, however,

this relationship is not obtained by direct observation of individual moving dislocations

[4], but rather by the application, to stress sensitivity data, of a recently proposed semi-

empirical model [3,5,6] purporting to describe the evolution of the mobile dislocation

density.

The formulation of a quantitative theory of mobile density alone represents a signif-

icant advance in the study of dislocation dynamics, and the application of this theory

differentiates this technique from all others. In principle, the equations of the theory

can be used to predict various deformation behaviours since the mobile density and the

dislocation velocity link to the external deformation rate through Orowan's equation

pmbv. In the present study, these equations are applied to the results of an experi-

mental study of IF iron, in which the stress is abruptly reduced by a small amount and

the resulting decrease of strain rate is measured. If these tests are repeated for different

applied stress rates, then stress sensitivity profiles are defined for various values of stress

decrease. From a theoretical fit of such profiles, it is possible to obtain the constants

of the dislocation velocity equation. When these constants have been determined, the

theory permits the calculation of the dynamic strength of this material for a specified

deformation rate and temperature.

1.1 The Nature of Dynamic Strength

It is an essential feature of our understanding of low temperature deformation that the

strength of a solid is partly static, i.e. temperature and time independent, and partly

dynamic, i.e. temperature and time dependent. The physical basis for this understand-

ing is that the magnitude of the flow stress is determined by the interaction of mobile
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dislocations with two general kinds of obstacles: (1) those possessing short range stress

fields, i.e. of less than about 10 atomic diameters; or (2) those possessing long range

stress fields, i.e. of the order of 10 atomic diameters or greater.

Short range obstacles are termed thermal obstacles because the external stress re-

quired to overcome them can be reduced by thermal fluctuations. The conventional view

is that thermal fluctuations can assist the applied stress even at temperatures approach-

ing 0 K. At 0 K, thermal activation is not possible, and the applied stress alone must

release dislocations from short range obstacles. At a sufficiently high temperature, the

available thermal energy may be sufficient to release dislocations with a very small (in-

cremental) increase of the external stress above the long range (static) resistance of the

solid. In this case, the obstacle is said to have become thermally transparent. Apart from

these two limiting cases, the thermal release of dislocations from short range obstacles

will be stress-assisted.

Besides being inherently temperature dependent, the release of dislocations from short

range obstacles is a time dependent process which limits the strain rate. However, the

release rate maybe enhanced by raising the external stress. Thus, in order for deformation

to proceed at some imposed rate, the external stress must be increased. Conversely,

it follows that the resistance conferred by short range obstacles is dynamic; i.e. this

resistance will be partly determined by the external deformation variables of temperature

and imposed deformation rate.

Long range obstacles are termed athermal obstacles because the dislocation-obstacle

interaction occurs over too great a distance for thermal activation; thus mobile disloca-

tions must overcome them by the application of stress alone. The resulting release of

dislocations is said to be mechanically-activated or time independent. However, time

independent release is never admitted except perhaps at at 0 K for which thermal acti-

vation is not possible, or at a sufficiently high enough temperature for which short range
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obstacles become thermally transparent. Consequently, low temperature deformation is

viewed as being entirely dynamic, but the flow stress is only partly so.

It is expected that the stress field experienced by a moving dislocation at any point

in a crystal will be the algebraic sum of all stresses at that point [7]; i.e. the short range

stresses arising from thermal obstacles will simply be superimposed onto the long range

stresses arising from athermal obstacles. The simplest assumption is that the flow stress

(o-) can be split into two additive parts:

a = ae + C78 7 (1.1)

where a, is the effective stress which exactly matches the dynamic resistance conferred by

short range obstacles, and a., the residual, is by definition the long-range static resistance

of the solid. A literal interpretation of Eq. [1.1], if the effective stress is the only rate

sensitive component of the strength, is that deformation occurs only when the applied

stress is in excess of the static resistance of the material. In principle then, Eq. [1.1]

predicts that if, during a strain vs stress tensile test for example, the flow stress is

reduced abruptly by an amount equal to ae, the deformation ceases; i.e. the strain rate

goes to zero. To illustrate this point, an experiment of this type was done in the earlier

study [3] of IF-iron at room temperture. For a stress rate of 0.2 MPa/s, a stress decrease

of 4.6 MPa (the value of the calculated effective stress) reduced the strain rate to zero.

The result is remarkable, considering that the static strength for this material not only

dominates the strength at large strains because of strain hardening, but also at smaller

strains near the yield stress, which is about 70 MPa (0.2% offset). Of course in order to

perform such a test, without trial and error, the effective stress must be known a priori
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1.2 Rate Equations

The treatment of low-temperature deformation is by the theory of thermally activated

flow, in which barriers to elementary units of flow are overcome by applied stress and

thermal fluctuations. The units of flow are modelled as dislocation segments which are

held up at short—range obstacles, waiting for thermal activation. It is usually true that the

average dwell time at an obstacle is much longer than the average transit time between

obstacles. Thus, the release rate of dislocation segments from obstacles, which is the

reciprocal of the average dwell-time, accounts for the time and temperature dependences

of the deformation. The release rate is given by an Arrhenius rate equation, which is the

product of an attempt frequency and the probability of a successful thermal fluctuation.

The strain rate is then, simply, the release rate times the strain produced by a successful

thermal fluctuation. The usual form of the strain rate equation, for a single thermally-

activated mechanism, is:

= N Abv exp   — exp  —kTG — • ( —k TG (1.2)

where N is the number of activation sites per unit volume, A the area swept out by a

dislocation segment per thermally-activated event, which is given as the product of the

dislocation segment length (1*) and the distance of motion after activation (d*), b the

Burgers' vector, 11 the attempt frequency, AG the Gibbs free energy of activation, and

exp(—AG/kT) the probability of a successful thermal fluctuation. Additionally, AG is

usually expressed as AG = AH — TLS, where AH is the activation enthalpy, and AS

the activation entropy, at constant temperature.

Both and AG will depend upon stress, temperature and structure, but in the

analysis of temperature and strain rate effects on deformation, the dependence of is

assumed weak in comparison to that of G. Of particular interest here is the stress

dependence of AG which mainly controls the strain rate at a particular temperature.
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The variation of AG with stress is given as

AG = AG0 — f V* do-
^

(1.3)

where V* = (aAG150-)T has the dimensions of volume and is referred to as the activation

volume. Within a limited range of stress and temperature, the stress dependence of the

activation energy may be linearised. Then, the amount of energy provided by the applied

stress (i.e. the work done) is equal to V*cre. Thus, an increase in the effective stress has

the effect of reducing the activation energy and increasing the rate of thermal release of

dislocation segments. Following Eq. [1.2], changes in the external deformation variables,

namely strain rate and temperature, may effect changes in the activation energy. In

particular, separately raising the strain rate or reducing the deformation temperature

(but still maintaining the same strain rate) raises the effective stress and reduces the

activation energy.

While the ideas discussed above are sufficient to explain the temperature and rate

dependence of deformation, experimental evaluation of all the activation parameters is

not usually possible. In particular, AS is usually assumed a priori to be either zero or

temperature and stress independent, conditions which Li [8] suggests may not be ap-

propriate. As well, the utility of this method has been limited by at least the following

considerations: (1) a general failure of various theoretical models to distinguish between

mechanisms [9,10]; and (2) the insufficient treatment of cases in which competing mech-

anisms operate [11].

Another form of Eq. [1.2] is used in the literature of dislocation dynamics,

pmbv,^ (1.4)

which follows from the equalities pm = Nl* and v = d* t, exp — (AG/ kr). This is

Orowan's equation [12], which gives the deformation rate in terms of the density of
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mobile dislocations, pm, and their average velocity, v. Implicit in this formulation is that

the stress dependence of v is assumed to be much stronger than the stress variation of

Pm. Although has a precise physical description (Eq. [1.2]), when it is calculated from

Eq. [1.4], empirical relations are generally used to describe the stress dependence of v

and evolution of the pm with increasing stress and strain.

1.3 Direct Measurement of the Dislocation Velocity

One of the principal achievements in the experimental study of the deformation of ma-

terials has been the direct measurement of the velocity of individual dislocations as a

function of stress. In general, these measurements involve applying a shear stress pulse

of known duration, onto a slip plane of an oriented single crystal, and observing the po-

sition of dislocations before and after the application of the stress. Such measurements

are useful because they potentially separate the effects of structure from the effects of

temperature and stress, and provide a basis for calculating the strain rate. Johnston

and Gilman [4] were the first to measure by direct observation, in lithium fluoride, the

stress dependence of the dislocation velocity. In this seminal work, they found that the

dislocation velocity, at low and intermediate stresses, is described by a power law in the

applied stress of the form:
0. ) n

V = v0( — .
To

(1.5)

Here, To and n are material and temperature dependent constants. To is the stress required

to move a dislocation at unit velocity, v0; in this paper we take vo = 1.0 m/s. n, the

power exponent, is descriptive of the stress sensitivity of the dislocation velocity. In LiF,

the dislocation velocity was found to be a very sensitive function of the applied stress,

increasing by the the twenty-fifth power.

Johnston and Gilman found that the relation given by Eq. [1.5] was applicable for a
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range of velocities that spanned eight orders of magnitude from 10-9 m/s, which defined

a minimum stress for dislocation motion, to 10-1 m/s, at high stress, which is about 4.5

orders of magnitude below the limiting velocity of transverse sound waves in the material.

It may be noted here, that while the power law equation has no theoretical basis, it has

been shown to give a good representation of the data over the useful range of velocities

normally encountered in engineering applications [14]-[30].

Combining the concept of the stress dependence of the dislocation velocity with a

determination of the strain dependence of the mobile dislocation density, Johnston and

Gilman [4] devised a model to calculate stress vs strain curves, in which n was a key

parameter. Later, Johnston [13], with the aid of a IBM-704 computer, calculated various

mechanical behaviours including stress vs strain curves, yield point phenomenon and

delay times in creep tests.

The success and novelty of Johnston and Gilman's work, which demonstrated the

importance of the concept of the stress dependence of the dislocation velocity, generated

much interest in the study of dislocation dynamics and measurements of dislocation mo-

bilities in other materials. However to date, some thirty years later, dislocation velocities

have been measured in only a few materials: among the metals are W [14], Mo [15,16], Fe

[17], Fe-Si [18], Nb [19], Zn [20], Ni [21], Cu [22,23], Cu-Ni [24,25], Cu-Al [26], Cu-30%Zn

[27], Ti [28], Al [29], Pb and Pb-In [30]; some data are also available for a few materials

having the diamond, sodium chloride and sphalerite structures. It is true that the use of

direct methods to determine the stress dependence of the dislocation velocity is severely

limited, particularly by the difficulty in acquiring single crystals, reliable etchants, elab-

orate and special mechanical devices and then the tedium inherent in making a sufficient

number of measurements.
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1.4 Indirect Methods of Determining n

As a consequence, there has been interest in establishing techniques which are simpler

and more convenient than the direct methods to determine the stress dependence of the

dislocation velocity. To this end, Guard [31] suggested that if there is a simple stress-

dependent velocity change on change of strain rate according to Orowan's equation,

then the stress dependence of the dislocation velocity could be determined indirectly by

measuring the logarithmic stress sensitivity of the strain rate, i.e.

ding
n

dln cr

Here, n* is usually determined as the reciprocal of the strain rate sensitivity of the flow

stress, n* 1/m, measured by an "instantaneous" crosshead speed change test in the

conventional hard machine. (In these tests, the stress change is usually measured in

response to an imposed abrupt upward change in the crosshead speed.) Accordingly,

Guard measured the stress sensitivity in Fe-3.25%Si and observed its value was of the

order of 60. This value is much larger than the intrinsic value, n = 35, measured by Stein

and Low [18] using direct methods.

The reasons for this discrepancy have been extensively discussed in the literature of

dislocation dynamics. One possibility is to suppose that not only the velocity but also

the mobile dislocation density changes in response to the upward change in crosshead

speed. An increase in the mobile density would occur, according to Johnston and Stein

[32], if the sudden increase of stress unpins some of the dislocations that have become

immobilized in the network by strain hardening. Alternatively, Alden [3] has suggested

that sources may operate to increase the total dislocation density. Using the power law

equation for the dislocation velocity, the measured stress sensitivity becomes

din
Ti^72+ ^dln a- (1.7)

(1.6)
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where n is the stress sensitivity associated with velocity change alone. Evidently, n* = n

when the increase of stress neither generates many new dislocations nor unpins those

previously stuck.

Other analyses [33,34] have emphasized that it is the effective stress, not the total

applied stress, which drives the dislocation velocity, and that the effective stress is usually

less than the applied stress, Eq. [1.1]. (Note that when measurements of dislocation

velocities are done at small strains in single crystals having exceptionally high purity and

perfection, the static component of the flow stress can be assumed to be relatively small

in comparison to ae; i.e. a, a.) This will be true even in the annealed material if it

possesses a microstructure that contributes an initial static strength; then the effective

stress will be less than the flow stress even at very small strain. As well, at larger strains

the static strength will increase because of strain hardening, which is assumed to be

mainly or entirely rate insensitive. Thus it can be argued that the dislocation velocity,

as defined by Eq. [1.5], must be given as a function of ae, rather than a. The first term

of Eq. [1.7] becomes
dlnvd in = n  

cr,
din a dln a

If the effective stress is the only rate sensitive component of the flow stress, then on

change of crosshead speed, do-, = do. Thus

dln v^o-
^= n—
dln a^a,

(1.9)

and, in most instances, n* will be larger than n, even at the yield stress (and increas-

ingly so at larger strains). Accordingly, a simple linear extrapolation of the strain rate

sensitivity data to zero strain, as suggested by some investigators [32,35], does not give

n* = n.

In general, the differences between n* and n may be attributed to both changes in the

mobile density and an effective stress to flow stress ratio less than unity. Unless, however.

(1.8)
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we can know the relative importance of these effects, strain rate or stress sensitivity

data do not permit a determination of n. The theoretical resolution of these problems

is particularly relevant to this thesis, in which stress sensitivity data will be used to

determine the dislocation velocity constants, n and 70.

1.5 Progress in Modelling n* Data

Recent progress has been made in the modelling of the strain rate sensitivity of a select

group of materials for which a comprehensive set of rate sensitivity data is available. This

progress is primarily the result of attempts to model the mobile dislocation density. In

a study by Pharr and Nix [34], the total dislocation density is given by a linear function

of the strain, following Johnston and Gilman, and the mobile density is determined by

the fraction of links of the dislocation network longer than a critical length

aGb
cre

(1.10)

This model was applied with considerable success to Fe-3.25%Si and copper, materials

that are both rate insensitive (i.e. large n*), but show major differences in the evolution

of structure and effective stress. However, the predicted values of n* for iron, the only

rate sensitive material they studied, were much larger than the values determined from

experiment. This discrepancy resulted largely from the model's apparent over estimation

of the stress sensitivity of the mobile dislocation density.

In a parallel study, in which the strain rate sensitivity of iron was studied by ap-

plication of a model of mobile dislocation density having a different physical basis from

Eq. [1.10], Alden [36] was able to make successful predictions of the experimental results.

In addition, the model was shown to have good predictive capabilities for other materials,

LiF and Fe-3.25%Si. (This model will be described in the following section.)
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Alden's model differs from the model of Pharr and Nix [34] in two ways: (1) the

total dislocation density is determined by the stress, not the strain; and (2) the mobile

dislocation density is determined from a competition, over time and strain, between stress

rate (mechanically-activated) dependent generation and velocity dependent trapping.

Despite these theoretical differences, a similar result of both models is that an upward

change in the crosshead speed is followed by an abrupt increase in the mobile dislocation

density. In Pharr and Nix's model, this increase results because the critial link length

decreases in response to a higher effective stress. In Alden's model, new dislocations

are injected into the material in response to the high stress rate transient following the

crosshead speed change. In light of these studies, it appears that the evaluation of the

stress sensitivity of the dislocation velocity by way of an upward change of crosshead

speed is complicated by a structural change.

1.6 Equations of the Model

1.6.1 The Mobile Density

The theory has been discussed in two earlier papers [5,38] and its essential equations will

only be briefly described here. The basis for the theory is an empirical relation linking

the total dislocation density [39,40,41] to the applied stress, namely

a = a* + aGbpt112. (1.11)

a* is an experimental constant which is attributed to sources of hardness other than

dislocations. In the theory, a* is a frictional stress which defines the threshold stress

at which moving dislocations begin to multiply. Following the observations of Johnston

and Gilman, we take a* to be the stress required to move dislocations at the velocity of

10-9m/s.
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Time independence is implied by Eq. [1.11]; i.e. the total dislocation density depends

on the level of stress, not the rate of stress increase. Thus, we assume that dislocation

sources, which generate additional dislocations, are activated mechanically by the mono-

tonic increase of stress. Consequently, in taking the time derivative of Eq. [1.11] and

making the assumption that all newly generated dislocations are mobile, we obtain the

result that the generation rate is linked to the rising stress;
.+^2pr2
Pm —^ cr.

aGb^
(1.12)

Once dislocations are generated, they move at a characteristic velocity v to produce

strain. After moving over a distance ro, the mean free path, they are trapped (i.e.

immobilized) in the dislocation network. The attrition rate for the mobile population is

Pm = Pm
^

(1.13)

where r^roil) is the statistical lifetime. Thus, the net change in the mobile density is

a consequence of a competition between stress rate dependent generation and velocity-

dependent trapping,

=
2p

2

.
aG

tl/

b
^0" 

pm v

ro •

Pm

Pm

1.6.2 The Dislocation Velocity

The dislocation velocity is given by a power law in the effective stress:

V = Vo --Cre " .
To

(1.14)

(1.15)

1-0 is a constant descriptive of the frictional resistance to dislocation glide, and is defined

as the stress required to move a dislocation at a velocity of v, = 1 m/s. a, is given by:

o-,^— aGbp1,12,^ (1.16)
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which contains the assumption that network dislocations contribute to strain hardening

by raising the static strength of the material. In a recrystallized material, an initial

network dislocation density is assumed in order to account for the contribution to the

initial static strength made by residual dislocations.

1.6.3 Strain Hardening

The strain hardening coefficient is defined as the derivative of the static strength with

respect to strain:
dr„ ceGbg

^

9 —  ^ (1.17)
^de^2ip1I2

This equation can be rewritten recognizing that the rate of increase of • the network

dislocation density 16+„ is exactly equal to the attrition rate of the mobile dislocation

population —j); = pniv/ro:
a2G2b
^ •2r0 r8

(1.18)

If the trapping mechanism is the formation of an attractive junction with a second, inter-

secting dislocation (which may be either mobile or already trapped in the network), then

the mean free path should vary with the mean dislocation spacing (pt-1 /2
), factored by

some statistical likelihood that such an encounter will form a stable attractive junction.

Thus we write ro = TVpt1/2, where T* is the statistical constant. The mean free path

falls in proportion to 4/2 as a result of the refinement of the dislocation network through

dislocation trapping. This leads to linear hardening. However, it is known from exper-

iment [39] that iron does not harden linearly. Instead, like other body-centered cubic

metals, iron exhibits parabolic hardening. This result implies that a constant mean free

path determines the strain hardening coefficient. (It is not known whether some other

feature of the microstructure controls the strain hardening rate, such as large athermal

precipitates or cell walls, or some competitive softening process, e.g. dynamic recovery.
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which lowers the strain hardening rate by releasing network dislocations.) Despite this

uncertainity, the mean free path is estimated by fitting the slope of the strain vs stress

curve at intermediate strain.

1.7 Applications of the Model

There is a growing body of literature suggesting that this theory is both accurate and

useful. In particular, quantitative predictions have been made of (1) the strain rate

sensitivity of the flow stress of LiF, Fe-3.25creep in 304 stainless steel [5], (3) yield

stresses of a wide variety of materials [37], and (4) more recently the dynamic properties

of iron at room temperature.

Among the various applications, the determination of the constants of the velocity

equation, n and 70, is our primary effort, since these material constants control the

dynamic properties of dislocations. In this present study, these constants are derived

from a theoretical fit to experimental measurements of the stress sensitivity of the strain

rate (Eq. [1.6]).

1.8 Stress Decrease Experiments in the Soft Tensile Machine

The usual method used to obtain stress sensitivity values is to measure the change of

flow stress in response to an "instantaneous" crosshead speed change in a conventional

hard machine. However, this method can be severely limited if the material is rate

insensitive, which happens either because n is large, as it is for Fe-3.25%Si, or 70 is small

as for copper. In this case, a large change in the strain rate is accompanied by a small

change in the flow stress, which may not be accurately measured. On the other hand, a

material that is rate insensitive is, by definition, stress sensitive. Thus, a small change

in the applied stress will produce a large change in the strain rate. Therefore, a better
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method of measurement is to apply this small stress change. Such an experiment can

easily be done in the soft tensile machine, in which the stress and rate of stress increase

are controlled and the extension and extension rate are measured.

We choose to employ a stress drop because the theory (Eq. [1.11]) indicates that an

increase of stress will result in a burst of dislocation generation. However, if a stress

drop is imposed, the mobile density is unchanged in the instant of the stress drop, and

afterwards, only slowly declines with time and strain. (Later, it begins to increase again;

see below Section 3.5.1). Consequently, the measurement of the stress sensitivity will

not be complicated by a structure change. Instead, the decrease in strain rate will be

proportional to the decrease in the dislocation velocity; i.e.

and from Eq. [1.9]

.^dln^dln v
n =^— ^^ —

dln a dln a

a.Ti = n— .
cre

(1.19)

(1.20)
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Experimental Methods

2.1 Sample Preparation

The test metal is IF iron, supplied by ARMCO, of composition shown in Table 2.1. This

is a pure iron doped with titanium to remove residual interstitial carbon and nitrogen; it

is nominally interstitial free. Slender tensile specimens are stamped from sheet having an

as-received thickness of 0.09 cm. These specimens have a parallel gauge length of about

2.54 cm with a typical cross-sectional area of 2.25 mm 2 . Prior to annealing, specimen

surfaces are given a 600 grit polish, followed by a brief ultrasonic agitation in ethanol.

Annealing is done in high vacuum at 820 °C for 64 h. The recrystallized grain size, as a

mean linear intercept, is 15 pm. Some supplimentary specimens were also prepared from

cold rolled sheet, having a reduced thickness of 0.06 cm; after recrystallization, the grain

size in these specimens was 35 pm. Prior to testing, specimens are chemically polished

for 10 to 20 s in a 3 % hydrofluoric acid, hydrogen peroxide solution.

Table 2.1: Composition of ARMCO IF-iron.

C Mn N^Ti^Nb^P^S^Si^Al
0.004 0.31 0.018 0.056 0.071 0.008 0.022 0.011 0.036

17
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2.2 Stress Drop Tests

Tests are performed in a soft tensile machine of the Andrade-Chalmers (cam) type in

which the rate of increase of stress is controlled and the specimen extension is mea-

sured. The load is applied by dead weight through a lever of a variable moment arm

(Figure 2.1(a)). The arm is designed such that, for any instantaneous load P and inde-

pendent of changes in specimen length, the stress a is given by the equation a = 4P/A0;

A, is the initial specimen area. Various stress rates are achieved by varying the density

and flow rate of particulate matter into the loading container. In these tests, stress rates

ranging from 6.5x 10-3 to 5.0 MPa/s are achieved by using lead shot and glass balls,

sized for 2 mm diameters, and two fractions of Ottawa sand (ASTM C109), screened for

-35 to +50 mesh and -50 mesh. The time and rate of flow of lead shot and glass balls are

controlled by a motor driven shutter of variable diaphragm. Delivery of sand is through

pyrex funnels which are flamed to produce different openings.

Specimen extension in the stress drop tests is measured by a clip-on extensometer

MTS model 632.27C-21 of gauge length one inch (2.5 cm), calibrated 0 to 10 V for

0.02 inch extension (0.051 cm). (Another extensometer, MTS model 632.11C-21 cali-

brated for 0.15 inch extension (0.38 cm), is used to determine strain vs stress curves.) A

Honeywell Accudata 218 bridge-amplifier also provides a low-pass filter of 100 Hz. The

output signal is digitized using a sampling interval which is scaled to be appropriate

to the stress rate of each test. The digital recording instrument is a Bascom Turner

model 5120, which writes sequential files of extensometer voltage to floppy disc. These

data may be either retrieved and analyzed using the built-in functions provided by the

Bascom Turner or transferred to a microcomputer. In most tests, because the loading

times are long, only a portion of the loading vs time curve that pertains to the stress

decrease is recorded by the Bascom Turner; about 5 MPa of loading is recorded prior to
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Figure 2.1: Schematic diagram showing the essential features of a soft tensile machine.
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the stress drop and another 5 MPa afterwards. In total 2000 data points are acquired.

In addition, specimen extension vs time is charted continuously with a Honeywell E196

chart recorder.

For low temperature testing, a steady stream of cooled nitrogen gas is admitted into an

insulated box constructed from 5 cm thick polystyrene foam. The stream of nitrogen gas

is adjusted by a valve; in this way, temperature control better than ±0.5 °C is routinely

achieved. Test temperature is measured with a copper-constantin thermocouple attached

to the lower grip and monitored by a Fluke 8502A digital multimeter.

A typical stress drop experiment involves several tests on a single specimen at constant

stress rate but increasing stress. A "safe" prestress intended to be below the elastic limit

is applied at the start of each test. After about 1.0 % inelastic strain, while the stress

continues to rise, a small stress decrease is imposed by lifting a small weight, which hangs

from a lever attached to the cam, and was a small addition to the total weight supported

by the specimen. The specimen extension rate is measured both before and after the

stress drop. At the start of each test, the output voltage of the extensometer is zeroed

by repositioning its knife edges on the specimen to re-establish the one inch initial gauge

length. For the low temperature experiments, the thermocouple voltage is monitored

continuously and the flow of cooled nitrogen gas adjusted to insure that testing proceeds

at the targeted temperature. Initial cooling takes approximately 1 h compared to about

15 min between consecutive tests. Once thermal equilibrium has been established, the

temperature is fairly stable and requires only slight adjustment.

2.3 Stress versus Strain Tests

Stress vs strain tests are performed in a conventional Instron machine, in which the rate

of specimen extension is controlled and the load is measured. In these tests, careful
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consideration has been given to the rigidity and alignment of the testing system. To

avoid sloppy linkages, pins and universal joints have not been used; instead the pull 

rod is screwed directly into the load cell and is held firmly in place by a wide-faced nut.

Specimen grip sections are bolted against file inserts. The lower grip is bolted to the lower

cage and the upper grip is held firmly by a nut on the threaded pull rod. Alignment of

the grip faces is achieved by shimming the load cell at three points. Good alignment is

determined visually. Easy mounting, to ensure the vertical alignment of the specimens,

is achieved by mounts slotted to exactly accommodate the width of the specimen grip

sections (about 4.8 mm). Near axial loading of the specimen is insured by offsetting the

file inserts of the grips by half of the specimen thickness.

Specimen load is measured using a FR load cell calibrated 0 to 10 mV for 200 lbs

(890 N). The output signal from the load cell amplifier is digitized using a sampling

interval which is appropriate to the crosshead speed of the test. In most tests, 10 000

points are stored for 0.34 cm extension. An external low-pass filter of 10 Hz filters high

frequency noise. The cut-off frequency is sufficiently high to filter the output signal

without loss of detail of the inelastic transient at yielding for the highest crosshead speed

tests. The digital recording instrument is a Bascom Turner model 5120. Load vs time is

also monitored continuously on chart. At the start of each test, both the Bascom Turner

and chart recorder are zeroed on a sensitive (20 pound) load scale, while the specimen is

fixed in the top grip but not yet attached to the lower grip.

For low temperature testing, very accurate temperature control is necessary, as the

loads developed in the rigid system are particularly sensitive to temperature variation. In

these tests, cooling is provided by chilled alcohol with magnetic stirring. The container

is a foam insulated, 4000 L pyrex beaker. Fine temperature adjustment is made by

admitting small amounts of liquid nitrogen, from a pressurized liquid nitrogen dewer.

through the inlet of a small diameter copper tube immersed about 5 cm below the surface
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of the alcohol. Temperature control of this apparatus is within ±0.2 °C. Load cycling

was used to avoid overstressing specimens during initial cooling.

Specimen extension is determined from the difference between the total crosshead

displacement and all elastic deflections of the "machine" (these include all other deflec-

tions, besides the elastic and inelastic elongations of specimen gauge length, such as the

crosshead, grips, linkages, load cell, and specimen shoulders). The total extension of the

specimen gauge length at a particular time t is

Alt = — It (2.21)

where .k is the crosshead speed, P the specimen load and K the machine stiffness, which

is the composite spring constant of the elastic elements of the machine. K is determined

to be 7.5 MN/m by an elastic loading method using a strain hardened specimen (see

Appendix A.2). K is assumed to be constant throughout the tests.

The use of Eq. [2.21], by definition, confines all inelastic deflections to the specimen

gauge length including deformation that may occur outside the reduced (parallel) sec-

tion, particularly in the fillets of a tensile specimen. This necessitates that the initial

gauge length 10 be treated as an operational length, over which the shoulder—to—shoulder

extension is distributed to give a strain equal to the strain measured within the parallel

section [44]. Accordingly, 10 = 2.86 cm is determined from a separate calibration (see

Appendix A.1).

2.4 Model Simulations

The time integration of the equations of the model (Eq's [1.11-1.18]) permits the calcu-

lation of all the mechanical and microstructural quantities as they develop during the

deformation testing of IF iron. Among the principal mechanical quantities calculated

are stress, strain, strain rate, slope of the strain vs stress curve and strain hardening
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Table 2.2: Material constants used in the theoretical calculations

Temperature (K) n 70 (Pa)^ro (m)^a^G (Pa)^E (Pa)^b (m)
298^2.0 3.6x109 4.5x10 ^0.33 7.18x10'° 2.11x10 ^2.48x10°
273^to be determined^It^7.27x 1010^II^//

253^to be determined^II^7.32x 1010^//^IF

198^to be determined^fl^7.36x 1010^//^II

coefficient. Also calculated are the microstructural quantities including the generation

rate of mobile dislocations, rate of trapping in the network, mobile density, network den-

sity, dislocation velocity and mean lifetime. The integration is done numerically by an

iterative procedure using a 486-33 MHz microcomputer. The time interval of integration

At depends on the stress rate (or crosshead speed). For convenience, the interval chosen

is the time to achieve a stress increase of about 0.01 MPa in one iteration. This interval

insures that the maximum loss of the mobile dislocation content to the network in any

one iteration is less than 1.0 % of the mobile density, i.e. AO* < 0.01.

The initial values of some of the principal variables are (1) strain and stress = 0, (2)

network dislocation density pn = 109 m- 2 and mobile dislocation density pm = 10 I11-2

and (3) velocity v = 0 up to the elastic limit stress, then by definition, v = 10-9 m/s.

All these quantities increase with further increases of stress. The choice of the initial

dislocation network density reflects a typical low residual content of an annealed metal.

Since it is likely that most of these residual dislocations will be immobile (either they

are severely pinned or do not lie on a glide plane), pm will be practically zero. However,

assigning to pm a particular low value is not a critical decision since pm will increase very

rapidly once dislocation generation begins. However, setting pm = 0 causes a division-

by-zero-error for some of the calculations.

The material constants that have been employed in the calculations are listed in

Table 2.2. Note that n, 70 and r, at the lower temperatures are yet to be determined from
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experiment and model calculations. The model material is a single crystal in comparison

with the polycrystalline experimental material, and calculations are of shear stress and

shear strain; the factor 2.75 is used for conversion to tensile stress and 1/2.75 for tensile

strain. The Burgers vector b = 2.48 x 10'° m. For each temperature, the value of the

shear modulus G is calculated in the direction of slip and on the slip plane, according to

the analyses given for cubic metals [42];

G

H

=

=

C44 - -
1 H
3

2C44 + C12 - C115

(2.22)

where the Cij values are the appropriate temperature dependent elastic constants for iron

[43]. The Young's modulus listed is the polycrystalline modulus at ambient temperature

(its precise value is not important).

Simulations have been done for four distinctive kinds of deformation tests. At constant

stress rate the model generates (1) soft machine tensile curves of strain vs stress. If at

some point the stress is reduced by a small amount, then the material continues to deform

but at a slower rate under a lower effective stress. For different stress rates and stress

decreases, the model calculates (2) the strain rate ratio, and (3) the recovery time of

the strain rate to its prior maximum value. At constant crosshead speed, the model

generates (4) conventional hard machine tensile curves of stress vs strain. (The results of

crosshead speed change tests or load relaxation tests can also be calculated but have not

been done in the present work.) The model accounts for the microstructural differences

for tests done at different crosshead speeds so that stress differences between curves can

be compared, at the same strain.

In the soft machine simulations, the stress rises steadily at a specified constant rate.

In a stress drop experiment, a stress decrease is imposed by a conditional statement at

a specified strain of 1.0 %. The strain rate ratio is calculated using the strain rates
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developed just prior to, and just after the stress decrease. After the stress decrease, the

generation rate of mobile dislocations is set to zero, i.e. en = 0, and remains zero until

such time as the magnitude of the stress is restored to its prior maximum value; then,

generation resumes according to Eq. [1.12].

The hard machine simulation is identical except that the stress rate is derived from

the crosshead speed, as well as from the elastic constants of the machine and specimen

and the inelastic deformation rate. Consequently, the stress rate is not constant but

tends to be high at the start of the stress vs strain test, and subsequently decreases with

further strain. The analysis of Holbrook et al [44] is used to calculate the stress rate;

. , cr \1
= [— — (1 —

/og M ) 
(2.23)

where X is the crosshead speed, la is the initial operational gauge length, C the combined

specimen—machine modulus, M the effective machine modulus, g = 1 + et a variable

stretch ratio, and the inelastic strain rate.



Chapter 3

Results and Discussion

3.1 Strain versus Stress

Strain vs stress curves were obtained in the soft tensile machine for four temperatures,

25, -20, -50 and -75 °C, and a stress rate of 1.0 MPa/s. These curves (Figure 3.2(a))

show strain, which is the dependent variable in a soft tensile machine test, plotted on

the ordinate versus stress, the independent variable, on the abscissa. The stress has

been normalized with respect to the shear modulus at 25 °C so that the temperature

dependence of the deformation resistance is more usefully shown; i.e. & . a x G298/GT.

Inelastic yielding is identified by a rapid initial rise in strain rate' (Figure 3.2(b)) to

values ranging from about 2.0x10-4 s-1 at 25 °C to 4.5x10-4 s-1 at -75 °C. This strain

rate increase appears to be the soft machine equivalent of the yield point, seen in a hard

machine. In this pure iron, it is quite weak. (At this stress rate, the calculated elastic

strain rate is 4.74x10-6 s-1 and is barely detectable.) The 0.2 % offset yield stress

(normalized) is very sensitive to the deformation temperature, increasing from about

81 MPa at 20 °C to 214 MPa at -75 °C.

Strain hardening is shown by the inverse slope of these curves, 1/S = da/de. It

appears to be generally weaker than that described by a parabolic law.2 That is, S is

'Figure 3.2(b) shows the slope S = de/do of the strain vs stress curve; the equation for the strain
rate is i = Ser.

2The usual relation describing strain hardening of body-centred cubic materials is a parabolic curve
of the form:

T = kei.^ (3.24)

This gives rise to a slope of a strain vs stress curve which is not independent of stress, as is characteristic

26
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Figure 3.2: Soft tensile machine (a) strain vs stress, and (b) the slope (i/&) vs stress
curves at four temperatures, and a constant stress rate of 1.0 MPa/s. The curves have
been normalized with respect to the 25 °C shear modulus so that the temperature de-
pendence of the deformation resistance is more usefully shown; i.e. er = a x G298/GT and

= S x GT/G298.
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Figure 3.3: Temperature dependence of the strain hardening rate. The curves have been
normalized with respect to the 25 °C shear modulus; i.e. 1/,' 1/S x G298/GT.
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not linear in the stress but rises ever more rapidly as the stress and strain increase. For

example, at -75 °C and a stress of 250 MPa, the change of slope with stress (dS/da) is

1.2x10-6 MPa-2. At 300 MPa, this change of slope is 3.7x106 MPa-2 and at 350 MPa,

7.0x106 MPa-2 (Figure 3.2).

As well, the strain hardening appears to be sensitive to the deformation temperature,

particularly for strains up to about 8.0 % (Figure 3.3). Below this level of strain, the strain

hardening rate (1/S = do-/dc) decreases with decreasing temperature. Above about

8.0 % strain, the strain hardening rate is roughly constant. A similar observation of the

temperature dependence of the strain hardening rate for iron was reported by Keh [39],

who additionally reported that the strain hardening rate approached a minimum at about

-75 °C and a maximum value at about 25 °C. (Curiously, Keh observed that the strain

hardening rate rises upon further decrease of temperature, below -75 °C.) As a result of

the observed temperature dependence of strain hardening rate, the separation between

strain vs stress curves, at constant strain (Figure 3.2(a)), decreases with increasing strain.

3.2 Stress Sensitivity Measurements

The principal data, from which n and To are determined, are measurements of the sen-

sitivity of the strain rate to a small, abrupt decrease in the applied stress. A typical

result is shown in Figure 3.4, which contains the segment of the original experimental

digital recording of the extensometer output voltage pertaining to the stress drop; the

digital recorder presents pseudo-analog plots of the extensometer output voltage and its

time derivative. The smooth line shows extension and the noisy line, the time derivative

of linear hardening, but proportional to the stress;

M25 = —
2 

T.
k2

(3.25)
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calculated by the digital recorder, shows extension rate. In the instant of the stress drop,

the extension-time curve falls abrubtly by an amount comparable to the expected elastic

contraction of the specimen, and the slope also falls abruptly to an approximately con-

stant value. At later times, and not shown, the slope (extension rate) recovers to its prior

maximum value and above; in most of these tests, this happens only after the specimen

has suffered appreciable additional strain.

The noise of the time derivative curves is considerable, and seems to increase with

the density and flow rate of particulate matter, i.e. with the stress rate. In addition, in

prior experience with creep testing using the identical equipment, we have observed that

the loading curves are somewhat noisier than creep curves. These effects suggest that

at least part of the noise maybe attributed to small variations in the flow of particulate

matter, this will likely result in minor differences in inertial loading, and will cause the

machine to ring. As well, ringing may result from the initial impact of the flow of shot

(in a high loading rate test) onto the bottom of the loading container, and may not be

damped-out in the duration of a short test. Another contributing factor to the noise

is the high resolution of the extensometer which is not less than about 10-5 strain or

2.5x10-4 mm. The extrapolated lines in Figure 3.4 show attempts to smooth these data

by linear regression, a task which is easily performed by using the analytical functions

provided by the digital recorder.

The response of the strain rate to the abrupt stress decrease is measured by the ratio

R of the strain rate just before the stress decrease to the strain rate 2 just after; thus

R = t /i2 will always be greater than unity. The logarithmic stress sensitivity of the

strain rate is given by
dln^ln R

n =  ^ (3.26)
dln^Acylcr•

In this test, the strain rate ratio and the extension rate ratio are identical because the
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specimen length is unchanged in the instant of the stress decrease, thus R = 102. The

the extension rates, 11 and 12, just before and just after the stress decrease are measured

by short linear extrapolations of the derivative curves to the time at which the stress is

reduced. This point is taken to be the time of the final recorded extension just prior to

the stress drop, which is indicated by the peak in the extension vs time curve. In this

particular test (Figure 3.4), the measured extension rate just before the stress is lowered

is 3.625x107 m/s and just after, 1.375x107 m/s. The strain rate ratio is 2.54 and the

logarithmic stress sensitivity is 39.5.

3.2.1 Effect of Stress and Strain

For a given stress drop, the strain rate ratio is found to be independent of stress and

strain at a particular stress rate and temperature. This result seems to be general for low

temperature stress sensitivity measurements performed in the soft tensile machine [3,45].

Thus, an average of several measurements on a single specimen at increasing stress and

strain can be expected to give a good estimate of the strain rate ratio. A typical result

is shown in Figure 3.5(a). Here, the temperature is -75 °C, the stress rate 0.021 MPa/s,

and the stress drop 11.5 MPa. The values of the strain rate ratio are scattered about

the mean value of 2.56. The estimated standard deviation is 0.064. From Eq. [3.27],

it is evident that a constant strain rate 'ratio arises from an effective stress and velocity

exponent which are independent of stress and strain. The constancy of the effective stress

is an important result with which to test the theory.

The constancy of the strain rate ratio contrasts with the variability of the stress sensi-

tivity n*, which rises proportionately with increasing stress (Figure 3.5(b)). According to

the analysis of the measured stress sensitivity (Eq. [1.20]), n* will be linear in the stress if

nlue is constant, independent of stress and strain. The slope of the line is 0.089 MPa-1.
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Figure 3.5: Stress dependence of (a) the strain rate ratio, and (b) the stress sensitivity.
The temperature is -75 °C, the stress rate 0.021 MPa/s, the stress drop 11.5 MPa, and
the estimated strain rate ratio 2.56 ±0.064. The constancy of the strain rate ratio with
stress suggests that the effective stress is constant in this experiment.
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Extrapolation of the stress sensitivity line back to the value at zero strain has been sug-

gested by some [32,35] to give the velocity exponent n. However, it has been shown [3]

that the extrapolated value of n* and the actual value of n are in gross disagreement for

IF iron at 25 °C. This discrepancy is attributed to a flow stress which is larger than the

effective stress, even at yield.

3.2.2 Effect of the Magnitude of the Stress Drop

For a given deformation temperature and stress rate (which give a particular value of the

effective stress), the strain rate ratio should be approximately exponential in the stress

drop; namely,

R exp (nAn , (3.27)

as seen by equating Eq's. [1.20] and [3.26]. Experimentally, this relation has been con-

firmed previously for IF iron at 25 °C [3]. Model calculations will show that Eq. [3.27]

is a good approximation if Ao- is small relative to o-e, which is usually the case when the

value of R is small, i.e. R < 3.0. Otherwise, R is given by the following exact equation3:

R=
Acr —n

Cre
(3.28)

Although in this present study, the number of variable stress drop data points obtained

for a particular stress rate and temperature are few, the data do appear to be consistent

with Eq. [3.27] (Figure 3.6). In this figure, lines have been fitted through experimental

points representing three values of stress drop, but for a fixed temperature and stress

rate. A forth point is gained for a zero stress drop for which the strain rate ratio is equal

to unity, by definition. A single filled point indicates the average of six to seven tests,

3This expression can be derived by considering the appropriate strain rate equations: (1)^=
Prn b(creiror just before the stress decrease, and (2) 2 =^b[(0e — Acr)/rojn just after the stress
decrease; R = For the case in which Acr- is small relative to 0e, the term 1— Aol exp(— Acr /a, )
and Eq. [3.27] holds. This approximation becomes evident when exp(Acr/ae) is expressed as a series
expansion.
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Figure 3.6: Strain rate ratio vs stress decrease at several stress rates and three temper-
atures; (a) -20 °C, (b) -50 °C, and (c) -75 °C. In this and subsequent figures, the filled
points are averages of at least six tests performed on a single specimen, and unfilled
points are individual supplementary tests.
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done on a single specimen but at increasing stress and strain. These data will be referred

to as the principal data. Unfilled points lying one above another on several lines indicate

a group of single, supplementary tests performed at different stress rates on a single

specimen. The experimental points have been fitted by least squares lines which have

been forced through the origin. Their slopes are equal to ln R/Acr n/o-e4, which is a

measure of the semi-logarithmic stress sensitivity of both the strain rate and dislocation

velocity, i.e. din qdcr = dlnv/da. (Recall that in this test, because the mobile density

is taken to be unchanged during the stress decrease, the stress sensitivities of the strain

rate and dislocation velocity are identical.) Additionally, this fitting procedure provides

a useful method of smoothing measured R values, which requires fewer measurements

than the technique (used in this study) of averaging several measurements for a single

valued stress decrease.

3.2.3 Effects of Stress Rate and Temperature

The variation of slope in Figure 3.6 characterizes the temperature and stress rate de-

pendences of the semi-logarithmic stress sensitivity, as defined by the ratio n/ a,. To

better show these variations, a cross plot (Figure 3.7) is constructed using the fitted

slopes vs stress rate. At -20 °C, the stress sensitivity is both large and sensitive to stress

rate, increasing from 0.10 MPa-1, at 1.0 MPais, to 0.37 MPa-1, at 6.6 x 10-3 MPa/s.

With decreasing temperature, both the stress sensitivity and the its variation with stress

rate decline. For example at -75 °C, the stress sensitivity varies from 0.060 MPa-1, at

1.0 MPa/s, to 0.096 MPa-1, at 6.5 x 10-3 MPa/s.

41n the thermal activation literature, Ore =V*IkT where V* is the activation volume.
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Figure 3.7: Stress sensitivity of the dislocation velocity, as defined by din v/do- = nlo-e, vs
stress rate for three temperatures. Recall that in a stress decrease experiment, because the
mobile density is taken to be unchanged during the stress decrease, the stress sensitivities
of the strain rate and the dislocation velocity are identical.
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3.3 Calculation of Dislocation Velocity Constants

For each temperature, the velocity equation constants, n and ro, are determined from

a theoretical fit of a strain rate ratio vs stress rate profile for a single valued stress

decrease, as shown in Figure 3.8. The fits have been made to the principal strain rate

ratio data obtained from several tests performed on a single specimen. (Alternatively,

fits could have been made to smoothed R vs & data obtained from the slope of lines

in Figure 3.6, for a single valued stress decrease.) The fitted curves are included in

Figure 3.8. Although these theoretical curves appear to be continuous, they have been

obtained by joining discrete strain rate ratios calculated using a particular stress drop

and several stress rates. Then, using the fitted values for n and r0, additional theoretical

curves are calculated for supplementary stress drops; their good agreement attests to the

predictive capability of the model.

Fitting is done by generating a great number of strain rate ratios for each experimental

stress rate using a computer program with two nested control loops, which increment

separately the values of n and r0. Initially, a wide range of n and To values is tried using

coarse increments. Then, as the region of possibility in n and To parameter space (which

contains the best fit values of n and To) is reduced, finer increments are chosen. Smart

choices for n and To are made according to the observation that n and To separately

control two aspects of the strain rate ratio: (1) the smaller the value of n, the more

sensitive the strain rate ratio will be to stress rate, i.e. the slope of the R vs à- curve is

steeper and R increases more rapidly at lower stress rates; and (2) the larger the value

of r0, the smaller is the strain rate ratio, i.e. the entire R VS Gr curve shifts downwards to

smaller strain rate ratios, while its slope remains essentially unchanged.

In addition, the best fit values of n and To were determined by minimizing the Chi

square (x2), which is a weighted least-squares calculation. That is, for each set of n and
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Figure 3.8: Strain rate ratio vs applied stress rate for various stress drops at (a) -20 °C.
(b) -50 °C and (c) -75 °C. Experimental points, theoretical curves. Theoretical fits have
been made to the filled points which are mean values of R for several tests. A scatter
bar represents a single standard deviation on either side of the mean R value. Unfilled
points represent supplementary single tests of the predictive capabilities of the theory.
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70 values and a series of calculated R vs O- values, X2 is given by the sum of the squares

of the weighted residuals between the measured and calculated strain rate ratios; the

weights used are the estimated standard deviations of the measured R values at each

stress rate:

The best fit of an experimental R vs 6- curve produces a minimum x2. (A rule of thumb

for a moderately good fit is X2 v or the number of degrees of freedom [46]; in these fits

v = N — 2, where N = 5 is the number of R vs er values being fitted.)

Confidence intervals were also determined by calculating the region bounded by per-

turbations equal to Ax2 = 1 away from the best fit values of n and To (Figures 3.9(a-c).)

The boundary was calculated by separately incrementing n and To and discarding those

values which gave Ax2 > 1. The projection of the Ax2 = 1 boundary onto each axis gives

the 68.3% confidence interval (two standard deviations wide) for n and 70, respectively

[46].

The results of this curve fitting exercise, as represented by Figures 3.8 and 3.9 and

summarized in Figure 3.10, establish the dynamic constants for IF iron. With decreasing

temperature, To declines from 1.7 x 109 Pa at -20 °C to 5.1 x 108 Pa at -75 °C, while

n increases from 3.2 to 6.8. The values at ambient temperature are n = 2.0 and 70 =

3.6 x 109 Pa, which were determined previously [3].

It is implicit in the calculation of the strain rate ratio, as it is influenced by the

magnitude of the stress decrease and stress rate, that the value of the effective stress

is determined simultaneously when the values of n and 70 have been determined. (This

determination can be done because the value of the effective stress is established by

the values of n and 70 and the stress rate. In comparison, the influence of the strain

hardening rate, which depends upon the value of the mean free path 7.0 is negligible.

x2
^1\1"' ^R(e'i; n To))

St
(3.29)
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Figure 3.9: The optimized Chi-squared fit of the dislocation velocity constants and their
calculated confidence intervals for (a) -20 °C, (b) -50 °C and (c) -75 °C. The confidence
region boundary shown corresponds to ,Ax2 = 1 larger than the minimum Chi-squared.
The projection of the boundary onto each axis gives the 68.3% confidence interval (two
standard deviations wide) for n and To, respectively.
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Figure 3.10: Temperature variation of the dislocation velocity constants.
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In these simulations, ro was taken to be the value determined at 25 °C (ro = 4.5 pm)

[3]; doubling this value, for example, increased cre by less than 5 %, at 1.0 % strain.)

Calculations show that the effective stress will be both small, in comparison to the

applied stress, and stress rate sensitive if n is small. In particular, Alden [3] has shown

that this is nature of IF iron at 25 °C for which the calculated tensile value of the effective

stress is very small (e.g. the theoretical tensile value is only 7.7 MPa at a stress rate of

1.0 MPa/s). This is also the nature of IF iron at -20 °C. Not only is the effective stress

small in comparison to the applied stress (albeit about 4.4 times larger than the 25 °C

value, at 1.0 MPa/s), but its value is still very much stress rate sensitive, as implied by

the strong stress rate dependence of both the strain rate ratio (Figure 3.8(a)) and stress

sensitivity of the dislocation velocity (Figure 3.7).

A separate decrease of To will also lower the value of the effective stress. However,

despite the declining value of To at low temperature, this effect is overshadowed by the

strong temperature dependence of n. For example, the calculated tensile value of the

effective stress at -75 °C and a stress rate of 1.0 MPa/s is 116 MPa. In addition, the

large n value is responsible for the lowered stress rate depedence of both the strain rate

ratio (Figure 3.8(c)) and stress sensitivity of the dislocation velocity (Figure 3.7). (There

is a probably a practical upper limit to the value of n which can be determined by

application of this technique. This limit will be reached before the stress rate sensitivity

of the strain rate ratio becomes vanishingly small.)

3.4 Determination of Static Strength Constants

So far, the theory has been used to calculate the stress sensitivity of the dislocation veloc-

ity of IF iron, for several temperatures, as it is influenced by stress rate and the magnitude
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of the stress decrease. The success of these predictions require that the dynamic resis-

tance to dislocation glide, which is equal to the effective stress, be calculated from the

theory. The theory permits this calculation once the dislocation velocity constants have

been determined. The calculation of these dynamic properties depends strongly on nei-

ther the nature of strain hardening (e.g. linear vs parabolic) nor the value of the strain

hardening coefficient. In order to calculate other mechanical properties of IF iron, which

depend additionally on the evolution of the network dislocation microstructure, strain

hardening must be considered. These properties include the strain vs stress curve, the

strain rate and its recovery after an abrupt stress decrease, and the strain dependence of

the stress sensitivity n*. (The emphasis of this thesis, however, is not the measurement

and prediction of properties which depend primarily on the evolution of the network

dislocation microstructure.)

As indicated in Section 3.1, strain hardening in IF iron is apparently more complex

than can be described by a simple linear or parabolic hardening law. However, moderately

good fits to the strain vs stress curve up to about 8.0 % strain (Figure 3.11(a)) can be

made using the parabolic hardening law (Eq. 3.24), if the hardening rate is adjusted

slightly to account for effects of temperature. The adjustable constant in this fit is the

mean free path ro, which may be calculated directly from the curvature (dS/do-) of the

tensile strain vs stress curve (Figure 3.11(b)).

To perform this calculation, the strain hardening coefficient5 is equated to the inverse

slope of the strain vs stress curve,
1 

^

MS^ (3.30)9^2 •

Substituting into Eq. {3.30} an equation for the strain hardening coefficient, which

is derived from the theory (Eq. [1.18j), and the empirical equation for the slope of a

5The precise statement of the strain hardening coefficient is provided by the derivative of the static
strength with respect to strain, 9 = drs/de.
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parabolic strain vs stress curve (Eq. [3.25]), and then rearranging for r, gives:

ct2 G2 b
ro

k2
(3.31)

Here, k is the constant in the parabolic hardening law equation (Eq. [3.24]); its shear

value can be evaluated from the curvature of a tensile strain vs stress curve,

1^lt13 dS1

k22 [du •
(3.32)

Fitting the curvature of the strain vs stress curves, shown by the slope of the light lines

in Figure 3.11(b), is not as straight forward as the above discussion implies. Inasmuch

as the strain vs stress curves do not exhibit well-defined, constant, changes of slope with

stress (curvature), there is some uncertainty as to which value of the curvature to choose.

(It may be a fact that the increasing curvature of the strain vs stress curves indicates

that trapping becomes less efficient at higher stresses, and as a result the mean free path

increases.) Consequently, in order to make reasonably good fits to the experimental stress

vs strain curves up to about 8.0 % strain, we take an average of the change of slope with

stress over this range of strain, at each temperature. These average curvatures are shown

by the solid lines in Figure 3.11(b). The calculated values of 7.0, which are summarized in

Table 3.3, increase from 4.5 pm to 5.6 pm, as the temperature decreases from -20 °C to

-75 °C; at 25 °C, the curvature of the strain vs stress curve is consistent with 7.0 = 4.5 pm

as determined in the previous room temperature study [3]. These adjustments in the

values of 7-0 do not affect the fits of n and To.

In addition to fixing the values of 7.0 to account for the increase of static strength

due to strain hardening, it is found that in order to fit the experimental strain vs stress

curves, the calculated strain vs stress curves must all be shifted to higher stresses by

a constant amount of about 30 MPa (with respect to the shear modulus at 25 °C).

This stress which has a shear value of 1.1 x 107 Pa, presumably arises from sources of
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stress curves establishes the initial static strength (r°„) and the mean free path (ro) for
this material. The curves have been normalized with respect to the 25 °C shear modulus.
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static strength in the annealed material, such as grain boundaries, coarse precipitates or

clustering of excess titanium or other solute atoms. (Recall that the static strength due

to residual dislocations in the recrystallized material has already been roughly accounted

for by assuming an initial network density of ion = 109 In-2, which contributes about

0.5 MPa to the initial tensile strength.) The result of this final curve fitting exercise is

shown in Figure 3.11(a).

One final discrepancy between the calculated and experimental strain vs stress curves

(and unresolved in this study) is the nature of the elastic-to-inelastic transition. While

the experimental curves show a rapid elastic-to--inelastic transition, which is indicated by

an abrupt rise in strain rate (Figure 3.11(b)), the theoretical curves show a more gradual

transition. Moreover, this difference in yield behaviour results in a gap between the larger

experimental and the smaller predicted 0.2 % offset yield stress (Figure 3.12). This gap

widens as the temperature decreases, but eventually disappears at larger stresses and

strains.

In Figure 3.12, the calculated 0.2 % offset yield strength is given by the sum of

the dynamic and static components, where the static strength incorporates both the

initial static strength and strain hardening (which contributes about 36 MPa at this

level of strain). The calculated dynamic strength, which is equal to the effective stress,

increases from 7.7 MPa at 25 °C to 116 MPa at -75 °C and evidently accounts for the

most of the temperature dependence of the experimental 0.2 % offset yield stress. The

remaining difference, which is largely temperature independent, is mostly accounted for

by the calculated static strength. In comparison, the gap between the experimental and

theoretical yield stresses is small. At this time we are not certain as to the origin of

this discrepancy. Perhaps, if dislocation sources in the annealed material are slightly

pinned, then an extra unpinning stress, which may be temperature dependent, will be

required. Then, yielding will be delayed until the unpinning stress is reached; afterwards
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Figure 3.12: Comparison of the measured and calculated 0.2 % yield stresses. The
calculated yield strength is given as the sum of both the dynamic and static components.
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Table 3.3: Summary of the fitted constants

Temperature
(K)

ii T0
(Pa)

ro
(m) (Pa)

298 2.0 3.6x109 4.5x10-6 1.1x107
253 3.2 1.7x109 4.5x10-6
223 4.6 9.1x108 5.0x10-6
198 6.8 5.1x108 5.6x10-6

dislocation multiplication may occur, for a short time, at a higher rate than is given by

Eq. [1.12]. We note that the resolution of this problem is not the central issue of this

study.

The results of these two curve-fitting exercises, as represented by Figures 3.8 and

3.11, and summarized in Table 3.3, establish the deformation constants for IF iron. It is

now possible to calculate all of the mechanical and microstructural variables for IF iron.

As an example of such calculations, Figures 3.13(a) and (b) show the microstructural

parameters which determine the inelastic strain rate and the various components of the

deformation resistance (static and dynamic strengths) of IF iron, as they vary with the

increase of stress and strain, for a strain vs stress test performed at -50 °C and at a

stress rate of 1.0 MPa/s. (Recall that in a soft machine test, stress is the independent

variable, while strain is the dependent variable. In Figures 3.13(a) and (b), however,

strain is plotted on the abscissa so that, in a later discussion, hard and soft machine

simulations can be readily compared.) Notice particularly that the dislocation velocity

and the dynamic resistance (effective stress) are nearly constant with stress and strain,

after a rapid initial increase at small strain. (The values of both the dislocation velocity

and the effective stress increase with stress rate, but only the effective stress increases

with the values of the dislocation velocity constants (at low temperature), the dislocation

velocity declines.) Despite the constancy of the dislocation velocity, the strain rate rises
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as the mobile dislocation density increases (Figure 3.13(a)).

Strain hardening is the only component of the deformation resistance (Figure 3.13(b))

which increases with stress and strain. The initial static resistance is constant, by def-

inition. (Both components of the static strength, as defined by theory, are also rate

insensitive.) The constancy of the effective stress with increasing stress and strain is an

important result and underlies the constancy of the strain rate ratio.

3.5 Additional Measured and Simulated Tests

3.5.1 Recovery of Strain Rate

After the abrupt stress decrease, in a soft machine stress drop test, the applied stress

continues to rise at a constant rate and the strain rate gradually recovers to its prior

maximum value. Both the times and shape of this recovery are of particular interest,

and provide a basis on which to test the model's central hypothesis concerning the evo-

lution of the mobile dislocation density [3]. Although several stress drop tests have been

performed in procuring values for n and To, separate strain rate recovery tests have been

done, primarily because recovery times are long in this material. This tendency causes

specimens to suffer appreciable additional strain prior to the recovery of the strain rate.

Recovery tests have not been performed at every deformation temperature for which

the material constants have been determined. Instead, supplementing tests already per-

formed at 25 °C [3], a few representative tests have been done at -50 °C using a stress

rate of 1.0 MPa/s and four stress drops ranging from 2.5 MPa to 10 MPa, or about 3.3 %

to 13 % of the calculated effective stress. The stress drops were applied after a prestrain

of about 3.0 %, at 225 MPa, at which the model first matches the experimental strain

hardening rate (see Figure 3.11(a)).

The results of these experiments show that recovery times of the strain rate are always
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much longer than the times required to restore the applied stress to its prior maximum

value. For example after a stress decrease of 2.5 MPa, the recovery time of the strain rate

is 12.3 s. After a 7.5 MPa stress decrease, the recovery time is 23.0 s (Figures 3.14(a) and

(b)). As reported in the prior study [3], these times increase, but not proportionately,

with the magnitude of the stress decrease (Figure 3.14(b)). The usual shape of the

recovery consists of (1) an initial region of low slope, which ends approximately with

the time required to restore the applied stress to its prior maximum value, followed by

(2) a region of higher, but falling slope (Figure 3.14(a)). The model makes quantitative

predictions of both the shape and times of this recovery.

These quantitative predictions, particularly of the shape of the recovery, provide

confirmation of the equations governing the evolution of the mobile dislocation density

[3]. Recall that in the theory, the mobile dislocation density is related to the rate of

stress increase and not directly the level of stress (or strain) itself. (Perhaps the most

persuasive evidence for this hypothesis is from the study of the low temperature creep

of 304 stainless steel [5] in which the loading stress rate, used to attain the creep stress,

is found to affect strongly the amount of subsequent creep strain.) In the present study,

the theory predicts that the mobile density will be unchanged in the instant of the stress

decrease. Then, in strict adherence to Eq. [1.11], the total density will not increase again

until the applied stress is restored to its prior maximum value. There is a delay time for

the generation of new (mobile) dislocations, but the attrition of mobile dislocations to

the network (which is the microstructural origin of strain hardening) continues. Because

of discontinued generation and continued trapping of mobile dislocations, following the

stress decrease, the mobile density declines. Then, at time equal to Ao-/O-, dislocation

generation recommences (Figure 3.15(a)).

The dislocation velocity, on the other hand, falls immediately in response to the

stress decrease, but, afterwards, gradually recovers as the applied stress continues to
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(b) dislocation velocity, and (c) inelastic strain rate. The temperature is -50°C, stress
rate 1.0 MPa/s, stress 225 NIPa and stress drop 7.5 MPa. (The stress continues to rise
at constant rate, following the stress decrease.)
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rise (Figure 3.15(b)). Despite the continued recovery of the dislocation velocity, the

initial recovery of the strain rate will be slow due to the declining mobile density. Once

dislocation sources are reactivated, after the delay time, the strain rate rises rapidly to

its prior maximum value (Figure 3.15(c)).

3.5.2 Constant Crosshead Speed Tests

Previous tests and simulations were done with the soft tensile machine in which the stress

rate is controlled and the extension is measured. In the present section, stress vs strain

curves are obtained using a conventional hard tensile machine in which the speed of a

crosshead is controlled and the load is measured. The control of the crosshead speed

makes hard machine tests distinctive in at least two respects:

(1) The stress rate is variable; it depends on the crosshead speed, the elastic deflections

of the machine and specimen, and the inelastic deformation of the specimen. For example,

in a stress vs strain test, the stress rate is high during elastic straining and subsequently

declines as inelastic strain increases.

(2) The mobile dislocation density and the dislocation velocity are inextricably linked:

an increase in one of these variables requires the decrease in the other. For example, rapid

dislocation multiplication at small strain may cause a yield drop in a stress vs strain test,

or a lessening of the increase of flow stress in an instantaneous upward crosshead speed

change test, thereby lowering the measured rate sensitivity.

The primary reason for conducting stress vs strain tests at several crosshead speeds

and temperature is to obtain experimental curves which can then be compared to theo-

retical predictions. In particular we are interested in predicitions of the rate sensitivity

of IF iron, as indicated by the relative differences between stress levels Of of curves

obtained for different crosshead speeds, but at constant strain. (A similar, study of the

rate sensitivity of the flow stress could have been performed in the soft tensile machine.
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but at different stress rates, since the nature of the rate sensitivity of the flow stress

does not depend on which testing machine is used.) However, we must note that the

measurement of AU f cannot be used to establish the rate sensitivity of the flow stress,

as defined by m = do-/A, primarily because of uncertainty in the constancy of structure.

(Recall that in the theory, the total dislocation density depends on the level of stress,

and the mobile fraction is determined by a competition between stress rate dependent

generation and velocity dependent trapping.) An alternate method would be to perform

instantaneous crosshead speed change tests, but even in these tests the constancy of the

structure has been questioned [34,36].

Another reason for performing hard machine tests and comparing the results with

theory is to demonstrate the versatility of the model in which the stress rate is the central

variable controlling the change of structure (Eq. [1.14]). These tests also approximate

industrial processes which often impose shape changes at constant rate. However, we

note that industrial deformation rates are typically 2 to 5 orders of magnitude greater

than the maximum rate which can be attained in the conventional hard testing machine.

Measured Stress versus Strain

Figure 3.16 shows several stress vs strain curves obtained at four temperatures (25, —20,

—50 and —75 °C) and several crosshead speeds spanning four orders of magnitude (8.5 x

10-4 mm/s to 8.5 x 10-i mm/s). Observe in this figure that the scales are the same, so

that the temperature dependence and rate sensitivity of the flow stresses can be readily

compared. The following features are observed:

(1) At small strain, yielding is identified by a stress drop, the magnitude of which

increases with crosshead speed and at lower temperature. For example, at ambient

temperature and low crosshead speed (8.5 x 10-4 mm/s), the stress drop is vanishingly

small. At -75 °C and high crosshead speed (8.5 x mm/s), it is about 60 MPa.
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Figure 3.16: Measured hard tensile machine stress vs strain curves for four crosshead
speeds (X), ranging from 8.5 x 10-4 to 8.5 x 10' mm/s, and at four temperatures:
(a) 25 °C, (b) -20 °C, (c) -50 °C and (d) -75 °C. The initial effective gauge length
/0 = 2.86cm.
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As well, the sensitivity of both upper and lower yield stresses to the crosshead speed

increases at low temperature.

(2) At strains above about 1.0 %, strain hardening appears to be approximately

parabolic. However, the curves cannot be superimposed onto each other by parallel

transfer because the strain hardening rate falls with high crosshead speed and low tem-

perature. As a result, the separation between flow stresses of neighbouring curves (Aaf ),

at constant strain, decreases with increasing strain.

(3) The separation between adjacent curves (Acrf ) is sensitive to crosshead speed and

temperature. For example, at 25 °C, Acrf is small and increases successively by a factor

of about 2 with each factor 10 increase of crosshead speed. At lower temperature, the

magnitude of Ao-f increases, but the factor which multiplies successive stress differences

diminishes. At -75 °C, the Acri's are nearly identical between adjacent curves.

Hard Machine Simulations

Simulations of the hard machine tensile tests are similar to those done for the soft ma-

chine except, in the hard machine simulation, the stress rate is not explicitly stated but

is derived from Eq. [2.23]. Consequently, the model predicts some differences in the

microstructural parameters of the inelastic strain rate and levels of effective stress. A

typical simulation is done for -50 °C at a crosshead speed of 8.5 x 10-4 mm/s The mobile

density increases with stress and strain. The dislocation velocity, which has a maximum

value at small strain, falls in order to maintain a nearly constant but slowly declining

strain rate (Figure 3.17(a)). Consequently, the effective stress, which reaches a maxi-

mum value at small strain, slowly declines at large strain (Figure 3.17(b)). The strength

contributed by strain hardening is assumed to be entirely static, i.e. temperature and

rate independent.

The calculated stress vs strain curves are presented in Figure 3.18, along with the
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experimental curves for comparison. The differences between the level of the calculated

flow stresses, at constant strain, represent only differences in the magnitude of the effec-

tive stresses; the calculated static strength, which is indicated by the dashed line, does

not vary with crosshead speed (i.e. ro is assumed to be constant). The theory predicts

both the magnitude of the flow stresses and, consequently, the change in effective stress

as it varies with strain rate and temperature, particularly at small to moderate strains

(Figures 3.18 and 3.19). For example, at 25 °C and 2.0 % strain, the measured stress

difference between curves obtained at 3.0 x 10-5 s-1 and 3.0 x 10-4 s-1 is 3.3 MPa com-

pared to the theoretical value of 3.7 MPa. At -50 °C, the measured stress difference at

3.0 x 10-3 s-1 and 3.0 x 10-2 s-1 is 41.6 MPa and the theoretical value is 44.8 MPa.

(The theory predicts that these values decrease slightly at larger strains due to a falling

effective stress (Figure 3.17(b)). However, the decline of the measured stress differences is

greater than the theoretical values because of the additional decrease of strain hardening

rate with crosshead speed, which the theory does not account for.) At -75 °C, the the-

ory does not predict a constant stress difference for each factor 10 increase of crosshead

speed. However, the factor of increase for successive theoretical stress differences is small

(approximately 1.3).

Yield Drops

Despite the considerable success of the theory in predicting stress differences, there are

two notable differences between the experimental and theoretical stress vs strain curves.

One discrepancy is the failure of the model, as already noted, to predict yield drops.

Instead, the calculated curves rise continuously with stress and strain because the theory

assumes that there is always a sufficient number of operable sources for the dislocation

density to increase according to Eq. [1.14 However, in order for there to be a stress

drop, there must be a deficiency of dislocation sources in the early stages of strain; for
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Figure 3.18: Comparison of measured and calculated hard tensile machine stress vs strain
curves for four crosshead speeds ranging from 8.5 x 10-4 to 8.5 x 10-4 mm/s, and four
temperatures: (a) 25 °C, (b) -20 °C, (c) -50 °C and (d) -75 °C. The light dashed lines
show measured curves, while the heavy solid lines show the results of model calculations.
The calculated static strength is rate insensitive, by definition, and is indicated by the
heavy dashed line.
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Figure 3.19: Temperature and strain rate dependences of the measured and theoretical
flow stresses, at 4.0 % strain.
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instance, sources may be pinned by impurity atoms. Note that in the present theory,

the mobile density rises very rapidly at small strain (Figure 3.17(a)). Alden [37] has

suggested that the theory may be modified by relaxing Eq. [1.11], in the early stages of

strain, so that the total dislocation density falls behind its "natural" value (Eq. [1.11]).

Once sources are activated, then rapid multiplication may follow, making up the shortfall

in total density and causing a temporary drop in stress. Conceptually, the yield drop

effect may be included, but the details of the necessary modifications have yet to be

worked out.

Strain Hardening

The second difference is between the measured and calculated slopes of the stress vs strain

curves. Although the strength contributed by strain hardening may be entirely static

in nature, the strain hardening rate (do/d€) falls with increasing crosshead speed and

decreasing temperature, i.e. with increasing flow stress. This discrepancy is particularly

noticeable for the high crosshead speed tests. However, better agreement is found between

experimental and theoretical slopes of the low crosshead speed tests. In particular, for

tests performed at crosshead speed X = 8.5 x10-4 mm/s, the strain rate and flow stresses

are comparable to those developed in soft machine tests at 1.0 MPa/s. This agreement,

however, is expected since it was the slope of the 1.0 MPa/s strain vs stress curves that

was used to quantify the strain hardening rate (i.e. select ro).

To explain the temperature and strain rate dependence of the strain hardening rate,

we suggest that trapping by stable attractive junction formation may become less efficient

at high flow stresses. Consequently, in a material such as iron, in which the friction

stress (effective stress) is strongly temperature and rate sensitive, strain hardening will

be weaker at low temperature and high strain rate (or stress rate) than at ambient

temperature or slow strain rate. (This is contrary to the usual observation, that the net
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hardening rate is weaker at the high temperature and slow rate because of the onset of

a competitive thermal softening process, e.g. dynamic recovery.) In order to match the

weaker strain hardening at high flow stresses, the mean free path (r0) must increase.

For example, to make a good fit to the slope of the experimental curve at -75 °C and

a crosshead speed of 8.5 x 10-1 mm/s, the value of 7.0 must be increased from 5.6 pm

(Table 3.3) to about 10 pm.

Unless adjustments in the values of 7'0 are made to better characterize strain hardening

at high crosshead speed, a comparison of the measured and calculated flow stresses will

be complicated by the observed rate dependence of the strain hardening rate. However,

the difference between flow stresses of adjacent stress vs strain curves, at constant strain,

may be compared in order to show variations in effective stress. The reasons for this

conclusion are twofold: (1) the microstructural origins of the dynamic and static strengths

are different, and therefore the magnitude of the dynamic strength is not affected by the

magnitude of the static strength (Eq. [1.1]); and (2) it appears that differences in the

static strength between adjacent stress vs strain curves are small, at small to moderate

strains.

Effective Stress

Another comparison of flow stress differences is sometimes made between the so called

athermal plateau stress, measured at and above ambient temperature, and the yield stress

at lower temperature. In such a comparison the stress difference is used to estimate the

effective stress at the lower temperature; strain hardening is taken to be similar between

0 and 0.2 % strain. However, in this material the value of the effective stress at ambient

temperature is small but not zero. In particular, at 25 °C, 3.0 x 10-5 s-1 and 0.2 % offset

strain, the theoretical value of the effective stress is 4.72 MPa (at 25 °C. If this value

is close to the actual value of the effective stress, then it represents only 5.4 % of the
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flow stress; the residual stress is presumably static. Consequently, if one assumes thst

the entire yield stress for this test (87.2 MPa) is static, a small, if detectable, error is

introduced into the estimation of the effective stress at lower temperature. The estimated

effective stresses are shown in Figure 3.20 along with values calculated from the theory.

Close agreement is found between theoretical and estimated values of the effective stress,

at 25 °C and -20 °C. However, increasing discrepancies as large as about 50 MPa are found

at lower temperature and higher strain rate tests. The magnitude of these discrepancies

increases with the size of the yield stress drop. Notice in particular, that the larger the

yield drop, the greater is the strain at which the lower yield stress is determined. For

instance, at -75 °C and 3.0 x 10 s-1, the lower yield stress is determined at about 0.6 %

inelastic strain; at 3.0 x 10' s-1, the strain is about 0.3 %. Consequently, part of the

discrepancy between the estimated and theoretical values of the effective stress may be

associated with differences in levels of strain hardening.

The Nature of the Rate Sensitivity Behaviour

By definition, the semi-logarithmic strain rate sensitivity of the flow stress at constant

structure is given by
do-^cre

772 = ^ =^;
n

(3.33)

which is the inverse of the semi-logarithmic stress sensitivity of the dislocation velocity.

Consequently, the flow stress is rate sensitive if the ratio, o-e/n, is large (e.g. small n and

large ro). Conversely, the flow stress is rate insensitive if the ratio, o-e/n, is small (e.g

large n or small ro). However, if only n were known, then the rate sensitivity behaviour

of IF iron would appear not to follow these rules. For example, despite a small value

of n at ambient temperature, the sensitivity of the flow stress is small, as indicated by

the small difference between flow stresses in Figure 3.18(a). Then, at lower temperature,
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the sensitivity increases (Figures 3.18(b-d)), despite an increasing value of n (Table 3.3).

The reason for this discrepancy is the strong temperature dependence of the effective

stress, which dominates the rate sensitivity behaviour of IF iron.

It is useful for this discussion to rearrange Eq. [3.33] to give the fractional change of

the effective stress accompanying a change of strain rate,

Acr ln R=
cre

(3.34)

At ambient temperature, the fractional change of the effective stress may be large, because

of a small value of n, but the magnitude of the change of flow stress is small since the

effective stress has a small value (Figure 3.20). At lower temperature, the fractional

change of the effective stress declines, because of a large value of n, but the magnitude

of the stress change will be large as the effective stress increases strongly with declining

temperature.

Variation of Microstructural Variables with Declining Temperature

The strong temperature dependence of the effective stress also suggests variations in

the values of the microstructural variables. As the temperature decreases, the frictional

drag on moving dislocations increases. Then as a result of the theory, the dislocation

velocity decreases and the mobile dislocation density increases (at constant strain rate).

These predictions are not intuitively obvious because of an increase of flow stress at lower

temperature. For an example, theoretical values of the effective stress, dislocation velocity

and mobile density are obtained at 2.0 % strain, 3.0 x 10-4 s-1 and various temperatures

(Table 3.4). At -75 °C, the effective stress is about 17 times larger than at ambient

temperature, the dislocation velocity about 10 times smaller, and the mobile density 10

times greater. Unfortunately, it is not possible to directly verify these predictions.
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Table 3.4: Calculated mechanical and microstructural variables. e = 2.0 %, nominal
= 3.0 x 10-4 s-1.

Effective Dislocation Mobile
Temperature Stress stress velocity density

(K) (1\4Pa) (1\4Pa) (m/s) (m-2)
298 150 7.08 5.11x10-7 6.06x1012
253 177 31.4 1.30x10-7 2.38x1013
223 210 70.7 7.47x10-8 4.16x1013
198 256 121 5.93x10-8 5.26x1013
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Further Discussion

4.1 Summary of Results

In this present study we have extended an earlier ambient temperature investigation [3]

to measure and predict the dynamic properties of IF iron at three temperatures, -20,

-50 and -75 °C. These properties include: (1) the stress sensitivity of strain rate, as is

influenced by stress, stress rate and the magnitude of the stress decrease; (2) the nature

and recovery time of the strain rate following a stress decrease; and (3) the relative level

of hard machine stress vs strain curves as a function of crosshead speed.

In order to make predictions of these results, it is necessary to know the dislocation

velocity and mobile density as functions of the stress rate, stress and time. The theory

permits the calculation of these values providing that the material constants are known,

which are descriptive of the dynamic resistance opposing the movement of mobile dislo-

cations and their mean distance of travel prior to being lost to the dislocation network.

In conjunction with measurements of the stress sensitivity of the strain rate, we first

obtain the primary constants, n and 70, which establish the dislocation velocity and the

magnitude of the effective stress. Then, from a fit of the strain vs stress curve, the

secondary constants are obtained which establish the strain hardening rate (ro) and the

initial static strength (r:).

A principal result of this work may be summarized in a theoretical plot of dislocation

velocity vs effective stress (Figure 4.21). The value of n establish the slope of the lines.
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Figure 4.21: Dislocation velocity vs effective (shear) stress as determined by experiment
and theory.
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and ro the relative position. The value of n increases from 2.0, at ambient temperature,

to 6.8, at -75 O. The value of To actually declines with falling temperature, from 3.6 x

109 Pa to 5.1 x 108 Pa. The value of the frictional resistance on moving dislocations

(dynamic strength) increases as the temperature decreases; this result is shown by the

larger effective stresses required to move dislocations and a tendency for the dislocation

velocity to fall. At larger effective stress (low temperature and high deformation rate),

the model also predicts that mobile dislocation density tends to increase, relative to

similar tests done, say, at higher temperature.

4.2 Comparison with Prior Study

The values of the dislocation velocity constants determined in this study are yet to be

confirmed by direct methods. Presently, the only available direct determination of the

mobility of dislocations in iron is the study done by Turner and Vreeland [17], who

measured the velocity of individual edge dislocations in high purity iron using an X-ray

method. Their findings are shown in Table 4.5. The values of n are low and less sensitive

to temperature, in comparison to the values obtained in this study (Table 3.3). The

directly measured values of 70 are within the same order of magnitude as the values

determined in this study, but Turner and Vreeland's 70 values increase with decreasing

temperature over the same range of temperatures for which the values, obtained in this

study, decrease.

Using Turner and Vreeland's constants, various mechanical and microstructural vari-

ables at 2.0 % strain were calculated for hard machine stress vs strain curves at a nominal

strain rate equal to 3.0 x 10-4 s-1 (Table [4.5]). At ambient temperature, the effective

stress, dislocation velocity and mobile density are comparable to the values calculated

using the results from the previous study [3] and shown in Table [3.4]. In particular the
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Table 4.5: Calculated mechanical and microstructural variables using dislocation velocity
constants determined by direct methods for edge dislocations[17]; e = 2.0 %, nominal

= 3.0 x 10-4 s

Temperature
(K)

ii To

(Pa)
0'

(MPa)
Cre

(MPa)
V

(m/s)
Pm

(m-2)

373 2.56
295 2.8 3.0x108 149 5.45 7.87 x 10-7 3.93 x 1012
198 2.97 1.36x 109 156 21.4 2.18 x 10-7 1.43 x 1013
77 7.35 3.14x 108

value of the effective stress using Turner and Vreeland's constants is slightly smaller than

the value calculated from our constants, by the ratio of 5.45/7.08. At 198 K, however,

this ratio is 21.4/121. Consequently, Turner and Vreeland's constants are not charater-

istic of the strong temperature dependence of the effective and flow stresses observed in

IF iron.

It is known, however, that the mobility of edge dislocations is higher than screw

dislocations. For instance the velocity in impure LiF [4] was determined to be 50 times

higher for edge dislocations. Furthermore, from studies of microstrain, the long-range

motion of edge dislocations has been associated with the microyield stress [47]. The

motion of screws is then required for macroyielding. Consequently, the mobility of slower

moving screw dislocations will determine the strain rate at large strains and, apparently,

the dislocation velocity constants determined in this study are for screw dislocations.

In Figure 4.22, the weak temperature dependence of the effective stress, calculated at

0.2 % offset strain using Turner and Vreeland's edge constants, agrees well with the

temperature dependence of the microyield stress, measured in a prestrained IF iron [47].

(The elastic limit stress in this material is less than 30 NIPa.) This behaviour contrasts

with the strong temperature dependence of both the the measured macroyield and the

calculated effective stresses, using the dislocation constants determined in this study.
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Conclusions

With modest effort, in comparison to what has been required previously, we have obtained

constants of a power-law relationship between the dislocation velocity and effective stress

for IF iron at three temperatures, -20, -50 and -75 °C. These determinations supplement

an earlier room temperature study [3] of the identical metal, for which the method of

analysis was developed. Theoretical predictions of the dynamic properties, based on

these results, show excellent quantitative agreement with experiment. Consequently, the

theory provides some understanding of the inelastic deformation behaviour of IF iron:

(1) The strong increase of the effective stress below ambient temperature is associated

with an increasing value of n; the theoretical value of 70 actually declines.

(2) The rate sensitivity of the flow stress is linked to the ratio crseln. At 25 °C, the

sensitivity of the flow stress of IF iron is small, despite a small value of n, since the

effective stress is small (e.g. a theoretical tensile value of only 7.1 MPa at 2.0 % strain

and a nominal strain rate of 3.0 x 10-4 s-1). At lower temperature, the rate sensitivity

increases despite an increasing value of n because of the strong increase of the effective

stress (e.g. at -75 °C, the theoretical value is 121 MPa).

(3) The fractional change of the effective stress Au I a, accompanying a change of

strain rate is inverse to the value of n. At 25 °C, the fractional change is large because

of the small value of n. At lower temperature the fractional change declines as the value

of n increases.

(4) The weak temperature dependence of the effective stress, calculated for the long

74
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range motion of edge dislocations, correlates well with the small temperature dependence

of the microyield stress. This behaviour contrasts with the present theoretical predic-

tion of the strong temperature dependence of the macroyield stress, suggesting that the

dislocation constants determined in this study are for screw dislocations.

(5) Strain hardening in this metal is generally weaker than parabolic hardening and

therefore cannot be characterized by a single valued mean free dislocation path, ro. (The

theoretical value of ro is only approximately constant below about 8.0 % strain; at larger

strains ro increases.) The observed decrease of the hardening rate with temperature and

increasing strain rate (or stress rate) is linked to strong temperature and rate dependence

of the flow stress; at higher stresses, the trapping of mobile dislocations may be less

efficient.

One shortfall of the theory, in its present form, is its failure to predict a yield drop.

However, this phenomenon may not be conceptually excluded if, for example, the number

of initially operable dislocation sources in the annealed material is reduced to a small

number by dislocation pinning.
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Appendix A

Hard Tensile Machine Calibrations

A.1 Calibration of Initial Specimen Gauge Length

It is implicit in the analysis of the displacement of the crosshead, e.g. Eq. [2.21], that

all inelastic deformation is confined to an appropriate initial specimen gauge length,

Lo. Since additional inelastic deformation may occur in the fillets, which are between the

parallel gauge section and the shoulders of the grip section, Lo is treated as an operational

gauge length, over which all inelastic strain between specimen shoulders is distributed

giving a strain which is equal to the uniform strain measured within the parallel section;

i.e.
ALtLo =^ (A.35)

et

where AL t is the shoulder-to-shoulder elongation and et is the uniform strain within the

parallel section.

Determination of the operation length can be easily done with two extensometers,

one used to measure ALt and the other et. However, in order to measure the shoulder-

to-shoulder elongation, the required 1.5 inch (3.8 cm) extensometer was not on hand.

Instead, inelastic elongation was determined by measuring, with a travelling microscope,

the displacement of a pair of lines scribed across the shoulders. Applying Eq. [A.35] would

underestimate the value of ALt; however, this value may be corrected by including an

estimate of the elastic elongation. Two such calibrations were done at 10 % uniform

strain giving values of 10 = 2.85 and 2.87 cm; thus, 10 is taken to be the average value of
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2.86 cm.

A.2 Determination of Machine Stiffness Constant

Manipulation of the coupling equation (of which Eq. [2.23] is a modified form) can provide

several techniques for the determination of the machine stiffness K. The technique used

in this investigation is the elastic loading method which is a simple technique that relies

upon a preyield determination of the specimen loading rate P. With this method, the

coupling equation is solved for the combined specimen-machine modulus C by making

the appropriate substitutions for elastic loading; i.e. j = 0 and a = 01A0 Thus,

^C=gq /0 P^
(A.36)

Then M and finally K are determined from the following equations,

and

1_ i^1
af+717

M = gqMo

K =

(A.37)

(A.38)

(A.39)

It is apparent that the determination of K requires knowledge of the elastic modulus

of the specimen a priori, and an independent determination of the stretch ratios g lt110

and q = (these definitions will be made apparent in Figure ).

To the application of this technique, a specimen with initial area A0 = 2.20 mm2 and

effective gauge length 10 = 2.86 cm was initially prestrained to 3.128 cm total extension.

about 8.8 % strain, and then unloaded as shown in Figure A.23(a). An extensometer

with gauge length of 2.54 cm and calibrated to 15 % extension, was used to measure the

specimen extension. This was done, so that upon reloading, a more characteristic value
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Figure A.23: Determination of the hard machine stiffness: (a) the total and inelastic
elongations are determined from the load vs elongation curve for a specimen prestrained
to 8.8 % uniform strain; and (b) the elastic loading rate is determined from the time
derivative of the reloading curve vs specimen extension.
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for P would be obtained for a larger load range. An average loading rate of 40.8 N/s

for k = 8.47 x 10-6 m/s (0.02 in/min) is indicated by the reloading curve shown in

Figure A.23(b). K was determined to be 7.5 MN/m.
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