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Abstract

Control loop monitoring provides the opportunity to maintain high process performance. In this

thesis, the regulation performance of a process is monitored by examining the time delay, static input-

output relation, and the minimum achievable output variance of the process. The time delay estimate

is obtained from the Fixed Model Variable Regressor Estimator and the static input-output relation is

estimated using the Adaptive Nonlinear Modeller. The minimum achievable output variance of the

process is determined by modelling the closed loop noise transfer function by a Laguerre network and

finding the Laguerre gains of the network using Recursive Extended Least Squares estimation. An

extensive simulation study was performed to examine the operation, usefulness and limitations of the

monitoring tools. These simulations confirmed the operation and benefit of the monitoring methods,

and defined their limitations. The monitoring tools were applied to data generated by industrial

processes. The successful application to industrial processes highlighted the benefits obtainable by

control loop monitoring. Due to the ease of applying the monitoring tools and the valuable insight

they provide, these monitoring tools should be applied to any process where regulation performance

is a concern.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1 Background

A serious problem faced upon the completion of any engineering research is its acceptance

and use by industry. This problem is very pronounced in the field of control engineering [7].

The reasons are numerous and the blame lies with both industry and the research community.

The bottom line in industry is production, which dictates that processes and therefore controllers

operate continuously, with as few disruptions as possible. This bottom line will allow promising

control methods to pass by untried for fear of disturbing operation, even though process performance

could be improved. Universities, however, must realize the needs and restrictions of industry and

gauge research accordingly. Only once industry and universities work together will new research be

integrated into industrial processes.

Control loop monitoring is a way to bring both sides closer together. Monitoring in its most

basic form involves observing process operation, recording behavior and commenting on any unusual

occurrence. It is very passive, in the sense that no changes are required to the setup of the loop,

so process operation is not disturbed. Meanwhile, monitoring offers the research community an

opportunity to use various identification and modelling techniques in an industrial environment. Thus

industry is introduced to alternative methods and new research, while universities are given the

opportunity to interact with industry. Successful results will demonstrate the usefulness of new

methods and should help encourage its acceptance and possible use in control algorithms. Any

unsuccessful results can be examined by researchers to determine problems, all without adversely

affecting the process operation in any manner. Such cooperation would ultimately result in the

fulfillment of the desires of both industry and the research community.

A pulp and paper mill can have thousands of control loops [8] which typically are the responsi-

bility of one or two process control engineers. With this large number of loops, it is next to impossible

to ensure that they all are operating satisfactorily and it is time consuming to investigate each loop

1



Chapter 1: Introduction

individually. This suggests that there is a requirement for methods that could detect which loops

need the attention of the engineer [23]. The monitoring methods presented in this thesis can be used

to flag loops whose performance has deteriorated. The cost of implementing control loop monitoring

is small, as it requires only the addition of the software code to manipulate the process signals. It is

this ease of implementation and the need of such methods in an industrial setting, that makes control

loop monitoring an attractive way to improve process performance.

1.2 Motivation

An industry wide problem in the control of pulp and paper processes is that in practice many

control principles are ignored. As a result, many loop controllers including low level single-input

single-output controllers, are often poorly chosen and tuned [4]. If these low level processes operate

poorly due to the control, the overall operation of the process will suffer. One way of improving the

operation of these controllers is through monitoring the process.

The goal of control loop monitoring is to provide information about a process during closed

loop operation. This information can be used to confirm if the process is operating as expected and

also highlight any changes in the process. If the process is not operating as expected, then changes

to the way it is controlled may be necessary to improve performance. By highlighting changes in

the process over time, changes which often signal deteriorating operation, maintenance of the loop

components can be undertaken to improve performance.

1.3 Contributions

Three properties of single-input single-output control loops are monitored. The time delay of the

process is monitored using the Fixed Model Variable Regressor Estimator proposed by Elnaggar [12].

The static input-output relationship of the process is determined using the Adaptive Nonlinear

Modeller proposed by Asti -Om [3] but the relationship is estimated using the Recursive Least Squares

method. Based on the work of Harris [17], the minimum achievable output variance of the control

loop is monitored. In this work, the delay is not assumed known and Laguerre filters are used with

Recursive Extended Least Squares estimation for process modelling.

2



Chapter 1: Introduction

1.4 Thesis Outline

The types of processes considered and the notation to be used are outlined in Chapter 2. As

well, the purpose of monitoring the three properties chosen is discussed and the problems associated

with closed loop monitoring are outlined. Chapter 3 describes the theory behind the Fixed Model

Variable Regressor Estimator, lists its algorithm and presents some examples of its operation. The

problems encountered when using the estimator on closed loop stochastic processes are discussed.

The Adaptive Nonlinear Modeller used for the estimation of the static input-output relationship is

studied in Chapter 4. The various components required for determining the minimum achievable

output variance are presented in Chapter 5. This includes discussion of Laguerre filters, Recursive

Extended Least Squares estimation and the method used to calculate the minimum achievable output

variance. Chapter 6 contains numerous computer simulations of the various techniques studied.

Practical aspects of the techniques are examined via computer simulation in order to gain further

insight on their operation. Then, Chapter 7 presents the results when monitoring is used on industrial

process data. Finally, in Chapter 8, conclusions are drawn and summarized based on previous results.

3
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Chapter 2

Control Loop Monitoring

In this chapter, the foundation for the research is set, providing a starting point for the remaining

chapters. First, the model used to describe an industrial process is given and so then the notation to

be used is defined. Next, the assumed operating setup of the process is given, which is followed by a

discussion on the importance of monitoring and the reason why the specific properties are monitored.

Finally, this discussion includes benefits to be achieved from monitoring the chosen process properties.

The importance of monitoring and the approach taken in this research will then have been presented.

2.1 The Discrete Linear Model

The discrete linear model which is used to describe processes consists of two terms, one which

represents the plant dynamics and another which accounts for the influence of the surroundings on

the plant. These effects are denoted separately by a single term and combined together because the

model used is linear. A block diagram form of such a model appears in Figure 2.1 and represents

the plant and disturbance of a process. The equation:

A i
B(

(€1-1
C1-1)

)^
k

yo (t) =  ^u(t) (2.1)

completely describes the plant and its properties. The plant output is yo(t), its input u(t), and the

polynomials Ai (q -1 ) and B(q -1 ) contain information about its dynamics. The backward shift operator

q-1 is used and is defined as u(t — 1) = q—l u(t). The polynomial AI (q -1 ) is monic and of degree n,

while the polynomial 8(q -1 ) is of degree m, where m n. The plant dynamics are determined by

the value of the roots of Ai (q -1 ) and 8(q -1 ), known as the poles and zeroes of a plant respectively.

The last piece of information about the plant is contained in k, which is the delay. For sampled-data

processes, this delay is always greater than or equal to one, to ensure process causality.

The disturbance term represents the effect of the environment in which the plant exists and can

take on many forms. It could be purely deterministic, such as randomly occurring steps changes, or

it could be stochastic in nature. The Autoregressive—Integrated—Moving—Average (ARIMA) model

4



Disturbance

N(0,cse )^e(t)

Plant^ ye(t)

Yo(t)u(t) y(t)

Chapter 2: Control Loop Monitoring

Figure 2.1. Block diagram representation of the discrete linear model

can be used to represent many different types of typical industrial disturbances. It makes up the

second part of Figure 2.1 and the equation:

ye (t) = 
 C(q1)

e(t)
A2(cri)Vd

contains information about the properties of the disturbances. Its output is y e (t) while the input e(t)

is a sequence of uncorrelated random variables with a zero mean and constant variance, which can

be denoted as N(00 - ,2). This input signal is then a white noise sequence with a normal distribution.

The polynomials C(q-I ) and A2(q-1 ) have degree q and p respectively and like the plant polynomials,

the roots of these polynomials determine the dynamics of the disturbance. It is also assumed that the

roots of the A2(q -1 ) polynomial lie inside the unit circle. The operator, V, is defined as V = 1 —

and the term Vd permits the mean of the disturbance output to change over time so that it can

exhibit some nonstationary behavior. For example, when d=1 the disturbance will exhibit a random

walk behavior where its mean varies over time. The specific order of the disturbance is denoted by

ARIMA(p,d,q) where p, d, and q are as defined above and thus set the properties of the disturbance.

These are the two terms, when combined, that can be used to represent most industrial processes.

The output of a process which combines the two terms is given by:

B(q-1) k^CW1) 
y(t) —  ^u(t)-1-^e(t)

Ai(c1-1 )^A2((1-1)Vd
(2.3)

(2.2)

5
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which is made up of the effects of the plant and disturbance. The monitoring to be performed is

not done on the process as it appears in Figure 2.1. This is because the processes to be monitored

will be under feedback control.

2.2 Monitoring Closed Loop Processes

A goal of this process monitoring is to be able to extract information from the process successfully

while it is operating under feedback control. This means that all estimation is performed under closed

loop operation, which can cause some difficulties when it comes to estimation. These difficulties

must be addressed to ensure successful monitoring and in future chapters, they will be taken into

account as they become a concern.

Closed loop operation of a process can be represented by the block diagram in Figure 2.2. Using

the definitions above, the plant transfer function is:

+Gp (q—i)^Yo(t) = B(q 1 ) _k bp 
u(t)^Ai(q-1 ) cl — 1+ aic1-1+ ...ancru q^(2.4)

and the disturbance transfer function is:

-I- cicri^...cqq—qGd(q— =1)^YYe(t) —  C(c11)^1^(2.5)e(t)^VtIA2(q-1 )^1 + aCcrl + ...a' +d ci-v-dp

The final block to be defined is the controller, it has the form:

Gc (q—i)^u(t)^E(c1-1 ) _ eo eicri 
c(t)^H(q-1 )^ho h1q-1

and is chosen so that the plant output response performs in some desired manner.

(2.6)

Figure 2.2. Block diagram representation of closed loop process

6
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Figure 2.3. Block diagram of the monitoring scheme

2.3 Purpose of Monitoring

The successful operation of a process requires the inclusion of some sort of performance

monitoring and/or fault detection. There are many insights that can be obtained by monitoring

the process, all which will aid in choosing a control scheme for the process or provide a better

understanding of the operation of the process. Monitoring will help determine if the process is

operating as expected, which is important for successful control. The detection of changes in the

process over time will be noticed by monitoring, which will allow preventive measures to be taken

before the changes become too serious. The cumulation of the insights provided by monitoring will

be used to indicate if and how performance can be improved.

There are different properties of a process that can be monitored to gain knowledge of process

performance. When the following three attributes of a process are monitored, namely the time

delay, static characteristics, and output variance, many insights will be provided which will aid

in the successful operation of a process. These properties can be used separately or together to

serve this purpose. These process properties were chosen because of an interest in monitoring the

operation of processes in regulation mode. Examining the process output variance and determining

7



Chapter 2: Control Loop Monitoring

the minimum achievable output variance becomes very important for regulation loops. Knowledge

of the time delay and static characteristic will help in determining and interpreting the minimum

achievable output variance level. They can also stand alone as monitoring tools. The block diagram

of the monitoring scheme appears in Figure 2.3, it showing the way information is extracted from a

process. It is obtained using only the available input and output signals. The benefits obtained from

monitoring these properties will now be discussed, emphasizing the value of successful monitoring.

2.3.1 Time Delay

Monitoring the time delay of a process serves several purposes. Most importantly, knowledge

of the true time delay provided by monitoring will ensure that the controller can compensate for the

effect of the delay. Also, monitoring can indicate if changes in the process are required for improved

performance. Lastly, as changes in the delay can be noted as they occur, the reason for the change

can be determined and corrected if possible.

The knowledge of the correct time delay of a process is very important for successful control

of any industrial process. Many processes have long and often varying time delays, which makes

proper control difficult. This is because the delay adds a phase contribution to the process frequency

response which slows the output response and must be compensated for by a controller. Monitoring

the process to obtain the delay can allow the controller to be designed correctly, so the performance

of the process can be improved.

Typically, processes with delay are controlled by one of two approaches. One approach uses a

type of controller, such as a Dahlin, a Deadbeat, or a Minimum Variance controller, that we shall call

dead-time controllers, whose design requires the knowledge of the exact delay. If the controller uses

an incorrect delay value, the resulting process performance is poor or even unstable. Monitoring the

time delay of the process allows confirmation of correct controller design and allows the controller

to be changed on-line if the delay varies, avoiding the associated possible poor performance.

The other approach involves the use of Proportional-plus-Integral (PI) and Proportional-plus-

Integral-plus-Derivative (PID) controllers. These controllers ignore the exact time delay in their

design. The performance of these controllers is therefore not as sensitive to variation in delay as

8



Chapter 2: Control Loop Monitoring

the dead-time controllers, so they are often used to control processes with unknown time delay.

The reason for using these controllers lies in the fact that the performance of dead-time controllers

deteriorates or even becomes unstable if the controller does not use the correct delay. However, the

performance of PI and PID controllers is worse than the dead-time controllers when the time delay

is known. By monitoring the process and obtaining the correct time delay, dead-time controllers can

be correctly designed, thus replacing PI and PID controllers, in these situations. The process can

then enjoy the superior performance of the dead-time controllers.

There are situations where the control scheme is not able to improve performance to a satisfactory

level due to limitations imposed by the process itself. The information obtained by monitoring the

process may reveal that changes in the process are necessary to further improve performance. If, for

example, monitoring the time delay reveals that the time delay changes frequently or is very long,

changes in the process may be required to correct this so performance can be improved. It may be

necessary to consider moving sensors to shorten delay or perform other measures which affect the

length or variability of the time delay. If the results of these changes make the delay shorter or more

constant, then the process performance will be improved.

A final benefit which arises from monitoring is that changes in the delay will be noticed. Once

a change is noted, the process operation can be investigated to determine the cause of the change.

Knowledge about the cause of the change or the degradation in process behavior will provide insight

into the important aspects of the process. If these aspects are watched and kept from changing, the

overall operation of the process can be improved. This discussion has shown a few advantages of

monitoring the process time delay.

2.3.2 Static Characteristics

A major assumption made when controllers are designed, is that the process to be controlled is

linear. Because no process is truly linear, it would be informative to know the degree of nonlinearity

present in the process. By monitoring the static input-output relationship, the degree of nonlinearity

will be found and can be examined. If it differs a great deal from what was expected then steps can

be taken to take accommodate this difference and improve control performance.

9
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Also, nonlinearities can develop over time, often as a result of deterioration in actuator operation,

such as control valves. If this nonlinearity is detected, then maintenance can be performed to return

the actuator operation to normal. Often there will be nonlinearities present that were not expected

when a control strategy was chosen. If this occurs, then the control strategy must be reworked to

account for the nonlinearity. It must also be realized that achievable performance will be limited

by any nonlinearities.

Finally, control performance will deteriorate if sensors or actuators are poorly sized. For example,

an undersized actuator will most likely exhibit saturation which in turn will limit the process response

time to changes in reference or disturbance upsets. Conversely, an oversized actuator may not be

capable of making fine adjustments required to keep the output very close to the reference. Similar

problems will be experienced with sensors as well. Poorly chosen sensors may be driven outside

their linear region, or may not have a resolution fine enough to detect small, yet undesirable changes.

Problems such as these can be determined from estimating the static input-output relationship.

2.3.3 Minimum Achievable Output Variance

It has been shown [7] that the variability of a control loop output can often be lower when the

process is in open loop or manual operation as opposed to feedback control. Sometimes, this situation

results from poorly maintained control valves and sensors, but often it arises from poorly tuned PI

controllers which cause much of the variability themselves. Bialkowski [7] estimates that the output

variance of processes in a pulp and paper mill can be reduced by as much as thirty to fifty percent

by improved loop tuning, controller selection and equipment maintenance. In industries such as pulp

and paper, where a small variation in the final product is an important goal, this reduced variability

can result in major economic savings.

It has been determined by Astrom [2] that the minimum variance in an output is achievable

through the use of a minimum variance controller. The output variance when this minimum variance

controller is used is the minimum achievable output variance obtainable by feedback control. A

method of calculating this minimum achievable output variance level for a process under any linear

1 0
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control was determined by Harris [17]. There are several reasons why this minimum achievable

output variance level should be estimated and monitored.

The ratio of output variance to minimum achievable output variance can be used to assess the

performance of the control algorithm which is employed. If this ratio is large, it suggests that

alternative controller parameters be chosen. This retuning of the controller may result in a smaller

ratio. It may be found that no choice of parameters for the present controller will reduce the output

variance to the desired level. A new control algorithm may then be required to further reduce the

ratio. In the case of processes with a large time delay, a dead-time controller should be employed.

It is just as likely that the minimum achievable output variance determined is not satisfactory.

No feedback controller can reduce the output variance below this level, so some other steps must be

taken to reduce the output variance. Modelling of the disturbance can be done so that feedforward

control can be employed and this control scheme will reduce the minimum achievable output variance.

Another way of reducing the minimum achievable output variance is by decreasing the time delay.

Thus the cause of the delay must be found so that one can be determined if it can be reduced. These

are a few uses of the minimum achievable output variance once it is known.

There are several more process properties which must be estimated in order to determine the

minimum achievable output variance. It is only natural that these properties are monitored, because

the cause of any change in the minimum achievable output variance level can be determined by

examining the estimation of these properties. Simulations will be used to study different changes in

a process and the effect these changes have on the calculated minimum achievable output variance.

In practice, many of these changes will suggest that maintenance be performed on the process, which

will help reduce the output variability and operation stoppages.

Now that the process properties to be monitored have been chosen, the tools required to determine

them will be examined. In turn, the following three chapters examine the steps necessary to determine

the time delay, static relationship and the minimum achievable output variance.

11
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Chapter 3

Time Delay Estimation

There is a great advantage in estimating the time delay of the process and there have been various

algorithms suggested recently to provide that estimate [14][12]. The chosen method, Fixed Model

Variable Regressor Estimation, is described in this chapter and the steps required to implement the

scheme and estimate the delay are listed. Examples are then given to demonstrate the operation of

the estimator. This is followed by an examination of the estimator to the operating conditions under

which monitoring is to be performed.

3.1 Fixed Model Variable Regression Estimator

The Fixed Model Variable Regression Estimator (FMVRE) was proposed by Elnaggar [12] as a

suitable method for estimating the delay of industrial processes. The FMVRE has advantages over

other delay estimation techniques as it is very straightforward to implement and it converges very

quickly. The FMVRE is decoupled from the estimation of any other process parameters and this aids

in its speed of convergence and ease of implementation.

In the derivation of the FMVRE, a fixed auxiliary model is used to represent the process. This

auxiliary model is chosen as a first-order plus delay, since most industrial processes are overdamped

and can be approximated by such a model. If the process is of a higher order, it is shown in [12]

that this auxiliary model is still suitable to estimate the delay.

3.1.1 Derivation of FMVRE

For a plant represented by a sampled-data linear model described earlier, the output is:

B(q-1 )^k^bincr
^y(t) = crk 

A (q-1 ) 
u(t, ) = q—^u(t)

1 + aiq-1^... aiiq— u (3.7)

where the delay is k and is always larger than or equal to one. When this delay is known only to lie

within a range [krnin/kmax], it can be correctly estimated, k, if the cost function:

J(1;.) = E{ E 2 (1:)}^ (3.8)
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is minimized, where E is the expectation function. The prediction error E is defined as:

E(k) = y(t) — k(t, fc.)^ (3.9)

where Sr(t, k) is the output determined for every delay in the range of interest, as given by a chosen

auxiliary model. This model is chosen to be first-order, for the reason given above, so its output is:

^y(t, 1c) = ay(t — 1) bu(t —^ (3.10)

and the cost function can be minimized once a and b are chosen. This minimization is not easy to do

yet, so the squared prediction error is evaluated as it will simplify finding the delay that minimizes

the cost function. The squared prediction error is given as:

E2 (1-0= [y(t) — ay(t — 1) — bu(t — k)1 2

= y2( t) a2y2(t — 1 ) + b2u2(t — fi.) — 2ay(t)y(t — 1)—^(3.11)

2b [y(t)u(t — fc) — ay(t — 1)u(t — k)]

Before taking the expectation of this expression, which is required to evaluate the cost function, the

definitions of autocorrelation and cross-correlation are introduced:

ry (r). Ely(t)y(t f r)}

ruy (r) = Efu(t )y(t r)}
(3.12)

= E{y(t)u(t — r)}

=^( —7- )

Using these definitions, the expectation of the squared prediction error is rewritten as:

E{ E.2(i)}^T.:v (0) a2 ry (0) b2 rum 
— 2ary (1) — 2b [ruy (k) — ar„y (k — 1)]^

(3.13)

^

E0^_ 2bEi

Upon examination of the terms that make up Eo and Eli it can be seen that Eo does not depend upon

the delay, whereas E1 does. Thus to minimize 4), E1 must be maximized if b > 0, or minimized if

b < 0. This means that for processes with a positive gain E1 is to be maximized and then for processes

with a negative gain E1 is to be minimized to determine the correct delay. Now E1 is given as:

^

E1^ruy (k) — aruy (k — 1)^ (3.14)
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which still requires that the auxiliary pole a is chosen. It was shown in Elnaggar [12] that the choice

of a=1 gives unbiased estimation of delay for low order processes and good delay approximation for

higher order processes. Thus:

E1 = ruy (10 — ruy (1: — 1)

Ef[y(t) — y(t — 1)]u(t —11.)}

=^Ay(t)u(t — 1.'0}

ruAy (k)

An advantage of choosing a=1 becomes apparent by the appearance of Ay. It means delay estimation

will not be affected by step changes in either the reference signal or disturbances. This is how the

process time delay is determined and now the FMVRE algorithm will be outlined followed by two

examples demonstrating its operation.

3.1.2 FMVRE Algorithm

The FMVRE algorithm is very simple to implement and is outlined below. These steps include

the important equations required to implement the algorithm:

1. Update Ei for every delay in the interval of interest. A forgetting factor, A, can be used as shown

to track time-varying time delay.

Ei (t, ki)^AEi (t — 1, ki) + [y(t) — y(t — 1)]u(t — ki) V kiE[k„,in , k„,„„]
^

(3.16)

2. For positive process gain, choose the delay that maximizes El.

El (t, k(t)) = max{Ei(t, ki)} V^ki E^kmaxj
^

(3.17)

3. Return to step 1 for the next sampled data.

3.1.3 Examples

The following two examples demonstrate the operation of FMVRE and confirm its quick

convergence and its ability to quickly track changes in the delay. A first-order process plus delay

was used for these examples:

(3.15)
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Now after zero -order hold sampling, with a sample time of T seconds, the process has the following

discrete form :

kG 1 )= b Cr N 
+ aq-1

where:
T

a = —e

(3.19)

b = 1 —^ (3.20)

,^d
K =T—T

For these simulations a white input signal, N(0,1) was used for the estimation of the delay.

EXAMPLE 1: 

The parameters of the process were chosen as follows:

Continous Time Discrete Time^(T=lsec)

T=2.5 Td=4 a=-0.67 b=0.33 k=5

The input and output data were run through the FMVRE and the results are shown in Figure 3.4.

It can be seen from Figure 3.4(a) that the estimate converges to the correct delay after about six

samples and the plot of the E1 function confirms that the delay is definitely five.

Figure 3.4: Results of FMVRE time delay estimation with (a) presenting the
estimation over time while (b) shows the E1 function at sample one hundred

15



Chapter 3: Time Delay Estimation

EXAMPLE 2: 

This example illustrates the ability of the FMVRE to adapt to changes in the process delay. For this

simulation, the following parameters were used:

Period Continous Time Discrete Time (T=lsec)

0- 100 r=2.5 Td =4 a=-0.67 b=0.33 k=5

101 -200 T=3 Td=1 a=-0.72 b=0.28 k=2

201-300 r=2 Td =3 a=-0.61 b=0.39 k=4

and it should be noted that the plant for the first one hundred samples is identical to the plant used

in Example 1. The results of delay estimation are in Figure 3.5 and include four different values of

the forgetting factor. These results show the change in delay convergence, as it varies from ninety

Figure 3.5: Delay estimation with varying forgetting factor, with (a) A=1, (b) A=0.99, (c) A=0.975, (d) A=0.95
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samples in Figure 3.5(a) for a forgetting factor of one, down to fifteen samples for a forgetting factor

of 0.95 shown in Figure 3.5(d). The reason for this can be understood by examining Figure 3.4(b),

which shows the E 1 function at sample one hundred. The difference between the E l function at five,

the correct delay at sample one hundred and El at two, the next delay, is quite large and must be

made up before the estimate of the delay will change. This time can be shortened by decreasing

the forgetting factor as it reduces the weighting of previous values of El. This increases the weight

of each new sample and will keep the difference between two and five in the El function smaller,

so the estimate of the delay will change quicker. Care must be taken so the forgetting factor is not

made so small that the estimation changes too rapidly.

3.2 Estimation of Delay in Control Loops

Up until now, the time delay of the plant has been determined while the plant has operated

in open loop and with no disturbances. To be of use for monitoring, the FMVRE must estimate

the delay correctly when the plant is under feedback control and subject to stochastic disturbances.

To ensure this is possible, the FMVRE operation is investigated with the addition of a stochastic

disturbance and then with the process under closed loop control. It can then be determined if the

delay estimation becomes biased under any circumstances.

3.2.1 Effect of Stochastic Disturbances

Before treating closed loop operation, the effect of adding a stochastic disturbance will be

examined. The form of such a disturbance has been discussed and a stochastic process was shown

in Figure 2.2, where the output was given by:

B(q-1 )^k^C(C1-1)
y(t) = ^ cf-^+ ^e(t)

Ai(cr i )^A2(q-1)Vd^ (3.21)

= Yu(t) Ye(t)
which consists of output due to the white noise as well as output due to the input. The effect of this

extra component on correct delay estimation must be examined.

The cross-correlation between the input and output is given by:

ruy (t = 1. 113, o (t)^ruy jt)^ (3.22)
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and since the delay is determined by evaluating this cross-correlation, the effect of adding the r us e (t)

term is important. This cross-correlation can be rewritten once the y e (t) is expressed as a sum of

noise terms up to time t:

ye(t) woe(t) -1- wie(t — 1) + w2e(t — 2) +^(3.23)

Then the input-disturbance cross -correlation can be written as:

ruye (t) = wor„(t) wirue (t — 1) + w2rue(t — 2) +
(3.24)

=0

This is because in open loop operation, the input signal and noise signal are not correlated. This

means that the delay that maximizes the E1 function is unbiased in the presence of process noise if

the noise is uncorrelated with the process input. This is the case with an open loop process and this

property of the FMVRE will be illustrated by an example.

EXAMPLE 

The first-order plant plus delay is used once again, though this time with the addition of a sto-

chastic disturbance. Figure 3.6 shows the process used for this example, which has white, N(0,1),

uncorrelated sequences as the input and noise signals.

FMVRE delay estimation was used to estimate the delay and the results are shown in Figure 3.7.

From these results, it can be seen that the delay estimation was not biased by the addition of the

stochastic disturbance, as the E1 function has a maximum at four. Since this test was performed on

a computer, it is possible to access the signals yo(t) and ye (t) so that their contributions to the E1

function can be studied. Figure 3.8(a) shows the E1 function when the signals u(t) and y o (t) are used

and Figure 3.8(b) is the result of using u(t) and y e (t). The E1 function resulting from the signals u(t)

u(t)4^Yo(t)^y(t)

N(0,1)

Figure 3.6: The stochastic process used for the example
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Figure 3.7: Results of FMVRE time delay estimation with (a) presenting the
estimation over time while (b) shows the E 1 function at sample one thousand

and yo(t) all but matches the E1 function in Figure 3.7(b) while the E1 function for the signals u(t)

and yo (t) is essentially zero. This example then highlights the fact that when the process input and

noise signal are uncorrelated, as in open loop operation, the delay estimation is unbiased.

3.2.2 Closed Loop Estimation

Attention is now turned to the process configuration of Figure 2.2, which has the process under

feedback control. FMVRE delay estimation will be performed on this setup and the possibility of

biased delay estimation will be investigated. It will be shown that the possibility of biased delay

does exist and examples to demonstrate its seriousness will be given in Chapter 6.

Figure 3.8: E 1 functions for (a) the input and plant output and (b) the input and disturbance output
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In the majority of cases the process will be assumed to be operating with a constant reference

signal, so any effect of changing the reference signal will be ignored. Now return to the cross-

correlation of the input and output which was found previously:

ruy (t) = ru3, 0 (t) + ruy. (t)
(3.25)

ruy. (t) worue(t) wirue(t — 1) + w2rue (t — 2) +

By adding feedback to the process, the input and noise signal will no longer be independent and thus

the E1 function will have contribution from ruse (t). The amount of this contribution will depend on

the noise filter and controller and may result in biased delay estimation of the delay. This problem

will be examined further in Chapter 6 to determine its extent and to explore possible solutions.

So, now that the FMVRE algorithm has been introduced and its operation demonstrated, attention

will be turned to the problem of estimating the static input-output relationship and the minimum

achievable output variance. Further simulations to investigate the operation of the FMVRE are saved

until Chapter 6 so that the other tools can be introduced.
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Chapter 4

Static Characteristics

It is possible to identify the static relationship between the input and output of a process while it

is operating in feedback control. The shape of this relationship will provide additional understanding

of the process operation. The Adaptive Nonlinear Modeller represents the static relationship by using

a table of values and an interpolation formula. After the operation of the estimator is explained,

its algorithm will be outlined. Then an example of the Adaptive Nonlinear Modeller operation will

be given to exhibit its functionality. The application of the estimator to the closed loop regulation

problem is briefly discussed and while simulations are saved for a future chapter.

4.1 Adaptive Nonlinear Modeller

The Adaptive Nonlinear Modeller (ANM) was proposed by Astrom [3] as a multiple use tool

to model the static input-output relationship of a process. The ANM described here uses Recursive

Least Squares estimation to identify this relationship avoiding some difficulties of the integration

method used by Aström. A static input-output relationship can be described by:

y = f(u)^ (4.26)

where f(•) is simply a function which relates the process input, u, to the process output, y. The ANM

represents this function with a table of values and an interpolation formula. The table consists of

Figure 4.9: Block diagram of the Adaptive Nonlinear Modeller
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discrete values of the input over the interval of interest along with the corresponding output for each

discrete input. The role of the interpolation formula is to provide output when the input is between

interval values. Estimation is required to identify the output values for each discrete input value in

the table, from sampled data. As an aid in the discussion, Figure 4.9 presents the structure of the

ANM and the following notation is defined:

uk — a discrete input value in the table

y — the process output during estimation

Sr. — the Adaptive Nonlinear Modeller (ANM) output

fk — the estimated value in the table corresponding to input uk

f(uk) — the process output for the input uk

Using this notation, the input interval is [ui,u n] and each entry in the table is simply a pair of

numbers {uk , f(uk)}. The interpolation formula then uses the table values to determine the output for

any arbitrary input which lies between two entries in the table, uk +i?_ u uk. Linear interpolation

is a very simple and straightforward formula to use and because of this is used by the ANM for

interpolation. The linear interpolation formula which determines the output for an input is given

by:
y f(u) = uk+i — u  ff(uk) u — uk

Uk+1 uk
^ f (Uk+1)^ (4.27)u

k-1-1 —

The remaining problem is to estimate the values of f(uk) for the table. These entries will be determined

by using Recursive Least Squares (RLS) estimation.

In order to use RLS estimation, the model must be placed into a linear regression form. The

output for any input in the interval [ui,u n] can be determined using the table of values along with

the interpolation formula and is given as:

y = aif(ui) a2f(u2)^an—if(uu—i) anf(uu)^(4.28)

All but two of the ai's will be zero, as the input will lie in only one interval [uk, uk+1]. The linear

interpolation formula will determine the value of the two nonzero ai's as:

uk_i —
ak = ^

Uk+1 — 11k

u — uk
and ak+1 = ^

uk-F1 — uk
(4.29)
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For every sampled data, it is not known which ai's are zero, so in general the regression vector is

defined as:

(NO = [^a2 ] T (4.30)

and the parameter vector is:

0 = [ f (ui) f (u2) f (u3) . • • f (11u) ] T

which allows the following linear regression form:

y = 9T1.(t) v(t)

The least squares estimate of the parameter vector is defined as:

e = [ ft f2 f3^fIl]T

which can be defined recursively using:

P(t — 1)(t) 
K(t) = 1 +q,T(t)p(t — 1)4)(t)

(4.31)

(4.32)

(4.33)

(4.34)

O(t) = O(t — 1) K(t) [y(t) — O T (t — 1) ,T.(t)]^(4.35)

P(t) = P(t — 1) — K(t)(1)T (OP(t — 1)^ (4.36)

where P(t) is the parameter covariance matrix and K(t) is the gain matrix.

4.1.1 ANM Algorithm

The following stages outline the operation of the ANM. They summarize the previous section

and highlight the important steps and equations required to implement the ANM.

1. Determine the input range of interest and break it into discrete intervals.

2. For every sampled data, find the interval in which the input value lies.

uk+i ] where Uk < u <^ (4.37)
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3. Use linear interpolation to determine the values for the regression vector.

uk+1 — u^u — uk
ak —^and ak-hi = ^

uk+1 — uk^uk+1 — uk

1:13 = [ 0 ... 0 ak ak+i 0 ... 0F
(4.38)

4. Determine the estimate of the table values by using RLS estimation.

P(t — 1)(D(t)
K(t) =

1 +4DT(t)P(t — 1)1, (t)

O(t) = O(t — 1) + K(t) {y(t) — O T (t — 1)(D(t)]

P(t) = P(t — 1) — K(t)4DT (t)P(t — 1)

5. Return to step 2 for the next sampled data.

The shape of the f(.) function can be seen by plotting the table at any time during estimation.

If the number of computations required by the RLS estimation is a concern, it is possible to reduce

this number by realizing the fact that for any data, all but two values in the regression vector are

zero. This greatly reduces the number of multiplications required by the matrix operations in the

equations of (4.39) to determine the estimates.

4.1.2 ANM Example

This example was used by AstrOm [3] to exhibit the operation of the ANM. It is repeated here

to show the success of the ANM using RLS estimation. The input and output are related by:

y = u2 (4.40)

which is definitely a nonlinear relationship. The input and output used for estimation are shown

in Figure 4.10(a&b), and the resulting parameter estimation for the table output values is shown in

Figure 4.10(c&d). Figure 4.10(c) shows that the estimates arrive quickly to near their correct values,

while Figure 4.10(d) shows that the table values, represented by zeroes, do a good job approximating

the squared relationship. Figure 4.11 shows the ability of the ANM to reconstruct the output using

the table and interpolation formula for the given signal. This confirms the successful operation of

the ANM with RLS estimation.

(4.39)
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Figure 4.10: Results of the ANM estimation showing (a) the input used, (b) the resulting
output, (c) the table value estimation over time and (d) a plot of the final estimated table values

Figure 4.11: Results of using (a) the input and the ANM to (b) reconstruct the output
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4.2 Application to Stochastic Feedback Processes

The ANM described has assumed that the input and output are obtained during steady state

operation of a process. If all transients are not removed from the signals, then the static input-output

relationship will not be correctly identified. These transients result from the process dynamics which

are prevalent during reference changes and disturbance upsets. Prior to the installation of the ANM,

some precaution must be taken to ensure that the input and output signals are in steady state. Low

pass filtering of the signals will remove much of the undesired transient component of the signals

as well as the effect of stochastic disturbances. Also, the ANM could be turned off during setpoint

changes and turned back on once the setpoint remains constant for a period of time. These problems

are very important and will be thoroughly examined by simulations in Chapter 6. Also to be examined

is the problem of setting an appropriate cutoff frequency for the low pass filter.

The only remaining task is to introduce the method used to determine the minimum achievable

output variance of a process. Once introduced, the details of all the estimators used for monitoring

purposes will be studied using simulations.
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Chapter 5

Output Variance

The variance in the process output becomes important when a constant output is desired. The

controller becomes known as a regulator because it attempts to keep the output close to the reference.

This chapter begins by determining the minimum variance achievable by a feedback controller. Then

the method used to find this minimum level is given, for a process in closed loop regulation. Next, the

details of estimating the minimum achievable output variance are presented, including an explanation

of the Laguerre network used to model the process and an explanation of the Recursive Extended

Least Squares method used to estimate the parameters of the Laguerre network. Lastly, the chapter

ends by outlining the algorithm needed to calculate the minimum achievable output variance and

demonstrating its operation by presenting a simulation result highlighting important aspects.

5.1 Minimum Achievable Output Variance

The following derivation of the minimum achievable output variance follows the method used

by Astrtim [2] to determine minimum variance control and uses the notation introduced in equation

(2.3). The goal is to find the lowest possible level of the output variance, E{ y 2(t+k)}. It will then

be possible to estimate this level, so that there is a comparison value for the present output variance

of the process.

The derivation begins by writing the process model in terms of present and future values:

B(q- 1 )^CN- 1)
y(t k) =^u(t) +^e(t + k)

Ai(q- 1 )^A2(c1-1)Vd

and the last term on the right can be written as:

C(q 1) ^(-1]
A2(q-1)Vd 

e(t + k) F(ql)e(t + k) + 
A2((1-1)Vd

 e(t)

(5.41)

(5.42)

which is now expressed as known and unknown quantities as of time t. The polynomial F(q -1 ) is

monic and of degree k-1, that is one less than the process delay. Meanwhile, the degree of G(q1)
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depends on q, the degree of C(q-I ), and p, the degree of A2(q -1 ), and is the larger of (p+d-1) or (q-1).

Dividing (5.42) through by e(t+k) gives a Diophantine equation:

C(q 1 )^F(cri)^G(q-1) __k
(5.43)

^

A2(q-1 )Vd^A2(q-1)Vdq

or in a more familiar form:

C(q1) F(g1)A 2 (q1)vd G(q 1) q—k^ (5.44)

Now substituting (5.42) into (5.41) gives:

Bq^ G)

^

y(t + k) = A((cr 
1
i
)

 ) u(t) + F(q-1 )e(t + k) + A2(c
(q-1
ri)vd e(t)^(5.45)

which shows that the input can affect the future output by removing the present noise. It is not

possible however, for the input to remove the future noise from the future output. Yet the value of

the present noise is unknown and it is not possible to determine the input needed to remove its effect,

so this noise must be replaced with something which is known, namely the present output. This is

done by returning to the process model and isolating e(t):

B(q-1 )A2N-1 )Vd
e(t) = ^u(t k) + 

A2 (q1) Vd
y(t)^(5.46)

^

Ai(cri)c(q—i)^C(q-1)

This can be substituted into (5.45) and the following relation can be found:

y(t + k) — 
A iB((q-1-1

c1)) [1
^C(q-1 )^C(q-1)

^G(ci 1) q—k] u(t)^G(ci 1) y(t) + F(q-1 )e(t + k)^(5.47)

Now the Diophantine equation can be manipulated to show that:

^

GN-1)^F(cri)A2(cri.)vd
1 ^q k —  ^ (5.48)

^

C(q-1 )^C(q-1)

which can be substituted into (5.47) to give:

y(t k) = 
B(q-1)F(q-1)A2(g1)Vd

u(t)+
G(q1)  

y(t) + F(q-1 )e(t + k)^(5.49)
^AI(q-1 )C(q ')^C(q- 1)

Then the variance of y(t+k) is given by:

E{y2 (t + k)} = E{ [F(q-1 )e(t + k)] 2 +

[B(q-1 )F(q-1 )A2(q-1 )Vd u(t) G (q-1 )^]
Ai(q-1 )C(q-1 )^C(q-1) 

y(t)
f

(5.50)
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There are terms missing from the above expression which contain the correlation of the future noise

with past inputs and outputs. As the future noise is independent of the past inputs and outputs, the

expectation of these terms is zero. There are now two terms left and it is now possible to remove

the present output by the appropriate choice of u(t). The input cannot affect the future noise and so

the future output will always contain these terms. The minimum achievable output variance is the

level reached when the present output is removed from the future output and is:

E{y2 (t + k)} = Ef [F(q-1 )e(t + k)] 2 }^ (5.51)

As can be seen from (5.51), the minimum achievable output variance will depend on F(q -1 ) and the

variance of e(t). If the process delay is one, then the variance will simply be:

E{y2 (t)} = E{e 2 (t)} = cre2^(5.52)

Thus, for a single delay, the output variance will equal the disturbance variance. When the delay

increases, so will the minimum achievable output variance. For a process with a delay k, the minimum

achievable output variance is found from (5.51) to be:

2^2
Grum/ = Cre ( 1^f?^•••^fk2-1) (5.53)

The coefficients of F(q -I) must be known along with the time delay to determine the minimum

achievable output variance.

To be able to achieve the minimum achievable output variance, it is required that the input be:

A1(q 1 )G(q-1 )
u(t) —

131(q-1 )F(q-1 ) A2^ 1)Vd y(t )
( t (5.54)

The application of this control signal will result in the minimum achievable variance in the output

signal and is known as the minimum variance control law. This controller is what must be used to

obtain the minimum achievable output variance and any other controller will not reach this lower limit.

However, this controller can require a very active control signal to obtain this minimum variance

performance and the process actuators must then be able to follow this signal. Also, in order to

determine the minimum variance control signal, knowledge of the disturbance filter is required. If
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this is not known, then a minimum variance control algorithm cannot be used. It may be decided to

use another type of controller, in which case its output variance can be compared to the minimum

achievable output variance and its performance judged. Lastly, the autocorrelation function of a

process under minimum variance control will exhibit an interesting and useful characteristic, which

will depend on the time delay of the process. The function will have significant correlation only at

lags less then the time delay. This number of lags will also correspond to the number of coefficients

in the F(q-1 ) polynomial.

5.2 Method of Finding Minimum Achievable Output Variance

Now that the minimum achievable output variance level has been determined, what must be done

to find this level. By knowing the minimum achievable output variance, it can be compared with

the present operating output variance to evaluate performance. Based on the previous discussion, the

use of the autocorrelation function seems to be an obvious choice. Calculating this function would

show if the minimum achievable output variance has been achieved, but the use of the autocorrelation

function has several shortcomings. First, while significant correlation only at lags less than the delay

indicates minimum variance performance of the controller, correlation beyond this does not give a

concrete indication of how far from minimum achievable output variance the process is operating.

It is then difficult to determine whether changes to the present process to improve output variance

are worthwhile. It would also be difficult to determine changes in the minimum achievable output

variance by just using the autocorrelation function. Though the autocorrelation would change each

time it was calculated, it would be difficult to determine if the changes were significant. A better

method seems to be required.

Another possible method of determining the minimum achievable output variance would consist

of estimating the disturbance filter and the variance of the noise and solving the Diophantine equation

(5.44) to determine the F(q -1 ) coefficients. Once they are determined, the minimum achievable output

variance can be calculated and compared to the present output variance. The difference between the

minimum achievable output variance and operating output variance will indicate if the performance is

satisfactory. The major drawback to this method exists due to the fact that the process is operating in
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feedback control while estimation is performed. Parameter identification may not be possible during

feedback control, especially if the process input is not rich enough. A way of avoiding this problem

was suggested by Harris [17] and consists of estimating the closed loop noise transfer function and

from this, determining the minimum achievable output variance.

Returning to the closed loop diagram of Figure 2.2, the transfer function between the noise

signal and the output is found as:

or:

y(t) ^Gd(q1) 
e(t)^1 + Gc (q-1)Gp (cr1) (5.55)

y(t)^R(q1)^Ai(cri)c(cri)

e(t)^s(cr i)^A 2 ( q-1)vd[A i ( cr1) G c ( cr i)B(cr i)q—ki

Now it was shown in the previous section that the minimum achievable output variance is a function

of the noise variance and coefficients of the F(q -1 ) polynomial. If the above transfer function is

estimated, then it is possible to find F(q-1 ) and the noise sequence. It will now be shown how to find

the F(q-1 ) polynomial and we start by rearranging the transfer function as:

R(q1)^C(g1)^(q-1) 
S(q 1 )^A2(q 1 )vd (A1(q-1 ) + G e (q--1 )B(q 1 )q—k) (5.57)

and replacing A2 (q_c(q- 
)mod with the Diophantine equation (5.43) (and dropping the (q -i rs temporarily):

R
Ai + Gc l3q— k(F A2VdGcrk^Al^)

FA1^GAisork
Al + G.,13q—k A2Vd[A1 + G el3q— k]

FG,l3q—k^GAlq—k
= F + ^ (5.58)

Al + G,13q—k A2Vd[A1 + G c l3q-1 ]

F + [A2V
dFG,B + GAi] Cr k

^=  
A2Vd[A1 + G c l3q— k]

R(q-1)^Gi(cri)qk
^ = F(q-1 ) +^
S(q-1 )^S(q-1)

The closed loop transfer function can then be expressed as a Diophantine equation where the F(q -1 )

polynomial is the one required to determine the minimum achievable output variance. This is not

surprising as it confirms the fact that the controller transfer function can only compensate for the

(5.56)
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noise fed back to it and not compensate for the noise placed directly onto the output. After the R(q -1 )

and S(q -1 ) polynomials are found then the F(q -1 ) polynomial can be determined by solving:

R ( 4-1) F (q—i)s(q—i) G/(cri)q—k (5.59)

once the size of the F(q-1 ) polynomial is set. This relies on knowledge of the time delay because the

unknown coefficients in the F(q -1 ) polynomial number one less than the delay.

It will become necessary to determine the coefficients of the F(q 1 ) polynomial from a state-space

representation of the process. This is because the process will be modelled by Laguerre filters which

use a state-space representation. The transfer function from the noise to the input has the following

state-space representation:
x(t + 1) = Ax(t) be(t)

(5.60)
y(t) = cx(t) e(t)

where for a single input, single output process the following are defined. The matrix A will be

a n by n matrix while b and c are vectors of length n. The state vector is x(t) which also has n

elements, while the process output is y(t) and the noise sequence is e(t). The value of n will depend

on the process represented. Now if the output is written in terms of the noise signal, the equivalent

of equation (5.56), the closed loop transfer function, can be obtained. This is performed by writing

the state equation as:
qx(t) = Ax(t) be(t)

x(t) = (q — A) —l be(t)
and this expression can be substituted into the output equation:

y(t) = c(q — A) —l be(t)+ e(t)

= [1 c(q — A) —l b]e(t)

= [1 + cbq-1 cAbq-2

cAk-2bq- k+1 cAk-1 (€1^1 bq-k]e(t)

(5.61)

(5.62)

The terms cb, cAb, cA2 b..., are the Markov parameters of the process. Now it has been shown that

the terms in the output up to the size of the delay are not affected by any control action, so the

minimum achievable output variance is defined as:

cre2 [1 + (cb) 2 (cAb) 2^(CAk-2b) 2]^(5.63)
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which can be found from the state-space representation once the matrix A and vectors b and c are

known.

5.3 Estimation of Minimum Achievable Output Variance

The method for finding the minimum achievable output variance has now been outlined, so it

is necessary to determine what must be done to estimate it. The method used by Harris [17] and

Perrier [23] deals with the estimation of the time-series model previously described. The method to be

used here involves modelling the closed loop noise transfer function with a state-space representation

of discrete Laguerre filters. Discrete Laguerre filters are used as they avoid the necessity of choosing

the degree of the closed loop polynomials, as required by time-series models. While there are

parameters to be chosen so the Laguerre network can be used, estimation is more robust [25] to

their choice than to the choice of polynomial degree in a time-series models. The parameters of

the state-space representation are estimated using Recursive Extended Least Squares estimation as it

is the least complicated method available to estimate process parameters where unknown variables

exist. Unlike Harris, who assumed the time delay is known, the estimate obtained by the FMVRE

will be used to determine the number of terms in the minimum achievable output variance. Finally,

the minimum achievable output variance is calculated using the method outlined for a state-space

representation of a process.

The following sections describe the discrete Laguerre model and how it is formulated for this

situation as well as outlining Recursive Extended Least Squares estimation. The Recursive Extended

Least Squares method must be applied to this problem, which requires some of the parameters of

the state-space representation be estimated. The complete algorithm to find the minimum achievable

output variance is outlined, including all steps and important equations necessary to find the correct

value. Lastly, an example of minimum achievable output variance estimation is given.

5.3.1 Discrete Laguerre Model

In discrete time, the Laguerre set is described by the following functions [16]:

— V1 a2^1N(t) 
(N — 1)! de-1 [

N-1(1 ac)N-1 —1 < a < 1^(5.64)
q=a
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Figure 5.12: Block diagram of Laguerre filter network

where N is the order of the function while the parameter a is the function's time scale. As the Laguerre

functions are orthonormal and complete in L2{0, 00), they can represent the impulse response of any

stable sampled linear process with an infinite expansion:
00

^

h(t) = E gN 1N(t)^ (5.65)
N=1

where gN is the Nth Laguerre gain. The Z-transform of this set of functions results in the following

Laguerre filters:

(1 — aq N-1
LN (q) =  ^ (5.66)

q — a q—a

which can then represent any sampled linear process as :
00

^

G(q) = E gN LN(q)^ (5.67)
N=1

The Laguerre filters can be used to approximate a sampled linear process by using N filters which

leads to the network representation in Figure 5.12.

5.3.1.1 Laguerre Network State-Space Representation

The most convenient form of a Laguerre model to use when the gains are to be estimated, is a

state-space representation. The state-space representation of the discrete Laguerre filters is:
1(t + 1) = Al(t) bu(t)

(5.68)
y(t) = c 1(t)
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To determine the matrix A and the vectors b and c, the block diagram in Figure 5.12 can be examined.

A set of equations is required to define this matrix and vectors, some equations which express the

future states, 1(t+1), in terms of present states and the input while another equation expresses the plant

output in terms of the present state values and the input. From this block diagram, the following

equations are found:
y(t)^gill (t)+g212(t)

= [ gl^g2

...H-gN1N(t)

grd [WO^1 2 (t)^1N(t)]T
(5.69)

1 1 (t)^a2
(t) + V1 - a2 u(t) (5.70)11(t + 1) = au(t)^q - a

12(t)^1 - aq
12(t + 1) = al2(t)^l i (t) - a l i (t + 1)li(t)^q - a (5.71)

12(t + 1) = a 12 (t) + (1 - a 2 )11(t) - a/1 - a2 u(t)
13(t)^1 - aq

13(t + 1) = a13(t) +12(0 - a12(t + 1)12(t)^q - a (5.72)
.•. 13(t + 1) = al3(t) + (1 - a2 )12(t) - a(1 - a2 )11(t) a2 V1 - a2 u(t)

1N (t)^1- aq=
1N(t + 1) = alN(t)^1N-i(t) - alN_1(t + 1)IN_1(t) q - a

1N(t + 1) = a 1N(t) + (1 - a2 )1N_1(t) - a(1 - a2 )1N_2(t) (5.73)

(_a)N-2 ^- a2)11 ( t )^(_a)N-101 - a2u(t)

From equations (5.70-5.73), the matrix A can be formed as:
a^0^0^..^0 -

(1 - a2 )^a^0^..^0

A = -a(1 - a2 )^(1 - a2 )^a^..^0 (5.74)

and the vector

(_aN-2) ( 1 - a2)^(_aN-3)

b is found to be:

(1 - a2)^
(-

aN-4) (1 - a2)^a_

^1 - a2

-a V1 - a2

b = a2 V1 - a2 (5.75)

(-a)N-2^
— a2
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are given by:

aii = a^i = j

aii = 0^i < j^ (5.76)

aii = ( —a) i— j -1 (1 — a2 )^i > j

and inspection of the b matrix shows its elements are defined by:

bi = (

From equation (5.57), the c vector

—a) i-1^— a2 ,^i = 1 to

is:

N (5.77)

c= [gi^g2^gN (5.78)

and with these definitions, the state-space representation of Laguerre filter model is complete.

One slight modification is required in the above state-space representation so that it can be used

for estimation of the minimum achievable output variance. This change arises from the fact that there

is no delay in the closed loop noise transfer function and the noise appears directly on the output.

The state-space representation becomes:

1(t + 1) = Al(t) be(t)
(5.79)

y(t) = c 1(t) + e(t)

where the matrix A and the vectors b and c are as previously defined. It should be noted that the

matrix A and vector b of the Laguerre model are set once the time scale and number of filters are

chosen. This allows them to be calculated prior to estimation and used directly in computations

without any modifications. Now the estimation algorithm used to estimate the elements of the vector

c as well as the e(t) values will be explained. The method chosen to do this is Recursive Extended

Least Squares estimation.

5.3.2 Recursive Extended Least Squares Estimation

The Recursive Extended Least Squares (RELS) estimator will be explained using a time series

model and then applied to a state-space representation. A process can be described by the following

model:

A(q-1)y(t) = B(q-1 )n(t) C(q-1 )e(t)^ (5.80)
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which is just a general case of equation (2.3) where:

A(q-1 ) = 1 + aicri^auccu

B ( q 1) boq—k^bmq—k—ui

C(q- 1 ) = 1 + cicr l ...crcrr

which can be expressed as the following linear regression model:

(5.81)

y(t) = OT(D(t) e(t)^ (5.82)

with regressor:

(I)(t) = [—y(t — 1)^—y(t — n) u(t — 1) ...

u(t — m) e(t — 1)^e(t — r)]T

and parameter vector:

(5.83)

0 =- [ai^• all b 1 • • • bin ci •^
er T^ (5.84)

It would be natural to attempt to estimate the parameter vector using least squares estimation, but this

method cannot be used because the e(i) terms are not known and so the regressor cannot be formed.

The least squares method can be modified slightly to include estimation of unknown variables in

411(0 from available data. Such methods, which combine the estimation of a parameter vector and

unobserved components in the regressor are known as Pseudolinear Regressions (PLR). A more

common PLR is the extended least squares (ELS) method.

5.3.2.1 Recursive Extended Least Squares Algorithm

The problem with attempting to use least squares estimation in the above situation is the

unobserved variables in the regressor. The unobserved variables could be replaced with an estimate

of them, given by rearranging (5.82):

e(t) = y(t) — OT1.(t)^ (5.85)

With this minor change in the regressor, the recursive extended least squares algorithm is given by:

cil(t) = [—y(t — 1) ... —y(t — n) u(t — 1) ...
(5.86)

u(t — m) E(t — 1) ... E(t — r)]T
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P(t — 1)(1)(t)4T(t)P(t — 1) 
P(t) = P(t — 1 )^1 + (DT(t)P(t — 1)43(0 (5.87)

= O(t — 1) + P(t)(13(t)[y(t) — OT (t — 1)41)(t)]^(5.88)

E(t) = y(t) — OT (t)(D(t)
^

(5.89)

The similarity of the RELS algorithm to that of the RLS is the main attraction of this method. Unlike

other algorithms used to determine the coefficients of unobserved variables, this PLR does not require

any extra filtering or checking that the filter is stable.

5.3.2.2 Convergence

This PLR is not guaranteed to converge to the true parameter vector, 00, and relies on the positive

realness of certain transfer functions in order to converge. For a process exactly described by the

following ARMAX model:

A0(q 1 )y(t) = Bo (q-1 )u(t)-i-00(q-1 )e(t)^(5.90)

a sufficient condition for convergence of 0(t) to 00 is:

Re 
[ 
C0(eiw)

1 ^11 > 0 V co^ (5.91) 2

or equally:

IC0 (eiw)—li< 1 V w^ (5.92)

Thus the filter co(1,,, )^must be strictly positive real (SPR) to ensure the convergence of the

parameter vector to the true values. A necessary condition to assure convergence also exists, which

is:

Re [Co (e il] > 0 V w^ (5.93)

If this condition does not hold, then there exists a A0, Bo, and u(t) so that the probability of 0(t)

approaching 00 is zero.
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Before continuing and detailing how the Laguerre gains are estimated using RELS estimation,

the convergence property will be considered. The transfer function to be modelled so that o can

be found, differs from 5.90 in two ways. There is no Bo(q -1 ) polynomial while Ao(q -1 ) and Co(q-1 )

are generally complicated polynomials made up from the plant, controller and disturbance filters of

the process. This means that the convergence of the RELS estimates depends on whether R(q -1 ), and

not Co(q-1 ) is SPR. In the simulation study the influence of this condition will be further examined.

By adopting Laguerre filters to model the closed loop noise transfer function, it is required

that the Laguerre gains, which make up the c vector in 5.79, be estimated. The following section

explains why RELS estimation is required and how it is applied to this situation, when a state-space

representation is used.

5.3.2.3 Estimation of Laguerre Gains

The Laguerre model state-space representation of the closed loop noise transfer function is:

1(t + 1) = Al(t) be(t)

y(t) = CT 1(t) e(t)
^ (5.94)

the vector c has N elements, the Laguerre gains, which must be estimated. The parameter vector is:

0 = [Ci C2 • • • CN

and the regressor is:

cp (t) = [ h (t) 12 (t)^1N(t) ]T

so the linear regression equation becomes:

y(t) = e(t) — O T4.(t)

(5.95)

(5.96)

(5.97)

Now the regressor elements are solved from the state equation:

(D(t) = Al(t — 1) + be(t — 1)
^

(5.98)
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which involves the unknown noise sequence, so RELS is required to estimate the elements of the

c vector. The above linear regression is then rewritten to give an estimate, E(t), of each element

in the noise sequence:

(t) = y(t) — 9T (t)(1.(t)
^

(5.99)

and then the regressor is defined as:

Ib(t) = 1(t) =A1(t — 1) + bE(t — 1)^ (5.100)

The RELS algorithm can be carried out with these definitions and so the unknown parameter vector

containing the Laguerre gains can be identified.

5.3.3 Minimum Achievable Output Variance Estimation Algorithm

Now that all the tools necessary to estimate the minimum achievable output variance have been

described, the complete algorithm for its estimation will be given. Following this algorithm will

obtain an estimate of the minimum achievable output variance.

1. Prior to estimation, the number of filters, N, and the time scale, a, should be chosen. The matrix

A and vector b can then be determined.
aii = a i = j

A= aij = 0

ail =
i < j

— a2 )^i > j
bi = ( — a2 , i = 1 to^N

2. Next, an estimate of the c vector is obtained along with an estimate of the noise value.

1(t) = Al(t — 1) + bE(t — 1)

P(t) = P(t — 1)^P(t — 1)1(t)1T (t)P(t — 1)
1 + IT(t)P(t — 1)1(t)

e(t) = e(t — 1) +P(t)1(t)[y(t) — e T (t — 1)1(t)]

E(t) = y(t) — j(t)1(t)

3. The estimate of the plant delay is found.

Ei(t,ki) = AE1(t — 1,k1)^[y(t) — y(t — 1)111.(t — ki) V kie[kmi„,

El (t, k(t)) = max{E(t, ki)} V^ki E [k111111, knia,]

(5.101)

(5.102)

(5.103)
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4. Finally, the estimate of the minimum achievable output variance is calculated using the estimate

of the plant time delay, k, the estimate of the Laguerre gains, c, and the estimate of the noise

sequence, E(t).

[ 1,_1.
e,..2 w ,_ k2_ , + E (eAi_i b) 2

i= 1

(5.104)

 

5. Return to step 2 for the next sample data.

Step four does not have to be performed for every new sampled data and to save calculations, the

Ab, A2b, up to A l"• b can be computed prior to estimation.

5.3.4 Example

This example will show the ability of this algorithm to estimate the minimum achievable output

variance, as well as highlight interesting aspects that result during estimation. The process used for

this example is shown in Figure 5.13 and consists of a first-order plant and a ARMA(2,1) disturbance.

The time delay of the plant is four samples and the plant is under Dahlin control. Along with the

process, some of its properties are also shown in Figure 5.13. The transfer function to be estimated

is shown along with the coefficients of the F(q -1 ) polynomial. There are four coefficients in this

polynomial which corresponds to the delay and are used with the variance of the noise to determine

the minimum achievable output variance shown. Comparing the output variance to the minimum

cre2 = 0.81
cr2Y = 1.2116
a2 = 0.9274my

Y(t)^1 -q-1 +0.31q-2 -0.03q-3 -0.05g-4 +0.25q-5 -0.03g-6
e(t)^1 - 1.24g-1 + 0.37q-2

F(g -1 ) = 1 + 0.24q -1 + 0.2376q-2 + 0.1758g-3

Figure 5.13: Process used in the example
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Laguerre Gains Estimation

Figure 5.14: The Laguerre gains estimated during minimum achievable output variance estimation

achievable output variance, it is clear that the Dahlin controller keeps the output quite close to the

minimum value.

The results of one simulation using one thousand data points and using a Laguerre network with

six filters and a time scale of 0.3, are shown in Figures 5.14-5.16. This simulation used a constant

reference signal, which will be the situation in a regulation problem, and in this case the reference

Figure 5.15: The (a) estimate of the F(q-1 ) polynomial and (b) the estimated noise autocorrelation
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Figure 5.16: The (a) FMVRE time delay estimation and the (b) estimated
minimum achievable output variance and process output variance

used was zero. The estimation of the Laguerre gains appears in Figure 5.14 and it is apparent that the

gains level out after roughly four hundred points. However, these gains do not give any indication

of how well the transfer function has been modelled by the Laguerre network. To see this, equation

5.63 is used to calculate the F(q -1 ) coefficients, which appear in Figure 5.15(a). The close agreement

suggests the Laguerre network was successful in modelling the transfer function. The autocorrelation

of the estimated noise sequence appears to approximate white noise, as shown in Figure 5.15(b) as

it has an impulse shape. This is what is desired as the sequence being estimated is white noise

which has an autocorrelation function that has no correlation at all nonzero lags. The true delay

was correctly estimated after roughly fifty samples and the estimated minimum achievable output

variance is compared to the present output variance in Figure 5.16(b). As the closed loop function

has an infinite impulse response, it should be realized that the calculated output variance is only an

approximation of the true output variance. The estimated value, approaches o-,2„v , which was to

be expected based on the estimation of the noise sequence and F(q -1 ) coefficients. As mentioned,

this simulation was performed using six Laguerre filters with a time scale of 0.3, this information is

always shown on the plot of the estimated F(q -1 ) coefficients, Figure 5.15(a). One simulation may

not, however, give a complete sense of how well the estimation is performing and conclusions drawn

based on a single simulation could be erroneous.
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Figure 5.17: Distribution of the results of five hundred simulations

To arrive at a better sense of how well the estimation performs, this simulation was repeated five

hundred times using different noise sequences to obtain a distribution of the results. These results

are presented in Figure 5.17 as a histogram of the estimated minimum achievable output variance to

its calculated value. From this histogram it can seen that roughly twelve percent of the 500 tests

resulted in an estimated minimum achievable output variance that was between 0.99 and 1.01 of the

calculated value. Also, the time delay percentage is listed in the upper right corner of the plot. The

value listed corresponds to the percentage of the five hundred tests which had the delay correctly

estimated. In this case, the delay was correctly estimated in all the simulations. The shape of the

curve gives an indication of the distribution or variance of the values estimated. As the mean value

was 0.9599, this indicates that the results obtained in Figure 5.14-5.16 can be considered typical.

Also, the mean value of 0.9599 gives a measure or indicator of how well this choice of filter number

and time scale performed.

Now that all of the monitoring tools have been discussed, a comprehensive simulation study

will be presented which will examine the operation of the various estimators. The study is used to

examine the performance of the estimators and to determine any limitations of the methods.

44



Chapter 6: Simulation Study

Chapter 6

Simulation Study

The following chapter presents various simulations to determine the performance of the mon-

itoring tools. The simulations shown are by no means inclusive of all the simulations performed,

but they do highlight the important trends encountered. Because the results of simulations depend

on the process used, the results obtained are not conclusive. No recommendations should be applied

universally to all processes as the conclusions are based on the specific process examined. The

conclusions derived from simulations provide a good starting approach to follow when applying the

monitoring to new processes.

The first study investigates the possibility of biased delay estimation occurring. Next, the effect

of feedback and noise on the estimation of the static input-output relation by the ANM is examined.

This is followed by estimation of two typical nonlinearities, an actuator saturation and a deadzone.

The operation of the method used to determine the minimum achievable output variance is then

studied. Various process properties are modified in order to see how they manifest themselves in

the estimation. Finally, the choice of Laguerre network parameters is examined including how they

should be modified based on the characteristics of the closed loop noise transfer function. The results

of these simulations can be used when the methods are applied to data from industrial processes.

6.1 Time Delay Estimation

The FMVRE generally provides an estimate of the true delay in a process. However, there are

situations where the estimate of the delay is not correct. This section presents the three different

situations found in which a biased delay estimate occurred. This knowledge will enable the user of

the FMVRE to determine the validity of a delay estimate. Once examples of different cases have

been introduced, each will be examined individually. The biased estimation encountered usually falls

into one of the following three examples, which are an incorrect delay estimate of one, an incorrect

delay estimate but not at one, or an incorrect delay estimate due to insufficient excitation.
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Figure 6.18: Process which results in correct delay estimate

6.1.1 Unbiased Estimation

This example of unbiased estimation is given in order to use as a comparison in the future

discussion of biased estimation. By comparing aspects of both the biased and unbiased estimation,

it is often possible to obtain insight into the causes of the bias. The process appears in Figure 6.18

and has a structure similar to the ones to be used which result in a biased time delay estimation. It

has a time delay of seven and is controlled by a deadbeat controller. The resulting E1 function is

shown in Figure 6.19 and the true delay of seven was estimated. Now, processes will be presented

that result in biased delay estimation and this process will be referred to during the examination of

the causes of biased estimation.

Figure 6.19: E 1 function from FMVRE estimation resulting in correct delay of seven
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Figure 6.20: Process which results in a biased delay estimate

6.1.2 Estimated Delay of One Sampling Interval

The first situation to be examined results in a biased delay estimate of one sampling interval.

The process under consideration appears in Figure 6.20 and it consists of the same first-order plant

with a large time delay of seven. However, now the process uses a Dahlin controller which moves

the closed loop pole to 0.4 and a second-order, ARMA(2,1) noise disturbance. The results of the

FMVRE estimation appear in Figure 6.21 and show that the delay was incorrectly estimated. This

example illustrates that it is possible for an incorrect time delay estimation to occur.

6.1.3 Arbitrary Bias

The next situation considered uses the process in Figure 6.22, which also has a first-order plant

model, but has a time delay of two. It also uses a Dahlin controller, identical to the one used

Figure 6.21: E 1 function from FMVRE estimation resulting in a bias at one
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Figure 6.22: Process which results in a biased delay estimate

previously. The results of the FMVRE delay estimation appear in Figure 6.23. On this occasion,

the time delay is also incorrectly estimated, but as four. This process shows that it is possible to

have an arbitrary bias of the time delay.

6.1.4 Insufficient Excitation

The final process used appears in Figure 6.24 and its major difference from the previous processes

considered is its use of a PID controller. The time delay of the plant is three and the noise filter

is unchanged from the last example. The results of the FMVRE estimation, shown in Figure 6.25,

indicate that the delay is one. This is not the correct delay and the peculiar shape of the E1 function

indicates that the cause of this bias is different than in the case of the previous examples.

Now that it has been demonstrated that it is possible to have a biased time delay estimate, the

reason for its occurrence and possible solutions will be examined. It is hoped that the cause of the

Figure 6.23: E i function from FMVRE estimation resulting in a bias at four
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Figure 6.24: PID controlled process which results in a biased delay estimate

bias can be eliminated, but failing that, it should be possible to be able to indicate if the estimated

delay is biased.

6.2 Causes and Solutions for Incorrect Delay Estimation

6.2.1 Biased Delay

The first two examples of biased delay share a similar cause, however they affect estimation in

a different manner. According to Elnaggar [12], a sufficient condition exists so that delay estimation

is unbiased. This condition states that in order to ensure correct delay estimation in a closed loop

process, the autocorrelation function of the output of the disturbance filter, rye (r) must be zero

for all lags over the interval [kmin+kft,kmax ], where kft, is the delay in the controller. If r y.(7),

Figure 6.25: E 1 function from FMVRE estimation resulting in a bias at one
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Figure 6.26: The disturbance output autocorrelation from the process (a) resulting in
a delay bias, Figure 6.20, and (b) resulting in a correct delay estimate, Figure 6.18

Figure 6.26(a), is examined for the process in Figure 6.20, it is evident that the correlation at lags

over the interval [0,10] is not zero. However, if ry.(r), Figure 6.26(b), is examined for the process

in Figure 6.18, it can be seen that it also has correlation at lags over the interval [0,10]. This

emphasizes that the condition on ry ,(7) is only a sufficient condition and does not fully determine

if a bias occurs. Therefore, something else plays a role in creating the bias. This other factor

can be determined by examining the cross-correlation between the input and the disturbance filter

output, ru3, e (r), which is obtained by the FMVRE when the signals u(t) and y e(t) are used. The

Figure 6.27: E 1 functions for (a) the input and plant output and
(b) the input and disturbance output resulting in a bias at one
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Figure 6.28: E 1 functions for (a) the input and plant output and
(b) the input and disturbance output resulting in a correct estimate

calculated Ei(u,y e) function, Figure 6.27(a), shows a large bias at one, when compared to the peak

in the Ei(u,y0) function corresponding to the correct delay, Figure 6.27(b), shows the value at one is

larger than the correct value. When the two functions are added together, a bias occurs at one and

an incorrect delay is suggested. Returning to the process in Figure 6.18, its Ei(u,ye) and Ei(u,y0 )

functions appear in Figure 6.28 and show that the peak at seven of the E1(u,y 0) function is larger

than the peak at one of the E1(u,y e) function and so the resulting E1 (u,y) function did not have a

bias. So the bias in the delay occurs when the E1(u,ye) function, created by the plant, is corrupted

by the noise Ei(u,y e) function.

From the point of view of monitoring, it is not reasonable to expect to make changes to the

process in order to improve conditions for better identification. However, with a little consideration,

it may be possible to remove the effect of this bias from estimation. Upon examining Figure 6.21,

the largest value after the bias at one, is the true delay at seven. Would it be possible to change the

interval [kff,in ,kn,.] to avoid the bias at one? The answer is yes if there is a time delay in the process

beyond that resulting from the sampling process. In this case, though the delay may vary, it would

not be possible for it to disappear, causing the true delay to correspond to one. Thus by using a

lower bound on the possible delay interval above one, this biased delay problem can be avoided.
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Figure 6.29: E 1 functions for (a) the input and plant output and
(b) the input and disturbance output resulting in a bias at four

Next, the bias that resulted in the process shown in Figure 6.22, is considered, and it should be

noted that it only differs from the process used previously in that the plant time delay was changed to

two. The FMVRE estimator used a range of [2,10] as the possible delay and yet the delay was still

biased. The reason for this can be understood by examining the r uy.(7) cross-correlation function,

as obtained by FMVRE estimation. Figure 6.29(a) shows the Ei(u,y e) function obtained for this

process. The value of the function at two is negative, so when this function is added to Ei(u,Y0),

Figure 6.29(b), the correct delay value is cancelled. The maximum at four, as found in Figure 6.23,

results from this cancelling effect.

It is possible to correct this bias, using an approach similar to Clarke [10], if the input and output

signals are modified using a filter Gf(ci l ), so that the resulting E1(uf,yef) function does not affect the

Ei(uf,yof) function and cause a bias. For processes considered here, the filtering is performed as:
GT 1 (q--1) y ( t) Gp (q-1) GT 1 (q-1) u (t) Gf -t (q--1)G d (cil e ( t )

(6.105)
yf(t) = Gp (cr l ) uf(t) yef(t)

which shows how the filtered signals are formed. The optimum filter to use is the disturbance filter

of the process, which in this case would be:

Gf (cri)^1 — 0.5cf- 1 0.6c 2

1 - 0.8q 1
(6.106)

and shall be used here for illustration purposes. The two functions, E1(uf,y ef) and E1(uf,y0f) were

calculated and appear in Figure 6.30. They show that the negative value at two has been removed in
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Figure 6.30: E l functions for (a) the filtered input and filtered plant output and (b)
the filtered input and filtered disturbance output resulting in correct delay estimate

Ei(uf,y,f), while El (uf,yof) still has a maximum at two, the correct value. When the two functions are

added together, the resulting E1(uf,yf) function, Figure 6.31, shows correct delay estimation. While

it may not be possible to find the disturbance transfer function, Elnaggar [13] showed that the exact

transfer function is not required to remove the biased delay.

6.2.2 Insufficient Excitation

The final incorrect delay estimation occurred to the process in Figure 6.24 and the resulting

FMVRE estimation suggested incorrectly that the plant delay was one. This is definitely wrong and

the cause of this error will be explained. It will be shown that there is nothing that can be done to

Figure 6.31: Et function from FMVRE estimation using filtered signals, resulting in a correct delay estimate
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Figure 6.32: E t functions for (a) the input and plant output and
(b) the input and disturbance output resulting in a bias at one

correct the problem, however it will be shown that it should be possible to detect that the problem is

present, thus being able to warn that the biased delay estimation has occurred.

The result which suggests that the cause of this bias differs from the previous cases is shown

in Figure 6.32. The FMVRE estimation using the plant output and disturbance output show that the

contribution from the E1 (u,ye) function is not the cause of the bias, as the FMVRE obtain erroneous

results from using the plant output, E1 (u,y 0). This had not occurred in the previous cases and suggests

a different cause of the bias. This led to the investigation of the excitation requirements of the input

signal used by the FMVRE in order to obtain correct delay estimation. These requirements were

found by Elnaggar [12] and it was shown that the input must contain frequencies in the range:

71- V2T,Tini11 > 7 > Ts k• Kmax kim11 )

^

(6.107)

to obtain correct delay estimation, where T5 is the sampling period and 7„, i, is the fastest time

constant of the process. It should be noted that the lower bound on the frequency was determined for

minimum phase stable systems with a pole excess of one, which is the case for first-order plants, the

type under consideration. The upper bound on the frequency ensures that there is only one maximum

peak in the E 1 function over the range [k niin ,kmax ]. It is the lower bound however, which is of more

interest, as this is what causes the problems experienced. The lower bound is set to ensure that the

phase difference between the input and output is large enough to ensure correct delay estimation.
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Figure 6.33: Power spectral density function for the input signal from the PID controller

Returning to the process under consideration, the lower bound on the input frequency content

is (assuming Ts=1):

fe = (7r OTs r„i i,i)
--1

 = (71- V2(1)(4.4823))
-1
 = 0.1063 Hz (6.108)

Thus for unbiased delay estimation to occur, the input must contain frequency components above this

level. The power spectral density function of the input in this process appears in Figure 6.33. Not

surprisingly, the frequency content of the input all but disappears above 0.1 Hz. This confirms that

the cause of the bias was indeed an input signal with too low a frequency content. For comparison

purposes, the power spectral density function of the input for the process in Figure 6.18, where correct

delay estimation occurred, appears in Figure 6.34. It shows that the input has frequency content over

a wide range, which allows unbiased estimation.

Figure 6.34: Power spectral density function for the input signal from the Deadbeat controller
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What caused the removal of the higher frequencies from the input signal used in the process of

Figure 6.33? As the process is being driven by white noise only, the input should contain components

at all frequencies. The answer is found upon examination of the controller used. The magnitude

response of the controller being used, Figure 6.35 (again assuming T 5=1), shows attenuation of the

higher frequencies in the input signal. This is common when a PID or PI controller is used on a

process with large delay, as stability can only be maintained by choosing controller parameters that

ignore fast changes and makes only slow adjustments.

From the point of view of monitoring, little can be done to cure this problem. The controller is

causing the problem and changes to it can not be justified only to improve monitoring. However, the

problem itself suggests that consideration be given to the fact that the controller be changed. Though

the problem cannot be fixed, its presence can be detected. It becomes apparent after examination of

the shape of the El function, because if it has a sinusoidal shape rather than a definite maximum,

then this suggests that the input signal does not contain sufficient excitation. Also, an empirical and

therefore rough limit on the lower bound can be formulated. Assuming that the sampling occurs at

a reasonable rate, that being around 4 or 5 times smaller than the process time constant, and that the

sampling time is known, the lower bound is found to be:

;:se (7r V.TTO 1fi^ (6.109)

Thus for any Ts , a lower bound on the frequency content can be quickly determined to indicate the

frequency requirements on the process input.
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Figure 6.35: Magnitude response of the PID controller
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It has been shown that the FMVRE delay estimator is not infallible. In general, when dealing

with this estimator, it is not prudent to take the suggested result without examining the Et function.

In cases where this function has a large and definite maximum value, then the delay can be treated

with some confidence. However, when the El function has two or more peaks close together, as is

the case in the above examples, then the estimate cannot be used with complete confidence. So like

all estimation, the validity of the result should be considered before it is used with abandon.

6.3 ANM Estimation of Stochastic Feedback Processes

The ability of the ANM to work when the signals are provided by a process under feedback

control and/or if the signals are noisy must be investigated. It will then be possible to conclude if

the ANM is suitable to be used for process loop monitoring. The purpose of these simulations is to

test the ability of the ANM to correctly estimate the static relationship under these conditions and to

test some procedures which attempt to lessen the adverse effect of these conditions.

The process to be simulated, Figure 6.36, consists of a first-order plant with a gain of five and

a delay of two as well as a disturbance filter which colors the white noise sequence that drives it.

A Dahlin controller is used for control, however it was poorly designed using a delay of three, to

get a more active control signal. In order to get a yardstick with which to compare the following

simulation results, an input signal, Figure 6.37, was placed through a pure gain of five only, and

the output generated was used by the ANM to estimate the static gain. The results obtained from

Figure 6.36: Process used to test ANM
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Figure 6.37: Signal used to estimate the static input-output relationship

the estimation appear in Table 6.1 beside the row marked Test A. The results are quite close to the

expected value and give a sense of how close the following simulations can come to the correct

value, using the given input.

The next simulation used the process in Figure 6.36, but with the disturbance filter disconnected.

This was done to investigate the effect of the plant dynamics, introduced by feedback, when the

reference signal changes. The reference signal used was chosen so that the steady state control signal

would be the same as the signal in Figure 6.37. The input and output signals used by the ANM for

modelling of the static gain appear in Figure 6.38 and the final table values estimated appear after

Test B in Table 6.1. Comparing these results with Test A, indicates that the brief periods where

plant dynamics were present did not greatly affect the static gain estimation. It was mentioned

previously that Astrom suggested turning estimation off after a reference change occurred, to let

the plant dynamics die out. This was done, by turning estimation off for ten samples after the

reference change, thus removing the bulk of the dynamics. The results appear in Table 6.1, Test C.

As expected, the estimated values improved and practically returned to the results obtained in Test

Input 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

Output 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10

Test A 9.88 7.43 4.95 2.50 -0.01 -2.47 -4.88 -7.61 -9.38

Test B 9.80 7.49 5.05 2.53 -0.13 -2.43 -4.82 -7.49 -9.36

Test C 9.85 7.43 4.95 2.50 -0.01 -2.47 -4.86 -7.61 -9.33

Table 6.1: ANM results for estimation performed under closed loop operation
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Figure 6.38: The (a) process input and (b) process output from closed loop operation

A. While turning estimation off during reference changes improves estimation, the deterioration in

the first place, even for quite an active signal as in this case, was not that large. This suggests that

turning the estimator off may not be necessary.

For the remaining tests, the noise in Figure 6.36 was added, and the estimator used the resulting

signal. This addition will change the static input-output estimation in two ways, as it will add noise

to the to the output signal, so the output is comprised of both the input and the noise. Secondly, the

noise on the output will cause the output to vary from the reference, thus causing the control to be

active, introducing dynamics into the output. The signals which are obtained from the process are

shown in Figure 6.39 and they were used directly for estimation of the static gain. The results of

Figure 6.39: The (a) process input and (b) process output from stochastic closed loop operation
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Figure 6.40: The (a) filtered process input and (b) filtered process output used by the ANM

the estimation, Test D in Table 6.2, show that the addition of the noise does indeed adversely affect

estimation. This means something must be done so that the estimation can be improved.

The signals of Figure 6.39 were filtered, using a low pass Butterworth filter, in an effort to

remove the effects of the noise on estimation. Three simulations were done and their results are in

Table 6.1, Test E, F and G. The filter used for Test E had a cutoff frequency of 0.3 of the sampling

frequency while Test F had the frequency reduced to 0.1 and Test G used a cutoff of 0.05 of the

sampling frequency. The signals which resulted from the filtering are typical of those in Figure 6.40

which are filtered by a filter with a cutoff of 0.05. Below a cutoff frequency of 0.05, the results of

the estimation show little improvement. This is because the noise has low frequency components

that cannot be filtered without destroying the useful part of the input and output signals.

Input 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

Output 10 7.5 5 2.5 0 -2.5  -5 -7.5 -10

Test D  9.96 7.59 4.63 3.22 -0.41 -1.96 -5.26 -7.63 -8.24

Test E 9.66 7.60 4.56 3.33 -0.28 -2.28 -4.79 -7.85 -8.46

Test F 9.76 7.62 4.80 2.98 -0.03 -2.47 -4.74 -7.80 -8.84

Test G 9.81 7.66 4.90 2.84 -0.04 -2.42 -4.78 -7.72 -9.09

Table 6.2 ANM results for stochastic process using various low pass filters
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These simulations show that it is possible to estimate the static input-output relationship of a

process under feedback control. They show that it is helpful to turn the estimation off during reference

changes and for stochastic processes, the use of a low pass filter is advised.

6.4 Estimating Nonlinearities

As it has been shown that it is possible to estimate the static input output relationship of a

process under feedback control, the ability of the ANM to estimate nonlinear relationships will be

investigated. By completing these simulations, it will be possible to ensure the ANM's ability to

correctly estimate nonlinearities and further determine the signal conditioning required by the ANM

for improved results.

6.4.1 Saturation

The first nonlinear relationship examined is a saturation curve, which is often brought about by

an undersized actuator used to drive a process. A typical saturation curve appears in Figure 6.41,

which shows that once the input goes above three or below minus three, the output levels off, no

longer able to follow the input. The slope of the saturation region and the location of the start of the

saturation both depend on individual actuators being used. For this simulation, the saturation curve

shown will be used with the process in Figure 6.42 which is a first-order plant under Dahlin control.

As previous simulations examined the effect of noise on the estimation of the static relationship,

Saturation

Figure 6.41: Saturation nonlinearity to be estimated
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Figure 6.42: Process with saturation nonlinearity

no noise was used here, so only the ability of the ANM to estimate these nonlinear relations under

feedback conditions could be judged. In order to get an idea how the ANM is able to estimate

the saturation curve, the input shown in Figure 6.43(a) was placed through the saturation with the

resulting output shown in Figure 6.43(b). The results of the estimation appear in Table 6.3, Test A.

The estimated values vary only slightly from the expected results and confirm that the ANM is able

to identify a saturation curve.

Next, the process in Figure 6.42 was simulated, using a reference signal like Figure 6.43(a), and

the signals u(t) and y(t) were used to estimate the input-output static relationship of the process.

These signals appear in Figure 6.44 and exhibit an interesting characteristic which results from the

saturation curve and the integrating action of the controller, which attempts to drive the output to the

reference value. The input signal ramps up to very large values, attempting to erase the error between

the output and reference. Despite this control signal, which could be improved by introducing an

anti-windup mechanism in the controller scheme, the ANM estimates the saturation curve quite well.

The results, listed beside Test B in Table 6.3, show very good estimation between three and minus

Figure 6.43: The (a) process input and (b) process output from the saturation only
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Input 5 4 3 2 1 0 -1 -2 -3 -4 -5

Output 3 3 3 2 1 0 -1 -2 -3 -3 -3

Test A 2.97 2.99 2.97 2.00 0.98 0.00 -1.00  -1.99 -2.97 -3.02 -2.91

Test B 2.48 2.30 2.89 1.92 1.21 0.05 -0.96 -1.92 -2.97 -2.77 -2.42

Test C 3.51 2.14 2.90 2.00 0.99 0.01 -0.99 -2.00 -2.97 -2.77 -2.91

Test D 3.24 2.84 2.96 2.00 0.99 -0.00 -0.99 -2.00 -2.97 -2.97 -2.96

Table 6.3 ANM results for estimation of saturation

three. While the estimation is not exact, this is to be expected as the control signal spends only short

periods in the range three to five and minus three to minus five.

The controller was changed to a simple gain in an effort to see how the estimation performed

without the windup problem. The gain was chosen so that the process was stable and responded fairly

quickly, and as a result was chosen to be three. The input and output signals used for estimation are

shown in Figure 6.45. The table values estimated by the ANM are listed as Test C in Table 6.3 and

show a very close estimation of the saturation curve.

The final test consisted of simply turning estimation off for ten samples after a reference change.

This causes the dynamics in the signals resulting from the plant to be removed. The results of the

estimation appears beside Test D in Table 6.3 and shows the improved estimation as a result of

temporarily turning off the estimation.
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Figure 6.44: The (a) process input and (b) process output from closed loop operation with Dahlin controller
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Figure 6.45: The (a) process input and (b) process output from closed loop operation with gain controller

6.4.2 Deadzone

The next nonlinear relationship to be examined is known as a deadzone. A deadzone is

characterized by a range of input where no change in output occurs. Figure 6.46 displays a typical

deadzone, which can be brought about by a number of reasons and often represents a malfunction in

the operation of an actuator. For this particular deadzone, the output does not change over the interval

[0.5,-0.5] and returns to a linear slope outside of this interval. The size of the deadzone and the slope

of the curve outside the deadzone will depend on the individual situation. For these simulations,

the process in Figure 6.42 was used once again, however the saturation curve was replaced by the

deadzone in Figure 6.46.

Figure 6.46: Deadzone nonlineality to be estimated
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Figure 6.47: The (a) process input and (b) process output from the deadzone only

The simulations performed were similar to those done for the saturation nonlinearity and

start by passing the signal in Figure 6.47(a) through the deadzone which resulted in the signal in

Figure 6.47(b). The ANM estimator used the signals in Figure 6.47 and attempted to estimate the

deadzone nonlinearity. The results of the estimation, which appear in Table 6.4, Test A, confirm that

the ANM is able to estimate a deadzone nonlinearity.

Next, the process in Figure 6.42 was simulated using the deadzone and the signal in Figure 6.47(a)

was used as the reference signal. The resulting input and output signals, u(t) and y(t) appear in

Figure 6.48 and were used by the ANM to estimate the table values of the static input output rela-

tion. The results, Test B in Table 6.4, show that the ANM was able to estimate the deadzone. Except

for the one value at zero, the ANM performed very well.

Finally, to see if the previous results could be improved upon, as in previous simulations, the

ANM estimation was turned off for ten samples after a reference change. The signals that were used

Input 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

Output 1.5 1 0.5 0 0 0 -0.5 -1 -1.5

Test A 1.48 0.99 0.49 0.01 -0.00 -0.01 -0.47 -1.02, -1.41

Test B 1.48 0.98 0.52 0.02 0.35 0.04 -0.52 -0.94 -1.49

Test C 1.48 0.99 0.49 0.02 0.00 0.03 -0.50 -0.97 -1.48

Table 6.4 ANM results for estimation of deadzone
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Figure 6.48: The (a) process input and (b) process output from closed loop operation with Dahlin controller

then had most of the dynamics removed. The result of the estimation, Test C in Table 6.4, show an

improvement in the table values estimated.

These two simulations show the ANM ability to model typical nonlinearities. The improved

results obtained by turning estimation off after reference changes suggests that this be done in all

situations. There are several different nonlinearities which could appear in an industrial process.

One is hysteresis, which will require some modification to the ANM so that this nonlinearity can be

modelled. It will require two separate gain curves, one which is built as the input increases over

time and another which is built as the input decreases over time. This will require that the direction

of the input be tracked, however these small changes will enable hysteresis to be modelled.

6.5 Effect of Process Changes on Minimum Achievable Output Variance

The estimated minimum achievable output variance will change as process properties change.

The goal of the following simulations is twofold. First, they will show that the operation of the

minimum achievable output variance estimator is consistent with the aspects behind its calculation.

Secondly, the results will be used to show how changes in estimated minimum achievable output

variance can be related to changes in the process. This change in estimation can be used to determine

process changes, as well as evaluate the performance of the present controller
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Figure 6.49: Original process and associated properties

The process used for these simulations appears in Figure 6.49, which has a first-order plant with

a time delay of four. The disturbance filter is first-order, ARMA(1,1) and the noise sequence has

a N(0,0.36) distribution. The process uses a Dahlin controller that compensates for the delay and

moves the closed loop pole of the process to 0.3. The minimum achievable output variance and the

process output variance for this process are listed in Figure 6.49, along with the closed loop noise

transfer function of the process, s(q_,  . This transfer function is estimated so that the minimum

achievable output variance can be determined. For this process, the transfer function has a second-

order denominator, while the numerator polynomial is more complicated, having order five. Lastly,

the F(q -t ) polynomial whose coefficients must be found to determine the minimum achievable output

variance, is given.

The results of one simulation appear in Figure 6.50. The autocorrelation function of the estimated

noise sequence is white because correlation at all lags is near zero. The estimated noise has a

variance of 0.3598, which is nearly identical to the process noise variance. The FMVRE delay

estimator successfully estimated the correct delay, while the Markov parameters, that are determined

from estimated Laguerre gains, are very close to the process values. Based on this, the estimated

minimum achievable output variance is very close to the calculated value for this process. This single

simulation result is confirmed by repeating it five hundred times using a different N(0,0.36) noise

sequence. The histogram in Figure 6.51 shows that the mean minimum achievable output variance
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Figure 6.50: The (a) estimated noise autocorrelation function, (b) the FMVRE delay
estimation, (c) the estimated F(q -1 ) coefficients and (d) 6-n2iy and ay2 for the original process
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Figure 6.51: Distribution of the results of five hundred simulations for the original process
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is just slightly above the calculated value, while the individual tests are closely distributed around

the calculated value.

The first property changed was the delay, and it was reduced from four to two. This reduction

of delay changes the F(g-1 ) polynomial which will have two, rather than four coefficients:

F(q-1 ) = 1 + 0.27q-1

and then the minimum achievable output variance becomes:

T 2
- Inv = 0.36 (1 + 0.272 ) = 0.3863

The transfer function from the noise to the output becomes:

y(t)^R(g-1 )^1 - 0.7q-1 - 0.58q-2 0.28q-3

e(t)^S(q-1 ) -^1 - 0.97q-1 0.20q-2

(6.110)

(6.111)

(6.112)

Figure 6.52: The (a) estimated noise autocorrelation function, (b) the FMVRE delay
estimation, (c) the estimated F(q -1 ) coefficients and (d) (5-;„ and a3 for a change in delay
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which changes the process output variance to:

o-2 = 0.5277
^

(6.113)

The results of a single simulation reflects these changes, and Figure 6.52(b) shows the FMVRE delay

estimator correctly estimated the change and thus there was only two coefficients in F(q -1 ). The

estimation of the noise sequence variance remained closed to 0.36. Five hundred simulations were

run to examine the consistency of the estimation. The mean estimated minimum achievable output

variance was found to be 0.3852 and its distribution was similar to Figure 6.51, which suggests

Figure 6.52 is a typical result. This simulation shows that once the FMVRE estimates a change in

the process delay, there should be a change in the output variance and the minimum achievable output

variance becomes smaller because F(q -1 ) has fewer coefficients.

Returning the delay to four, the next change was made to the plant transfer function:

    

B (q 1 )^0.25q-4

 

(6.114)
A1(q-1 ) — 1 — 0.75q-1

which results in a new closed loop noise transfer function of:

R(q-1 )^1 — 1.45q-1 0.65q-2 — 0.09q-3 — 0.70q-4 0.80q-5 — 0.21q-6
(6.115)

 

S(q-1 ) — 1 — 1.72q-1 0.93q-2 — 0.15q-3 — 0.17q-4 0.28q-5 — 0.11q-6

This change makes the process output variance:

       

o-2 = 0.5591

 

(6.116)

The minimum achievable output variance is unchanged, however, as the F(q -1 ) polynomial remains

the same. The results of a simulation, Figure 6.53 confirms this, as the estimated minimum achievable

output variance remains near the calculated value of 0.4034, despite the change in the output variance.

Figure 6.53(a&c) shows that the estimate of the F(q -1 ) coefficients and noise sequence remains

unchanged for the first process, while the histogram in Figure 6.54 confirms that the estimation

remains virtually unchanged by the plant variation. This simulation shows that variation in only the

output variance suggests that the plant transfer function has changed.
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Figure 6.53: The (a) estimated noise autocorrelation function, (b) the FMVRE delay
estimation, (c) the estimated F(cf 1 ) coefficients and (d) ?IL, and av2 for a change in plant

Figure 6.54: Distribution of the results of five hundred simulations for the change in the process plant
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Once the plant was reverted back to its original value, the disturbance filter was changed:

C(q-1)^1 — 0.2q-1

A2(q-1 ) — 1 — 0.67q-1

which changes the F(q-I ) polynomial coefficients to:

F(q-1 ) = 1 + 0.47q-1 + 0.32q-2 + 0.27q-3

and then the minimum achievable output variance becomes:

= 0.36(1 + 0.47 2 + 0.32 2 + 0.272 ) = 0.49152

Once again, the closed loop noise transfer function changes:

y(t)^R(q-1 )^1 — 0.5q-1 + 0.06q-2 — 0.70q-4 + 0.14q-5

e(t)^S(q 1 )^1 — 0.97q-1 + 0.20q-2

and then the process output variance becomes:

CrILIV

(6.117)

(6.118)

(6.119)

(6.120)

= 0.7434 (6.121)

From Figure 6.55, the corresponding changes in the F(q -I ) coefficients, the minimum achievable

output variance and output variance are evident, while the estimated variance of the noise sequence

remains the same. Figure 6.56 confirms that the mean value of the minimum achievable output

variance moved towards 0.4915, the new level. Thus a change in the disturbance filter becomes

noticeable, as both o and ol,„ change.

To see the effect the noise sequence had on the estimation of the minimum achievable output

variance, it was changed from N(0,0.36) to N(0,1.21) in the original process. This change in the

noise variance results in new process output variance and minimum achievable output variance:

2
i„, = 1.356

(6.122)
cry = 2.055

One simulation was performed and it showed that the output variance and minimum achievable

output variance level did change to the new values. This was a direct result of the change in noise

variance, as the F(q -I ) coefficients and delay estimate remained unchanged. Five hundred simulations
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Figure 6.55: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation, (c) the
estimated F(q -1 ) coefficients and (d) and o for a change in disturbance filter

Changed Disturbance Histogram

Figure 6.56: Distribution of the results of five hundred simulations for a change in disturbance filter
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were performed and they confirmed this finding. As a result, if both o and o ^change while F(q -1 )

remains the same, then the noise variance must have changed.

The final part of the process to be changed is the controller. During the derivation of the method

to find the minimum achievable output variance, it was determined that the minimum level could not

be reduced any further by a feedback controller. The controller was changed to:
N(q-1 )^0.7 — 0.5040q-1

D(q-1 ) — 0.28 — 0.084q-1 — 0.196q-4^
(6.123)

which is a Dahlin controller which moves the process pole to 0.3 for the plant:
B (q-1 )^0.28q-4
Ai(q-1 ) — 1 — 0.72q-1^

(6.124)

This change in controller causes the closed loop noise transfer function to become:
y(t)^R(q-1 )^1 — 0.7q-1 0.12q-2 — 0.70q-4 0.28q-5 (6.125)
e(t)^S(q-1 ) — 1 — 0.97q-1 0.20q-2 0.12q-4 — 0.12q-5

and this changes the process output variance to:

CI 2 = 0.6744 (6.126)

but it does not change the minimum achievable output variance, because the delay, noise and F(q -1 )

coefficients remain unchanged. The results of one simulation, shown in Figure 6.57 proves that the

controller only modifies the output variance, if compared to Figure 6.50. It is promising to note that

the histogram in Figure 6.58 has a mean estimated minimum achievable output variance level close

to the value found in Figure 6.51, while the shape of the histogram remains basically unchanged.

Various properties of the process have been changed, in order to study the effect on estimation of

the minimum achievable output variance. This knowledge can be used to determine what has changed

in the process when either o and 011V change. For example, a change in delay will be estimated by

the FMVRE, while a change in noise variance will be estimated by the RELS. Other changes in the

process output variance become evident in a more subtle manner. If only the process output variance

has changed, this indicates that the plant characteristics have been modified. Meanwhile, if just the

value of the F(q -I ) coefficients change, then the disturbance filter has changed values. Using these

direct indicators of change to signal operational changes in the process, it is possible to focus attention

on a specific aspect of the process. Finally, it should be remembered that changes to the controller

should only change the output variance and not affect the minimum achievable output variance.
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Figure 6.57: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation,
(c) the estimated F(ci l ) coefficients and (d) erm2 , and o-y2 for a change in controller

Figure 6.58: Distribution of the results of five hundred simulations for a change in the controller
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6.6 Choice of Laguerre Time Scale and Number of Filters

There are two parameters of a Laguerre network that must be chosen before it is used to model

a process. They are the number of filters used in the network and the time scale of these filters. The

following simulations investigate the effect these parameters have on the estimation of the minimum

achievable output variance. A brief discussion on what values for these parameters are usually made,

is followed by the simulations. The results are discussed and following this suggestions for general

choices are made.

As mentioned, the set of Laguerre functions can completely represent the impulse response

of a linear process only if an infinite number of filters are used. As it is impossible to use an

infinite number, the number of filters used in the Laguerre network must be chosen so that a good

approximation of the process is obtained. It has been found that four to eight Laguerre filters used

in the network provides a reasonable approximation [15][25] of a sampled-data plant. This work

showed that good approximation also depends on the choice of the Laguerre filter time scale. It is

known that the optimum choice for the time scale will depend on the process to be modelled. If a

process exhibits a heavily damped behavior, which suggests that it has real poles, the best choice for

the Laguerre filter time scale is a value which corresponds to the dominant process pole. However,

if the Laguerre network is modelling a process which has complex poles, evident as the process will

exhibit a lightly damped behavior, a different approach to choosing the time scale is required. Fu

showed in [15] that the Laguerre network approximation of a sampled-data system improved as the

time scale is moved toward zero.

However, the previous conclusions were drawn from situations where the input to be used for

estimation was known. In this application, the transfer function to be modelled is driven by an

unknown white noise sequence, that also must be estimated along with the unknown parameters. The

process determines the closed loop noise transfer function, which is given by:

R(q--i)
y(t) —

S(q-1)
^e(t)^ (6.127)

where the numerator polynomial is often unlike any polynomial usually found in a sampled-data

plant. As a result of these differences, it has been found that the best choice for the number of filters
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and time scale for the Laguerre network, when used with RELS estimation, depends on properties of

S(q-1 ) and R(q -1 ). The choice of filter number and time scale depends on whether the closed loop

noise transfer function has real or complex closed loop poles, that is the roots of S(q -1 ), or if the

numerator polynomial, R(q-1 ), is strictly positive real (SPR). Combinations of these situations will

be simulated to see if some general choices for the time scale and filter number can be made to

obtain good estimation.

6.6.1 Real Closed Loop Noise Transfer Function Denominator Roots

The first two simulations examine the case where the closed loop poles are real and the R(q -1 )

polynomial is strictly positive real. These examples are the least complicated and most likely the

least encountered situations, however, they are important as they show the behavior of estimation

in a uncomplicated situation.

The first process examined appears in Figure 6.59 and it uses a gain as the controller, so that

R(q-1 )=C(q-1 ). The properties of the process are also shown in Figure 6.59, indicating the transfer

function to be identified, which has real roots, and the calculated minimum achievable output variance

value which must be estimated. Because the C(q -I ) polynomial is first-order, it is strictly positive real.

The results of one simulation, Figure 6.60, shows that the autocorrelation function of the estimated

noise sequence is white and has a variance close to the expected value, while the delay and F(q 1 )

coefficients were correctly estimated. As a result, the estimated minimum achievable output variance

e(t)

N(0,0.49)

y(t)

zero
reference

ae = 0.49
02 = 0.6435

= 0.6125

y(t)^R(q-1 )^1 —0.2q -1

e(t)^S(q -1 )^1 — 0.7q -1 + 0.1225q -2

F(q-1 ) = 1 +0.5q-1

Figure 6.59: Gain controlled process
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Figure 6.60: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation,
(c) the estimated F(cf 1 ) coefficients and (d) ?f,,2,,,, and o-y2 for process with real poles

Figure 6.61: Distribution of the results of five hundred simulations for process with real poles
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Effect of Time Scale and Filter Number on Estimation
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Figure 6.62: Effect of changing the time scale and filter number on erl, for process with real poles

is very close to the calculated value, Figure 6.60(d). This single test was confirmed by Figure 6.61,

which shows that after five hundred simulations using different N(0,0.49) noise sequences, the mean

estimated minimum achievable output variance was just under the calculated value.

Now in order to obtain an idea of how the number of filters and time scale used in the Laguerre

network affects the estimated minimum achievable output variance, the test shown in Figure 6.61

was performed with different time scales and filter numbers. The mean value obtained after each test

is then an indicator of the performance of that choice of time scale and filter number. The results are

in the plot of Figure 6.62, which presents variance versus the time scale for a different number of

filters, listed next to the corresponding curve. The plot also shows the calculated minimum achievable

output variance along with minus five percent of this value. Lines are used only to join results which

share the same number of filters used. When only two filters are used, the estimated minimum

achievable output variance already overfits the calculated value and this continues as the number of

filters is increased. Except for when two filters are used, the choice of time scale does not have much

effect on the minimum achievable output variance estimated. These results suggest that the Laguerre

network is not behaving as expected, perhaps because it is being used with RELS. Before further

consideration of the results, another process will be examined to confirm these findings.
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cr = 1.69
02 = 2.1091.

2arn, = 1.7576

y(t)  R(q-I ) _ 1- q- I - 0.19q-2 + 0.22q-3 - 0.03q-4

e(t) - s(q- I) -^1- 1.2q-I + 0.35q -2

F(q-I ) = 1 +0.2q-1

Figure 6.63: Dahlin controlled process with real poles

Figure 6.64: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation, (c) the
estimated F(q -I ) coefficients and (d) O - ;2„ v and o for Dahlin controlled process with real poles
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The next process examined appears in Figure 6.63 and the major difference is that this process

is controlled by a Dahlin controller which makes the closed loop noise transfer function more

complicated. Despite this, the numerator polynomial is still strictly positive real, so the results

of this simulation can be compared to the previous results. The results of one simulation appears in

Figure 6.64, which uses twelve filters and a time scale of 0.3 and the minimum achievable output

variance is quite closely estimated. Examination of Figure 6.65 shows a similar trend as found in

Figure 6.62, in that the minimum achievable output variance was overfitted for almost all choices

of filter number. It is believed that due to the increased complication of the transfer function to be

identified, the number of filters required before the overfitting begins is larger.

The results of single simulations are examined in order to determine the reason why the minimum

achievable output variance is overfitted. The mean value of 1.69 found from Figure 6.65 can be

explained by closely examining Figure 6.64(a&c). While the estimated noise autocorrelation function

is white, the variance is less than expected, also, the F(q -1 ) coefficient is larger than expected. The

two effects combine and result in &Iv being less than the calculated value. Similar results were

found from the gain controlled process. It appears that the Laguerre network is including the noise

Effect of Time Scale and Filter Number on Estimation

0^0.1^0.2^0.3^0.4^0.5^0.6^0.7^0.8^0.9
Time Scale

Figure 6.65: Effect of changing the time scale and filter
number on &Iv for Dahlin controlled process with real poles
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sequence into its estimation of the closed loop noise transfer function, resulting in an incorrect noise

variance and F(q -1 ) coefficients. However, close estimation is still possible for both cases for a wide

range of time scales and filter number.

6.6.2 Complex Closed Loop Noise Transfer Function Denominator Roots

In the processes considered next, the polynomial R(q -1 ) has complex poles. The time scale of the

Laguerre network used is real and it has been found that the number of filters used by the network

must be increased [15] in order to arrive at satisfactory approximation of the process. By simulating

lightly damped processes, it can be determined if the number of filters need be increased to obtain

good estimation of the minimum achievable output variance.

Figure 6.66: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation, (c)
the estimated F(q') coefficients and (d) b - ,2„, and o for process with complex poles
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The first process used, Figure 6.59, controlled by a pure gain, is used once again, but this time

the gain is two so that the roots of R(q -1 ) are complex. The effects of this change make:

^

(q 1 )^1 - 0.2q-1
Cry2 = 0.819^ (6.128)

^

S(q - 1)^1 - 0.7q-1 0.6q-2

so the controller does not change the minimum achievable output variance. The results of one

simulation, Figure 6.66, illustrates how good the estimation performs for four filters and a time scale

of 0.4. The autocorrelation of the estimated noise sequence for this simulation, Figure 6.66(a), is

not exactly an impulse, as was found in the previous simulations, and its variance is larger than the

expected value of 0.49. The oscillatory nature of the autocorrelation function suggests that it has

been influenced by the complex roots in S(q 1 ). However, the estimated minimum achievable output

variance comes very close to the calculated value of 0.6125 in this simulation. From Figure 6.67, it

is apparent that the mean value of er 2 v is just slightly larger than the calculated value.

The plot of the mean estimated minimum achievable output variance values, Figure 6.67, for

various filter numbers and time scales suggests that more filters are required to obtain results similar

to Figure 6.62. The effect of the complex poles becomes evident when results using two filters is

examined. The noise sequence and F(q -1 ) coefficients appear in Figure 6.68, and while the F(q -1 )
Effect of Time Scale and Filter Number on Estimation
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Figure 6.67: Effect of changing the time scale and filter number on er ilv for process with complex poles
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Figure 6.68: Effect of reducing filter number on (a) noise
autocorrelation function and (b) the estimated F(q -1 ) coefficients

coefficient is correctly estimated, Figure 6.68(a), shows that the problem lies with the estimation of

the noise sequence. The autocorrelation function has a more oscillatory shape than previously found

and the variance is much higher than expected. The cause of the error in the estimation results

from the error in the noise variance, which is caused by the complex pole pair.

The next process considered, Figure 6.69, is controlled by a Dahlin controller. This controller is

poorly designed however, using a plant transfer function slightly different from the true one:

(6.129)

•zs = L69
452r = 2.4513

2Gm, = 1.7576

y(t) R(q -1 ) 1 - q -1 - 0.19q-2 + 0.22q-3 - 0.03q-4

e(t)^S(g -1 ) =^1 - 1.2q -1 + 0.6q -2 - 0.25q-3

F(q-1 ) = 1 + 0.2q-1

Figure 6.69: Process controlled by Dahlin controller with complex poles
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This mismatch causes the introduction of a pair of complex poles at 0.18 ± 0.515j. Processes of this

form, with a complex pole pair resulting from a mismatch between the true plant and the model used

for control, are common and therefore important to study. The results of one simulation appear in

Figure 6.70 and show that the autocorrelation function is once again oscillatory, though in this case

ii-„2 ,v is quite close to the calculated value. The result of five hundred simulations, 1.741, found from

Figure 6.71, confirms that the mean estimated (5-1211V for this choice of time scale and filter number is

nearly perfect. Figure 6.71 plots the remaining mean estimated minimum achievable output variance

values and comparing this plot to Figure 6.65, the increase in the number of filters required to

obtain a similar result is evident. When four filters are used rather than eight, Figure 6.72, &I v is

85



2.1

2

1.9

1.8

1.7

Chapter 6: Simulation Study

Effect of Time Scale and Filter Number on Estimation
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Figure 6.71: Effect of changing the time scale and filter number
on iim2 , for Dahlin controlled process with complex poles

overestimated because the autocorrelation function of the estimated noise sequence is more oscillatory

than in the previous case, resulting in an inflated noise variance.

These process simulations suggest that the number of filters must be increased in order to get

the same results as for a similar process which has real poles. However, the plots of Figure 6.71

and Figure 6.65 suggests that it is possible to get estimation within plus or minus five percent

Figure 6.72: Effect of reducing filter number on (a) noise
autocorrelation function and (b) the estimated F(q -1 ) coefficients
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of the calculated minimum achievable output variance, with the same choice of Laguerre network

parameters, for both situations.

6.6.3 Closed Loop Noise Transfer Function Numerator Not SPR

The final situation, when the numerator polynomial of the closed loop noise transfer function is

not strictly positive real, is considered. The numerator polynomial is given by:

R(q-1 ) = C(q 1 )Ai(q 1 )H(q-1 )^ (6.130)

so it is made up of the process disturbance numerator, the plant denominator and the denominator of

the controller. Combining these polynomials can easily result in R(q -1 ) having a high order, which

will then most likely mean it is not SPR. The SPR property can be explained in the following manner.

A transfer function will have a SPR numerator if a white noise input results in an output which has

an autocorrelation function close to an impulse. The higher the numerator order, the more noise

coloring that occurs, and so the autocorrelation function will no longer be an impulse. Then there

will be a large chance that the numerator is not SPR.

It is important that the R(q -1 ) polynomial is positive real for the estimation of the minimum

achievable output variance. According to a condition of RELS estimation, it is necessary for R(q -1 )

to be SPR for convergence of the estimates to be assured. However, the nature of the condition

means that the estimates may converge even if R(q -1 ) is not SPR. The first example illustrates this

e(t)

N(0, 0.36)

zero
reference

2a = 0.36
cr2Y =0 9236

2
amv = 0.6256

y(t) = R(q -1 )^1 - 0.2q-1 -q-4 +0.2q-5

e(t)^s(q-1 )^1 -0.8q -1

F(q-1 ) = 1 +0.6q-1 +0.48q-2 +0.384q-3

Figure 6.73: Process controlled by Dahlin controller without SPR R(q -1 )
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Figure 6.74: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation, (c) the
estimated F(q -1 ) coefficients and (d) 6 - ,2„, and cr for Dahlin controlled process without SPR R(q -1 )

fact and shows how the choice of filter number and time scale are affected by the realness condition.

The second process illustrates limitations of the estimator caused by this condition.

The process in Figure 6.73, similar to those used previously, but it uses a Deadbeat controller

which results in a R(q - I) polynomial that is not SPR. Results of a single simulation, Figure 6.74, show

that the error between 6-1, and o appears to be caused by an inability to obtain a correct estimate

of the noise sequence and incorrect F(q -1 ) coefficients. It has been observed for various processes

with a numerator that is not SPR, that a good value can be obtained despite poor estimation of

the noise sequence and F(q -I ) coefficients, . The histogram constructed from the & v values obtained

from five hundred simulations, Figure 6.75, confirms that the mean is indeed close to the calculated

value. However, the distribution of the histogram differs, in that it has a larger variance, which is
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Figure 6.75: Distribution of the results of five hundred
simulations for Dahlin controlled process without SPR R(cf 1 )

also a common occurrence for processes with a numerator that is not SPR. The unrealness of the

numerator affects the choice of the Laguerre parameters used to obtain good estimates. A plot of

the mean erm2 determined for different choices, indicates the number of filters required to obtain

good estimation has increased a great deal over previous situations. Figure 6.76 shows that even if

Figure 6.76: Effect of changing the time scale and filter number
on '4, for Dahlin controlled process without SPR R(e)
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twenty four filters are used, the mean value does not drop below the calculated value. Also, the

choice of the time scale becomes more important then previously, with a value in the range [0.2,0.4]

a suitable choice. It appears that if R(q -1 ) is not SPR, the estimation of the minimum achievable

output variance is noticeably affected, but it can be compensated for by the prudent choice of a time

scale and filter number.

To illustrate the limitations of the RELS method, when a numerator is not SPR, the process in

Figure 6.59 is used, except that the noise filter numerator has been changed. This new choice of

the C(q -1 ) polynomial is:

c(q—i)^1 + 1.5q1 0.75q-2^(6.131)

Figure 6.77: The (a) estimated noise autocorrelation function, (b) the FMVRE delay estimation, (c)
the estimated F(q -1 ) coefficients and (d) 6- ;,2i , and ay for process without SPR R(cf1)
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which because the controller is a pure gain equals the R(q-1 ) polynomial. The changes to the other

process properties is:

a2 = 6.1521 1T1? =S q-1^
1+1.5q-1^q-+0.75 2 

1 —0.7q-

= 2.2616^F(q-1 ) = 1 + 2.2q-1

This polynomial is used extensively in Pseudolinear Regression literature [21] as an example for

which RELS estimation will not converge. Attempts to estimate the minimum achievable output

variance, as in Figure 6.77, illustrate its failure to come close to a m2 v . Both the estimated noise

sequence and F(q -1 ) coefficients are nowhere near their calculated values. Figure 6.78 confirms the

inability of the method to converge, as the mean eir m2 „ values are not close to the calculated value.

This process illustrates that estimation may not be possible for all processes, however, the problem

will be evident after the autocorrelation function of the estimated noise sequence is examined. The

autocorrelation function will have large correlation at numerous lags, as shown in Figure 6.77(a),

when the nonrealness of the R(q -1) polynomial is affecting estimation. Fortunately, this problem

does not seem to occur for the majority of cases when R(q-1 ) is not SPR.

The results of these simulations suggest that some trial and error may be necessary to obtain

suitable values for the time scale and number of filters used in the Laguerre network. There is often
Effect of Time Scale and Filter Number on Estimation
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Figure 6.78: Effect of changing the time scale and filter number on &,2,R, for process without SPR R(q-1)
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a wide range of Laguerre parameters which result in good estimation, that being plus or minus five

percent of the calculated value. Based on the previous simulations, some general recommendation

will be made.

The estimated noise sequence autocorrelation function is an important tool that should be used

when choosing a filter number. If the autocorrelation function has correlation at lags above zero, this

indicates the number of filters should be increased. If increasing the filter number does not improve

the autocorrelation function shape, then estimation may not converge, due to the fact the R(q -1 )

polynomial is not strictly positive real. In this situation, an alternative estimator, such as Maximum

Likelihood should be employed. If the noise autocorrelation function has an impulse shape, then

decreasing the number of filters used should be attempted, as long as the autocorrelation function of

the estimated noise remains white. Using the lowest number of filters which result in an impulse

autocorrelation, will provide the best estimate of cri2m, Generally, the simulations obtained good

results for a range of Laguerre network filters, regardless of whether R(q 1 ) was SPR or S(q -1 ) has

real or complex poles. The choice of time scale does not appear as crucial as the choice of filter

number. Except when R(q -1 ) is not SPR, the 6-12nv value found varied only slightly for different time

scale values for a constant filter number. Processes where R(q -1 ) positive realness is a concern, the

time scale should be used in the range of [0.2,0.5]. Based on various simulations, this time scale

range can be used with a moderate degree of confidence, in all situations.

6.7 Conclusions

There were several different simulations presented in this chapter, all attempting to examine

relevant details encountered when using the estimation methods presented for monitoring. The results

of each section will now be summarized in order that the important details can be emphasized.

The first simulations performed were concerned with determining the possible causes of biased

delay estimation and suggesting solutions able to remove the bias. If the autocorrelation function

of the disturbance output is not zero for lags which correspond to the possible interval of delay, a

biased delay estimate may occur. The bias may occur at one sample, but this also corresponds to

the delay caused by the sampling procedure and does not need to be included in the possible range
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of delay, if the process is known to have delay. It is also possible for the bias to occur at a value

other than one. This bias can be removed by filtering the signals as explained previously. The other

source of bias arises when the input signal does not contain sufficient excitation to estimate the delay.

Unfortunately, it is difficult to justify removing this bias based solely on the fact that the delay is

required only for monitoring. An equation was determined that only requires the sampling interval

and the lower frequency required to estimate the delay can be determined. Thus by examining the

power spectral density function of the input it is possible to determine if the excitation requirements

are met. In general, the safest course to follow when estimating the delay is to examine the El

function to check if the maximum value definitely outweighs the other values. If this occurs, then

the delay can be used with confidence.

The next study was concerned with determining the performance of the ANM on closed loop

processes with noise. The first simulation examined a linear stochastic process and examined the use

of low pass filters and the benefit of turning off the ANM for a short period after a reference change.

The results showed the benefits of these techniques and it is suggested that they are implemented

if it is not too difficult. Any nonlinearity in the process will degrade its performance, so it is

important that they can be estimated by the ANM. Two typical nonlinearities were used, a deadzone

and saturation, and both were correctly estimated by the ANM. By including filtering to reduce the

noise and turning off the ANM after reference changes, the ANM is capable of estimating the static

input-output relation.

Focus then shifted to the estimation of the minimum achievable output variance and interest was

in determining a suitable choice for the Laguerre network parameters and determining the feasibility

of using the estimated properties, required to calculate 61,, as indicators of process change. The

FMVRE will estimate changes in delay and RELS will estimate any changes to the noise variance.

Only o will change if the process plant changes, while if only the Markov coefficients change,

modifying "6-2„,, then the process disturbance filter is different. Using this knowledge it is possible to

determine changes in the process. It was found that the choice of Laguerre parameters depends on

the properties of the closed loop noise transfer function. The best way to determine if the Laguerre

network is suitably modelling the closed loop noise transfer function is by examining the estimated
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noise autocorrelation function. As few filters as possible should be used so that it has a white

noise autocorrelation function. In general more filters will be required when the denominator of the

closed loop noise transfer function has complex roots or if the numerator in not SPR. There is also

the possibility that the estimates will not converge to their true values when the numerator in not

SPR. This is a limitation of RELS estimation, which can be overcome by using a more complicated

estimation algorithm. Fortunately, this problem is evident as the noise autocorrelation function will

not be near an impulse and the problem itself does not seem to occur that frequently. While some

trial and error may required to determine suitable Laguerre values, a good starting point is around

ten filters with a time scale in the range of [0.2,0.5].

While investigating the method used to determine the minimum achievable output variance, the

advantages of using a Laguerre network over a time-series model were displayed. Despite changing

every part of a process, which resulted in a different closed loop noise transfer function, one choice

of Laguerre parameters was able to provide a good estimate of al2114• Meanwhile, an ARMA model

would have to be chosen with some care if a time-series representation was used and it would likely

have to be modified as the closed loop noise transfer function changed. There also is comfort in the

knowledge that increasing the size of the Laguerre network will result in improved estimation because

the computational load will increase. With an ARMA model there is no guarantee that the estimation

will improve though the computational load also increases. While investigating a suitable choice

of Laguerre parameters, it was found that a wide range will result in good estimation, a robustness

not possessed by an ARMA model. While the Laguerre gains do not offer the same insight into a

process as do the roots of the time-series polynomials, in this application it is not important as it

is the Markov coefficients that are of interest and must be calculated regardless of which model is

used. In conclusion, the use of a Laguerre network provides good estimation of a changing closed

loop noise transfer function while avoiding the problem of choosing the ARMA model order.

94



Chapter 7: Industrial Data

Chapter 7

Industrial Data

The most crucial test faced by the monitoring tools is now presented, the application to industrial

data. The data were gathered from three different processes, a pressure screen, a reject refiner and a

Kamyr digester. Monitoring was performed in an effort to test the operation of the tools on industrial

processes as well as demonstrate the usefulness of monitoring. For each process presented, a brief

overview of its operation is followed by the goal of monitoring in this specific case. The output

and input signals are presented and then analyzed. The monitoring is performed, outlining what was

required in order that the presented results could be achieved. Finally, attempts are made to verify

the results obtained and once they are considered reasonable, the results are interpreted to evaluate

the process performance.

7.1 Pressure Screen Reject Flow

A pressure screen is an integral component of the pulping process. They are often used after

wood chip refining to remove unwanted components from the pulp, such as oversized fibres, dirt and

bark. A screen will typically have two outlets, one for the accepted pulp and the other for rejected

pulp. The reject flow is usually held constant, removing a sufficient percentage of the unwanted

components in the pulp. The pressure screen reject flow loop is a basic flow loop, where the output

is the flow of pulp and the valve position is the input. In this application, the flow is controlled by

a PI controller and the process is sampled every two seconds.

This flow loop is typical of the type of processes which can be monitored using the methods

presented. The data will be examined to determine the performance of the PI controller. Once

the minimum achievable output variance is determined, it can be compared to the process output

variance to determine any possible improvement.

The process data appears in Figure 7.79, and shows approximately 1200 samples or about forty

minutes of the screen operation. The flow reference was six hundred litres per minute, and the

output stays about this value, and has a mean of six hundred litres per minute. The input is also
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Figure 7.79: The pressure screen reject flow input and output

shown, the position of the valve, and it is given as a percentage of the fully open position. Before

applying the monitoring tools, the input and output signals are examined. Figure 7.80(a) shows the

autocorrelation function of the process output. The process variance after 1200 samples was 5128 and

there is significant correlation at most lags, even up to fifteen. This indicates that unless the delay is

fifteen samples or thirty seconds, which is unlikely for a flow loop, the process is definitely not under

minimum variance control. There is an indication at this point then, that the process variance is not at

the minimum level. The variation of the output signal seems high as a standard deviation of seventy

is quite large when compared to the reference. Also shown on Figure 7.80(b) is the power spectral

density of the input signal, which will be examined to determine if it will be possible to estimate the

delay with the FMVRE. Using equation 6.109, the lower limit on the frequency is determined:

fL=2 (71.V8r)
-1

 = (nV8(2 2 ))
-1
 = 0.056 Hz^(7.133)

Comparing this number with the power spectral density, it can be seen that the power in the signal

dies out around 0.05 Hz which indicates that there may be difficulty in estimating the delay.
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Figure 7.80: The output autoconelation function and input power spectral density function
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The estimation of cl-11, begins by first determining the time delay of the process, using the

FMVRE. The results of the estimation appear in Figure 7.81 and Figure 7.81(a) indicates that the

delay of the process is two samples. Examining the El function, Figure 7.81(b), the peak is at two,

though the values at one and three are not that far off. It was shown that the power in the input

signal dies out near the lower frequency limit required by the FMVRE to estimate the delay and

this accounts for the shape of the El function. The consistency of the estimation is checked in

Figure 7.81(c) and Figure 7.81(d), by using two subsets of the data. They also suggest a delay of

two. A delay of two shall be used throughout the remaining section for determining the minimum

achievable output variance.

Next, in order to find the closed loop noise transfer function and noise sequence, the number

of filters and their time scale must be decided. The filter number was chosen so that the noise

autocorrelation function had an impulse shape. The results from two different choices are shown in

Figure 7.82. It can be seen that the autocorrelation function has some oscillation, but is closer to

an impulse when ten filters are used. It was found that increasing above ten filters did not improve

the shape of the autocorrelation function.

The minimum achievable output variance estimation is shown in Figure 7.83, for the Laguerre

network parameters discussed above. The results are quite similar for both choices of filter number

as the variance ratios are within five percent. It was found that despite using a wide range of filter

number (4 to 20) and time scale (0.1 to 0.7), the majority of the variance ratio lay between 2.1 and

2.6. Once again the Laguerre network shows its ability to provide good estimation without too much

concern with the parameters chosen.

It is time to step back a moment and consider the results obtained, to see if they are reasonable

for this process. Some experience has been gained by controlling this process, which indicates

that the delay is around four seconds. Also, the process is known to be quite oscillatory, which is

confirmed by the estimated noise autocorrelation function. Based on the a-priori knowledge available,

the results obtained seem reasonable. As a final check of the estimates, the closed loop noise transfer

function is modelled using an ARMA(5,5) model whose parameters are estimated using Maximum

Likelihood Estimation. This is the method that was used by Harris [17] and as the Maximum
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Figure 7.82: The estimated noise sequence and F(q -1 ) coefficient for (a&b) ten filters and (c&d) six filters

Figure 7.83: The estimated minimum achievable output variance using (a) ten filters and (b) six filters

99



Chapter 7: Industrial Data

Likelihood estimator used is an off-line batch estimator, rather than an on-line recursive estimator,

the estimation will not be biased and can be compared to the values estimated using RELS. The

result of this estimation found:

f{(q-1 )^1 — 1.01q-1 0.55q-3 — 0.28q-4 — 0.23q-5

§ (4- 1 )^1 - 2.33q-1 1.9q-- 2 — 0.94q-4 0.5q-5

t(q-1 ) = 1 + 1.316q-1

13-2 = 738

cr 2

A-2Y = 2.5
-

The variance ratio, estimated noise variance and estimated F(q -1 ) coefficient all compare very closely

with the values obtained previously.

Finally, what do the results mean? They suggest that the output variance could be reduced by

over two times if a minimum variance controller was used. This is a fair amount, but if the PI

controller is desired rather than a minimum variance controller, it should be retuned to attempt to

lower the ratio. If this is not possible, then perhaps a different control algorithm, such as a Dahlin

controller should be employed. Also, it should be considered if the minimum standard deviation of

forty-five is acceptable. If it is not, then changes to the process will be required to reduce it further,

or feedforward control must be employed. No time should be wasted retuning the controller if the

minimum standard deviation is not satisfactory.

7.2 Reject Refiner Motor Load

The next process examined is the motor load loop of a reject refiner. A reject refiner is a smaller

version of a main refiner, one which appears in Figure 7.84. The reject refiner is typically found

downstream of a pressure screen, as it refines the rejected pulp, reducing the pulp size further so that

it is suitable to be used. The mechanical operation of a double-disc refiner, which has two plates,

will now be explained. The plates are rotated and pushed together by large motors and a hydraulic

cylinder [111 Fibres and dilution water are fed into the center of the plate gap and a fibre pad

forms between the plates. The pulp works its way out the periphery of the plates, in smaller pieces

than when it entered. The energy per unit mass of wood fibres is a major factor in the resulting

pulp quality and depends on the chip feedrate into the refiner and its motor load. The motor load

is changed by manipulating the gap between the plates which increases as the gap decreases. An
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Figure 7.84: A double-disc refiner

interesting property of this relation is the fact that the gain will change sign, which occurs if the

plates are moved too close, as the pad of fibres breaks down, allowing the plates to move together

easier, and ultimately they clash together. This means that there is a maximum motor load setpoint

which is obtainable. The goal of controlling the motor load is to keep it as high possible, all the

while avoiding a pad collapse. The reject refiner motor load is controlled by an Adaptive Constrained

Minimum Variance (CMV) controller and it is sampled every second.

Though this loop will typically be in regulation mode for large periods of time, this data was

gathered during a period when the reference motor load was changed often. This is because the

control action was being tested by moving the motor load so the refiner operated in near the pad

collapse region. The reference signal changed often over the period it was collected, so it is not

possible to examine the minimum achievable output variance. However, the ANM will be used on

this data, in order that the static input-output relation can be estimated.

The input and output signals appear in Figure 7.85, and the 2700 samples corresponds to about

forty-five minutes of operation of the refiner, including seventeen reference changes made in this

period. It is obvious from the output that this process is quite noisy. The motor load reference and

output is measured in megawatts (MW) and the plate gap is given as a percentage, where 100%

corresponds to the completely closed position. The motor load reference is set to values which are

chosen to induce a pad collapse, but the control algorithm successfully moves the refiner operation

101



Chapter 7: Industrial Data

Figure 7.85: The input and output signals of the reject refiner

away from a possible collapse. This action provides several cases where the refiner operation may

have entered the region of slope change, so that the ANM may be able to estimate the slope change.

The first step that must be performed is to filter out the noise in the signals. This was done using

a Butterworth low pass filter with a cutoff frequency at 0.05 Hz. The signals which result from this

filtering appear in Figure 7.86. They have a similar trend as the original signals but have no high

frequency components. Next, the interval for the ANM must be decided on, so that the static input-

output relationship can be estimated. First, the interval boundaries were chosen, set so that most of

the input falls in that range. The interval of [56.6,58.4] was decided upon and the ANM estimation

for this range appears in Figure 7.87(a). The slope of this line indicates the gain of the process over

this interval and it highlights a limitation associated with using a single estimate for the gain of this

process. This result suggests that the gain is constant over the interval, however, the ANM will show

this is not the case. The second curve in Figure 7.87(a), using the intervals [56.6,57.2,57.8,58.4]

indicates that the slope is relatively constant below 57.8, but seems to change above this value.

102



Chapter 7: Industrial Data

Figure 7.86: The filtered input and output signals of the reject refiner

Breaking the interval down into six segments, Figure 7.87(b), gives a better indication of the area

where the slope change occurs. In Figure 7.87(c), further breaking down of the region above 57.8

occurs, where the slope changes. The ANM was also run using the unfiltered data, to see the effect

of the noise on the estimation. Figure 7.87(d) compares the results with the single interval result and

though the bias created by the noise is evident, the same shape is there.

As this is data from a real process, it is not possible to know if these results are correct, based

only on the data supplied. However, the results do make sense when they are compared with what

is known about the process. For this process, a change in slope is expected, so the results of ANM

estimation are consistent with this knowledge. There is an advantage in knowing where the slope

change occurs, as it can be used to operate the motor load loop. The motor load reference can be

chosen based on the results of the estimation, to avoid pad collapse and plate clash. Also, the static

gain curve can be used by the a controller to signal that a reference change is required to avoid

a plate clash.
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7.3 Kamyr Digester Chip Level

A digester continuously cooks wood chips, the first step on their road to becoming used in paper

products. The properties of the cooked chips depend on the extent of the reaction in the digester.

The most direct effect on this reaction is the residence time of the chips in the digester and the most

common method of controlling this time is by manipulating the chip level. This control problem was

examined by Allison [1] and some of the data collected during this trial is examined. The chip level

was controlled by manipulating the blow flow using an Adaptive Generalized Predictive Control

(AGPC) method. The blow flow is the rate at which cooked pulp is released from the digester.

Chip level control is very difficult because it is a time-varying and operating point sensitive process.

This is because the chip level is difficult to measure and typically the strain gauges used result in
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Figure 7.88: A typical Kamyr digester

measurements high in noise and of poor resolution. Also, the chip packing in the digester depends on

the size, density, species and moisture content of the chips which will change on a regular basis. A

typical Kamyr digester appears in Figure 7.88, showing the flow through the digester. Also available

is data collected when the digester was under P control and Constrained Minimum Variance control.

All the data was collected every five minutes from the process.

As mentioned, the data was collected during periods when different control schemes were being

used. The various schemes will be compared using the ratio of output variance to erm2 . Also, one

data set contains approximately three days of digester operation under AGPC. These data will be

split into four sections to compare the operation of the process over the different intervals.

The chip level for the various schemes appears in Figure 7.89, with only the output shown, so that

it can be compared to the reference and the variance of the input signal. Thus it is possible to see how

close the output is to the reference and how active the input was to achieve the results. Figure 7.89(a)

presents thirty-three hours of operation under P control where the large dip at sample 140, corresponds
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Figure 7.89: The output signals of the digester for (a)
P control, (b) AGPC, (c) CMV control and (d) more AGPC

to a short manual period in an attempt to bring the output closer to the reference. This was typical

of the control used on the digester, as a PI controller did not provide satisfactory performance and

the operator was required to provide the integral action. The operation was then switched to AGPC

control shown in Figure 7.89(b), which lasted for approximately forty hours. The mean of the output

is much closer to the reference, indicating better control. Twenty-five hours of control under CMV

control is shown in Figure 7.89(c), which exhibits the worst control. Finally, Figure 7.89(d) presents

some more AGPC control at a later date, about eighty-three hours of operation. The autocorrelation

function of these signals appears in Figure 7.90, confirming the above observations, that the AGPC

scheme appears to provide the best control and CMV controller seems to provide the worst control.
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Figure 7.90: The autoconelation functions of the output signals of the Kamyr
digester for (a) P control, (b) AGPC, (c) CMV control and (d) more AGPC

It should also be noticed that two variances are listed in Figure 7.90, q, the variance of the

output about its mean, while o is the variance of the output about the reference, that being the mean

square value of the control error. The reason ay must be considered can be explained by examining

Figure 7.90(c). While o-2 for the CMV control is only around seventy, which is close to seventy-six,

the variance of the AGPC in Figure 7.90(b), the output response shows that the AGPC is superior

to the CMV. Comparison of the cr; values for these processes, one-hundred and six to seventy-six,

gives a better indication of the superior control strategy. This approach penalizes the performance

of a control which may keep the process variance down, but does not stay near the output. The cr!

value is quickly calculated using:

107



Chapter 7: Industrial Data

where y is the mean of the output and y s is the reference value.

Also, an apparent contradiction exists if Figure 7.90(b) and Figure7.90(d) are compared,

as Figure 7.90(d) has a lower variance, yet the autocorrelation function dies out quicker in

Figure 7.90(b). Based on this information, an inconsistency seems to exist, but it will be explained

after the minimum achievable output variance of the process is calculated.

Unfortunately, it was not possible to estimate the delay of this process. The noise created a bias

at one, but even if this was ignored, the data gave an inconsistent delay estimate, ranging between

two and four. While this was in the range of likely values [1], there is no guarantee that the estimated

change was actually a change in the delay and not caused by the disturbance. As a result, the delay

suggested in [1] as occurring most often will be used to determine 1712nv that being two samples.

The data were manipulated using various filter numbers and time scales and a choice of ten filters

and a time scale of 0.2 was settled on, as it produced an estimated noise autocorrelation function that

was closest to an impulse. The results are listed in Table 7.5 and confirm that the AGPC provides

the best control, while the CMV control does not perform near as well. The ratio for the two instants

of AGPC control are very similar, which suggests that the o is lower for the second case because

the process has changed slightly, not that the controller is doing a better job. The slightly lower ratio

of 1.32 for the first instance of AGPC control could also explain the decrease in correlation in lags

five through ten apparent in its autocorrelation function.

A closer look at the data in Table 7.5 confirms the nonstationary behavior of the digester. Even

though the AGPC and gain control methods share the same reference, variation in the wood chips

entering the digester are evident by examining O -E2 and the F(q -1 ) coefficients. The change in operating

point, which occurs during the CMV control, appears to have a large effect on the properties of the

Controller olp,2„, o gym" al t(cri)coefficient cr;2/er;,2,, v

P 1.78 125.5 70.8 49.7 0.652 1.26

GPC(a) 1.32 76.2 58.0 43.8 0.568 1.29

CMV 4.15 107 25.74 16.7 0.737 2.73

GPC(b)^_ 1.4 66.2 47.4^_ 37.2^_ 0.524 1.39

Table 7.5 The results of minimum achievable output variance estimation
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digester as the estimated noise standard deviation drops to four from seven. Comparing these figures

to knowledge available during operation of the digester, such as the type of chips used, may enable

improvements in the process performance to be made.

Next, the output of Figure 7.89(d) was broken into four equal segments, each representing about

twenty-one hours of digester operation. The purpose of this is to show how monitoring a 2  can be

used to indicate changes in the process. Once these changes are associated with a cause, steps can

be taken to minimize their effect on performance.

The control performance, av al, was calculated using ten Laguerre filters and a time scale of

0.2. The results appear in Table 7.6. The control performance ratio improves between period one

and two, stays approximately the same for period three, but worsens in period four. Comparison of

these ratios to the variance performance ratio, 4/61,,, shows that the this ratio stays approximately

the same, which is encouraging as it suggests that the AGPC enjoys the same success in minimizing

the variance over the three days. However, the control fails to keep the output close to the reference

all the time, and this drift results in an inflated control ratio in period four.

Some system identification was performed in order to obtain a time-series model of the

digester [1]. One day of data was used to fit the model with the digester operating at a reference of

forty-five percent. The following model was decided upon:

Y( t) = fq6-,u(t - 2) + 
1— O —1e(t)v.5—2 —

0.e2 = 31 F(q-1) = 1 + 0.5q-1

These numbers are similar to those estimated in Table 7.5 and Table 7.6, while the time-varying

and operating point dependency of the digester found are to be expected, based on the operation

of the digester.

Period 4 lerlv cd agiv 'cil f' (q-1 ) coefficient cr: felv

1-250 1.57 77.7 49.4 36.6 0.591 1.43

251-500 1.37 61.3 448 34.3 0.552 1.35

501-750 1.42 54.7 38.2 28.3 0.589 1.41

751-100 2.06 72.1 35.0 28.2 0.4912 1.43

Table 7.6 The results of minimum achievable output variance estimation on the AGPC control

(7.136)
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Using the methods presented in earlier chapters and applying the conclusions reached in the

simulation study, it was possible to successfully monitor some industrial processes. Results of

monitoring the power spectral density function indicated that the performance of the PI controller is

two and a half times worse than is possible, though retuning it may result in better performance. The

application of the ANM to the motor load control of a reject refiner resulted in the estimation of its

static gain. The knowledge of the slope change is very useful and could be used either in control or in

choosing the motor load reference. The performance of various control algorithms, used to regulate

the chip level in a Kamyr digester, was determined using the monitoring tools. They indicated

which performed the best and this was consistent with what was suggested by the autocorrelation

function of the outputs. The time-varying characteristic of this process was also noted, as the process

properties changed quite often. These examples point out the benefits of monitoring and the extra

insight gained about the process.
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Chapter 8

Conclusion

The important role that control loop monitoring plays in maintaining high process performance

can not be understated. The monitoring methods presented in this thesis are concerned with the

regulation control problem so that the output variance can be kept as small as possible. The ideas

and results will be summarized in the order that they were presented in this thesis.

It is possible to estimate the delay of a stochastic process in regulation by using the Fixed Model

Variable Regressor Estimator. Successful delay identification was obtained for a wide range of

processes and knowledge of the time delay can be used to guarantee that the control method correctly

compensates for it. Also, changes in delay over time will often signal the start of deterioration of

the process operation. The delay estimate can sometimes be biased, which will be caused by the

disturbance or if the input signal lacks sufficient excitation. It is possible to correct the bias caused by

the disturbance, but the bias due to insufficient excitation can not be fixed. However an approximation

of the lower limit of the input signal frequency content can be easily found with only the knowledge

of the sampling interval. The insufficient excitation problem is most often encountered when PI

controllers are used for control.

The Adaptive Nonlinear Modeller was successfully applied to closed loop stochastic processes

as it was able to estimate their static input-output relationship. The use of Recursive Least Squares

estimation to find the table values was not computationally intensive, even if a large number of

intervals are used. This is because all but two of the entries in the regressor are zero, which

reduces the total number of calculations required. The Adaptive Nonlinear Modeller was able to

identify various nonlinearities including a deadzone and actuator saturation, both which will reduce

the process performance. Two steps can be employed to improve the estimation of the static input-

output relation. The estimator can be turned off for a short period after setpoint changes, which

reduces the plant dynamics present in the signals. Also, for stochastic processes, the use of a low

pass filter is important to reduce the effect of noise on estimation.
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The final process property determined was the minimum achievable output variance. The

estimation of the minimum achievable output variance involved the successful application of a

Laguerre network. The Laguerre gains were correctly estimated for the majority of processes

considered, using Recursive Extended Least Squares estimation. This justifies the use of this estimator

over other, more complicated ones, even though in some situations estimation may not converge. This

may occur if the closed loop noise transfer function numerator is not strictly positive real. Simulations

showed a wide range of Laguerre parameters can be used to obtain high estimation accuracy. If the

autocorrelation function of the estimated noise sequence is close to an impulse, then the corresponding

choice of Laguerre parameters can be used with a high degree of confidence. It was also found

that examination of the estimated noise sequence and Markov coefficients, required to determine the

minimum achievable output variance, can be used to indicate if the plant or disturbance of the process

change. Besides being able to use a large range of Laguerre network parameters, a single choice of

parameters were able to model numerous changes in the closed loop noise filter. It should always

be remembered that changing control will not change the minimum achievable output variance. The

minimum achievable output variance will only change with the noise properties of the process.

The last stage in this thesis involved applying the monitoring tools to data from industrial

processes. This stage moved the study from simulation to the real world and the results were

successful. Much useful information about the processes considered was provided by monitoring.

The results show how monitoring can be used to compare various control algorithms, by determining

which provides the best reduction in the output variance. Also, once the minimum variance level is

known, decisions can be made as to the best approach to try in order that the process output variance

can be reduced. If the minimum achievable output variance is not low enough, further reduction can

be made by either retuning or replacing the control algorithm or by modifying the process. Also,

because changes in the process plant and disturbance are detected during estimation, this knowledge

can be used to improve process performance. Lastly, this industrial data shows that PI controllers

and high noise in processes can cause problems in the estimation of the time delay. The application

of monitoring to industrial processes will result in improved process performance.

There are several possible avenues envisioned that would continue this work. A very useful
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exercise would involve the transportation of the monitoring tools to a distributed control system to

enable the monitoring of an industrial process for a long period of time, such as days or tens of

thousands of samples. This would confirm the benefits derived from monitoring. Also, the minimum

achievable output variance could be determined for other control structures, including the case where

feedforward control is used. It was found that the number of filters in the Laguerre network had

to be increased to maintain good estimation for closed loop noise transfer functions with complex

poles. It is possible to use a Laguerre network which employs a complex time scale [24], which

should be done if the extra computation required by the network size is a concern. It would also be

possible to use the estimated process properties with a knowledge based system. Decisions could be

made based on the results obtained from monitoring the process. Finally, attention could be focused

on the possibility of monitoring more process properties. It would be useful to have an idea of the

servo performance of the process and to use this in conjunction with the variance performance to

obtain a controller that satisfies both criteria. This would be very helpful when applied to cascade

loops. The inner loop in this configuration generally performs a servo role while the outer loop

acts as a regulator. The availability of an indicator of the overall performance of the cascade loop

would be very beneficial.
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