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ABSTRACT

This study was initiated as a response to the call of the National

Council of Teachers of Mathematics (NCTM) and British Columbia Ministry

of Education for a mathematics curriculum which would enable students to

formulate connections among key mathematical ideas. As well, the study

addresses the problem of students' errors in selecting appropriate strategies to

complete a given algebraic task. Authorities such as Fey, Barbeau, Cooney,

McKnight, and Manhard believe that a traditional curriculum organized around

isolated mathematical objects (i.e., Real Numbers, Exponents, Radicals,

Polynomials, etc.) tends to produce fragmented teaching and learning. The

study investigated an alternative organization of the curriculum which

emphasizes the main processes of mathematics (i.e., Factor, Simplify, and

Solve). The research questions focused on the effects this reorganization would

have on: students' understanding about the interconnectedness of mathematics,

students' abilities in selecting appropriate strategies, students' achievement

scores on standard tests, and amount of class time needed to cover the learning

outcomes in the curriculum.

Two Mathematics 11 classes were selected to participate in the study.

One was taught using the traditional organization of curriculum emphasizing

mathematical objects, while the other was taught using an alternative
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organization of curriculum emphasizing mathematical processes. The various

research questions required both quantitative and qualitative methods in the

acquisition and analysis of data. The teacher's journal was used to record

classroom observations for the duration of the study. Tests containing open-

ended items were given at the beginning and the end of the study to determine

students' abilities in selecting appropriate strategies and to evaluate students'

understanding of the interconnectedness of mathematics. These tests were

followed by interviews with five students from each class to clarify their

responses on the written tests and to provide further information with regard

to the research questions. Students' achievement on standard tests was

determined through an analysis of covariance.

From observations recorded in the teacher's journal it was noted that

the process-organized class dealt with general ideas and concepts during

introductory lessons rather than at the end of the unit as in the object-

organized class. As well, the process class had numerous discussions about the

main ideas of mathematics which occurred on a regular basis from the

beginning of a unit till the end. From the journal and the acetate rolls used

during instruction, it was determined that the process class required fewer

class periods than the object class to cover the same portion of the curriculum.

Although there was no statistically significant difference between the

classes in terms of achievement scores on the standard tests, the process class
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was better able to identify the inappropriate use of strategies in a given

solution and was better able to provide an appropriate strategy of their own in

responding to algebraic tasks.

Findings from this study suggest that teachers should rely less on the

traditional mathematical object organization as shown in curriculum guides and

textbooks to structure their units and lessons, and more on their own

organization of curriculum emphasizing what they believe to be most important

mathematical ideas. An organization of the curriculum should not only

highlight the main mathematical concepts and ideas, but it should also indicate

how these ideas and concepts are related and connected. This study provides

some evidence that when students experience a curriculum that is organized

so as to emphasize processes which are used with different mathematical

objects, their understanding of the interconnectedness of mathematics is

improved.
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CHAPTER 1: THE PROBLEM

Research results (British Columbia Ministry of Education,

1989; Paul & Richbart, 1985; Robitaille, 1992), government

decisions (British Columbia Ministry of Education, 1990), and

societal pressures have compelled teachers to reflect upon their

own educational practices and question their current approaches

to classroom instruction. The push for more practical, real-life

situations to be incorporated in classroom instruction (Atchison et

al. , 1984; House, 1988) along with an emphasis on student-

centered approaches have contributed to an immense pressure on

educators to examine alternative forms of education for the

future. In British Columbia changes have already been taking

place. These include more practical and real-life skills being

offered to students such as problem solving, graphing, and

statistics found in the 1988 revisions of the curriculum guide

(B.C. Ministry of Education, 1988), along with an emphasis on

more student-centered approaches to teaching as outlined in the

Year 2000 documents (B .C. Ministry of Education, 1990). Even

the discipline of mathematics has felt the pressures to alter its

approaches toward education and student development. Two

statements from the National Council of Teachers of Mathematics

(NCTM) Standards suggest the following directions for

mathematics education.
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We need to shift toward mathematical reasoning --
away from memorizing procedures.
We need to shift toward connecting mathematics, its
ideas, and its applications -- away from treating
mathematics as a body of isolated concepts and
procedures. (NCTM, 1991, p. 3)

Teaching mathematics should involve more than the

presentation of isolated topics and structures. It should engage

students in a wide array of tasks that better enable them to

formulate ideas regarding the interconnectedness of mathematical

concepts and processes (Borko et al., 1992; Brutlag & Maples,

1992; Davis, 1987). It is the study of this interconnectedness of

mathematics that should be at the heart of any organizational

theme involving the teaching of mathematics. Cooney states that

the organizational theme in teaching mathematics must address the

needs of students and must enable students to better understand

mathematical concepts and principles.

The object of any organizational theme in teaching
mathematics is to facilitate the students' learning of
mathematics. Students' ability to learn mathematics
is directly related to their understanding of how
mathematical concepts and principles are related--
in short an understanding of the structures of
mathematics. ... These considerations should re-
ceive primary attention in any strategy a teacher
uses for organizing classroom instruction.
(Cooney, 1985, p. 150)

With the influx of new, more sophisticated technology and

industry's increasing demands for a more highly skilled labour
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force, mathematics education needs to change accordingly (House,

1988). This would entail reexamining the content, organization,

and emphasis of curriculum. Teachers themselves should become

more adept at organizing and presenting mathematics as a network

of interconnected concepts and procedures. The NCTM Standards

call for teachers to teach mathematics in a manner that better

enables students to see and understand connections among the

principal concepts and procedures.

The teacher should demonstrate a deep under-
standing of mathematical concepts and principles,
connections between concepts and procedures, con-
nections across mathematical topics. ... [M]aking
frequent mathematical mistakes, using limited or
inappropriate representations, or presenting mathe-
matics as a static subject whose meaning is derived
solely from symbolic representations suggests that
the teacher does not have an acceptable command of
mathematics.

The teacher should engage the student in a
series of tasks that involve interrelationships among
mathematical concepts and procedures. The acquisi-
tion of mathematical concepts and procedures means
little if the content is learned in an isolated way in
which connections among various mathematical topics
are neglected. ... [T]he teacher should emphasize
communication with the intent of expanding stu-
dents' understanding of mathematical content and
connections. (NCTM, 1991, p. 89)

Student Difficulties

An important factor in aiding students to understand

mathematics better is the determination of where their difficulties
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lie. Analyzing common student errors can provide useful

information for both teachers and students (Davis, 1984). In

particular, a number of student errors involving algebra

questions may be due to the presentation and organization of the

current curriculum (Manhard, 1985). Many students have

difficulties deciphering which concepts and procedures pertain to

a given algebraic task. They may have a tendency to focus on

the symbolic representations of the question rather than the

question itself, relying on their ability to recall a previously

attempted question containing similar symbolic representations

(Booth, 1988; Kent, 1979). An example of such a student error

is shown in Figure 1.

Simplify the following:
x+4 x+1
x-2 x-3

Possible Student Error:
C.D.=(x-2)(x-3)

x+4(x-2)(x-3)— x+1—(x-2)(x-3)x-2 x-3

(x-3)(x+4) - (x-2)(x+1)

x2+ x - 12 - x2+ x + 2

2x - 10

Figure 1: An Example of a Student Error; Relying on the
Symbolic Representation of the Question
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In this example the symbolic representation involves two

algebraic fractions. The student probably has some recollection of

encountering algebraic fractions in other questions and proceeds

to carry out a similar set of procedural steps. In the first step

the student appears to be on the right track, as subtracting

fractions requires a common denominator (C.D.). However in the

second step the student multiplies both fractions by this common

denominator. This may indicate the student has observed this

procedure before, in the process of responding to a "solve"

example. In other words, the student appears to be using a

"solve" process in a "simplify" exercise. By overlooking what is

meant by the term simplify and concentrating only on the two

algebraic fractions, this student has made an error in selecting

an appropriate strategy.

Equally as important as this student selecting an appro-

priate strategy is the connections he/she may be making about

certain mathematical concepts and procedures. In Figure 2, an

example is given to show what possible connections may have been

utilized to respond to the task given in Figure 1.

If students are asked to choose which connection is most

like the original example, students who make errors like the one

shown in Figure 1 may be more likely to choose Connection 1,

even though Connection 2 follows a very similar set of

procedures. This would be a case where the student relies



Simplify the following:

x+4^x+1
x+2^x-3

Possible Connection 1 
-connection more likely to
lead to an inappropriate
selection of strategy.

Solve for x:

Possible Connection 2
-connection more likely to
lead to an appropriate
selection of strategy.

Simplify the following:

x+4 x+1 _ 1 3 _^1
x+2 x-3 4 2

6

primarily on the symbolic representations or the mathematical

objects within the example to relate to other similar examples.

Figure 2: An Example of the Possible Connections a Student Might
Make on a Given Algebraic Task

Teachers may be contributing to these student difficulties,

of selecting appropriate strategies and formulating meaningful

connections in mathematics, by presenting a fragmented sequence

of daily lessons (Artzt & Newman, 1991; Manhard, 1985).

Consider how the mathematical concepts may have been presented

to a student who responds as in Figure 1. This student may have

received instruction on how to simplify rational expressions,

followed later by instruction on how to solve rational equations,

both taught under the unit heading "Rational Expressions." Thus

it may seem logical to the student that the mathematical objects
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(i.e., algebraic fractions) rather than the meaning of the

directions (i.e., simplify) are more important, as the procedures

for simplifying rational expressions and solving rational equations

were likely taught consecutively under the same general topic.

Upon reexamining the response from Figure 1, we see that the

student demonstrates a certain degree of skill in following a set

of mathematical procedures. However, skill or no skill, logic or no

logic, this student will likely receive negative feedback from

her/his teacher orally or on written evaluations.

It is nice when what you do is right, but its much
better when it is also appropriate. Knowing the
right method won't do you much good if you don't
get around to using it. It is no wonder some
students may hold certain reservations about math-
ematics, particularly if they are given little
opportunity to formulate meaningful connections
among the required concepts and procedures. The
problem of student alienation is compounded by the
lack of linkages to other representations that might
provide informative feedback on the appropriateness
of actions taken. (Kaput, 1989, p. 172)

Students need to be presented with many opportunities to

formulate meaningful connections in mathematics. They need to be

presented with alternate ways of relating mathematical concepts

and procedures to what is important. Students having difficulties

may need to receive some direction in deciding what is important.

The organization of any curriculum should reflect what is

important -- in mathematics, is it the mathematical objects or
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the mathematical processes?

Object Vs. Process

Mathematical objects refer to the unit headings found in the

tables of contents of many algebra textbooks, such as Real

Numbers, Exponents, Radicals, Polynomials, Rational Expressions,

etc. Students having the curriculum presented to them in this

object-organized format may be more likely to classify exercises

and examples according to the symbolic representations

(mathematical objects) of a given task, rather than the process

required to respond appropriately to the directions. They may be

more likely to classify an example as an "exponent" or a "rational

expression" question, rather than as a "simplify" or "solve"

question. Although each particular mathematical object does

possess its own set of concepts and procedures, it is imperative

that students be shown which sets of concepts and procedures

are transferable to other mathematical objects. A means of

enabling students to see the interconnectedness of mathematics

across mathematical objects may be to reorganize the curriculum

emphasizing mathematical processes.

Mathematical processes refer to the directions found in most

algebraic exercises; these are given in the imperative: Simplify,

Solve, Factor, Graph, etc. Under this alternative organizational

scheme students may observe, for example, a series of "simplify"

exercises and realize that the same concepts and procedures apply



9

regardless of the symbolic representations being used. As well, in

attempting future algebraic tasks, students may be drawn more to

the meaning of the direction itself, enabling them to select more

appropriate strategies. In particular, when they are responding

to a "simplify" exercise, they are relating it to another previously

completed "simplify" task and not to a task involving a different

mathematical process.

The organization of any curriculum should not be taken for

granted or merely accepted as that found in the curriculum guide

or text. The organization not only determines the order and focus

of instruction, but may also play a major role in how students

make and recognize mathematical connections. For a mathematical

object organization of the curriculum, major headings are deter-

mined by the main symbolic representation. Each unit is further

broken down into a sequence of instructional topics, based upon

the operations and processes which pertain to the particular

symbolic representation (mathematical object). The unit could also

be broken down by teaching the main mathematical objects as a

series of minor mathematical objects. An illustration of this

traditional organization can be seen from a simplified version of

the table of contents from the Mathematics 11 textbook

(Alexander, Atkinson, Kelly, & Swift, 1989), as shown in Fig. 3.
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1 THE REAL NUMBERS (m.o.)
1-1 The Natural Numbers (m.o.)
1-2 The Integers (m.o.)
1-3 The Rational Numbers (m.o.)
1-4 The Irrational Numbers (m.o.)
1-5 Operations With Radicals (p.o.)
1-6 Rationalizing the Denominator (p.o.)
1-7 Radical Equations (m.o.)

2^POWERS (m.o.)
2-1 Definition of Exponents and Powers (m.o.)
2-2 Positive Integral Exponents (m.o.)
2-3 Integral Exponents (m.o.)
2-4 Rational Exponents (m.o.)
2-5 Simplifying Exponential Expressions (p.o.)
2-6 Solving Exponential Equations (p.o.)

3 POLYNOMIALS AND RATIONAL EXPRESSIONS (m.o.)
3-1 Operations With Monomials (p.o.)
3-2 Operations With Polynomials (p.o.)
3-3 Factoring Trinomials (p.o.)
3-4 Factoring Difference of Squares (p.o.)
3-5 Factoring Sum and Difference of Cubes (p.o.)
3-6 Factoring by Grouping (s.p.)
3-7 Simplifying Rational Expressions (p.o.)
3-8 Multiplying and Dividing Rat. Exp. (p.o.)
3-9 Adding and Subtracting Rat. Exp. (p.o.)
3-10 Solving Rational Equations (p.o.)

m.o. - mathematical object
p.o. - specific process with a specific object
s.p. - specific process (involving only one set of procedures.)

Figure 3: An Example of the Units and Possible Lesson Topics
Using an Organization of the Curriculum Emphasizing Mathematical
Objects

Regardless of organization, it is good educational practice
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for the teacher to draw students' attention to the similarities and

differences among the processes involved in manipulating different

mathematical objects. Despite these attempts, students may find it

easier to see stronger connections between simplifying rational

expressions and solving rational equations when they are taught

in succession, as opposed to being taught at different times

under different unit headings. The way the content of the

curriculum is organized and presented in the form of daily lessons

may play a key role as to what connections students see and make

in mathematics (Artzt & Newman, 1991; Manhard, 1985). The

organization of the content in some textbooks tends to suggest

that the connections within the objects and symbols of mathematics

are more important than the processes used in dealing with these

objects (Ediger, 1986; Howson, Keitel, & Kilpatrick, 1981). This

in itself may not be wrong. However, it needs to be asked

whether there is an alternative organization of the curriculum that

would encourage students to make more meaningful connections in

mathematics. An organization of the curriculum emphasizing the

processes and procedures involved in carrying out mathematical

tasks may prove to be a beneficial alternative. This new approach

to organizing the curriculum would use the main directions found

in most algebraic tasks as the major unit headings: Simplify,

Factor, Solve, Graph and Prove. These unit headings would be

further subdivided into a series of sub-processes or strategies.



An outline for this organization is shown in Figure 4.

1 FACTOR (g.p.)
1-1 Prime Factoring (s.p.)
1-2 Finding G.C.F. and L.C.M. (s.p.)
1-3 Factoring Out The G.C.F. (s.p.)
1-4 Factoring Two Terms (g.p.)
1-5 Factoring Three Terms (g.p.)
1-6 Factoring Four or More Terms (g.p.)
1-7 Finding G.C.F and L.C.M. For Algebraic

Expressions (g.p.)

2 SIMPLIFY (g.p.)
2-1 Evaluating Arithmetic Expressions (g.p.)
2-2 Utilizing Brackets (s.p. )
2-3 Utilizing Exponents (g.p.)
2-4 Utilizing Radicals (g.p.)
2-5 Reducing (s.p.)
2-6 Multiplication and Division (s.p.)
2-7 Addition and Subtraction (s.p.)

3 SOLVE (g.p.)
3-1 Isolating the Variable (s.p.)
3-2 Factoring (s.p.)
3-3 Utilizing the Quadratic Formula (p.o.)
3-4 Eliminating Powers (p.o.)
3-5 Eliminating Radicals (p.o.)
3-6 Making the Bases the Same (p.o.)
3-7 Solving for More Than One Variable (g.p.)

p.o.- specific process with a specific object
s.p.- specific process (involving only one set of procedures.)
g.p.- general mathematical process (involving more than one set

of procedures.)
Figure 4: An Example of the Units and Lesson Topics Using an
Alternative Organization of the Curriculum Emphasizing Mathemati-
cal Processes

12
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In this organizational scheme the prescribed curriculum still

provides the content for instruction, but the order and focus of

the instruction emphasizes the processes and strategies involved

in actually doing the mathematics. As well, using mathematical

processes as major headings may enable teachers to discuss with

their classes the different types of relationships that exist among

these terms. They may ask the students, "Can you think of an

example in factoring where you need to simplify or solve?" or

"Can you think of an example in simplifying where you need to

solve or factor?" or "Can you think of an example in solving

where you need to simplify or factor?" Students may see that at

times certain processes are incorporated within other processes

and that at other times, when two processes such as simplifying

and factoring are inverses of one another, each provides a way of

checking the other. Both organizational schemes may have their

advantages and disadvantages; however, allowing for more than

one representation of the curriculum over the duration of

students' experiences in mathematics may better enable them to

see alternative ways concepts and procedures relate to each

other.

Organizing the curriculum to emphasize mathematical

processes is intended to highlight the interrelationships that exist

among the concepts, procedures, and ideas of mathematics, but

how will it affect the time needed to cover an extensive
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curriculum? And how will it affect students' performance on

standard tests? Reorganizing the curriculum may require a great

deal of effort, as materials and lessons would need to be

developed to reflect a new curricular structure. Not only may this

reorganization need to be seen as beneficial to students'

understanding, but may also need to be seen as feasible for those

who must implement this change. The teacher should be involved

with any changes occurring to the content or the structure of the

curriculum. If any curriculum change is to occur it must be seen

as necessary and logical by teachers who must implement this

change. Rachlin (1989) supports this argument in the following

statement:

Any proposed change must be understood, accepted
as necessary, and considered feasible by teachers
who will implement the change. ... Teachers play a
large decision making role in the implementation of
curriculum. A better understanding of the role of
students' cognitions and behaviors in their learn-
ing is necessary but not sufficient to improve the
learning of algebra. To implement change in curri-
culum we must understand the nature of teachers'
beliefs and cognitions and the roles these beliefs
and cognitions play in the decisions teachers make
as they present the new curriculum to their
students. ... In addition to research that helps us
understand the diversity in students' thinking we
also need to understand the diverse range of prior
knowledge, experience, beliefs, attitudes, and ways
of processing information that teachers bring to the
change process. (Rachlin, 1989, p. 261)



Constraints Facing Teachers

Secondary mathematics teachers are faced with two major

constraints. One is the amount of class time necessary to cover

the intended learning outcomes of the curriculum; the other is

student performance on school-wide, district-wide, or province-

wide examinations. Within the Mathematics 11 curriculum for

British Columbia, there are no fewer than fifty new learning

objectives which must be covered over the course of the school

year (British Columbia Ministry of Education, 1990). Many

alternative approaches to mathematics education may be easily

dismissed, if teachers perceive them as causing too great a

burden on class time. An alternative approach should provide

evidence to the teacher that it allows for time to cover the

curriculum and more importantly time to address students' needs.

It may be argued that judging a teacher on student

performance is unjust, yet this is sometimes done at the

secondary level. It creates a tremendous pressure on the teacher

to ensure that students have adequately covered test material

necessary to perform well on common examinations. This also

creates additional stresses on class time, as teachers must cover a

certain amount of the curriculum by a certain point in time.

Teachers need to be assured that any alternative approach will

maintain or improve students' achievement on common tests or

exams. At times, change occurs slowly at the secondary level due

15



16

in part to the pressures and constraints placed on the teachers.

Therefore, for meaningful change to occur the constraints facing

teachers must be taken into consideration.

Statement of the Problem

Many algebra students have difficulties making meaningful

connections among the concepts and procedures within mathema-

tics. As well, many of these same students make errors in

selecting appropriate strategies necessary to respond correctly to

given algebraic tasks. The traditional organization of the

curriculum emphasizing mathematical objects may be a contributing

factor to these student difficulties, as it provides an outline from

which many teachers tend to structure the sequence of daily

lessons (Robitaille, 1992; O'Shea, 1987). An organization of the

curriculum which presents mathematics as a set of isolated and

fragmented topics may tend to lead teachers to organize units of

instruction as sets of isolated and fragmented lessons. An

alternative organization of the curriculum emphasizing mathematical

processes may provide an outline for teachers to arrange their

daily lessons in a way that better enables students to see the

interconnectedness of mathematics.

Teachers of Mathematics 11 are faced with many constraints

due to a full curriculum with many new learning outcomes for

students, along with standard common examinations to assess

student achievement. One of the most important of these
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constraints is time. In order to be attractive, an alternative

organization of the curriculum should be seen by teachers as

being potentially beneficial to students without causing

tremendous burdens on class time. Therefore, it is necessary to

demonstrate that an alternative organization of the curriculum is

not only feasible, but may offer some potential benefits to

students' understanding of mathematics.

Research Questions

The research questions of this study are designed to

determine whether or not an alternative organization of the

curriculum emphasizing mathematical processes is feasible and

whether or not it offers any benefits to student understanding.

What exactly are the effects of reorganizing the current

Mathematics 11 curriculum, emphasizing mathematical processes

rather than mathematical objects? In particular, will reorganizing

the curriculum significantly affect:

1. the development of the students' understanding of and

appreciation for the interconnectedness of mathematics?

2. the nature and number of students' errors in selecting

an appropriate strategy to complete a given task?

3. the level of students' achievement on standard school-

or district- wide tests?

4. the amount of class time spent on covering the intended

learning outcomes of the curriculum?



18

The study examines a new approach to curriculum

organization, testing its efficacy (i.e., the effects on student

learning) and its feasibility (i.e. , the amounts of time and effort

it requires). These tests of effectiveness and feasibility are based

on a small sample of 44 students with the teacher acting as

researcher. Therefore, the answers to the research questions will

not be generalizable beyond the study. The results will be used

to provide evidence that this type of reorganization can occur

without adverse effects on class time and student achievement, as

well to explore some potential benefits for students' understanding

of mathematics.

Limitations of the Study

The greatest limitation of this study was that the teacher

who taught both classes also conducted the research and wrote

the paper. This person from now on will be referred to as the

teacher/researcher.

The generalizability of this study is restricted by the

selection, number, and background of the students, by the

length of time the study was conducted, and by the fact that the

teacher was acting as the researcher. All the students in the two

selected mathematics classes were assigned to those classes by

normal school selection procedures. These procedures proved to

be a threat to the validity of the study, as two out of a total of

11 Mathematics 11 classes in the school were reserved for the
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students with "above average" ability. Neither of the classes

involved in the study was among these. Therefore, the majority

of the students in the study could be categorized as "average" to

"below average" in ability. The results of the study can only be

generalized with respect to these types of students. Another

threat to the validity of the study was the factor of student

mortality, since 48 students were initially assigned to these

classes, but due to rescheduling only 44 took part for the entire

project. The teacher/researcher had originally been assigned four

Mathematics 11 classes, but one class was not assigned until two

weeks into the school year, and another class consisted primarily

of students repeating the course. Thus these two classes were

not included in the study, and only two classes took part.

The study involved a small sample and took place over a

period of ten weeks. These limitations were put in place to allow

for a triangulation of methods needed to determine students'

understanding about the interconnectedness of mathematics. The

research questions involving achievement tests and class time can

only be answered on a small scale. These questions were asked to

test the feasibility of using this new organization of curriculum

against the traditional one. This study is presented as an

examination of an innovative approach to the organization of

curriculum, and it is hoped that it will provide a guide for

further research in this area.



CHAPTER TWO: REVIEW OF LITERATURE

This chapter begins with a brief sketch of the history of

curricular change in British Columbia leading up to an analysis of

the present mathematics curriculum guide. Next, the discussion

will consider teachers' dependence on the curriculum guide and

corresponding textbooks, followed by an evaluation of the

traditional organization of the curriculum. The chapter then

examines the effects of computer technology and problem solving

on the mathematics curriculum, as well as the effects of various

learning models and error analyses. Finally, recommendations

made by various authorities are used to suggest how a new

organization of the curriculum might look.

History of Curricular Change in British Columbia

In the 1820s, North American universities and colleges

made algebra a part of their entrance requirements (Atchinson et

al, 1984; Rachlin, 1989). From 1820 to 1900, the topics included

equations and formulae, fundamental operations with rational

expressions, powers and roots, and factoring polynomial

expressions ( Osborne & Crosswhite , 1970) . British Columbia

followed the rest of North America in establishing algebra as part

of its mathematics curriculum.

In 1884, the Department of Education in British Columbia

published Course of Study for Graded and Common Schools. The

to
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document provided some guidance regarding the content of the

mathematics curriculum. By 1890, the department started to

suggest how certain content ought to be taught. Elsewhere, at

this time, Cajori conducted a survey of mathematics teachers and

found that many of them saw an over-emphasis on manipulative

skills in the curriculum and were calling for a more meaningful

treatment of mathematics (Rachlin, 1989).

In 1911, the mathematics curriculum was outlined in some

detail for all grades and was linked to a prescribed textbook.

During this same time, graphing was introduced into the

curriculum as a way to integrate the fields of algebra and

geometry. From this point on there has always been a gradually

increasing emphasis on this topic and a gradually decreasing

emphasis on factoring, powers and roots. In 1936, The British

Columbia Department of Education produced a three volume guide

containing specified content for all grade levels and providing

much information on how mathematics teaching should be

conducted based on student interest and motivation. This guide

was considered to be somewhat revolutionary compared to the

other curriculum guides in North America (Osborn & Crosswhite,

1970). Despite this revolutionary curriculum guide, in 1947 the

prescribed textbooks constituted much of the course requirements

for the school year (O'Shea, 1987).

From the 1960s to the beginning of the 1970s, the invasion
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of "new math" in North America was to significantly alter the

content of school mathematics. Some attribute this change to the

launch of Sputnik in October of 1957 (Paul & Richbart, 1985;

Usiskin, 1985). The "new math" introduced the concepts of sets

and relations into the curriculum along with an emphasis on

understanding. Still much of the content for the curriculum guide

came directly out of the prescribed textbook (O'Shea, 1987).

By the early 1970s, the public perception of the new math

was that it was a failure, for it was seen not to address the

needs of weaker mathematics students (Usiskin, 1985). There was

a push for curriculum to emphasize basic computational and

procedural skills. In British Columbia at this time there were

three prescribed textbooks, and teachers were asked to use their

own judgement in selecting materials they felt were most

appropriate in covering the intended learning outcomes in the

curriculum guide. In 1976, a province-wide survey was carried

out involving a random sample of 200 mathematics teachers in

British Columbia (Beattie & Steblin, 1977). Seventy-one percent

of the teachers said they used the curriculum guide in planning,

and most commented that lack of time was the major obstacle to

their participating in curriculum development.

1988 British Columbia Curriculum Guide

The present mathematics curriculum guide for British

Columbia (British Columbia Ministry of Education, 1988) contains
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most of the traditional algebraic topics, but there is an increased

emphasis on problem solving, transformations of graphs of

functions, and statistics. In the Mathematics 12 course there is a

new unit introducing calculus to the students. The new

curriculum guide provides a detailed outline for the content and

intended learning outcomes to be taught and thus would have a

certain amount of influence on lesson structure and unit

organization.

In a survey conducted by Johnson (1986), 403 secondary

mathematics teachers were asked to comment on the draft of the

British Columbia Curriculum Guide. Most responses were either

"no changes" indicating an acceptance of the proposed draft or

"no comment" which was also taken to mean acceptance. Although

there was an overall acceptance of the guide, some general

concerns were expressed about the amount of content covered in

the curriculum. A year later, Overgaard (1987) conducted a

similar survey with 306 secondary mathematics teachers in British

Columbia and found that 62$ felt there was too much content dealt

with in Mathematics 11 and 12. As well, 29 115 felt the level of

difficulty was too high, and many of the teachers commented

directly about the strict time limitations they were placed under

while teaching these courses.

The Mathematics 11 section of the 1988 Mathematics 7-12

curriculum guide (British Columbia Ministry of Education, 1988)
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has five main topics: Algebra, Relations and Functions, Geometry,

Trigonometry, and Data Analysis. There are fifty new intended

learning outcomes for students along with limiting examples and

prerequisite skills. Under the topic of Algebra, the curriculum

guide lists the new factoring required for grade 11 (i.e., sum

and difference of cubes, and grouping as perfect square

trinomials) and then presents objectives for simplifying rational

expressions, followed by solving rational equations, and word

problems relating to rational expressions. The curriculum guide

then contains simplifying radicals followed by solving radical

equations. Finally, it lists changing radicals to exponents and

solving exponential equations (B.C. Ministry of Education, 1988).

The guide's outline of the algebra section appears to emphasize

mathematical objects, (i.e. rational expressions, radicals, and

exponents).

The 1990 British Columbia Mathematics Assessment

(Robitaille, 1992) was conducted in part to obtain information

about the degree to which the 1988 curriculum had been

implemented and to gain insights about the instructional practices

employed by mathematics teachers. All students in Grades 4, 7

and 10 in B.C. were part of the study along with over 4000

teachers. Over 90$s of the teachers felt the curriculum guide

significantly assisted them in planning mathematics instruction. As

well, 83$ of the teachers found that the prescribed texts
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corresponded well with the curriculum. An area in need of

improvement was found in students' responses to the open-ended

problems (Szetela, 1992). Students did not utilize a wide variety

of strategies. As well, the inability of students to evaluate an

already solved problem successfully suggested that students tend

to do little monitoring of strategy implementation (Szetela, 1992).

Other areas of concern for the mathematics students of

B.C. came from the Report to Schools (B.C. Ministry of

Education, 1989). The markers of the 1989 Mathematics 12 January

and June Provincial Examinations made the following observations

about the areas students most needed improvement:

1.Arithmetic and process errors were extremely common;

2.Students made many errors from their inability to
understand reciprocals;

3.Students showed a lack of understanding of binomial
expansion;

4. Students were extremely weak in simplifying answers;

5.Students were often confused by the word "solve" ; and

6 . Many students did not recognize factoring as a quick and
easy way to solve equations.

(British Columbia Ministry of Education, 1989, p. 4)

Observations 4 through 6 may suggest that students need to

develop a broader understanding about mathematical processes.



Influence of Curriculum and Text on Instruction

There are strong indications that teachers rely heavily on

the curriculum guide and the prescribed textbooks for

constructing lesson plans (Begle, 1973; Goodlad, 1984; Howson,

Keitel, & Kilpatrick, 1981; McKnight et al., 1987; Rowan and

Morgan, 1980; Willoughby, 1990). Goodlad (1984) conducted a

study of 1000 classrooms in 38 schools in the United States. The

impression he received of curriculum from the topics, materials,

and texts was that mathematics is presented as a body of fixed

facts and skills to be acquired. Although teachers wanted their

students to become logical thinkers, they tended to use rote

methods of teaching, relying heavily on the textbook (Goodlad,

1984).

Ediger (1986) carried this reliance on textbooks one step

further; she commented that not only do teachers rely heavily on

the text, but they tend to use its table of contents as a

framework for their units of instruction.

Numerous mathematics teachers lean heavily upon
the adopted single or series of textbooks to
ascertain scope. The table of contents may then
provide a generalized framework for what is to be
taught and in what sequence. ... The above-
named topics may well suggest unit titles in the
mathematics curriculum. (Ediger, 1986, p. 14)

26
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Glidden (1991) discussed the implications of the Second

International Mathematics Study where eighth and twelfth grade

teachers completed a questionnaire involving various teaching

decisions. Both groups of teachers reported that certain teaching

methods were not used because they were not treated in the

textbook or they did not appear in the curriculum guide.

Twelfth grade teachers also reported that they did not include

certain topics as they were not covered in the textbook, the

curriculum guide, or on external examinations. Glidden concluded

that textbooks, curriculum guides, and external exams exert a

powerful limiting influence over teachers.

Rowan & Morgan (1980) found that mathematics teachers who

define curriculum in terms of the prescribed textbooks also

tended to use standard tests as part of their definition. But

Rowan & Morgan argued that curriculum should be based upon the

rationale of the program, the nature of mathematics, and a

knowledge of how students learn. After such a curriculum is

established, texts and tests should be selected based upon how

well they reflect the curricular goals.

The Traditional Approach to Curriculum Organization

Ediger (1986) discusses how the table of contents from the

prescribed text can directly influence curriculum organization in

the classroom. The prescribed text in British Columbia for

Mathematics 11 along with the curriculum guide tend to organize
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topics and learning outcomes emphasizing mathematical objects

(British Columbia Ministry of Education, 1988). As well,

publishers and teachers tend to divide mathematics up into tiny

compartments and to teach one compartment at a time (Willoughby,

1990). Fey summarizes the typical organization of algebra

emphasizing mathematical objects as follows, "Algebra in secondary

schools is primarily the study of polynomial, rational, and

exponential expressions over various subsets of the complex

numbers" (Fey, 1989, p. 212).

The way mathematics curriculum is organized has a direct

effect on how teachers plan mathematics instruction (Robitaille,

1992; Manhard, 1985). From an article discussing the

implementation of the Curriculum and Evaluation Standards 

(NCTM, 1989), Brutlag and Maples (1992) comment on mathematics

teaching in the past.

In the past, most mathematics concepts were
presented to students as separate ideas, each
living in a different section of the textbook.
Students were expected either to make connections
on their own or to wait until the ideas were used
together in another course. The result was that for
many students, the connections were never made,
nor was the significance of the mathematics
apparent. (Brutlag & Maples, 1992, p. 230)

The traditional treatment of mathematics as a set of isolated topics

allows for few interconnections between concepts and ideas.

(Atchison et al, 1984; Manhard, 1985; NCTM, 1991). Artzt and
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Newman (1991) suggest that presenting mathematics as a field of

study separated by artificial boundaries results in fragmented

learning.

Effects of Computer Technology on Mathematics

A curriculum that breaks down these artificial boundaries

should include a means for adapting to changes from outside

education, and should present mathematics to students and teach-

ers in a way that promotes a better understanding about the

interconnectedness of mathematics. Computer technology has

brought about certain questions as to what should be emphasized

in high school mathematics. Business and industry are requiring

workers with better problem-solving ability, and this too has

influenced how mathematics is taught in the classroom. Although

this study did not use computers, a number of the features

involved with computer instruction are similar to features used in

the experimental treatment. Working with computers requires a

broader understanding of how things work and relate to one

another. Students need to be able to see and work with broader

concepts and relationships as opposed to manipulating tiny

isolated components (Fey, 1989). The structure of the mathematics

curriculum should be designed to accommodate these types of

changes and shifts in emphasis.

From hand-held calculators to desktop workstations, com-

puter technology is poised and ready to impact the content and
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presentation of mathematics in schools. Technology will decrease

the value of many computational and procedural skills traditionally

found in many mathematics curricula and will make possible tools

for teaching and learning of mathematics in a variety of

sophisticated ways (Mathematical Sciences Education Board, 1990).

Two examples of such tools are the computer programs

EXPRESSIONS and muMATH.

In an article investigating Artificial Intelligence in the

teaching and learning of algebra, Thompson (1989) introduces

readers to a computer program called EXPRESSIONS. This

program was designed to emphasize the cognitive and structural

features of algebra, both of which can be a major source of

students' difficulties. The program is based on the premise that

multiple representations of an object, along with student actions

and immediate computer feedback, will develop the students'

relational understanding of content (Thompson, 1989). Students

can work their way through an algebraic expression or equation

under the direct guidance of an expert algebraic performer, i.e.

the computer. An appropriate strategy is selected by the student

clicking a button on the right hand side of the screen. The part

of the expression or equation being acted upon is similarly

selected by the student clicking a button on the desired location.

Students are able to see the immediate effects of the strategies

they have selected and can evaluate their selections on their own
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or with computer assistance. EXPRESSIONS has been used in a

pilot study with seventh graders and has shown promising results

in increasing students' awareness of selecting appropriate

strategies (Thompson, 1989).

Fey (1989) discusses a similar program in his article on

school algebra in the year 2000. He states that symbol

manipulation computer programs such as muMATH can offer

assistance to students much like the skills of an algebra expert.

The instructions for major algebraic processes such as FACTOR,

SOLVE, or SIMPLIFY provide simple procedures for formal

transformations of algebraic expressions and equations. Using the

computer to carry out the symbol manipulation allows the student

to focus on strategy selection and implementation as well as the

connections among the given information, the chosen strategy,

and the results. These computer programs can be used to enrich

students' understanding of fundamental concepts and rules.

It has been argued that the advancement of technology in

calculators, computers and other electronic information processing

necessitates a change in the goals and teaching of mathematics

(Mathematical Sciences Education Board, 1990). The increased use

of computer technology in society as well as in the schools

provides an excellent opportunity to re-balance and reassess the

important relationships among mathematical skills and concepts

within the curriculum (Fey, 1989). Computer technology makes it
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more important for students to be presented mathematics in a way

that emphasizes connections among key mathematical concepts and

procedures.

Effects of Problem Solving in Mathematics

Along with the affects of using computers in the

mathematics classroom, the pressures from business and industry

to hire employees with adequate problem-solving skills also needs

to be addressed in the way mathematics is taught. The

mathematics curriculum must allow for the integration of problem

solving throughout. From the NCTM's Curriculum and Evaluation

Standards for Mathematics, comes the following statement:

Mathematical problem solving in its broadest sense
is nearly synonymous with doing mathematics.
Thus, whereas it is useful to differentiate among
conceptual, procedural and problem-solving goals
for students in the early stages of mathematical
learning, these distinctions should begin to blur as
students mature mathematically. In grades 9-12, the
problem-solving strategies learned in earlier grades
should have become increasingly internalized and
integrated to form a broad basis for the students
approach to doing mathematics, regardless of the
topic at hand. (NCTM, 1989, p. 137)

This sentiment is echoed in the B.C. Ministry of

Education's draft proposal for the Mathematics strand in the

Graduation Year 2000 Program. 



Mathematical problem solving is not a distinct topic,
but a process of inquiry that provides the context
for constructing and applying mathematical know-
ledge. As such, it permeates all topics within the
field of mathematics. (British Columbia Ministry of
Education, 1992, p. 25)

Part of the reason for this emphasis on problem solving is

that it requires a number of highly valued mathematical skills,

such as: making a table to determine the relationship between two

variables; working backwards as a way of checking a certain

procedural step; and using a simpler numerical task to test out a

particular method before performing the given algebraic task

(Frederiksen, 1984). Simon (1980) and Schoenfeld (1985) believe

these problem-solving skills can be taught and methods for

teaching these skills need to be acquired by all mathematics

teachers. As well, the importance of these problem-solving skills

needs to be reflected in the present structure of the mathematics

curriculum.

Theoretical Models for Understanding of Mathematics

In addition to determining what mathematical skills students

should possess, it is equally important to determine how students

acquire these skills and how they understand other mathematical

concepts and relations. Three theoretical models have been

presented, to provide a reference for investigating how

individuals acquire and process knowledge in mathematics. The

first, metacognition, is based upon students' awareness of their

33
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own cognitive processes and their ability to monitor and regulate

these processes. The last two learning models, referred to as the

"frames" model and "schema" model, involve developing knowledge

networks.

Metacognition

Garofalo and Lester (1985) suggest that many of the skills

necessary in metacognition are also necessary for completing

algebraic tasks successfully. Metacognitive knowledge involves the

awareness and the implementation of strategies in carrying out

certain mathematical tasks. Metacognitive knowledge is necessary

when information about where, when, and how various strategies

are applied, is required. As students develop in their own

metacognitive abilities, retrieval of appropriate strategies comes

more easily and adjustments to strategies are made (Garofalo &

Lester, 1985).

The regulatory aspect of metacognition is concerned with

the decisions and ongoing evaluation of activities one might

engage in during the process of performing difficult mathematical

tasks. These activities may include planning a course of action,

selecting appropriate strategies, monitoring the implementation of

the strategies, and evaluating the outcome of these strategies.

These metacognitive skills are seen as crucial in solving problems

and understanding mathematical relationships. (Schoenfeld, 1985;

Silver, 1982).
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The Frames Model

The first model of knowledge networks utilizes the concept

of "frames," which Davis (1984) defines as a vast collection of

knowledge representation structures. Intellectual growth occurs as

new, more complex frames are built across the foundations of

previously constructed frames. Although each individual is said to

possess his/her own unique set of frames, in mathematics there

are many commonly shared features of frames (Davis, 1984). A

list of these features is presented below.

1. Frames serve as a structured outline for organizing new data.

2.Frames can be identified through analysis of student errors.

3.Frames may be legitimately based upon correct earlier learning.

4.Frames will not function correctly unless all the necessary
information is provided.

5.Frames are persistent, in that changes to them are often not
permanent.

6.Frames follow a definite set of rules.

7.Frames are usually retrieved when the learner is presented
with specific cues and general situational similarities.

Students' memory capacity for frames is limited and therefore the

more links among them, the easier the retrieval process becomes.

(Davis, 1984; Simon, 1980; Young, 1982)

Perkins and Simmons (1988) have characterized frames
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into four interlocked types of knowledge: the content frame, the

problem-solving frame, the epistemic frame, and the inquiry

frame. The content frame contains facts, definitions, and

algorithms associated with the content of the subject matter.

Retrieval of the content frame brings facts and vocabulary

necessary to interpret the question. The problem-solving frame

incudes general problem-solving strategies and metacognitive

processes. Functions of this frame may include breaking a task

down into smaller parts, regulating the time spent on any one

particular strategy, and seeking alternative strategies. The valid-

ity of content and problem frames are measured according to the

norms established in the epistemic frame. Retrieval of the

epistemic frame is necessary to make sense of a mathematical

concept, to prove equivalence from formal axioms, to connect real

world situations to mathematics, to give evidence, or to explain

rationales. The inquiry frame contains general beliefs and

strategies that work to extend and challenge knowledge within a

certain domain. Retrieval of the inquiry frame is necessary for

students to construct their own tasks, to ask other questions

related to a given task, to generalize findings, to challenge

elements of theory, and to think creatively and critically (Perkins

& Simmons, 1988).

These four frames of knowledge distinguish the difference

between expertise and understanding of a particular subject
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matter. Students may be master manipulators of textbook algebra

problems, but may possess no understanding of algebra. In other

words, they may have well developed content and problem-solving

frames without similarly well developed epistemic or inquiry frames

(Anderson, 1983). Students need knowledge from all four frames

to understand mathematical concepts fully (Perkins & Simmons,

1988).

Perkins & Simmons use these four frames as a rationale for

teaching with understanding. They say that instruction should

include all four frames wherever possible, frames should not be

treated in isolation, and instruction should present students with

the substance of these frames and their interrelationships. The

organization of curriculum along with lesson structure should also

emphasize connections among these frames.

The Schema Model

The second model based upon knowledge networks is

essentially another way of looking at individual frames.

According to Marshal (1988), there are three types of knowledge:

declarative knowledge, procedural knowledge, and schema

knowledge. Declarative knowledge refers to the facts and concepts

an individual requires to operate within a given domain.

Procedural knowledge is the set of skills an individual must

possess to function within a given domain. Schema knowledge is

the ability of an individual to make sense of a new set of
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circumstances and experiences. It is "a set of knowledge that

relates a set of declarative facts to a set of procedural rules"

(Marshal, 1988, p. 163).

Schema knowledge can be further broken down into four

components (Marshal, 1990). The first component is feature

recognition: this refers to the body of facts, features and

characteristics that enable one to recognize which schema applies.

The second component is constraint this is the set of conditions,

rules, and limitations that pertain to the operation of a particular

schema. The third component is planning: this refers to the

mechanisms within a schema that set appropriate subgoals and

formulate a sequence of steps to be followed in order to complete

a given task. The fourth component is implementation: this is the

collection of procedural rules and algorithms that are applied to

carry out the response to the given task.

The four components are not a set of hierarchically

arranged levels of knowledge; rather they represent a network of

knowledge consisting of many links and cbsins. The accessing of

a schema is the manner in which knowledge is retrieved from an

individual's long-term memory. A highly developed schema con-

sists of many links among mathematical concepts and procedures.

Thus when any single piece of information involves any aspect of

a given schema, the entire network is activated. If several

distinct components of knowledge exist in different, isolated
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schema networks, then each network will need to be activated

separately. In this circumstance, if any component has not been

activated, then necessary knowledge may not be retrieved from an

individual's long term memory to adequately respond to the task

at hand (Marshall, 1988).

Through the study of schema development and from careful

observation of individual differences in schema knowledge,

valuable extensions of current theory about students'

understanding could be obtained (Silver, 1982), in particular,

studies involving comparisons of the schema knowledge utilized by

experts and novices during work on mathematical tests. Schema

theory has the potential to offer powerful explanations of

students' knowledge and understanding regarding the interrela-

tionships among mathematical concepts and ideas (Silver, 1982).

Skemp (1986) talks about the functions of schema. "It

integrates existing knowledge, it acts as a tool for future

learning, and it determines the type of understanding" (Skemp,

1986, p. 49). The integrative function of schemata comes into

play when a concept is recognized on two levels: as itself and as

a member of a class. This class concept is linked by mental

schemata containing a vast number of other concepts which in

turn influences the way this concept is adapted into the schema

framework. As well, schemata from other fields of experience may

be brought to the surface by existing links and may further
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affect the interpretation and adaptation of the particular concept.

The more schemata that are available, the better the chance of

understanding the concept (Skemp, 1986).

Existing schemata are also valuable tools for the acquisition

of future knowledge. Almost everything one learns depends on

some sort of prior knowledge. Higher learning, therefore,

depends on previously acquired basic schemata. Schemata which

are built up during early learning of mathematics are crucial

elements in determining the ease or difficulty with which a

student

through

learning

through

existing

understands new concepts. If a schema is acquired

meaning and understanding, it becomes an efficient

device as future schemata are likely to be developed

a similar pattern. A new experience that fits into an

schema is much better remembered, than one that does

not. Unsuitable schemata are a major handicap to future learning

as what is understood temporarily may be quickly forgotten

(Skemp, 1986).

A schema can be just as powerful a hindrance as a help in

acquiring new knowledge. It can be seen as a major instrument

of adaptability serving both as an organizer of existing knowledge

and an acquirer of new knowledge. If situations are encountered

where the available schema is not adequate, the stability of the

schema becomes an obstacle to adaptability. At this point

reconstruction is required before the new situation can be
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understood. Reconstruction of schemata in mathematics is essential

as students must continually accept broader number systems.

First they learn the natural number system, then they must

adjust their schemata to include integers, and adjust their

schemata again once rational numbers have been introduced. It is

far easier to understand the defensive nature of students'

reactions to new ideas, when one attributes it to the process of

having to reconstruct a new schema. If time is taken in providing

meaning and understanding during this time of reconstruction,

the new schemata will also serve as useful tools for future

learning (Skemp, 1986).

According to the schema model, to understand something

means to assimilate it into an appropriate schema. Skemp (1978)

describes two types of understanding• instrumental and relational.

Instrumental understanding involves a knowledge of a set of well-

delineated but isolated rules that necessitates the memorization of

the type of task to which each rule applies. Instrumental

understanding produces basic individual schemata that become

enlarged as more tasks are performed. Relational understanding

involves knowledge of general principles which can be extended

or adopted to different situations. Schemata become connected to

form broader networks of understanding. Relational understanding

requires a combination of knowledge about "how to" do something

with knowledge pertaining to the reasons underlying a particular
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action. While schema acquired through instrumental understanding

are considered to be compartmentalized bits of knowledge, schema

acquired through relational understanding are well integrated

networks (Skemp, 1978).

Metacognition, frames, and schema provide models for

studying how students understand; the models share common

notions about the value of connecting different and related pieces

of knowledge through meaningful learning. The organization of

mathematics material should provide students and teachers with

examples of a sound network of knowledge. Ideally it should

highlight a variety of relationships and connections that exist in

mathematics. Presenting a lesson topic should be like activating a

well-developed schema; it should trigger previously acquired

schemata and form new links and chains among them (Kaput,

1989; Kirshner, 1989) GRining insight about how students learn

and understand mathematics could provide an important framework

for developing an appropriate structure for the curriculum.

Analysis of Student Errors

If it is important to gain information about students'

understanding, then it must be equally important to gain

information about their misunderstanding. Davis (1984) supports

the importance of studying patterns in students' errors as

providing a means for improving instruction and learning. He

states that there are two kinds of regularities observed in
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mathematical errors. The first kind occurs with those extremely

common errors made by a large number of students. He uses

examples like 3 x 5 = 8 or 3 2 = 6. An explanation for these

types of errors is that students tend to apply the mathematics

they have last understood while seeking solutions to given tasks

(Davis, 1984; Manhard, 1985).

The second kind of regularity occurs when an individual

consistently responds incorrectly to a certain type of question.

There are a number of different explanations offered for these

errors. Erlwanger (1973) noted in his study involving a sixth

grade student, that a malfunction usually occurs in the same

location of the student's cognitive machinery. He describes it as a

"super-procedure" selecting the wrong "sub-procedure." Once the

super-procedure has been activated by some sort of visual cue in

the question, it then calls upon a series of sub-procedures that

the student has either invented or misinterpreted (Erlwanger,

1973).

Davis offers other explanations for these errors committed

by individuals. One explanation is the over-generalization of a

previously learned rule or procedure to contexts where the rule

is inappropriate or requires modification. Figure 5 shows an

example of a student solving a quadratic equation by factoring

without setting one side of the equation equal to zero.



Solve for x.

x2 - 5x + 6 = 2
x2 -5x + 6 -2 = 2 - 2

x2 -5x + 4 = 0
(x - 4)(x -1) = 0

x =1 or x = 4

x2 - 5x + 6 = 2
(x - 2)(x - 3) = 2

(x - 2) = 2 or (x - 3) = 2
x = 4 or x = 5

CORRECT APPLICATION^OVER GENERALIZATION
OF A PROCEDURE^OF A PROCEDURE
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Figure 5: An Example of an Over Generalization of a Mathematical
Procedure (Davis, 1984)

In order to correct these errors in process, students must

first become aware of the nature of their errors. They must

develop an understanding of the particular task at hand rather

than relying on rotely memorized procedures to provide solutions.

It is most probable that this lack of understanding about the

nature of the given mathematical task has led to the error in the

first place (Davis, 1984).

Booth (1988) and Kent (1979) both attribute many of

students' systematic errors to a misfocus of attention. Booth in

her analysis of the Strategies and Errors in Secondary

Mathematics (SESM) project, conducted in the United Kingdom

with students ages 13 to 15, states that students tend to focus

their attention on finding an answer to an algebraic question,
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rather than focusing on the procedural steps involved in

obtaining an answer. Students are so intent about getting an

answer that they overlook what the task is asking them to do

(Booth, 1988). Many of students' errors in performing algebraic

tasks may be attributed to this unidimensional focus on just

looking for the answer. This may indicate a need to develop

educational materials and lessons which help students focus upon

the key concepts within a given task.

Gliner (1991) suggests that not only do students focus

attention toward getting an answer, but they tend to focus on

irrelevant characteristics of a question, leading them to make

false generalizations. He says that often students focus solely on

the surface structures of symbols which are devoid of meaning.

Students need to become aware of what provides meaning in a

question or task in order to respond appropriately (Gliner, 1991;

Kent, 1979).

An Alternative Approach to Curriculum Organization

The organization of the curriculum and daily lessons should

aid students in focusing upon what is most important in

mathematics. Perhaps the present organization is placing too much

emphasis on the symbolic representations and objects of

mathematics and not enough on procedures and processes. A

curriculum organization emphasizing mathematical processes and

procedures may contribute to alleviating persistent student
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errors. There is a definite need for a continuing assessment of

mathematical topics assisted by analysis of errors in making

decisions regarding students understanding of mathematics.

(Booth, 1988)

The curriculum establishes the content for mathematics

courses, and the organization of the curriculum should establish

the emphasis and focus for students and teachers. At present,

this organization could emphasize computer technology and

problem-solving skills that are deemed desirable in business and

industry (Willoughby, 1990). As well, this organization could

emphasize the ways in which students learn and understand

mathematics. It could also aid them in avoiding misunderstanding

by highlighting the most important concepts and ideas.

Curriculum organization could better enable students to see and

understand the interconnectedness of mathematics. This notion of

curriculum connecting key mathematical concepts is discussed in

Curriculum and Evaluation Standards for Mathematics. 

Mathematics must be approached as a whole,
concepts, procedures and intellectual processes are
interrelated in a significant sense. The curriculum
should include deliberate attempts through specific
instructional activities, to connect ideas and
procedures both among different mathematical topics
and with other content areas. (NCTM, 1989, p. 11)

Similarly, the fourth curriculum intention from the 1992

British Columbia Ministry of Education's proposed mathematics



program reads as follows:

The learner will have opportunities to develop
mathematical power by making mathematical
connections.

*****
Making mathematical connections enables learners to
broaden their perspective to view mathematics as an
integrated whole rather than as a set of isolated
topics. Opportunities need to be provided for both
students and teachers to develop a broader
understanding of significant mathematical concepts
and how they are related to other parts of the
curriculum. These opportunities must include time
to develop a substantial overview of the present
mathematics curriculum. (B.C. Ministry of Educa-
tion, 1992, pp. 26-27)

Cobb, Yackel, and Wood (1992) argue that curriculum

should present mathematical meanings and structures in a readily

apprehensible form, and that this approach to developing a

curriculum would ensure that the connections among mathematical

concepts students make are essentially correct and well thought

out. A curriculum needs to stress the relationships among the

topics in the major areas of mathematics. It should make use of

certain key mathematical ideas that permeate all of mathematics

(Artzt & Newman, 1991; Fey & Good, 1985; Young, 1982). These

ideas need to be highlighted and used to demonstrate the inter-

relationships between apparently different mathematical topics

(Artzt & Newman, 1991; Fey & Good, 1985).

Davis (1984) suggests that a major decision in presenting a

47
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curriculum to students is the "size of bits and pieces" with which

the student is being asked to deal. Any size chunk can be

defensible as long as the key ideas are apparent. A curriculum

consisting of only bite-sized pieces, may fail to produce the

synthesis of the key ideas. Knowledge must eventually be

integrated into larger wholes (Davis, 1984).

Sonnabend states that the mathematics curriculum should

change its focus from isolated specific topics to the main ideas of

mathematics. This change in focus needs to occur at all levels of

mathematics in order to emphasize conceptual understanding.

Focusing on the main ideas of mathematics allows room for other

applications which may involve the employment of computers and

calculators (Sonnabend, 1985). "By using a broad range of topics

one improves the odds of getting a reasonable representative

picture of the kind of mental information processing that

mathematics requires" (Davis, 1984, p. 310).

Manhard (1985) discusses the benefits in transferring from

a traditional organization of the curriculum to a more integrated

one. He suggests taking the same topics, that had been used in

the algebra-geometry-algebra sequenced curriculum, and reorgani-

zing them to reflect a change in emphasis. In the traditional

sequence, classes tended to study distinct subjects with few

connections between them (Manhard, 1985). The proposed

integrated program was designed to stress the important
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underlying themes of mathematics and exemplify them across

various topics. He suggests that important skills and concepts

should be spiraled within such a program. It should also provide

a built-in flexibility in that topics may be easily interchanged,

lengthened or shortened. Concurrently this provides for more

creative curriculum development and enables students to develop a

greater understanding of the interrelationships among the dif-

ferent topics in mathematics. "An integrated program can demon-

strate the interconnectedness of mathematics in a way other

programs cannot" (Manhard, 1985, p. 196).

It is usually easier to develop and plan a curriculum than it

is to implement and evaluate one. From the research end of the

spectrum New York State had adopted an alternate integrated

program on a trial basis (Paul and Richbart, 1985). They made

every effort to include all the essential aspects of the traditional

secondary curriculum. Certain topics had to be reorganized under

the new structure and others had to be de-emphasized. In 1983

this integrated program was tested against the traditional

program. The study involved 365 students from the integrated

program and 935 students from the traditional program. The

study concluded that students who were enrolled in the integrated

program had no practical disadvantage on traditional forms of

assessment, but showed some evidence of having a deeper level of

understanding about certain key mathematical concepts than their
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counterparts enrolled in the traditional program (Paul & Richbart,

1985).

Summary

The organization of curriculum should be adaptable to

change with the impending future impact of computer technology.

It should encompass the general mathematical skills found in the

area of problem solving. The organization should also include an

emphasis on how students learn and understand mathematics, as

well as enabling students to see the bigger picture of

mathematics. Authorities feel a need for the mathematics

curriculum to engulf a broader spectrum of key mathematical ideas

and provide a means for connecting the present isolated topics

(B.C. Ministry of Education, 1992; NCTM, 1991). The answers

pertaining to how best to organize the mathematics curriculum may

lie within the interconnectedness of mathematics itself.



CHAPTER 3: METHODS

Due to the varying nature of the research questions two

different methodological approaches were used in the study. The

questions involving students' selection of strategies and

understanding of the interconnectedness of mathematics lent

themselves to a qualitative approach, whereas the questions

involving student achievement and amount of class time seemed to

require a quantitative approach. This chapter begins with a

discussion of the general design of the study including

population, sample selection, and treatments. Next, the methods

and sources for collecting the data are presented, followed by the

details of how the data were analyzed.

Population and Sample Selection

The study was conducted at a secondary school in the

interior of British Columbia. The school has an enrollment of

approximately 1200 students in Grades 8 through 12. Two

different Mathematics 11 classes containing a total of 44 students

were involved in the study. Selection of the students was carried

out by normal timetabling procedures and the discretion of the

teacher/researcher as outlined in Chapter 1. All students in the

study wrote two pretests and two posttests. In addition, five

students from each class were chosen to take part in follow-up

interviews. The individual interviews were conducted to clarify

51
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answers to the open-response questions and to solicit further data

pertaining to students' understanding about the

interconnectedness of mathematics. Students were selected for the

interviews to represent the general make-up of the class in terms

of age, previous mathematics courses, and on the basis of the

likelihood that they would reveal insightful information, as judged

from their pretests.

Treatments

The study provided a comparison between two different

organizations of the curriculum. It was conducted from the

beginning of the school year for approximately ten weeks until

the end of the first term. One class was taught using a

traditional organization of the curriculum emphasizing mathematical

objects (i.e., Real Numbers, Exponents, Radicals and Rational

Expressions), while the other class was taught using an

alternative organization of the curriculum emphasizing mathematical

processes (i.e., Factor, Simplify, and Solve). Both classes were

taught by the same instructor and covered the same portion of

the curriculum as mandated by the Ministry of Education for

British Columbia (1988).

Data Collection Procedures

The collection of data came from a variety of different

sources. These included students' responses on standard

achievement tests and open-ended tests. Classroom observations
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were recorded in a teacher journal and verified by colleagues'

notes and by the acetate rolls used during instruction. Audio

tapes of the follow-up interviews with selected individuals were

used after the pretests and again after the posttests.

A pretest-posttest quasi-experimental design was used to

deal with prior differences between the two classes regarding the

students' abilities and knowledge of the interconnectedness of

mathematics. Within the first two weeks of the school year all

students were given two pretests. Pretest 1 (see Appendix A)

was used to determine students' abilities with respect to standard

school and district-wide tests. Pretest 2 (see Appendix B) was

used to determine students' abilities in selecting appropriate

strategies and to determine students' understanding about the

interconnectedness of mathematics. After the two pretests,

individual follow-up interviews were conducted with students to

clarify their written answers and to gain additional information of

their understanding about the interconnectedness of mathematics.

A journal was maintained by the teacher/researcher for the

duration of the project, the first term of the school year. The

journal was used to monitor the structure, content, and time of

instruction. The teacher/researcher also used an overhead

projector to present written notes and daily quizzes to the

classes. The acetate rolls retained from the overhead projector

provided a way to verify the number of periods of instruction
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needed to cover the required portion of the curriculum. Wherever

possible the same instructional material handed out in the lesson

was given to both classes. The differences occurred in the order

and organization of the material, and how it was presented to the

students.

Over the last two weeks of the term, two posttests were

given to the students. Posttest 1 (see Appendix C) was the

district-wide term test written by all Mathematics 11 students.

Posttest 2 (see Appendix D) was a series of open-ended items

used to determine students' abilities in selecting appropriate

strategies and to determine students' level of understanding. Both

posttests were similar in nature and form to the corresponding

pretests. However, the pretests utilized material from previous

mathematics courses, while the posttests utilized material from the

first term of Mathematics 11. Follow-up interviews were conducted

after the posttests, involving the same five individuals from each

class. All tests were incorporated into the regular classroom

routine, and all interviews were scheduled before or after school

hours.

Teacher's Journal 

Descriptions of classroom observations were recorded by the

teacher/researcher in his journal as close in time to the actual

events as possible. Particular attention was given to any events

that might have led to insightful information regarding students'
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understanding about the interconnectedness of mathematics.

Approximately once a week, throughout the project, colleagues

would attend a class or a portion of a class to record their own

observations or to verify the observations of the

teacher/researcher by making comments in the teacher's journal.

Any points of interest from these observations and comments were

discussed and clarified. The journal and the acetate rolls were

used to verify the number of class periods required to cover the

designated part of the curriculum and the type of instruction

each of the two classes received.

Audio-Taped Interviews

Follow-up interviews were conducted immediately following

the two sets of pretests and posttests. The interviews were used

to provide clarification for the responses of the students on the

open-ended items. In addition, at the end of each interview

another open-ended question was used to solicit additional

information regarding students' understandings about the inter-

connectedness of mathematics. Figure 6 shows an example of an

open-ended task used at the end of an interview.
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Roberta the Robot has three questions for you. The only
problem is her video display terminalal has malfunctioned so she
can only respond orally answering "yes" or "no" to all your
questions. Your task is to find out as specifically as possible
what the questions were.

The instructor would have three algebra questions written down
on a piece of paper (not seen by the student) such as:

1. Solve 3x = 27,

2. Factor x2 - 7x + 12, or

3. Simplify x + 1^3
x + 2^x - 1

The student would ask a series of "yes" or "no" questions to
which the instructor would respond accordingly. The process
continued until the students had confidence that she/he
discovered the hidden algebra task or until she/he ran out of
questions to ask.

Figure 6: An Example of an Open-Ended Interview Question

This question was designed to elicit the elements of an

algebraic task that the student regards as most important or least

important. As well, to determine how the student relates one

aspect of a question to another.

Pretest 2 and Posttest 2 

Pretest 2 and Posttest 2 were designed to assess selected

higher order thinking skills, in this case students' selection of

strategies and students' understandings of the interconnectedness
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of mathematics. The tests included a variety of open-ended

questions. Pretest 2 contained material from previous mathematics

courses and Posttest 2 contained material from the first term of

Mathematics 11. Pretest 2 included two presolved algebra

questions, requiring students to evaluate a given solution for a

particular algebraic task. As well, one explanatory question, two

compare and contrast questions, and a non-routine problem were

also included. All the pretests and posttests are included in the

appendices.

The presolved algebra questions were adapted from the

presolved problems used in the British Columbia Mathematics

Assessment (1992). These items were used to assess metacognitive

actions in problem solving, where deciding on an appropriate

strategy plays a fundamental role. As Szetela has observed in

commenting on these items.

One way to assess critical analysis and meta-
cognitive actions in problem solving is to present
an already solved problem where the task is to
evaluate the solution rather than solve a problem.
Although the given problem is already solved, the
student must acquire a suitable representation, be
able to monitor the solution procedure, and decide
on the appropriateness of the procedure and rea-
sonableness of the answer. (Szetela, 1992, p. 194)
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In addition to evaluating the given responses for the pre-

solved algebra questions the students were asked to give their

own responses to the question. Figure 7 shows a presolved

algebra question containing a significant error in the procedural

steps. All but one of the presolved questions contained both a

major and a minor error. A major error refers to a procedural

error in the solution indicating the strategy used was

inappropriate. A minor error refers to an error in calculation or

in symbol manipulation. There were three types of major errors

used in questions. One was the implementation of a simplify

strategy for a factor question, another was the implementation of

a simplify strategy for a solve question, and the other was the

implementation of a solve strategy for a simplify question.

The explanatory questions required students to write a list

of procedural steps that they determined would be necessary to

complete a given algebraic task. Figure 8 shows an explanatory

question where the student is placed in a position of peer tutor.
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Simplify the following:

x + 2^3x + 1 
x2 - 9x + 20 +^- 7x + 12 x2

Tom's solution for this question is:

x + 2^3x + 1 
(x - 4)(x - 5)^(x - 3)(x - 4)

C.D.=(x-4)(x-5)(x-3)
x + 2^ +(x-4)(x-5)(x 3) (x - 4)(x - 5) (x 

3x
 3)(x

1
 4) (x-4)(x-5)(x-3) *

(x-3)(x+2)+(3x+1)(x-5)

x2 - x - 6 + 3x2 -16x - 5
^**

4x2 - 17x -11

Is anything wrong with Tom's solution? Explain.

Is anything right with Tom's solution? Explain.

Show how you would you have solved this problem?

* Major Error - multiplied by value other than 1.
**Minor Error - multiplied second set of brackets incorrectly.

Figure 7: Example of a Presolved Algebra Item: A Simplify
Question With a Solve Type Strategy
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Imagine you are talking to a friend on the phone about a
difficulty they are having with simplifying rational expressions.
They provide you with the following example:

x + 45 
2x2 - 2x - 2x - 2

What would you say to guide them through the question step by
step, so that they will better understand how to deal with -imllar
questions? Anticipate their responses.

Figure 8: An Example of an Explanatory Question

The compare and contrast question shown in Figure 9 was

used to determine what connections students make among different

mathematical processes. For this item only the students' reasons

were marked, as there was considered to be no one correct

answer.

Column A^ Column B 

Add/ Subtract^Factor

Multiply^ Simplify

Divide^ Solve
a)Match items from Column A to those which are most similar in
Column B and explain why you made your choice.
b)Using the same columns, match items from Column A to those
which are most dissimilar in Column B. Explain why you made
your choice.

Figure 9: An Example of a Compare & Contrast Question
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Finally, a non-routine algebra problem was given to

determine how well students initiated a strategy on their own.

Non-routine problems were not readily familiar to the students,

but they could be solved with the knowledge students should

possess. Figure 10 shows an example of a non-routine algebra

problem.

Show that the product of the sum of three positive real numbers
and the sum of their reciprocals is always at least 9. And when
can the product be exactly 9? SHOW ALL WORK AND EXPLAIN!

Figure 10: An example of a Non-Routine Algebra Problem.

Posttest 2 contained three pre-solved algebra questions, one

explanatory question, one non-routine algebra question and one

process definition question where students were asked to list what

they interpreted as being the important procedural steps for

certain processes such as Reduce, Simplify, Factor etc.

Pretest 1 and Posttest 1 

For the purposes of this study the effects of the treatment

on student achievement were determined from a pretest-posttest

analysis. Pretest 1 was given at the beginning of the term to

estimate the students' ability on standard algebra tests. This test

did not contain any material that had not been previously covered

in prerequisite courses. It followed a similar structure and format

as Posttest 1 so it could provide a means of accounting for any

prior differences between the classes.
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Posttest 1 was the Term 1 Test used by the school district

to assess all Mathematics 11 students for the first term. This test

was team marked and graded according to cutscores. The marking

team consisted of all the Mathematics 11 teachers in the district

who marked the exams in groups of two or three using a

previously agreed upon answer key. The test consisted of 15

multiple choice questions and eight long answer questions totaling

35 marks. The content of the exam covered most of the algebra

portion of the curriculum excluding relations and functions. These

two tests were used to answer the research question about

differences between the two classes on standard achievement

tests.

Analysis of Data

Just as it was necessary to collect a wide range of data for

the study, it was also necessary to have a wide range of

analyses to interpret the data. Interpretations of the classroom

observations and of the taped interviews, along with heuristic

scoring scales were used to address the research questions

regarding students' understanding about the interconnectedness

of mathematics and students' abilities to select appropriate

strategies. An ANCOVA was used to interpret the results on the

standard tests. The teacher's journal and the acetate rolls were

used to determine the number of class periods.
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Interpretations of Observations 

The interpretations of the observations focused on those

events which showed any evidence of students' understandings

about the interconnectedness of mathematics or of students' ability

in selecting appropriate strategies. The questions and responses

of the students and the teacher were examined along with their

behaviors, attitudes, and beliefs. Any patterns that proved to be

prevalent with regard to classroom atmosphere or lesson directions

were noted. Discussion with colleagues helped to verify the

observations and brought to the surface other interesting

happenings in the class. Journal notes were constantly checked

for consistency against the acetate rolls used during instruction.

Interpretations of Interviews 

The interviews were conducted in two parts; the first part

was to enable students to clarify their written responses on the

open-ended test items. The subsequent transcripts were checked

for information regarding students' reasons for a response,

desires to change a response, mental processes required to obtain

a response, and difficulties encountered in obtaining a response.

Again the interpretation of this information explored possible

causal relationships and meanings with respect to this study.

The second part of each interview involved the task of

having students generate a set of "yes" or "no" type questions to

unveil three likely algebra tasks in the possession of the
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interviewer. This exercise examined those aspects of an algebraic

task that students focused on or felt were the most important.

How the students used the interviewer's responses to formulate

their next question was also noted. The final sets of questions

generated by the students were further examined to gain possible

insights as to what connections each individual was making, as

well as any correlations or discrepancies with other individuals

interviewed.

Heuristic Scoring Scales 

The results from Pretest 2 and Posttest 2 were classified

according to heuristic scoring scales. These results were used to

characterize students' ability in selecting an appropriate

procedure and to gain insight regarding students' understanding

about the interconnectedness of mathematics. These scales

provided a convenient way of comparing all the responses given

on the open-ended items in the two classes. All scores were

arrived at by the consensus of the teacher/researcher and

another mathematics instructor. Each instructor marked one of the

sets of exams, then they traded and marked the other set. No

marks appeared on the exams until the second marking, so as not

to influence the second marker. Any discrepancies were discussed

with other mathematics teachers until a consensus was reached.

In Figure 11 the heuristic scoring scale used to evaluate

the presolved algebra questions is shown. It utilizes three
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different aspects of the task: first, whether or not students

could identify a major or a minor error in a previously solved

algebra task; second, what level of logic and understanding

students used in describing the errors they discovered; and

third, whether or not students could select an appropriate

strategy to complete the given task.

SCORING SCALE FOR PRESOLVED ALGEBRA QUESTIONS

Identification^0^Did not identify any errors or
of Errors^ identified something that was not an

error
1 - Identified minor error only
2 - Identified major error only
3 - Identified both major and minor

errors

Reasons for^0 - No explanation
Errors^1 - Illogical or irrelevant explanation

2 - Simplistic or unfocused explanation
3 - Correct & Logical explanation

Students' Own^0^Did not offer a solution or offered
Solution^ same solution as given

1^Offered a different solution but still
contained a major error

2^Offered a different solution but still
contained a minor error

3^Offered a complete and correct
solution

Figure 11: The Scoring Scale for the Presolved Algebra Questions

For the explanatory test items, the heuristic scale shown in
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Figure 12 was used to determine the students' level of

understanding about a certain algebraic process. Allowances were

made in the scale for those students who proceeded to answer the

task directly rather than writing an explanation of the procedures

in their own words.

SCORING SCALE FOR EXPLANATORY QUESTIONS

0 - No advice offered or answered the task directly with
a major error.

1 - Advice offered, but containing major error.
2 - Advice offered, but it is confusing, oversimplified, or

inconsistent.
3 - Advice offered contsiining essentially correct

information for certain aspects of the question.
Could not be used alone to obtain a correct solution
or answered task directly with a minor error.

4^Sound advice offered with only a few flaws in
clarification or explanation of steps or answered
task directly with correct answer.

5 - Clear and sound advice offered with no flaws. Could
be used to obtain a correct solution.

Figure 12: The Scoring Scale for Explanatory Questions

In Figure 13, the heuristic scale used for the compare and

contrast items in Pretest 2 are shown. This scale emphasizes the

ability of students to make meaningful connections in mathematics

based on logical reasoning. The scale relies heavily on the

judgement of the evaluators, and any comparisons made must take

this into account.
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SCORING SCALE FOR COMPARE AND CONTRAST QUESTION

0 - No logical reasoning for making connections
1 - Simplistic or poor reasoning for making connections
2 - Some minor flaws in reasoning for making connections
3 - Clear and logical reasoning for making connections

Figure 13: The Scoring Scale for Compare and Contrast Questions

The process definition question from Posttest 2

required students to make a list of important procedural steps

that they thought were applicable to a certain mathematical

process. The heuristic scale, shown in Figure 14, was designed

to measure the quality and detail of the students' list.

SCORING SCALE FOR PROCESS DEFINITION QUESTION

0 - Incorrect steps listed
1 - Only a few basic steps listed for all processes
2 - Some important steps listed for each or most processes
3 - Most of the important steps listed for each process

Figure 14: The Scoring Scale for Process Definition Question

The scoring scale for the non-routine algebra problems,

shown in Figure 15, was designed to determine the students' level

of ability in selecting or developing an appropriate strategy. This

scoring scale attempted to isolate just the development and

implementation of a strategy in response to the second research

question.
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SCORING SCALE FOR NON-ROUTINE PROBLEM

0 - No attempt.
1 - Attempted, but with no logical strategy.
2 - Attempted with a strategy that would not lead to a

correct solution.
3 - Attempted with a strategy that could lead to a correct

solution.

Figure 15: The Scoring Scale for Non-Routine Algebra Problems

Analysis of Covariance

The Posttest 1 results were analyzed with an ANCOVA

using Pretest 1 as the covariate. This analysis was done to

minimize the effects of any prior differences in ability between

the two classes and to minimize the effects of the non-random

school selection procedures. The null hypothesis for the ANCOVA

was as follows:

There is no significant difference between the
adjusted mean Posttest 1 scores of the students in
the two classes.

As mentioned previously, two threats to internal validity

were the selection procedure followed by the school and student

mortality. Threats to external validity or interaction effects were

minimized by incorporating the tests into the regular classroom

routine and spacing the tests ten weeks apart. Interaction

between the classes could not be controlled. As this is a

feasibility study involving a small sample, the ANCOVA results

are only used to show whether there were adverse effects on
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students' scores on standard tests. Any other interpretations

from the ANCOVA must be made with caution.

Summary

Due to the nature of the research questions it was seen as

necessary to use a variety of instruments and subsequent forms

of analysis to address each one adequately. Although classroom

observations and follow-up interviews were used to gain insight

into students' abilities in strategy selection, their main purpose

was to address the question about students' understanding of the

interconnectedness of mathematics. Any themes or patterns per-

taining to this question that presented themselves in the journal

were noted and explored further as to their possible cause and

meaning. The follow-up interviews were conducted to obtain addi-

tional information about students' understandings and perceptions

of the interrelationships within mathematics.

The effect on the students' ability to select an appropriate

strategy was assessed primarily from the scores for the open-

ended tests obtained by heuristic type scales. These results were

tabulated and used to compare the two different classes.

The effects of reorganizing the curriculum with respect to

students' achievement on standard tests was addressed by the use

of an ANCOVA comparing students' results on a district-wide test

using a similarly structured pretest as the covariate. The effect

on class time was obtained by counting the number of periods
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necessary to cover the required portion of the curriculum as

recorded in the teacher's journal and on the acetate rolls used in

instruction.



CHAPTER 4: RESULTS

As described in Chapter 3, the results of the study are

organized into two major sections. The first section presents the

qualitative aspect and attempts to answer the first research

question which involves students' understanding about the inter-

connectedness of mathematics. The classroom observations as re-

corded in the teacher's journal, colleague's notes, and acetate

rolls provided evidence for a description of the two different

classes. Certain aspects of these observations were examined in

some detail including class discussions and examples of students'

difficulties in understanding, along with some possible explana-

tions for these difficulties. Following the classroom observations

are the results from the individual interviews, which allowed for

an analysis in greater depth of students' difficulties in under-

standing and communicating about mathematics. In addition, the

open-ended oral task part of the interview provided results which

indicated how these students had organized their own thoughts

about mathematical concepts and relationships.

Next the chapter presents the quantitative aspects of the

study with the results from the open-ended test scores. Although

these results were also intended to address the research question

relating to students' understanding, they seemed better able to

respond to the question regarding the students' abilities to select

'71
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appropriate strategies. Each task from Pretest 2 and Posttest 2

was examined in detail utilizing many figures and tables to allow

for the reader's own interpretation of the results. A comparison

between these two open-ended tests is presented in order to

highlight any signs of improvement that had taken place over the

duration of the project.

The research question regarding students' achievement on

standard tests was answered by the use of an ANCOVA comparing

the results for the two classes on Posttest 1, using Pretest 1 as a

covariate. Finally, the research question of class time was

answered through the examination of the teacher's journal and the

acetate rolls used during instruction.

Classroom Observations

Classroom observations recorded in the teacher's journal

provided a sketch of the lesson and unit structure used for both

classes. Any observable differences between the two classes or

general tendencies that occurred within each class were recorded.

These observations provided evidence concerning students' under-

standings of the interconnectedness of mathematics and students'

errors with strategy selection. Possible causes for these errors

are presented and discussed. Specific incidents from the classes

are recorded with the lesson number and its setting within the

unit. The class instructed under the mathematical object

organization of the curriculum had Real Numbers, Exponents and
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Radicals, and Rational Expressions as unit headings, while the

class instructed under the mathematical process organization of

the curriculum had Factor, Simplify and Solve as unit headings.

Mathematical Object Classroom

The organization of the curriculum emphasizing mathematical

objects arranged lesson topics in sequence according to the

different features of the main mathematical object. For example, a

sequence of lesson topics in the Exponents and Radicals Unit was:

Powers with Natural Number Exponents, Powers with Integral

Exponents, Powers with Literal Exponents, Powers with Rational

Exponents, and Exponential Equations. Each lesson usually

focused on one particular aspect of the main object, in this case

whether the exponent was an integer or a rational, etc. It wasn't

until the latter lessons of the unit or the review lessons that the

specific concepts and procedures were connected and discussed.

The review lessons provided the class the opportunity to develop

an outline for the unit indicating key concepts and procedures

along with general rules. An example of such an outline is shown

in Figure 16.
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Figure 16: An Example of an Outline Produced During a Review
Lesson in the Mathematical Object Class

This particular outline occurred in lesson 9 of 10 in the

second unit, on Exponents and Radicals. The class was asked

certain questions about what they could recall from the unit and

what connections they could make among the main concepts. The

results from this inquiry were illustrated on the blackboard by

the instructor. An overall picture was created by linking together

each key component of the unit. At the same time, there was a

discussion about the major rules that applied to a number of

different components such as keeping the base the same for

simplifying exponents or only multiplying by one (multiplying the
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numerator and denominator by the same number) when simplifying

radicals. Other similarities between radicals and exponents were

also discussed, for instance, pointing out for students that

solving equations where the base is the unknown requires the

same set of procedures as solving radical equations. For many of

the students this was the first time within the unit that they

were given the opportunity to see and discuss the

interconnectedness of mathematics. They were presented with a

graphic diagram that highlighted the main properties of exponents

and illustrated how these properties were related to the main

properties of radicals.

Review lessons almost always occurred before a major test

or assignment; therefore cautions were usually thrown out to the

students by the teacher/researcher about possible places for

errors. For example, during lesson 4 of 10 in the second unit, on

Exponents and Radicals, the teacher/researcher put an example

on the board:

( x + y ) 4 = x4 + y4

He asked, "How many people think this is OK?" A couple of

hands were raised. "All right," the teacher/researcher continued,

"What's wrong with it?" One student volunteered the answer "You

can't do that when you're adding." The teacher/researcher then

asked "What would make this equation correct?" Another student

said "Make them both multiplications." The teacher/researcher
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made this adjustment on the board ( i.e., ( xy)4 = x4_4y ) and

then put up a similar error with radicals:

T7x + y^= x + y

A similar type of discussion took place; however, for this example

the teacher/researcher asked a student to provide a numerical

example that would disprove this equation. Errors were also

examined and discussed after an assignment or test was handed

back to the students.

Mathematical Process Classroom

The mathematical process organization of the curriculum was

structured in such a way that the teacher/researcher felt

compelled to deal with the whole picture at the beginning of the

unit. At least a sketch of the whole picture was presented and

subsequent lessons provided the details to be filled in. For

example, when the teacher/researcher was conducting the first

lesson for the Simplify Unit he first had to discuss what was

meant by this term and what general concepts and procedures

could be included in this unit. The teacher/researcher said "The

most important rules to remember when you are simplifying are to

follow the order of operations, BEDMAS [brackets, exponents,

division and multiplication, and addition and subtraction], and to

only multiply by one - or you change the question." In
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subsequent lessons these two rules came up in most examples and

questions. It reached the point where the teacher/researcher

would ask "OK, this is a simplify question, what am I supposed

to remember?" and the majority of the class would respond "You

must follow BEDMAS and you can only multiply by one." Similarly

at the beginning of the Solve Unit after the first initial lesson

dealing with the properties of equality, the teacher/researcher

said "These all come down to one important rule for solving

equations - you must do the same thing to both sides of the

equation." Again this rule came up constantly in each of the

following lessons. Although these general statements were also

used in the class where the curriculum was organized by

mathematical objects, they did not occur as consistently from the

beginning of the unit till the end, simply because these rules did

not always apply to everything in the unit.

In one of the introductory lessons, lesson 2 of 8 in the

first unit, Factor, a discussion developed about the general set of

procedures involved with factoring. As a result of this discussion

the class with the guidance of the teacher/researcher produced a

list of procedures needed to complete a task on factoring. The

following set of procedures was written on the blackboard for the

students to copy:
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1. Identify the number of terms.

2. Identify any common factors among the terms.

3. Factor these common factors out.

4. Identify any other similarities among the terms.

5. Use the appropriate factoring strategy

6. Check to see if answer only has one term or anything
else that could be factored.

7.^Check answer by simplifying i.e. multiplying out the
brackets.

Each subsequent lesson referred back to this set of

procedures while elaborating on the specific types of strategies

and methods that could be used. These general sets of

procedures produced as a result of class discussions at the

beginning of a unit made it very evident when a certain lesson

was out of place. In one such incident, during lesson 7 of 10 in

the second unit, Simplify, the teacher/researcher had planned to

teach a lesson involving undefined values. It became abundantly

clear that the students could not find the undefined values while

following the general procedural steps for simplifying. The lesson

did not fit anywhere in the unit. The teacher/researcher

recognized this midway through the lesson and said "I've made a

mistake, we don't have to cover this topic until the next unit.

Will somebody please make a note of this so I do not forget to

deal with this topic in the next unit?" He then proceeded to
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conduct a review lesson on what they had covered up to that

point in the Simplify unit. This sort of situation never came up in

the object class, as each unit dealt with more than one set of

general procedures.

Classroom Discussions 

Both classes were involved in important discussions dealing

with the interconnectedness of mathematics. One difference was

that in the class with the organization of curriculum emphasizing

mathematical objects most of the discussions about the various

relationships among concepts and procedures were held near the

end of each unit during review lessons. This was due to the way

the teacher/researcher arranged the sequence of the daily lessons

in accordance with the outline of the learning outcomes in the

curriculum guide. Usually a specific aspect of a mathematical

object was dealt with during a lesson and the review lesson was

the time when all the specific aspects or pieces were connected.

In the class with the mathematical process organization of

curriculum these discussions tended to be initiated in the

introductory lessons of the unit and continued through until the

end. In this case, the teacher/researcher had arranged the

sequence of daily lessons where the introductory lessons dealt

with the whole picture of a general process and each subsequent

lesson added more detail to this picture. Holding these

discussions at the beginning of unit also allowed for opportunities
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to relate the concepts and procedures of the previously taught

general process to the concepts and procedures of the general

process about to be taught. For example at the beginning of the

Solve unit, in lesson 1 of 7 the teacher/researcher wrote down

the words Simplify and Solve on the blackboard and asked "What

are the major differences between these two processes?" The

students came up with the following lists of concepts and

procedures:

Simplify^Solve

B EDIVIAS^ Do the same thing to both sides

Only multiply by 1^ Isolate the variable

Must have common denominator^Set = to 0

Reduce factors, not term^Factor

Half of an equation^Trial and Error

Inspection

Later the students were asked to come up with examples

where they had to use a number of the concepts and procedures

from the Simplify list in order to solve an equation. At first there

appeared to be a great deal of confusion, so the

teacher/researcher wrote one such example on the board and told

the students they could use other examples from their notes or

their textbooks. Eventually most students were able to come up

with an example and a few were selected to present theirs to the

class. A similar discussion was carried out with the mathematical
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object class, but not until the end of the first term at which

point the teacher/researcher had presented them with all the

pieces of the puzzle.

Another classroom discussion from lesson 2 of 7 in the Solve

Unit involved the Properties of Equality. One student was

complaining about how teachers always try to make mathematics

more confusing than it already is. In response the

teacher/researcher said "You're right. Why should we have all the

fun?" He then wrote a linear equation on the board and stated "I

want to see who can write the most possible steps in solving this

equation." After about ten minutes one student was declared the

winner. She was instructed to put her solution on the

blackboard. As a class, they evaluated each step as to its

correctness, and then decided which property it represented and

whether or not it was a step under the Simplify process or the

Solve process. Due to the sequence of the daily lessons chosen

by the teacher/researcher no such discussion took place in the

object-organized class, as Properties of Equality and Linear

Equations had been taught at the beginning of the school year

before general differences between solve and simplify had been

presented to the students. Similarly, as a result of how the

teacher/researcher had arranged the sequence of lessons, the

class discussions that did take place in the object-organized class

seemed to be under heavy time constraints due to their close
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proximity with the tests at the end of the unit.

Examples of Student Difficulties 

The examples of student difficulties in selecting appropriate

strategies that were observed in the classes were similar to those

discussed in Chapter 1. Both of the examples which follow come

from the class taught with the organization of curriculum

emphasizing mathematical objects. This is not intended to show a

difference between the two classes, as similar difficulties were

evident in both, but these two examples were the most prominent.

In lesson 2 of 11 for the third unit, on Rational

Expressions, the following example was written on the blackboard.

Factor: x(m + 2n) + x2 (m + 2n)

The teacher/researcher began by asking "What should we

do first here?" One student said, "Get rid of the brackets." The

teacher/researcher inquired, "How many people would agree that

is a good first step?" Approximately seven or eight hands went

up. At this point the teacher/researcher wrote another question

on the board:

Simplify: x(m + 2n) + x2 (m + 2n)

This time a different student interjected "What's the difference?"

After a moment or two a few students began to recognize where

the confusion lay, as witnessed from the nodding of heads and a

couple of "Oh yeah's", finally a student from the back of the

class said "This is part of that study of yours isn't it?"
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A more intense situation developed while the class was

going over the unit test for Rational Expressions, given at the

completion of the unit (i.e., lesson 11 of 11). The

teacher/researcher was explaining how to eliminate choices on the

following multiple choice item:

7. Simplify the following completely:

5^3
nw

A. 5w + 3n

B. 5nw + 3n2

C. n(5w + 3n)

D. 5w + 3n

E. None of these

The teacher/researcher said, "You can eliminate the first

three choices here, because they do not have denominators." One

of the students, who had apparently circled one of these choices

and who must have been experiencing a certain degree of

frustration exclaimed, "That's not right! You have to get rid of

denominators!" The teacher/researcher began to explain, but

before he could get another word out the student jumped out of

her seat, grabbed the chalk out of the teacher/researcher's hand

and said "Here, I'll show you." She proceeded to write her

solution on the blackboard that corresponded to choice A on the
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item. It appeared from the nodding of heads that others were in

agreement with her or they had also circled choice A. Once the

teacher/researcher recovered his chalk he wrote the following

question down using the student's same steps:

53
-1-2 = nw

(n2w) --751-2 - nw3 (n2w)

5w = 3n

The student who had written the solution said "See you have

gotten rid of the denominator too." A couple of students from the

front of the class looked back at her, one drew her attention to

the equality sign. Once the student realized her mistake she

appeared to be extremely embarrassed. The teacher/researcher

attempted to reduce this by commenting on the commonness of

such mistakes and began a discussion on how to avoid such

errors in the future. These are not just examples about students

selecting inappropriate strategies but are examples of how certain

misunderstandings in mathematics are deeply entrenched within

the minds of some students.

A Potential Source of Student Difficulties 

One apparent source of students' difficulties in

understanding certain mathematical concepts was their dependence

on certain "short-cut" methods. Again, two examples are given
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from the teacher's journal, this time both examples are from the

process-organized class.

At the end of a class on solving by trial and error (lesson

3 of 7 in the third unit, Solve) the teacher/researcher put the

following problem on the blackboard:
If you had just won $1000 and you decided to
invest it in a bank at an interest rate of 7%
compounded annually how long would it take you to
double your money?

A few students asked questions about what "compounded

annually" meant. One student asked "Is that $1000 an 'is' or an

'of' ?" The teacher/researcher was somewhat perplexed by this

question so he walked over to the student's desk and asked the

student to show him what he meant. Apparently the student had

been taught a short-cut method to solve percentage problems. He

showed an example to the teacher/researcher:

17 is 65% of what number?

%^is= —
100^of

65^17
100 - x

The "is" is the number closest in proximity to the word is

and the "of" is the number closest to that particular word. The

teacher/researcher thanked the student for showing him the

method and proceeded with great difficulty to explain to the

student that this method only works for specific types of
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percentage problems written in a certain manner.

Another case occurred in lesson 8 of 10, in the second

unit, Simplify, when the teacher/researcher called for student

volunteers to answer questions on the blackboard. One student

displayed her solution, as shown below, in response to a question

involving the subtraction of two rational expressions:

^x-3^x-5
x.20 - ;i177x-1-12

^

(x-3)^(x-5)

^

(s-4)(x-5)^(s-3)(x-4)

1^1

^

x-4^x-4

0

The student was required to explain her solution and

answer any questions. In this case the teacher/researcher asked

her to describe the second step. She said "Oh, that's just cross-

canceling." "Cross-canceling!" said the teacher/researcher. "What

on earth is cross-canceling?" She explained it was where you

crossed things out that were the same diagonally. The

teacher/researcher continued the conversation in hopes of gaining

some insight as to where this method came from and why she felt

it was appropriate in this situation. It resulted only in the

student giving the previous teacher's name and holding firm in

her beliefs about the validity of this method. Following that
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particular incident, cross-canceling, cross-reducing, and cross-

multiplying came up in a dozen or more conversations.

Students' understanding of mathematical concepts and

procedures was hindered not only by their beliefs about the

validity of these "short-cut" methods, but also by short-cuts

taken by the teacher/researcher in leaving out certain procedural

steps for the sake of saving time or space on the blackboard. In

lesson 9 of 10 in the Simplify unit for the process class, an

incident arose where the teacher/researcher was providing

answers and explanations to questions on a quiz he had just

handed back. One question was a complex fraction where he went

through the steps orally while writing down those he considered

to be the most crucial. One student commented "I never

understand the way you do these questions." The

teacher/researcher repeated the steps again orally while pointing

to the blackboard. The student responded "I still don't get it."

The discussion continued as the class appeared to become more

restless and the teacher/researcher less patient. Finally, the

teacher/researcher erased the solution he had written down and

began writing the steps down again, this time including all the

steps he was saying orally but had not written down before. The

student said "Now, I get it. Thank-you!" The teacher/researcher

apologized for not having written down all the steps from the

beginning and thanked the student for her persistence. These
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and similar incidents that occurred throughout the period of

observation lead to the following questions: "What steps should be

included when modeling work for the students'?"; and "Who

should decide?"

Individual Interviews

In the interview process students were asked to explain

orally the written responses they had given previously on the

open-ended tests. This was intended to provide additional

information regarding the students' understandings about the in-

terconnectedness of mathematics. In the following section the

pseudonyms used to preserve the students anonymity contain a

mnemonic device to associate each student with their particular

class (This feature of the report was used by Hovdebo, 1987).

Peter, Patty, Pam, Paul and Polly are students from the process

class, while Oily, Othello, Olga, Olive and Oprah are from the

object class. Although it was difficult to determine differences in

the level of understanding between these two groups of students,

the interviews did highlight some of the difficulties students

encounter in making meaningful connections in mathematics.

Clarification of Written Responses 

Most of the students had difficulty speaking about mathe-

matics, which was evident not only to the instructor

(teacher/researcher) but to the students themselves. This

realization seemed to cause many students to back out of
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conversations rather than to expand on their responses. These

students tended to bring discussions to an end by expressing

their lack of confidence in attempting to understand mathematics.

The following are two typical responses from students, one from

each class.

Instructor: Why did you say he should put all the denominators
on the same side?

Polly:^I don't know. I'm not very good at these questions. I
never was very good at math.

Instructor: What did you mean when you said he wasn't done?
Othello:^I'm not sure what I meant. Maybe he is done. I don't

understand this stuff.

On many occasions students had to rely on the use of

rudimentary or informal language. Often this language would

describe the physical aspects of their written responses. The

following is an example of a student's use of this type of

physically descriptive language:

Instructor: What do you think the word "simplify" meant?
Oily:

^

^Squeezing everything together. Make it into one large
number.

Next is an example of a student not being able to come up

with the proper terminology.

Instructor: In your answer you use the terms top and bottom,
what were you referring to?

Peter:^The top and bottom of the fraction.

Finally, an example where a student could not come up with
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the mathematical procedure used in a solution, so he invented one

of his own.

Instructor: How did he make this error?
Paul:^He didn't fully apply the common denominator to both sides.

The term "cross out" or "cancel" was used by a number of

students to describe the mathematical process of simplifying

fractions. Again these are examples where the students depended

solely on the physical features or mathematical objects involved in

the procedure, rather than making sense out of the directions

stated in the task.

What exactly did she do wrong in that step?
He screwed up in canceling.
What do you mean by canceling?
You know, crossing out.
You mean reducing?
Yeah, reducing.

What exactly was the error in this question?
He crossed out wrong. He should have left them over
the same thing.

What do you mean by crossed out?
Canceling terms.

Was there anything at all you didn't like about
Frank's solution?

It's a good solution, but he didn't get to cross
anything out.

What do you mean he didn't get to cross anything out?
That's the only part of math I like, when you get to
cross out all the things in common to get an answer.

Instructor:
Olga:
Instructor:
Olga:
Instructor:
Olga:

Instructor:
Patty:

Instructor:
Patty:

Instructor:

Oprah:

Instructor:
Oprah:

Other students used the term "factor" to mean the opposite,
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to describe an expansion or elimination of brackets. This would

seemingly cause a great deal of confusion in relating other

concepts and procedures to the process of factoring. The

following are two situations where students used the term factor

in this way:

Instructor:
Oily:

Instructor:
Patty:

What exactly did Ernest do wrong?
He factored out the brackets.

Could you describe to me again the error Ernie made?
He should have squared the x+2 and then factored
the 9 into the trinomial.

Despite problems with terminology some students were able

to gain further understanding during the course of the interview.

One student, Pam, was able to identify a minor calculation error

in one of the solutions, but she was not able to identify the major

error of the wrong strategy being used. After she was directed

to focus on the word in the question, she discovered this

strategic error and conveyed a certain understanding about the

relationship between the processes of factoring and simplifying.

Instructor:
Pam:

Instructor:
Pam:
Instructor:
Pam:

Could you describe the error Ernie makes?
He did not distribute the 9 through the brackets. He
didn't follow BEDMAS.

Are there any other errors Ernie makes?
Not really.
What was the question asking him to do?
Factor. Oh, I see. He has two terms in his answer,
so he must have simplified instead of factored.

Another example was that of a student who didn't reach a
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complete understanding of the word simplify, but was able to gain

insight about difficulties she encountered in the past.

Instructor:

Olive:

Instructor:
Olive:

Instructor:

Olive:

Instructor:

Olive:

You agreed with Valerie's solution; could you just go
through her steps again and explain each one to me?

OK. First she found a common denominator, then she
multiplied both sides by it.
Both sides of what?
The equation. [Pause] But there's no equals sign.
This is one of those questions I keep getting wrong.

That's OK. At least you've recognized it. Now, what
should she have done?

Well, I know she needs to keep her denominator for
the answer.
Can you explain why she needs to keep her
denominator?
I'm not sure.

It was difficult to assess students' understandings about

the interconnectedness of mathematics as students had difficulty

in formulating their ideas in words. It seemed evident that their

ability to speak about mathematics was not truly indicative of

their understanding Yet, the problems in communicating about

mathematics in these interviews may suggest that this is a

contributing factor compounding the difficulties students have in

understanding various mathematical relationships.

Oral Open-Ended Task

The results of the open-ended task that took place during

the second part of the interviews are presented along with

interpretations suggesting how each student may have arrived at

his or her response. Each student was instructed to generate a
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series of "Yes-No" type questions that would eventually lead to

the discovery of a particular algebra task, seen by the

instructor, but not seen by the student. For example, the

instructor might be looking at an algebraic task involving

exponential equations. The students had to ask enough questions

so that they felt they had a good picture of what the task

involved or until they could not come up with any more

questions. Students' responses are presented with their percentile

rank, indicating how they represent the range of performance in

their entire class. Their percentile rank from Pretest 1 is given

for the first set of questions, while their percentile rank from

Posttest 1 is given for the second set.

This interview task was designed to elicit information about

how students relate and connect key mathematical concepts. It

was hoped that the student-generated list of "Yes or No" type

questions would result in prioritized outline indicating what the

students felt were the most important facets of an algebraic task.

However, the results from this task were less than satisfactory

and inconclusive, as most of the student-generated lists of

questions were not as long or as revealing as anticipated.

Consequently, only a few examples from each class are presented

to show the range of the results. The student-generated lists of

questions are analyzed according to the teacher/researcher's own

interpretation of the results and any conclusions must be drawn
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with caution.

The following are two examples of students that had a

difficult time with this task. The first student is from the object

class.

Olga (34th Percentile) First Interview:
Student's Questions:^Instructor's Response:
Does it have brackets?^ No
Does it have numbers?^ Yes
Does it have letters?^ Yes
Do you have to multiply?^ Yes
Are there fractions?^ Yes
Do you find a common denominator?^No

Olga (32nd Percentile) Second Interview:
Student Questions:^Instructor's Response:
Does it have brackets?^ No
Are there variables?^ Yes
Do you solve for x?^ Yes
Do you find a common denominator?^No
Do you make one side equal zero?^No
Do you have to factor?^ No

In both interviews Olga attempted to discover the algebra

question by piecing together its physical components i.e., asking

about brackets, numbers and variables. From this aspect she does

not seem to possess an in-depth schema about the hierarchical

structure of mathematics. In her second interview she made a

significant breakthrough and asked a question regarding process.

Afterward she inquired about some possible procedures associated

with the process. Therefore, she has demonstrated a certain

increase in understanding about the different procedures associ-
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ated with these types of questions.

Next is the second example of a student, from the process

class, who experienced difficulties with the interview task.

Polly (19th percentile) First Interview:
Student's Questions:^Instructor's Response:
Is one of the questions a quadratic?^No
Are there any perfect squares?^No
Any perfect cubes?^ Yes
Any higher than three?^ No
Is there more than one term?^ Yes
Is there more than three terms?^No
Two terms?^ Yes
Are there any coefficients?^ No

Polly (33rd percentile) Second Interview:
Student's Questions:^Instructor's Response: 
Does it contain perfect squares?^Yes
Is it a fraction?^ No
Is it a multiplication with fractions?^No
Is there more than one perfect square?^Yes
Is it a solve question?^ No
Is it a simplify question?^ No

In the first interview Polly had a methodical way of

identifying the physical components of the question. Slow as it

was, there seemed to be a definite system: identify the exponent

or degree, identify the number of terms, and identify the

coefficients of the terms. In her second interview Polly had

applied a less systematic approach to the task, however, she did

include processes as well as mathematical objects in her list of

questions. Although she seemed to expand her knowledge base it

is not clear that she has an in-depth understanding of the
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relationships among processes, objects, and procedures.

The next two interviews are examples of students that seem

to have developed a successful list of "Yes or No" type questions

necessary to unveil the particular algebraic task within the

possession of the instructor. Each of these two students had

generated very different sets of questions, and this may be due

to the different organizational schemes presented in each of their

respective classes. The first set of interviews presented is with a

student from the object class.

Olive (88th percentile) First Interview:
Student's Question^Instructor's Response
Are there any x's?^ Yes
Do you have to factor anything?^No
Do you have to distribute?^ No
Are there any fractions?^ Yes
Do you have to get a common denominator?^Yes

Olive (88th percentile) Second Interview:
Student's Question^Instructor's Response
Is it an equation?^ Yes
Do you have to isolate a square root?^No
Is it a quadratic equation?^ No
Is it a rational equation?^ Yes
Does it involve substitution method or

addition and subtraction method?^No
Do you have to factor?^ Yes

In the first interview, Olive seemed to possess a certain

knowledge about the relationships of mathematical concepts and

procedures. Once she found out factoring was not required she

then inquired about its inverse operation. As she discovered it
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was a fraction, her next question involved a major procedure

involving fractions. In her second interview she seemed to have

enhanced her understanding even further, as she identified the

main type of question first, then proceeded with a logical series

of hierarchically arranged questions. She established the fact that

it was an equation, she determined the type of equation, and

what method she should employ. She appears to have broadened

her understanding about the interconnectedness of mathematics.

The following is taken from the second set of interviews

with a student from the process class who had a more successful

experience with this oral task than her classmates.

Pam (71st percentile) First Interview:
Student's Question^Instructor's Response
Is it a factoring question?^ No
Do you have to simplify?^ No
Do you have to solve?^ Yes
Is it with like terms?^ No
Is [sic] there brackets?^ No

Pam (76th percentile) Second Interview:
Student's Question^Instructor's Response
Is it a simplify question?^ No
Is it a factor question?^ Yes
Is there a GCF?^ Yes
Is [sic] there two terms?^ Yes
Is it a difference of squares?^ No
Is it a difference of cubes?^ Yes

Although Pam discovered the main process early in her first

interview, she was somewhat lost as to what to ask next. In her

second interview again she identified the main process of the
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question and then systematically uncovered what she needed to do

with the question. First she determined it was a factor question,

then she indicated that she needed to factor out a GCF; next she

determined that there were two terms; and they could be factored

as a difference of cubes. This indicates a definite development of

understanding about how various concepts and procedures relate

to one another.

On the whole, in the first set of interviews students tended

to rely on questions that would lead to the unveiling of the

various physical aspects of the algebraic task, as opposed to

asking questions pertaining to the possible procedures or

processes that may be involved with the question itself. For the

process group, although three students did inquire about the

major process involved in the question, it is likely that those

inquiries were prepared by the students prior to the interview.

As the questions following the process questions usually related

back to discovering the physical features of the question.

The second set of interviews indicated that in both

organizations of the curriculum, students could display a higher

level of understanding, the same level or even a lower level of

understanding. Thus the results were considered to be

inconclusive. For those students whose understanding appeared to

increase over the duration of the study, their organizational

scheme for generating a set of questions seem to reflect the
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organizational scheme of the curriculum from their respective

classes. It was difficult to determine the level of a student's

understanding from this open-ended interview task as it could not

be determined where each student's set of questions originated,

i.e., their own schemata or previously studied information.

Open-Ended Test Results

This section concerns itself with the results from both

classes on the open-ended tests. These tests were designed to

answer the research questions regarding students' understanding

and students' abilities to select an appropriate strategy. These

tests were much more successful at addressing the latter of these

two questions. First, frequency tables are presented with the

scores for each class on the open-ended tests. Then each item

from these tests is further evaluated to highlight any differences

between the two classes and to display any improvement that had

occurred from the pretest to the posttest.

Pretest 2 

The items on Pretest 2 are used to assess the students'

ability in selecting an appropriate strategy and the student's un-

derstanding about the interconnectedness of mathematics. The re-

sults for each class on Pretest 2 are presented in Tables 1 and 2.



Table 1: Mathematical Object Class' Results on Pretest 2, in
Number of Students

ITEM OPEN-ENDED TASKS

S^C^OR^ES

0^1^2^3^4^5
1 PRESOLVED FACTOR a

-Identification of Errors 2 19 1 1
-Reasons for Errors 2 2 19 0
-Students' own Solutions 1 20 1 1

2 EXPLANATORY b
2 4 7 4 5 1

3 COMPARISON c
3 11 9 0

4 CONTRAST c
6 13 4 0

5 PRESOLVED SIMPLIFY a
-Identification of Errors 5 11 6 1
-Reasons for Errors 4 4 15 0
-Students' own Solutions 4 13 5 1

6 NON-ROUTINE d
ALGEBRA PROBLEM 12 10 1 0

a - Refers to Scoring Scale in Figure 11 on p. 65
b - Refers to Scoring Scale in Figure 12 on p. 66
c - Refers to Scoring Scale in Figure 13 on p. 67
d - Refers to Scoring Scale in Figure 15 on p. 68

100
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Table 2: Mathematical Process Class' Results on Pretest 2, in
Number of Students

ITEM OPEN-ENDED TASKS

SC^OR^ES

0^1^2^3^4^5
1 PRESOLVED FACTOR a

-Identification of Errors 7 12 1 1
-Reasons for Errors 5 7 8 1
-Students' own Solutions 7 12 1 1

2 EXPLANATORY b
5 4 6 4 2 0

3 COMPARISON c
5 10 6 0

4 CONTRAST c
13 7 1 0

5 PRESOLVED SIMPLIFY a
-Identification of Errors 8 8 4 1
-Reasons for Errors 8 5 8 0
-Students' own Solutions 8 9 3 1

6 NON-ROUTINE d
ALGEBRA PROBLEM 14 5 1 1

a - Refers to Scoring Scale in Figure 11 on p. 65
b - Refers to Scoring Scale in Figure 12 on p. 66
c - Refers to Scoring Scale in Figure 13 on p. 67
d - Refers to Scoring Scale in Figure 15 on p. 68

Presolved Algebra Items 

The results for items involving presolved algebra questions

give the assessment of three separate tasks: the students' ability

to identify the errors within the given solution; the students'

reasoning for identifying those errors; and the students' ability

to provide their own error-free solution. For these particular
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items there seemed to be evidence that many of the students

received the same heuristical score on the tasks of identifying the

errors and providing their own solution. In other words a student

who received a score of 1 for identification of errors had a high

probability of also receiving a score of 1 for their own solution.

This possible relationship was investigated and discussed for each

of these items.

The first presolved algebra question on Pretest 2 involved a

factor question with the given solution displaying a simplify-type

strategy. The assessment of the three tasks for this question are

presented in Figure 17, as a comparison between the two different

classes.

For the identification of errors, the results for both classes

appear to be similar although fewer students in the process class

were able to identify any of the errors within the given solution.

Similarly in students' own solutions there were fewer students in

the process class that provided a solution. The quality of the

reasons given for the errors, with exception of one process

student, seemed to slightly favour the students in the object

class. The majority of students in both classes gave reasons that

were simplistic or illogical.
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Figure 17: Students' Results for Item 1 of Pretest 2: Presolved
Factor Question With Simplifying Strategy
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Figure 18: Cross-Tabulation Involving Identification of Errors and
Students' Own Solutions on Item 1 of Pretest 2 (n=44)

As can be seen in Figure 18, there is a strong relationship

between the identification of errors and the students' own

solutions. The large vertical columns on the diagonal represent

those students who received the same score on both. This

question was difficult for most students, so the largest column is

located in the (1,1) square. This column represents students that

either identified the minor error only or could not identify any

error, and whose own solution contained at least one major error.
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Only two students from each class could identify the major error

and provide a solution without a major error. This finding

reinforces the argument that students have difficulties in

identifying appropriate strategies and implementing them.

Figure 19 shows the percentage of students from each

class that were able to identify the major error. This percentage

is quite small for both classes.

Figure 19: Percentage of Students Who Identified the Major Error
on Item 1 of Pretest 2

The other presolved algebra question presented a Simplify

question and worked it with a solve-type strategy. Figure 20

displays the results on this question for students in each class.
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Figure 20: Students' Results on Item 5 of Pretest 2: Presolved
Simplify Question With Solve Strategy
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Both classes had similar results on the identification of

errors, but fewer students in the process class were able to

detect the major error. Similarly, there were fewer students in

the process class who were able to provide their own solution to

the question without a major error. The students' reasons for

errors show a fairly decisive edge for the object class, as the

process class had more students not supplying a reason or giving

an illogical reason.

Figure 21: Cross-Tabulation Involving Identification of Errors and
Students' Own Solutions on Item 5 of Pretest 2 (n=44)

Again there is a direct relationship as shown in Figure 21

between students' being able to identify errors in a given solution

and students' being able to provide a solution without errors.

This question appears to be somewhat less difficult for the
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students than the first presolved question, but it still indicates

that the majority of students were unable to identify the major

error or provide a solution which does not contain a major error.

Figure 22 shows the percentage of students able to identify

the major strategic error for the given solution. Both classes

scored better on this item than on the first presolved algebra

question.

Figure 22: Percentage of Students Who Identified the Major Error
on Item 5 of Pretest 2

Difficulties were encountered as the markers attempted to

reach consensus on scoring the reasons portion of the presolved

questions. The scores given for this portion are highly

interpretive and based upon the judgement of the two markers.

Therefore any claims made about this portion of these questions

must be accepted with caution Likewise, the following three test

items, which all involve students' explanations and reasons and

are scored using similar heuristic scales, must also be interpreted
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with caution.

Explanatory Item

The explanatory item for Pretest 2 gave students the task

of recording a made up conversation with a friend about how to

subtract two rational expressions. They were expected to write in

their own words the procedural steps necessary to arrive at a

completed solution. It was discovered upon marking this item that

many students just provided a solution of their own for the

example given in the question. Allowances had to be made for

these types of responses, and these are evident in the scoring

scale shown in Figure 12. The results of the scoring for this item

are displayed in Figure 23.
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Figure 23: Students' Results on Item 2 of Pretest 2: Explanatory
Question Involving the Subtraction of Two Rational Expressions
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The object class performed slightly better in explaining a

process, as they had four more students attempt the question

than in the process class and three more students offering sound

advice to their friend. The four middle categories had a fairly

even distribution of students. Only one student from either class

gave a response that could have been used to obtain a correct

solution.

Compare and Contrast Items 

The first of these two items required students to choose

two among six possible processes that they felt were most similar

to each other, while the second required students to choose two

processes that they felt were most dissimilar to each other. For

both items the students had to provide reasons for their choice.

Only the reasons given were scored, since there were no

completely right or wrong choices. Both items were designed to

test for the students' understanding about the interconnectedness

of mathematics, as they provided them with an opportunity to

demonstrate how they could relate two different concepts. Figure

24 displays the results for the item requiring students to choose

the most similar processes, and Figure 25 displays the results for

the item requiring them to choose the most dissimilar processes.
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Figure 24: Students' Results on Item 3 of Pretest 2: Comparison
Question Requiring Students to Choose the Two Most Similar
Processes and Explain
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Figure 25: Students' Results on Item 4 of Pretest 2: Contrast
Question Requiring Students to Choose the Two Most Dissimilar
Processes and Explain
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The students in both classes found these two tasks very

difficult, as 62% of them either did not bother to respond or did

not provide a logical reason for making their choice. On the

comparison question over 60% of the students gave reasons that

were at best simplistic, and over 62% did so on the contrast

question. As well, not one student received the top score of

three on either item. These two tasks seemed to be too demanding

for the students involved. As a result of the difficulties faced by

students in responding to these tasks and the difficulties faced

by the markers in marking this task, it was decided to not

include items like these on Posttest 2. They were replaced by

another pre-solved algebra question that did seem to provide

useful results and a process definition question requiring the

students to list a set of procedures which are related to a given

process. This last item was added in an attempt to find a task

that would provide some evidence about the students'

understanding about the interconnectedness of mathematics.

Although these two items were dropped from the posttest,

they did raise two important points. The first is that it seems

very apparent that students had a difficult time in understanding

various connections and relationships that exist in mathematics.

The second is that assessing students' understanding about the

interconnectedness of mathematics is extremely difficult.
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Non-Routine Algebra Problem

The last item on Pretest 2 was a non-routine algebra

problem, i.e., an algebraic task that cannot readily be answered

without some attention to strategy selection and implementation.

The problem was marked on the basis of whether the students

tried to implement a strategy and whether that strategy could

eventually lead to a correct response. The results for this item

are shown in Figure 26.

Figure 26: Students' Results on Item 6 of Pretest 2: The Non-
Routine Algebra Problem
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This item proved to be at least as difficult as the previous

two, but in this case that was expected from the outset. Over 50%

of the students in each class did not attempt to respond, and

only three people tried to implement a strategy. This item was

used to investigate similarities between students' difficulties in

the two classes, and provide some bench mark to monitor any

improvement.

Summary of Pretest 2 Results 

The purpose of Pretest 2 was to determine whether there

were any important differences between the two classes on the

specific open-ended tasks; the pretest would act as a check for

any differences observed in Posttest 2 at the end of the study.

On most of the items in Pretest 2 the classes were very similar as

they both seemed to struggle with the tasks given. In order to

test for any statistically significant differences the Kolmogorov-

Smirnoff two sample test was employed. The test compares the

differences in cumulative percent of the results for students in

the two different classes on each open-ended item. Figure 27

displays the cumulative percentages for both classes on the items

from Pretest 2.
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Figure 27: Students' Results in Cumulative Percent Comparing
The Two Classes' Responses on the Items From Pretest 2

The null hypothesis for the test was as follows:

Null Hypothesis: There is no significant difference between the
distributions of results on the open-ended items of Pretest 2 for
students in the process-organized class and students in the
object-organized class.
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Because this was an exploratory study with sample sizes of

21 and 23, a maximum difference in cumulative percentage of

students of 37% is needed for the difference to be significant at

the 0.10 level. The results are displayed in Table 3.

Table 3: Results of Using the Kolmogorov-Smirnoff Two Sample
Test With the Cumulative Percents From the Students' Results on

the Open-Ended Items of Pretest 2 

OPEN-ENDED ITEMS
STATISTIC: la lb* lc 2 3 4 5a 5b 5c 6
Max.Difference .22 .39 .27 .17 .12 .36 .26 .28 .12 .15
Probability >.2 .07 >.2 >.2 >.2 .12 >.2 >.2 >.2 >.2

a - identification of errors
b - reasons for errors
c - students' own solution
*^- the null hypothesis can be rejected i.e., there

is a statistically significant difference on this
item.

For all other items, the null hypothesis cannot be
rejected.

On only one item was there a statistically significant

difference between the two classes. It was determined from the

results that the object class was better able to provide reasons

for the errors contained in the given solution of the presolved

factor item. For all the other items on Pretest 2 there were no

statistically significant differences between the two classes.

Therefore, the results in Posttest 2 can be used to show any
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indications of differences between the two classes, as well as any

significant improvements on parallel items evident at the end of

the study.

Posttest 2 

Posttest 2, as previously mentioned, did not include two

items from Pretest 2, i.e., the compare and contrast questions.

Therefore, in the following section, Comparison Between Pretest 2

and Posttest 2, the improvement for the two replacement items is

not part of the results. The purpose of these two replacement

items is the same as the other four and that is to assess the

students' ability in selecting an appropriate strategy and the

students' understanding about the interconnectedness of

mathematics. Tables 4 and 5 display the results from all the items

on Posttest 2 for the object class and the process class

respectively.

Presolved Algebra Items 

The first presolved algebra question on Posttest 2 took a

Solve question and presented it to the students with a simplify-

type strategy. Although this specific type of presolved question

was not used in Pretest 2, these questions seemed to provide

interesting student responses. The assessment of the three tasks:

identifying the error, giving reasons for the error, and providing

their own solution, is given in Figure 28 for both classes.



Table 4: Mathematical Object Class' Results on Posttest 2, in
Number of Students

ITEM OPEN-ENDED TASKS

S^CORE^S

0^1^2^3^4^5

1 PRESOLVED SOLVE a
-Identification of Errors 3 7 5 8
-Reasons for Errors 2 3 13 5
-Students' Own Solutions 2 8 5 8

2 EXPLANATORY b
3 7 3 6 3 1

3 PRESOLVED FACTOR a
-Identification of Errors* 16 7
-Reasons for Errors 13 5 4 1
-Students' own Solutions 12 4 6 1

4 PROCESS DEFINITION c
3 13 5 2

5 PRESOLVED SIMPLIFY a
-Identification of Errors 12 4 6 1
-Reasons for Errors 11 4 8 0
-Students' own Solutions 11 6 6 0

6 NON-ROUTINE d
ALGEBRA PROBLEM 4 14 5 0

* - Presolved question contained only major error.
a - Refers to Scoring Scale in Figure 11 on p. 65
b - Refers to Scoring Scale in Figure 12 on p. 66
c - Refers to Scoring Scale in Figure 14 on p. 67
d - Refers to Scoring Scale in Figure 15 on p. 68
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Table 5: Mathematical Process Class' Results on Posttest 2, in
Number of Students

ITEM OPEN-ENDED TASKS

S^CORES

0^1^2^3^4^5
1 PRESOLVED SOLVE a

-Identification of Errors 2 7 4 8
-Reasons for Errors 2 2 14 3
-Students' Own Solutions 2 7 7 5

2 EXPLANATORY b
1 8 3 2 5 2

3 PRESOLVED FACTOR a
-Identification of Errors* 6 15
-Reasons for Errors 5 3 8 5
-Students' own Solutions 5 2 6 8

4 PROCESS DEFINITION c
0 7 9 5

5 PRESOLVED SIMPLIFY a
-Identification of Errors 3 5 9 4
-Reasons for Errors 3 1 13 4
-Students' own Solutions 3 5 12 1

6 NON-ROUTINE d
ALGEBRA PROBLEM 4 10 6 1

- Presolved question contained only major error.
a - Refers to Scoring Scale in Figure 11 on p. 65
b - Refers to Scoring Scale in Figure 12 on p. 66
c - Refers to Scoring Scale in Figure 14 on p. 67
d - Refers to Scoring Scale in Figure 15 on p. 68
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Figure 28: Student& Results on Item 1 of Posttest 2: Presolved
Solve Question With Simplify Strategy
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Both classes yielded very similar results for each part of

this item. As with the presolved questions from Pretest 2, there

was evidence of a strong relationship between the identification of

the errors and the students own solution, as can be seen in

Figure 29. The relationship for this item showed an even stronger

relationship, as 13 of the 16 students able to identify both the

major and minor errors were also able to provide correct solutions

of their own. Conversely, 13 of 14 students that were only able

to identify the minor error gave solutions of their own that still

contained a major error.

Figure 29: Cross-Tabulation Involving the Identification of Errors
and Students' Own Solutions on Item 1 of Posttest 2 (n=44)

Most students found this task easier than the other
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presolved algebra tasks from Pretest 2. Students may have found

it easier to identify the major error in a Solve question as

opposed to a Simplify or a Factor question, both given in Pretest

2. There were only four students who could not identify any

errors and come up with a solution other than the one presented.

As well, Figure 30 shows that over half the students in both

classes were able to identify the major error.

Figure 30: Percentage of Students Who Identified the Major Error
on Item 1 of Posttest 2

The second presolved question parallels Item 1 from Pretest

2, i.e., it took a factor question and presented it with a simplify

-type strategy. This particular presolved question had a given

solution containing only a major strategic error. The reason for

this was to determine whether or not the students stopped trying

to identify errors once the first one was discovered. The results

for this presolved posttest question are shown in Figure 31.
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Figure 31: Students' Results on Item 3 of Posttest 2: Presolved
Factor Question With Simplify Strategy
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For this particular item, there is an observable difference

between the two classes. The process group had more students

able to identify the major error in question. Figure 32 highlights

this difference, showing that 41% more students in the process

group were able to identify the major error than in the object

group. This difference is also apparent in the reasons given by

students for the errors in the given solution, as five students in

the process class gave reasons that were categorized as being

correct and logical as opposed to only one student in the object

class. Fourteen students in the process class provided their own

solutions that contained no errors or only minor errors, while

only seven students in the object class provided solutions of this

quality. Eight students in the process class provided their own

solution with no errors as opposed to only one in the object

class. This was the first indication of any substantial differences

between the two classes on any of the open-end items.

Figure 32: Percentage of Students Who Identified the Major Error
on Item 3 of Posttest 2
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Looking at these results another way shows that 20 of the

22 students who were able to identify the major error were also

able to provide a solution without a major error. All 22 students

who were not able to identify the major error in the given

solution provided solutions that also contained a major error.

As Figure 33 shows, there are only two tall columns on the

diagonal. This was due to this item containing no minor error. In

order to observe the relationship between the identification of

errors and the students' own solutions, categories 0 and 1 were

combined under students' own solutions, as were categories 2 and

3. This made sense as students in categories 0 and 1 gave

solutions with a major error and students in categories 2 and 3

gave solutions containing no major error. The fact that the two

tallest columns are on the positive sloped diagonal indicates that

there is a very strong relationship between these two tasks.

There were only two students that were not part of these two

columns.
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Figure 33: Cross-Tabulation Involving the Identification of Errors
and Students' Own Solutions on Item 3 of Posttest 2 (n=44)

The last presolved algebra question on Posttest 2 paralleled

Item 5 on Pretest 2 i.e., it took a simplify question and

presented a given solution with a solve-type strategy. Figure 34

displays the students' results for this item.
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Figure 34: Students' Results on Item 5 of Posttest 2: Presolved
Simplify Question With Solve Strategy
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As in the previous presolved question there is a noticeable

difference between the two classes that is consistent across all

three tasks. As highlighted in Figure 35, 32% more students in

the process class were able to identify the major error. For the

reasons regarding the errors, four students in the process class

were able to provide reasons categorized as correct and logical

while none of the reasons given by the students in the object

class attained this category. Thirteen students in the process

class provided their own solutions with no major error, as

compared with only six in the object class. Although this

particular item was parallel to Item 5 of Pretest 2, it involved two

rational expressions that were more difficult to factor and reduce.

As a result, only one student from either class was able to

provide a completely correct solution to the question. Therefore,

most students felt the question part of this item was difficult.

As stated in Chapter 3, the items from Pretest 2 were

based upon students' prior knowledge i.e., knowledge from

Mathematics 10. Similarly, items from Posttest 2 were also based

upon students' prior knowledge and this included knowledge from

Mathematics 11. This may account for some students having a

more difficult time with the tasks of Posttest 2 than with the

similar tasks given in Pretest 2.
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Figure 35: Percentage of Students Who Identified the Major Error
on Item 5 of Posttest 2

Figure 36 shows a relatively strong relationship between the

identification of errors and the students' own solutions; however,

there is a column just below the upper portion of the diagonal

that represents four students who were able to identify both the

major and minor errors in the given solution but who had written

their own solution still containing a minor error.
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Figure 36: Cross-Tabulation Involving the Identification of Errors
and Students' Own Solutions on Item 5 of Posttest 2 (n=44)
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Even though this question seemed to be more difficult for

all the students, the process class still managed to outperform the

object class according to the scoring scale used as a greater

percentage of students in the process class identified the major

error.

Explanatory Item

The explanatory question in Posttest 2 parallels the

explanatory question in Pretest 2, but it involves an addition of

two rational expressions rather than subtraction, and it provided

the first step for the students. The reason for providing this

first step was to demonstrate what was expected in the question

and to get more students to write down the procedural steps in

their own words. The results for the scoring of this explanatory

question are given in Figure 37.
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Figure 37: Students' Results on Item 2 of Posttest 2: Explanatory
Question Involving The Addition of Two Rational Expressions
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Due to the interpretation required in scoring this item, it is

difficult to see any major differences between the two classes as

most of the categories contain similar numbers of students in

each. Part of the difficulty with this question may be that there

are too many categories for such a small sample size. Even so, it

is still apparent that most students had difficulty with this task,

as over half the students in both classes wrote procedural steps

that were confusing, oversimplified, or contained major errors, or

no work was shown. Only three students from either class wrote

down a set of procedural steps that could be used to achieve a

correct solution.

Non-Routine Algebra Problem

The non-routine algebra problem on Posttest 2 was intended

to parallel the problem from Pretest 2, however, it was essentially

just a very difficult algebra question. It contained no words other

than solve in the directions, this was in an attempt to appear less

intimidating to students than the non-routine problem from Pretest

2. (Only one third of the students attempted that problem.) The

results for this item are shown in Figure 38.
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Figure 38: Students' Results on Item 6 of Posttest 2: The Non-
Routine Algebra Problem

The results from both classes are similar as most of the

students had difficulty with this item. Only one studelt from both

classes was able to implement a strategy that could have led to a

correct solution. Thirty-two out of the 44 students either did not

attempt the question or made an attempt with no logical strategy.

The attempt to make this task appear less intimidating obviously

failed.

Process Definition Item

The last item on Posttest 2, the process definition question

was not on Pretest 2. Its intent was to see how students

connected certain procedures and operations to a given process.

Upon re-examination of this question it appeared to be heavily

biased towards the process class as they had already received

materials and outlines organized around these processes.
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Therefore, it may not be fair to use the results of this question

to determine any differences in the levels of understanding

between the two classes. The results for this question are

displayed in Figure 39.

Figure 39: Students' Results on Item 4 of Posttest 2: Process
Definition Question Involving Creating a List of Procedures for a
Given Process

The results did show an observable difference between the

two classes, as expected. All the students in the process class

could identify at least a few basic procedures for each process.

Although no comparisons can be made regarding levels of

understanding between the two classes, this question does seem

to verify that the treatment did cause the intended effect.
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Summary of Posttest 2 Results 

For Posttest 2 the results of the first presolved algebra

question showed no indication of any differences in strategy

selection or in understanding between the two classes, but the

other two presolved questions did. There appeared to be a clear

difference between the two classes on how well the students were

able to identify errors in the given solution and how well they

were able to provide solutions of their own without errors.

Although the process definition question also produced observable

differences in the results of the two classes, no conclusions can

be drawn regarding these differences as the question was biased

towards the process class. The explanatory question and the non-

routine algebra problem suggested that both classes had

difficulties in writing mathematical procedures in their own words

and in implementing a strategy on tasks with which they were not

familiar. Posttest 2 provided evidence of clear, observable

differences between the two classes on some of the open-ended

tasks. Again the Kolmogorov-Smirnoff test was employed to see if

there were any statistically significant differences between the

two classes on any of the items of Posttest 2. Figure 40 displays

the students' results in percent; cumulative percentages are

required to conduct the test.
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Figure 40: Students' Results in Cumulative Percent Comparing
The Two Classes' Responses on the Items From Posttest 2

The null hypothesis for the test was as follows:

Null Hypothesis: There is no significant difference between the
distributions of results on the open-ended items of Posttest 2 for
students in the process-organized class and students in the
object-organized class.
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The probability of rejecting the null hypothesis was set at

0.10 and the results are displayed in Table 6.

Table 6: Results of Using the Kolmogorov-Smirnoff Two Sample 
Test With the Cumulative Percents From the Students' Results on

the Open-Ended Items of Posttest 2 

OPEN-ENDED ITEMS
STATISTIC la lb lc 2 3a* 3b* 3c 4 5a* 5b* 5c 6
Max.Diff. .04 .12 .08 .15 .41 .39 .28 .36 .38 .46 .35 .11
Probability >.2 >.2 >.2 >.2 .05 .07 >.2 .12 .09 .02 .14 >.2

a - identification of errors
b - reasons for errors
c - students' own solution
* - the null hypothesis can be rejected

For all other items, the null hypothesis cannot be rejected.

For Item 3, the Presolved Factor question, and Item 5, the

Presolved Simplify question, there were statistically significant

differences between the two classes, in favour of the process-

organized class. On both items the process class was better able

to identify the errors within the given solution, and was better

able to provide reasons for the errors contained in the solution.

As stated previously, the results for the reasons part of the

presolved questions must be interpreted with caution.

Comparison Between Pretest 2 and Posttest 2 

In order to evaluate the improvement shown by the classes

on the open-ended items, the results from Pretest 2 and Posttest



137

2 were compared. With the exclusion of two pretest questions that

were not included on the posttest and the decided differences

between the two non-routine algebra problems, only three of the

items could legitimately be called parallel. These included two

presolved algebra questions and one explanatory question. It

should be mentioned again that the scoring for the reasons

portions of the presolved questions and the explanatory questions

tended to require more subjectivity and must be interpreted with

caution. For this reason the improvement comparisons for these

two tasks will not be highlighted by their appearance in any of

the figures.

Presolved Factor Question

First the results for the Presolved Factor Question with

Simplify Strategy are examined for both the pretest and the

posttest. Both classes showed evidence of improvement on this

item, in being able to identify the major errors in the given

solution and being able to provide solutions of their own

containing no major errors. Yet there was a discrepancy between

the two classes as shown in Figure 41. The object class had five

more students able to identify the major error while the process

class had 13 more students. Similarly, the object class had five

more students able to provide solutions without a major error

while the process class had 12. For the reasons portion of this

item, the process class had eight more students in the top two
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categories, while the object class had four more students in the

top two categories. Overall the process class improved more than

the object class on this particular item.

A
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Figure 41: Improvement Shown as Percentage of Students for the
Presolved Factor Question With Simplify Strategy



Presolved Simplify Question

The same sort of comparisons were made with the Presolved

Simplify Question containing a Solve Strategy. In this item there

was no evidence of improvement for the object class, as exactly

the same number of students were able to identify the major error

on the pretest question as on the posttest question. As well, the

same number of students were able to provide their own solutions

with no major errors. This could be due to the increased

difficulty in the factoring required for the item on the posttest.

On the other hand the process class had eight more

students able to identify the major error and nine more students

provide solutions containing no major errors. Similarly, there

were nine more students from the process class that gave reasons

which were scored in the top two categories, while the object

class had no more students in the top two categories. Figure 42

shows the improvement comparison between the two classes on this

item.

139
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Figure 42: Improvement Shown as Percentage of Students for the
Presolved Simplify Question With Solve Strategy

Explanatory Question

It was not so easy to measure improvement for the two

classes' results on the explanatory question. Therefore, compari-

sons are made from an overall impression of the results and

counting the number of students in the lower and the upper

categories.

The object class showed very little evidence of any change
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while the process class seemed to show minor improvements in

their ability to write procedural processes in their own words.

The object class had one fewer student attempt this task and two

fewer students provide explanations that could be categorized as

sound and logical. A reason for this poorer showing might be as

a result of the directions given for this item in Posttest 2. They

made it clear to students that they needed to write statements in

their own words rather than just answering the question

algebraically, as many had done on Pretest 2. For the process

class there were 4 more students attempting this task and 4 more

students having explanations that were categorized as sound and

logical.

Summary of Comparison

The differences in improvement between the two classes as

evidenced from the three parallel items on Pretest 2 and Posttest

2 was evident. The process class was better able to identify the

major error in the given solution and was better able to provide

their own solutions without any major strategic errors. As well,

the process class seemingly had more students improve in their

ability to write reasons and explanations regarding algebraic

errors and procedures. The object class showed no measurable

improvement in these areas.

The purpose of analyzing the results from these open-ended

items was to determine any changes over the course of the study
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in the students' ability to select appropriate strategies and in the

students' understanding about the interconnectedness of mathema-

tics.

Achievement Test Results

The purpose of analyzing the results for Pretest 1 and

Posttest 1 was to determine whether there were any differences

between the two classes in the students' achievement on standard

algebra tests. The reasons for looking for differences in

achievement was to provide a measure of the feasibility of

organizing the curriculum around mathematical processes rather

than mathematical objects.

Analysis of covariance was used to analyze the students'

test scores on Posttest 1, the Term 1 Test, with Pretest 1 as the

covariate. The ANCOVA increases the precision of the analysis of

the results by limiting the effects of initial differences between

the two classes. Thus it can more clearly identify the differences

attributed to one of the two organizational schemes for the

curriculum (McMillan & Schumacher, 1989). Although the

differences between the two groups on Pretest 1 were not

statistically significant as shown in Table 7, an ANCOVA was

used to minimize the effects of the non-random school selection

procedures. The probability of rejecting the null hypothesis was

set at p < 0.05.
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Table 7: t-Test Comparing the Means for Both Classes on Pretest 1
Null Hypothesis: There will be no significant difference between
the mean scores on Pretest 1 of students in the process class
and the students in the object class.

Process Class Object Class

Sample Size 21 23
Means (in Percent) 36.19 36.04
Variance 271.26 218.68
Sum of Squares 5425.24 4810.96

Observed t value: to = 0.007 Critical t value: tc =0.681

to<tc

Therefore, the null hypothesis cannot be rejected.

The summary of data for the scores of both classes on

Posttest 1 is presented in Table 8.

Table 8: Summa of data for Posttest 1

Process Class^Object Class
Mean^56.38^ 55.39
Standard Deviation 14.22^ 14.47
Range^51^ 63

The null hypothesis and the results of the Analysis of

Covariance are presented in Table 9.



Table 9: Analysis of Covariance for the Mean Scores on
Posttest 1 Covariate: Pretest 1 )

Null Hypothesis Tested: There is no significant difference
between the mean scores on the Term 1 Test for the students of
the process class and the students in the object class. (p<.05)

Sources of Variation df
^

SS^MS^F^p

Between the classes 1^8.68^8.68^0.07^0.769
Within each class^41^5229.04^127.53

df=degrees of freedom
SS=sum of squares
MS=mean square
P=probability of F

p=0.769 > .05

Therefore the null hypothesis cannot be rejected.

The analysis of the results indicates that there was no

statistically significant difference between the adjusted means of

the classes on Posttest 1, the Term 1 Test for the district.

Class Time

The amount of class time needed to cover a designated

portion of the curriculum was also used as a measure of the

feasibility of organizing the curriculum around mathematical pro-

cesses rather than mathematical objects. The acetate rolls and the

teacher's journal completed during instruction were used to

determine the amount of class time spent on covering the

designated portion of the curriculum. The object-organized class

began their instructional lessons on September 3, 1991 while the

144
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process-organized class began their lessons on September 4, 1991.

During the study, intended learning outcomes 11.01 - 11.15 were

covered as outlined in the mathematics curriculum guide (British

Columbia Ministry of Education, 1988). The last lesson covering

these learning outcomes for the object class occurred October 31,

1991 so a total of 29 class periods was required. For the process

class the last lesson occurred on October 24, 1991 so a total of 25

class periods was spent. The process-organized class required

four fewer classes to cover the same portion of the curriculum.

Summary of Results

The classroom observations as recorded in the teacher's

journal provided examples of students' difficulties in selecting

appropriate strategies and in understanding the interconnected-

ness of mathematics. The observations showed that there was a

difference between the two classes in the way units were

structured by the instructor. In the process class the

introductory lessons dealt with broad ideas and concepts and

general procedures, whereas in the object class the majority of

the lessons tended to deal with specific topics. Most of the time it

was not until the review lessons at the end of the unit that

general ideas, concepts, and procedures were dealt with.

Similarly the class discussions involving the interconnectedness of

mathematics seemed to occur naturally during the introductory

lessons for the process class and carried through till the
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conclusion of the unit.

Outside of class time, individual interviews were conducted,

in which the difficulties students had with strategy selection and

understanding mathematics became very apparent. The students

had many problems dealing with the language of mathematics as

well as dealing with the mathematical meanings of certain concepts

and procedures. The open-ended task conducted at the end of

each interview suggested that either organization of the

curriculum could add to or subtract from these student

difficulties. There were indications from the open-ended task that

students who increased their level of understanding tended to

organize their perceptions of mathematics in ways similar to the

way the curriculum was organized for them.

Students' difficulties were also very apparent from the

results on various written open-ended items. On Pretest 2

students from both classes had difficulty identifying errors in

strategy implementation, providing their own solutions, explaining

procedural steps, and attempting to implement strategies on an

unfamiliar task. Posttest 2 reflected many of these findings while

at the same time showing definite differences between the two

classes on two presolved algebra questions. Some of the

differences on these two items were statistically significant. The

process class had more students than the object class able to

identify the strategic error in a given solution and able to
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provide solutions of their own without any such strategic errors.

The process class also had more students who improved in their

abilities to write explanations and reasons pertaining to

mathematics.

The analysis of students' results on standard tests used to

assess overall achievement showed no such differences. It was

determined by an ANCOVA that there was no statistically

significant difference between the means of the two classes on

Posttest 1.

The teacher's journal along with the acetate rolls used

during instruction, provided a means of measuring the amount of

class time needed by each class to cover the prescribed set of

learning outcomes in the curriculum (British Columbia Ministry of

Education, 1988). It was determined that the process class

required four fewer class periods than the object class to cover

the same learning outcomes.



CHAPTER 5: CONCLUSIONS

This study has investigated the effects of reorganizing the

Mathematics 11 curriculum emphasizing mathematical processes

rather than mathematical objects. A need for change in the

current mathematics curriculum is expressed in the NCTM's

Curriculum and Evaluation Standards (1989) as well as in the

draft document for British Columbia's future mathematics

curriculum within the Year 2000's Graduation Program (1992) . A

perceived need also arises from the prevalence of students' errors

in selecting appropriate strategies and students' difficulties in

understanding the interconnectedness of mathematics. In order for

any curriculum change to occur it must be seen both as necessary

and feasible by the teachers who must implement the change.

Constraints facing teachers such as class time and success of the

students on external exams must be considered. Once the need

for curriculum change is established and the change is proven not

to be detrimental then it becomes imperative to start implementing

and evaluating this change.

The history of curricular change in British Columbia

indicates that once a curriculum guide and textbook have been

established for a course, change occurs very gradually (O'Shea,

1987). Many teachers tend to have an over reliance on the

organizational schemes found in the curriculum guides and

I%
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prescribed textbooks in developing unit and lesson plans (Ediger,

1986; McKnight, 1987) The current Mathematics 11 curriculum

guide is generally acceptable to most mathematics teachers yet

there is some concern about the extensive amount of content to be

covered (Johnson, 1987; Overgaard, 1987). The 1990 BC 

Mathematics Assessment (Robitaille, 1992) along with the comments

made from markers in the Report to Schools (British Columbia

Ministry of Education, 1989) seem to indicate that British

Columbian students needed to develop a broader understanding of

mathematics. From an overview of the curriculum guide

Mathematics Grades 7-12 (British Columbia Ministry of Education,

1988) one could assess the organization as being traditional,

emphasizing mathematical objects.

This organizational scheme of the curriculum has come

under a great deal of scrutiny from critics as it tends to lead to

fragmented teaching and learning of mathematics. Barbeau makes

the following statement.

When the school curriculum is subdivided into short
units and the class moves quickly from one topic to
the next without permeating very deeply into any
of them, students are in danger of coming away
without any sense of purpose or content. Although
facts and techniques may be covered, their
significance and power may be unrealized so that
students quickly forget. (Barbeau, 1991, p. 522)

Researchers and educators are calling for a change to the
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present mathematics curriculum (Artzt & Newman, 1991; Barbeau,

1991; Davis, 1984; Manhard, 1985; Skemp, 1986). In consideration

of most of the necessary factors, researchers and authorities

would seem to support an organization of the curricu-lum that

highlights the major mathematical processes (Cobb, Yackel, &

Wood, 1992; Davis, 1984; Young, 1982). Such a curriculum would

emphasize the interconnectedness of mathematics.

In this study, attempting to investigate the effects of

reorganizing the curriculum on students' understanding and

students' ability to select appropriate strategies seemed to require

a qualitative approach, while attempting to measure the effects on

students' achievement and class time seemed to require a

quantitative approach and a quasi-experimental design. However,

the non-randomness of selection, small sample size, and the

teacher acting as researcher meant that the results from these

quantitative analyses must be interpreted with caution.

The study involved two Mathematics 11 classes, one was

taught using the traditional organization of curriculum

emphasizing mathematical objects, while the other class was taught

using the alternative organization of curriculum emphasizing

mathematical processes. At the beginning of the study students

were given two pretests, one to determine their present level of

ability on open-ended tasks and the other to determine their

present performance on standard achievement tests. The pretests
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were used to account for any prior differences in ability between

the two classes. No substantial differences were found.

During the course of the study the teacher/researcher kept

a journal as a record of any observations which could pertain to

the research questions. At the completion of the instructional

phase of the study the students were given two posttests, one

was used to measure student achievement on standardized tests,

and the other was a set of open-ended questions primarily used

to determine students' abilities in selecting appropriate strategies,

as well as, to determine any insights as to the students'

understanding involving the interconnectedness of mathematics.

Interviews were conducted after the pretests and posttests with

previously selected students to clarify their responses on these

tests as well to gain any additional information regarding their

understanding about the interconnectedness of mathematics.

Any persistent differences between the two classes were

commented upon along with any difficulties students had in

understanding mathematics or selecting appropriate strategies.

Similarly any differences in difficulties were noted for the

clarification portion of the interviews. An additional open-ended

task was conducted at that end of the interview where students

had to formulate a series of "Yes or No" questions to uncover

hidden algebraic tasks. These student-generated questions were

recorded and analyzed according to their structure and level of
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sophistication.

The open-ended items from the pretest and posttest were

assessed according to heuristic scoring scales. The scoring scales

were used to classify student responses from both classes. An

analysis of covariance was used to measure any statistical

differences between the means of the two classes on the district-

wide term test. The parallel pretest was used as its covariate.

The measurement of class time was expressed in terms of the

number of periods required by each class to cover the required

portion of the curriculum. This measurement was acquired

through the use of the teacher's journal and confirmed by acetate

rolls which were used regularly during instruction.

Answers to Research Questions

The answers to the research questions will be made in the

inverse order from which they first appeared in Chapter 1. This

inverted order represents the increasing levels of difficulty in

obtaining each answer.

The class taught using the mathematical process

organization of curriculum needed four periods fewer than the

class taught from the mathematical object organization of

curriculum to cover the designated portion of the curriculum.

From the analysis of covariance it was determined that there

was no statistically significant difference between the means of

the two classes on their Term 1 Test, Posttest 1.
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Classroom examples were provided for both classes

regarding students' difficulties in selecting appropriate strategies.

The open-ended items from the pretest and posttest also indicated

that both classes had difficulty in writing the procedural steps

for a strategy in their own words. Students had difficulties

supplying reasons to explain why certain strategies were

inappropriate. In particular, on the pretest most students could

not identify major errors in a previously implemented strategy nor

were they able to provide solutions of their own using a correct

strategy.

On Posttest 2, however, the process class showed signs of

improvement on identifying major strategy errors and on selecting

appropriate strategies of their own. There were also indications

from the heuristic scales that more students in the process class

improved in their abilities to provide reasons for the

inappropriateness of strategies on previously solved questions,

and to provide explanations for a set of procedural steps. Overall

the process class showed more improvement on tasks requiring

them to identify inappropriate strategies and select appropriate

strategies of their own than the object class.

As far as assessing any differences between the two

classes, on levels of understanding about the interconnectedness

of mathematics was concerned, it was difficult to say if one class

was better than the other. As a consequence of the organization
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of the curriculum the unit and lesson structure chosen by the

instructor provided the process class with a greater number of

in-depth discussions than the object class. This would seem to

indicate that the process class had more opportunities to develop

and demonstrate their understanding of mathematics (Steen,

1989). As well, the lessons in the process class seemed to hit on

the main mathematical concepts of a given unit on a more regular

basis.

From the interviews it was concluded that the majority of

the students had difficulty in communicating about mathematics.

Some students used a low level descriptive form of communication

while others often used mathematical terms like factor or reduce,

inappropriately. Those students that apparently increased their

understanding tended to utilize the curricular organization from

their respective class for their own personal organization of

mathematical concepts and procedures. There were students from

both classes that improved in understanding, did not improve in

understanding, or even showed signs of having less of an

understanding than they had before.

Other Findings

One apparent discrepancy from the results is the process

class improved fairly substantially on selecting appropriate

strategies, yet there was no statistically significant difference

between the two classes on Posttest 1. Part of this discrepancy
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can be accounted for by the differences in what the two tests

were measuring. The open-ended items on Posttest 2 were used to

categorize student responses according to levels of logic and

understanding. The algebraic items on Posttest 1 were used to

measure the correctness of carrying out procedural steps, symbol

manipulations, and numerical calculations. All algebraic items were

marked out of one or two marks, and even though students from

the process class were somewhat more adept at identifying major

strategic errors and implementing appropriate strategies of their

own, the majority of them still made minor errors in symbol

manipulation or numerical calculations. Another reason for this

discrepancy may be that before the Term 1 Test the

teacher/researcher, out of professional obligation, had shared

findings with both classes in hopes of better preparing them both

for their upcoming test. The teacher/researcher would have been

quite uncomfortable if the results on the Term 1 Test had

indicated a statistically significant difference, as assurances had

to be given to parents and students that there would be no

adverse effects to students' grades in either class for taking part

in the study.

The presolved questions on the open-ended tests proved to

be a useful way of measuring students abilities in selecting

appropriate strategies. There was an observable relationship

between students ability to identify an inappropriate strategy
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used in the given solution and ability to select and implement an

appropriate strategy on their own to complete the given algebraic

task. These questions were also relatively easy to score as

students either identified the errors or they did not. Although

such open-ended items worked reasonably well in assessing

students' abilities in strategy selection, no such items were found

in assessing students' understandings about the interconnected-

ness of mathematics; however, certain observations were made

that may account for why students have difficulties in this area.

Many students had problems with the definitions of various

mathematical terms; in fact, many had made up their own

definitions which are not equivalent to the accepted ones. Some

students come up with definite ideas about certain short-cut

methods they have used in previous mathematics classes with a

certain amount of success but with very little understanding.

Students' problems with the language of mathematics and beliefs

about short-cut methods are difficult to overcome and provide a

hindrance to their understanding about the interconnectedness of

mathematics.

Implications

According to this study, reorganizing the Mathematics 11

curriculum to emphasize mathematical processes is feasible. There

appeared to be no detrimental effects on students' achievement

scores on standard tests, and it required less class time than the
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traditional organization of curriculum emphasizing mathematical ob-

jects. This alternative organization of curriculum lending itself to

a definite lesson and unit structure also seemed to provide

students greater opportunities to develop an understanding about

certain mathematical concepts and ideas. They were confronted

with general mathematical processes at the beginning of a unit

which brought about many class discussions. The key ideas from

these processes were emphasized throughout the majority of

lessons within a given unit. From this emphasis on key processes

and the greater opportunities to develop an understanding about

the interconnectedness of mathematics, the students from the pro-

cess class were somewhat better able to select appropriate

strategies.

Despite the process class displaying superior performance in

strategy selection, there was no evidence of such improvement on

the common Term 1 Test, Posttest 1. This may be due to the

evaluation techniques utilized in secondary mathematics i.e. ,

paper and pencil achievement tests (Usiskin, 1985; Willoughby,

1990) . If understanding mathematics and selecting appropriate

strategies is important, there needs to be a way of assessing

these skills and abilities. No effort to change curricula or

teaching practices will succeed unless the instruments of

assessment are aligned with educational goals (NCTM, 1989;

Romberg, Zarinna, & Collis, 1990). Authentic assessment techni-
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ques and instruments should be selected to reflect the type of

information sought, and the information sought should focus on

understanding, processes, and attitudes, as well as achievement.

Curriculum, instruction and assessment need to change together

in order to improve mathematics education (Kuhn, 1990; Pandey,

1990).

From the results of this study it would appear that there is

a great deal of usefulness in reorganizing curricula to emphasize

the important ideas of mathematics. This can be done in a way

that does not jeopardize students' scores on common external

examinations or place any additional burdens on class time.

Connections between various ideas need to be shown to students

so that the students can formulate meaningful connections of their

own. The reorganization should not only be designed to emphasize

the main ideas of mathematics but should address difficulties

students have in understanding mathematics. Through such an

organization the classroom may become an open forum for

discussing important ideas about mathematics and provide greater

opportunities for understanding and learning mathematics.

Suggestions for Future Research

Obviously, the first suggestion for any future research on

curriculum organization would be to eliminate the greatest

limitation of this study. In other words conduct the same study

without the teacher being the researcher and observe more than
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two classes.

There is a need to include what educators and society view

as important in the framework of the mathematics curriculum.

Once this framework has been established an organization of

curriculum along with suitable materials needs to be developed

that reflects this importance. This reorganization of the curricu-

lum could be tested against the more traditional organizations on a

wide scale involving many different schools and utilizing common

examinations. These examinations should include a variety of

questions including traditional algebraic questions along with items

used to assess a students' understanding about mathematical

strategies and processes. Results could then be compared and

analyzed on a much broader scale than was the case with this

study.

Research should also be conducted on a much smaller scale,

to demonstrate how individual students utilize a curriculum design

in developing their own understanding of and appreciation for

mathematics. During such a study the researcher could monitor

individual students and conduct in-depth interviews to determine

the level of student's understanding about key concepts and ideas

in mathematics. Within such a study the students themselves could

demonstrate how they think the major ideas of mathematics are

and can be connected.

Not only should the effects of a new curriculum be looked
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at from a student's point of view but also from a teacher's point

of view. Teachers with definite teaching styles could be observed

for a certain period of time using a traditional organization of

curriculum. Later, the teachers could be made aware of an

alternative organization and asked to implement it in using their

particular teaching style. Do they spend the same amount of time

lecturing? Do they conduct more meaningful discussions with their

class? Have they developed a more effective teaching style? As

well questions could raised about how the teachers found the

whole process of organizing the curriculum to suit their needs.

Closing Comments

Teachers do not have to rely on the curriculum guide and

the prescribed text book to organize their classroom lessons.

They should search for ways of organizing the content of the

curriculum that would emphasize those ideas in mathematics they

feel are most important. Standards for measuring the effects of

this organization must not be lowered, they should stand up to

standard tests of achievement and constraints of class time. If it

is a truly valuable organization there should also be other

evidence to indicate students' improvement in understanding the

interconnectedness of mathematics.
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Mathematics 11

   

A.- iaatipia Cliotoos Circle ths_best aims on the-answer shast provids6._

1. /f_y is a real_nunber_than 7C
0

B
C.:. any-real .nmatior
D.-undefined
E.:nons.of those --

2._ If.* + 2 is 10 than 3(a+3) as 3(10) is an example of:

A._ Thalnatribut.ive -Property of Multiplication over -Addition
B.. The_ilultiplication Propertr-of Equality
C.7_ The Ineszes-Propestr of - Multiplication
D. Thu.Associative Propsztrot inatiplication
E.. Noma of theism -

3._ SiapLify
5 + 8X6 + 3X2 • 1

A._ 36-
B.:- 12_
C. 51_
D.- 20:- .
• None of those .

4 suiplur
15— 41-
9 .---^3 _

  

B..

C. - 9

D._

E.-- No of these-



5. The square root of 16 by" is
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A.

B._

C._

D.-.

E. None of these

6. . The-L.C.X. for74sh1pi 6solizand_9n0 is

A. 1141=,

Be:L. 72emp1

Czz. 36m1W p 6

0. MEW -

L.= Name of these:-

7. rn.Aba equation -Y*1- .1, -81. n must-bet

• 3
8.L._ 4 -
C._ 26
D.- 77 -
E.:- None - of theee--,

8. Sinnlifir

A._ 7 -
B.-- 12
C.:: 15
D.-- 17 -
Z. None of these

9. Simplify

,l-

A.— -A--

B.- -3457
• 6 3)1r
D._ 242 -
E.- Name of thaws ,



10. Simplify

(Jr + 2) (2./r- 1)

A._ 48--
S.- 8 -
C.._ 513 • 3..a
D. 3 +
E._ Noes of these-

11... Factor completely

(X-+ 1) 2 • 9

x2T+^8
S.- (x=.• 2)(x + 4)
C. -- (It .■ 8)(x + 10)
0. xl-r-
E.:- Nome of Unseals

12.-- The-square of 'X • 3 is: .

A... xar— 9
Bo- st:* 9

xar- 3acji. 9
4z-+ 9

None:ofithese, ,,

13‘ Simplify

(x.L+ 2)(x2- - 2z+ 1)

A.- x3- 3x+ 2
8.- (x + 2) (z .• 1)
C. x3.-- 4z+ 1.
D. - (x_+.2) (x • 1)a
E._ Noes of theme,

14.- A solution forr-

x.ws 20 would be•x

A.- 74—..
D.-- 4 -
C. -_ 5
D.-- ALl_real_numbers except- 1
E.-- Noes of these
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15. Simplify

2—+
nvn -

A. 5w + 3n

B. 5nw + 3n2

C. n(5v + 3n2 )

D. 1X4-1M _
n v

E._ Name of theme

16. Simplify

n^n-I

A.- n+1

B._ n2-- 1

C. -^0

2m-_

E. Name of these

17. Simplify

7vI^73c - 15

A. -2

B. 8ic_- 5

C.^(2x + 31(x - 51 
(2x.- 3) (x + 1)

D.- BI5-
x+ 1

E._ None of these

175
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141MLASIMLIt^8I0WaLL-103Int

1. write^2.1SSS...as a reduced fraction

/2-

2._. Simplify

2a • • . 22a-•

/2:

2.

3. Simplify

/2_



4. Factor completely

4(5 - k) - 4k(X - 5)

/2

4.

5. SOlve

_ 5^_ +^2
n • 2

/2-

    

n^6n 4 8

       

6. - Simplify

a-3
-2--r 

a+3 a

/2

6.

177



7 .^Find the G.C.F. for

9 ••^2cZ - 10a+ 12, c 2 - ea +9

/2-

8. Solve tor:x

b ••^--d -

/2

9. Homy can eat:a tub-of pluses-in 3 hours and. Frank can sat the.sase_=
sise_tub_of plugs-in 4 hours. Hoy long would it take.then.to sat-one.-
tub-of plans together?

/3

9.

178

7.-.

8.
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Name:

Mathematics 11^Pretest #2

For this test it is your explanations which are most important,
therefore answer as specifically as you can. For most questions
there is more than one correct answer.

1.^Factor the following:

( 2x - 1 )2 - 9( x^2 ) 2

Ernie's solution to this question is:

Is Ernie's solution correct?

If it is correct, briefly explain his
steps.^

180

If it is incorrect, state what is wrong and expain why it is
wrong.

Show how you would answer this question.
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2.^Imagine you are talking to a friend on the phone about a
difficulty they are having with simplifying rational expressions.
They provide you with the following example:

x + 4 

2x2 - 2x
5

2x - 2

What would you say to guide them through the question step by step,
so that they will better understand how to deal with similar
questions? Anticipate their responses.
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3.^Column A^Column B

Add/Subtract^Factor

Multiply^Simplify

Divide^ Solve

3. Match items from Column A to those which are most similar in

Column B and explain why you made your choice.

4. Using the same columns, match items from Column A to those which

are most dissimilar in Column B. Explain why you made your choice.
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5.^Simplify the following:

x + 2 

x2 - 9x + 20
3x + 1

x2 - 7x + 12

Frank's solution for this question is:

Is anything wrong with Frank's solution?

Explain.

Is anything right with Frank's solution?

Explain.

Show how you would you have answered this question?
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6.^Show that the product of the sum of three positive real
numbers by the sum of their reciprocals is always at least 9. And
when can the product be exactly 9? SHOW ALL WORK AND EXPLAIN!
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TERM 1 TEST^MATHEMATICS 11

Block^Teacher

A. MULTIPLE CHOICE: Select the best answer for each question and circle
the letter on the separate answer sheet.

1. Factor completely: (x - 1)' + 27

a.. (x .+ 2)'
b. (x 4) 3

c.. (x.- 4) (x2 + x + 7)
d._ (x^2) (x2 • - 5x_+-131
e.. (x -+ 2) (x - 4) 2

2.. The multiplicative inverse of --2-is:

a._ 2 .

3.. y and z are -real numbers then what property is.illustrated.ini
the-following example: (x-+ 7 ) + i■ z + (x + y)

a.- associative property of addition
b. ctiammitative property of addition_
c:_ distributive property of multiplication over•addition
d._ identity property of addition
e. inverse property of--addition -

4. The solution for -x la the equation 2(2x - 3) - 2 = 4(x - 2) is:

a._ 0

b. -- 2

d... =defined

e._ any real_number

186

NAME



5 . Expand and simplify: (x - 4/-1 3

a. x 3 - 8
b. x 3 -

x 3 - 34-1 x 2 + 6x - 2
d. x 3 -/2-70 - 2x + 2/7—

e. x3 - 4x3 + 4x - 2 J

6. Factor completely: 48x3 - 6y 3 - 68xy

a. (8x + 3) (6x - 2)

b. 2(8x + 3) (3x - 1)
c. 2(12x + 1) (2x - 3)

d. (4x - 3) (12x + 2)

e. 2 (4x - 3) (6x + 1)

„ :,viers icor y.^y

a. - 1
27

b. - 27

c. 1
27

d. 27

e. nom of these

T bl8. Simplify: (7-299)

a. 3
2

b. -8
Ti-

c. 32
TT3

d. - 3645

e. 2187

9. Simplify completely:  2 - 
34-7 + 443-

a. Etil---84-1-9415+ 12108 
30

b. 6f1-: 24n--

c. -1011-:304T--
66

d.. 26J3---4212--
30

e. -104-3 -+ 30I'
108

187



188

10. Solve over the set of real numbers: 22--^13

a. 615
b. 43
c. 27
d. 4
e. No real solution

11. For the expression x -4^x can be any real number except:

4
.2

d._ 0, 2, -2
e. 0, 4, -2

12—S1mplify: 3x1.-+ 10 -8

a.-- -5 -x -2
177

2_

cTi. -2:

-xT-4-

e X7+-4-

:r67"5irl•
a.

b. -Tx--
C. 5 0/7"--

d._ 4 -346--
e. -1

14. Simplify: 9

 

27 -+ 2

 

a. 0
b. 0,
c. 0,



(2)

(2)

15. Simplify: ym (ym^Ya )

a. yma + y rini

b. yman

C. y 2m + ym + n

d. y3m-+ n

e. gym + ymn-

B. LONG ANSWER: Show all work! Put final_ answer in space provided.

1._ Write 1.354 as .an equivalent fraction.

(

2._ Simplify:^12d2 ba '-' 3

20Al 2

3.- Simplify:^4-^+-- 1^.4— 3 -

189

1377:17 -23:7771r- 1

4.. Factor: 16x1---49y a +-8x_74- 1_
(2)

\\\\ 5.- Solve for.r:

(3)
a ..a•

 

(2)

gmlum for-x: 9 11"- . 812c."2 -^1\1 -2x^0
T^)

7. Simplify: 32/1,3 - 4x4
6xa - 8xay - 8xya

8. Simplify: 3j-9+ 3j=
Tr. 3-

(3)

(2)
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Name:

Mathematics 11^Posttest #2

For this test it is your explanations which are most important,
therefore answer as specifically as you can. For most questions
there is more than one correct answer.

1.^Solve the following for x:

x + 1^2
x2 - 7x + 6^x - 6

Bert's solution to this question is:

Is Bert's solution correct?

If it is correct, briefly explain his
steps.^

If it is incorrect, state what is wrong and expain why it is
wrong.^

Show how you would answer this question.

191
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2.^You are tutoring a friend in mathematics. She has been
instructed by her teacher to factor wherever possible. They have
done this, as shown below, but they have no idea what to do next.
Write down the steps she would have to follow, IN YOUR OWN WORDS,
so that she could complete this question correctly.

Simplify the following:

x2 - 3x - 18^x2 - 2x - 8 
x2 - 3x - 10^x2 - 2x -15

Her first step is:

(x - 6) (x + 3)^+^(x - 4) (x + 2) 
(x - 5) (x + 2)^(x - 5) (x + 3)

What should she do next? (IN YOUR OWN WORDS, EXPLAIN)
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3.^Factor the following:

( x + 1 ) 3 - 8( x - 2 ) 3

Ernest's solution to this question is:

Is anything wrong with Ernest's solution?

Explain.

Is anything right with Ernest's solution?

Explain.

Show how you would you have answered this question?



Simplify:

Evaluate:

Factor:

Rationalize:

Solve:

194

4.^For each of the following directional terms write down the
most important steps necessary to correctly respond to each
statement.

Reduce:
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5.^Simplify the following:

x - 5 _ ^2x + 1 
18x2 + 7x - 8^6x2 + 5x - 4

Valerie's solution for this question is:

Is anything wrong with Valerie's solution?

Explain.

Is anything right with Valerie's solution?

Explain.

Show how you would you have answered this question?
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6.^Solve the following for x:

2x^-^12^=^1

2x
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