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ON THE THEORY OF RADIATIVE CAPTURE
OF ORBITAL ELECTRONS

Abstract

The continuous spectrum of gamma radiation which accompanies the cap-
ture of orbital electrons has been recently calculated independently by Glauber
and Martin (1954) and by Hess. (1955). Both calculations take into account
the influence of the nuclear charge on the wave functions but otherwise involve
different methods and approxrmatlons the condusxons ‘being also quite differ-
ent: the intensity of the | gamina radiation is an order of magpnitude lower accord-
ing to Hess than according to Glauber and Martin. The purpose of the calcula-
tions presented in this thesis has been to settle this disagreement and to explain
its origin. To this effect, the high energy part of the gamma spectrum, which
is almost entirely determined by the contributions of the capture of the 1s and 2s
electrons, has been computed for the case of A™ for which experimental data are
available, In view of the low nuclear charge of A™ (Z=18), the non-relativistic
Coulomb wave functions could be used, and, apart from neglecting screening
effects, the calculations are exact although partly numerical. In particular, the
retardation effects which were neglected by Glauber and Martin have rigorously
been taken into account. '

The conclusions are: first, approximations used by Hess were partly incon-
sistent, although the method was in principle correct ; second, taking into account
retardation effects results in a2 gamma spectrum whose intensity amounts to 0.8
of the intensity obtained by Glauber and Martin at 135 Kev. and to 0.2 at 675
Kev. (the gamma spectrum limit being 816 Kev.).

The gamma spectrum of A™ determined by Lmdqust and Wu (1955)
seems to agree quite well wrth G‘auber and Martin’s result. However Lindqvist
and Wu measured only relatrve intensities and had to apply many mstrumental
corrections so that it is not yet clear whether the measured spectrum would not
agree as well with the spectrum computed in this thesis.
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ABSTRACT

The continuous spectrum of gamma radiation which accompanies
the capture of orbital electrons has been recently calculated 1nf3
dependently by Glauber and Wartin (1954), and: by Hess (1955)

Both calculations take into account the 1nf1uence of the nuclear
charge-on the wave ﬂunctions.but otherwise involve different
methods ‘and approximatlons, the conclusions. being also ouite
different the inten51ty of the gamma radiation is’ an order of
magnitude lower according to Hess than accordlng to Glauber and
Martin. The nurpose of the calculations presented in this

'the51s has been to settle this disagreement and to explain its
origin. To this effect the high energy part of the gamma
spectrum, which is almost entirely determined.by the contribu-
tions of the capture of the 1s and 2s electrone, nas been com-
puted for tne case of A for which experimental data are avail-
able. In view of the low nuclear charge of A. (7 = 18), the
-non-relativistic Coulomb wave functione could be used, and, apart
from neglecting screening effects, the calculations are exact
although.partly numerical.' In particular, the retardation effects
_which were neglected by Glauber and Maftin have rigofously been
taken into account. | |

_The conclusions are: first, approximations used b& Hess were -
partly inconeistent, although the method was in principle correct{
second, taking into account retardation effects results in a gamma
spectrum whose intensity amounts to 6.81 of the intensity obtained
by Glauber and Martin at_lES_Kev, and to 0.24 at 675 KeV (the

gamma spectrum limit being 81€ KeV).
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The gamma spectrum of A determined by Lindqvist and Wu
(1955) seems to agree quite well with Glauber and'Maiﬁig's result.
However, Lindqvist and Wu measured only relative intensities and
had to apply many instrumental corrections so that it is not yet

clear whether the measured spectrum would not agree as well with

the spectrum computed in this thesis.
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Introduction and Summary

This thesis is concerned Qith the theory of the
"radiative capture" of an orbital electron by the_hucleus. We
call the procesé of capture "radiative" when it is accompanied
by the emission of a gamma radiation. When no gamma emission
takes place, the process is called "radiationless". |

The radiative capture, although a factor 103 less probable
~than the radiationless capture, has been observed for several
elements, and the corresponding continuous gamma spectrum has
been determined (See, for instance, Lindqvist and wWu (55),
where also references £o earlier papefs are given). The most
important raaiative capture pfocess is that sccompanying the
radiationless capture of a K-electron. The theor& for this
case has been developed by several authors (Morrison and’
Schiff (40}, Glauber and Martin (54) and Hess (55)). In order
" to describe briefly what these authors have done; and to indi-
~cate the contribution to the theory, presented in this thési;;
we shall have first to sketch the common theorétical_baéistqf
all thése calculations. A. |

The expression for the probability of the radiatiye cépture
is;given by a standard formula of the second order ﬂime;depeﬁdént )
perturbation theory. In the product of the matrix elements |
entering this formula, one factor arises from the electromagnetic
interaction }*)r ‘and the other from the Fermi interaction }ﬁp
The.electromagnetic interaction induces a transitlon between an '
initial state and an intermediate state. For. instance the

initial state may correspond to an electron characterized by
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the principal and orbital quantum numbers n and Jl respectively.
The intermediate state then corresponds to an electron with ‘the
quantum numbers nl and ‘Ql = 0 (an s-electron), and to a photon.
The Fermi interaction gives rise to the capture of the électron.
in that intermediate state and to the creation of a neutrino.
The assumption that ,21 = O (but nl arbitrary) in the ihiefméd-
iate states, or, in other words, that the captured electron is
an s-electron, defines the radiative;process cérreSponding—tO'
the "allowed“lradiatidhless éapture of an s-electron from ﬁhe
K-shell. We shall call this process the "radiative K-pépture",
although, in view of the remark ébove; this phrase should hot
be interpreted in too iiteral a sense. We denote the probability
of'raaiative K-capture, i.e. the probability per second that a
photon of energy Jck in the rance d(ﬁék) is emitted during the
K-capture process by Aﬂkcik_, and the probability that a radia-
tionless K-capture occurs per second by AW, . It is the ob-
served ratio Auﬁéﬁ%bé , as a function of k, that is compared
with theory. In principle, all orbital electrons contribute
to the experimental value for Nu‘hokh . This means that M)‘RJ.R
is a sum of the probabilities obtained for all values of n and
/& that correspond to the occupied orbits. However, it turns
out that only the orbits characterized by n = l,.& = 0; n =2,
L =0 and 4 = l; and n = 3, L= 1, contributé_an gppreciablé
amount to the ratio MT'R‘“K/M}E .

As is well known, there are five different interactions.
ffﬁ possible in the Fermi theory of beta deqéy, gi#ing pise'
to allowed and forbidden spectra. in this thesis, as Qell:és-in

the publications quoted above, only allowed transitions have been



considered.

The first theoretical evaluation of /w"',\dk ‘was -n_xade by
Morrison and Schiff (40) who considered only the case of the
K-shell electrons, i.e. the case in which n = 1 and A
These authors made, among others, two important simpllfying
assumptions: flrst they represented the final, intermediate ‘and
initial states by plane waves, thereby neglecting the Coulomb
interaction between the electron and the nucleus; Second, they
took into account oﬁly the vector interaction. They celculeted_'
AJZ in the same approximation and they finally obtained the

following simple formula:

MR o )((1 )Ax
oA L) |
where K = K‘Ck/mr\«; | (dimensionless)
and ol is the flne structure constant. e

ThlS formula more or less agrees with experimental data for
photons of large energy (i.e. 1 - K/K <<]). Howevér, as'was
first shown by Saraf's experiments (54), therMorrrson-Séhiff'
formula fails completely to eiplain the large ratio N\rkath/wc .
that one obtains experimentally for low energies of the emitted
photon. . .

In order to explain this breakdown of the theory at low
photon energies, one may extend Morrison and échiff's calculations
in several directions, by taking into account :

ist the Coulomb interaction.between the electron and the
nucleus,

2nd an arbitrary mixture of the five beta interactions,
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_ 3rd the contribution to radiative capture of electrons w1th
higher values of n and L.

Such an extension of the-theory has been carried oﬁt.by
Glauber and Martin (54) and by Hess (55) independently, the latter
author restricting Himeelf, however, to takihg into account the
contribution of the ls electrons only. The ealculetions are
approximate in both cases, but the method appiied'by.Glahber and
Martin is quite different from that applied by Hess. The results
do not agree. the intensity of gamma radiation 1s an order of "
magnitude smaller according to Hess than ;t is accordlng to
Glauber and Martin. ' o

Glauber and Martin's (54) calculatlon is non-relativistic
as far as wave functlons of the electrons are concerned, in
other words, they used the Schroedinger wave functions of an.'
electron in the Coulomb field of the nucleus. In tha; approxi- ]
mation,. they could find a relatively simple closed expression
for the sum over the intermediate energy states, using, in an
ingenious way, the properties of the Green's functioh. Hoﬁever,
in order to evaluate the resulting expreesion for the probability .
fﬂfh\GLh. s they simplified the expression for the matrix element -
of the electromagnetic interaction by neglecting the retardation
factor. On this simplifying assumption they came to the rather
startling conclusion that the (n = 1, £ = 0) - contribution to
the photon spectrum is exactlz'the same as tﬁat found by Morrison .
and Schiff (40), who, as will be recalled, completely neglecfed
" the Coulomb interaction. This conclusion seems, on the other |
hand, to be in agreement with the high eﬁerg& part of the measured.

spectrum, since this part, as it was mentioned before, is well _"



represented by the Morrisbn-Schiff formula. Glaubef and Martin ..
also showed'(using{the same Simplifying assumpﬁion)'that‘the
Qbserved sudden rise infthe gamma épectrumwat Jow energieé is

due to the contribution of p-electrons (i.e. ) 2. 1, nes2, 3 ...)
and that thls contribution becomes negllglble at ‘high photon
energies. '

Hess's calculations, on the other hand, start from general..
formulae in which the Dirae relativistic wave functions are used.
However, the actual computation of the expression for /er‘LR
so obtained, turned out to be impracticable even for the.simpleét
case of the ls electron. Consequently, number of simplifying
assumptions were made: the sum over the intermediate discrete
states was assumed to be small compared with the sum over ihe
contlnuous states, then a "semi-relatlvistlc" approxlmatlon for
the radial part of the 1ntermed1ate gtate wave functlon was 1ntro-.
duced, and the subsequent calculation was carrled out nunerlcally
for the case of C3131 for which, at that time, the best experi-
" mental data were available (Saraf (54)).

In view of the discrepancy between Hess's results and-those'
of Glauber and Martin, and of the neglecting of the retardation ’
effects by the latter authors, it was feit that an evaluation of
Aﬂﬁfih , in which the non-relativistii)Coulomb wave function§ are
used, but which is otherwise rigourous , would greatly clarify
the situation. Such.an evaluation of the contribution of L =0
and n = 1 and 2 (the contribution in case n2>3 is negligible), i.e.
the contribution that determines completely the photon energy

spectrum not very far from its limit, is presented in this thesis

1) It is true that the final part of these calculations has been
done numerically. However, no arbitrary approximation has been
introduced in those numerical calculations. On the other hand, the
screening effects are entirely disregarded, which for a light atom
like 437 is probably not too serious.
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for the case of A and ' Cs -
18 55

Our calculations settle the disagreement betWeep Glauber
and Martin's results and ‘those of Hess essenﬁiélly in favour of
the former authors. - |

The.discrepancy 1s traced down to a raﬁher'weli hiddénnih-_
con81stency in the argument whlch leads from the general relatl—-
- vistic formulae to Hess's "semi-relativistic" expre331ops. Th1s
qﬁestion is discussed in detail in Cﬁapter Ii,'Section C;]of this. £L
thesis, as it is of some general interest. o | L

Although our results essentially conflrm those of Glauber ;'A'
and Martin, the fact that we did not neglect'the'retardation \_.
effects has some important quantitative-consequences; It turns S
out that the taking into account of these effects leads io a
decrease of the intensity of gamma radlatlon accompanylng the
K-capture in A37, the decrease increasing with the increa31ng
photon energy, as can be seen in Fig. 5, in Chapter IIIV(the
corresponding numerical data are summarized in Table III,
Chapter III). | |

In an unpublished paper (56)2), Glauber and Martin discuss, .
among other things, some relativistic corrections to their earlier
results, and also announce that they have applied "a more fully
relativistic treatment of the process which takes account of
screening”. A comparison of the results of this treatment with
Lindgqvist and Wu'§ experimental data for A is1 iven in.a recent

1) Only one value of the energy spectrum for Cs is evaluated,
to make a comparison with Hess's result possible. On the other

hand, the case of A37 for which we have the most recent and most
reliable experlmental data, (Lindqvist and Wu (55)) is considered
in detail. ‘ .

2) A copy of the paper has klndly been made available by Professor
Glauber to Professor Opechowski.



note.by Wu.and al. (56). The higﬁ energy part of the Speptrum'
does not seem to be affected by these refinements in the calcu-
lation; however, it is not clear Qhether the retardation effects
have been taken into account.

The problem of a detailed comparison of our theoretical
results with the experimental data of Lindqviét and wu (55) is

briefly discussed in Chapter III, Section B.

7



Chapter I
General Formalism of the Theory of Electron Capture.

In this Chapter, we sﬁall be concermed with the general
theory underlying the calculations of Chapter ITI. In Chapter Ii,
we consider, in more details, the wave functions to be used, and
we discuss the passage from the general theory to the approxima- -
tion of Hess (55). In Chapter III we pré#ent-our own calculations’
and conclusions, and comparé them with those of Glauber and
Martin (54).

The notation that we use in sketching the géneral theory of
electron capture is essentially that used by De Groot and Toihdek_
(50). In Section A of this Chapter, we set up the general expres-
sion for the probability g of radiatioﬁless K-capture. A more
compiete treatment of the subject can be'found in the review
icles of Rose (55), Konopinski (55), and Konopinski and Langer-

(53). 1In Section B, we consider the case of the radiative K-capture
-probabilitylumélh_ . Finally, in Section C, we deriye an alterna-
tive expression for the eléctromagnetic.;nteractioh matrix element,
" This expression is'equivalent to the sténdard one,lbut is more |
convenient when-ohe carries out the‘passage'tolthe ﬁon-re;étivistic

approximation.

A - Radiationless K-capture
The probability per second of a radiationless K-capture
depends on a matrix element describing a transition between an

initial and a final state. The initial state  (represented by the



symbol O) consists of a nucleus of charge Z_ih an energy.sqété

\Aél o The final state (rebresented by the Symbdl,F) consists
of a nucleus of charge Z-1 in an energy state \N&;,; of an emitted
neutrino of energy Eq/and of a hole in the K- shell. Theréfore;.

if E%s is the energy of the electron in the K-shell,
\/\/1.1“E.|5 = Wz + Ev . I.1

-expresées the law of the consefvation of energy. dewas‘\V.ﬂ=\A/
is the energy available to the transition,

On assuming the standard Fermi'theory of beta processes, the
matrix element which determines the probability of electron cap-
ture can be written in the followiﬂg form:

m=|

(F'Hp‘o) = ‘é\g <‘f’Tn‘ ‘!’.s)m(‘l’gﬂaﬂ) 4?‘,_;; 1.2

where lﬁﬁ is . the interaction Hamiltdniaﬁ
Cf is the wave function for the emitted
neutrino |
\YB is the wave function for the electron
. in the K-shell L
'qu and T}qk‘are the iniﬁiél and final
nuélear.states reépéctively, ‘ R
+ 1is the sym'b‘ol for thé."adjoi'nt, 1i.e. _ﬁhé
complex conjugate and transpose, of a-
matrix . “ | o
. and 1\V“.éré phe-inté?gction.operatops

_operating reSpectiveljﬂop the;lepboﬁ and
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the nucleon wave functions
( )Nkmeans that the function in the brackets
is evaluated at the position of the n‘?'h

nucleon
qu;\means that the integration is carried

th

over the volume containing the n~”" nucleon,

A i.e. the whole nuclear volume
Ei is a summation over all the nucleons
m=| '

By restriciing the interaction matrix elements to be rela-
tivistically invariant, one can-show that there are only five
possible choices for L), and this, on very general assumptions.
N, in general, consists of twé‘compdnents, one of which is
"large" or non-relativistic and the other is "small" or‘relativis-
tic (of order v/c where v is the nucleon velocity). The ™large"
énd "small" components give rise to different selection rules.

In this thesis, we only consider allowed beté transitions.
This means, as is well known, lst, that we neglect'the "smail"
components of the five Fermi interactions,l)and 2nd, that we'
assume that the emitted neutrino carries away zero orbital gngular
-momentum.

The large components of the five interaction operators are

the following:

‘The Scalar.interaction_ @ | ' . I.3a
The Vector interaction 1 B ‘ - I.3b
’The Tensor interaction @ o o _ S 5 T
The Axial Vector interaction i , g . - 'i.jd--

1) If one neglects the small components, the resulting expriession
is of course no more relativistically. invariant.
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The Pseudoscalar interaction LQTS I ' | I.3e

‘1 X ﬁi E"’ and Y5 are four by four matrices defined as féllow__s:

| ©
1= {2
o 0
0 0
—.’
EF = 4 0
where X )

follows:
o
"o
= o

o0 10 OO

0 0 p= o}l 0 ©° I.4a

[ o oo —-[O '
0 I o0 o+

+ ? e *-R 03 . . . -IJ"b'-
%? and 7? are unit veétorsAand

Yo = Aokoiacky § 0= 40Gag ; T = Aoaon ) 03=ikogI.be

o o |

o t ©°
| oO©

o 00

o(“ O‘A;'% are matrices defined a's.
6 © © =i o 0o ] o
' . o ©0 o-} :
o 0 A © -
Xy = - Ay = 1 I.kd
o _L o O , o O o

i_ooo o-l oO

The five interaction operators thus defined are Hermitian.,

The pseudoscalar interaction ,Lﬁxg is relativistic of order v/c;

there is no "large" component in this case.

Since the operator [} of the general expression I.2 may

contain an arbitrary linear combination of these five interactions,

we introduce five corresponding constants

Cs

CV ) CT I CA J CP ' ' Ios

The subscripts refer to the scalar, vector, tensor, axial vector
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and pseudoscalar interactions respectively. ‘
'However, the five interactions I.3 actually contain nine

A
different matrices /\ , and it is convenient to introduce the

nine coefficients Cn_ defined as follows:

Lo |
"

1 2 | 3 L 5 6 7 8 9
A= p 1 &5 85 By o % o iBys

1.6
Cp= Cs G Co CT C‘r CA CA Ca Cp
With the notation 1.6, the interaction matrix element 1.3 takes

the form:

m=|
b

T A | .
(Firel0) = GZ 6.2 (W i (95 AL P)dm 17

Here we have supposed that the interaction constants are

normalized ‘according to

a a & & &
CS+ CV + C.T‘fc,h-}-cpzl

and welhave denoted the iﬁtensity factor- (the "Fermi constant")
by G. The C, 's can alwayﬁ be chosen real. (See Blatt and
Weisskopf (52)). | | | |

The assumption that the neutrino caqrieé-no orbitalnanguiar
momentum means that'the ﬁeutriho,wave fﬁﬁct;on @ in the express-
ion I.7 is characterised by a total angular momentum quantum
number j = 4. One can show that the expression 1.7 is.much
smaller when (9 corresponds to values of j higher than %

("Forbidden" transitions).
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Finally, we make the usual assumption that the lepton part

(L?T/\"'th)m of the f‘ermi /interaction matrix element I.7 is a
slowly varying function inside ﬁhe nucleus. Hence, this lepton
matrix element can be written outside the integral sign and, also,
outside the sign of summation over all the nucleons in the ex-
pression I.7. The lepton matrix element is then usﬁally evaluated

at a distance R from the origin, R being the nuclear radius. One

obtains
(F Ihplo) = &2 S (qA ) (54 Lsa

where

n A | | o | |
S/S = ASE S /& 1k;) : - 1.8b

is a nuclear matrix element that is assumed different from zero

|

only when a proton changes into & neutron. Expression 1.8 is
therefore the matrix element for an allowed radiationless K-

capture. The probability per second of such an event is then

given by the following formula:

AUE

2
(F)Hgio)} ' .I.9

*

= j%sl- Esv Sci(l\,fso

where Ei, means that we sum over the spins.of.ihe emitted

neutrino,
gdrkﬂ that we integrate over tbe angles of emission
of the neutrino,
and So , that we sum over the spins of the initial K-

electron.
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The lepton wave functions that we use in this thesis are normal-
ised per unit energy interval;bhence, the neutrino wave function
implicitely contains the dengity of finaliétates that othepwise
. would appear as a factor in the expression I. 9

In this thesis, we treat the nucleons and thelr wave functlonsu
as non-relativistic. It follows that for the Scalar dnd Tensor
interactlons I.3a and I.3b in the nuclear matrlx elements I. 8b

one Can write : [}
(B =01 and S@G—' = ga? : ' 'I_.Alo

One can thus replace © Dby the unit matrix, sincg, in our -
formalism, the +1.component34of @ will'connect the “larée"'non-
relativistic components of the nucleon wave fuhctions»whereaéf
the -1 components of @ will connect the "sméliﬁ chﬁonents;.

which we are neglecting.

B - Radiative K - capture

In the case in which the eléptron capture is accompanied
by thé emission of a gamma photon, éné has to consider all . the
intermediate stétes that the system may occupy, in order te
.evaluate the probability -NU"Rd..K « In accor_jglancé with the"hole
:theory, two types of proceéses are possible ih:the transition

from the'initial to the final state. The initial state of the
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system consists of the nucleus bdz_in the éﬁergy state \NGL ; |
all the negative energy states are occupied. The final state |
consists of a nucleus fVZ., in the energy state VVZ“ , a hole
in place of the electron characterized by the quantum numbers n
and £ , & photon of energy )_{ck, and é neutrino of energyj E—v ;
all the negative energy states are agéin occupied. The processes

that may take place are of the two following types:

I. - The atomic electron (characteriied by n and 4£,,)-makes ,
a transition to either ) ﬂ ' |
a) an unoccupied discrete stape or »
b) an unoccupied positive continuum.state with Ehe"
emission of a-photon.. The electron is theﬁ'céptured

by the nucleus with the emission of a.neutrino;.

II. - An electron in either
a) an occupied discrete state or h
b) an occupied negative continuum state is ca§§§néd ;
by the nucleus with theAemissioﬁ of]é’neutfihagiﬂﬁoéher :
electron jumps into the remaining hole.withithg" 
emission of a photon | ) ‘_. . | .
The conservation of energy (beﬁween the initiai and fhe.finéiﬁ
states) is'expressed by the relation » 1
Wy + Eppg = Wz__‘.-r E\,‘rﬁzk S I
where E%@ is the energy of the electron in the shell characterized
by n. Therefore, W, + Eng — Wz, = E, +Ack “
is the energy available to the transition.

The matrix element entering the expression for thé prbpabilityg

AAqkdf\ should involve a sum over all the intermediate states
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of type I plus a sum over the intermediate states of type II.
However, it can be shown (see, for examplé, a similar proof in
Heitler (50), p. 147) that the two sums can be evaluated together
as one sum taken over all the ihtermediate states, positive and
negétive, occupied and not occupied. From the wéll-known formula
of time-dependent perturbation theory, the matrix element is of

the form

s (F|nel)(E | Hyl O)
T E:r- Eo | 1.12

where F, I and O are symbols for the final, intermediate and
1n1t1al states reSpectlvely. (x| HY- 0) is the electromagnetic
interactlon matrix element and (F“ }4@ lI) is the same beta inter-
action matrix element as the one used in the radiationless case
EJK.I-’O , except that the 1s-electron wave function is replagéd
by the intermediate state electron wave function q/é (which is
also an s-function because we suppose the transition to be allowed).
EI and E.O' are the energy values corresponding to the inter"-
mediate and the initial states. In terms of the quantities de-
finéd preViously; Qnd of E, the energy of'the electron in the

intermediate state, we have
Er~Eq = E ~Eng + Ak . 1.13
The expression for wydk, similar to that for we, £q. I1.10,

is as follows:

NS B oSy S S

where Sj’ indicates summation over the two directions

I.14

5 CFlHs IIXIIHTLO)'
I

Ez" E

of polarization of the photon
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Sy. and Se indicates summation over the
| spins of the neutrino and»those of the
initial electron respectively
SADY and ,Sd.ﬂ\; mean, that we integrate over
~ the angles of emission of the photon and

of the neutrino respectively

o

dR
Cun

is the photon contribution to the density

"of final states.

The wave functions are supposed to be normalized per unit energy

interval. The matrix elements in I.14 are given by:

(FlHgl) = G %_ ch((?TA’\_VE)R (gAa) ©1.15

(the symbols have the same meaning as in Section A) and by. (See
Heitler (50), p.95)

Y

. . . |
@ingl)) = € [y TF Qg dX T
where C - o _ﬂﬁﬁ)'/a.
N
LR
Cl = 2 , the retardation factor

zk‘ls the polarization vector ‘of the photon
whose ~wave vector is \T{] = R
EZ is the Dirac matrix deflned in I h
L is the charge of the electron
. wg.and kﬁmﬂ are the wave functions for the

electron in the intermediate and the
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initial states reSpectlvely. ‘
\Y?'means the Hermltldn conJugate of‘y

The integration is over all space.

In the following Section, we ‘derive another expression for

the electromagnetic interaction matrix element I 16 the useful-

ness of which will be apparent in the next Chapter.

C ~ The Matrix Element of Electromagnetic Interaction

In this Section, we consider the general caee of an'electrOA
magnetic transition between a state of energy E described by the
electron wave function WVE_ and a state of energy El described
by Ye . %’E and Ygi are Dirac eigenfunctione for an
electron in the presence of an electfomagnetic field characterized
by a vector potential 7: and a scalar potential QQ- .

The matrix element of the electromagnetic interaction intro-
duced in Section B, Eq. I1.16 is then a special case of the follow- .

ing matrix element:

(ElHplE") = CS\VJR”%Q\J{QW' R

We are now going to put this matrix element into another
form by applying a transformation introduced by Gordon (28) to

decompose the Dirac probability current into an "orbitel“ part
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and a "spin" part.
To this purpose it will be convenient to use a‘covariant N
tensor notation (in this, we more or less follow Pauli (33) and
Sommerfeld in their presentation of Gordon'é_methbd).

We first introduce the contravariant four-vector
Y’u M= 0,1,2,3 1.8 .

of which the components are chosen to be

RO _ 1 2 3 - .
Y»-‘@'Yfﬁ%,)f-"—ﬁoﬁa,))’:@% 119
e) X, O and OLS are defined ih Eq. I.4. The c§mp6nents o
Y'-", )rland Y:‘ are thus anti-Hermitian: (T".)T-:. - Y’K y K= 1,2--_,3_;
The )f/k's thus chosen obey the following commutation ?ule:
v v s o
Y'/" Y + Y" Y/A = 2 af* 1 ’,L,‘) = .I.20.'
0,1,2,3 -

v
where ﬁ#k is the well-known contravariant metric tensor:

0
-

o

o

o O

y
o7 =

00C¢C

I.21

O OO0 -
o4
L

and where I is the unit matrix. -The covariant ?/Lv is defined

such that
3 .
V=0 %vv ul : ) '
gr* _—
where T is the Kronecker tensor.
Therefore,
| 0 0 ©
-1 0 0
- I.2
%buv 6 0 -t © >



The position four-vector is defined as

= (et ).;:.)

such that the energy - momentum four-vector

(£.7)

is related to the operator

by the rule

Fu = 4

}
M

= 2,

Therefore, from 1.23

four-vector

.In the notation introduced above, the equation satlsfled

Fp

- (§.-F)

The electromagnetic field can also be expressed as a

(‘9>K)

The covariant four-vector /\,k is given by

(kgw ‘;RP)

by \PE. and’ Yet is the following

[ & £ Y2 -

Introducing the bar function \V = \{/ Y

and Yet satisfy the adjoint eguation

3

=0

(

I,
d it e

R AR TY - e

2 A+ *‘m“]“l’

,  We see thap_ifa

a—

s.y

a——
—

O

20

I.24

I.25

I.26

I.27

1.28

I.29

1.36
1.3la -

I.31b
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Egs. I.31 a)and b) are equivalent to the equations used by Pauli
(33), p.232.

By solving Eqs. I.3la and I.31b for \\»’E\ and \YE. respectlvely,

one obtains

t

‘PE“'L 2 f,*(a,x# ﬁA/’“) ;.VE‘

W NI VL I.32a
3 ' . .
—_— AR /% )" M
Ye = T %o(dwu f Ye Y - 1oz
. . — -
If we write for simplicity Lh = &L ' and introduce the
component 2 = (O , the matrix element M, Eq. I.17, can be
written in the form |
— —» -"’—? .-, :
ClPe® QY2 Yg & 1.33

We now replace \'PE.' and \VE in I.33 each in turn by the

expression I.3Za and I.32b respectively, which yields:

I

M

A A=O

3 /.. , |
- SA s S"VE.Q Z-y (G- o Au) Yerd® I.3sa
and

4 .
SR o5 ((quris gl yraz '
= — 1 I.34b
M= e mo) RTELAIRYIRET e dR 1
Wrivtihg again l’? = g—",, Tv S addlng the two expressions I.34
and dividing the result by 2, we obtain for M. the following ex-

pression:
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M=

a,. 23 g("/‘*?r: ¥ =P Y Y 9 ) 2, QdR

+ % S .35

S R ARG P Ye QR

where we have separated the field - dependent terms from the
others. | o _
v \Y
Using the fact that m + Y\))’/‘:-:Z?!“L we separate the

terms in which vy --/«L from those in which VF M to obtain

M= f”::‘_ i S[W/*‘—V_s) Ye! - ¥e (mte) ] P2 QX ..
* %f; 5 Am g/ 0T Yor Q &R fk I.36
+ f;’}m 20T vy ved ey Qv Jvap
We now use the relations 2,=0 , q!z-| and Ap = -A

for ﬂ“* O . (See Egs. I.21 and I1.30). Also we note that when
VR, LyPyY = ~LafaV= oY, where @Y is the
birac spin operator. We also separate the M=0 term from the
terms in which M and V are different from zero in the last

line of . I,36. In this way, I.36 becomes the sum of four terms:

M= M, + My + M3 +My 1.37
 where
ex 5 = — R |
M= e SR v - BBy T aur
M, = Wﬁi-gﬂ-?QVY\w? | I.37b
2 mct e 'E . ' o
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33 - Am
M,= "Z"ﬁ% %12 g % (\Yao ’VE')"'MQ ! I‘_”
M . C

o3 6 m . T
M o (% (B 4 r7 ™ ye)Qar 1m

We now make the assumption that one of the energy levels

l 1l ' : L.
E, E° (let us say, E ) is a discrete level. ‘Then the function

Ve' vanishes at infinity and the first term of Ml’ Eq. I.37a.
can be integrated by parts to yield:
L.V Y dA
ALrmc Ye Ye _ ' ' C
5 o | N
; &R sqra Yer G4 Z-R) QdRX - . I1.38°

dLme

The last term of 1.38 is zero since the

-
. -ARR
since § = 2

— ) - '
vectors 4 and F: are rerpendicular to each other. Therefore,

P\| becomes

M, = eﬁ‘ﬁ‘" g“—}’—aqz"v*a‘d’? . | I.39

The integrand of Mq Eq. I.37c can be expressed as a curl:

writing Blm for the quantity ?E.O.M\‘VE' ) (B'“":—BQ"), M4

becomes
- e ' < A~
Mr = + EX S T . cund =>
’ e )T B QAN I.40
- . - : '.-
where B = “PEG' YE‘ , and 62 has the components g, = 0_33,
Iobl

- 3! &
0.&- O’ 9 ¢3 :0" . .
Rearranging and integrating I.40 by parts, one obtains

Mo = g (@B -vest e
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since \VE' and consequently B become gzero on t,he infinite

bounding surface. Since VQ = —AHQ I.42 becomes

M, A,Cﬁ'k SQ“VE R | N I.L,Bl

o'lm\c,
—»

In I.43 we have denoted the vector Zx.%\- by II .

The expression Mq y Eq. I.37d, can be written as follows

M, = CLE—EQ 5Q%;.1"*E\d;z T

since' the time-dependence of \PE and \YE\ is given by the factors

A
2 % and .Q, respectively.

From Eqs. I.37, I.39, I.43 and I.4k4, the expression for M
equivalent to Eq. I.17 is the followingz: '

1o s (R BT s etla e

aTTXA.‘/&L ~iRR 5 & t >
+L( N >ML‘S£ A'LRWEpTE‘M 145

. ' bnd
‘For the case of an electron in Coulomb field (A=0Q ),

I.\5 becomes
n""-»

Va . _
[ —~A R *
M = (Q‘T{KX ) <‘7l/w'\k RC £ i Yg‘ X

A_—’V . -
X @['&?\%L“ﬂ'“ o 2“]‘*’&‘ Teue
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If we compare the expression for the electromagnetic
interaction matrix element of Section B, Eq. I.16 with the’
' —

—lp
expression just given, we can conclude that the operator“c*-i-h

in the matrix element may be replaced by the operator

(3[ ___nl.__fLU-O'-t—(EKLK AR] I.4,7

in this sense, these two operators are equivalent.

&nnc

In our general expression of Section B, Eq. I.42, we thus
replace the electromagnetic interaction matrix element of Lkq. I.16
by the expression I.46 with Ve replaced by \“nl and E' replaced
by E‘n\l
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Chapter 1II

The Expression for the Probability of Electron Capture

in Terms of Approximate Wave Functions

In Section A of this Chapter, we introduce the wave functions
used in our calculations and we give the general resulting ex-
pression for "”ﬁdﬁﬁya , when these wave functions are substi-
tuted in the expressions 1.9 for mJ/g and I.14 for MJ"Rd.R . In
Section B, this.general expression is simplified by introddcing
the non-relativistic approximation fof the electron wave functions},
and put into the form which will serve as a starting’point in
our calculations of Chapter III. 1In Section C, we discuss the
passage from the general expression of Seétion A to that used

by Hess.
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A - Wave Functions and the General Expression

for M’i\dh/"&rc,

We start by considering the spherical wave solutidn to the
Dirac equation for a particle in a Coulomb field. These wave
functions are given, for instance, in Rose (37)'or-in:ﬁess (55).
They are normalized per unit energy interval and are character-
ized by the following quantum numbers: j, the total angular'
momentum quantum number, which takes half-integral values; f* ,:'
which tékes.311 half-integral values from -j to +j; and K, which.
takes the values r (i + %4). Since in this thesis we only need
the wave functions for which j = % (allbwéd case: no orbitél
angular momentum is car}ied away by the particleé), wé shall
not write the wave functions in their general fbrm. For j = 3,

the wave functions &re:

M= k=1 /*=‘?&
o B °,
o Yo B II.1
RN By, oy
1t o (rn)
V%Yl' ’L(K -"-%Y\ (l/f-/

The functions F'*, Fo, G and G are the radial solutions

to the Dirac wave équation;'we shéll not write them explicitly

in this thesis. The\YZ“- 's are the srherical harmonics défined;

for instance, in Blatt and Weisskopf (52), p. 783. |
Since we consider only allowed transitions, we set equal to

zero the components of the wave function II.1 which contain a

spherical harmonics different from ‘Y: . We have-theféfore;'

in that approximation,
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LS R K=-1
=3 N peva pe=Ya
° E Y | o o \ °
0 A YOEI@ o ' , o

o ¢ A }

; . ¢ <o o I1.2
o o | 0 Y,

If one sets Z, the nuclear charge, and m, the electron mass,
equal to zero in II.2, one obtains the neutrino wave functions
L? which will bf used ?? the expressions I.8a and I.45. If
one denotes by %% and -%i the radial parts of the non zerd'com-
ponents of these waﬁe functions, evaluated at the nuclear sur-
face, one easily shows that
£ =..ﬁ:;= E‘
<L 7R

(Tma_&_s)‘lz II.3

where EV is the energy of the emitted neutrino.

In the case of the 1ls electron, the two functions with
K=<l in II.2 are identically zefo. In the case of s electrons in
'higher discrete levels, these two functions no longer vanish but'
are small and will be neglected in our célculations. The two

remaining wave functions are

(£=0) K=1 (¢=0)

e 2. == '/2.-

Yo By N “ -
o Yo E:%Q - IT.h
o ' o : .
o] (&)

With the help of II.4 (with n =z 1), and of II.3, one readily

evaluates the expression I.9 for ay. . The absolute square of
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the matrix element in 1.9 is

rigio)] =

A Xy " a!
6"22 qon (RIGR) (A ys YA 4 ) g 1.5

: ' T
(see Eq. I.8). Operating with S, on the product “'rlskhs yields,

because of II.},,

+ 2 A ., ’
So kFlSLP!S = To ‘—————F‘:R)l ltig : 11.6

where 8 is defined in I.4. It is also easily seen that the sum

Sy over the four neutrino states yields

o> :\

S, (§'A" ‘*ﬁf\‘e) ThA” «ﬁ/\ iy

K'.’:'b

where the operator Tr means that we take the trace of the matrix
on the right of it. In deriving II.7, we used II.2, II.3 and the
fact that E,, = W, the available energy (See Eq.I.1). Thus,

from II1.5, 6 and 7, W

FisR)| 2 2
605 | (elmplo] "= Yo s | BB G

x 25 cuon ANSA) TA AL A 118

The matrices of whlch we have to evaluate ‘the tra¢es, in Eq 11.8,

are of the form A A and P\ (5/\ , where the A A.as defined in-
1.6, are products of the Dirac matrices [>)o, ‘°‘J. and A1 .
Such traces of products of Dirac matrices are given, for instance,

in Heitler (50), p.87. When they are evaluated in I1.8, the
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. 1 '
double sum over r and r becomes

2 G Gan) SR TnA uﬁA

' a
_a[<cs+c . Acscv)lu\ NES AT ArE ),Wln-.g

+ CPIS@Y '
=T

Remembering that the operator Sdlly multiplies the expression
I.9 by a factor 4 TV and that Y: = 1/\);}"[- , we obtain from
I.9, 11.8 and II.9:

W T s \ ELS_(——‘ T 1.0

II.10 was used both by Hess and by Glauber and Martin in their
calculations.

We now consider the expression for /\Uh&,l\ . We first
write the sum over the intermediate energy states, Eq. I.12, in
a more detailed form, using the electfomagnetic interaction matrix
element obtained in Section C, Chapter'I. Since the wave func-
tions in the intermediate and initial states are s-functions and,
consequently, have the same parity, the operator - fiiéaii in the
expression I.45 fqr(Fle\I) will not comtribute to the electro-
magnetic interaction matrix element. It follows therefbre, from

I.12, I.13, I.15 and I.L5 that
- | T,
s (,F' HP’I)(I‘HT'EI D= B Z C’A(SA (R) A’{M 2 \’}E(R) \PE(’\) X

T Er -Eo E-Emg+ KR

. XP[LII.? +,(E§ZE§&);Z'E;1Q‘PMS(R) - I,
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where

drm e

: | |

B= Ga (&1&’\_&)’*_3& |
_R I1.12

Writing E-E, = E-E, + Kk - ReR , we may put II.1ll

into the foliowing form

S FlHe| DXty B £ o (AY $H(R) A‘Sdzmmsp[irt-?—ﬁ-?gh?ms
.. Er -Eq A '

. + i%{ E c(SA) Q*(R)Ansdig ‘f’éﬂw () e;{ 2 Q Yas II. 13a

E-E s+x¢,;\ _ ;I..13b

where

=z

-

we show in Appendix A that the second line of ‘II.13a may be

neglected. We obtain, finally

= (RRpID(Tiwylo) _ Bic (A GRIA (R W\SB[&R? - %JQ%‘

3 E;-E | II.lL;

We now form the absolute square of the expression II.1l4 and
apply the operator Sa on the wave function product ‘K“5q¢:; .
Because of II.4 and II.6, we obtain |

CEInaiT) (T Hylo) > > e (S ")(SA"‘)TY%. MR) A X
S°}§ Ha X l =B§.% c,\c,\\(,f\ ) ,‘? .

Ex-Eo

X(SSM&{. —'LR.R RAR Eﬁg_/l-) ig )MmsPM ]ALQ(R) II. 15a.



- 32
where -

— o .-9-‘ ."’ -| ‘ n'-#'*j“_-!'ﬁ B .

. P - ﬁ ‘;La o~ Rk]l__’iﬁ‘[ A AN u. X Rk]@ II.15b
X . | o,
and where the prime on qusmeans that we replace A E by A E
in II.13. It is shown in Appendix B that
P=1- & & I1.16
_ R

Because of the form of the wave functions \VE. , 45 given

by II1.2, we may write Eq. II.13b as follows:

+ »* - -
2 Fe®® Ry - Ga(R)  GeW .
ms e e E‘Eﬁ\s*ﬁﬁk | Q. E E‘.Ems"'k“"\ Y 11.17

We integrate over the angles, using the relation

| - KR R
gdﬂn_ = YT &RA 1I1.18
AA '
and introduce the notation
*
¢ Fe(R) g"‘”F; W g RA | FasO) 2
_ ’J%(“" A RAc A '
g 2 ‘ II.19a -
E E~- Ems + Rck
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oo _
(R) Cgln 2 R FEmsn) "'d_,
L.G .= 2 GR So n Ra’\. N b
M3

IT.15 becomes 2 + _
. Eumem(zwo){ = BES cuea GRIGAT) Y2 ¢MR) A” x

I Er-€o

S CRCIRAE) 3 AT REEY v

The summation S& over the four neutrino states gives, as in

Eq.II.7, the trace of the matrix contained between the two

C? 's of Eq. IT.20. There also arises, because of II.2 and 3,

a factor
' a
Yoa__E__;__ — Y: (W—ﬁf—k T EMS— E|§l .
° TR ° T3 : el

in front of the whole expression. In deriving fI.Zl; we used
the equations of energy conservation I.1 and I.11 and the def-

inition I.1 for W. Therefore,

B‘Y (w- ﬂ%;: §q6 !Ew) EgCAC (SA)( )

II.22

T AL SR - )
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It can be seen from the definitions I.6 that the traces of
. ,\ \ \ ) .
every matrix of the form A A’\d; and A'\A“’(BAL {1 =1, 2, 3)
- are zero. Thus, the term E?{%E of II.22 will not contribute to

the trace. Therefore, one has only to evaluate the tréce'of
n E 13, N FERY S A :
' . = R ©
A []ums\ (1=2) rlLn] (158 )]A o 3

in the way explained under Eq. 1I.8. After-this is done, II.22

becomes: . 3
a ot _ -
S°S"i 3 l = BYS (W ‘:r&;-;f:s Eis) X

x a (5 e T+ A
with Tl and T2 given gy |
T, = .( cer <))l Sir t{cr+ ‘-:)’ 7+ C::\S(s.)’s\_a II.25a

g Ta= LGS l61) + acq 5@
I1.25b

such that T,+ T, =T , defined in Eq. II.9. From II.12, II.24

., and I.14, we have finally

2 ; -E. 33
NJ;\dR - G (W fkf-k:Ems E) R dR X IT.26

T3

L[ (L DT, + (el = 12 Ta ]
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and! from I1.10 and 1I.26

5 N
WRAR — & (KeR) ol(ﬁck)_ ( _ Xsh‘(fz.\sffts)) X
W m | (ﬂ\c)3 .\ ' VV_ | _ﬂ -

. o
o § Qg )T )T + (fomg = (sl Tl "
& ‘ F,SQR . r -—r "

The above expression for 'W_kdh/,ur - will be the babls for

‘the subsequent dlscu531ons of thls Chaptero

B - Non - Relativistic Ekpression

for WR dh/,@—g

When Z is small, the expression for the sum over the inter-
mediate energy states, as given by II.17, may be approximated by
its non-relativistic form. To this effect,

1° @ is put equal to a unit matrix in II.17, so thét.the_

function G disappears completely from the expression;
: +
2° The function E;%Q is replaced by @ . the corres-

ponding solution to Schroedinger's equation;

3° The sum over all energy states %é becomes a sum over
the discrete states and an integral over the positive cbntinubus
states.

When the above approximation is made, the expression II.23
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becomes _ o
' a \ : . Sl

F AR . ' .
' LmS] A A _ . Ir.zg

and the trace of II. 28 gives rise only to the factor 7‘, defined ‘

in Eq. II.25a. In this approx1mation we have, from II. 27

R _ A (hek)’dUick) (1- m—cems-s.s>) bl

J ’ . :. .
AT m (,wm’f)” W ‘—Eﬁéﬁ)]‘ T .11.29

If we make use of the fairly well established experimental
fact (See, for instance, Konopinski and ianger (53)) that the
mixed terms (i.e. those proportional to C C,, -and Cﬁ.C. ) are
negligible, we may set 'T; = 0; and thus T,=T in II.29. We
also replace the wave function E%giibr the initial electron by -

the corresponding solution to Schroedinger's eguation CﬂsiR) ..

Hence, I1.29 becomes:

widh = & @chfd(&ﬂ (\ fek- (%—E.;) lhmsl
v T (&) - lQ.s(Rﬂ II.30

where -~
Mh’\- (’t
Cms

“?atgj-g Lﬂa(“J —
E—Ems"'ﬁ"h

L_
i
m M

M3

Expression 1I.30 is the startiné point of ouf'calculations.of

Chapter III.
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C - The Approximation of Hess

Instead of using the approxiﬁate electromagnetic interaction
matrix element obtained in Chapter‘I,.Section C, which leads to
Eq. II.14, Hess used the general relativistic expression I.16
with the operator ?.’{-’Ek » This means that the matrix P of

ITI. 150 was, in his case,

-

- Thu TR

since AP = —-BX and (F- I?R):L‘= L '
Oﬁ'the other hand, we have seen in Section B that, with the
approximaté wave functions of the form II.2, the sunm t4~6 over
the intermediate energy states takes the form II.17. 3ince
(&i@)(\'%%) =0, it follows from II.17 and II.31 that the
factor hﬂmsprq‘* of II.15a becomes |

GtR) Sl ¢ o R)crm‘ -\ - -
Y 2( M\) "‘E,‘;r" (—-f) . I1.32
N E=Bms £\~ EpotAch - -

i.e. that the function F 1 disdppears altogether from the sum
over the intermediate enefgy stateé."Since'the”functioné G for
'the discrete states are small, Hess wés led to neglect the sum
over the intermediate discrete states as compared with that over
the continuous states; the result obtained was of an order of

‘magnitude smaller than that of Morrison and Schiff. (See Chapter I11)
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The -source of this difficulty resides in the fact that |
making the approximation II.2 for the wave functions and, at the
same time, keeping the operator E[JEk in its general form in the

matrix element of electromagnetic interaction, is inconsistent.



Chapter III

Radiative K-Capture in a Non - Relativistic

Approximation

In Section A of this Chapter, we briefly describe the
method employed by Glauber and Martin (55) (56), in thneir
derivation of the expression 1I1.30 for Aﬂ}§d$vauzh , and we
discuss the simplifying assumptions they make in evaluating
II.30, and in Section B, we present our own evaluation of

37 131

that expression for the cases of A and Cs .

18 55

39
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A - Method of Glauber and Martin

Let us consider the general form of the matrix element
I.12, using the expressions I.15 and I.16 for the beta inter-
action matrix element and the electromagnetic interaction matrix
element respectively:

\
2(&'—\% U\Iiﬁrl‘)) = 6%9%&}"‘% e (SAY) q*(R)AAA

r R |
S - Ma Slah K- Yt IIT.1a

where {V\v\l = 2 ”ﬁé@)‘*" 1 III.1b

e E-E.0t .‘KLR

As pointed out by Glauber and Martin, M _, is actually a special
. Vo o
case of the Green's function R,R = for the wave equa-
- - COPRIWNGY K
tion of the electron in a Coulomb field. Jince we may set the

nuclear radius R equal to zero in III.la, we have

A

Mmg = GEM—QQLR(O"X}  III.2

The reason for the success of this approach is that this
one-afgument Green's function in its non-relativistic form can
be obtained as a solution of the Schroedinger equation for an

electron in a Coulomb field. Howevér, Glauber and #Martin start
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out from the Green's function A&QEM{"Kk) of the iterated Dirac
equation, and they arrive at a formula which is equivalent:to our
equation II.27. Only in a latef stage of their calculations do
they replaceiﬂ by the non-relativistic Green's function, and iﬂ
this way obtain an equation which reduces to our Egq. 1I.30 in
case of s-electrons. .. _ '

Expression 11.30 for lams cannot be evaluated in a c;osed
form. In order to evaluate A”ﬁfih/ur in a'relati#ely'siﬁple'
analytical way, Glauber and Martln have set the retardatlon

- KR

factor & equal to one. ThlS is equlvalent to using an

expression for lﬂms in which éﬁﬁf%l- is rgblabed by unity for
all values of k, i.e. over the whole energy range of the emitted
photon. In that manner, and witﬁ the help of the anélytical
expression for the non-relativistic Green's function, they could
evaluate A0h<i54“r almost without numerical caleulations.

The argument they present in order to Justlfy the above

R
Aﬁ‘ -—l

approximation (i.e. ) over the whole energy range
is rather lengthy and somewhat unconvincing; it will.bnly“be..
sketched in this thesis.

The argument is of a different nature for each of the

following three photon energy ranges:

(1) | K<k ( -;:(Zo()&m&.a
(2) &(wfmzm.h < Zamc? | II1.3
(3) Zﬂﬂ\ék<:*k;h

In the range (1) of low photon energies, the photons have
a wave length at least GLA)-\ times larger than the atomic

system. In this case, one may therefore set ‘@éagﬁk in II.30.
' : 4
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Consequently, only~one term in the sum and integral over inter-
mediate states is different from zero because of the ortho-
normal properties of the (.g 's, namely the term for which E= EMS. °

Then lJ;\S becomés, simply

KR _ III.4

and E3. I1.3D becomes identical with the Morrison and Schiff ratio
whenn =z 1 and { = O. (This is a rather startling consequence, ’
in view of the fact that Morrison and Schiff completely neglected
Coulomb effects, while Eq. III.4 is derived from an expression
containing (non-relativistic) Coulomb wave functions).

In the intermediate energy range (<) one may not a priori
neglect the retardation effects. However, a study of the form
of the analytical expression for the Green's functiong _ éo,/&) ’

Ems ~ReR
which contains a decreasing exponential, shows that its range
remains much smaller than the photon wave lquth S0 thaf the
retardation effects seem again to be unimportant, i.e. again
gfjtfag | . It follows that in this range also, one obtains
the expression of Morrison and 5chiff when n = 1 and £ = O,

In the high energy range (3) the retardation must-be taken
into account. However, in that range, Glauber and Martin used
the free particle form of the Green's function and approximated
the initial wave function by a constant. These approximations
are the same as the one used by Morrison and Schiff in deriving
their result: namely, the neglection of all Coulomb effects in
the intermediate states wave functions and the assumption that
the initial electron may be considered at rest. For the high

energy region, Glauber and iartin used therefore the same
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expression as that used by Morrison and ééhiff. -

The neglecting of all retardation effecfs éllowed Glauber
and Martin to evaluate the contrlbutlon to ﬂVhde made by the
~p-electrons of the L and M shells (n = 1, 2; L = 1) in-a rela-
tively simple way. This contribution was shown to. explaln ‘the
sudden rise of the photon spectrum at low energieb (Glduber and
Martin (55))

In an unpublished paper (56), Glauber and Martin introduced
a relativistic correction to the.ls and 2s state spectra by mean
of a canonical transformation'applied to the Green's function.
This correction is seen to apply only to the low'énd intermediate
energy ranges of the photon spectra, as defined in III.3 and. it
is evaluated again §n the assumption that tﬁe retardatién factor
may be put equal to one. These corrected results vere compdred
with the experimental data, for the case of A 7, by L1ndqv1st
and Wu (55) and there appears to be an essential agreement be-
tween thebry and experiment.

Ae stated in the Introduction, a "more fully relativistic".
calculation carried out by Glauber'and Marﬁin has not yet been
published in.details, but the results'héve been compared with
the experimental data for A37 (See Wu and al. (56))'- From this
comparison, it would appear that the correctlon resulting from
these latest calculations does not affect the high energy part .
of the theoretical spectrum. | . |

Although there can be little doubt that Glauber and rmrtln 8
results are essentially correct, we think that a dlrect non-f:,'
relativistic calculation of A”ith/%UE ,free,of addltlonalf'
simplifying assumptions is still of some value. Such a calcula-

tion, which we undertake in Section B of this uhapter for'the
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case of 1s and 2s electrons, makes it, in particular, possible

to see more clearly the role played by the retardation effects.

B - Evaluation of w"“l‘k/wc in a Non-Relativistic

Approximation for the Case of ls and és'Electrdns.-

B

In evaluating Lﬁns directly, (Eq. II.30) one must consider
separately the discrete and the continuous intermediate energy

states. The procedure adopted is to first carry out the inte-

gration over the space variable r. The exact formuiée for the ’F;

i

first four terms of the sum over the intermediate discfeté_énergy
states are obtained and an approximate'expreséion is derived.for
the remainder of the sum, which can be“transformed into an in-

tegral. The integral over the - continuous energy states is
. "o 2 '
evaluated numerically between the limits equal to mc and about
2 .
1.5 mc respectively. The integrand for higher energies can be

approximated by a relatively simple analytic. expression and- the
integration carried out analytically. The error involved in
that procedure is quite small, as will be apparent from the

numerical results.

1 Discrete States

The space dependence of the generél non-relativistic
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#

"s-function" describing a particle in a'discrete"energy level

£

”ﬁ==€nis given b& (see, for instance,'Kramers,(BS), P.311)

Yo A
Qe (1 = Efg— '—'—3(”\) * "M"ﬁ(;am s é.esa) II1.5

" ‘where ' = ZAma
* x

and where ?§(|_~\ b agy\) is the confluent hyper-geometrlc
function as defined, for 1nstdnce, in MacRobert (54), p.346.

The function III.5 is normallzed such that
, o . ]adfl - 1
S (Y. €e M) = - I11.6

When r = R, the nuclear radius, Eq. III.5 becomes

Ya “/’%\R

Qe (R) = 3 (&) 2 %<’f“3g}%ﬁ&) 5 III.7

-3 ~13 :

since R = Lam& 10 for R~]0 em 1III.8
i x(k) .

and since %ﬁ is a finite polynomial of the form
a
|- m i) L (A-m)(&-m) (ama) L
| + ( )g ¥ ag (m) a7 11I.9

one may write approximately
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We call L—D the part of Lﬂs which contains the sum
|

S
over the intermediate discrete states. The initial states ls
and 2s that we shall consider are represented by the wave func-

tions (see ITI.5, III.Q):

Y -ma .
Qs = Qe = Ap T2 A III.11a
- . a'ﬁ)%‘ ‘%"(1 _R ) III.11%
qﬁs - C?E; 'f (2 £ ;_R | . '

Replacing ‘fE and Dt in I1.30 by théir values III.5, II1.10
and III.11, one obtains for the two l.D , n=1,2: | |

mse

[~

@ S Pranicy "ﬁ“ Fl-mya; 28) 2,

M=\ " ( E’n - E, + kek) I7T.12a
o0
, BB simRa () ,
L ﬂtz 5° R (1 - %“) T it __
" o ITIT.12b
Dzs aﬁ ) M3( E_M _ El + kck) |

where ig in 12t is the same hypergeometric functidn as in l2a.

The energy Em is given bty the expression

\’Vi

- S y4 a ﬂ S .
E. = f"“ (l * <"“°‘““)) III.13

X+~\—l

Yo
If one approximates A= 0-'Gaf) by the expression

\= 1 - _'i(za)a | g | IITLL
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one obtains
En-E, = a(zd) om e (i* o | III.15a
A - ._..._L '
and E,—Ea = J—(Z«) s it IS

As we have already mentioned, we start by integrating'over
the space Qariable r in #qgs. iII.lZ. To this effect we expand
the hypergeometric functions into their (finite) polynomial form
of equétion I11.9 and integrate term by term. The'space integral

of III.l2a, for instance, yields

L9 - pA
S 1—#A B °h Af¢&
° RN .

f.;-_'_%g:da.o:hn[fvr- L';f\— (a‘:\—'-\)-,i,- toee ] -,c_,.,c.} I11.16-

This is readily integrated to give

- l.
L a(-m/3a) » 23Q-m)a-m) (A} L 4.0
AR A 3(’* () - & a3 (m/\) al 117,17

- }
The expression in the square bracket of III.1l7 is the ordinary
hypergeometric series of argument 2%& © {See Magnus and Ober-
~A

hettinger, n.7). Hence the integral III.16 can be written:

- a Q .
5‘:& ﬁala\q_}‘ FTl-m,x5332) —rc-rc-:] 111.18
{

in which 2z stands for
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AM m S .

mA |+_';_.ch : - | 11I1.19

where A = R - X R o I11.20
M Zex e »

We next use the relation: (See Magnus and Oberhettinger p.8)
. » : z |
35(0\,(3;@;1) = Q—z) ‘;ﬁ(o\,g-o\-,(s;—z-_—?) - una
Therefore ﬁ (1-m, & &')'L)' - (\_Z)m-l T1I.22

With the help of III.22, III. 18 II1.20 and III.1l5a, the expression
III.12a becomes
: Q)Y Vo o (=4 iz. G-2) -.-,c_,.(.,}
LD's  m=m B .ﬂ',c ?:, ﬂ\m{-‘-zo( )+rx} I1I.23a

In case of L‘ Dag? ythe second term in the integrand in kq.

III.12b leads to the hypergeometrlc function
— -1
EG-m, 3333 2) = ('-Z_) [’ t (m )(z-a)]

this last formula is easily obtained using again III.21. A
calculation similar to that above yiélds then for LJDAS(Eq.III.l2b)
. o
+ -‘B.ﬂ. .5—— -F"(c-?

LDA ELSN E'l 2 (..,ﬁ)&z;‘(l-l)mi'[_l. .-z. A A - I-Z
s .

ma1 By R AVE mfx[\%zé\(.{;.?)..,_i]: III-.23b'.

In II1.23b, however, z is

Zoom& /' 111.23¢
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In evaluating LD;s and Loas we calculate the fir‘;ét four terms
of the sum over n separately, and we derive an approximate.ex- |
pfession for the summand when m 2 5 . The nﬁmericglﬁvalues
that we obtain later will show that this approximationﬁiﬁtgo-'»
duces an error of less than 1% in the expressions for [_b'; énd:'
L*D;S . We first consider the case of l‘fhs and then the case B

a) Case of bipg

L Y

Let us consider, in the summand of Eq. III.23a the factor
' . a m~-| : ) .
3:5 = (-«) [ z(l-2) - 'C-‘"] III.24

and write z in the form

z - _%éﬁ__#- = _jZ5wﬂ_

|+ L in 8o “Fr  III.25a

|-—Z = _?:_%':._f-

| 1.2
“i$h | | I1I.25b

J1I.25c¢

13
joy
(4]
~
a
.JQ
I
i
—
Pl
H
3
p
+
N
|-

Q
o}
Q.
B
H
i
:
=

III.25d
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If II1.25a and b are inserted in IIT.24, one obtains

g :E:)”F.; . o / S
- 2 : A { () - (m=1) Q-

g"s /Y\a‘“<f1 ff f— ‘ [ L% )C?] III.26..

A
4.

Therefore, from III.13a

- o m
L VA .8 < g
Dis

~ _ " M[("\*LD @y " (m-1)9-"] _ :
B e

m=l
The first four terms of the sum I11.27 are given below .

S

1 = A : — L .28 ©
N S G B

by using the definitions of’ Or and @4 ' , Eqs. II1I.25c and d. |
When the retardation factor is put equal to one in the expression
III.12a, only the term n =1 in the sum over n contributes ﬁo.the
value of LJDH, (because‘of the orthonormality of the Wave

funétions used in the integrand). LJDm , in that case, is gi#en

by III.28 in which the x in the factor (1§+?)a'is put ejqual. to

zéro. Therefore: |

3a

= Y& 2 |
ke KeR . IIl.28a

[
]

D\S

and one obtains the Morrison and Schiff expression for mﬁﬁﬁl5akr .
c

R

1) There are an infinite number of choices for t he values of
c_?t y Eq. III.25d. However, if one writes c?t':'cy_‘tmmwhere
m=...=2, -1,0,1, 2, ... and O S?{S -E , ore sees that

the expression III. remains the same for any choice of m.
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Similarly
*
N x>
2) Dls &(‘ L%) f/f] [3.20\1-7(] IIT.29
| I
3) (:) = Jz_‘l...__ 128 ’)‘\9\ L @_) ¥ %k] III 30
1S he g1 L%‘mt’x][@)‘l"“ﬂ*
. a F)°0
0 [___Qg = p Qtf**%%"x*iév)s] 191
1S (3 ) : 2 T
£ 3.( %%:Zd"+‘1)l:t§)'f98]

The terms for m% S5 may be approximated in the.foilowing
-way. Let us consider the expression 8&5 , Eq. I11.26 and expand
it in powers of %; . We neglect all terms of powers equal to
and smeller than M™% in the expansion. we consider first the
“argument of the sine function in I1I1.26; we have

Mg, -9-) + Y+ T 9=

IIT.32

From I11.25d, and from the rule for the tangents of sums and

differences of angles, we obtain
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= tom ] J/

real |
I+ /,.',_“.‘x III.33a

Dy~ £-

B

and @+ g_ = Tax - . III.33b
- XY
' 1=
If one neglects the terms in Léma in III.33, one obtains
M(Pr- Q)+ Gy t+B-

~ - _9_~_Q&_ & L Tanm ' III.34
L+ a2 :

In deriving III1.34, we used the series expansion for the function

-1 N
tan with ( l %g;4+,1;i < | ) and neglected the powers
equal to or smaller than m

We approximate ?+ and g_ in the same manner; fron

ITI.25d,

V' o
pr = (I+ol) a,(' TP ) - IIL.35
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Therefore, from III.35

Pro. (l#x‘) - o -11:.36
and (3:)'“: ( | - V"'/“_,xa )rﬂ
§r |+ Yy

N L_(%ML‘) ' 111.37

To derive II11.37, we made use of the relation

(22 = (1= 52« O(k)r) s

with the help of III.35, II1.36,. II1.34 and I1I.27, one may write
L
~o

d4s an approximate expression for when n is large:

L:: ~ & Fa__(%*%i'ﬂ\ a. [ Tarx - rewal 1

~ )  I11.39
e KM+ x+ 2 | mn
It follows therefore that
219 L~ _E Y sl 2
mes D5 Dig ke SO K (x4 ) (ke Z.::.) fILw
We shall evaluate qus » Bq. III.27, as follows
| 0 @ . ® W) ~
= + + + + L .
LJD‘s LD‘S qu L‘D;s LD'S Dis 1L

with the terms in the sum given respectively by III.28a, 29, 30,
31 and 40. ¢
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b) Case of LD.‘LS

The case of LAOQSis treated like the one of Lao,sl. We

consider the expression III.Z23b. for Las and write

2 4 |

- -——o--——— 'ﬂ """l * "A‘" ‘k-ﬁc
$as = (&) 20 ) (‘ * EN !—-z.) ] IIT.42. .
where -2 is given by III.23c. One can show that

. "\-a. ) : ..
o= T2 (32 s oo, ]

in analogy with Eq. III.26, with

. X aqfA _ | '
Or = [(‘:!i + 1) ”*] III.43b
and (Q\r_ = t‘”\—,(%blﬁ\) _. _ III.43c
It follows from III.A3a and III 23b that
e () B infeci-nn]
Pas m s AR 3[9. (“'7{*)*’7‘] H.I *
x Y&

<
The first four terms of the sum III.44 are the following

I O o o &) e [ 3o 3 FamlAx] :
O = (fx— —-Zd\)(,x )Va/ & _L)'/a. T IlI.LS5a
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@) g _l__ ’“ -
- 8 g (x-%) s (%) '.
D).s - 7S v 4 § rx(q@.-ﬂ)a\ II1.45b
Yo - _
g - AE (§ - o) (-5‘—“"‘ “‘?‘ o “"”‘] III.45¢
D&s * Re 9\‘7( 1_ ‘.‘_20\ e Ly -
| bl (+ i) s
S) = AR Ja (L@ * )(”‘&’r )“”""r(‘t‘”‘ iz - Atan %1] I1I.45d
and for m 2> 5‘ |
m. . | 3. a 1_', _ ~ - )
L‘(") = g (3-7) e &)MBQM 2 - 'ﬁ'u’l L 111.45e
s fx fr.c " zo\)<f7\ T Lf) oL o

In III.45e we have neglected the powers equal to or smaller than

M—Z when compared to .unit.y. From III.L,Se, it follow_s that

EL-'(M)'Z L~= 277 U (\2- r7~) _(/)\h‘v-) LLHIw\s..rx m] IIIhé
m=5 O X k& ‘X*"!;ZP\) ("X&-}— L Y 50

L‘Ols will be.evaluatgd as follogv's

. ') ) )] M) o . T -
= L\ + + . L,. + L_. ' - '
Lip, 0y, L'Dls L‘Dz; Do Dae | I

where the terms are given by Eqs. IIT.45 and III.46.
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2O Continuous States

To evaluate the contribqtion to'lq\s

involving the integration over the continuous energy states, one

and Ly, , Eq. I1.30,

must consider the following integral

Le

- fcp d E De(R) So ?;(&)%Rf,%& ‘QM“CA)/C\:M | - III.A8
ms a

E- Ent &R

mc

The non-relativistic wave functions describing an electron

in the continuum is the following (See .Sommerfeld p.115 & ff.)

Qe = <1TT?\'P )V %‘EL } Pl *ﬁ}"“qrml) 'l-'%% %) - T

where % ‘(’ﬁ(,.,.,(r’ i’f‘) Y': Z-"-‘-P“,P-&

This wave function, which is real, is normallzed per unit energy

interval: this means that .

-, x o |
d.E dAR@Q ., (N n\) = o . I1X.50
" S Fer (V) ) = 1 o mms

_ ‘ 1 : .
where AE is any energy interval containing E .  The energy E

is related to the momentum p of IIT.49 through the relation

am

[c.l.pg‘}(wml)_a]'/li‘-' e b "ﬁ' .' oo .III.--5i,
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When r = R, one cannot set equal to one the factor

“‘ﬁﬁ £ (lviy, 25 a4bR -
2 T4 25 ey I1II.52

as readily as in the case of lip . (See Egqs. III.7 to II1.10)
beeause, in III.48, p becomes infinite at the upper 1imit of
integration. This factor is shortly considered in Appendix. C

where we conclude that setting it equal to unity does not

affect the value of III.48. Therefore, we may write} when r = R.

' s, o .
- m 2 . m/z _ _
L?E(R) [ YTHp ] -*tlr‘(m.f)[ e I1I.53
The wave functions (?h and(yzs for the electron in the

initial state are given by xqs. 1IIl1.1la and 1II.1llb respectively.

We consider first the case of ‘*Cu‘ and then that of l*Cas

a) Evaluation of luc

With the use of III.4%, III.53 and III.lla, III.48 becomes

' 00 ;EW}' T °'3 bl
b, =2 { S '".‘” A (TR e o ran

E- B, r&<R III.54

mc2

where Eq is given by Eq. I1I.13 with n = 1.

a a- © R o ..
E\ = mA )\ = mc (I - u’; ) X ' III.55
To evaluate III.5§, we first express the confluent hypergeometric
function in an integral form (3ee, for instance MacRobert (54)

p. 346).
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N [N s . e .
%(H&Y’SZB ‘lgplx) = ) g i '"YQ— rth III.56
», ® PG )P U=27)

Then we interchange the order of the integrations over r and t

in III.54; this is allowed because of the presence of the de-
creasing exponentlal factor~ ETPU\ in the 1ntegr4nd, Integrating

over r first, and then over t, one obtains

3 ' .
L‘:. - "f&/&ﬂv\ g dE )HL f’ P(H*Y)‘ ?( 'III_;57

where XIS .L EJ-P) [Z ?(2 wa;z Z) Z+?"’<2 I+LY)2 Lf')j

I1I. 58
%ﬁ is the hypergeometric function and
2. .
Zy = . III.59
ﬁﬂv*ifilhk*\
One arrives at Eqs. III.57, 58 and 59 by making use of the
integral representation of the hypergeometric function (See
MacRobert (54), p.237):
1 .
_ Nz ¢ -4y, -2
Baeiri2z) = — L St”(:-t) (1-zt) dc
Q+Ly) 1(1-4y) - -0
From III.21, it follows that
o2 s 2iz) = (- 'L)"_LT
I+ 4y & = :
SO Sk 1II.61

For computational purposes, it is convenient to introduce the

following dimensionless quantities:
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2= L
W

=T 0 PR T e ST e e
£= '[u(z»‘«%)?"]/?

With these notations, III.59 becohes'

ry = &% S o U TIL63
R b ¥ £ (gxm] : T

With the help of III. 61 one shows that III 58 ylelds

7'(15 = 3

s - S
2ip* [ [h—ll(c‘k—qg]l Sar [i- ,:%,P a)]_tf_%, ~ :\ "

| -a
Where ) ' :-" '.‘-_ : 'III.65a
~ ( [ La.y. L
a = Lnnpn + L(ar+e.) ITi.65b
-1 oann ' o :
b= 6p-6- % ° '7;1_ : N III.65¢
\ 2 Ve . a :
re= [V )] ve. 5.8y =Tam (g2, 177 654
and 0< 6, £/ S CIIT .'663

S | <
z_.\ e-— ~—~

nHA

'IIILeob‘

These inequalities are essent1a1 for avoiding difficulties
connected w1th the multi-valued character of the functlon III 6&.
Using the relation (=) r‘(l- z) = %w\ﬂ'l we‘.

obtain
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ST PG| = Tylesthmy v 1)

111.67
It follows from III.55, 62, 64 and 67 that
Leis = kc- Zax 5 Lisde 1I1.68a
where ‘I\s = MVYH)E g 1I1.68b

E-A ¥ Zam

The integrand :fk has been plotted as a function of g,
and the integral I11.68a evaluated numerically for the lokest
values of g(i.e. for q between O and q, where qo corresponds
to an energy E of about 1.5 mc? in the case of A37 and of about

2mc? in the case of u5131)

For the higher energies ((g >%o)
an approximate integrand (which is derived below) is used in

place orf ‘Ihs and the resulting integrallis performed analy-

tically. Let us write LJQB as the sum of two terms:
0)
Lcﬁ = QS*- LCW

I11.69

0 - ooy @)
where l“CIs is the part of lJC,S evaluated numerically and Lac”
the part of Lﬁ%s evaluated analytically. If £, 1is the energy

corresponding to q, , we have

Eo
)
L(‘c‘s = I ——Lg Tsde - III.70a

and L4.

II1I.70b

)
2
|

-
~
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We approximate I&s by expanding it in powers of '/%, and by |
taking the first two terms. The expansion of the binomials of
Eq. III.64 in powers of M@ is allowed when
/L}_:z, <\ ¥ > ¥ ; I11,71
) _
The upper limit t, of the numerical integration III.70a is
chosen such that the éorresponding q, satisfies III.71. We give
below, as an example, the first few terms of the expgnsion-for

3

one of the binomials in III.64:
N . - i ' —l L
LO-i)rig] P7F = (g™t 7%
_11.3./%,

+ (-1 (- i ) (g5) II1.72
. . : YA i |
+ (-1 % )2t 47"11)(1‘”") (,L‘%,)“a H
2 . .
when the expansions are carried out up to the powér (iqTS, it is
séen that ’
A
X, ~ 4 22— r0(n) %)
15 w3 ¥ II1.73

In the same approximation, one has, for the remaining factors

of the integrand ‘IIS , (Eq. III.€8D)

ﬂ7%- .
¥ T - III.7ha
i \ '
E ~ 7“*17'+
229 III.74b
dE o~ ZﬁkcLQr

III.74c
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- 71 ' —fAR
[E-O-2za)] = Ty + Eq )~ II1.74d

Therefore, from III.74, 73, 62, 68b and 70b:

3 L -
I,: = T ¥ (L + l:l?_‘ﬁ - III.75a
Y \Zg T @/ |
@ — a |
~ (& x -2
and = .7 A Az AR III.75b
L'C]s Fe 1517‘7\,&%{ (‘ % ZO‘\%’@) .
We have finally, for Lﬂs
Ly = Lo, + L S IILT6

with Lﬁ%S given by III.4) and qus given by III.69

b) Evaluation of LJCK,

The evaluation of LJ is carried out along very similar

C;S
lines. With the aid of III.11lb, 49, and 53, IIT.48 becomes

' A C_pn - |
T L R GG e
a

L =4

me

with &£, given by Eq. III.13 with n = 2:

a \ )
E. = mc ) = m"(l -~ _I?W)a) II1.78

#ith the help of III.56 and III.60, one integrates III.77 over

r first, and then over t; to obtain:
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= Jap m S ZEp2 LT/ Hig II1.79
S THOR a E-E, + AR
e |
where ?(36 = -,L ( ) [Z :R(l iy d ) z. ) . | IIIO8O '_
| (ARG )
| = (2 ] R
and . : o . - IIT.81 .
v S ailp 3 - T
Z, = | S i
*’i +4ip £ LKR
In the notation of III.62, we have
Zy = ks LIII.82

P e
.i+-~%(:§:#&

and, from III.Z21,

S ! o e ) ‘
}(’6“&#"‘[ ('-;-lfu%—oo.]"‘/‘fr[&—A(w)’*‘/t(' ' i“‘t""‘)(’i“‘b’“) ]

R -III.83_
r* .
where we introduced a notation similar to the-ong in III.65a
'l Vo {‘ ) C
a = f/\r\/\.+/\_ + —%_—(8_,,*6_-)
\
L= er-o! - L o Ny
2 nL
A\ \ . ] \ . . . .
a = o+ BmAgn_ o . III.84

A\
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/ W
Ne = k..l; + (cb.tm)&) *

5y = Tan Algra)

t

6*: and e_‘ have the same range of values as €, and 6.
(Eq. III.66)

Using the above notation and Eq. III1.67, we have

Jx V& (%
L =I’"‘—L§‘Ihde

| R II1.85a

-~ _.\ woo n o '
&wﬂx W t |)‘L£‘“m,er‘», E“({Mﬁ‘+«m§ﬂ :
= ‘ ni I117.85b

with L“ E-N+ zax

\
\ is defined in IIT.73.
‘AQAS was evaluated in the same manner as wa , i.e. as the sum

of two terms-

<) ;GU
Loy = Licay ¥ B . III.86a
with L% = Y. S I de , III.86b
T SV O d III.86¢
9 g Zax S Las o
Ea
) ‘ Y

L‘Cas is the part of [4clsevaluated numerically, and the

A C%
AJ

part evaluated analytically, I;S being an approximation for

Tss at high energies. €, is chosen such that the corres-

ponding q, (Eq. III.62) satisfies the relation:
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| L x4
! &Mm. _ 1
| 53 < II1.87

The approximate integrand 'I;S is derived by developing the

expression 111.85b in powers of 1/q. The first two terms of

the expansion are
s S (D e i)
Lig = TeF\ 3 Zogr III.88

It follows from 86c ani from the relation GLE}='ZatLK that

L:;Lf__ £ \]i( 3 "'a (, . ;.,L_;wx) | IT1.49

5T 24 s ©  Zago

We have finally, for LA;S

by = LADa, + L‘Csé : 1I1.90

with Lig given by Eqs. III.45 and III.47 and Uc,  given by
Eqs. III.86a, 86b and 89.
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o
3 Results and Conclusions

We have applied the formulae and methods of this Section

~
to the case of A3' (Z = 18). Among the few elements for which

reliable experimental data exist this is the one with the smallest
value of Z so that the non-relativistic approximation is not
unjustified. In addition to that, we have evaluated one point

131

of the 1ls - spectrum for the case of Cs (Z = 55) using our

formulae, with a view to comparing the result with Hess's result

for the same case.

a) The Case of A37

In the case of A37 (Z = 18), we have computed the ratio

Aui&b&% for four different points of the photon spectrum:

For Kck = 135 Kev corresponding to x = 2

ﬁck = 269 ¢ " " x o= 4
ﬁck = LO4 " ] " x =2 6
Hck = 673 " ’ " .X = 10

The limit of the spectrum is at fck = 816 Kev.
The results for this case are summarized in Tables I, II

and III and in Fig. 5.
In Table I, we list the various contributions to the
integral La‘s (Eq. II.30, (n = 1)), for the four values of
()] eV &) )
the photon energy listed above. L La ,.kd L

~
and L~° are given by the formulae III. 28, 29, 30, 31 and
s
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LO respectively. To get an idea about the relizbility of

]
Eq. IIT.40, L‘D. has also been calculated from the approximate
s
expression III.39. The values obtained (in italics) when

O3]

compared with the exact values for L show a deviation of

Dis ?
less than O.5 percent, The error in evaluating L:;ls is of

the same order of magnitude. The values for Ulls are obtained
by numerical integration of Eg. III.70a for four different values
of x. Since the integrand is too complicated to be studied analy-
tically, we give ih Fig. 1, 2, 3 and 4 the curyes representing

the integrand as a function of the integrétion variablg q fbr )
the four values of x. The curves‘jugt helped us to choose the
appropriate lengths of intervals when carrying out the numerical
integration. The upper limit of integration q, 1s different in

(3)

each case. L*c is evaluated analytically from Eq. III.75b.

1s
The main error in the expression for L“S comes from the numerical
W s

integration of Lu ; the error made in evaluating L and

@ _ :
LJC‘S are small compared to it. The total error on L,¢ ,

Cs Djs

however, is probably less than one unit in the ‘third significant -
figure.
In Table II we list the contributions to.the integral

Lﬂas , (Bgq. 1I.32 (n = 2}) for the same four values of the

W @ 3 w ~ :
> . ' . are
photon energy Ldoas ) LJDas ) L“Das’ L“Das) L‘Oas r
evaluated from Eq. III.45, 46, Lﬁ? , calculated from the

: 8}
-approximate Eq. III.,45e is also included. Ldbasis given by

Eq. III.86b which was also integrated numerically. However,
the curves for the integrand I:;s (Eq. III1.85b) have not

@
been included. L. is given by Eq. I11.89. The error, in

Cas
the values obtained for L,a‘S are of the same order of magni-

tude as in the case of L_.‘S .
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In Table III, we give the values for the probability ratio
Aukd}x&. as evaluated from Eq. II.30 and frbm the values of
Table I and Table II for .|y and Ly . The quantity 4

which appears in Table III is defined as

(%—) l»s M (M\ ' ‘

\ AT AT }AS'TMM

$a =
[( wI /.5 + (A—‘ﬁ%&\as ] glosber amd Thantin (549
?A is therefore a measure of the influence of the retardation
factor on the 15 + &S contributions to the probability ratio
‘“fkik/akq; . . : _

In Fig. 5, we have plotted the two quantlties {E{’ AJéRl and
W('w-ou\\ both in our case and in the case of Glaubir :

Jls+2s -

and Martin (54), as a function of the energy of the emitted .
photon. The curve E(%%R)in the case of Glauber and Martin is-
identical with that which ;Zuld be obtained from Morrison and
Schiff's formula.

We can say very little, at the present tiﬁe; about the
comparison of our theoretical results for ”qhdjydua in case

of A37

with the experimental results of Lindqvist and wu (55].
The procedure used by these authors to ébﬁpare experiments and
theory consists, first, in applying all kinds of experimental
corrections to the theoretical\gamma spectrum, and, next, in
normalizing the measured spectrum to the spectrum so obtained
{so that only relative intensibiés are being compared). The
corrections woull thus have to be applied to our theoretical
spectrum, which we cannot do solely on the basis of the data
published by Lindgvist and Wu (55). It is not impoésible that
thé,difference in the slope of the curves A(ls + 2s) and

B{(ls + 2s) in Fiz. 5 may be reduced considerably after the



corrections have been applied.

b) The Case of Csi>t

In the case of 65131 (Z .55) we have calculated | l""‘U{/ Mg

only for one value of the photon energy, namely for ch 205 Kevi;;

o R

(x = 1), and we restricted ourselves to the ls - electron contrl-i )

bution.

An application of the formulae of this Section and a numeri~~k”

vl

cal 1ntegration carr1ed out in the way 1nd1cated 1n bubsectlon

a) give, for Cs

Re
g ‘?3‘*3 v =y
"Therefore,, - LJlt = 1. ‘78 )EL' BN
The ratio
{ Mfc'.) ]TM'U\M

[(Mf')is] Mo’vwm& 5‘“‘65’ (‘”’)

is found to be equal to O. 79.

Sew

If only the integration over the 1ntermediate continuous

states 1is taken 1nto account, L‘D’ =0, and the ratio ?Coo

m R

uo.s = “rss 5 v(«?—- ) .

becomes only 0.03. This small value for ?Gu accounts for the gﬁf

larger part of the dlscrepancy between the results of Hess. (who
neglected the sum over the discrete states) and the results of

Morrison and Schiff.
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Table I '

1s Ack = 135 fick = 269

ek = LO4 Hck = 673
o (X = 2) (x - 14.) (X - 6) (X - 10)
) LS) PR
o 0.25000 0.02000 0.003333 0.0002959
o 0.03198 0.00266 0.000425 10.0000372
®  0.01225 0.00103 0.000168 0.0000147
ﬁﬁo 0.00401 0.00033 0.000053 0.0000047
&, 0.',,01,(007' 0.002328 0.0000539 = 0.00000%69
D .
L., = 0.00513 0.00042 0.000069 ~ 0.00000601
Lo  0.3034 0.0244 0.0040 0.00036
(S} -
. 0.5962 0.3677 0.2093 0.09953
B 0.0063 0.0005 0.0012 0.00029
L.,  0.6025 0.3682 0.2105 C.09982
L. o.906 0.393 - 0.215 - 0.100
Table 1 showing the various contribd;ions to Ve
. . oo [Zon
the integral L4‘§ (in unlﬁs of (k?c. ) .
for four values of the photon energy
fick (in Kev)
3) Mg
Lo= LY+ + L5+ U+
‘ ) I CN
L :.LjL t L

L = Lctbyp
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Table II
25 fick = 135 fick = 269 fck = 4O HMck = 673
(x = 2) (x = &) (x = 6) - (x = 10)
m
o 0.08385 0.007306 0.001206 0.0001079
(2] .
o 0.00594 0.000984 0.000156 0.0000134
®, 0.00451 0.000308 0.000047 0.0000040
™ 0.00147 0.000124 0.000020 0.0000017
“”3 0.001464 0.0001249 0.0000197 0.00000168
. .
L_0 0.00187 0.000160 0.000025 0.0000022
L_D 0.0977 " 0.0089 0.00146 0.00013
»
0.2084 0.1312 0.07327 0.03062
® 0.0019 0.0007 . 0.00039 0.00015
L~¢ 0.2103 0.1319 0.07366 0.03077
L. 0.308 0.141 0.0752° 0.0309
‘Table II showing the various contributions .to ,
‘ \Me .
the integral Ldag(in units of Eﬁ&!})
: o
for four values of the photon energy
Ack (in Kev)
o @) @
LD = L"D". .L‘D M Lo r L“D+ L.p
O @)
L‘C. = L“(. +- L'JQ

L e L_D‘f' L_C
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Table III1
Jick = 135 fick = 269 Hck = LOL fick = 673
(x = 2) (x = 4) (x = 6) (x = 10)
mr&k)
—B 0.£87 o . . .0l
( = s £87 0.565 0.384 0.0470
u@¢g)
(JuE_ 25 0.0?O 0.087 0.047 0.0047
On 0.814 0.617 0.415 0.243
Table III . showing the contributions to
vaiR/Qu?_ from the 1ls and 2s

electrons (in photons per desintegration
per unit Kev energy interval X (O(’-)_
for four values of the-photgn energy
K<k (in Kev). The table also shows

the ratio QA of the sum of these con-
tributions to the correqunding

result of Glauber and Martin (54).
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Appendix A

#e want to sketch the proof of the statement that

-! \,
-
2

fca % e (5RY g T(R) A “"%y&'«)ysm)sx. L QYms A

is negligible for small values of R.
Making use of the closure property,

E {’E( ) {’E(/\) = S(i‘q’)I
(where I is the um.t matrix), expanding 3 -iR-R into px_‘oduct.,s
of spherical harmonics and the Bessel functions, and finally .
integrating over angles, one obtains for A.l an expression pro-

portional to

), Ba-R) 2B e A.2
o e

(we have here &ssumed; for simplicity, the non-relativistic
form for the wave function of the K-electron). Hence A.2 and,
consequently, A.l becomes proportional to

RR
R* 2228 s A3

: A ' :
which is of the order [ for R'—‘7 o ' ,
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Appendix B

We sketch the proof of the identity:

-l _.'-7 - - . el :
Bl d-2T) st (17 -ztye = |- FE
B ST S o e ’R’ —_
where = AL = 2" x R_ and -R =0
: o |
Making use of the relations 6(? =B ,'(33 = - 35 iy {3:\7-3 ST,

the expression on the left-hand éidé of B.l can be written as

L (0T R+ 2R (~4AR2 + 2R) 4 5.2
+Lp(LER-2.F)(~LFR +T-R)
or oL '
L@@ DN v (oY) - RUEER)]]

' B.3

r3e § @D - @Y+ LE TR NESICE)

Now,
@2t = Ar=
R.g* = T =

» =) 4 2V 2 = ’ B - ’ La
J.ucr.zz>(1-z-)—(&'-l)("fﬂ)] | if&(f'%)*a(z"?>('f' k) =23

So that the second line of B.3 vanishes, and the first line gives

Just the expression on the right-hand side of B.1l,
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Appendix c

We want to make it plausible that the factor
- &pR :
o T B(r+dy; 2, Jif—&)
in Eq. II1.48 may be set equal to unity over the whole rahge

of integration, without too much error.

The general form of Eq. I1I11.54is (aw E%’ m.68) .

c.1

LC'S:%%,,ng&E‘(M&\%‘;H) ngk

2 E- Els f‘kLR

mC

where

£ = .Q‘LCNLR A (1r Lyi&-;; ?u'—tb,/AR')

is the factor in question, and }hs is givén by III.6L.

Since luR ~ )0—3 , one has, in fact, $~1 in the inte- .
gration region where the remaining factor of the integrand is
large, i.e. for 0<§%r<ls', as can be seen from the graphs in
Fig. 1 to 4. |

For %.7(5 , the integrand in C.1 can be replaced,

without appreciable error, by a simpler expression (see Eq. III.75a)

so that
<p’\r
SPURE U SR S AP N 3
C_ls ) 7"\‘7‘!

Consider now very large values of q. The behavious of f{ for

large q's can be obtained from the asymptotic expansion of the



76
confluent hypergeometric function (Jahnke and Emde, p.275);
we find caulR ' - :
P (aimR v h
fL > oM ?(/ S gV TV

and f —» O for §> e, because (‘/%,)‘ —* 1 (Jahnke and

~3:‘E
Emde, p. 10). But for large q's, the integrénd, eicluding f,
- is practically zero, so that putting {} x | (instead of f «K1)
is harmlesé. | ' |

For the intermediate values of q, f remains finite while the
remainder of the integrand is still very small; so that putting-

= 1 is of no pgreat consequence.
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