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Abstract

,uSR studies of crystalline C60 reveal the existence of two distinct paramagnetic states.

The experiments described in this thesis confirm that one is an exohedrally bonded

muonium radical, while the other is endohedral muonium with a hyperfine parameter At,

close to that of muonium in vacuum. The signal from the muonium-C60 radical—which

is characterized by a small At, (10% of A7) and an anisotropic hyperfine interaction—is

sensitive to the molecular dynamics and is used to study the structural phase transition

of solid C60 near 260K. Only endohedral muonium is observed in the alkali-metal-doped

fullerites K4 C60, K6 C601 and Rb6C60. From its coherent spin precession, we find all three

to be semiconductors with small gaps on the order of 0.5 eV. Our results conflict with

the simple band structure model of doped fullerites indicating that electron-electron

correlation effects may be important in determining the electronic structure of these

solids.
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Chapter 1

Introduction

The recent discovery of the C60 molecule[1] and a simple technique for producing macro-

scopic quantities of this new form of carbon[2] opened a new chapter in condensed mat-

ter physics. Alongside diamond and graphite, crystalline C60 is a third form of solid

carbon. Due to the nearly spherical symmetry of the constituent Co molecule, this

solid and other C60 fullerites exhibit very interesting physical properties. Exploring

the properties of this unusual class of solids has become an exciting endeavour encom-

passing the whole range of condensed matter techniques, including LtSR. In fact, the

richness of the data obtained by iuSR may be attributed to the occurrence of param-

agnetic muonium states in these solids.[3]

The somewhat inadvertent discovery of the C60 molecule resulted from an inter-

disciplinary effort to solve a long-standing mystery in astronomy. [4] Spectroscopy of

visible light from stars reveals a series of more that 40 absorption features known col-

lectively as diffuse interstellar bands. None of these are unambiguously associated with

any particular origin, although carbon clusters have been a suspect since the 1960's.

Hoping to observe similar spectra in the lab, researchers set about trying to produce

such carbon clusters using laser ablation and arc-burning of graphite in a helium atmo-

sphere. The group led by Richard Smalley of Rice University along with Harold Kroto

of the University of Sussex found that by adjusting the timing of the laser pulses and

the pressure of the helium atmosphere, they could produce a preponderance of the Cso

molecule. Shortly thereafter, they proposed the structure of the molecule to be that

1



Chapter _I. Introduction^ 2

of the truncated icosahedron, the symmetry exhibited by the well known soccer ball.

Accordingly, the molecule was named buckminsterfullerene, or `Buckyball' for short,

after the architect Buckminster Fuller and his geodesic domes which brought him fame.

The observation by Kratchmer et al. that the C60 molecule was readily soluble in

bezene provided the means to separate it from the rest of the carbon soot produced in

the arc-burning process which they pioneered.[2] Thus the first macroscopic amounts

of C60 were synthesized as a brand new form of solid carbon. This led to a rapid

growth in research on the properties of the solid. Two interesting phenomena, both of

which have been studied using /./SR spectroscopy, motivate the experiments described

in this thesis. The first is the existence of a first-order phase transition in the pure

solid, and the second is the occurrence of superconductivity at relatively high transition

temperatures in alkali-metal-doped C60 fullerites.[6]

The first order phase transition was initially observed via X-ray diffraction,[5] and

subsequently by many other techniques. Formation of a paramagnetic muonium radical,

bonded exohedrally to the Cat molecule, allows us to study this transition and the

underlying molecular dynamics. The nature of this transition is now well understood.

The alkali-metal-doped fullerites, AxC60, whre A refers to an alkali metal, are formed

by exposure of pure Cal powder to the alkai-metal vapour. When doped to the com-

position A3C60, metallic and superconducting behaviour results. The superconducting

transition temperatures of 18K for K-doped C60 and 29K for Rb-doped C60 samples are

remarkably high and are surpassed only by the cuprates. These fullerites contrast with

the related superconducting graphite intercalation compounds such as KC8, which have

transition temperatures below 1 K. The mechanism of superconductivity in these solids

is not presently well understood and remains an outstanding issue in the forefront of

condensed matter physics.

The A3C60 phase is not the only fullerite produced upon exposure to alkali-metal
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vapour. Stable phases with the stoichiometry A4 C60 and A6 Co can also be synthe-

sized. We will focus on the electronic properties of these non-superconducting phases.

They are studied via iuSR of a paramagnetic muonium state which is determined to

be endohedral (inside the buckyball). It is hoped that these results will shed light on

the underlying band structure model appropriate for the general description of these

fullerites and central to any specific model of superconductivity in A3C60.



Chapter 2

C60 Fullerene and Fullerites

2.1 The C60 Molecule

The unique properties of this third form of solid carbon stem from the underlying struc-

ture of the constituent C60 molecule (Fig. 2.1a), which is composed of twenty hexagons

and twelve pentagons arranged in a truncated icosahedron with a hollow centre. Three

of the four valence electrons of each carbon atom are involved in covalent bonds with

the neighbouring carbons. By analogy with graphite these are called a-bonds while

the fourth electron is ascribed to a 7r-like orbital. Due to their non-planarity, how-

ever, the hybridization of the a-orbital is such that it no longer contains all of the

8-orbital character while the 7r-orbital is no longer of purely p-orbital character.[7] The

a-bond hybridization in C60 is somewhat between the hybridizations of graphite (sp2)

and diamond (89).

Within the icosahedral symmetry, the buckyball actually contains two types of C-C

bonds (Fig. 2.1b) having different lengths. Comprising the pentagons are the longer

(1.45 A) electron-deficient 'single' bonds. Joining two hexagons one finds the shorter

(1.40 A) electron-rich 'double' bond. As a result the C60 molecule aquires a slightly

anisotropic charge distribution having important consequences for the solid, as will be

discussed later.

The energies of the sixty 7r-like molecular orbitals are of central importance since

they form the valence and conduction bands in the solid. The one electron levels formed

4



Chapter 2. C60 Fullerene and Fullerites^ 5

(a)

(b)

Figure 2.1: a: Model of the C60 molecule (from Ref. 8) b: Model of C60 showing the
electron-rich 'double' bonds and electron-deficient 'single' bonds (from Ref. 7).



Chapter 2. Cal Fullere.ne and Fullerites^ 6

from these radially directed orbitals can be calculated using Hiickel molecular orbital

theory [7] or a tight-binding approximation. Figure 2.2 shows the energy levels obtained

assuming the hopping amplitudes for both types of C-C bond are the same. These

eigenstates reflect the icosahedral point group symmetry exhibited by the potential

and are labeled by the letters a, t, g, and h refering to degeneracies of 1, 3, 4 and

5, respectively. The subscripts g and u refer to even (gerade) and odd (ungerade)

symmetry, respectively. One recognizes the similarity of these states with the angular

momentum eigenstates of an electron confined to a spherical surface. In particular, the

degeneracies of the L=0,1,2 and L=4 levels are unchanged.

Using distinct hopping amplitudes for each type of bond splits the 9-fold degeneracy

of the L=4 level into a 5-fold and a 4-fold degenerate level. The energy levels of the

other states shift but their degeneracies remain the same.

Ignoring electron-electron interactions, the electronic configuration of the Cal molecule

is obtained by filling each of the thirty lowest-lying states with two electrons of opposite

spin. The high symmetry of the buckyball greatly simplifies the complexity otherwise

expected for a 60-electron molecule. One finds that the lowest lying 30 states are oc-

cupied, completely filling the hu shell. Approximately 2 eV above this lie the triply

degenerate tiu states.

2.2 Crystalline C60 and AxCso

2.2.1 Crystal Structure

If we ignore the complications of molecular orientation, crystalline C60 can be consid-

ered a molecular crystal formed by close packing of spheres. Due to the large diameter

of the carbon cage (7.1A), pristine C60 condenses into a face-centered cubic (fcc) lattice

with a remarkably large lattice constant of 14.198 A.[9] As a result, the crystal structure



Chapter 2. C60 Fullerene and Fullerites^ 7

tig

t,^1=5

^ha-H--H- 11^H
^ 1=-4

II^-1+-^II 
-th^e=3

1= 2

^-H-^1= 1
1=0

Figure 2.2: One electron energy levels of the C60 molecule calculated using Hiickel
MO theory (adapted from Ref. 7). The energy is measured in units of t, the hopping
amplitude (assumed to be the same for each C-C bond).The lablels refer
to the analogous angular momentum eigenstates of an electron confined to a spherical
surface.
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of C60 has large interstitial spaces— two with tetrahedral and one with octahedral sym-

metry per Cal molecule—availible for deliberate as well as inadvertent doping. (Solvent

molecules left over from the extraction process are a particular nuisance which must be

dealt with lest they obscure the interesting physics.) This crystal structure gives C60

a density of about 1.7 gicm3, considerably lighter than either graphite (2.3g/cm3) or

diamond (3.5 gfcm3).

When pristine C60 is exposed to alkali-metal vapour such as potassium or rubidium,

alkali atoms are incorporated into the interstitial spaces forming three stable phases

as evidenced by X-ray diffraction.[10,11,12] For arbitrary x, AxCso consists of inhomo-

geneous mixtures of these three stable phases with x=3, 4, and 6. Attempts to dope

in additional alkali atoms beyond the x=6 phase result in formation of regions of pure

alkali metal indicating that the x=6 phase is, in some sense, saturated.

The x=3 phase, exhibiting superconductivity and also the largest normal state

conductivity, retains the original fcc lattice of pure C60. (The alkali atoms occupy

the tetrahedral and octahedral sites.) For stoichiometries greater than x=3, some

expansion of the lattice is necessary to hold the additional atoms. The crystal structure

therefore transforms to body-centered tetragonal (bct) for A4C60 and body-centered

cubic (bcc) for A6C60 (see Fig 2.3).

It should be noted that not all the aforementioned phases are obtainable for an

arbitrary alkali metal. For example, no stable fcc phase has been achieved with only

cesium as the dopant. This has been interpreted as due to the large size of the cesium

cation which requires a more open C60 lattice such as bcc or bct. At the other end

of the mass spectrum, neither NasCso nor LirC60 have been found to have a stable

fcc phase although binary mixtures (e.g. Na2AC60 A=K,Rb,Cs or Rb2CsC60) utilizing

all three are possible.[13] This thesis will be concerned with the non-fcc phases K4C60,
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A3C60
fcc.

A6C60
b.c.c.

AzIC60

bct.

Figure 2.3: Crystal Structure for A3C60, A6C60, and A4C60 (from Ref. 10).
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K6C60, and Rb6C60. Henceforth in the remainder of this paper, the A in AsC60 will be

taken to refer solely to K or Rb.

2.2.2 The Phase Transition and Orientational Dynamics of Solid C60

Due to the strong intra-C60 covalent bonds, the internal molecular structure is basically

unchanged in the solid state. This, taken with the experimental fact that the minimum

distance between adjacent C60 molecules in the solid is some 3.1A might lead one to

conclude that the inter-C60 interaction could be adequately described by a Van der

Waals interaction. A spectacular demonstration that this is not quite correct is the

existence of a first order phase transition in the solid at approximately 250 K.[5] NMR

studies using naturally occurring nC nuclei had initially shown dynamical disorder

which decreased with temperature.[14] This was interpreted as a consequence of free

rotation of the C60 molecules with a gradual slowing down of reorientations as the

temperature was lowered. Following this, P. Heiney and co-workers used synchrotron

X-ray diffraction in an attempt to determine the low temperature structure of the

solid. [5] They found that the low temperature phase is orientationally ordered and

stable up to 249 K whereupon the solid undergoes a phase transition to the disordered

state characterized by quasi-free rotation of the Cal molecules. Differential scanning

calorimetry revealed the first-order nature of the transition by indicating a free-energy

change of 6.7 J/g at the transition.[5] From the diffraction peaks it was also possible

to ascertain that the low temperature lattice can be indexed as simple cubic (sc) with

a four-molecule basis.

Neutron diffraction measurements clarified the nature of the fcc -- sc transition and

the low temperature phase, revealing the ordering configuration of the C60 molecules.
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David et a/[15] found that this configuration was the result of an optimized order-

ing scheme in which the electron-rich, short inter-pentagonal bonds face the electron-

deficient pentagon centres of adjacent C60 molecules. The icosahedral symmetry of the

C60 molecules makes this optimization possible for all twelve nearest neighbours and

results in the observed four-molecule basis.

Theoretical studies [16,17] including Monte Carlo simulations corroborate these find-

ings upon inclusion of a small anisotropic correction to the previouly assumed Van der

Waals interaction. In addition to a Lennard-Jones potential, a small Coloumb poten-

tial, parameterized by an effective charge —2q on the short 'double' bonds, is found

to reproduce the the transition temperature as well as the orientation of the observed

ground state.

However, orientational dynamics persist below To, the ordering temperature, as

there are many nearly degenerate orientations for each C60. These orientations are

related by 7r/3 rotation about a threefold axis and are separated by potential barriers

of 300 meV. Resulting from this is a glassy transition characterized by 'frozen in'

disorder below a characteristic temperature that depends upon the time scale of the ex-

perimental probe.[16] Direct experimental evidence for this transition is found in sound

velocity and attenuation measurements[18] and thermal conductivity measurements[19]

on single crystal C60-

2.2.3 Electronic Structure

With the molecular energy levels in hand, it is not difficult to arrive at the electronic

structure of C60 solids, at least within the framework of an independent-electron, tight-

binding model. Recall that in the tight-binding approximation, a non-zero amplitude

for electrons to hop from one site to the next causes the energy levels of the atom (or

molecule as the case may be) to broaden into a band. The validity of such an approach
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with the fullerites rests upon the fact that the C60 molecules in the solid are relativly far

apart and consequently have a small hopping amplitude t relative to the on-site energy.

Less grounded in certainty is the assumption of non-interacting electrons which is even

more of a concern when the energy bands are narrow due to a small t.

Charge transfer, the salient feature of doping with alkali-metal atoms, makes the

electronic structure of A„C60 no more complicated. One simply uses the alkali-metal

atoms to add electrons to the C60 energy bands. The high electron affinity of the C60

molecule combined with the low ionization potentials of the alkali metals ensure that the

electrons are completely transferred to the formerly neutral C60 molecule. Structurally

this transfer makes the doped fullerites more ionic and increases the cohesive energy

relative to the undoped solid.

Electronically, these considerations give the following results, seen simply by inspec-

tion of the Cal molecular energy levels: C60 should be insulating with a relativly large

gap of about 2 eV; each added alkali-metal atom per Cal adds one electron into the

triply degenerate tit, orbitals so that A3C60 and A4C60 should be conducting; and for

six added electrons, the th, orbitals are filled hence A6C60 should be insulating with a

gap of a fraction of an eV.

This approximate behaviour is observed in conductivity measurements on thin films

of AsC60.[20] In these experiments thin films of C60 are exposed to alkali-metal vapour

while the conductivity is monitored in situ. The films consist of inhomogeneous mix-

tures of the stable phases with the quoted x an average value of the alkali composition.

The conductivity reaches a maximum for x=3, which presumably contains a large frac-

tion of the stable x=3 phase, and decreases beyond this as the doping proceeds to

x=6. The lowest resistivity (approximately 2 me-cm) is quite low for a typical metal

and implies an unphysically short scattering length — perhaps an indication that this

simple model needs modification.
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More sophisticated calculations predict the actual k-space dependence of the ti

other molecular-orbital-derived energy bands, from which one can estimate the density

of states.[21,22] These calculations are based on the same ideas, namely complete charge

transfer and absence of electron-electron interactions, and therefore provide the same

qualitative results. Some authors try to estimate the effect of orientational disorder

among the C60 molecules on the electronic properties [23] but here again they use the

same underlying molecular energy levels.

2.3 Superconductivity in A3C60

The observed transition temperatures for fullerite superconductors (18K for K3C60,

29K for Rb3C60 and 33K for Cs2RbC60) are higher than any other known molecular

superconductors and surpassed only by the cuprates. These superconductors are ex-

treme Type II having a coherence length (0) of 26 A. The penetration depth of K3C60

as measured by magnetization[24] is 2400 A, whereas itSR results[25] find a value of

4800 A. Measurements using 13C NMR[26] find an energy gap consistent with weak-

coupling BCS theory while STM measurements[27] favour a larger value supporting

strong-coupling models. The mechanism for such high Tc's in these materials is not

agreed upon and both electron-phonon and electron-electron[30] pairing mechanisms

have been proposed.

The classic test of BCS theory is the existence of an isotope effect on the transition

temperature. This effect has been seen using isotopically pure K313C60[28,29] however

the interpretation that this confirms the validity of BCS theory is not without difficulty.

Chakravarty and Kivelson argue that this would also be seen if the pairing resulted from

electron-electron interactions. [31,32]

Relevant to all models of superconductivity is the measured dependence of Te on the
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lattice constant [33] which essentially reflects the dependence of T, on N(Ef), the density

of states at the Fermi energy . One expects N(Ef) to increase with increasing lattice

constant since the bands become more narrow as the hopping amplitude decreases.

Virtually all of the conventional theories of superconductivity rely on the underlying

band structure model for A,C60 described above. The validity of such an approach

should be investigated experimentally. This can be accomplished by studying the non-

superconducting phases of Ax.C60 in addition to the normal and superconducting states

of A3 C60. The electronic structures of K4C60, K6C60, and Rb6C60, which are the subject

of part of this thesis, are an important test of any comprehensive theory for the electrical

properties of fullerites.



Chapter 3

,uSR and Muonium Spectroscopy

3.1 Introduction

The use of muons for condensed matter studies is possible because of parity violation

in the weak interaction and its manifestation in leptonic decays. Spin-polarized beams

of low energy muons can be produced; when such muons are stopped in matter, the

evolution of their spin polarization may be readily monitored using the experimental

techniques of particle physics. Although the method is quite different from that of other

spin resonance experiments, the information about the local fields obtained using //SR

is similar and often complementary to that obtained from Nuclear Magnetic Resonance

(NMR) or Electron Spin Resonance (ESR).

The muon is a spin-I lepton with a mass of rs.,- that of the proton and a mean lifetime

of , 2.2 its. When negative muons (yr) are stopped in solids, they are quickly captured

by an atomic nucleus, cascading down to the lowest muonic orbital which has a radius

comparable to the nuclear radius. Positive muons (it+), however, avoid the positively

charged nuclei and take up sites in the interstitial regions. The experiments described

in this thesis employed positive muons although some condensed matter studies are

done with negative muons.

Aside from the much smaller mass, the positive muon in a solid is completely anal-

ogous to an isolated hydrogen-like impurity. This fact has inspired a whole avenue of

research concerned with the dynamics of the muon in the solid. Envisioned as a probe

15
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of solids, however, spin relaxation of the p+ is most simply seen as a microscopic probe

of the magnetic properties of materials. Within this picture, the dominant interaction

of the muon spin is assumed to be its Zeeman interaction with the local magnetic field.

In addition to the applied field, the local field includes the dipolar field arising from

the electronic and nuclear moments of the host material.

Like a bare proton, however, the IL+ is very reactive and does not remain a bare

particle in most materials. In good metals it acquires a screening charge which may in

turn be polarized by an external field to produce a paramagnetic "Knight shift" of the

effective field acting on the ,u+. In other materials, the muon can pick up and bind a

single electron to form a hydrogen-like atom (ee) known as muonium or Mu for short.

The occurrence of muonium opens up a whole new realm of experimental possibilities

as the range of physical properties accessible to //SR techniques is augmented by the

presence of the bound electron.

This unpaired electron couples much more strongly to the local fields of the host

material than the muon. In accordance with the Pauli principle, it can have a rather

strong exchange interaction with the other electrons of the host material. The symme-

try of the electron wavefunction is indicative of the muonium site and its environment.

Additionally, the paramagnetic muonium atom is much more sensitive to local mag-

netic fields than the p+ simply because of its much larger magnetic moment. For those

solids in which muonium forms, electronic structure as well as structural dynamics may

be studied via spin relaxation of muonium. Needless to say, knowledge of the dynam-

ics of muonium in solids is also valuable in its own right because of the scientific and

technological interest in the behaviour of hydrogen in materials.
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3.2 Basic Principles of Muon Spin Rotation

3.2.1 Parity Violation in Weak Decays

The non-conservation of parity in weak interactions was discovered experimentally by

Wu et al. using 'Co /3-decay[34] and Garwin et al. using muon decay[35] in 1957 after

a theoretical prediction by Lee and Yang.[36] Parity violation in weak decays is not a

small effect. In fact, it is maximal, and forms a cornerstone of the V — A theory of weak

interactions. In correspondence with this theory is the experimental observation that

neutrinos are exclusively left-handed particles only while antineutrinos are right-handed

only (i.e. their spins are antiparallel or parallel, respectively, to their momentum).

These facts have important consequences in the decay chain 71 —> /II -.4 e utilized

by Garwin et al. in 1957 as well as in current itSR experiments.

Spin polarized positive muons are produced from pions from the decay process

+7r -- it+ + VA,

a two-body decay. Conservation of momentum requires that the outgoing muon and

neutrino be colinear in the rest frame of the pion. The spin of the pion is zero. Since

the neutrino must be left-handed (helicity H = —1), conservation of both linear and

angular momentum requires that the muon also be left handed. In the rest frame of

the pion therefore, the muon is 100% spin-polarized with a helicity H --= —1. If the

pions themselves are moving, the muons and neutrinos from the decay—distributed

isotropically in the pion rest frame—become Lorentz-boosted into a cone about the

initial pion momentum. Hence for a finite acceptance beamline using pion decay in

flight, something less than 100% muon polarization is achieved. For positive muons,

however, the most common practice is to use a surface muon beam which selects muons

from pions decaying at rest near the surface of the production target. In addition to
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nearly 100% spin-polarization, this type of beam has the advantage of providing low

energy muons which are easily stopped in thin samples. It is also amenable to precise

beam optics, as it comes from a small, well-defined source.

Measurement of the time evolution of the muon ensemble polarization relies upon

the asymmetric distribution of positrons from the decay,

,u+ -- e+ + ve + 17,2.

As this is a 3-body decay, the kinetic energy of the emerging positron can have a con-

tinuous range of energies. Using the V — A theory, the angular probability distribution

of the positron can be calculated and is found to depend upon the energy of the decay

positron (Fig. 3.1). The angular decay probability has the form

WO , x) cx 1 + a(x) cos 0 ,

where x—  E the ratio of the positron energy to the maximum possible energy

(Emax f_s_.' 52 MeV), 0 is the angle with respect to the muon spin and a(x) is the energy-

dependent asymmetry factor, a(x) = (2x — 1)/(3 — 2x) (see Fig. 3.2). Averaging over

the energy spectrum one finds that the positron is emitted preferentially along the

direction of the p+ spin with a net asymmetry of -15.-. Thus by recording the spatial

distribution of a large number of decay positrons from muons with the same initial

polarization, one is able to determine the direction of that polarization.

Although the major result of the work by Garwin et al. was the experimental ver-

ification of parity violation, they also noted an interesting observation concerning the

nature of the material used to stop the muons. They found that the muon decay asym-

metry in nuclear emulsion was only half that of muons stopped in copper or graphite.

Friedmann and Telegdi[37) suggested that this loss of asymmetry was due to rapid de-

polarization on account of muonium formation. This was soon verified in an experiment
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Figure 3.1: Angular Decay Distribution of Positrons from ii+ Decay.
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x

Figure 3.2: Energy spectrum E(x) and asymmetry factor a(x) of decay positrons.
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performed by Orear et al. [38] in which a large magnetic field was applied to decouple

the muon and electron spins and recover the 'missing' asymmetry.

3.2.2 The Experimental Technique

There are essentially two spectroscopic methods used in the majority of ,uSR con-

densed matter experiments: time-integral and time-differential. In this section, a brief

discussion of time-differential pSR will be given. Several comprehensive reviews of

pSR techniques exist. In particular, the book by Schenck[39] and the review article by

Patterson[40] are recommended.

The typical time-differential apparatus includes a number of scintillators surround-

ing a cryostat containing the sample, all of which are placed in a magnetic field. For

the transverse-field setup, shown in Fig. 3.3, the applied field is perpendicular to the

initial muon polarization. In a longitudinal-field setup, the applied magnetic field is

parallel to the muon polarization. On the way to the sample, an incident muon passes

through a thin scintillator (detector M in Fig 3.3) before entering the cryostat via a

series of Mylar or Kapton windows. A photomultiplier tube amplifies the faint flash

of light from the scintillator and generates a pulse which is used to start a digitizing

clock.' The decay positron from the stopped muon is detected by another scintillator

(detector E in Fig 3.3), and that pulse is used to stop the clock.

In this manner, repeated measurements of the time interval between the arrival of

a muon in the sample and the detection of its decay positron are made. These time

intervals are collected into a histogram which has the form

N(t) = B No exp( —tjA,) [1 + aelAti)], (3.1)

ti jAt (j = 1,N),

'The so-called "clock" is more formally known as a time to digital convertor (TDC).
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Figure 3.3: Typical Setup for Tranverse Field ,uSR
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where B is a time-independent background, No is the normalization, and ae, the ex-

perimental asymmetry. The experimental asymmetry here is not generally equal to

the given by the intrinsic angular decay distribution, but instead depends on the

experimental setup. This is due to absorption of low energy positrons, which raises the

effective average asymmetry, and to the finite solid angle subtended by the scintillator,

which lowers it. Fig. 3.4 (top) displays a simple ftSR spectrum of this form, showing

clearly the precession and the muon lifetime.

The quantity of interest is P(t), the component of the muon polarization in the

direction of this particular positron counter.' For the transverse-field geometry depicted

in Fig. 3.3, P(t3) is typically the sum of damped sinusoids

P(ti) = E f,Rn(ti) cos(wnt, + on), (3.2)

where the different frequencies may be due to either inequivalent muon sites or for-

mation of paramagnetic muonium states (to be discussed in the next section). The

amplitude fn reflects the relative fraction of muons contributing to the nth signal and

R(ti) is a relaxation function which depends on the particulars of the solid and is

often taken to be a gaussian or an exponential envelope function. As a simple example,

assume that no paramagnetic states exist and that the stopped muons are at equivalent

sites having a gaussian distribution of B, the component of the local field along the

main applied field Bo =B0 , and perpendicular to the m.uon polarization with width

a centered about Bo. In this case, the muon spin precesses at the Larmor frequency so

that
a2t?

P(t3) exp^2 3 ) COS (7 AB Oi j 0) . (3.3)

During the analysis of many experiments, the histograms from two counters placed

symmetrically on opposite sides of the sample are combined to form the asymmetry

2The scintillator/phototube combination is usually called a counter.
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(not to be confused with cte, the experimental decay asymmetry)

— aN2(t3)
Al2(ti)^ (3.4)

aN2(ti) '

where N1(t3) and N2(t3) are the background-subtracted histograms of counters 1 Sz 2

and a = 14 is the relative normalization. This procedure takes out the muon lifetime.
N2

Fig 3.4 (bottom) shows an example of the resulting Al2(ti) which is proportional to

P(t), provided the experimental asymmetries of the two counters are approximately

equal.

3.3 Muonium

The formation of paramagnetic Mu states in solids is a rather complex phenomenon

with many open questions. Nevertheless, if these states do form on a timescale of < 10

ns, they may be readily distinguished by their characteristic precession frequencies in

transverse field, by their zero-field oscillations, or indirectly from their decoupling curve

(recovery of polarization) in longitudinal field. Although the electronic configuration

of Mu in a solid may be quite different from that of the isolated muonium atom, study

of the hyperfine levels of muonium in vacuum constitutes an instructive starting point

for the discussion of the spin dynamics of the composite muon and electron system.

3.3.1 Hyperfine Levels of Muonium in Vacuum

Consider then the isolated muonium atom, which, as mentioned previously, is very

similar to an isolated hydrogen atom. The reduced mass m. of muonium, defined by

1/m* = 1/me 1/m„,

is only about 0.5% smaller than that of hydrogen. The binding energy,

E —m*e4/2h2,
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is therefore only slightly less than that of hydrogen. Since the first excited state is >

10 ev away, we need only consider the hyperfine structure of the 1S ground state. In

this state the electronic configuration is almost perfectly isotropic and the hyperfine

Hamiltonian describing the interaction between muon and electrons spins is given by

the Fermi contact term

1-1H-F = Alia' - 6- 4,^ (3.5)

where "cle and 541 are the Pauli spin operators of the electron and muon, respectively.

The hyperfine coupling constant, A,„ is given by

Ail - 

87h2 
-Ye-YAK/Mr ,^ (3.6)

3

with -y,,(-ye), the gyromagnetic ratio of the muon (electron). One notes that A„ is pro-

portional to the probability density of the electron at the muon; for isolated muonium,

the hyperfine frequency (also called hyperfine parameter) is determined to be,

wo Au,27r = Ti - = 4463 MHz.

In a magnetic field the Hamiltonian includes the Zeeman terms for the muon and

electron. The spin Hamiltonian for muonium becomes

'H = --yehc7-e • B — -y„hc7- 12 • B + Apde • -d".^(3.7)

For a uniform B-field, this Hamiltonian is easily diagonalized.[41,42] Taking the field

to be along the z-axis and using a basis

xi = I + +)^x2 = I - +)
^

(3.8)

x3 = I - -)^x4 = I + - ),

where the first +(—) refers to the muon spin up (down) along the z-axis, the second

similarly to the electron spin, we find the eigenstates
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11) = 1+ + )

^

12) = sine) +^+ cos^+)
^

(3.9)

13) = 1 - -)
^

14) = cos fl —) — sin el — +).

The mixing angle e is given by

x^
i

cos — (1 + ^
2V1 -I- X2

)

where x is the dimensionless reduced magnetic field, x = B /Bo, with Bo = AJ(-ye

We note that in the high-field limit (Paschen-Back regime), the eigenstates are simply

the xi's (3.8) we started with as a basis. The corresponding energy eigenvalues are

found to be

B„
=^+^- 70)

A4 B„
E3 = —4 — —2 (lie — 7 41)

^— 
Ai,^A2, + (7e + 7A )2B?

E2 
^4 ^2

^Ai,^VA2/1 + (7e + -y0)2.13
E4^4 ^2

(3.10)

and are plotted as a function of the reduced magnetic field (a so-called Breit-Rabi

diagram) in Fig. 3.5. An unphysical value of (-ye — 74)/(7, -y) is used in the diagram

in order to show more clearly the relative behaviour of E1 and E2•3

3.3.2 Zero-Field and Transverse-Field ,uSR of Isotropic Muonium

In the preceding section, the spin eigenvalues and eigenvectors of vacuum muonium in a

external magnetic field were given. Greatly simplifying the problem was the assumption

that the muonium was in the 1S state, thereby reducing the hyperfine Hamiltonian

to an isotropic term de • 64 multiplied by a constant, A. We now consider zero or

31.e., their crossing at 19 and respective slopes for large . For the true value of (e )(e+),
the crossing occurs at 100 and the slopes of j and 2 in the high-field limit are nearly identical,
making these features difficult to portray graphically.
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Figure 3.5: Breit-Rabi diagram of vacuum muonium. The eigenstates are labeled by
their energies El — RI; X = -1-3- with Bo :-_•2 1585G for vacuum muonium.Bo
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tranverse-field pSR of muonium characterized by the Hamiltonian of (3.7), leaving Ai,

unspecified, and refering to the system simply as isotropic muonium.4

In pSR one observes the time-dependent muon spin polarization,

P(t) = (6(t)).^ (3.11)

As an example, the behaviour of P(t) in zero-field will be calculated explicitly.

The zero-field case is particularly simple, for in the absence of an external field we

can choose the axis of quantization to be parallel to the initial muon polarization, P(0).

The electron is assumed to be unpolarized, therefore the initial state is a mixture of

+ -I-) and I+ —), each with a population of 50%. The eigenstates in zero field are

11 ) = 1 + +)^12) = \-b-1 (1 + -) + 1 - +))^(3.12)

13) =^—)^14) =^(I+ —) — — +)).

We see that 1-1- +) is an eigenstate, hence 1/2 of the polarization does not change with

time. The state 1+ —), however, is a superposition of eigenstates,

1 + - ) =^(12) + 14)) ,

and will therefore change with time. We denote the time-dependent spin state for

this half of the ensemble by I W(t))ii. The time dependence is found by applying the

time-evolution operator,

Iklf(t))ii = /4(t)I^—) = exp^7-it)

Using a basis of eigenstates of the Hamiltonian,

/At) E
4Isotropic muonium states with hyperfine parameters different from that of vacuum are known to

exist in semiconductors and insulators e.g. Si, GaAs, diamond, and molecular crystals.[40,39]
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thus

IT(t)).11 = 701 (e-212)^e- 4t14)) •

The time-dependent z-component of the polarization' is given by

= (GI) = (wmisfoct»
1

=^((210T 12) + (4lai: 14) + eiw0t(41c1 12) + e-nc4(41G1 14)) ,

using

wo — (E2—E4vh— —hi—LA •

The action of the operator cr,,` on the xi's is given by

from which we have,

(210-i: 12) = (410-f. 14) = 0,

(210-f 14) =(4I° 12) = 1,

therefore,
pzii(t) = eiwot e-iwo
^ = cos(wot).

2

The simple result is that this half of the polarization oscillates between +1 and -1 at

the hyperfine frequency, vo = wo/27. We note that this back and forth oscillation of

Pz is quite different from a 'precession' in the classical sense of a rotating spin, since

'It can be shown by a similar calculation that the other components, x and y, remain zero at all
times.
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no transverse components develope, and consequently is sometimes referred to as the

muonium heartbeat oscillation.

The time dependence of the muon polarization of isotropic muonium in a tranverse

field is calculated following a similar procedure, facilitated by use of the density matrix

formalism.[42,39,40] With the initial polarization along the x-axis and the field along

the z-axis, the polarization is found to oscillate at four frequencies [39], according to

1
—4 [(1 + 6) cos cont + (1 — 6)cos wiAt

+ (1 + 6) cos w34t + (1 — 6) cos co23t]
1

P(t) = 
4
— [—(1 + 6) sin w12t + (6 — 1) sin wiAt

+ (1 + 6) sin co34t + (6 — 1) sin w23t]

.13,(t) = 0,

P(t)

(3.13)

where wi3 = (Ei — E)/h, corresponding to transitions between energy levels of the

Breit-Rabi diagram (Fig. 3.5), and 6 = cos2 — sin2 = x/V1 + x2.

3.3.3 Anisotropic Muonium

The isotropic hyperfine Hamiltonian of (3.5) is inadequate to deal with the phenomenol-

ogy of m.uonium centres found in many crystalline solids. It is necessary to consider an

anisotropic Hamiltonian

7-tHF = -cie • A • 6',^ (3.14)

where A is now a tensor. This generalization of A from a scalar to a second rank

tensor reflects the fact that the electron spin density distribution around the muon is

in general anisotropic, having non-S-wave components. In an external field, the total

Hamiltonian now reads

7-t = --yehrrle • B — -y4h5-*" • B^e • A •^ (3.15)
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In general, the energy eigenvalues of this Hamiltonian have analytic solutions only if

the field is applied along one of the pricipal axes (x', y', z') of A. For the case of B II ;',
the energy eigenvalues as a fuction of the field are

Ei

E2

E3

E4

.

=
=
=

711 [Azz + V (Asx — Ayy)2 + 4.13! (-ye —^ 2 i

711 [—Azz + NI (A,s + Ayy )2 + 4-13! (-ye — -rA)2 I

(3.16)

il [Azz — V (Ass — Ay y )2 + 4.13! (-ye — -yi,)2 I

1 [—Azz — V (Axx + Ayy)2 + 4M (-ye —^)2]
4

These energy levels are show as Breit-Rabi diagrams (Fig 3.6) for 3 types of rep-

resentative hyperfine tensors: isotropic (Ass = Ayy = Az, = htoo), axially symmet-

ric (A ^Ayy^Azz, Azz = hwo), and completely anisotropic (As,^Ayy

Azz, A„ = hwo). In all cases, the field is directed along the z'-axis. For these dia-

grams, the relative values of the unequal elements of A are taken to be quite different

in order to conveniently show all four energy levels.

As with isotropic muonium, the muon polarization of anisotropic Mu in a transverse

field consists of components oscillating at frequencies 1/12, v23, v14, and v34, given by

the Am = +1 transitions between the corresponding energy levels of equations (3.15).

However, the amplitudes for the 4 frequency components for anisotropic Mu depend

upon the field in a much more complicated way than for isotropic Mu.

Of particular interest is the zero-field behaviour evident in the Breit-Rabi diagrams.

For isotropic Mu, one observes only one oscillating component of the muon polarization,

at the hyperfine frequency. In contrast, axially symmetric Mu exibits three frequencies

(1 relatively low and 2 relatively high), while completely anisotropic Mu results in six

frequencies (3 low and 3 high). The zero-field Hamiltonian [equation (3.13)] is invariant

with respect to a rotation of the coordinate axes; the frequencies, therefore, will not
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a

Figure 3.6: Breit-Rabi diagrams for (a) isotropic, (b) axially symmetric, and (c) com-
pletely anisotropic muonium.
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depend upon the direction of the initial muon polarization. For the anisotropic cases,

the amplitudes, however, will depend quite strongly on the initial direction of P(t),

in principle allowing a determination of the orientation of the hyperfine tensor with

respect to the crystalline axes.

3.4 Spin Relaxation of Muonium: Spin Exchange with Free Carriers

The preceding considerations of the spin dynamics of muonium have neglected relax-

ation of the muon polarization. In addition to analogous ,u+ relaxation mechanisms'

such as (reversible) dephasing due to a distibution of fields or (irreversible) spin tran-

sitions due to a fluctuating field, spin relaxation of muonium can occur via several

other processes. For example, muonium could form with a distribution of hyperfine

parameters, giving rise to dephasing similar to that resulting from a distribution of

fields. Another possibility would be transitions between muonium states with different

hyperfine parameters, which can be viewed as producing a fluctuating effective field at

the muon. Still another mechanism, most relevant to the present studies, is due to the

interaction of the muonium electron with the electrons of the medium.

3.4.1 Spin Exchange Relaxation

A spin-independent interaction V, such as the Coloumb repulsion between two elec-

trons, combined with the exclusion principle, leads to a so called exchange interaction

in the Hamiltonian for the two electrons of the form [43]

V = 2J61 • 62,^ (3.17)

6 Here we are referring to a + experiencing only the Zeeman interaction with the local magnetic field.
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describing a spin-spin interaction between electrons 1 and 2. This term is proportional

to J, the overlap integral, which is

J = — VabVW bad3xid3x2 = — knaVkliabd3xid3x2,^(3.18)

where

Tab(xi, x2 ) = Wa(x1 )klib(x2).^ (3.19)

Here Wc, and W b are energy eigenfunctions for a single electron with energies Ea and

Eb, respectively.

With one of the electrons the Mu-electron, and the other a Bloch electron of the

solid, we can treat 1-1' as a brief, time-dependent perturbation to the muonium spin

Hamiltonian of equation (3.7), and find that 7-1' induces spin-exchange transitions be-

tween the two electrons:

I + +) mu l —)e <̂  I + —> mul+)e

I — --) mu l+)e <̂  I — + ) mul —)e.
^(3.20)

These spin-exchange transitions only involve spin flips of the muonium electron, yet

the also affect the muon spin to which it is coupled. A number of authors have eval-

uated the resulting time evolution of the muon polarization upon the phenomenologi-

cal inclusion of electron spin relaxation, spin-exchange being one possible mechanism

[44,45,46,47,48] We summarize the results for longitudinal and transverse fields in the

limiting cases of fast and slow v, the spin exchange rate.

Longitudinal Field: For fast spin-exchange, v > coo(1 x2)1, the time dependence

of the it+ polarization[45,46] is

Pr(t),exp(-tfro,^ (3.21)
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where

^7 -1 = 4v/w02.^ (3.22)

That is, the muon polarization is exponentially damped at a rate which is independent

of the strength of the applied field, but that decreases with increasing v. Qualitatively,

this reflects the weakening of the hyperfine coupling of the electron and muon spin by

the large spin-flip rate; the muon behaves more as if it were 'free'.

For slow spin-exchange, v < wo(1 + x2), one finds from equation (7.80) from

Schenck[39], that

^P(t) =  1 + 2x2 exp ( ^v  t) + ^1 ^xp ( (3 + 4x2)vt)
1 + x2 ) 4(1 + x2) e2(a + x2)^\^ 2(1 + x2) )

5 + 8x2)v
x (2 cos wo(1 + x2`)1/2^( t + wo(1 + x2)3/2 sin wo(i + x2)1/2t)

Averaging over the high frequency oscillating terms, which are unresolved in conven-

tional experiments, we have

Pf = Po exP( —07-2)^ (3.23)

with 72 = (1 + x2)/v and

Po —  ^ (3.24)
2(1 + x2)•

We see that for x —> 0, the muon spin relaxes at the electron spin-exchange rate.

For increasing x, however, the decoupling of the electron and muon spin reduces the

muon spin relaxation rate. This effect provides an enormous practical advantage for

longintudinal field measurements of v. One can select the strength of the applied field

in order to place the relaxation rate in the range convenient for OR measurements

(i. e. 0.1 to 10 s1). For example, if v is strongly dependent on the temperature, one

can choose the appropriate field for the temperature range of interest.

1 -I-- 72
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Transverse Field: Again we consider the two limits of fast and slow spin exchange.

For fast spin-flipping,[42] v > wo(1 +

'15" ...E Ps" + iP" exp[(—iwi, — —
1
) ti ,Y

T1.
(3.25)

where 7-1 is the same as in equation (3.21). As in longitudinal field, the muon polar-

ization relaxes at a rate inversely proportional to v, and the muon behaves as if it

were a 'free' muon precessing at the Larmor frequency, wm. For a slow spin-flip rate,

v2 < (wo/2)2x4, Gurevich et a/.[491 have calculated the x-component of the [t+ polar-

ization. Neglecting the usually unobserved terms with frequencies w14 and w24, their

result is

where

52 sin 52.1,t
Pf = —

1 
exp(—t/7-3) [(cos^

3
flyt +^ cos w_t

2^ 7-3S24 )

(2w+S22)
+ ^ sin S-2 t sin w_t-rwof22'y

(3.26)

CO_ =

Lt2+ =

S-2 =

1^1
"i(wi2 + W23) = Owe 1 — iwpi)
1

(ic.oei + PAD
1

 (
^\^1

2 w23 — w12) = iwo[(1+ xy _ 11,

and the v-dependent beat frequency is

Cil, = C2(1 — v2/4522).1.

The exponential damping of the precession signal is given by

73 = 2/3v.

For small fields (< 10G), where w12 '-d. co23 E.-: wmu, /3: is given simply by

(3.27)

P" = —1 
exp(—t/T3) cos wmut.

X^2
(3.28)
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3.4.2 Temperature Dependence of the Spin-Exchange Rate

We have seen in the last section that spin-exchange interactions give rise to an ex-

ponential relaxation of the muonium signal. For a given v, the time evolution of the

muon polarization in a longitudinal or transverse field is known. We now consider what

factors determine v and in particular we calculate the temperature dependence of v for

two simple band structures: (1) a partially-filled band at T=0, i.e. a metal, and (2)

a filled band at T=0, above which is a conduction band separated by a gap E9, i.e. a

semiconductor.

The spin-exchange rate can be written as

v, nk,,,f(Eki){1- f(Eki)] ,^ (3.29)

where Wki,l, the transition probability per unit time for an electron of wavevector

k and spin i to be scattered to a state with wavevector k' and spin 1, is multiplied

by the probability f (Eki) of finding the state 1k, 1) occupied and by the probability

[1 – f (Ek I)] of finding the state Ik',1) empty. From perturbation theory, we have that

7r^ A4
Wkt^

2
i =^-h--I(k, +17-t'iw, -)128(Eki - Ek i – –2–)

A4
= -87 J2S(k – lc/)6(E/1 – Eki – —2 )•h

With this, we can convert the sum over k, k' in equation (3.28) to an integral over

initial and final state energies of the electron,

V OC
Ail

1J2 f i P(Ekt)P(Ek I)f(Eki) [1 - f(Eki)] b(Eki – Eki – —2 )dEkidEki,h

where p is the density of states (DOS). Ignoring the Zeeman hyperfine energy A4/2,

we have

87r 2V OC i-- j I p2(E) f (E) [1– f (E)] dE. (3.31)

(3.30)
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Thus the entire temperature dependence comes from the Fermi distribution function

f(E) in the above integral which we evaluate for the two cases mentioned above.

Temperature Dependence of v in a Metal: In this case, f(E)[1 — f(E)] is large

only within about kT of Ef. Since kT < Ef, we can pull p(E) out of the integral,

evaluating it at Ef. We also notice that

f(E)[1 — f(E)] = —kT dd Ef ,

so that

7 J2 p2(Ef)kT f c° (--
df

)voc ^dE
h,^0^dE

and thus

v oc —87 J2 p2(Ef)kT.
h

(3.32)

Not surprisingly, this result is very similar to Korringa relaxation in NMR where the

relaxation rate is found to be proportional to the temperature and the square of p(Ef).

[50,51]

Temperature Dependence of v in a Semiconductor: In a semiconductor the

Fermi level lies somewhere between the valence and conduction bands. The actual

value of Ef is determined by the 'law of mass action' which simply states that the

number of electrons excited into the conduction band is equal to the number of holes

in the valence band.[52] To find the spin-exchange rate, the integral of equation (3.30)

is split into two parts representing the contribution of electrons in the conduction band

and that of the holes in the valence band. Omitting the details of the calculation, the

two parts are found to be equal; for kT < E9, we find that

E9
V OC -167 J2 p(Ec)p(Ei,)kT exp ( ^h^ 2kT i ' (3.33)
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where p(E) is the density of states (DOS) evaluated at the bottom of the conduction

band Etc, and p(E) is the DOS evaluated at the top of the valence band E. In this

derivation we assume that the exchange integrals for the conduction electrons and the

holes are the same, i.e. Jel = Ade = J, which might be expected if the wavefunctions

of the conduction and valence bands are the same. In general, this will not be so, hence

the overall constant of proportionality will be different. We have also assumed that

the energy level of the bound muonium electron does not lie in the gap. If this were

the case, additional relaxation from the process Mu + hole --  Mu + hole would

be observed. This type of charge-exchange relaxation—quite similar to spin-exchange

relaxation—is negligible if the bound state energy of the electron is far below the Fermi

level.

Throughout this discussion of spin-exchange relaxation, we have tacitly assumed the

existence of muonium states in metals and semiconductors. While muonium is observed

in many semiconductors, its formation in metals is usually inhibited by screening of the

positive charge by electrons at the fermi surface. The metallic phase A3C60 presents an

interesting exception in that screening may not be possible inside the large cavity of the

C60 molecule. In fact, muonium in Rb3C60 has recently been observed[53] confirming

this notion. In the next chapter we present results showing spin-exchange relaxation

of muonium in other doped fullerites which are found to be semiconducting.



Chapter 4

Results and Discussion

4.1 Muonium States in Solid C60

Previous pSR experiments show that positive muons stopped in solid C60 form two

distinct paramagnetic centres.[3] In addition to a small diamagnetic fraction (, 2%),

these two centres are easily distinguished in a field of ,--, 100G. The Fourier transform

of data taken at 5 K (Fig 4.1) shows a doublet with a comparitively narrow linewidth

centered around 150 MHz and two much broader lines near 90 MHz and 240 MHz. The

field dependence of the frequencies of these lines allows us to attribute the doublet to the

V12 and 1123 transitions of a muonium state with a hyperfine (h f) parameter of 4341+24

MHz—remarkably close to that of vacuum muonium (4463 MHz). Similarly, the much

broader lines are ascribed to the v12 and 1134 transitions of a paramagnetic state, in

which the isotropic part of the hyperfine interaction Tr[A]/3 is equal to 325 MHz at

room temperature (at 5K it is 332 MHz). This is typical of a muonium-substituted

radical.{54] From the respective asymmetries of these two signals, we can estimate the

relative fractions of implanted muons which form these states: 12±2% for the 4341

MHz signal and 60+10% for the 325 MHz signal. The explanation then, based soley

upon these considerations, is that the signal with the vacuum-like h f parameter of

4341 MHz is due to endohedral muonium (i.e. Mu inside the buckyball cage, denoted

MuOC60), while the the 325 MHz signal is due to muonium bonded exohedrally to the

carbon cage (C60Mu).
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Figure 4.1: The Fourier power spectrum of ,uSR in C60 at 100G and 5K. The doublet
centred at 150 MHz is from the v12 and v23 transitions of MuOC60, the two broad lines
at 90 and 240 MHz are the v12 and v34 transitions of C60Mu'.
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As discussed in chapter 3, the hyperfine parameter is proportional to 1 0,(0) 12.

With a h f parameter close to that of vacuum, the spin density of the electron of the

4341 MHz centre is not greatly altered with respect to vacuum. This indicates a very

small interaction with the buckyball carbons. The 325 MHz centre, on the other hand,

indicates a much stronger interaction with the carbon cage. It is typical of a positive

muon in a covalent bond, forming what is known as a muonated radical. Since carbon

prefers a tetrahedral bonding scheme, we expect that the curvature of the C60 molecule

makes the radical more likely to form on the outside of the C60 cage. This notion is

supported by theoretical calculations of the potential energy surfaces of C6011 [55,54

which show that the most stable configuration has the H attached to one C atom on

the outside of the buckyball.

We can see that this picture agrees with the observed fractions by the following

argument. Suppose all of the implanted muons stopping inside of a buckyball form

Mu© C50 while those stopping outside form C60Mu*. The ratio of the formation fractions

then would follow from volume considerations and be simply the packing fraction of

the Cop lattice. Due to the large distance between C60 molecules, the packing fraction

is much smaller than that of the close-packed fcc lattice (ff„=0.74). Using a diameter

of 7.1 A for the C60 molecule and a lattice constant of 14.04 A, one finds the packing

fraction to be 0.27. This implies that C60Mu* should form 3.7 times as often as Mu0C60

whereas the observed ratio is 5. The difference is easily explained by supposing that

the muon must overcome some potential barrier to get inside the Cal cage.

Experimental results discussed in this thesis show that the C60Mu signal is much

more sensitive the to the C60 molecular dynamics than Mu0C60. Along with the

observation of Mu0C60 in the doped fullerites, this supports the basic picture of the

two centres presented above. Recently Prassides et al. [57] has reported the observation

of Mu0C70 and use its zero-field itSR oscillations to study the molecular dynamics of
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the C70 molecule.

4.2 The First-Order Phase Transition in C60

We examined a 500-mg sample of high-purity C60 powder using the M15 beam line at

TRIUMF. Conventional transverse-field //SR data were taken in an applied magnetic

field of 1.5 T at 22 temperatures ranging from 5 K up to room temperature. The

precession frequencies of Mu0C60 are too high to observe at this field, leaving only

the signal from the diamagnetic it+ and the C60Mu. radical. In a large field only two

frequencies of C60Mu', the v12 and v34 transitions, have an appreciable amplitude. If

the spin Hamiltonian of C60Mu* were isotropic, they would depend appoximately upon

the field as

-y„B Ao
27r^2h
7t,B At,

V34 es-, 27r^ + Th

where At, is the isotropic hyperfine parameter. If the spin Hamiltonian is anisotropic,

however, we can use equation (4.1) (substituting A„ for Am) only if the applied field

is along a principal axis of A, the hyperfine tensor. For an arbitrary direction of the

applied field, these frequencies are [39]

1
ICYA2B7r.^2...hz\ 2 +

V12 =^
)

^A2 —A]
2

1
V34 = [ (7;7" + zhz ) 2 + A2 A2 2

(4.2)

where the components of A are now given in the x, y,z system. If the anisotropy is

small (i.e. Ass '--' Ayy'..j. A„), the off-diagonal terms will be small. Ignoring them

and using the Euler matrices to find Azz in terms of the principal axis components, we

(4.1)
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7ABz Azz

27r^2h
-YABz Azz

,27r^2h

with

Azz = AST sin2 7/, sin2 Ayy COS2 sin2 8 + Azz cos2 0.

The and 0 are two of the standard Euler angles. We see that unless the hyperfine

Hamiltonian is isotropic, these frequencies depend on the orientation of the C60Mu*

with respect to the applied field. From the difference

1/34 - V12 = Azz/h, (4.5)

one could determine Azz if every C60Mu* had the same orientation. More realistically,

this difference would give us A, the average of Azz over all possible orientations.

Fig. 4.2 shows the Fourier transform in the frequency range surrounding v12 for data

at selected temperatures. At room temperature, the linewidth is quite narrow and com-

parable to that measured for muonium substituted radicals in liquids. [54] Below T0=260

K, another signal appears at a slightly lower frequency, having a significantly broader

linewidth. Between 242 K and 260 K, both signals are present although the amplitude

of the higher frequency signal decreases with the temperature and is matched by a cor-

responding increase of the lower frequency amplitude. Below 242 K, the linewidth of

the remaining signal grows steadily with decreasing temperature. At 5 K the lineshape

resembles a broad gaussian.

These observations suggest an anisotropic hyperfine interaction for C60Mu. — the

broad static linewidth at 5 K is due to the orientational dependence of the transverse

field precession frequency. Consider the direction of the applied B-field in the principal

have

V12

Z/34 (4.3)

(4.4)
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Figure 4.2: Frequency spectra near v12 of C60Mu* at selected temperatures. The applied
field is 1.5T.
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axis system of A. The unoriented nature of the crystallites results in a random distribu-

tion of this direction.1 One would expect a powder pattern; however, some additional

broadening— probably from a distibution of hyperfine parameters due to the inequiv-

alence of sites with respect to the crystalline axes—effectively produces the gaussian

lineshape seen in the Fourier transform at 5 K. At higher temperatures, motional nar-

rowing due to thermally excited rotation of the C60Mu* accounts for the decrease in

the linewidth.

Using a rotating-reference-frame (RRF) transformation[58], the data were initially

fit to an exponential relaxation function. With the RRF, the two frequencies (v12

and v34) are estimated independently, while the exponential decay constant, T2-1, is

assumed to be the same for both components of the time signal. We used the estimated

frequencies, as prescribed in equation (4.2), to find A. Fig. 4.3 shows the temperature

dependence of (a) the linewidth, T2-1, and (b) the average hyperfine parameter, A.
The first-order phase transition is clearly seen as a discontinuity at To, the ordering

temperature, in both the linewidth and A.

Below To, the correlation times for reorientation of C60Mu (Fig. 4.3c) were esti-

mated by fitting the data at each temperature using the Abragam relaxation function

[59]

R(t) = exp[—a2r(e-tirc — 1+ thc)]• (4.6)

The static linewidth parameter a = 21.2(1.1) its' was obtained from the lowest tem-

perature run and held constant for fits of the other runs. The temperature depen-

dence of the correlation time between 200 and 250 K was fit to an Arrhenius law,

7;1 = A exp(—.Ea/kBT), with A = 6.4(2.4) x 1012 s-1 and Ea = 219(7) meV. At 200 K,

= 52(17) ns, and agrees quite well with the NMR result [64] of 64 ns for C60.

'Even for an oriented crystal, the icosahedral symmetry of Co alone would nearly accomplish this.
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0^100 200 300
TEMPERATURE (K)

Figure 4.3: (a) The linewidth Ti',  (b) the average hyperfine parameter A, and (c)
the inverse correlation time -1-z-1 extracted from simultaneous fits to the v12 and 113 4

frequencies of the C601V111 radical in fiSR time spectra taken at 1.5T.
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Above To, the lineshape increases with temperature, contrary to what is expected

from motional narrowing. Very rapid rotation of the C60Mu causes electron-spin relax-

ation, induced by the coupling of the electron spin to the molecular-rotational-angular

momentum. [60] For this mechanism, the linewidth can be approximated as

,,.2 ,_
r7-7-1 ___ ^'SR ' c 
-1- 2^—

1 + We27c2 1
(4. 7)

where o-sR is the electron-spin-molecular-rotation coupling constant and co, = -yeB.

The data above To were fitted to an Arrhenius law using equation (4.3) with o-sR =

4.9(1.0) x 108 s-1, A = 5.1(7) x 10' 5-1, and Ea = 98(16) meV. The correlation times

above To shown in Fig. 4.3(c) were obtained from the measured linewidth using this

fitted value of usR. At 300 K, 7, = 8.5(2.0) ps, also in good agreement with NMR

results. [14,65]

The discontinuity in A at To shows that the electronic structure of C60Mu also

changes abruptly at the phase transition. Most likely, this reflects a shift in the C-Mu

bond length. Since the lattice constant decreases only by a small amount (0.044 A)[5]

at To, we suggest that the electronic structure depends upon the molecular dynamics

of C60Mu*. The shift of A could reflect a change in the motion of C60Mu*-from one

characterized by jumping between orientations with nearly equivalent potential minima

to one involving quasi-free rotation.

Along with the sharp behaviour of T2-1 at To, the discontinuity of A is suggestive

of a first-order transition. The observation of coexistence of both phases just below

To supports this hypothesis. Because of defects, impurities or finite size effects, the

individual crystallites may have slightly different transition temperatures, or part of

the high-T phase may be pinned upon cooling. If the transition were of a higher order,

one would expect an additional broadening of the lineshape just below To, the result

of a distribution of A's, rather than two distinct signals.
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Additional details concerning this work were reported by Kiefl et. al. [61]

4.3 C60 in Zero Field

Analysis of the transverse-field data, described in the last section, led us to postulate an

anisotropic hyperfine interaction for C60Mu*. The details of the anisotropy, however, are

not evident from the transverse-field results. Is the hyperfine tensor of C60Mu axially

symmetric or completely anisotropic? How large is the anisotropy? (/". e. how large are

the relative differences between the principal axis components of A?) Zero-field (ZF)

//SR provides the answers to these questions as well as giving us another handle on the

molecular dynamics of Co:Mu'.

As noted in chapter 3, an axially symmetric spin Hamiltonian will exhibit three

transition frequencies in the ZF spectrum—two high (singlet-triplet transitions) and

one low (inter-triplet transition) —for a small anisotropy. A completely anisotropic spin

Hamiltonian, on the other hand, will show six—three high and three low—for a small

anisotropy. Furthermore, these frequencies will not depend upon the orientation of the

paramagnetic centre. A distribution of orientations thus will not lead to relaxation due

to dephasing, it will affect only the overall amplitude of the signal at each frequency.

Fig. 4.4 shows the zero-field iLSR spectrum in C60 at 9 K. At this temperature, the

orientational motion of the Cal molecules is frozen. Three low frequency oscillations

characteristic of a completely anisotropic hyperfine interaction are clearly seen in the

time and Fourier spectra. They lie on top of a very low frequency (--, 0.07 MHz)

background. The unresolved (from one another) high frequency oscillations appear

as a single broad component in the first 50 ns of the time spectrum (see inset). The

magnitudes of the three low frequencies, 1.2(.1) MHz, 7.4(.1) MHz and 8.6(.1) MHz, are

a direct measure of the hyperfine anisotropy. Comparing these to the high frequency
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of 332.5(.8) MHz tells us that the anisotropy is small.

Using equations (3.16) one finds

7112 = (A„ — A)/2h

1113 = (Ayy Ass)/2h
^

(4.8)

1123 = (A„ — A)/2h.

We denote the measured low frequencies, in increasing magnitude, vi., v2, and 113.

Taking Ass < A ^A„, we can unambiguously assign 713 to 1123; however, we can't

say whether vi = v12 or v13 (similarly for v2). This prevents us from finding the actual

components of the hyperfine tensor. The high frequency, P, should be the average of

1114, 1124, and 1134, i.e.

v =^=
_ VIA + V24 -I- 1/34^Axx + Ayy + Azz ^(A)

3^3h^— h •
^(4.9)

The result is (A)/h = 332.5 (.8) MHz, in good agreement with the high-TF data. In

order to unambiguously determine the principal components of A, one would have to

measure the field-dependence of the low frequencies for small applied magnetic fields

in aligned single crystals of C60. We can, however, give the fractional anisotropies

(SARA)) along the principal axes: 0.036(3), 0.223(3), and 0.259(3). Interestingly, the

low frequencies are close to those observed in single crystal a-quartz,[62,63] but since

(A)/h r.-' 4500 MHz for quartz, these anisotropies are more than 100 times larger than

for quartz.

At 9 K the low-frequency signals have an exponential relaxation rate, A_^-2 1.0

us-1, presumably due to slightly inequivalent sites. At higher temperatures, thermally-

activated `ratcheting' of CsoMu* contributes to an addition relaxation. The fitted re-

laxation rate is plotted as a function of temperature in Fig. 4.5. Assuming that the

increase in the relaxation rate is proportional to the 'hop' rate of C60Mu*, we extract
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Figure 4.4: C601VIu* in zero field: (a) time spectrum with the inset showing the first 50
ns; (b) frequency spectrum.
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from a fit to an Arrhenius dependence an activation energy Ea = 200(20) meV. This

value agrees very well with Ea = 219(7) meV determined from the transverse-field data.

As mentioned above, there is a background in the data which appears to be an os-

cillation at a very low frequency. The frequency is temperature dependent, decreasing

from 0.07(.01) MHz at 9 K to 0.02(.01) MHz at 200 K; at room temperature it disap-

pears altogether or is too small to measure. An interesting possibility is that this may

come from Mu0C60 as the result of its own weakly anisotropic hyperfine interaction.

However, it would be premature to conclude this from the present data. Prassides

et al. [57] report zero-field itSR in C70 and argue that the low-frequency oscillations

seen below 270 K are from MuOC70 with an anisotropic hyperfine interaction.

4.4 Endohedral Muonium in the Fullerites

The temperature dependence of the signal characterized by a 4341 MHz hyperfine fre-

quency in pure C60 is less dramatic than that of the C60Mu* radical (see Fig. 4.6).

Above 230 K and across the phase transtition, its frequency and relaxation rate remain

essentially constant. If this signal is from MuOC60 with an isotropic hyperfine inter-

action, the dominant source of line broadening expected at the lowest temperatures

would be the weak dipolar interaction with naturally abundant (1.1%) 13C nuclei. The

measured relaxation rate as T --40 is about twice that expected from a simple cal-

culation of the rms width of nuclear dipolar fields at the center of the C60 molecule.

This may indicate an additional effect due to the zero-point motion of the muonium

or the extended nature of the muonium electron. Alternatively, the hyperfine interac-

tion may have a slight anisotropy, as hypothesized in the previous section. Above 100

K, the decreasing linewidth is consistent with with motional averaging of either the

anisotropic nuclear dipole interaction or any hyperfine anisotropy, resulting from rapid
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Figure 4.5: Temperature dependence of A, the relaxation rate of C601VIu* hyperfine
oscillations in zero applied field. The solid line is a fit to an Arrhenius dependence
giving a activation energy of 200(20) meV.
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reorientation of the C60 cage.
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Figure 4.6: Temperature dependence of the lin.ewidth 7Y1 of the TF-,uSR signal from
MuOC60 in pure C60 in an applied field of 100 G.

We also observe muonium centres with vacuum-like hyperfine parameters in K4C60,

K6C60 and Rb6C60. Fig 5.7 shows the Fourier transforms of the itSR spectra for K4C60

and K6 C60 at 5 K in transverse fields of , 100 G. In these doped fullerites, most of the

implanted muons form a diamagnetic centre and the C60Mu radical is conspicuously

absent (compare Fig. 4.7 with Fig. 4.1). As in pure C60, the two observed frequencies

correspond to transitions between the spin-triplet states of Mu. The sum of the two

frequencies v12+ v34 = -ye.13/27 is approximately the Larmor frequency of a free electron.



Chapter 4. Results and Discussion^ 56

Their difference provides a measure of Ai, [40]:

h (vi2 + v23+ 2vm)2
A =

2^-
+ V12 - V23 7

14^ V23 ^Vi2
(4.10)

where the Larmor frequency of the muon = ..4.73 (where = .01355342 MHz/G), is

used to determine the field. The estimates of Ai, obtained with this equation are given

in Table I.

The observation of Mu in the alkali-metal-doped fullerites leaves no doubt to the

hypothesis that this muonium is endohedral. The magnitudes of A Mu in the doped

fullerites are similar to that of Mu in pure C60 — and only a few percent less than that

of Mu in vacuum—indicating a weak interaction with the C60 lattice. Given that the

AxC60 solids are essentially ionic compounds of A+ and C60-x, an endohedral site for

Mu is likely to be the most stable. The absence of the C60Mu radical is presumably due

to the weakening of the covalent C-Mu bond resulting from the addition of electrons

upon forming the C6-ox ion. Estreicher et al. argue that the stability of C6011s- (here H

refers to hydrogen or muonium) is maximum for x=0 and decreases with increasing x

[55]. The formation fractions for Mu in AxC60 are somewhat less than that in pure Cal

(see Table I). This might be due to the electrostatic repulsion between the implanted

it+ and the charged C60-x ion.

While we might have expected to find Mu0C60 in K6C60 and Rb6C60, which are

predicted to be semiconductors with gaps of ,0.5 eV,the observation of MuOC60 in

K4C60 is somewhat surprising. According to the simple band model described in chapter

2, K4C60 should be metallic. Consequently, we would expect that spin exchange with

free carriers would preclude the observation of Mu spin precession—either by extreme

line broadening or (for larger carrier concentrations) by effectively decoupling the muon

and electron spins, allowing simple ft+ precession in the fast spin-exchange limit. Using

equations (3.32) and (3.33), we can get an idea of the spin-exchange enhancement upon
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Figure 4.7: //SR frequency spectra for (a) K4C60 and (b) K6C60. The line at 150 MHz
in the top spectrum is from the TDC.
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going from a semiconductor to a metal. Assuming the same density of states, the metal

would have a spin-exchange rate which is larger by a factor of roughly exp(E912kT).

At T=5 K and for Eg = 0.5 eV, this factor is 6600 (> 10260)! Apparently K4C60, like

K6C60 and Rb6C60, is insulating at low temperatures.

The temperature dependence of the Mu0C80 linewidths reveals that all have a

similar band structure: they are all semiconductors with relatively small bandgaps.

Fig. 4.8 shows the T2-1 linewidth parameter obtained by fitting the itSR time spectra

to an exponential decay of the muonium precession amplitude R(t) = exp(—t/T2). The

data were taken using an applied field of ,--,5 G. Recall that in a low applied field

1112 = 1/23, so the full m.uonium amplitude precesses at the same frequency. The fact

that we see muonium spin precession at all tells us that the spin-exchange rate v is

slow and hence T2-1 a v [see equation (3.28)]. Indeed, with the addition of a constant

background term Ao, the linewidth T2-1 for all three fullerites exhibits the exponential

temperature dependence expected for a semiconductor (equation 3.33). We estimate

the bandgaps from a fit to the function

T2-1 = akT exp(—Eg/2kT)+ )to. (4.11)

The estimated bandgap Eg, prefactor a and background relaxation Ao for the three

solids are given in Table I.

Our results for K4 C60 conflict with the simple band-structure model of doped ful-

lerites. In this model, the four added electrons partially fill the bands formed from

the triply degenerate ti, orbitals. Consequently, K4C60 is predicted to be

metallic. We must conclude that some mechanism splits the degeneracy of the th, or-

bitals resulting in a filled band for x=4. Alternatively, electron-electron interactions

may be responsible for the insulating behaviour. Although there is a large statistical

uncertainty in the measured gaps, our data suggest that the gap in K4C60 is larger
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Figure 4.8: T2-1 linewidths for MuOC60 in (a) K4C60, (b) K6C60, and (c) Rb6C60•
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than that of K6C80. The gap in K6C60 is presumably the difference between the th,

and the next higher t19 orbitals. NMR results on Rb4C60 show a non-Korringa-like and

strongly temperature dependent TIT, also indicative of a non-metal.[26]

The parameters for Rb6C60 are noticeably different than those of K4C60 and K6C60.

The energy gap is about that of either K4C60 or K6 C60. Also the prefactor a, which is

related to the DOS (equation 3.33), is much smaller and Ao is much larger for RbsCso•

The enhanced background relaxation Ao of Rb6C60 may come from a contribution to

Ao from the dipolar fields of the alkali ions—in A6C60 each C60 is surrounded by 24 A

ions. In this case, Ao would scale with the magnetic moment, which for rubidium is

times that of potassium.

The estimates of a and E9 for Rb6C60 also disagree with the simple band picture.

With a larger lattice constant and hence smaller hopping amplitude, Rb6C60 should

have a smaller bandwidth. Consequently, we would expect it to have both a higher

density of states and a slightly larger bandgap in comparison to K6C60. Our results

show both a much smaller bandgap and a reduction in the density of states. The

statistical uncertainties for the Rb6C60 may be underestimated, however, as one can fit

the data with an a and E9 similar to that of K4 C60 and K6 C60 without a significant

increase in the x2/degrees of freedom (0.6 versus 1.2).

The results for K4C60 and K6C60 along with additional details concerning these

experiments were previously reported by Kiefl et a/166)
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Table 4.1: Fraction of injected muons which form a diamagnetic center (fD), muonium
(fmu) or radical (fR) at 5K. Ap is the the muon-electron hyperfine parameter of muonium
and a, .E9 , and Ao are fitted parameters defined in Eqn. 4.11.

fp fmu fR A.4 a E g A 0
(%) (%) (%) (MHz) (eV's') (eV) Cus-1

C60 2(5) 12(2) 60(10) 4341(24)
K4C60 68(5) 7(2) - 4342(66) 3.8(5) x 10 0.40(20) 1.20(6)
K6C60 69(5) 6(2) - 4230(63) 1.5(2) x 108 0.35(12) 1.40(10)

Rb6C60 81(5) 7(2) - 4(20) x 103 0.10(3) 4.30(20)
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Conclusion

The work described in this thesis further characterizes the two muonium centres ob-

served in crystalline C60. Zero-field measurements show that the hyperfine tensor of

C60Mu is completely anisotropic and give a measure of the anisotropy. Low-field mea-

surements on single crystals are needed, however, to unambiguously determine the

pricipal components of the hyperfine tensor. Apart from its being vacuum-like, less is

known about the hyperfine interaction of MuOC60; there is some hint that it may also

be slightly anisotropic as in the case of Mu©C70157]

Transverse-field ,uSR of C60Mu* provides evidence for the first order nature of the

orientational phase transition in solid C60 and shows a change in the rotational dynamics

at To, the ordering temperature. Below To, the activation energy for reorientation of

C60Mu is independently estimated using the zero-field and the transverse-field data.

Both results agree within the given uncertainties.

The observation of coherent spin precession of muonium in pure C60 and the several

doped fullerites we examined establishes that all are nonmagnetic at low temperatures.

Although this aspect of the experimental results was not discussed in this thesis, we can

be sure that any electronic moments in these materials would have to be smaller than

a fraction of a nuclear magneton since the positive muon alone is capable of detecting

moments on this order. In the presence of electronic moments, one would expect an

exchange interaction with the Mu electron which would either substantially broaden the

Mu lines or greatly alter them. A detailed analysis with some estimate of the exchange
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interaction could in principle set limits on both static and fluctuating moments at low

temperatures.

Finally, we find ,uSR of Mu@C60 in the doped fullerites to be sensitive to the elec-

tronic band structure. This is a promising avenue for future experiments, although

it may prove advantageous to use longitudinal field itSR at higher temperatures—one

could select a convenient value of the applied field for a given temperature range making

a detailed study of the gap structures possible. Our results are at odds with the simple

band structure model, which predicts metallic behaviour for K4 C60 and similar energy

gaps for K6C60 and Rb6C60. Perhaps the threefold degeneracy of the tiu molecular

orbitals is lifted in crystalline C60 in such a way as to have a filled shell for 4 added

electrons. Another possiblility is that electron-electron interactions are important in

this class of materials.
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