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ABSTRACT

This thesis is based on an article by Bruce Hamilton published in

the Journal of Political Economy 90(5) in 1982, titled "Wasteful

Commuting". The analysis compares "optimal" and "observed"

commuting behaviour in 23 Canadian cities in order to provide a

test of the monocentric model's ability to predict commuting

behaviour. Monocentric models are widely used in urban economics

due to their simple structure but any model purporting to explain

residential and job choice location should be able to explain

observed commuting behaviour. In order to operationalize the model

it was necessary to estimate employment and population density

gradients for 23 Canadian cities using 1981 census data. Density

gradients were estimated using a two-point estimation technique

pioneered by Edwin Mills. The employment gradient estimates

presented in Chapter 4 are the only existing Canadian estimates for

a large set of cities. The density gradient estimates were used to

calculate the minimum average commuting distance in each city. The

minimum average commute was compared with observed commuting

behaviour. Data on observed commuting was obtained from a 1977

household survey. The results indicate that observed commuting is,

on average, eight times the minimum necessitated by the separation

of homes and jobs. Randomly assigning residents to homes and jobs

explains observed commuting better than the monocentric model.

Like Hamilton's results, the results of this thesis draw into

question the validity of the basic monocentric model.
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CHAPTER ONE

INTRODUCTION

The monocentric urban model is virtually synonymous with the urban

economics sub-discipline and particularly with the paradigm of

inquiry referred to as the "new urban economics". Since the work

of Muth [45] and Mills [43] in the 1960s monocentric models have

been widely employed in urban economic analysis.

The monocentric model yields a number of testable predictions about

the distribution of phenomena, particularly housing and population,

in urban areas. Many of the model's predictions have been

empirically tested for numerous sets of U.S. cities. There has

been a dearth of similar testing of the model in countries other

than the United States. One area where the monocentric model has

failed is in predicting observed commuting behaviour. Because this

is a fundamental shortcoming in a spatial model that purports to

explain the location of households and employment based on the

trade-off between housing prices and commuting costs it is

considered an area worthy of further analysis.

The purpose of this thesis is to test a "strong form" of the

monocentric model. The test focuses on the monocentric model's

ability to predict observed commuting behaviour. The test was

originally developed and employed by Hamilton [26] for a sample of

14 U.S. cities. Specifically, this thesis attempts to answer two

questions:

1. Given the existing distribution of homes and jobs in a

- 1 -



sample of Canadian cities is the monocentric model able
to accurately predict observed commuting behaviour?

2.^Is the model's performance significantly different in
Canada than in the United States? Or put differently, in
the aggregate, do Canadian and American commuters behave
differently after controlling for the existing urban
structure?

In order to operationalize the model used to estimate expected

commuting it is first necessary to estimate population and

employment density gradients for each city included in the sample

of Canadian cities. Although this is not specifically listed among

the goals of the thesis, the population and employment gradient

estimates should be of interest to urban researchers.^The

employment gradient estimates are the first for any set of Canadian

cities and the population gradient estimates are for the largest

sample of Canadian cities covered by any research to date.

Chapter 2 reviews the importance of the monocentric model within

the urban economics sub-discipline. A simple mathematical version

of the model based on Hamilton and Mills [42] is presented in order

to highlight the predictions of the monocentric model and the key

role played by commuting.^The spatial location equilibrium

condition, one of the fundamental results in urban economics, is

also presented. Finally criticisms of the monocentric model are

reviewed.

Chapter 3 reviews a model that can be used to estimate aggregate

commuting behaviour in monocentric cities. Originally, the model

was developed and employed by Hamilton [26] for a sample of cities

in the United States. The logic of the model is straightforwdid.

- 2 -



The average distance of homes and the average distance of jobs,

from the CBD is estimated. The difference between the two is

referred to as the optimum average commute. The optimum average

commuting distance is then compared to observed commuting behaviour

in a sample of cities.

Chapter 4 presents estimates of population and employment density

gradients for a sample of 23 Canadian cities. The parameter

estimates from the density gradients are necessary to estimate

optimal commuting distance in each city. Considerable attention is

given to the estimation technique and discussion of the gradient

estimates.

Chapter 5 employs the model developed in Chapter 3 and the

gradients estimated in Chapter 4, to test the ability of the

monocentric model to predict observed commuting behaviour in 23

Canadian cities. The results for Canada are compared with

Hamilton's results [26] for his sample of U.S. cities.

Chapter 6 concludes the study and provides suggestions for further

research into the determinants of commuting behaviour.



CHAPTER TWO

A REVIEW OF THE MONOCENTRIC MODEL

This chapter reviews the monocentric city model. The importance of

the monocentric model in urban economics and the evolution of the

monocentric model is discussed. Monocentric models have been

widely employed in urban economics due largely to the simple

structure of the model and the associated mathematical tractability

[13]. There are at least three essential but unrealistic

assumptions common to most versions of the monocentric model:

1. There is a predetermined centre to which all households
commute and to which all products are shipped;

2. Individuals are homogeneous in preferences and the urban
area is homogeneous in land and neighbourhood
characteristics; and

3. Cities are instantaneously developed and infinitely
malleable (sometimes referred to as the putty-putty
assumption).

The first two assumptions imply that distance to the central

business district (CBD) fully characterizes the desirability of any

location within the city: direction is irrelevant. Households are

indifferent to a particular home or job except insofar as the

transportation (commuting) costs associated with particular sites

differ.' The third assumption implies that the spatial economy is

characterized by a series of long run equilibria with capital

The assumption of indifference among jobs is particularly
unrealistic in monocentric models that attempt to incorporate
multiple income groups. In reality an important factor in
determining income differentials is probably employment income.
The monocentric model assumes that all jobs are equally desirable
so income differentials must arise due to differences in initial
endowments or differences in non-employment income.
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investment adjusted every period.

This chapter is divided into six sections. Section 2.1 discusses

the central role played by transportation costs in urban economic

analysis. Section 2.2 presents a simple version of the monocentric

model. The model presentation relies heavily on Mills and Hamilton

[42], (particularly Mills and Hamilton's Appendix A). Section 2.3

briefly touches upon the issue of functional form and the

appropriateness of the negative exponential population density

function. Section 2.4 examines employment location theory in the

context of the simple urban model. The next section discusses some

general criticisms of the monocentric model, including a critical

test of the model developed by Hamilton [26]. Hamilton's

methodology is subsequently built upon in the remaining chapters of

this thesis. Finally section 2.6 concludes the chapter.

2.1 Transportation Costs, Land Values & Urban Economics

Transportation costs have long been recognized as a crucial

determinant of both the formation of cities and the distribution of

economic activity within cities. 2 In the absence of transportation

costs geographic proximity is not necessary in order to preserve

economic linkages. Once transportation is costly all interaction

involves the cost of overcoming distance.

2 Transportation costs and scale economies in production (and to
a lesser degree in consumption), are sufficient conditions for the
existence of cities.
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Traditional neoclassical economic theory is presented in a

spaceless economy which is, quite clearly, artificial because

spatial relationships and land use patterns affect every economic

activity. In a spatial economy the demand for land arises from the

consumption and production activity of individuals. Individual

activities are brought together by spatial agglomeration economies

which arise from interaction and it is this interaction that

involves the cost of overcoming distance.

Urban economics developed as an explicit attempt to incorporate

space into consumer and producer theory and this basic concern for

the geographic distribution of phenomena (particularly population)

in cities still defines urban economics [57]. The major

difficulty inherent to incorporating space into neoclassical theory

lies in the indivisibility of the land-location consumption

decision. Locational fixity suggests that dwelling units differ

greatly in their accessibility to production and consumption

activities making it difficult to isolate the consumption of a good

such as housing from the consumption of "accessibility" [49].

Many important insights into the operation of housing markets were

derived during the 1960s from the realization that employment

accessibility and housing are jointly purchased. However interest

in the nexus between transportation costs and the value of land

stretches back into the 19th century and the work of Johan von

ThUnen. Von Thfinen postulated an agricultural land market where

the price of land was determined by productivity (fertility) and

6



the distance of land to the nearest market town. 3 William Alonso

[3] built on the work of von Thanen and another early twentieth

century economist, Robert Haig. Alonso's work made explicit the

central role played by transportation costs within cities through

the development of bid-rent functions. In equilibrium, sites

differ by the transportation costs associated with distance from

the CBD. The sum of land rent plus transportation costs must be a

"constant" throughout the city for any particular land use, such as

housing, in order to establish long run equilibrium.

From the work of Alonso urban economic analysis quickly evolved

into spatial models focusing on equilibria and social optima. Of

course, the purpose of such models is to abstract from reality

using a few basic theoretical concepts in order to explain a large

number of observed phenomena. The most important of the spatial

models, the monocentric model, has become synonymous with urban

economics. But as Wheaton cautioned, "If the monocentric models

contain a lesson it is that spatial relationships substantially

complicate microeconomics' simple analysis" [57].

2.2 The Basic Monocentric Model

According to Wheaton [57] the family of monocentric models

represents a distinct branch of microeconomics. While Alonso [3]

is generally credited with incorporating bid-rent functions into

3 Throughout the 19th century and for the early part of the 20th
century it was geographers rather than economists who were in the
vanguard of locational and spatial research.
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urban analysis, Mills [43] and Muth [45] are often cited among the

first to have formalized mathematical versions of the monocentric

model. In the Alonso model households have a direct preference for

land which determines residential density. In the model developed

by Muth and Mills consumers do not have a direct preference for the

good land. Instead, residential density is determined on the

supply side by the ability to substitute capital for land in the

production of "housing services".

Monocentric models differ in sophistication and can incorporate a

number of important complications that are either internal or

external to the city. Internal complications include:

• Incorporating dispersed employment as well as dispersed
housing; 4

• The addition of public goods;

• Allowing for transportation congestion;

• Including externalities such as race, pollution or crime;
and

• Incorporating multiple (usually two) income groups.

There are basically two variations in the outer structure of the

spatial economy in which a city operates that have been examined

within the framework of the monocentric model:

• Open versus closed cities - open cities allow migration
into and out of the city, which implies that the level of
utility is exogenously determined while closed cities do
not allow migration implying that utility is determined
within the city; and

4 Employment decentralization is discussed in Section 2.4 of this
chapter and again, briefly, in Chapter 3.
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• Distribution of land rents - landlords can be assumed to
reside in the city or it can be assumed that all rents
are paid to absentee landlords. The former results in
multiple income groups.

It is beyond the scope of this chapter to review each incarnation

of the monocentric model as listed above. Only a simple version of

the model is presented below, focusing on residential location

theory. The model presented is, however, sufficient to highlight

the central role that commuting plays in the model. And it is the

inability of the monocentric model to predict commuting behaviour

that was central both to Hamilton's [26] criticism of the

monocentric model and to this thesis.

2.2.1 Derivation of the Locational Equilibrium Condition

Begin by assuming that all individual households are utility

maximizers and that there are only two normal goods: housing (h)

and a composite non-housing good (g).^Household maximize:

U s u(h, g)

subject to the budget constraint:

Pgg(x) + Ph (x) h (x) + tx y

where:

• y m household income;

• t m is the cost of a round trip kilometre;

• x m distance from the CBD;

• Ph '74 the price of one unit of the housing good;

- 9
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•^Pg Es.-- the price of one unit of the composite good.

In equilibrium, each household will maximize utility at a point

where the slope of the indifference curve is tangent to the slope

of the budget constraint: 5

Ah(x)^Pg 
A g(x)^Ph(x)

(2.3)

Now, in order to derive an important result, imagine the impact of

a small change in location (Ax) on the budget constraint given in

equation 2.2. To maintain equilibrium the following must obtain:

PgAg(x) + APh (x) h(x) + Ph (x)Ah(x) + tAx - 0 .^(2.4)

Rearranging equation 2.3 yields:

PgAg(x) + Ph (x) Ah(x) - 0.^ (2.5)

Subtracting equation 2.5 from both sides of 2.4 and rearranging

gives:

APh(x)h(x)^
- t.

Ax
(2.6)

An indifference curve maps out all the possible combinations
of (h) and (g) that will yield a given level of utility for a
household. Households are indifferent among various combinations
of (h) and (g) that yield the same level of satisfaction.

- 10-



Equation 2.6 is an important result, often referred to as the

locational equilibrium condition. The locational equilibrium

condition implies that as distance to the CBD increases, the

reduction in housing expenditure (the numerator on the LHS of

equation 2.6) is exactly offset by an increase in commuting costs,

-t (the RHS of equation 2.6). The importance of commuting

behaviour in the model is illustrated by equation 2.6.

Rearranging equation 2.6 yields an expression for the slope of the

housing price function:

(2.7)
Ax^h(x)

Interesting implications arising from equation 2.7 include:

1. The minus sign on the RHS implies that the housing price
function has a negative slope - i.e. prices fall with
distance from the CBD;

2. The presence of h(x) in the denominator of the RHS
implies that when housing consumption is small the house
price function is steeper than when housing consumption
is not small - i.e. P h is convex with substitution in
consumption; and

3. If we assume that non-land input prices do not vary with
distance from the CBD, housing prices can be steep only
where the land rent function is steep, near the centre of
the city.

Two realistic implications of the locational equilibrium are:

1. Suburbanites consume more housing than central city
residents in order to maintain spatial equilibrium; and

2. Suburban houses have lower capital land ratios because in
the suburbs land is cheaper relative to other inputs in
the production of housing.

Both implications entail lower population density in suburban



locations. 6

2.2.2 The Supply of Housing Services

To understand how the urban economy works is to understand how

markets combine land with other inputs in varying proportions at

different places.^The previous derivation of the locational

equilibrium condition ignored any formal inclusion of the supply of

housing. This section will more formally examine the conditions

which must obtain for equilibrium in the residential sector.

Muth/Mills models are able to account for the substitution between

labour, land and capital in housing markets. In addition to the

three assumptions cited in the introduction to this chapter the

current exposition assumes:

• A Cobb-Douglas housing production function;

• The rental rate on capital (r) is not related to intra-
urban location (x); and

• Housing input and output markets are competitive.

Using Cobb-Douglas notation assume the following housing production

function:

6 It is possible to construct a model with fixed lot sizes in
which suburban residents do not consume more housing. With fixed
lot sizes suburban housing is cheaper than in more central
locations. This enables suburban households to achieve the
equilibrium level of utility by increasing non-housing consumption
by an amount exactly equal to the cost of commuting to the suburbs.
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HS (x)= AL (x) a IC(x) 1 - a^(2.8)

where:

•^li.(x) m housing supply;

•^A, a m constants with 0 < a < 1;

• L(x) m land used in housing production; and

• K(x) m capital used in housing production.

Differentiating equation 2.8 yields the marginal product for land:

a 14(x)
MPL(x)^L (x)

(2.9)

and the marginal product for capital:

(1 - a) 1-1,(x)
MPI(06^K(x)

(2.10)

Multiplying the marginal products of land and capital by the price

of housing (Ph (x)) yields the respective value of marginal product

expression for land and capital: 7

R(x)^
a Ph (X) Hs (x)

L(x)
(2.11)

R(x) is the rental rate on land at distance x from the CBD and
r is the spatially invariant rental rate on capital. Given the
assumption that input markets are competitive, in equilibrium the
value of the marginal product of each factor of production must
equal its rental rate.

- 13 -



(1 - a) Ph (x) 1-1,(x) (2.12)
K(x)

2.2.3 The Demand for Housing Services

Assume that all workers in the city have the same income (y)

(determined exogenously), the same preferences and the same

individual demand for housing services: a

h (x)^Hyel Ph (x) e2
^

(2.13)

where:

• 01 m the income elasticity of demand for housing;

• 02 m the price elasticity of demand for housing; and

• B m is a constant.

Because it was assumed that housing is a non-inferior good we know

that e i > 0. Therefore, a downward sloping housing demand function

implies that 0 2 must be less than zero. Total housing demand is

the product of individual housing demand times the number of

individuals, N(x):

HD(x) h(x) N(x)^ (2.14)

s According to Mills and Hamilton [42], equation 2.13 is a demand
function that has been widely employed in many demand studies. It
assumes that the income and price elasticities are constant.

- 14 -



2.2.4 Solution to the Model

To complete the model and solve it assume that 0 radians of a

circle are available for development at every distance from the

predetermined city centre with 0 5 27. 9 Thus 2r - 0 radians are

unavailable for development.

The model has five equilibrium conditions which must be satisfied:

Hd (x) - H5 (x)

Pih (x) h(x) + t 0

LOO^Itt•x

R(/) =

N(x) dx N.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Equation 2.15 simply says that in equilibrium total housing supply

must equal total housing demand. Equation 2.16 is the locational

equilibrium expression (derived in Section 2.2.1), equation 2.17

implies that, in equilibrium, the amount of land used for housing

cannot exceed the total land available and no land can be left

vacant. Equation 2.18 equates land rent at the urban boundary to

rent in non-urban uses and 2.19 specifies that the total number of

workers in the urban area, N, is equivalent to the number of

workers at any distance, N(x), for all x.

9 0 cannot exceed 27r because a complete circle has 27 radians.
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In order to solve the model the VMP equations 2.11 and 2.12 are

rearranged isolating L(x) and K(x). L(x) and K(x) are then

substituted into the housing supply expression, equation 2.8

yielding:

rl-aRwa
Ph (X) Aaa(1 - a) 1- a

(2.20)

Equation 2.20 indicates that the price of housing is proportionate

to land rent, R(x), raised to the power of a. Because we know that

0 < a < 1, we know that house prices are high when land rents are

high but house prices rise less than land prices due to factor

substitution in the housing production function. Taking the

derivative of equation 2.20 with respect to x yields:

P12 (x) if (1 
-r

77 a) 
)1 - 4 

R (x) - 1 R I (x) (2.21)

where R'(x) is the slope of the rent function R(x). Equation 2.21

is a differential equation for housing prices but, because there is

no initial condition for house prices, it is necessary to solve the

model for R(x) rather than house prices. Equation 2.18 provides

the initial condition necessary to solve the differential equation

expressed in terms of land rents.

Substituting equation 2.13 into the locational equilibrium

condition, equation 2.16, for h(x), equation 2.20 into 2.16 for

Ph(x) and equation 2.21 into 2.16 for Ph'(x) yields:
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E-1 R(x) 13-1 R i (x) + t = 0
^(2.22)

where E and B are collections of constants:

E -1^apyelAaa (1 - a )i - ar c1 +^r t1 - a) (I- 4- Oa)

(3 - a (1 + 02 ) .

Utilizing the initial condition provided by equation 2.18 results

in a solution for R(x) from the differential equation, 2.22:

R(x) =^+ /3 tE(I- x)]1 .

^ (2.23)

Equation 2.23 is a general expression for land rent, R(x). If B

equals zero land rent can be expressed as a negative exponential

function of x: 1°

R(x)^Re -tEci -^ (2.24)

From the definition of B given above it can be seen that a zero

value for B implies that 02 = -1: i.e. the price elasticity of

demand for housing is -1.

The final step in this simple derivation of the model involves

linking the rent gradient to the population density gradient.

10 e is the base of the natural logarithm.
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Using the equilibrium condition given by equation 2.15 the

expression for total housing demand, equation 2.14, can be

rewritten:

N (x) - (x) 
h (x)

(2.25)

Taking the ratio of the value of the marginal product of land and

the value of the marginal product of capital (equation 2.11 and

2.12) results in the following expression for K(x):

K(x) =^a R(x)L(x).^(2.26)
cc r

Substituting equation 2.26 into the Cobb-Douglas production

function, equation 2.8, yields:

1 - a  1 1- - a(x) = A [  a r^R (x) 1 - a L (x) . (2.27)

Substituting the expression obtained for Ph (x) in equation 2.20,

into the individual housing demand expression given by equation

2.13 and then substituting the entire expression into 2.25 for h(x)

as well as substituting equation 2.27 into 2.25 for H s (x) yields:

N(x) - ER (x) 1 - P.
L (x) (2.28)

Equation 2.28 indicates that resident workers per unit area

(population density) is proportionate to land rent raised to the

power (1 - B). If B is once again set to zero ( i.e. assume that

- 18 -



the price elasticity of demand is -1) population density is

strictly proportionate to land rent and, therefore, population

density declines exponentially with distance from the CBD, like

land rent in equation 2.24.

2.3 The Negative Exponential Population Density Gradient

The empirical regularity of a negative exponential population

density gradient was noted by Colin Clark almost 20 years before

Muth and Mills (independently) constructed a formal theory to

explain the empirical regularity. Because the negative exponential

population density gradient is generated by a strong form of the

monocentric model, it has been subject a great deal of scrutiny and

criticism.

There have been numerous empirical tests of the negative

exponential population density function using the Box-Cox method

which can statistically test for functional form. 11 Employing Box-

Cox tests Kau and Lee [32] found that only 50 percent of the U.S.

cities they tested were well characterized by a negative

exponential population density gradient. Anderson's [6] results

were even less favourable with 22 of 30 cities poorly characterized

by a negative exponential population density gradient. Kau Lee and

Chen [31] found the negative exponential gradient did not apply in

50 percent of the cities they tested. McDonald and Bowman [40]

" The Box-Cox method is described in Johnston [30] and Meyer
[46].
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were able to identify several alternative functional forms that

performed as well as the negative exponential density function in

some cases, including generalized normal, gamma and standard

normal.

Despite frequent criticism that the price elasticity of housing

demand is not equal to -1 and the empirical evidence cited above,

the negative exponential population density function has been used

in numerous applied studies (e.g. [1], [4], [5], [14], [17], [18],

[26], [38], [43], [45], [61] and [63]) since Mills formalized the

monocentric model. This is largely because there are very few more

mathematically complex models that are tractable [13].

It is important to understand the issues surrounding the correct

functional specification because the test of the monocentric model

developed by Hamilton [26] simply assumes that the negative

exponential population (and employment function) obtains.' 2

Although some would accuse Hamilton of constructing a "strawman" by

using the negative exponential form, the accusation rings hollow

considering the amount of academic research that has been based on

the strong version of the monocentric model.

2.4 A Digression on Employment Location

Hamilton's [26] assumption of a negative exponential employment

" Hamilton's [26] model is described in detail in Chapter 3 of
this thesis.

- 20 -



gradient raises employment location as an important issue. 13 In

fact, one of the strongest criticisms of Hamilton's test of the

monocentric model [62] focused on Hamilton's assumption that when

employment decentralizes from the CBD it does not cluster but

disperses in a uniform fashion.

In the monocentric model described in section 2.2 of this chapter

it was assumed that all employment was located in the CBD. This is

clearly an unrealistic assumption but it can be easily relaxed

without disturbing the locational equilibrium condition. If a firm

moves out of the CBD to a point 5 kilometres distant, any workers

who choose to work at the firm would be better off than workers who

work in the CBD, if both locations paid the same wage rate. Thus,

a profit maximizing firm would offer a wage in the suburbs that is

lower than the CBD wage by the amount of the potential commuting

savings (in this case 5t). There is, therefore, a wage gradient

with slope -t which leaves the residential location equilibrium

condition, equation 2.6, undisturbed." The somewhat

counterintuitive result is that R(x) is unaltered by employment

decentralization: workers still commute up the rent gradient, some

all the way to the CBD and some only as far as the suburban

13 For the specifics regarding Hamilton's use of the negative
exponential employment gradient see Chapter 3 of this thesis.

14 This is true only if the number of workers located on the
suburban side of a ray passing from the CBD and through the
suburban firm location exceeds the demand for workers at the
suburban employment location. If it does not then the firm would
have to offer a higher wage in order to induce circumferential or
backward commuting. See Chapter 3 of this thesis or White [62] for
details.
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employer.

Madden [39] provided one of the few studies to empirically test for

a negatively sloped wage gradient. To test for a negative wage

gradient Madden developed a regression model but had to assume that

the negative exponential population gradient was a correct

specification. Madden's results were consistent with a negatively

sloped wage gradient for a sample of U.S. cities, although no

conclusion regarding functional form was possible. Similarly,

Leigh [36] found evidence of a wage gradient in several U.S.

cities, but only for caucasians.

The assumption of negative exponential population and employment

gradients requires an identical job/housing pattern along every ray

emanating from the CBD [62]. This leads to the key question of

whether firms are likely to cluster when they suburbanize or

whether they are likely to disperse and what the decisions are

based upon.

In general, employment location is poorly understood and much less

researched than population location. Much of the employment

location research has focused on the location of manufacturing

(e.g. [10],[27] [51]), which is a very small portion of total

employment in most North American cities. Work examining the

location of non-industrial employment frequently examines the

notion of agglomeration economies as a determinant of firm location

(e.g. [11], [56]). Although the dictionary would treat
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agglomeration economies as a virtual synonym for clustering, the

term carries a heavier, if poorly defined, meaning in economic

writing on the location of industries.

It is important to note that even though firms can be allowed to

decentralize in the monocentric model access to the CBD is still

valuable or a firm would not choose to locate anywhere on the urban

rent surface. Mills and Hamilton [42] suggest that firms with

agglomeration economies that decline rapidly with distance from the

CBD will have a steeper bid-rent function than firms with

agglomeration economies that are less sensitive to distance.

There are two interesting implications of the Mills-Hamilton line

of reasoning. First, improvements in communication technology

might be expected to lessen the decline in agglomeration economies

for a firm located at any distance from the CBD, with the result

that more and more firms will choose suburban locations. 15 Second,

by clustering in suburban locations firms may be able to generate

some positive externalities (i.e. agglomeration economies) in the

suburban location. The degree to which this is possible depends

upon he micro-foundations of the agglomeration economies. 16 Of

15 This argument is often used to explain the fairly recent
suburbanization of office occupations which were typically thought
to locate in the central city due to the need for face to face
communications.

16 The micro-foundations of agglomeration economies are poorly
understood. Possible explanations include: the city performs a
role as a warehouse, incubator effects such that new firms
experience lower information costs due to proximity to other firms
in the same industry, higher salvage values for capital assets,
lower search costs for skilled labour, qualitative differences in
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course, when suburbanized firms cluster they also offset some of

the benefits of suburbanization by increasing both land rent and

wages relative to a dispersed suburbanization scenario. Ultimately

the choice to cluster or suburbanize will be dependant upon a

trade-off between agglomeration benefits, land rent and wage costs.

Unfortunately, there is no way to extend the monocentric model to

cover the formation of sub-centres because the monocentric model

contains only one descriptor of location (distance to the CBD).

Clustered suburban employment necessitates circumferential and/or

backwards commuting making both distance and direction from the CBD

important.'' And two dimensional models are extremely complex and

yield few analytic results.

2.5 Criticisms of the Monocentric Model

Criticisms of the monocentric model fall into two broad classes:

1. Criticism of the model's central assumptions (e.g. [49]
[57]); and

2. Criticism of the predictive powers of the monocentric
model (e.g. [7], [15], [26], [32], [36], [39]).

2.5.1 Assumptions of the Monocentric Model

All economic modelling involves abstraction which usually takes the

the types of information exchanged etc.

" Dubin and Sung examined the impact of direction on the density
gradient for Baltimore [16].
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form of simplifying assumptions in the model and the monocentric

model is no exception. The monocentric model has received

criticism for a lack of realism in a number of areas including:

• The assumption that all housing is putty-putty;

• The lack of specificity regarding the reasons for the
existence of the CBD;

• The assumption of homogeneous households;

• The assumption that there exists an everywhere dense
network of transportation facilities; and

• The assumption that employment does not cluster when it
decentralizes.

The putty-putty assumption is one of the least satisfactory aspects

of the monocentric model. The model ignores the spatial fixity and

durability of housing capital assuming instead that the city is

restructured each period in order to achieve long-run equilibrium

[49], [57]. Harrison and Kain [28] were able to overcome the

putty-putty assumption by constructing a different logical edifice

on the empirical regularity first observed by Colin Clark.

Harrison and Kain argued that current spatial structure is

logically viewed as an aggregation of historical patterns of

development under the assumption of durable housing capital.

Present density is a function of the weighted density of all past

development in a particular city. The last decade has seen some

important theoretical work with dynamic models but the

specifications are often unwieldy and there has been only limited

empirical testing of the models.

The lack of specificity regarding the reasons for the existence of
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a CBD has also been the subject of criticism. Wheaton argued that

simple models of centrality are inadequate and what is required are

models that explain the attraction of economic activity to cities

[47], [57]. A limited number of researchers have responded to this

criticism by developing non-monocentric models where the location

of employment is endogenously determined (e.g. [47]).

Agglomeration economies are fundamental to non-monocentric models

but mathematical intractability is often severe with great

difficulty in solving for equilibrium.

Multiple household types have been successfully incorporated into

the monocentric model by a number of researchers including Wheaton

[58] and White [64]. In an interesting paper, Steen examined the

implications of relaxing the assumption of ubiquitous

transportation networks [53]. Steen concluded that discreet

transportation networks yield a more complex density pattern with

households valuing access both to the transportation route and

access to the CBD.

The central location of employment is the most widely criticized

aspect of the monocentric model according to Wheaton [57]. Thus,

employment decentralization was accorded a separate section, 2.4,

above.

2.5.2 Predictions of the Monocentric Model

Blackley and Follain [7] noted that the monocentric model has been
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subjected to a great deal of testing and criticism." Much of the

testing has focused on the reduced form of the model by testing the

monocentric model's ability to predict important spatial phenomena.

While such tests may not refute the model's locational equilibrium

condition they may weaken confidence in the monocentric model if

the model fails repeatedly to predict important spatial patterns.

The monocentric model yields at least five important predictions:

1. There exists a negatively sloped housing price gradient;

2. There exists a negatively sloped land price gradient;

3. There exists a negatively sloped population density
gradient;

4. There exists a negatively sloped wage gradient; and

5. People minimize commuting by travelling inwards on a ray
between their home and job.

Each of these predictions has been empirically investigated, most

with mixed results. The majority of studies have found evidence to

support a negatively sloped house price and land price gradient

although there are serious questions about some of the hedonic

models used to test for a house price gradient.

While section 2.3 of this chapter highlighted concern surrounding

the specific functional form of the population density gradient,

most of the studies supported the conclusion that population

density declines with distance to the city centre. There is,

3 This has certainly been the case in the United States. There
has been considerably less testing of the model in Canada.
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however no similar support for a negatively sloped employment

density gradient. Neither Kemper and Schmenner [33] or Schmenner

[51] were able to find direct evidence of a rent gradient (and

therefore an employment density gradient) for manufacturing using

regression analyses similar to Muth's [45] model of residential

location.

It has also proven extremely difficult to obtain data that allows

for an empirical test of the existence of a negatively sloped wage

gradient. Studies by Leigh [36] and Madden [39] provided weak

evidence in support of the wage gradient.

Perhaps the greatest empirical failure of the monocentric model has

been its inability to predict observed commuting behaviour.

Hamilton [26] provided the essential test of the monocentric model

in this regard. Hamilton's results indicated that observed

commuting in 14 U.S. cities was eight times that predicted by the

monocentric model. This is not surprising considering that the

vast majority of urban travel is non-commuting trips. In a sense

the monocentric model is too restrictive to adequately explain the

location decisions of home owners who base their decisions upon

much more than commuting cost.

2.6 Summary

The purpose of this chapter was to provide a brief overview of the
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monocentric model. The monocentric model is synonymous with urban

economics. The importance of the monocentric model as its

evolution was discussed. Monocentric models have been widely

employed in urban economics due largely to the simple structure of

the model and the associated mathematical tractability [13].

Sections 2.1 and 2.2 examined the logic behind the model and

mathematically derived a simple version of the monocentric model

based on Mills and Hamilton [42]. Sections 2.3 to 2.5 reviewed

some of the work of those who challenged the assumptions and

predictions of the monocentric model.

Section 2.3 discussed the negative exponential functional form.

Most of the empirical work concluded that the negative exponential

population density gradient is inappropriate, thereby implying that

the price elasticity of the demand for housing is not -1. Section

2.3 is not an indictment of the model itself but an indictment of

the use of equation 2.24 rather than 2.23. Section 2.4 described

an important modification to the model by allowing employment

decentralization. However, the inability to include clustered

suburban employment remains an important weakness in the model.

Finally Section 2.5 provided a brief overview of more general

criticisms of the monocentric model. Hamilton's critique [26],

comparing observed commuting behaviour with commuting estimated by

the monocentric model forms the basis for the remainder of this

thesis.



An appropriate epilogue to this chapter is provided by Wheaton

[57]. Wheaton argues that while the utility of monocentric models

in forecasting urban growth is limited they still serve an

important educational function. Even if the assumptions and

outcome of the models are seen as unrealistic the clarity of their

simple structure has created a new awareness of spatial equilibrium

and the role of transportation.



CHAPTER 3

HAMILTON'S MODEL FOR ESTIMATING WASTEFUL COMMUTING

This chapter describes and explains the methodology used to compare

commuting behaviour in 23 Canadian cities in 1981. The basic model

was derived by Hamilton [26]. Employing the same methodology as

Hamilton's U.S. study allows direct comparison of commuting

behaviour in Canada and the United States.

There are four sections in this chapter. Section 3.1 describes

Hamilton's method for measuring wasteful commuting in cities. The

exposition parallels that given by Hamilton [26] but attempts have

been made to clarify areas where Hamilton's description was

somewhat opaque. Section 3.2 reviews three methods for calculating

two-point estimates of population and employment density gradients.

Section 3.3 describes the data used to operationalize the model.

The final section concludes the chapter.

3.1 Hamilton's Model For Estimating Wasteful Commuting

Hamilton realized that it is not sufficient to compare the average

commuting distance (or time) for a sample of cities in order to

judge the relative efficiency of commuting behaviour in each city.

Simple comparison ignores extant structural differences among

cities. The distribution of jobs and homes influences commuting

behaviour. Hamilton's model is able to control for each city's

internal distribution of people and jobs when assessing the ability

of the monocentric model to predict observed commuting.
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3.1.1 The Theoretical Basis of Hamilton's Model

Hamilton begins with the standard monocentric model (described in

the previous chapter). Recall from Chapter 2 that individuals are

assumed to maximize a utility function, (U), defined over a housing

good, (h), and a composite non-housing good, (g):

U - u(h,g)^ (3.1)

Utility is maximized subject to a budget constraint in which

commuting is costly:

y- - t± - 400 h(x) + Pgg(x)^(3.2)

where:

• y a household income;

• t a the cost of a round trip kilometre;

• x a distance from home to the CBD;

• k a the distance from home to work;

• Ph(x) a the price of one unit of the housing good;

• Pg = the unit price of the composite good.

Notice that the model incorporates a spatial component into

standard consumption theory by specifying Pg as spatially invariant

while Ph is specified as a function of distance to the CBD, (x).

Equilibrium requires that P h decline as x increases in order to

compensate individuals for the higher transportation costs (i.e.

commuting costs) associated with residences more distant from the

CBD.
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In the case of complete employment centralization, (i.e. R = x for

all individuals), the possibility of wasteful commuting does not

exist because aggregate commuting is fixed. There is no possible

reassignment of homes or jobs among existing residents that will

reduce aggregate commuting. The average commute is simply

aggregate commuting divided by total employment in the city [pg.

1037, 26].

When employment decentralizes, but doesn't cluster, households

maximize utility by trading off accessibility to x, (rather than

x0 ), with the price of housing Ph(x).' Land rent, however, varies

only with distance to the CBD (x) as in the case of complete

employment centralization. Hamilton and Mills [42], [43] show that

in the case of non-clustered decentralized employment, there exists

a wage gradient, with slope -t, that leaves the rent gradient and

the locational equilibrium unchanged from the case of complete

employment centralization. Lower commuting costs associated with

a suburban job result in a lower wage rate at the suburban job

location [pg. 114, 42].

As long as the population located on the ray k F in Figure 3.1

exceeds the total demand for workers of a firm at St, wages at ic

will be (w* - kt), which is Set less than wages at the CBD (w*). The

discount amount, (ft), is exactly equal to the savings in commuting

1 The importance of the assumption that suburban employment
does not cluster is discussed in Chapter 2 of this thesis. See
also White [62].
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costs for an employee who lives at x, and works at x instead of

working in the CBD. Individuals who work at k will always choose

to live on the portion of the ray between F in order to

minimize both P h (x) which declines with distance from the CBD and

transportation costs. 2

The market solution minimizes aggregate commuting within a city if

every household chooses to live on the suburban side of the ray x,

k F for all possible x. Any violation of this criterion makes

possible a house or job swap that reduces total commuting resulting

in a pareto improvement. The solution that minimizes aggregate

commuting is not unique, however. Any two workers on the ray k -

F can swap houses (or jobs) as long as both remain on the suburban

side of their respective jobs [pg. 1038, 26].

The introduction of a negatively sloped wage gradient in the

presence of decentralized employment preserves the original

locational equilibrium which is based solely on the trade-off of

commuting costs and housing costs. However, employment

decentralization raises the possibility that aggregate commuting

can exceed the minimum necessary. Wasteful commuting, impossible

in the case of complete employment centralization, becomes possible

when the model allows for decentralized employment. The matching

of households and jobs is no longer irrelevant, but can effect the

2 If a firm at x demands more workers than are living on k
F the suburban wage rate will be greater than (w* - kt) but less
than w*. This must be the case. For the firm at x to attract
workers it must compensate them for either backward or
circumferential commuting. See Chapter 2, Section 2.4 for more
details as well as White [62].
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FIGURE 3.1
CITY WITH DISPERSED EMPLOYMENT

CBD - x,

"/
V\.,....„,..._ __--------"'

■ CBD^- Central Business District (x 0 ).

■ x 1^- household location of individual i.

■ F^■ the urban boundary.

■ i^• suburban employment location.
-

w■^• wage rate at the CBD.

■ x i ^• commuting cost for person at x^working at x
o ' 1

■ (x 1 - x)1^• commuting cost for person at x 1 working at x.

■ it^- commuting savings from working at X.

■ (w . - it) • wage rate at x.



amount of aggregate commuting in a city.

3.1.2 Calculating the Optimal Average Commute

If all households are assumed to behave as individual utility

maximizers, it is relatively easy to calculate the minimum required

average commute for any city. The minimum required commute equals

the average distance between homes and jobs throughout the

metropolitan area.

When all jobs are located in the CBD the average commute can be

estimated as the aggregate distance of all people from the CBD

divided by the total population: 3

A - —1 11 xP(x) dx
P

(3.3)

where:

A a the average distance of individuals from the CBD;

•^P(x) m the population at any distance, (x) from the CBD;

• P m the total metropolitan population;

• R m the urban boundary;

• x m distance from the CBD.

3 Hamilton's model assumes that the participation rate does
not vary with distance from the CBD. This assumption is necessary
so that the average distance of the population from the CBD can be
interpreted as the average distance of workers from the CBD. If
the participation rate increases with distance from the CBD then
"A" will likely underestimate the average distance of workers from
the CBD; if the participation rate declines with distance from the
CBD "A" will overestimate the average distance of workers from the
CBD.
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The logic behind equation 3.3 is straightforward. P(x)dx can be

interpreted as the number of people in a ring of width dx located

x kilometres from the CBD. In a circular city this can be

expressed as:

P(x) dx D(x)^x cbc
^(3.4)

where:

•^D(x) E population density x kilometres from the CBD;

•^27 E the circumference of a circle in radians (27

360'). 4

The right hand side of equation 3.4 can be substituted into

equation 3.3 to replace the term P(x)dx yielding:

A -
P 0
f xD (x) 2Tcx clx

211 f: X2 D (X) CLIC
(3.5)

The total population of the city can be obtained by integrating

equation 3.4 from 0 -■ R:

4 The circumference can vary from 0 to 360 degrees to account
for variations in the land available for development among
different cities. Typically 27 - a the number of radians
unavailable for urban development. When 0 = 27, 360' are available
for development; 0 = it implies only 180' are available for
development.
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P f: P(x) dx
0

- f0 D(x) 2 .7c x dx

• 

27t f D(x) x dx
0

(3.6)

All that remains unspecified in equation 3.5 is the functional form

of the density function, D(x), and the diameter of the city, R.

The majority of urban economic research has assumed a negative

exponential population density function (e.g. [17] [18], [28],

[38], [42], [43], [45], [58], [59], [61]): 5

D(x) - Do e -Y"^ (3.7)

where:

• Do a the population density at the city centre;

• y a the slope of the population density gradient;

• e a the natural logarithm; and

• x a distance from the CBD.

Substituting equation 3.7 into 3.6 for D(x) yields:

5 Because Hamilton wanted to test the efficacy of the
monocentric model he correctly maintained the simplest assumptions.
Most researchers begin with the simple model although they usually
modify the basic model somewhat. White [62] and several other
researchers subsequently accused Hamilton of creating a "straw man"
which Hamilton then proceeds to knock down in the paper estimating
wasteful commuting [25], [26].
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YP
2^2nDO —2 -y.kX2 e (3.9)

A^2it fk x2 Do -yx dx
P 0

2nDo r ±.- x2 e _yx dx
P JO

(3.8)

Integrating equation 3.8 by parts yields: 6

In order to estimate A, values for D,, y and x are required.

Values for R are estimated using equation 3.7 once y and D 0 are

known.' Estimation of D 0 and y is discussed in section 3.2 of this

chapter.

Hamilton interpreted employment decentralization as the potential

savings in aggregate commuting arising from jobs moving closer to

residences over time. To measure the potential commute savings for

each city Hamilton calculated the average distance of jobs from the

CBD. This was completely analogous to the calculation of the

average distance of people from the CBD described in equations 3.3

to 3.9. The average distance of jobs from the CBD can be written:

6 Appendix 1 provides the detailed integration.

' See the section titled Choosing the Urban Boundary in
Chapter 5 of this thesis for estimates of R using different density
gradient parameters.
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B = —
J
1 r xJ(x) dx (3.10)

where:

• B = the average distance of jobs from the CBD;

• J(x) = employment at any distance from the CBD;

• J = total metropolitan employment;

• R a the urban boundary; and

• x = distance from the CBD.

As in the case of population, J(x)dx can be interpreted as the

number of jobs in a ring of width dx located at distance x from the

CBD. In a circular city this can be expressed as:

J(x) dx a E(x) 2n x cbc^ (3.11)

where:

• E(x) = employment density x kilometres from the CBD; and

• 2r = the circumference of a circle in radians (2r =

360').

The right hand side of equation 3.11 can be substituted into

equation 3.10 to replace the term J(x)dx yielding:

B- o xE(x) 2nx clx

- J 
f 2 2 X E(x) dx

 0

(3.12)
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Total employment in the city can be obtained by integrating

equation 3.11 from 0 -+ R:

J fg J(x) dx
- f E(x) 21rxdxf
- 27c f2

E(x) x dx

(3.13)

Like the population gradient, the employment density gradient,

E(x), is assumed to be a negative exponential function: 8

E(x)^E0 e -ax^ (3.14)

where:

• E0 = the employment density at the city centre;

• S = the slope of the employment density gradient;

• e a the natural logarithm; and
• x = distance from the CBD.

Substituting equation 3.14 into 3.12 for E(x) yields:

B^2g f ir- x2 Eoe -ifx dy
J 0
2gEo rilx2 e _a, clx

(3. 15)

8 Hamilton's assumption of a negative exponential employment
gradient is problematic. While there is both theoretical and some
empirical support for a negative exponential population density
gradient, there is neither for a negative exponential employment
gradient. This issue is discussed in more detail in Chapter 2.
Important references include: [10], [11], [19], [21], [27], [33],
[41], [50], [51], [55], [56].
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Integrating equation 3.15 by parts yields:

B - 2 - 2nE
8J 

.7z0 2 e -a2 (3.16)

Hamilton defined the difference between A and B is as the minimum

possible average commute, given the underlying urban structure as

summarized by equations 3.7 and 3.14. Thus optimal commute, (C),

is defined:

C - A - B
^ (3.17)

The parameters D„ E0, y and d control for differences in the

existing distribution of people and jobs within individual cities.

Thus the model can be used to answer the question:

"Given the current distribution of homes and jobs, is

observed commuting behaviour consistent with the

predictions of the monocentric model?".

In order to answer this question C must be compared with observed

commuting behaviour in a sample of cities.

3.1.3 Calculating the Average Random Commute

Once the failure of the monocentric model to predict observed

commuting behaviour was confirmed, Hamilton introduced the concept
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of random commuting in order to illustrate the degree to which the

monocentric model failed. Calculating the average random commute,

(E), for a city with a finite radius, R, turns out to be

mathematically tedious. The estimate is much less tedious if the

mean random commute is calculated for a city without limits. It can

be shown that allowing the city boundary to approach 03 imparts only

a small upward bias in the estimate of random commuting, (E). Both

procedures are described in an appendix to Hamilton's paper [26].

Only the infinite boundary estimate is described here and later

utilized in Chapter 5.

To begin, suppose that households and jobs are distributed

throughout the city according to equations 3.7 and 3.14. The city

is assumed to be an everywhere dense network or radial roads and

beltways such that every household is located at an intersection.

Commuters take the shortest route to work. The city is circular

with 27r - 0 radians unavailable for development. Homes and jobs

are distributed according to the population and employment density

functions given in equations 3.7 and 3.14. By integrating twice

over homes and jobs the average one way commute is defined as:

E 2 (y + 8) + 2M  y 2 + 3 Y 8 1
Y8^(y + 8) 2

(3.18)

where:

E = the average one way random commute for a city without limits;

and
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M -.7=- a function of 0 such that:

(1) s 2^M = ()

8

- 2

2 s. < 2n^M= 3 4
(TO

(3.19)
02

= 2n^M = -2

Basically, the procedure^specifies^a^distance function^and

integrates that function over house and job locations then divides

by the total number of commuters. The assumption of an everywhere

dense network of roads imparts a small downward bias into estimates

of E.

3.2 Two-Point Estimates of Employment
and Population Density Gradients

In section 3.1 Hamilton's method for measuring the minimum possible

average commute in any city was described. Recall that the minimum

possible average commute, (C), was defined as the difference

between the average distance of homes from the CBD, (A), and the

average distance of jobs from the CBD, (B). In order to solve

equations 3.9 and 3.16 (for A and B) Hamilton required estimates of

D0, y, E, and 6.

There are two different methods available for estimating the

density gradient parameters in equations 3.7 and 3.14. 9 Both

methods assume density, D(x), declines exponentially with distance,

9^Each broad method has a number of variants but,
essentially, all are subsets of the two methods described below.
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x, from a predetermined city centre.'°

Muth [45] suggested taking the natural log of both sides of

equation 3.7 or 3.14 and estimating y or 6 using OLS:

In D(x)-ln Do -yx^ (3.20)

For each city estimated using the Muth method, data for D(x) and x

must be collected at the census tract level.

Rather than estimate equation 3.20, Hamilton used values for y, D„

E, and 6 calculated by Macauley [38]. Macauley in turn used a

modified version of Mills' two-point estimation technique.

In his pioneering work, Studies in the Structure of the Urban 

Economy, [43], Mills developed the two-point estimation technique.

Two-point estimation is actually a misnomer since the technique

involves the use of two large integrals.

'° See Chapter 2 for the implicit assumptions embedded in a
negative exponential gradient. It is important to disentangle two
separate but related issues. Questions regarding the
appropriateness of the two-point technique as an estimator of y and
D, are distinct from questions about the use of the negative
exponential function as a descriptor of population or employment
density. The latter is a fundamental debate in urban economics
while the former issue is a methodological wrangle. Both Mills'
two-point method and Muth's regression-based alternative proceed
under the assumption D(x)=D 0e"x is an accurate descriptor of urban
density. Papers contributing to the debate surrounding the
appropriateness of the negative exponential density function
include Brueckner [8], Griffith [25], Harrison and Kain [28], Kau,
Lee and Chen [31], Kau and Lee [32], Kim and McDonald [34] and
Hamilton and Mills [42]. Kau and Lee, for example, found that 6 of
the same 14 SMSAs used by Hamilton [26] were not well characterized
by a negative exponential density function. Kau and Lee obtained
their result using a Box-Cox test for functional form.
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The logic behind Mills method is straightforward. 11 Assume that

equation 3.7 is an accurate depiction of population density in a

particular city and that the metropolitan area is circular with 2r

- 0 radians unavailable for development." 13 In such a CMA, the

number of people, n(x), in a ring of width dx, located x miles from

the city would be:

n (x) dx D(x) 4)x c:bc^ (3.21)

The total population, N(k), within k miles of the CBD is simply the

integral of equation 3.21 from 0 k:

N(k) - fk n(x)cbc.
0

(3.22)

Substituting the right hand side of equation 3.21 into 3.22 gives:

N(k) -fk D(X),XdX
0_^Do e -Yx 4)x dx

-^fk e -Yx X d_X.

(3.23)

Integration of equation (3.23) yields:

11 For greater detail see Mills [42] (Chapter 3) or Edmonston
[16], [17].

12 In equation 3.7, D o represents density at the city centre
and y is a measure of the rate at which density declines with
distance from the CBD. If y is large density falls off rapidly; if
y is small density falls off slowly.

13 The implicit circularity of this assumption was modified
by Edmonston [17]. See section 3.2.3 of this thesis for details.
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N(k) - °̂ [1- (1 + y e -Y kly 2
(3.24)

where:

• N(k) E total population from 0 k;

• 0 E radians of land available for development;

• k E the radius of the metropolitan area;

• e E the natural logarithm; and

• D0, y a parameters to be estimated.

The basic insight provided by Mills was recognizing that equation

3.7 could be estimated with only two observations provided by the

central city - suburb data. The estimation technique is much less

onerous than alternative techniques which use large samples of

census tract data. The following quotation from Mills summarizes

the elegance of the Mills method:

"The basic insight exploited in the present chapter is
that if the negative exponential density function is an
accurate representation, its estimation does not depend
on where the central city boundary is drawn or on whether
its location changes over time. Furthermore, since it is
a two-parameter family of curves, it can be estimated
with the two observations provided by the cental city -
suburb data.

It must be emphasized that the cental city - suburb data
are not merely a sample of two observations. They
provide two exhaustive and exclusive integrals of the
density function and thus make use of the entire
population of data. There is no reason to believe that
they provide less accurate estimates than would a large
sample of census tract observations." [pg. 35, 43].

In contrast to Hamilton's work, there were no recent estimates of

the population and employment density gradient parameters for a

substantial number Canadian CMAs that could be used for this
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thesis. Thus, it was necessary to solve equation 3.24 for both the

population and employment density gradients in each Canadian city.

As presented above equation 3.24 is not solvable because it is a

non-linear equation with two unknown parameters (D 0 and y). Three

separate methods for solving 3.24 are presented below.

3.2.1 The Mills Estimation Technique

To solve equation 3.24 Mills noted that letting k co implies:

^ - N (3.25)y2

where N m total metropolitan population. Substituting N into

equation 3.24 yields:

N(1e)- N[1- (1+yk̂ )e -Tx] .^(3.26)

where:

• N(k) m central city population;

• N m SMSA (CMA) population;

• k m radius of the central city;

• y m the parameter to be estimated.

Equation 3.26 is a non-linear equation in one unknown, y.

Non-linear equations are solved using numerical methods. Once y is

estimated it can be substituted into 3.25 to calculate Do.

Data for N, N(1) and k for each of 23 CMAs was obtained from the

1981 Census of Canada and equation 3.26 was solved iteratively for
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Estimates of y are then substituted into equation 3.25 to

solve for Do.

Rearranging 3.25 to isolate Do yields:

„..,^=
(3.27)

In order to solve for D o an estimate of 0 is required. Mills

solved for 0 by assuming that each city was (semi)circular and then

equated the known area of the city to the appropriate value of 0. 15

If we define 2r - 0 as the radians excluded from development in

each city, when 2r = 0 the entire circle is available for

development. The area of a circle, (A t), is defined as:

A, - nr 2^(3.28)

Rearranging the expression 2r = 0 to isolate it implies that it =

0/2. Substituting into equation 3.28 for it and isolating 0 yields:

4) - 2 [- 2A Ir
(3.29)

Data for the area of the city, (A„), and the radius were obtained

from the 1981 Census of Canada. 0 was estimated from equation 3.29

14 The algorithm employed is described below in Section 3.3.3.

15 Recall that the circumference of a circle is equal to 2r
(360 degrees).

- 49 -



and then substituted, with y, into 3.27 in order to solve for D o .

Finally, it is necessary to calculate k, the distance at which

population density declines to 100 people per square mile (or 36.61

per square kilometre). 16 y and Do were substituted into equation

3.7 and D(x) was set equal to 36.61 persons per square kilometre.

The non-linear equation was then solved for k using numerical

methods.

The procedure used to estimate the employment density gradient

parameters, E t, and 6, was similar to the procedure described for

population density gradient parameter estimates. Employment was

substituted for population in equations 3.24 to 3.29.

3.2.2 The Macauley Estimation Technique

Macauley modified Mills' technique in order to remove a slight

upward bias in Mills' estimate of y and 6. Mills' assumption that

the urban boundary was infinite was a simplification which allowed

him to solve equation 3.24. Mills recognized that allowing k 00

would impart a slight upward bias to estimates of y and D o but he

conjectured that the bias would be small."

16 The population density figure of 100 people per square mile
was chosen arbitrarily by Hamilton, as the density dividing rural
from urban.

17 The upward bias in the Mills method implies that his
estimates of y and 6 underestimate the suburbanization of homes and
jobs, respectively. This was shown to be the case for the 1981
Canadian estimates included in Chapter 4 of this thesis. Estimates
using Mills' technique yielded values for y and 6 that were
slightly greater than values obtained with Macauley's method. The
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The method used by Macauley is identical to Mills' method up to

equation 3.24. Rather than solve equation 3.24 by letting k

Macauley, [38], avoided the Mills bias by estimating two separate

equations that are similar in form to 3.24: one for the central

city and one for the metropolitan area.

The first step in Macauley's method is to isolate D, in one of the

two equations:

N(k2) y 2
Do -

441 - ( 1 + yk2 ) e -Yk2 ]
(3.30)

D, is then substituted back into the second equation.^The

resulting expression is the ratio of metropolitan area to central

city population:

N(Ici)^[1 - (1 + yki )
N(k2 )^[ 1 - (1 + yk2 ) e Yk2 ]

where:

N(k,) 7.-= metropolitan area population;

N(k2 ) a central city population;

k, metropolitan radius; and

k2 ..---. central city radius.

(3.31)

   

difference between Mills and Macauley estimates was not large nor
was it statistically significant.

Macauley [38] also confirmed Mills' conjecture. Macauley's
estimates using both Mills' original and corrected techniques
indicated that the original estimates of y and 6 were only slightly
larger than corrected estimates.
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To estimate 3.31 data for N(k,), N(k2), k 1 and k 2 were obtained from

the 1981 Census of Canada. Equation 3.31 is a non-linear equation

in one unknown (y) and was solved using numerical methods.

Estimates of y were substituted back into 3.30 to solve for Do. 0

was estimated as in the Mills technique.

3.2.3 The Edmonston Estimation Technique

Both Mills' and Macauley's estimates of y, D„ S and E0 implicitly

assume that all cities are (semi) circular. Irregularly shaped

cities were excluded by Mills [43] and Macauley [38] in an ad hoc

fashion. Because of the limited number of cities in the Canadian

urban system, removal of irregularly shaped cities was deemed

impractical. Furthermore neither Mills nor Macauley provide

criteria for evaluating which cities are irregularly shaped and

should, thus, be excluded from the sample.

Edmonston [17] developed a technique that attempts to overcome this

the need to exclude irregularly shaped cities from the Mills

model." Edmonston incorporated a method that measures the average

distance to the urban boundary from the CBD, for a variety of

different city shapes. Like Macauley, Edmonston solved for y in

equation 3.31. However, in order to implement Macauley's model k,

18 The Mills estimation procedure is used to describe both his
original and corrected technique. Mills developed the technique so
it seems appropriate to refer to it as the Mills technique.
However, Macauley provided the corrected estimates that Hamilton
used in his estimates of wasteful commuting.
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and k2 were measured from census maps using a large compass. 19

Rather than measure k, and k 2 directly Edmonston suggested coding

each metropolitan area's shape based on its current political (and

therefore, statistical) boundaries. Possible shapes included:

1. Circle

2. Square

3. Hexagon

4. Rectangles of various length to width ratios:

1 x 2

1 x 4

1 x 6

1 x 8

1 x 10.

Given the metropolitan (central city) land area, the coded shape

and the assumption that the CBD is centred within the region, k1

(k2 ) can be estimated as the average distance to the boundary. For

example, if a city is circular the area is given by equation 3.28.

Rearranging 3.28 to isolate r yields: 2°

r
^

Ac
^ (3.32)

- (0.5642) A;

19 Edmonston described this method of measuring the central
city and metropolitan area radius as "time consuming and not always
as accurate as desired." [17].

20 The symbol, r is being used to denote the radius or average
distance to the urban boundary. Using the notation of equation
3.31, r k, or k2 for the CMA and central city, respectively.
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The average distance to the boundary for other shapes was

calculated in a similar manner, based on the formula for the area

of each shape. Table 3.1 summarizes the derivation of r (i.e. k,

or k2 ) for eight stylized city shapes.

Equation 3.31 requires a value for both k, and k 2 so both the CMA

and central city shape had to be coded. In the majority of cases

the shape was similar for both the central city and the CMA. The

complete data set is discussed in Section 3.3. With Edmonston's

method it was still necessary to estimate 0 in order to solve 3.30

for Do . Edmonston suggested using a protractor and census maps to

determine the radians available for urban development.

Table^3.1:^Radius^Calculation
Based on Eight City Shapes

SHAPE Calculated
k, and k2

Circle r = (0.5642)4A,

Square r = (0.5611)4A,

Hexagon r = (0.5629)4A 0

Rectangle

1 x 2 r = (0.5416)4A,

1 x 4 r = (0.4909)4A,

1 x 6 r = (0.4523)4A,

1

1 x 8

x 10

r

r

=

=

(0.4247)4A,

(0.4023)4A,

Source: Edmonston [17].

It is obvious from Table 3.1 that the Mills' assumption of

circularity is not likely to substantially impact gradient
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estimates for cities coded as square or hexagonal. Rectangular

cities, particularly those with length to width ratio exceeding

1:2, are more likely to be affected by the assumption of

circularity. Using the 1981 census boundaries, cities with width

to length ratios exceeding 1:2 included Kitchener, Saint John, St.

John's, Thunder Bay, Victoria and Winnipeg.

3.2.4 Two-Point Versus OLS Density Gradient Estimation

Muth's regression method (equation 3.20) has been widely applied

(e.g. Alperovich [4], [5] and Muth [45]), to estimate population

density gradients.^The paucity of employment data at

sub-metropolitan geographic levels has precluded OLS estimation of

employment gradients using Muth's method. Hamilton's [26] remark

regarding Muth's method illustrates the tacit belief present in

much of the urban economics literature:

"There is a widespread view that the Mills' two-point
estimates of density gradients are inherently inferior to
the Muth technique of regressing log density on distance"
[26].

White [60] examined carefully the legitimacy of the prevailing

attitude toward two-point estimation techniques. White argued that

the bias in favour of OLS arises, in part, because the statistical

properties of the OLS estimator are well understood, in contrast to

the two-point estimate's unknown distributional properties.

There are a number of concerns regarding OLS estimates of y and

mounting empirical evidence to suggest that "researchers using
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two-point estimates need not apologize profusely" [60]. While it

is often noted that the two-point method ignores potential

information, Hamilton argued the converse is also true: OLS ignores

prior information by not constraining the integral of the estimated

density function to "add up" to the actual metropolitan area

population. Indeed the "thrust of Mills' method is to note that

there is only one parameter vector which satisfies the prior

information for an exponential density gradient" [pg. 1045, 26]. 21

McDonald and Bowman [40] found constrained OLS yielded estimates of

y that were steeper than ordinary OLS estimates. 22 McDonald and

Bowman's result is consistent with other empirical work suggesting

that Mills two-point estimates are, on average, steeper than Muth's

regression estimates [26], [28], [42], [43].

A second difficulty with OLS estimates of y is a potentially severe

upward bias generated by a systematic relationship between census

tract geographic areas and population density at any given distance

from the city centre [6], [20]. The relationship arises because

sparsely populated city districts are consolidated to a greater

degree than densely populated districts, in order to form census

tracts of approximately uniform population. Thus, sparsely

populated districts tend to be under-represented in a random sample

of census tracts [20]. 23 Frankena suggested using weighted least

21 See Hamilton's [26] footnote #12 for greater detail.

22 Constrained estimation forces the integral to "add up" to
total population. See McDonald and Bowman for more detail on the
constrained estimation procedure employed.

23 ^relevant point is that the data required to estimate
y are available by census tract, not city district.
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squares (WLS) to correct the bias, and Anderson [6] employed a

Box-Cox transformation of the dependant variable, D(x), in order to

determine the proper weights for WLS estimation.

White [60] noted a third, often overlooked, limitation of OLS

estimates of population density gradients. While OLS estimates of

y are BLUE (Best Linear Unbiased Estimates), when the standard

assumptions regarding the error structure of equation 3.7 are made,

estimates of Do are biased. OLS estimates of In D o are BLUE but,

under the natural log transformation, estimates of D, are not.

This limitation is usually overlooked because most researchers have

been more interested in the gradient parameter, Y. than the

intercept parameter, Do.

White's [60] paper provides perhaps the strongest endorsement of

two-point estimation. Given the impossibility of determining the

distributional properties of two-point estimators White instead

conducted a Monte Carlo simulation experiment. An artificial city

was created, in which both the density gradient and the random

error term applied to the population density of each metropolitan

district was known. 24 White then compared the ability of OLS and

two-point estimators to predict the "true" y.

White had no prior information regarding the correct error

structure for equation 3.7 Assuming a multiplicative error

structure ensured that OLS estimates were BLUE and thus superior to

24 See White [60], (pg. 298-299), for greater methodological
detail.
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two-point estimates.^However, the magnitude of the difference

between OLS and two-point estimates of y was less than 5 percent.

When White assumed an additive error structure, OLS estimates were

inferior to two-point estimates. White concluded that, overall,

two-point estimates performed as well as OLS estimates. Two-point

estimates of y appeared to be biased downward no more than 4-5

percent, while the bias in D, depended on the assumed error

structure (multiplicative versus additive). 25

For this thesis two-point estimates were believed appropriate

estimators for y, D0 , 6 and E, for four reasons:

1. Hamilton used two-point estimates and one of the primary
goals was to compare my results with Hamilton's results;

2. The evidence reviewed above suggested two-point estimates
are at least as good as OLS estimates;

3. The data requirements for two-point estimates were far
less daunting than for regression estimates; and

4. The data necessary for OLS estimates of 6 and E, are not
available.

3.3 Data Sources

Data for this study came from a variety of sources. Employment and

population density gradient parameters were estimated for twenty-

two Census Metropolitan Areas (CMAs) and for one Census

25 Another of White's results is particularly encouraging.
White estimated y using a variety of central city-suburban
population splits. He found y was not sensitive to the particular
split except for extreme cases. When the central city had 5_ 5
percent or ? 80 percent of the total metropolitan area population
the variability of two-point estimates increased dramatically (pg.
303), [60].
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Agglomeration (CA). Figure 3.2 ranks the CMAs included in this

study according to their 1981 population. Figure 3.3 lists the

abbreviations for each CMA used throughout the remainder of this

thesis.

In order to estimate wasteful commuting the following data were

required:

• Total CMA population;

• Central city population; 26

• Total CMA employment;

• Central city employment;

• Central city land area;

• Land available for urban development (0);"

• Radius of the CMA, (k1 );

• Radius of the central city, (k2);

• Shape of the CMA and cental city; and

• Observed commuting, (D).

Population, employment and land area for each CMA and central city

was obtained from the 1981 Census of Canada (Table 3.2). The 1981

Census represents the first time that Statistics Canada tabulated

employment by place of work, as well as place of residence. Thus,

1981 represents the first opportunity to estimate employment

26 Taking the case of the Vancouver CMA as an example implies
the central city would include data for the City of Vancouver only,
while the metropolitan area includes Surrey, Richmond, Burnaby etc.

27 (27r - 0) radians are unavailable.
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FIGURE 3.2
LOCATION OF CMAs RANKED BY 1981 POPULATION

1^Toronto
2^Montreal
3^Vancouver
4^Ottawa-Hull
5^Edmonton
6^Calgary
7^Winnipeg
8^Quebec City
9^Hamilton
10^St Catherines
11^Kitchener-Waterlo
12^London
13^Halifax
14^Windsor
15^Victoria
16^Saskatoon
17^Regina
18^Saint John's
19^Sudbury
20^Chicoutimi-Jonquiere
21^Thunder Bay
22^Saint John
23^Charlottetown

1 0

Source: 1981 Census of Canada
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FIGURE 3.3
CMA Abbreviations

Abbreviation CMA
Tor^Toronto
MtI^Montreal
Van^Vancouver
Ott^Ottawa
Edm^Edmonton
Cgy^Calgary
Wpg^Winnipeg
Que^Quebec City
Ham^Hamilton
SC^Saint Catherines-Niagara
KW^Kitchener-Waterloo
Lon^London
Hal^Halifax
Wsr^Windsor
Vic^Victoria
Sas^Saskatoon
Reg^Regina
SJs^Saint John's
Sud^Sudbury
Chi^Chicoutimi-Jonquiere
TB^Thunder Bay
SJ^Saint John
Cha^Charlottetown



Table 3.2:^Population and Employment Data Used to Estimate Density
Gradients

CMA^ Population^ Employment
CMA^CC^CC Share^CMA^CC^CC Share

Area
CC CMA

Calgary 625,966 592,743 94.7%5 325,205 300,310 92.3%5 504.96 5055.96
Charlottetown 44,999 15,282 34.0% 18,380 13,460 73.2% 6.99 550.73
Chicoutimi 135,172 55,465 41.0% 44,715 40,845 91.3%5 147.42 1132.54
Edmonton 657,057 532,246 81.0% 339,075 289,035 85.2% 321.65 4142.51
Halifax 277,727 176,871 63.7% 127,660 107,180 84.0% 120.92 2508.10
Hamilton 542,095 306,434 56.5% 228,435 153,545 67.2% 122.82 1358.50
Kitchener 287,081 189,162 65.9% 132,825 87,460 65.8% 199.79 823.64
London 283,668 254,280 89.6%5 131,955 116,675 88.4%5 162.28 1601.91
Montreal 2,828,349 980,354 34.7% 1,265,055 615,180 48.6% 158.31 2814.43
Ottawa 717,978 351,388 48.9% 347,975 259,675 74.6% 139.44 3998.03
Quebec 576,075 166,474 28.9% 237,260 103,485 43.6% 89.05 2817.96
Regina 173,226 162,613 93.9%5 79,565 74,605 93.8%5 109.83 3421.58
Saint John 114,048 73,389 64.3% 45,865 40,795 88.9%5 322.71 1476.08
Saskatoon 175,058 154,210 88.1%5 71,730 67,395 94.0%5 122.04 4749.30
St. Catherines 304,353 124,018 40.7% 126,110 78,975 62.6% 94.43 1068.07
St John's^154,820 83,770 54.1% 60,460 51,370 85.0% 35.10 1127.47
Sudbury 149,923 89,773 59.9% 58,180 45,630 78.4% 262.73 2379.84
Thunder Bay 121,379 109,365 90.1%5 54,000 50,785 94.0% 323.46 2032.38
Toronto 2,998,947 599,217 20.0% 1,571,455 545,160 34.7% 97.15 3742.94
Vancouver 1,268,183 414,281 32.7% 646,435 276,215 42.7% 113.13 2786.22
Victoria 233,481 64,379 27.6% 105,130 60,820 57.9% 18.78 488.52
Windsor 246,110 192,083 78.0% 96,080 84,975 88.4%5 119.76 768.87
Winnipeg 584,842 562,059 96.1%5 284,785 268,275 94.2%5 571.60 2310.03

Mean 586,980 271,733 60.2% 278,188 162,254 75.2% 181.06 2311.11

Source: 1981 Census of Canada.

5 m a CMA with an extreme population or employment split. This is likely to make estimates
of the density gradient parameters less reliable according to Edmonston, Goldberg and Mercer
[18] and White [60].
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density gradients for a large sample of Canadian cities. 28

Section 3.2 described differences between the population and

employment gradient estimation techniques of Mills and Edmonston.

The differences revolved around measurement of 0 and k, and k 2 . The

Mills estimates of 0, described in equation 3.29, are given in

Table 3.3. 29 Of course, in order to estimate 0 using equation

3.29, an estimate of the CMA radius was required. The "measured

radius" in Table 3.3 was obtained from 1981 Census maps using a

large compass.

In contrast to the Mills method, Edmonston devised a system to

calculate the radius of each CMA based on the shape of the CMA.

Table 3.3 presents the coded shape of each city and the implied

"calculated radius" for each CMA. 3° On average, both the measured

and calculated radii are substantially greater than the values of

F (where population density is estimated to decline to 100 people

per square mile) presented in Chapters 4 and 5.

28 Unfortunately the published census data does not permit
estimation of employment gradients by industry or occupation.
Disaggregated gradients would be of interest to determine which
jobs are most suburbanized.

29 The figures in Table 3.3 have been multiplied through by
v. Thus a figure of 6.28319 (i.e. 2r) represents a complete circle
of 360 degrees available for development. Remember 2v - 0 was
defined as the area of land NOT available for development.

3° Table 3.3 also presents the "circle radius" for each CMA.
This was calculated based on land area published in the census and
assuming that the city was a complete circle of 360 degrees.
Cities where this figure is substantially different from the other
radius measures are likely cities that are not well characterized
as a circle.
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Table 3.3: Estimation of CMA Radius and the Parameter 0

CMA^Shape^ 0

CMA^CC^Mills^Edmonston Calculated

Radius

Measured Circle

Calgary 1 x 2 1 x 2 6.25722 6.28319 40.2 38.5 40.1
Charlottetown Square 1 x 2 4.30258 5.06145 16.0 12.7 13.2
Chicoutimi 1 x 2 1 x 4 5.03978 6.28319 21.2 16.5 19.0
Edmonton 1 x 2 Square 5.79842 6.28319 37.8 36.1 36.3

Halifax 1 x 2 1 x 2 4.21441 3.66519 34.5 27.1 28.3

Hamilton Hexagon Square 5.04793 4.88692 23.2 20.7 20.8

Kitchener 1 x 3 Hexagon 5.83645 6.28319 16.8 15.5 16.2

London 1 x 2 Hexagon 5.80139 6.28319 23.5 21.7 22.6

Montreal Hexagon 1 x 2 5.49693 6.28319 32.0 29.9 29.9

Ottawa Square Hexagon 5.84080 6.28319 37.0 31.0 35.7

Quebec Square 1 x 2 5.57328 6.28319 31.8 28.8 29.9

Regina 1 x 2 Square 5.91969 6.28319 34.0 31.7 33.0

Saint John 1 x 3 1 x 2 3.90368 3.75246 27.5 20.8 21.7

Saskatoon Square Square 5.99644 6.28319 39.8 38.7 38.9

St Catherines Square Square 3.86807 2.35619 23.5 17.7 18.4

St John's 1 x 4 1 x 2 3.46780 2.61799 25.5 16.5 18.9

Sudbury Square 1 x 2 5.65955 6.28319 29.0 26.4 27.5

Thunder Bay 1 x 3 1 x 2 4.51640 4.01426 30.0 22.1 25.4

Toronto 1 x 2 1 x 2 4.14443 3.49066 42.5 34.3 34.5

Vancouver 1 x 2 1 x 2 3.66367 2.87979 39.0 29.6 29.8

Victoria 1 x 4 Square 3.19033 3.05433 17.5 12.0 12.5

Windsor 1 x 2 1 x 2 3.84435 2.96706 20.0 13.6 15.6

Winnipeg 1 x 3 Hexagon 5.68798 6.28319 28.5 23.4 27.1

Mean 4.91616 4.96281 29.2 24.6 25.9



Two sources of data provided information on observed commuting

behaviour for a sample of Canadian cities:

• The Urban Concerns Survey (1978);

• The Vehicle Survey Data (1975).

3.3.1 The Urban Concerns Survey (UCS)

In 1978 Canada Mortgage and Housing (CMHC), and the Ministry of

State for Urban Affairs (MSUA) conducted a survey of 11,061

households located in urban areas with population greater than

100,000. The survey covered all 23 cities listed in Figure 3.2 and

included a question on the distance to work and the time it took to

travel the given distance. The survey used a stratified random

sample to ensure broad geographic coverage within metropolitan

areas. The sample was stratified in each CMA on the following

location criteria:

• Central city;

• Mature suburbs;

• New Suburbs;

• Exurban;

The strata were of different size for each CMA based upon the

population distribution recorded by the 1976 Census. Nationally,

the sample distribution was: central city 28 percent, mature

suburbs 29 percent, new suburbs 30 percent and exurban 10 percent.

Not all strata types were present in every city. Some CMAs had no

exurban observations, for example, while Charlottetown was not
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Table 3.4: Summary of Observed Commuting Data

One Way Commute
UCS^VS^UCS^VS

^

kilometres^minutes

Ave Speed
UCS VS
km per hour

Sample Size
UCS^VS
#^#

Calgary 10.64 12.28 23.9 20.1 26.7 36.7 152 528
Charlottetown 4.22 10.5 24.1 230
Chicoutimi 8.30 14.0 35.6 150
Edmonton 10.49 12.36 25.4 19.0 24.8 39.0 207 503
Halifax 7.97 19.0 25.2 203
Hamilton 15.63 22.5 41.7 175
Kitchener 12.09 17.6 41.2 184
London 8.42 18.0 28.1 146
Montreal 12.23 13.32 24.6 22.9 29.8 34.9 300 1,021
Ottawa 10.40 10.89 21.6 18.5 28.9 35.3 269 464
Quebec 11.28 11.49 21.2 16.1 31.9 42.8 227 74
Regina 8.53 17.4 29.4 181
St. John 11.10 17.1 39.0 160
Saskatoon 7.95 16.0 29.8 222
St. Catherine 10.59 15.9 40.0 122
St. John's 8.19 20.3 24.2 246
Sudbury 13.61 18.0 45.4 132
Thunder Bay 10.12 17.1 35.5 116
Toronto 12.25 15.27 25.2 24.2 29.2 37.9 318 952
Vancouver 13.57 14.11 24.0 21.0 33.9 40.3 206 846
Victoria 10.64 20.6 31.0 205
Windsor 10.17 16.1 37.9 167
Winnipeg 11.09 24.1 27.6 217

Observations 4,535 4,388
Mean 10.41 19.6 32.2 197
Sub-sample 11.55 12.82 23.7 20.3 29.3 38.1 240 627

Notes: UCS a Urban Concerns Survey; VS a Vehicle Survey; Sub-sample E the mean values for the
seven city sub-sample of the UCS that allows for comparison of the UCS and VS.
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stratified at all. Most CMAs had some of each strata type although

proportions were often different from the national share.

A summary of observed commuting data is given in Table 3.4. The

total number of responses that included a useable answer for the

commuting distance question was 4,535. The average number of

responses for each CMA was only 197. From this data the average

commute in 1978 was estimated to be 10.4 kilometres. The average

commuting speed was 32 kilometres per hour. This includes

information for all modes of transit.

3.3.2 Vehicle Survey (VS)

A second source of observed commuting data was obtained from a

vehicle survey conducted by a private consulting company for

Environment Canada in 1975. The survey consisted of 7,838

observations. In this case each vehicle represented an observation

so the number of separate households was approximately 5,800. The

survey only included seven cities: Calgary, Edmonton, Montreal,

Ottawa, Quebec City, Toronto and Vancouver.

A summary of observed commuting data from the vehicle survey is

also included in Table 3.4. The average observed commute was 12.8

kilometres or nearly 1.3 kilometres more than the average obtained

from the urban concerns survey for the same seven CMAs (sub-sample

mean in Table 3.4). Velocity was more than 9 kilometres per hour

greater in the vehicle survey. The differences are not surprising

considering that the urban concerns survey includes all types of
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transit while the vehicle survey included only the primary

automobile in each household. The vehicle survey probably over

sampled inner city locations because it was not geographically

stratified.

Given these considerations the results of the vehicle survey were

considered as confirmation of the veracity of observed commuting

data from the urban concerns survey. To the extent that the urban

concerns survey may be an under-estimate of observed commuting

distance the estimates of wasteful commuting in Chapter 5 will be

biased downward and the Hamilton model will be biased in favour of

finding the monocentric model acceptable.

3.3.3 Estimating the Zeros of Non-Linear Equations

Mills [43] employed a Newton-Raphson algorithm to solve for y in

equation 3.26. 31 This thesis employed two alternative algorithms

to solve for the zeros of the non-linear equations:

• DRZFUN based on Muller's method; and

• ZERO1 based on Bus and Dekker's method.

Two methods were used in order to check for consistency. The first

solution method was based on an algorithm developed by Muller [44].

It is a double precision analogue and had the advantage of not

requiring initial estimates of the roots. Using this method single

roots are generally accurate to within five significant figures and

31 Some researchers have had problems with convergence using
the Newton-Raphson algorithm.
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converge within 20 or 30 iterations.

The second method proceeds iteratively by a method combining linear

interpolation, rational interpolation and bisection based on the

work of Bus and Dekker. The method will find one root of the

specified function but the root must lie within a user specified

interval. Both methods produced estimates of y and 6 that were

identical when reasonable starting intervals were used for the Bus

and Dekker algorithm.

3.4 Summary

This chapter reviewed a method for estimating wasteful commuting

developed by Hamilton [25], [26]. The model estimates the average

distance of people and jobs from the CBD using the parameters from

negative exponential employment and population density gradients.

The difference between the average distance of homes and jobs from

the CBD is interpreted as the optimum average commute. This is

then compared with observed commuting for a sample of cities.

Hamilton employed density gradient parameters estimated by Macauley

[38] to operationalize his model. There were no readily available

gradient estimates for a large sample of Canadian CMAs so gradients

had to be estimated for this thesis. Three variations of the two-

point technique developed by Mills', were discussed in Section 3.2.

Section 3.3 described the data required to estimate the model

including two sources of observed commuting data.
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CHAPTER 4

DENSITY GRADIENT ESTIMATES

This chapter presents estimates of population and employment

density gradients for 22 Canadian Census Metropolitan Areas (CMA)

and one Census Agglomeration (CA). 1 The key inputs into the model

developed by Hamilton [26] are the parameters from each city's

employment and population density gradient. Hamilton [26] used

estimates of D o , E0, y and 6 provided by Macauley [38] who, in turn,

employed a modified version of Mills' [43] two7point technique to

estimate the four gradient parameters.

There are four sections in this chapter. The first section reviews

previous two-point estimates for several different sets of cities.

The second section presents estimates of population density

gradients for 23 Canadian cities in 1981. Section 4.3 summarizes

1981 employment gradient estimates for the same 23 cities. The

final section summarizes the chapter.

4.1 Previous Two-Point Density Gradient Estimates

In his pioneering work Studies in the Structure of the Urban

Economy [43] Mills estimated 360 density functions for 18

metropolitan areas in the United States. 2 Cities with irregularly

1 Charlottetown was included despite its status as a CA for
two reasons: (i) observed commuting data were available for
Charlottetown; and (ii) to ensure complete provincial coverage.

2 Estimates were made for 4 years (1948,1954,1958,1963), and
5 sectors (population, manufacturing, retailing, services and
wholesaling). Thus, 18 x 5 x 4 = 360.
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shaped boundaries (e.g. San Francisco) or cities considered to be

polycentric (e.g. New York-Newark) were excluded from Mills'

sample. Mills' average gradients for each sector and year are

presented in Table 4.1.

Table 4.1 : Average Density Gradients, Mills and Macauley

y / YEAR 1948 1954 1958 1963 1970/72 1977/80

Population 0.58 0.47 0.42 0.38 0.29 0.24

Manufacturing 0.68 0.55 0.48 0.42 0.34 0.32

Retailing 0.88 0.75 0.59 0.44 0.35 0.30

Services 0.97 0.81 0.66 0.53 0.41 0.38

Wholesaling 1.00 0.86 0.70 0.56 0.43 0.37

Mills' important conclusions included:

• Density gradients in all sectors tended to flatten over
time.

• Gradient estimates varied much less than central density
estimates. Gradients ranged from 0.20 to 1.00 while
central population and employment densities ranged from
6,000 to 60,000 persons per square mile.

• y was inversely related to metropolitan population and D,
was directly related to metropolitan population. Central
density estimates appeared to be more sensitive to
differences in total population than gradient estimates.

It is important to recognize Mills' criteria for inclusion of

cities because Hamilton [26] employed a sub-sample of Mills' 18

cities in his own work. Additionally, the small size of the

Canadian urban system made strict application of Mills' arbitrary

criteria inappropriate for this thesis. Irregularly shaped

Canadian CMAs would likely include Vancouver, Montreal, Halifax and
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St. John's using Mills' criteria. 3 If density gradients cannot be

efficiently estimated for irregularly shaped CMAs using Mills'

(Macauley's) methodology, then including such cities reduces the

comparability between the Canadian results presented here and

Hamilton's results.

Macauley [38] updated Mills' estimates in 1985. 4 The figures for

1970 and 1980 given in Table 4.1 (above) are Macauley's estimates.

While Macauley's mean y, based on the same 18 SMSAs used in 1972 by

Mills, was 0.24 Hamilton [26] employed a sub-sample of Macauley's

estimates with an average population gradient of only 0.22. The

conclusions of Macauley regarding her gradient estimates were:

• Density gradients in all sectors continued to flatten
over time but at a decreasing rate; and

• Employment and population gradients appeared to be
converging.^Macauley's result combined with Mills'
results seems to indicate that, initially, population
suburbanized and then employment followed.

Research has shown that Mills' two point gradient estimates are

biased upwards, (i.e. are too steep), because of Mills' simplifying

assumption that population density declines to zero at the urban

boundary [17], [38], [42]. Mills believed the bias would be small

3 Mills gave no specifics regarding what constitutes an
irregular city shape, so it is not clear which Canadian CMAs would
be excluded by Mills but the four just listed would be prime
candidates. Making any generalizations about Canadian urban
structure while ignoring Montreal and Vancouver is clearly
nonsensical. For this reason, it was important to include density
gradients estimated using Edmonston's method. Edmonston's method
attempts to control for city shape.

4 Data for Macauley's employment gradient estimates were
available for 1972 and 1977 rather than 1970 and 1980.
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for typical values of y and k (equation 4.8).^Macauley [38]

verified empirically Mills' conjecture.^In all cases Mills'

estimates of y were greater than or equal to her own but the

difference between the estimates was small and not significantly

different from zero. 5

There was one important caveat to Macauley's conclusion that the

Mills method does not seriously bias estimates of y and Do.

Macauley's results held only when SMSA level data were employed.

Macauley found Mills' estimates 68 percent larger than her own

estimates if Urbanized Area (UA) data were employed. 6 Edmonston

Goldberg and Mercer, (pg. 213) [18], argued that the Statistics

Canada definition of CMA is more analogous to the U.S. definition

of UA than SMSA. In the light of Macauley's results it is

important to test the Edmonston, Goldberg, Mercer claim that CMAs

approximate UAs, because the statistical unit employed may have the

potential to radically alter density gradient parameter estimates.

The Mills (Macauley) technique requires that the urban boundary be

5 Macauley (pg. 259) showed the bias of Mills' estimates is:

N(00) -N(k)
 - (1 +yk) e -Yk.

N(co)

6 Urbanized Area (UA) is a more rigid concept of "urban".
SMSA uses counties as the basic unit of aggregation, while UA only
includes areas meeting specific density criteria. The average UA
in Macauley's sample was 462 square miles with radius, (k), 13.2
miles. For the same cities the average SMSA area was 3539 square
miles with radius (k) 33.9 miles (pg. 254) [37], [38].
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regularly shaped.' Cities not meeting this requirement were simply

excluded by Mills and Macauley. Edmonston [17] attempted to

overcome this limitation and adapted the two-point method to

include irregularly shaped cities. 8 Edmonston found a simple

correlation of 0.92 between estimates of y using his modified

method and those obtained using Mills' method. The correlation was

0.98 for estimates of D o . Such close agreement between the two

techniques for cities with regular boundaries indicates that

Edmonston's method should not incorporate any new bias in

attempting to include irregularly shaped cities.

Edmonston, Goldberg and Mercer [18] applied Edmonston's modified

gradient estimation method to a sample of 20 Canadian CMAs using

data for the period 1950-1976. Prior to 1981 data required to

estimate employment gradients was not available. Edmonston et.al .

compared Canadian estimates with U.S. estimates for the same

period. Mean values for y and Do are presented in Table 4.2.

Several patterns are evident from Table 4.2:

• Canadian cities had higher central densities than U.S.
cities in all periods but Canadian and U.S. gradients
converged since 1970;

• Like their U.S. counterparts, Canadian urban populations
have suburbanized (i.e. density gradients flattened) at
a decreasing rate since the 1950's; and

7 White (pg. 299) [60] showed that an irregularly shaped
boundary imparts a small upward bias to y. However the upward bias
may be partially or totally offset by a downward bias that results
when the central city is not centred within the CMA. The magnitude
and direction of the net bias depends upon the degree of
irregularity and eccentricity respectively.

8 See Chapter 3 of this thesis for specific methodological
details.
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•^Estimates of y and D o for Canadian cities exhibited the
same relationship with total metropolitan population as
previous U.S. estimates: i.e. gradients tended to be
flatter in larger cites while central density tended be
higher in larger centres. 9

Table 4.2: Average Values For y and D,
Edmonston Goldberg and Mercer [18]

YEAR

Y

CDN US

Do

CDN US

1950/51 0.93 0.76 50,000 24,000

1960/61 0.67 0.60 33,000 17,000

1970/71 0.45 0.50 22,000 13,000

1975/76 0.42 0.45 20,000 11,000

4.2 Population Gradients: New Canadian Estimates

Population gradients for 23 Canadian cities are presented in table

4.3. Estimates using Mills' technique as well as estimates using

methods incorporating two slight modifications to Mills' technique

(Macauley and Edmonston) are included. 1° Macauley estimates are

considered the base case estimates throughout this thesis. Mills

9 Consider the following results for 1976:

CMA Population

250,000

250-499,000

? 500,000

D0 

^0.42^15,000

^

0.47^17,000

^

0.39^26,000

Curiously, middle sized cities had y exceeding the smallest group
of CMAs but the sample size in each group was very small.

10 Chapter 3 outlines the methodological differences among the
Mills, Macauley and Edmonston estimation techniques.
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and Edmonston estimates are included for two reasons:

1. To check the accuracy of the estimates obtained with the
Macauley technique; and

2. To gauge the sensitivity of Hamilton's wasteful commuting
model to the particular density gradient parameters
employed.

It turns out that estimates obtained with the Mills and Macauley

methods are virtually indistinguishable. Edmonston gradients are

steeper with higher central densities than Macauley estimates, on

average .11

4.2.1 Macauley Estimates

Hamilton [26] used Macauley's estimates of y, D„ 6 and E, to

calculate his measure of wasteful commuting for 14 U.S.

metropolitan areas. The same method employed by Macauley is used

to estimate y and D0 , for the 23 Canadian CMAs listed in Table 4.3.

The population gradient estimates presented in Table 4.3 and Figure

4.1 seem reasonable. 12 The average y for 1981 is 0.3290 with a

median of 0.2835. Values range from a low of 0.1306 in Toronto to

a maximum of 0.7179 in Regina. The figures for y are consistent

with the results obtained by Mills [43] and Macauley [38] presented

11 The implications for estimates of wasteful commuting are
discussed in the next chapter.

12 The observations in Figure 4.1 and all subsequent figures
are arranged in descending order according to the total CMA
population (i.e. from Toronto to Charlottetown).
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Table 4.3: 1981 Population Density Gradient Parameter Estimates.

CMA

1(

Mills

Do

Macauley

D,

Edmonston

D,

Calgary 0.3460377 11978.88 0.3460159 11977.53 0.3828995 14606.40
Charlottetown 0.6701036 4696.32 0.6699682 4695.64 0.8614193 6589.55
Chicoutimi 0.2008953 1082.47 0.1844091 1011.68 0.1657379 780.07
Edmonton 0.2835978 9113.79 0.2834614 9107.39 0.3031348 9611.40
Halifax 0.3137889 6488.68 0.3137013 6486.59 0.3488784 9230.50
Hamilton 0.2634134 7451.39 0.2586705 7312.23 0.3014035 10221.54
Kitchener 0.2585306 3295.85 0.2271979 2847.02 0.2629334 3465.41
London 0.4929754 11883.06 0.4928113 11876.55 0.5338795 12869.68
Montreal 0.1726244 15332.64 0.1687077 15081.19 0.1756098 14352.38
Ottawa 0.2193046 5911.99 0.2187339 5897.66 0.2482884 7072.34
Quebec 0.1940538 3892.36 0.1917721 3862.96 0.2064706 3980.87
Regina 0.7179666 15084.21 0.7179664 15121.40 0.7594731 15915.71
Saint John 0.1889714 1043.29 0.1796146 984.39 0.2077067 1411.02
Saskatoon 0.5558713 9020.63 0.5558713 9020.63 0.5917340 9755.63
St. Catherines 0.2541840 5083.70 0.2500605 5016.86 0.2377767 7916.03
St. John's 0.5036675 11325.58 0.5036489 11325.15 0.5661072 18969.25
Sudbury 0.2038195 1100.47 0.1991318 1073.00 0.2163606 1142.33
Thunder Bay 0.3647303 3575.15 0.3645032 3571.46 0.4006837 4861.30
Toronto 0.1328807 12776.96 0.1306086 12666.03 0.1519010 20519.44
Vancouver 0.1887848 12336.72 0.1879939 12300.64 0.1988397 17750.81
Victoria 0.3683036 9927.21 0.3643718 9861.18 0.4171162 13857.68
Windsor 0.3877557 9625.49 0.3852291 9537.88 0.4772608 19110.81
Winnipeg 0.3736645 14356.36 0.3730519 14313.34 0.3700665 12768.70

Sample Mean 0.3328660 8103.62 0.3290220 8041.24 0.3645950 10293.70

NOTES: and D, are parameters from the negative exponential density gradient:
D(x) = D, e - m. D(x) represents the population density at any distance x from the
central city; D, represents the population density (persons per square kilometre) at the
city centre; represents the rate at which density declines as we move away from the
city centre.
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in Table 4.1. 13 A median value to the left of the mean indicates

a distribution with a heavy righthand tail (i.e. there are more

extremely large gradients than extremely small gradients).

The Macauley type estimates of y presented in Table 4.3 are

inversely related to CMA population.'' Regression of y on CMA

population yields:"

y = 0.38555 - 9.63 x 10 -8 POP R2 - .2157
(4.01 x 10 -8 )

Based on the above estimate, a population increase of 100,000 (i.e.

17 percent of the mean 1981 CMA population) would flatten y by only

.00963 (i.e. 2.0 percent of the mean y).

There are, however, some notable exceptions to the underlying

13 The mean y is reasonably close to Edmonston, Goldberg and
Mercer's estimate for 1976 (Table 4.2). Remember, however, that EGM
used a slightly different methodology as well as a smaller sample
of CMAs (20). The implied reduction in y from 0.42 to 0.32 in the
5 years between Edmonston's estimates and this work is more rapid
than expected, a priori. The difference is due, partly, to
methodological differences. The mean y obtained using Edmonston's
method with 1981 Canadian data (0.3646) was somewhat higher than
the Macauley estimate (0.3290), (Table 4.3).

14 The estimated equation is obviously simplistic. While
Mills and Macauley found y tended to be smaller in cities with
higher populations, Alperovich [5] found the opposite once he
controlled for the land area of the metropolitan area:

"Our results show that holding land supply constant, cities
which are more populous tend to be less suburbanized.
Suburbanization is primarily associated with high supply of
land and not with increased population per se" (pg. 293) [5].

15 Standard error in parentheses.
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inverse relationship between y and CMA population. Saint John,

Chicoutimi and Sudbury are ranked 22nd, 20th, and 19th in terms of

CMA population but had the third, fourth, and seventh flattest

population gradients (Figure 4.2). Further, Regina's gradient

appears excessively steep (y = 0.7179) compared with Saskatoon (y

= 0.5559) given that the 1981 population in the two CMAs is almost

identical (Regina = 173,226, Saskatoon = 175,058).

Two of the apparently anomalous cities, Chicoutimi and Saint John,

violate the Mills' assumption of circularity. Both city's boundary

resemble an elongated rectangle, rather than a circle. The result

may be a poor estimate for y in each city. 16 The discrepancy

between Regina and Saskatoon may result from the small proportion

of the total CMA population outside the central city in Regina

(i.e. what White [60] termed an extreme split). As a rule of thumb

Edmonston, Goldberg and Mercer [18] suggested that a reliable

estimate of y cannot be obtained using the two-point method for any

metropolitan area with a suburban population of less than 10,000.

In 1981, Regina had a suburban population of 10,613 while

Saskatoon's suburban population was 20,848.' 7 No obvious

explanation for Sudbury's anomalous gradient is apparent.

Using the Macauley estimation method, the average population

16 Recall White's [60] reminder that irregular boundaries and
eccentricity will bias estimates of y in opposite directions.

17 The term suburban refers to population within the CMA but
outside of the central city. For example, a resident of North York
would be a suburban resident of the Toronto CMA or a resident of
Burnaby would be a suburban resident in the Vancouver CMA.
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density at the centre of Canadian CMAs is 8,041 people per square

kilometre (20,827 per square mile). Individual estimates range

from a low of 984 per square kilometre (2,550 per mile) in Saint

John, to 15,121 per square kilometre (39,164 per mile) in Regina

(Figure 4.3). The median value, 9,021 persons per square

kilometre, was greater than the mean value, indicating a

distribution with a heavy lefthand tail (i.e. there are more

extremely small values than extremely large values in the

distribution)." These central density estimates are not

inconsistent with those provided by Mills [42], Macauley [38], and

Edmonston, Goldberg and Mercer [18]. The mean central density

reported in Table 4.3 is almost identical to that reported by

Edmonston, Goldberg and Mercer for 1976 (Table 4.2).

As expected, central population density is positively related to

total CMA population. Regressing D, on CMA population yields:

Da - 6350.9 + 2.88 A: 10 -3 POP^R2^.2411

(1.11 x 10 -3 )

Based on this estimated equation, an increase in CMA population of

100,000 would increase central density by 288 people per square

kilometre (i.e. a 17 percent increase in population would yield a

3.6 percent increase in D0 , at the mean). 19 D, appears slightly

" This is the opposite result compared to the estimates of
y which were skewed toward larger values.

19^The estimate of 2.88 x 10 -3 is remarkably close to
Alperovich's figure of 2.46 x 10 -3 (pg 292) [5]. However, the
equation estimated by Alperovich controlled for other variables,

- 82 -



more sensitive than y to changes in total CMA population. 2° Mills

also found that D, was more sensitive than y to changes in

population. (Chapter 3) [43].

As with the estimates of y, there are some obvious exceptions to

the overall positive relationship between D, and CMA population.

Figure 4.4 illustrates that the population central density

relationship breaks down, particularly in the middle of the urban

hierarchy. 21 The cluster of CMAs including Quebec City (Que),

Hamilton (Ham), St. Catherines (SC), and Kitchener-Waterloo (KW)

ranked far too low, while Windsor (Wsr), Victoria (Vic), Saskatoon

(Sas), Regina (Reg), and St. John's (SJs) rank too high relative to

their population ranking. The largest and smallest CMAs behave

closer to expectations, with population and central density

rankings much more equal.

Most researchers who have employed the two-point method to estimate

population density functions have been more interested in estimates

of y than D 0 . Even the technique's pioneer, Mills [43] did not

discuss his estimates of central density in detail. While at first

it seems perverse that the Canadian estimates presented above rank

such as metropolitan land area. In an earlier footnote it was
pointed out that Alperovich found controlling for land area
reversed the effect of total metropolitan population on y. This
does not seem to be the case for estimates of Do.

20 A 17 percent increase in population reduced y by only 2.0
percent.

21 Observations below the diagonal line in Figure 4.4 have a
central population density that is higher than expected given the
CMA population while observations above the diagonal line have a
central population density that is lower than expected.
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FIGURE 4.3
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FIGURE 4.4
CENTRAL DENSITY RANK

1981, MACAULEY ESTIMATION TECHNIQUE
Rank

23
21 - — Pop Den

5
3

19 - Empl Den
17 -

CMA Pop
15 - el.

1 1^i^1^1^1^i^i^i,^1^1^Î i^1^I^1^1
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the central population density in smaller CMAs (e.g. Regina and St.

John's) among the highest in Canada, this is not entirely

inconsistent with Mills' results (pg. 40, Table 11) [43]. Mills'

results showed smaller cities such as Columbus and Toledo had among

the highest central population densities, ranking ahead of larger

cities including Boston and Pittsburg.

There are at least three potential explanations for the divergence

of D, from the rank-size relationship:

1. In order to estimate D0, the radians of land available
for development, 0, must be known. 22 Most procedures
used to measure 0 are ad hoc, contributing an element of
uncertainty to estimates of D0 . In contrast 0 is not
required to estimate y. In the results presented above
in many of the CMAs in which D, seemed anomalous,
(Figures 4.3 and 4.4), 0 is not equal to 2r (e.g.
Victoria, Windsor, Hamilton and St. Catherines). 23

2. Estimates of D, for CMAs with "extreme population splits"
tend to exceed the expected central density based on the
rank-size rule. Consider Table 4.4 below. 24

3. Three of five cities with unexpectedly low values for D 0

are part of a dual (polycentric) CMA: Ottawa-Hull, St.
Catherines-Niagara Falls and Kitchener-Waterloo. The
other two CMAs both contain a large secondary city:
Hamilton (Burlington) and Quebec (Levi).

22 Estimation methods are described in detail in Chapter 3 of
this thesis. For the present it is sufficient to recall the
following equation:

N(k2) y 2
Do

(1+yk2)e-Yk2]

One of the differences between the Edmonston and Macauley estimates
was the measurement of 0.

23 Recall that 2r is the maximum number of radians available:
i.e. 2r = 360 ° . Thus, if a CMA is circular, 0 = 2r and 0 does not
have to be estimated in order to calculate D0 .

24 White suggested that ? 80 percent of the population in the
central city constitutes an "extreme split" [60].
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Table 4.4 : Cities With Small Suburban
Population and Large Values For D,

CMA^Suburban^Pop.

% of CMA

London 29,338 10.3

Regina 10,613 6.1

Saskatoon 20,848 11.9

Winnipeg 22,783 3.9

One test of the reasonableness of the estimates for y and Do is to

examine the predicted distance at which population density declines

to 100 people per square mile. Both Macauley [38] and Hamilton

[26] used this criterion and both argued that it was reasonable to

expect the predicted distance (denoted F) to be less than or equal

to the political (statistical) boundary used in the census. While

the cutoff value of 100 people per square mile is arbitrary, it is

also reasonable: densities below 100 people per square mile are not

normally thought of as urban. Figure 4.5 compares the predicted

distance, (F), with the measured radius, (G), taken from Statistics

Canada maps, for each CMA. 25

The average predicted radius (F) for the Canadian sample of cities

is 18.6 kilometres while the average measured radius, (G), was 29.2

kilometres. In only three cases was F beyond G: Kitchener (by

25 If y and Do are known and D(x) is assumed to be equal to
100 persons per square mile (or 38.6 persons per square kilometre)
F can be calculated by substituting into:

D(x) = Doe-'"`

and solving for x=F.
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FIGURE 4.5^.k
MEASURED VERSUS CALCULATED CMA RADIUS



2.1 km), Montreal (by 3.4 km), and Toronto (by 2.0 km). A priori,

it was expected that F would more closely approximate the political

boundary, G, in larger cities. Figure 4.5 partially confirms this

expectation. However, for the Canadian sample of cities, a

regional pattern seems to dominate the size relationship. In more

densely populated central Canada, F and G converge, while the

greatest absolute differences occur in the prairies. 26 The latter

result is not surprising considering that the 1981 legal

(political) civic areas of Calgary, Edmonton and Saskatoon are

larger than Montreal, Toronto or Vancouver.

4.2.2 Edmonston Estimates

Population gradients obtained using Edmonston's method are

presented in Table 4.3 and Figure 4.6. On average, estimates using

Edmonston's method are steeper than the Macauley estimates, and

exhibit higher central population density. The mean y is 0.3646

and the median is 0.3031, indicating a distribution skewed toward

larger values of y (i.e. skewed right). Estimates range from

0.1519 for Toronto to 0.8614 for Charlottetown. The mean estimated

y is smaller than the 0.42 reported by Edmonston, Goldberg and

Mercer in 1976 using the same methodology. While continued

suburbanization is expected to flatten the density gradient over

time the implied rate between 1976 and 1981 appears excessively

26 The five smallest absolute differences were: Toronto (1.96
km), Kitchener (2.13 km), Victoria (2.29 km), Hamilton (2.93 km),
and Montreal (3.37 km). The five largest absolute differences
were: Saskatoon (29.99 km), Regina (25.68 km), Calgary (23.62 km),
Edmonton (18.53 km), and Halifax (18.17 km).
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rapid. Two factors most likely account for this:

• The 1981 estimates presented in Table 4.3 include 3 CMAs
not included in the EGM study; and

• Several boundary changes occurred between 1976 and 1981
reducing the comparability of the samples still
further. 27

The mean difference between the Macauley and Edmonston estimates of

y is 0.03557, equivalent to 9.8 percent of the mean Macauley

gradient. The difference is significantly different from zero, at

the a = .01 level (t = 4.10). 28 In only three instances are

Macauley estimates steeper than Edmonston estimates: Chicoutimi,

St. Catherines and Winnipeg. The greatest absolute differences

occur in Windsor (24.9 percent), Charlottetown (22.0 percent),

Hamilton (14.2 percent) and Victoria (12.6 percent).

Differences in the rank ordering of the CMAs are more likely to

influence estimates of optimum commute (using Hamilton's method)

than absolute differences between Macauley and Edmonston estimates.

27 One of the supposed advantages of the two-point method is
that estimates are not affected by changes in political boundaries
over time. The claim of insensitivity to political change is
founded upon three restrictive assumptions, however:

• The city is circular;

• The negative exponential function provides an exact fit;
and

• All municipal annexations are circular (pg. 60) [17].

In practice, violation of any of these assumptions will reduce
inter-temporal comparability.

28 The mean absolute difference was 0.03852 or 10.6 percent
of the mean Macauley gradient. This difference was significant at
the a = .01 level (t = 4.77).
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Systematic differences between the Macauley and Edmonston methods

should not affect estimates of wasteful commuting if the

differences apply to both the population and employment density

gradients." Using Hamilton's notation, differences in A and B

should cancel out in the estimate of waste, (C). 3° Figure 4.7

confirms that Edmonston estimates of y are essentially an

order-preserving transformation of the Macauley estimates.

Like the Macauley estimates, Edmonston estimates of y are inversely

related to total CMA population. A simple regression yields:

y - 0.4295 - 1.12 x 10 -7 POP .2055
(4.74 x 10 -8 )

The estimated regression coefficient indicates that a population

increase of 100,000 (17.0 percent of the mean 1981 CMA population)

would flatten the mean gradient by .0112 (3.1 percent of the mean

y). Thus, Edmonston gradients are slightly more sensitive to

changes in population than Macauley gradients. Recall that a 17

percent increase in CMA population flattened the mean Macauley

gradient by only 2.0 percent.

The Edmonston estimate of mean central density is 10,293 (Table 4.3

29 ^course both the gradient and central density rankings
should be preserved between methods.

30 See Hamilton's footnote #2 (pg. 1038) [25], [26] for a
similar argument regarding the measure of 0 used to calculate A, B
and C.

- 92 -



people per square kilometre, (26,827 per mile). Values range from

780 per square kilometre, (2,020 per mile) in Chicoutimi, to 20,519

per square kilometre, (53,145 per mile) in Toronto (Figure 4.8).

The median value is 9,757 per square kilometre. In contrast to the

Macauley estimates, Do is skewed toward large values (i.e. skewed

right). The mean value is 34 percent larger than the mean value

reported by Edmonston, Goldberg and Mercer [18] for 1976. Like the

Macauley estimates presented above, Do exhibited a direct

relationship to total metropolitan population. Simple regression

yields:

Do - 8229.2 + 3.52 x10 -3 POP R2 - .2085
(1.50 x 10-3)

This implies that a population increase of 100,000 (17 percent)

would raise mean central population density by 352 people per

square kilometre (3.4 percent). 31

The mean difference between the Macauley and Edmonston estimates of

Do is 2,252 people per square kilometre. This is 22 percent of

the mean Macauley estimate of Do." The difference is

statistically significant at the a = .01 level (t=3.73). As with

This is almost identical to the 3.6 percent for Macauley-
type estimates.

32 The percent differential for central density is almost
twice that for y. This result is not surprising. One of the main
differences between the Macauley and Edmonston methods was the
measurement of 0 (see chapter 3 of this thesis for complete
methodological details). Recall that 0 is needed to estimate D o
but not to estimate y (compare equations 4.9 and 4.10) above).
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FIGURE 4.7
COMPARISON OF EDMONSTON AND MACAULEY
POPULATION GRADIENT ESTIMATE RANKINGS



y, in only three instances are Macauley estimates greater than

Edmonston estimates: Chicoutimi, St. Catherines, Winnipeg. The

greatest absolute differences are in Windsor 50.1 percent, St.

John's 40.3 percent, Toronto 38.3 percent, Vancouver 30.7 percent

and Victoria 28.8 percent. In each of these cities 0 * 2r. Figure

4.9 illustrates that while the CMA rankings of estimates of Do

obtained using the Macauley and Edmonston are similar, they are

less so than the rankings for estimates of y. Significant D o rank

changes occurred for Windsor (9th Macauley, 2nd Edmonston),

Winnipeg (3rd, 10th), Montreal (2nd, 7th), Toronto (4th, 1st) and

Regina (1st, 4th).

Overall it appears that the Macauley and Edmonston methods rank the

CMA gradients similarly. There are greater discrepancies in the

ranking of central population density. However, Edmonston

gradients are steeper and have higher central density in all but

three CMAs. If these results extend to the respective employment

gradients, differences are expected to cancel out when Hamilton's

method is applied in to estimate wasteful commuting, (C).

4.2.3 Mills Estimates

The results of this thesis employing Canadian data confirm Mills'

conjecture that the bias in estimating density gradients resulting

from the simplifying assumption that population density is zero at

the city periphery is small. Macauley [38] found the bias was

small when SMSA data were used, but the bias was much larger if
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FIGURE 4.8
CENTRAL POPULATION DENSITY ESTIMATE
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more compact Urbanized Area (UA) data were used. This discrepancy

is of interest because Edmonston, Goldberg and Mercer [18] argued

that the Statistics Canada definition of CMA more closely

approximates the U.S. Census Bureau definition of UA than SMSA.

Results presented above are not consistent with the Edmonston,

Goldberg and Mercer claim.

In each CMA Mills estimates of y are greater than or equal to the

Macauley estimates presented in Table 4.3. The mean difference is

.00384 or 1.2 percent of the mean Macauley estimate of y. In only

two CMAs is the difference large: Kitchener, 12.1 percent and

Chicoutimi, 8.2 percent. Results for estimates of Do are similar.

The mean difference is 62.4 people per square kilometre, or 0.77

percent of the mean Macauley estimate of D o. The only large

differential is Kitchener, at 13.6 percent.

Mills and Macauley estimates of y and D o are essentially the same.

The ranking of CMAs is preserved in all cases and absolute

differences are small. It can also be concluded that Canadian CMAs

more closely approximate the U.S. definition of SMSA than UA.

4.3 Employment Gradients: Canadian Estimates

Employment gradient estimates for a sample of Canadian cities in

1981 are presented in Table 4.5. Prior to the 1981 census even the

modest data requirements of two-point estimation could not be

satisfied for employment gradients. Thus, these are the only

Canadian employment gradient estimates of which I am aware.
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Previous U.S. employment gradient estimates ( e.g. Edmonston [17],

Macauley [38], Mills [42], [43] ), were disaggregated by employment

sector and are not directly comparable to these results.

4.3.1 Macauley Estimates

Employment gradient estimates obtained using Macauley's method are

presented in Table 4.5 and Figure 4.10. It was expected that the

absolute value of 6 would exceed y in every CMA. If the opposite

were true, it would mean that population was more centralized than

employment, violating the central assumption of the monocentric

model (i.e. the assumption that there exists a trade-off between

accessibility, and housing consumption). For three CMAs (Calgary,

London and Winnipeg) the estimate of 6 is less than the estimate of

y (i.e. the employment gradient is flatter than the population

gradient).

Despite the individual anomalies, on average, the results seem

plausible. The mean 6 in 1981 is estimated to be 0.4666 with a

median of 0.3563. This is 42 percent steeper than the mean

population gradient estimate. Values for 6 range from 0.1974 in

Toronto to 1.4436 in Charlottetown. A median value to the left of

the mean indicates a distribution with a heavy righthand tail (i.e.

there are more extremely large gradients than extremely small).

This was also the case for y.

Like population gradients, employment gradients are inversely

related to CMA population (Figure 4.10). Regression of 6 on CMA
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Table 4.5 1981 Employment Density Gradient Parameter Estimates.

CMA Mills

6^E,

Macauley

6^Eo 6

Edmonston

E,

Calgary 0.3128020 15085.28 0.3127501 5083.83 0.3461048 6200.16
Charlottetown 1.4435890^8902.33 1.4435890 8902.34 1.8560400 12509.68
Chicoutimi 0.5814989^3000.12 0.5813880 2999.16 0.5975073 2542.18
Edmonton 0.3142159^5773.54 0.3141539 5771.78 0.3359407 6090.77
Halifax 0.4760949^6866.02 0.4760936 6865.99 0.5298379 9777.95
Hamilton 0.3212670^4670.69 0.3191913 4634.22 0.3711974 6466.61
Kitchener 0.2591098^1527.91 0.2279318 1320.93 0.2637403 1607.66
London 0.4749254^5130.32 0.4747097 5126.55 0.5142696 5555.24
Montreal 0.2302758 12203.53 0.2291056 12146.07 0.2389976 11574.80
Ottawa 0.3562899^7562.80 0.3562756 7562.39 0.4048457 9077.54
Quebec 0.2694734^3091.33 0.2690403 3087.08 0.2900491 3183.80
Regina 0.7218454^7003.44 0.7218454 7003.44 0.7585494 7286.35
Saint John 0.3244227^1236.60 0.3232313 1229.21 0.3848479 1815.73
Saskatoon 0.6838427^5593.97 0.6838425 5593.96 0.7279616 6049.76
St. Catherines 0.3849621^4831.61 0.3844290 4835.03 0.3809130 7855.38
St. John's 0.9359563 15273.01 0.9359562 15273.01 1.0529500 25604.43
Sudbury 0.2922224^877.85 0.2912226 873.62 0.3167404 931.00
Thunder Bay 0.4235179^2144.59 0.4234428 2143.92 0.4664317 2927.71
Toronto 0.1978160 14837.47 0.1974853 14819.42 0.2308162 24062.52
Vancouver 0.2348140^9728.74 0.2345953) 9721.10 0.2498919 14089.96
Victoria 0.6941540 15878.23 0.6941023 15876.97 0.8092844 22557.74
Windsor 0.5009179^6271.09 0.5002666 6257.90 0.6251126 12678.34
Winnipeg 0.3380818^5722.72 0.3370394 5691.55 0.3328864 5040.95

Sample Mean 0.4683520^6661.44 0.4665950 6644.33 0.5254310 8933.41

NOTES: 6 and E, are parameters from the negative exponential density gradient:
E(x)=E 0 e-6x. E(x) represents the employment density at any distance, x, from the city centre;
E, represents the employment density (jobs per square kilometre) at the city centre; 6
represents the rate at which density declines as we move away from the city centre.
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FIGURE 4.9
COMPARISON OF EDMONSTON AND MACAULEY
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population yields:"

8 = 0.5607 - 1.60 x 10 -7 POP^R2 - .1952
(7.10 x 10 -8 )

The estimated equation indicates that an increase in population of

100,000 (i.e. 17 percent of mean CMA population) would flatten the

mean employment gradient by .0160 (i.e. 3.4 percent of the mean

estimated 6). Thus, as population grows, 6 appears to flatten

slightly more quickly than y. This is consistent with the notion

that jobs follow people to suburban locations and is also

consistent with Macauley's contention that population and

employment gradients converge over time [38].

While Figure 4.10 confirms that employment gradient estimates

flatten with CMA size, as population gradients estimates did, the

relationship appears weaker for the employment gradient estimates.

Once again several small cities, Sudbury, Chicoutimi, Thunder Bay

and Saint John, have inexplicably flat gradients.

Using the Macauley estimation method, average employment density at

the centre of Canadian CMAs in 1981 is 6,644 employees per square

kilometre (17,209 per square mile). E 0 ranges from a low of 874

per square kilometre (2,263 per mile) in Sudbury, to 15,877 per

square kilometre (41,121 per mile) in Victoria (Figure 4.11). The

median value, 5,692, indicates a distribution with a heavy

" Standard error is in parentheses.
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FIGURE 4.10
EMPLOYMENT GRADIENT ESTIMATES

1981, MACAULEY ESTIMATION TECHNIQUE



righthand tail (i.e. there are more extremely large central

densities than extremely small).

Like central population density, central employment density is

positively related to total CMA population. Regressing E, on CMA

population yields:

E0 - 5011.3 + 2.78 x 10 -3 POP R2 - .2477
(1.06 x10 -3 )

The estimated equation indicates that an increase in CMA population

of 100,000 would increase the mean central employment density by

278 people per square kilometre (i.e. a 17 percent increase in

population yields a 4.2 percent increase in E 0 , at the mean).

Thus, E, appears to be more sensitive than 6 to changes in total

population. 34

The relationship between E 0 and total CMA population appears

strongest at the upper end of the urban hierarchy. In medium sized

cities, (e.g. Winnipeg, Quebec City, Hamilton, St. Catherines and

Kitchener), E0 is lower than expected based on the simple rank-size

relationship. Some of the smallest cities have much higher than

expected central employment density (e.g. Victoria, Regina, St.

John's and Charlottetown).

34 A 17 percent increase in population reduced 6 by only 3.4
percent.
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FIGURE 4.11
CENTRAL EMPLOYMENT DENSITY ESTIMATE

1981, MACAULEY ESTIMATION TECHNIQUE



4.3.2 Edmonston Estimates

Edmonston employment gradient estimates are presented in Table 4.5

and Figure 4.12. Four CMAs have estimated employment gradients

that are flatter than their population gradients (i.e. 6 < y). In

addition to Calgary, London and Winnipeg (the same three as in the

Macauley estimates) Regina has an estimated 6 < estimated y. 35 The

mean estimated 6 for 1981 is 0.52543. This is 44 percent steeper

than the mean population gradient (y) and 13 percent larger than

the mean Macauley estimate of 6. Individual estimates of 6 range

from 0.2308 in Toronto to 1.8560 in Charlottetown. The median

value, 0.3848, is to the left of the mean by a large amount,

indicative of a strongly right-skewed distribution. Regression of

6 on total CMA population yields:

8 - 0.6359 + 1.88 x 10 -7 POP R2 = .1693
(9.09 x 10 -8 )

The estimated equation indicates that an increase in population of

100,000 (i.e. 17 percent of the mean CMA population) would flatten

the mean gradient by .0188 (i.e. 3.6 percent of the mean 6). This

is almost identical to the result for the Macauley estimates.

Thus, using Edmonston or Macauley estimates, 6 appears to flatten

more quickly than y as CMA population increases. Smaller cities

35 Essentially the population and employment gradients were
equal in Regina. The difference occurs in the third decimal place.
For the other three cities the population gradient estimate was
5-10 percent larger than the employment gradient estimate,
regardless of which estimation technique was used.
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FIGURE 4.12
EMPLOYMENT GRADIENT ESTIMATES

1981, EDMONSTON ESTIMATION TECHNIQUE



such as Sudbury, Chicoutimi, Thunder Bay and Saint John have

inexplicably flat gradients based on the rank-size relationship

between 6 and CMA population, regardless of which gradient

estimation technique is employed.

As was the case for estimates of y, the Edmonston estimates of 6

appear to be an order-preserving transformation of the Macauley

estimates. Figure 4.13 demonstrates the close agreement between

the rankings of 6 for the two estimation methods. The similarity

in rankings implies that Hamilton's wasteful commuting methodology

should not be unduly sensitive to the technique used to estimate

the population and employment gradients.

The average estimated employment density at the centre of Canadian

CMAs is 8,933 employees per square kilometre (23,137 per mile)

using Edmonston's method. This is 34 percent greater than the

Macauley estimate. In percentage terms, the difference in the

estimates average central density is three times greater than the

difference in the estimate of average 6. In addition to the

significant absolute difference in E,, Edmonston estimates do not

appear to be a strictly order preserving transformation of Macauley

estimates of E. This is illustrated by Figure 4.14. The

relationship between the ranking of estimates of D, (Figure 4.4)

appears to be much closer than the relationship for the estimates

of E0 . The greatest discrepancies occur near the centre of the

urban hierarchy (e.g. Hamilton, St. Catherines, Windsor and

Halifax).

- 107 -



l'
0
0

FIGURE 4.13
COMPARISON OF EDMONSTON AND MACAULEY
EMPLOYMENT GRADIENT ESTIMATE RANKINGS



FIGURE 4.14
COMPARISON OF EDMONSTON AND MACAULEY

CENTRAL EMPLOYMENT DENSITY RANKINGS



Once again, central employment density is positively related to

total CMA population. Regressing E, on CMA population yields: 36

E0 - 6348.9 + 3.75 x 10 -3 POP^R2 = .1622
(1.83 x 10 -3 )

The estimated equation indicates that an increase in CMA population

of 100,000 would increase mean central employment density by 375

employees per square kilometre (i.e. a 17 percent increase in

population yields a 4.2 percent increase in E 0 , at the mean).

Thus, E, is slightly more sensitive than 6 to changes in total CMA

population."

4.3.3 Mills Estimates

Mills and Macauley estimates of employment gradients are almost

identical. In all cases Mills estimates of 6 are greater than or

equal to Macauley estimates (Table 4.5). The mean difference is

only .00175 or 0.4 percent of the mean estimated Macauley 6.

Again, the only large differential is in Kitchener (13.6 percent).

The result for estimates of E0 is similar. The mean difference is

only 17.1 employees per square kilometre, or 0.25 percent of the

mean Macauley estimate of E€.

36 Standard error in parentheses.

37 The Edmonston and Macauley estimates of E0 appear equally
sensitive to changes in CMA population.
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4.4 Summary

The purpose of this chapter was to present estimates of population

and employment density gradients for 23 Canadian cities using data

from the 1981 Census of Canada. The estimated parameters are key

inputs for the model used to determine optimal and wasteful

commuting behaviour. It was argued that two-point estimates of

population density are at least as good as estimates obtained using

alternative techniques. Furthermore, two-point estimation is the

only technique available to estimate employment gradients, due to

a lack of geographically disaggregated employment data.

Density gradients were estimated using three variations of the

two-point method. The results are summarized in Table 4.6. The

average estimated y ranged from 0.32-0.36, while the mean estimate

for 6 ranged from 0.46-0.52. The average central population

density ranged from 8,000 to 10,000 people per square kilometre and

the average central employment density ranged from 6,600 to 9,000

employees per square kilometre.

Mills and Macauley estimates were virtually indistinguishable.

Edmonston and Macauley estimates exhibited some significant

differences. In all cases y and 6 were inversely related to CMA

population, while D o and Eo were directly related to CMA population.

All parameter estimates were inelastic with respect to CMA

population: sensitivities ranged from 0.15-0.20.



Table 4.6: Summary of Macauley and Edmonston
Gradient Estimates

Elasticity
With Respect Distribution

Mean Median^to Population Skew

Macauley^Summary

0.3290 0.2835^-0.12 Right

Do 8,041 9,021^+0.21 Left

6 0.4666 0.3563^-0.20 Right

E0 6,644 5,692^+0.25 Right

Edmonston Summary

0.3646 0.3031^-0.18 Right

Do 10,294 9,756^+0.20 Right

6 0.5254 0.3848^-0.21 Right

Eo 8,933 6,466^+0.25 Right

Results presented in this chapter were consistent with previous

U.S. and Canadian estimates. However, several CMAs had estimated

1981 population gradients that were steeper than the estimated

employment gradients. This is perverse and violates one of the key

assumptions of the monocentric model.



CHAPTER 5

ESTIMATES OF WASTEFUL COMMUTING IN 23 CANADIAN CMAs

The purpose of this chapter is to compare optimal and actual

commuting behaviour for 23 Canadian cities using a model developed

by Hamilton [26]. 1 When Hamilton applied his model to a sample of

U.S. cities, he found aggregate commuting to be almost eight times

the amount predicted by the simple monocentric model. On the

strength of this result Hamilton questioned the validity of the

monocentric model as a description of location behaviour in cities.

This chapter uses Hamilton's model to answer two basic questions:

• Is commuting behaviour in Canadian cities consistent with
the predictions of the monocentric model?; and

• Do Canadian commuters behave in a manner significantly
different from their U.S. counterparts after controlling
for differences in the structure of urban areas?. 2

Chapter 2 highlighted the importance of commuting behaviour in the

monocentric model, or in any model that purports to explain urban

residential and job choice location (pg. 1097) [61]. Monocentric

models have been widely used in urban economics due to their simple

1 Hamilton's methodology was reviewed in detail in Chapter 3
of this thesis.

2^Goldberg and Mercer [23] meticulously documented
differences between cities in Canada and the United States. They
noted U.S. cities tend to be more dispersed with lower central
population density. A host of reasons are given for the
differences. Even accepting that structural differences exist,
does not necessarily imply that Hamilton's measure of waste, (D-C),
should be greater for U.S. cities. Underlying structural
differences would, perhaps, be reflected in larger estimates for A
in the U.S. cities, but not necessarily in more "waste" if both
jobs and homes are more suburbanized in the United States.
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structure and perceived explanatory power. If the monocentric

model fails to predict fundamental economic behaviour, such as

commuting, the model must be deemed to have crossed the line

between simplification and over-simplification. Use of a model

cannot be justified by simplicity alone.'

Comparing the performance of the monocentric model in several

different countries is also an important task. International

comparison provides an excellent crucible in which to test the

robustness of basic economic theories.' Comparing the monocentric

model's performance in Canada and the United States can be

interpreted as a weak test of theoretical robustness, because

Canada and the United States are socially, culturally and

politically similar.

The remainder of this chapter is comprised of five sections.

Section 5.1 is presented as the base case. The Macauley population

and employment gradients from Chapter 4 are used to calculate the

3 In describing his minimum requirements for a scientific
model Stephen Hawking takes what he calls a simple minded view of
what a model must do:

"It must accurately describe a large class of observations on
the basis of a model that contains only a few arbitrary
elements, and it must make definite predictions about the
results of future observations." Stephen Hawking, A Brief
History of Time. 

4 Marc Bloch, an eminent European historian argued that:

"Correctly understood the primary interest of the comparative
method is...the observation of differences, whether they are
original or the result of divergent developments from a common
origin." Marc Bloch, Toward a Comparative History of European
Society, in Enterprise and Secular Change. 
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optimum commute (C) for 23 Canadian cities. Estimates of optimum

commute are compared with observed commuting behaviour. Section

5.2 adjusts the estimates of optimum commute to recognize the fact

that most cities have a central area devoted almost exclusively to

non-residential land uses. The third section of this chapter

examines the sensitivity of estimates of optimum commute to the

choice of urban boundary (F). 5 In Section 5.4, estimates of A, B

and C, using Edmonston population and employment gradients, are

presented. This is important in order to gauge the Hamilton

model's sensitivity to the particular method used to estimate

density gradient parameters. Section 5.5 concludes the chapter.

5.1 Measuring Waste Using Macauley Gradient
Estimates: Base Case

Table 5.1 is strictly analogous to Hamilton's Table 1 (pg. 1041

[26]). The notation is identical to Hamilton's and was described

in Chapter 3 of this thesis. All distances are in kilometres.

The average distance of each household from the CBD is given by A.

This can also be interpreted as the average commute, if all

employment is located in the CBD. The mean value for average

distance of households from the CBD in the 23 Canadian cities is

5 In order to calculate A and B equations 3.9 and 3.15 were
integrated to a finite distance, Cc. Hamilton chose R to equal the
distance at which population density, D(x), declined to 100 people
per square mile. Given the arbitrary nature of Hamilton's choice,
it was prudent to evaluate the impact different values of k had on
estimates of A, B and C.
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Table 5.1: Optimal and Actual Commute Characteristics Using 1981
Macauley Gradient Estimates

CMA A B C D E F G

Calgary 5.466 5.896 -0.430 10.64 11.01 16.58 40.2
Charlottetown 2.689 1.381 1.306 4.21 3.19 7.17 16.0
Chicoutimi 8.209 3.434 4.775 8.30 13.45 17.71 21.2
Edmonton 6.596 6.088 0.509 10.49 12.23 19.27 37.8
Halifax 5.858 4.147 1.711 7.97 9.18 16.33 34.5
Hamilton 7.151 6.060 1.091 15.63 12.70 20.27 23.2
Kitchener 7.614 7.599 0.015 12.09 16.36 18.93 16.8
London 3.849 3.962 -0.113 8.42 7.04 11.79 23.5
Montreal 11.304 8.643 2.662 12.24 19.42 35.37 32.0
Ottawa 8.356 5.561 2.794 10.39 13.72 22.99 37.0
Quebec 9.258 7.189 2.070 11.29 16.72 24.02 31.8
Regina 2.657 2.645 0.011 8.54 4.36 8.32 34.0
Saint John 8.388 5.872 2.516 11.11 15.94 18.03 27.5
Saskatoon 3.362 2.844 0.519 7.96 5.40 9.81 39.8
St. Catherines 7.234 5.120 2.114 10.59 11.71 19.46 23.5
St. John's 3.747 2.134 1.614 8.19 4.61 11.28 25.5
Sudbury 7.679 6.211 1.469 13.62 15.80 16.70 29.0
Thunder Bay 4.840 4.372 0.468 10.13 8.76 12.42 30.0
Toronto 14.520 10.067 4.453 12.25 24.02 44.46 42.5
Vancouver 10.072 8.358 1.714 13.56 17.49 30.66 39.0
Victoria 5.150 2.877 2.273 10.65 6.79 15.21 17.5
Windsor 4.864 3.917 0.947 10.18 7.60 14.30 20.0
Winnipeg 5.104 5.517 -0.414 11.09 10.02 15.86 28.5

Sample Mean 6.69 5.21 1.48 10.41 11.63 18.56 29.2
Adj. Mean 6.98 5.23 1.75 10.47 11.97 19.14 28.9
Hamilton Mean 13.55 11.76 1.79 14.06 19.46 36.18 n.a.

NOTES: All distances in kilometres. A = necessary commute if complete centralization of
employment is assumed; B = potential commute savings resulting from employment
decentralization; C = optimum commute (i.e. A - B); D = observed mean commute from the 1977
urban concerns survey; E = average commute randomly assigning jobs to houses; F = radius at
which population density declines to 38.61 people per square kilometre (i.e. 100 per square
mile); G = actual radius of the CMA; n.a. = not available; Adj mean excludes Calgary, London,
and Winnipeg because these CMA's had values for C less than zero.



6.69 kilometres. Excluding CMAs for which B A yields a slightly

greater mean distance - 6.98 kilometres. 6 The mean for Hamilton's

sample of U.S. cities was 13.55 kilometres. By itself, it is not

particularly significant that the estimate of average distance of

households from the CBD in Hamilton's sample was more than twice

that for the Canadian cities. The cities included in Hamilton's

sample were larger, on average, than the Canadian cities and it is

reasonable to expect the average distance of households to increase

with total CMA (SMSA) population. Regressing the estimate of

average household distance from the CBD on CMA population confirms

the expected relationship with total CMA population: 7

A - 5.01 + 2.87 x 10 -6 POP .6033
(5.07 x 10 -7 )

The estimated equation implies that an increase in CMA population

of 100,000 (17 percent of the mean CMA population) would result in

an increase in A of 0.287 kilometres (only 4 percent of the

adjusted mean A).

In Table 5.1, B represents the average distance of jobs from the

CBD. Hamilton referred to this distance as the potential average

commute savings attributable to employment decentralization within

the metropolitan area. The adjusted mean estimate for B for the 20

Canadian CMAs is 5.23 kilometres. Hamilton's mean estimate for the

6 When Calgary, London and Winnipeg are excluded it is
referred to as the adjusted mean in Table 5.1.

7 Standard error in parentheses.
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average distance of jobs from the CBD was 11.76 kilometres. Like

the average distance of households from the CBD (A), the average

distance of jobs from the CBD (B) is positively related to total

CMA population. Regressing the estimate of the average job

distance from the CBD on total CMA population yields:

B- 3.97 + 2.12 x 10 -6 POP R2 - .5624
(4.08 x 10 -7 )

The estimated equation implies that an increase in CMA population

of 100,000 (17 percent of the mean CMA population) would result in

an increase in the average distance of jobs from the CBD of 0.212

kilometres (4 percent of the adjusted mean B).

Figure 5.1 illustrates that cities most likely to diverge from the

rank-size relationship (for either A or B) are second order centres

(e.g. Edmonton, Calgary, Winnipeg), or very small cities (e.g.

Sudbury, Chicoutimi, Thunder Bay). 8 The POP coefficients in the

two regression equations estimated above are consistent with the

notion that in Canadian cities population suburbanizes more rapidly

than employment, as city size increases. 9

8 The cities included in Figure 5.1, and all subsequent
Figures throughout this chapter, are arranged from largest to
smallest in terms of CMA population. The population rank is thus
an upward sloping straight line, dividing the figure into two equal
halves (triangles). A and B were also ranked from largest to
smallest. A rank of 1 is assigned to the largest value of A or B,
23 to the smallest value.

9 The POP coefficient in the first equation is 35 percent
larger than in the second equation. This result arises because y
was more sensitive than S to changes in CMA population. See
Chapter 4 for details regarding this result.
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FIGURE 5.1
RANKING OF AVERAGE HOUSEHOLD AND
JOB DISTANCE FROM THE CBD BASED ON

1981 MACAULEY DENSITY GRADIENT ESTIMATES



In Table 5.1 C represents the difference between A and B, or the

minimum possible average commute in each CMA. This distance (C)

can be thought of as the average distance between homes and jobs in

each city. Hamilton referred to it as the optimum commute and,

despite the normative overtones of his nomenclature, the

terminology is maintained in this thesis. The estimated (adjusted)

mean optimum commute is 1.75 kilometres for the Canadian cities and

1.79 for Hamilton's sample of 14 U.S. cities. In contrast to the

average distance of households and jobs from the CBD, C is not

strongly related to total CMA population.

Consider the following regression of optimum commute on CMA POP: 1°

C- 1.04 + 7.46 x 10 -7 POP^R2 - .1765
(3.52 x 10 -7 )

The longest estimated optimum commute occurred in Chicoutimi (4.77

kilometres) and the shortest in Regina (0.011 kilometre). Figure

5.2 illustrates the weak relationship between CMA population and C.

It would seem reasonable to expect people in larger cities to

commute greater distances than people in smaller cities, on

average. The mean observed commute for each Canadian city in 1977,

1°^Excluding Calgary, London and Winnipeg^yielded a
marginally stronger relationship:

C- 1.32 + 7.15 2:10 -7 POP^R2 - .2185
(3.191(10 -7 )

Log-linear and log-log estimation yielded poorer results than the
simple linear estimation.
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FIGURE 5.2
RANKING OF OPTIMAL AND OBSERVED COMMUTE
1981 MACAULEY DENSITY GRADIENT ESTIMATES



(D), is given in Table 5.1. Contrary to expectation no obvious

relationship between observed commuting distance and city

population is discernable in Figure 5.2. Regressing observed

commuting distance on population yields:

D - 9.69 + 1.22 x 10 -6 POP^R2 - .1626
(6.09 x 10 -7 )

Unlike optimal commuting, log-linear and log-log regressions of

observed and ln(D) on the natural logarithm of total CMA population

results in a much better fit. Consider the following equations:

D - -7.42 + 1.40 1nPOP^R2 - .3555
(0.412)

1nD- 0.27 + 0.16 1nPOP^R2 - .3825
(0.045)

Figure 5.3 illustrates the variability in both observed and optimal

commuting distances independent of CMA population. The Hamilton

CMA has the longest observed commute (15.63 kilometres) and

Charlottetown the shortest observed commute (4.21 kilometres).

Kitchener and Regina are two small CMAs with optimal commutes

estimated near 0, and long observed average commutes (more than 8

kilometres).

5.1.1 Assessing the Monocentric Model

Comparing estimates of optimal and observed commuting distances

provides an indirect test of the predictive power of the

monocentric model. Blackley and Follain [7] viewed Hamilton's work

as part of a growing body of indirect tests of the monocentric
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model.^Such indirect tests focus on the monocentric model's

ability (or inability) to predict important spatial patterns. The

tests are considered indirect because they focus upon the

monocentric model's reduced form.

In this study, the monocentric model did a poor job of predicting

commuting behaviour for the 23 Canadian CMAs, as illustrated by

Figure 5.3. Table 5.2 summarizes five different measures of the

monocentric model's performance. The five measures are defined as:

• (D - C) a gross one way difference between the average
observed and average optimal commute. Larger values
indicate more waste.

• (D/C) a the ratio of average observed to average optimal
commute. For example, Vancouver's observed commute was
7.9 times the optimal commute.

• (C/D) a the ratio of average optimal to average observed
commute expressed in percentage terms.^While this
measure is simply the inverse of D/C it has two
advantages: first, it avoids extreme values associated
with small C's (e.g. Kitchener, Regina) and second, it
has an easily understood interpretation: it is the
percentage of actual commuting that can be accounted for
by the separation of home and work. Smaller values
indicate more waste.

• (A/D) a the ratio of optimal to actual commute under the
assumption of completely centralization of employment.

• (D/E) a the ratio of average observed commute to average
random commute.^Random commute was determined by
assigning households to jobs randomly."

By each measure the monocentric model did an almost unbelievably

poor job of predicting observed commuting behaviour in 23 Canadian

CMAs in 1981. The average wasteful commute (one way), (D - C), is

11 See Hamilton (pg. 1042) [25], [26] for details on the
computation of random commute.
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FIGURE 5.3
OPTIMUM VERSUS OBSERVED COMMUTE

1981 MACAULEY DENSITY GRADIENT ESTIMATES



Table 5.2: Alternative Measures of Wasteful Commuting Derived From
Estimates in Table 5.1

CMA^D-C^D/C^C/D

kms^#^%

A/D

%

D/E

%

F/G

#

Total

Population

Calgary^11.07 24.8 4.0 51.7 96.7 0.41 625,966
Charlottetown^2.91 3.2 31.0 63.8 132.0 0.44 44,999
Chicoutimi^3.53 1.7 57.5 98.9 61.7 0.84 135,172
Edmonton^9.98 20.6 4.9 62.9 85.7 0.51 657,057
Halifax^6.26 4.7 21.5 73.5 86.8 0.47 277,727
Hamilton^14.54 14.3 7.0 45.7 123.1 0.87 542,095
Kitchener^12.07 822.0 0.1 63.0 73.9 1.13 287,801
London^8.53 74.3 1.3 45.7 119.6 0.50 283,668
Montreal^9.57 4.6 21.8 92.4 63.0 1.10 2,828,349
Ottawa^7.60 3.7 26.9 80.4 75.7 0.62 717,978
Quebec^9.22 5.5 18.3 82.0 67.5 0.76 576,075
Regina^8.52 742.8 0.1 31.1 195.8 0.24 173,226
Saint John^8.60 4.4 22.6 75.5 69.7 0.66 114,048
Saskatoon^7.44 15.3 6.5 42.2 147.3 0.25 175,058
St. Catherines^8.48 5.0 20.0 68.3 90.5 0.83 304,353
St. John's^6.58 5.1 19.7 45.8 177.7 0.44 154,820
Sudbury^12.15 9.3 10.8 56.4 86.2 0.58 149,923
Thunder Bay^9.66 21.6 4.6 47.8 115.6 0.41 121,379
Toronto^7.79 2.8 36.4 118.6 51.0 1.05 2,998,947
Vancouver^11.85 7.9 12.6 74.3 77.6 0.79 1,268,183
Victoria^8.37 4.7 21.3 48.4 156.7 0.87 233,481
Windsor^9.23 10.8 9.3 47.8 134.0 0.72 246,110
Winnipeg^11.50 26.8 3.7 46.0 110.7 0.56 584,842

Sample Mean^8.93 68.9 14.9 63.6 104.3 0.64 n.a
Mean w/o -C's^8.72 85.5 17.6 65.9 103.6 0.68 n.a.
Adjusted Mean^n.a. 8.07 19.6 n.a. n.a. n.a. n.a.
Hamilton Mean^12.28 12.14 12.6 95.9 78.3 n.a. n.a.

NOTES: The mean w/o CMAs with negative estimated C values excludes Calgary,^London and
Winnipeg; the adjusted mean excludes Kitchener and Regina in addition to the three CMA's
excluded from mean w/o -C's; n.a. a not applicable.



8.72 kilometres, (Table 5.2). The largest values for (D - C) are

in Hamilton (14.54 kilometres), Kitchener (12.07 kilometres.),

Sudbury (12.15 kilometres) and Vancouver (11.85 kilometres.),

(Figure 5.4).

Expressed another way, observed commuting in the Canadian cities is

an estimated 68.9 times greater than that predicted by the

monocentric model. This result is heavily influenced by Kitchener

and Regina where the optimal commuting distance Pe, O. Even after

excluding Kitchener, Regina and the three CMAs with optimal

commuting distances less than zero, (D/C) is 8.07. Put

differently, the monocentric model is able to account for only 19.6

percent of observed commuting, on average, (C/D, Table 5.2). The

greatest share of observed commuting that the monocentric model

explains in any Canadian city is 58 percent in Chicoutimi (Figure

5.5). In Toronto, approximately 36 percent of observed commuting

is accounted for by the separation of homes and jobs.

The abject failure of the monocentric model is further illustrated

by comparing the average distance of households from the CBD and

observed commuting distance (Table 5.2). (A/D) represents the

ratio of the optimal to observed average commute under the

assumption that all 1981 metropolitan employment is located in the

in the CBD. Appendix 2 indicates that this is clearly an

oversimplification. On average, 25 percent total 1981 CMA

employment was outside the central city, (CC) and central city is

a much broader geographic concept than the CBD. Even under the

clearly extreme assumption of total employment centralization, the
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FIGURE 5.4
AVERAGE ONE WAY WASTEFUL COMMUTE USING
1981 MACAULEY DENSITY GRADIENT ESTIMATES *



FIGURE 5.5
OPTIMAL AS A SHARE OF OBSERVED COMMUTE
1981 MACAULEY DENSITY GRADIENT ESTIMATES *



monocentric model only accounted for two-thirds of observed

commuting (65.9 percent, Table 5.2).

The final indication of the monocentric model's poor performance is

provided by comparing the average observed and the average random

commute. The average observed commuting distance in the Canadian

CMAs was far more accurately predicted by the assumption that

commuting is a random behaviour, than by the monocentric mode1. 12

Assuming that households choose their home and job locations

randomly resulted in an average random commute, (E), of 12

kilometres (Table 5.1). (D/E) in Table 5.2 indicates the average

observed commute was 103.6 percent of the average random commute.

Despite the close mean values for observed and random commuting

distance the (D/E) variable exhibits wide variation among cities.

Observed average commute exceeds random commute in seven of 23

Canadian CMAs (Figure 5.6). In some CMAs observed commuting is 11-

2 times greater than the random commute (e.g. D/E: Regina 195.8,

St. John's 177.7, Victoria 156.7, Saskatoon 147.3 and Charlottetown

132.0). Other cities had values of D only that of E (e.g. D/E:

Toronto 51.0, Chicoutimi 61.7 and Montreal 63.0).

5.1.2 Comparing Canadian and American Cities

One implicit thesis of Goldberg and Mercer's The Myth of the North

American City was Canadian cities are more efficient than U.S.

cities, because cities in Canada have a more compact internal

12 See Chapter 3 for details regarding the random commuting
model and the derivation of E.
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FIGURE 5.6
OBSERVED VERSUS RANDOM COMMUTE

1981 MACAULEY DENSITY GRADIENT ESTIMATES



structure [23]. Comparison of the estimates of wasteful commuting

presented in Table 5.2 with Hamilton's results [26] provides an

excellent opportunity to test Goldberg and Mercer's hypothesis that

Canadian cities are more efficient. 13

The estimated mean distance of households from the CBD, (A), for

the U.S. sample of cities is almost twice that for the Canadian

CMAs (Table 5.3). The difference is statistically significant at

the a = .01 level, (t=5.49). By itself, a difference in the

average distance of households from the CBD is not very

illuminating. Recall that previously it was demonstrated that the

average distance of households from the CBD exhibits a strong

positive relationship with total metropolitan population. Results

for the average distance of jobs from the CBD are similar. Given

that the U.S. cities were larger, on average, the average distance

of households and jobs from the CBD was expected to be larger, as

well. In contrast, the mean estimated optimal commuting distance

for the Canadian CMAs is 97 percent of the U.S. estimate of optimal

commuting distance, despite the fact that Canadian estimates of the

distance of households and jobs from the CBD are only 50 percent

and 43 percent of the respective U.S. values. The average

estimated optimum commute is 1.79 kilometres for Hamilton's U.S.

cities and 1.75 kilometres for the 20 Canadian CMAs. The

difference in C is not statistically significant (t=0.112). This

is an interesting result. According to the monocentric model, even

13 All subsequent comparisons are based upon Hamilton's sample
of 14 cities and a Canadian sample of 20 cities (i.e. Calgary,
London and Winnipeg are excluded) for the purposes of comparison.
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Table 5.3: Summary Statistics Comparing Canadian and American Estimates
of Urban Structure and Commuting Behaviour

^

Hamilton Sample^Canadian Sample^Diff^t-statistic

Mean^a2^a^Mean^a2^a^of Means^H,: Diff=0

Significance

.95^.99

A 13.55 12.70^3.56 6.98^8.56^2.93^6.57 5.49 X X
B 11.76 9.98^3.16 5.23^5.32^2.31^6.53 6.37 X X
C 1.79 0.56^0.75 1.75^1.58^1.26^0.04 0.11
D 14.07 1.43^1.20 10.47^6.09^2.47^3.60 5.48 X X
E 19.46 22.26^4.72 11.97^30.29^5.50^7.49 4.12 X X
D-C 12.28 1.53^1.24 8.72^7.29^2.70^3.56 5.02 X X
C/D 12.65 43.66^6.61 17.65^180.58^13.44^5.00 1.39
A/D 95.85 809.27^28.44 65.93^445.70^21.11^29.92 3.23 X X
D/E 78.25 478.77^21.88 103.59^1651.78^40.64^25.34 2.27 X

Notes: a2^7= variance;^a standard deviation;^t-statistics calculated under the null
hypothesis that the difference between the two samples was zero using a two tailed difference
of means test; degrees of freedom = 32.



though the U.S. cities are more dispersed than Canadian cities,

(higher values for A), U.S. cities do not necessitate increased

commuting, because jobs appear to have followed people to suburban

locations, (higher values for B)."

Both Hamilton's results, and the results for Canadian CMAs,

indicate that, in 1981, the average observed commute exceeded the

average optimum commute by a large amount. The mean observed

commute for the American sample of cities is 3.6 kilometres greater

than for the Canadian CMAs. This difference is statistically

significant at the a = .01 level (t=5.48). In order to assess

wasteful commuting in the two countries, values for (C/D) are

compared. Approximately 12.7 percent of observed commuting in

Hamilton's sample is necessitated by the separation of home and

work. The corresponding figure for the Canadian sample is 17.7

percent. The difference between the estimates of (C/D) is not

statistically significant even at the a = .10 level (t=1.39).

Employing a one-sided t-test, the estimate of (C/D) for the

Canadian CMAs is significantly greater (at the a = .10 confidence

level), than Hamilton's estimate of (C/D). 15 Thus, commuters in

Hamilton's U.S. cities may be marginally more profligate than

commuters in the Canadian CMAs, but the results presented in Table

5.3 are not conclusive.

14 The result implies that the U.S. cities in Hamilton's
sample are not innately less efficient due to their internal
structure. This is counter to some of the arguments contained in
Goldberg and Mercer's [23] analysis.

15 For a one-sided test the critical t-value, at the 90
percent confidence level with 32 degrees of freedom, is 1.31.
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One reason for the inconclusive result is probably the large

variation in city size in the Canadian sample. The estimates of

waste (D - C) and (C/D) for the Canadian CMAs have very large

standard deviations (Table 5.3). This is likely due to greater

variation in the size of cities included in the Canadian sample.

CMA population ranges from Toronto, near 3,000,000, to

Charlottetown at less than 100,000. The large variance in C and

(C/D) may account for the lack of a statistically significant

difference between Canadian and U.S. estimates of commuting waste.

5.2 Adjusting for the Areal Extent of the CBD

The CBD in the monocentric model is like a black hole; it is a

single point in space without internal dimension, into which all

economic activity is drawn. Not only is this theoretically

unsatisfying, it also introduces a potential source of bias into

estimates of the population density gradient. Gradient estimates

obtained using the negative exponential function yield maximum

population density at the dimensionless CBD. In reality, the

central area of most cities is devoted, almost exclusively, to

non-residential land uses. Hamilton [pg. 1044, 26] referred to

this phenomena as a crater in the density function.

It is possible to choose an alternative functional form for the

population gradient that allows for a density profile with a

central crater. Rather than complicate his model, Hamilton simply

assumed the CBD in each CMA was one mile in diameter and devoid of
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residences. This has the effect of increasing the average

household's distance to the CBD (i.e. A), by one half mile.

Optimum commute also increases by one half mile, because the

employment gradient and the average distance of jobs from the CBD

are unaffected by the crater in the population gradient.

Although Hamilton's adjustment was simple it was clearly ad hoc.

Since economic theory does not strongly support any particular

functional form for the population gradient, Hamilton could have

chosen an alternative function. McDonald and Bowman [40] suggested

several alternative equations, such as standardized normal or

quadratic, that allow for the possibility of a central density

crater." However, given that many applications of the

monocentric model employ a negative exponential function, Hamilton

was correct to employ the same function for his critique of the

usefulness of the monocentric model.

Perhaps the greatest weakness in choosing an arbitrary value for

the diameter of the CBD is that it assumes the same size central

area for each city. While a CBD diameter of 1.0 kilometre may be

reasonable for larger cities in the Canadian sample, it is probably

too large for some of the smaller cities. However, the same

criticism, (i.e. assuming one size fits all), must be extended to

a great body of urban literature. It should be stressed that the

16 Mills and Hamilton [42) and Chapter 2 of this thesis showed
that the negative exponential density gradient requires the rather
unrealistic assumptions of Cobb-Douglas housing production
functions and a price elasticity of demand for housing equal to
negative 1.
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Table 5.4: Alternative Measures of Wasteful Commuting
Assuming a CBD Radius of 1.0 Kilometres

^

VALUE^ RANK

D/C^C/D^A/D^D/C^C/D^A/D

#^%^%^#^#^#

POP

#

Calgary 18.66 5.36 60.77 2 22 14 6
Charlottetown 1.83 54.74 87.57 22 2 6 23
Chicoutimi 1.44 69.54 110.89 23 1 2 20
Edmonton 6.95 14.38 72.42 7 17 11 5
Halifax 2.94 34.02 86.08 19 5 7 13
Hamilton 7.48 13.37 52.14 6 18 22 9
Kitchener 11.91 8.39 71.26 3 21 12 11
London 9.50 10.53 57.58 4 20 19 12
Montreal 3.34 29.92 100.56 15 9 3 2
Ottawa 2.74 36.51 90.03 20 4 5 4
Quebec 3.68 27.20 90.89 13 11 4 8
Regina 8.44 11.85 42.84 5 19 23 17
Saint John 3.16 31.64 84.47 17 7 8 22
Saskatoon 5.24 19.08 54.81 10 14 21 16
St. Catherines 3.40 29.40 77.73 14 10 10 10
St. John's 3.13 31.91 57.96 18 6 15 18
Sudbury 5.52 18.13 63.73 9 15 13 19
Thunder Bay 6.90 14.50 57.67 8 16 17 21
Toronto 2.25 44.53 126.73 21 3 1 1
Vancouver 5.00 20.01 81.64 12 12 9 3
Victoria 3.25 30.74 57.77 16 8 16 15
Windsor 5.23 19.13 57.62 11 13 18 14
Winnipeg 18.92 5.29 55.01 1 23 20 7

Sample Mean 6.13 25.22 73.83 na na na na
Hamilton Mean 5.69 19.83 103.04 na na na na
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base case assumes the same size CBD in all cities: zero. One

advantage of assuming a one kilometre radius is that it eliminates

the negative values for optimal commuting distance in three

Canadian CMAs.

In order to simulate a non-residential central area, 1.0 kilometre

is added to each CMA's estimated average distance of households

from the CBD. For example, in Vancouver the average increases from

10.07 kilometres to 11.07 kilometres; the average distance of jobs

from the CBD is unchanged and the optimum commute increases from

1.71 to 2.71 kilometres. The increase in the optimum commute makes

cities appear less wasteful. New values for D/C, C/D and A/D are

presented in Table 5.4. The average observed commute for all

cities declines from 8.7 times the average optimal commute to only

6.1 times optimal, (D/C). The monocentric model now explains 25

percent of observed commuting, (C/D). Under the strong assumption

of completely centralized employment, the monocentric model is able

to explain 73.8 percent of 1981 observed commuting in the 23

Canadian CMAs.

Table 5.4 ranks commuting waste in the 23 Canadian cities.

Winnipeg, Calgary and Kitchener rank as the most wasteful cities

with observed commuting at least 11 times the optimal commute."

Chicoutimi, Charlottetown and Toronto rank as the most efficient

Canadian cities with 69, 54 and 44 percent of observed commuting

17 D/C and C/D are opposite sides of the same coin. Higher
values for D/C indicate greater wasteful commuting, while lower
values for C/D indicate greater waste. Thus, Winnipeg ranked 1st
for D/C and 23rd for C/D.
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explained by the separation of houses and jobs.

Two patterns in the rankings warranted further investigation.

Figure 5.7 illustrates that there is no strong linear relationship

between CMA population and the CMA's wasteful commuting rank. In

fact, comparison Figures 5.7 and 5.3 vindicates Hamilton's

methodology demonstrateing the importance of controlling for urban

structure when assessing commuting behaviour. While the largest

CMAs have some of the longest observed commutes, the largest CMAs

are not among the most wasteful. The four largest CMAs, (Toronto,

Montreal Vancouver and Ottawa), and three of the smallest CMAs

(Charlottetown, Saint John and Chicoutimi), are among the most

efficient cities.

In order to explore the relationship between metropolitan

population and wasteful commuting in more detail the possibility of

a non-linear relationship was investigated. Table 5.5 summarizes

the results of regressing several various measures of commuting

waste on CMA population and the natural log of CMA population.

Linear estimations yield weak results. Log-linear and log-log

estimates with (C/D) and (D/C) as the dependant variables do not

yield better results. Both log-linear and log-log regressions of

(D - C) on CMA population yield improved results, compared with

other alternative specifications. This latter result is not

unexpected because it was shown above that the average observed

commute is related to total CMA population in a non-linear fashion.



FIGURE 5.7
RANKING OF WASTEFUL

COMMUTING (CID) VERSUS CMA POPULATION



Table 5.5: Regression Estimates of the Relationship Between CMA
Population and Wasteful Commuting

Dependant

Variable

Intercept

Term

Coefficient

Estimate

Independant

Variable

Standard

Error

R-squared

D-C 8.65 4.84 x 10 -7 POP 7.37 x 10 -7 R2 = .020

C/D 13.43 3.93 x 10 -6 POP 3.73 x 10 -6 R2 = .050

D/C 106.34 -4.39 x 10 -5 POP 6.17 x 10 -5 R2 = .024

D-C - 5.22 1.11 In POP 0.52 R2 = .179

C/D 19.13 -0.27 In POP 2.95 R2 = .000

D/C 435.27 -27.87 In POP 47.5 R2 = .016

ln(D-C) -0.07 0.17 In POP 0.07 R2 = .228

ln(C/D) 1.62 0.14 in POP 0.34 R2 = .008

ln(D/C) 4.32 -0.14 In POP 0.34 R2 = .008



The implication in the context of Hamilton's model appears to be

that the monocentric model does not perform well over a certain

range of city sizes. There may be other variables that better

explain variations in wasteful commuting and thus that account for

the poor performance of the monocentric model.

5.3 Sensitivity to the Choice of Urban Boundary

In order to calculate the average distance of households and jobs

from the CBD (i.e. A and B) the integrals in equations 3.9 and 3.15

had to be evaluated over a definite range. Hamilton [26] chose the

urban boundary, Si, to equal the distance at which population

density declined to 100 people per square mile, (denoted as F by

Hamilton). 18 Thus, the boundary for each city is unique and

depends upon the population gradient parameters estimated in (see

Chapter 4). Although Hamilton's choice of F was arbitrary, it

seems reasonable. A density of 100 people per square mile is

roughly equivalent to 10 acre lot sizes. Furthermore, as is shown

below, the influence of the boundary choice on estimates of optimum

commute tends to wash out if the impact of R upon both A and B is

similar.

Column F in Table 5.1 represents the estimated distance at which

population density declines to 100 people per square mile in each

Canadian CMA, based on the density gradients estimated in Chapter

4. The boundary (F) is calculated using the density gradient

18 This is equivalent to 38.61 people per square kilometre.

- 141 -



parameters presented in Table 4.3, and then substituted for ic in

equations 3.10 and 3.16. For comparison, column G in Table 5.1

gives the CMA radius as measured from Statistics Canada maps.

Figure 5.8 reveals some considerable differences between the

boundary measures (F and G). The calculated boundary is greater

than the measured (political) boundary (G) in only three CMAs:

Toronto, Montreal and Kitchener.

Hamilton suggested the impact of a particular boundary choice on

estimates of wasteful commuting would be minor. 19 However, when

Hamilton applied his model to a sample of Japanese cities he found

his assumption of 100 people per square mile as the dividing line

between urban and rural was inappropriate and yielded cities with

infinite radius. Further, Macauley [38] found density gradient

estimates were sensitive to the particular data set employed.

Macauley found that using UA data rather than SMSA data caused

major differences in density gradient estimates for a given set of

cities. Thus it is worthwhile to check the model's sensitivity to

the choice of urban boundary.

Table 5.6 presents revised estimates of waste, (D - C), and the

share of commuting that is necessary, (C/D), allowing x to vary

from F G 00. 2° The average estimated wasteful commute declines

by 0.56 kilometres when x is increased from F to co. The difference

was is statistically different from zero (t=0.671). Comparing the

19 See Hamilton (pg. 1040) [25], [26] footnote #6.

20 The figures generated using F are identical to those in
Table 5.4. They are repeated here to make comparison easier.
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Table 5.6:

CMA

Alternative Measures of Wasteful Commuting
Assuming Different CBD Boundaries

D - C^ C/D

F^G^cc^F^G cc

Calgary 10.07 10.25 10.26 5.36 3.63 3.62
Charlottetown 1.91 1.61 1.61 54.74 61.63 61.72
Chicoutimi 2.53 1.74 -0.10 69.54 79.04 101.22
Edmonton 8.98 8.80 8.80 14.38 16.05 16.11
Halifax 5.26 4.80 4.79 34.02 39.75 39.85
Hamilton 13.54 13.41 13.17 13.37 14.20 15.77
Kitchener 11.07 11.08 11.06 8.39 8.37 8.51
London 7.53 7.58 7.58 10.53 10.05 10.04
Montreal 8.57 8.76 8.11 29.92 28.40 33.71
Ottawa 6.59 5.95 5.86 36.51 42.72 43.59
Quebec 8.21 7.68 7.29 27.20 31.94 35.40
Regina 7.52 7.52 7.52 11.85 11.89 11.89
Saint John 7.60 6.15 5.16 31.64 44.67 53.51
Saskatoon 6.44 6.29 6.29 19.08 21.02 21.02
St Catherines 7.48 7.17 6.80 29.39 32.34 35.83
St John's 5.58 5.36 5.36 31.91 34.59 34.60
Sudbury 11.15 9.92 9.44 18.12 27.15 30.66
Thunder Bay 8.65 8.37 8.36 14.50 17.36 17.42
Toronto 6.79 6.92 6.06 44.53 43.50 50.51
Vancouver 10.85 10.60 10.45 20.01 21.85 22.96
Victoria 7.37 7.23 7.04 30.74 32.09 33.89
Windsor 8.23 8.04 7.98 19.13 20.96 21.56
Winnipeg 10.50 10.66 10.67 5.29 3.95 3.85

Sample Mean 7.93 7.65 7.37 25.22 28.14 30.75



mean values for (C/D) resultsin the same conclusion. The average

share of observed commuting deemed necessary increases from 25 to

31 percent. Again the difference is not statistically different

from zero (t=0.974).

Figure 5.9 graphically illustrates the insensitivity of Hamilton's

technique to the choice of urban boundary for individual Canadian

CMAs. The result holds for cities throughout the urban hierarchy.

The greatest changes in (C/D) occurr in Chicoutimi and Saint John.

Recall that in Chapter 4 it was argued both these cities were

expected to behave erratically, due to their irregularly shaped

boundaries. Interestingly, in Chicoutimi allowing the boundary to

approach 03 increases (C/D) to the point where there is no wasteful

commuting.

5.4 Using Edmonston Density Gradients

Chapter 4 highlighted some significant differences between density

gradients estimated using Edmonston's versus Macauley's estimation

technique. It was argued that, if the differences between gradient

estimates were systematic for both the employment and population

gradients, the Hamilton technique for calculating the optimum

commute would not be adversely effected by the choice of gradient

estimation technique. Evidence in Chapter 4 suggested the two

techniques ranked the density gradient parameters a and b similarly

across the 23 CMAs. However, differences between the D, and E °

parameters appeared less systematic. Although Edmonston population

and employment gradient estimates are steeper than Macauley
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FIGURE 5.9
OPTIMAL AS A SHARE OF OBSERVED COMMUTE

ALLOWING THE URBAN BOUNDARY TO VARY



estimates, the effect on estimates of wasteful commuting should be

negligible, if estimates of both the average distance of households

and jobs (A and B) are equally effected because wasteful commuting

is defined as (A - B).

Table 5.7 summarizes the difference in estimates of several key

measures of waste using Edmonston rather than Macauley gradient

estimates. Values presented in Table 5.7 are for the estimates

which added 1.0 kilometre to the average distance of households

from the CBD to represent a non-residential core in each CMA. This

was described in Section 5.2.

The mean difference between the estimated average distance of

households from the CBD is 0.47 kilometres and the difference

between the estimated average distance of jobs from the CBD is 0.45

kilometres (Table 5.7). Both differences are significantly

different from zero at the a = .01 level (t=4.74 and t=6.34).

Notice that the difference between estimates of A and B is almost

equal. Thus, it is not surprising that the difference between the

average estimated wasteful commute is not significantly different

from zero (t=0.04). The mean estimated waste, (D - C), is not

statistically different between Edmonston and Macauley density

gradient estimates.

To understand how this is possible, despite large differences in

the estimates of Do and E0 , recall equations 3.10 and 3.16 from

Chapter 3:
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Table 5.7: Summary Statistics Comparing Urban Structure and Commuting Behaviour
Using Edmonston Versus Macauley Density Gradient Estimates

Macauley^Edmonston^Difference t-statistic Significance

Mean^a2^ Mean^a2^of Means^H0: Diff=0^.95 .99

A^7.69^8.40^7.22^7.39^0.473^4.74^X^X
B^5.21^4.93^4.77^4.17^0.448^6.34^X^X
C^2.48^1.95^2.46^2.02^0.026^0.61
D-C^7.93^7.19^7.96^7.30^-0.030^0.04

^

C/D 25.22 253.09^24.90 260.65^0.650^0.14

^

A/D 73.83 440.60^69.27 414.03^4.560^0.73

Notes: a2 M variance; t-statistics calculated under the null hypothesis that the difference
between the two samples was zero using a two tailed difference of means test; degrees of
freedom = 44.
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Hamilton [26] showed that the second term in each equation is small

relative to the first term. Indeed, when distance (x) approaches

m 3.10 reduces to 2/a and 3.16 reduces to 2/6. Since D o and E0

appear only in the second term in each equation, Hamilton's method

is robust with respect to the gradient estimation technique,

despite large variance in estimates of D, and E 0 , as long as a and

6 are ranked consistently. This conclusion holds for individual

city comparisons as well as for the average estimate of wasteful

commuting. Appendix 3 presents tables that are analogous to Tables

5.1 and 5.2 using Edmonston gradients rather than Macauley

estimates. There are no noticeably large differences for any

individual CMA.

5.5 Summary

The purpose of this chapter was to compare estimated optimal

commuting distances with observed commuting distances in 23

Canadian metropolitan areas in 1981. The methodology used to

calculate the optimal mean commute was developed by Hamilton [26].

The overall goals were to:
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• Test the ability of the monocentric model to predict
observed commuting behaviour in a sample of Canadian
cities; and

• Compare the amount of wasteful commuting occurring in a
sample of Canadian versus American cities.

Observed commuting in 23 Canadian CMAs was found to be six to eight

times greater than the amount necessary due to the separation of

homes and jobs. Put another way, the monocentric model was only

able to explain an average 20-25 percent of observed commuting in

23 Canadian CMAs in 1981. The average wasteful commute (one way)

is in excess of 8.7 kilometres because, on average, homes and jobs

are only 1-2 kilometres apart but the average observed commute

exceeds 10 kilometres. The total failure of the monocentric model

in predicting commuting behaviour was clearly evident for the

sample of Canadian cities, as it was for Hamilton's [26] sample of

U.S. cities. In fact, randomly assigning workers to houses and

jobs provided a much better explanation of commuting behaviour than

the monocentric model which is based on an implicit trade off of

accessibility and transportation costs.

Comparison of Canadian and U.S. estimates of wasteful commuting did

not provide strong support for the hypothesis that Canadian

commuting behaviour is less wasteful, due to more efficient urban

form. Approximately 75-80 percent of observed commuting in the

Canadian cities was "wasteful", while Hamilton found that 85-90

percent of observed commuting in his sample of U.S. cities was

"wasteful". A two-tailed difference of means test indicated that

the difference in means was not statistically different from zero,
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even at the 90 percent confidence level. A one-tailed difference

of means test indicated that wasteful commuting in Canadian cities

was significantly less than wasteful commuting in U.S. cities but

only at the 90 percent level of confidence.

This chapter also demonstrated that Hamilton's method for

estimating wasteful commuting is robust with respect to the

technique used to estimate the density gradient parameters.

Estimates of wasteful commuting were also shown to be robust with

respect to the choice of urban boundary, within reasonable limits.

Difference in estimates of wasteful commuting (i.e. the failure of

the monocentric model to explain observed commuting) among cities

does not appear to be related to the population of the metroppl.itan

area. Differences are more likely explained by other variaKes.



CHAPTER 6

SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

The overall goals of this thesis were twofold:

1. To test the ability of the monocentric model to predict
observed commuting behaviour in a sample of Canadian
cities; and

2. To compare commuting behaviour in a sample of American
and Canadian cities.

The technique used to test the ability of the monocentric model to

predict observed commuting behaviour in Canadian cities was

developed by Hamilton [26]. Hamilton's model was used to estimate

the average distance of homes and the average distance of jobs from

the CBD in each of 23 Canadian cities. The difference between the

average distance of homes from the CBD and the average distance of

jobs from the CBD is deemed to be the minimum possible average

commuting distance (optimal commute). The optimal commute was

compared with the average observed commute in each city.

In order to estimate the average optimal commute in each CMA the

model developed by Hamilton requires estimates of population and

employment density gradients for each CMA.

6.1 Density Gradient Estimates

The population and employment density gradient parameters for each

city are the key inputs into the model used to estimate optimal and
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wasteful commuting.' When Hamilton [26] estimated the model for

a sample of 14 U.S. cities he was able to use density gradient

parameters previously estimated by Macauley [38]. Unfortunately,

there was not a similar set of density gradient parameter estimates

available for a lareg sample of Canadian cities.^Therefore,

Chapter 4 of this thesis presents 1981 estimates of population and

employment density gradients for 23 Canadian urban areas.

Although it was not the goal of this thesis to estimate population

and employment density gradients, the gradients presented in

Chapter 4 represent a significant contribution to urban analysis

for three reasons:

1. They are the only employment gradient estimates for a
large sample of Canadian cities;

2. Both the population and employment gradient estimates
cover a much larger sample of Canadian cities than any
previous work; and

3. Three separate variants of the two-point estimation
technique were compared for 23 Canadian cities.

Results presented in Chapter 4 are broadly consistent with previous

Canadian and U.S. density gradient estimates. A detailed summary

of the gradient estimates is provided by Table 4.6 in Chapter 4.

Despite the overall reasonableness of the parameter estimates there

were at least three cities in which the estimated employment

gradient was flatter than the estimated population gradient:

Calgary, London, Winnipeg (and Regina for one estimation technique

but not the others). Such a result is perverse and violates one of

' The model is described in detail in Chapter 3.
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the key assumptions of the monocentric model.

The Mills and Macauley gradient parameter estimates were virtually

indistinguishable as was expected a priori. Edmonston gradient

parameter estimates, which attempt to control for the shape of the

CMA, were steeper with higher central densities for both the

population and employment gradients. It was not possible to assess

which estimates were superior, however. In all cases population

and employment density gradient parameters were found to be

inelastic with respect to total CMA population.

6.2 Wasteful Commuting - A Critique of the Monocentric Model

Commuting behaviour must play a fundamental role in any model that

purports to explain urban residential and employment location.

Monocentric models have been widely employed in urban economic

analysis because of their simple structure and presumed explanatory

power.

Hamilton's model [26] as employed in this thesis represents part of

a growing body of literature aimed at providing tests of the

monocentric model's ability to predict important spatial patterns.

Recent research has also focused on criticism of the assumptions

underlying the monocentric model. 2 If, as was shown by this

thesis, the monocentric model fails to predict fundamental economic

behaviour, such as commuting, the usefulness of the model is in

2 See Wheaton [57] for a review of the literature critical of
the monocentric model.
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question. A model cannot be used just for its simplicity if the

model fails to predict crucial aspects of economic behaviour.

How badly did the monocentric model tested in 23 Canadian cities

fail? Observed commuting in the sample of Canadian cities was an

average of 6.0 to 8.0 time greater than the commuting predicted by

the monocentric model. Put another way, the version of the

monocentric model tested in this thesis explained only 20-25

percent of observed commuting. In fact, randomly assigning workers

to jobs and residences provided a much better explanation of

observed commuting behaviour in a sample of Canadian cities.

6.3 International Comparison

By replicating the methodology developed by Hamilton [26] this

thesis was able to directly assess the relative performance of the

monocentric model in Canada versus the United States.

International comparison is an important test of an economic

model's robustness. In this case, the performance of the

monocentric model was uniformly poor in both the United States and

Canada.

Comparison of estimates for wasteful commuting were used to

evaluate the relative efficiency of Canadian versus U.S. cities.

If the optimal average commute, as calculated by the Hamilton

model, represents the minimum possible average commute, then the

greater the divergence between observed commuting and optimal

commuting the more "wasteful" commuting that is occurring in a
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city. There was only weak evidence to suggest that, on average,

observed commuting behaviour more closely resembles optimal

commuting behaviour in Canadian cities. Based on the work of

Goldberg and Mercer [23] it was expected that there would be

significant differences between cities in the two countries.

6.4 Criticisms of Hamilton's Methodology

Hamilton's model for estimating wasteful commuting incorporates

several important assumptions including:

• When employment decentralizes it does so in a disperse
manner, without clustering3 ;

• Both population and employment density are well
characterized by a negative exponential density
gradient;`

• Labour force participation rates are independent of
intra-urban location; and

• All jobs and homes are equally desirable s .

With the exception of the assumption regarding labour force

participation rates, none of the key assumptions are specific to

Hamilton's model but are instead implicit in the version of the

monocentric model which Hamilton [26] chose to test. The

assumption that labour force participation rates do not vary within

cities was necessary to allow Hamilton to interpret the average

3 This issue was discussed in Chapter 2, Section 2.4.

4 The functional form issue was discussed in some detail in
Chapter 2, Section 2.3.

5 See Wheaton [58] for a model that relaxes this assumption.
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distance of population from the central city as the average

distance of the "labour force" from the central city. It is

improbable that the overall participation rate shows strong

intraurban variation but it is possible that there are significant

differences in female participation rates among intraurban

locations.

The strongest criticism of Hamilton's model was put forward by

White [62]. White focused on Hamilton's assumption of non-

clustered decentralized employment. It is in some sense ironic

that the most avuncular critic of Hamilton's method for testing the

monocentric model focused on the employment assumption. White

finds that there is minimal wasteful commuting when suburban

employment is permitted to cluster [62]. On the surface White's

critique of Hamilton seems to lead to the same conclusion as

Hamilton's original work. As soon as White allows clustered

suburban employment her model becomes polycentric and the land rent

gradient is no longer characterized by a single location variable.

Thus White's conclusion amounts to the statement that if the

monocentric model is really polycentric then there is no wasteful

commuting. 6

6.5 Directions for Further Research

Although White's critique of Hamilton's work perhaps missed the

6 Mills and Hamilton [42] convincingly argue that it is
impossible to reconcile clustered suburban employment with the
monocentric model. See Chapter 2 of this thesis, in particular
Section 2.4 for a discussion of this issue.
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point Hamilton was trying to make, White's work did point to one of

the weaknesses in urban economics. While there is a large body of

literature examining residential choice, there has been much less

investigation into the determinants of employment location.

Instead centrality has typically been assumed.

On the theoretical side, two types of models need to be developed

further. First, are non-monocentric models which have no

prespecified centre allowing the model to determine the location

and number of employment clusters. While these models are

intuitively appealing mathematical complexity is likely to limit

advances made. Ogawa and Fujita developed a non-monocentric model

that yielded some interesting results [47]. When commuting is

modelled as very expensive relative to the transaction costs of

doing business, the city has a completely mixed economy with no

centre. If the reverse is modelled (commuting is cheap relative to

transaction costs) the monocentric result is achieved. Reality is,

no doubt, somewhere between these extreme results.

The second area of investigation must be in the area of polycentric

models. In contrast to non-monocentric models, polycentric models

have several prespecified employment nodes. Although this is less

satisfying theoretically, it seems more likely to yield empirically

verifiable results. Dubin and Sung [16], Griffith [25] and Wieand

[65] have each developed simple polycentric models and tested the

implications for population density and rent gradients.

There is also a great deal of empirical work that needs to be done
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examining the determinants of commuting behaviour. It is clear

that the attempt by individuals to minimize commuting distance

(i.e. the monocentric model) can explain only a small fraction of

observed commuting behaviour. Other variables influencing

commuting behaviour might include:

• The sex of the household head;

• The income of the household head;

• The variable used to measure commuting (distance versus
time);

• The presence of a second wage earner in a household;

• The demand for other travel;

• Heterogeneity of jobs and houses and the need for
"matching"; and

• Tenure.

The influence of some of these variable on commuting behaviour has

been investigated to a limited degree. Frankena [19] and White

[63], [64] examined differences in commuting behaviour among men

and women for a limited number of U.S. cities. Adler [1]

investigated the impact of tenure (rent versus own) on commuting

behaviour. Coulson [12] examined the differential impacts of

changes in time versus money costs of commuting on the decisions of

individuals.

The data base employed in this thesis would permit a detailed

analysis of individual commuting decisions in Canadian cities.

Variables available for analysis include sex of the household head,

tenure, whether there is a second wage earner, the number of non-

commuting trips to downtown, the place of work for the household
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head and the second wage earner, the occupation of the household

head, the transit mode of the household head and the length of

tenure for each household. It is suggested that the next step in

the analysis might logically be to empirically test the influence

of each of these variables on commuting behaviour in Toronto,

Montreal and Vancouver. Results obtained for the three largest

cities could then be tested in smaller cities to see if there are

important difference in commuting behaviour among individuals in

different size cities.

In concluding, the words of Michelle White provide an admirable

goal for urban economists:

"It is hoped that in the future urban economists will not
have to characterize any commuting behaviour as wasteful
and instead will be able to explain it" [62].

Although this is clearly overly optimistic, detailed investigation

into the determinants of commuting behaviour represents a promising

extension to this work.
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APPENDIX 1

INTEGRATION OF EQUATIONS 3.8 AND 3.15

In Chapter three the following equation, 3.8 was presented to

represent the average distance of homes from the CBD, (A), in a

particular monocentric city:

A
2 Tc Do ft x 2 e —y1 dx= (A1.1)

Integration by parts is based on the following identity:

f d v duu - UV - f V 71-x (A1.2)

Now if we define the following:

• u m x2 ; and

• dv/dx m e-fx

then:

• du/dx = 2x; and

• v = -(e""/y).

Applying the formula described by equation A1.2 to equation A1.1

yields:
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Do 2 7c^x2 e -yxf g _  2 x e -yx^ _ (A1.3)

  

Multiplying through and simplifying yields:

  

2

+ 
2D027[ j-ft

xe -Yx dx
YP 0

 

D0 27cx 2 e -Yx (A1.4)
YP

   

Now recall from equation 3.6 in Chapter 3 that the total population

of the city, (P) can be expressed as:

P 27c f D(x) xdx
^

(A1.5)

Substituting in the negative exponential density function, 3.7, for

D(x) in equation A1.5 yields:

P 27cDo f xe -Yx di(
^

(A1.6)

Substituting A1.6 into the second term in A1.4 reduces A1.4 to:
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Do2n;? e -Y"^2

YP^YP
2

-^ x
2700 -2 e -v?

Y^YP

(A1.7)

Equation A1.7 is equivalent to 3.9 as required.

One other point must be made regarding Hamilton's model.^In

estimating A and B Hamilton was unconcerned whether 0 = 27r because,

as long as 27 is used to calculate P, the 27 in the numerator and

denominator of A1.7 cancel out. This implies, however, that for

Canadian CMAs where 27 does not equal 0 it is not correct to simply

use the population given in the census to estimate A. Instead

population had to be estimated using equation A1.5 as though the

city were a complete circle. This also makes the use of Edmonston

density gradient estimates based on shapes other than a circle

somewhat inconsistent with the Hamilton wasteful commuting model.



APPENDIX 2

COMPARISON OF CMA EMPLOYMENT AND CENTRAL CITY EMPLOYMENT
BASED ON DATA FROM THE 1981 CENSUS

Chapter 5 showed that when it is assumed all employment in each CMA

is located in the CBD the monocentric model does a much better job

of explaining commuting behaviour. The Table below clearly

illustrates that a significant portion of CMA employment in 1981

was not located in the central city. On average, 25 percent of

employment was located in suburban municipalities. Larger cities

tended to have a smaller share of total employment located in the

central city.

Central city is a much broader geographic concept than CBD. Using

Vancouver as an example, the central city refers to the City of

Vancouver (this would include downtown and the Broadway corridor)

The CBD, as it is used in the monocentric model, refers to the

downtown area only. Thus, it is reasonable to conclude that a

significant proportion of total metropolitan employment was located

outside the central business district in 1981.



CMA CMA

Employment

Central City

Employment^Share

Calgary 325,205 300,310 0.9234
Charlottetown 18,380 13,460 0.7323
Chicoutimi 44,715 40,845 0.9135
Edmonton 339,075 289,035 0.8524
Halifax 127,660 107,180 0.8396
Hamilton 228,435 153,545 0.6722
Kitchener 132,825 87,460 0.6585
London 131,955 116,675 0.8842
Montreal 1,265,055 615,180 0.4863
Ottawa 347,975 259,675 0.7462
Quebec 237,260 103,485 0.4362
Regina 79,565 74,605 0.9377
Saint John 45,865 40,795 0.8895
Saskatoon 71,730 67,395 0.9396
St. Catherines 126,110 78,975 0.6262
St. John's 60,460 51,370 0.8497
Sudbury 58,180 45,630 0.7843
Thunder Bay 54,000 50,785 0.9405
Toronto 1,571,455 545,160 0.3469
Vancouver 646,435 276,215 0.4273
Victoria 105,130 60,820 0.5785
Windsor 96,080 84,975 0.8844
Winnipeg 284,785 268,275 0.9420

Mean 278,188 162,254 0.7518



APPENDIX 3

ESTIMATES OF WASTEFUL COMMUTING DERIVED USING EDMONSTON
DENSITY GRADIENT ESTIMATES

Chapter 5 presented estimates of wasteful commuting based on

density gradient parameters obtained using Macauley estimation

techniques. This appendix presents estimates of wasteful commuting

based on density gradient parameters obtained using Edmonston

estimation techniques. The tables presented in this appendix are

analagous to Tables 5.1 and 5.2 in Chapter 5.



Table A3.1: Optimal and Actual Commute Characteristics Using 1981
Edmonston Gradient Estimates

CMA^A^B^C D E F G

Calgary 4.977 5.381 -0.404 10.64 9.70 15.50 38.5
Charlottetown 2.140 1.077 1.064 4.21 2.37 5.97 12.7
Chicoutimi 8.640 3.343 5.297 8.30 14.71 18.14 16.5
Edmonton 6.187 5.705 0.482 10.49 11.31 18.20 36.1
Halifax 5.365 3.743 1.622 7.97 7.94 15.70 27.1
Hamilton 6.240 5.255 0.984 15.63 10.69 18.51 20.7
Kitchener 6.715 6.702 0.013 12.09 13.92 17.10 15.5
London 3.554 3.660 -0.105 8.42 6.35 10.88 21.7
Montreal 10.845 8.282 2.563 12.24 18.60 33.70 29.9
Ottawa 7.446 4.904 2.542 10.39 11.91 20.99 31.0
Quebec 8.635 6.677 1.959 11.29 15.43 22.45 28.8
Regina 2.516 2.519 -0.003 8.54 4.00 7.93 31.7
Saint John 7.716 5.049 2.667 11.11 13.41 17.33 20.8
Saskatoon 3.171 2.677 0.497 7.96 4.93 9.35 38.7
St. Catherines 7.792 5.213 2.579 10.59 11.57 23.39 17.7
St. John's 3.393 1.898 1.495 8.19 3.60 10.95 16.5
Sudbury 7.212 5.753 1.459 13.62 14.43 15.66 26.4
Thunder Bay 4.509 4.039 0.470 10.13 7.69 12.07 22.1
Toronto 12.674 8.636 4.038 12.25 20.21 41.31 34.3
Vancouver 9.640 7.896 1.744 13.56 16.06 30.83 29.6
Victoria 4.561 2.470 2.091 10.65 5.65 14.10 12.0
Windsor 4.026 3.163 0.858 10.18 5.46 13.00 13.6
Winnipeg 5.124 5.551 -0.427 11.09 10.11 15.68 23.4

Sample Mean 6.221 4.765 1.456 10.41 10.44 17.73 24.6
Adj Mean 6.679 4.868 1.812 10.57 11.05 18.83 23.7
Hamilton Mean 14.001 12.199 1.802 14.00 19.46 36.21 n.a.

NOTES: All distances in kilometers; A m necessary commute if complete centralization of
employment is assumed; B a potential commute savings resulting from employment
decentralization; C m optimum commute (i.e. A - B); D m observed mean commute from the 1977
urban concerns survey; E a average commute randomly assigning jobs to houses; F m radius at
which population density declines to 38.61 people per square kilometer (i.e. 100 people per
square mile); G a actual radius of the CMA; n.a. m not available; Adj mean excludes Calgary,
London, Regina and Winnipeg because these CMA's had values for C less than zero.



Table A3.2: Alternative Measures of Wasteful Commuting Derived From
Estimates in Table A3.1

CMA^D-C^D/C
kms

C/D A/D D/E F/G Total
Population

Calgary 11.04 26.3 3.8 46.8 109.7 0.40 625,966
Charlottetown 3.15 4.0 25.2 50.8 177.7 0.47 44,999
Chicoutimi 3.01 1.6 63.8 104.0 56.5 1.10 135,172
Edmonton 10.01 21.8 4.6 59.0 92.7 0.50 657,057
Halifax 6.35 4.9 20.4 67.3 100.3 0.58 277,727
Hamilton 14.65 15.9 6.3 39.9 146.2 0.89 542,095
Kitchener 12.07 907.7 0.1 55.6 86.9 1.10 287,801
London 8.53 80.0 1.2 42.2 132.6 0.50 283,668
Montreal 9.97 4.8 20.9 88.6 65.8 1.13 2,828,349
Ottawa 7.85 4.1 24.5 71.7 87.2 0.68 717,978
Quebec 9.33 5.8 17.4 76.5 73.1 0.78 576,075
Regina 8.54 3443.9 29.5 213.6 0.25 173,226
Saint John 8.45 4.2 24.0 69.4 82.9 0.83 114,048
Saskatoon 7.47 16.1 6.2 39.8 161.6 0.24 175,058
St. Catherines 8.01 4.1 24.4 73.6 91.5 1.26 304,353
St. John's 6.70 5.5 18.3 41.4 227.5 0.66 154,820
Sudbury 12.16 9.3 10.7 53.0 94.4 10.59 149,923
Thunder Bay 9.66 21.6 4.6 44.5 131.8 0.55 121,379
Toronto 8.21 3.0 33.0 103.5 60.6 1.20 2,998,947
Vancouver 11.82 7.8 12.9 71.1 84.4 1.04 1,268,183
Victoria 8.55 5.1 19.6 42.8 188.4 1.18 233,481
Windsor 9.32 11.9 8.4 39.6 186.4 0.96 246,110
Winnipeg 11.52 26.0 3.8 46.2 109.8 0.67 584,842

Sample Mean 8.96 109.5 14.6 59.0 120.1 0.76 n.a.
Mean w/o -C's 8.76 55.7 18.2 62.7 115.6 0.83 n.a.
Adjusted Mean n.a. 8.4 19.2 n.a. n.a. n.a. n .a.
Hamilton Mean 12.29 12.2 12.7 95.9 78.3 n.a. n.a.

NOTES: The mean w/o CMAs with negative estimated C values excludes Calgary, London, Regina
and Winnipeg; the adjusted mean excludes Kitchener in addition to the four CMA's excluded
from mean w/o -C's; n.a. E not applicable.
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