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ABSTRACT 

We inves t iga te a new per turbat ion technique 

introduced by E . Frieman to der ive aak ine t i c equation 

from the equations of the BBGKY h i e r a r c h y . The orders 

of magnitude of the terms i n the l a t t e r equations are 

c a l c u l a t e d and Frieman's estimate i s found i n c o r r e c t . 

His d e r i v a t i o n of the Landau's equation for ai weakly 

coupled gas a c t u a l l y depends on the existence of the 

r e l a x a t i o n time ra ther than the much shorter mean 

free time as he expected. A p h y s i c a l i n t e r p r e t a t i o n 

of the Grad ' SH theorem and Grad's o r i g i n a l proof i s 

g iven to j u s t i f y the choice of the molecular chaos, 

condit ions at the i n i t i a l time.. Two examples are 

given to c l a r i f y the a p p l i c a b i l i t y of the per turba

t i o n method. 
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INTRODUCTION 

In th i s thes is we inves t iga te a. .new per turbat ion 

technique introduced by E . Frieman (1963) and G. Sandri 

(1963) to study the approach to e q u i l i b r i u m of a 

weakly coupled, moderately dense gas. In the process 

of th i s i n v e s t i g a t i o n , i t i s found that , contrary to 

Frieman's argument, the time between successive 1 

c o l l i s i o n s i n his model of gas i s not much longer 

than the durat ion of a s ing l e c o l l i s i o n . Since his; 

c a l c u l a t i o n r e l i e d on these; times be ing very d i f f e r e n t , 

i t was not c l e a r how he could arr ive; at a; r e s u l t which 

was seemingly c o r r e c t . We; now f i n d that h i s c a l c u l a 

t i o n a c t u a l l y depends on the existence of another 

c h a r a c t e r i s t i c time- which i s a measure of the time 

for the gas to approach thermal e q u i l i b r i u m . Such 

a t c h a r a c t e r i s t i c time is,; of course much longer than 

the durat ion of a s ing le c o l l i s i o n . I t i s therefore 

not s u r p r i s i n g that h i s r e s u l t was c o r r e c t . 

In chapter I of this.; t h e s i s , we b r i e f l y d e r i v e , 

from the L i o u v i l l e ' s equat ion, a system of equations 

(the BBGKY h i e r a r c h y , see; Montgomery and Tidraan, 1964) 

r e l a t i n g the d i s t r i b u t i o n funct ions for a few p a r t i c l e s 

Assuming that the; gas is; o r i g i n a l l y not too f a r from 

e q u i l i b r i u m , we estimate the magnitudes of the various 

terms i n the equations. 



In chapter I I , we consider a weakly coupled gas. 

We introduce a small dimensionless parameter e as at. 

measure of the s trength of the i n t e r a c t i o n . We assume 

the gas to be near ly homogeneous>. Three c h a r a c t e r i s t i c , 

times of d i f f e r e n t orders; of magnitude i n e aire: found. 

The evo lu t ion of the s i - p a r t i c l e d i s t r i b u t i o n i s then 

s tudied q u a l i t a t i v e l y . 

Chapter I I I introduces the; per turbat ion technique,' 

and the c a l c u l a t i o n due to Frieman. Assuming that the 

i n i t i a l values of a l l c o r r e l a t i o n s are zero , we arrive; 

at Landau's equation f o r the o n e - p a r t i c l e d i s t r i b u t i o n 

function. . The- r e s u l t i s i d e n t i c a l to that obtained by 

Baiescu us ing h is diagram technique. 

In d e r i v i n g Landau's equation, Frieman's p e r t u r b a 

t i o n method requires a correc t estimate of the orders 

of magnitude of the various terms; i n the equations of 

the h i e r a r c h y . He has made such an estimate; for the 

f i r s t two equations. To do so, i t i s necessary to 

introduce some assumptions about the d i s t r i b u t i o n 

f u n c t i o n s . However, many of these assumptions do not 

appear c l e a r l y i n Frieman's paper, nor i n Sandrie ' s>. 

Bes ides , Frieman's; estimate for the second equation 

of the h i erarchy i s i n c o r r e c t (see appendices A and 

B ) . In th i s t h e s i s , we make a d e t a i l e d study i n th i s 

respect and obta in condi t ions under which the p e r t u r b 

a t i o n method leads, to Landau's equat ion. The assump-
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t i o n o f z e r o i n i t i a l c o r r e l a t i o n s i s j u s t i f i e d b y G r a d * s 

t h e o r e m . F o l l o w i n g G r a d ' s p a p e r ( i 9 6 0 ) , we p r o v e , t h e 

t h e o r e m a n d g i v e t h e * p h y s i c a l c o n d i t i o n s u n d e r w h i c h i t 

c a n b e a p p l i e d . F i n a l l y we g i v e t w o e x a m p l e s ; t o c l a r i f y 

t h e a p p l i c a b i l i t y o f t h e p e r t u r b a i t i o n m e t h o d . 
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CHAPTER I 

THE EQUATIONS OF THE HIERARCHY 

We consider a c l a s s i c a l system of N i d e n t i c a l , 

n o n r e l a t i v i s t i c p a r t i c l e s of mass m i n ai volume SL 

i n t e r a c t i n g with, a two-body c e n t r a l potential . <| 

The N - p a r t i c l e d i s t r i b u t i o n func t ion f N(x. 1 » • »2LN »y_-| > • >Y-N » t ) 

i s def ined i n such a way that the p r o b a b i l i t y of f i n d i n g 

the represent ive point of the system at time t i n a 
N ^ 

volume >̂ dx.dv. of ""-space around the point 
i = 1 N 

• * *-N'-1 ' ' *-N) i s f

N ( " £ i » • ' i N ' X ! » • »X N5 t)^Z d i i d Y i -
* 1=1 

Since the p a r t i c l e s are i d e n t i c a l , the d i s t r i b u t i o n 

func t ion f i s symmetric under an interchange of the 

coordinates and v e l o c i t i e s of any two p a r t i c l e s . The 

time evo lu t ion of f i s governed by L i o u v i l l e ' s 

equation 

where p . = mv . and H i s the Hamiltonian of the system 

given by 

(1.2) H = 2 l + Z 7 
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From ( l . 2 ) , we immediaitely obtain 

( I 3 ) - M . J a . . v . M - 7 
( } «& * *5 4 ^ • 
S u b s t i t u t i n g ( l . . 3 ) into ( 1 . 1 ) , we f i n d 

V ' L ai" ^ = J J. Bs
 m jjTi vxj dvj J JN 

We now define the reduced d i s t r i b u t i o n functions 

f s ( x 1 - . 2 £ s » v 1 , . , v : s ; t ) by 

The equations f o r .f are obtained from ( l . 4 ) . Integrat

ing (1.4) over the variables x + 1 , . • x.N>y.g + -|!» • 'Z^ a n d 

m u l t i p l y i n g by -£1 , we obtain the BBGKY hierarchy of 

equations 

(16) [-2-+ J v..JL_ J - l I 7 r U - o ; (at A J &x. ™ , ̂  £x. dv J fs J=i -3 -y J 
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Using the centre of mass coordinate X of the s - p a r t i c l e 

c l u s t e r and t h e i r r e l a t i v e coordinates x given by 

X - ̂ 2 a,, 

(1.7) 

equation ( I .6 ) y i e l d s the equations of the h ierarchy 

-1 S 

where V = s~ >̂~! v . , the v e l o c i t y of the centre of 
i = 1 

mass of the c l u s t e r . For s = 1,2, we have 

and 

( 1 . 1 0 ) Ldt + x {S~*J zfc + C - i * x ^ J / i 

N-2 
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where we have put 

X 

(1.11) 

It i s obvious from ( I .8 ) that, the reduced d i s t r i b u t i o n 

func t ion f cannot be obtained without the knowledge 

of f g + ,̂° We therefore require a j u s t i f i a b l e procedure 

to decouple the system of equations i n ( I .8). 

We: now estimate the r e l a t i v e orders of magnitude 

of the various terms i n the equations of the h i erarchy 

s ince our method w i l l r e l y e n t i r e l y on them. To so so, 

we define the fo l l owing q u a n t i t i e s : 

r Q : the range of the p o t e n t i a l , 

'• the s trength of the p o t e n t i a l , 

<?v> : the average speed of the p a r t i c l e s , 

L : the c h a r a c t e r i s t i c scale length for the 

macroscopic s p a t i a l grad ient , that i s the 

s p a t i a l d is tance over which the d i s t r i b u t i o n 

funct ions change apprec iab ly , 

IT : a.t time i n t e r v a l . 

In what fol lows we assume that N —°-co and S2—»- co 

i n such a way that N/S2 = n remains f i n i t e . Next we 

consider a moderately dense gas i n which nr = 0 ( 1 ) . 
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Thus we have r^ /^Z = o ( l/N)« 1 and the i n t e r a c t i o n 

of the system with the boundaries i s expected to be 

n e g l i g i b l e . Assuming that the gas i s not too f a r 

from e q u i l i b r i u m , the r a t i o s of the terms i n ( 1 . 9 ) 

and ( l . 1 0 ) are given r e s p e c t i v e l y by (see appendix A.) 

( 1 . 1 2 ) 1 t <v^° * < ^ > <-»irc 

and 

It i s convenient to write the d i s t r i b u t i o n 

funct ions i n the f o l l o w i n g way 

( 1 . 1 4 ) f2u,z) = fro £(2) + j a, 2-), 

( 1 . 1 5 ) j3 u^s) - iwiwfcv + £u>3<&) •+ / , (OffiO+lPdW 

+ kU,*,3^ e tc . 

S u b s t i t u t i n g these in to (l.9) and ( I . 1 0 ) and negecting 

terms of order 1/N, we obta in 



- 9 -

and 

J_ 9$ 

These equations w i l l cons t i tu te the bas i s f o r the 

development to fo l l ow. 
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CHAPTER II 

THE WEAK-COUPLING CASE 

As, mentioned before , the equations of the h i e r 

archy (1.8) do not form a c losed system and have to 

be decoupled. Th i s can be done with the help of a. 

p e r t u r b a t i o n expansion. We examine a weakly coupled 

gas s ince i t i s a n a l y t i c a l l y simple and yet the essen

t i a l points of the method can be demonstrated. 

I t i s convenient to write 

(11.1 ) go^-^o = ^ VQ^-yj) 

2 

where V(\^-x^\ } A/ m < v> , 1 i s ,a dimensionless par 

ameter, and the symbol means "of the order of". To 

study the evo lu t ion of the d i s t r i b u t i o n func t ions , we 

determine the various c h a r a c t e r i s t i c times of, the gas. 
We def ine T„ = r.',.''/ <v> as the c o l l i s i o n time, c o ' 

This i s the time which a p a r t i c l e moving with the 

average speed spends i n the. sphere of in f luence of 

another p a r t i c l e . The average timejCj between suc-
* '1 - 2 — 1 cess ive c o l l i s i o n s i s g iven by /V. =('n?iT <v> ) 

c o 
= 'C /(nr^Tf ) . ̂  Sihce nr^ ~ 1 , the "mean free time" c v o ' v o 0 « 
/C 1 i s of the same order i n £ as the' c o l l i s i o n time 

- v 
<1 . Thi s r e s u l t therefore shows an error i n Frieman's c 



- 11 

2 
c a l c u l a t i o n i n which he found sc <^T / « • The r e l a x -

I c 

axtion time ' t f o r the system to approach e q u i l i b r i u m 

may now be estimated and taken as the average time 

required for a p a r t i c l e to exchange with other p a r t i c l e s 
2 

an energy m <v> . Thus to determine , we f i r s t 

c a l c u l a t e the change i n energy A E of ax p a r t i c l e due 

to k c o l l i s i o n s i n an time ^ t . 

In a.t ime At, the momentum of the p a r t i c l e A i s 

changed by an amount 
k 

( I I . 2 ) AJ> = 2 S£t 

where i s the change i n momentum of A i n i t s i t h 
1 k 

c o l l i s i o n and 21 i s the summation over a l l the k 
1 = 1 

successive c o l l i s i o n s . The change i n energy A E i n 
a t time 4 t i s then given by 

2. . 2. 

( I I . 3 ) = tyl* fty^ 

Here i s the o r i g i n a l momentum of A immediately 

before the f i r s t c o l l i s i o n . The expectat ion value 

<^ A E y i s now given by 



( I I . 4) (AE> 

In the case where nr 1, the k d i f f e r e n t c o l l i s i o n s 
o 

may be considered as independent. The expectation 

value ^ E j > may therefore be obtained by 

(II. 5 ) <af> = {-kfjjn ^*I*jf^X*&OM. 

Since the gas i s not too f a r from equilibrium, the 

v e l o c i t y d i s t r i b u t i o n i s approximately i s o t r o p i c and 

we have 

( II . 6) /yv-v s^. ft *i K' xj.t) * o. 

This gives 

( J . ? . 7) <£yt> 

«= o 

for f + j , 

for f « / , 

a n d a l s o 

(II. 8) <Hi^h> ={ °' 
J {<m> 
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S u b s t i t u t i n g (.II. 7) and (II.8) in to (II.4), we f i n d 

k 

Up to the present , we have assumed that the d i s t r i 

but ion func t ion f^ i s unchanged dur ing a c o l l i s i o n . 

However, due to i n t e r a c t i o n s , does change with 

time. To take into account of t h i s , we approximate 

<^UP ±) 2> by 

(11 . 1 0 ) < (fyf} = ^ J J J ^ / A ^ J £ (ikf 

where f 2 i s the average of over the c o l l i s i o n 

time 'c~"c , or to be more s p e c i f i c , 

_ r t*x 

Expanding ^ ( 1 , 2 , ^ ) about t , we obta in 

From (1.8), (1.9) and ( l . 1 0 ) , i t is obvious that 
9 r ft •iL 

—2L. t —2| , -_2L , e t c . , are funct ions of f , f, , etc 
dv <?t 2t -> 4 
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The i n t e g r a l i n ( I I . 1 2 ) therefore includes the e f fec t of 

many-body i n t e r a c t i o n s . Using ( l . 1 3 ) » we f i n d 

-J= — *y ~Z " A / € 

( I I . 1 3 ) 

(11.12.) and ( I I . 1 3 ) therefore give 

This shows that the e f fec t of manybody i n t e r a c t i o n s 

i s of the f i r s t order i n as compared with that of 

the two-body i n t e r a c t i o n . S u b s t i t u t i n g (.11.14) in to 

(11.10) and us ing ( II.9), we f i n d 

k 
(11 . 15) < ^ > = _ i _ 2 <(̂./> 

i  k  

2^r Z <%f} [i + oc<)] 

The magnitude of &p^ i s approximately given by 

(11.16) z k [ < i > W - ^ 

s ince the force a c t i n g on the p a r t i c l e dur ing a 
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c o l l i s i o n i s of the order of <£)/T . In a\i time TT , the 
o r 

average number of c o l l i s i o n s experienced by A i s "C / T ^ 
' 2 

and the average energy change i n A, i s m <v\> , by 

d e f i n i t i o n of T . Thus we have ,. 
r 

s ince m<v> /<£y* 1 /€ and t . - z v y f • 

There i s s t i l l one more c h a r a c t e r i s t i c time which 

we need to cons ider . This i s the time required by an 

average p a r t i c l e to t r a v e l through ax c h a r a c t e r i s t i c 

macroscopic inhomogeneity and i s g iven by t ^ a I»/<v>. 

Thus for a weakly coupled gas i n which nr^ = P O ) 

2 

and <"">/(m<v> ) = o ( € ) , there are three c h a r a c t e r i s t i c 

times: 

( i ) f = r . / <"v> , the c o l l i s i o n time, 
c o , 

2 
( i i ) t A/"*^/€• » the r e l a x a t i o n time, 
( i i i ) rC 1̂= L / <v > , the hydrodynamic time. 

We may now proceed to study the d i s t r i b u t i o n of 

the gas at various time s c a l e s . For s i m p l i c i t y of 

c a l c u l a t i o n , we assume r Q / L ~ € ^ to avoid cons ider ing 

terms of the order r Q / L . Thus -for s /N << £ > we f i n d 

that the various terms i n ( l . 8 ) bear the r a t i o s (see 
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appendix A) 

1 : 0 { € ^ ) : 0 ( 0 : 0(e) : 0(e) , for t ~ T c , 

( 1 X 1 8 ) 1 : 0( fe3) : 0(1 ) : 0(1 ) : 0(1 ) , f o r W - ^ / e , 

1 :.0( £ 2) : 0(1/C) : 0 (1 /€ ) : 0 ( 1 M ) , f o r t - ^ / e 2 . 

Thus we expect to f i n d 

fs«> ~ fs(.*-°)[l+0(*)], f o r t ^ r c' 

f o r t^-C / , 2 

c e 

The s i g n i f i c a n c e of (II.19) can be understood i f we study 

the t r a j e c t o r y of an average p a r t i c l e subject to the 

inf luence of i t s surrounding p a r t i c l e s . 

In short times t~*D , an average p a r t i c l e i s ' only 

s l i g h t l y de f l ec ted from i t s o r i g i n a l path due to i t s 

i n t e r a c t i o n s with other p a r t i c l e s . During th i s time, 

the d i s t r i b u t i o n funct ions can be expanded as a power 

series< i n € , 

(11.20) 2 *l
 tLt)(*r), 

i 

s ince the c o e f f i c i e n t s " ^ ^ ^ w i l l not change i n order 

of magnitude i n £ . Expansions of th i s form f o r the 

d i s t r i b u t i o n and c o r r e l a t i o n funct ions may be used to 

solve the equations of the h i e r a r c h y . 
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This procedure i s no longer applicable i f we 

consider times t~ Z ~ Z: / c. , because, then, the cum-
r c e 

ulative. 1 e f f e c t of the weak i n t e r a c t i o n may modify 

considerably the o r i g i n a l path of each p a r t i c l e . The 

d i s t r i b u t i o n and c o r r e l a t i o n functions may change 

considerably, and the f i r s t few terms of the expansion 

(II.20) w i l l no longer constitute a good approximation. 

Thus a seri e s expansion l i k e (II.20)- o f f e r s no help 

to our c a l c u l a t i o n unless we can suppress the growth 

of the expansion c o e f f i c i e n t s . This i s done i n the 

next chapter. 



CHAPTER I I I 

THE PERTURBATION METHOD 

Frieman's per turbat ion technique i s a i g enera l 

i z a t i o n of the well-known method i n nonl inear mechanics 

developed by van der Pol ( 1 9 2 6 , 1927)> and Bogoliubov 

and Krylov (1937)° In most per turbat ion methods, we 

expand the per turbat ion funct ions i n powers of a smaJ.1 

parameter ( , say. Such expansions can be use fu l i f 

the c o e f f i c i e n t s of the d i f f e r e n t powers of € , which 

are funct ions of time, are of the same order i n €. 

and remain of that order i n the time scatle we are 

cons ider ing . This i s of ten the case when we consider 

short time processes , the expansions can, then, be 

truncated . However, f o r long times, i t is; more l i k e l y 

that some of the c o e f f i c i e n t s grow beyond bound and 

the per turbat ion method breaks down. To overcome such 

a d i f f i c u l t y , new parameters are introduced to allow 

f o r a more general time v a r i a t i o n . Since the d i s t r i 

but ion funct ions have an l a r g e r domain of d e f i n i t i o n , 

newv condit ions are necessary to determine t h e i r func

t i o n a l dependence on such parameters,, Frieman i n t r o 

duced such conditions; by r e q u i r i n g that the expansion 

c o e f f i c i e n t s remain of the same order i n £ i n the 

time scale being cons idered. I t turns out that such 

condit ions lead d i r e c t l y to the k i n e t i c equations 
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required. The a p p l i c a b i l i t y of the perturbation method 

requires further study. We have given some simple 

examples; i n appendix D. 

The method we use here: i s e s s e n t i a l l y a method 

of v a r i a t i o n s of parameters. We introduce the param

eters © r > r = 0 , 1 , 2 , . . , which are r e l a t e d to the 

varia b l e t by the following d i f f e r e n t i a l equations, 

(III.1) " # - = S T-M*,-

These give 

(HI. ?) et(*)~ + &tU-o)j T-0,Jy2,^ 

The freedom i n choosing the i n i t i a l values 0^(0) allows 

us to treat the parameters 0r as independent v a r i a b l e s . 

We t r y so lu t ions of the form 

(III.3) f*) - Z ^ <*„ oJy * ; - Z 

where the c o e f f i c i e n t s f ^ ^ ( {̂ r} ) have the propert i e s 

that a l l f ^ 1 ^ {& } ) , i = 0 , 1 , 2 , . . , are of the same 

order i n € , and t h e i r f i r s t d e r i v a t i v e s — , i , r = 0, 

1 , 2 , . . . , are also of the same order of magnitude i n 6 

The- time d e r i v a t i v e of f^(t ) can now be w r i t t e n 
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as 

( I I I . h ) 

Thus for time t < ^ T / £ m , where T i s some finite^ time, 

we have 

d u . 5 ) m - z ^ Z -fr 
*t n=o ff-e 

a-hd 

( I I I . 6) ^ w « j : * * //* f ' * 

S i m i l a r expressions can be obtained for g ,h , e t c . Since 

the c o r r e l a t i o n funct ions g, h , e t c . are of the f i r s t 

order i n £ as compared with the corresponding reduced 

d i s t r i b u t i o n f u n c t i o n (see appendix B) , w»e write for 

t < T/em 

d u . 7 ) j = x e'ftfay), 

l - £ t't^ri), e tc . 
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and 

2^ » = 1 J = ^ > A % ; 

We: nowtr proceed to solve the equations of the 

h ierarchy f o r f ^ ( t j . Since we have assumed that 
j h 

r / L ^ f , the spat iad inhomogeneity of the gas i s 
1 

apprec iable only i n the fourth order i n € . Subs

t i t u t i n g the expansions ( i l l . 7 ) and ( I I I . 8 ) into 

( 1 . 1 6 ) and ( 1 . 1 7 ) , we obta in d i f f e r e n t sets of 

equations f o r d i f f e r e n t orders of approximation. 

To; study the approach to e q u i l i b r i u m of the gas, 

we must perform the c a l c u l a t i o n i n such a way that 

the r e s u l t i s v a l i d for times longer than the r e l a x -

a t i o n time ( ' T c / £ )• 

Zeroth Order Approximation 

To the lowest order i n Q , equation (I.,16) gives; 

( I I I .9) JL. = 2l_ = O. 

In conformity with (II.19) th i s shows that any v a r i a 

t i o n of f | ° ^ with time can be not iced i n at most the 
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f i r s t order i n € . Of course, to zeroth order i n € , 

the c o r r e l a t i o n funct ions g, h, e tc . can be neglected . 

F i r s t Order Approximation 

To the f i r s t order i n € , equations ( 1 . 1 6 ) and 

( I I I . 9 ) give-

where we have used the fac t that f* ' i s independent 

of 0 . In order that f j 1 ^ ( ® < > ) does not grow, with 6»„ , 

we f i x the f u n c t i o n a l dependence of f | ° ^ on 9 by 
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put t ing 

( I I I . 1 2 ) _ £ £ = o. 

This and ( i l l .10) give 

( I I I . 1 3 ) 2h . 
as, 

Hence; f o r t < T /e , we obta in c 

(II,13,. ^ - S - ^ - S f J - " -
To the same order i n e, equation ( l . 1 7 ) gives 

(xxx.u) - £ + J-JSL^ 

Equation (III.14) can be solved e a s i l y with the help 

of F o u r i e r and Laplace transforms. We def ine the 

F o u r i e r transform of a square in tegrab le func t ion F(x) 

as 

r _ ik-x 

( I I I . 1 5 ) F(*) =J<tz R*) & 

The Laplace transforms; of a i funct ion F ( &0 ) i s def ined 
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as; 

.(III. 1 6 ) f(2)=J JQo f(6J& 

where. F(0ff) has; been assumed to s a t i s f y aJ.1 the necessary 

properties; of a. Laplaice transformable- func t ion and l m(z:.)^0, 

The transformed equation of ( i l l . 1 4 ) i s g iven by 

( I I I . 17) -"ftp)-]"(*,:•>) +it-(Xj-x,)J'0c$*> 

Guided by Grad's theorem (see appendix c ) , we assume that 

the i n i t i a l values of the c o r r e l a t i o n s van i sh . Hence 

g(t=0) and 

(III. 18) G = o) - O; 

and ( i l l . 1 7 ) gives; 

(xzi.,9) L ^ u<«> 

This gives 
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Second Order Approximation 

Equations, ( i l l . 9) , ( i l l . 12.), ( I I I . U 3 0 and (l.1i6) 

give 

( i l l . 21!) 

Using the same argument as. i n the s i m p l i f i c a t i o n of 

( i l l . 10), th i s gives; 

(III .22 ) 

The Laplace transform of th i s gives 

It i s obvious: that on i n v e r t i n g f ~ ' ( z ) , the; dauble 

pole at z = 0 w i l l give at term p r o p o r t i o n a l to &e . 

In order to remove such secu lar behaviour, we use 

the undetermined f u n c t i o n a l dependence of f j ^ and 

f | ° ^ on 6^ and 6^ r e s p e c t i v e l y to e l iminate the 

secu lar terms.. We take the theorem 
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( I I I . 2,4) I™ (-iz)f(z)~ A™ 

as a guide f o r such a procedure. 

Using ( III .24) , equation (III.2-3) gives 

O 

Thus f { 2^(0 )—*-f \Zl^( 9,=0) as eo—*~°o i f we put 

We now use the Diraic. r e l a t i o n 

J P 

( I I I .27) = 7 iirS(x) 

This and ( I I I . 1 9 ) give 

(111.28) ^ ^ ^ y - v ^ ^ . i . ^ r«>*Urfito$>2l 

or 
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S u b s t i t u t i n g ( i l l . 2 8 ) into ( I I I .26), we f i n d that the 

i n t e g r a t i o n over k of the f i r s t term on the r i g h t hand 

s ide of ( I I I .28) vanishes s ince the integrand i s an 

odd func t ion of k. Hence Wve> have from ( i l l . 2 6 ) 

Since f ^ ° ^ i s independent of w e u s e * n e same 

argument as that fo l l owing ( l l l . 1 l ) and put 

c l f h f > l 

S u b s t i t u t i n g ( i l l . 2 6 ) in to ( i l l . 22?), we obtatin 

( I I I . 3 3 ) 

where 

( I I I . 30) c[jfy£b)]-

(III. 3 1 ) 

This and ( i l l . 2 9 ) give 

(111.3a.) — k -

http://lll.1l
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where X 1 , v 2 , 0 Q ) and l i m - i z g ' ('-k-.v^ , v g , z ) 
z.-»- 0 

are given by ( i l l . 2 0 ) and ( i l l . 2 8 ) . Using ( i l l . 2 k ) , 

( i l l . 3 3 ) shows that 

( I I I . 3k) Q 

o 

We now wri te down the equation f o r f ^ t ) f o r time 

t < T f c / e 2 . From ( I I I . 5). ( I I I . 13)' and ( I I I . 22), we 

obta in 

which for t'v-t' gives 

( I I I . * , ^-.t'C[ffojt%], 
Neglect ing 0 ( £ ), th i s gives 

(111.37) - sCLfro.&t*)], 

We have thus obtained for f^(t) an equation which 
2 i s v a l i d f o r times t~T ~ t / € s ince we have- only r c 

performed t h e • c a l c u l a t i o n up to the second order i n € 
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However, i t i s e a s i l y seen tha;.t f or longer times t>T , 

equation ( i l l . . 37.) w i l l only be modified by an amount 

of the order £ . In f a c t , by removing the; secu lar 

behaviour of the funct ions f j i ^ ( {©r}) , we can f i x 

the f u n c t i o n a l dependence of on 0 i n such a way 

that a l l the derivatives—r~r- are of the same order i n 

€ . Thus adding higher order terms introduces c o r r e c t 

ion terms at l eas t times smal ler . 

I t i s i n t e r e s t i n g to see that equation ( i l l .37) 

cons is t s only of a b inary c o l l i s i o n term e f" f ( 1 ) , f ^ (2 ) J 

even though we have a t moderately dense gas i n which 
3 

nr ^ 1 . Thi s i s i n fac t a x consequence of the weak o 
i n t e r a c t i o n between the p a r t i c l e s . . 

Equation (III .37) Is the Landau's equation (see 

Sandri T1963 and B'alescu 1963) which has been s tudied 

i n gre?ait d e t a i l by Ba lescu . I t possesses; the property 

of i r r e v e r s i b i l i t y as ;described"by Boltzmann",s- H-theorem. 



CHAPTER IV 

CONCLUSION 

We have fol lowed Frieman's c a l c u l a t i o n and 

obtained an i r r e v e r s i b l e equation which des'cribes 

the approach -to thermal e q u i l i b r i u m of the gas by-

means of the nonl inear p e r t u r b a t i o n technique just 

descr ibed . In a d d i t i o n , we have estimated the 

r e l a t i v e orders of magnitude of the terms i n the 

equations of the h ierarchy and obtained condit ions 

under which Landau 1 s equation can be d e r i v e d . 

Fo l lowing Grad's approach, we have proved Grad 1 s 

theorem (see appendix C) and added the p h y s i c a l 

condit ions which allow the use of the theorem. 

Two examples have been given (see appendix D) to 

c l a r i f y the a p p l i c a b i l i t y of the per turbat ion 

t e c h n i q u e „ 
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APPENDIX. A 

ORDERS OF MAGNITUDE OF THE DISTRIBUTION FUNCTIONS 

Since our method r e l i e s on the knowledge of 

the r e l a t i v e orders of magnitude of the terms i n the 

equations of the h i e r a r c h y , i t i s important to obta in 

ai correc t estimate of the former, Frieman has made 

such an estimate for the f i r s t two equations of the 

h i e r a r c h y . To do so, i t i s necessary to introdvice 

some assumptions about the d i s t r i b u t i o n func t ions . 

However, many of these assumptions do not appear 

c l e a r l y i n Frieman"s paper nor i n S a n d r i ' s . We. 

therefore f i n d i t necessary to re-examine the various 

terms i n the equations and determine the necessary 

assumptions. 

We assume that the gas i s not too f a r from 

e q u i l i b r i u m . The s - p a r t i c l e d i s t r i b u t i o n func t ion 

may therefore be w r i t t e n as. 

( A . I ) f s c i , . ~ , S ) = f ; f i , . . , s ) [ H frChs*?} 

where- f ° ( 1 , 2 , . . , s ) denotes the s - p a r t i c l e d i s t r i b u t i o n s 
at e q u i l i b r i u m , g g ( l , 2 , . . , s ) i s a smal l quant i ty , and 

the d e r i v a t i v e s a r e assumed small compared 
3v 0 x 

with f— and — r e s p e c t i v e l y . ' To obta in an 
* - a t 
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e x p l i c i t form of f ° ( l ,2, . . ,s), we f i r s t ca l cu la t e the 
s 

N - p a r t i c l e d i s t r i b u t i o n funct ion f ° (11, 2 , . 0 ,N) at 

e q u i l i b r i u m . The Hamiltonian for N - p a r t i c l e s i s given 

by 

Using ai canonica l ensemble, we f i n d 

(A. 3) W^'") = z e 

where k i s the Boltzmann constant , T the temperature 

and Z the p a r t i t i o n func t ion given by 

The s - p a r t i c l e reduced d i s t r i b u t i o n funct ion f ° ( l , 2 , . , s ) 

i s given toy 

( A . 5 ) = &'/ffi<W>J^r^\l"J*i'~ 

- ^ < > / TT ^ e 

We now write 
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(A. 6) 

Equation (A.2) gives 

and 

(A.8) = ' n - ^ 

Hence from ( A . 5 ) , (A„7) and ^A. 8) , we obta in 

dv kT J J B2c, " 1 1 -« * 
_ o 6 «= ("= S + J 

* - -0 2 > 

and 

( A . 1 0 ) - s?'fJ-LJ± 
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For p,j = 1 , 2 , . . , a, we have 

We now assume t h a t , because of the weakness of the 

i n t e r a c t i o n , the c o r r e l a t i o n s are so s m a l l t h a t the 

change i n f N w i t h x ^ j w i t h i n the range of the p o t e n t i a l 

may be n e g l e c t e d . Thus we have f o r = 1 s2,.. ,s and 

j = s + 1*, . . , N 

(A. 1 2 ) 5 1 s / / J f ! ^ f j 4 i s ^*f*,4f ) t 
v ' J J 93i SiJ V *tl V T * S2. / 's' 

JJ 

U s i n g ( A . 1 1 ) and ( A . 1 2 ) , (A . 1 l 0 ) g i v e s 

To e s t i m a t e the magnitude o f — — - , we f i r s t 

c o n s i d e r f ° . From (A.2;) and (A.3) we o b t a i n the 

homogeneous p r o p e r t y f o r f°, 

where a i s an a r b i t r a r y v e c t o r . Hence (A»5) and 
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(A.1^) give 

(A. 115) f s W ' , V $ - *JjK;^ 

A f t e r changing v a r i a b l e s according to ( A . 6 ) , 

equation ( A . 1 5 ) gives 

where we have used the same symbol f ° to denote both 

the o r i g i n a l and the transformed functions-.. Thus we 

have 

( A . 1 7 ) 

( A . 1 8 ) 

( A . 1 9 ) 

oi ~ ±, 

Jot 

I f we assume that 

and (A. 

9L 
L • j, we obta in from (A J ) 
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(A.2.o) -Ik „ / r 

T h i s , i n f a c t , amounts to the d e f i n i t i o n of L . 

Uaing the r e s u l t s just obtained, we now estimate 

the r e l a t i v e orders of magnitude of the various terms 

i n the equation 

(A.21) f f r + Z v . - j - - - L j j 9*a*r*«» . ± l f f 

In terms of the coordinates X, x. . , i , j = 1 , 2 , „ . , as 

given i n ( A.6) , equation (A .21) gives 

N-s 

j-j »ar^-) »*j, 

— 1 

where V = s > ' v . . From ( A o l ? ) , ( A . 18) and ( A . 1 9 ) , 

we have 

i=1 - 1 

( A .24) 
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( A . 2 5 ) 7 c*r*r—f* f^-o/— )J ^ % £ 

s s 
( A . 2 6 ) - - ± 2 1 — ^ ~ -«*  f s  

j ~ i nt-j d*jn mre 

2 <lr> 

Here we have used the f a c t that 

3 

a ^ Is 

2 r 

^ fs . 
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The r e l a t i v e orders of magnitude of the various terms 

i n ( A .21 ) are 

(A.28) 1 : <JZL : s[s + ( - 1 ) ] ± % 
• ' L \ Si. r-i w^*> r 

In p a r t i c u l a r , i n the l i m i t N—>°o , V—* oo , the equations 

for s = 1,2 give 

(A.28) w i l l be used as a guide i n the d i s c u s s i o n i n 

chapter I I . 

It i s important to see that (A.30) d i f f er s ; from 

Frieman* s; est imate, 

( A . 3 1 ) 1 y <vn ; > < V ? T - JM>- <£l 

iru the t h i r d term which i s supposed to give the,' order 
' ^ f2 

of magnitude of (v^-v^.). ^—. Since the gradient of 
f^ with respect to the r e l a t i v e coordinate x = x̂  ~2_2 

should depend on the magnitude of the i n t e r a c t i n g 

p o t e n t i a l J_ , F r i e m a n ' s ; r e s u l t i s i n c o r r e c t . 
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APPENDIX B 

ORDERS OF MAGNITUDE OF THE CORRELATION FUNCTIONS 

We now.estimate the orders of magnitude of the 
<$? < 

c o r r e l a t i o n funct ions assuming that —r - v T~Z~ ^ ^ 

and that N>> s = 0 ( 1 ) . The s - p a r t i c l e d i s t r i b u t i o n 

func t ion .f ° ( VI, 2 , . . , s ) i s g iven by s 

(B . 1 ) / s V v v O - SL*J"fa»^<^.S^ &mvr>s) 

z J 

* [<4v Jv J sn -v 
. - 3 A/ V-i V 

f o r s = 19 we have 

Hence from (B.,1) and ( B „ 2 ) , w-e obta in 
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= "F fen e z 

The exponent of the integrand can be w r i t t e n i n the 

f o l l o w i n g way 

(B . 4 ) -

The- i n t e g r a l i n ( B « 3 ) then becomes 
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N-L V 

From ( B . l ) , (B.3) and (B.5)» we obta in 

(B.6) y/<w; - fs^w-o&o 

kT J 

D i f f e r e n t i a t i n g (Bo 6.) with respect to x , > we obta in 

(B.7) ^ I / / ^ / ^ H ^ ^ f ^ 7 = 

We» therefore obta in for g 8 h , e tc . that 
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(B.. 8 ) J « £ O, 2) OCe) - / , f ^ a ; Ofe^ 

eitc. 

and 

.(B.10) 

(B.11) Site . 

D i f f e r e n t i a t i n g (B.6) with respect to v , we obtadn 

Thus we have 

(B.13) 

(b . 114 ) et c 

F i n a l l y , d i f f e r e n t i a t i n g (B.8), (B»9) with respect to 

X and using (A.20), and (B.6), we obtain 



- k5-

( B . 1 5 ) 3(i<2) ~j-3ci>*>, 

( B . 1 6 ) kw). 

From these r e s u l t s , we may now estimate the orders 

of magnitude of the various terms i n equation ( l . 1 7 ) > 

The l e f t hand side may be estimated us ing ( B . 1 - 0 ) , ( B „ 1 I 1 ) , 

( B . 1 3 ) , ( B = l 4 ) , ( B d 5 ) and ( B . 1 6 ) . The i n t e g r a l term 

on the r i g h t hand side may be estimated from the r e s u l t s 

of ( B . 1 2 ) , (A. 2-7), (B.8) and ( B . 9 ) . Thus the var ious 

terms i n ( 1 . 1 7 ) bear the r a t i o s 

( B . 1 7 ) f e 6 - - ^ I . e ^ 2 L J 

Z. r 0 Y . n -r. 

This r e s u l t w i l l be used as av guide to solve-; equation 

( 1 . 1 7 ) f or g.. 
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Comparing ( B . 1 7 ) with (A. 31 ) » we; see that they 

give exactly the same r a t i o s . Thus Frieman's estimate: 

given by (A = 3 1 ) f o r the equation of (see (I. 1 0 ) ) 

actuailly giv.es? the relative- orders of magnitude: of the 

terms i n the equation of g (ssee 1 . 1 7 ) » It i s therefore 

not s u r p r i s i n g thaet he; obtained the correct r e s u l t i n 

the calculation, of g even though he had no>t made ax 

s i m i l a r estimate f o r the terms i n the equation of g. 

http://giv.es
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APPENDIX CT 

GRAD'S THEOREM 

In this appendix, we study Grad's theorem which 

states that i f a;i dis t r i b u t i o n function i s selected at 

random fo r a system of very many p a r t i c l e s , i t w i l l 

i n a l l l i k e l i h o o d s a t i s f y the molecular chaos condition. 

We- s h a l l follow the proof due to H. Grad (i960). 

I. The Coarse-graining 

We consider the d i s t r i b u t i o n function 

given i n chapter I. For convenience, we introduce the 

following s i m p l i f i e d notations 

( c . 1l) x 

I ( X, ... X v 

The s - p a r t i c l e reduced d i s t r i b u t i o n f defined i n 
s 

chapter I may now be written as (see 1.5) 

(C.2d) 

where we have denoted f by f v 

S Sv 

(N) to emphasize the 
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dependence of f on the number of p a r t i c l e s N. We 
s 

have omitted a f a c t o r 5X? i n ( c . 2 ) f o r convenience. 

To investigate the behaviour of f i n the l i m i t 
(N) of large N, we study the sequence of functions f v ' s 

with N increasing towards i n f i n i t y . However, one 

basic d i f f i c u l t y arises; since we have to compare 

functions with d i f f e r e n t values of N and hence 

d i f f e r e n t numbers of v a r i a b l e s . It w i l l be seen 

that such a a d i f f i c u l t y i s overcome i f we? use a; coarse

grained d i s t r i b u t i o n and make use of the symmetry 

of f N . 

We divide the 6-dimensional phase space of 

each p a r t i c l e into r equal c e l l s - e a c h of volume 10 . 

The c e l l s i n the phase space of the i t h p a r t i c l e are 

l a b e l l e d by the index 4^ which takes i n t e g r a l values 

£ ^ = 1 , 2 , . . , r , ( i = 1 , 2,..,N), so that i f the coord

inates of the i t h and j t h p a r t i c l e s are of the same 

values, they must f a l l i n the c e l l s £\ and £ 

r e s p e c t i v e l y with <f* . = £ .". The 6N-dim. jT-spatce f o r 
N 

the N- p a r t i c l e system i s therefore divided into r 

cubes; each having ai volume (v^ of 6N-dimensions;. 

We l a b e l such cubes by the set ( £ ^ , . . a n d 

define the coarse-grained d i s t r i b u t i o n 

( C 3 ) -JjcxyJ: 
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where: / ( )dx denotes the i n t e g r a t i o n over the 

cube £ . The normalization condition of f^ i s then 

given by 

- 1. 

Here 2 i s a summation over a l l cubes. For a given 

cube, we count the number k of indices £. which ar 
s i 

equal to s. k g therefore takes the i n t e g r a l values 

k = 0,1,2,..,N and 
s 

(c.5) Z ks - N. 

By the symmetry of f N > the value of the i n t e g r a l 

J* f^(x)dx i s the same f o r ad.1 cubes c* which give 

the same set k = ( k , , . . k ^ ) . ¥ c may therefore 

consider f as a a function of k. In f a c t . f t i s the 
£/. S 

p r o b a b i l i t y of f i n d i n g x, 9 . .,x.T i n the c e l l £ of 

the .T-space. For convenience, we use the symbol 

f(k ) to represent such aa function. We have therefor 

transformed the function ft of N -variables into the 
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function f(k) of r v a r i a b l e s . It i s then possible 

to investigate the l i m i t of f^ as N -*• 0 0 by studying 

the function f(k) i n the k-spaee. 

The transformation from the £-space into the 

k-space i s not one-one. The number of points i n the 

£ -space which are mapped onto a given point i n the 

k-space i s 

(C.6) 

From (C.4) s we f i n d 

We now introduce the function 

,0.8, 

which therefore obeys the normalization condition 

( e s ) 2 F % - i 

The function F ^ ^ ( k ) may now be taken as the coarse

grained equivelent i n k-space of the o r i g i n a l 

d i s t r i b u t i o n function f (x). Corresponding to the 
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transformation from the -space into the k-space, 

there i s a s . transformation mapping the f - space onto 

a i s i n g l e 6 - d i m . space which we s h a l l q a l l the /U-space. 

The l a t t e r transformation i s a c t u a l l y the r e s u l t of 

mapping the 6 - d i m . spaces of a l l the N p a r t i c l e s in to 

the y^-space. Thus for each point i n the T-space, 

there are N points i n the jU -space each of which 

corresponds; to the coordina-tes of an i n d i v i d u a l 

p a r t i c l e . We d i v i d e the ^ - s p a c e i n exact ly the same 

way as before into r equal c e l l s of volume W . The 

f u n c t i o n F ^ ' ( k ) maay now be i n t e r p r e t t e d as the prob

a b i l i t y of obta in ing , . . , k p a r t i c l e s with coordinates 

i n the c e l l s 1 , 2 , . . , r r e s p e c t i v e l y . 

For a symmetric func t ion ^ ( x ) , the mean value 

i s g iven by 

( d o ) <<£> = J g&fawJx. 

I f we neglectt the v a r i a t i o n of f (x ) i n each cube, we 

obta in the coarse-grained equivalent 

( C . 1 1 ) <£> = 2 J / fc*)dx 

" z K h 

z moo f°°(*) 
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where stands for the volume average of £?F(x) over 

the cube , that i s 

(C.12) $(k) - £ = ^~V/ <£(X)JX, 

Consider the o n e - p a r t i c l e d i s t r i b u t i o n 

(c.13) = /^-^fv 

* N 

where 

(c.14) j - ̂ 2 /̂-x,;. 
1 «' = i 

Thus f (x-^jt) = f 1 (x ^ j5v^ s t ) i s just the mean value of 

^ > The volume average of over the cube £ i s 

I f we assume that the coordinates x^ = (x^'Z-)) 1 : * - e ^ n 
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the c e l l £., = s, we obta in 

(c.i6) JfU*Z-*l')<lx' - < 

I F - 5 . 

N f 
Thus the express ion 2 /5 (x!-x )dx' merely counts the 

i fl£ 1 1 

number k of ind ices £ . which are equal to s. ( C . 1 i 5 ) s > x 

therefore: gives; 

( c . 1 7 ) = j f i , s ; - cu'1 (A) 

The coarse-grained equivalent of f (x .^ i ) f or x^ l y i n g 

the c e l l ^ = s i s i n 

(G..18) F i c s ) = «, 2 §ck,s)fa)- < - i> 

which s a t i s f i e s the normal i za t ion cond i t i on 

+ 

s - i 

r 
Here 2. i s a isummation over a i l the c e l l s of the 

s=1 
6 - d i m . phase space of the 11st p a r t i c l e . The f u n c t i o n 

F^(s) may be i n t e r p r e t t e d as the p r o b a b i l i t y of having 

the coordinates of ai p a r t i c l e i n the s th c e l l of the: 

^A. -space . 
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S i m i l a r l y , the two-par t i c l e d i s t r i b u t i o n 

(c.20) £ cx^-t) = Jdx'faCxoZ&rXdS&L-x*) 

i s the mean value of the func t ion 

(C . 2 1 ) 

The volume average of - t ^ " * " 3 S i v e n ° y 

-1 
.s + t. 

(C.22) I f t ^ / ) - l^2UCU-0] * 

Here s i s the. c e l l conta in ing x^ and t i s the c e l l 

conta in ing x^. The coaarse-grained equivalent of 

fg(x j X ^ j t ) i s therefore g iven by 

(c.2.3) E.Cs.ir) - LNCN-O] K , 

^<k(k~J)> i f ^ = t 

This> i s the p r o b a b i l i t y of having k and k p a r t i c l e s 
S "C 
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i n the s th and t - t h c e l l s r e s p e c t i v e l y of t h e ^ - s p a c e 

S i m i l a r l y for f ( x 1 , x 2 , x , t ) , we have 

('Jjti ^ V i 

and the corresponding quant i ty 

- i 
( c . 25) 5 5 a; A; - J x < 

Here s , t and u are the c e l l s conta in ing x 1 ,'X2 and x^ 

r e s p e c t i v e l y . The coarse-grained equivalent of 

( x 1 , x 2 , x „ , t ) i s then given by 



- 56 -

(c.26) F3c^)- frc-m-so] * î &-';*;> i f 

S = f = 26, 

I I . Molecular Chaos 

We wisii to show i n th i s s e c t i o n that the molecular 

chaos c o n d i t i o n i s s a t i s f i e d as N becomes l a r g e , or 

more p r e c i s e l y , 

F2 Cs,-t) - F±(s)FiCi) - o(^) 

For convenience, we change the v a r i a b l e s k g in to 

y = k / N and use the same symbol f o r F^ ' (k) as at 
S S-> 

f u n c t i o n of y. That i s , we denote F ^ N / ( n y ) = F ^ N / ( k ) 

by F ( N ) ( V ) . From ( C . 1 8 ) and (c.23), and the assumption 

that k / N = 0 ( 1 ) , which means that the dens i ty i s every-s 
where nonaero, we obta in for s^ t , 

= H2<K K> {1+ O (1)} -H U><*t> 
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- <*y*> -<>><>> +- <?6^ 

and f o r s = t , 

( C 2 8 ) F^sO-F/sJF/s) = [«(H-0]~J <Uk-l)>- N'Uk^ 

- N *<^- k,> / i t - A / ~ ^ > 2 

- N * { < l ? > - < k j } + N - ' < l ? > O Q ) 

Thus F 2 ( s , t ) - F ^ s j F ^ t ) approaches zero i f 

<y y.> - <y >< yJ> tends to zero i n the l i m i t of 

large N. The expression 

2 T - > - < > > < > > 

i s i n faict the eovariance matrix (see Anderson, 1 9 5 ^ ) 

of F ^ N / ( y ) . That i s 
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The r i g h t hand s ide of ( C . 2 9 ) approaches aero i f F^ N ^(y) 

becomes peaked and approaches a. £ - f u n c t i o n i n the l i m i t 

of large N. Thus i f F^ N ^(y) i s a ^ - f u n c t i o n which i s 

peaked at y ° = ( y ° , » • • > y ° ) > w © have 

(C.3.0) Z 

To study the propert i e s of F (s.;)f F^ (s , t ) , . . , etc . 

f or large N, we inves t iga te the propert i e s of F ^ ^ ( y ) 

i n the l i m i t N —*-co keeping r f i x e d . In doing so, we 

study F ^ ^ ( y ) as func t ion of aa f i x e d number of v a r i a b l e s 

To agree with p h y s i c a l s i tuat ions . , we take the 

usual thermodynamic. l imit , 

- U oo , 

(C.31 ) \ SI —' oo t 

a: f i n i t e ; constant . U = n = 52. 

Then i n the c o a r s e - g r a i n i n g procedure, we choose w of 

macroscopica l ly small dimensions and yet large enough 

to be regarded i n f i n i t e in , the microscopic, s c a l e . 

For a system whose dens i ty i s nonzero everywhere i n 

the volume SI , a.i s p a t i a l volume corresponding to aa 

volume K J i n the ^a -space a lready contains ai laarge; 
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number of p a r t i c l e s . This ensures that the numbers 

k , , k o S . . . , k of p a r t i c l e s i n the c e l l s 1,2 , . . , r of the 
i d r 

y#-space are so large that approximate c a l c u l a t i o n based 

on large numbers, such as the S t i r l i n g ' s formula, may 

be used, 

By d e f i n i t i o n , we have 

( C.32) F (y) - F Ck) = ( J / C y . 

This does not approach a. l i m i t as N -*-OQ . To i n v e s t i 

gate F ^ 7 ( y ) i n such a i l i m i t , we f i r s t consider the 

d i s t r i b u t i o n of ausystem of N independent p a r t i c l e s 

i n a volume SI having a.i f i n i t e dens i ty everywhere i n 

SX. . The; d i s t r i b u t i o n func t ion may be w r i t t e n as 

f N ( x ) = f 1 ( X l )f 1 (x 2 ) . . . . f 1 (x N ) . Put t ing f , - ^ ) = P s 

where s = £ \ , we f i n d 

- A 4 /jS" fr''. 

The values of p , s = 1 , 2 , . . , r , are f i n i t e i f the 
s 

c e l l s ; £ \ have been chosen large; enough. From (C.32) 

and (C.33)» we obta in 

(C.33) 
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which i s obvious ly at c o e f f i c i e n t of the mult inomial 

expansion 

( c . a s ) <k*t>*-'+V-r^ v̂ .; *, A 4 -k . 

This and the normal i za t ion cond i t i on of F^ N ^(y) give 

(c .36) 2 />, - L 
s = i 

D i f f e r e n t i a t i n g ( C . 3 5 ) , we obta in 

» A ^ « , 

( c . 3 7 ) 

Thus the covariance matrix, def ined i n ( c . 2 9 ) i s g iven 

by 

( C ' 3 8 ) ^st = <fryt> ~<Js><Jt> 

NtH-1) i , i . 
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This tends to zero as N -*-«*> . The d i s t r i b u t i o n ( C 3 * 0 

i s therefore peaked â t y g = p g , s = 1 ,2 , . . , r as N 

To obta in the l i m i t of F. ^ ' ( y ) , we f i r s t consider 

i t s maximum which i s g iven by the maximum c o e f f i c i e n t 

of the mult inomial expansion (c.35) and s a t i s f i e s the 

i n e q u a l i t i e s 

(C.39) Nj>s-1 < ks ^ (N + t-L)f>SJ i=\*y->% 

(see W. F e l l e r , 1957). Put t ing 

(C.40) 

(C39) gives 

+ JL s - 1 2. 

Also from (C.5.) and (C.36), we obta in 

1~ 

(C-.42) 2 4 = ". 

Since r , p g are f i n i t e , ( C . 4 o ) and ( c . 4 l ) ensure that 

the 1 are f i n i t e and the k become large as N tends s s 

to i n f i n i t y . Using the S t i r l i n g ' s formula* Nl = 

AJ 2Tjr N ( N / e ) N , we; obta in 
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(c.43) y = UT, ks ' 

S u b s t i t u t i n g (c.43) in to (C.34), the maximum of F^N)( 

gives 

(c.kk) r ty) - — : Wk s 

s 

JTJF7T (4)\jr A 

r J. 

We now consider another example i n wihich the 

system has a. uniform d i s t r i b u t i o n . In t h i s case, 

f (x ) i s a constant and 

This and (C.32) give 

Comparing (C.4:6) and ( C 3 4 ) , we f i n d that the former 

may be obtained from the l a t t e r by put t ing p = p s 

s = 1 , 2 , . . , r . Thus the d i s t r i b u t i o n (c.46) gives 
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r e s u l t s s i m i l a r to the ones f i r s t d i scussed . 

From the previous two examples, we expect that 

the l i m i t l i m {"F ( y ) J ^ ex i s t s f o r a reasonable 

d i s t r i b u t i o n f ( x ) . For example, i t i s reasonable to 

assume that th i s i s true f o r a d i s t r i b u t i o n which i s 

not too f a r from being uniform or a i d i s t r i b u t i o n i n 

which the c o r r e l a t i o n s between p a r t i c l e s are not too 

l a r g e . We therefore consider d i s t r i b u t i o n s for which 

the func t ion j^ F ^ ^ ( y ) J 1 ^ approaches as l i m i t uni formly 

Our aim i s nowv to study the behaviour of F ^ ^ ( y ) when 

f ( k ) i s "randomly" chosen among those; which give 

definite? l i m i t s f or J F ̂ N ̂  (y ) J 1 / / N . To do so, we f i r s t 

prove the fo l l owing theorem. 

THROREM. I f the func t ion ^ ( y ) , which i s the l i m i t of 

the sequence [ F ^ ^ ( y ) j a t t a i n s i t s maximum at ai 

s i n g l e point y ° , then F ^ ^ ( y ) becomes peaked i n the 

l i m i t of large N. 

From (C.32)„ we see. that F ^ ^ ( y ) takes d i s c r e t e 

values; as the discrete; v a r i a b l e s y ^ y ^ ' • • » Y r assume 

values from 0 , l / N , 2 /N, . . , (N-1 ) /N, 1 . However, as N ~ , 

it , i s convenient and resonable to consider F ^ ^ ( y ) and 

hence ^ ( y ) as. continuous funct ions of the continuous 
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variables y^,y^>••»yr' We m a y therefore i n t e g r a t e with 

respect to the y^ rather than sum. In f a c t , the sum

mation over consecutive vaules of y^ may be w r i t t e n 

as 

( C . 4 8 ) 

as N —*• °o . 

We assume that 'V'(y) at t a i n s a maximum at 

y° = (y°,y°,..,y°) such that t ( y ° ) - t (y) > o 

f o r y / y°. To show that F ^ ^ ( y ) i s peaked at y°, we 

choose an a r b i t r a r y region R: | y - y° | < Y{ . We wish 

to show that the i n t e g r a l of F ^ ^ ( y ) outside this; 

region becomes a r b i t r a r i l y small compared to the sum 

i n s i d e the? region i f N i s chosen s u f f i c i e n t l y large. 

In the region R' which i s the whole region outside R, 

we have (y)< ^ ( y 0 ) (1 - oC ) f o r some ai , 0 < ot < 1i. 

Within the region R, a small subregion of volume V 

may be found such that ^ ( y ) > (y°) (1 - • Thus> 

we have 

( c . 4 9 ) Jr [ f ( y ) ] " j y [ ? ( ) • ) ? V, 

and 

(cap') J C*(j)j*cty < a-*)" L f i p f , 
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By d e f i n i t i o n of uniform convergence:,, we have 

(C.511) 
1 

< e 

for any £ > 0 and a i l s u f f i c i e n t l y large N. Th i s g ives 

(C.52) u-€)N[-t(y)f< F i y ) < 0+<?[l(y)]M. 

Choosing and us ing (C.49), (C. 50) and (C5.2), 

we f ind. 

(c.53) X /^"fy;- NrJJy r^fi 

Since F ^ ) ( y ) i s p o s i t i v e d e f i n i t e and normal ized, we 

haare..N^[ R dy F ^ N / ( y ) ^ 1 and the r i g h t hand s ide of 

(C.53) i s bounded. For the reg ion R *., we have: 

(c.5<0 2 
. -tn) ,r/j (N), V 

< W r 6 + £ ) " / 4 y [-rcy)]" 
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By i n s p e c t i o n we see that the i n t e g r a t i o n of F ^ ^ ( y ) 

over the outer reg ion R' i s a r b i t r a r i l y smal l compared 

to that over the inner reg ion R as N becomes l a r g e . 

We have therefore proved that F ^ ^ ( y ) i s peaked and 

approaches ai 5 - f u n c t i o n at y ° i f "^(y) a t t a i n s â  

s i n g l e maximum at the same p o i n t . We have thus proved 

the theorem. 

Combining the previous r e s u l t s , we see that the; 

molecular chaos cond i t i on i s s a t i s f i e d asymptot i ca l ly 

i f the f u n c t i o n "/'(y) a t t a i n s i t s j maximum at at s i n g l e 

p o i n t . We now show that th i s s i t u a t i o n i s very l i k e l y 

among funct ions chosen "at random". I t i s poss ib le 

to study the s i t u a t i o n from the theory of measure, 

but we s h a l l be content to; examine i t on i n t u i t i v e 

grounds. Since i t i s very d i f f i c u l t to draw conclusions-

on merely continuous func t ions , we s h a l l examine smooth 

func t ions . 

I t i s resonable to assume that ^ ( y ) , as the 

l i m i t of [F^^(y)J 1 ^, i s smooth and has continuous 

second d e r i v a t i v e s . For s i m p l i c i t y i n argument, we 

consider y as a. s ing l e v a r i a b l e . F i r s t we argue that 

i t i s very u n l i k e l y that ^ ( y ) a t t a i n s a.maximum on 

a i whole l i n e a r segment. I f ^(y) has maximal of equal 
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v a l u e s a t several points; which, are s e p a r a t e d by small 

but f i n i t e segments, the maximafwould give au maximum 

air. which the f i r s t a n d second d e r i v a t i v e s of ^ (y) 

vanish. The same r e s u l t i s true i f there, i s a ;. 

p o i n t : of a c G u m u l a t i o T i i O f ;max±ma'. . F i n a l l y , i f 

'j'(y) has a f i n i t e number of maxima, i t would be 

u n l i k e l y , on i n t u i t i v e - grounds, that several of 

such maxima; are equal. Thus i t i s resonable to assume 

t h a t ^t(y) attains; a t maximum at a single? point. 
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APPENDIX D 

FURTHER DISCUSSION ON THE PERTURBATION METHOD 

We; have a lready obtained a k i n e t i c equation us ing 

the p e r t u r b a t i o n technique. By removing the secu lar 

behaviour i n the- per turbat ion expansions, we have found 

that without i n i t i a l c o r r e l a t i o n s a weakly coupled gas; 

approaches e q u i l i b r i u m through the i n t e r a c t i o n s between 

the gas p a r t i c l e s . However, i t i s important to ensure-

that the removal of secular behaviour does not e l iminate 

the p o s s i b i l i t y of pbta in ing equations which do not give 

at f i n a l e q u i l i b r i u m s ta te . The study i n th i s aspect of 

the per turbat ion method has not been found i n the l i t e r 

ature . We s h a l l content ourselves by cons ider ing a i few 

examples. 

We; now attempt to solve the f o l l o w i n g equation 

d i x ' J 

with the i n i t i a l condit ions 

( D . 2 ) = a y 

where; K , R , a , b are contants , K/R = 0 ( l ) , and € « 1 is 
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aa dimensionless parameter. Equat ion (D.I.) can be e a s i l y 

solved by ord inary methods and the s o l u t i o n i s 

A e -+ B e. 

We s h a l l now solve (D .1 l) us ing the per turbat ion 

method descr ibed i n chapter I I I . We obta in from ( D . 1 ) 

(D.5) hJZl + JZ^l - R*,») 
v 1 * de? J 1 A 7 ; 

f o r zeroth,, f i r s t and second order i n € r e s p e c t i v e l y . 
2 

They are therefore v a l i d f o r times t ~ T , T/c , T/€ 

r e s p e c t i v e l y where T i s some f i n i t e c h a r a c t e r i s t i c time-

given by T = - l / K . Thus for t ~ - T , we obta in from (D.4) 

M -ke. 
f % ) - 4 e \ BL 

where A Q , B q are approximately constant i n times t ^ T 

For longer times t ~ T / e , A , B' are funct ions of 0. 
° o> o 1 
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and we have to solve equation ( D . 5 ) - S u b s t i t u t i n g (D« 7 ) 

into (D .5),> we f i n d 

This gives 

(D-9) f" = • 

In order that f ^ 1 ^ and f ( 0 / should be of the same order 

i n € , f ( 1 ) should not growv f a s t e r than . Thus we 

must put 

( „ . , o , - 2 & L + £ , M _ 0 t 

which gives 

2k ei 

The c o e f f i c i e n t Bv ( 9 .) needs not be r e s t r i c t e d since 
o v 1 
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i t does not give r i se; to secu lar behaviour. However, 

f o r convenience, we may a r b i t r a r i l y put 

( D . 1 2 ) - J^fi, ) - 0 

g i v i n g 

( D . 1 3 ) WVr BJ%=°)e 

which decays i n time:. Thus f o r times. t<vT/€ , the; 

s o l u t i o n of ( D . 1 ) i s g iven by 

A e + B e. 

This i s exact ly the same as the r e s u l t obtained from 

(D.3) a f t e r neg lec t ing 0(6 ) i n the exponents. To 

obta in the s o l u t i o n of f ( t ) f or longer times;,, we may 

continue the c a l c u l a t i o n up to higher orders i n €•.' 

The approximation of the per turbat ion method to this; 

equation leads to the correc t r e s u l t i n sp i t e of the 

presence of terms thait grow* without bound with time. 

In order to show that there are problems where 

the per turbat ion method i s not a p p l i c a b l e because i t 

cannot remove- the secu lar behaviour of some terms;, 
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we consider the equation 

(u• 15) $ ~kf " f 

where K, L are constants . I t i s easy to see that th i s 

gives a; s o l u t i o n 

(D.116) fa) - .f(t-o)& 

S o l v i n g t h i s with our per turbat ion method, we obat in 

(D.,7) 2 & > . k f ] ^ . Q 

(D-19) i ^ l f ' i ? ^ 
Thus (D.17) gives 

(D.20) / % . ; = (f e 

S u b s t i t u t i n g t h i s ? i n t o (D.18), we f i n d 
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T h i s g i v e s 

o 

I t i s e a s y t o s e e t h a t f ( " " ) ( 0 ) c a n n o t r e m a i n o f t h e 

s a m e o r d e r i n f a s f ( O ) ( 0 Q ) f o r t i m e s l o n g e r t h a n T/€ 
2 2' w h e r e ; T = K / L . I n f a c t f o r t ~ K / e L , we h a v e 

0) -L f(0) 
( D . 2 3 ) {(6.) ~ € / ' Q ) 

a n d we c a n n o l o n g e r n e g l e c t h i g h e r o r d e r t e r m s i n t h e ? 

e x p a n s i o n o f f ( t ) . 


