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Abstract

Longitudinal data sets consist of repeated observations of an outcome over time, and a corre-

sponding set of covariates for each of many subjects. In many fields, multivariate analysis-of-

variance is commonly used to analyse longitudinal data. Such an analysis is appropriate when

responses for each subject are multivariate Gaussian with a common covariance matrix for all

subjects. In many cases, however, the longitudinal response cannot be transformed to satisfy

these assumptions. An alternate analysis might rely on specification of an appropriate likeli-

hood to obtain estimates of regression parameters and their standard errors. Unfortunately,

the correlation structure in the data for each subject may not be well understood, making such

parametric modelling difficult.

This thesis discusses two methods for the analysis of longitudinal data which require only

minimal assumptions about the true correlation structure in the data for each subject to yield

consistent estimates of regression parameters and their standard errors. The first method

is based on the use of a "working" likelihood and extends the results of Zeger, Liang and

Self (Biometrika, 1985) to the case of time-dependent covariates. The second method, first

presented by Liang and Zeger (Biometrika, 1986), is based on quasi-likelihood theory. This

method uses generalized estimating equations to arrive at consistent estimates of the regression

coefficients and their standard errors, and can be applied to any longitudinal response with

univariate marginal distributions for which the quasi-likelihood formulation is sensible. This
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includes Gaussian, Poisson, binomial (bernoulli), gamma, and inverse Gaussian distributions.

Both methods are extensively illustrated using the results from an experiment on hummingbird

learning. These methods enable much more information to be extracted from the hummingbird

data set than a more traditional analysis-of-variance, and therefore provide useful and powerful

tools for researchers in this subject area.
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Chapter 1

Introduction

1.1 Background to the Experiment

A desire for a more complete understanding of how organisms relate objects separated in space

motivates much research on "spatial learning" in both the biological sciences and psychology.

Currently, in the Department of Zoology at U.B.C., two Ph.D. students are studying spatial

learning in hummingbirds. One of these students, Gayle Brown, came to the Statistical Con-

sulting and Research Laboratory in the summer of 1990 with questions about how to analyze

data she had collected in one of her experiments. The experiment was designed to answer ques-

tions about "spatial association learning" in hummingbirds. In "spatial association learning",

organisms learn to associate certain cues with reinforcement (such as food, water, or mates)

separated in space from the cues. For example, Cori (1989) has shown that bees use the colours

of spots on banner petals to select flowers with greater average nectar rewards.

Results from previous experiments conducted as part of the ongoing research of the inves-

tigator show that hummingbirds learn spatial associations very quickly relative to all other

organisms that have been tested in the laboratory (monkeys, rats, pigeons, and children) and

even perform perfectly on problems that may be unlearnable by other animals, according to
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Chapter 1. Introduction^ 2

documentation in the literature (see reviews by MacKintosh, 1983; and Bowe, 1984). One ex-

planation for the success of hummingbirds in spatial association experiments is that, in nature,

hummingbirds must frequently learn floral cues in order to efficiently extract nectar hidden

within flowers. The fact that many of these floral cues are visibly connected to the nectar of

the flower suggests visible guides may facilitate the learning of spatial associations in humming-

birds.

To test this possibility, an experiment on the feeding behaviour of eighteen experimentally-

naive adult rufous hummingbirds (10 females and 8 males) was carried out. The hummingbirds

were assigned randomly by sex to one of three treatments: "No Tape" (NT or treatment 1),

in which no visible guides connected cues with the feeders below them; "Partial Tape" (PT or

treatment 2), in which fluorescent orange Dymo type (9 mm wide) provided a discontinuous

(i.e., broken in two places) connection between each cue and its feeder; and "Full Tape" (FT

or treatment 3), in which the visible guide between each cue and its feeder (fluorescent orange

Dymo tape) was continuous. The NT group (treatment 1) had 4 females and 2 males, while

the PT (treatment 2) and FT (treatment 3) groups each had 3 males and 3 females.

The investigator was interested in comparing learning patterns of the birds between these

treatments. She expected different learning patterns on each treatment; in particular, she ex-

pected hummingbirds in the two treatment groups with visible guides between cues and feeders

(2=PT and 3=FT) to become aware of the cue-feeder relationship sooner than hummingbirds

in the treatment group with no visible guides (1=NT). From psychological principles of visual

perception, she also expected birds in the treatment groups with discontinuous and continous

visible guides to become aware of the cue-feeder relationship at roughly the same time.
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1.2 Description of the Experiment

On a given day, three birds (one bird from each treatment group) were tested separately in

three randomly assigned rooms, 1.3 x 2.5 x 2.5 metres high. A portion of one end wall in

each room contained a horizontal array of six feeders spaced 3 cm apart on a thin metal

panel. Figure 1.1 displays the feeding arrays for the NT, PT, and FT groups. Feeders in each

feeding array were marked by 19 mm round fluorescent orange Avery labels with central 3 mm

holes. Hummingbirds hovered at the feeders and probed their bills through the holes to small

food reservoirs. If the feeder was the correct or "profitable" one, a miniature solenoid valve

immediately released 2 pl of 20% sucrose solution into the reservoir. Hummingbirds were free

to fly and visit feeders at all times during the experiment. Between brief foraging bouts to the

feeding array and short non-foraging flights around the room, they spent most of their time on

a 1.5 metre high central perch, located 1.8 metres from the feeding array and designed to place

birds at eye level with the feeders.

A small red light, 4 mm in diameter, protruded slightly through the metal panel 12 cm

above each feeder. These small lights served as the spatial cues. During each feeding trial one

was lit to signal the feeder below it as profitable. A computer controlled the lights, dispensed

the food, and recorded the time and duration of all visits to feeders and perches.

To allow the three hummingbirds to become accustomed to the feeding array used in the

experiment, on the morning of the day before testing, the birds were placed in training cages

identical to their home cages, except that food was available from a wall feeder similar in

appearance to the feeding array. The birds quickly learned to feed from these feeders and were
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moved from their training cages to the experimental rooms that afternoon. Until experimental

training began the following morning, the hummingbirds fed from a standard commercial feeder

marked with a fluorescent orange Avery label around the access hole. The feeder was hung in

front of a central array feeder on which training would start. The other five feeders were covered.

At the beginning of the next day, the standard feeder was removed from each room, exposing

a central feeder in the array to the hummingbird in each room. After the birds had fed several

times from this feeder, the light above it was lit and training continued. After several more

feedings, all other feeders were uncovered and the cue and profitability then reassigned to a

different cue-feeder pair. This transfer procedure was repeated until birds had fed several times

from each feeder when the light above it was lit. Training lasted approximately 2 hours.

Testing started between 10:30-11:00 am, immediately after training was finished. Each

hummingbird was tested for 60 feeding trials on each of three successive days. Birds received

initial training (as described in the preceding paragraph) on each testing day. On the first and

second days, at the end of the day's 60 feeding trials, a commercial feeder was hung in front of a

middle feeder in the array, the other feeders in the array were covered, and the birds remained

in the experimental rooms overnight. On the third and final day, birds were returned to their

home cages immediately after testing was completed.

The one profitable feeder and its cue were reassigned randomly among the six feeders each

feeding trial, but the same random sequence was used for all birds. Feeding trials began

2 minutes after preceding trials ended, or as soon as preceding trials ended and the birds

perched. At the beginning of each feeding trial the following events occurred simultaneously: a

soft buzzer sounded for 0.5 seconds, the cue to the profitable feeder was lit, and the profitable
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feeder was set to provide 2 ,a1 of solution on each visit. Birds could visit any sequence of feeders

and obtain food from the correct feeder up to 11 times, for a total of 22 id each feeding trial.

This quantity provided food at a rate slightly more than average ad libitum feeding rates.

No limit was imposed on the time for birds to respond in feeding trials. Feeding trials ended

only after birds had probed the correct feeder 11 times, or after they had visited at least one

feeder and returned to their perch. When a feeding trial ended, the light cue was turned off and

the previously profitable feeder delivered no more food. All feeders remained exposed between

trials.

1.3 Description of the Data

Learning and performance of the hummingbirds was to be evaluated from first visits in feeding

trials. If the first visit was to a profitable feeder, the feeding trial was scored as a success (coded

as 1); if the first visit was to any one of the five unprofitable feeders, the feeding trial was scored

as a failure (coded as 0). The binary data set is comprised of 18 binary series of length 180,

corresponding to the successes and failures of each bird on the first feeding foray in a trial, for

3 days of 60 consecutive feeding trials.

In addition to the information in these binary series on the first feeding foray of each trial,

information on both the number of successful feeding forays and the total number of feeding

forays in each trial is available. What we will refer to as the binomial data set consists of

the total number of feeding forays (denoted by n) and the number of successful feeding forays

(denoted by y) in each trial. Note that the number of successful forays in each trial is not really

a binomial random variable because:
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• the feeding forays within a trial are not independent, and

• even if the forays within a trial were independent, for those trials in which the bird feeds

successfully the maximum number of 11 times (roughly 60% of the 3240 trials), the total

number of feeding forays made during the trial (denoted by n), rather than the number

of successful feeding forays made during the trial (denoted by y), would be the random

quantity (a negative binomial random variable) because of the way the experiment has

been set up.

1.4 Outline of the Thesis

This thesis discusses several approaches to the analysis of binary longitudinal data, the last of

which is also applicable to count (and continuous) responses.

The first approach discussed is univariate analysis-of-variance for repeated measures using

the arcsine square-root variance stabilizing transformation for proportions; this was the ap-

proach taken by the investigator in her analysis of the binary hummingbird data. To use this

approach, the data for each bird must be blocked over trials before the elements in the resulting

response vector are transformed. For example, the response vector could consist of 3 elements,

the arcsine square-roots of the proportions of successful trials on each of the 3 days in the ex-

periment. The arcsine square-root transformation may not be entirely effective if the response

is a vector of proportions because, although the variances of the proportions are stabilized,

covariances remain functions of the success probabilities. Because the investigator expects suc-

cess probabilities to differ across treatment groups, the covariance matrices are also expected

to be different. In this context, univariate analysis-of-variance for repeated measures is of little
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utility because it requires a common covariance matrix for valid statistical tests. Even if we

assume a common covariance matrix is shared by all birds, conservative statistical tests are re-

quired (with this data) for checking the effects of measurement and measurement-by-treatment

interaction in the analysis-of-variance. Moreover, the sex of each bird is not easily incorporated

into the analysis because of the unequal number of males and females in the experiment. An

alternate technique for analysis of binary longitudinal data which accounts for correlation over

time within subjects and permits flexible modelling of the response would be preferable to this

more classical approach.

The "working likelihood" approach of Zeger, Liang, and Self (1985), described in Chapter 3,

is just such a technique. Here, a working likelihood (not necessarily the true likelihood) is used

to generate estimating equations for regression parameters which model the marginal proba-

bility of success. Sections 3.1 and 3.2 outline the approach of Zeger, Liang, and Self (1985),

while Section 3.3 extends to this approach to time-dependent covariates. This extension per-

mits success probabilities on the first feeding foray to be modelled as functions of time, while

taking into account correlation between measurements on each bird. Hence, comparisons of the

learning trajectories of hummingbirds across treatment groups are more direct than compar-

isons achieved by the classical analysis. The remainder of Chapter 3 presents an analysis of the

binary hummingbird data using this extension. Note that with only 18 birds in the experiment,

efficient estimation of the regression parameters is an important issue. One weakness of this

approach is that only one working likelihood is available for explicitly modelling correlation in

the data (although, the results could presumably be extended to include working likelihoods

modelling correlation in a variety of ways). Therefore, specification of a working likelihood
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"close" to the true likelihood (for reasons of efficiency) may be difficult. Further, when mod-

elling correlation explicitly, asymptotic results only hold under direct assumptions on the true

correlation structure.

Chapter 4 presents the "generalized estimating equation" (GEE) approach of Zeger and

Liang (1986) and Liang and Zeger (1986). The GEE approach extends the use of quasi-likelihood

to longitudinal data and may be used for any multivariate response with univariate marginal

distributions for which the quasi-likelihood formulation is sensible. The GEE approach is more

flexible than the working likelihood approach not only because the marginal likelihoods need not

be specified, but also because many possible "working correlations" are available for explicitly

modelling correlation in the responses. Moreover, no assumptions about the true correlation

structure are necessary for valid asymptotic results with any of these working correlations. To

illustrate the flexibility of the GEE approach, both the binary and binomial hummingbird data

are analyzed using different working correlation structures.

In Chapter 5, the thesis concludes with a summary of the important conclusions made

resulting from the analyses and a comparison of the methods discussed.



Chapter 2

Classical Analysis

A standard approach to the analysis of binary longitudinal data such as the hummingbird

data (for the first feeding foray) might be to calculate the proportion of correct responses over

blocks of an equal number of successive time points for each subject, and then "normalize" these

proportions via the arcsine square-root transformation. The resulting subject response vectors

within the ith treatment group might then be assumed to be approximately normally distributed

with mean vector and covariance matrix Ei. Moreover, if there is a physical basis for doing so,

or if there is insufficient evidence in the data to conclude otherwise, the covariance matrices may

be assumed to be equal, a sufficient assumption for the use of multivariate analysis-of-variance

(MANOVA) of the response vectors.

Before using this approach, the equality of the covariance matrices should be tested. Assum-

ing the covariance matrices of birds within each treatment group are the same, the estimated

covariance matrix common to each treatment group will be non-singular only if q, the number

of elements in each subject's response vector, is fewer than one less the number of subjects in

the treatment group. The hummingbird experiment has only 6 birds per treatment group, so q

must be 4 or less for these estimated covariance matrices to be non-singular. The assumption

of equal covariance matrices cannot be formally checked if q > 5 because the test requires the

estimated covariance matrices to be invertible. To check the equality of covariance matrices,

9
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subject data must therefore be blocked over at least 45 trials (leading to q = 4 measurements

per subject). Aggregating the data of each bird over 45 trials is awkward, though, because

there are 60 trials per day and day effects could be important in describing the performance of

the birds.

Instead, individual data might be blocked over 60 trials (one day), allowing MANOVA with

q = 3 "measurements" on each bird. But with only 3 measurements (corresponding to different

days) on each bird, such an analysis is likely to be too crude to capture the true nature of the

temporal learning pattern on each treatment. The aggressive blocking necessary to carry out

MANOVA with only 3 measurements per subject does not permit detailed inference on how

success probabilities within the treatment groups change as a function of time. An alternative

method of analysis able to provide higher resolution of the temporal learning patterns would

be ideal.

In the MANOVA context, a step towards this ideal would be to block over fewer trials.

If data were blocked over 30 trials instead of 60, there would be 6 measurements on each

subject, and the previous confounding of blocks and days would be eliminated, allowing for a

more detailed representation of temporal learning patterns. But the resulting MANOVA tests

would not be valid unless all treatment groups shared a common covariance matrix; that is,

E i = E, i = 1,2,3. This assumption of common covariance matrices across treatments is

inconsistent with the investigators beliefs and contradicted by the data.' Moreover, if the

1 The data for q = 3 measurements per bird (where each measurement is the arcsine square-root of a raw
success proportion) indicate that covariance matrices for the transformed success proportions are not equal
across treatments. Note that if these covariance matrices are not equal when there are q = 3 measurements per
bird, it is unlikely that they will be equal when less aggressive blocking results in q > 3 such measurements.
Covariance matrices can be estimated within treatment groups when there are 3 or fewer measurements per bird,
but the distribution of the test statistic for their equality is only chi-squared as the number of subjects in each
treatment group (6 for this experiment) becomes large. Moreover, the test is very sensitive to non-normality
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success probabilities for birds differ across treatment groups, the covariance matrices for the

transformed response must differ across treatment groups as well because, even though the

arcsine square-root transformation can be expected to stabilize the variances, the covariances

will still be functions of the success probabilities. Although this analysis would provide a more

detailed picture of temporal learning patterns, its conclusions would be somewhat tenuous be-

cause the assumption of a common covariance matrix is supported by neither the investigator's

beliefs, the data, nor the nature of the variance-stabilizing transformation.

Even though assuming a common covariance matrix may not be correct, it allows blocking

over as few as 15 trials. The resulting 12 measures per bird permit representations of temporal

response patterns across treatments that are much more detailed than the representations

obtained when the equality of covariance matrices can be tested (and we are limited to 3 or

fewer measurements per bird). Another benefit of assuming a common covariance matrix is

that univariate analysis-of-variance for repeated measures, a simpler method more accessible

to researchers familiar with experimental design, may be used as an alternative to MANOVA.

The details of such analyses are presented in the remainder of this chapter.

in the data (see Morrison 1976, page 252). Hence, both the test results and the estimated covariance matrices
should be examined to judge whether underlying covariance matrices appear to be approximately equal.

The estimated covariance matrices (common to birds within treatment groups) for the case of q = 3 measure-
ments per bird (where the measurements are transformed success proportions based on blocks of 60 successive
trials) are,

2.5 3.7 2.7^2.2^1.1^-0.1^5.5 3.7^1.1

^

.01 [ 2.7 4.2 8.1
3.7 5.9 4.2 i , .01 [ -0.1

^0.3^3.0
1.1^2.1^0.3 I , .01 [ 3.7 9.8^7.4 I ,

1.1^7.4^11.0

for treatments 1, 2, and 3 respectively. These appear quite different, and the same conclusion is suggested by
the chi-squared test; the value of the test statistic is 44.1 on 12 degrees of freedom (p < .001, based on the
asymptotic chi-squared distribution). It thus seems unlikely that the covariance matrices are equal when there
are q > 3 measurements per subject.
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2.1 Univariate Analysis-of-Variance for Repeated Measures

Univariate analysis-of-variance for repeated measures is strictly valid only if observations are

multinormally distributed with a common covariance structure corresponding to the "type-H"

pattern described by Huynh and Feldt (1970); i.e., E = (ak,/), has the pattern defined by

ork,1 = ak + ai + A k = 1.

a k,1 = ak + cei k 1.

If the covariance structure of the observations does not correspond to the type-H pattern,

Greenhouse and Geisser (1959) have proposed conservative tests based on adjusting the degrees

of freedom for the univariate tests. Even though the univariate approach may sometimes re-

quire use of these conservative tests, it still has a strong appeal because it is easy to interpret

and commonly used by those familiar with experimental design. Further, unlike multivariate

analysis-of-variance, test statistics are still defined if the number of repeated measurements per

subject is greater than the within treatment degrees of freedom. The binary hummingbird data

may thus be blocked over even fewer than 15 (say 10, for example) trials to perform the uni-

variate analysis, yielding representations of temporal response patterns that are more detailed

than those permitted by MANOVA. However, if the binary hummingbird data is blocked over

fewer than 15 trials, it will not be possible to check for the type-H pattern in the underlying

covariance matrix because the estimated covariance matrix will once again be singular. Even

so, an analysis using conservative univariate tests may still be carried out.

Because the investigator wishes to understand how success probabilities for birds in different

treatment groups compare over time, detailed representations of temporal response patterns are
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desirable. Since these are permitted by univariate analysis-of-variance for repeated measures

and since this method of analysis is well understood and commonly used by researchers familiar

with experimental design, this technique will be used to analyze the binary hummingbird data

(on the first feeding foray), even though a key assumption for this technique (i.e., that a

common covariance matrix for the transformed response vectors be shared by all subjects) is

not supported by either the beliefs of the investigator, the data, or the nature of the arcsine

square-root variance stabilizing transformation for binary data.

2.2 The Statistical Model

In order to "normalize" the hummingbird data, the proportion of correct responses for blocks of

fifteen and then ten successive trials was calculated for each bird and transformed via the arcsine

square-root transformation. The resulting 12- and 18-dimensional response vectors for each bird

in the ith treatment group were then assumed to be approximately normally distributed with

mean pi and common covariance matrix E.

The treatment means of these transformed proportions are shown in Figures 2.1 and 2.2.

These figures suggest that the (transformed) response grows roughly linearly with time, par-

ticularly for birds in treatments 2 (PT) and 3 (FT). The lack of systematic discontinuities in

these response curves at measurements corresponding to new days (measurements 7 and 13

in Figure 2.1, and measurements 5 and 9 in Figure 2.2) suggests that modelling a "day" ef-

fect is not necessary. Thus, for both blocks of 10 and blocks of 15 observations, a univariate

analyis-of-variance for repeated measures was carried out under the following model:
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Yijk = arcsine(V _Ask) = It -I- treatment= + measurements + (treatment * measurement)is

subject(ok + (measurement * subject)(osk Cijk,

for i = 1, 2,3; j = 1, ..,12 or 18 (for blocks of 15 and 10 observations respectively); k = 1, .., 6.

Here Pijk is the raw success proportion for the kth subject within the ith treatment at the

i th measurement, and ciik is the noise term for the kth subject within the i th treatment at

the i th measurement. We assume that (Eijk )j=1,..,12 or 18 (i = 1,2,3; k = 1, ..,6), the subject

noise vectors, are independent normally distributed random vectors with mean 0 and common

covariance matrix E. "Treatment" and "measurement" are fixed effect factors, and "subject"

is a random effect factor nested within "treatment".

2.3 Results of the Analysis

Before carrying out univariate analysis-of-variance on the binary hummingbird data (for the

first feeding foray) blocked over 15 trials, the underlying covariance matrix was tested for the

type-H pattern. Because the value of the appropriate chi-squared statistic (see Morrison 1976,

page 251) is 259.17 with 65 degrees of freedom, the covariance matrix does not seem to have

the type-H pattern. The estimated covariance matrix for the binary hummingbird data blocked

over 10 trials is singular because there are 18 measurements per bird and only 18 birds in the

study, so the underlying covariance matrix cannot be tested for the type-H pattern. However,

it seems unlikely that the covariance matrix for blocks of 10 trials will have the type-H pattern

since the covariance matrix for blocks of 15 trials does not. Univariate analysis-of-variance was
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therefore carried out using the conservative tests of Greenhouse and Geisser (1959) for both

blocks of 15 and blocks of 10 observations.

For the univariate analysis-of-variance tests to be strictly valid, the transformed response

vectors for the individual subjects must be normally distributed with a common covariance

matrix E; that is, (Yi303=1,..,120, 18 ", N(µi, E). The investigator does not believe that a

common covariance matrix is shared by all birds, but separate covariance matrices common to

birds within treatment groups cannot be modelled due to the small number of birds within each

treatment group. Because these estimated covariance matrices, Ei (i = 1, 2,3), are singular,

a formal test for the equality of the underlying covariance matrices is not available. However,

elements of the estimated covariance matrices may still be compared visually. Figures 2.3

and 2.4 plot the estimated variances of the transformed responses (the diagonal elements of Ei)

against measurement by treatment group for the 12- and 18-measurement analyses, respectively.

Neither figure suggests an obvious pattern in the treatment variances over time, but both figures

suggest that the variances for birds in treatment 3 are generally greater than those for birds in

other treatments, while the variances for birds in treatment 2 are generally lower than those

for birds in other treatments (the estimated variances of responses for birds in treatment 3

are anywhere from 1-11 times larger than the estimated variances for birds in treatment 2 for

the 12-measurement analysis, and anywhere from 0.4-22 times larger for the 18-measurement

analysis). These results suggest that the assumption of a common covariance matrix is not valid

for either the 12- or the 18-measurement analysis. Hence, the distributions of test statistics

formulated assuming equal covariance matrices can only be expected to roughly approximate

the true distributions of the test statistics. In spite of this, the tests should still provide
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useful information about the relative magnitude of the components of variability, and strong

conclusions from the analyses-of-variance should be consistent with conclusions from analyses

which permit unequal covariance matrices.

The analyses-of-variance are given in Tables 2.1 (18-measurement analysis) and 2.2 (12-

measurement analysis). Tables 2.1 and 2.2 confirm one clear indication from Figures 2.1 and

2.2: "measurement" is an important factor. But Tables 2.1 and 2.2 give no strong evidence of

"treatment" effects, either through main effects or through interactions with "measurement".

On the other hand, Figures 2.1 and 2.2 clearly indicate that the (transformed) responses for

treatment 3 are generally greater than those in the other treatments, suggesting that "treat-

ment" main effects do, in fact, exist but are not being detected because there is too much

variability between subjects within treatment groups.

Table 2.1. Analysis of Variance for Blocks of 10

Source SS d.f. MS F conservative d.f. p
measurement 14.74 17 .87 14.20 1,15 .002

treatment .57 2 .29 .75 .49
subject (within treatment) 5.67 15 .38

measurement *treatment 1.26 34 .037 .62 2,15 .55
subject*measurement (within treatment) 15.33 255 .060

total 37.57 323

Table 2.2. Analysis of Variance for Blocks of 15

Source SS d.f. MS F conservative d.f. p
measurement 3.56 11 .32 8.68 1,15 .01

treatment 1.70 2 .85 1.76 .21
subject (within treatment) 7.22 15 .48

measurement*treatment .958 22 .044 1.17 2,15 .34
subject*measurement (within treatment) 6.15 165 .037

total 19.59 215

The conservative F-tests used in these univariate analyses-of-variance are based on approx-

imate distributions of the sums of squares when the subject response vectors are multivariate
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normal with a common covariance matrix E. Greenhouse and Geisser (1959) have shown that

when the hypothesis of no measurement effects is true, the F-statistic for measurement has an

approximate F-distribution with degrees of freedom (K — 1)c and (K —1)(N — K)c, where K

denotes the number of measurements per subject, and N denotes the number of subjects. The

scale factor

K2(0 _ F.12
E —  

— 1)(E i Ej a — 2K a72 K2Tr72)

is computed from the elements of the (common) covariance matrix E, where o71 is the mean

of the p diagonal terms, cr: is the grand mean of all variances and covariances, and c)7 is the

mean of the elements in the i th row of E. They have also shown that when the hypothesis

of no measurement-by-treatment interaction is true, the F-statistic for this interaction has an

approximate F-distribution with degrees freedom (K —1)(p-1)c and (K — 1)(N — p)€, where

p denotes the number of treatments.

In practice, E is never known and estimating c from the sample covariance matrix is unde-

sirable because more uncertainty is then introduced into the approximate analysis-of-variance.

Greenhouse and Geisser have shown that c > 1/(K — 1), implying that the degrees freedom for

the approximate tests cannot be less than 1 and (N — K), and (K — 1) and (N — K), respec-

tively. A conservative F-test results from assuming the maximum possible reduction in degrees

freedom, and therefore requires larger values of the F-statistic to reject the null hypothesis (i.e,

the hypothesis of no measurement effects, or the hypothesis of no treatment-by-measurement

interactions) than tests which assume less than the maximum reduction in degrees freedom.

These conservative F-tests are used in both the 12- and 18-measurement analyses described
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above, but the conclusions from these analyses are the same as the conclusions from the anal-

yses which estimate the scale factor c from the data (e is .33 for the 12-measurement analysis,

and .24 for the 18-measurement analysis, so the use of e results in, respectively, degrees of

freedom 3.63 and 4.08 times the conservative degrees of freedom).

2.4 Conclusions and Limitations

In both univariate analyses, the conservative test for the measurement main effects finds "mea-

surement" to be an important factor. Figures 2.1 and 2.2 also indicate that "measurement" is

an important factor. The test (not conservative) for treatment main effects in both univari-

ate analyses-of-variance does not find "treatment" to be important, nor does the conservative

test for the interactions of treatment with measurement find "treatment*measurement" to be

important. Thus, both analyses-of-variance indicate that treatment group has no effect either

directly, or through interaction with measurement, on the (transformed) response pattern. On

the other hand, plots of the fitted values (Figures 2.1 and 2.2) clearly indicate that the (trans-

formed) responses for treatment 3 are greater than those in the other treatments, suggesting

that a treatment main effect is present but cannot be detected by these methods because vari-

ability between subjects within treatments is too large. The same result would therefore be

expected in the corresponding MANOVA. Some of the within-treatment variability between

subjects may be explained by their sex, but modelling of a sex effect or any interactions of

sex with the other factors is difficult in both univariate and multivariate analysis-of-variance

because of the unequal number of males and females in treatment 1 (NT). An approach allowing

modelling of sex, despite the imbalanced number of males and females across treatment groups,
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might reduce the unexplained within-treatment variability, and thereby provide more sensitive

tests of all effects.

Note that many other "classical" approaches to analyzing the binary hummingbird data

(for the first feeding foray) have not been discussed in this section. These include parametric

modelling of the "measurement" effects (for example, analysis-of-covariance, which requires that

observations within each subject be independent), and analysis-of-variance (either univariate

or multivariate) in the logit scale (logit(p) = log( TF_T,), p between 0 and 1) rather than in the

arcsine square-root scale to correspond to logistic regression.

Although univariate and multivariate analysis-of-variance are standard techniques used to

analyze data in which repeated measurements are taken for each subject, both seem to model

how the data change over time in indirect ways which lack intuitive appeal. To allow changes

in response over time, univariate analysis-of-variance includes "measurement" main effects and

interactions in its model. Multivariate analysis-of-variance allows changes in response over

time through the different elements of its treatment mean response vectors. More intuitive

approaches, presented in the next sections, model treatment response patterns directly as a

function of time, while taking into account the correlation of measurements within subjects.

Treatment response patterns can then be compared visually by examining the fitted treatment

response models.
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Analysis Based on a Working Likelihood Approach

3.1 Logistic Regression for Binary Repeated Measures

A natural approach to the analysis of the binary hummingbird data is to extend logistic re-

gression to the case where the binary outcome variable is observed repeatedly for each subject.

Zeger, Liang, and Self (1985) present the details of one way of implementing such an approach

in which, rather than the actual likelihood, a "working likelihood" based on simple assumptions

about the time dependence within each subject's data is used to generate estimating equations

which lead to consistent estimates of the regression parameters, as well as standard errors for

these estimates. Not only does this approach allow for correlation over time within subjects,

but it allows flexible modelling of the response and is powerful enough (provided the number of

subjects is large) to detect important factors and covariates, while remaining simple and easy

to interpret.

3.2 The Working Likelihood Approach

To establish notation, let Yi, t (t = 1, .., n t ) be a stationary binary time series, and let Z, be an

sxl vector of time-independent covariates for the ith subject (i = 1, K) . For

def
it = Pr(Yi, t = 1 I Zi) , it is assumed throughout this section that logit in = ZP. The

20
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primary objective is to make inference about the vector of parameters, p. There may be

additional nuisance parameters in the working likelihood, so let 9 denote all the parameters

modelled by the working likelihood. Let S(9) be the working likelihood score function, and

let H(0) be the corresponding Hessian matrix. Finally, let 0 be the estimate of 0 obtained by

maximizing the working likelihood; in general, we have S(9) = 0. Throughout, score functions

and Hessian matrices will be evaluated under the working likelihood, E(.) will denote the

expectation under the true (unknown) likelihood and Ew(.) will denote the expectation under

the working likelihood.

Motivation for the results of Zeger, Liang, and Self (1985) is provided by the Taylor ex-

pansion for S(9) about 0, and the Mean Value Theorem which, together with the fact that

S(0) = 0, allow us to write

S(9) = SA+ H(0.)(0 — 0) = —H(0,0(9 — 9),

where 0,, is between 0 and O.

If the data for the different subjects is independent, then the working log-likelihood is the

sum of the independent log-likelihoods for the different subjects. Thus, the score function and

the Hessian are also sums of independent random quantities, and we can write,

- 0 =^S(9) = -[- Hi(0.)]-1 - E Si(0),
i=1^K i=1

where Si and Hi are the i th subject's score function and Hessian, respectively.

If E Si(0) 0, then provided regularity conditions for Lindeberg's Central Limit Theorem

hold, under the true model,

K ^1E Si(0) =^N(0, 
K2i=1
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where /*(0) = E S(0)S'(0).

Under regularity conditions ensuring B is consistent for 9, we have

K^ 1 K^ 1—
K 

EHi (0.) urn --E E Hi(0) = lim —E H(0).
K --+ oo KK ".4 00 K i=11=1 

Thus, by Slutsky's Theorem,

— 9 N( 0, [E H(0)] -1 I*(0)[E H(0)] -1 ),

where all expectations are taken under the true (unknown) likelihood, and convergence is under

the true (unknown) distribution.

Note that to use this result for inference about 0, both /*(0), the variance-covariance matrix

for the score function under the true (unknown) model, and E H(0), the expectation of the

Hessian under the true (unknown) model, must be estimated from the data. Provided 0 is

consistent for 0, I*(0) = E S(0)S'(0) can be consistently estimated by EL Si(d)S(d). The

expected Hessian under the working model is identical to the expected Hessian under the

true (unknown) model provided simple assumptions about the time dependence within each

subject's data are valid. Therefore, if d is consistent for 0, EwH(0) is a consistent estimate

of E H(9). Because H(0) is a sum of independent random quantities, if 0 is consistent for 0

then an alternative consistent estimate of E H(0) is H(0), the observed Hessian evaluated at O.

The extension of the Zeger, Liang, and Self approach to the case of time-dependent covariates,

presented in the next section, uses the observed Hessian evaluated at d, rather than EwH(0),

to (consistently) estimate E H(9).

Zeger, Liang, and Self (1985) present two estimators of 0. The first, ijo , is obtained from the

working assumption that repeated observations for a subject are independent of one another.
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This estimator is consistent (as K^oo) for any set of stationary binary time series for which

logit ii = 4/3. The second estimator, fji , is obtained from the weaker working assumption that

each time series has a stationary 1-dependent correlation structure. A . is consistent for any set

of stationary binary time series for which both logit = 40 and the first lag autocorrelation,

p = is common to all subjects.

For the independence working model with logit 7ri = 40, the working log-likelihood can be

written as
K ni

^10(0) = E E [yi,t^+ log(1 — ri )]
1=1 t=1

where logit irY = 4[3. Let S(/3) be the score function for the vector /3, and let Sti (13) be its Uth

element (u = 1, s). The maximum likelihood equations under the working model are

K n,
0 = su(i3) = E E(.Yi>i — zi)Ziu, u = 1,^s.

1=1 t=1

Define A) to be the solution to these estimating equations.

Note that the expected values of the scores under the true (unknown) model are 0 provided

the mean structure has been correctly specified; that is, E(17i,t Zi) = [1 + exp(-40)] -1 , or

logit E(Yi, t 1Z1) = Z'i 13. This ensures that ijo is an asymptotically unbiased estimate of /3.

The (u, v)th element of the Hessian matrix is given by

K n,
Iluv(0) = E E ziuZivri(1 —

i=1 t=1

which does not depend upon the Yi, t 's. Therefore, the expected Hessian is the same under both

the true likelihood and the working likelihood; in other words, the working likelihood Fisher

information matrix is the same as — E H(/3) in this case. As K —> oo, we obtain the result that
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[40 is consistent and asymptotically normal for any set of stationary binary time series such that

logit 7i = 40, as stated by Zeger, Liang, and Self (1985) in their:

PROPOSITION 2.1. Let Yi, t (t = 1, ..,ni < oo; i = 1,..,K) be stationary binary series such

that logit E(Yi, t I Zi) = 43. Then /Jo — is asymptotically multivariate Gaussian with expecta-

tion 0 and covariance matrix V0 (/3) = -1O(0) -1 -1;(0)Io(0) -1 , where MO) is the working Fisher

information matrix and PAP) = E S(/3)S'(/3).

A consistent estimate of /0 (0), the Fisher information matrix under the working model, is

given by

fo 10(Qo).

A consistent estimate of ^the variance-covariance matrix of the score function, is provided

by

E sioosmc,),

where Si(.) is the score function for the i th subject. Combining these results leads to a consistent

estimate of V0 (0) given by

fo —1 f —1o 

The estimator^is obtained similarly, after replacing the working assumption of indepen-

dence by the working assumption of a common lag one (and no other) autocorrelation. Let

p = COTT(Yi,t,Yi,t-1) and 0 = (p, If pi t def E (Yi, t Zi), the true lag one conditional

mean, the assumption of a common first-lag autocorrelation implies that
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Pit =^POri,t-1^= Ew (Yi,t I Yi,t—i, Zi). The working log-likelihood can thus be written

ni
/AO) = E [yi , 1 4,3 + log(1 — 70+ E[yi, t log pit + (1 — yi, t )log(1 — NA],

i=1^ t=2

where logit ri = 40 as before, and pit =^p(yi,t-i - 70•

For this working model, let S0(0) be the score function for p, and let Su (0) be the score

function for i3„ (u = 1, s). The maximum likelihood equations under the working model are

K ni

^

0 = So(9) = ^= E E (yi,t -^- ri) 

°P^2=1 t=2^PitPit

,Q7
^Ziori7T(Yi,t — Pit)

},
0 = Su (0) =^= E{Ziu(Yi,1 —^+ ( 1 P)upu^i=1^ t=2^PitPit

where 73-87 = 1 - pit , and IT = 1 — ri. Define B = (ji„di) to be the solution to these estimating

equations.

Note that the expected values of the scores under the true (unknown) model are 0 provided

the lag one conditional mean structure has been correctly specified; that is, E (Yi, t Yi, t_ i , Zi) =

P(Yi,t-1 — ri). This can be seen by conditioning on Yi,t_i for each Yi, t in the estimating

equations. Thus, 0 1 is an asymptotically unbiased estimate of /3.

The elements of the Hessian matrix are given by:

K n,2/
a 21 = 

E E^(yit - pit) ,^2pid ,OPit )2 ,

p^ j^Ii=1 t=11-PiiPit^(Pit.7)2

K
= E —ri3f7ZiuZiv

i=1
[pit1pit + ((Ypitit—ivP)i2t)(1 2piol ( aaPoiu.t )( aaPiLt )1

+ n^(Yi,t — Pit)  (  02 Pit  )

t=2 l PitPit

i
0/3,,0/3v

and

021 1

000.
{ \ n21).tK ni^(K t — Pit)(  " 1-2  )

iE=1 tE=1^PitTi 0P0/3u
[ 1 + (Yit Pit) (1^2Pit )1 (

0/3u
 )( °Pit )}

LPitPit^(PitPit
)9 

^OP
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where

-= Yi,t-1 —op

°Pi
0u

t = (1 — p)riTr7Ziu,
49

82Pit  = (1 — p)(1 — 271-i)ri3t7ZiuZiv,
afivaot,

and,
02pit
^ = ri7r7ziu.
apafi.

The assumption that, under the true likelihood, a common lag one autocorrelation is shared

by all subjects, that is, that the lag one conditional mean structure has been correctly specified,

yields E(Yi,t Zi) = 7ri P(Yi,t-i - ri), without any further assumptions concerning the

higher lag autocorrelations. Under this assumption E(Yi,t^Zi) = Ew(Yi,t

and it follows that E H(9) = Ew H(0); in other words, under the assumption that the lag one

conditional mean structure has been correctly specified, the working likelihood Fisher informa-

tion matrix and —E H(0) are identical.

The Fisher information matrix under the first-order working model, / 1 (B), can be partitioned

as

I1=[ Ipp Ina
10P 100

where the (u, v)th element of 100 is

E ziuzivri7Tfi + (ni — 1)(1 Wilri(1 3P) + P },(1 — p)2 71-07-7 p

the uth element of /op is

(2r; — 1) 
P E(ni — 

(1 — p)27rjr7 p,

°Pit
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and
, \ K^ri 7ri

Inv
^( 1 P)(n

^1)(
2^(1 — P)2 roTT p )

As K^oo, we obtain the result that B is consistent and asymptotically normal for any set

of stationary binary time series such that logit E(Yi,t j Zi) = 4 13 and corr(li,t, 17i,t--1) = p, as

stated by Zeger, Liang, and Self (1985) in their:

PROPOSITION 2.2.^Let Yi,t (t = 1,^< oo; i = 1, K) be stationary binary series

such that logit E(Yi, t Zi) = Zp and corr(li,t,li,t-1) = p. Let 0 (p, 0). Then 0 — 0

is asymptotically multivariate Gaussian with expectation 0 and covariance matrix V 1 (0) =

Ii (0) -1 I1(0)I1 (0) -1 , where 11 (0) is the Fisher information matrix under the first-order working

model and IV O) = E S(0)S'(0).

A consistent estimate of h (0), the Fisher information matrix under the first-order working

model, is given by

A consistent estimate of /17(0), the variance-covariance matrix of the score function, is provided

by

_ E si(o)s:(o),
i=i

where Si(• is the score function for the ith subject. Combining these results leads to a consistent

estimate of V1 (0) given by

V1 =I  Ii I1
1 -1^-1

A technical point which might arise during the Newton-Raphson iteration to obtain 0 is

that, depending on the values of the ri's, it may be necessary to constrain p to a smaller region
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than (-1, 1) in order to prevent the pit = Ew (Yi,t I^Zi) = ai +^— ir) = 1, K)

from taking on values outside the range [0, 1].

Since the covariates, Zi, are time independent, the success probability ri = Pr(Yi, t = 1 Zi),

does not depend on time. Zeger, Liang, and Self (1985) were concerned with short binary time

series, in which there is no need for time-dependent success probabilities. However, the binary

time series for the first feeding forays of the hummingbirds are long (180 time points), and the

success probabilities seem to increase with time. Figures 3.1, 3.2, and 3.3 plot the transformed

average response for birds within a treatment group over consecutive blocks of 3, 5, and 10 time

points respectively. Note that, except for the vertical scale, Figure 3.3, which plots the average

response in the logit scale, and Figure 2.2, which plots the average response in the arcsine

square root scale used for the classical analysis, are identical. All the plots clearly indicate

that success probabilities generally increase with time. In the next section, the results of this

section are extended to the case of time-dependent covariates to allow the modelling of success

probabilities which change with time.

3.3 Incorporating Time-dependent Covariates

3.3.1 The Independence Working Model

Suppose we start with the working assumption that repeated observations for a subject are

independent, but now let Zi, t be an sxl vector of time-dependent covariates for the i th subject

(i = 1, .., K). If ri,t Pr(Yi,t = 1 I Zi, t), it is assumed throughout this section that
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logit 7ri t = 440. The estimator )40 is obtained from the working log-likelihood

K ni

lo(Q) = E E [yiA,03 + log(1 — ri,t)]
i=1

where logit 7ri , t = 4413.

Let Su ( i3) be the score function for O u (u = 1, ..,^) under this working likelihood. Then the

maximum likelihood equations under the working model are

, m^K ni
0 = Su (13) = 

o = E E(yi t —
i=1 t.i

Define go to be the solution to these estimating equations.

Note that the expected values of the scores under the true (unknown) model are 0 provided

^

the mean structure has been correctly specified; that is, 7r,, t^E(Yi,t Zi,t) = [1 + exp(—Z2/3)] -1 ,

or logit E(Yi,t I Zi,t) = 4, t ,(3. Therefore, go is asymptotically unbiased for 0.

The (u, v)th element of Ho (/3), the Hessian matrix for this independence working model, is

given by
K n,

— E E^—
i=1 t=1

which does not depend upon the Yi, t 's. Therefore, the expected Hessian is the same under

both the true likelihood and the working likelihood; in other words, the working likelihood

Fisher information matrix is the same as — E Ho (/3) in this case. Under regularity conditions

sufficient to guarantee the consistency of go , the following generalization of Zeger, Liang, and

Self's (1985) Proposition 2.1 is immediate:

PROPOSITION 1. Let Yi, t (t = 1 , ..,ni < oo; i = 1,..,K) be binary series such that

logitE(Yo I Zi,t) = 4,0. Then &— is asymptotically multivariate Gaussian with expectation
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0 and covariance matrix

vo(0) = [E H0(0)] -1 1O(0) [E 110(0)] -1 ,

where I8`(0)= E S(0)SV).

A consistent estimate of E HO), the expectation of the Hessian under the true (unknown)

model, is given by Ho (00 ). A consistent estimate of /8`(0), the variance-covariance matrix of

the score function, is provided by

K

Esi(go)sago),
i=i

where Si(.) is the score function for the ith subject. Combining these results leads to a consistent

estimate of Vo(0) given by

Vo = [Ho(go)] - 1 Io [Ho(g0)] -1 •

3.3.2 The First-Order Working Model

The first-order working model with time-dependent covariates assumes each binary series has

a stationary 1-dependent correlation structure with logit 7ri , t = Zii,t0 and

corr(170,Yi,t-i.) = P. If Pit 41 E (Yi,t I Yi,t-i, Zi), the assumption of a common lag one

autocorrelation implies that

where

Pit^p 71i,t7ri,t ^ (yi,t-i -
70-1 71-0-1

lri ,t = ( 1 — ri,t)•
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Let 0 = (p,/3). Then the working log-likelihood is

ni
/1( 0) = E [yoz:,io + log(1 —^E[yi,tiog Pit + (1 — yi,t)log(1— pit)]]

t=2

where

i ,t 
Pit = 711 ,t^P^— 7ri,t-1)•

7ri,t—i 7ri,t—i

For this working model, let So(0) be the score function for p, and let S.(0) be the score

function for ou . The maximum likelihood equations under the working model are

all
K

= So(0) =^= EE (Yi ,t - Pit) °Pit
PitPit^OPL'P^i=1 t=2

and

all K^ni
v,

na =^—^E ( Yi't
i=1^t=2 PitF 

Pit ) 'Pito = su(e ) =
uP.^ ift 0,314

where pi t = 1 - pit . The partial derivatives appearing in these equations are given by:

t^
Ori,t7ri,t^—

afitt

7ri,tiri,t
— 7ri,t-1] [(1 — 27ri,t)Zi,t,u — (1 — 2 7ri,t—i)Zi,t—i,u],

°pit
Op^7ri,t-1lri,t-1

7ri,t7ri,t 
   [Yi,t—i — ri,t-1] •

Define 0 =^A.) to be the solution to these estimating equations.

Note that the expected values of the scores under the true (unknown) model are 0 provided

the lag one conditional mean structure has been correctly specified; that is, E(Yi,t I^Zi,t) =

7r • tri t
7r^p^t-1 — ir i ,t). This can be seen by conditioning on Yi,t_i for each 11 4 in2,t

the estimating equations. Therefore, B is asymptotically unbiased for 0.

The Hessian matrix for the first-order working likelihood, H1 (0), can be partitioned as

+22
and
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O ],
H1(9) = 

Hpp
P[ HapII 00

where the (u, v)th element of Ho is

02 11

00.00v
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i=1
ni
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The partial derivatives appearing in these expressions are given by:
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and

O2Pit
op2^•

Under regularity conditions sufficient to guarantee the consistency of 0, the following gen-

eralization of Zeger, Liang, and Self's (1985) Proposition 2.2 is immediate:

PROPOSITION 2.^Let Yi,t (t = 1, ..,ni < oo; i = 1,..,K) be binary series such that

logit E(Yi,t I Zi,t) = 440 and corr(Yi,t,Yi,t—i) = p. Let 0 = (1)0(3). Then 0 - 0 is asymp-

totically multivariate Gaussian with expectation 0 and covariance matrix

V1 (0) = [E H1(0)] -1^111(9)]

where Ip(0) = E S(0),5"(0).

A consistent estimate of E H1 (0), the expectation of the Hessian under the true (unknown)

model, is given by H1 (0). A consistent estimate of IV O), the variance-covariance matrix of the

score function, is given by

Ii = E Si(0)s:(0),
i=i

where S1(.) is the score function for the ith subject. Combining these results leads to a consistent

estimate of V1 (0) given by

Vi =^( 0 )]' Ii [H1A -1 .

Because this extension to the Zeger, Liang, and Self approach incorporates time dependent

covariates, it provides the necessary tools for the analysis of the binary hummingbird data.

The extension presented in this section permits the success probabilities to be modelled as

a function of time, while taking into account the correlation between measurements on each
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bird, and thereby allows comparisons of temporal response patterns across treatments which are

more direct than the comparisons achieved by either univariate analysis-of-variance for repeated

measures or MANOVA.

3.4 Exploring the Binary Hummingbird Data

Prior to applying the extension of the methods of Zeger, Liang, and Self (1985) to the analysis

of the binary hummingbird data, a series of plots was examined to determine appropriate

parametric forms to be incorporated into modelling of the temporal response patterns.

To check if a day effect was apparent, the average treatment responses on the logit scale

(log( 1 1—Y-4--cFc ), c = .5) for successive blocks of 3, 5, and 10 trials were plotted (see Figures 3.1-

3.3). Because there were no systematic discontinuities at those trials corresponding to new

days (trials 61 and 121), there seemed to be no need to model a day effect. To get an overall

picture of how treatment responses changed over time, the averages over the 6 birds within

each treatment were calculated separately at each time point, and then the logits of the results

were smoothed using robust locally weighted linear least squares ("lowess").

Robust locally weighted linear regression is a method for smoothing a scatterplot, (x i , yi),

i = 1, .., n,, in which the fitted value at xk is the value of a linear fit to the data using weighted

least squares, where the weight for (xi, yi) is large if xi is close to xk and small if it is not.

"Lowess" centres a window at xk which includes the r nearest neighbours of xk on either side.

The 2r + 1 points in this window are weighted symmetrically about xk. If xk is near the

endpoints, however, "lowess" cannot centre the window there. Points close to the endpoint,

including xk, get larger weights than they would if the window was centred at xk. If the data
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has extreme values near the endpoints, the resulting fit for xk may not be consistent with fits

for points at which the window can be centred. Consequently, "lowess" fits near the endpoints

may have peculiar features.

Figures 3.4-3.6 show the results of this "lowess" smoothing with windows of 10, 20, and

30 points. In these figures, the fits near the endpoints do not seem peculiar because logits of

treatment average responses (over 6 birds) have been smoothed. This averaging reduces the

number of extreme values in the data and protects against extreme values near the endpoints.

Figure 3.6 seems to best display the basic features of the change in transformed responses over

time. The average responses for birds in treatments 2 (PT) and 3 (FT) appear to grow roughly

linearly with time in the logit scale, with the responses for birds in treatment 3 (FT) being

higher, in general, than the responses for birds in treatments 1 (NT) and 2 (PT). This is contrary

to the expectations of the investigator, who used psychological principles of visual perception to

predict that birds in the treatment groups with discontinuous (PT) and continous (FT) visible

guides should have similar learning trajectories. For birds in treatment 1, improvement in the

average response appears to be either linear or quadratic. The responses for birds in treatment

1 seem to be higher, in general, than the responses for birds in treatment 2, but not as high as

those for birds in treatment 3. Of all the birds, those in treatment 3 seem to have the highest

responses throughout the entire experiment.

To study individual-to-individual variation within each treatment, the logits of individual

results (log(-1 ), c = .5) at each time point were also smoothed by "lowess", using a window

of 30 consecutive time points. Figures 3.7-3.9 display the results of this smoothing. Step-like

patterns associated with sudden awareness of the relationship between light cue and feeder
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were expected by the experimenter, but are not present in these plots. In all the figures,

the peculiarities of "lowess" fits near the endpoints occur because individual logits, rather

than logits of treatment averages are smoothed. The individual logits are more likely to have

extreme values at the endpoints, leading to fits which may not accurately describe the patterns

in the data of each individual. In Figure 3.7, note that two females in treatment 1 share the

same "lowess" fits given by the horizontal solid line. This is because both birds have binary

series which are virtually all zeroes; in other words, almost all of their first feeding forays were

unsuccessful. In addition, a third female has a binary series which is predominantly zero up

to the 110th trial. In the interior of the data sets, the plots do not show any obvious change

in response variability over time for any of the treatments. Moreover, at any given time, the

variability of responses for birds in treatment 1 (NT) appears to be larger than the variability

of responses for birds in treatments 3 (FT). At any given time, the variability of responses for

birds in treatment 2 (PT) appears to be the smallest of all three treatments.

These plots of the "lowess"-smoothed binary responses for each bird do not suggest an

obvious difference between the responses of females and males in treatment 2, but in treatments

1 and 3, the male responses seem to be higher, on average, than the female responses. In fact,

when designing the experiment, the investigator did not anticipate a difference in the success

probabilities for the first feeding foray of male and female hummingbirds. However, since

sex may be incorporated into the model with little extra effort, two analyses of the binary

hummingbird data are presented in the following sections; the first analysis does not include

sex as a covariate, while the second does. The first analysis corresponds to the classical analysis

(univariate analysis-of-variance for repeated measures) discussed in the previous section, where
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sex was ignored. Note that the unequal number of males and females on one of the treatments

in the experiment would complicate including sex as a covariate in the classical analysis.

For the binary hummingbird data on the first feeding foray, both the analysis excluding

sex and the analysis including sex will be repeated under the independence and the first-order

working model. The independence working model assumes that observations within individu-

als, as well as between individuals, are independent. The first-order working model, assumes

that the observations for all individuals share a common first lag autocorrelation.

3.5 Model Fitting With Sex Excluded

3.5.1 The Initial Model

For the analysis of the binary data which excludes sex as a covariate, the exploratory plots

suggest that the transformed probability of success on the first feeding foray may be modelled,

initially, as

logit ri,t =^+ 01,it 02,it 2^i = 1,..,3, T = 1, ..,180, t =
s.d.(T)

where p i (i = 1, 2, 3) may be interpreted as the main effect of the i th treatment. Since birds in

different treatment groups are not restricted to have the same linear and quadratic coefficients

for the pattern over time, interactions between time and treatment group are permitted by this

model. Note that the time covariate has been standardized to orthogonalize the highly collinear

linear and quadratic time covariates.

T — T
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3.5.2 An Informal Check of the Working Likelihoods

When calculating the standard errors of the parameter estimates, we must take into account

that the working likelihood may not be the same as the true likelihood. Section 3.3 provides

consistent estimators of the covariance matrix for the parameter estimates from which "robust"

standard error estimates can be obtained. Because these "robust" standard error estimates

account for the fact that the working likelihood may be incorrectly specified, we expect them

to be different from the "naive" standard error estimates calculated assuming that the working

likelihood correctly specifies the true likelihood. If the working likelihood is correctly specified,

the robust standard error estimates should be the same as the naive standard error estimates

as the number of subjects becomes large. Thus, an informal method for checking how well the

working likelihood approximates the true likelihood (when the number of subjects is sufficiently

large) might compare the naive and robust standard error estimates or the corresponding naive

and robust z-scores. Differences between robust and naive standard error estimates could

result from two possibilities: (i) although the working likelihood adequately described the true

likelihood, the number of subjects was not large enough for accurate estimation of the true

standard errors; or, (ii) the working likelihood was not adequate for the data.

Table 3.1 presents the naive and robust z-scores resulting from the initial model fits for both

the independence and first-order working likelihoods. Notice that the naive z-scores for the

independence fit are consistently larger, and typically substantially so, than the corresponding

robust z-scores. If we assume that the robust z-scores reflect the associations between the

outcome variable and the covariates accurately, we might conclude that the naive z-scores for

the independence working likelihood tend to overstate the association, a well-known result
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when the observations on a subject are positively correlated. More efficient parameter and

standard error estimates might then be expected from the first-order working likelihood which

models some correlation. Although substantial differences still exist for many parameters, the

agreement between the naive and robust z-scores appears slightly improved for the first-order

working likelihood. This suggests the first-order working likelihood may better reflect the actual

likelihood than the independence working likelihood; a gain in efficiency of estimation would

then result from using the first-order working likelihood instead of the independence working

likelihood. This conclusion is somewhat tenuous since the assumption that the robust z-scores

reflect the associations between the outcome variables and the covariates accurately may not

be reasonable with only 18 birds in the experiment. Qualitatively, the conclusions obtained

from the two working likelihoods are identical: modelling of the treatment main effects and the

linear terms seems worthwhile, while modelling of the quadratic terms for treatments 2 and 3

may be unnecessary.

Table 3.1. Comparison of Z-scores from the Initial Model

Independence First-Order
parameter estimate robust z-score naive z-score estimate robust z-score naive z-score

Pi -.31 -.97 -3.35 -.32 -1.00 -2.95
P2 -.71 -3.41 -7.23 -.68 -3.68 -6.32
/13 .16 .42 1.72 .17 .42 1.54

01,1 .27 2.31 4.14 .26 2.37 3.51
/31,2 .50 3.03 7.27 .48 3.31 6.42
31,3 .60 2.70 9.13 .62 2.54 7.92
/32,1 -.21 -2.37 -2.82 -.20 -2.23 -2.41
/32,2 .04 .37 .47 .03 .35 .41
/32,3 -.09 -.68 -1.29 -.09 -.66 -1.02
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3.6 Model Reductions With Sex Excluded

3.6.1 Strategy for Model Reductions

The primary aim of this analysis is to understand the differences in hummingbird learning

across treatment groups. Because birds in different treatments may learn in different ways, the

initial model for the success probabilities allows all possible interactions of time and treatment.

The purpose of subsequent model reductions is to obtain a parsimonious final model which

reliably addresses the investigator's questions about the way hummingbird learning differs across

treatments. To focus the analysis on treatment differences, the reduction procedure should

eliminate unnecessary terms for negligible interactions between treatment and time first, leaving

the examination of treatment main effects for the final steps. The elimination of interaction

terms reduces the complexity of the model to be used for interpretation; in particular, a final

model with no interactions between treatment and time permits differences in learning patterns

for birds in different treatment groups to be easily described by treatment main effects only.

One such reduction procedure for the binary hummingbird data (with sex excluded as a

covariate) is outlined in the following steps:

1. Fit the initial model.

2. Check the quadradic terms.

• Can they be set equal?

• If so, can this common term be eliminated?

3. Check the linear terms.
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• Can they be set equal?

• If so, can this common term be eliminated?

4. Examine the treatment main effects.

This procedure is not meant to be followed rigidly. Instead, it is meant as a rough guideline

for model reductions, to be used in conjunction with existing scientific theory and exploratory

plots of the data.

3.6.2 Description of the Reductions

Using the strategy outlined above, two plausible model reduction paths arise for both the

independence and first-order working likelihoods. In this section, the two models are compared,

and for each working likelihood, the model most consistent with patterns in the data suggested

by the exploratory plots is selected to represent the experimental results.

To examine how the results of the analysis depend on the choice of the working likelihood,

these final models are then compared across working likelihoods. Final models with similar

parameter and standard error estimates for different working likelihoods suggest that the effi-

ciency of the two working likelihoods is about the same. Note that with only 18 birds in the

experiment, the number of subjects may not be sufficiently large to ensure the adequacy of the

asymptotic multivariate normal approximation to the distribution of the parameter estimates.

The Wald statistics used to test the model reductions are based on this approximation.

The first model reduction path is described by the following steps:

1. Check the quadratic terms.
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• Can they be set equal? Yes; the p-values for this reduction are .17 and .21 for the

independence and first-order working likelihoods, respectively.

• Can the common quadratic term be eliminated? Yes; the p-values for this reduction

are .17 and .19 for the independence and first-order working likelihoods, respectively.

(P-values are calculated using the reduced model from the previous step.)

2. Check the linear terms.

• Can they be set equal? Yes; the p-values for this reduction are .29 and .26 for the

independence and first-order working likelihoods, respectively.

• Can this common linear term be eliminated? No; the p-value for this reduction is

less than .001 using both the independence and the first-order working likelihoods.

3. Examine the treatment main effects.

• Can they be set equal? Not entirely clear; the p-value for this reduction is .14 using

both the independence and first-order working likelihoods.

This first plausible reduction path leads to models with coefficients and standard error

estimates given in Table 3.2. Note that the predicted success probabilities resulting from the

final models are virtually identical. Figure 3.10 displays the final model fit for the independence

working likelihood and suggests the success probabilities for birds in treatments 1 and 2 are very

similar. Since corr(iii,iii) :::-., 0, the standard errors in Table 3.2 indicate that the model could

be further reduced by taking main effects for treatments 1 and 2 to be the same. In fact, the

p-values for the reduction are .69 and .71, with the common fitted values for p i and 1/2 being



Chapter 3. Analysis Based on a Working Likelihood Approach^ 43

—.60 (s.e.=.18) and —.58 (s.e.=.17), for the independence and first-order working likelihoods,

respectively.

Table 3.2. Final Model Fits from the First Reduction Path

Independence^First-Order
Parameters^estimate s.e.^estimate s.e.

P
Pi.
P2
P3

/31,1 = /31,2 ==/31,3

/32,1 = /32,2 = /32,3

^.17 ^.03
-.53^.31^-.52^.30
-.67^.17^-.65^.15
.07^.33^.08^.34
.45^.11^.45^.10

The estimated lag one autocorrelation and standard error provided by the first-order work-

ing likelihood suggest the presence of (positive) correlation in the data of each bird. On the

other hand, the first-order and independence working likelihoods result in virtually the same

estimates of the regression parameters and their standard errors. Both final models indicate

the transformed response depends only linearly on time, with a common slope for all three

treatment groups; no terms for interaction of treatment and time are included. This lack of in-

teraction in the fitted model allows for a simple interpretation of treatment differences through

examination of treatment main effects only. For example, Figure 3.10 suggests the success

probabilities of birds in treatment 1 are about the same as the success probabilities of birds in

treatment 2, while birds in treatment 3 have higher success probabilities than birds in either

treatment 1 or treatment 2 (about .67 units greater in the logit scale at any given time).

These final models describe the success probabilities of birds in treatment 1 by a linear

trajectory. This seems to disagree with the exploratory lowess plot of the transformed outcomes

in Figure 3.6, which suggests the success probabilities of birds in treatment 1 could be better
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described by a quadratic trajectory. Figure 3.6 also suggests birds in treatment 2 start out with

lower success probabilities than birds in treatment 1, but develop higher success probabilities

by the end of the experiment.

A possible explanation for the discrepancy between the lowess plot and the first final model

emerges upon examining the path of model reductions leading to the first final model. Although

the p-values for setting the quadratic terms for all three treatments equal are .17 and .21 for

the independence and first-order working likelihoods respectively, and the p-values for setting

this common quadratic term to be equal to zero are .17 and .19 for the independence and

first-order working likelihoods, respectively, the p-values for proceeding directly from the full

model to a model with no quadratic terms are a marginal .12 and .14 for the independence and

first-order working likelihoods, respectively. This suggests the final model may be neglecting

some curvature present in the data. In fact, z-scores for the quadratic term in treatment 1 (

-2.37 and -2.23 for the independence and first-order working likelihoods, respectively; see Table

3.1) lend support to what is suggested by Figure 3.6: much of the curvature present in the data

comes from the learning trajectory of birds in treatment 1.

Table 3.3 displays the coefficient and standard error estimates resulting from an alternate

reduction path which allows curvature in the fitted learning trajectory of birds in treatment 1.

This second reduction path is described by the following steps:

1. Check the quadratic terms.

• Can they be eliminated? No; the p-values for this reduction are a marginal .12 and

.14 for the independence and first-order working likelihoods, respectively.
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2. Check the linear terms.

• Can they be set equal? Yes; the p-values for this reduction are .32 and .27 for the

independence and first-order working likelihoods, respectively.

• Can the common linear term be eliminated? No; the p-values for this reduction are

less than .001 for both the independence and first-order working likelihoods.

3. Examine the treatment main effects.

• Different quadratic terms for different treatment groups are still present in the model,

so checking whether the treatment main effects are equal corresponds to checking

whether the success probabilities for all three treatment groups are equal at t = 0,

or at trial 90.5. The p-values for this reduction are .12 and .13 for the independence

and first-order working likelihoods, respectively, indicating that this reduction may

not be justified. Note that even if this reduction was justified, it may be of little

practical interest because it does not simplify interpretation of the final model.

4. For interpretability of the final model...

• Eliminate the quadratic terms for treatments 2 and 3. The p-values for this reduction

are .62 and .74 for the independence and first-order working likelihoods, respectively.

These p-values justify what is suggested by the lowess plot: the success probabilities

of birds in treatments 2 and 3 can be adequately described by a linear trajectory.
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Table 3.3. Final Model Fits from the Second Reduction Path

Parameters
Independence First-Order
estimate s.e. estimate s.e.

p .17 .03
-.31 .32 -.52 .30

/2 2 -.67 .17 -.65 .15
.07 .33 .08 .34

01,1 = 01,1 = 03,1 .46 .11 .45 .10
02,1 = 02,2 = 02,3 -.23 .10 -.22 .10

As was the case for the first reduction path, the estimated first lag autocorrelation and stan-

dard error from the first-order working likelihood suggest the presence of (positive) correlation

in the data of each bird, but the predicted success probabilities resulting from the independence

and first-order fits are virtually identical. Figure 3.11 plots the final model for the second re-

duction path using the independence working likelihood. Comparison of Figures 3.10 and 3.11

suggests the only noticeable difference between the final models for the two reduction paths is

the fit for the learning trajectory of birds in treatment 1. Because the final model from the

second reduction path allows curvature in the fitted learning trajectory of treatment 1 and the

final model from the first reduction path does not, the former appears to be more consistent

with patterns displayed by the exploratory lowess plots, and may thus be considered the more

reliable summary of the experimental results.

Note that the final fits for birds in treatment 1 resulting from the two different reduction

paths do not differ greatly in the probability scale except at the very beginning and the very end

of the experiment; see Figure 3.12. The largest discrepancies in the fitted success probabilities

occur at the end of the experiment, with the maximum difference in fitted probabilities on the

last trial. Here the linear model fits a success probability of .56 (with a standard error of about
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.09) and the quadratic model fits a probability of .45 (with a standard error of about .10).

3.7 Residual Analysis for the Final Model with Sex Excluded

Analysis is based on the Pearson residuals (given by (yi t — fit )/0"--;st (1 — ii-70) from both the in-

dependence and first-order fits. To determine whether the independence working assumption is

reasonable (recall that the independence working assumption isn't necessary for asymptotically

valid results), the independence residuals are examined to see if they are approximately uncor-

related with mean 0 and variance 1. After analyzing the independence residuals, the first-order

residuals are examined to determine whether the assumption of a common lag one autocorrela-

tion for all birds (necessary for asymptotically valid results when using the first-order working

likelihood) is reasonable.

3.7.1 Analysis of the Independence Residuals

Under the independence working assumption, the 180 Pearson residuals for each bird should be

approximately uncorrelated, with mean 0 and variance 1. Figure 3.13 displays scatterplots of

the Pearson residuals for each bird and suggests the distributions of residuals for all birds have

mean 0 and variance 1, with those for birds in treatments 1 and 2 being positively skewed, and

those for birds in treatment 3 being more symmetric. This is explained by the relative number

of O's and l's in each treatment. Only 38% of treatment 1 responses (407/1080) and 35% of

treatment 2 responses (374/1080) are l's, whereas 52% of the responses in treatment 3 are l's

(558/1080). The final model therefore fits the "1" responses in treatment 3 as well as the "0"

responses, but for treatments 1 and 2, fits "0" responses better than "1" responses since the



Chapter 3. Analysis Based on a Working Likelihood Approach^ 48

majority of responses in these treatments is 0. Note that the gaps around zero in Figure 3.13

arise because the responses are either 0 or 1, and the denominator of the Pearson residuals

(Vflt (1 — CO) is essentially constant.

To check if Pearson residuals from the independence final model were approximately uncorre-

lated within birds, estimates of the first, second, and third lag Pearson residual autocorrelations

were calculated for each bird (see Table 3.4). Under the independence working assumption, the

standard error of each of these autocorrelation estimates is about 1/ 180 = .075. From Table

3.4, we see that 4 out of 18, or 2/9 of the first lag autocorrelations appear significantly different

from zero at level a = .05 (birds 5, 6, 14, and 15 have rh's greater than .15). Because birds

are independent, we would expect this to happen for only 1 out of every 20 estimated first lag

autocorrelations. Therefore, the assumption that observations within birds are independent

seems questionable for these data. It is interesting to note that when the three autocorrelations

are compared across birds, birds 14 and 15 (both in treatment 3) appear to have higher first,

second, and third lag autocorrelations than the others.

Checking the adequacy of the final model is limited by the fact that the only explanatory

variables modelled are treatment group and time. The patterns of Pearson residuals across

treatment groups can be seen in Figure 3.13 and have already been explained by the relative

number of 0's and l's in each treatment group. Note that the Pearson residuals for the i th

treatment group can be characterized by two functions of time - one (essentially the negative

fit, or —1-7-t ) for those responses which are 0; the other (essentially the negative fit plus one, or

1 — fii) for those responses which are 1. Thus, plotting residuals against time is not a useful

check of model adequacy. Another variable, excluded as a covariate in the model because its
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role in hummingbird learning was thought to be minimal, is the sex of each bird. Figure 3.14,

a boxplot of the Pearson residuals by sex, suggests sex should be included in the model. The

residual distribution for males appears to be positively skewed, whereas for females it appears

to be negatively skewed. The skewness of the distributions is a consequence of the females

having a smaller proportion (607/1800 or 34%) of successful first feeding forays (response=1)

than the males (732/1440 or 51%).

Table 3.4. Estimated Autocorrelations for the Independence Residuals

Bird (Treatment 1)
1^2^3^4^5^6

.07 -.02 .000 -.06^.16 .16

.11 -.09^.09^-.05 .02 .02

.08 -.09^.03^-.04 .10 .08

Bird (Treatment 2)
7^8^9^10^11^12

P1 - .005 .13 -.09 -.07^.10^.02
P2^-.05^.07^.13 -.09^.03^.04
/53 -.009 .10 -.07^.10^-.06 .002

13
Bird (Treatment 3)

14^15^16^17 18
/51 .01 .24 .34 -.07 .02 .10
P2 .14 .16 .28 .03 .15 .07
143 .02 .28 .37 -.006 -.01 .12

3.7.2 Analysis of the First-Order Residuals

For the first-order working model, let r2 denote the estimate of the l th subject's lag 1 autocorre-

lation obtained by regressing the Pearson residuals for that subject on their predecessors. The

variance of ri, approximated by 1/ni(1 - lq), where ni and pi are, respectively, the number

P1
P2
P3
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of time points and the lag one autocorrelation for the i th subject, can be stabilized by tak-

ing the inverse hyperbolic sine of ri. If the number of time-points for each subject is large,

sinh -1 (ri) is approximately normally distributed with mean sinh- l(pi) and variance l/ni.

The standard error of all the transformed individual first-lag autocorrelation estimates is thus

approximately 1/ 180 = .075, allowing a check on the assumption of a common first lag au-

tocorrelation for all subjects. Testing the values in Table 3.5 for homogeneity (average= .16,

sample variance= .021), leads to a chi-squared statistic of 65.2 on 17 degrees of freedom; the

data thus provide quite convincing evidence that a common lag one autocorrelation is not

shared by all subjects.

Table 3.5. Estimated Lag One Autocorrelations for the First-Order Residuals

Bird (Treatment 1)
1 2 3 4 5 6

ri .16 .04 .27 .04 .33 .19
sinh- l(ri) .16 .04 .27 .04 .33 .19

7
Bird (Treatment 2)

8^9^10^11 12
Ti -.005 .13 .06 -.07 .17 .03

sinh -1 (ri) -.005 .13 .06 -.07 .17 .03

Bird (Treatment 3)
13 14 15 16 17 18

ri .04 .27 .47 .15 .45 .15
sinh -1 (ri) .04 .27 .45 .15 .44 .15

The assumption of a common lag one autocorrelation is critical to deriving the asymptotic

results for the first-order working model, so the fact that this assumption appears to be violated

casts doubt on the validity of such an analysis. However, except for birds 3, 5, 14, 15 and 17,

the estimated first-lag autocorrelations are not particularly large. The reason for compelling
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evidence against homogeneity is that the standard errors of the estimates are quite small due to

the large number of responses (ni = 180) for each bird. Although the assumption of a common

lag one autocorrelation does not appear to hold for the binary responses of the 18 birds in this

experiment, the conclusions drawn from the analysis based on the first-order working likelihood

are virtually identical to those from the analysis based on the independence working likelihood.

Therefore, the conclusions drawn from the first-order analysis appear to be reasonable.

The Pearson residuals obtained from the first-order working likelihood are virtually the

same as those obtained by the independence working likelihood because the final models are

almost identical. The plot of the first-order residuals against sex has the same features as the

plot of the independence residuals displayed in Figure 3.14. Hence, analysis of both types of

Pearson residuals indicates sex is an important covariate.

3.8 Summary of Analysis with Sex Excluded

The models obtained by the independence and first-order working likelihoods are virtually

identical. For both working likelihoods, the final model corresponding to the second reduction

path has been selected to represent the experimental results. This final model indicates an

increase in success probabilities over successive trials for treatments 2 (PT) and 3 (FT), and

an increase, peaking at about trial 110 (near the end of the second day), followed by a decline

in success probability for treatment 1 (NT).

The final model uses a quadratic trend in the logit scale to describe the pattern of improve-

ment in treatment 1, and a linear trend to describe the patterns of improvement in treatments

2 and 3. Its main features are summarized as follows:
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(i) birds in treatment 3 (FT) have greater fitted success probabilities than birds in treatments

1 (NT) and 2 (PT) throughout the entire experiment;

(ii) the fitted rate of improvement for birds in treatment 2 (PT) is the same as the fitted rate

of improvement for birds in treatment 3 (FT); and

(iii) although birds in treatment 2 (PT) have lower fitted success probabilities than birds in

treatment 1 (NT) for the intermediate trials of the experiment (trials 30-120), sometime

during the course of the third day of the experiment (at about the 150t h trial), they

develop greater fitted success probabilities than birds in treatment 1.

Note that different working assumptions lead to virtually identical fits. This is because

both approaches give similar parameter and standard error estimates, suggesting the difference

in efficiency between the two approaches is minimal. The estimated lag one auto-correlation

and standard error provided by the first-order working likelihood seem to indicate the presence

of positive correlation in the data (see Tables 3.2 and 3.3), suggesting the first-order param-

eter estimates and standard errors may be more efficient. On the other hand, the first-order

Pearson residuals suggest a common lag one autocorrelation may not be shared by all subjects.

Because this assumption is critical in deriving the asymptotic results for the first-order param-

eter estimates and standard errors, the independence model fit (which does not require any

assumptions about the time-dependence within each subject's responses) may be considered

the more reliable summary of the experimental results.

Both the exploratory plots and the residual analysis suggest sex may be an important

covariate worth including in the model. In the next section, the binary hummingbird data is
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analyzed with sex included as a covariate.

3.9 The Initial Model With Sex Included

The importance of sex as a covariate is clearly indicated by Figures 3.15-3.17 which plot the

lowess smoothed logits of the average response by sex for each treatment group. On average,

males seem to have a higher success probability than females in all three treatments throughout

the entire experiment. For treatments 2 (PT) and 3 (FT), both males and females appear to

have success probabilities which increase roughly linearly with time, whereas for treatment 1

(NT), the male and female success probabilities appear to increase over the first two days, but

to decrease over at least part of the third day. For all three treatment groups, it appears a

model incorporating an additive (on the logit scale) effect for sex, with males having higher

transformed success probabilities than females, may be adequate to explain the patterns in the

data. Furthermore, sex-by-treatment interaction may also be present, since the figures suggest

that a different additive effect for sex in each treatment group may be necessary.

These exploratory plots suggest the transformed probability of success on the first feeding

foray may be modelled, initially, as

T — Tlogit^=^sexi,s^01,1,st + 132,i,8t2^i = 1, .., 3, s = 1, 2, T = 1, .., 180, t = ^
s.d.(T)

where pi may be interpreted as the main effect of the ith treatment group, sex2, 1 is the

female-to-male differential sex effect for the ith treatment group, and sex2,2 s-g 0 (for males in

the ith treatment group). The female-to-male differential sex effect is permitted to vary across

treatments so treatment-by-sex interaction is incorporated. Similarly, the three-way interaction

of sex, treatment and time is incorporated because different linear and quadratic coefficients
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for each sex and each treatment group are permitted. Again, the time covariate has been

standardized to orthogonalize the highly collinear linear and quadratic time covariates. As in

Sections 3.5-3.8, the analysis is repeated under both the independence and the first-order

working model.

3.10 Model Reductions with Sex Included

3.10.1 Strategy for Model Reductions

The reduction strategy for the initial model which includes sex as a covariate is similar to

its counterpart with sex ignored. Because the investigator does not anticipate complicated

sex-by-time interactions, the reduction strategy checks for the presence of such interactions

before it checks for the interaction of treatment group and time. In addition, quadratic terms

common to males and females within a treatment are treated differently from the corresponding

linear terms because Figure 3.15 suggests males and females in the treatment 1 have success

probabilities (for the first feeding foray) which may be described by a quadratic trend in the

logit scale. The general reduction strategy is outlined by the following steps:

1. Fit the initial model.

2. Check the quadradic terms.

• Can the coefficients for males and females be set equal within all treatment groups?

• If so, can they be elimated?

3. Check the linear terms.

• Can the coefficients for males and females be set equal within all treatment groups?
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• If so, can these coefficients be set equal for all treatment groups?

• If so, can this common term be eliminated?

4. Check the differential sex effects.

• Can the coefficients be set equal for all treatment groups?

• If so, can this common term be eliminated?

5. Examine the treatment main effects.

As in Section 3.6, this procedure is meant as a rough guideline for model reductions, to be used

in conjunction with existing scientific theory and exploratory plots of the data.

3.10.2 Description of the Reductions for the Independence Working Likelihood

The model reduction path for the independence working likelihood including sex as a covariate

is described by the following steps:

1. Check the quadratic terms.

• Can the coefficients for males and females be set equal within all treatment groups?

Yes; the p-value for this reduction is .80.

• Can the quadratic coefficients be eliminated? No; the p-value for the simultaneous

elimination of all three quadratic coefficients is a marginal .12. Leave the quadratic

terms for each treatment in the model for the time being.

2. Check the linear terms.
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• Can the linear coefficients for males and females be set equal within each treatment

group? Yes; the p-value for this reduction is .91.

• Can the resulting linear coefficients be set equal for all treatment groups? Yes; the

p-value for this reduction is .38.

• Can this common linear term be eliminated? No; the p-value for this reduction is

less than .001.

3. Check the differential sex effects.

• Can they be set equal for all treatment groups? Yes; the p-value for this reduction

is .40.

• Can this additive sex effect be eliminated? No; the p-value for this reduction is .007.

4. Examine the treatment main effects.

• Different quadratic terms for different treatment groups are still present in the model,

so checking whether the treatment main effects are equal corresponds to checking

whether the success probabilities for all three treatment groups are equal at t = 0,

or at trial 90.5. The p-value for this reduction is .10, indicating this reduction may

not be justified. As explained in Section 3.6, a reduction like this is of little practical

interest because it does not simplify interpretation of the final model.

5. For interpretability of the final model...

• Eliminate the quadratic terms for treatments 2 and 3. The p-value for this reduction

is .74, justifying what is suggested by the lowess plots in Figures 3.16 and 3.17: the



Chapter 3. Analysis Based on a Working Likelihood Approach^ 57

success probabilities of birds in treatments 2 and 3 can be adequately described by

a linear trajectory.

Note that quadratic terms for all three treatment groups are permitted to remain in the

model until the final step, leading to a final model which is consistent with the patterns observed

in the lowess plots. The reduction path for the independence working likelihood is summarized

in Table 3.6.

Table 3.6. Model Reductions for the Independence Working Likelihood with Sex Included

Parameters 1 2
Model

3^4 5 6
Pi .36(.03) .36(.17) .36(.17) .39(.17) .18(.27) .18(.27)
P2 -.59(.31) -.53(.26) -.53(.24) -.53(.24) -.36(.26) -.32(.20)
P3 .53(.75) .60(.71) .60(.69) .58(.67) .54(.48) .45(.41)

sex1,1 -1.03(.42) -1.02(A2) -1.03(.43) -1.06(.44) -.75(.28) -.75(.28)
sex2,1 -.25(.40) -.37(.30) -.36(.30) -.36(.31) set=sexi,i set=sex 1 , 1

sex3,1 -.72(.76) -.86(.66) -.86(.64) -.83(.60) set=sex1, 1 set=sex1,1
01,1,1 .21(.09) .21(.09) .29(.14) .48(.11) .47(.11) .48(.11)
)31,2,1 .55(.21) .54(.21) .50(.16) set=,31 , 1 , 1 set= i31 , 1 , 1 set=th, i , i
01,3,1 .54(.38) .54(.38) .63(.24) set=/31,1,1 set= /3 1,1,1 set=/31,1,1
/31,1,2
/31,2,2

.41(.31)

.46(.23)
.41(.31)
.46(.24)

set=/31,1,1
set=01,2,1

set=/31,1,1
set=/31,1,1

set=fii,i,i
set=81,1,1

set=/31,1,1
set=/31,1,1

.74(.27) .73(.27) set=/31,3,1 set -4314,1 set=/31,1,1 set=/31,1,1
/32,1,1 -.21(.08) -.21(.09) -.22(.08) -.24(.09) -.24(.10) -.24(.10)
/32,2,1 -.04(.05) .03(.10) .04(.10) .04(.10) .04(.11) -
/32,3,1 -.16(.15) -.09(.12) -.10(.15) -.10(.14) -.09(.14) -
/32,1,2 -.22(.21) set=82,1,1 set=i32,1,1 t^3se =, 2,1, i set7-132,1,1 set=/32,1,1
/32,2,2 .10(.18) set=82,2,1 set=82,2,1 set=82,2,1 set=82,2,1 -

/32,3,2 -.007(.18) Set=/32,3,1 set=g2,3,1 set=02,3,1 set=f32,3,1 -
Working Deviance 4029.67 4031.50 4035.64 4048.42 4062.55 4064.58

Pearson X 2 3235.89 3233.99 3236.09 3252.95 3252.44 3252.62
degrees freedom 3222 3225 3228 3230 3232 3234

3.10.3 Description of the Reductions for the First-Order Working Likelihood

The model reduction path for the independence working likelihood including sex as a covariate

is described by the following steps:
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1. Check the quadratic terms.

• Can the coefficients for males and females be set equal within all treatment groups?

Yes; the p-value for this reduction is .74.

• Can the quadratic coefficients be eliminated? Yes; the p-value for this reduction is

.20.

2. Check the linear terms.

• Can the linear coefficients for males and females be set equal within each treatment

group? Yes; the p-value for this reduction is .88.

• Can the resulting linear coefficients be set equal for all treatment groups? Yes; the

p-value for this reduction is .34.

• Can this common linear term be elimated? No; the p-value for this reduction is less

than .001.

3. Check the differential sex effects.

• Can they be set equal for all treatment groups? Yes; the p-value for this reduction

is .33.

• Can this additive sex effect be eliminated? No; the p-value for this reduction is .02.

4. Examine the treatment main effects.

• Can they be set equal? Not entirely clear; the p-value for this reduction is a marginal

.10.
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The reduction path for the first-order working likelihood is summarized in Table 3.7.

Since corr(rii,iii) .c.--, 0, the standard errors for the final model in Table 3.7 indicate that

taking the main effects for treatments 1 and 2 to be equal would be a permissible further reduc-

tion of the model. In fact, the p-value for this reduction is .35, with the fitted value common

to p i and p2 being —.19 (s.e.= .21). This reduction could be carried out for interpretability of

the final model but is not included in this analysis.

Table 3.7. Model Reductions for the First-Order Working Likelihood with Sex Included

Parameters 1 2
Model

3^4 5 6
P .13(.03) .13(.03) .13(.03) .13(.03) .13(.03) .14(.03)
iii .36(.04) .35(.20) .16(.29) .15(.25) .17(.26) -.04(.27)
P2 -.58(.30) -.53(.24) -.49(.19) -.50(.18) -.50(.17) -.30(.20)
Pa .59(.87) .65(.81) .56(.76) .54(.69) .51(.64) .46(.42)

sexio. -1.03(.40) -1.02(.42) -1.02(.42) -1.02(.41) -1.06(.42) -.73(.28)
sex2,1 -.23(.37) -.34(.27) -.34(.27) -.33(.27) -.33(.27) set=sesi,i
sex3,1 -.79(.88) -.89(.75) -.89(.76) -.87(.69) -.84(.64) set=ses1,1

01,1,1 .20(.08) .20(.08) .19(.07) .27(.13) .47(.11) .46(.11)
01,2,1 .52(.20) .51(.20) .52(.20) .49(.15) set=i31,1,1 set=th,i,i
01,3,1 .54(.38) .53(.38) .53(.38) .64(.26) set=g1,1,1 set=th,i,i
01,1,2 .42(.35) .42(.34) .42(.36) set=th,i,i set=/31,1,1 set=fli,i,i
/31,2,2 .46(.22) .46(.22) .47(.23) set=fi1,2,1 set=-#1,1,1 set=/31,1,1
/31,3,2 .77(.33) .76(.33) .77(.37) set=i31 ,3, 1 set=/31,1,1 set=/31,1,1
/32,1,1 -.19(.09) -.20(.10) - - -
/32,2,1 -.03(.05) .03(.10) - - -
/32,3,1 -.15(.15) -.10(.13) - -
/32,1,2 -.21(.24) set=024 , 1 - -

/32,2,2 .09(.18) set=/32,2,1 - - -

,32,3,2 -.04(.19) set=02,3,1 - - - -
Working Deviance 3980.30 3981.21 3988.20 3993.00 4005.18 4017.33

Pearson X 2 3230.33 3230.80 3234.58 3229.04 3234.18 3228.03
degrees freedom 3221 3224 3227 3230 3232 3234

As in the analysis where sex was not included as a covariate, the estimated lag one auto-

correlation and standard error provided by the first-order working likelihood suggest the data

for each bird are positively correlated. As before, the fits resulting from the independence and
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first-order working likelihoods are similar. When sex is included in the analysis, the only differ-

ence in the fits is the learning trajectory for birds in treatment 1. The independence working

likelihood models a quadratic learning trajectory for birds in treatment 1, whereas the first-

order working likelihood models a linear learning trajectory. The fitted learning trajectories

resulting from the independence and first-order working likelihoods are virtually identical for

both treatments 2 and 3. Figures 3.18 and 3.19 display the fitted female learning trajectories

in the logit scale for the independence and first-order working likelihoods respectively; because

the effect of sex has been modelled as additive, the male trajectories are parallel to those for

females, with the fitted (transformed) response for males being greater than that for females

by an additive constant (-75 and -.73 for the independence and first-order working likelihood,

respectively).

3.11 Summary of Analysis with Sex Included

Except for the fitted learning trajectory for birds in the first treatment group, the final models

obtained from the independence and first-order working likelihoods are virtually identical. Both

final models describe the effect of sex as additive only; interactions of sex with time or with

treatment group are not present in either model. Both models describe the success probabilities

of males as being about .74 (s.e.= .28) units higher in the logit scale than those for females

throughout the entire experiment; sex is clearly an important covariate for these binary response

data. As in the previous models where sex was not included as a covariate, the transformed

success probability for birds in treatments 2 (PT) and 3 (FT) appears to improve linearly

at the same rate in both final models, with the transformed success probabilities for birds in
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treatment 3 being about .77 (s.e.= .35) units higher than those for birds in treatment 2, for

both the working likelihoods, throughout the entire experiment.

For the learning trajectories of birds in the first treatment group, different working likeli-

hoods lead to different final models. The final model resulting from the independence working

likelihood describes the learning trajectory for birds in treatment 1 (NT) by a quadratic trend in

the logit scale for both males and females, whereas the final model resulting from the first-order

working likelihood describes the same trajectory by a linear trend. For birds in treatment 1,

the independence final model suggests an increase, peaking at about trial 110 (near the end of

the second day), followed by a decline in success probability in the logit scale. The first-order

final model, on the other hand, suggests a steady increase throughout the entire experiment

(see Figures 3.18 and 3.19).

Figure 3.20 displays the final fits resulting from the two working likelihoods for female birds

in treatment 1. Although these fits do not differ greatly in the probability scale, they may be

interpreted quite differently. For example, the independence fit suggests success probabilities for

birds in treatment 2 are higher than those for birds in treatment 1 at the end of the experiment

(see Figure 3.18). On the other hand, the first-order fit suggests the success probabilities for

birds in treatment 1 are higher than those for birds in treatment 2 (see Figure 3.19). Collecting

more data on the first treatment group in the form of additional subjects or further trials might

resolve this conflict in interpretation, since the presence or absence of a quadratic effect would

presumably become more clear. In this analysis, the final model resulting from the independence

working likelihood is viewed as the more reliable summary of the experimental results because

the independence fits are more consistent with patterns in the exploratory plots (see Figures
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3.15-3.18) than the first-order fits.

The results of this analysis indicate that sex is important in describing the probabilities

of success on the first feeding foray for the hummingbirds in this experiment. One possible

explanation for the importance of sex is the higher body-weight to wing-span ratio of males.

Because males must work harder to obtain their food, they be more likely to succeed on the first

feeding foray than females. Since sex is important in this analysis, it seems that any complete

analysis of the hummingbird data (binary or binomial) should include sex as a covariate.

In the next chapter both the binary and binomial hummingbird data are analyzed with sex

included as a covariate, using the generalized estimating equation (GEE) approach of Liang

and Zeger (1986) and Zeger and Liang (1986). The GEE approach extends quasi-likelihood

theory (see McCullagh and Nelder, 1989) to arrive at estimating equations for the regression

parameters, and is applicable to any longitudinal response with univariate marginal distri-

butions for which the quasi-likelihood formulation is sensible. Unlike the working likelihood

approach described in this section, the GEE approach does not require assumptions about the

true correlation structure when explicitly modelling correlation in the responses to improve the

efficiency of estimation. In these cases, the GEE approach permits many alternatives to the

independence "working correlation" structure, unlike the working likelihood approach where

only one alternative is available.



Chapter 4

Analysis Based on the GEE Approach

This chapter presents the generalized estimating equation (GEE) approach described in Liang

and Zeger (1986) and Zeger and Liang (1986). This unified approach to the analysis of longitu-

dinal data can be applied to any repeated measures data with univariate marginal distributions

for which the quasi-likelihood formulation is sensible. The GEE approach is first used to analyze

the binary hummingbird data. Then, to illustrate an application to non-binary longitudinal

data, it is used to analyze the binomial hummingbird data.'

4.1 Description of the GEE approach

Let /Ti t , i = 1, .., K and t = 1, .., n1, be the outcome variable for the ith subject at the tth

measurement, and xi t be the corresponding pxl vector of covariates. Suppose that we are

interested in how the outcome variable Yi t depends on the covariates xi t . If there were only one

time of observation for each subject, a generalized linear model (see McCullagh and Nelder,

1989) could be used to model a variety of continuous and discrete outcome variables. When

dealing with longitudinal data, however, the situation is complicated by the fact that there may

1 A11 the GEE analyses reported here were carried out using a SAS macro received from K.Y. Liang, and
written by M. Rezaul Karim. The SAS macro permits modelling of the following "working" correlation matrices:
independence, stationary M-dependent, non-stationary M-dependent, AR-M, exchangeable, unspecified, and
user-specified. Only working correlations which are common to all subjects may be specified. In addition,
if observation times are unequally spaced or there is missing data, only the independence, exchangeable, or
user-specified working correlations should be used.

63
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be correlation among the repeated observations for a given subject. This correlation must be

taken into account to obtain a valid analysis.

Modelling the correlation directly is often difficult for non-Gaussian longitudinal data be-

cause there are few natural models for the joint distribution of the repeated observations. Liang

and Zeger (1986) and Zeger and Liang (1986) propose a methodology based on an extension of

the quasi-likelihood approach described by Wedderburn (1974) and McCullagh (1983). They

model the marginal distribution of the univariate outcome at each time point by specifying

a known function of the mean as a linear function of the covariates, and by assuming the

(marginal) variance is a known function of the mean. Rather than specify a form for the joint

distribution of the outcome vector for each subject, they merely specify a "working" correlation

matrix for this outcome vector. This partial specification of the joint distribution gives rise to

generalized estimating equations (GEEs) which, under weak assumptions, provide consistent

estimates of the regression coefficients and their asymptotic covariance matrix.

4.1.1 Brief Description of Quasi-Likelihood

Since the GEE approach is an extension of the quasi-likelihood approach to modelling indepen-

dent univariate outcomes, a brief description of the pertinent aspects of quasi-likelihood theory

is provided to motivate the GEE approach and establish notation.

Quasi-likelihood is a unified methodology for the regression analysis of (independent) dis-

crete or continuous outcomes first proposed by Wedderburn (1974) and examined further by

McCullagh (1983). A desirable property of quasi-likelihood analysis is its flexibility. Unlike

likelihood analysis, the actual form of the outcome distribution does not have to be specified;
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only the relationships between the outcome mean and the covariates and between the mean

and the variance are required.

To fix notation, let Yi be the univariate response for the ith individual, and let xi be the

corresponding p-dimensional vector of covariates for that individual. Define pi and vi to be the

expectation and variance of Yi. The expectation is assumed to be a known function of a linear

combination of the covariates, i.e.,

= h(43),

where /3 is a px1 vector of regression parameters. In addition, except for an unknown scale

parameter 0, the variance is assumed to be a known function of the expectation, i.e.,

vi = 9(p i )10.

Inference for the regression parameters /3, rather than for the nuisance parameter 0, is the

primary objective.

The quasi-likelihood estimator for /3 is obtained by solving a score-like system of equations

where the equation for the Ph regression parameter, 0/, is given by

MO) = r_, 814 ^- iti) = 0, 1 = 1, ..,p.
i=1

(4.1)

These are in fact score equations for /3 when the distribution of the outcome is in the expo-

nential family. The solution to these quasi-score equations is the quasi-likelihood estimator of

the regression parameters, and can be obtained by the method of iteratively re-weighted least

squares (for example, by the use of GLIM). McCullagh (1983) has shown that, under mild reg-

ularity conditions, the quasi-likelihood estimator of the regression parameters is asymptotically

Gaussian.
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4.1.2 Generalized Estimating Equations (GEEs) for Longitudinal Data

To extend the quasi-likelihood approach to longitudinal data, Zeger and Liang (1986) adopt

the structure described above for each of the univariate outcomes Yi t . Their extension involves

the specification of a "working" correlation matrix for Yi, the response vector of the ith subject,

and the incorporation of this correlation into the estimating equations for 0. The observation

times and the working correlation matrices are allowed to differ across subjects in the GEE

approach.

Let Ri(a) be the nixni "working" correlation matrix for the ith subject. Zeger and Liang

(1986) call Ri(ct) the working correlation matrix because it is not necessarily specified correctly.

The collection of working correlation matrices is assumed to be fully specified by a, an sx1 vector

of unknown parameters. The working covariance matrix for Yi is then

= V2Ri(ce)A 1 /2 /0,

where Ai is an nixni diagonal matrix with g(pi t ) as the tth diagonal element.

Liang and Zeger (1986) extend the earlier quasi-likelihood equations in (4.1) and propose

generalized estimating equations,

K^K

si(0, a) = 1 (yi - pi),

where Si( i3, a) denotes the p-dimensional quasi-score function for the i th subject, pi = E(Yi) =

(z11, ••, = (1(x=10), -,h(x'in, O)Y, and Di = 0140 13. Note that these equations reduce to

(4.1) in the case ni=1 for all i. More generally, the quasi-score function for the ith subject,

S1(/3, a) = vi-1(y, - pi), is equivalent to the estimating function suggested by Wedderburn

(1974), except that here the V's are functions of a as well as 0. Because Di Vi-1 does not
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depend on the y i 's, as long as E(Y —^= 0 (i.e., as long as the mean is correctly specified),

the average of the quasi-score functions will converge to zero, ensuring that the equations have

consistent roots.

Since the nuisance parameters a (a parameter defined only for the working correlation) and

0 are unknown and the primary goal is inference for the regression parameters /3, an obvious way

to proceed is to replace a in the expression for Vi by a consistent estimator, a__(yi , yK, /3, 0),

replace 0 in a by a consistent estimator 0 yK , /3), and solve the altered estimating equations

for /3. Liang and Zeger (1986) adopt this approach and define /3G, the GEE estimate of /3, as

the solution of
K

YK^= O.

Provided a is consistent given (/3, 0), is consistent given /3, and mild regularity conditions

hold, Liang and Zeger (1986, Theorem 2, page 16) show that as the number of subjects, K,

becomes large, ;JG consistently estimates /3. They also show that under these same conditions,

K(/3G — /3) is asymptotically multivariate Gaussian with zero mean and a covariance matrix

given by

-1
^VG = liM K (E .1Z Vi-1 Di) [E D: Vi-1 cov(YOK-1 Di]^Vi-1 Di

1^i=1^ i=1

bill K17 -1 V. V -1 ,
K--.co

where cov(Yi) is the actual (unknown) covariance matrix for the response vector of the i th

individual. Although in general one might expect VG, the asymptotic covariance matrix of ,jc,

to depend on which estimators are used for a and 0, the above result indicates that it does

not depend upon how a and 0 are estimated, as long as they are consistently estimated. The
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covariance matrix VG can be consistently estimated by replacing cov(Yi) by (yi — rti)(yi —

where^= (h(eii i3), h(eini MY , and a and d by consistent estimates in (4.2).

The estimate of the regression coefficient, SG, is obtained by iterating between solving the

generalized estimating equations for and consistently estimating a and cb. These two steps

are repeated until convergence of all the estimates. To consistently estimate a and 0, Liang and

Zeger (1986) recommend the use of the standardized residuals based on the updated estimate

of /3, rit = (yit — Pit) ([17vi — 1 ]tt) - 112 . Provided the fourth moments of the Yit's are finite, at a

given iteration, 0 can be consistently estimated by the longitudinal analog of the Pearson X 2

statistic
K^20-1 = v,  rit 

N — p'2=1

where N = Efc=i ni. As in many quasi-likelihood problems (where the mean-variance relation-

ship is specified by a scale parameter times a function of the mean), direct estimation of the

parameter cb may not be necessary for estimation of Q and VG. In particular, if the working

correlation matrix is common to all subjects, i.e., Ri(a) = R(a), and the elements of this com-

mon working correlation matrix are all multiples of the parameter a, an estimate of 0 need not

be calculated. (Because 0 appears as a multiplicative constant in the formula for ii, it cancels

in the calculation of Vi = A/ 2R(a),4 2112 , so is not required for estimation of /3 and VG.) This is

the case for many choices of the working correlation matrix which are of practical interest. To

estimate a, we need to borrow strength across subjects. The specific estimator depends upon

the choice of the Ri(a), but when R 2 (a) = R(a) for i = 1, .., K, the general idea is to estimate
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a by a simple function of

IZuv^riurivN. p •:=1

In practice, the true correlation structure of the response is rarely known. At best, we may

only have vague ideas about the actual correlation structure present in the data. Nevertheless,

we may wish to use this knowledge in order to obtain more efficient estimates of the regression

parameters. The GEE approach allows us to incorporate this knowledge into the estimation

process by specifying working correlation matrices we expect might be close to the true correla-

tion structure. The GEE approach has a strong appeal because it does not require the working

correlations to be correctly specified for asymptotically valid results.

For binary longitudinal data, the GEE approach is more flexible than the working likelihood

approach of Section 3 because working correlations other than independence and stationary

1-dependent may be used, permitting increased efficiency of estimation in many different situ-

ations. Further, when a working correlation other than the identity matrix is specified in the

GEE approach, observations belonging to different subjects need not share the same correla-

tion structure for asymptotically valid results. This is not the case in the working likelihood

approach. (Recall that for valid asymptotic results using the first-order working likelihood, all

subjects are required to share a common first-order autocorrelation.)

However, a trade-off between efficiency and validity exists in the GEE approach, just as in

the working likelihood approach. When specifying the working correlation R 2 (a) as something

other than the independence working correlation in the GEE approach, the parameter a must

be consistently estimated from the data in order to obtain asymptotically valid parameter and

standard error estimates. Because a (a parameter defined only for the working correlation) must
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be consistently estimated, it should describe some aspect of the true correlation structure, at

least indirectly. An analogous situation arises when applying the working likelihood approach

developed for binary data. When using the first-order working likelihood, the stationary 1-

dependent working correlation is consistently estimated from the data provided all subjects

have a common lag one autocorrelation.

One final point regarding the GEE approach is that it may be used for any multivariate

outcomes with (univariate) marginal distributions for which the quasi-likelihood formulation is

sensible. A wide variety of univariate distributions such as Gaussian, Poisson, binomial (binary),

gamma, and inverse Gaussian, are included in this family. Liang and Zeger (1986) suggest the

approach may even be extended to include multivariate multinomial and ordinal data by using

formulations described by McCullagh and Nelder (1989) for these types of variables and choosing

an independence working correlation.

4.2 GEE Analysis of the Binary Hummingbird Data

For the GEE analysis of the binary hummingbird data, the logit link with the binomial mean-

variance relationship (up to an unknown scale factor 0) is used. If the independence working

correlation is specified using this choice of link and mean-variance relationship, the scale pa-

rameter 0 does not enter into the estimation of 0 and VG. Therefore, the GEE parameter and

standard error estimates using the independence working correlation will be identical to those

obtained in the earlier analysis based on the independence working likelihood. In contrast, fits

for the first-order working likelihood may be different from the GEE fits based on a stationary
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1-dependent working correlation (the quasi-likelihood analog of the first-order working likeli-

hood) because the working likelihood models the correlation directly, whereas quasi-likelihood

treats the correlation as a nuisance parameter, obtaining a method-of-moments estimator after

first estimating the regression parameters at each iteration of a process which continues until

convergence of all the parameter estimates.

In order to compare the fits obtained by the working likelihood approach and the GEE

approach, in particular, the fits obtained by the first-order working likelihood and its quasi-

likelihood analog, the binary hummingbird data was analyzed using the GEE approach with

a stationary 1-dependent working correlation. Sex was included as a covariate in the GEE

analysis because of the clear indications of its importance in the working likelihood analyses of

Chapter 3. To examine the robustness of parameter and standard error estimates across working

correlations, the final model obtained from the stationary 1-dependent working correlation was

re-fit using several other working correlations.

4.2.1 Description of the Model Reductions

For the GEE analysis including sex as a covariate, the same general reduction procedure outlined

in Section 3.10.1 was applied to the initial model for the success probabilities on the first feeding

foray described in Section 3.9. The model reduction path for the stationary 1-dependent working

correlation is described by the following steps:

1. Check the quadratic terms.

• Can the coefficients for males and females be taken to be equal within all treatment

groups? Yes; the p-value for this reduction is .81.
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• Can the quadratic coefficients be eliminated? No; the p-value for the simultaneous

elimination of all three quadratic coefficients is a marginal .12. Leave the quadratic

terms for each treatment in the model for the time being.

2. Check the linear terms.

• Can the linear coefficients for males and females be set equal within each treatment

group? Yes; the p-value for this reduction is .91.

• Can the linear coefficients for all treatment groups be set equal? Yes; the p-value

for this reduction is .21. (Note that the fitted linear coefficients of Model 3 in Table

4.1 suggest different slopes might be identified if more birds were included in the

experiment.)

• Can this common linear term be eliminated? No; the p-value for this reduction is

less than .001.

3. Check the differential sex effects

• Can they be set equal across treatment groups? Yes; the p-value for this reduction

is .48.

• Can this additive sex effect be eliminated? No; the p-value for this reduction is .006.

4. Examine the treatment main effects.

• Different quadratic terms for different treatment groups are still present in the model,

so checking whether the treatment main effects can be set equal corresponds to

checking whether the success probabilities for all three treatment groups can be set



Chapter 4. Analysis Based on the GEE Approach^ 73

to be equal at t = 0 or at trial 90.5. The p-value for this reduction is .02, so it is not

justified by the data.

5. For interpretability of the final model...

• Eliminate the quadratic terms for treatments 2 and 3. The p-value for this reduction

is .79, justifying what is suggested by the lowess plots in Figures 3.16 and 3.17; the

success probabilities of birds in treatments 2 and 3 can be adequately described by

a linear trajectory.

Interestingly, the reduction path for this GEE analysis with a stationary 1-dependent working

correlation matches that for the independence working likelihood (described in Section 3.10.2),

rather than that for the first-order working likelihood (described in Section 3.10.3); the path

leads to a final model with a quadratic term for the trajectory of birds in treatment 1.

Figure 4.1 plots the fitted final model for females (for the males, the curves within each

treatment are simply shifted .77 units higher on the logit scale), while Table 4.1 summarizes

the model reductions. Although the path of reductions is the same, the final model fits obtained

from the independence working likelihood and the stationary one-dependent working correlation

are slightly different. In particular, the fitted linear coefficient obtained here (.39, with standard

error .10), is somewhat less than that obtained from the independence working likelihood (.48,

with standard error .11; see Table 3.6), although these estimates are still reasonably close

considering the standard errors. The estimated female-to-male differential sex effect (-.77, with

standard error .28) is very similar to that obtained from the independence working likelihood

(-.75, with standard error .28).
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Table 4.1. Reductions for the Stationary 1 -Dependent Working Correlation with Sex Included

Parameters 1 2
Model

3^4 5 6
iii .36(.03) .36(.17) .35(.16) .37(.16) .19(.26) .19(.26)
P2 -.59(.31) -.52(.24) -.50(.24) -.53(.24) -.35(.26) -.34(.20)
/13 .53(.75) .60(.71) .60(.70) .57(.66) .55(.48) .46(.41)

sexi,i -1.03(.42) -1.02(.42) -1.02(.41) -1.05(.42) -.77(.28) -.77(.28)
sex 2 , 1 -.25(.40) -.37(.30) -.39(.30) -.44(.30) set=sex1,1 set=sex1,1
sex3 , 1 -.72(.76) -.86(.66) -.86(.64) -.81(.59) set=sexi,i set=sexi,i
/31,1,1 .22(.09) .22(.09) .18(.11) .39(.10) .39(.10) .39(.10)
/31,2,1 .55(.22) .54(.21) .42(.17) set=th,i,i set=th,i,i set=/31,1,1
)31,3,1 .55(.38) .54(.38) .63(.24) set=/31,1,1 set=/31,1,1 set=/31,1,1
/31,1,2 .41(.31) .41(.31) set=/31,1,1 set=/31,1,1 set=/31,1,1 set=/31,1,1
/31,2,2 .46(.23) .46(.24) set=/31,2,1 set=/31,1,1 set=/31,1,1 set=/31,1,1
/31,3,2 .74(.27) .73(.27) set=/31 , 3 , 1 set=/31,1,1 set=/31,1,1 set=/31,1,1
/32,1,1 -.21(.08) -.21(.09) -.21(.09) -.23(.09) -.22(.10) -.22(.10)
/32,2,1 - .04(.06) .03(.10) .03(.10) .01(.11) .01(.11) -
/32,3,1 -.16(.15) -.09(.12) -.10(.15) -.10(.14) -.09(.14) -

/32,1,2 -.22(.21) set=/32,1,1 set=/32,1,1 set=02,1,1 set=/32 ,1, 1 set=/32,1,1
/32,2,2 .10(.18) set=/32,2,1 set=fl2,2,1 set=#2,2,1 set=/32,2,1 -
'32,3,2 -.008(.17) set =i32,3, i set =fl2,3, i set =02,3, i set =/32,3, i -

Estimates of the lag one (working) autocorrelation at each stage of the model reductions

are not included in Table 4.1. These are .12, .12, .13, .13, .13, and .13, for Models 1 through

6, respectively, essentially the same as the fitted lag one autocorrelations for the first-order

working likelihood which were roughly .13 (s.e. P..,- .03) for all model fits.

4.2.2 Fits of the Final Model Obtained by Other Working Correlations

The final model obtained using the stationary 1-dependent working correlation was re-fit using

a variety of working correlation structures; the results are summarized in Table 4.2. Qualita-

tively, the conclusions obtained with each working correlation are the same; all terms in the

final model appear to be important. In general, the robust z-scores do not reflect as much

association between the covariates and the response as the corresponding naive z-scores (not

presented), which are up to 4 times larger. Results across working correlation structures are
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remarkably similar, although the exchangeable working correlation fits a larger male-to-female

sex differential and a larger (negative) main effect for treatment 2 (as well as larger standard

errors for both these estimates) than the other working correlations. This suggests parameter

and standard error estimates may be reasonably accurate, even with only 18 subjects.

Table 4.2. Robust z-Scores (Parameter Estimates) for the Binary Final Model*

Working Corr. P1 P2 P3 sex(11 1312, 1,1 133i,1133
Independent .68(.18) -1.54(-.32) 1.09(.45) -2.64(-.75) 4.31(.48) -2.47(-.24)

Stat. 1-dep. .73(.19) -1.71(-.34) 1.12(.46) -2.76(-.77) 3.89(.39) -2.27(-.22)
Stat. 2-dep. .73(.19) -1.71(-.34) 1.12(.46) -2.75(-.77) 3.89(.39) -2.26(-.22)
Stat. 5-dep. .76(.20) -1.74(-.34) 1.13(.46) -2.76(-.77) 3.98(.40) -2.34(-.23)
Stat. 8-dep. .75(.20) -1.69(-.33) 1.14(.45) -2.75(-.76) 4.03(.40) -2.40(-.23)

AR-1 .73(.19) -1.71(-.34) 1.12(.46) -2.76(-.77) 3.89(.39) -2.27(-.22)
AR-2 .73(.19) -1.71(-.34) 1.12(.46) -2.75(-.77) 3.90(.40) -2.26(-.23)
AR-5 .76(.20) -1.74(-.34) 1.13(.46) -2.76(-.77) 4.01(.40) -2.38(-.24)

Exchangeable .55(.16) -1.83(-.54) 1.14(.50) -2.69(-.95) 3.51(.40) -2.28(-.23)

* Entries in table are z-score (parameter estimate).
1. sex 1 , 1 = sex i^common, 2 = sex 1 , 3  sex, the comn differential sex effect.
2. )31,1,1 — 131,1,2 - 01,2,1 - 131,2,2 - 131,3,1 - /31,3,2, the common linear coefficient.

= )32 ,1, 2 , the common quadratic coefficient for birds in treatment 1.3 . i(32,1,1

Note that among the working correlations for which results are presented in Table 4.2,

the exchangeable structure is scientifically the least plausible candidate for the true structure

because it models the correlations for responses distant in time to be the same as those for

responses adjacent in time. Oddly enough, of all the working correlations presented, the naive

and robust z-scores for the exchangeable structure are the closest together. Although this

does not necessarily imply the exchangeable structure best approximates the true correlation

structure, it is interesting to note that when the working correlation structure is specified to

be stationary 8-dependent, the estimated lag one through eight working correlations are all
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about .12 (slightly larger than .08, the fitted exchangeable working correlation), suggesting

correlations for responses relatively far apart in time are not too different from correlations for

responses adjacent in time.

4.3 GEE Analysis of the Binomial Hummingbird Data

To illustrate the versatility of the GEE approach, we turn now to an analysis of the "binomial"

data. Recall that the maximum number of successful feeding forays on any given trial in the

experiment was 11, while the number of unsuccessful feeding attempts was unrestricted. Be-

cause the total number of feeding forays in a trial is random, the "binomial" response, i.e., the

number of successful feeding forays on each trial, cannot have a binomial distribution. Never-

theless, we assume the mean-variance relationship for the number of successful feeding forays

in a trial is that of a binomial random variable and interpret the fitted success probability for a

particular trial as a rough average of the success probabilities for all the (possibly dependent)

forays within that trial, rather than as a success probability for a binomial experiment (i.e., the

trial) in which the total number of (independent) forays is non-random.

The binomial data is not as meaningful to the investigator as the binary data because

hummingbird researchers believe the first feeding forays are the most accurate measure of a

bird's expectations about feeder profitability. Many of the birds which are unsuccessful on the

first foray have not yet associated the light cue with the feeder. For these birds, any forays

subsequent to the initial unsuccessful attempt will reflect their strategy for finding food after

failing the first time. This strategy varies with each individual; so, on a particular trial, a

bird's binomial response (which summarizes information on all of its forays during that trial)



Chapter 4. Analysis Based on the GEE Approach^ 77

is expected to convey less information about the bird's feeding expectations than its binary

response at the first feeding foray. Even though analysis of the binomial hummingbird data

may not be as scientifically relevant as the earlier analysis of the binary data, it is worthwhile

as an example of the GEE approach applied to non-binary data.

4.3.1 Exploring the Binomial Hummingbird Data

A series of plots was used to determine appropriate parametric forms to be incorporated into

modelling of the temporal response patterns.

To check if a day effect was apparent, the logits of the individual responses (logit(y) =

log(-2i- -n e ), c = .5, where y is the number of successful forays out of n total forays in the trial

for a particular bird) were averaged over all birds of the same sex within each treatment group

for successive blocks of 10 trials and then plotted (see Figures 4.2-4.4). Because there were no

systematic discontinuities at those trials corresponding to new days (trials 61 and 121), there

seemed to be no need to model a day effect. To get a better overall picture of the binomial

data, the logits of responses within each treatment-sex group were smoothed using robust locally

weighted linear least squares ("lowess") with windows of 30 and 60 points.

Figures 4.5 and 4.6 show the results of this "lowess" smoothing. Comparing across treatment

groups, the success probabilities of birds in treatment 3 (FT) are generally higher than those

of birds in the other treatments, suggesting the presence of treatment main effects. Success

probabilities of males in treatment 1 (NT) appear to be almost as high as those of males in

treatment 3, and roughly the same as those of females in treatment 3. In contrast, success

probabilities of females in treatment 1 appear to be lower than those of females in treatment
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3 and closer to those of females in treatment 2 (PT). In general, males appear to have higher

probabilities of success than females, especially for birds in treatment 1. This suggests the

presence of sex-by-treatment interaction in this data. The success probabilities of all birds

appear to increase roughly linearly over time, with the slope for females in treatment 1 being

somewhat less than the slopes for the other birds. This suggests a three-way interaction of sex,

treatment group and time may be present in this data.

To study individual-to-individual variation within each treatment, the logits of individual

results at each time point were smoothed using lowess, with a window of 60 consecutive time

points; see Figures 4.7-4.9. Peculiarities of these "lowess" fits near the endpoints occur because

only the individual logits, rather than logits for all the individuals of a certain sex within a

treatment, have been smoothed. The individual logits are more likely to have clusters of extreme

values with few moderate values to counteract their effect at the endpoints, leading to fits for

an individual which may not accurately describe the patterns in the individual's data near the

endpoints. In the interior of the the data sets, the plots do not show any obvious change in

response variability over time for any of the treatments. The plots also suggest that, at any

given time, the variability of responses in treatments 1 (NT) and 2 (PT) is roughly the same,

but that responses in treatment 3 (FT) are more variable at than responses in treatments 1

and 2.
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4.3.2 Model Fitting for the Binomial Hummingbird Data

These exploratory plots suggest the transformed probability of success may be modelled, ini-

tially, as

logit^=^sexi,s^ 2,i,st2^= 1, .., 3, s = 1,2, T = 1, ..,180, t = T — T
s.d.(T)

where pi may be interpreted as the main effect of the ith treatment group, sexi, i is the female-

to-male differential sex effect for the ith treatment group, and sexo s=-St 0 (for males in the ith

treatment group). As in the binary analysis, a quadratic learning trajectory (in the logit scale)

has been modelled to allow for some departure from linearity in the responses. In addition, the

time covariate has been standardized to orthogonalize the highly collinear linear and quadratic

time covariates. The female-to-male differential sex effect is permitted to vary across treatments

to allow for treatment-by-sex interaction. Similarly, the three-way interaction of sex, treatment

and time is incorporated because different linear and quadratic coefficients for each sex and

each treatment group are permitted.

Because the stationary 1-dependent working correlation models some correlation in the

responses, it is expected to provide more efficient estimates than the independence working

correlation. Model reductions have therefore been carried out using the stationary 1-dependent

working correlation and are summarized in Table 4.3. The path of these reductions is described

by the following steps:

1. Check the quadratic terms.

• Can the coefficients for males and females be taken to be equal within all treatment

groups? Yes; the p-value for this reduction is .65. Set these coefficients to be equal.
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• Can the quadratic coefficients in the resulting model be eliminated? Yes; the p-value

for the simultaneous elimination of all three quadratic coefficients is .58. Remove

the quadratic terms from the model.

2. Check the linear terms in the resulting model.

• Can the linear coefficients for males and females be set equal within each treatment

group? No; the p-value for this reduction is less than .001. From the coefficients and

standard errors of Model 3 in Table 4.3, it appears that essentially all the evidence

against this reduction comes from the responses for birds in treatment 1.

• Can the linear coefficients for all treatment groups be set equal within sexes? Yes;

the p-value for this reduction is .25. To simplify the model, set two common linear

slopes: one for females and one for males.

• Can the resulting linear terms for females or males be eliminated? For the females,

yes; the p-value for the reduction is .67, so remove this term from the model. For

the males, no; the p-value for this reduction is less than .001.

3. Check the differential sex effects.

• Can they be taken to be the same for all treatment groups? Yes; the p-value for this

reduction is .47.

• Can this the common sex effect be eliminated? No; the p-value for this reduction is

.05.

4. Examine the treatment main effects.
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• Can they be taken to be equal? No; the p-value for this reduction is .02.

For interpretability of the final model, a further reduction might set the main effects for

treatments 1 and 2 to be equal, as suggested by standard errors of these estimates under Model

6 (see Table 4.3). The p-value for this reduction is .63, indicating the reduction is permissible.

The resulting model (not included in Table 4.3) leads to a simpler representation of the learning

trajectories because, within each sex, birds in treatments 1 and 2 are then modelled as having

the same learning trajectory in the logit scale.

Table 4.3. Model Reductions for the Binomial Data

Parameter 1 2
Model

3^4 5 6
Pi 1.08(.15) 1.08(.08) 1.07(.01) 1.08(.02) 1.08(.02) 1.12(.18)
P2 1.08(.14) 1.12(.12) 1.12(.12) 1.11(.13) 1.12(.13) 1.24(.17)
P3 2.22(.71) 2.36(.66) 2.27(.63) 2.24(.57) 2.25(.57) 1.91(.30)

sex 1 , 1 -.35(.49) -.35(.36) -.35(.36) -.38(.38) -.37(.37) -.43(.22)
sex 2 ,1 -.12(.20) -.20(.23) -.20(.23) -.19(.23) -.18(.23) set=sex 1 ,1
sex3,1 -.76(.71) -.95(.63) -.96(.64) -.93(.57) -.93(.57) set=sexi,i
th,i,i -.06(.09) -.06(.09) -.06(.09) .06(.09) - -
/31,2,1 .23(.09) .23(.09) .23(.10) set=/31,1,1 - -
/31,3,1 .10(.24) .10(.25) .10(.26) set=/31,1,1 - -
/31,1,2 .31(.02) .31(.02) .31(.01) .37(.09) .37(.09) .37(.09)
/31,2,2 .39(.18) .39(.18) .39(.18) set=th,1,2 set=/31,1,2 set="31,1,2
/31,3,2 .48(.30) .45(.30) .47(.33) set=131,1,2 set=/31,1,2 set=/31,1,2
/32,1,1 -.01(.11) -.01(.09) - - - -
/32,2,1 -.04(.08) -.01(.08) - -
/32,3,1 -.14(.04) -.09(.07) - - -
/32,1,2 -.01(.17) set=i324 , 1 - -

 - -

/32,2,2 .04(.15) set--7432 , 2 , 1 - - - -
/ .05(.16) set=/32,3,1 -

The fits for the initial model with the stationary 1-dependent working correlation given in

Table 4.3 are plotted in Figures 4.10-4.12; similar fits are obtained with both the independence

and the AR-1 working correlations. These fits do not reflect some features of the lowess plots

in Figures 4.5 and 4.6. For example, the lowess plots suggest the male-to-female differential sex

effect should be largest for birds in treatment 1 (NT), yet the GEE fits for the initial model
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suggest this effect is largest for birds in treatment 3 (FT). In addition, the lowess plots suggest

success probabilities of treatment 1 males and treatment 3 females and males are higher than

those of birds in treatment 2 (PT) on the logit scale, but in the fits for the initial model, only

the success probabilities (on the logit scale) of treatment 3 males are clearly higher than those

of birds in treatment 2. Finally, the lowess plots suggest success probabilities for females in

treatment 1 increase slightly over time, whereas the fits for the initial model indicate they de-

crease slightly over time. The initial fit for females in treatment 1 is probably overly influenced

by the female with a large dip in success probabilities near trial 140; see Figure 4.7. Discrep-

ancies such as these may occur because, unlike the lowess fits for intermediate trials, the GEE

fits at intermediate trials may be influenced by extreme data at the beginning and end of the

experiment. Runs of extreme data are more likely to occur for a particular individual at the

beginning or end of the experiment and may have high leverage because the number of subjects

in the experiment (18) is very small relative to the number of trials (180). Such discrepancies

between lowess and initial model fits may disappear once data on more birds are collected under

these conditions.

A noteable peculiarity of the GEE results in Table 4.3 is the large drop (from .08 to .01)

in the standard error of the estimated effect for treatment 1 compared to those for the other

treatments (from .12 to .12, and from .66 to .63, for treatments 2 and 3, respectively) when the

quadratic terms are removed from Model 2. The corresponding naive standard error estimate

stays relatively constant for this model reduction, dropping from .11 to .09. Another jump

(from .02 to .18) in the standard error of the estimated effect for treatment 1 occurs when the

differential sex effects for the treatment groups are set equal (Model 5 to Model 6 in the table).
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Again, the corresponding naive standard error estimate remains relatively constant (dropping

from .09 to .07). These results suggest the robust standard error estimate for the main effect of

treatment 1 may not accurately reflect the true standard error; perhaps there are too few birds

(18) in the experiment for the asymptotic approximation to be adequate. If the asymptotic

approximation to the covariance matrix of the parameter estimates is inaccurate, the validity

of all the model reductions (and hence the final model) is questionable. Somewhat reassuringly,

the values of standard error estimates for the other parameters are fairly constant.

Figures 4.13 and 4.14 display the final model fits for the binomial hummingbird data ob-

tained with the stationary 1-dependent working correlation. Model reductions are intended to

lead to a parsimonious final model which describes essential features of learning trajectories for

hummingbirds in general, rather than those for the eighteen hummingbirds in this experiment.

Hence, some features evident in the lowess plots are absent in the final model fits, presumably

because of the large variability of the responses. For example, the variability of female success

probabilities, primarily in treatments 1 and 3 (see Figures 4.7-4.9), permits the fit of a common

linear slope for females in Model 4 of Table 4.3. This feature of the fits is not consistent with

the lowess plots, which suggest success probabilities for females in treatments 2 and 3 increase

more quickly over time on the logit scale than those for females in treatment 1. When averaging

all the female curves, those for the four females in treatment 1 dominate, leading to a negligible

fitted slope which is eliminated in Model 5 of Table 4.3. Because both a common (negligible)

female and a common male slope are modelled, a common differential sex effect is permissible

in Model 6. This feature of the fits is also inconsistent with the lowess plots, which suggest a

higher male-to-female differential sex effect in treatment 1. Specifying a common differential
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sex effect affects the placement of the fitted curve for males in treatment 1 relative to the fitted

curves for males in other treatments. For this reason, the fitted curve for males in treatment 1

is lower than the curve suggested by the lowess plots.

In order to identify which of these patterns more accurately reflects the true response prob-

abilities of hummingbirds under these experimental conditions, more birds need to be included

in the experiment. However, one feature of the binomial data suggested by the lowess plots is

confirmed by the GEE analysis: the (binomial) success probabilities for birds in treatment 3

are higher, in general, than those for birds in treatments 1 and 2.

4.3.3 Fits of the Final Model Obtained by Other Working Correlations

To examine the robustness of parameter and standard error estimates across working correla-

tions, the final model was re-fit using a variety of working correlation structures; results are

summarized in Table 4.4.

Table 4.4. Robust z-Score (Parameter Estimate) for the Binomial Final Model*

Working Corr. /21 /12 113
1)sex („ /3121).,2

Independent 6.03(1.08) 6.48(1.13) 5.76(1.81) -1.81(-.40) 3.95(.36)

Stat. 1-dep. 6.23(1.12) 7.33(1.24) 6.32(1.91) -1.94(-.43) 4.12(.37)
Stat. 2-dep. 6.44(1.18) 8.56(1.43) 7.10(2.04) -2.13(-.47) 4.06(.37)
Stat. 3-dep. 5.82(1.31) 9.86(1.75) 7.39(2.23) -2.16(-.54) 3.41(.38)

AR-1 6.27(1.12) 7.49(1.26) 6.42(1.92) -1.97(-.43) 4.13(.37)
AR-2 6.37(1.22) 9.23(1.57) 7.46(2.15) -2.19(-.50) 3.98(.38)

* Entries in table are z-score (parameter estimate).
1. sex1, 1 = sex 1 ,2 = sex1,3 = sex, the common differential sex effect.
2. 01,1,2 = 01,2,2 = 01,3,2, the common linear coefficient for males.
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The robust z-scores for different working correlations are reasonably close, leading to qual-

itatively similar conclusions: all terms in the final model are important. For the working

correlations used in the analysis of this binomial hummingbird data, the robust z-scores do not

reflect as much association between the covariates and the response as the naive z-scores (not

presented), which are up to 5 times larger. When naive and robust z-scores are compared across

the working correlations used in this analysis, the differences between naive and robust z-scores

for the stationary 3-dependent working correlation are the smallest. This, together with the

fact that the stationary 3-dependent correlation structure is scientifically plausible, might sug-

gest it approximates the true correlation better than the other working correlations presented

in the table. For the stationary 3-dependent working correlation, estimates for the first, sec-

ond and third lag autocorrelations are .24, .26, and .26, respectively, suggesting non-negligible

correlation may indeed be present in the data.

Note that estimates of all the effects, and, in particular, the treatment main effects, increase

as more correlation structure is incorporated into the working assumptions. In fact, when solv-

ing the generalized estimating equations iteratively using the stationary 5-dependent, stationary

8-dependent, AR-3, and exchangeable working correlations (not included in the table), succes-

sive estimates of the treatment main effects become very large and do not converge. This is in

contrast to the binary data on the first feeding foray analyzed in the previous section, where

convergence was achieved with all of these working correlations. For the binomial hummingbird

data, lack of convergence with more detailed working correlations may be related to the large

number of trials in the experiment (180) relative to the small number of subjects (18).
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This same feature of the data set (180 trials on only 18 subjects) may explain discrepancies

between the lowess fits and the GEE fits for the full model in the binomial analysis: because

the number of trials (180) is large relative to the number of subjects (18), the GEE fits at

intermediate trials may be overly influenced by a run of extreme data for a particular individual

at the beginning or end of the experiment. This problem does not arise in the binary analysis

because there are no extreme responses for binary data (binary data takes on only two values).

Hence, the GEE and lowess fits for the binary data are reasonably consistent. The binomial

analysis seems to illustrate that when a long series of observations is made on relatively few

subjects, the GEE approach should be used with caution since it relies on combining strength

across subjects to

(i) obtain accurate estimates of the regression parameters; and

(ii) compensate for making no strong assumptions about the correlation structure of each

subject's response.



Chapter 5

Conclusion

5.1 Discussion of Results

Exploratory plots of the binary responses for each bird on the first feeding foray (Figures 3.7-3.9)

do not reveal the step-like pattern associated with sudden awareness of the spatial association

between light cue and feeder expected by the experimenter. These exploratory plots suggest

a more gradual increase in individual success probabilities over time, but with considerable

fluctuation throughout the experiment.

Evaluating the performance of birds across treatment groups by the three methods described

in this thesis, both the working likelihood and GEE analysis indicate that, as expected, birds in

treatment 3 (FT) have the highest success probabilities throughout the entire experiment. The

univariate ANOVA, however, does not detect an important difference in success probabilities

across treatment groups.

Unlike the ANOVA, both the working likelihood and GEE approaches permit modelling of

the response directly as a function of time. When the learning trajectories of birds are modelled

by a quadratic trend in the logit scale using these approaches, birds in treatments 2 (PT) and

3 (FT) appear to improve linearly at the same rate. However, success probabilities for birds

in treatment 2 appear to start out (and remain) lower than those for birds in treatment 3

87
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throughout the entire experiment. Unlike the linear trajectories (in the logit scale) for birds in

treatments 2 and 3, the trajectory for birds in treatment 1 (NT) appears to be quadratic, with

success probabilities at the beginning of the experiment closer to those for birds in treatment 3

than those for birds in treatment 1. However, at the end of the experiment, success probabilities

of birds in treatment 1 appear to drop closer to and perhaps below those of birds in treatment

2. Contrary to the expectations of the investigator, birds in treatment 2 (PT) appear to have

lower success probabilities than the other birds except, perhaps, at the end of the experiment,

where their success probabilities may be greater than or equal to those for birds in treatment

1. One possible explanation proposed by the investigator is that the orange Dymo tape for

the partially taped feeding array creates three horizontal bands which may interfere with the

intended vertical pattern to be perceived by the birds in treatment 2 (see Figure 1.1).

Contrary to the accepted wisdom among researchers in hummingbird learning, both the

working likelihood and GEE analyses reveal that sex is important in describing the probabilities

of success on the first feeding foray for the hummingbirds in this experiment. Since the effect

of sex appears to be additive for the binary data, the fitted models indicate the odds of success

for males are more than twice the odds of success for females. (For the fit resulting from the

independence working likelihood, the odds for males are about 2.1 the odds for females, with a

standard error of roughly 0.6.) One possible explanation for the importance of sex is the higher

body-weight to wing-span ratio of males. Because males must work harder to obtain their food,

they may be more likely to succeed than females. Note that in any ANOVA of the results in

this experiment, sex would be difficult to incorporate because of the imbalance in the number

of males and females in treatment 1 (NT).
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Although not as scientifically relevant as the analysis of the binary data for the first feeding

foray, the analysis of the binomial data for all the feeding forays in a trial confirms that birds in

treatment 3 (FT) have higher success probabilities, in general, than birds in the other treatment

groups. Again, sex appears to be an important covariate, although its effect on the binomial

response (where sex appears to interact with time) seems to be more complicated than its effect

on the binary response (where the effect of sex is simply additive).

Because both the working likelihood and GEE approaches model success probabilities as a

function of time while taking into account the (unknown) correlation present in the data, they

enable much more information to be extracted from the hummingbird data set than a more

traditional analysis-of-variance. These methodologies therefore provide useful and powerful

tools for researchers in this subject area.

5.2 Comparison of Methods

Longitudinal data consists of repeated measurements over time for each of many subjects.

Hence, the response of each subject may be considered a random vector with possibly correlated

elements corresponding to measurements at each time of observation. If the response vector is

normally distributed, classical methods permit modelling of the joint distribution as a function

of the covariates. For example, when sex is not included as a covariate in the analysis of the

binary hummingbird data, MANOVA permits testing of parallelism and equality of treatment

means, provided the number of subjects is greater than the number of time points. MANOVA

may be carried out when the number of subjects is less than the number of time points if data are

blocked over time points, but this leads to a loss of information. Modelling of responses which
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are not normally distributed is more difficult. Transformations which stabilize variance for

univariate responses do not necessarily stabilize covariance matrices for multivariate responses.

Hence, equality of covariance matrices, a necessary assumption for valid F-tests in analysis-of-

variance, may not hold.

Instead of attempting to transform non-normal data into forms more suitable for analysis-of-

variance, a more natural approach might be to model the marginal expectations of the responses

as functions of the covariates while taking into account the (unknown) correlation present in

the data of each subject. For example, with binary longitudinal data, logistic regression might

be extended in the manner described by Zeger, Liang and Self (1985). Rather than the "ac-

tual" likelihood, this approach uses a "working" likelihood based on simple assumptions about

the correlation within each subject's data to generate estimating equations for the regression

parameters. Under mild assumptions about the true correlation structure, these estimating

equations lead to consistent estimates of the regression parameters and their standard errors.

The approach described by Zeger, Liang, and Self (1985) was developed for short binary

series. Because detailed models for the change in response over time are unnecessary in this con-

text, the authors considered time-independent covariates only. In the case of the hummingbird

learning experiments, where birds are expected to improve over a long series of measurements,

the probability of success should be modelled as a function of time. In this thesis, the results

of Zeger, Liang, and Self (1985) have been extended to allow this. The resulting "working

likelihood" approach may be applied to any binary series with time-dependent covariates. One

weakness of this approach is that when correlation is explicitly modelled (in order to increase

the efficiency of estimation), asymptotic results only hold under certain assumptions on the
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true correlation structure. Other than the independence working likelihood, only the first-

order Markov working likelihood, which models stationary one-dependent correlation in the

responses, has been considered in this thesis.

Unlike the working likelihood approach, the "generalized estimating equation" or GEE ap-

proach of Liang and Zeger (1986) and Zeger and Liang (1986) requires no strong assumptions

about the true correlation structure when modelling correlation explicitly. The GEE approach

extends quasi-likelihood theory to the case where the response is observed repeatedly over time

for each subject, and uses a "working" correlation for these responses to arrive at estimating

equations for the regression parameters. Hence, the GEE approach is applicable to any longitu-

dinal response with univariate marginal distributions for which the quasi-likelihood formulation

is sensible. This includes binary, binomial, count, and continuous longitudinal responses. The

GEE approach thus provides a unified methodology for the analysis of longitudinal data.

Future work investigating the extension of the GEE approach to the case of ordinal longi-

tudinal data, and to the case of data with censored or missing observations would be valuable.

For instance, the approach could be used to analyze the results of an ongoing clinical trial, in

which U.B.C. is one of the participating centres, concerning the effects of beta-interferon on the

progression of multiple sclerosis. In this clinical trial, several outcome variables are observed on

each patient repeatedly over time, including the so-called "Kurtzke score", an ordinal response

variable measuring the severity of disease.



Figure 1.1. Feeding Arrays for the Hummingbird Experiment
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Figure 2.1. Mean Treatment (Transformed) Response versus Measurement for Blocks of 15
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Figure 2.2. Mean Treatment (Transformed) Response versus Measurement for Blocks of 10
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Figure 2.3. Estimated Variances versus Measurement for Blocks of 15
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Figure 3.1. Average Treatment Response in the Logit Scale for Blocks of 3 Trials
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Figure 3.2. Average Treatment Response in the Logit Scale for Blocks of 5 Trials
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Figure 3.3. Average Treatment Response in the Logit Scale for Blocks of 10 Trials
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Figure 3.4. Smoothed Logit of Average Treatment Response versus Trial (Window=10)
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Figure 3.5. Smoothed Logit of Average Treatment Response versus Trial (Window = 20 Trials)
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Figure 3.6. Smoothed Logit of Average Treatment Response versus Trial (Window = 30)
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Figure 3.7. Smoothed Individual Logits for Treatment 1
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Figure 3.8. Smoothed Individual Logits for Treatment 2
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Figure 3.9. Smoothed Individual Logits for Treatment 3
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Figure 3.10. First Independence Fits without Sex^Figure 3.11. Second Independence Fits without Sex



Figure 3.12. Fitted Success Probabilities for Treatment 1 from the Independence Working Model
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Figure 3.14. Boxplot of Independence Pearson Residuals by Sex
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Figure 3.15. Smoothed Logit of Average Response
vs. Trial for Treatment 1 (Window = 60)

Figure 3.16. Smoothed Logit of Average Response
vs. Trial for Treatment 2 (Window = 60)

Figure 3.17. Smoothed Logit of Average Response
vs. Trial for Treatment 3 (Window = 60)
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Figure 3.18. Binary Independence Fits
for Females

Figure 3.19. Binary First-Order Fits
for Females
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Figure 3.20. Fitted Success Probabilities for Females in Treatment 1
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Proportion versus Trial (Window = 30)
Figure 4.5. Smoothed Logit of Success^Figure 4.6. Smoothed Logit of Success

Proportion versus Trial (Window = 60)
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Figure 4.8. Smoothed Individual Logits (Binomial Data)
for Treatment 2 (Window = 60)
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Figure 4.10. Initial Model Fits for Treatment 1
(Binomial Data)
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Figure 4.13. Final Model Fits for Females from
the Stationary 1-Dependent Working Correlation

Figure 4.14. Final Model Fits for Males from
the Stationary 1-Dependent Working Correlation
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