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ABSTRACT

Current models for scaling of skeletal morphology were examined to test

their applicability to the ontogenetic growth of an exoskeletal animal, the

African Desert Locust (Schistocerca gregaria). It was found that the tibial leg

segments of both the mesothoracic (ie. non-jumping) and the metathoracic

(jumping) legs scaled in a manner that produced relatively longer, more slender

skeletal elements as the animal grew. Metathoracic tibial length scaled to tibial

diameter raised to the power 1.21. This result deviates both from isometric (ie.

geometric similarity) and distortive (constant stress, elastic similarity) allometric

models.

The mechanical properties of the metathoracic tibiae were measured

using a dynamic, 3-point bending technique. The flexural stiffness of

metathoracic tibiae scaled to body mass raised to the power of 1.53. This was

intermediate to the predictions made by constant stress and elastic similarity

models. Thus, the mechanical properties scaled in a manner similar to

predictions of mechanical scaling expectations in spite of the morphological,

developmental programme.

The uncoupling between morphological scaling and structural,

mechanical properties is accomplished by scaling the tensile modulus of the

cuticle. This strategy of altering the properties of the building material is distinct

from strategies employed by vertebrate animals.

Calculations indicate that the energy stored in the substantial deflection

of the adult, metathoracic tibiae during the jump may be as high as 10% of the

total kinetic energy of the jump.

Using the models that generated relationships between morphology and
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body size proposed by McMahon (1973, 1984) and the relationships between

morphology and performance described by Hill (1950), predictions of how

jumping performance measures may change as a function of body mass were

tested. Performance was quantified using a high sensitivity, three dimensional

forceplate. Performance parameters quantified included the force,

acceleration, take-off velocity, kinetic energy and power output. With the

exception of power output, each measure of performance scaled to body mass

in a manner consistent with the predictions of the elastic similarity model. Power

output scaled to body mass in a manner consistent with the predictions of the

constant stress similarity model. The elastic similarity model is approximated by

the performance of the locust in spite of the morphological design that deviates

from that model's predictions.

These results indicate that the jump has separate functions in the flightless,

juvenile instars and in the flying adult stage of the life history. Juvenile locusts

produce take-off velocities of between .9 and 1.2 m/s that are relatively size

independent. The take-off velocity in juveniles produces a distance of ballistic

travel that averages between 20 and 30 cm. In adults, the take-off velocity is

also relatively size independent at a level approximately twice as high as in

juveniles (ie 2.5 m/s). The data suggest that in juveniles, the jump is designed to

achieve a characteristic distance travelled, and in adults the jump is designed

to achieve a minimum velocity necessary to fly.

Three rationales for the observed morphological programme are offered.

The design may be a manifestation of a developmental constraint, it may be a

response to scaling to force rather than explicitly to body mass, or it may be a

design that takes advantage of the inherent deformability of long, slender

beams. Thus, it may be that the tibiae, which have been treated as rigid levers,

are in fact flexible springs.



TABLE OF CONTENTS

Abstract^ ii

Table of Contents^ iv

List of Figures^ vii

List of Tables^ xi

Acknowledgement^ xii

Preface^ xiv

Chapter One^GENERAL INTRODUCTION^ 1

Why is Size Important?^ 2

Scaling Models in Animal Design^4

Geometric Similarity^ 6

Constant Stress Similarity^ 8

Elastic Similarity^ 10

Do Animals Follow Scaling Models?^14

Locust Jumping^ 17

Chapter Two

^

^THE UNCOUPLING OF MORPHOLOGICAL AND MECHANICAL

SCALING

INTRODUCTION^ 21

METHODS And MATERIALS

Animal Husbandry^ 22

Morphological Measurements^23

Dynamic Mechanical Measurements^26

Statistics^ 31

RESULTS^ 31

Morphology^ 34

Mechanical Measurements^40

-iv-



DISCUSSION^ 46

Exo- vs. Endoskeletal Design^49

Scaling in Cursorial & Jumping Insects^53

Ontogenetic vs. Phylogenetic Scaling^55

Design in Jumping Tibiae^57

Chapter Three SCALING MODULUS AS A DEGREE OF FREEDOM

INTRODUCTION^ 62

METHODS And MATERIALS^ 67

RESULTS

Within Instar Changes in I^69

Scaling^ 72

Orientation of Neutral Axis^73

DISCUSSION

Within Instar Changes in I^84

Scaling^ 85

Orientation of Neutral Axis^87

Chapter Four HOW HARD DO LOCUSTS JUMP?

INTRODUCTION^ 90

METHODS And MATERIALS

Animal Husbandry^ 93

The Force Plate^ 96

Jumping Arena^ 97

Data Analysis^ 98

Statistics^ 98

RESULTS^ 100

-v-



DISCUSSION

Scaling of Locomotor Performance^123

Acceleration and Design^133

The Ontogenetic Role of Jump Performance

139

Chapter Five^GENERAL DISCUSSION^ 146

The Manufacturing Issue^147

Force vs. Body Mass Scaling^148

Spindly Levers as Design Strategies^152

Degrees of Freedom in Design^166

Chapter Six^CONCLUSIONS^ 167

Literature Cited^ 169



Figure 

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

LIST OF FIGURES

Title^ Pace 

Diagram showing the anatomical landmarks used in 25

measuring length and diameter of tibiae.

Diagram of the mechanical testing apparatus designed to 28

deliver a dynamic three-point bend.

The relationship of body mass to the age of the locust.^32

Plot of tibial lengths and diameters for mesothoracic and 35

metathoracic legs with increasing age.

The relationship between the log of tibial length and the 36

log of body mass for mesothoracic and metathoracic legs.

The relationship between the log of tibial diameters and 37

the log of body mass for mesothoracic and metathoracic

legs.

The relationship between the log of tibial length and the 39

log of tibial diameters for mesothoracic and metathoracic

legs.

Mechanical test data showing log of flexural stiffness as a 41

function of the log of frequency of the imposed

deformation.

Changes in the log of flexural stiffness with age.^42

The relationship between the log of flexural stiffness and the 44

log of body mass.

The time course of changes in resilience of the 45

metathoracic tibia with age.

-vii-



Figure 2.12 Theoretical model of optimal internal to external diameter 52

ratio (k) for hollow skeletal structures with various luminal

content to wall material specific gravity (Sg).

Figure 3.1 A diagram of a beam of irregular cros-section to show the 65

calculation of the second moment of area (I).

Figure 3.2 The relationship between the log of flexural stiffness and 70

age within the fifth instar.

Figure 3.3 The relationship between the second moment of area (I) 71

for the various cuticular components and age within the

fifth instar.

Figure 3.4 The relationship between the log of second moment of 74

area (I) for the various cuticular components and the log

of body mass.

Figure 3.5 The relationship between the log of tensile modulus (E') 75

and the log of body mass.

Figure 3.6 Example of cross-section from a fifth instar locust metatibia 77

and binary images of the cuticular components.

Figure 3.7 Plot of the relationship between I and the orientation of the 79

neutral axis for a sample of six legs and their average

value.

Figure 3.8 Comparison of the effect of orientation of the neutral axis 80

on I for an example leg and an elliptical cross-section of

similar aspect ratio.

Figure 3.9 Example cross-section from the same leg as shown in figure 82

3.6 demonstrating the location of spurs.



Figure 3.10 Plot of the relationship between I and the orientation of the 83

neutral axis for an average leg with spurs projecting from

alternate sides.

Figure 4.1 Diagram of the force plate used in this study.^95

Figure 4.2 Sample data from a 0.5007 gram fourth instar showing time 99

course of force, velocity, movement and power production

Figure 4.3 The relationships between body mass, measured ground 103

reaction force and peak acceleration, and age of the

locust.

Figure 4.4 The relationships between the log of ground reaction 107

force, peak acceleration and jump impulse duration and

the log of body mass.

Figure 4.5 The relationships between velocity produced in the jump 110

and age and between the log of velocity and the log of

body mass.

Figure 4.6 The relationships between kinetic energy produced in the 113

jump and age and between the log of kinetic energy and

the log of body mass.

Figure 4.7 The relationships between average and peak power 116

produced in the jump and age and between the log of

average and peak power and the log of body mass.

Figure 4.8 The relationships between average and peak mass specific 119

power produced in the jump and age and between the

log of average and peak mass specific power and the log

of body mass.



Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

The relationship between the log of the movement of the 121

locusts' centres of gravity during the jump impulse and the

log of body mass.

The relationship between the trajectory angle of the jump 122

and the age of the locust.

The relationship between the estimates of the distance 124

covered by the locusts as ballistic objects after they leave

the ground and their ages.

The relationship between the log of peak acceleration 135

produced in jumping and the log of body mass for a

selection of invertebrate and vertebrate hoppers.

Increment of additional velocity required to produce thrust 144

for actuator discs moving at various velocities.

Diagrammatic expression of the functional role of the tibiae 154

as an energy 'time machine'.

Diagram of the mechanical model used to test the idea 157

that compliant levers have a functional role in delaying the

point of peak force.

Plot of the displacements of the mass in figure 5.2 through 159

time for rigid and compliant levers.

Plot of the velocity of the mass in figure 5.2 through time for 160

rigid and compliant levers.

Plot of the accelerations of the mass in figure 5.2 through 162

time for rigid and compliant levers.

The relationship between the normalized position in time of 165

the peak of acceleration produced in the jump (t lc,/ttotal)

and the magnitude of the peak acceleration (amax).

-x-



LIST OF TABLES

Table 4.1 Comparison of observed and predicted scaling exponents. 126



ACKNOWLEDGEMENTS

Six years in one place and I'm supposed to be able to appropriately
express my thanks to all of the people that contributed to my work here in a
couple of pages....yah right.

Of the hominids that have contributed to my work the single most
important individual is my supervisor John Gosline, who helped pull my graduate
career off the rocks when it had floundered in rough weather. John has given
me the freedom to do whatever I wanted, and I now appreciate that for the
two-edged weopon that it is. John deserves a lot of credit for helping me
organize much of the material in this thesis, and for first asking me 'How do
exoskeletal animals scale?' (or words to that effect)

I would also like to thank my committee members who have at various
times been Robert Blake, Bill Milsom, Peter Hochachka, Don McPhail, Dave
Jones, and Dave Randall. I would especially like to thank Bill Milsom for his
editorial conscience that was put through its paces on most of the pages of this
thesis.

I would also particularly like to acknowledge the contribution of Robert
Blake. Of all the people in the "Big House', Bob always took me and my ideas
seriously and always read my writing with care and speed. Anyone familiar with
Bob will also recognize his important contribution to the discussion of actuator
disks in chapter four.

There are several of my lab mates and friends that deserve credit for
lightening the load in many ways. Among them I would like to thank Paul
Guerette, Margo Lillie, Dottie Pabst, Calvin Rosskelly, Ignacio Valenzuela, Claudia
Kasserra and her Chris's, Phil Davies, Troy Day, Laura Nagel and Joel Sawada.
Of these Margo Lillie and Paul Guerette deserve special mention. It is Margo
that makes the Gosline lab go when John is on his extended trips to the
department of zoology at UBC, and it is Margo who I ask to critique my work
whenever I feel the need to be dressed down by someone with a truly large
cortex. Junior needs to be thanked simply for being so damned def, but also
for reminding me not to lose my humanity in the process of doing my work (and
for pointing out what a windbag D'Arcy Thompson was).

I would like to thank the people in the huts for reminding me that one can
do science and still be a human being. I had been in the Big House so long I
had forgotten. Sam Gopaul also deserves a big thank you for always having
locusts for me in large numbers.

I would also like to thank Gillian and Izzie Muir Ozzie is the most important



non-Hominid in my stay at UBC) for listening to my ramblings and being my
friends. Working with Gillian has been rejuvinating intelectual experience;
collaborating with a person of Gillian's formidable intelect was stimulating and
fun. I would like to thank Izzie for the conversations we've had, and for always
agreeing with me.

The two people who have played far and away the largest roles in my life
in the recent past, academic and otherwise, have been Mike Hedrick and
Patricia Kruk.

Mike sucked me into the laugh-a-minute world of fish breathing and it
resulted in what I think was a very productive collaboration. Our collaboration
provided me with a much needed vacation from locust legs and an opportunity
to work with my best friend. Many people have expressed surprise at the baud
rate of Mike's and my communications, and they have commented on the
parallel lives we have led. They don't know the half of it.

Although she may not appreciate it now, Patricia Kruk was my best friend
and confidant for the five years we were together. She showed by example
how hard a graduate student could work, how a high standard could be
produced, and how to be serious about science. Far more significant was her
continuous and unfaultering support for me and my brain. I am sure that I would
never be able to thank her appropriately, even if things had worked out
differently.

The two people who have contributed over my entire life to what I am
now are my parents Dr.'s David and Carol Katz, and for this there could never
be an appropriate thank you. I feel that whatever element of perfectionism,
curiosity, confidence, dedication to logic, honesty and unwillingness to settle for
other people's expectations that are a part of me are expressions of their
influence. I will also never be able to thank them enough for always being
supportive of me (financially and in all other ways) whenever I got in a jam.



PREFACE

Large parts of chapter two of this thesis has been published in the Journal
of Experimental Biology. The full reference data are:

Katz S. L. & Gosline, J. M., (1992) Ontoaenetic scaling and mechanical behaviour
of the tibiae of the african desert locust (Schistocerca areaaria). J. Exp. Biol.
168:125-150.

The contribution to this work made by S. L. Katz consisted of the design
and construction of the testing apparatus, design and execution of the testing
protocol, analyzing the data, and writing the text of the first draft of the
manuscript.

To establish concurrence on this statement both authors have signed
below.

The following is a release of copyright from the assignee to the author
allowing the inclusion of the published material in this thesis.



CHAPTER 1.

GENERAL INTRODUCTION

".. But the physicist proclaims aloud that the physical phenomena which
meet us by the way have their forms not less beautiful and scarce less varied than
those which move us to admiration among living things. The waves of the sea, the
little ripples on the shore, the sweeping curve of the sandy bay between the
headlands, the outline of the hills, the shape of the clouds, all these are so many
riddles of form, so many problems of morphology, and all of them the physicist
can more or less easily read and adequately solve: solving them by reference to
their antecedent phenomena, in the material system of mechanical forces to
which they belong, and to which we interprtt them as being due. ... Nor is it
otherwise with the material forms of living things. "

D'Arcy Thompson, On Growth and Form (1961)

This thesis is a study of mechanical design in animals. The word 'design'

is so important an idea to this thesis, and yet its use is fraught with teleological

peril. Design means different things in different contexts. While it can mean the

process of planning and constructing a device, it also may simply refer to the

device itself. Evolution is a process of generating (ie. designing) biological

structures, but each of these structures represents a design that we can

evaluate with respect to the relationship between its structure and its function.

Structures or mechanisms can be 'good' mechanical designs, which function

with ease and efficiency, or they can be bad' designs, which are ill equipped

to meet the demands placed upon them. Engineering provides tools that we

can use to evaluate the quality of a given design. 'Mechanical design' for my

purposes is the relationship between the structure and the function of a specific

biological mechanism whose mechanical behaviour can be evaluated with

engineering mechanics.

Does the use of 'design' imply the desire to find optimality? Not



necessarily. Were we to design a structure for use by people we might sit down

and determine with high precision the loads that the device would have to

endure and then build a device that meets some criteria for safety and

efficiency, such as minimum weight for unit strength. While natural selection is

fairly adept at weeding out 'bad' designs, it probably does not design 'good'

ones by planning it out as might a human engineer. Selection works on the

material that it has at hand. As such, optimality will exist only within the

constraints of the available design options for a particular biological

mechanism, and may not represent any globally recognised optimum. For a

given biological device, departures from our pre-notion of optimality often

highlights important compromises in the manufacture and use of biological

structures. Thus, any particular structure (ie. design) may not be the optimal

solution to any narrowly defined objective.

This thesis is an analysis of the functional morphology of the legs of the

African desert locust and how leg design responds to changes in body size. In

a study of the functional design of a biological mechanism it is fundamental to

analyze the relationship between the mechanism and the physical environment

with which it interacts. There must also be recognition that the physical

environment is not independent of scale.

Why is Size Important? Why is it important to study the effect of body size on

design? The reason is that physical laws, and the way in which those principles

interact, are scale dependant. A familiar illustration of this assertion is the way

in which the physics of the fluid environment that a sperm whale encounters (ie.

the sea) is so profoundly different than that experienced by a single sperm (ie.

semen). The whale's swimming is influenced to a certain extent by the viscous



character of the water, but the fluid's properties are so significant for the sperm

that it is forced to swim as the whale might through asphalt on a hot day

(Purcell, 1977). This difference is a manifestation of the changing relationship

between viscosity and inertia that result simply because of the difference in

scale between sperm and whale sized objects. As a result, the design of

structures, both man-made and otherwise, must accommodate the changing

influence of physical laws with changing size. It would be fruitless to test the

performance of a ten centimetre model boat hull intending to extrapolate

those observations to a 300 metre ocean liner without first considering the way

hydrodynamic forces change over that range of scale. The scale dependant

nature of the physical environment is no less significant in influencing biological

designs as those man-made.

Implicit in this assertion is the idea that physical law influences design. This

seems self evident in the case of man-made structures. When the influence of

physical principles on man made structures are ignored or misunderstood planes

crash, and boats and floating bridges sink. As Thompson noted ninety years

ago, this is no less true in biological structures. Each analysis of functional

morphology is an evaluation of the quality of a given design in the context of

the properties of the structural and material elements of the design and the

demands placed on a given structure by the physical environment.

Studying the scaling of mechanisms, biological and otherwise, can serve

two functions. First, it can provide a check on our understanding of a given

design. If we truly understand how a biological mechanism works, then we

would be able to predict accurately how that design is altered to

accommodate changes in body size. If our predictions are validated then we

probably do understand how the design works. If not, the study of scaling may



serve its second purpose and reveal the heretofore unrecognized relative

significance of competing design pressures, or even entirely new design

principles.

In this study I have examined the ontogenetic scaling of the jumping

mechanism of the African Desert Locust (Schistocerca gregaria), an animal with

six discrete life history stages, or instars, and which varies in body mass by two

and a half orders of magnitude. This scaling analysis provides some interesting

contrasts to the scaling relationships observed in vertebrate skeletal designs in

several respects; the locust has a protein exoskeleton rather than a mineralized

endoskeleton, changes of external dimensions occur in discrete steps rather

than continuously, and comparisons are made across the ontogeny of hopping

animals rather than between closely related, adult walkers and runners. With

these contrasts in mind, I have examined scaling in both the morphology and

mechanical behaviour of the jumping mechanism in Schistocerca to see if there

are distinctive design principles employed in the jumping legs of the locust.

Scaling models in animal design. The desire to understand the scaling

of skeletal design has resulted in several models that attempt to predict how

animal skeletons are modified to respond to the changing demands of

increasing body size. The models are distinguished by the specific design issues

that are thought to act as pressures in generating and refining a specific design.

Each model predicts how the skeleton should scale if a given mechanical

parameter, such as stress or deformation, is similar across the range of body

sizes. Thus the predictions of each model exist within a specific context, and it

is the assumptions and the context of the model that are being tested in a

scaling analysis. This point is non-trivial, as I will continually make comparisons
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between the data on locusts and the various models; each time testing to see

if the design of the locusts' legs are responding to specific design issues implicit

in each model. For this reason I will take the time to more fully detail the three

most prominent models in skeletal design: Geometric Similarity, Constant Stress

Similarity and Elastic Similarity.

This approach is not without controversy. Both the statistics and the

scientific approach have been questioned in the study of allometry. Smith

(1980), in a paper that attempted to catalogue the dangers of the

indescriminant use of allometry, has suggested that the familiar methods of

estimating parameters of power law functions are inappropriate because of the

assumptions made in Huxley's (1932) use of allometric models. He suggests that

often linear regression applied to non-transformed data make just as good a

description of the data, indicating that a power law may not be an appropriate

model for the biological phenomena being described. Zar (1968) has pointed

out that variances are resolved in log-log transformations in a manner that

makes use of the least squares' regression a dubious technique in estimating

slopes of regression of power functions. He states that an alternative model to

least squares, that accommodates the variance in both the independent and

the dependant variables, is a better choice for allometric models.

A more significant issue than statistical description is perhaps the

identification of an alternative hypothesis in the analysis of the scaling models.

Gould (1975) has pointed out that geometric similarity (the specifics of which will

be detailed shortly) is treated as an alternative hypothesis in testing allometric

models. He states that allometric regression is a 'criterion of subtraction',

meaning that the regression line provides information on the influence of body

mass independent of any specific adaptation of animals at any specific point



in the range of body masses. Thus, an observed allometry may hide

fundamental differences between large animals and small ones that are not

strictly structural design consequences of body size. Smith (1980) echoes this as

well as other criticisms, and adds that even in the case where the statistical

technique reveals a characteristic power function relationship, this by itself does

not indicate a specific functional relationship.

I believe that in this study the use of allometric models is appropriately

performed for several reasons. In the case of each model that follows we can

a priori establish a mechanical basis for the power law relationship. Further, we

will discover that the variances are positively correlated with the means (ie. the

variances are independent of the means after log transformation). For these

reasons, a log-log estimation of the power function model is justified (Sokal and

Rholf, 1981). In chapter four we will see that there are important deviations in

adult locusts' jump performance that are not strictly a function of body size.

These data are excluded from the scaling analysis. We can establish, however,

that the remaining data do represent functionally equivalent individuals, and

are reasonably analyzed with Gould's criterion of subtraction. The criterion of

functional equivalence will be used throughout this thesis as a basis for the

appropriateness of allometric analysis, and data that do not meet this criterion

will be excluded from analysis.

Geometric Similarity. The Geometric Similarity Model (GSM) is a

mathematical formalization of the idea of Euclidean similarity or isometry.

Euclidean similarity means that geometry is maintained independent of the size

of the object being considered (Thompson, 1947). Therefore, the relationships

between all of the dimensions of the object are the same independent of scale,



and differences in size result from scalar multiplication of all of the object's

dimensions by a single multiplier. A familiar example is a comparison between

similar triangles of different size. The angles at the vertices are the same (the

definition of similarity in trigonometry), and thus if the base of one of the

triangles is twice the length of the other, then all of the linear dimensions are

twice as large. When applied to biological systems the outcome is the same.

Simply, large animals look like geometrically similar small ones.

Geometric similarity has consequences that can place real limitations on

biological design. A familiar example will illustrate these as well as show how

the scaling predictions are generated. Given two cubes with one having edges

that are twice the length of the other, it is probably familiar that the surface

area of the larger cube will be four times that of the smaller and the volume of

the larger will be eight times the volume of the smaller. Thus

Area — Characteristic length (! )2

and

Volume — (3 .

Therefore, if animals are geometrically similar their linear dimensions will scale

with body mass raised to the 0.333 power, while their surface areas will scale to

body mass raised to the 0.667 power.

One of the significant consequences of geometrically similar increases in

the size of skeletal support structures is that the demands of mechanical loading

increase faster than the ability of the skeleton to accommodate those loads.

More specifically, inertial loading is a function of mass (that is volume), a third

power function of characteristic dimension, while the cross-sectional area of

material that carries that load is only a second power of characteristic length.

In this way geometric similarity is distinct from the other scaling models in that
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it is not a predictive model based on the control or similarity of any mechanical

parameter, but is rather the formalization of the consequences of conserving

geometry independent of size.

A solution to the increasing mechanical demands placed on

geometrically similar structures is to produce distortions in the dimensions of the

skeletal design to increase the amount of load-bearing material, and in so

doing accommodate the increasing inertial loads. This was recognised as a

design strategy by Galileo as early as 1638 (Thompson, 1917; Schmidt-Nielsen,

1984). Indeed, it was over one hundred years ago that an explicit description

was made of how the diameters of trees must increase with the 3/2 power of

their length in order to produce similar mechanical behaviour (Greenhill, 1881).

More recently two models have been proposed that predict how characteristic

dimensions of biological structures should deviate from geometric similarity to

produce structures that maintain either similar normalized load (ie. Stress)

(McMahon, 1984), or similar normalized deformations (ie. Strain) (McMahon,

1973) independent of scale. Because of the significance of these models to the

material that will follow I will briefly detail each. In presenting a detailed

description of these models in his own words, McMahon (1984) demonstrates

how the predictions of the models can be arrived at with a number of different

approaches. I will only develop each model in a single way that seems most

appropriate for the context of locust leg design.

Constant Stress Similarity. As stated above, the loads associated with

body mass increase with increasing size, but stress (a) , or the force normalized

by the area over which that force is distributed, increases even more quickly.

Given the scale independence of specific gravity, forces that are associated



with gravity or inertia, which is to say associated with mass, in geometrically

similar skeletons scales to the third power of a characteristic length, while area

scale to the second power of length. Thus stress must scale to the 3/2 power

of a characteristic length dimension. McMahon (1984) suggested that by

appropriately scaling diameter of a cylindrically shaped skeletal member

separately from the scaling of length, a given design could achieve a constant

stress in structures independent of size. In achieving constant stress, large

departures from geometrically similar morphologies are produced.

The specific morphological predictions of the constant stress similarity

model (CSSM) for the scaling of dimensions of bending beams can be

generated starting with the following relationship from engineering:

a = (Ft v)  Eq. 1.1.
I

where a is the peak stress developed in a beam of length, (and diameter, 2y

loaded with a force, F. I is the second moment of area - a parameter that

describes both the amount of load-bearing material and how that material is

distributed (Wainwright et al., 1976). The notion of I is central to the subject of

this thesis and will be developed in more detail in chapters two and three.

Suffice to say at this point that the computational formula for I for a cylindrical

beam of radius, r, is:

i = ire/ or irc14 Eq. 1.2.
4 64

Meaning that I — d 4* which has a number of consequences. One of which is we

now have a relationship between all of the parameters that determine the stress

in a beam and morphological dimensions. If force is proportional to mass, and

therefore volume, then we can insert these morphological relationships into



equation 1.1 and produce

a — (d20(/)(d) = d3F = (2^Eq. 1.3.
d4^d4 d

and if a is a constant (ie. constant stress) then

d — /2^Eq. 1.4.

So in the CSSM diameter scales to the second power of length. By substituting

the relationship mass (M) — d2rwe can relate the scaling of both dimensions to

body mass thusly:

as 162 = id... = (5

d2 11.41 M
t r I

Since a is a constant

Eq.1.5.

f oc m0.20^ Eq. 1.6.

and likewise

d . Ma4° .^ Eq. 1.7.

This means that to build different sized skeletons of the same building material

that will experience the same stresses in bending demands that the external

dimension of diameter will have to scale to mass raised to the 0.40 power while

length will have to scale to mass raised to the 0.20 power. Therefore, the CSSM

is distinct from GSM in predicting that as structures become increasingly large

they will become increasingly stout.

Elastic Similarity. In 1973 McMahon formalized another alternative to

geometric similarity which has been referred to as the elastic similarity model

(ESM) (McMahon, 1973; Schmidt-Nielsen, 1984). Elastic similarity predicts
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morphological scaling relationships based on keeping the deformation per unit

length in a bending beam scale independent, rather than peak stress as was

the case for CSSM. By trying to establish a similarity based on a different index

of mechanical behaviour, ESM makes a different set of predictions than GSM

or CSSM. The deflection per unit length of a cantilever loaded at its end can

be calculated with the following formula:

D = Fe^ Eq. 1.8.
f^3E1

where D is the deflection of a beam of length, 1, loaded at its end with a force,

F. E is the elastic modulus of the material out of which the beam is made. E is

a property of the building material, and if we assume that little skeletons and

large skeletons are made from the same material with the same properties, then

the term 3E is scale independent and falls out of a proportionality based on

morphological dimensions. Elastic similarity is based on D/f being a constant

independent of size and thus we can generate the proportionality:

Ff2 . Constant (C 1 )^Eq. 1.9.
1

which we can relate to morphological dimensions as we did for CSSM

C I — FP . (d20((2) 
I^c14

so
f3 or d2 

oc f3

—2d

Which is precisely the result produced by Greenhill (1881) for the design of trees.

By once again substituting the proportionality Mass — d 2f, we can make specific

scaling relationships for each dimension in terms of mass.



M ec d2( so(M)3 . C2 so M3 . d2

d2^d6

or

M3 oc d8 SO d oc M318 or mum.

And likewise:

1.3 e'c ( M 1 2 or ( cc m114 or M°25°
13 I

Therefore, if we were to engineer different sized skeletal designs to respond to

mass-dependant, bending loads with a constant deflection per unit length of

beam we would scale the diameter to the 0.375 power of body mass while

scaling lengths to the 0.25 power of body mass. Similarly, if we observed

biological structures scaling in this manner we might infer that selection was

responding to a design pressure that placed a value on similar normalized

deflections in beams loaded in bending.

It is important to remember that the predictions of elastic similarity are

constructed around the assumption that the beam is acting like a cantilever

loaded at its end. For a beam loaded all along its length, the deflection is

proportional to the fourth power of length rather than the third (Denny, 1988).

Thus the deflection per unit length in this beam is proportional to the third power

of the beam's length rather than the second. For such a beam the predictions

of elastic similarity are identical to those of constant stress. It may turn out that

vertebrate long bones which have muscle origins and insertions along a large

part of their lengths are more appropriately modelled as beams loaded over

their lengths rather than just at their ends. As we shall see below, locusts' limb

beams are appropriately thought of as loaded at their ends (Heitler, 1974;

Bennet-Clark, 1975), and as a result, the predictions of ESM and CSSM may be
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distinguished.

Limb segments that follow the elastic similarity model, and even more so

those that follow constant stress similarity, become relatively more stout as the

animal increases in size. These types of distortions away from geometric

similarity are characteristic of what McMahon (1984) calls distorting allometries.

Indeed Huxley (1932) used the general term 'allometry' to distinguish distortions

away from geometric similarity, or 'isometry'. Gould (1966) invokes the

etymology of the word allometry, which means 'by a different measure' to

separate all those scaling programmes that deviate from isometry, which he

points out means by the same measure'. In each case, however, the existing

scaling strategies predict allometries that produce relatively thicker beams,

rather than relatively more slender beams. In chapter two we will discover that

locust leg growth does not follow any existing allometric model's predictions,

but produces increasingly spindly legs.

There are also important assumptions integral to all of these models that

must be acknowledged. The models have assumed a cylindrical geometry, but

are used to predict the scaling of distinctly non-cylindrical anatomical structures

(McMahon, 1975a, 1975b). In anatomical features with non-circular cross-

sections the value of I will still be proportional to the product of four linear

dimensions. In elliptical cross-sections for example, I is proportional to one axis

cubed times the orthogonal axis. Therefore, as long as relative dimensions of

the cross-section of a skeletal element are scale independent, that is the shape

of the cross-section is the same independent of size, the predictions of the

models that are based on cylindrical geometry should still be valid. The

functional role of violations of this assumption are very important, and will be

discussed in detail in chapter three.
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Another important assumption in both of these models is that small and

large skeletal structures are constructed of the same building material.

Therefore, the elastic modulus will be the same independent of size. This is

probably an acceptable assumption in the case of vertebrate bones where the

material properties of the building material are determined largely by the

mineralized components of the bones (Curry, 1984). In the case of insect

cuticle, however, where the mechanical properties are determined by a protein

material whose properties are alterable either by changes in cross-link density

(Anderson, 1976), or by hydration state (Vincent, 1980), violations of the

assumption of constant E can be significant. It is the exciting possibility that E

is a scaled commodity in structural design that is the subject of chapter three.

An additional assumption in making these predictions is that the forces

that the skeleton is required to support are associated with the body mass, such

as gravitational or inertial loads. In cases where the predominant forces that

the skeleton must bear are produced by muscular contraction, which are

themselves subject to scale effects, the predictions of the models must be

adjusted. The consequences of scaling the skeleton to accommodate

muscular forces rather than body mass are discussed in chapter five.

These assumptions, that the building material's mechanical properties and

the strategy of distributing that material will be scale independent, are precisely

the assumptions that lead us to try to make inferences about the mechanical

behaviour of biological devices from morphological dimensions. We will see in

chapter two that in the locust mechanical properties are 'uncoupled' from

morphology, preventing us from making inferences about mechanics based on

morphology, and in chapter three we will learn that this uncoupling results from

violations of the above assumptions.
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Do animals follow scaling models?  Before embarking on a detailed

analysis of scaling in locust legs, it is worth asking if any of the models are

supported by observation? In this regard there are' lithe data outside of studies

of vertebrate designs. Bertram and Biewener (1990) have suggested that GSM

may be an appropriate scaling scheme for small animals, where breakage of

the skeleton due to loading is unlikely. For small animals, having a skeleton that

is sufficiently stiff to function in support and locomotion is probably the primary

utility of the skeleton. They also argue that it is in large animals, where loads are

likely to exceed the breaking strength of geometrically similar skeletons, where

the morphology must change, or distort, to accommodate those loads. ESM

scaling, such a distorting allometry, seems to be observed in the skeletal design

of ungulate limb bones (McMahon, 1975), although Bertram and Biewener

(1990) suggest that CSSM may more adequately describe the scaling in the

larger members of that data set. It has also been suggested that McMahon's

choice of Bovids was fortuitous in that the order is somewhat singular in

expressing ESM (Alexander et al., 1979, Curry, 1984). In a wide range of

vertebrates with a wide repetoire of locomotor styles Alexander et al. (1979,

1981) found a general tendency to following geometric similarity.

None of the models has predicted skeletal elements becoming relatively

more slender with increasing size. However, this type of scaling has been

observed for the scaling of femora and humeri of a wide range of bird species

(Prange et al., 1979). It is not clear if this scaling of bird bones represents a

strategy per se. Because bird bones may be air filled and thin walled (Curry,

1984) they may be able to modulate the mechanical behaviour of their long

bones in ways that are different from terrestrial vertebrates and in so doing

produce an unexpected allometry. The functional role of this different skeletal

-15-



design is discussed in more detail in chapter three. Remembering Gould's

(1975) caution however, it is not clear if it is fair to compare hummingbirds,

whose humeri are loaded dynamically, at high frequency during hovering with

swans, whose humeri are loaded relatively statically in soaring.

These relationships have been tested with a variety of interspecific

comparisons between adults of closely related taxa (ie. phylogenetic scaling).

One could also analyze the effect of scale in the development of an individual

and apply similar relationships (ie. ontogenetic scaling). In his review, Gould

(1966) does not distinguish ontogenetic from phylogenetic scaling in the quality

of information that each type of study provides. It is not clear, however, if the

developmental programme in a single species produces a series of functionally

equivalent skeletal designs constructed from mechanically equivalent materials

(Carrier, 1983, Curry and Pond, 1989). Ontogenetic changes in material

properties of bone do occur (Curry and Butler, 1975, Carrier, 1983), uncoupling

to some extent our ability to infer mechanical behaviour of the skeleton from

its morphology. For example, Carrier's (1983) observations of jack-rabbits

suggest that in ontogeny the rabbit's bone may vary in its material stiffness (ie.

modulus) by as much as an order of magnitude. The same data also indicate

that neonates, juveniles and adults may not be functionally equivalent in their

ability to locomote. However, if functional equivalence is maintained across

ontogeny, then it should be fair to ask whether the existing models of scaling

apply to that ontogenetic sequence.

These observations have been made largely on endoskeletal animals,

while very little has been said on the scaling of exoskeletal animals. Prange

(1977) has shown that leg segments of the cockroach, Periplaneta americana,

and the wolf spider, Lycosa lento, scale very closely to GSM over an
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ontogenetic sequence. This suggests that being exoskeletal does not by itself

limit the applicability of the models.

While Bertram and Biewener (1990) have made a case for body size class

determining the appropriate scaling programme to follow, Bou et al. (1987)

have suggested that lifestyle is more important than either body size class or

phyletic affinity in determining skeletal scaling. If so, an alternative scaling of

the skeleton may be demonstrated by an animal that has a locomotor

mechanism that is distinctly different from that of pedestrians like cockroaches

and giraffes. The jump of Schistocerca is a well documented mechanical

behaviour (Heitler, 1974, Bennet-Clark, 1975, Alexander, 1983) and therefore

provides a good contextual framework into which an analysis of scaling may

be placed.

Locust lumping The jump of the locust has been the subject of intense

scrutiny. Bennet-Clark (1975) has shown that the peak power outputs of the

locust jumping muscle is on the order of 450 W/Kg. He has shown for adults,

and Gabriel (1985a) has shown for hoppers (ie. juvenile, flightless locusts) that

the average power outputs of the locust's jump, estimated from jump distance,

are all higher than the maximum value for the jumping muscle. Therefore, they

concluded that a spring mechanism must store the energy for the jump

relatively slowly (ie. at low power outputs) during the inter-jump interval, and

release the energy quickly during the jump (ie. at high power outputs). Indeed,

it has also been demonstrated that the inter-jump interval length is determined

by the time it takes to store a specific amount of energy in the apodeme

springs (Steeves & Pearson, 1982). In support of the suggestion that the jump is

the release of stored energy rather than direct muscular action, the jump
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distance is not temperature dependant while the length of the inter-jump

interval is in a related grasshopper, Melanoplus bivittatus (Harrison et al., 1991).

The implication is that the increased inter-jump interval is the manifestation of

lowered muscle power output at low temperatures, while the release of spring

energy is unaffected because the material properties of the cuticular springs

are not temperature dependant. Heitler (1974) has described the femero-tibial

articulation in great detail. He has shown that the morphology of the joint is

designed to provide a mechanical catch mechanism that allows the jumping

muscle to store a large amount of energy without fighting to hold the leg from

extending. The tibial flexor muscle contracts to deform cuticular elements in the

joint, moving the line of action of the extensor muscle tendon system behind the

axis of the joint, producing a 'catch". Thus the muscular contraction that stores

energy in the tendon also helps keep the knee bent.

When the locust decides to jump, the tibial flexor muscle relaxes to

release the catch allowing the line of action of the extensor muscle-tendon

system to apply a torque that extends the knee. The stored energy in the

apodeme spring is released, rotating the tibial segment, and extension of the

leg pushes on the ground generating a ground reaction force that propels the

locust into the jump.

The films of Brown (1963), analyzed by Alexander (1983), indicate that

during the jump impulse of the adult locust the primary loading regime in the

metathoracic tibiae is bending. It seems appropriate, therefore, to investigate

the bending behaviour of limb segments to determine the mechanical scaling

of this system. Chapter two will explicitly examine the relationship between the

dimensions of the locusts' legs and the mechanical properties of the limb in

bending. In chapter two we will see that about 11% of the energy from the
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spring goes into bending the tibiae, of which about 90% is returned in

generating ground reaction force. Given the role of bending in the normal

loading of the tibiae and the large scale deformation that it undergoes, we

might hypothesize that elastic similarity, as a design strategy, will provide an

appropriate model for the legs of locusts. The results of the analysis in chapter

two suggest that while the tibiae are elastically similar in their mechanical

behaviour, their external dimensions scale in a manner that is fundamentally

different from any of the existing models. This indicates that the relationships

between morphology and mechanical properties that form the basis of the

various models' predictions are uncoupled in locust tibiae. Thus, to evaluate the

total mechanical design of a complex, living machine in the context of any one

scaling model may be extremely naive.

In chapter three this uncoupling is explicitly examined. The mechanical

behaviour of the locusts' tibiae, or any beam loaded in bending, is a product

of the amount, distribution and material properties of the load-bearing material.

In chapter three the relative contributions to the leg's bending behaviour that

arise from material properties are separated from those arising from the

distribution of skeletal material. It turns out that material stiffness is scaled in a

manner that allows the distinctive morphological scaling that is observed in

chapter two.

In chapter four the scaling of jump performance of the locust is

characterized. The results suggest that the jump has a separate functional role

in the juveniles and the adults. In juveniles the results suggest that there is a

functional distance that the hoppers are designed to achieve. The transition to

winged adults has demanded a higher performance jump to generate a

minimum velocity to begin flight. Within the juvenile instars, however, a
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consistent expression of the predictions of elastic similarity is observed in the

scaling of each of the variables that can be directly correlated with

morphology.

In chapter five the significance of the morphological and mechanical

design programme expressed by locusts is discussed. Three arguments are

offered to explain the uncoupling that is observed between the morphological

and the mechanical scaling in chapters two through four. Briefly, the first

argument attempts to describe how the moulting process may form a constraint

on the growth process. The second argument suggests that it may be more

appropriate in some cases to scale the dimensions of the skeleton to the forces

produced by muscles, which themselves scale allometrically, rather than

explicitly to mass. The third argument will make the case that the relative

slenderness of the legs is functionally important in taking the maximum

advantage of changing mechanical advantage of the legs in the jump.



CHAPTER 2.

THE UNCOUPLING OF MORPHOLOGICAL AND MECHANICAL SCALING.

INTRODUCTION 

In this chapter I have examined the ontogenetic scaling of the

morphology and mechanical behaviour of the legs of the African Desert Locust

(Schistocerca gregaria), an animal with six discrete life history stages, or instars,

and which varies in body mass by two and a half orders of magnitude. This

analysis of the skeleton of the locust provides some interesting contrasts to the

scaling relationships observed in vertebrate designs in several respects; the

locust is exoskeletal rather than endoskeletal, changes of external dimensions

occur in discrete steps rather than continuously, and comparisons are made

across the ontogeny of one species of hopping insects rather than between

adults of closely related species of walkers and runners.

Regardless of which morphological model is considered, it is assumed that

the mechanical behaviour of a skeletal member can be inferred from

morphological measurements. In insects where the skeleton is also the

integument and is not mineralized to nearly the same extent as bone, it is

possible that the material properties of the skeleton can be modulated to meet

the mechanical demands of increasing body size in ways that are

fundamentally different from vertebrates. The cuticle in various parts of the

locust exoskeleton shows a wide repertoire of mechanical properties (Jensen

and Weis-Fogh, 1963, Vincent, 1975), which might suggest such a possibility.

Hepburn and Joffe's (1974b) observation that normalized cuticular stiffness is

maintained across instars would argue against the suggestion that material
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properties of the cuticle are changing. However, insects are a diverse group,

and it may be that some of them have developed different strategies for

solving skeletal scaling problems.

The films of Brown (1963), analyzed by Alexander (1983), indicate that

during the jump impulse of the adult locust the primary loading regime in the

metathoracic tibiae is bending. I have, therefore, investigated the bending

behaviour of tibial limb segments to determine the scaling of mechanical

properties. This study will show that the external skeletal morphology predicts

mechanical behaviour that is dramatically different from the observed

mechanical behaviour. It will also attempt to.explain how the mechanical result

may be arrived at in spite of the morphological design programme.

METHODS and MATERIALS 

Animal Husbandry. Animals were sampled daily from a breeding

colony of African Desert Locust (Schistocerca gregaria) maintained at the

Department of Zoology at the University of British Columbia. The animals were

kept at a constant temperature of 27° C, humidity of 56%, and photoperiod of

13:11 (L:D), and fed a diet of head lettuce and bran. A sample of five

individuals was collected each day beginning on the first day following

emergence from the egg until approximately sexual maturity (ca. 35 days).

Each animal contributed both a left and right side meta- and mesothoracic

tibiae, resulting in four samples from each individual. Replicates were

performed to increase precision over the first seven, and final 15 days of

sampling. There was no significant heterogeneity between replicates for a

given day, and so all replicates were pooled. As a result, there are different

sample sizes across the time series of morphological and mechanical
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measurements.

Animals were sacrificed by decapitation and weighed immediately to the

nearest 0.1 mg. All of the morphological and mechanical measurements were

then performed in air on tibial segments within 10 minutes of removal from the

animal. Control experiments indicated that this time course did not alter the

mechanical properties significantly due to exposure to air.

Morphological measurements. The length and diameter of the tibial

segments of both the mesothoracic, and metathoracic tibiae were measured

either with a filar micrometer eyepiece (Wild 15XSK) attached to a dissecting

microscope (Wild M5), or where the tibia length exceeded the length of the

micrometer's graticule (the fifth instar and adult tibia lengths), a vernier calliper.

Micrometer measurements were made to the nearest 10 gm, and calliper

measurements to the nearest 20 gm. Morphological landmarks were defined

to provide ease of location and to indicate the dimensions of uniform limb

segments. That is to say, geometrically complex morphological features

associated with the joint articulations were excluded from linear measurement.

In the case of the mesothoracic leg, the tibial length was defined as the length

measured on the lateral surface from a point approximately level with the

femero-tibial articulation to the tibio-tarsal articulation. The metathoracic tibial

length was defined from the depression in the posterior surface of the tibia that

occurs just distal to the knee joint articulation, at the maximal extent of

sclerotized tibial cuticle, down the posterior of the tibia to a point opposite to

the insertion of the first moveable spine at the tibio-tarsal joint. Diameters were

determined to be the largest diameter of the semi-elliptical cross-section at the

mid-shaft point. Figure 2.1 shows a graphical representation of the
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Figure 2.1.

Diagram showing the anatomical landmarks used in measuring length

and diameter of the tibiae. Diameters were measured at the mid length point.

L, tibial length; d, tibial diameter.
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morphological landmarks.

Dynamic Mechanical measurements. After morphological measurement,

each metathoracic tibia was placed in a mechanical testing frame that

imposed a 3-point load with a dynamic, or time-variant, deformation. The

theoretical and practical development of this dynamic testing technique have

been reported previously (DeMont and Gosline, 1988, Lillie and Gosline, 1990).

Therefore, only the principles and an outline of modifications made to generate

3-point bending will be described. The device itself consists of an actuator that

delivers the time-variant displacement, monitored by a displacement

transducer, and a force transducer that measures the resultant force developed

across the test piece (ie. a metathoracic tibia) as measured at the two ends of

the sample. Figure 2.2 is a diagram of the device.

The actuator consisted of a length of 0.148' (3.76x1 0"
3 m) OD stainless steel

hypodermic tubing attached at one end from an electromagnetic vibrator

(Model V203, Ling Dynamic Systems, Royston, Hertfordshire, U.K.), and stepped

down at the other end to an 18 gauge hypodermic needle. The end of the

needle was cut off flush and polished smooth. Out of its end protruded a

length of 8 lb nylon fishing leader. The nylon loop was adjustable and could be

shortened to hold the midshaff of a test piece flush against the end of the

actuator by turning a 4-40 machine screw which 'spooled' up the slack nylon.

The compliance of the nylon loop introduced less than a 1% overestimate of

actual displacement and was ignored in subsequent calculations.

The free ends of the test piece were pulled upwards against the ends of

a window cut in the side wall of a length of 0.148' (3.76x10 3 m) OD stainless

steel tubing. The tubular holder was attached to a force transducer with a 2-56

stainless steel machine screw. The size of the window was scaled to provide a
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Figure 2.2.

Diagram of the mechanical testing apparatus designed to deliver a

dynamic 3-point bend. a, electromagnetic vibrator; b, inputs for driving noise

signal; c, displacement transducer; d machine screw for tightening the nylon

loop that held the tissue; e, stainless steel shaft connecting the vibrator to the

test piece; f, force transducer and attached holder (see inset); g, tubular holder;

h, test piece (ie. tibia); i, 18 gauge stainless steel tubing; j, 8 lb. nylon loop; k,

cantilever beam of force transducer.





ratio of approximately 10:1 of test piece total working length to diameter to

maintain a relatively consistent relationship of bending to shearing moments in

the test pieces. In order to maintain this ratio in legs of different sizes several

holders were made with appropriately sized windows. The ratio was deemed

a reasonable compromise between the wish to introduce primarily a

bending moment with respect to shearing moments, and the difficulties of

fabricating small holders. The force developed across the test piece was

measured with a cantilever-like transducer fabricated out of 0.015' (3.81x10 -4 m)

thick stainless steel shim stock. This material provided appropriately small

deflections (<1% of the imposed displacements). Semiconductor strain gauges

(type SR4 SBP3-20-35, BLH Electronics, Canton Mass.) were bonded on both

surfaces of the cantilever. Semiconductor gauges provided appropriate

sensitivity of 0.0473 Newtons/Volt. The resonant frequency of the transducer was

1.40 kHz with the smallest holder, 0.95 kHz with the largest, and .65 kHz for the

ensemble apparatus.

As was described previously (DeMont and Gosline, 1988), the

electromagnetic vibrator was driven by the noise generator of a spectrum

analyzer (Model 5820A Cross Channel Spectrum Analyzer, Wavetek Rockland

Inc., N.J.) which provided a constant power spectrum over the range of

frequencies collected (0 - 200 Hz). At each frequency, the spectrum analyzer

calculated both the ratio of the amplitudes of the Fourier components of the

force and displacement transducer outputs, and the phase shift (8) between

the two signals. Spectra were collected from 0 to 200 Hz, and approximately

256 spectra were averaged to produce one spectrum per test piece. The

flexural stiffness (El) of the specimen at each frequency was calculated using

the following relationship for static 3-point bending:
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El = F • x3^Eq. 2.1.
48 • d

where x is the length of the test piece (ie. the length of the window in the

tubular holder), F is the developed force and d is the deflection at the mid-point

of the beam (rearranged from Gordon, 1978). El is composed of E the elastic

stiffness of the beam's material, and I, the beam's second moment of area. In

these experiments the calibrated amplitudes of the Fourier components of the

force and displacement transducer outputs were employed as F and d in

equation 1 to produce a complex flexural stiffness (E .I) (adapted from Ferry,

1980).

Static tests performed as controls for the dynamic testing showed that the

stress-strain curves for tibiae were linear over the range of deformation imposed

on the specimen in these experiments.

El the storage flexural stiffness--a measure of the energy stored elastically

per loading cycle, can be found by calculating the in phase component of the

complex flexural stiffness as follows:

El = E •I • Cos 8.^ Eq. 2.2.

The energy loss flexural stiffness (E"I) is the out of phase component of the

complex flexural stiffness

E"I = E . I • sin 8,^ Eq. 2.3.

and is a measure of the energy dissipated per loading cycle. The tangent of

the phase shift (tans = E"I / El) can be used calculate the resilience per 1/2 cycle

(R) (in %) of the structure as follows:

R = (eta") • 100^ Eq. 2.4.
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(Wainwright et al., 1976). Explicitly, it is the ratio of the energy recovered

elastically to the energy input to the test piece in each loading cycle. All of

these calculations were performed on a Digital Equipment Corporation MINC-

11/23 computer.

Statistics. Except where noted, statistical tests were chosen based on

criteria presented in Sokal and Rohlf (1981). Due to the non-zero variance

associated with the morphometric variables measured in this study, all

regressions were Model II regressions (Sokal and Rohlf, 1981). All Statistical tests

were performed with the STATGRAPHICS (STSC, Mass.) statistical software

package.

RESULTS 

Ontogenetic accumulations of body mass followed a characteristic

sigmoid curve adequately described by the von Bertalanffy growth function

(Pitcher and Hart, 1982). Figure 2.3 shows the daily means of body mass as well

as the fitted curve. The values of sample size for each day, listed at the bottom

of figure 2.3, are the same for figures 2.3, 2.4 and 2.7. Body mass ranged from

0.0109-103 kg for first day, first instars to 3.541-10 -3 kg in adult, sexually mature

females. The data show that mass accumulates in a relatively continuous

manner within each instar. Adult locusts continued to accumulate mass for the

first four to seven days after moulting and then levelled off at their equilibrium

mass. The assumptions of the von Bertalanffy growth function, that the
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Figure 2.3.

The relationship of body mass to the age of the locust. Data are reported

as means and standard errors of the mean. The regression is fitted to the Von

Bertalanffy relation with the following form: Mass = 4.027(1-e -1:45 Age)3 (F5=987.8;

df=2,33; 12=.962). Numbers listed along the abscissa indicate the sample sizes

for each day, and are the same for figures 2.4a and 2.4b.



individual will grow in a logarithmic way up to a point where ingested calories

are diverted from general somatic growth and to reproductive growth, seem

reasonable in this case as growth levelled off at approximately sexual maturity

(ca. day 30).

All allometric relationships reported here proved to be significant to the

0.05 probability level. A significant sexual dimorphism develops in adults where

the females are approximately 50% more massive than males (ANOVA, F s =

21.969, df. = 192, p > 0.05). Analysis of covariance indicated no significant

effect of sex, beyond the effect of mass on any of the morphological or

mechanical parameters measured (ANCOVA, F s = 2.451 for mesothoracic tibiae

diameter on body mass--the relationship most closely approaching significance,

df. = 1,378). Therefore, data from both sexes were pooled in each regression.

Morpholoay. Figure 2.4 shows the change in tibial length (Fig. 2.4a.) and

diameter (Fig. 2.4b.) with increasing age. Analysis of variance indicates

significant heterogeneity between groups, and Newman-Keuls multiple range

tests indicate that each instar is a homogenous, independent group. This

confirms that the sample values from the population are reflecting what we

believe to be occurring in individuals, that the external dimensions of leg length

and diameter are not changing within instars. Analysis of variance of residuals

indicated that tibial length and diameter were independent of body mass

within each instar, biasing the overall allometric relationships of length and

diameter against body mass (Draper & Smith, 1981). Therefore, all values for
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Figure 2.4a.

Plot of tibial lengths for mesothoracic (o) and metathoracic (0) legs with

increasing age showing discontinuous growth across instars. Individual points

represent means and 95% confidence intervals to show the similarities within,

and differences between instars.

Figure 2.4b.

Plot of tibial diameters increasing with age. The symbols are the same as

in figure 4a.
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Figure 2.5.

The relationship of the log of tibial length and the log of body mass for

mesothoracic (o) and metathoracic (CD legs. Individual points represent means

and standard errors for each variable for each instar. The equation of the

regression for the mesothoracic legs is y = 0.868 + 0.356 x X (Fs=850.3; df=1 A;

r2=.9963). The equation of the line for the metathoracic legs is y = 1.195 + 0.377

x X (Fs=1074.1; df.=1 A; r2=.9953). The dashed lines are the 95% confidence limit

of the regression line.
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Figure 2.6.

The relationship of the log of tibial diameter and the log of body mass for

mesothoracic (o) and metathoracic (0) legs. Individual points represent means

and standard errors for each variable for each instar. The equation of the

regression for the mesothoracic legs is y = -0.074 + 0.284 x X (Fs=881.9; df=1 A;

r2=.9955). The equation of the line for the metathoracic legs is y = -0.033 + 0.311

x X (F5.1004.0; df.=1 A; r2=.9960). The dashed line is the 95% confidence limits of

the regression line.



body mass, and tibial length and diameter within each instar were pooled, and

a mean value for each variable for each instar was used in the allometric

regressions. These data also indicate that within each instar the metathoracic

legs are approximately twice as long as the mesothoracic legs, while having

approximately the same diameters

Figure 2.5 and 2.6 show the log transformed plots of leg length and

diameter against body mass. Metathoracic tibial lengths followed the

relationship of body mass raised to the 0.38 power (SE = 0.01, 1.2 = 0.996),

while mesothoracic tibial lengths scaled to mass to the 0.36 power (SE = 0.01,

r2 = 0.995) (Fig 2.5.). Metathoracic tibial diameter scaled to body mass to the

0.31 power (SE = 0.01, r2 = 0.996), and mesothoracic diameter scaled to the 0.28

power (SE = 0.01, r2 = 0.996) (Fig. 2.6.). This indicates that as the animal grows,

the limb segments are getting relatively longer and more spindly rather than

maintaining a constant proportion of length to diameter, as is predicted by

geometric similarity (GSM), or becoming stouter as predicted by distorting

allometries (ie. ESM or CSSM). In each case, the slopes of the allometric

relationships between the leg dimensions and body mass were not statistically

distinguishable between the metathoracic and mesothoracic legs.

A convenient index for comparison is the allometric relationship between

tibial length and diameter. The distorting allometries (ie. ESM & CSSM) predict

that lengths will scale to diameters raised to a power less than one, resulting in

increasing stoutness. Geometric similarity predicts an exponent of exactly 1.0

or isometry. Locust tibial lengths, however, scale to diameter raised to a power
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Figure 2.7.

The relationship of the log of tibial length and the log of tibial diameter

for mesothoracic (o) and metathoracic (CD legs. Individual points represent

means and standard errors for each variable for each instar. The equation of

the regression for the mesothoracic legs is y = 0.961 + 1.252 x X (F s=12537.4;

df=1 A; r2=.9997). The equation of the line for the metathoracic legs is y = 1.234

+ 1.212 x X (F5=35038.2; df.=1,4; r2=.9999). The dashed line is the 95% confidence

limit of the regression line.



greater than one ( 1.21, SE = 0.01, r 2 = 0.9999 for metathoracic legs and 1.25, SE

= 0.01, r2 = 0.9997 for mesothoracic legs, Fig. 2.7.). These exponents are

significantly higher (P<0.01 in both cases) than any existing allometric model

predictions. Thus the tibiae in Schistocerca scale in a manner that is not only

different in value from the existing models, but in direction as well. As was the

case above, the slopes of the allometric relationships for leg morphology were

statistically indistinguishable between the metathoracic and mesothoracic legs.

Mechanical Measurements. Figure 2.8•shows a representative spectrum

of storage and loss stiffness values across the sampled frequency span. There

appears to be virtually no frequency dependence to the data. The deviation

of the relationship between both storage and loss stiffness and frequency from

a slope of zero is significant, but only results in a 6.4% change in actual storage

stiffness per decade change in frequency. Results reported by Bennet-Clark

(1975) indicated that the jump impulse duration is approximately 25 to 30 ms.

Although the impulse is a transient event, and therefore difficult to correlate with

steady state vibration (vis a vis a biologically relevant strain rate), I decided to

use the impulse duration as a measure of the half-cycle period and use 22.5 Hz

(ie. a 5 point average between 20 and 25 Hz) as my reference frequency for

comparison between samples. The relatively larger scatter of the energy loss

data (E"I) is due to its dependence on what is, in this case, the sine of a small

angle (Eq. 2.3), whereas the energy storage stiffness (E'I) depends on the

cosine of a small angle and is smoother (Eq. 2.2). The approximate 30 fold
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Figure 2.8.

Mechanical test data showing the log of flexural storage stiffness (E'l) and

the loss stiffness (E"I) against the log of frequency of the imposed deformation

for an adult locust of 34 days of age along with their regressions. The equation

of the regression for the energy storage stiffness is Y = -3.948 + 0.026 x X

(F5=217.7; df=1,67; r2=.7646). The equation of the regression for the energy loss

stiffness is Y = -6.238 - 0.085 x X (Fs=19.682; df=1,67; r2=.2271).
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Figure 2.9.

Changes in the log of flexural storage stiffness with age. Data points are

mean values with standard error of the mean. Data from individuals on the first

day following a moult are denoted by "s.



difference in energy and loss terms results in a resilience of 91% for this data set.

The time course of changes in the flexural stiffness (El) of the

metathoracic tibiae describes a series of asymptotic curves, where the stiffness

is relatively low immediately after a moult and increases within the next 24 - 48

hours by approximately an order of magnitude (Fig. 2.9). This seems to be a

reasonable consequence of the protein cross-linking and cuticle dehydration

that occurs during this period (Neville, 1975, Vincent, 1980). The lack of an

appreciable decrement in stiffness on the first day of the third instar may reflect

an uncertainty in aging the insects (+/- one half day) at a point where the

stiffness is changing rapidly, rather than a fundamental difference in the

cuticle's behaviour at that point.

The fact that the stiffness of the tibiae is relatively low immediately after

moulting suggested that it might be prudent to create a separate data set for

allometric analysis that excluded all stiffness values from individuals on the first

day post-moult, thereby preventing the analysis of the overall scaling

programme from being biased by the transient physiological events of cuticle

stiffening in moulting. Flexural storage stiffness scaled to body mass raised to

the 1.59 power (SE = .02, r2 = .937) for all data, and to the 1.53 power (SE = .02,

r2 = .954) for the data without the first-day of instar individuals (Fig. 2.10). We

regard the latter value as characteristic of functionally equivalent states in the

population (see discussion) and appropriate for scaling comparisons.

A full series of mechanical measurements was not made on the

mesothoracic tibiae, but morphological measurements indicated that within

-43-



-3

—4

— 5

- 6

—7
K

ou

e±)

— 8
.3

  

—1.5^—1^—0.5^0 0.5

Log of Body Mass (grams).

Figure 2.10.

The relationship of the log of the flexural storage stiffness and the log of

body mass. Each point is the result of one mechanical test like that shown in

figure 8. These data exclude points collected from individuals on the first day

after each moult. The equation for the regression is y = -4.566 + 1.532 x X

(F5=7637.8; df.=1,426; r2=.9442).
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The time course of change in resilience of the metathoracic tibia with

age. Data are reported as mean values and 95% confidence limit for each

day. Data from individuals on the first day following a moult are denoted by *'s.
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each instar they had virtually the same diameters as the metathoracic tibiae.

Thus, one may expect that mesothoracic tibiae will exhibit the same flexural

stiffness as metathoracic tibiae. Mechanical analysis of test pieces of equal

lengths of metathoracic and mesothoracic tibia from five, 35 day old adults

showed this to be the case. There was no statistical difference in the mean

flexural stiffnesses (t 5 = .9918 < 1 . .0503 = 2.776).

The time course of resilience, shown in figure 2.11, demonstrates that

resilience values also increase asymptotically from local minima on the first day

of each instar and achieve higher values over time. Significant differences do

exist among means across the entire life history (ANOVA of arcsine transformed

resiliences, F5=15.928; df.=34,460). However, it is impossible to say if this

represents a real change in mechanical properties, or rather that the smaller,

more difficult to handle specimens have a greater variance and therefore lower

mean due to the potentially truncated distribution of resilience values (ie.

resilience can not be greater than 100%). It is interesting that the mechanical

resilience values for the adults approach an average value of 93%. This is very

similar to the values of 93% for sheep plantaris tendon (Ker, 1981), 97% for locust

resilin (Jensen and Weis-Fogh, 1954) and 91% for the most resilient synthetic

rubbers (Ferry, 1980).

DISCUSSION 

The scaling of Schistocerca tibiae results in relatively longer and spindlier

skeletal elements, while existing allometric models predict at the least isometry,
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if not distortions away from increasing spindliness and toward stoutness. This

empirical scaling relation deviates both from theoretical predictions (McMahon,

1980,1984, Bertram and Biewener, 1990) and from some empirical observations

(McMahon, 1975, Prange, 1977, Bertram and Biewener, 1990). However, it is in

very close agreement with Carrier's (1983) observations for the ontogenetic

scaling of limb bones in the jack-rabbit, Lepus. The nature of the existing

allometries that predict distortions of morphology is that when beams are longer

than a critical length, with respect to their diameter and their material

properties, they will either buckle and fail or will deform to a degree that is

incompatible with the function of the skeletal system. In the literature it is

generally assumed that design strategies must increase the mechanical stiffness

of skeletal support structures, presumably by changes in morphology that

increase the amount of load bearing material, to compensate for increases in

the mass of the structure (eg. ESM or CSSM). Indeed, in one case where limb

bones became relatively more slender in ontogeny, producing a potentially

more deformable structure, there was an observed increase in material stiffness

of an order of magnitude (Carrier, 1983). This makes it important, in the context

of locust tibial scaling, to determine what actually happens to the mechanical

properties of the leg because the observed morphology predicts the legs are

becoming relatively more deformable as the animals grow.

The various scaling models can be used to predict how the flexural

stiffness could scale with increasing body mass. The flexural stiffness has two

components; E, the elastic modulus of the material from which the beam is
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made, and I, the second moment of area--a measure of the distribution of

material across the beam's cross-section. For now we may assume that small

locusts and large locusts are made of the same material, so that E is a constant

(Hepburn and Joffe, 1974b), and changes in El reflect changes in I, which we

can relate to morphology. For tubes of circular cross-section I is proportional to

diameter raised to the fourth power. Although locust tibiae and vertebrate long

bones do not have strictly circular cross-sections, we will assume cylindrical

geometry, making I proportional to diameter to the fourth power. Given these

assumptions, we can use equation 1, and allometric predictions, to anticipate

how El might relate to body mass. For GSM, diameter (d) scales to mass to the

1/3, power and prediction of El follows thus:

d oc Mass ."3 ,

SO

I — (Mass* 333)4, or Mass i333 .

Geometric similarity, therefore, predicts that El should scale to body mass raised

to the 1.33 power. Via a similar process, elastic similarity predicts an exponent

of 1.50, and constant stress similarity predicts an exponent of 1.60.

If one makes this same calculation using the morphological allometric

relationships for the external dimensions reported here for the locust, and makes

the same assumptions about El, one predicts that El in locusts should scale to

body mass to the 1.244 power. This was not the case. The observed exponent

for El as a function of body mass incorporating the complete data set was not

significantly different from the prediction of constant stress similarity (slope or b
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= 1.59, is = 0.498, df. = 507). The exponent for the data set excluding first-day

of instar individuals was marginally different from the prediction made by elastic

similarity (b = 1.53, is = 2.329, df. = 419). Both data sets were different from the

prediction of 1.244 power. Therefore, in spite of a morphological programme

that deviates from any expectation, the mechanical properties scale in a way

that is consistent with existing models. This indicates that measurement of

external dimensions alone does not provide sufficient information to determine

the mechanical behaviour of the skeleton in this case. This observation poses

two questions: 1) what is compensating for the morphological programme that

allows the mechanics to achieve a mechanically reasonable result, and 2) what

is the design 'strategy' responding to in producing the observed unanticipated

scaling programme?

At this point we are unable to resolve the extent to which either E or I or

both are being modulated to produce the observed mechanical scaling. We

are also unable to definitively discriminate the mechanical role of the

endocuticle, either within or across instars. However, in chapter three we should

be able to resolve the nature of the stiffness or shape changes in the tibia when

we have examined the scaling of I in the tibiae used to collect the mechanical

measurements and determined I for their endocuticular and exocuticular

components.

Exo- vs. Endoskeletal Design. The sensitivity of I in thin walled exoskeletal

systems to changes in wall morphology suggests a fundamental difference in
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the use of exo- and endoskeletal designs. Currey (1980, 1984) has generated

a model that predicts the optimal inner to outer diameter ratio (k) for a hollow

bone. The model plays off the increases in I per unit mass that comes from

using ever larger diameter, ever thinner, tubular skeletal members against the

penalty of having to carry around the mass of the non-structural material inside

the tube, such as marrow or fat. The analysis predicted different values for k

based on the parameter that the design programme optimized, such as mass-

specific strength or stiffness. For a selection of terrestrial vertebrate long bones

the model seemed to effectively anticipate the relatively thick-walled tubing as

an adaptation to resist failure from impact loading (Currey, 1984). A notable

exception is the air-filled bones of birds, where the walls are relatively thin, in

comparison to the marrow filled bones of terrestrial mammals (Currey, 1984).

Figure 2.12 shows the ratio of total mass of bone and luminal contents to the

mass of a solid bone with the same value of I, for various k ratios. An important

feature of Currey's model is that the specific gravity of marrow is about half of

that of bone, ie. the specific gravity ratio (Sg) is 0.50. In Schistocerca the Sg of

the hemolymph to the cuticle material is about 0.88 (Wainwright et al., 1976).

For the locust, the minimum that occurs at about k = 0.35 represents less than

a 1% savings in mass over a solid rod morphology (Fig. 2.12). Measurements

from the cross-section of the metathoracic tibial segment in a 10 day old adult

Schistocerca from Jensen and Weis-Fogh (1962) show a k 0.92, indicating that

this skeletal member is not approaching the optimum associated with a

minimum mass.



Figure 2.12.

Theoretical model of optimal internal to external diameter ratio (k) for

hollow skeletal structures with various ratios of lumenal content to wall material

specific gravity (Sg). This formulation describes beams that all have the same

I. The line Sg = 0.88 is the condition that exists in Schistocerca gregaria which

has a slight minimum at k = 0.35. Optimizing for mass specific stiffness, or impact

resistance in the locust produces even shallower minima at lower k values. For

a Sg equal to 0.0, which approximates the air-filled bones of birds, the model

predicts thin walled tubes limited by buckling. As one moves to relatively less

dense tubing material, the minima become shallower and predict thicker walls.

Sg equal to 0.5 is the condition describing bone (Currey, 1980, 1984), which has

a shallow optimum at k = 0.7. At Sg = 0.13 (steel tubing filled with an aqueous

medium) there is a deep minimum at a k of 0.93 with a weight savings of about

51%. The boundary condition of equal specific gravities for the tubing and the

inside contents (Sg = 1.00) predicts that the minimal mass solution occurs in solid

rods rather than hollow tubes. The dashed vertical line originating at k=0.98 is

the limit to k imposed by unstable buckling based on data for the material

properties of locust cuticle (Vincent, 1980) and the analysis of buckling in Currey

(1980). This represents the ultimate limit to being thin walled.





The fact that insects do not have skeletons made from thick-walled tubing

may indicate that minimizing the mass of non-structural material is not the over-

riding design strategy. In exoskeletal animals, where the material on the inside

of the tubing is the muscle and circulatory fluid, the added weight of this

material may not represent the same penalty as marrow or fat does in

vertebrates. If it is the locust's strategy to maximize its internal volume, then

figure 2.12 predicts a thin-walled morphology that achieves large volume that

is limited only by buckling (Currey, 1980). The dashed vertical line in figure 2.12

originating at k = 0.98 indicates the limit imposed by unstable buckling in a

beam constructed from locust cuticle. The similarity of the observed k ratio and

the buckling limit would seem to support the idea that the design in locusts

maximizes internal volume.

Scaling in Cursorial & Jumping Insects. The observation that locusts'

limb morphology deviates from the existing allometries while other exoskeletal

animals like cockroaches and spiders do not (Prange, 1977), would seem to

indicate that the exoskeletal body plan does not in itself determine the scaling

of limb dimensions. That is, the exoskeletal design may have allowed this

option, but evolution has not demanded that all such designs follow it.

Therefore, it would seem reasonable to suggest that the developmental

programme that produces the morphological scaling in Schistocerca represents

an adaptation for some specific functional attribute. I suggest that the

kinematic and energetic demands of jumping in growing animals may be met
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more effectively by the allometry seen in the locust, rather than the

geometrically similar growth pattern seen in cursorial animals like the cockroach.

If it is true that the morphology of the metathoracic legs is demonstrating

a specialization for jumping, then we might hypothesize that the pro- and

mesothoracic legs (ie. 'walking legs') would scale in a manner different to the

metathoracic leg ('jumping leg"), but this is not the case. It has been noted

that prothoracic legs appear to follow isometry (Gabriel, 1985a); however, the

data on mesothoracic legs clearly shows a similar developmental programme

to the metathoracic legs. While maintaining the same scaling relationship to

body mass across ontogeny, the metathoracic tibiae are twice the length of

the mesothoracic tibiae. The third power dependence of deflection of a

loaded beam on length (equation 2.1.) predicts, therefore, that the

metathoracic tibiae are eight times more deflectable than the mesothoracic

tibiae given the same flexural stiffness. Since equal lengths of mesothoracic

and metathoracic tibia have the same flexural stiffness in adults, it seems

reasonable to assume that the interleg similarity in stiffness per unit length would

be maintained across ontogeny. Further, the peak loads during jumping are

approximately 20 times the force of gravity (Bennet-Clark, 1975) and are

distributed over only two jumping legs, whereas the loads of standing or walking

(ca. 1 x the acceleration of gravity (g)) are distributed over six legs. The walking

tibiae, then, may experience several hundred times less bending deflection in

walking than are the metathoracic legs during jumping. Even in the case

where a locust lands on a single mesothoracic leg at the end of a jump, the



kinetic energy would be absorbed by a single leg with one eighth of the

compliance of each metathoracic leg. In this extreme case the mesothoracic

leg would still experience four times less deflection than a metathoracic tibia.

Even though the mesothoracic tibiae are probably not experiencing exclusively

a bending load, this analysis indicates that they are distinctly over-built. Thus,

the genetic constraint on the development of metameristic, morphological

characters may limit the ability of natural selection to minimise the amount of

extra material the animal carries around. It may turn out that the genetic

mechanisms that control metathoracic leg development are linked functionally

to the genetic control of mesothoracic legs and even perhaps to appendages

on other segments of the body. Interactions across body segments, with

respect to the control of expression of metameristic characters, have been seen

in the bithorax gene complex in Drosophila (Lewis, 1978). Since jump

performance, in terms of take-off velocity, is inversely dependent on body mass

(Bennet-Clark, 1977), there would seem to be a benefit in keeping excess

weight to a minimum. If so, then the overdesign of the mesothoracic legs may

represent a penalty to be paid for the sake of having jumping legs that perform

well and having a genetic control mechanism that is not specific to a single

body segment. It may prove interesting to test this hypothesis by examining the

scaling of antennae or mouth parts of the locust to determine the extent of this

interaction.

Ontoaenetic vs. Phvloaenetic Scaling. In this study I have used ontogeny
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as a model for the effect of body mass on the morphological and mechanical

design of the limb skeleton of Schistocerca. I found a developmental

programme that results in increasingly spindly legs, suggesting more easily

deformable beams, but the mechanical properties are adjusted to produce

elastically similar tibiae. I believe that this provides information about the

mechanical design of jumping animals, but is ontogeny a justifiable model for

the effect of body size? Is it fair to assert that the ontogenetic scaling observed

in locusts demonstrates mechanical design principles? If it is, then we would

expect to find similar scaling in other jumping animals.

It seems significant that the morphological scaling relationship reported

here, while different from phylogenetic comparisons, is so similar to the

ontogenetic morphological changes seen in the jack-rabbit (ie. tibia length —

tibia diameter 121 for locust, tibia length a tibia diameter13° for Lepus, Carrier,

1983). Also interesting is Carrier's observation that material stiffness and second

moment of area of the metatarsal bones increase with the first power of body

mass. This indicates that the flexural stiffness is increasing with the second power

of body mass, faster even than the 1.53 power observed for locusts.

It is tempting to suggest that the similarity in Schistocerca and Lepus

ontogenetic scaling is demonstrating a developmental strategy that is adopted

generally by jumping animals. However, there is an important difference in the

development of locusts and jack-rabbits that points to a potential danger in

using ontogenetic observations to examine the effect of body size. This

distinction lies in comparing animals that are not functionally similar. Both adult



locusts and adult jack-rabbits hop or leap as their mode of locomotion, but

whereas juvenile locusts hop (Gabriel, 1985a), juvenile jack-rabbits prefer not to

(Carrier, 1983). Carrier (1983) has reported that the neonate jack-rabbits (<300

grams) are 'unsteady' locomotory performers, relying on crypsis to avoid

predation. Over 600 grams, however they have developed good locomotor

performance, and readily resort to jumping when startled. Whatever the

pressure is that has resulted in the developmental programme in jack-rabbits,

it is not the need to be a functionally adequate jumper over the entire

ontogenetic range of body size. A jack-rabbit achieves high locomotor

performance over only the final four fold range in body mass, while the locust

achieves high performance, in terms of distance covered, at points within each

instar over a 200 fold range in mass (Gabriel, 1985a). Interestingly, locusts start

each instar as poor jumpers (Gabriel, 1985a, Queathum, 1991) with relatively soft

cuticle (Fig. 2.9). Over the following 24 to 48 hours the cuticle stiffens by

approximately an order of magnitude and their locomotor performance

improves. Thus, it appears that locusts go through developmental changes

within each instar that are similar to those that the rabbit goes through over its

entire lifetime. In a sense, the rabbit's development is composed of a single

"instar", while the locust's development is composed of functionally competent

individuals that come in six different sizes. Since the post-24 hour individuals of

each instar represent functionally similar locusts of different sizes, I feel confident

that the scaling relationships reported here are providing important insights into

the design of jumping animals.
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Design in Jumping Tibiae. It is appropriate, therefore, to attempt to

explain the observed skeletal scaling in the context of the locust's locomotor

strategy. As Bennet-Clark (1977) points out, as animals get bigger their

acceleration in jumping decreases, so that dynamic, mass-specific loading in

jumping is decreasing at the same time that the relatively static accelerations

encountered in standing or walking are increasing. The increasing slenderness

of the tibiae may be a response to falling accelerations produced in the jump

of large animals compared to small ones. If larger locusts produce less

acceleration than small ones, then their longer limbs may be an adaptation to

increase the time that their feet are able to do work on the ground. Adult

locusts of 3.5 grams body mass produce approximately 20 g's of acceleration

(Bennet-Clark, 1975), while adult fleas (Spylopsyllus cuniculus) of 0.45 milligrams

produce accelerations of over 135 g's (Bennet-Clark & Lucey, 1967). Locusts

tibial morphology may be following a programme that is designed to

accommodate declining accelerations encountered with increasing body mass,

rather than body mass per se. Therefore, scaling relationships that are

attempting to explain the mechanical design programme relating morphology

and body mass make predictions in a direction opposite to that seen in locusts.

Counter to this argument, however, Scott and Hepburn (1976) have suggested

that small locusts do not produce larger accelerations than adults. They report

a constant relationship of approximately 10 g's of acceleration in several

African grasshoppers, as well as through the ontogenetic sequence of Locusta

migratoria. None of their observations seems to be as large as the 20 g's
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reported by Bennet-Clark (1977) for adult Schistocerca gregaria. It would,

therefore, be of value to know explicitly how the accelerations developed

during the jump change from small to large locusts.

An alternate explanation for the morphological programme may lie in a

re-interpretation of the function of the exoskeleton. Schmidt-Nielsen (1984)

suggests that skeletons are rigid structures that act as either support beams or

lever arms to be acted on by muscles to provide movement. Two observations

in this study indicate that perhaps the locust tibial skeleton is acting not so much

like a rigid lever arm, but rather as an elastic energy storage device. From

equation 2.1 (arreanged to describe a cantilever) and a peak acceleration of

20 g's (see above), the ground reaction force for a 0.003 Kg adult locust will

produce a deflection at the end of the tibia on the order of 3 mm, or about

13% of the tibia length. In fact Brown (1963) has stated that some of his high

speed films show the tibiae bending during jumps. The energy required to

deform a linear spring is equal to one half of the product of the deformation

and the force applied, which in this case is 1.2 mJ of energy for both legs

together. If we incorporate a cuticular resilience of 92%, then approximately 1.1

mJ of energy are returned as elastic recoil from the tibiae during the jump.

Bennet-Clark (1975) has reported that an adult female Schistocerca gregaria

requires about 11 mJ for a jump. Thus approximately 10% of the total energy

of the jump is recovered from energy stored in the tibiae. The relative increase

in tibial spindliness with increasing size may represent an attempt to create a

more deflectable beam, and therefore, a larger capacity energy reservoir, as
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the peak accelerations are falling during ontogeny. Additionally, the high

resilience values of 90 - 93% for tibial cuticle (Fig. 2.10) indicate that the

material's properties are well matched to an energy storage function.

These observations suggest that it is more appropriate to think of locust

tibiae as bending springs rather than simple rigid levers. This use of energy

storage seems significantly different from other systems previously examined in

that it does not act as a momentum collector, capturing kinetic energy from a

muscular contraction in a previous stride as potential spring energy to be

recovered as kinetic energy in the following stride. Instead the spring energy

is stored and recovered in the same stride, not unlike the model proposed for

primary flight feathers in pigeons (Pennycuick and Lock, 1976). Why then store

it when mechanical hysteresis will only decrease the amount of muscular energy

that does any useful work in locomotion? It may turn out that the energy stored

in the tibia early in the force impulse in the jump is stored at a time when the

mechanical advantage of the muscle-apodeme-tibia lever system is high, but

the ability for the locomotor system to do work on the ground is low, and

energy can be stored in the spring. That energy could then be returned later

in time within the same loading event when the mechanical advantage of the

muscle-apodeme-tibia lever system is low (Bennet-Clark, 1975), but the ability

to do work is high. A useful metaphor for this type of design may be an archer's

compound bow where eccentric cams alter the mechanical advantage of the

bow on the arrow. When a loaded compound bow is released the force

continues to rise as the arrow accelerates, producing higher velocities and



longer distances than a traditional bow where the force falls as the arrow is

accelerated. It may prove that the tibial-springs are utilizing changes in

mechanical advantage in the same manner, maximizing take-off velocity and

as a result trajectory distance. This possible basis for a design strategy will be

examined in more detail in chapter five.



CHAPTER 3.

SCALING MODULUS AS A DEGREE OF FREEDOM.

INTRODUCTION 

In chapter two we learned that the scaling of external dimensions of the

locust's legs does not predict the scaling of the mechanical behaviour of the

legs in bending. The flexural stiffness of the tibiae scale in a manner that is

similar to predictions based on the elastic similarity model, but the legs' external

dimensions do not. So there is an 'uncoupling' between the morphology and

the mechanical properties of the legs. It was speculated that this uncoupling

could be the result of two events. Either the second moment of area (I) of the

legs could be related to the external dimensions in ways that are not obvious,

or the material stiffness (E) of the cuticle could be changing to provide an

additional degree of freedom in the design of the skeleton in accommodating

increasing body size.

With respect to compensation, it is possible that the modulus of the

cuticle material is altered to accommodate changes in morphology of the limb

segment in order to maintain an elastically similar flexural stiffness. Certainly, the

modulus increases during the immediate post-moult period of scleritization due

to dehydration (Hepburn and Joffe, 1974a, Vincent and Hillerton, 1979, Vincent,

1980). Indeed, it may be that the material properties of the cuticle are different

at different ages. Hepburn and Joffe (1974b) have suggested, however, that

the cuticle of Locusta migratoria maintains a similar stiffness in tanned fifth instar

and adult femoral cuticle. They suggest that the ratio of stiffness to mass is a

constant for tanned cuticle across instars, and that this is a response to a
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constant ratio of load developed in a jump to body mass across the instars

(Hepburn and Joffe, 1974b). If the tanned cuticle of Schistocerca has the same

modulus independent of age, then the design strategy that results in

increasingly spindly legs in locusts must be fundamentally different than that

observed for Lepus.

It is also possible that the distribution of cuticle material changes across

instars, resulting in a change in I that is not reflected in a change in the

externally measured diameter. The formula for I is
('max in tension

I y2 ciA (3.1)J, 
Y max in compression

where dA is the increment of cross-sectional area located a distance y away

from the neutral axis, a line through the centre of mass of the cross section

normal to the bending moment (Gordon, 1978) (Fig. 3.1). The importance of this

relation is that material away from the neutral axis contributes greatly to the

stiffness of the test piece. Because the cuticular segments of locusts are thin

walled cylinders, a small adjustment in the distribution of material on the inside

of the cross-section of a locust leg could impart large changes in mechanical

properties that are not easily inferred from measurement of external dimensions.

The sensitivity to changes in internal material distribution is not necessarily true

for the thick-walled bones of terrestrial vertebrates. Certainly, endocuticle is

added after moulting within each instar (Neville, 1975), although it is not clear

if material is added in a manner that would alter the relationship between the

leg diameter and I. It is also not clear that accumulations of endocuticle

contribute to changes in the mechanical properties of the tibiae. At apolysis
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Figure 3.1.

A diagram of a beam of irregular cross-section to show the calculation

of the second moment of area (I). The dotted line shows the neutral axis for

bending loads applied in the vertical direction. The neutral axis passes through

the centre of gravity, or centroid, of the cross-section. I is calculated as the

integral of the incremental amounts of cross-sectional area (dA) weighted by

their distance from the neutral axis squared (y2). This calculation was performed

on video images by first identifying the centroid of the section, then summing

the number of super-threshold pixel elements in each raster line weighted by

the distance of that line from the centroid in raster lines squared. These values

for each raster line were then summed across all of the raster lines in the cross-

section.



• Neutral Axis

y max in tension

y 2dA
y max in compression



(ca. 1-2 days before moulting, Queathum, 1991) there is a reorganization of the

endocuticular material that involves an enzymatic digestion of the endocuticle

(Zacharuk, 1976), presumably decreasing the second moment of area.

However, I observed no decrement in flexural stiffness within any instar that can

be correlated with the occurrence of apolysis (Fig. 2.9).

The accumulation of endocuticle also does not explain how changes

might be mediated across instars. Gabriel (1985b) reported that the

metathoracic tibia's cuticle thickness in the anterior direction relative to the

lateral direction maintains a constant proportion across the juvenile instars, but

increases by 50% in adults. This differential thickening could contribute to

changes in I that are not reflected in external diameter. However, it is not

known to what extent endocuticle accumulation is responsible for the increase

wall thickness seen in adults, or why the discontinuity in wall thickness between

all of the juvenile instars and the adults is not reflected in the flexural stiffness.

What Gabriel's data do suggest is that if I is being adjusted to maintain the

observed relationship between El and body mass, it is not, in juvenile instars at

least, being accomplished with simple changes in wall thickness. Rather, there

are probably changes in cross sectional shape that are producing changes in

I.

In this chapter I examine this uncoupling explicitly by measuring the

second moments of areas of the same legs that I tested in chapter two and

tease apart the relative contributions of material stiffness (E) and distribution of

material (I) to the scaling of flexural stiffness (El).



METHODS AND MATERIALS.

Specimens used in this study were a sub-sample of the same specimens

used in chapter two. Therefore, methods for animal husbandry, morphological

measurement and mechanical testing are exactly the same. Specimens for

measurement were chosen to represent the range of body masses covered in

the life of the locust. Twenty-one first and second instars were chosen to

represent small locusts, seven fourth instars were used to provide intermediate

samples, and sixteen adults were used to provide values for the large animals.

Additionally, fifty-six fifth instar samples were used to show how the changes in

second moment of area occur within an instar. Individuals from the first day of

each instar were eliminated from the analysis of scaling to make comparisons

only between individuals that were felt to be functionally similar.

Following three-point mechanical testing described in chapter two, test

pieces were placed in 37% formaldehyde solution for fixation and stored for

later embedding and sectioning. Each tibia was dehydrated in an alcohol

series and embedded. The technique used to produce cross-sections of the

locust legs was different in the large and the small specimens. First and second

instars' legs were embedded in paraffin and sectioned with a microtome at a

thickness of 20 gm. Older locusts' legs were embedded in araldite. Each

araldite block was sectioned at 800 pm with a bone saw. These 800 pm thick

sections were epoxied to a glass slide and thinned to 0.005" (1.27x1 0-4 m) with

alumina sand paper of increasing grit size. The surfaces were then polished with

600 grit polishing paper. Optical imperfections in the surfaces of the specimens
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were filtered out by placing a drop of immersion oil on the section and then

covering with a glass coverslip. Sections used for measurement were chosen

from the approximate mid-shaft location on the tibia and had no distortions of

profile associated with spurs. The cross-sections of the tibia were observed with

a compound microscope fitted with a video camera. The labour intensive

nature of this process resulted in the relatively small subset of the legs tested in

chapter two being used in the analysis of second moment of area.

Images of the legs' cross-sections were captured from the video signal

with a video frame grabbing computer interface (PIP 1024B, Matrox Electronic

Systems Ltd., Dorval, Quebec, Canada) and stored in computer memory.

Editing and analysis of the video images was accomplished with the V video

image processing system (Digital Optics Ltd., Aukland, New Zealand) on a PC-

type computer. Each 256 greyscale level video image was transformed into a

binary image by manual detection of the perimeter of the entire cuticle and

then the exocuticle alone and then setting a threshold greyscale level that

defined the leg cross-section against the background. The perimeter of the

endocuticle was produced by arithmetically subtracting the image of the

exocuticle from that of the entire cuticle. The V software then integrated each

of the video images to calculate the second moment of area of the cross

sections that represented the entire cuticle, the exocuticular component, and

the endocuticular component for each leg that was successfully sectioned.

Measurements of tibiae diameters of tibiae sections showed less than a

1% difference from values reported for the same specimens in chapter two.
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Dimensional changes that resulted from the histological process were, therefore,

ignored.

The image analysis software computes the second moment of area with

the following summation:

= Ey Ex (y-y°)2 dA

The image analysis software performs this integration numerically as the sum of

pixel elements of a defined grey-scale level, weighted by the square of their

distance from the neutral axis in raster lines for each raster line (E r). The values

are then summed over all the raster lines from the location of the centroid out

to the margin of the section (E y). Also mentioned previously, material at the

margins of the cross section contribute greatly to the stiffness of the test piece.

As such, orientation of the non-circular cross-sections, both in the mechanical

testing and in the measurement of I, can have significant effects on the results.

To control for the role of orientation, a sub-sample of images were printed as

binary images. This sub-sample of images was recollected with the video image

analysis equipment and I was calculated as the neutral axis was rotated

through a series of orientations from +90° to -90°.

RESULTS

Within Instar Changes in I^The time course of changes in flexural

stiffness for the sub-population of locust legs used in this study are demonstrated

in figure 3.2. E'l averaged a low value of 9.78x10 7 Nm2 on the first day of the

instar, and increased by about 30 fold by the second day. Thereafter, E'l
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Figure 3.2.

The relationship of the log of flexural stiffness and age within the fifth

instar. Data points are mean values and standard errors of the mean. Age is

reported as days within the instar.
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Figure 3.3.

The relationship of second moment of area (I) for the exocuticular (x),

endocuticular (o) and entire cuticle components (0) and age within the fifth

instar.



remained relatively constant at a value of approximately 4.13x10 -5 Nm2 .

The relative contributions of the cuticular components are shown in figure

3.3. Values of I for the exocuticle alone had a relatively high mean value of

3.60x10-15 m4 on the first day of the fifth instar and remained close to this value

for the remainder of the time spent in this instar. The endocuticular

component started out at a low mean value of 1.95x10 -16 m4, but

increased asymptotically until approximately day five where it attained a mean

value of 8.61x10 -15 m4. The values of I for endocuticle on the first day of the fifth

instar had a large variance as one of the samples had almost no measurable

endocuticle. Examination of the actual cross-sections of the tibiae suggested

that immediately after the moult there was no measurable endocuticle, and

those samples that were taken on the first day that contributed to the non-zero

estimate of endocuticular I reflected the uncertainty in measurement of age

(+/- one half day).

Significantly, there appeared to be no detectable breakdown of the

endocuticular material that could be correlated with apolysis on or about day

five. However, it was observed that after day five there was a clear separation

of the endocuticle from the underlying epithelial layer. Indeed, in some samples

it was also possible to observe the next stage's tibia folded up within the lumen

of the tibiae, indicating that the events that are associated with apolysis and

the production of the next stage's exoskeleton had occurred without reducing

the second moment of area of the endocuticular material.

The time course of changes in I for the entire cuticle is also plotted in

figure 3.3. As this parameter is in fact the arithmetic sum of the I calculated for

each of the components, it demonstrates a small increase from a mean value

of 4.38x10 -15 m4 on day one to a mean of 1.22x10 -14 m4 on day three and then
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remains fairly constant for the remainder of the instar.

Scaling In the sample of locust legs used in this chapter the flexural stiffness

of the legs scaled to body mass raised to the 1.505 power (SE = 0.030, r 2=0.966).

This slope is not significantly different from the slope of 1.532 (t5=0.342, df. = 513,

p<0.05) for the entire sample reported in chapter two. This indicates that the

data used in this analysis represent the population as well as do those in

chapter two.

Figure 3.4 shows the scaling relationships for the second moment of area

for the various components of the cuticle with increases in body mass. I of the

exocuticular component of the tibiae scaled to body mass raised to the 1.090

power (SE = 0.026, r2=0.952). I of the endocuticular component scaled to body

mass raised to the 1.258 power (SE = 0.031, r 2=0.949). I, calculated for the entire

cuticle, scaled to body mass raised to the 1.195 power (SE = 0.027, r 2=0.957).

By normalizing the measured value of El from chapter two by the

calculated value if I for both of the cuticular components we can estimate

what the modulus of elasticity, E', is for the tibiae. Figure 3.5 shows the scaling

relationship of E' with increases in body mass. E' scales to body mass raised to

the 0.311 power (SE = 0.033, r2=0.511). This slope was significantly greater than

a slope of zero (t5=9.541, df.=89, p>0.05).

Values of E' ranged from a low value in first instars of 3.9x10 8 N/m2 to a

high value in adults of 1.6x10 m N/m 2. The estimated value of E' for adults is very

similar to the value of 9.4x10 9 N/m2 (960 kg/mm 2) reported by Jensen and Weis-

Fogh (1962).

Orientation of Neutral Axis^The shape of the tibia cross-sections are not
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Figure 3.4.

The relationship of the log of second moment of area (I) for the

exocuticular (x), endocuticular (o) and entire cuticle components (El) and the

log of body mass. The equation of the regression of exocuticular I on body

mass was y = -14.569 + 1.090 x X (F5 = 1738.74, d. = 1, 89, r2 = 0.9523). The

equation of the regression of endocuticular I on body mass was y = -14.283 +

1.258 x X (F5 = 1611.19, df. = 1, 89, r2 = 0.9488). The equation of the regression

for the entire cuticle's I on body mass was y = -14.092 + 1.195 x X (F 5 = 2016.63,

df. = 1, 89, r2 = 0.9568).
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Figure 3.5.

The relationship between the log of tensile modulus (E') and the log of

body mass. The equation of the regression E' on body mass was y = 9.596 +

0.311x X (F, = 91.040, d. = 1, 89, r2 = 0.5113). E' was calculated for the entire

cuticle treated as a homogeneous and continuous structure, see text for

discussion.
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Figure 3.6a.

Example cross-section from a fifth instar locust meta-tibia. The top of the

picture is the anterior direction. For scale, the diameter of the section in the

anterior-posterior direction is 2.523 mm.

Figure 3.6b.

Example of section shown in figure 3.6a processed for calculation of I for

the entire cuticle. The inner and outer margins of the image in figure 3.6a have

been defined manually, and the area of the section has been assigned a single

grey-scale value. The image analysis software then performs the calculation on

the image, summing over all the pixels that are of a pre-defined grey-scale

level.

Figure 3.6c.

The same section as in figure 3.6a & b with the margins defined only for

the exocuticle.

Figure 3.6d.

The same section as in figure 3.6a, b & c with the margins defined only for

the endocuticle.
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circular or even elliptical. They form a very characteristic shape that imparts

potentially important mechanical behaviour. Figure 3.6a shows a representative

cross-section from a fifth instar locust's tibia. The relatively circular, posterior

margin and relatively thicker walled corners on the anterior laterai margins are

very characteristic. The necking that produces the concavity at approximately

the one quarter to one third point from the anterior to the posterior margin co-

occurs with a membranous connection that spans the lumen of the tibia.

Immediately after a moult when the cuticle is relatively soft, this membrane may

provide a tensile stay that prevents the tibiae's cross-sections from becoming

circular until the cuticle hardens.

Figure 3.7 shows how the value of I for the cross-section of six legs

changes as the neutral axis is rotated through a range of angles from +90° to -

90° . Individual legs show a local minimum of I along the anterior-posterior axis,

with I increasing by as much as 3% with a rotation of 5° to either side. The

average behaviour shows a more modest increase in stiffness as the neutral axis

is rotated through + 5° of 0.4%. The average values for I only drop by an

average value of 4.54% when rotated through + 20° . This is contrasted with an

ellipse of similar aspect ratio where I falls by 6.40% (Fig. 3.8).

So far, I have talked about cross sections that were free of any

morphological feature that was associated with spurs, but spurs do exist and

their contribution to the mechanical behaviour of the tibiae must be

considered. The presence of spurs produces a bilaterally asymmetrical distortion

in the relatively circular perimeter of cuticle along the posterior margin of the

tibiae cross-sections. The distortion takes the form of a bump that puts more

material away from the neutral axis on alternating sides of the tibiae.

Presumably, this distribution of material increases I and shifts the orientation of
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Figure 3.7.

Plot of the relationship between I and the orientation of the neutral axis

for a sample of six legs (■) and their average value at each orientation.
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Figure 3.8.

Comparison of the effect of orientation of neutral axis on I for an example

leg and an elliptical cross-section of similar aspect ratio.



Figure 3.9a.

Example cross-section from the same leg as shown in figure 3.6a with the

base of a spur projecting from the posterior margin of the section.

Figure 3.9b.

Example of section shown in figure 3.9a processed for calculation of I for

the entire cuticle in the same manner as in figure 3.6b.

Figure 3.9c.

The same image as in figure 3.9b, but flipped around its centre of gravity

so that a mean influence of the spurs on I on both sides of the leg could be

estimated.
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Figure 3.10.

Plot of the relationship between I and the orientation of the neutral axis

for an average leg with spurs on both sides. Data calculated for each

individual cross-section (dotted lines) are superimposed on the average

behaviour (solid line) of a leg with spurs on alternating sides along its length.

-83-



maximum stiffness toward alternate sides of the tibiae. This should result in an

average behaviour that has a deeper and broader local minimum of stiffness

along the anterior-posterior axis. Figure 3.9a is a figure of a tibial section with

a spur on one side. Figure 3.10 is the relative I of a compOsite section

generated by reflecting the section in figure 3.9b through its centre of gravity

along the anterior-posterior axis. The neutral axis is then rotated through the

same range of orientations as figure 3.7. The composite behaviour should

represent the average behaviour of the tibia along its length. This plot shows

that there is a modest local minimum of stiffness at the anterior-posterior axis.

This might suggest that the spurs play an important mechanical role in

amplifying any built-in stability to the loading of the tibiae in bending.

DISCUSSION

Within Instar Changes in I The data on how the values of I change

within the fifth instar seem somewhat equivocal on the question of the relative

contributions of the two cuticular components toward whole tibia stiffness. Over

the first three days the rapid increase in endocuticle matches the rapid increase

in flexural stiffness. If the material stiffness is constant over that period these

results would suggest that the stiffness demonstrated by the whole tibia resides

largely in the endocuticular component. Over the final five days of the instar

the flexural stiffness is more reflective of changes in I in the exocuticle,

suggesting that the exocuticle is making the most significant contribution to

flexural stiffness. The data of Hepburn & Joffe (1974a) indicate that during the

first 24 to 36 hours the cuticle, which over that time period is almost entirely

exocuticle, increases in modulus by almost an order of magnitude. If so then

we can not really depend on the correlation between I and El to provide

-84-



information on the relative contributions of the cuticular components to tibial

stiffness. From information provided by Zacharuk (1976) and Queathum (1991)

on the effect of apolysis on the endocuticle, it was anticipated that changes

in the endocuticle would be uncorrelated with changes in El (see introduction

this chapter). The fact that this was not the case prevents me from being able

to discriminate the contributions of the cuticular components based on my data

on fifth instar locusts. For this reason, in estimating the elastic modulus I will

consider the exocuticle and endocuticle as homogeneous and continuous

components as did Jensen and Weis-Fogh (1963). As a result the modulus

values that are estimated represent lumped parameters for entire cuticle, and

the stiffness for each component may be different.

Scaling In chapter two we observed that if I is a function of the fourth

power of the diameter of the limb segment, then I should scale to body mass

raised to the 1.244 power. Our observation that I for the entire cuticle scales to

body mass raised to the 1.195 power is not significantly different from that

prediction (ts= 1.862, df.= 91 ,p < 0.05). This provides an answer to our original

question of the nature of the observed uncoupling of morphology and

mechanical properties. The locusts are achieving elastically similar flexural

stiffness by scaling the material stiffness of the cuticle, rather than applying an

allometric scaling to I by changing the relative distribution of material in the

cross section. This conclusion is reflected in figure 3.5 where E scales to mass

raised to the 0.311 power.

Of all the scaling relationships reported in this thesis, the relationship

between E' and body mass has the poorest statistical strength. This is perhaps

not surprising, as the variance in these data are the product of variability in the
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mechanical measurement of El and the variability in estimating I. Still the

relationship is highly significant (Fs = 91.04, df. = 1,89) as a descriptor of the data.

Therefore, I feel reasonably sure that the elastic stiffness of the cuticle material

is being treated as a scaled commodity in the design of the locusts' legs.

Because the modulus is changing in functionally similar hoppers the

scaling of modulus for these legs seems different from that for Jackrabbit bones

(Carrier, 1983). In the locust the modulus is scaling to provide an additional

degree of freedom in adjusting morphology to accommodate increasing loads

with increasing size. Given a design strategy that tries to keep a constant

deformation per unit length with increasing size, the non-mineralized skeleton of

the locust can adopt morphology that is not predicted by the elastic similarity

model. So now we know how the uncoupling between morphology and

mechanical behaviour is accomplished, but it remains to be seen why it is

uncoupled. Indeed, this may presuppose that the morphology demonstrated

in the locust leg is an adaptation to a specific design issue. In chapter five I will

offer three hypotheses for why the locust might have adopted the scaling of the

morphology of its legs that it did.

I do not know the nature of the changes that I have observed in E'. The

cuticle is a fibre-reinforced composite material (Neville, 1975) and there are a

number of ways these materials can be modified (Wainwright et al., 1976). It

would be interesting to investigate whether the animals are altering the protein

polymer that glues the chitin crystalline fibres together, by altering hydration or

cross-link density perhaps, or if the crystalline fibres are themselves altered, by

geometry (ie. aspect ratio) or volume fraction for instance.

For the endocuticular and exocuticular components of the cuticle I is

scaled to body mass differently. I have treated the cuticle as homogeneous in

-86-



material properties resulting in a preliminary conclusion that the modulus is a

scaled commodity. An alternative hypothesis is that the modulus for each

component is different and scale independent, and that the amount of each

component is varied to produce the average behaviour that is observed for

entire tibiae. If this were true, we could estimate how different in modulus the

components would have to be to produce the lumped behaviour. I believe this

alternative hypothesis can be rejected by considering the limits to this design

strategy. The hypothetical limiting cases are where one or the other

component has a stiffness of zero and the scaling of the average system is

strictly a reflection of the scaling of I of the non-zero stiffness component.

Specific to this case we need to know if we assume moduli for the cuticular

components, the inner of which's I scales to body mass 1258 and the outer of

which's I scales to mass' °90, can we get the entire structures El to scale to

mass 1.53
? The answer would seem to be no. Even if the modulus of the

exocuticle were zero, the entire cuticle's El would only scale to body mass 1258 .

Therefore, even if we accept the assumption of zero stiffness for the exocuticle,

which seems unreasonable, we are forced to conclude that the modulus of the

cuticular components is altered in response to changes in body size.

Orientation of Neutral Axis The observation in figure 3.7 & 3.8 that orientation

has so little effect on the value of I near orientations around the anterior-

posterior axis suggests the interesting possibility that the cross-sectional shape

of the tibiae provides a built-in stability to the limbs. One can imagine that

some fraction of the jumps that a locust makes in its lifetime are made off

morphologically complex surfaces. As a result it is also possible that the loads

encountered during the jump impulse will not be applied collinearly with the
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anterior-posterior axis. If the tibiae has a more elliptical cross-section, then any

off-axis loading will tend to flex the leg in the medial lateral axis—a direction in

which I, and therefore relative stiffness, is reduced by approximately 50%.

However, the marginally greater roll off with angle of rotation of I for the ellipse

relative to the locust leg demonstrates the subtle degree of this stability.

The influence of spurs on the flexural stiffness of the tibiae may be more

significant than the composite behaviour estimated in figure 3.10 might suggest.

Individual sections with spurs have no local minimum of stiffness around their

maximal stiffness values which themselves are oriented about 25° off of the

anterior-posterior axis. At each segment of the length of the leg that has a spur

the primary loading will be off the axis of greatest stiffness. As a result each little

piece of leg will be subject to flexion in the direction of the anterior-posterior

axis, lateral to its direction of greatest stiffness. The magnitude of the flexion in

this small length of leg will itself be small because of the large dependence of

deflection in a beam on length (Eq 1.8). Further, distal to each small, laterally

loaded segment of leg will be a similar small segment loaded in the opposite

direction because it has a spur on the other side. It may turn out that this

alternating pattern of laterally flexed, short beams produces greater stability

than the composite section will suggest.

I would prefer not to draw too strong a conclusion from the analysis of the

shape of this length-averaged or composite cross-section for two reasons. First,

it is not clear that the mechanical properties of the tibial wall are homogeneous

between the inter-spur and spur cuticle; and second, it might be purely

coincidental that a spur which may be developed as an anti-predator

mechanism also influences mechanical behaviour in an externally evaluated,

positive manner. It is possible that the presence of spurs acts to produce stress
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concentrations that would compromise any improvement in stability derived

from their presence. Bertram and Biewener's (1988) model for pre-bend in

vertebrate long bones was constructed around such a compromise. The bones

are predicted to be pre-bent only when the value of loading predictability

outweighs the cost inherent in increased bending loads. Without more detailed

knowledge of the consequences of spur formation on the local loading of the

cuticle, I am unprepared to commit to an interpretation of the mechanical role

of the spurs in stabilizing the bending deformation of the tibiae.

Indeed, the preceding discussion supposes that the spurs are serving

primarily a mechanical role in stabilizing bending of the tibiae in jumping, but

it is likely that their design has responded to pressures related to defence from

predation rather than to jumping. Therefore, to fully analyze their design it

would be necessary to balance the design constraints operating on both

bending beams and sharp spines. Because I do not have sufficient quantitative

information to fully evaluate these potentially competing design criteria I am

unprepared to express an opinion about the mechanical role of the spurs in leg

bending.



CHAPTER 4.

HOW HARD DO LOCUSTS JUMP?

INTRODUCTION 

In chapter two the scaling of limb length was shown to produce relatively

longer and slimmer limb segments in larger locusts, an observation that was at

variance with any existing scaling model (McMahon, 1973, 1984, Bertram &

Biewener, 1990). It was suggested that the observed scaling relationship

between limb shape and body size might represent a design feature associated

with a jumping mode of locomotion. In order to evaluate this hypothesis we

need to know how the mechanical loading of the limb segments is related to

size across the same ontogenetic sequence.

Previous work of other investigators has provided some of this information,

but the literature contains conflicting information about the relationship

between force production and body size in jumping locusts. Bennet-Clark

(1977) showed that the distance travelled as the result of a jump is directly

proportional to the square of the velocity produced in the jump impulse and

that velocity is the result of an acceleration developed over a time interval.

However, the accelerations produced in the jump are inversely proportional to

the leg length of the jumping animal. The functional significance of this

relationship is manifest in the relatively longer legs of jumping animals to reduce

loading in the leg skeleton, and the relatively higher accelerations in smaller

animals because of their absolutely shorter legs. For typically observed

accelerations he cites one and a half gravities (g's) for larger vertebrates, such

as leopards and antelope, all the way up to 200 g's for the 0.45 mg rat flea



(Bennet-Clark & Lucey, 1967), with mean accelerations of about 24 g's for first

instar S. gregaria and about 10 g's for adults (Bennet-Clark, 1977). For adult

locusts peak accelerations of about 18 g's are reported (Bennet-Clark, 1975).

In contrast, Scott and Hepburn (1976) reported that across the

ontogenetic sequence of Locusta migratoria there is a relatively constant peak

acceleration of about 10 g's produced in the jump impulse. They also report

that this relationship is demonstrated in a sample of six different species of

locusts and grasshoppers, indicating that this relationship is consistent and

general. Further, they observed a consistent relationship between adult,

femoral cuticle stiffness and the forces in jumping. They concluded that

constant acceleration produced in jumping was functionally significant in

matching the changes that occur in cuticular stiffness over the same

developmental increase in body mass. Thus, the mechanical properties of the

locomotor structures are appropriately matched to the loads they encounter

in normal use.

Gabriel (1985a) has reported that over the first four instars, Schistocerca

gregaria jump approximately the same distance, but the jump distance

increases by about 300% in adults. Gabriel's data suggest, then, that across the

juvenile instars take-off velocity is similar. If the analysis of Bennet-Clark (1977)

is correct, then as the accelerations fall in larger animals, the duration of force

production must increase to produce the same take-off velocity (ie. the integral

of acceleration over time) across instars. However, if Scoff and Hepburn (1976)

are correct in that acceleration is a constant of 10 g's, then the duration of the

force development is also a constant regardless of leg length. These two

predictions would not seem to be compatible, and without a resolution it is

difficult to attempt any functional analysis of the morphological design program
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described in the previous chapters.

It is also important to evaluate the functional significance of the jump

performance to the animal. Others have suggested that how fast an animal

accelerates is potentially adaptive in that prey that produce high accelerations

are difficult to follow and catch (Emerson, 1978). As a result, the performance

parameter that is thought to be the most functionally significant and has

received the closest scrutiny is the acceleration produced in the jump. Emerson

(1978) has proposed alternative models that either regulate acceleration or vary

acceleration with increasing body size to discriminate strategies for predator

avoidance in frogs. I will make the case that peak acceleration is not the

critical design issue in the jump of the locust.

In this chapter I have attempted to quantify the loading experienced by

the legs of the locust during the jump impulse. Using miniature force plate

techniques I have measured the force, acceleration, velocity, displacement,

kinetic energy and power output during ontogenetic development as well as

the trajectory angle in the jump impulse of locusts on each day of life from the

first day after emergence from the egg until full sexual maturity (day 45). The

wide range of body mass covered by the locust has allowed me to determine

scaling relationships for performance and to compare these relations with

existing models. The data provide clear evidence that the jump plays different

roles in the locomotor performance of the locust at different times its life history.

The flightless, juvenile instars are jumping to achieve a functional distance and

the adult locusts are jumping to achieve a velocity critical to the initiation of

flight.



METHODS and MATERIALS 

Animal Husbandry. Animals were sampled daily from a breeding colony

of African Desert Locust (Schistocerca gregaria) maintained at the Department

of Zoology at the University of British Columbia. The animals were kept at a

constant temperature of 27° C, humidity of 56%, and photoperiod of 13:11 (L:D),

and fed a diet of head lettuce and bran. A sample of five individuals was

collected each day beginning on the first day following emergence from the

egg until approximately two weeks after achieving sexual maturity (ca. 45

days).

Five jumps from each individual were collected, for a total 25 jumps for

each day in development. Each individual was weighed to the nearest 0.1 mg

after its final jump. Occasionally, the jump event produced un-interpretable

force traces due to transient, large amplitude noise. Video images made

during several of these jumps indicated that this was the result of slippage

between the tarsus of the locust and the surface of the platform. Any jumps

that showed evidence of transient forces were eliminated from the data set.

As a result, there are varying sample sizes for each day. Adult locusts were

allowed to jump with their wings intact and unencumbered. Control

experiments where the wings of adults were held closed with cellophane tape

were not significantly different in terms of peak force production from those

where the wings were free to open (t s = 0.067, df. = 14, p<0.05).

In this chapter the term impulse is used in the same sense as that in

Bennet-Clark (1975) in that it does not refer to the exchange of momentum

explicitly, but rather the interval of the jump that can be characterized by

ground reaction forces above one gravity.
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Figure 4.1a.

Diagram of the force plate used in this study viewed obliquely from

above. This view demonstrates the relative positions of the windows cut into the

hollow box tubing. The arrows show the relative orientation of the forces that

each set of strain gauges perceives; v, vertical forces; h, horizontal forces; f,

fore-aff forces. a. position of the force sensing strain gauges.

Figure 4.1 b.

Diagram of force plate viewed obliquely from below. This view shows the

relative positions of the strain gauges (a), balsa wood platform (b), the base

plate to which the force plate was attached (c), the machine screw that held

the platform in position (d), and the lead wires from the fore-aft gauge (e) and

horizontal gauge (f). The scale bar represents 2 cm.
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The Force Plate. Figure 4.1 is a diagram of the force plate used in this study.

Vertical, horizontal and lateral forces produced in the jump of the locust were

measured simultaneously with a force plate similar in design to that described

by Full and Tu (1990), but modified to achieve higher sensitivity and frequency

response. For instars one through four a balsa wood platform measuring 1.5 x

0.75 x 0.15 cm was bonded to the end of a series of hollow, brass box-beams.

For fifth instars and adults a larger, circular balsa wood platform measuring 2.5

cm in radius and 0.25 cm thick was bonded to the pre-existing platform to

provide a larger surface from which the larger locusts could jump. Within one

centimeter radius of the centre of the platform the position of the locust resulted

in a less than 1% change in the force output of the device. Jumps outside of

this region were eliminated from the data set. The force sensing elements were

similar to those described by Full & Tu (1990) in that semiconductor strain gauges

(type SR4 SBP3-20-35, or SBP3-05-35, BLH Electronics, Canton, Mass.) were

bonded to the outer surfaces of double cantilevers produced by machining

windows in the sides of the box-beams. The mass of the platform was reduced

to improve frequency response by having only one set of double cantilevers for

each of the three principal components of force application. The resonant

frequencies ranged from a high of 1.543 KHz for the most distal cantilever pair,

to a low of 527 Hz for the most proximal pair. Force sensitivity was enhanced

by machining the leaves of the double cantilever down from a thickness of

0.015" (3.81x10 -4 m) to a thickness of 0.007" (1.17x10 -4 m). This modification

produced a sensitivity of 12.60 V/N for the most proximal gauge and a sensitivity

of 28.30 V/N for the most distal gauge.

Mechanical crosstalk between these gauges was low, but to further

minimize crosstalk between the vertical and lateral gauges a small piece of
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telescoping box-tubing was welded into the lumen of the beam between the

two sensitive elements. Serial calibrations in various orientations in three

dimensions indicated that crosstalk interactions where a proximal gauge

influenced a distal gauge produced less than a 1% change in the distal gauge

output. These were deemed insignificant. Of the three potential interactions

in the other direction only the interaction of the most distal gauge with the most

proximal proved to affect the proximal gauges output by more than 3% and this

was addressed in the analysis by a recursive loop in the analytical process that

estimated the actual output of the proximal gauge. At no time did noise

exceed 5% of the signal magnitude. Therefore, no signal filtering was

employed.

The resistive elements in the strain gauges formed half of a bridge circuit

whose DC output was amplified and collected at a rate of 5KHz on three

channels of a digital, storage oscilloscope (Data Precision, Data 6000A Universal

Waveform Analyzer, Analogic Co., Peabody, Mass., USA), and transferred to an

IBM-PC type computer via serial communications for later analysis.

Jumping Arena. All jumps were performed under a clear, plexiglass dome

enclosure. The dimensions of the enclosure were 0.45 m wide by 0.33 m deep

by 0.58 m tall. The force plate was placed in the centre of the floor of the

enclosure on a sheet of Sorbothane, vibration dampening rubber. A balsa

wood surface measuring 0.25 m by 0.15 m, was constructed with a hole the

same size and shape of the force platform. This surface was placed in the

enclosure so that the force plate became a small portion of a larger, relatively

continuous surface from which the locusts could jump. For each jump event the

locust was placed on the force sensing portion of the wooden surface and

allowed to jump freely. Reluctant individuals were enticed to jump with loud
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noises or abrupt movements in their visual fields. No electrical stimulation was

employed. The possibility that this enclosure inhibited the performance of the

locusts was not investigated.

Data Analysis. The three digitized signals were resolved via vector

addition into two arrays: one contained the resultant force vector magnitude,

and the other an angle to the horizontal for each 200 ps sample. A baseline of

zero Newtons was established by calculating the arithmetic average of the first

83 data points (ie. one period of a 60 Hz noise signal) in each force array with

the locust standing on the force plate. Thus, the vertical force records are

reported in excess of one body weight. The beginning (or ending) of the jump

impulse was defined by the force rising above (or falling below) a threshold

level that was 2.5% of the maximum force. Force values were normalized by

body mass to produce an array representing the instantaneous acceleration.

Each acceleration array was integrated numerically to produce the velocity

developed by the centre of gravity for each moment in the jump impulse. The

initial value of velocity was assumed to be zero, and the velocities were

integrated to calculate the displacement of the centre of gravity at each

moment in the jump impulse. Additionally, the product of the ground reaction

force and velocity arrays gave the power produced in the jump. The values of

end-impulse velocity and body mass were used to calculate the kinetic energy

(KE) produced in the jump with the familiar formula: KE = lb mass.velocity2 . The

horizontal distance covered by the jump was estimated using the ballistic

equations reported by Bennet-Clark (1981, 1984).

Statistics. Except where noted, all statistical tests were chosen based on

criteria presented in Sokal and Rohlf (1981). All relationships were judged

significant at the 0.05 probability level. All statistical tests were performed using
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Figure 4.2.

Sample output for a 0.5007 gram fourth instar individual showing the time

course of force, velocity, movement and power production. Calculations of the

various measures of performance are described in more detail in the text.



the STATGRAPHICS (STSC, Mass, USA, Ver. 5) statistical software package.

RESULTS 

Figure 4.2 is a representative data set from a single jump of a 0.5007 g

fourth instar locust. The force envelope shows the relatively slow development

of force and the rapid fall in force. The entire impulse lasted 32.8 milliseconds,

and peak force was achieved at approximately 27 milliseconds, or

approximately 82% of the impulse duration. In both first instars and adults the

time of peak force shifted later in the impulse duration. This resulted in a

relatively more rapid fall in force following the peak force output. Thus, there

are subtle differences in the shape of the acceleration envelope that have

consequences for the estimation of performance that will be discussed below.

This force production profile is not consistent with the optimum described by

Bennet-Clark (1977) for minimizing the mass of the skeleton. He suggested that

force should be produced at a constant level during a jump impulse so that

large magnitude forces do not produce intolerably high stresses in the skeleton.

Ker (1977) has pointed out that this force envelope is the consequence of the

coupling of an unloading, elastic energy storage device with rapidly decaying

force, and a mechanical lever system that is increasing its mechanical

advantage to take advantage of that decaying force.

Within each impulse the angle that the force vector makes with horizontal

(ie. the trajectory angle) did not seem to change significantly or systematically.

The standard error of the trajectories within a single jump impulse had a high

value of 1.6 degrees in first instars and a low value of 0.3 degrees in adults.

Inspection of the arrays of trajectory angles indicated that the data were not

stationary, with the majority of the variation in the data occurring early in the
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jump impulse when the forces were low and the vector addition of the relatively

noisy force arrays produced relatively high variability of the calculated angles.

After the approximate one quarter point in the impulse the forces are higher,

making the signal to noise ratio larger, and the variance of the trajectory angles

are even smaller than calculated for the entire time series. This means that it is

a fair approximation to assume constant trajectory angle and integrate the

acceleration and velocity arrays as scalar rather than vector variables to

calculate velocity and distance moved by the centre of gravity respectively.

It also suggests that there is a large degree of stability built in to the design of

the jumping mechanism of these locusts. The time course of the jump impulse

(ca. 15 milliseconds in first instars) makes it unlikely that a neural reflex is capable

of modulating muscular control over the jumping mechanism to make fine

adjustments to trajectories during the impulse.

There is a sexual dimorphism in body mass that develops in the adults,

where females become 50% to 75% heavier than males. Analysis of covariance

indicated that for juvenile instars there was no significant effect of sex beyond

the effect of body mass on any of the variables examined (ANCOVA, F s = 3.133,

df. = 1, 447, for peak acceleration on body mass, the relationship most closely

approaching significance.) As such, the data for both sexes were pooled for

all juvenile instars for the purposes of performing regressions. In the case of the

relationship between movement of the centre of gravity and body mass there

was no significant effect of sex beyond the effect of body mass for the entire

life history (ANCOVA, Fs = 2.737, df. = 1, 874). Therefore, the sexes were pooled

for this entire data set. The distinction between juvenile and adult locusts in this

context is not completely arbitrary, as the jump itself may have different

functional significance in different stages of the life history (see below).
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Figure 4.3a.

The relationship between body mass to the age of the locust. Data are

reported in means and standard errors of the mean in all three parts of this

figure. A regression fitted to the Von Bertalanfify relation produced the following

description of the data: Mass = 3.468(1-e' °59Age)3 (Fs=927.8, df=2,43, r2=.937). The

data for adults represents both sexes, and as a result, the varience for the adult

data is larger than for preceeding stages.

Figure 4.3b.

The relationship between measured ground reaction force to the age of

the locust. A regression fitted to the Von Bertalanffy relation produced the

following description of the data: Force = 2.141 (1 -e-.°19 Age)3 (Fs=964.0, df=2,43,

r2=.955).

Figure 4.3c.

The relationship between peak acceleration to the age of the locust.

These data are reported as means and standard errors of the means for the

peak acceleration achieved within individual jumps rather than simply dividing

the values in figure 3b by those in figure 3a.
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Both the relationships of body mass and peak ground reaction force as

functions of age describe sigmoid curves. Body mass increased in a logistic

way before levelling off near the end of the fifth instar (Fig. 4.3a.). Fitting a von

Bertalanffy growth model to the relationship between body mass and age

(Pitcher and Hart, 1982) resulted in a relationship not significantly different from

that reported in chapter two for a similar series of individuals (F s= 9.187E-5, df.=1,

76, p>0.05). Ground reaction force also increases in a logistic manner, although

more slowly, and it does not begin to level off until after the moult into

adulthood (Fig. 4.3b.). A similar growth model fit to the data on ground

reaction force results in a period of exponential increase in force that is less than

half of that for body mass ((e" 057'Age),„ > (e-oirAge)force, Fs=14.808, df.=1, 86,

p<0.05). This is manifest in a relatively rapid increase in body mass occurring

around an age of 20 days, while the force increases rapidly around day 30. This

seven to ten day lag between the age of rapid increase of mass and the age

of rapid increase of force means that normalizing force by body mass produces

a NUN-shaped relationship between acceleration and age (Fig. 4.3c.).

To analyze allometric relationships log transformations were employed to

convert curvilinear, exponential relationships into linear ones. This has allowed

the convenient comparisons of the scaling exponents that have been

transformed into characteristic slopes. Data from individuals on the first day of

each instar seemed to be systematically distinct from the rest of the data from

that instar. It would seem to be the result of the physiological events involved

in moulting that also result in low cuticular stiffness and resilience immediately

after moulting (Hepburn and Joffe, 1974, chapters two & three). To prevent the

transient events of cuticular stiffening from biasing the regressions, and to make

comparisons between data collected from individuals that we believe to be

-104-



functionally similar (chapter one), data from individuals on the first day of each

instar were excluded in calculating the slopes of the scaling relationships.

The relationship between log of peak ground reaction force and log of

body mass (Fig. 4.4a.) shows a relatively linear region from the smallest

individuals up to the fifth instars, but adults fall above this relation. The

regression of the log of peak force on the log of body mass, including both

juvenile and adult data, produced the relationship: Log Force = 0.914•Log Mass

+ 1.678 (SE = 9.89E-3, r2 = 0.880). The slope of this relationship appears to be

similar to that reported for Locusta migratoria (Scott & Hepburn, 1976).

However, an analysis of variance of the residuals showed a significant lack of

fit (F, = 22.6775, df. = 1, 260, p<0.05), and the regression was deemed an

inappropriate description of the data (Draper and Smith, 1981). The regression

of the data consisting entirely of flightless juveniles had a slope of .732 (SE =

7.69E-3, r2 = 0.925) and ranges from a low value of 1.99 mN on the first day of

emergence from the egg to a high of 166 mN in fifth instar individuals.

The relationship in figure 4.4b. between log of peak acceleration and log

of body mass demonstrates an apparent functional relationship over the first

five instars, but a pronounced increase in performance in adults. The values

range from approximately 25 g's in first instars to about 5 to 7 g's in fifth instars.

The data at larger sizes, where the accelerations are once again in the 20 to

25 g range, are composed entirely of winged adults. As in the relationship

between force and mass, a significant, non-random distribution of the residuals

in the regression of log of acceleration on log of mass for the entire data set (F s

= 22.7327, df. = 1, 260, p<0.05) made this an inappropriate description of the

data. As such, the regression of acceleration on body mass was performed

only on flightless, juvenile individuals. The relationship had a slope of -0.269 (SE
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Figure 4.4a.

The relationship beteen the log of peak ground reaction force and the

log of body mass. Each point is the result of one recorded jump like that shown

in figure 2. These data exclude points collected from individuals on the first day

after each moult. The equation for the regression calculated for juvenile

individuals is Y = 0.992 + 0.732 x X (F s=9045.75, df.=1, 735, r2=.9249). The dashed

lines are the 95% confidence limits of the regression line.

Figure 4.4b.

The relationship between the log of peak acceleration produced in each

jump and the log of body mass. The equation of the regression line calculated

for juvenile individuals is Y = 0.989 - 0.269 x X (F s=1213.52, df.=1, 735, r2=.6228).

The dashed lines are the 95% confidence limits of the regression.

Figure 4.4c.

The relationship between the log of jump impulse duration and the log of

body mass. The equation of the regression line calculated for juvenile

individuals is Y = 2.448 + 0.277 x X (F s=4409.27, df.=1, 735, r2=.8571). The dashed

lines are the 95% confidence limits of the regression.
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= 7.72E-3, r2 = 0.623).

As the animals grow the duration of the force impulse increases in length

from a low value of 12 milliseconds in first instars up to a high value of 65

milliseconds in fifth instars, before falling to 20 to 30 milliseconds in adult locusts

(Fig. 4.4c.). These data also show a consistent relationship over the first five life

history stages before an inflection at the transition to adulthood. The regression

of the log of jump impulse duration on the log of body mass, over the flightless

portion of the life history, had a slope of 0.277 (SE = 4.18E-3, r2 = 0.857), which,

while opposite in sign, is not significantly different in magnitude from the slope

of the relationship between acceleration and body mass (t s = 2.913E-8, df. =

1,470, p>0.05). This means that as the animals grow through the first five instars

they produce lower accelerations, but they develop that acceleration over a

longer time.

By compensating falling accelerations with increasing impulse durations,

juvenile instars produce roughly the same take-off velocity in the jump

independent of age or size (Fig. 4.5.). The flightless, juvenile instars are leaving

the ground at approximately 1.2 to 1.3 meters per second, while the adults are

achieving about 2.5 meters per second. The values for adults show good

agreement with the value of 2.63 metres per second based on the jump

distance of a 3 gram female locust estimated by Bennet-Clark (1975). For

juveniles, the regression of the log of take-off velocity on the log of body mass

has a slope of 0.053 (SE = 5.25E-3, r 2= 0.138) (Fig. 4.5b.). While this slope is

statistically different from zero (ts=10.832, d.f.=736, p<0.05), it only resulted in an

21% increase in take-off velocity over the one hundred and seventy fold range

of body mass covered in the juveniles. In the adults the accelerations

produced are as high as those produced by the first instars, but the legs are
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Figure 4.5a.

The relationship of velocity produced in the jump to the age of the locust.

Data are reported as means and standard errors of the mean. The first day of

each instar is marked with an *. The dotted horizontal line marks the 2.5 m/s

minimum flight speed observed by Weis-Fogh (1956).

Figure 4.5b

The relationship between the log of velocity produced in the jump and

the log of body mass. The equation of the regression line calculated for juvenile

individuals is Y = 0.277 + 0.053 x X (F5=117.33, df.=1, 735, r2=.1377). The dashed

lines are the 95% confidence limits of the regression line.
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approximately five times as long (Chapter two), so both the acceleration

distance and impulse duration are greater than in first instars. As a result, the

take-off velocities are about double those of the previous instars (Fig. 4.5a.).

Observation of newly moulted adults indicated that for several day's they do not

fly. They spend their time hanging from vertical surfaces basking or flapping

their wings without leaving the ground. It may be that their wing cuticle requires

some time to dry and harden before it becomes sufficiently stiff to provide an

adequate lifting surface. Alternately, the observation that they are flightless for

several days into the adult stage may reflect the fact that relatively low

velocities are achieved in the first six days of adulthood compared with those

after day 30.

- The kinetic energy of the jump, calculated at the end of the jump

impulse, follows a similar time course as force production, with a large increase

in energy in the adult stage (ca. day 30) compared with the juvenile stages (Fig.

4.6a.). The values ranged from a low of 0.004 millijoules in a first instar locust to

a high of 15.99 millijoules in an adult. The time course of jump energy within the

fifth instar follows a parabolic trajectory, where the energy production is similar

on the first and last day of the instar. This is similar to that described for the sixth

instar in Schistocerca americana (Queathem, 1991). However, none of the

earlier instars show this timecourse. In the fourth instar of S. gregaria the energy

rises on the first two days of the instar and then levels off for the remainder. It

may be that the more rapid development in S. gregaria relative to S.

americana (-35 days to sexual maturity vs. -60 days, respectively), and the

shorter time spent within each instar masks the changes in the cuticular energy

transmission mechanisms to which Queathem attributes the changes in

performance that she observed.



Figure 4.6a.

The relationship of kinetic energy produced in the jump to the age of the

locust. Data are reported as means and standard errors of the mean. The first

day of each instar is marked with an *.

Figure 4.6b

The relationship between the log of kinetic energy produced in the jump

and the log of body mass. The equation of the regression line calculated for

juvenile individuals is Y = 0.253 + 1.114 x X (Fs=11238.60, df.=1, 735, r2=.9386). The

dashed lines are the 95% confidence limits of the regression line.



0 10^20^30^40^50

I 1,

-5 -4.5 -9 -3.5 -3 -2.5 -2

Age (days).

Log Body Mass (kg).

-113-

0.012

0.002

- 1.5

-5.5

0.0 10

0.008

0.006

0.009

-2.5

- 3.5

- 9.5

o

I-



The scaling relationship between log kinetic energy and log body mass

(Fig.4.6b) had a form similar to that for force and mass (Fig. 4.4a.). The

regression of the relationship for juvenile instars had a slope of 1.114 (SE = 0.011,

r2 = 0.939), which is significantly different from a slope of 1.0 (t s = 10.831, d.f.

= 735, p <0.05). The adult locusts produced approximately four times

as much kinetic energy as the regression for juveniles would have predicted for

animals of adult body mass.

Power developed during the jump follows a time course similar to that for

force production (Fig. 4.7a.). This is not surprising as power is the product of

force, which follows a sigmoid time course, and velocity which is relatively

constant at the separate juvenile and adult levels. The values for peak power

output range from 1.105 mW in first instars to 1.379 W in adults. The values for

average power output in the jump impulse are about one third of the peak

values. For the juvenile instars, peak power output scaled to body mass raised

to the 0.772 power (SE = 0.014, r2 = 0.836) (Fig. 4.7b). Values for average power

output scaled to body mass raised to the 0.830 power (SE = 0.014, r2 = 0.862).

The difference in these slopes is significant (F, = 8.578, d.f. = 1, 1136, p < 0.05),

and represents a subtle change in the shape of the force production envelope

with increasing peak acceleration, as mentioned previously.

By normalizing the power output of the jump by the amount of jumping

muscle, we can calculate the specific power output of the jumping muscles

and estimate the degree to which elastic energy storage must be employed

to amplify the maximal muscular power output of approximately 450 W/Kg of

muscle (Bennet-Clark, 1975). Gabriel (1985a) has published values for the

proportion of body mass that is femoral, jumping muscle in the locust. She

highlighted a 50% increase in relative muscle mass between the fourth instar
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Figure 4.7a.

The relationship of peak power (o) and average power (0) produced in

the jump to the age of the locust. Data are reported as means and standard

errors of the mean. The first day of each instar is marked with an *.

Figure 4.7b

The relationship between the log of peak power (o) and average power

co produced in the jump and the log of body mass. The equation of the

regression line calculated for peak power for juvenile individuals is Y = 1.126 +

0.772 x X (Fs=2900.77, df.=1, 569, r2=.8360). The equation of the regression line

calculated for average power for juvenile individuals is Y = 0.789 + 0.830 x X

(Fs=3546.39, df.=1, 569, r2=.8617). The dashed lines are the 95% confidence limits

of the regression line.
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and adult stages. However, she did not specify the age within the instar that

these values represent. Additionally, there is quite a lot of variation in the values

for relative muscle mass in the juvenile instars, from a high value of 6.1% in first

instars to a low of 4.3% in the fourth instars, with no clear temporal trend. For

these reasons I have chosen to average her values for all of the juvenile instars

to produce a value of 5.56% of whole body mass that is jumping muscle for all

five juvenile instars, and use her value of 6.3% for adults.

The daily averages for peak, specific power output range from a low of

850 W/Kg of muscle in fifth instars to a high value of 5,200 W/Kg in the adult

stage (Fig. 4.8a.). However, individual jumps had values as high 11,600 and as

low as 250 Watts per Kilogram. These data agree well with those estimated by

Gabriel (1985a) based on distance travelled in jumping. It also suggests that on

occasion the power outputs of the jump (250 W/Kg) are well within the range

for maximal muscle power output (450 W/Kg, Bennet-Clark, 1975). Average

mass specific power output mirrors the data for peak power output at values

approximately one third less. If a trend exists, it seems that the specific power

output declines from a relatively high value in the first instars down to the fifth

instars before rising to the highest levels in the adults. For the juvenile instars,

peak, mass-specific power output scaled to body mass raised to the -0.228

power (SE = 0.014, r2 = 0.308) (Fig. 4.8b.). Average mass specific power output

scaled to body mass raised to the -0.170 power (SE = 0.014, r2 = 0.207). These

slopes were significantly different (F s = 8.578, d.f. = 1, 1136, p <0.05), but similar

to the analysis above, I feel this difference is a consequence of the shape of

the force production envelope.

Biewener (1989) has suggested that larger animals may reduce the

bending moments applied to their long bones relative to those in small animals

-117-



Figure 4.8a.

The relationship of peak mass specific power (o) and average mass

specific power (0) produced in the jump to the age of the locust. Data are

reported as means and standard errors of the mean. The first day of each instar

is marked with an *.

Figure 4.8b

The relationship between the log of peak mass specific power (o) and

average mass specific power (0) produced in the jump and the log of body

mass. The equation of the regression line calculated for peak mass specific

power for juvenile individuals is Y = 2.417 - 0.228 x X (Fs=253.69, df.=1, 569,

r2=.3084). The equation of the regression line calculated for average mass

specific power for juvenile individuals is Y = 2.079 - 0.170 x X (F5=148.09, df.=1,

569, r2=.2065). The dashed lines are the 95% confidence limits of the regression

line.
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by adopting more upright postures. It is possible that large locusts use different

postures immediately before a jump, and may go through different kinematic

motion during a jump relative to small instars. Such kinematic differences may

affect conclusions drawn from morphological and mechanical comparisons.

Figure 4.9 shows the relationship between the log of centre of gravity

movement during the jump impulse and log body mass. This relationship does

not seem to show the discontinuity between juveniles and adults seen in the

other measures of performance. The regression for the entire data set has a

slope of 0.378 (SE = 3.70E-3, r 2 = 0.885), which is not significantly different from

the slope of 0.375, for the relationship between the log of tibial length and log

body mass for these locusts (Fs= 0.0838, df.= 1, 1363, p < 0.05) (chapter two).

This suggests that the distance over which the acceleration is developed is a

constant function of leg length regardless of size or age. It also suggests that

if the jump impulse starts with the knee joint fully flexed, (and this seems

reasonable based on the anatomy of the catch mechanism (Heitler, 1974)),

then the jump is kinematically similar in small and large locusts, with no postural

scaling. Additionally, any discontinuity in performance at the transition to

adulthood, in terms of velocity or acceleration, is not the result of some

kinematic or postural feature of the jump mechanism, but is rather a reflection

of changes in the power generating mechanism.

From ballistics we can estimate the distance covered by locusts once

they leave the ground and become projectiles. Bennet-Clark (1975) presented

the following formula to predict the distance covered by a ballistic projectile:

d = v2 sin26 eq. 4.1.
9

where d is the distance covered, v is the take-off velocity of the projectile, 6 is

the angle from horizontal and g is the acceleration due to gravity. For a
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Figure 4.9.

The relationship between the log of the movement of the locusts' centres

of gravity during the jump impulse and the log of body mass. The equation of

the regression line calculated for juvenile individuals is Y = -0.676 + 0.355 x X

(F5=5339.12, df.=1, 735, r2=.8790). The equation of the regression line calculated

for all individuals is Y = -0.570 + 0.378 x X (Fs=10445.36, df.=1, 1360, r2=.8849).
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constant take-off velocity, therefore, projectiles will cover the same distance

over ground regardless of size. In general it is assumed that projectiles are

launched at 45°, which maximizes distance covered for a given take-off

velocity. Figure 4.10 is a plot of the mean trajectory angle of the jump as a

function of age. These data indicate that locusts are capable of taking off at

a wide variety of angles. On average, however, they leave the ground at

angles between 45° and 55°, but individuals in this study were observed to

adjust their trajectories between 15° and 90° to avoid obstacles in their paths.

Given the capability to adjust their trajectory over a wide range, it is difficult to

attach much significance to trajectory angles, but in general the trajectories

were above 45°. Figure 4.11 uses the data on trajectory angle, take-off velocity

and equation 4.1 to estimate the jump ranges of locusts on each day that they

were tested. The sensitive dependence of distance on take-off velocity is

reflected in the relatively constant distance travelled of 15 to 20 centimetres

over the juvenile instars and the three fold increase in jump distance in adults.

Bennet-Clark and Adler (1979) have suggested that as much as 10 to 20 % of

the kinetic energy generated in the jump of the locust may be consumed in

aerodynamic drag during the air-borne phase of the jump. Therefore, my

estimates of jump distance should be viewed as overestimates, particularly in

the case of the smaller sized locusts.

DISCUSSION 

Scaling of Locomotor Performance. The large data set produced here

for the jump of these functionally and morphologically similar animals that vary

in body mass by more than two orders of magnitude allows us to address

questions of how locomotor performance scales in hopping locusts. How might
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performance parameters such as force, acceleration or velocity scale with

body mass? Hill (1950) has provided a rationale for relating morphological

dimensions to force, energy and power output by muscles and I have used this

rationale to generate quantitative scaling predictions. All of the predicted

scaling exponents that are generated, as well as the observed values for

Schistocerca gregaria are summarized in table 4.1.

If muscle force is the ultimate power plant for the locust jump, accepting

the energy storage role of the apodeme and other connective tissue structures

(Bennet-Clark, 1975; Gabriel, 1985b), and the force produced by a muscle is a

function of its cross sectional area (Hill, 1950), then we may be able to predict

the scaling of force if we know how the muscles' dimensions scale. If we

consider a generalized exoskeletal case where the cross-section of the muscle

is proportional to the square of the diameter of the limb segment that houses

the muscle, then we can make predictions about the scaling of force

production. In the geometric similarity model (GSM) diameter scales to body

mass raised to the 0.333 power (McMahon, 1984). Therefore, force would scale

to mass raised to the 0.667 power (ie. mass 333 • mass 333 = mass 667), and

acceleration would scale to mass raised to the -0.333 power (ie.

mase67/mass 100° = mass' 333). The elastic similarity model (ESM), which predicts

that diameter will scale to mass raised to the 0.375 power (McMahon, 1973),

predicts that force production will scale to mass raised to the 0.750 power, while

acceleration will scale to mass raised to the -0.250 power. Similarly, the

constant stress similarity model (CSSM), which anticipates diameter scaling to

mass to the 0.400 power (McMahon, 1984), predicts mass scaling exponents of

0.800 and -0.200 for force and acceleration respectively.

Interestingly, velocity is predicted to be mass independent in each model.
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TABLE I. 

Exponents for allometric equations describing both morphological and

performance measures from models and those observed for Schistocerca

gregaria. All relationships are modelled by the form x a Mb where M is body

mass in kilograms. The quantity x is the parameter that is scaled as listed below,

and b is the scaling exponent.

Model Observed for
Scaled parameter GSM^ESM CSSM S. gregaria.
Morphology

Limb length .333t .2501 .200" .377
Limb diameter .3331 .3751 .400" .311

Mechanics
Flexural stiffness 1.333 1.500 1.600 1.532
'entire cuticle 1.195

Eentire cuticle 0.311

Jump Performance
Force .667th .750 .800 .732
Acceleration -.333 -.250 -.200 -.269
Velocity .000th .000 .000 .053
Energy 1.000t" 1.000 1.000 1.114
Power .667th .750 .800 .772
Specific Power -.333 -.250 -.200 -.288
Movement of centre

gravity

t^McMahon, 1973

.333 .250 .200 .378

It^McMahon, 1984
ttt^Hill, 1950
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Velocity in jumping animals is determined by the following relationship (Bennet-

Clark, 1977, eq. 5):

v = ^2s.a Eq. 4.2,

where v is take off velocity, s is the acceleration distance (a function of leg

length, Above and Fig. 4.9.), and a is the average acceleration produced in the

jump. Therefore, we can relate the scaling of velocity to the scaling of leg

length and acceleration. For each model, acceleration and leg length have

scaling exponents that are equal in magnitude, but opposite in sign. Therefore,

their product scales to body mass raised to the zero power and is scale

independent.

Unlike the scaling of velocity, energy is predicted to scale directly with

mass raised to the first power, but like the scaling of velocity it is model

independent. Energy is the product of force, the product of two diameters,

and distance, a length. So energy will scale directly with the volume of either

the muscle producing the force, or the spring that stored the force.

The scaling of power output during the jump can be predicted from the

scaling relationships between performance and body mass. Power is the

product of force and velocity. As we described above, velocity is predicted to

be scale independent by all models. Therefore, power output in the jump

should scale to mass raised to the same power as does force for each model.

So how do the models anticipate the observed relations for Schistocerca

gregaria? The observed scaling exponent for the dependence of peak force

production on body mass (0.732, Fig. 4.4a.) most closely approximates elastic

similarity; however, it proves to be statistically different from ESM's prediction of

0.750 (ts = 2.393, df = 735, 0.1>p>0.05). This scaling exponent for force
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production in locusts is intermediate to that estimated for vertebrate hoppers

from anatomical measures. Alexander et al. (1981) reported relationships

between muscle masses, muscle fibre lengths and body mass for a variety of

vertebrate hoppers. In all hind limb muscles reported, the mass of muscle

scaled very close to body mass raised to the first power. By employing

Alexander's (1977) method of estimating cross-sectional area of muscle I

estimated that the fibre areas of deep hind limb flexor muscles of these

vertebrate hoppers scaled to mass raised to the 0.65 power (similar to the

prediction of geometric similarity), while in the quadriceps group it scaled to

body mass raised to the 0.75 power (equivalent to elastic similarity), and in the

ankle extensor group it scaled to body mass raised to the 0.80 power

(equivalent to constant stress similarity). This suggests that within the

morphological design program that produces geometrically similar amounts of

muscle, these animals are increasing the muscles' force producing capacity per

unit mass. They are presumably accomplishing this by changing the muscle

fibre architecture, ie. increasing pinnation angle of the more distal limb muscles

relative to those more proximal. It is tempting to suggest that these animals are

adopting a distortive allometry (ie. ESM) that increases the cross-sectional area

of muscle in larger animals relative to small ones in a way that biases the

increase toward the distal end of the limb relative to the proximal end. It

accomplishes this, however, without increasing the relative mass of muscle at

the distal end of the limb, thus preventing an increase in the energetic costs of

accelerating and decelerating the limbs during locomotion.

The scaling exponent of peak acceleration as a function of body mass

( -0.269, Fig. 4.4b.) also is most consistent with elastic similarity, but again proves

to be different statistically from ESM's prediction of -0.250 Os = 2.471, df. = 735,
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0.1> p >0.05). The fact that the slope of acceleration on body mass differs from

the model prediction to the same extent as does the slope of the relation

between force and mass is not surprising as the acceleration data are

normalized force values. Thus, it seems that the relationships between force

production and body mass and acceleration and body mass are

approximating the elastic similarity model. The statistical differences observed

may reflect the influence of morphological scaling that produces longer,

relatively more slender legs in larger locusts (chapter two). Nevertheless, as

observed for the mechanical properties of the tibiae, the observed

performance (ie. force production) approximates ESM in spite of a

morphological program that deviates rather dramatically from elastic similarity.

All models predict mass independence for scaling of velocity in the jump,

but we observed that the velocity scaled to mass raised to the 0.053 power.

Where does this difference come from? The predictions are based on

assumptions about morphology, but data in chapter two show that locust leg

lengths scale to mass raised to the 0.377 power. Equation 4.2 allows us to

eliminate assumptions about morphology and predict how velocity should scale

given the scaling of leg length observed in S. gregaria. The square root of the

product of acceleration and leg length (eq. 4.2.) should scale to body mass

raised to the 0.054 power which is not significantly different from the observed

value of 0.053. This explains how the scaling of velocity arises, but it does not

seem to spotlight a design strategy per se that can explain why locusts produce

relatively more elongate legs as they increase in size. That is, we have no a

priori reason to anticipate a scaling exponent of 0.05.

The scaling slope of energy output that we observe in juvenile instars

(1.114, Fig. 4.6b.) is higher than the models predicted. It may be that the
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relatively larger output of energy seen in larger juveniles is a result of the

increased quality of the material that stores the energy prior to the jump.

Before the jump the energy is stored in the extensor apodeme and semilunar

process (Bennet-Clark, 1975), and during the jump the energy is transmitted

through the metathoracic tibiae to the ground (Brown, 1963). As such, the

cuticular springs form an energy transmission system. Data in chapter two

showed that the material resilience increases by approximately 20% from first to

fifth instars. If we assume that this increase in resilience is reflected in all of the

cuticular elements and adjust the amount of energy we measure in the jump

by the energy loss characteristics of the transmission, then we can estimate how

much energy was input to the system prior to the jump and how this quantity

scales to body mass. The estimated energy input to the transmission system

scales with body mass raised to the 1.08 power (F 5=10,129.02, df.=1, 735,

r2=0.932), which while closer is still statistically different from the prediction of 1.00

made by all the models (t 5=7.9997, df.=735, p<0.05).

Whereas each of the other measures of jump performance appear to

scale close to the predictions of elastic similarity, peak power output scales to

body mass in a manner most similar to the predictions of constant stress similarity

(0.800). It does so in a sensible way, however, as it is the product of force,

which scales approximately elastically (0.732), and velocity, which scales to

higher exponent than anticipated (0.053). As a result, power outputs scale to

body mass in a manner that is intermediate between the predictions of elastic

and constant stress similarity (0.772). Because power is calculated within each

impulse, the scaling exponent for power and body mass is numerically different

from that which might be predicted simply from taking the product of the

scaling relationships for force and velocity (ie. 0.732 + 0.053 = 0.785 vs. 0.772).
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This difference indicates that the shape of the force and velocity envelopes

contribute to the estimate of power produced in the jump. It also suggests that

our examination of the slopes of the energetic relationships are independent;

that we are not "boot-strapping" our data to compare the energy or power

output and body mass relationships.

Overall these results have generated a data set for jump performance

that is in the range of the predictions of models that are based on maintaining

scale independance of mechanical parameters. However, the data do not

absolutely match the predictions of any single model. Indeed, force produced

in the jump, the parameter whose scaling prediction follows most directly from

Hill's (1950) original assertion, scales in a manner closest to elastic similarity while

power output scales more closely to the predictions of constant stress similarity.

Has it been valid, or as suggested in chapter one, naive to doggedly compare

the data on jump performance with the predictions of the various models? Do

the violations of the models' theoretical underpinnings in the scaling of

morphology fatally compromise their utility?

If each scaling exponent that we observe can be explained by the other

measures of performance, then the data set will represent a single mechanical

package--an internally consistent strategy. In the data for locusts there is a

consistent strategy. A route to this conclusion is suggested by the scaling of

movement of the centre of gravity (Fig 4.9), which, as discussed above, is

directly reflecting the scaling of leg length. In discussing the scaling of each

measure of performance we have seen that there is a rational basis for the

statistical departures away from either similarity model in the context of force

production scaling in a manner that is close to, but different from elastic

similarity and the legs scaling in a manner that produces relatively longer and
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more slender tibiae in larger locusts. Thus, it is fair to say that the scaling of jump

performance seen in the locust is following a strategy that is separate from

either elastic or constant stress similarity, but is itself an internally consistent

package.

Clearly, the original assumptions of both ESM and CSSM are violated in

that leg morphology does not follow either model. Does this violation make it

inappropriate to compare the subsequent data on jump performance with

those models? I believe that the comparison is still useful for two reasons.

Clearly, we would not know whether the locust was demonstrating any

particular model unless we actually asked the question. More importantly

though, the results demonstrate that despite the unique morphological scaling,

jump performance is scaling in a mechanically functional manner. The fact that

the data are intermediate to the predictions of ESM and CSSM suggests that the

mechanical consequences of those strategies (ie. constant strain or constant

stress) represent real issues to which the design of the locusts' legs has

responded. These design issues have had to be dealt with in the context of the

observed morphological scaling, however, and this may have set constraints on

the proximity to which the scaling of jump performance can approach a model

such as elastic similarity.

I have asserted that elastic similarity is being approximated by the jump

performance of the locust, but is that reasonable in that no measurement

made so far is statistically elastically similar? My justification for referring to

elastic similarity in this context is the scaling of ground reaction force output.

Muscle force output is the most independent performance parameter that I

measured, in that predicting the scaling of force relies on the fewest

morphological parameters. It is also the parameter that scales most closely to
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elastic similarity. Acknowledging that the locust is not adopting elastic similarity

as developed by McMahon (1973) for vertebrate skeletal designs, it is

approximating in performance a design that keeps the normalized deflections

of a cantilever beam similar independent of size (ie. elastic similarity).

Acceleration and Design. Though we have not discussed the data for

jump performance in terms of life history strategies, predator avoidance has

been the context for previous analyses of jumping in locusts and anurans (Scott

and Hepburn, 1976; Emerson, 1978; and Queathem, 1991). In each case the

suggestion has been made that acceleration produced in the jump is the

critical performance parameter. In discussing jumping in anurans, Emerson

(1978) used scale independence of jump performance parameters to

discriminate models that associated specific measures of performance with

success in avoiding predation. She found that in Rana pipiens and Pseudacris

triseriata average acceleration was relatively scale independent over a 30 fold

range in body mass, while Bufo americanus showed a decrease in average

acceleration with increasing size. By this criteria the ontogenetic data on

locusts suggest that acceleration per se is not necessarily the key functional

performance feature, but rather the velocity developed in the jump is perhaps

more important. This suggestion is based on two observations. First, velocity,

which is relatively scale independent over the first five instars, rather than

acceleration, which varies four fold, is regulated by the developmental design

programme. While there seems to be a functional relationship between falling

accelerations and increasing body mass for juveniles, the duration of force

development in the jump seems to be compensating quantitatively for the fall

in acceleration to provide a relatively constant take off velocity. The scale
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independence of take-off velocity suggests that if selection has operated on

the jump performance of this locust, then velocity, or a consequence of

velocity, is the key performance parameter. Secondly, there seems to be an

unexploited potential to improve acceleration performance in flightless instars

that is exploited to some extent in adults.

Figure 4.12 provides a comparison of the accelerations produced in

jumping locusts with published values for the flea, Spylopsyllus cuniculus (Bennet-

Clark and Lucey, 1967), click beetle (Evans, 1971), the mediterranean fruit fly

larvae (Maitland, 1992), and the standing jump of the Kangaroo rat (Biewener

et al., 1988). If we perform a two-point regression between a value for the

average male adult locust and the flea (of all the animals reported in figure

4.12 these the flea and the locust are the ones that we know jump using similar

cuticular spring mechanisms), the slope turns out to be -0.2499. The slope of the

relationship between acceleration and mass predicted by ESM of -0.25 would

seem to describe the adult fleas and locusts even better than the slope of -

0.269 which describes the flightless locusts. The fruitfly maggot and kangaroo

rat both produce accelerations that lie very close to the regression based on

the performance of the flea and the locust. This suggests that the same

functional design issues that determine scaling relationships in flightless, juvenile

locusts act to determine the separate relationships for adult locusts and these

other jumping animals of widely different designs. Apparently the robust

predictions of ESM apply to these jumping animals generally, but the juvenile

locusts are able to get by (in an evolutionary sense) with about one third lower

accelerations per body mass than the heroic performance of the adults and

these other animals.

A feature of these relationships is that if elastically similar jumping animals
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Log of Body Mass().

Figure 4.12.

The relationship between the log of peak acceleration produced in

jumping and the log of body mass. This figure compares the data reported in

figure 4c with published values from other jumping animals. Data is presented

for the flea (o), Spylopsyllus cuniculus, from Bennet-Clark & Lucey (1967), the

click beetle (•) from Evans (1971), the mediterranean fruit-fly larvae (I•) from

Maitland (1992), as well as the standing jump of the kangaroo rat (•) from

Biewener et al. (1988) and the continuous hopping of the kangaroo (•) from

Alexander & Vernon (1975). The equation of the two-point regression made

between the data from the flea and average calculated for all of the adult,

male locusts had a slope of -0.2499, which seems indistinguishable from the

prediction of elastic similarity (-0.250).

-135-



increase in size and travel down the line relating acceleration with body mass,

there is a point where the accelerations fall to a level where the animal will

beunable to leave the ground in a jump, and the body mass where this occurs

will be an absolute limit to body size for a given jumping 'design'. Realistically,

a functional limit will occur before this point, as decreasing accelerations

produce slower and shorter jumps in the absence of spectacular compensatory

specializations of leg length to increase the interval over which acceleration is

developed. In any event, it seems that an animal that is elastically similar to

juvenile locusts could not continue to get larger indefinitely, and for larger

animals to jump they must move off the relationship between acceleration and

body mass for juvenile locusts and produce higher accelerations at a given size.

There seems to be two design strategies that could allow an animal to

move off of any of these relationships; either produce more force per unit body

mass (ie. increase the proportion of body mass that is jumping muscle), or

increase the efficiency of the energy transmission system in producing ground

reaction force. Gabriel's (1985a) data on locusts suggest that adult locusts

have increased the proportion of body mass that is jumping muscle to achieve

the high accelerations seen in the adults. Gabriel (1984) made the point

previously that in larger animals, where energy production capacity limits

jumping performance, increasing the relative investment in jumping muscle is

the most effective way of improving jumping performance. Clearly 40 kg.

Kangaroos are not 'elastically' similar to adult locusts (Fig. 4.12.), and it has been

observed that as much as 8 to 10 % of the body mass is invested in hind leg

muscle of a kangaroo (Alexander & Vernon, 1975) compared to 4.5 to 6 % in

locusts (Gabriel, 1985a). Also, kangaroos are storing kinetic energy from one

stride and using it in a following stride while locusts use only energy that is stored
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during a single 'stride'.

It seems significant that the data for standing jumps in kangaroo rats and

mediterranean fruit fly larvae lie so close to predictions based on adult locusts

and fleas. In both cases the animals use quite different jumping mechanisms

from the locust. Indeed, the fruit fly maggot is legless. In continuous locomotion

the Kangaroo rat is known to use elastic energy stored from previous strides to

increase the accelerations and energy output of a jump (Biewener et al., 1981),

but in single jumps from standing starts they are not known to use stored spring

energy. It is therefore interesting to see the data for a standing jump in the

Kangaroo rat so close to the prediction made by adult locusts and fleas (Fig.

4.12.). This relation may reflect common design features in very different

animals. It could be that for a given relative investment in jumping muscle

each animal gets a similar acceleration output independent of morphological

design. The limits to this suggestion are demonstrated by both the click beetle,

which has a similar investment in muscle as the locust, but much higher relative

accelerations (3800 mist , Evans, 1971), and the fruit fly maggot, which has

similar accelerations to the locust, but much larger investment in jumping

muscle (16%, Maitland, 1992). It remains to be discovered if this relationship,

which suggests that this variety of jumping designs are elastically similar, is other

than a coincidence.

In going from the line for juvenile locusts in fig. 4.12 to the line for adults

the relative muscle mass increases approximately 20%, but the kinetic energy

output goes up by four fold (Fig. 4.6b.). Does the 20% increase in relative

muscle mass between fourth instars and adults explain the increase in

performance observed at the transition to adulthood? Where might additional

energy come from? Gabriel (1985b) made the observation that the distance
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covered as a ballistic projectile increased by 300% between fourth instar

hoppers and adults. She explained that the increased energy produced in the

jumps of adult locusts was the product of relatively stronger muscles applying

more force to stiffer energy storage devices, and therefore storing more energy.

She noted that adult extensor muscles' pinnation angle increased and relative

muscle fibre length decreased relative to fourth instar locusts, indicating that the

muscle was capable of producing more force per unit volume. She also

showed that the adult apodeme increased in cross-sectional area by 440%,

presumably increasing in stiffness relative to the fourth instar hoppers, and the

semilunar process increased in measured stiffness by six fold (Gabriel, 1985b).

She felt that the increased stiffness of the spring combined with the increased

force output of the muscles could account for a large part of the increase in

specific energy seen in the jumps of adults. This analysis, however, does not

seem to describe the situation in locusts adequately. Gabriel reports functional

cross section of the tibia extensor muscle as 5.7 mm 2 and 18.9 mm2 for the fourth

instar and adult respectively. When the area is normalized by the body mass

being accelerated, the values are the same for the different age classes (20.40

mm2/gate wear vs. 20.58 mm2/gAduits). Similar forces applied to more easily

deformed springs could also store relatively larger amounts of energy, but this

also does not appear to be the case. Gabriel's data show that the force

producing cross-sectional area of muscle is applied to a relatively larger cross-

sectional area of apodeme in the adults compared to the fourth instars (1781

mm2 muscle/mm 2 apodeme4th ,„tar vs. 1092 mm 2 muscle/mm 2 apodemeAdults).

This results in the apodeme springs seeing 37% less force per unit spring area in

adults. What we have, therefore, are similar forces applied to relatively stiffer

springs resulting in smaller deformations of the springs and smaller amounts of
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energy stored in adults relative to fourth instars. We are still left wondering

where the additional energy comes from in the adults' jumps. It seems very

likely that Gabriel's suggestion that the juvenile muscles are not working as hard

as they are in adults is correct (Gabriel, 1985; Gabriel & Sainsbury, 1982).

The Ontogenetic role of Jump Performance. Bennet-Clark (1977) showed

how body size plays an important role in jumping design. Chiefly, this results in

the jumps of small animals being limited by their ability to generate power

output, while the jumps of larger animals are limited by their ability to generate

kinetic energy. Gabriel (1984) analyzed these ideas and predicted that small,

power limited animals can achieve better performance by either getting larger

or increasing their leg length. In the largest jumpers she felt that improvements

in performance could optimally be achieved by increasing the fraction of the

body mass that was committed to jumping muscle. Indeed, she reported that

across the ontogenetic increase in body mass in locusts, jump performance

improved by increasing body size up to the size of fifth instars. In adults,

however, jump performance was improved by increasing the relative mass of

jumping muscle by approximately 50% over that in fourth instars (Gabriel,

1985b).

These results indicate that the increase in jump performance seen in

adults does not represent a change associated with body size, but rather a

change in life style. It is no mere coincidence that the increase in jumping

muscle occurs at a point where the mode of locomotion switches from hopping

to flying. I suggest that one strategy may not appropriately describe the

development of the jump performance. Rather it may be more reasonable to

develop one framework to analyze the juveniles, and another to analyze the
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adults; frameworks that are constructed to account for what may be entirely

different ecological roles of the jump at different points in the life history. In

small locusts we see an increase in leg length that is rapid relative to the

increase in body size (chapter two) as a strategy for increasing jump

performance. The increase in jumping performance in adults reflects a switch

to flight, and the demand that flight makes for higher performance jumps.

Indeed, this distinction has already been alluded to in discussing locust jump

performance data (Scott & Hepburn, 1976; Gabriel, 1983; Queathem, 1991). This

interpretation seems fundamentally separate from the switch to larger

investment in jumping muscle mass in larger jumping animals that Gabriel (1983)

anticipates. If I was keen to shoe-horn my observations into Gabriel's paradigm,

then I might say that the locust exploits the increasing leg length strategy up to

the point where the locomotor strategy changes and there is a demand for a

fundamentally different, and stronger jump. If this represents a strategy, then

I view it as a locomotion mode change issue, rather than a body size issue per

se.

The ontogenetic increase in body mass and increase in peak force

production are the result of a clear difference in developmental timing. The

relatively early period of rapid mass increase would seem to indicate that for

young, small locusts getting larger is a higher priority than increasing force

production to maintain high accelerations in the juvenile instars. Once the

locusts have achieved a large adult mass, the delayed period of rapid increase

in force production results in relatively high forces that produce large

accelerations quantitatively similar to those observed in first instar individuals.

Acceleration is dependant on the amount of force produced by the

jumping muscles and the body mass being accelerated. So the adults are
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producing 25 g's of acceleration by producing more force per unit body mass

than the flightless fifth instars of similar body mass (Fig. 4.12.). If survivorship

required as high acceleration performance as possible, then why wait until

adulthood to increase the force output of the jumping machinery?

Acknowledging the teleological danger in asking 'why" type evolutionary

questions, it still seems that the high acceleration per body mass seen in adults

could be achieved in juveniles with benefits to predator avoidance by

advancing the developmental timing of jumping muscle growth. Certainly it

has not been necessary to invoke predator avoidance as a 'strategy' for the

jump in the flea. Therefore, having high peak-acceleration as a strategy for

predator avoidance seems questionable. If the jump of the locust produces

one velocity, and therefore distance, in flightless individuals, and another

velocity in winged ones, what then is significant about these two levels of

performance? In flightless, juvenile instars the jump data predict a distance

travelled of approximately 20 cm, a figure that is intermediate between the

maximum performance of 30 cm and average of 11 to 14 cm for fourth and

fifth instars observed by Gabriel (1985a). Regardless of the specific distance,

the interpretation is the same: there appears to be a functional distance that

is important to the hopping locust. To test this hypothesis it would be important

to look for some characteristic dimension in the locust's environment that

correlates with the jump distance. It may be that there is a pattern to the

spacial organization of the vegetation that forms the food source for the

hoppers that has a characteristic spacing of 20 to 30 centimetres.

In adults the important parameter may not be distance travelled, but

rather take off velocity itself. It is significant that the two fold increase in take

off velocity occurs at the point in the life history where the primary mode of
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locomotion switches from hopping to flying. Weis-Fogh (1956) reported that

locusts flying in wind tunnel experiments stop flying when the wind speed falls

below two and a half meters per second. It seems unlikely that the minimum

observed flight speed and the take off velocity in adults being the same is

simply a coincidence (Fig. 4.5a). Because locusts use unsteady-state

aerodynamics during take-off it is difficult to estimate what their minimum flight

speed might be a priori. However, it seems reasonable to estimate what effect

the increased take-off velocity might have on thrust production using actuator

disc theory. With actuator disc theory we need not be specific about the

anatomy or the mechanics of the thrust generating mechanism. For actuator-

discs the thrust produced is proportional to the mass flux of fluid moving through

the actuator times the velocity of the fluid. The quantitative relationship is

T = p Sd v (V + 1/2 V), Eq. 4.3.

where T is the thrust produced by the actuator-disc, p is the density of the fluid,

Sd is the disc area--calculated as a circular disc swept out by wings of a known

length, V is the forward velocity of the actuator relative to the fluid and v is the

increment of velocity added to the fluid as it passes through the actuator disc

(Blake, 1980). Figure 4.13 is a plot showing real solutions of equation 4.3 for v in

terms of varying values of V. The data in figure 4.13 suggest that as the

actuator disc moves through the fluid at higher velocities (V), the increment of

additional velocity (v) falls rather quickly. For a 3.2 g female locust with 5.5 cm

long wings to take off from a standing start, the wings must generate an air-flow

of 2.62 m/s to generate sufficient thrust to balance body weight. By jumping off

the ground at 2.5 m/s at an angle of 55° to horizontal, the additional velocity

that the wings must generate falls to 1.12 m/s - a decrease of 57%. Were the

adults to reach the same end-jump velocity as the fifth instars the wings would
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Figure 4.13.

Increment of additional velocity required to produce thrust at 55° (ie.

trajectory angle) large enough that its downwardly resolved component is

sufficient to balance body weight for actuator discs moving at various

velocities. The data are solutions for the following equation relating thrust

produced by an actuator disc to the velocities of the fluid moving through the

disc: Thrust = p Sd v (V + 1/2 v), where p is the density of air, Sd is the area of the

disc (the area swept out by wings of given length), V is the velocity of the disc

(modelled here as the end jump velocity of the locust), and v is the increment

of additional velocity to which the fluid must be accelerated as it passes

through the disc in order to generate the required thrust. This formulation

assumes that the actuator disc is oriented normal to the trajectory angle. A

body mass of 3.2 g, a wing length of 5.5 cm and a density of air of 1.1746

Kg/mm 3 were used to calculate the data labelled 'Female' in the figure. A

mass of 2.0 g and a wing length of 4.8 cm was used to calculate the data

labelled 'Male' in the figure. The data indicate that producing 2.5 m/s in the

jump of a 3.2 g female requires the production of 35.6% less additional velocity

going through the disc, and 73.3% less power required, relative to an end-jump

velocity of 1.1 m/s. The data also indicate that jumping at 2.5 m/s requires

57.2% less additional velocity than a standing start with a power requirement

savings of 92%. The estimates for the smaller, male locusts suggest that the

increase to adult take-off velocities lower the additional velocity required by

37.5%, and reduces the power required for take-off by 75.6% over the

requirements imposed by the juvenile end-jump velocities.
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have to generate a flow through the disc of 1.74 m/s, a decrease of only 33%

over a standing start, and 55% greater than the increment of velocity for a jump

of 2.5 m/s. For a 2 gram male with 4.8 centimetre long wings the data in figure

4.13 suggest that jumping with a velocity of 2.5 m/s requires an additional

increment of velocity of 0.95 m/s, a reduction of 60% from the standing-start disc

velocity of 2.37 m/s. Since the power required by an actuator is proportional

to the third power of the disc velocity (Von Mises, 1959), the difference in end-

jump velocities between fifth instars and adults represents a 75.6% savings in

power required to generate the thrust necessary to overcome the force of

gravity. This power savings seems considerable, but without knowing explicitly

what the power requirements are for flying at 1.1 m/s relative to the maximal

power output capacity of the flight muscle it is impossible to say if the jumping

velocity developed by juveniles represents an absolute limit to flight by locusts.

Alternately, it may be that to jump much faster requires uneconomically high

jumping muscle power output and the observed jumping velocity represents a

balance between the falling demands for power from the flight muscle and the

increasing demands for power from the jumping mechanism with increasing

end-jump velocity.

These observations do suggest that achieving a high take-off velocity for

the initiation of flight has demanded a higher performance jump than could be

provided by the force production of the juveniles, and I believe that this

increased demand for performance is the design issue that has driven the

increase in power output in the jumps of adults over those of juveniles.



CHAPTER 5.

GENERAL DISCUSSION

In the case of each measure of mechanical performance that we can

directly relate to morphological predictions (ie. flexural stiffness, force and

acceleration) elastic similarity is approximated. In the case of power output

and specific power output, which scale in a manner that is closer to constant

stress similarity, the observed scaling for S. gregaria is quantitatively reasonable

based on the dependence of power output on the other performance

characteristics. However, the approximation of elastic similarity is achieved in

spite of a morphological design program that produces increasingly spindly

legs, and so deviates dramatically from elastic similarity.

If we were to adopt the adaptationist's paradigm, we might find the

apparent approximation of elastic similarity a satisfying result. If function in a

cantilever structure is dependant on controlling the deformation in bending,

then as outlined in chapter one, if we want to adopt a similarity that results in

devices to experience the same normalized deformation. This is the foundation

of elastic similarity, and it provides a rationale for the locust's implementation

of ESM in the mechanical design of its legs.

So locusts appear elastically similar in terms of mechanics, and we think

that for bending structures this is a reasonable strategy. But if there is some

value in adopting elastic similarity in the mechanical design of the legs, then

why not be elastically similar in morphology as well? I can provide three

somewhat speculative arguments to explain the morphological design that is
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observed in the locust. Each is formulated in a separate context, but no single

argument is exclusive of the others.

The manufacturing issue. It is possible that for a given adult

morphology the constraints imposed by the process of moulting in exoskeletal

animals determines the dimensions that the developing locust may adopt in

proceeding toward the adult dimensions. Examination of the data in figure 2.5

& 2.6 suggests this possibility. Between each juvenile instar the external

dimensions increase by a similar percentage. The lengths of the tibiae increase

by approximately 50% while the diameters increase by approximately 40% after

each moult. The process of moulting involves drawing the soft cuticle of the

subsequent instar from within the hardened exuviae of the previous instar.

Given the dimensions of the lumen of the old exoskeleton, it may be that the

new cuticle's dimensions can only be increased up to a maximal amount

through this drawing process. The scaling of the external dimensions is,

therefore, indicative of the time spent within each instar and the amount that

body mass increases within the same life history stage. Thus, it may or may not

be demonstrating a specific design strategy that attempts to produce good

jumpers throughout the life history of the insect.

The moult from the fifth instar to adult results in a smaller increase in

dimension than any previous moult, suggesting that perhaps the moulting

process does not limit the path that the external dimension may take in arriving

at the adult condition. There are a number of distinctive changes that occur

at this one moult, and it may not be fair to compare the process with the

previous moults. For example, we have observed in chapter four that the

mechanical events in the jump show sharp discontinuities at the moult to
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adulthood. Therefore, the musculo-skeletal reorganization involved in this

transition may place further constraints on the potential for change in the

external dimensions occurring within a moulting event. Indeed, it is significant

that there is a discontinuity in the scaling of each of the jump performance

parameters at the moult to adulthood, but no discontinuity is observed in the

scaling of dimensions or material and structural properties. A possible

interpretation is that if the locust needs to be a competent hopper as an adult,

and this requires a suite of parameters to have particular values, then growth

in dimensions of the skeleton must follow a specific trajectory in time. Economy,

however, does not likewise require performance parameters to follow a unique

trajectory. So the juveniles can survive by producing lower forces per unit body

mass than adults, resulting in the discontinuities seen in the moult to adulthood.

However, the fact that the average body mass increases from fifth instars to

adults in a way that maintains the scaling relationship between external

dimensions observed across the juvenile instars suggests that there is a specific

design program that is determining the scaling of the morphology. The

following arguments discuss the nature of that specific strategy.

Force vs. body mass scaling. The morphological predictions that were

laid out in chapter one were based on the loads experienced by the limbs

being related directly to body mass. In chapter four we saw that the peak

forces produced in jumping locust legs are five to twenty times body mass and

scale to body mass raised to the 0.732 power. If the scaling programme is

responding to peak ground reaction force rather than body mass, then it may

be inappropriate to expect morphology to scale in an elastically similar manner.

We could ask if force is not increasing as fast as the models predicted, then
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what are the consequences of the observed scaling of external dimensions of

the locust's legs?

If we re-examine equation 1.1

a = (Fly) 
^

Eq. 1.1.

and use the observed scaling of peak ground reaction force, limb length,

diameter, and second moment of area, we generate the following relationship

for the scaling of peak stress:

a oc (mase.732) (mass0.377 (mass0.311) = mass0.218

(Mass I2 )

and remembering that strain (e) is a/E,

e (Mass°732) (Massa3771 (Mass0.311
) = Mass-a 112

(Mass L5 2)

Eq. 5.1,

Eq. 5.2.

Because the uncertainty of each scaling relation contributes to the uncertainty

of the overall scaling of stress and strain it is impossible to distinguish the slope

of the scaling of strain from a value of zero. Therefore, we cannot reject the

idea that the leg's dimensions are actually adjusted to maintain a functional

elastic similarity that is responding to the scaling of loading, rather than to the

scaling of body mass per se.

Unfortunately, if we insert the predicted morphological scaling exponents

into the above relationship where force scales to mass raised to the 0.75 power

(the prediction from chapter four), we anticipate that strain will scale to body

mass raised to the -0.125 power. This is also statistically indistinguishable from

the exponent generated in equation 5.2. It seems that in order for the legs to

actually follow a functional elastic similarity in the face of peak loads that are

not increasing as fast is body mass, the locust would require even longer and
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more spindly legs than it actually has. In fact, to maintain volume in such legs

the length would have to scale to body mass raised to the 0.5 power while the

diameter scale to the 0.25 power, producing legs that scaled length to the

diameter raised to the 2.0 power.

It is important at this point to remember that this analysis is predicated on

the assumption that muscle force scales to the 0.75 power of body mass. This

assumption is based on Hill's (1950) suggestion that muscle force is proportional

to a functional muscle cross-sectional area which in turn is the product of

diameter squared. If we are going to suggest that the dimensional scaling of

limbs loaded with forces that scale to massam should produce even greater

spindliness, then the prediction of 0.75 will change as well. In chapter four we

assumed that the muscle in question is parallel fibred as a simplification, but in

fact many muscles, the jumping muscle of the locust included, are highly

pinnate. As such, our functional connection between the dimensions of the

muscle and the functional cross-sectional area need to be adjusted. The fibres

in a pinnate, jumping muscle will insert on the femoral wall and the apodeme

tendon. The area of this insertion will be proportional to the cross-section of the

muscle and will be proportional to the product of the length and the diameter

of the insertion, rather than the square of the diameter of the muscle-housing

limb segment.

If we once again reflect on equation 1.1, but this time resolve each

mechanical parameter as a scaled function of dimensions and deal with

pinnate muscle, the relationship between dimensions and strain becomes

(i • d)(d)(0 = Constant
(d)4

Remembering that a constraint of constant volume demands M = 1. d2 leads
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to both length and diameter scaling to body mass raised to the 0.333 power--

geometric similarity. An important part of this prediction is that force will scale

to body mass raised to the 0.67 power, not 0.75, and I will scale to mass raised

to the 1.33 power, not 1.5. Therefore, in situations where the forces that the

scaling strategy are responding to are produced by muscles I would anticipate

the predictions of geometric similarity and elastic similarity to be

indistinguishable. It is perhaps not surprising, therefore, that Alexander et al.

(1979) found such a wide spread expression of geometric similarity in a wide

variety of animals.

These calculations indicate that for animals where the peak loads are

really functions of body mass, elastic similarity will produce limbs that become

increasingly stout as McMahon anticipated (1973) and observed (1975).

However, when the peak loads are functions of muscle forces, the limbs should

produce geometric similarity. It is tempting to suggest that this difference

represents a real difference in animal design. Indeed, any prediction that force

will scale to body mass raised to a power less than one suggests that "spindly'

elastic or geometric scaling will occur. In small animals, where the absolute

value of the muscle forces are high relative to body weight, I anticipate this kind

of strategy. In large animals, where the force of gravity will be large relative to

the forces generated by the muscles, I would expect to see 'stout' elastic

similarity.

This discussion suggests that Prange's (1977) observations that

cockroaches and spiders are apparently geometrically similar could also be

interpreted as observations that these invertebrates are elastically similar.

Locusts, however, have large pennate jumping muscles and are not

geometrically similar. The scaling of force output does not follow from the
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scaling of the product of a length and a diameter (0.732 for„ vs. 0.3- 77Iength +

0.3 11 dia ter = 0.688). What does this mean? There are two parts to the answer:

how and why. With respect to how, it is likely that the diameter of the femora

scales to body mass in a manner different from the tibiae. I would predict that

femoral diameters scale to mass raised to the 0.355 power, which would still

produce spindly morphology, but would produce a predicted scaling of force

to mass raised to the 0.732 power. The discussion of which force the design

strategy is responding to has also ignored the effect of changing the material

properties of the skeleton. Given a mutable material stiffness, an additional

degree of freedom in adapting the structural design of the skeleton to the

changing demands of increasing body size is supplied, and the limits to exotic

morphologies are only limited by the scope of the material to stiffen. With

respect to why, I would suggest that there is either a developmental constraint

as outlined above as a manufacturing issue, or there is a functional role for the

spindly morphology that the legs express that is associated with the jumping

mode of locomotion.

Spindly levers as design strategies. If a design strategy could accomplish

elastic similarity with a traditional model, where the limb skeletons become

increasingly stout with increasing size, why then adopt a spindly strategy that

produces fundamentally larger deformations, risking catastrophic rupture? Does

the spindly strategy provide some benefit in performance? An answer is

provided by turning the question around and asking what is the difference in

performance if the tibia is relatively rigid or has some degree of compliance?
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Figure 5.1a.

Diagramatic expression of how falling spring energy (SE) is balanced by

increasing mechanical advantage (MA) to produce a parabolic ground

reaction force (GF) envelope.

Figure 5.1 b.

Diagramatic expression of the role of the energy time machine' inherent

in the locust legs design. In unloading stored spring energy into a rigid lever the

force pays off against mechanical advantage to produce ground reaction

force that follows the same parabolic trajectory as in figure 5.1 a (doffed line).

If some of the energy from the first spring is put into deforming a second spring,

which pays back that energy in later when mechanical advantage is higher

(heavy solid line), there is a delay in the point where peak ground reaction

force is achieved. The consequences of this change are discussed in the text.
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As mentioned in chapter four, Ker (1970) has pointed out that the

production of ground reaction force during the jump of the locust is the product

of the force stored in the spring, which decays gradually as the spring energy

is converted to kinetic energy of the accelerated mass, and the mechanical

advantage, which increases in an approximately inverse manner to the decay

of spring force (Ker, 1970; Bennet-Clark, 1973 for locusts). Figure 5.1 is a diagram

representing this trade off of spring energy and mechanical advantage for a

theoretical spring system. If the lever arm whose mechanical advantage is

changing is itself compliant (in the sense of being deformable rather than

specifically 1 /E), then it is possible that some of the spring force will go into

deforming the lever which would then be returned later in the impulse at a time

when mechanical advantage is high. Thus a spatially intermediate spring

could provide a sort of 'time machine', delaying the decay of spring energy

until the mechanical advantage is able to make better use of the spring force.

The dotted line in figure 5.1 b represents the consequent trajectory of the spring

energy decay of this design model. The heavy solid line is the resultant ground

reaction force (ie. the product of the spring force and the mechanical

advantage). If this model works, then the spindly legs of the locust may actually

be designed to take advantage of the inherent deformability of long slender

beams loaded in bending.

I have tested this design idea with a simple mechanical model shown in

figure 5.2. A quarter inch steel rod was placed on a pivot and suspended with

a Pesola spring scale. A 500 g mass was suspended from the rod and the rod

was then depressed, preloading the spring scale to 1.40 kg and held in place

by a piece of twine. The twine was set aflame and allowed to burn through,

allowing the spring scale to unload and accelerate the mass. The entire
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Figure 5.2.

Diagram of the mechanical model used to test the idea that compliant

levers have a functional role in delaying the point of peak force. The device

consisted of a rigid lever (a) mounted on a pivot with a teflon bushing (b). A

Pesola spring scale was mounted on the lever (c) and was initially loaded to 1.4

Kg beyond the 0.5 kg mass being accelerated (d). The lever was held in the

preloaded condition with a piece of string (e) attached to a concreate weight

(below this view of the device). The experiment consisted of lighting the string

on fire and observing the entire sequence of events on video. When the string

broke and the mass was accelerated, its movement was noted on a piece of

acetate film placed over the video monitor. For the experiment that modelled

a compliant lever, a rubber band was placed between the mass and its

attachment to the lever at point f.
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experiment was monitored on video, and the position of the mass was observed

by advancing the video tape one field at a time, and noted on a piece of

acetate film placed over the video monitor. The velocity and acceleration of

the mass were estimated by differencing the position and velocity data

respectively. The entire experiment was then repeated with a rubber band

placed between the mass and the rod to model a degree of flexibility in the

energy transmission system, similar to the tibial flexability of the locust leg.

In modelling the locust leg it seemed appropriate to define a reference

point to evaluate the performance of the model. I have evaluated the model

by comparing the velocity achieved by the mass at a point in time which

represents the feet leaving the ground. What does that mean for a rotating rod

and mass? I decided, perhaps arbitrarily, to define this "takeoff' point as the

displacement where the mechanical advantage reaches a maximum, as seems

to be the case in the locust. Therefore, the experiment was set up so that the

spring scale gave 0 force, beyond the weight of the mass, when the rod was

horizontal. The range of motion of the spring scale limited the prejump

extension to 20 cm, and unfortunately, this really did not allow for a realistically

large range of mechanical advantage as seen in the locust, but the pertinent

features of the model are retained. For comparison purposes the velocity of the

mass when it had travelled 20 cm were evaluated.

Figure 5.3 is a plot of the time course of the displacements of the mass

connected rigidly to the rod and for the 'compliant' rod. These data indicate

that with the rigid connection the mass reaches 20 cm of displacement at

approximately 180 ms; whereas with the compliant linkage, the mass reaches

20 cm at approximately 215 ms. Thus, the rigid lever has a higher average

velocity over that interval. However, the position of the compliant lever was
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Figure 5.3.

Plot of the displacements of the mass in figure 5.2 through time for the

rigid lever (dotted line) and the compliant lever (solid line).
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continuing to rise when it reached 20 cm, while the rigid lever was slowing

down. This impression is supported in figure 5.4 which plots the velocity of the

mass during this modelled jump. At 180 ms the rigid lever had accelerated the

mass up to approximately 0.6 m/s. At 215 ms, however, the compliant lever

had accelerated the same mass to about 1.6 m/s - an improvement of 167%.

Figure 5.4 does show how the peak velocity produced by the rigid lever was

absolutely larger than that produced by the compliant lever (1.8 m/s vs. 1.6

m/s), indicating that the energetic hysteresis of the rubber band produced a

larger take-off velocity at the cost of lower peak velocity.

Figure 5.5 is a plot of the acceleration of the mass during the modelled

jump and provides an explanation of how this difference in performance is

accomplished. The differencing procedure is inherently noise producing as

small errors in measuring displacement are multiplied at each differencing step.

Therefore, the data, represented by the dotted lines in figure 5.5, have been

smoothed with a three point moving average, represented by the solid lines.

The mass connected to the rigid lever reached a very high acceleration at

approximately 60 ms and then proceeded to decline all the way to the take-off

point of 180 ms. The mass connected to the compliant lever system did not

reach peak acceleration until 150 ms and was positive all the way out to 215

ms when the feet left the ground'.

So the original hypothesis is supported. The built in compliance of the

spindly tibiae may actually be acting as a time machine, delaying some of the

transfer of spring energy to a point later in the jump impulse where the

mechanical advantage is better able to use it. The mechanical advantage of

the locust's tibiae has a larger range than my simple model, suggesting that

they would get even greater benefit from this principle. However, for this model
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Figure 5.5.

Plot of the accelerations displayed by the mass in figure 5.2 through time

for the rigid lever and the compliant lever. Because serially differencing the

data in figures 5.3 & 5.4 produced a noisy signal, the original data (dotted lines)

has been smoothed with a three-point moving average (solid lines).



to work the benefits gained from delaying the decay of spring force must

outweigh the hysteretic losses in loading and unloading the second spring. We

have seen in chapter two that the losses in the tibiae from hysteresis are indeed

very low (ie. R-0.93). Thus, the legs' mechanical properties are well suited to this

strategy. Therefore, I believe that the scaling that I observed in the locust legs'

external dimensions may represent a design strategy that takes advantage of

the deformability of long slender beams.

Is there any evidence that this mechanism is actually used by the locust?

Is there a characteristic signiture of the time machine that is demonstrated in

the data on jump performance? If the time delay in ground reaction force is

generated by deforming the tibiae as bending springs, then we might

hypothesize that with increasing bending loads we would observe increasing

time delays in peak acceleration (Fig. 5.6a). To test this suggestion, I have

plotted the relative time within the period of the jump impulse where the peak

in acceleration occurs as a function of the magnitude of the peak acceleration

in figure 5.6b. The slope of the regression between the relative location of the

peak acceleration and the magnitude of acceleration has a slope of 4.97 x 10 -4

(SE = 4.53 x 10 -5 , r2 = 0.482) and is significantly different from zero (t s = 10.96, df.

= 129, p < 0.05). While the absolute value of the slope is low, it does mean that

over the range of accelerations produced by the locusts (45 - 230 m/s 2) the

position of the peak of acceleration moves from the 78% point in the impulse

durration to the 90% point in the impulse. Therefore, there is at least indirect

evidence that the locusts' legs are acting as energy time machines, and it is

possible that they are obtaining the benefits in performance that are suggested

by the model.
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Figure 5.6a.

Diagramatic representation of the parameters reported in figure 5.6b. t total

is the total length of the impulse, and t peak is the length of time from the

begining of the impulse to the time of peak acceleration, and amm, is the

magnitude of the peak acceleration.

Figure 5.6b.

The relationship between the normalized position in time of the peak of

acceleration produced in the jump (tpeak, ttotal) and the magnitude of the peak
-

acceleration (amax). The equation for the regression calculated for a sample of

first instars, fifth instars and adults Y = 0.784 + 4.967E-4 x X (F s = 120.090, df. = 1,

129, r2 = 0.4821). This slope was significantly different from zero Os = 10.959, df.

= 129, p < 0.05).
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Degrees of freedom in design. Although this thesis has not concerned

itself explicitly with the polymer physical chemistry or the composite material

mechanics of the cuticle, I would like to suggest that it is the use of this protein

exoskeleton that has allowed the distinctive scaling of skeletal morphology in

the locust. I believe that by introducing an additional degree of freedom in the

adaptive design of skeletal structures (ie. functional alteration of material

properties) the locust provides a window on a new approach to scaling.

When an engineer designs structures for human use, the design will to a large

extent be determined by the building materials available: wood, steel, carbon

fibre. The properties of these materials are relatively scale independent. The

fact that vertebrate skeletons are all built of the same material (ie. bone) has

suggested a set of models that allow only a discrete and finite set of design

strategies. By using a building material whose properties can be modulated,

the locust has shown that a continuous set of strategies exist to solve the

problems for design imposed by scale effects. When human engineers alter the

composition of composite materials to produce lighter and stronger structures

than they could with steel, entirely new morphologies can be produced. To a

certain extent this is an application of the principle that the locust has used in

choosing the morphological design program for the scaling of its legs.



CHAPTER 6.

CONCLUSIONS

My final findings are that the African desert locust has adopted a scaling

program that is consistent with the principles of the elastic similarity model

proposed by McMahon (1973). However, this scaling is achieved without

adopting a morphological scaling that is predicted by a traditional approach

to elastic similarity. The scaling programme that the locust is expressing

produces relatively longer, more slender limb segments in the metathoracic and

mesothoracic tibiae.

I believe this scaling of external dimensions is accomplished by scaling the

material stiffness of the cuticle material in addition to the dimensions

themselves. This is a strategy allowed by the non-mineralized character of the

cuticle and distinguishes the locust's scaling from vertebrate systems that other

researchers have described. It has also been found that the exoskeletal

condition itself determines a separate strategy for being thin walled that is also

distinct from the vertebrate, thick walled design.

The reason for producing the relatively spindly scaling in the locust seems

to be related to the jumping mode of locomotion. A simple mechanical model

has demonstrated that introducing a long, and therefore deformable, lever into

the jump mechanism can improve jump performance. I believe that this

bending spring improves performance by delaying the decay of elastically

stored spring force to a time when mechanical advantage produces higher

take-off velocities.

In examining scaling of jump performance, it was revealed that there are

-167-



separate functional roles for the jump in the pre-adult and adult phases of the

life history. Juvenile instars appear to be jumping to achieve a functional jump

distance independent of size, while adults are jumping to produce a minimum

end-jump velocity associated with take-off for flight.
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