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ABSTRACT . | *
ve. T

This thesis is devoted to some aspects of the theory
of the weak continuous gamma radiation (often called 'Internal
Bremsstrahiung') which accompanies beta processes, i.e. negative and
positive electron emission and orbital electron capturé° Whenever
a beta process is accompanied by this gamma radiation, it will be
called a "radiative" beta process, otherwise "radiationless".

The results presented in this thesis go beyond those
obtained by other authors in two respects.

In'the first place, the radiative beta emission probability
. is caleulated éor an allowed transition taking into account an arbitrary
mixture of all the five beta interactions. Previnusly, only the theory:
for the case of pure interactions has been carried out. In the
calculations, as in previous ones, Coulomb effects have been neglected.

In the second place, the radiative K baptu}e probability
is calculated for an allowed transition taking into account again an
arbitrary mixture of the five beta interactions, and, in addition, Coulomb
effects, Previously, only the case of pure interactions with the
neglection of Cqulomb effects has been considered, In ordér to take
Coulomb effects into account, a "semi-relativistic" approximation for
~the solutions to the Dirac equation with a Coulomb potenﬁial has been
developed. It turns out that taking Coulomb effecés into account reduces

the probability of radiative K capture by an order of magnitude.
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ON THE THEORY OF RADIATIVE BETA PROCESSES
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accompanies beta processes, i.€. negative and
positive electron emission and orbital electron
capture. Whenever a beta process 1ls accompanied
by this gamma radiation, it will be called a
"radiative" beta process, otherwise "radiationless™.

The results presented in this thesis go
beyond those obfained by other authors in two
respects.

In the first place, the radiative beta
emission probability is calculated for an
allowed transition taking into account an arbitrary
mixture of all the five beta interactions.
Previously, only the theory for the case of pure
interactions has been carried out. In the calcula-
tions, as in previous ones, Coulomb effects have
been neglected.

In the second place, the radiative K capture
probability is calculated for an allowed
transition taking into account again an arbitrary
mixture of the five beta interactions, and,
in addition, Coulomb effects., Previously, only
the case of pure interactions with the neglection
of Coulomb effects, has been considered. In order
to take Coulomb effects into account, a "semi-
relativistic" approximation for the solutions
to the Dirac equation with a Coulomb potential
has been developed. It turns out that taking
Coulomb effects into account reduces the probability
of radiative K capture by an order of magnitude.
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INTRODUCTION AND SUMMARY

Every beta brocess, ji.e. electron or positron emission

_or orbital electron capture, has a certain probability of being accompanied

by a weak continuous gamma radiation, This radiation is not due to de-
excitation pnocesses'in the nucleus before or after the beta process since such pro-
cesses give rise to ﬁonochromatic radiation. Rather, it is attributed to

that caused by the changing dipole moment of the atom when‘the electronic charge,
involved in the'beta process, is suddenly shifted; it occurs "during" the

beta process, Such radiation has beeh termed "internal bremsstrahlung".

Whenever a beta process is accompanied by internal bremsstrahdung, it will here-

be referred to as. a "radiative" beta process, otherwise = "radiationless".

The ﬁeasurement of internal bremsstrahlung is complicated by the
fact that if any deexcitation processes occur, the resulting monochromatic radiation
will probably "smother" it., In this connectibn, internal bremsstrahlung
was first observed by Aston.(27) in his measurements on the electron emission of
Ra E. . The bremsstr_ahlung from electron capture was first obseﬁed by Braﬂt,
et al (46) in Fedd, ' '

Let us first consider radiativg electron and positron emiésion.

The theory for these processes has been given by Knipp and Unlenbeck (36) and
Block(36) for an allowed transition and for "pure" interactions oﬁly. In.
what follows, "pure" interaction means any one of the five well-known beta
interactions. Chang and Falkoff (49) and Bolgiano, ﬁadansky and Rasetti (53)
extended the calculations to first and second forbidden beta transitions. In

all these calculations Coulomb effects have been neglected.'



Goodrich and Payne (54) measured the internal bremsstrahlung
accompanying the electron emission of F>32-° They found that their results
agreed quite well with the theoretical results for an allowed trahsition mentioned
above.

The calculations given in Chapters I and II of this thesis take
into account an arbitrary mixture of the five beta interactions and the results
show that a non-zero contribution to the probability ariging from cross-terms between
scalar and vector, tensor and axial interactions, is present. The calcuiationé
are carried out for an allowed transition with the neglection of Coulomb effects
for electron and positron émissién. The results show that the pure interaction
terms of the probability are the same for electron and positron emissioﬁ; on the
other hand, the cross-term contribution changes sign from one case to the other.
The explicit expression for the photon energy spectrum is given by Eq. (II.16) and
the corresponding curves plotted in Graph II.l

Because of the agréement of Goodrich and Payne's resudts with the
theory including only pure interactions, it was felt that an upper limit on the _
magniture of the interaction constants aprearing in the cross-terms could be
ébtained from the condition that the contribution of these terms does not destroy
the agreement.

 However, after the caleulations were carried out, more accurate
experimental results appeared in the paper by Lidén and Starfelt (55), who
criticized Goodrich and P&yné% result and concluded that there is a considerable
discrepancy between theory and experiment. Consequently, the program
connected with the upper limit on the cross-terms had to be abandoned because a
proper comparison could not be made until Coulomb effects were taken into account..

In any case, the results do extend previous calculations and should be of some



use for compa..rison with caléulatiorié including Coulomb effects for small
values of Z, .

‘The calculations of the radiative K capture probability were
carried out for the following reasons. Prior to the experimental work of
Saraf (54), experimental results agreed with the theoretical results of Morrison
and Schiff (40) for an allowed transition and pure interactions neglecting, among
other things, Coulomb effects. These suthors calculated the ratio wjdR / W
as a fn. of the photon energy, where wkclk is. the pﬁobability per second that
a photon of energy hck in the range dlhick is'e_mit.ted durin.g the K capture
process and w, is the probability that a radiationless K capture occurs per s‘econfi.
Before Saraf's work this ratio was measured on an arbitrary scale as a fn. of
the photon energy.  Since’ .the ratio is of the order 10'1‘, one can say that w,
is practically the same as the total probability for K capt‘ure. Saraf, making
use of this fact, was able to measure the actual value of this ratio as a fn.
of the photon energy. He found that for radiative K capture in 5-503‘3‘agreement
existed between the Moi'r:i:aon and Schiff theory and experiment for high photon
energies but that definite disagreement outside of experimentai error existed
.fgr Low photon energies, the disagreement increasing the lower the photon energy.

This disagree’ment may be due to the neglection of Coulomb effects
in Morrison and Schiff's theory or possibly due to the neglection of the
radiative /7 capture from the L shell which may be of considerable magnitudé for
the second order radiative process.

The theoretical program which was started to explain this
discrepancy was to calculate first the ra&iative K capture for é.n allowed
transition taking into account Coulomb effects and an #rbitra.ry mixture of the
five beta interactions; then, to do the same for radiative /J capture from
an L shell (the results for the radiative S capture from the L shell are expected

to be much smaller than those for radiative s capture from the K shell),



Because of the complexities involved in taking Coulomb effects into account,
this program has been carried out only for radiative K capture. It turns 6ut
that taking Coulomb effects into account reduces the probability by an order of
magnitude and hence increases the disagreement mentioned above. It follows
that the radiative p capture probability should be investigated.

In this connection, it should be mentioned that Glauber and Martin
(54) have published a short note in which they state that they have calculated
radiative § and p capture probabilities for an allﬁwed transition taking Coulomb
effects.into account._ They obtain explicit results for Fkifﬁhich was studied
experimentally by Madénsky and Rasetti (54) who also found a disagfeement at low
photon energies with Morrison and Schiff's theory. Glauber and Martin find that
taking radiative /7 capture into account expléins this low energy discrepancy. |
However, the information in their note is not sufficient to compare their method
(which is entirely different from ours) and their results with those presented
in this thesis.

An outline of the contents of this thesis on radiative K gapture is
given below,

In Chapter I, the probability for radiative and radiationless K '
cépture is formulated by means of the Dirac hole theory along with a discussion
of the intermediate states involved,

The contents of Chapter II have already been mentioned above in
connection with radiative electron and positron emission,

In Chapter III, Section A the results of Morrison aml Schiff
are obtained in detail, These authors only outlined thelr calculations

verbally without showing explicit details; for this reason, Section A should be



useful if one desires a detailed understanding of the assumption they make,
Essenﬁially, they have neglected Coulomb effects entirely, representing the
electrons and neutrinos with Dirac plane waves-and, in particular, the K elsctron
by a Dirac plane wave with momentum zero and energy mcti.e. a particle at rest.

In Chapter III, Section B, the radiationless K capture probability

W, 1is calculated for an allowed transition taking into account Coulomb effects
and an arbitrary mixture of the five beta interactions., It has been obtained
already by other authors but is given in this thesis as a preparation for the
more éomplicated calculetion of the radiative K capture probability w,dk .
In obtaining W, the well-known assumption for the electron and neutrino wave
fns. at the nucleus:

PR L4

3
where P- is the electron or meutrino momentum, R the nuclear radius,
is made. Also, ohly.the components of.the wave fnsolhaving an angular
dependence given by the zero order sphz=rical harﬁonic are retainea. Both these
approximations are common to the allowed transition in the radiationless case.

Also in Chapter III, Section B, the radiative K capture probability

Vvhdk for an allowed transition with Coulomb effects, is reduced to a 'sum'
over all the energies possible for an electron in the interhediatg state, In
obtaining the wave fns, for the electron and neutrino at the nucleus the same two

assumptions as made in the radiationless case above are used. Although these

assumptions are valid in the first order radiationless case it does not immediately

follow that they are also valid for the second order radiative case. In
particular, because of the "sum" over intermediate states for energies up to

infinity, the sssumption

PR/E ¢4

is not always true. Also, contributions from the neglected components of the



wave fns. are possible and it has not been shown that such contributions.are
negligible, This would require a separate investigétion in itself. However,
if we define an allowed transiﬁion to be the ome for which only those components
of the Dirac wave fns. are retained which have an angular dependence given by
zero order spherical harmonies, then this last objection disappears.,

Also in Chapter III, Section C, the "Sum" over intermediate states_-
mentioned above is considered. It reduces to a sum oyér all discrete energies
and an integral over all continuum energies. Arguments are presentgd to show
.that the sum over discrete energies should be negiigible and it is then omitted.
The remaining integral over continuum energies is too complicated as it stands
to be evaluatedy within a reasonable length of time.

In Chapter III, Section D, the integral is carried eut for 55(3'”
by using what we ;hall call a "semi-relativisitic" approximation for the solutions
to the Dirac Equation with a Coulomb potential, This approximation preserfes
the normalization of the wave fns° and simplifies the integrand to the extent
that it can be plotted and evaluated numerically. The integrand is plotted
for Cs'®! for four diffe;ent photon energies in Graphs III.l to III.4. The
integration results are tabulated in Table III.2 In Graph III.5 the
ratio M@Jk/ae is plotted in compériéon to Morrison and Schiff results. For
values of Z other than that of Cs graphical efaluation of the integral would again
be necessary; however, the most complicated parts of the integrand have been
tabulated in Table III.l for any value of 2.

In Chapter III, Section E, the validity of the "semi-relativisitic®
approximation is investigated. It happends that for Z=/l9 the integral over

continuum energies can be easily plotted without making a "semi-relativisitich



approximation. In Graph III.6,.the intogrand is plotted far Z =119 and
‘compared with the curves of the integrend for Z =119 in which "semi-
relativistic" and "non-relativistic™ approximations have peen made. In

" the "non-relativistic" approximations Schrodinger wave fns. are used. The
integrand and the "semi-relativistic” integrand lave the same general shape
and 1% is anticipated that for 55(s'” these two curves are rmeh closer to-
gether; however, tle "non-rglativistic" integrand does not have even the
same shape as the other two - especially at low photon energles where the in-
tegrand is largest. “In fact, the value of the integral for the "none
relativistic” approximation turns out to be mich larger than for the Jsemi-
relativistic” approximation, end, consequently, the value of the ratio
\thk/QQ is, in the "non~-relativistic" approxiimtion, much closer to the
experimental one. This is a rather curious result because, from the theo-
retical point of view, the "saml-relativistie" approximation should give

better results than the "non-relativistic" one.



CHAPTER I

Outline of Theory for Allowed Transitions

In this Chapter a brief review of the theory of electron
and positfon enission and orbital electron capture for an allowed transi-
tion is presented, only tﬁose essentials necessary foir an understanding
of this thesis being'discussed. For more details, the reader is referred
" to the longer articles of Rose (55), Konopinski (55), Konopinski and Langer
(53), Blatt and Weisskopf (52), De Groot and Tolhoék (50), The radiative
processes, i.e. those fof which internal brgmsstrahlung occurs, are aiso
considered and expressions for their probabilities are formulated along
with a-discussion of tﬁe'intermsdiate states.

A. Non~Radiative Processes

It is the purpose of this Section to show how the matrix
elements for the non-radiative electron and positron emlssion and orbital
elsctron capture processes are obtained. These matrix elqments are then
used in Section B for the radiativé processes,

‘In the treatment of the non-radiative processes given below,
we shall adopt the convgntion that an anti-neutrino is emitted in electron
emission and a neutrino is emitted in positron emission and orbital electron
capturé. The results for the opposite convention in which a neutrino is
eﬁitted in electron emission and an anti-neutrino in positron emissibn and
o?bital capture, are the same, We shall also use the word "lepton" when
referring to an electron, positron, neutrino or anti-neutrino,

1. Electron Emission

The basis for the theory of beta-decay, as initiated by Fermi (34),

is the assumption that the emission of leptons can be treated in a manner



analogous to the emission of electromagnetic radiation, as explained in
Fermi's original paper. As a result, the interaction matrix element is

assumed to be:

(Fln_lo) = 2‘: j(sa*ﬂcp (T 0, <If) | (1)

where: L// “is t.he wave f'n for an electron ibh a positive energy
N st.ate, -
P is the wave 'fn for a neutrino in a negative energy
sta.té,
. ¢, , L[Q are initial and final‘ muclear states respectively,
e is the symbol for the adjaint (i.e. transpose and
complex conjugate) of a matrix,
L, 0, are operators operating respect.ively on lepton and
nucleon wave fns.,
( ), means the value of the fn. in the Srackets, taken at the
' position of the nth nucleon,
/dt;,, is taken over the volume containing the n®B nu;:leon i.eq

(I.2)

the nuclear volume, .

In order to write the theory of electron emission in a s&mmetric
form, we shall ;s.ay that the initial state of the system'O consists of the
initial nucleus and 2 neutrino in a negative energy state and the final state
of the system F consists of the final nucleus and the emitted electron

By restricting thé interaction matrix elemént to lbe relativistically
invariant, it can bse shown that on quite general ass@ptions there are only
‘five possible choices for L In 5eneral,' some of the components of L
are "large" or non-relativistic whereas the.remaining componenfs are "small®

or relativistic of order v/c where v is the nucleon velocity, the "large"



and "small" components giving rise to different selection rules. For
an allowed transition, only the "large" components are used, the resulting

expression for the interaction matrix element being no longer rélativistrically

invariant, The "large® components are:
A called the Scalar interaction . (1.32)
g " Vector " (130
AT nooon fensof " i . (To3¢)
& moon Axi.al. " (1.34)
Lﬁ‘}.i " " Pseudoscalar " (T.3e)

whére the matrices 3, @ , L12 are defined in (A.@) , (A.l)' o. Note,
in particular,. that ali the intéractioné,are Hermitian., The Pseudoscalar
interaction (I.3e) is actually a relativistic one of order v/c; however,
it is the largest component of its operator L because the others
are zero and is retained for this reason.

There are nine different matrices given in (I.3). In order
to write a linear combination of the five interactions, it is convenient
to define the following cuanitities,

Po= 1, 2 3 b 5 6 7, 8 9
A = B, 1, BY, B0, B0, 9, T, O, BV,
C, = C €, s C, C, C\ G, c‘A', cC, C

A p? (1.4)

With these quantities, the interaction matrix element can be ekpreésed as

follows:

. A r .P .
(Fn10= 632 C 2 [U* Aohy (F7 A, T)ar, (x.)



It can be shown that the C's are real, In (I.5) we have imposed the res-
triction

2 | 2 2
C +Cy + Cr +Cy +Cp = - (.6)

on the C's, lettigg G be the coupling constont of the beta interaction,

An allowed transition is characterized not only by the neglection
of the "smsll" terms in obtalning the interactions (I.3) but also by an
approximation concerning the matrix element of the emitted leptons at the
n*? mucleon in (I.5)c In this approximation it is assumed that the matrix
element involving the lepton wave fns. 1s slowly vanying over the muclear
volume and hence can be ﬁaken outside the muclear volume integrafxgam over
the nucleons in (I.5); The lepton wave fns., which are largest at the
nucleus and the largest terms in the éxpansion of these wave fns. about the

origin are then used in the extricated matrix element. Thus, for an

allowed transition,

(FIN10)= 65 C, (Y A"@), [A" (.72)

where: R is the nuclear radius and

AR (L7 AV C (n7w)

The nuclear matrix element (I.7b) is ascumed to be zero unless a neutron
changes into a proton.

If we neglect nuclear charge effecté and describe the
léptbns by plane wave solutions to the Dirac Eq. then, for an allowed
transition, we approximate exp.iR-F by 1 at the nucleus and so (1.7a)

becomes » -

(FlH10) = GZ% Cp (B*A™R) [AT | (1.8)

f
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where %,r\ are the matrix amplitudes of the electron, nsutrino wave fns,
respectively.  Approximating the exponential by unity at the wuucleus is

equivalent to expanding it in terms of spherical waves and noting that the
Sin kR 2:‘
kR )

i.,e., that part of the plane wave fn. having zero orbital angular momentum,

largest term of this expansion at the nucleus is the ,lé-o term or

If, on the other hand, we neglect relativistic effects and
yet take into account nuclear charge effects by describing the leptens by
phericcl wave solutions to the Schrodinger Zq. with a Coulomb potential, then

£

ﬁhese.solutians (for energies in the continuum) vary as r™ near the oricsin,
the largest one being that for U= 0 as in the planéwave casece

We sce from the above considerations that an allowed transition
is one for which the relativistic terms of the interacticn hamiltonian are
neglected (excepting pseudoscalar interaction) and one for which the emitted
leptons carry off zero orbital angular momentun, Definite selection rules
exist for allowed transitions; however "forbidden" transitions obeying
different sslection rules do bccur, their theory being obtained from a study
of the terms neglected in the allowed tranéii:ion° For further details, see
the references listed at the beginning of this Chapter,

The nucleons and their wave fns, will be treated non-relativistically.

Consecquently, for Scalar and Tensor interactions we shall use the relations

for thé nuclear maﬁrix elements, essentially replacing # by unity. Such

a replacement is permitted because in the representation used in this thesis,
the diagonal terms of /4 which.are +1 connect the “large® nén—relativistic
components of the nucleon wave fns. whereas_the diagonal terms whicn are -1

connect the "smzll" relativistic components which we are neglecting,



2. Positron Emission and Orbital Electron Capturs

In the theory of positron emission or orbital electron capture, an
elgetron in a negative continuum or positive siscrete state is captured
by the mucleus with the emission of a neutrino. From the t@eony of
second quantization, creatlon and annihilation operators are the adjoint .
of each other and so the interaction hamiltonian for the processes under
'consideration is the adjoint of the hamiltonian for electron emission. As
a result, the interaction matrix element for these processes is obta;ned

by taking the complex conjugate of (I.7), giving

(FIH,10) = G C, (#* A" 4), [A7 (£.104)
where
A * r
/Ar: Z_:;.f(‘l’; A" )dT, _ (1.10b)

is zero unless a proton changes into.a neutron, In (I.10a) @ is
the wave fn. for a neutrinoc in a positive energy state and ¢ is that
for an electron in a negative continuum or positive discrete state for positron

emission or orbital electron capture respectively.

B. ERadiative Processes,

In this section, the probabilitles for radiative electron and
positron emissicn are formulated for use later on in Chapter II, In the
calculations of Chapter II the lepton wave fns., are approximated by plane

wave solutions to the Dirac Eq. neglecting nuclear charge effects (z = 0)

13

so that the final formulae and the discussion of intermediate states given in this

section will apply only for this approximation.
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Also, the formula for the radiative K. capture probabllity
is presented, - This thesis, from Chapter III on, is.devoted to the
calculation of this probability taking into account both relativistic and
Coulomb effects i.e. by using solutions to the Dirac Eq. with a Coulomb
potential for the lepton wave fns; consequently, the formula developed
in this Section for this process is considerably more general than those
for the radiative electron and positron emission'in which plane wave fns,
are used, The intermediate states for this process are also discussed,
relations between their matrix elements being used to simplify the rédiative.

K capture formula,

1. Radiatimve Electron Emission

This process requires an intermediate state, Let us designate

the states cf the system as follows:

0, Initial state .consisting of nucleus of charge LMl and neutrino with
energy -E  (E5 >0), |

Es is the energy of the anti-neutrino,

I, intermediate state consisting of final nucleus of charge Z+1 and
emittéd-electron with energy Eg ,

F, final state consisting of final nucleus of charge Z+ ) , an electron
with energy E, and a photon with energy B, = fick.

Conservation of energy between 0 and F states tells us that the

available nuclear ensrgy, W, is given by

) v

W=E+E, +E5 (@na)

and defining

We = £ +Ey - (L.ub)
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we also find that the energy difference between the I s«nd 0 states

is given by

Er Ep = Eg-We (z.2)

The probability per sec., P& for the emission of an electron
with energy E, an anti~neutrimo with energy Ei’" s and a photon with energy

E r is oblained from the formula

M IT)(TIH.10) |&
PCEE, Ex)d = &gﬂ,/dﬂ,sﬁﬂﬂ, Se Jdn2e P;‘F E'I’_ é;“ 9 (3a)

a well=known result of t.ime dependent second order perturbation £heor5ﬂ Here
P is.obtained by integrating over the directions of emission of the

photon, anti-neutrino and electron, by summing over the polarizations of the
photon, and by surming over alI_L possible states of .the anti—ﬁeutrino and

electron having the energies ED‘ and £, 4§ is the Dirac delta fn,
§= S(E+Ey +E, ~ W), (r.13b)

enforcin: the conservation of energy (I.l1la); it is used here because it

prevents any confusion which might arise otherwise in obtaining the deusity

of inal states.. The matrix elements in (I.13a) are given by
(tlu-lo) = GX C, (K A"R) A7 | (r.i4a)
Y -
(Flugn) = e[ATBe]™ (x* X &)  F=Fk+F  (C.14h)
where: ~¢ is the electron charge (€a0),

ﬂ" ,.F; ,F’ are the momenta of the photon and electron in its
intermediate and final state respectively,
€  1is the unit polarization vector for the photon,
&,N ar: the Dirac plane wave amplitudtes for an electron in a

positive energy state E and a neutrino in a negative



energy state -E_‘_; , & éatisfying, the Eq.
(c&Z-F’ -s‘-ﬁmcz')g = E ¢ (T.15)
n.d R satisfying the same Eq. withm = 0 and £ /’ replaced by
~E,- For -
(I.14a) is obbained from (I.8), valid for an allowed transition. (I. ll;b_)
‘is taken from Heitler (54) p. lhk, Egs. (25) and (27). '
The momentum conservation in (I.l4b) permits only two energies
for the electron in the intermediate state; these are
E, =t [ b+ (mcz)z]h, - | (T 16)
Fs being detemﬂ%d by (I.14b). In (I.13a) the sum over intermediate
states I, using (I.12), becomes a sum over the energies (I.‘16) and the
spin orientations of the elctrc.)r.x"wawe amplituﬂe gs satisfying (I.15) with E
replaced by E; and ¥ by FS
We want to calculate the probability per sec., S(R)dR that
a photon of energy kck in the range d(%ck)is emitted during the electron
emission. To obtain it, we must mxltip],v (I.132) by the density of states
of the emitted anti-neutrino and electron and integrate over all E;,. and E
and also just multiply the result by the phofon density of states. _ Thus,
carrying out the integral over E; first and converting the remaining

integral over E to one over \A/ defined in (I.11b), we find that

Sk)dk =

(“ - )6/ d W cp(w ~ENMW-W,) P(W,-E,, Ey W-W,)

(r.17a)

where X 2 V:L
cP: [_ (WQ-EY) -(/mcz)_] .

The formulae (I.13) and (I.1l7) are used in Chapter II to czlculate

/6
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the probability for radiative electron emission for an allowed transition,
neglecting mclear charge effects,

2. Radiative Positron Emission

In this subsection it is shown that.t.he probability for
radiative positron emission, to the same approximations as in subsectiofx 1
above, can bé obtained from the probability for radiative electron emission
given in subsection 1 mwerely by replacing the electron mass m by -m |
in the results, This fact is used in Ch, II.

'Fof radiative positron emission an electron in a negative
energy state jumps to an intermediate energy state with the emission of
a photon and is then captured by the nucleus with the emission of a neutrino.
The formulae (1,13) are valid for this case if we replace 7 bj »y e b]-eand

use the matrix elements

(FlHyD) = G C, (¥ A7) [A° (1.152)

(T 1H,10) = -e[ﬂki-ij'/“‘(g’s* LG 8) B kk-f (r.a30)
where l’(’ is the wave amplitude for a neutrino in a'positive energy state £ »
and &' is the wave amplitumde for an electron with energy —£

momentum -~ /7 ) E and F being .the po?.tron energy and momentum,
E‘.}ua.‘t'ian (T.191) 1is obtained from (r.10a) (Cf(r-i)>11d 57. (L.18b)
from Heitler (54), p. 14k, Egs. (25) and (27). Hote that the positron
and photon momenta are consevaed in (I.18b) ‘exactly as in (T.14Y).
The wave amplifudd &' satisfies

(¢ (-F)+ Bmet)§' = -EF (@)
E, F being poéiﬂron energy and momentum. Eg. (I.19) is the same as Eq.
(I.15) with m replaced by - m. n ! satisfies (I.19) with m = 0, the

result being the same as Eq. (I,15) withm = 0.



It is easy to see now that, by taking the complex conjugate
of the matrix elements (I.18) and replacing m by -m, e by -€ , one
obtains the matrix elements (I.14). A glance at (f.13a) shows that it is
the square of the abscluie vglue of the sum of the matrix elements over the
intermediate states which determines the desired probability and so the
fact that thelmatrix elements (I.18) are the complex conjugate of the
matrix elements (T.1l4) is irrelevant to the probability; also, since e
1s squared, its sign is irrelevent to the ppobability; hence, only £he

. of m by -m e _ .

replacement by ug is relyant to the probability. This is the

result which we set out to prove in this subsection,

2. Radiative K Canture

In accordance with the hole theory, two types of process es
are possible in the transition from the initial state of the system consisting

of the nucleus N, and Z atomic electrons to the final state of the system

18

' consisting of a nucleus NZ:I.’ one unoccupied K state and Z2-1 atomic electrons,

a photon and a neutrino, These processes are:
I. The K electron mekes a transition to either
(a) an unoccupied discrete state or
(b) an unoccupied positive continuum state
with the emission of a photon. The electron is then captured by the nucleus
with the emission of a neutrino.
II. An electron in either
(a) an occupied discrete state or
(b) "an occupied negative continuum state
is YK\ captured by the nucleus with the emission of a neutrino; The K

electron then jumps into the remaining hole with the emission of a photon,

Let us label the initial state of the system by 0, the final

&
[



state by F and the intermediate states by I{a), (I)b, II(a), II(b)
corresponding to the processes :iven above.
The conservation of energy between initial and final states

tells us that the available eneryy W is given by:

— - = (IZO)
W= W, +E - W, =&, +hick,
vhere: \/\/Z is the enersy of the nucleus N, ,
E is the total enersy of the K electron,

K

E, is the neutrino energy
5chk 1is the photon energy.
The probability per sec; w,dR , for the emission of a photon
with enerey HAck in the range d(Kck ) is given by the formula

Gk = 2L KA 10,5 [40, S

(am)3

(FIH AT Hy10) (FIHy TN H,10) | &
Z + | S48 + 14 4
,I E -&p ; Er -Ep , (I'ZI)

a result of sccond order time dependent perturbation theory. The symbol I
represents all the intermediate states for the processes I(a) and I(b) above;
similarly II represents the intermediate states for II(a) and II(b). The
probability is obtained by summing over the polarizations of the photon and
integrating over the directions of emission of the photon and neutrino,

S

5  Tepresents the sum over all possible neutrino states having the energy
E, and Jo 1is the sum over the two K electron states, 3o / F giving

the average results for the capture of either K electron, The neutrino

density of states does not appear because the neutrino wave fn. will be

normalized per unit energy interval, automatically accounting for the density

of states,
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The matrix elements for the transiticns ares -

o > -iR.F N
(C1H [0) = ef_f—'%—‘i]y"/%; X -€ ¢ W 4F s (I.223)
(FIn 1) = G2 C, (PF A Yor ), JAT (L.22b)

where: l};z-. Dirac Coulomb wave fn. for the electron in intermediate

states {a) or I(b),

%k = Dirac Coulomb wave fn. for K electron,

g = Dirac wave fn. for nmeutrino with positive energy £,,,
Dirac Coulomb wave fn. meaning a solution to the Dirac Eo. with a Coulomb
potential.,  (FIW I), (T IH,[0)are given by (I.22a), (I.22b)
fespectively with I replaced by II on the right hand side of the Equations,
The expression (I.22a) is taken from Heitler (54), Eq. (21b) on p. 143, that
for (I.22b) from (I.10z). |

The formula (I.21) can be simplified by means of the relation

Z W ___Z (FIH, ) TaXTalkylo) +Z(F|H,|u’ax[a_’u+|o)
b - Ep-E, Ta Ery -Ep I3 Er, - E, ’

(r.23)

which we shall now prove., The matrix elements on the left are given by
(I022) with .I replaced by D and the sum over D means the sum over all electron
wave fns ¥£ belon;in ; to_g&l discrete states, Obviously, tﬁe sum over
D includes the sum over the intermediate states Ia i.e. over all the
unoccupied discrete states, so that in order to prove (1.23), we must prove
that the sum over D for discrete states which are occupied by electrons is the
same as the sum over the intermediate states Ila. Note that the process
represented by D is the same as Ia except that we are now concerned with
occupied states. Thus, using

! ! EO:WE"-EK-
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- for the initial state ener:zy, v¢z bein: the nuclear energy and EK the total

K electron energsy, then for an occupied state we have

Ep= W, +E, +hek,

E} being the totallenergy of the octupied discrete state. The correspon—

ding intermediate state in the process II(a) has energy

Ega = Ex * Wz - Eg +E,

Now, making use of (I.20), we find that

Ey-Ey = "(EEA'Eo).
Furthermore, the matrix elements of D and Ila for the occupied state
under consideration.are the same, just interchanged; however, the processes
represented by D and IJa are initiated by different electrons. In otder to
make the process IIa the same as D, the electron initiating IIa must be
interchanged.with the elctron initiating D, such an interchange producing
a minus sign because the wave fn. for the system of electrons is anti-symmetric,
This minus sign cancels out the difference in the energy denominators given
above and hence (I.23) is proved. An argument similar to this.one is given
by Heitler (54), bottom of p. 213, in connection with the Compton effect. The
argument given herc could be made much more straightforward by using the
formalism of the second quantization.

In the same way, ohe can prove that

Z. (FIH lCYcitytoy Z:<FIH+lrb)(Ibel°,) +Z‘(F‘IH,|[L'I’)(EHNLIO)

.2'
¢ E.-Ep b . Eq -E ILb Erp -E, (I' 4)

where the sum over C on the left is the sumj over all continuum energy states

for the electron in the intermediate state,
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Thus, using (I.23) and (I.24), we may vrite

= an '.k'z'cf/i - 5 .(Flm.lr)(uu,lo) Z
i H @y Zr/‘”z' Svj‘m" z 7 Er -Ep ) (r.25)

where we now understand the sum over I to mean the sum over all disceete states
and all continuum stales
nfor the electron in the intermediate state I, no matter whether these gtat.es
are occupied or not, | The matrix elements in (I.25) are still given by
(I.22) and since we no longer need to di-stinguish between I and II, it is
convenient to replace Yer by ¥¢ and let -
E; -£, =E-Eyx + Hck (T.26)
where E is the energy of the electron in the intermediate state,
| w,dR is calaulated approximately in Ch.III taking
Iintq account Coulomb effects, The radiationless K capture probability .
We is also calculated there to the same approximation and is used for
the ratio vvkdk//uk » such a ratio being a more reliable result than
the approximate result for wgdk allone.,.
Let us now write down the formula for w, which is used in

Ch. III. It is obtained from first order time dependent perturbation theory, i.e.

: 1
v o= ar S, Jd40, 5, [(Fin ot (L. 27)
< K ' :

the matrix element being given by (I.22b). S, and S, have been defined already
after formula (I.21); also, no neutrino density of states appears for the

same reason as in (I.25),
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Chapter II

Radiative Electron and Pcsitron Emission

In this éhapter, the calculations for the probabilities of
radiative electron and positron emission are shown in detail for an allowed
iransition. The lepton wave fns. are approximated by Dirac plane waves and
hence nuclear charge effects are neglec’ted,. i.e. Z2=0 . ve shall take
into account a mixture of the five beta interactions and in this sehse extend the
results of Bloch (36), Knipp and Uhlenbeck (36) and Chang and Falkoff (49),
who have calculated these probabilities to the same approximation as'mantioned
ashove, but for pure interactions only. The results show that non-zero
contributions to the probabilities anpear also in the cross terms between

scalar and vector interactions and in those between temsor and axial .interactions.

‘The calculations for radiative electron emission are carried out
in detail, the results for radiative positron emission being obtained frou tﬁem
by replacing m by -m, 2s shown in Ch. I,

e shall first calculate P (E,E,,E;}from the formula (I.13a)
using the cxpressions'(I.14) for the metrix elements and (I.12) for the
energy denominator,

The swn over the intermediate states I is the same as the
sum over the energies ,thSI and the spins of the electron #n the intermediate

gtate, It is performed by first rationalizing the energy denominator so
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— & - - :
that kg appears, then by replacing E;<&% in the matrix element

vy Hg §5 where

Hs = C;Fs fﬁmc" F: = ,? + ﬁ;: | (ﬂ-_")

using (I.14Db), Hs . being independent of s, and finally by carrying out
the sum over the electron spin, i.e, the sum over the four intzrmediate

states gs belonging to £ |E | , using the relation

IS TR IEY (x2)
3 S [ ? ' . .
where 1 is the unit metrix, This last relation is the closure relation

for the complete set of columm matrices ¢£5 . The result is:

2‘: (;:'Z 3‘! ﬁs)({: A"r() Y (E* ;.E;[Hs-f-b\/e]n) (E-31)

5 E, - We . E‘Z - th

- > .
with E: = CA(/""'Hk) ‘f‘(mcl)l. ' (lI'.3l>),

let us now write down some relations of use in connection

with operations and averages of anti-neutrino states, Using the projection

oparator
2E_ :
>
which isg 1 for positive energy states and O for ne;ative energy. states

and the closure rélation for the K's just as in (II.2), we find the
relation

fd o S5 (7 X Y )

- Juty (X EFtEs yy)
.zE;;'

=am (¢¥ X Y¢) T 52
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for the integral over 211 directions of emission of the anti-neutrino
and the sum over the spins of the anti-neutrino in a positive eneryy state E_ .
In obtaining (II.5), we have used the results

}J.ﬂ_; ;'F;; =0 , 3 d constant wveclor

/Jfl.; =4 (r.sb)

In performing the sum over the two spins of the emitted electron

in a positive enerzy state, we shall also make use of the well-known result

Se (£ X%) = T[x #£E] . (L. &)

RE

(see Heitler (54), p. 108, Eq. (14b),

Using the relations (II.3), (II.5) and (II.6) in (I.13) and (I.l4)

we find:
2
e [m;}_ S, jg SALNENCITRD
I L"I -EO
= « (2r|‘1'1c.)'1 G’l Z C (‘ /Ar (/Ar’)* .
k[e2-wg]® o T
roarf - - E\-> >
« Th [A AT (H, + We) &g (%)*"k (“sf”e)] , (rr.72)
where
Hsz C&’-(F'f- ﬁE)-’-ﬂmc’* H=<§’-F’+6W‘<&, (E.?b)

A considerable amount of alegebra is required to simplify the

product of the matrices apnearins in the square brackets of (II.7a), especially

in
for arbitrary values of v and v’/ . The algebra is givenAApp. D.
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The result is:

Hot W) &€ (HEE) .8, (o #wle) =

s e k.\ a2 )

{ E*y2e2 (F-AR) & (heR) 4 We y_e[E‘+¢"(F°ﬁR)_} + 2We (CF'E;);‘}l
Fa E E

rf o L], a(F Y - W v [ H
AE _ E RE

— n P A > ,;'-»
¥ { ~[e*+ zcl(?-kk')-q-(xeh)’-](cp-ee) + We (‘?'en)}‘ £,
E E
= . = 32 o > . .
RSN SPRYE - VA I
E : E

We have yet to perform the operations
2 [in 40 (z.9)
¥ ¥ €

to find P of (I.13a). Collecting all the quantities affected by these

operations in (II.7a) and (II.8), we may write

(7a)= L — { B. + B, (F-R) + B (&) + By (3-F)
(2, - -RI* Feeuk™+ By

-

+ B, (T -FIF-8) +B5 (TG &) +B (3, )(F3)(F-K)

+B, (5 K) + B (S-RUFF) + By (3 K)F & (.10

Where the B's and a's are unaffected by the operations (II°‘9).
Summing (II.10) over the polarizations of the photon and integrating

over the directions of emission of the electron, we find that (II.10) reduces to



Jdf, . (x.7a) = ar i"_:“__é_io—; 2B, + 28 pheoe® + B, plain?
° (lo—ﬁkcwé)

+ 233 j-/'_____E‘ Pcofo -+ B’f E;.k";’ #351"129 cs@ + 257 (E;-F)
k

+25{(§z.ﬁ)ﬁka59 + 8, (;;,E)/)zn.nzgf _ T 1)

as shown in App. D. In (II.11)0is the angle between p and R .
If we now integrate over all directions of emission of the photon in (11.11)

- -
then all terms containing ( &+« R ) disappear and we are left with the result:

.

J.ﬂ d. 2. (r.12) = YIfJ“/S_"_’_'Q;J_'ﬁ_—— {QB,-I-.ZBI />kcos€+[5 Ib'zn'n'zé
/ Y/ ¢ 7 ‘ 6 (J,'ﬁkwxﬂ)z ) f (E.'Il)

The integrals required to evaluate (II.12) are given below. By

substitution one can show that

2, - pReosb L cpeosf -£

hence, by expressing the fn. in the curly brackets of (II.12) in powers of

. c/,.cosa -E and using the integrals

/T;ruG d8 =R /ﬂ’s". 64db - L }" (E"Cf ) B _i [ﬂ E‘-C/’
(] ) 0.4’6059—5 Cf E’-‘-g/, C/> et .
Tfst'n 8 do _ o . o (ﬂ_’,/3)
> (cpeos®-£)" S )

we can evaluate (II.lZ):

In connection with the results (II.13), we must remember that when m is
replaced bj -m, the second integral, for which the logarithm results, is
unaffected, |

Collecting (II.7a), (II.8), (II.10), (II.12) and (IX.13) together

with (I.13a), we obtain
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PEE, E,)- 2 RIE 57 ¢ ¢ far ().
3 EC/’ rr!

3 [(wps*)zn(&:.;_gt) _aW, [ TR ATA

l:fr.f’ e - A r! -
+ 2 me* [E L"( | /’]T A/’f . (E./4)

It is convenient at this point .to notice that the correspond-
ing result for pgit.ron emission, obtained from (II.1l4) by replacing m by -m
everywhere but in the logarithms, is the same as (II lh.) but f'or a2 sign change in
the term containing 2 A A /5 . Th& term later gives rise to the cross
terms between the beta interactions. Another m will appear in the_ éxpression
for 8(k) from the lower.limit on the integral in (I.172). but this m is cbviously
the same for positron and electr5r1 emission. In conciusion, the only
difference between the elcctron and positron emission will be a change in sign
for the cross terms for FP(E, Ey, E,—;) and SCkYdk ,

Let us proceed to calculate S(k}dk for electron emission. From
the formula (I.17a), it is seen that an inteéral over |/\/e has yet to be carried
out. The required integrals are given in App. D.

In Appo A it is proved that

T AA™ = 4§, | (L.152)
and T A'Ar,ﬁ =0 exceiat for the cases:
7 A% = Th A Aﬁ 4 ' (. 15b)

TnA”'A”'”/3=raA’"*’A/>’=f/ a4, (ra

*

’
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(3.84)Q1 ("pure” term) o The factor 3.84 was used originally

to compare the curves with Goodrich
and Payne's (54) results. It was

determined so that the ordinate for
the "pure" term was 146.7 correspon-

ding to a photon energy of 485 kev.

(5'84)92 (oross term)
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(11.15b) and (II.15c) show that cross-terms arise between the scalar and vector,
tensor and axial interactions respectively as in the well-known case of

radistionless electron emission (cf. De Groot and Tolhoek (50)).

Collecting our resulis together with the approximation (I.9)
for the nuclear matrix elements, one obtains

S(k)JR - %4 G‘l (Mciﬂlk
yrikéc?®

X

L@ O (G QU G sl 0, x,n)

f acc 1lr + 26 CP]F ] Q, (e, %, K) j (i 162)
where: x = € -K £ = o—a—:k/—c'l K = ﬁ:fl (ﬂ_-ll £)

W, (e, %, K)= R‘—{Ls*(%—x’u)-é(x“ul-t) +Lxf o 2]t [xs o
(-4

3 689 , ¢
S R AL T St S P L%

1 32 1944

x4 El z_
Qz(s.x,x)=ﬂk_{ x +1‘L*f+l—]1,n[x+m_] - 3-5;134-%’ x]]x I j (I (6d)

The result (II.16c) agrees with that of Chang and Falkoff (49),
who have carried out the integration over W, to obtain Q, only, i.e.
they considered pure interactions only.

As before, the results for positron emission are obtained from

(I1.16) by chunging the sign of the ~ross-terms exactly as in the radiationless



case treated hy De Groot and Tolhoek(50).

2
A graph of the curves Q, and Qy for P3 for which

W: 170 mev + mc?

2
is given in Graph (II.1). The resason for choosing P3 is that the radiative
electron emission of this element has been the object of several experimental

investigations (see the Introduction).

30
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Chapter II1

Radiative K Captare

~ In this Chapter the radiative K capture probability is calculated
for an allowed transition taking intc account an arbitrary mixture of the
five beta interactions end, in addition, Coulomb effects. In order to

take Coulomb effects into account, a "scmi-relativistic" approximation for

the solutions to the Dirac ecuation with a Coulomb potential is developed.

The calculatiéns are complicated to the extent that, in ordér to
obtain the radiative K capture probability for a given photon energy and
muclear charge Z, it is necessary to cvaluate an integrel graphically. The
most complicated parts of the integrand involved are tabulated, oy means of
suitably chosen dimensionless quantities, for various photon energies and for
any value of Z so that the required integral can be evaluated fairly easily
for any value of 7, » This integral is then evaluated explicitly to find the
radiative X capture probability for &5 ¢s' (neglecting "screening!).

Before carrrying out the main calculations, we shall first derive
Morrison and Schiff's (40) result for Z“—'O « The reason for doing this
is that these authors ha"ré Just outlined their calculations in words without
showing any details explicitly. From the derivation, we can sece exactly

what the asswnptions and procedure ares

L. lorrison and Schiff Results.

. The main assumption is that the nuclear charge can be neglected;
conseouently, the leptons can be represented Ly plene waves., The K electron

is represented by a plane wave vith zero momentum ( Eg zmc?t),
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The i‘equired formulae for the radiative and radiationless K capture

probabilities are:

<
W dk = 2T (W-#eR) 2k2dk < o S (40 S (FINALYTIH, J0)
. F @mheP (am? / z)/ L Fs Er‘Eo (M.A.I)

= anr //AS.Y(HH 0)

W =2 W , 14 IEND (IC.A.2)
K (awke)
These expressions are taken from (I.25) and {I.27). . Since plane

waves are used for the leptons, the neutrino density of states has been

included. The available energy W is given by
\/\/:E,,‘i'ﬁck _ " (IE-A.3)
from (I.20). From (1,42)., we see that the necessary matrix elements are
given by
(tinylor= e [REE ] (2724, §.) PerR =0 (mAsa)

(Flu iy = ¢ JA (" A" &) (#-A-4b)

where: A" is one of the five beta interactions
- . :
g, p are the wave amptitude and momentum for the electron in the
intermediete state, _ .
» L] A -
g satisfies (T.15), S, the same Hg. with/> =0  and /( the same Eq. with m-=0.

From (III.A.ha) > the intermediate electron energies possible are

= * [(KcRY* ¢ (me??
£ "o (I A.5)

Let us evaluate w

. first using the matrix -lement (III.A.4b) with 2

renlaced by fo . The sume over the two neutrino states belonging to the
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energy EV > the swm over the two ¥ electron states and the integral over
the neutrine directions are carried out by sbt:ndard procedures (sce Heitler (54)).

The required relatious are:

S [da, S, (45 Xn)nYE,)

= -%f )/4121) (8" x Lyt £ Y'g.)

2E,
=7 S (f:_XY%’,)
- T n ﬂmcl'f/mcl
f T x"( Aamcr ) *
= L Ta XYy (1+8) (m-A.¢)

sing this result with .
ATAT" =] (. A.7)

in {I1T.2.2), (ITII.A.4), one obbains

v = ar W |far|*

“F amihe® " (. A. 8)

tote,
We dk i's obtained as follown. The swn over intermediate states in (III.A.1)
is carried out first Ly sumuinz over the two spins of the electron haviné the
twe enerpies (IIT.A.5). In order o do this the energy denominator, given
oy (T.26) with E, =me?  is vaticnmalized so that E < appears l.e. by
multi:p wing mumerator and denominwtor by E- (hek """1); then, wherever £ § appears

in the mumerator, it is replaced with H§ tnere

—n g 2
H= CK-(—#‘()-*‘ﬂM’!C »

using the mementun conservation in {III.A.La); finelly, the sum is

carried out usinz
7
J. 2y =1
Energy

Shpins . .
P s the unit nmatrix.
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The result is:

1l

DN (F1H,11)(I18;10) zrrf.cJ& Ge /A" .
1 E, -E, k 2 hck mc?

‘{()("ArH k §,) — (Fek-mc(R* A" &)}

Squaring this resull and performing the K electron and neubrino operations
with the help of (III.A.6), one obtains a result independent of photon dired’ticns
and polarizations sc that the photon operations merely introduce a factor 2(4 T ).

The result is, using (III.A.7),

2
* T (2m)? (fic)> me?
and so, from (IIT.A.8) and (III.A4.9), we find Morrison and Schiff's result:
w, dk o« [ W \* 1
S = 7 (/.Tcl) (1-eYede £= Bek (mr.a. (0)

L w

This ratioc can a.lfso be obtained from the results in Section III.B, which
take Coulomb effects into account, by setting Z=0.

'Iowover, the value of the ratio so obtained is smaller by a faetor two
than thet given by the lorrison and Sch: °° formula (IIT.A.10). t would thus
appear theh the "Iorf':x.oon and Scliiff formula is not guite correct even for the case

Z=0 , owing to the very crude acswaptions on which it is based.



B. Radiative and Radiationless K Capture,.

In this Section, explicit expre;ssions for the matrix elements
:appearing in widk and v:/(_ of (I.21) and (I.27) are presented, and the
sums over the spins and polarization slong with the integrals over the solid
angies are performed. As a result;. a si_ﬁlpler expression for \ﬂ/ka . and a

~ final expression for W, are obtained,

Calculation of W,

.
The.. calculation of wc is outlined below, Although the procedure

followed is essentially the same as that of De Groot and Tolhoek (50),

it is presented here mainly as an introduction to the more éomplicated

calculation of wjdR.

From (I.27), the probability for the radiaticnless electron

capture per sec. is given by )

H

w, = 205 /Jﬂp% | (Fiu o)l (. B. 1)

where
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(Flwdo) = GZIC, (@A"Y ) JA"  (ruo) (B2

z//K ,ﬂ " being the wave fns, for the K electron and neutrino, evaluated at the
nuclear radius R.
The choice of the electron and neutrino wave fns., is important,

the same type of choice being used in the calculation of Wh dk o For the K

electron, the only wave fns, possible are those from App. C for vhich AL=0, / =J.i
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and u= tt , corresponding to the two spin orientationse. The K
. 1.0y,
electron wave fns., will be approximated by setting the small radial component

G equal to zerfo., Thus

- Qe + ,
Y (R) = Y, fﬁﬁ(.’_‘l En . mii,2 , (. B.3)

where:

5 m 15 a four component column vector with unity in its nt! row

and zeros elsewhere,

F:(R) / R supplies the dependence on the nuclear radius.

The neubrino wave fn., belonging to the continuum is ébtained by
the following argument. We lool for those wave fns. which are largest a.t the
nucleus, The large and smell radial. components of the neutrino wave fn.,
denoted by f amd g roespectively, vary at most. as %)A (Ap.C ) where
A= +-_!(- for the neutrino ( Z=0 ), it the nmuclear radius then, the well-
known approximation , ' ,

%1& <<, . (- B. 4)
tells us that the largest wave fns, are those for which } is smallest i.e.

= 1 and hence K:=%X{ ., It can be shown (cf. Marshak (42)) that at the
nucleus gf varies as E%E whereas 3+ varies as (ﬁﬁg)z so that g*may be neglected
with iespect to f+. On\ the'other hand, 3" varies as {" s and .g' as 3"
so that we can also neplect f- with respecf. to 3" . Hence, the neutrino
‘wave fns. used herc, taking into account all neglections mentioned, are;

PR = Yo N & , o (App.C) (m.8.5)

where T N
om'= 1,2,34 corresponding to j = 3, k=+1, pu= t L (£-0)

and =L K=-1, M= £L (0=1),
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N=L ( 13
R0, .,

1 18-

nﬁ3c3

Note that the sum 51) appearing in (III.B.l) denotes the sum over these
four states.
The matrix element appearing in (III.B.2) now has the form,

(P*AT ) = YT R (8 NTA78.),
R

‘using (III.B.3) and (III.B.5). Substituting this expression into (III.B.2) and

(III.B.1.) and carrying -ut the sums S, and %L with the help of the relations:

L
Sl - s

* (. B. &)
) _
2 Kb = Ta X,
one oblains
4R Per 2C C., Jarffar)¥,
lr"/‘{ﬂv Y° 7{/ rre T ¥ ( )
(T N¥AT 2B ATTRN (a-8.7)
X

This result is independent of the neutrino direction of emission,
so that the Integral over the solid angle merely contributes a factor ATT .

Using the relations

Ar* _Ar'
To YATN = To A" NX (ir.B.8)
) _ | .
NN = _E::_.s " (see (@m-B.5)
Thoe

one can reduce the trace opsration in-(III.B.7) to the evaluation of
riat (144 |
T ATA" (24).
Now, from App. A, '



3¢

Tn AVA" = 46, (A7)*= 1
' (IL. B.102)

and TAATA"S =0

except for cross-terms between the scalar and vector, tensor amd gxial
interactions, ior which .
—_— L LAl
Th A'AR = TA A*A'B = 4
: ' (I B.10b)
~m+3

respectively.
Substituting the ebove results into (III.B.7) and making use
of the relations (I.4) and (I.é), one obtains
PRSP S L Loy S O o I RGN L R 2 | @s.
c 2mhics R% )
This result may be obtained from De Groot and Tolhoek's (50)

Eq. {61) by multiplying their result by 47 to include the integral over
neutrino directions and by % to include the averaging factor for the

K electrons,
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Calculation of wkdk

The radiative K capture probability per second is obtained from the

formula

o ’ .
Wy dk = %’I A dk Z‘ /JIZ, ]JQV 5, % ’Z;_'\ (F I JEXE 14 10) (ir. B.12)

3 -
(ar) E,-E, ,

given by Eq. (I.25). The summation over I denotes the sum over all the
discrete and posi{',ive and negative continuum states corresponding to all
the solutions of the Direc Eq. for the e]:ctron in .the intermediate state.
In (III.B.12) the energy denominator is given by (I.26) and the matrix elements by
(1.22). In the i‘ollowiné, we shali label the wave fn Z/’e r » appearing
in (I.22), by ¥, .
The K electron and neutrino wave fns. are given by (I1I.B.3) and
(I1I.B.5) respectively. | : -
| in the intermediate state

The wave fns, possible for the electronhare obtained as follows. It

is assumed that at the mucleus,

.l%’f. < | | - (mu3)

as before so that, using a similar argument as in (III.B.4) for the neutrino,
we find from App.C that the largest waw;e fn. is that for which J'= -';_ , K=tl,
We shall also assume that the largest components of the electron wave fng
belonging to these quantum numbers are F',6 " and 'sha‘ll neglect G F. As

in radiationless t.ransitiéns, the components of .the lepton wave fns. which

are retained here are those whose angular dependence is given by the spherical

harmonic of order zero and those neglected are theones whose angular dependence
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is given by the spherical harmonic of order one.,

A word about the assumptioné is necessary. For radiationless
tré.nsitions, the above assumptions are valid and give good agreement ‘with
experimental results., It must be realized, however, that radiative processes
aré second order p'rocl:esses,. including a summation oyer the intermediate states

_of an electron which can have energies up to infinity, so that the assumption

: (III.B.lB) is not always true, In the radiationless case, it can be shown

that the components of the wave fns. neglected supply a negligible contribution
“to the probability. It does not follow that this is still tﬁe case for the
radiative transitions and a detailed investigation of this point should be made.
Of course, the assumptions made may be regarded as defining, by analogy with

- the radiationless case, an allowed radiative beta transition,
We shall use

' ng’
I e O
A

s=1,2, 3,4 (I'B'/"()
r 0 _

these four wave fns. all belonging to the szme energy E in the discrete or
continuum case (for the K .state & =0),
' .
Expressions for the matrix elements appearing in (III. B.1l2) may

now be given. From Egs. (III.B.3), (III.B.1l4), (I.22) we find that

iKr

/(,UE';Z.E,; ¢ Y 47 = gs* Men 26 § . (w-8.452)

where

Ak 0O
0 Bex

"
>

m

X

Mek

A (1. 8.155)

u

) ‘._* K '
F $in Rr ’,.—+ Jr
o/ E - Ky K

[
= sinkr *
| &l R

~
. X
"
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.use being made of the integral: S
‘. ~KF = sin kr yo 2 =
e '/'e.-' “@. e ’kr ’ Yof 4r
in obtaining (Iu.B.ls). S:.mllarly, from Eqs. (I11.B.5) end (IIL.B. M)

2

(¢ A WE) Y, g; N A"‘I;__ gs ' - - ; (nr,s';."/éa:)'

where - . ) _
.T' L F;‘R’_FJ(R) ) O | (@ B.16b)
€ R O - Gz (R) 6, (R) |
If we now substitute the results (III.B.16) and (III.B.15)
into (III.B.12) and carry out. the summation over the four intermediate.

electron states belonging to the energy E, using

Za "
s =l
the unit matrix, we get
(FIHLID)(X(HglO) ar fic 1V2 o 2 c (A" .
; E —k- - e[ R -] Yo GZr: l"/
| " N*ATQ X § (r. B. 174)
x &N 4 . D,
& N*A Q- e £ )
where

Q Z‘: T;:MEK

s E- E+ﬁch ) - (mE.B. 17b)

which, from (III.B.16B) and (III.B.15b), is a diagonal matrix,
Squaring the sum of the matrix elements in (II1.B.17) and . .
sumning over the two K electron states and the four neutrino states with the

help of (III.B.6) wne obtains
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S S, IZ (F I8, 1E)(T14,10) "“
[l L Er -E,

: ' o4 A /
= el Zﬂhhc Yo - G Z‘ C' C'J/Ar (/Ar )* x
re’

xTr [N* ATQ &, (""i’é):‘.é; Q‘AH*NJ ' (1i.B.18)

Let us now obtain an expression for the trace in (III.B.18).
Using the result that &, anticommtes with @8 end (X-€, )%=/,
one can show that '

=>. 8 [I+A “’.“.= 1-73 B, I
o<ek( )x e, = (mr.8.19)

Also, since

and Q is diagonal,

Q ()" = IL1*(=2) | (m. B.20)
where :
G2y [ Go(n® HRAT Eeodr
L=-LZ (3 ) £: Rt [ (ﬂ[.BZ‘)
R E-E,+hek : )

-from (IIX.B.17b), (III.B.16b) and (III.B.15b),  With the help of the
relations given in (III.B.8), one cen now show that the trace operation

in (III.B.18) is reduced to the evalustion of
v f1-73
Tn A"A" (52),

which is obtained from (III.B.10).
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The above results are independent of the directions of emission
of the photon and neutrino and also independent of the polarization of the

photon; hence the remaining operations z' /J!l.’, faUZ , to obtain w, dk merely

ﬁultiply our results by a factor ¢( #m*.
Collecting all the results together into (ITI.B.12) and using the

substitutions (I.4) and (I.9), one obtains

o kdR' (- teR)* ;L|*c,1{ (o o ] (c,—c,‘)*uo”—’lﬂ Cp H/sr,lz} (Ir. .29

w. dk =
k rthic

where,

| (r.20) , (IT.B.225)



C. EXPRESSION FOR L

The expression for the radiative K capture probability obtained
in (III.B.22) contains in one factor the same photon energy dependence as in
: 10
Morrison and Schiff's expression (III.A,) and in the remaining factor an additional

‘dependence due to the presence of “42', where L, as defined in (III.B.21), is

given by
_ G- (R B '
L= 4 5. & EK , , (r.c.1a)
E E-g, +kech
o .
. - % . . +

; The summation dummy E runs over all possible energy values for the intermediate
';glectfoh, i.e. 2ll negative continuum, discrete, and positive continuum values.
, It is the object‘of this Section to evaluate the radial:integral
™
the "éumﬁ‘over E, we shall neglect the contribution of discrete states and

'and to write out explicitly the summand of (III.C.la). In performing

':appfoximate G (R), several arguments are presented to sustify these apprdﬁimatioﬁs
in the hope .that everything up to the end of this Section can be considered accept-
ablé for an allowed transition. A more questionable assumption is then made
in Section IIT.E where L is calculated in what we shall call a semi-relativistic
approximatioh.

We shadl neglect the summation over diéérefe levels for the
following reqsoﬁg. First, the Morrison and Schiff resﬁlta-of Section ITI.A
make use of intermediate electron wave functions belonging to the continuum only.
Second, it is shown in App, C that even when the nuclear charge is teken into
account,. (%; is zero for a discrete state in the non-relativistic limit. Thus,
we may conclude that the greatest contribution to L should come from the "summation"

ovar the continuum levels.


http://nr.cn
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Our neglection of the discrete sum means that we are
disregarding those intermzdiate states arising when the K electron jumps to
an empty discrete level with the emission of a photon and is then captured
with the emibsion of a neutrino and those when a bound electron, other than
tﬁe K electrsn is capsured with the emission of a neutrino, the remaining
hole being filled by the K electron with the emission of a photon. These
transitions are labelled I(a) and II(a) in Ch.I.
| Let us now evaluate @ﬂ exactly. The integrals required for the
electron in intermediate discrete state are evaluated.in'App. B and will not.
be discussed further. The radial wave fns. fsr the eIept;on in an intermediate
:conﬁinuum.sﬁase and a K electron, as obtained in Appendix C;, may be written
in the form: o

Ar -

_ i A - -
I—K*(r) = N, (2,E)r" e & | (mr.c.2a)
where o v A :
2 (et +Ea) [72 (24 (T.C.2b)
* No (Z‘,Ejk) = Mlaat1) ke ( h ) _ . .
cu = lme)-E; = Zxmc? E = me? [1- Gz
and G" *w = S’/(El-‘é‘mé N(z,E) etX- rd . | (M.C.3a)
{(M‘hf)e P’E F(a-i Z<E 2a4; -g_t:) (K- LE“;"‘)e * F(]HZ"‘PE,Z.AH‘;-!-_‘..;‘_L")}
cp’
where . Ve {l"(u‘ ZxE )’ y ExE
Nz, €) = Lerie s /”(uH) (#) ¢ 2cb : (w.c.3b)
and b=+l for -Edmc* | 8=l for Ef-mect

Substitution of the expressions (III C.2) and (III.C.3) in

(1II.Gla) provides one with integrals of the type given in App. B, Eq. (B. 20)

1k
and evaluated exactly there. Using thé result (g) along with the definition
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utk) = + ﬁﬁ;“ F(a+ é;i,.f: ,AA, AAHS ;Fizlf,,;nk)) (.c.42)
one f;nds that
BEK - S JlEl-seme* NN, ef)(-:z[:_ { (,\ﬂ%.f)[ .u*(k) + u¥e-r)]+
| +(K—L£_5;__M'C)[u(k)+u(-k] f . (&.C.4b)

In order to obtain an expression for (3; at the nuclear radius, we

ghall assume that

PR
h
as mentioned previously, With this avsumption we need retain only the lowest

power of pR/k in the expansion of G (R) in (III.C,3s). Thus

6. (R) = d JiETdma Nize)e - {a-w-i ég-géi———”"c‘l}RH, (w.c.5)
R

where N is given by (III.C.3b)
Assembling the results (III.C.4) and (III.C.5) into

(11I.C.1la) with the help of the definition

: - IR ENT y¥ *
QE) = & {A-K—ng(hfmcl)j{(;+téc%s)[u (k) + u*C-r)] +

;(K_Lz«»_%c)(muuc-wl} (T.C. 6)
one obtains ;
—mc? 0o <
A=l / / }JE (1E1-8me2) N (2, £) QR(E) oy
= - (L. Cc.7
.L N°R { -00. M mct E—EK t+hckR ) ( )

i.e. the integrand is the same for each integral with the exception that § is -1
for the first and §=+1 for the second. - Because of the change in the sign of § ,

a different fn. of E is integrated over the negative range‘combared‘to that over the
positive range. This fact makes it difficult to apply contour methods for the

evaluation of 1. Note also that no density of intermediate states is required
in the integrand since our continuum wave fns. are normalized per unit energy

___interval.
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Using the relation
A= KA~ ()
and the energy-momentum relation, it is easy to show'tHat. Q(E) is real.

' Let us now write the integral over the negative continuum

in (I1I.C.7) as one over the positive continuum. Using IE(=6E , one readily

obtains
o — z) 2, (E+ 2) < -~
N R 45[&_:'_"1_, NYEE)QE) ~ (B’ N7(2;£) Q(-E) (Ir.C.3)
= TN e E—EK+#ck E+E -fcR .

This-is the expression for L which we shall use in the next Section where L
is calculated in a semi-relavistic approximation,

The integrand of (III.C.8) is finite evefywhere except possibly
at those points, where the energy denominators vanish. No such zeros will
occur over the energy range mc'to 0 provided '

|Eq ~fick] < me? |

' This relation restricts the photon energy to the range

0« bick & E, +me? . _  (m.c9a)

besides the range
0& hch L W ‘ (iL'-C.9b)

which already exists physically because the photon energy cannot exceed the

available energy W for the transition. Since for Cesium,

W= 320 Rev,

from Saraf (54), the restriction (III.C.9a) is automatically satisfied; hence,
no difficulties in the calculation of L for Cesium arise from the energy denomin.ators.

If, on the other hand, it happendd that

W A E, + med |



then poles would.belpresent and the integration over such poles would have

to be carried out uéing the Cauchy principal value for the integral,

48
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D. CALCULATION OF L IN A SEMI-RELATIVISTIC APPROXIWATION

The understandiﬁg of this Section and the purpose of the next may
be enhanced by the féllowing outline,

The solutions to the Dirac Eq. with a Coulomb potential are given in
Appendix C. These solutions consist of four components column matrices where
each component has an angular deﬁendent factor given by a spherical harmonic and
a radial dependent factor given by either F(r)/r or G(r)/r. In'the-following
we shall refer to Just F and G as the radial solutions to the Dirac Eg. For
‘positive continuum energy states, the F's are the "large'radial solutions and the
G's the "small" in the senhse that the G's go to zero as the energy E approéches
mc* whereas the F's do not. On the other hand, for negative continuum energy
states, the G!'s are the "large" and'the F!s the "small" radial solutions in the
sense that the F's go to zero as E approaches -mc* whereas the G's do not, We
shall also speak of the radial solutions to the Schrodinger Eq. with a Coulom?
potential; as above, such solutions, when divided by r, given the complete radial
dependence of the'Schrodinger wave fns.

Rules are formulated in Appendix C which, when applied to the large
' normalized rédial solutions of the Dirac Eq. give the corresponding normalizeq

radial solutions to the Schrodinger Eq., and when applied to the small radial

- solutions give zero. The rules are formulated for Both discrete and continuum
. . ) ° -.’of , N .
" energy values, After a discussion below/the salient'features of these rules,

it is shown that in a non-relativistic approximation i.e. one in which these
rules are applied to the radial solution, only the negative energy continuum

levels (positrons) conﬂébute to L in Eq. (III.C.8).
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L, as obtained in the last Section, is too complicated to be evaluated by

ény simple means. It is not even easy to determine roughly how the

integrand varies as a fn. of E except that it ié finite everywhere. In order

to study this question and also to evaluate the integral, it was degiéed to plot the
integrand (for %= 55, i.e. Cesium neglecting screenlng) up to some value of B

large enough so that the remaining.area to infinity éould be evzluated bylg

rapidl& convergent series, the main area being obtained graphically.  However,

even to plot the integrand within a reasonable length of time, it is necessary

to make some_approximations. It appears that the most congistent and simplest
'way of doing this, at. the same .time including the positive energy contribution

to thé_integrand, is to make a "semi-relativistic" approximation based on the above
mentioned -rules and to adopt as a criterion for a good appfoximation the reqﬁirgment
tﬁaﬁ the normalization of the wave fns. be not unduly affected. A plausible
'argument 1s given in Appendix C to show that this reqplrement is satisfied for the
sem1-re1at1v1stlc approximation used.

A further check on the validity of the semi-relativistiec approii—
meation is provided in the next section, It arises from.the fact (discussed
below) that when A is % - for which value 7, =119, a fairly simple
exact expression for the integrand of L in (III.C.8) can be obtained. In the
nexp Section, the exact integrand is plotted for this extremely high Z value and
compared with graphs of the integrand using:

(a) The semi-relativistic approximation for the same Z value and

(b) A non-relativistic approximation for Z = 119, obtained by applying

the rules mentiéned above to the ra@ial solutions of the Dirac'

Eq. which appear in L,



51

Definite agreement exists between the general shape of the "exact"
and "semi-relativistic" curves, but for high energies there is quite a iarge
discrepancy betw:en the ordinates. It would be surprising if this
'diécrepanéy still existed to the same extent in the case of Cesium whose
nuclear charge is_less than half the wvalue conéidered; however, a proper
investigation of this point apbears to be quite complicated and has not been
cafried out, On/ZE:er hand, the "non-relativistic" integrand does not have the
same génerél shape as the other two curves and consequently'it appears that a

:cbnsiderable error would be present in the results if the Mnon-relativistic®

approximation had been used,

Difficulties in Evaluating L
Lef us consider some of the difficulties in evaluation L without
making any approximations outéide of those made in the previous Section,
| The main difficulty is finding some convenient expression for the

hypergeometfic fns. of the form

Fa+riy,ax aa+1; 2) (¢t (m-c.4a)) | (Z.0.12)
where .
2 = (2 —_—
y=Ep e prorrus ch=+E=mS  (m.p.1b)

The usual e#pansion of (III.D.la) in powers of does not coﬁverge for!ﬂ>lksee(fiun),

a situation which occurs for large b H ﬁhus, several expansionsof (III.D.la) over

thé range of P from O to 0 are required if we try to calcglate L (or just

plot the integrand) by memns qf series, Whether the resulting series converge

rapidly or not, has not been investigated. .
Besides the series for thé hypergeometric fn., a series is also

necessary fér the complex gamma fn. appearing in (I11.C.3b).
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A procedure for evaluating L for small photon energies is to
first expe.ﬁd ' sf_ﬂ Rr [kr appeering in the radial integral B, (1T1.C.1Db)
intov'e series of powers of R before carrying out the radial integral. Thus,
-subs'tituting the series

M

in_Ar i" ?k )
5’" — m r
S A = (-I)

kr M=o (am+ )l

_‘,into the required type of radial integral

5 | | |
S et EPE ke FOuig kG aib) d (. p.22)

[ Rr

(see B.20) ) gives

oo
0" R P aaramsn) . 2
.p.23) = - Atiy,an+2mis, a0 28 ) oo ap
(ar.p.2) MZ;; (zminl [#+[PJ1A+JM+I F( K . ) )/Hiﬁ) )
K :

using the same method for evaluating the integral (B.«20).

The advantage of this pfocedure is that, after using the relations
(B.J4) and (B.I5 )_ , one finds the second parameter in the hypergeometric fn. to
be a negative integer, -2n, or zero and the fn. itself is then represented
by a finite series (from (B)), containing 2n terms for the coeffiéient of k*"
The inteération over E must then be carried out (probably by means of other
expansions or else graphically) to ob‘;m‘.n L as a power series in k, the coefficients

also being fns. of k _since'k apvears in the energy denominators of L (111.C.1a),
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This proéedure has not been used in this thesis, Eut it would
have to be used if values of L for photon energies smaller than 100 kgv in the
case of Cesium were desired; however, such energies are below those
occurring in the measurements oféaraf (54). The reason why the method that is used
to evaluate L breaks down for these small energies is that the integrénd of L
is plotted (after being approximated) and L, which is then obtained graphically,
decreases for small photon energies to a value comparable to the errors in plotting.
It may well happen that special approximations will be required to overcome tnis
same sort of difficulty in the procedure just outlined,

Before proceeding to the semi~relativistic approximation, let us
first note that if the quantity 2A appearing in the parameters of.the hypergeometric
fn, (I1I.D.la) is an integer, then an explicit finite expression for these fns.
can be obtained from the integral representation (B.I3) by integration

by parts. Now, in our case

A= ViI-(2x)* K ,

)
k3

1

so that &) , considered as a fn. of Z, is an integer only when Z=9, #9,/37
giving 24 =2,1,0 Trespectively. The caée Z=0 is of no interest to us and neither
is Z = 137 for which theintegrand becomesinfinite, but the case Z =09,2= %

is because the integrand of L as given by (III.C.8) can be obtained exactly and.
plotted in comparison with a graph of the integrand for the same value of Z

using the semi-relativistic approximation. Such a comparison provides a check

on the validity of the semi-relativistic approximation and is carried out in

Section E,.
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The Semi~-Relativistic Approximation

" The rules by which the non-relativistic normalized radial solﬁtions
of the Schrodinger Eq. (including the nuclear @oulomb potential) are obtained; P
from the normalized radial solutiéns of the Dirac Eg. are listed below for continuous
and discrete states. What we call the "semi-relativistic" approximation is
then presented and used to evaluate L,

Rule for Positive Continuum States (E 2 mc?):

Consider our "large" radial solutions F for these states in

Appendix C and regard them as fns., of the momentum l> using
E =+ Jep)* +(me?
Then, in order to obtain the radial solutions to the Schrodinger

Eq:
(a) Replace E by the first term in its expansion in powers
of p i.e, E - mc? (I 0.33)
(b) set A=IK| everywhere, (I. D. 3b)

Wherever E appears, it is divided by ¢p so that, using the relation

E _ <¢p + M _, mc

ZF E+me? T T J
we ean see what is neglected in this ratio when rule (III.D.3a) is applied.
In obtaining the radial solutions to the Schrodinger Eq., we also write
K-f+lork=-2 for Ke=+(jrL)or K=-(j +4) respectively, both cases
producing the same radial solution to theSchrodinger Eq. possessing an
orbital angular momentum L.
If the rules (ITI.D.3) are applied to the "smail.l“ radial solution G

for the positive continuum, one obtains zero,
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Rule for Negative Continuum States (E = ~me?),

In this case, we again regard the radial solutions as fns. of ,b

using

£ =- f(—c)b)"+(mcz)l

Then to obtain the corresponding radial solutions to the Schrodinger Eq:

(a) Replace E by the first term in its expansion in powers

L . D. 44,

of p i,e. E = - Mc‘Z < )

(B) sSet A=IK| everywhere, g p.4b)
This rule is obtained as follows, It is shown in Appendix C

that for the negative continuum, th: G's are the "large" solutions and the F's
the "small" in contrast to the positive continmuum case, In particul-r,
the negative continuum solutions are related to the positive continuum solutions

by the relations

G_*(._“.:l, K,Z) = ei‘pF(lEl,-K,—Z) (.p. 53)

- ¥ - e GlIE,-K,-2) -

FT(-Iel, &k, 2) = e IEf,-K . (@ o 5b)
considering the wave fns, to be fns. of E, K, Z . e"‘/J is some constant

phase factor. The R.H.S. of (III.D.5) shows that the negative continuum states

on the L.H.S, fepr;sent the motion of a positron in a positive energy state
(with K replaced by -K ) In making a non-relativistic approximation,the R.H.S.
of (5a) must give the radial solution to the Schrodinger Ea. for a positfon i.e.e

from rule (III.D.3) we just put

E]= mc? A=IK|

in the appropriate places, either sign of K giving the same non-relativistic

result. The relations (IIX.D.5) then show that the rule (III.D.4) must be used

radial radial
to obtain the non-relativistic,\wave fns. from our negative continuwnAwave fns.
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Applying the rule (III.D.4) to our "small® solns F for the
negative continuum, the result is zero. This statement also follows from
(III.D.55)ﬂand the fact that G for positive continuum states goes to zero
in the non-relativistic limit.

Rule for discrete states

The normalized non-relativistic radial solns for the discrete

case are obtained from our radial solutions in Appendix C by setting .

A = Ik] ) (@ D.6a)
. everywhere and

E = mc? . (m.p. 6b)
in just the square root factors f?ﬂ JB which appear in front of the

radial solutions. Thus JA and hence G go to zero. Note however that

the quantity’ V/AB appearing in the wave fns. does not gofto gero but

e x .
AB -Z——;;@"c‘ (T.D.6c)

where n is the non-relativistic energy quantum number,
m= /Yll'f'lK'

The result (III.D.6c) is obtained by first writing exactly

J(EE . _(ze)
Mf—") o m! A aam’y K*

for a general discrete level; | then using (III.D.6a); one obtaines (III.D.éc).

Let'us now discuss these rules and, in particular, how a non-
relativistic approximation would affect L in Eq. (III.C.la). Firsﬁ of all,
the rules were deter@ined in each case so that the "large" radial solutions gave the
non-relativistic radial solﬁtioﬂb for an electron or positron depending on{
the energy region. ~ When the same rules are applied to the "small" radial
solutions we get zero. Now L depends only on the "small" radial solutiouns G in
the positive continuum and the "large" radial solutions G in the negative

continuum (neglecting the contibution of the discrete states), so that in a complete



57

non-felativistic approximation only the negative continuum states would
contribute to L. It is the purpose of the semi-relativistic approximation
to include the positive continuum contribution to L.

Semi Relativistic Approximation

L depends on the wave fns. of the K electron and the electron in
the intermediate state, for both of which IK|=1, If we set A=  everywhere
in these wave‘fns. the calculation of L is simplified considerably because, as
already mentioned, explicit finite expressions for the hypergeometric fns., and
gamma fns. can then be obtained.

Setting A=l in the K electron wave fn., one obtains the
substitution (III,D.6¢c) with n =1 ; substituting these results in the
. electron wave fn. (II1.C.2a), we find that the wave fn. contains in one factor the
non-relativistic radial dependence and in the other factor the constant N, which can
be takep outside the integrand of L and which then cancels out in the ratio
w“dk/%h provided the K lectron wave fn. is approximated £he same way in w,.
Since we are only interested-in this ratio, no'further approximations are made for the

‘

K elettton. Note however, that we shall still let

e .0m

K

r;latf;istically, in the energy denominators of L inl(III.C.S) since no
simplification is required there.

The semi-relativistic approximation that is applied to the radial
solutions for the electron in the intermediate state is carried out as follows. The
square root factors ) |

VIE| £ £me* (mr 0 83)
which appear in front of F, G (App. C) ané left unchanged; in the remaining

fhs, we set ‘
2=/ (. D.8b)



and, considering these remaining tns. as fns. of p using
E =8 [ (cp)* ¢ (med*

replace E by the first term in its expansion in powers of p, i.e.

E > §mec?

(W. D.gc)

as in rules (III.D.3) and (III.D.4), If we also approximated E in the
square root factors, we would be carrying out a non-relativistic approxi-
mation with the resulting neglection ot the positive continuum contribution
to L. Let'us call the radial fns, resulting from the application of this
semi-rela£ivistic approximation, seni~-relativistic fns,

It is shown in Appendix C, that, if we look for general radial
solutions to the Dirac radial Iqs. having A=(K| , we find that such solu-
tions are possible if, and only if, the Dirac radial Eqs. themselves are
approximated, the semi-relativistic fns. being solutions of these approximated
Eqs. which we shall refer to as semi-relativistic radial Eqs. These semi~
relativistic Eqs. are given in Appendix C and are used to show, by a plausible
argument, that the normalization of the semi-relativistie fns. is not unéuly
affected. A special adventage of the semi~relativistic fns. is that, by the
éhoidgrof guitable units, the most complicated fns. appearing in the integrand
of L need to be tavulated only once as far as Z is concerned, sinee the
resulting table can be used for any Z.

It should be menticned that only the'_ approximation A=| is needed
to simplify the integrand of L to the extent where it ean be plotted within
a reasonable length of time; however, it is not easy to make any statements
about the normalization of the regulting wave fns. and also the most compli-
cated parts of the resulting integrand of 1L musi be recalculated for each
different value of Z. It would be possible though to check the resulting integrand
for 27119, A= % with the exact integrand for this case just as we shall do in the

‘next Section for the semli-relativistic approximation, but, because of time
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limitations, such a comparison has not been carried out.

The Semi-Relativistiec Integrand of L

We shall now write out explicitly the integrand of L as given by
(I1I.C.8) using ‘the semi-relativistic approximation, In the next Subsection this

integrand is plotted as a fn. of the energy E for several values of the photon

energy. fick.
Carrying out the substitutions (III.D.8) one finds

© 3
L= -N, / 45[5_'—”1‘5-—- N (2 mc)Qmed) — Erome” szz,-mi)c)(—mci)] (m.p.9a)

E-Eg +Rck E +Eg-Ack
where: :
PINER L5
N3(z, fmc?) = 4;’2'“)3 P+ sy e .8
s EXome (mr.D.9¢c)
J P
Q(g,mcz)= _i_i {Z—L'j(Sf-l)} (H,'zéy)[ u®(k) + u*c—k)]
-(.p.“'.y)Lu(k) + u(—k)] } (‘.D-‘?Jx
. _° iy 2 3. 2k
u (k) = TP Fi+idy,a,3 ’ﬂ+i(k-ﬁk>) (mr. D.1€Y
p= Ewame [ G+splt = TS (from(B.3) (. D.9)
' sinh Ty

‘and the X elegtron energy, E x » 1is obtained from Eq. (IL.D.7),

| The most difficult quantitities to obtainexplicitly in the intemgrand
are Q(tmc?) of (III.D..9d)’. Q(~mc?) cannot be-tbtained from Q(t~&)vy
replacing m by -m or y by -y in the resulting exbressions. This is apna;'ent
when one notices that the factor ( i+iy ) and not (/¥ {6y ) appears in the second

term of the right. factor of Q in (94 ), Let us now obtain explcit expressions for

the Qls,



Using (B.)9), one finds that 4(R) in (III.D.9e), for &=+I

be
only, can:"written in the form:

k) = LB 2ip [m-i(b+3R)]
2Py | [urip-ar]"Y [p-c(pear)] *T

S
4 ( ( LH ,(_P:ﬁk)J ‘ - — /) (L .. 10)
iy \Lpri(b-sR] 7 [asi(pean]™Y - |

Before proceeding, let us define the dimensionless quantities:

x= %&- ) ?': —,;L (=§ {-rom (m-D-?C)) R M= Zx mc : (_m:.D-”)

Then, forming (k) + w(-R) and substituting the result into

(III.D.;,d) with §=+/ , one obtains
.. » R : 2
@(i—mc"') = - ;iz Q.‘. (9, %) _ . (T, P.123)
where

~q%_ 42 o
Q,(9:1) = -L.-{ canls ki e . - c.cl @)
* i Li-t’(‘i“x)]'“/“ [1+iqen]' 1

c:c.-. meaning complex conjugate. R so defined turns out to be real and positive,
| A simpler procedure is now used to find Q (-mc*) from (III.D.9d). ‘
Using the relation (B. /16 ), one can prove that
(1+ey)UlRY = (1miy) KRCRY

{ | ciy -l

- 5{1“ { [u+i(p-k0] " [u-i(petik)] 7} : (m.D.13)

from which one can obtain -
. 1 ,' '
Ql-me?) = — LE Q_(4,x) (IL.D. 14a)
. k u? _ g :
vhere R : | et
(
=L : - c.c.} (m. D.t4b)
Q‘(q’x) al { [ +i(q-x)]'*'7 [l—z(qf»x)_]”‘/q

Q - 80 defined turning out to be real and positive
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As seen from the Egs. (III.D9), (III.D.12) and (III.D,l4), the
integrand of L in the semi rel. aéproximation is quite complicated. In the next
subsection we shall plot it up to a certain value of E and then evaluate the
"tail" integral by a rapidly convergent series,

Before doing this, let us first write the integrand of L in a more convens:

jent form.
Defining
rn/a
D, (q) - -T& " . n'[cotk(ﬂ'/q) 1] (. D.152)
= sinh w/q

i I=/°:le( < [%JD-Q-

o [l“ ]D+ Q, (. D-15b)
.£"‘€K +1KX £+| .
& = ';’“E:l (m.D. 15¢)

we find from (III.D.9), (III.D.12), (III.D.14) that

L=-_N I | (Ir.p.15d)

. 2T 2 me® X

In the formula (15b) the D!s, and Q's, and dnergy denominators
are all pggitive so that I is positive or negétive depending on whether the
negative or positive continuum states respectively contribute the most to the
integral. The calculations performed in the next two subsections show that the
negative continuum states contribute.the most (as we should ekpect from a

non~relativistic approximation) giving I positive,
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Tabulation of the Integrand of I

I of BEq (III.D 15b) mst further be written as

I=I +I, ' (Ir.p.163)
£, *
where I-= / %%. de I, - £/ :‘if de ' (zc.D.16b)

%1_-' being the total integrand in eurly brackets in {III.D.15b). Il is obtained

graphically in this Subgection and I, , the "tail" integral in the next.
It turns out that for Z =55, tie value

£, =3.5 ' - (Ir.D.17)

is sufficiently large for I, to be evaluated analytically, using series
expansion of the integrand. .

The quantities D and Q appearing in the integrand of I, depend
on q'and x only and are tabulated in terms of these variables in Table III.l.
"The values of D and Q given in Table III.l, may be used for any value of
% provided one uses the dimensionless units q and x; With these values,
the integrand of I, for different values of Z can be plotted fairly quickly
and Il evaluated graphieally. The series expression for the -'!j"bail" integral
I, fiven in this Section is also valid for any value of Z. Consequently,
the results given in this Section can be used to ealeculate the radiative
K capture probability for any value of Z, even though just the results for
Cesium have been obtained explicitly here, . )

For Cesium, about 25 values of q were chosen between 0 and 10
for each value of x equal to 0.5, .75, 1, 1.5 in order to obtain enough
points to plot' the integrand aecurately. For largé values of the integrand,
the acouracy of the calculations was to three significant figures; how-
ever, for values of € near £, the integrand is small in some cases and con-
sequently the aceuracy decreases to two signiflcant figures.

Checks on the caleulations were made wherever possible. In par-
ticular, the integrand of I‘ for £= 1 or q= 0 must be obtained sepa,rat:zly



Graph ITT.1
_ o 131 :
. The integrand Il for 5503 » photon energy=102 kev, x=,5.
Eq (T.0.16b),
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Graph I1I,2

The integrand Il' Eq. (III.D.15b), for 5508
Photon energy =154 kev, x=,75.

131




- 1.21

The integrand Iy, Eq. (III.D.15b), for 5505131
photon energy=205 kev, x=1, -



. Graph III.4

The integrand I, Eq. (III.D.15b), for g0,

photon energy =308 kev, x=1.5.
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from the calculations by a limiting process (the results of which ai'e pre=
sented later on in this Subsection), the plotted integrand approaching this
point as though it were extrapolated; also, the integrand of I, for energies
near £, can be chescked by the series expression for the integrand of I, to

an aceuracy within 5%.

In Graphs IIT.1l, IIT.2, III.3, III.4 the integrand of I, is pre-
gented for x =,5, 75, 1, 1.5, From these Grephs, we see that for small
electron energles the positive continuum contribution to the integrand is
the significant one even though the largest overall contribution to I
comes from the negative anérgy continuum. As we shall see, the same situa-
tion oceurs for Z=119 in both the "semi-relativistic" and "exact" curves
of the integrand but not for the "non—rélativist_ic" integrand., The values
of I , » obtained grappically, are presented in Table III.Z2.

Certain precautions are necessary in caleulating the Q's because
we must stay on the correct sheet of the Riemann surface associated with these
complex fns. For this reason, the Tormulae uged to calculate the Qs are
given explicitly below.

In ordér to express the Q's in terms of real quantities, we

define 9
I+i(q-x) =r.e" " /+c(q+x)=r,e‘9"
N -~ k3
ro=Ji+ (g-x)? rp = JI+(g+ex)
. o<, ‘ w. 0.8
¥ Gnb = q-x tanO4 = gX ( !
—g_.ge_t_—_if ose+é%
azdnrr + L (6,+0.) : b= 6,-6. -#Lna/r_
1 (. D.19)
a'=dnrr - +(0,+0) b =8,-0_ +—!i-lmr+/,_
which, when substituted into (III.D.12b) and (III.D.14b) give
-a
Q+ = e [_ 4 X.cosb - (3-x1-q?)sin L]
' (1. ©. 20)

Q. = e-al sinb'



The ranges for the angles @ _, 6_ given in (III.D.18) are determined as
follows. Consider the first term in each of the Q's in (III.D.12b), (III.D.1l4b)
(the c.c. terms are treated in exactly the same way); +the multivaluedness
arises from those factors in these terms which are raised to jure imaginary‘
powers. As shown in Appendix B, the multivaluedness appears &s soon as we mgke
use of the explicit expraésion (B.19) for the hypergeometiric fns, According

to the discussiori given in Appendix B, we must choose the ranges of 8  and

@_ 1in such & way that
8, +t6. =0 is g—0,

a requirement satisfied by the ranges in (III.D.18).
When q is zero (E=me*), one can prove from the definitions

(IiI.D.lS) and (III.D.19) (respecting the renges on the @'s) that:

d= (1450 + 353 b= 2bLn"'x - 2x_ |
(m.o-21)

‘_ 2y _ & U -/ axX

d ,&n(lﬂ( ) T+ xx b = 2tan™x + e x

By substituting (III.D.21) into (III.D.20), one finds the values of the Q's

for qQ= 0.

The "Teil" Integral Io

«The "tail" integral is obtained here as a series in powerg of
1/q. The results (III.D.24) and (III,D.25) are valid far any value of Z.

Let us rirst expand the exmressions (III.D.12b), (III.D.l4db) for
tie Q's. In order that the expansion of the complex binomials &n the for-

milae converge absolutely end uniformly over the range of I, (3.56¢ €< ),
we must have

»

(25 |

For Cesium, the value of q"corresponding to the energy &, is

q,=8.36
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and since x<£2, we see that the above relation is satisfied for all g>q,
as required., Ixpanding these binemials to 4 terms, one finds the Q's,

correct~to 2 terms, to be given by

- -T/q £ Gsx?) (r.o.23)
Q,- 4x:L [I+.z —;r‘} .

Combining these expansions wlth the D*'s of (III.D.15a) and making use of the

expansion

- - - = i

Sinh T €q9* *
one obtains an absolutely and imiformly convergent serles for the products
DQ eppearing in the integrand of (ILL,D,15b), !

Since alsc

l‘k'z“,cl , ELLI’-‘;-'L[ for E£3E, o 9q>q, )

the other parts of the integrand can be expanded in ebsolutely and uniformly

convergent series of powers of 1/q. Comnsequently, all these series can be
mltiplied and added together to giye a convergent result for I.z,'

Writing I in the form

/ ‘U- d? ; . (@ -D.244)

one finds

%1:.: i% [/+Q§& - _'i}} (r.o.246)

1 1 7 .
, .
where A= F-d A= 3(13-3x3) + £ 4 d(6-d) vl

d = Eyx —hech s = L f (ﬂ.p,z‘lc)

Z& amct L '

the gsearies (III.D.24b) being correct to the terms shown, Ihtegration of
(III1.D.24a) gives

I=%[l+g_/}_. - A } - (w.p.25)

‘ qa 1,";1 )
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the sekéls (III.D.ZS) converging more rapidly then the series (III.D.24b).

Provided X,
For Cesium, I, is tabulated in Table III.2 using (III.D.22).

or q, is suitably chosen, this result is quite general,

From the results for I, and I, , I-I,+ 1,6 1s obtained and tabulated in
Teble III.2 along with I/x.
Using the relation

L _ StV 4T : (. D. 26)
&L - S Tyl 4
dx Zx mc? g dq )

with ?;%( given by the series (III.D.24b), one can check the tabulated values

of the integrand of I, for values of ¢ near Q= 8,36

The ratio wdk/wg

In the radiationless probability w,, the quantity

AR oL

PSSR

R
for either a semi-relativisbiv or a non-relativistic approximation, (a

from (ur. C. 24a)

different N, for eaeh case), and also E,= W, the available energy, since
no photon is emitted,
Collecting the fornmlae (III.B.lt), (III.B.22), (III.D.15d)

end the above results together, one obtains

wedk _yr 1% ..Js. (V—m&)‘(n)‘ka{k
0 W

we  Lar(zetxt cl)? (m.p. 27a)

where
(es-¢ ) 1] 4 (Co- &I + Cr 1/B% | | (mr. p. 27 b)}
(€ +C, 3 1)t 4 (CrtC) I+ CRIfR )

Y being unity if just a "pure" beta interaction is considered. The

Y-

result (III.D.27a) differs from that of Morrison and Schiff (40), who

considered "pure"} interactions only, in the quantity appearing in the
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1.54 X . Photons per disin%egration (xloa) per unit kev energy interval - )

Graph III.S,

A comparison of the experimental results of Saraf (54)

with the theoretical results of Morrison and Schiff (40),
131
Cs

55 - Eq. (III.A.10), and the results of this thesis, Eq. (III.D.27),

The results of this thesis are rej:resented by x's. The
ordinates of these four points must be divided by 100 for
& comparison with the econtinucus curves on the same scale.

el

Moryrison and Sahiﬁ‘j

r. % — : . . ;—ér__.,.Er
loo . 150 200 &50 3o kev)
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sc;uére brackets, In ‘Graph II1.5 our results are compared with the Morrison
and Schiff formula, Saraf's (54) experimental curve is also shown. A
glance at these curves shows that the theory of radiative X capture alone
will not explain the experimental results. Also, we see that taking Coulomb
effects into account lowers the ratio wkdk/wc by an order of magnitude in
the low photon energy region.
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E, The Case of Z=119,a=%

As mentioned previously, the integrand of L as given by (III.C.8)
can be obtained exactly for this case, We mst remember that the integrand
of (III.'é_.B) has been obtained by neglecting contributions of discrete
states and by approximating tﬁe electron wave fn. at tkfe nucleus; hence
_ fhe statement that this integrand can be obtalned exactly for Z= 119 means

' that no further approxirmations are required.

A brief outline showing how the.acact integrand is obtained is
presented here. The calculation of the integrend in a semi-relativistic
éi)proxinnt'ion presents no difficulties since it is eompletely similar to
that giv_'eh in the last Section for Cesium except that Z must be changed
from-55 t,g.- 119. The D's and Q's of the last Secﬁon can be used without
recalculation. ‘

_ The exact and Semi-relativistic integrand are pletted in Craph
III.6 for x =.75, i.e. a photon eénergy of 332 kev. Along with these two
curves the non-relativistic integrand is drewn for comparison. It is.

: corresponding
obtained by replacing the radial solutions to the Dirac Eq. by the/radial
solutions to the Schrodinger Eq.; in this non-relativistic approximation,
only the negative continuum states contribute t'o_’L.

"It is perhaps too rmuch to estpect very good agreement botween
any of the approximate cubves with tis axact one for such a high value
of Z. We can see though that the general shape of the exact and semi-
relativistic curves is the same, neither one agreeing in shape with the
non=relativistic curve; however, there is a discrepancy between the
ordinate? of the exact and semi-relativistic curves which cannot be
overlooked for this value of Z, It is assumed that for Cesium, whose
nuclear charge is less than half that tor this case, this discrepancy
.decreases to a much smaller value. '

In the semi-relativistic aprroximation, we have approximated

A= Ji-(za)? by . |
Efep by "™</p



in certain places. As mentioned in the last paragraph of Section IiI.D
bérore the Subsection on the semi-relativistic integrand of 1 is presented,
it 1s not necessary to make the sbove energy approximation although certain
advantages in calculating the integrand of L do result from it. If the '
resulting integrand for just the approximation A=1 were also plotted in
Graph I1T,6 for Z=119, then we could definitely state that the discrepancy
between such a curve and‘ the exact curve mst decrease for 2 decreasing
because the approximation A= 1 is so much better for gnnll Z. It does not
follow that this approximation would be better than the sami-relativistic
one, because the apprbximation onA and E might nave to be made together.
In fact, as shown in Appendix C, if one looks for solutions to the Dirac
radial Eqs. for which A= 1, then solutions are possible if, and only if,
' the approximation on E is also made. It appears that the normalization
of thevgemi-relativistic radial solutions is asgured (Appendix C); how-
ever, nothing can be sald sbout the narmalization for the A:/only approxima-
tion since we do not have the Eqs. which the resulting fns. satisfy and the
fns. themselves are too complicated to egsily ewvaluate the required nor- .
malization integrai. .

In the remainder of this Section the details involved in calcu- |
lating the exact integrand for 2 =119 are ocutlined,

Using (B.18) in (III. C.4a) with 2%, one obtains

69

3 | - q+X)V2-in '
u(k) = I - ———-————-) J e
2‘:)bk ('Ii"‘/l)[ (H-i(q—x) (HTI:ZJ.)
where
E«E - ¢ (E_
= T y (rmc"'“) (Ir- & 26)
9, X, ¥ being given by (ITI.D.1l) and (III.D.9%¢). Substituting (III.E.2)
into (III.C.6), one obtains
-\ _ & + 3 -
Q) = 2k [A (ruy) 5] (I E. 3a)
where
= —'l(9++9.) (r+ -15. . s 1?—. . ] ' ( - 5
A= e [ —F:) Sinx —(_r:) 5111-/5 . £. 3b)

B - -n(9++9 ){ (.;t) p coso( — (%)J‘icosﬁj
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) = ____.e*+e— — r(/&( r"f/r'_
(IT. E. 3¢)
A= %t8- L n ntifr

nb, = q+x | tan 6 = q-x : )
. © 0& Bt I L ¢ p ¢ I (a5 in {nr.u.ls))r(nr.s.u)
Y},=J|+(7+x)-‘ r o= JTr 0" /

Uging (B.3), one firds for N in (III.D,%b)

L8
{ mwe

(ut.?.«t)

F3
NT(,E) = ar(he)t coshwy
Substituting (III.E.3) and (III.E.4) into (ITI.C.8) with the definition
‘Q/(E) = - J‘—k——: Q(E) (or-e.5)
one obtains
. L .
Ly, = -~ MR 1n (mr.E. 62)
2 21 E<md _
wh ere
00 -mn ;
Il/'“"/dél ] <£+l) Te Q(“E)
2 2 A E-réK—Zeq Zocq u“'”’l
™
- ! _ ( 2«9 ) re O’(E)] ' (mr. £ 6b)
E-&¢ +2xx £+ coshm( ..

It is the integrand of I ¥ whi..ch is compared in Graph III.6 with
the integrend of I (III.D.15b) for Z=119. The nuclear radial dependence
present in (Gaj disappears in the ratio wkdk/wc for 2=119, A= % and so
is not taken into account in the comparison (Cf. (III.D.15d)).



TABLE IIT.1

. A table 6f the Quantities Dt(q) (0£q<10) defined by Eq.(III.D.15a) and
Qa,x) (0¢q=<10) (x=.5, .75, 1, 1.5, 2) defined by Eqs.(III.D.12b) and
(III.D.14b). |

a D(q) D_(q) Q,(2,.5)  Q_(q,.5) E/mc*
0 642832  ..... 42640 3,915 1.0000
v e2 ' 6.28832  ..... «264) 34845 1,0032
46,2832 e 2617 34601 1.0128
) 6.2834 0001y 02546 3.114 1.0287
8. 6.2856 @ ,00242 «2419 2.448 1.0505
1.0  6.2948  .0l162  .2249 10070 . 1.0779
1.2 6.53167 03355  ,2060 1.210 1.1105
1,4  6.3555  .07235 : 1,1477
1.6  6.4095 .12629 1697 .4619 1.1893
1.8  6.4807 «19754 : 1.2347
2,0  6.5670 .28378 1396 .2423 1.2835
2.2  6.6665 .38351 : 1.3355
2.4 647776 «49442 1159 .1186 1.,3901
2.6  6.8987 61553 ' 1.4472
2.8  7.0284¢ . ,74525 09738 06284 1.5064
3.0  7.1656  .88741 08965 04699 . . . 1.5674
.5 7.5346  1.25145 .07383 02434 1.7271
4.0 7,932 ° 1.64893  .06178 .01365 1.8947
4.5 8,350L 2,06695  .,05240 .00820 2.0683
5.0  8.7830  2,49983 04494 .00519 . © 2.2465
5,5  9.2271  2,94392 .03895 00343 2.4283
6.0  9.680L  3.39694 03406 .00236 2.,6130
7.0 10,6054  4.32217 .02672 .00121 . 2.9887
8,0 11,5486  5.26547 .02152 000688 3,3705
9.0 12.5033  6,22016 - ,OL769 ,000420 3.7566

. 10,0 ?15 04672 7.18400 01479 «000268 4,1458



o2
4
«6
8
1.0

3.5
4,0
4.5
9.0
5.5
6.0
7.0
8.0
9.0
10.0

3663
3702
.3805
+3899
.3828
#3655
+3383
.3082
2779

' ,2498
" 2249

.2029°
.1839
21673
1527
1399
1142
09490
.08014
06851

.05176
«04054
.03256
-02671
.02225

TARLE TII.1 !continued!

1.793
1.845
1.953
2.039
1.986
1.752
1,402
1.042
J7410 |,
+5181
.3618
2543
.1814
1314
409675
.07231
.03740
.02096
01254
007920

«003576
«001839
+001033
.0006232
«0003981

Q+(q'-75i Q__(‘b «75) 'Q-_._(Q.ll)

4204

.4306
4577
4914
.5162
.5203
.4999

#4180

« 3327
<2664

02174
«1977
«1591
1311
.1098
« 0934
«0805
0701
0547
« 0437
»0358
<0299

Q_(q,1)

7343
7682
8723
1,0255
1.1848
1.2751
1.2554

«8560

«4711
+2470

#1336
«1001
0517
0288
0172
.0108
.00712
«00494
00256
«00142
»000856
000542

72



1.0
1.2
1.4
1.6
1.8
2.0

o
.

2.8

2.4

2.6

2.8
3.0
3.5
4.0
4.5

5.0 -

5.5
6.0
7.0
8.0
9.0
10.0

Q+( q,1.5)

3947

4106
+4565
.5286
6211
7165
+7941
.8292
.8121
7535
6737
.5921
.5180
4544
4012
«3567
2741
2186
21792
+1500

»1103
.08486
06738
» 05489
.04566

TABLE III.1 (continued)

Q_(q,105)

.1425
.1508
<1764
2244
«2946
<3929
««5100
+6181
«6773
«6620
.5846
4792
3753
2870
2178
.1652
08573
.04733
02790
.01735

.007678
«003860
«002154
.001289
»0008182

Q+_(q’2)

.2803
.3128
3526
4202
5167
6413
7892
.9449
1,0817
1.1697
1.1772
1.1072
.9923
.8629
7436
6412
4580
3456
2728,
.2223
1656
1578
.1189
.0933
0754
.0624

Q__( q,Z)

03794
03990
04644
.05828
07722
.10587
.14758
20559
.28007
35801
42099
44492
42269
-36897
+30397
24201
.13058
07186
.04170
02554
+01640
01100
005452
.003000
001780
001123



A tabulation of I
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(III.D.15b), I, (III.D.16b), and I,(III.D.25).

«0040
s0728
«163
« 383

0154
0244
034
«057

I=1,+ I,

+0194
.0972
2197
o440

I/x

.0388 |
«130
0197
294
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APPENDIX A - EVALUATION OF TRACES

Each of the (4 x 4) Dirac matrices and 07 matrices can

be expressed (see Ab) as the direct product of any two of the (2 x 2) matrices:

s« (o1)  5,=(1s) S,j(?f) sy=(ou) (a.1)

P
the last three being the Rauli matrices satisfying the relations

S,: Sj'= —Sj'sl' =.’:5R (L'Jk) C\/C“C
. (A.2)
S('l =Jo T/I 5;_-'-‘-0 ‘:)}.’R’ ,2,3
-Using this property along with the properties of the direct products, i.e.
(3, xb)(a, xb,) = (a,a;xb by) (A.3a)
T}l(axb) = Tn.rl Th.b (A'-3b)
where a's and b's are (2 x 2) matrices, and with the relation ‘
TAo AR = TA BA (A #)

one can evaluate the‘required traces in a simple and direct manner. An
illustrative example is presented at the end of this Section.

An alternative procedure wouid be to express the G matrices
as products'of X matrices e.g. vi:—ix1d3, and then make use of the general -
rules given in Heitler (5&) for the traces of products of Dirac matriées; however,
i prefer the‘method presentéd here. |

LY

. r
The interaction matrices A are:
r< 7/, 2, 3, 4, ¥, & 1, 8, ¢ AT¥ AT (A.53)
)

A"= A, |, Ac BOL,BG T, 5, T ipKs (A¥) = (A.sbs

Using (A2) and (A3), one can show that


file:///auli

di= (SIKSE) ﬁ=(53)&5°)

o7 = (s, x5;)

Vg = +ix, Koy = - (s, x9)

(A.6)

One can also show that 4 anticommutes with &; and ¥. end cormmtes with a7 .

By writing down all the products required and using (A.2), (A.3),

(Aet), (A.6), one can show that:-

]

T ATA™ = 46§,

and T~ ATA™'B

i

0 except for the cases

T A'Azﬁ =T AZA'/3 =4 (Scalar, Vector interactions)‘

(A7)

TAATA" 28 - TRA"A™s= 4 (Tensor, Axial interactions)

M=3,4,5.

Ixample:

Ta “io;"ﬁ ¥ = -Th (s,xsl.)(s,x‘sj)(ijsc)(s,xs,)

- Th (S 5 5,5) x (5.5 5 ) (using (A.34))

1}

- Ta (535,) Th Si5; (using (A.3b))

(uSing (Aoz))
= Tha s, Th s; oF

—_ O since T;,_ 53 =0 Trom (A’z.) .



APPENDIX B

Table of Functions

In the table below, z 13 a complex number, R(z) is the real part
of z, and any other variehles are complex numbers unless otherwise
specified, The arguments of the hypergeometric fns. will elvays be shown
so that no eonfusion should arise between them and other fns. I '
denoted by the “same letter F,

Gamma Fn.
. ) v
-t L2 o
Fz) = [ ettt dr [ (»#D) :/ty)c-ktit. (B1)
kV‘fl (-4
R(z)>0 R(») > -1 R(p)>0
[(z+)=2(2) , [Mn¢)=n!l | n integral or zero (B.2)
) ri-z)=_T1 , (B.3)
Srh ¢
Beta Fn.
. ) .
Blx,g) = [l =/t""(.-t)’s 'dt (B.4)
f(x+3) o
Re&)so  R(B)>0
Confluent Hypargeometric Fne.
series expansion:
4 ! y #™
ays P X E o w0 25 ()@ M) E
F(“‘lﬂ ) Z)— ,+Z7? + /3(/3-}-!) 2! + = [’(«)’é_"‘;o r’(ﬁ-&m\ M’ , (B.5)

convergent for finite z.



Integral expression:

| b 2t | - -
B(x,8-x)F(x,8;z) = /o et 5T i-t)t Tt (B,6)

R(8) > R(x)>0 (MacRobert (54), p.346, Cf. also
Magnus (49), pe. 88.)
Useful relations:

F(x,8;2) = et Flp-«,p:2) (B.7)

d F(<,852) = & Fax+l,/B3+1;2) (B.8)
dz “

ri_ F(“,ﬂ; rry = o([F'(a(H,/.?;D’Y') - F(l",ﬁ‘;b’r’)J (B'g)

r

( (B«7), (B.8) from Magnus (49), p.87; (B.9) proved by substitution
of (B.5).)

(r-2)Fl,54152) + X F(A+i,54152) = ¥F(X,¥;2)  (Magnus (49), p.87) (B.1l0a)

ABLF(,B52) —F(x+1,8; z)] = —2 F(ot+1,8+1;2) (from (B.8),(B.92))(B.10b)

Asymptotic expressions: -

F(x,3;¢)= —(i (Gj +G,) where, for large z,

~le

r3-)

G'.L =
Z (%) '
- o ' (Sommmerfeld H.795-6)

Hypergeometric Fn.

= 8 ay= [1+ 0] (B.1la)

@) (27 et [ 1+ 0()) (B.11b)

/8
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Hypergeometrie Fn, '.

Series expansion:

: o .
F@,Ar,2) =1+%8 2 4 XE+DAH) z? . = gy §° [lx+m) B+ 2 (5.12)
¥ rirs) A& Payra)yo . FE+rm) m! .

w”

If « or 6 is a negative integer or zerc, the series is finite.

The infinite series converges for |[2|<| . (Magnus (49), p.7)
Integral expression:

I a- ¥-6-1 .
B(B,1-B) Flx,p,5:%) = [ "(1-1) (1-2¢)" d¢ (B. 13)

R(x)> R(BYDO (Magnus (49), p.8)

The integral on the right is multivalued; in order to obtain the
sereis (B.12), we mst stay on the Riemann sheet for which

Ll'm (l-it)—“’: l—“ =
FE X

‘(See the discussion of this point below.] Trouble might arise in
the integral for z real and greater than 1; however, this situation
does not oceur in our caleulations. -

Useful Relations:.

Fl<,8,¥;2) = F(B,%,8,2) (B,14)

Fla, 8,02 = (1-2y ° FB. r-o,5; %)  (Megnus (49),p.8) (B.15).

(A+iy) F(a-iy,2a, aarr; 2(R)) + (A-ig) F (Atiy,aa,2a+15 2°CR))

Luvi(p-hk)]2 Lp -itprr)] A
- 2 2= R b 16
Lus (bR [p—i(p 4R ’ J+i(b-hR) (B.16)

Here a1, y, p, Bk, and M are real. (B.16) is obtained from thne
relation

(BEe) F(X,B,¥;2) ~BF(«,B40,¥32) + X F(X41,3,¥;2) =0

and (B.17), the last relation being obtained by subtracting the 1st


http://Fix.fi

and 2nd relations from the bottom of p.9 in Magnus(49) from each
other. ' '
Special Cases: (Fram (B.13))

F<,8,6;2) = (-2 (B.17)

Fx,l,252) = [(l-.i)'-“—l,] 04 R(x)¢l  (B.18)

zu «)

(-2)*Y (-2)"Y - ”

F(I+i],2,3',z.)=‘ll'[ Zy + zly(l_[y) (Bolg)

Evaluation of BEK in Colb

To evaluate BEK » 1t is necessepry to evaluate integrals of the tyve

(k) = [ ax-t o lp oK s 2k 2Ry dr (B.20)
where M,A are real and positive and r, Kk, @ real. In order to
integrate (B.20), first substitute the integral expression (B.6) for
the confluent hypergeonetric fn.,, then interchange tihe integrals
- possible becapse of the presence of the decreasing exponential, and
carry out the ix‘xtegration over r using (B.1) and finally, compare the
result with (B.13) anmd (B.14) to obtain

AN ’ - vy 2T )
_ o r@ay

F-(. A+Lp,21,11+l “(k ‘) (BoZl)

This result has been obtained previously by Hulme et al (35).

The radlal integrals involving the electron in an intermediate

discrete state are obtained as follows. Using the relation (B.7),
the required integrals can all be expressed in the form:

ad ( ( 1-8-“!)."‘
Z paa=t g = (A F(x,2a+1;2%r) dr (B.22)

. u '3
A

§0



where A , ¥ ,¥ are. real and positive and X 1is zero or a negative in-
teger (the special case I"in which &= 1 is not required because of éxter-
nal zero factors)., Since & is zero or a negative integer the series
for the cpn.fluent hyporgeomtric fn., is finite; hence, a term by term
integration is possible, yielding after comparison with (B.1l2):

(522)': r'(22) ]ZA F (0( 22, A+, ’U’ - tk) ' (B.23)

[a+p-ir

Riemann Surface and Hy;pergeoﬁetric Fn.

Explicit expreésions for the hypergeometric fns. used in this thesis
are given in (B.17), (B.18), (B.19). Because of the presence of non-
integral powers in tiese expressions, they are multivalued. It is the
object of this Subsection to find out which value we mst use,

2 in these expressions is of the form

Z=_2%
l+i($-x) (B.24)

from which

1-<(g+x)

I-2 = [+i(9—2x) ‘ (B.25)

Using the definitions (III.D.18) without the restrictions on the ranges
of the 8's; we find for (B.25)

_ -i(0,+6_)
I-2 = :,:" € , (B.26)

The quantity (B.26) is the only thing in our hypergeometric expressions

&1



which is raised to a non-integral power ami hence it causes the multi-
valuedness. _
In order to obtain tme series expansion (B.12) for our nypergeometric

fns,., we can expﬁnd the binomials involving (B.26) provided we take

Lim (I-Z)r= 4 = |
20

for ¥ a complex number. This relation defines the sheet of the Riemann

surface on which we rust remein; tims, using (B.26), we find

(-2) & e ¥ (8+0.)

and since the wvalue of this quantity hes to be unity as Z or q) goes to
zero,we .must have

8,+6- =20 for 9-0- (B.27)
This condition defines a sheet of the Riamann surface and it is satistied
by the range chosen for the O's in (III.D.18). The same condition (B.27)

i_s obtained again for the complex conjugate of (B.26) which also appears
in our Equations in Seetion III.D. '

&l
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APPENDIX C.

THE NORMALIZED SOLUTIONS TO THE DIRAC EQUATION ITH A COULOMB POTENTIAL.

The normalized solutions to the Dirac Eq. with a Coulomb potential,

(.- .Z__S_L + CQ’-F_,-ﬁryncl) v = E W - (C.1a)
where: P =ik v | _ c.1b)
0 % 0 %% [0 290
«:(16) - ( ) % = ('J’., o') o (o ‘;‘.’,) (e 1e)
| ¥, ,
- W C.Id)
v=lvl (
Wy

are given in the first Subsection below along with the special wave fns. used in the
thesis, These solutions have been carried out in detail, although only the details
necessary- for an understanding of the thesis are presented here.

In the next two Subsections, normalization procedures are discussed along with
a comparison of the solutions with those given by others,

In the last Subsection the "semi-relativistic" approximation is presented.

+ Summary of Normalized Solutions to the Dirac Equation with a Coulomb Potential

Following the procedure given by Kramers (38), one finds that the components
[ o]
of the wave fn, yV' can be separated into angular and radial dependent factors. Their
are two independent solutions characterized by the quantum numbers j, m where j repres-

ents the total angular momentum and m its 2z component. These solutions are:


http://ic.ii

34

w _ [ .+/W\]!/1 Y’W\"VQ F+' w— J—M*‘I %Yﬂ“-}’l Fa
A il B P = ST E
Z’Uz J'..T.M}VL 'W\:,}’z —r_’;" wz_[J*"M"" }ﬁYm‘sz E-
2 2} i~ e agj+i) itk T

X (c.2)
il VA um-va o f e (A ym=k e
o [ yhe L (e
3 a(j+1) it r J 1} i-% r
41 PRl ]}i YM‘H/zg - W = j—rm]h Ymm—‘i §~
2(j+1) jtia r ¥ [ 2§ -4 r

These two solutions are distinguished by the quantity K =+(j+%), the +
sign denoting the solution on the left and the - sign the one on the right.
In (C.2), the Y's are spherical harmonics depending on the polar

angles 6, and are defined by the Equations:

y . .
m (4 —m)l . Mg Lmd d d+m ¢
. 9, = Sin 20 _
\14 (0,4) = 1) [ 4T (1+M)lj} 13 i! € (dwse ) [—cos ll ( )
. .3

m ko om! e en):
fY} r}, J..(L = g)}l S / (_Q_— SO)IJ &Kjle)
The fns. F,G depend on the radius vector r only; their supersecripts denote

to which sign of K the wave fn. canposed of them belongs,. These radial

fns. satisfy the Egs.

[ a 1
4 4 _ | Emmet 4 Zx
-L[dr T]G L. Ac "JF
| (c.4)
- T 2
-1 d - K |F = +"MC Z‘“ G X = €
‘[IF V‘} | ﬁc + ’ Ke

the sign of K determining the superseript of T, G.

By setting E=E + me?, one can -show from the Eqs. (C.4) that for
positive exiergy states and for either sign of %, the G's are negligible
.with respect to the F's in a non-relativistic approximation, Thus, only

the first two components of the wave fns. (C.2) are necessary in the non-
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relativistic limit so that, if these wave fns., in this limit, describe an
electron with orbital angular momentum l, then we must have
j=+ % for K=+ (j+3) wave fns.

} (c.5)

j=h=% for K= «(j+3) wave fns.

in the non~-relativistie limit.

In solving (C.4) for normalizable solutiohs, one obtains the

following results: :

Discrete Solutions (0% E4me?):

E(Ml) KZ) = /—-—nﬁsz}-’z /n’-'-'o,l,-l,...
1+;:T+'a) 1 = JRE-@0* K= % Gk)

Foy= NIB (207 {4, + b-

6= Nl& (/7B ) { - I-]
where: ‘ (C.é)

: L :
' K+V |2  ~JAB ¥
£+'= (H'A)[ M_AJ e F(a-b,ax+t; 2/as r)

L | : |
-7
(A-n) -';—;ZJ’” e 1A® v F(ata,2a+t5-2/AB r)

{-
N A BB [ G ]yz

mc  ra+y | sl 2Z«

A=A +mn! V = S mi(m+ 22) + K*

_ ,w\ca-E- = ,-mc.’z+E
A fc B kFc



db

¥, G are normalized so that
[”(“:Il-flell)drﬁl : (c.7) |
es discussed in the Normalization Subsection below.
In the non-relativistiec 1imit., it can be shown that besides (C.5),
 m' ¥ IRl = m
th;a nlon-relativistic total quanhnn. number .
Continuum Solutions (]E}> me?):

mc? 14 r()+lﬁ‘i€)} y\ "Z&E x
Fir) = Iﬂr‘;i&clb ) ,F(J.AH;P (:2'%1) e 2P {8'+£ }

fi(aa+t) K
where: ) ' (C. 3)
§=+| ;“'LE-?MC,’ S=-| -‘_F Eé—.-—n'ﬂcl . |

G(r)=-5[li;i;€;rm“i%;g) (_&LL)A e'ﬂgc"':'E' {4 - g*j

1= (-12<E) e P TR E (iize aam s aipe)
chp cp R

A= (s <P

Here F, G are normalized per unit energy interval, i.e. if F, G and F', G*

. . 2xme 1k |
parfEn, XM ] , X real.

belong to the energies E and E' respectively, then
f‘o (F-/fF- f G_lf@)iy. = g (E,-E)
o © (c9)
or s
Jie [*(ee rarerr <1
Y3 ,

where AL is any small energy interval containing E?,



Wave Fns, Used in the Thesis

K electron: n'=0, j=3%, K=1, E,- me* (1-(Z«)* )%,
Yo F+ ( O
0 , TFT

o

3
-

m=-

-E Y \ "5 Yo

In obtaining F¥, G+ one uses M= Jig«)*, v=|, A-a=0 and (B.5) in (C.6).

No solutions for K= -1 eist since F~, G~ are zero,

Continuum Solutions for K=X 1, §= ﬁ:

For K =+1, jsﬂ& , m=t % . these solutions for an electron, have

T e e
"

4

exactly the same form as in (C.10) with F+, G7 given by (C.8).

For K=«1, j=3%, we have

s X (BT
B Yl
B S * 0

o | Y,

where F~, G~ are obtained from (C.8).

L4

L
2

The wave fns. of the neutrino have exactly the same form for
K=t 1 as those for the electron wagve fns, of the continuum just presented

except thalt the nuclear cherge Z and the mass m are set equai to zero in

?

te radial solutions F, G.

g7

(c.10)



Normalization Procedures

In this Subsection, the nonnélization procedures are outlined
and carried out in some detail for coﬁtimium states, ZEssentially, the. -
pﬁcdwe followéd is the one given by Sommerfeld although the method
originated with Kramers(38). _

For the normalization of discrete and continuum wave fns. tie
following integrals rmust be ev.aluated:

Surwd® = It [ (FP 164 =1 (ataerete) (cra)

o] .

/WI*W d¥ = |N|’“[ (F'*F + G'*G)dr =5(c-E) (continuum) (c13)
where M is the normalization faector. In obtaining the radisl integrals
(c.12), (C.13), tie ortliogonality of tae sphericel hannonics.(c.S) has
bean used. in (Cel3) the primed quantities belong to the eﬁergy Er.

Instead of using (G.13) to find N, the following integral

g8

. | o |
ja(E fzp’*zp dF = INI"/&E/(F"F+G‘*G)Ar=/ (c.14)
AE ' BE o :

is 'used where AE is any amall energy interval containing E'.
The basic formila used to evaluate t.hese normalization integrals
is o'bﬁa;ned from (C.4) and its complex conjugate Eqs. for an energy E!.
If we call the two Eqs. in (Ce4) (a) and (b) and the corresvonding complex
conjugate Eq's. for an energy L' (e) and (d4), and form the quantity
(a)Ft* { (b)Gr*4 (e¢)F + (d)G

then we can obtain tie relation
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o d ( %G 4 G'*F) = ( (F'*F+6'*6) (c.15)
Z; . Kc .
from which
/R(F’*F’-l-G'*G-)JJ‘: (Hc [F’*G— +G'I*F]R (C.l()
(3 _ E'-E .

uéing the faet that F(O) = G(O)= O. The guantity in square brackets on the
“right :I.s avaluated at the radius R. Frcm the Eq.(C. 16), we Bee thqt the
nomalization integral on the 1eft can be evaluated fram the asy;ptotic
values of.F G for 1arge R on the right,

B | (C 16) has been obtained without any restrictions on E and E!,
so that even for the dlscrete states we can \onsider e °oiutions F, &
as fns. o:t‘ a claonti_nuou; v:a.;':!.a’ble E and make use of a Taylor expans;on in

powers of (E*-E) to find

el r eV dr = : éE*GwaG*FJ
i (IF' +|G'I )dl"— ’-HC- L,E.l_,mw 3E . —a'—E‘ 2 (C.‘?)

In obtaining (C.17), we have used the result

Lim [ F'6 + G*F]R=O

R2>o
By using the asymptotic solutions for T and G and carrying out the limit on
the R.H.S. of (C.17), one can evaluate the discrete normalization integral.

For details written in English, see Hill and Landshoff (38).
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Let us carry a1t the normalization of Continuum vave fns. in
detall, For convenience, we shall use (in the next few paragraphs only)

the quantities:

p=t =k E__SW §=%1 for E2Imd

mC’ mcC

w
n= w1 =t A = g:—i:l-’

and tixe umormalized solutions:

Fip) = Wik (anp) {@*{*}
G (p) =-§{W-5 ("Ul/’)A {/g _f*}

L= (2-154) et XHRA E(A+i8B, 2040 5 2iNp)
o iX [ K + azx@_,}&

A+ ide

- (C.18)

t0 evaluate

& [mjg, (F* Free) = lu,,\ jow %-ﬁw)(wmcx*:}/ =) ()

where F, G are ziven by (C.18) and
A
& .
| N, = N (Ke) (C.20)
In (C.19), W* is contained in the small interval A& W,

From (Bo,1l) we find, for large/O ’

F(A+i80,2a+152iRp) ~ (24D ("“'V) ) (c.212)
- P (at1-160)
and defining
" (22 t1) = /‘73°"£’ A-cd —_ae"f (c.zlb)

A+ 1-i80)
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we obtain, from (C.21) and (C.18),

-dmo _; .
(le/o)A»Zz all e T 5 (c. 2aad)
wvhere . | ' _
= - AT ' c.22b
L =np+salninp +& -AF X -9, ( )
Thus, from (C.18) and (C.22), we have, asymptotically,
F ~ afw:s ol e-{;r__‘_‘é_ cos & o
| _gua | } (€.a3)
G”\— 2L5JW—5 al’ € 7 Sl‘ﬂ%

Fram (C.23), we find

Jaw Lim i [F*6+6'*F],
dw P S(Ww-W) |

_ 4a2 % e A Lim [dn o sinltnde (¢ g

A2 ap (n-n’)

us:’mg } -8 ~ ('l'n')/o for large 0

and k-/Lk—/’ ~ .}All FL-LZ’ for W near W',
Using -
§) = L Lim sin8%
T k2w X

‘Heitler (54), Eq. 1, D 66 we obtain finally

€. = 47 a“/”le."s'm_lz . | (c.25)

Thus, from (C.25), (C.21b), (C.19),

STd : '
Mﬁ e 5 “—'(Ach)J” (c.26)
e [(2a+1)

and using (C.26), with (C.20) and (C.18), we fing the normalized solutions (C.8)

for F, G,
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Comparison With Normalized Solutions

0f Other Authors

Some of the other authors solve the Dirac Eq.:
i

Hw' =€ w (c. 274)
where
2
4= -2e" _ X P - Bomc? , (C.a1b)
- _
all quantities appearing in (C.27) being defined in (C.l). Let us in-
: ' 7
vestigate how to obtain our solutions l,U from the solutions l}f .
Consider the opérator Lo
: O o l)
= =Ll A4& &, X, = <—la (C_l?)
0 B X KX, 0 =1 QO
‘Making use of the relatioms '
) $
. . o= . - 2_
X & F X ,zSL.J. L p+BK; =0 B
one can show that OML-=—°‘,- o, 0/3:760 and hence
OH'=HD | . a9y
where H is our Hamiltonien,
H_.-_Ze"L+ c;';; 2
o FAme
given in Eq. (C.1l). Multiplying (C.27a) by O from the left and using the
relation (C.29), one can show that 0%’ is an eigenfunction of H to the
eigenvalue Z. Thus, assuming &, ) are normalized, we must have: - -
II(A, | Zy . W I'
w = e ‘ O lp / Qr | . “‘L) ;3
' V.)l= ¢ ¥y
v, | , (¢.30)
s ~ !
Vq /
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where e"hJ is some plase factor which is the same for all fouxr components.
The result (0.30) has been used to compare thé normalized solutions to tae
Hamiltonian (C.27b) ‘given by othér authors with the solutions given here.
The solutions given in (C.2) and (C.6) for discrete states have
been checked with those of.Kramers (38), who uses the same Hamiltonian

H, and with those of Hill and Landshoff (38), who use H' (C.27b), and

LS
£ (¢.30).

agreement has been found except for a eozmﬁon phase factor e
Rose (37) has tabulated the contimuum solutions without stating

which form of the Hamiltonian he uses; hcwevar; if we assume that he used

the Hamilfonia.n He (0.2;7b), then agreement exists between the continuum

solutions (C..'2) and (C.8), for both positive and negative emergles, and

his solutions except for a common phase factor e Les in (C.30).
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THE SEMI-RELATIVISTIC APPROXIMATION

We shall first study how to obtain the normalized radial salutions of the
Schrodinger Eq. with a Coulomb potential from our "large®" radial solutions to the
Dirac Eq. For convenience the quantities F .G are called the radial solutions to

of the wave fus,
the Dirac Eq., although the complete radial dependenceAis given by these quantities

of the wave fus,
divided by r. Similarly, for the Schrodinger Eq., the complete radial dependence,

)

is given by the "radial solution" divided by r. We shall find that when the rules
obtained for the "large" radial solutions, are applied to the "small" radial sol-
utions, the result is zero, A semi-relativistic approximution based on these rules

is then formulatecd and the normalization of the semi-relativistic wave fns. studied.

Discretc States:

Kramers (38), p. 311, states what substitutions are required for discrete
states. A restatement in terms of our solutions and notation is as follows:

The normalized discrete radial solutions of the Schrodinger Eg. are given by

L
F (r) = 2ol  mc (M+£)! }1 —/o/.z 2+1 ) Lo |
me m* K (m-g-g)! (zefﬂ)! £ F (IH m,a *‘2)/0) (C.SIA.)

p= 2 Zame p (C.31b)

m

the complete radial dependence being E“l/r. This solution is obtained from either

(i.e. for K=#% (j+ %)) of our "large" discrete radial solutions of the form.



g%

F=NJB (zmrﬂ{{w.ﬁ-}

by first setting E:mc2 in Ajust the second factor | B

4
i e ‘}5 - [2"—:'_—?]

then everywhere else setting A= K| (instead of A = JF-—&:)Y ), and

n = nl4 (K| ,» where K is either K = £+ 1 or K=-£ (corresponding to those

solutions for which X = + (} + 32) or K= -(3 + 3) respectively), either choice

producing (c;l) with orbital angular momentum &. , |
One may check these statements with the help of the relations (B.i10 ) for the

confluent hypergeometric fns., and the exact result

- (£ )‘___ (@)

et n'EFaam’ + K*

which, when substituted into VAB  with A = IK|, m = m/+ ikl ([f p.36)

gives

/AB = EX27°

mh

Possible minus sign factors may appear in obtaining (C';l) but these are lrrelevant

and hence omitted.
Applying the above rules to our "gmall® radial solutions G in exactly the same

wgv , one obtains zero because the factor VA  in fromt of G goes to zero.

' Positive Contimmm States

For the case of positive continuum states, the radial solution to the

Schrodinger Eq, is given by



96

koo TERS ipr L4
B (441 +i2xme )l o & (2
Al [a.nhb‘] (2g+1)! l ( p ( * ) X
x F(£+|+Ll—£‘_§“—£,u+1; 9;%’_'”) (c.32)

(from Sommerfeld, pp. 115-127) which is normalized per unit energy interval.
Again, fne camplete radial dependence is Ey /r+ This expression is obtained
from our "large" continuum solutions in a manner samewhat different from
toat for the discrete states.

The expression (C.32) 18 a positive energy solution, so we musti
put §=+1 in our expression for F. Now, consider the large radial solutions

¥ as fns., of p using

E =+ Cpr s me)
then, in order to obtain the corresponding radial solution to the Schrodinger
Eq: (a) Replace X by the first term in its expansion in powers ;)f P, 1.€.
E = mc? - (c.332)
(b) Set A=IK| everywhere. (c.33b)

Wherever E appears, it is divided by e¢p so that, using the relation

we can see wnab is neglected in this ratio when rule (C.33a) is applied.
Both values of X = £+1 or K=-f produce the seme result (C.Sé) having or-
bital angular momentum 2 o

Again, tne relations (B.1l0) are useful for checking this procedure.
Also, possible minus sign factors have been omitted. If these rules are

applied to our small solutions G in exactly the gane way, one obtains zero



because the factor ({E|-mc® )Kl in front of G goes to zero,

' Negative Continuum States
We shall first show that foar negative continuum staties the G's
aré the "large" solutions and the Ft's the "amall®,

Let us write our radial sc;lutions as fﬁnctions of B, K, B. Then,
for negative energy states, E= - |E| and &= -1, and we have for an electron,
F(-|g, X, Z), G(-|E], K, Z)

1t 1s. not difficult to prove by direct substitution in ¥, G (or from tI;e
Eqs. (C.4)) that these radial solutions are related to the. positive energy

radial solfuions ascording to the relations:
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F(-IE|, X, 2)=¢? &* (|5|, X, -2) (C.34a)

G(-|E, K, 2)=o'?

where ¢ is real and éonstan’c. The parameters on thejﬁ.H.S. of (Ce34)
show _that the radial solutions there repreéent a positron in a positive
energy state. Since for a positive energy state, ¥ is large and G is
sx_pa.ll_ (i1pdependently of the sign of Z), then the relation (C.34) tells us
that for an electren in a negative energy state and represented by the
radial fns. on the L.H.S. of (C,34), the G's ;re "large" and the F's are
"small®.

In order to obtain the non-relativistic x;adial solution from the
large solutions G for the elsetron in a negative energy state, me see from

(Ce34) that this 1s completely equivalent to obtaining the non-relativistic

F¥ ((B|, &, -2) (C.34b)
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radial solution for the F%s for a positron in a positive energy state.
If we replace g by -=Z in the’ radia; Séhrodinger'solution (C.32), then we ',
obtain the non-relativistic radial solution for a positron in a positive .
enargy state., This solution is then obtained from (C.34b) by setting,
just as for the electron in a positive continuum state,
|E| = me® A = Ikl

both signs of X giving the same result,

The corresponding rule for the "large" radial solution G for an
electron in the negative continuum then, from (C.34b), mst be to set

E= - [B]> -mc® and } = |K| (C.35)

in ex__actly the same places as for the positive emergy sase.

As before, the relations (B.10) can be uged to check this; procedure
and possible mimus sign factors .have been omitted, If the rule (C.35) is
applied to the "gmall" radial solution g;'in exactly the same way, one
. obtains zero because the factor (|| -me % )Ji in front of F goes to zero.

The Semi~Relativistic Approximation for Continuum States.

Let us study the Dirac radial Eqs. to find what effect setting
A=[K| end E=me® . in some of the places mentioned above has on them.

The exact radial Egs. are:

(d 4 kle - [ Eomé® Z:S_Jr (C 762)
“[z;*r]c' TG

rr

_L-[d -k =[ Exme 4 22106 (c.36b)



from (C.4).

Ve shall .not approximate the square root energy factors appearing
in ffont of F, G because , for the "small® so'lutions, these factors go to
zaro in a non-relativistic approximation and we do not want such a8 result

in the approximations which we shall make,

Let | F = JIE|+8mct r,)‘ F
G = -s/Eame® r26 - (&37)
r=po A N0

] t )
‘Substituting (C.37) into (C.36), we find that F,, G, satisfy
) A K - x (E+M<‘-’“)
L[%Tf,"'"’—»; JG,-[I+Z ]F

[;L_ +.__———JF'

N | (¢.38)
these Egs. still being exact, Comparing (C.37) with our solutions in (C.8),

i

[I + fc% (j-’_:_"_‘:ﬁ).]e,

-

ve 8o what the expressions for F‘ ’ G are and , in particular, from which
parts of Eq. (C.38) the quantities A , KX, ZXE/cp, Z&me/p seem to arise.

Le$ us now foree A to be [K(, i.e. the smallest total power of

r  for series solutions for F, G in (C.37) 1s |K| « This requires that
%0
l". = 2. a,.. Y;m .
M=o : | (c.39)

o0
: G = :ni;:o B 1"
with non-trivial solutions far a,, b,. Substituting (C.39) inbo(C.38)

and equating the coefficients of like powers of r,, we find far r™ , the

Bqs: 28 (£ +mct)a,

t(A+KYb,
<p , € +o)

i

L(A.-K)’a.els _Z__’.‘.. (E-Mci) bo
cp .
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and since we require non-trivial solutions far a , b, in {(C.40), we mist
have b3 -

(A+KYA=R) = = (ic;‘;.) (E+rmc")(E—/mc‘)- (C, Lu)
Now, since ) = [K( , the L.H,S. of (C.41) is zero, In order that (C.41) .be

satisfied we must have either Z= 0 (irrelevant) or E=8me* . Conversely,

if B =fme® , we must have ﬂleI (since A>Q from (C.37)). These substi~

tutions constitute the semi-relativistic approximation.

If we set in (C.38) A=|K| and E-=6me®, we find the apmroximate

Eqs. L 4 IxirK - 2amc (§+0) |7
qs ,_Ld':f z Jff‘ _[l-r ’;"‘ r.Jz
| | (C.42)
(4 4 K-k Zame (8—1)
&+ o ]}= TR 5
and) from ‘:.,he definitions (C.37), we find our semi-relativistic solutions
' f,ﬁgiven by
' 7= J IE[+ & me* ml
(C.43)
2’ = -8 JIEl-§mc? r,'“db‘
and satisfying the Eqgs:
. E-amct - E- & e
-l[-:-(‘—;‘ + é‘]b =[. c + Zr-.( {‘ E+M<’”}]
(c.4%)

.-K] [E-hmcz & [ | = E-Smc’

[ab' }: ¥ r { £ - me? b
the™innormalized” solutions ’ 2f to these Eqs, being the semi-relativistic fns.
obtained from our exact normalized solutions F, G by setting )= 'Kl and

2 .
E = me®™ eoverywhere but in the square root energy factors in front of the

solutions.



From these considerati'ons, we see that in order to find the radial
solutions to the Dirac Egs. for A = [K| we muét approximate the Eqs. by
setting E=§ -mc)“ in appropfiate places and eonversely, the solutions to
the approximated Eqs. being the semi-relativistic radial solutions.

Normalization of the Semi-Relativistic Radial Solutions

For E near Sme%, our semi-relativistic "large" radial solutions
'.beéoine_ almost equal to the normalized Schrodinger radial solutioﬁ , the
"amall" solutions going to zero, and eonseﬁt;.ently, 'the semi-relativistic
fns. ¥, Y are nomalized in this 1imit. This statement is obvious when
one realizes that the only difference between the"large"semi-relat.ifistic
radial solution and the normalized Schrodinger radial solution lies in
tl;e square root energy factor in front of these solutions.

If we use Eqs.(C.44) in exactly the same way as in the Normali-
zation Subsection of this Appendix, we find that the exact normalization

of ¥, ¥ can be obtained from the relation

Lid [Fy 4+ y*F] = ———L‘E;EI [#*F+ 4" Y]
Ar o . c

Z“/W\t- (c - E/)L (1+8) J/*JZ + (I_s) b'n(—j

bome i Etme) (el et (- me?)

the primed quantities belonging to the energy Ef.

Considering only the positive energy case, the negative energy _

case being similar, we find for the normalization integral:
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(c.45)
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Lim [dE R[J—"*h,}f’*}r]dr = -ifc Lim JE[}’*ﬂ+ﬂ"JjR

Ry® 4 4 Ré,” AE

: R 1%
y 22 he mc® | i /JE f__idr (C.46)
he o F

_ 2\% R>a
(£ +mc

taking Et+ ne? outside the last integral (permissible because AE is small).
The first integral on the R,H.S. is unity as one may check by following
through the normalization procedures in this Appendix for the exact Dirac
radial solutions in the continmwm setting A=[K| and E= me® everywhere
but in the square root energy factors,

The second izitegral on the R.HeS. 1s too complicated to obtain
even an order of magnitude for it; however, the following argument seems
to show that it is negligible. Remember that when E is near me % . F
becomes the normalized Schrodinger radial solufion and & goes to zero,
This means the second integral on the R.H.B8. of (C.46) is negligible when
E i near me%,

Let us now compare the integrals involving the Fs only, and show

that the one on the R,H.S., of (C.46) is negligible with respect to the one

on the L.ILS_. The factor in front of the R.H.S. integral is of the order

2 Zx K A az« (0770
me

-

for E near mc% s this factor decreasing as E increases. The R.H.S. integrand
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ié finite everywhere as a fn. of r since the radi;l dependence jﬁ/r varies
with r as the non-relativistic Schrodinger radial solution divided by r
dpes. If wo carried out the energy integrai first in both the integrels
under consideration, the resuliing integrands would have exactly the

same energy dependence but would differ in thelr radial dependence ﬁy the
factor r. For this reason; the variation of the integrals with respect to
the snergy would be the sémé'and since the second integral on tie R.H.S.
is negligible for E near mc? , 1t must still be negligible for highar

energies especially since the factbr (C.47) mltiplying it decremses as l/EL .
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Appendix D

Derivation of Ea, (II.8)

The object is to simplify the expression

&

(“s“'we):'g/{(ﬂfg)z'g;(Hnsf“/e). (0.1)

For convenience, the following definitions and units are used in this appendix

3
only: >

€, =m A= ¢ =1

L ' o (p.2)

Ho= <P+ om Hy = X (F+R)+/8 m

Al'so s, the following relations will be used:
(62.;{')1? at ' (D.3a)
(@TVCE) + (LB XY = a(&-B) (0. 3p)
H<-E) + (-Z)H = 2(F- &) (0.3¢)
o (X&) + (Z-TY)H, = 2a(F-Z) + a(k-X) (D.34)
H= g% | " (p.3e)
‘ hg = H+ &R | _ . (Do3f)
- 2 R

JoH+ HH .= 2(E*+FR) (0349
E,n/;l-, =90 (DB’T\

51)' IC being any vectors. All these relations but the last follow from the

commutation relations for the Dirac matrices,

Expanding (D.1) in powers of We, one obtains

(H,+w¢3x (u,+we)

HSXHS + \’Je(st"'st) + b\/:x <D.48.)

. where
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A= -H 4+ Ex)LA) + & | | (0. 4b)

using (D.32), (D.3c). Simplifying the coefficient of We Ly the use of

(p.3¢), (D.3f), (D.32), D.3d), (D.3h), one finds

Hox +xh, = - (EXFED 2“‘”'5’7’1 b H+ &K (p.5)

The first term in (D.4a) can be written in the form

CHKH, = -k (W SEDH (KRR

il

b (B (g4 BN #N i+ ©F)
E

b L (WK T (p-6)
using (D.3f), (D.4b). The terms of (D.b) are simplified as follows: the

first term reduces to

(+@RIH(H+RE) = (E*-R)H + 2(£* ¢ FRIXK). - (P.73)
using (D.2), (D.3c), (Do3e) \R\XN\; the .second tern reduces to

(H+Z RNV 2 (H+&K) =
;,--[E‘Z‘Jrz, PR+ R"‘] P +2apAH+ 2(F-AWN-KD ( p.76)

using (D.3a), (D.3b), (D.3¢c) and (D.3h); and the last term reduces to

2
. {H+?-F)l= E%*+ 2P +k , » . (D.7¢)
(D.3a),(0.3e)
using XR\X\ and (D.3c).
Collecting the formulae (Doks), (Do5), (Do) 2nd (D.7)
together and changing back to the original units (D.2), one obtains (II.8),
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”

Integrals involved in obtaining Eq. (II.11)

In order to carry out the operations fda, ., e
shall let F be fixed .in direction along one axls E; of an orthogonal
set of unit vectors E,P , dy ,.[(; s The momentum F will be in a direction
subtending the angle 6 with the (7; axis and an azimuthal angle ¢ to the
0, axis, &, can be either 4 or i, . Subscripts 1, 2, and 3, will
refer to the components of a vector along the corresponding axes.

The sum over the photon polarizations is carried out first,
then the integral over just the angle @ for the directions of emission of the

electron,

/‘ale = [m'M A 'T,,” 648

The integrana turns out to be either independent of ¢ , in which case a non-
zero result occurs, or linear in sind¢ or cosf , in wh_j.ch' case the
integration over ¢ is zerd.

Two examples are sufficiént to understand the procedure; The

expression,

L Z, (Z-ENF-&)

1}

a, ﬁ,'f’ al/"\

i}

pla5n8cos0 4 3, inbsind] | 7 3 comstant veck
when integrated over ¢ gives zero. Aiso, _using | |
S, (P8 = prepl = ptsinto
in the expression : : |

Z.‘(i F)(FE;)’I = p3 Sf"nzé[ 2,5n0 Cosf .+.3.1.51'n9 sind + &, cos 9]’
one finds |

)
ar 5 = \& : 3, _ Tk b3 5in0 o
oj d¢Zr(i’F)(Fek) = 2 a, ;;.sm‘le cosB = 2T = p’ sin s§

. = -~ .
since R is along the U; axis,
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Integrals connected with Ed. (I1,16)

The integrals over Wy which are required can be written in

either of the forms

fcly (y-x)* ylm[_1+J =7 1 (D.%2)

[y (g-0* T S (055)

by means of the substitutions

- We-Ey x = W-Ey (p.gc)
y 2 b8
- mmC mg

The c_hange of variable .
5/: éo.s/»u - = Lyt[c}-f fj_"TJ ) ' (D.?).

is enough to express the integrands of (D.,S) in a recognizable .foxfm,‘

i.e.m as a product of U and a2 polynomial in cosh u and  Sinh «

An integration by parts gets rid of the U. term, 1eav1ng an integration of a

polynomial in coshu and sinku which can be evaluated by standard procedures,

The results are:

. . 2 ' _ . e - . .
(b. 8a) = [’,)"; - '54‘ - %],ﬂg[xﬂx‘-( I - [ﬁ% x? - YT "JJX‘—I (p.10a)
(D.8b) = ——_L[x +*]1m[_x+ N J + L L" + ,3 "]J‘"’T . <D;mb)
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