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O N T H E T H E O R Y O F R A D I A T I V E C A P T U R E 

O F ORBITAL ELECTRONS 

Abstract 

The continuous spectrum of gamma radiation which accompanies the cap­
ture of orbital electrons has been recently calculated independently by Glauber 
and Martin (1934) and: by Hess. (1955), Both calculations take into account 
the influence of the nuclear charge on the wave functions but otherwise involve 
different methods and approximations, the conclusions being also quite differ­
ent: the intensity of the gamma radiation is an order of magnitude lower accord­
ing to Hess than according to Glauber and Martin. The purpose of the calcula­
tions presented in this thesis has been to settle this disagreement and to explain 
its origin. To this effect, the high energy part of the gamma spectrum, which 
is almost entirely determined by the contributions of. the capture of the Is and 2s 
electrons, has been computed for the case of A " for which experimental data are 
available. In view of the low nuclear charge of A " (7.—18), the non-relativistic 
Coulomb wave functions could be used, and, apart from neglecting screening 
effects, the calculations are exact although partly numerical. In particular, the 
retardation effects which were neglected by Glauber and Martin have rigorously 
been taken into account. 

The conclusions are: first, approximations used by Hess were partly incon­
sistent, although the method was in principle correct; second, taking into account 
retardation effects results in a gamma spectrum whose intensity amounts to 0.8 
of the intensity obtained by Glauber and Martin at 135 Kev. and to 0.2 at 675 
Kev. (the gamma spectrum limit being 816 Kev.). 

The gamma spectrum of A " determined by Lindqvist and Wu (1955) 
seems to agree quite well with Glauber and Martin's result. However, Lindqvist 
and Wu measured only relative intensities and had to apply many instrumental 
corrections so that it is not yet clear whether the measured spectrum would not 
agree as well with the spectrum computed in this thesis. 
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O'F ORBITXL ELECTRONS 

Abstract 

The continuous spectrum of gamma radiation which accompanies the cap­
ture of orbital electrons has been recently calculated independently by Glauber 
and Martin (1954) ahd'by Hess (1955). Both calculations take into account 
the influence of the nuclear charge oh the wave functions but otherwise involve 
different methods and approximations, the conclusions being also quite differ­
ent: the intensity of the gamma radiation is an order of magnitude lower accord­
ing to Hess than according to Glauber and Martin. The purpose of the calcula­
tions presented in this thesis has been to settle this disagreement and to explain 
its origin. To this effect, the high energy part of the gamma spectrum, which 
is almost entirely determined by the contributions of the capture of the Is and 2s 
electrons, has been computed for the case "of A " for which experimental data are 
available. In view of the low nuclear^charge'of A " (Z—18), the non-relativistic 
Coulomb wave functions could be used, and, apart from neglecting screening 
effects, the calculations are exact although partly numerical. In particular, the 
retardation effects which were neglected by Glauber and Martin have rigorously 
been taken into account. 

The conclusions are: first, approximations used by Hess were partly incon­
sistent, although the method was in principle correct; second, taking into account 
retardation effects results in a gamma spectrum whose intensity amounts to 0.8 
of the intensity obtained by Glauber and Martin at 135 Kev. and to 0.2 at 675 
Kev. (the gamma spectrum limit being 816 Kev.). 

The gamma spectrum'of A " determined by Lindqvist arid Wu (1955) 
seems to agree quite well with Glauber and Martin's result. However, Lindqvist 
and Wu measured only relative intensities and had to apply many instrumental 
corrections so that it is not yet clear whether, the measured "spectrum would not 
agree as well with the spectrum computed in this thesis. 
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ABSTRACT 

The continuous spectrum of gamma radiation which accompanies 
the capture of orbital electrons has been recently calculated i n ­
dependently by Glauber and Martin (1954), and by Hess (1955). 
Both calculations take into account the influence of the nuclear 
charge on the wave functions but otherwise involve different 
methods and approximations,. the conclusions.being also quite 
different: the intensity of the gamma radiation is'an order of 
magnitude lower according to Hess than according to Glauber and 
Martin". The purpose of the calculations presented i n this 
thesis has been to settle this disagreement and to explain i t s 
origin. To this effect the high energy part of the gamma 
spectrum, which i s almost entirely determined by the contribu­
tions of the capture of the Is and 2s electrons, has been com-

37 < 
puted for the case of A for which experimental data are avail-

37 

able. In view of the low nuclear charge of A- (z = the 
non-relativistic Coulomb wave functions could be used, and, apart 
from neglecting screening effects, the calculations are exact 
although partly numerical. In particular, the retardation effects 
which were neglected by Glauber and Martin have rigorously been 
taken into account. 

The conclusions are: f i r s t , approximations used by Hess were 
partly inconsistent, although the method was in principle correct; 
second, taking into account retardation effects results in a gamma 
spectrum whose intensity amounts to 0.81 of the intensity obtained 
by Glauber and Martin at 135 Kev, and to 0.24 at 675 KeV (the 
gamma spectrum limit being 6*16 KeV). 



37 
The gamma spectrum of A determined by Lindqvist and'.Wu 

(1955) seems to agree quite well with Glauber and Martin's r e s u l t . 

However, Lindqvist and Wu measured only r e l a t i v e i n t e n s i t i e s and 

had to apply many instrumental corrections so that i t i s not yet 

clear whether the measured spectrum would not agree as well with 

the spectrum computed i n t h i s t h e s i s . 
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Introduction and Summary 
1 

This thesis i s concerned with the theory of the 
"radiative capture" of an orbital electron by the nucleus. We 
ca l l the process of capture "radiative" when i t i s accompanied 
by the emission of a gamma radiation. When no gamma emission 
takes place, the process i s called "radiationless". 

3 

The radiative capture, although a factor 10 less probable 
than the radiationless capture, has been observed for several 
elements, and the corresponding continuous gamma spectrum has 
been determined (See, for instance, Lindqvist and Wu (55), 
where also references to earlier papers are given). The most 
important radiative capture process i s that accompanying the 
radiationless capture of a K-electron. The theory for this 
case has been developed by several authors (Morrison and 
Schiff (40), Glauber and Martin (-54) and Hess (55)). In order 
to describe briefly what these authors have done, and to indi­
cate the contribution to the theory, presented in this thesis, 
we shall have f i r s t to sketch the common theoretical basis of 
a l l these calculations. 

The expression for the probability of the radiative capture 
i s given by a standard formula of the second order time-dependent 
perturbation theory. In the product of the matrix elements 
entering this formula, one factor arises from the electromagnetic 
interaction Hy a n ° - t n e o t ^ r from the Fermi interaction Hft 
The electromagnetic interaction induces a transition between an 

i n i t i a l state may correspond to an electron characterized by 
i n i t i a l state and an intermediate state. For. instance, the 



2 

the p r i n c i p a l and o r b i t a l quantum numbers n and respectively. 

The intermediate state then corresponds to an electron with the 

quantum numbers and JC" =0 (an s-electron), and to a photon. 

The Fermi interaction gives r i s e to the capture of the electron 

i n that intermediate state and to the creation of a neutrino. 

The assumption that JL*" - 0 (but n* arbitrary) i n the intermed­

iate states, or, i n other words, that the captured, electron i s 

an s-electron, defines the radiative process corresponding to 

the "allowed" radiationless capture of an s-electron from the 

K - s h e l l . We s h a l l c a l l t h i s process the "radiative K-capture", 

although, i n view of the remark above, t h i s phrase should hot 

be interpreted i n too l i t e r a l a sense. We denote the p r o b a b i l i t y 

of radiative K-capture, i . e . the p r o b a b i l i t y per second that a 

photon of energy #ck in the range d(/ick) i s emitted during the 

K-capture process by /uT̂ dLM. , and the p r o b a b i l i t y that a r a d i a ­

t i o n l e s s K-capture occurs per second by /ur c . It i s the ob­

served r a t i o ^^rV^j^r » a s a function of k, that i s compared 

with theory. In p r i n c i p l e , a l l o r b i t a l electrons contribute 

to the experimental value f o r Ajj^ J l r l . This means that AAr^<Lr\ 

i s a sum of the p r o b a b i l i t i e s obtained f o r a l l values of n and 

A. that correspond to the occupied o r b i t s . However, i t turns 

out that only the o r b i t s characterized by n = 1, ^ : 0; n » 2, 

X> • 0 and JL s 1; and n • 3, X = 1, contribute an appreciable 

amount to the r a t i o ^ K ^ ^ / M J ^ • 

As i s well known, there are f i v e d i f f e r e n t interactions 

H p possible i n the Fermi theory of beta decay, giving r i s e 

to allowed and forbidden spectra. In t h i s t h e s is, as well as i n 

the publications quoted above, only allowed t r a n s i t i o n s have been 



considered. 

The f i r s t t h e o r e t i c a l evaluation of AAT̂ dLK was made by 

Morrison and S c h i f f (40) who considered only the case of the 

K-shell electrons, i . e . the case i n which n s 1 and JL s 0. 

These authors made, among others, two important simplifying 

assumptions: f i r s t , they represented the f i n a l , intermediate and 

i n i t i a l states by plane waves, thereby neglecting the Coulomb 

int e r a c t i o n between the electron and the nucleus; second, they 

took into account only the vector i n t e r a c t i o n . They calculated . 

/UJ£ i n the same approximation and they f i n a l l y obtained the 

following simple formula: 

O f i ^ = £ K ( I - . - J f — 

where ft ~ J^rtr\/c}~ (dimenslonless) 

and aC i s the fin e structure constant. ... 

This formula more or les s agrees with experimental data f o r 

photons of large energy ( i . e . 1 - ' K ^ ^ ^ I ) . However, as was 

f i r s t shown by Saraf's experiments (54), the Morrison-Schiff 

formula f a i l s completely to explain the large r a t i o A*J\(^^/MJ" 

that one obtains experimentally for low energies of the emitted 

photon. 

In order to explain t h i s breakdown of the theory at low 

photon energies, one may extend Morrison and S c h i f f f s c a l c u l a t i o n s 

i n several d i r e c t i o n s , by taking into account: 

1 s t t n e Coulomb inte r a c t i o n between the electron and the 

nucleus, 

2nd an a r b i t r a r y mixture of the f i v e beta i n t e r a c t i o n s , 



3rd the contribution to radiative capture of electrons with 

higher values of n and JL . 

Such an extension of the theory has been carried out by 

Glauber and Martin (54) and by Hess (55) independently, the l a t t e r 

author r e s t r i c t i n g himself, however, to taking into account the 

contribution of the Is electrons only. The cal c u l a t i o n s are 

approximate in both cases, but the method applied by Glauber and 

Martin i s quite d i f f e r e n t from that applied by. Hess. The re s u l t s 

do not agree: the i n t e n s i t y of gamma radiation i s an order of 

magnitude smaller according to Hess than i t i s according to 

Glauber and Martin. 

Glauber and Martin's (54) c a l c u l a t i o n i s n o n - r e l a t i v i s t i c 

as f a r as wave functions of the electrons are concerned; i n 

other words, they used the Schroedinger wave functions of an 

electron i n the Coulomb f i e l d of the nucleus. In that approxi­

mation,, they could f i n d a r e l a t i v e l y simple closed expression 

for the sum over the intermediate energy states, using, i n an 

ingenious way, the properties of the Green's function. However, 

in order to evaluate the r e s u l t i n g expression f o r the pr o b a b i l i t y 

/or^ dlK » they s i m p l i f i e d the expression f o r the.matrix element 

of the electromagnetic i n t e r a c t i o n by neglecting the retardation 

f a c t o r . On t h i s simplifying assumption they came to the rather 

s t a r t l i n g conclusion that the (n s 1, JL s 0) - contribution to 

the photon spectrum i s exactly the same as that found by Morrison 

and S c h i f f (40), who, as w i l l be r e c a l l e d , completely neglected 

the Coulomb i n t e r a c t i o n . This conclusion seems, on the other 

hand, to be i n agreement with the high energy part of the measured 

spectrum, since t h i s part, as i t was mentioned before, i s well 
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represented by the Morrison-Schiff formula. Glauber and Martin . . 

also showed (using, the same simplifying assumption) that the 

observed sudden r i s e i n the gamma spectrum at low energies i s 

due to the contribution of p-electrons ( i . e . X = 1, n • 2, 3 ...) 

and that t h i s contribution becomes n e g l i g i b l e at high photon 

energies. 

Hess Ts calculations, on the other hand, sta r t from general . 

formulae i n which the Dirae r e l a t i v i s t i c wave functions are used. 

However, the actual computation of the expression f o r /\xr^<i-K 

so obtained, turned out to be impracticable even f o r the simplest 

case of the Is electron. Consequently, number of simplifying 

assumptions were made: the sum over the intermediate discrete 

states was assumed to be small compared with the sum over the 

continuous states, then a " s e m i - r e l a t i v i s t i c " approximation f o r 

the . r a d i a l part of the intermediate state wave function was i n t r o ­

duced, and the subsequent ca l c u l a t i o n was carried out numerically 
131 

f o r the case of Cs f o r which, at that time, the best experi­

mental data were available (Saraf ( 5 4 ) ) . 

In view of the discrepancy between Hess's r e s u l t s and those 

of Glauber and Martin, and of the neglecting of the retardation ' 

e f f e c t s by the l a t t e r authors, i t was f e l t that an evaluation of 

AAr^d-k » i n which the n o n - r e l a t i v i s t i c Coulomb wave functions are 

used, but which i s otherwise rigourous , would greatly c l a r i f y 

the s i t u a t i o n . Such, an evaluation of the contribution of JL = 0 

and n = 1 and 2 (the contribution i n case n '̂3 i s - n e g l i g i b l e ) , i . e . 

the contribution that determines completely the photon energy 

spectrum not very f a r from i t s l i m i t , i s presented i n t h i s thesis 
1) I t i s true that the f i n a l part of these c a l c u l a t i o n s has been 
done numerically. However, no a r b i t r a r y approximation has been 
introduced i n those numerical c a l c u l a t i o n s . On the other hand, the 
screening e f f e c t s are e n t i r e l y disregarded, which f o r a l i g h t atom 
l i k e 3̂7 i s probably not too serious. 



37 131 1) 
for the case of A and Cs 

13 55 

Our calculations settle the disagreement between Glauber 
and M a r t i n i results and those of Hess essentially in favour of 
the former authors. 

The discrepancy i s traced down to a rather well hidden i n ­
consistency in the argument which leads from the general r e l a t i ­
v i s t i c formulae to Hess's "semi-relativistic" expressions. This 
question i s discussed in detail in Chapter II, Section Cf of this 
thesis, as i t i s of some general interest. 

Although our results essentially confirm those of Glauber ..' 
and Martin, the fact that we did not neglect the-retardation < 
effects has some important quantitative consequences. It turns 
out that the taking into account of these effects leads to a 
decrease of the intensity of gamma radiation accompanying the 

37 
K-capture in A 9 the decrease increasing with the increasing 
photon energy, as can be seen in Fig. 5, in Chapter III (the 
corresponding numerical data are summarized in Table III, in 
Chapter III). 

2) 
In an unpublished paper (56) , Glauber and Martin discuss, 

among other things, some r e l a t i v i s t i c corrections to their earlier 
results, and also announce that they have applied 11 a more f u l l y 
r e l a t i v i s t i c treatment of the process which takes account of 
screening'*. A comparison of the results of this treatment with 

37 
Lindqvist and Wu's experimental data for A i s ^ i v e n in a recent 
1) Only one value of the energy spectrum for Cs i s evaluated, 
to make a comparison with Hess's result possible. On the other 
hand, the case of ̂ 37, for which we have the most recent and most 
reliable experimental data, (Lindqvist and Wu (55)) i s considered 
i n detail. 
2) A copy of the paper has kindly been made available by Professor 
Glauber to Professor Opechowski. 



n o t e by Wu and a l . ( - 5 6 ) . The h i g h energy p a r t o f the spectrum 

does not seem to be a f f e c t e d by t h e s e r e f i n e m e n t s i n t h e c a l c u ­

l a t i o n ; however, i t i s not c l e a r whether th e r e t a r d a t i o n e f f e c t s 

have been t a k e n i n t o a c c o u n t . 

The problem o f a d e t a i l e d comparison o f o u r t h e o r e t i c a l 

r e s u l t s w i t h the e x p e r i m e n t a l d a t a o f L i n d q v i s t and wu ( 5 5 ) i s 

b r i e f l y d i s c u s s e d i n Chapter I I I , S e c t i o n B. 



Chapter I 

General Formalism of the Theory of Electron Capture. 

In t h i s Chapter, we s h a l l be concerned with the general 

theory underlying the calculations of Chapter I I I . In Chapter I I , 

we consider, in more d e t a i l s , the wave functions to be used, and 

we discuss the passage from the general theory to the approxima­

ti o n of Hess (55). In Chapter I I I we present our own calculations 

and conclusions, and compare them with those of Glauber and 

Martin (54). 

The notation that we use i n sketching the general theory of 

electron capture i s e s s e n t i a l l y that used by De Groot and Tolhoek 

(50). In Section A of th i s Chapter, we set up the general expres­

sion f o r the pr o b a b i l i t y Mtf^ of radiationless K-capture. A more, 

complete treatment of the subject can be found i n the review 

a r t i c l e s of Rose (55), Konopinski (55), and Konopinski and Langer 

(53). In Section B, we consider the case of the rad i a t i v e K-capture 

pr o b a b i l i t y / U^olK . F i n a l l y , i n Section C, we derive an al t e r n a ­

t i v e expression f o r the electromagnetic int e r a c t i o n matrix element. 

This expression i s equivalent to the standard one, but i s more 

convenient when one c a r r i e s out the passage to the n o n - r e l a t i v i s t i c 

approximation. 

A - Radiationless K-capture 

The p r o b a b i l i t y per second of a r a d i a t i o n l e s s K-capture 

depends on a matrix element describing a t r a n s i t i o n between an 

i n i t i a l and a f i n a l s tate. The i n i t i a l state (represented by the 



symbol 0) c o n s i s t s of a nucleus of charge Z i n an energy s t a t e 
VV^ o The f i n a l state (represented by the symbol. F) c o n s i s t s 
of a nucleus of charge Z - l i n an energy s t a t e \V^_j, of an emitted 
neutrino of energy ELy> and of a hole i n the K- s h e l l . Therefore, 
i f E j s i s the energy of the e l e c t r o n i n the K--shell, 

W-z. t- E . , s = W x _ , -+- E v 1.1 

expresses the law of the conservation o f energy. W ^ j-V/ 
i s the energy a v a i l a b l e to the t r a n s i t i o n , , 

On assuming the standard Fermi theory of beta processes, the 
matrix element which determines the p r o b a b i l i t y o f e l e c t r o n cap­
ture can be w r i t t e n i n the f o l l o w i n g form: 

( F | H p | o ) = l j ( ^ t . s U C f g ^ T O A V 

where Hp i s . t h e i n t e r a c t i o n Hamiltonian 
i s the wave f u n c t i o n f o r the emitted 
neutrino 

^ s i s the wave f u n c t i o n f o r the e l e c t r o n 
. i n the K - s h e l l 

"Vjr^ and T|7^ are the i n i t i a l and f i n a l 
n u c lear s t a t e s r e s p e c t i v e l y , 

t i s the symbol f o r the a d j o i n t , i . e . the 
complex conjugate and transpose, of a 
matrix 

i \ and -O,^ are the i n t e r a c t i o n operators 
o p e r a t i n g r e s p e c t i v e l y on the l e p t o n and 
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the nucleon wave functions 

} means that, the function i n the brackets 

i s evaluated at the po s i t i o n of the n^*1 

nucleon 

^dL 1^ means that the. integration i s carr i e d 

over the volume containing the n nucleon, 

i . e . the whole nuclear volume 
A 
<^ i s a summation over a l l the nucleons. 

By r e s t r i c t i n g the interaction matrix elements to be r e l a -

t i v i s t i c a l l y invariant, one can show that there are only f i v e 

possible choices f o r S\ , and t h i s , on very general assumptions. 

XL. , i n general, consists of two components, one of which i s 

"large" or n o n - r e l a t i v i s t i c and the other i s "small" or r e l a t i v i s ­

t i c (of order v/c where v i s the nucleon v e l o c i t y ) . The "large" 

and "small" components give r i s e to d i f f e r e n t selection r u l e s . 

In t h i s thesis, we only consider allowed beta t r a n s i t i o n s . 

This means, as i s well known, 1 s t , that we neglect the "small" 
1) 

components of the f i v e Fermi interactions, and 2nd, that we 

assume that the emitted neutrino carries away zero o r b i t a l angular 

momentum. 

The large components of the f i v e i n t e r a c t i o n operators are 

the following: 

The Scalar i n t e r a c t i o n ^ I.3a 

The Vector int e r a c t i o n 1 I.3b 

The Tensor i n t e r a c t i o n per 1.3c 

The Ax i a l Vector i n t e r a c t i o n <? I.3d 

1) I f one neglects the small components, the r e s u l t i n g expression 
i s of course no more r e l a t i v i s t i c a l l y . i n v a r i a n t . 
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I . 3 e The Pseudoscalar i n t e r a c t i o n ^fifs 

" i , ̂  i CT and y y are four by four matrices defined as follows: 

1 » 1.4a 

where A , ^ and 

1.4b 

are unit vectors and 

are matrices defined as 
follows: 

/ © o o | \ 

o o I o 
o 1 o o 

y 1 o o oj 

o o © \ 
o o JL o 

JL 0 o o 

/ O O j 0 

o o o - l 

/ 
I o o o 

o -1 o o, 

I . 4 d 

The f i v e i n t e r a c t i o n operators thus defined are Hermitian. 

The pseudoscalar i n t e r a c t i o n -<!.(&̂5 i s r e l a t i v i s t i c of order v/c; 

there i s no "large" component i n t h i s case. 

Since the operator fl. of the general expression 1.2 may 

contain an a r b i t r a r y l i n e a r combination of these f i v e i n t e r a c t i o n s , 

we introduce f i v e corresponding constants 

1.5 

The subscripts r e f e r to the scalar, vector, tensor, a x i a l vector 



and pseudoscalar interactions respectively. 

However, the f i v e interactions 1.3 a c t u a l l y contain nine 
.A. 

d i f f e r e n t matrices /\ , and i t i s convenient to introduce the 

nine c o e f f i c i e n t s C„ defined as follows: 
A . 

r B l 2 3 V -5 6 7 .8 9 

p 1 fo; h i P<r3 a; 03 i$y5 

C s C v C T c T c c A C A C P 

With the notation 1.6, the i n t e r a c t i o n matrix element 1.3 takes 

the form: 

(F) H p I o) = GjL c A £ ( ( ^ V T f , s L A ^ A T * i . 7 

Here we have supposed that the in t e r a c t i o n constants are 

normalized according to 

C c - r C + C + C + C „ = i 
S V T rS P ' 

and we have denoted the i n t e n s i t y f a c t o r (the "Fermi constant") 

by G. The C'^.'s can always be chosen r e a l . (See B l a t t and 

Weisskopf (52)). 

The assumption that the neutrino c a r r i e s no o r b i t a l angular 

momentum means that the neutrino wave function CO i n the express­

ion 1.7 i s characterised by a t o t a l angular momentum quantum 

number j a \ . One can show that the expression 1.7 i s much 

smaller when <J^ corresponds to values of j higher than | 

("Forbidden" t r a n s i t i o n s ) . 
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F i n a l l y , we make the u s u a l assumption t h a t the l e p t o n p a r t 

(Cj> A f̂jsj/Yt o f t h e F e r m i i n t e r a c t i o n matrix element 1.7 i s a 

slow l y v a r y i n g f u n c t i o n i n s i d e the nu c l e u s . Hence, t h i s l e p t o n 

matrix element can be w r i t t e n o u t s i d e the i n t e g r a l s i g n and, a l s o , 

o u t s i d e the s i g n o f summation over a l l the nucleons i n the ex­

p r e s s i o n 1.7. The l e p t o n matrix element i s then u s u a l l y e v a l u a t e d 

a t a d i s t a n c e R from the o r i g i n , R being the n u c l e a r radius.. One 

o b t a i n s 

( F | H p | 0 ) = &i cWAV ) R ( lA*) 

where 

i s a n u c l e a r matrix element t h a t i s assumed d i f f e r e n t from zero 

only when a proton changes i n t o a neutron. E x p r e s s i o n 1.8 i s 

t h e r e f o r e the matrix element f o r an allowed r a d i a t i o n l e s s K-

capture. The p r o b a b i l i t y per second o f such an event i s then 

given by the f o l l o w i n g formula: 

r svSctnvso|(F|Hp|o) 1.9 

where S v means t h a t we sum over the sp i n s o f the emitt e d 

n e u t r i n o , 

^JXL, t h a t we i n t e g r a t e over the angles o f emi s s i o n 

of the n e u t r i n o , 

and S 0 > t n a t w e s u m over the s p i n s o f the i n i t i a l K-

e l e c t r o n . 
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The lepton wave functions that we use i n t h i s thesis are normal­

ised per unit energy i n t e r v a l ; hence, the neutrino wave function 

i m p l i c i t e l y contains the density of f i n a l states that otherwise 

would appear as a factor i n the expression 1.9. 

• In t h i s thesis, we treat the nucleons and t h e i r wave functions 

as n o n - r e l a t i v i s t i c . I t follows that f o r the Scalar and Tensor 

interactions I.3a and I.3b i n the nuclear matrix elements I.8b, 

one can write • 

|P = J l and 'a J ? 1.10 

One can thus replace >̂ by the unit matrix, since, i n our 

formalism, the +1 components of ^ w i l l connect the "large" non-

r e l a t i v i s t i c components of the nucleon wave functions whereas 

the -1 components of ̂  w i l l connect the "small" components, 

which we are neglecting. 

B - Radiative K - capture 

In the case i n which the electron capture i s accompanied 

by the emission of a gamma photon, one has to consider a l l . t h e 

intermediate states that the system may occupy, i n order to 

evaluate the p r o b a b i l i t y AAĴ OLK . In accordance with the hole 

theory, two types of processes are possible i n the t r a n s i t i o n 

from the i n i t i a l to the f i n a l state. The i n i t i a l state of the 
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system consists of the nucleus Nj^ i n the energy state Wz. ; 

a l l the negative energy states are occupied. The f i n a l state 

consists of a nucleus Nz_| i n the energy state W^-j , a hole 

i n place of the electron characterized by the quantum numbers n 

and JL , a photon of energy tfck, and a neutrino of energy E. v > 

a l l the negative energy states are again occupied. The pro-cesses 

that may take place are of the two following types: 

I. - The atomic electron (characterized by n and JL ) makes 

a t r a n s i t i o n to eithe r 

a) an unoccupied discrete state or 

b) an unoccupied positive continuum state with the 

emission of a photon. The electron i s then captured 

by the- nucleus with the emission of a. neutrino. 

I I . - An electron i n either 

a) an occupied discrete state or 

b) an occupied negative continuum state is. captured • 

by the nucleus with the emission of a neutrino/.. Another 

electron jumps into the remaining hole with the 

emission of a photon 

The conservation of energy (between the i n i t i a l and the f i n a l , 

states) i s expressed by the r e l a t i o n 

\A/ Z 1- E^j^ = W^_f -r- £ v *r *<,k . 1 . 1 1 

where E. j_ i s the energy of the electron i n the s h e l l characterized 

by n. Therefore, W x t- - W ^ , - E y + ^ k 

i s the energy available to the t r a n s i t i o n . 

The matrix element entering the expression f o r the probability, 

AA/t d_K should involve a sum over a l l the intermediate states 



16 
of type I plus a sum over the intermediate s t a t e s of type I I . 
However, i t can be shown (see, f o r example, a s i m i l a r proof i n 
H e i t l e r (50), p. 147) that the two sums can be evaluated together 
as one sum taken over a l l the intermediate s t a t e s , p o s i t i v e and 
negative, occupied and not occupied. From the well-known formula 
o f time-dependent p e r t u r b a t i o n theory, the matrix element i s of 
the form 

^ C F | r y U ) U j H x L g l 
£ E x - E o 1.12 

where F, I and 0 are symbols f o r the f i n a l , intermediate and 
i n i t i a l s t a t e s r e s p e c t i v e l y . ( I | Hy ] 0) i s the electromagnetic 
i n t e r a c t i o n matrix element and (F ( J ~ | ^ j l ) i s the same beta i n t e r ­
a c t i o n matrix element as the one used i n the r a d i a t i o n l e s s case 
E-<̂ . I . \0 T except that the l s - e l e c t r o n wave f u n c t i o n i s replaced 
by the intermediate s t a t e e l e c t r o n wave f u n c t i o n Vj/ ̂  (which i s 
al s o an s - f u n c t i o n because we suppose the t r a n s i t i o n to be allowed) 
E l j and E- 0 are the energy values corresponding to the i n t e r ­
mediate and the i n i t i a l s t a t e s . In terras o f the. q u a n t i t i e s de­
f i n e d p r e v i o u s l y , and of E, the energy of the e l e c t r o n i n the 
intermediate s t a t e , we have 

E l x - E 0 = E ~ E„JL 1- Ack i . i 3 

The expression f o r w kdk, s i m i l a r to th a t f o r wc, Eq. I.10, 
i s as f o l l o w s : 

**** f ••5& s rf A r V S 'K , ->. 1.14 

where Sy- i n d i c a t e s summation over the two d i r e c t i o n s 
of p o l a r i z a t i o n of the photon 
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S v and S Q i n d i c a t e s summation over the 

spins o f the neutrino and those of the 
i n i t i a l e l e c t r o n r e s p e c t i v e l y 

$o\fy and . ^ d L f X v mean, t h a t we i n t e g r a t e over 
the angles of emission of the photon and 
of the neutrino r e s p e c t i v e l y 
i s the photon c o n t r i b u t i o n to t h e dens i t y 
of f i n a l s t a t e s . 

The wave fun c t i o n s are supposed to be normalized per. u n i t energy 
i n t e r v a l . The matrix elements i n 1.14 are given by: 

(F I H^li) = GlLc^A^iM) 1.15 

(the symbols have the same meaning as i n Sec t i o n A) and by (See 
H e i t l e r (50), p.95) 

(n.Hr|o) = e Jr̂ -?K ' I > 1 6 

where ^ = e. ( JIT**. \ 

— JL , the r e t a r d a t i o n f a c t o r Q 
—^ 

ji^ i s the p o l a r i z a t i o n v e c t o r of the photon 
whose wave v e c t o r i s K } |rt] — K 

oT i s the Dirac matrix defined i n 1.4 
JL i s the charge of the e l e c t r o n 
YB and are the wave' f u n c t i o n s f o r the 

e l e c t r o n i n the intermediate and the 
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i n i t i a l s t a t e s r e s p e c t i v e l y , 

v"^" means the Hermitian conjugate of ^ 
The i n t e g r a t i o n i s over a l l space. 

In the f o l l o w i n g S e c t i o n , we d e r i v e another expression f o r 
• • • » 

the electromagnetic i n t e r a c t i o n matrix element 1.16, the u s e f u l ­
ness of which w i l l be apparent i n the next Chapter. 

C - The M a t r i x Element of Electromagnetic I n t e r a c t i o n 

In t h i s S e c t i o n , we consider the general case of an e l e c t r o ­
magnetic t r a n s i t i o n between a s t a t e of energy E described by the 
e l e c t r o n wave f u n c t i o n vL»̂  and a s t a t e of energy Ê " described 
by ^E 1 • and are Dirac e i g e n f u n c t i o n s f o r an 
e l e c t r o n i n the presence of an electromagnetic f i e l d c h a r a c t e r i z e d 
by a v e c t o r p o t e n t i a l f\ and a s c a l a r p o t e n t i a l Cij> . 

The matrix element of the electromagnetic i n t e r a c t i o n i n t r o ­
duced i n Section B, Eq. 1.16 i s then a s p e c i a l case of the f o l l o w ­
i n g matrix element: 

M = C E | « r / e * ) = C •Jf/flf-^hQvfE'*3? 1.17 

We are now going to put t h i s matrix element i n t o another 
form by a p p l y i n g a t r a n s f o r m a t i o n introduced by Gordon (28) to 
decompose the Dirac p r o b a b i l i t y current i n t o an " o r b i t a l " part 
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and a "spin" part. 

To t h i s purpose i t w i l l be convenient to use a covariant 

tensor notation (in t h i s , we more or less follow Pauli (33) and 

Somraerfeld in t h e i r presentation of Gordon's method). 

We f i r s t introduce the contravariant four-vector 

0 , 1 , 2 , 3 i . i d 

of which the'components are chosen to be 

-1. a . . .2. 

y - 0 , y '•= P * i , y =• £ < * a , y J = (3<*3 1.19 

^ } OC.̂ ^ 0 ^ a " d 0C.3 a r e defined i n Eq. 1.4. The components 

y ^ y ^ a n d y 3 are thus anti-Hermitian: - y" K , K~ i , 2 , 3 . 

The y/*" ' s thus chosen obey the following commutation r u l e : 1.20 

where 0/ i s the well-known contravariant metric tensor: 

1.21 

and where I i s the unit matrix. The covariant i s defined 

such that 

where i s the Kronecker tensor. 

Therefore, 

1.22 

/1 o o o 
0-1 0 0 
Q O -( O 

\ 0 o .0 -|> 

1.23 
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The p o s i t i o n f o u r - v e c t o r i s defined as 

OC^ - 1.24 

such that the energy - momentum f o u r - v e c t o r 

i s r e l a t e d to the operator 

It a. - ^ V « . = 

Therefore, from 1.23 

1.26 

by the r u l e 
3 V 

^ = Z j r f> 1.27 

1.28 

The electromagnetic f i e l d can a l s o be expressed as a 
f o u r - v e c t o r 

A^= ( q > X ) J - 2 ' 
The covariant f o u r - v e c t o r A^c i s given by 

In the n o t a t i o n introduced above, the equation s a t i s f i e d -
by and vp£, i s the f o l l o w i n g 

I n t r o d u c i n g the bar f u n c t i o n = T » w e s e e t h a t yV£ 

and ^ j , ! s a t i s f y the a d j o i n t equation 

%0{h.^t V ) T Y -±f*f = 0 ' i.3ib 
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Eqs. 1.31 a) and b) are equivalent to the equations used by Pauli 
(33), p.232. 

By solving Eqs. 1.31a and 1.31b for a n c i y E 

respectively, 
one obtains 

1.32a 

1.32b 

If we write for simplicity = JL and introduce the 
component JLQ ~ 0 , the matrix element M, Eq. 1.17, can be 
written in the form 

We now replace Vj^t and ^ i n I«33 each in turn by the 
expression I.32a and I.32b respectively, which yields: 

M - " ztifc^T^V&V)*-* 1.3*. 
and 

Writing again = ^ " " v f ^ » adding the two expressions 1.34 
and dividing the result by 2, we obtain for M the following ex­
pression: 
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where we have separated the f i e l d - dependent terms from the 

others. 

Using the fa c t that "f^Y* t Y^= 2 ^ w e separate the 

terms i n which y »yU. from those in which V ^ y u . to obtain 

1.36 

We now use the r e l a t i o n s JHe - O f — a n d Aŷ . = ""A 

for f<+ O . (See Egs. 1.21 and 1.30). Also we note that when 

V f ^ - , ^ y ^ / v * - ^ c A / V : , r r ^ v , where CT^ V i s the 

Dirac spin operator. We also separate the ^ s Q term from the 

terms i n which and v> are d i f f e r e n t from zero i n the l a s t 

l i n e of 1.36. In t h i s way, 1.36 becomes the sum of four terms: 

where 

1.37 

1.37a 

M J L - $ X Q. Y E Y E > I.37b 
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3 3 

Je,m--i 1.37c 

We now make the assumption that one of the energy l e v e l s 

E, E"1" ( l e t us say, E ) i s a discrete l e v e l . Then the function 

vpe* vanishes at i n f i n i t y and the f i r s t term of M , Eq. 1.37a. 

can be integrated by parts to y i e l d : 

~ - ( Ve. Q * V
 Y E ! 

since w = _̂ . The l a s t term of I .3S i s zero since the 

vectors JL and are perpendicular to each other. Therefore, 

becomes 

M, * eA (rE 3 v
 «** " 1.39 

The integrand of Eq. I.37c can be expressed as a c u r l : 

writing B * ^ for the quantity ^ V ^ g * , ( fc"** ̂  - B*^, M3 

becomes 

1.40 

where P = Y E °" Ye' » a n d °" n a s t h e components cr, - fl" , 

(Ti. = c r 3 1 , c r 3 = c r , a - . 1.41 

Rearranging and integrating 1.40 by parts, one obtains 

M a = 1 = ^ ( ^ x B ) • 1.42 
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since and consequently B become zero on the i n f i n i t e 

bounding surface. Since *?C^ = - A R Q 1.42 becomes 

1.43 

In 1.43 we have denoted the vector by AZ . 

The expression i E<1« I.37d, can be written as follows 

since' the time-dependence of y = and M ' I i s ^iven by the factors 

X and A * respectively. 

From Eqs. 1.37, 1.39, 1*43 and 1.44, the expression f o r M 

equivalent to Eq. 1.17 i s the following: 

-r 
1.45 

-t —* K 
where >u. = -2-̂  X 

For the case of an electron i n Coulomb f i e l d (A" ^ ), 

1.45 becomes 
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I f we compare the e x p r e s s i o n f o r the e l e c t r o m a g n e t i c 

i n t e r a c t i o n matrix element of S e c t i o n B, Eq. 1 . 1 6 w i t h the 

e x p r e s s i o n j u s t g i v e n , we can conclude t h a t the o p e r a t o r Z.^ 

i n the matrix element may be r e p l a c e d by the o p e r a t o r 

1 . 4 7 

i n t h i s sense, these two o p e r a t o r s are e q u i v a l e n t . 

In our general e x p r e s s i o n o f S e c t i o n B, Eq. 1 . 4 2 , we thus 

r e p l a c e the e l e c t r o m a g n e t i c i n t e r a c t i o n matrix element o f Eq. 1 . 1 6 

by the e x p r e s s i o n 1 . 4 6 w i t h \^^\ r e p l a c e d by and r e p l a c e d 
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Chapter II 

The Expression f o r the Pr o b a b i l i t y of Electron Capture 

in Terms of Approximate Wave Functions 

In Section A of this Chapter, we introduce the wave functions 

used i n our calculations and we give the general r e s u l t i n g ex­

pression f o r f*rk^//u*^ t when these wave functions are s u b s t i ­

tuted i n the expressions 1.9 f o r fuJ^ and 1.14 f o r AAJ^dLK • In 

Section B, t h i s general expression i s s i m p l i f i e d by introducing 

the n o n - r e l a t i v i s t i c approximation f o r the electron wave functions), 

and put into the form which w i l l serve as a s t a r t i n g point i n 

our calculations of Chapter I I I . In Section C, we discuss the 

passage from the general expression of Section A to that used 

by Hess. 
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A - Wave Functions and the General E x p r e s s i o n 

f o r A x r ^ d K / ^ 

We s t a r t by c o n s i d e r i n g the s p h e r i c a l wave s o l u t i o n t o the 

D i r a c equation f o r a p a r t i c l e i n a Coulomb f i e l d . These wave 

f u n c t i o n s are giv e n , f o r i n s t a n c e , i n Rose (37) o r i n Hess (55). 

They are normalized per u n i t energy i n t e r v a l and are c h a r a c t e r ­

i z e d by the f o l l o w i n g quantum numbers: j , the t o t a l a n g u l a r 

momentum quantum number, which takes h a l f - i n t e g r a l v a l u e s ; jx , 

which takes a l l h a l f - i n t e g r a l v a l u e s from - j t o +j; and K, which 

takes the va l u e s i ( j +• J ) . Since i n t h i s t h e s i s we o n l y need 

the wave f u n c t i o n s f o r which j = * (allowed case: no o r b i t a l 

a n g u l a r momentum i s c a r r i e d away by the p a r t i c l e s ) , we s h a l l 

not w r i t e the wave f u n c t i o n s i n t h e i r g e n e r a l form. For j : J, 

the wave f u n c t i o n s a r e : 

'« A. 
o 

v3 li "AT 

/ 

03^ 

IIo 

The f u n c t i o n s F G and G~ are the r a d i a l s o l u t i o n s 

to the Dir a c wave equation: we s h a l l not w r i t e them e x p l i c i t l y 

i n t h i s t h e s i s . The \i 's are the s p h e r i c a l harmonics d e f i n e d 

f o r i n s t a n c e , i n B l a t t and Weisskopf (52), p. 7#3. 

Since we c o n s i d e r o n l y allowed t r a n s i t i o n s , we s e t equal t o 

zero the components o f the wave f u n c t i o n I I.1 which c o n t a i n a 

s p h e r i c a l harmonics d i f f e r e n t from J 0 . We have t h e r e f o r e , 

i n t h a t approximation, 
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r - i 
K---1 

1 o \ / • .\ / o \ 
0 0 

0 vf 
' ° A. 

o 

w 1 0' j V° * / 

II. 2 

If one sets Z, the nuclear charge, and m, the electron mass, 
equal to zero in II.2, one obtains the neutrino wave functions 
(S) which w i l l be used in the expressions 1.8a and 1.45. I f 

and the radial parts of the non zero corn-one denotes by ̂ * 
ponents of these wave functions, evaluated at the nuclear sur­
face, one easily shows that 

JL 
II.3 

where Ey is the energy of the emitted neutrino. 
In the case of the Is electron, the two functions with 

K=*[in II.2 are identically zero. In the case of s electrons in 
higher discrete levels, these two functions no longer vanish but 
are small and w i l l be neglected in our calculations. The two 
remaining wave functions are 

H<'- */* 
I Y ° 5SA \ 

o 
0 

\ 0 

II.4 

With the help of II.4 (with n s 1), and of II.3, one readily 
evaluates the expression 1.9 for AJLT^ . The absolute square of 



29 
the matrix element i n 1.9 i s 

( F| o) ' G
z S% ^ ( ) ( J / f f ( V tis t i l A"' ̂  ) R I 2 . 5 

(see Eq. I.£). Operating with S G on the product ^ ^ i l y i e l d s , 
because of II.4, 

I±j3 
a. I I . 6 

where ^ i s defined i n Io4. I t i s also e a s i l y seen that the sum 

Sy over the four neutrino states y i e l d s 

where the operator Tr means that we take the trace of the matrix 

on the right of i t . In deriving II.7, we used II.2, II.3 and the 

fact that E v = W, the available energy (See E q . I . l ) . Thus, 

from II.5, 6 and 7, « 

S , S o | ( F l H . | 0 ) | . = Yo ^ 3 7 3 J G * 

x c ^ , ( t f X S / O V * A A ' N - * 

The matrices of which we have to evaluate the traces, i n Eq.II.o*, 

are of the form A^A* and A ^ A * , where the A ^ . a s defined In . 

1 . 6 , are products of the Dirac matrices p**0^ and 0^3 . " 

Such traces of products of Dirac matrices are given, for instance, 

i n H e i t l e r (50), p.87. When they are evaluated i n II.6*, the 
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double sum over r and r * becomes 

S S c e o ( V f l C S t f T T\ A* A * V 

= a . T 
Remembering t h a t the o p e r a t o r m u l t i p l i e s the e x p r e s s i o n 

1.9 by a f a c t o r 4 TT and t h a t Yo s
 V j ^ T T » w e o b t a i n from 

1.9, I I . 8 and I I . 9 : 

G T 11.10 

II.1.0 was used both by Hess and by Glauber and M a r t i n i n t h e i r 

c a l c u l a t i o n s . 

We now c o n s i d e r the e x p r e s s i o n f o r /Wj^JLK • ^e f i r s t 

w r i t e the sum over the in t e r m e d i a t e energy s t a t e s , Eq. 1.12, i n 

a more d e t a i l e d form, u s i n g the e l e c t r o m a g n e t i c i n t e r a c t i o n matrix 

element obtained i n S e c t i o n C, Chapter I . S i n c e the wave f u n c ­

t i o n s i n the in t e r m e d i a t e and i n i t i a l s t a t e s are s - f u n c t i o n s and, 
mt > -•» T7 

consequently, have the same p a r i t y , the o p e r a t o r - *~ ^ — i n the 

e x p r e s s i o n 1.45 f o r ( F | H f ] l ) w i l l not c o n t r i b u t e to the e l e c t r o ­

magnetic i n t e r a c t i o n matrix element. I t f o l l o w s t h e r e f o r e , from 

1.12, 1.13, 1.15 and 1.45 t h a t 

11.11 
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where 

Writing £ - 6 ^ ^ = E - E m s + - ftch, ! w e ^ P u t II.11 
into the following form 

+ i - i c ^ ) «ffCR)A*$tf i fe«>1&*>S*^9lVs 1 1 , 1 3 8 

where M * s < £ £ o K II..13b 

We show in Appendix A that the second line of II.13a may be 
neglected. We obtain, f i n a l l y 

r Ej.-^ * 1 1 •14 

We now form the absolute square of the expression 11.14 and 
the operator S. on the WJ 

Because of II.4 and II.6, we obtain 
apply the operator S. on the wave f u n c t i o n product *tms4/»iS 

15a 
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I I . 15b 

and where the prime on h^means that we replace A 1 £ by A1, £* 
i n 11.13. I t i s shown i n Appendix B that 

P - 1 - £i JL 11.16 

Because of the form of the wave fu n c t i o n s , as given 
by I I . 2 , we may w r i t e Eq. II.13b as f o l l o w s : 

We i n t e g r a t e over the angles, u s i n g the r e l a t i o n 

( a n ^ = 4 -T ^ L 1 ^ i i.18 

and introduce the n o t a t i o n 

. A » w h A , / ^ V S C A ) 

j < ft A - K A . A . 

' * * E . £ - e m s +• #cfc 
II.19a 
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UL. = ^ ~ g )Q A . K / L *  

I I . 19b 

11.15 becomes 

K J 

11.20 

The summation over the four neutrino states gives, as i n 

Eq.II.7, the trace of the matrix contained between the two 

's of Eq. 11.20. There also ar i s e s , because of II.2 and 3, 

a factor 
8̂  *̂  .3 

11.21* 

in front of the whole expression. In deriving 11.21, we used 

the equations of energy conservation 1.1 and I.11 and the def­

i n i t i o n 1.1 f o r W. Therefore, 

S o $ v — Q v ° ( W - f t c k i - Ems" E»w = BY. 0 ( w E a a i E a l ^ c ^ ( t f W 
/V A' 

11.22 
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I t can be seen from the d e f i n i t i o n s 1.6 t h a t the t r a c e s o f 
every matrix of the form A'VOo^ and A^/ffi^L U = 1 , 2, 3.) 
are zero. Thus, the term of 11.22 w i l l not c o n t r i b u t e to 
the t r a c e . Therefore, one has only to evaluate the t r a c e of 

A l s t o n C J X ^ K 11.23 

i n the way explained under Eq. I I . d . A f t e r t h i s i s done, 11.22 
becomes: 
s,sJ * !*• - B Y i * t w - M ^ c - e ^ x 

w i t h T1 and T 2 given by 

T , ( Cs * t ttf tCc?•> ^ ) | S?|V S*l Sfr/ff 11.25. 

and T a - ^ S ^ I S l f '+ 

II.25b 

such that T, *T* = T , defined i n Eq. I I . 9 - From 11.12, 11.24 
and 1.14, we have f i n a l l y 

i . "3 

x i . [ ( l L ; s i % \ C f ) T t t ciu: j a- i £ s r ) T j 
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and, from 11.10 and 11.26 • 

N3 

A A / ; TT (W*)* . V W /. 
11.27' 

I R 

The above e x p r e s s i o n f o r ^ ^ / u r w i l l be the b a s i s f o r 

the subsequent d i s c u s s i o n s o f t h i s Chapter* 

B - Non - R e l a t i v i s t i c E x p r e s s i o n 

f o r / U T f c c l k / ^ 

When Z i s small,, the e x p r e s s i o n f o r the sum over the i n t e r ­

mediate . energy s t a t e s , as given by 11.17, may be approximated by 

i t s n o n - r e l a t i v i s t i c form. To t h i s e f f e c t , 

1 ° ^ i s put equal t o a u n i t matrix i n 11.17, so t h a t the 

f u n c t i o n G dis a p p e a r s completely from the e x p r e s s i o n ; 

2° The f u n c t i o n i s r e p l a c e d by CJp£ the c o r r e s ­

ponding s o l u t i o n t o Schroedinger*s equation; 

3 The sum over a l l energy s t a t e s IE. becomes a sum over 
EL 

the d i s c r e t e s t a t e s and an i n t e g r a l over the p o s i t i v e continuous 

s t a t e s . 
When the above approximation i s made, the e x p r e s s i o n 11.23 
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becomes 

E . 2 8 

and the t r a c e of 11.28 gives r i s e only t o the f a c t o r T/ defined 
i n Eq. II.25a. In t h i s approximation, we have, from 11.27 

i a. 

I f we make use of the f a i r l y w e l l e s t a b l i s h e d experimental 
f a c t (See, f o r i n s t a n c e , Konopinski and Langer (53)) t h a t the 
mixed terms ( i . e . those p r o p o r t i o n a l to C & C v and Cj. ) are 
n e g l i g i b l e , we may set a 0; and thus TJ - T i n 11.29. We 
al s o replace the wave f u n c t i o n f o r the i n i t i a l e l e c t r o n by Rs<fO 

R 

the corresponding s o l u t i o n to Schroedinger*s equation ^ C R ) 

Hence, 11.29 becomes: 

<VJi 

where 

U =s ^ ' " - . 

Expression 11.30 i s the s t a r t i n g point of our c a l c u l a t i o n s o f 
Chapter I I I . 



C - The Approximation of Hess 
37 

Instead of using the approximate electromagnetic i n t e r a c t i o n 
matrix element obtained i n Chapter I , Section C, which leads to 
Eq. 11.14, Hess used the general r e l a t i v i s t i c expression I.16 
wi t h the operator o c * ^ ° This means that the matrix P of 
I I . 15b was, i n h i s case, 

or 
P = IdS 

* H . 3 1 

since 5?f* « - £c? and (o?. I 

On the other hand, we have seen i n S e c t i o n B t h a t , w i t h the 
approximate wave f u n c t i o n s of the form I I . 2 , the sum M*\s o v e r i 

the intermediate energy s t a t e s takes the form I I . 17. Since 
» 0, i t f o l l o w s from 11.17 and 11.31 that the 

f a c t o r ^ /vvsPM^ of II-15a becomes 

11.32 

i . e . t h a t the f u n c t i o n F. disappears a l t o g e t h e r from the sura 
over the intermediate energy s t a t e s . Since the f u n c t i o n s G f o r 
the d i s c r e t e s t a t e s are small, Hess was l e d t o neglect the sum 
over the intermediate d i s c r e t e s t a t e s as compared w i t h that over 
the continuous s t a t e s ; the r e s u l t obtained was of an order o f 
magnitude smaller than that of Morrison and S c h i f f . (See Chapter I I I ) 
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The source of t h i s d i f f i c u l t y resides i n the fact that • 

making the approximation II.2 f o r the wave functions and, at the 

same time, keeping the operator o T * i n i t s general form i n the 

matrix element of electromagnetic in t e r a c t i o n , i s inconsistent. 



Chapter I I I 

R a d i a t i v e K-Capture i n a Non - R e l a t i v i s t i c 

Approximation 

In S e c t i o n A of t h i s Chapter, we b r i e f l y d e s c r i b e the 

method employed by Glauber and M a r t i n ( 5 5 ) ( 5 6 ) , i n t h e i r 

d e r i v a t i o n o f the e x p r e s s i o n 11.30 f o r /WT^cU<Jtoj^ , and we 

d i s c u s s the s i m p l i f y i n g assumptions they make i n e v a l u a t i n g 

11.30, and i n S e c t i o n B, we present our own e v a l u a t i o n o f 
37 131 

t h a t e x p r e s s i o n f o r the cases o f A and Cs 
1 3 55 
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A - Method of Glauber and Martin 

Let us consider the general Jbrm of the matrix element 

1.12, using the expressions 1.15 and 1.16 f o r the beta i n t e r ­

action matrix element and the electromagnetic i n t e r a c t i o n matrix 

element respectively: 

I E r - E D \ « / r. 

• X fa M „ < 5 t - ? h III. la 

W H E R E M = £ M r t ^ i ^ L i n ,ib 

As pointed out by Glauber and Martin, i s a c t u a l l y a s p e c i a l 

case of the Green's function G- (V, A ! ' for the wave equa-

tion of the electron i n a Coulomb f i e l d , oince we may set the 

nuclear radius R equal to zero i n I I I . l a , we have 

The reason f o r the success of t h i s approach i s that t h i s 

one-argument Green's function in i t s n o n - r e l a t i v i s t i c form can 

be obtained as a solution of the Schroedinger equation f o r an 

electron i n a Coulomb f i e l d . However, Glauber and Martin start 
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out from the Green's function yfvj^r ^ - ^ ^ of the iterated Dirac 
equation, and they arrive at a formula which i s equivalents to our 
equation 11.27. Only in a later stage of their calculations do 
they replace $ by the non-relativistic Green's function, and in 
this way obtain an equation which reduces to our Eq. XI.30 in 
case of s-electrons. 

Expression 11.30 for cannot be evaluated in a closed 

form. In order to evaluate /V,*̂ 0 K̂//UĴ  in a relatively simple 
analytical way, Glauber and Martin have set the retardation 
factor JL equal to one. This i s equivalent to using an 
expression for L t in which ^VV-fc/V i s replaced by unity for 
a l l values of k, i.e. over the whole energy range of the emitted 
photon. In that manner, and with the help of the analytical 
expression for the non-relativistic Green's function, they could 
evaluate A*J}^ ̂ ^/f^ almost without numerical calculations. 

The argument they present in order to justify' the above 
approximation (i.e. JL ~ JL ) over the whole energy range 
is rather lengthy and somewhat unconvincing; i t w i l l only be 
sketched in this thesis. 

The argument is of a different nature for each of the 
following three photon energy ranges: 

(1) JUk < x&-«f 

(2) ^V<^<..K < Z ^ / n v c * " 1 . 3 
(3) Z ^ < ^ c K 

In the range (1) of low photon energies, the photons have 
a wave length at least (Z^O * times' larger than the atomic 
system. In this case, one may therefore set ^̂ /AKA in 11.30. 
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Consequently, o n l y one term i n the sum and i n t e g r a l over i n t e r ­

mediate s t a t e s i s d i f f e r e n t from zero because of the o r t h o -

normal p r o p e r t i e s o f the *s, namely the term f o r which E-£̂ S. 
Then becomes, simply 

* * SUA 

and Eq. II.3D becomes i d e n t i c a l w i t h the Morrison and S c h i f f r a t i o 

when n = 1 and # =0. ( T h i s i s a r a t h e r s t a r t l i n g consequence, 

i n view of the f a c t t h a t Morrison and S c h i f f completely n e g l e c t e d 

Coulomb e f f e c t s , while Eq. III.4 i s d e r i v e d from an e x p r e s s i o n 

c o n t a i n i n g ( n o n - r e l a t i v i s t i c ) Coulomb wave f u n c t i o n s ) . 

In the intermediate energy range (2) one may not a p r i o r i 

n e g l e c t the r e t a r d a t i o n e f f e c t s . However, a study o f the form 

of the a n a l y t i c a l e x p r e s s i o n f o r the Green's f u n c t i o n )j «( 0i / L) > 

which c o n t a i n s a d e c r e a s i n g e x p o n e n t i a l , shows t h a t i t s range 

remains much sm a l l e r than the photon wave l e n g t h so t h a t the 

r e t a r d a t i o n e f f e c t s seem again to be unimportant, i . e . a g a i n 

O, ' cs f . I t f o l l o w s t h a t i n t h i s range a l s o , one o b t a i n s 

the e x p r e s s i o n o f Morrison and S c h i f f when n = 1 and L » 0 o 

In the high energy range ( 3 ) the r e t a r d a t i o n must-be taken 

i n t o account. However, i n t h a t range, Glauber and M a r t i n used 

the f r e e p a r t i c l e form o f the Green's f u n c t i o n and approximated 

the i n i t i a l wave f u n c t i o n by a constant. These approximations 

are the same as the one used by Morrison and S c h i f f i n d e r i v i n g 

t h e i r r e s u l t : namely, the n e g l e c t i o n of a l l Coulomb e f f e c t s i n 

the i n t e r m e d i a t e s t a t e s wave f u n c t i o n s and the assumption t h a t 

the i n i t i a l e l e c t r o n may be considered a t r e s t . For the high 

energy r e g i o n , Glauber and M a r t i n used t h e r e f o r e the same 
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expression as that used by Morrison and Schiff. 

The neglecting of a l l retardation effects allowed Glauber 
and Martin to evaluate the contribution to .Atfĵ oOl made by the 
p-electrons of the L and M shells (n = 1, 2; L = 1) in-a rela­
tively simple way. This contribution was shown to explain the 
sudden rise of the photon spectrum at low energies (Glauber and 
Martin (55)). 

In an unpublished paper (56), Glauber and Martin introduced 
a r e l a t i v i s t i c correction to the Is and 2s state spectra by mean 
of a canonical transformation applied to the Green's function. 
This correction is seen to apply only to the low and intermediate 
energy ranges of the photon spectra, as defined in III.3 and. i t 
is evaluated again on the assumption that the retardation factor 
may be put equal to one. These corrected results were compared 

• 3 7 . • 

with the experimental data, for the case of A , by Lindqvist 
and wu (55) and there appears to be an essential agreement be­
tween theory and experiment. 

As stated in the Introduction, a "more f u l l y r e l a t i v i s t i c " 
calculation carried out by Glauber and Martin has not yet been 
published in details, but the results have been compared with 

37 
the experimental data for A (See Wu and a l . (56)). From this 
comparison, i t would appear that the correction resulting from 
these latest calculations does not affect the high energy part . 
of the theoretical spectrum. 

Although there can be l i t t l e doubt that Glauber and r-iartin's 
results are essentially correct, we think that a direct, non-
r e l a t i v i s t i c calculation of /vAJ^^H^j^ free of additional-
simplifying assumptions i s s t i l l of some value. Such a calcula­
tion, which we undertake in Section B of this Chapter for the 
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case o f I s and 2s e l e c t r o n s , makes i t , i n p a r t i c u l a r , p o s s i b l e 

to see more c l e a r l y the r o l e played by the r e t a r d a t i o n e f f e c t s . 

B - E v a l u a t i o n o f '^^/AJS^ i n a N o n - R e l a t i v i s t i c 

Approximation f o r the Case o f I s and 2s E l e c t r o n s . 

In e v a l u a t i n g d i r e c t l y , (Eq. 11..30) one must c o n s i d e r 

s e p a r a t e l y the d i s c r e t e and the continuous i n t e r m e d i a t e energy 

s t a t e s . The procedure adopted i s to f i r s t c a r r y out the i n t e ­

g r a t i o n over the space v a r i a b l e r . The exact formulae f o r the 

f i r s t f o u r terms of the sum over the i n t e r m e d i a t e d i s c r e t e energy 

s t a t e s are o b t a i n e d and an approximate e x p r e s s i o n i s d e r i v e d - f o r 

the remainder o f the sum, which can be transformed into, an i n ­

t e g r a l . The i n t e g r a l over the continuous energy s t a t e s i s 

evaluated n u m e r i c a l l y between the l i m i t s equal to mc and about 
2 

1.5 mc r e s p e c t i v e l y . The i n t e g r a n d f o r h i g h e r e n e r g i e s can be 

approximated by a r e l a t i v e l y simple a n a l y t i c e x p r e s s i o n and the 

i n t e g r a t i o n c a r r i e d out a n a l y t i c a l l y . The e r r o r i n v o l v e d i n 

t h a t procedure i s q u i t e s m a l l , as w i l l be apparent from the 

numerical r e s u l t s . 

o 
1 D i s c r e t e S t a t e s 

The space dependence of the g e n e r a l n o n - r e l a t i v i s t i c 
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> 

"s-function" describing a particle in a discrete energy level 

E ^ — E ^ i s given by (see, for instance, Kramers (3^), P.311) 

where a. - goSi™*-/ * 

and where £$(|_,yv.« ̂ . & M A \ i s the confluent hyper-geometric 

function as defined, for instance, i n MacRobert ( 5 4 ) , p.3 4 6 . 

The function I I I . 5 i s normalized such that 

I I I . 6 

When r s R, the nuclear radius, Eq. III.5 becomes 

< ? ^ ( R ) = * ( f t ) V ** •, I I I . 7 

- 3 - '3 
since ^ = Z^rrr^. $e IO for R |0 «wv III.8 

r * ( * ) ' 
and since i s a f i n i t e polynomial of the form 

i +• f ( l ? ) i i ^ ^ f ^ i ^ a i r + . i n . 9 

one may write approximately 

III.10 
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We c a l l I the part of I— v;hich contains the sum 

over the intermediate discrete states. The i n i t i a l states Is . 

and 2s that we s h a l l consider are represented by the wave func­

tions (see III.5 , H I - 9 ) : 

<PlS = °?e, = "V «• III.Ha 

Replacing and cp̂ £ i n II.30 by t h e i r values III.5 , I I I . 10 

and III.11. one obtains f o r the two L n , n=l ,2: 

9 0 

00 
I q 72, < tV\ " w " > ~ > n» / / \ OA-
L j 0 l e

 = * ^ < . -i c r , \ III.12a 

| = _ C _ _ S - ___ . — III.12b 

where <JJ i n 12b i s the same hypergebinetric function as i n 12a. 

The energy i s given by the expression 

I f one approximates by the expression 

III.14 
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one obtains 

and 

As we have already mentioned, we start by integrating over 

the space variable r in Eqs. III.12. To t h i s e f f e c t we expand 

the hypergeometric functions into t h e i r ( f i n i t e ) polynomial form 

of equation III.9 and integrate term by term. The space i n t e g r a l 

of III.12a, f o r instance, y i e l d s 

III.16 

where /\ ^ ^ t ^ - Zf% 

This i s r e a d i l y integrated to give 

a*.k A* j L ' ~ * ^A/ UA/ *! "1.17 

The expression i n the square bracket of III.17 i s the ordinary 

hypergeometric series of argument ? ^ ' (See Magnus and Ober-

hettinger, p.7). Hence the i n t e g r a l III.16 can be written: 

\ \ r ^ 

in which z stands for 
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ATVA t -i— — III.19 

where ^ - - - * ^ — III.20 

We next use the r e l a t i o n : (See Magnus and Oberhettinger p.8) 

J r 
Therefore jS ( | - 3 L * > 3LyZ.)' ~ O - ^ ^ " " 1

 111.22 

With the help of III.22, III.18, III.20 and III.15a, the expression 

I I I . 12a becomes 

^Dls m*i *>ts * / c +*} HI.23a 

In case of L i p ?the second term i n the integrand i n Eq. 

III.12b leads to the hypergeometric function 

t h i s l a s t formula i s e a s i l y obtained using again III.21. A 

c a l c u l a t i o n s i m i l a r to that above, y i e l d s then f o r L i p (Eq.III.12b) 

S s £ *» A- M S < ^ * L i * ( V i),**l m . 2 3 b 

In III.23b, however, z i s 



In evaluating L D^ and we calculate the f i r s t four terms 

of the sum over n separately, and we derive an approximate ex­

pression f o r the summand when /v\ ^ 5" •. The numerical, values 

that we obtain l a t e r w i l l show that t h i s approximation i n t r o ­

duces an error of les s than 1$ i n the expressions f o r L - p J S and 

L-O^s • We f i r s t consider the case of LQ,s and then the case 

of L'Da.s 

a ) Case of ^ O i c 

Let us consider, i n the.summand of Eq. III.23a the factor 

u = [ *v*r~l-'c-<t-] iii,24 

and write z i n the form 

Z. = 

- Z. = 

2& = 
f * * ^ 1 " ' III.25a 

III.25b 

where ^ = [( | t ±f + III.25c 

md cDt - t o ^ T 1 — ^ ~ 

III . 2 5 d 
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I f III.2 5 a and b are inserted i n I I I . 2 4 , one obtains 

8« = MlrJVf- ^ - <*-»<?-] .. m . 2 6 . 

Therefore, from III.13a 

The f i r s t four terms of the sum III.2 7 are given.below 

CO 
1) L. = ^ — r - ^ ~ , . ' III .23 

by using the d e f i n i t i o n s of (p t and ( J ^ , JEqs. III.25c and d. 

When the retardation factor i s put equal to one i n the expression 

III.12a, only the term n = 1 i n the sum over n contributes to the 

value of L»n (because of the orthonormality of the wave 

functions used i n the integrand). » * n that case, i s given 

by III.28 i n which the x i n the factor rk + ̂ t) i s put equal, to 

zero. Therefore: 

°»S U ^ JfaA I I I . 28a 

and one obtains the Morrison and S c h i f f expression for A/jrk^/fijj' 

1) There are an i n f i n i t e number of choices for t h e values of 
\ 

CO4. , Eq. I I I . 2 5 d . However, i f one writes < t̂=c£++/«gf|,where 

m - ... - 2 , - 1 , 0 , 1, 2 , ... and O £><f±^i & , one sees that 

the expression I I I . remains the same f o r any choice of m. 
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2) III.2 9 

3) L. (?) III.3 0 

The terms f o r 5 may be approximated i n the f o l l o w i n g 

way. Let us c o n s i d e r the e x p r e s s i o n , Eq. III.26 and expand 

i t i n powers o f . "tie n e g l e c t a l l terms o f powers* equal t o 

and s m a l l e r than /nT 3 " i n the expansion, tie c o n s i d e r f i r s t t h e 

argument of the sine f u n c t i o n i n III.2 6 ; we have 

* } III.3 2 

From r i l . 2 5 d , and from the r u l e f o r the tangents o f sums and 

d i f f e r e n c e s o f angles, we o b t a i n 
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I +• ^Vi-U III.33a 1 ~ '«F 

and + <f- = W ' [ • _ J ^ 1 _ _ - ] III.33b 

I f one neglects the terms in i n III.33, one obtains 

_^2L_ ^ X W ' o C III.34 

In deriving III.34, we used the series expansion f o r the function 

tan with ( J ^CL^^j <^ | ) and neglected the powers 

equal to or smaller than /rv . 

We approximate ^ + and i n the same manner; from 

III .25d, 

III.35 



Therefore, from III. 3 5 
53 

{ V ? - - 0 + **) .. III . 3 6 

and 

III . 3 7 

To derive I I I . 3 7 , we made use of the r e l a t i o n 

k ^ t o . / ^ 

With the help of I I I . 3 5 , I I I . 3 6 , . I l l . 3 4 and I I I . 2 7 , one may write 

as an approximate expression f o r when n i s large: 

I t follows therefore that 

We s h a l l evaluate L , Eq. III.27, as follows 

with the terms i n the sum given respectively by III.23a, 29, 3 0 , 

3 1 and 4 0 . 
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b) Case of U 

The case of Lig^is treated like the one of L I D I S . . We 
consider the expression III.23b, for k^c, and write 

42. 

where z i s given by III.23c. One can show that 

in analogy with Eq. III.26, with 

and 

III.43b 

< ? t = P^'l[ 111.43c 

It follows from III.43a and III.23b that 

The f i r s t four terms of the sum III.44 are the following: 
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and f o r ^ 5" 

In III.45e we have neglected the powers equal to or smaller than 

when compared to unity. From III .45e, i t follows that 

L I Q ^ ^ w i l l be evaluated as follows 

where the terms are given by Eqs. III.45 and III.46. 

oo 
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2° Continuous S t a t e s 

To evaluate the c o n t r i b u t i o n to L^ s and L i ^ , Eq. 11.30, 
i n v o l v i n g the i n t e g r a t i o n over the continuous energy s t a t e s , one 

must c o n s i d e r the f o l l o w i n g i n t e g r a l 

E - E m +f t<* 

The n o n - r e l a t i v i s t i c wave f u n c t i o n s d e s c r i b i n g an e l e c t r o n 

i n the continuum i s the f o l l o w i n g (See Sommerfeld p.115 & f f . ) 

IT 1.49 

T h i s wave f u n c t i o n , which i s r e a l , i s normalized per u n i t energy 

i n t e r v a l : t h i s means t h a t 

) ^ ^ i C A ) tf EC/v) = 1 . in.50 

1 

where i s any energy i n t e r v a l c o n t a i n i n g E . The energy E 

i s r e l a t e d t o the momentum p o f III.49 through the r e l a t i o n 

E = [cytfr*?)*]** o r * * * £ ' - I I I w 5 1 
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When r = R, one cannot set equal to one the f a c t o r 

IIIo52 

as r e a d i l y as i n the case of LQ^ (See Eqs. III.7 to III.10) 

beeause, i n III.48, p becomes i n f i n i t e at the upper l i m i t of 

integration. This f a c t o r i s shortly considered i n Appendix C 

where we conclude that setting i t equal to unity does not 

a f f e c t the value of III.48. Therefore, we may write, when r « R 

The wave functions C^ s and ̂ s for the electron i n the 

i n i t i a l state are given by Eqs. III.11a and III.lib respectively. 
We consider f i r s t the case of L C | s and then that of 

a) Evaluation of Lie.. 

With the use of 111.49, III.53 and"III.11a, III.43 becomes 

° U > o - E L - E , - r f c o * III.54 

where i s given by Eq. III.13- with n • 1. 

= nrrve X ~ I - j III o 5 .5 

To evaluate III.54-* w e f i r s t express the confluent hypergeometric 

function i n an i n t e g r a l form (See, f o r instance MacRobert (54) 

p. 346). 
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$(WJLr&\'U&) - — r ( ^ ^ ^ l - t P ^ t 111.56 

Then we interchange the o r d e r o f the i n t e g r a t i o n s over r and t 

i n III.54; t h i s i s allowed because o f the presence o f the de-

c r e a s i n g e x p o n e n t i a l f a c t o r JL i n the i n t e g r a n d . I n t e g r a t i n g 

over r f i r s t , and then over t , one o b t a i n s 

U = t r f r * * (~ dLzrfrir'i+itit v • . • m . j 7 

111.56 

i s the hypergeometric f u n c t i o n and 

Z± - I I I . 5 9 

One a r r i v e s a t Sqs. III.57, 5& and 59 by making use o f the 

i n t e g r a l r e p r e s e n t a t i o n o f the hypergeometric f u n c t i o n (See 

MacRobert (54), p.297): 

III.60 

From III.21, i t f o l l o w s t h a t 

For computational purposes, i t i s convenient to i n t r o d u c e the 

f o l l o w i n g d i m e n s i o n l e s s q u a n t i t i e s : 
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With these notations, III.59 becomes 

- - -tfr .'111.63 
1 -̂ ̂  C " 

With the help of III.61, one shows that. III.56 y i e l d s 

III. I 

— A. -tr 
where :-III.65a 

% v o + in 0 65b 

6+-6- - i ^ x l 111.65c 

[| r (fr ^ 5 A = t ^ V * ) , n j D 65d 

and 0 ̂ 6R < TT/z III ,66a 

^ III.66b 

These i n e q u a l i t i e s are essential f o r avoiding d i f f i c u l t i e s 

connected with the multi-valued character of the function III.64. 
Using the re l a t i o n P(z.)P ( | -Z . ) - "JJ/^TTz. "' we 

obtain 
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JL 
Iff 

' ' - I I I . 6 7 

It follows from III.55, 6 2 , 64 and 67 that 

L - ^ f r * c 
III.68a 

where J , = -s 1 III.68b 

The integrand I ~ j s has been plotted as a function of q, 
and the integral III.68a evaluated numerically for the lowest 
values of q(i.e. for q between 0 and q Q where <J0 corresponds 
to an energy E of about 1.5 mc2 in the case of A^7 and of about 
2mc in the case of Cs ). For the higher energies >cfyoj) 

an approximate integrand (which i s derived below) i s used in 
place o f ' I j s and the resulting integral i s performed analy­
t i c a l l y . Let us write ^Cjc, a s t n e s u m °^ two terms: 

L t c i s - u C l s r u C l s 

.0) , . . <i) 
where ^c/s, i 3 the part of L J C / s evaluated numerically and v-»cJS 

the part of U evaluated analytically. If £ 0 i s the energy 
corresponding to q c , we have 

= * z w ) , T ' 5 i £ • I n - 7 0 a 

and L, _ J _ ( - j - ^ e III.70b 
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We approximate T ŝ by expanding i t in powers of '/̂  and by 
taking the f i r s t two terras. The expansion of the binomials of 
Eq. III.6 4 in powers of ̂  i s allowed when 

The upper limit t Q of the numerical integration III.70a i s 
chosen such that the corresponding q Q satisfies III.71. We give 
below, as an example, the f i r s t few terms of the expansion for 
one of the binomials in III.6 4 : 

+ ( - I t ^ X i - ^ J h r J " * * ^ U 1 . 7 2 

/ 1 r y \/ *\ . X.I 1 1 1 i 
t 

-5 
When the expansions are carried out up to the power (iq) , i t is 
se'en that 

A i s ^ 3<j.fc v ? ' i n . 7 3 

In the same approximation, one has, for the remaining factors 
of the integrand X ) s , ( E q . . III.68b) 

H T T / III. 74a 

Z**V i n . 74b 

die. c< Z - ^ d - o . 

III.7 4 c 
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III.74d 

Therefore, from III.74, 73, 62, 63b and 70b: 

3 

and LT = !iL* /, . X X - Z i s Q 1 I T 

We have f i n a l l y , f o r L I S 

with given by III.41 and given by III.69 

b) Evaluation of L i c 

The evaluation of i s carried out along very s i m i l a r 

l i n e s . With the aid of I I I . l i b , 49, and 53, III.43 becomes 

with E ^ given by Eq. III.13 with n = 2: 

E x =. A T , C 3 X ' * I H . 7 g 

With the help of III.56 and I I I . 6 0 , one integrates III.77 

r f i r s t , and then over t i to obtain: 
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III.79 

where ^ - -L ( £zf [ * LX, l * f i * i £ ) 
i3 

> = a^- - H I . 8 1 . 

In the notation of III.62, we have 

and, from III.21, 

= £ t [£°i^Jbi + x-'-'Ci-^-'r*^] 1 1 1 , 8 3 

where we introduced a notation similar to the one in III.65a 

w 
Ok 
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$i - W 1 ^Cfr**) 

6̂  and have the same range o f v a l u e s as Q+. and 6_ 

(Eq. III.66) 

Using the above n o t a t i o n and Eq. I I I . 6 ? , we have 

I - ^ & ( ° ° R A 

I I I . 8 5 a 

with I j i c — ~ ~ — ; : — I I 1 . 8 5 b 
3 e -A r z*<x 

\ i s d e f i n e d i n III.7 8 . 

U^,^ was evaluated i n the same manner as , i . e . as the sum 

o f two terms 
0) , « 

Ljca,' - L»cX!l ĉ-xs I I I . 8 6 a 

with U , - H i ^ . J i £ - \ I I I . 8 6 b 

l £ = ^ • -i§- ( I" c L L 1 1 1 . 8 6 c 

,0) U ) 

L> C 3 k S i s the pa r t o f u C a s evaluated n u m e r i c a l l y , and >-JCa^ the 

pa r t e v a l u a t e d a n a l y t i c a l l y , b e i n g an approximation f o r 

X»vS a t high e n e r g i e s . £ a i s chosen such t h a t the c o r r e s ­

ponding q c (Eq. III.62) s a t i s f i e s the r e l a t i o n : 
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4r ± 

2^ III.37 

rv 
The approximate integrand Xj^ i s derived by developing the 

expression III.35b in powers of l / q . The f i r s t two terms of 

the expansion are 

- 7 * ft 
TT«[f V 3 */\7+<f / III.S3 

It follows from 36c and from the r e l a t i o n c L c ^ ^ d ^ that 

I I I . 3 9 

We have f i n a l l y , f or L* a c , 

* L P x s

 + 1 1 1 . 9 0 

with ^-»o3kS given by Eqs. I l l . 4 5 and III.47 and given by 

Eqs. III.36a, 86b and 39. 
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o 
3 R e s u l t s and Co n c l u s i o n s 

We have a p p l i e d the formulae and methods o f t h i s S e c t i o n 

to the case o f A (Z r 18). Among the few elements f o r which 

r e l i a b l e experimental data e x i s t t h i s i s the one with the s m a l l e s t 

value o f Z so t h a t the n o n - r e l a t i v i s t i c approximation i s not 

u n j u s t i f i e d . In a d d i t i o n t o t h a t , we have e v a l u a t e d one p o i n t 

of the I s - spectrum f o r the case o f Cs^" 1" (Z s 55) u s i n g our 

formulae, with a view t o comparing the r e s u l t with Hess's r e s u l t 

f o r the same case. 

37 
a) The Case o f A 

37 

In the case o f A (Z = 18), we have computed the r a t i o 

^^/us^ ^ o r f ° u r d i f f e r e n t p o i n t s o f the photon spectrum: 

For $ck = 135 Kev corresponding t o x • 2 

jfick = 269 " " " x = 4 

Jrfck » 404 n " " x » 6 

Jrfck = 673 " n " x = 10 

The l i m i t o f the spectrum i s a t #ck = £16 Kev. 

The r e s u l t s f o r t h i s case are summarized i n Tables I , I I 

and I I I and i n F i g . 5. 
In Table I , we l i s t the v a r i o u s c o n t r i b u t i o n s t o the 

i n t e g r a l L-*^ (Eq. 11.30, (n = 1)), f o r the f o u r v a l u e s o f 
, <» , W X» , w 

the photon energy l i s t e d above. U n . L n , . L»« L n ^ °is ' Dia 7 ° ^ 1 w»s 
and are given by the formulae I I I . 23, 2 9 , 3 0 , 31 and 
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40 respectively. To get an idea about the r e l i a b i l i t y of 
Eq. III.40, l—p has also been calculated fro,m the approximate 
expression III.39. The values obtained (in i t a l i c s ) when 

. to 

compared with the exact values for L. ̂  , show a deviation of 
less than 0.5 percent. The error in evaluating L - » D , C i - s o£ 

,0) 

the same order of magnitude. The values for are obtained 
by numerical integration of Eq. III.70a for four different values 
of x. Since the integrand is too complicated to be studied analy­
t i c a l l y , we give in Fig. 1, 2, 3 and 4 the curves representing 
the integrand as a function of the integration variable q for 
the four values of x. The curves \ju'S"t helped us to choose the 
appropriate lengths of intervals when carrying out the numerical 
integration. The upper limit of integration q 0 is different in 
each case. L . c i s evaluated analytically from Eq. III.75b. 
The main error in the expression for U, comes from the numerical 
integration of U c ; the error made in evaluating U p and 

L J C | S are small compared to i t . The total error on Ujj » 
however, i s probably less than one unit in the third significant 
figure. 

In Table II we l i s t the contributions to.the integral 
L a s , (Eq. 11.32 ( n s 2)) for the same four values of the 
Photon energy. L 0 ^ , U 0 ^ , L , L D j 5 , L 0 3 k & are 
evaluated from Eq. III.45, 46. | , calculated from the 

, CD 

approximate Eq. III.45e i s also included. L. c i s given by 
Eq. III.36b which was also integrated numerically. However, 
the curves for the integrand I ( E q . III.85b) have not 
been included. i s given by Eq. III.89- The error, in 
the values obtained for L *^ are of the same order of magni­
tude as in the case of L i ^ . 
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In Table I I I , we g i v e the v a l u e s f o r the p r o b a b i l i t y r a t i o 

* /AAĴ  as e v a l u a t e d from Eq. 11.30 and from the v a l u e s of 

Table I and Table I I f o r L |s and L.^ . The q u a n t i t y 

which appears i n Table I I I i s d e f i n e d as 

P _ L A /W-0 / is V WL 

^ i s t h e r e f o r e a measure o f the i n f l u e n c e of the r e t a r d a t i o n 

f a c t o r on the i s + 2.S c o n t r i b u t i o n s to the p r o b a b i l i t y r a t i o 

In F i g . 5, we have p l o t t e d the two q u a n t i t i e s ^ n d 

~~ ( ^ f c ^ ^ Y_ . , . both i n our case and i n the case o f Glauber OK \ /uj^ /IS -t-iS 
and M a r t i n (5^-), as a f u n c t i o n of the energy o f the. emitted 

photon. The curve ^ ( A*ij^)* n t n e c a s e °f Glauber and M a r t i n i s 

i d e n t i c a l w i t h t h a t which would be obtained from M o r r i s o n and 

S c h i f f s formula. 

We can say very l i t t l e , a t the present time, about the 

comparison o f our t h e o r e t i c a l r e s u l t s f o r i n case 
37 

o f A w i t h the experimental r e s u l t s o f L i n d q v i s t and '.vu ( 5 5 ) . 

The procedure used by these authors to compare experiments and 

theory c o n s i s t s , f i r s t , i n a p p l y i n g a l l k i n d s of experimental 

c o r r e c t i o n s to the t h e o r e t i c a l gamma spectrum, and, next, i n 

n o r m a l i z i n g the measured spectrum t o the spectrum so o b t a i n e d 

(so t h a t o n l y r e l a t i v e i n t e n s i t i e s are being compared). The 

c o r r e c t i o n s woul.i thus have t o be a p p l i e d to our t h e o r e t i c a l 

spectrum, which we cannot do s o l e l y on the b a s i s of the data 

pub l i s h e d by L i n d q v i s t and i u (55). I t i s not i m p o s s i b l e t h a t 

the- d i f f e r e n c e i n the slope o f the curves A (Is + 2s) and 

B ( l s -+• 2s) i n F i g . 5 may be reduced c o n s i d e r a b l y a f t e r the 



corrections have been applied. 

b) The Case of C s 1 3 1 • ' ,, . % 

In the case of Cs^^ 55) we have calculated A ^ ^ & & £ , 
only for one value of the photon energy, namely for #cka-2^0^ Kev 
(x = 1), and we restricted ourselves ,to the i s - electron contri­
bution. . - - '• 

An application of the formulae of this Section and a numeric 
cal integration carried out in the way indicated in Subsection> 
a) give, for Gs 1 3 1: " 

Therefore, | .Tfi JL 

The ratio 

LWASJH' 
i s found to be equal to 0.79. 

If only the integration over the intermediate continuous-
states i s taken into account, L, Q ^ 0 > and the ratio 
becomes only 0.03. This small value for accounts for the . 

larger part of the discrepancy between the results of Hess (who 
neglected the sum over the discrete states)' and the. results of 
Morrison and Schiff. 
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Table I 
T O 

i s Kck » 135 
. (x - 2) 

#ck = 269 
(x - 4) ' 

#ck = 404 
(x . 6) 

tfck = 673 
(x - 10) 

li° 0.25000 0.02000 0.003333 0.0002959 
•(» 0.03198 0.00266 0.000425 0.0000372 e. 0.01225 0.00103 0.000168 0.0000147 

Co 0.00401 0.00033 0.000053 0.0000047 

,w 0.OW0O7 0.00Q32Q 0. 0000SS <? 

r 0.00513 0.00042 0.000069 0.00000601 

0.3034 0.0244 0.0040 0.00036 

0.5962 0.3677 0.2093 0.09953 
0.0063 0.0005 0.0012 0.00029 

u 0.6025 0.3682 0.2105 0.09982 

L 0.906 0.393 0.215 0.100 

Table I showing the various contributions to 
the integral L ,s (.in units of {^^j 

for four values of the photon energy 
Jick (in Kev) 



Table II 

tfck = 135 
(x = 2) 

-ftck = 269 
(x = 4) 

tfck = 404 
(x = 6) 

-Kck = 673 
(x = 10) 

0.08335 

0.00594 

0.00451 

0.00147 

0.001464 

0.00137 

0.0977 

0.2084 

0.0019 

0.2103 

0.303 

0 . 0 0 7 3 0 6 

0.000984 

0.000308 

0 . 0 0 0 1 2 4 

0.000160 

0.0039 

0.1312 

0.0007 

0.1319 

0.141 

0.001206 

0.000156 

0.000047 

0.000020 

0.0001249 0.0000197 

0.000025 

0.00146 

0.07327 

0.00039 

0.07366 

0.0752' 

0 . 0 0 0 1 0 7 9 

0.0000134 

0 . 0 0 0 0 0 4 0 

0.0000017 

0.00000168 

0 . 0 0 0 0 0 2 2 

0.00013 

0 . 0 3 0 6 2 

0.00015 

0 . 0 3 0 7 7 

O .O309 

Table II showing the various contributions ,to 

the i n t e g r a l L ' ( i n units of f ? & £ M 

fo r four values of the photon energy 

)ick (in Kev) 
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Table III 
7a 

Jick . 135 Jick « 269 #ck . 404 jfek - 673 
(x * 2) (x . 4) (x - 6) (x . 10) 

0.637 0.665 0.384 0.0470 

0.080 0.087 0.047 0.0047 

0.314 0.617 0.415 0 O 2 4 3 

Table III showing the contributions to 
from the Is and 2s 

electrons (in photons per desintegration 
per unit Kev energy interval / |0 ) 

for four values of the photon energy 
fo-K (in Kev). The table also shows 
the ratio of the sum of these con­
tributions to the corresponding 
result of Glauber and Martin (54). 
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Appendix A 

We want to sketch the proof o f the statement t h a t 

JL ^ c a O A i a f ( R ) A * $ < * 2 £ r e ^ ^ m ^ i R ^ s . - A . l 
71*. R 1. E- * 

i s n e g l i g i b l e f o r small v a l u e s o f R. 

Making U3e o f the c l o s u r e p r o p e r t y , 

(where I i s . the u n i t m a t r i x ) , expanding i n t o products 

o f s p h e r i c a l harmonics and the B e s s e l f u n c t i o n s , and f i n a l l y 

i n t e g r a t i n g over angles, one o b t a i n s f o r A . l an e x p r e s s i o n pro­

p o r t i o n a l to 

'r\ to f\ * 

(we have here assumed, f o r s i m p l i c i t y , the n o n - r e l a t i v i s t i c 

form f o r the wave f u n c t i o n o f the K - e l e c t r o n ) . Hence A.2 and, 

consequently, A . l becomes p r o p o r t i o n a l t o 

3k. 
which i s of the Order (\ f o r f{—> 0 
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74-

We sketqh the proof o f the i d e n t i t y : 

B . l 

where AZ - jj^ % K* and K = O 

Making use o f the r e l a t i o n s £<r =t <?3 , (32 a, -5/3 (J**-1 , 

the e x p r e s s i o n on the l e f t - h a n d s i d e o f B . l can be w r i t t e n as 

JL l • 

3.2 

or 

B .3 

Now, 

2* = | 

So t h a t the second l i n e of B . 3 v a n i s h e s , and the f i r s t Dine g i v e s 

j u s t the e x p r e s s i o n on the r i g h t - h a n d s i d e o f B . l e 
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We want t o make i t p l a u s i b l e t h a t the f a c t o r 

i n Eq. III. 4 © may be set equal to u n i t y over the whole range 

of i n t e g r a t i o n , without too much e r r o r . 

The g e n e r a l form of Eq. 1 1 1 . 5 4 i s ( S ^ - . H I - 6 8 ) 1 

C . l 

where 

i s the f a c t o r i n q u e s t i o n , and i s giv e n by I I I . 6 4 . 
- 3 

Since yixr\ 0± | 0 , one has, i n f a c t , ^ 1 i n the i n t e - . , 

g r a t i o n r e g i o n where the remaining f a c t o r o f the i n t e g r a n d i s 

l a r g e , i . e . f o r 0<v^-<i5" » a s can be seen from the graphs i n 

F i g . 1 to 4 . 

For qj- 7 j 5" , the i n t e g r a n d i n C . l can be r e p l a c e d , 

without a p p r e c i a b l e e r r o r , by a si m p l e r e x p r e s s i o n (see Eq. III.75a) 

so t h a t 

Consider now very l a r g e v a l u e s o f q. The behavious of f f o r 

l a r g e q's can be obtained from the asymptotic expansion o f the 
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c o n f l u e n t hypergeometric f u n c t i o n (Jahnke and Snide, p.275); 

we f i n d l f r R 

v. ' y ! . 

and f —*» O f o r c£ <** , because i X (Jahnke and 

Erade, p. 1 0 ) . But f o r l a r g e q's, the i n t e g r a n d , e x c l u d i n g f , 

i s p r a c t i c a l l y zero, so t h a t p u t t i n g ^ a | ( i n s t e a d o f f.<£l) 

i s harmless. 

For the i n t e r m e d i a t e v a l u e s o f q, f remains f i n i t e while the 

remainder o f the i n t e g r a n d i s s t i l l v e r y s m a l l , so t h a t p u t t i n g 

f = 1 i s of no great consequence. 



77 

References 

B l a t t , J.K. and Weisskopf, V.F. (52). "Theoretical Nuclear 

Physics", John Wiley and Sons, 1952. 

De Oroot, S . R . and Tolhoek, H.A. ( 5 0 ) . Physica 1 6 , 456 (1950). 

Fermi, E. (34)• Z. Phys..88, 161 (1934). 

Glauber, R.J. and Martia, F . C . (55).- Phys. Rev. Q£, 572 (1954). 

Glauber, R.J. and Martin, ?.C. ( 5 6 ) . (Unpublished; see Chapter. 

I l l , page 43 of t h i s t h e s i s ) . 

Gordon, W. (28). Z. Phys. £0 , 630 (1928). 

H e i t l e r , W. ( 5 0 ) . "The Quantum Theory of Radiation", 2 n d Ed*, 

Oxford University Press, 1950. 

Hess, G. (55). Thesis, The University of B r i t i s h Columbia, 

June 1955. 

Konopinski, E.J. and Langer, L.M. (53). Ann. Rev. of Nucl. 

Sc. 2, 261 (1953)• 

Konopinski, E.J. (55). Chapter X of K. Siegbahn fs "Beta and 

Gamma Ray Spectroscopy", North Holland Publishing Co. 1955• 

Kramers, H.A., "Die Quantentheorie des Elektrons und der 

Strahlung". Leipzig, 1938. 

Lindqvist, I. and Wu, C S . (55), Phys. Rev. 100. 145 (1955)-. 

MacRobert, T .M. (54) "Functions of a Complex Variable", 4th Be*.., 

MacMillan, 1954-

Iladansky, L. and Rasetti, F. ( 5 4 ) . Phys. Rev. 2kt 407 (1954)-

Magnus, W. and Oberhettinger, F. (49). "Formulas'and Theorems 

fo r the Special Functions of Mathematical Physics", 

Chelsea Publishing Co., 1949. 



7 6 

M o r r i s o n , P. and S c h i f f , L . I . (40). Phys 0 Rev. 5|_, 24 (1%Q) c 

P a u l i , W. (33). "Die allgemeinen P r i n z i p i e n . der Wellenmechanik", 

Hand, der Phys., 3d. XXIV/i, (1933). 

Rose, xM.S. (37). Fhys. Rev. 51, 4#4 (1937) » 

Rose, M.E. (55). Chapter I>I o f Siegbahn's "Beta and Gamma Ray • 

Spectroscopy", North H o l l a n d , 1955. 

S a r a f , B. (54). Phys. Rev. 94, 642 (1954). 

Sommerfeld, A. "Wellenmechanik", Ungar P u b l i s h i n g Company, 

New York.. 

Wu, C S . (55). "3eta and Gamma Ray Spectroscopy",.North 

Holland, 1955. (p. 649). 

Wu, C.3., L i n d q v i s t , T., Glauber, R.G., and M a r t i n , P.O. (56). 

Phys. Rev. 101, 905 (1956). 


