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( i ) 

ABSTRACT 

In studying the diamagnetism of free electrons i n a 

uniform magnetic f i e l d i t was found that reducing the f i e l d 

to zero i n the wavefunction did not y i e l d the experimentally 

i n d i c a t e d free p a r t i c l e plane wave wavefunction. However, 

sol v i n g the Schroedinger Equation r e s u l t i n g from setting the 

f i e l d equal to zero i n the o r i g i n a l equation did y i e l d a 

plane wave wavefunction. This paradox was not found to he 

p e c u l i a r .to. the case of a charged p a r t i c l e i n a uniform 

magnetic f i e l d but was found to occur i n a number of other 

systems. In order to gain an understanding of t h i s unexpected 

behaviour s the following systems were analyzed: the one-

dimensional square well p o t e n t i a l ; a charged, spinless par­

t i c l e i n a Coulomb f i e l d and i n a uniform e l e c t r i c f i e l d ; a 

one-dimensional harmonic o s c i l l a t o r ; and a charged, spinless 

p a r t i c l e i n a uniform magnetic f i e l d . From these studies 
•if 

the following were obtained: conditions f o r determining the 

r e s u l t of reducing the p o t e n t i a l i n a wavefunction; the con­

d i t i o n under which the p o t e n t i a l of a system may be switched 

o f f while maintaining the energy of the system constant; the 

r e l a t i o n s h i p between the r e s u l t ' o f p h y s i c a l l y switching o f f a 

p o t e n t i a l , the r e s u l t of reducing i t i n the wavefunction, and 

the s o l u t i o n of the Schroedinger Equation obtained by decreas­

in g the p o t e n t i a l to zero i n the o r i g i n a l wave equation; and 

a general property of any wavefunction with respect to 

reducing any parameter within t h i s wavefunction. 
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CHAPTER I 

INTRODUCTION 

1. GENERAL DISCUSSION 

One of the problems which arises i n studying the 

magnetic properties of s o l i d s i s that of the o r b i t a l d i a -

magnetism of free electrons. This can be t r e a t e d 1 by solving 

the Schroedinger Equation f o r an electron i n a uniform mag­

n e t i c f i e l d . Since the case of a weak f i e l d i s of i n t e r e s t , 

the r e s u l t of reducing the f i e l d to zero i n the so l u t i o n of 

t h i s Schroedinger Equation was investigated. 

The apparent experimental r e s u l t of switching o f f the 

magnetic f i e l d i s that the electron d i r e c t l y and continuously 

goes over to a free p a r t i c l e whose eigenfunction i s a plane 

wave. The mathematical treatment of decreasing the f i e l d to 

zero i s not so straightforward. I f the f i e l d i s decreased i n 

the o r i g i n a l wave equation f o r the electron i n the f i e l d the 

r e s u l t i s an equation whose so l u t i o n i s a plane wave. However, 

i f the f i e l d i s reduced to zero i n the so l u t i o n of the o r i g i n a l 

equation a plane wave i s not obtained. Whereas the former case 

i s consistent with what i s expected the l a t t e r case i s incon­

s i s t e n t with what appears to be experimental evidence. So the 

s i t u a t i o n i s that the r e s u l t i s consistent or inconsistent with 
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the apparent experimental observations depending at which 

stage of the mathematics the f i e l d i s decreased to zero. This 

paradox of not obtaining the experimentally indicated free 

p a r t i c l e plane wave so l u t i o n by reducing the f i e l d , or poten­

t i a l , i n the eigenfunction solu t i o n of the o r i g i n a l equation 

i s not pe c u l i a r to the case of an electron i n a •uniform 

magnetic f i e l d . I t also occurs i n other systems such as a one-

dimehsional harmonic o s c i l l a t o r , a p a r t i c l e i n a square well 

p o t e n t i a l and a charged, spinless p a r t i c l e i n either a Coulomb 

or uniform e l e c t r i c f i e l d . 

The preceding suggests the following questions 

regarding a p a r t i c l e experiencing an external f i e l d : 

(a) Under what conditions, i f any, i s the same r e s u l t 

obtained by 

(i) reducing the f i e l d to zero i n the so l u t i o n to 

the o r i g i n a l wave equation and by 

( i i ) solving the equation obtained from the o r i g i n a l one 

by l e t t i n g the f i e l d go to zero? 

(b) What i s the meaning or s i g n i f i c a n c e of those si t u a t i o n s 

where the r e s u l t s are d i f f e r e n t depending on whether 

the f i e l d approaches zero i n the o r i g i n a l equation or 

i n i t s solution? 

The s i t u a t i o n discussed above may be i l l u s t r a t e d by 

the block diagram 
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corner 1 > corner 3 
soluti o n 

i 
f i e l d to 0 ? | f i e l d to 0 

corner 2 > corner U 

s o l u t i o n 

where the corners are occupied as follows: corner one by the 

o r i g i n a l wave equation for the p a r t i c l e i n the f i e l d ; corner 

two by the free p a r t i c l e equation obtained fron the equation 

i n corner one by decreasing the pot e n t i a l to zero; corner 

three by the soluti o n of the equation i n corner one; and 

corner four by the soluti o n of the equation i n corner two. 

I f the entry i n corner four may also be obtained by reducing 

the p o t e n t i a l i n the wavefunction occupying corner three the 

block diagram i s said to be closed or completed. 

In terms of thi s block diagram the preceding 

questions may be simply stated as i n the following. 

(a) Under what conditions can the block diagram be completed? 

(b) What i s the sig n i f i c a n c e of those situations i n which 

the block diagram cannot be completed? 

2. BOUNDARY. CONDITIONS 

To completely and uniquely describe a physical 

system i n either quantum or c l a s s i c a l mechanics boundary con­

d i t i o n s must be introduced i n addition to the d i f f e r e n t i a l 

equation. Since the Schroedinger Equation alone i s i n s u f f i ­

c i e n t to f u l l y describe a physical s i t u a t i o n the block diagram, 
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as i t stands, deals with incompletely s p e c i f i e d systems. 

Unexpected r e s u l t s may therefore occur. I f boundary condi­

t i o n s are introduced i n conjunction with the wave equations, 

corners one and two of the block diagram w i l l give a complete 

d e s c r i p t i o n of t h e i r respective physical situations and the 

problem w i l l be formulated i n terms of f u l l y s p e c i f i e d 

systems. Henceforth i n t h i s thesis the block diagram w i l l be 

considered only i n terms of f u l l y s p e c i f i e d systems, that i s , 

where corners one and two are occupied by the boundary 

conditions corresponding to t h e i r respective systems i n addi­

t i o n to the respective wave equation. 

Since the t r a n s i t i o n from corner one to corner two 

i s made by decreasing the p o t e n t i a l to zero i n some manner, 

i t follows that the boundary conditions i n corner two should 

be obtained by decreasing the p o t e n t i a l i n the boundary 

conditions of corner one. With the exception of the p o s i t i v e 

t o t a l energy Coulomb and uniform e l e c t r i c f i e l d cases, the 

above procedure r e s u l t s i n the boundary conditions being the 

same i n both corners one and two. These exceptions w i l l be 

treated i n section two of chapter three and i n chapter four. 

With regard to boundary conditions two categories of 

systems may be distinguished. These types of systems are 

those i n which 

(a) the only p o t e n t i a l or afi e l d the p a r t i c l e experiences i s 

that due to an external source; or 
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(b) i n addition to the p o t e n t i a l i n (a) the p a r t i c l e i s 

subject to geometric constraints. 

The only type of geometric constraint considered i n t h i s thesis 

i s that of a p a r t i c l e being contained i n a physical container. 

I n the l a t t e r case, as herein considered, the p a r t i c l e i s 

always bound whereas i n the former case i t may or may not be 

bound. The o r i g i n a l system of an electron i n a uniform magnet­

i c f i e l d can be made to i l l u s t r a t e either type of system. 1 . 

Corresponding to (a) the system simply consists of an otherwise 

unconstrained electron moving i n a uniform magnetic f i e l d which 

f i l l s a l l space. In t h i s case the external source i s that 

which produces the magnetic f i e l d . An example of (b) i s an 

elec t r o n confined within a c r y s t a l and experiencing a constant 

magnetic f i e l d at a l l points within the c r y s t a l . 

In the main body of t h i s thesis only the f i r s t type 

o f system w i l l be analysed. In the appendix the second type of 

system w i l l be discussed. The only type.of geometric constraint 

to be treated i n the appendix i s that of a physical container 

which i s mathematically described by an abrupt, i n f i n i t e wall 

p o t e n t i a l . 

3. SINGULARITIES 

Since a d i f f e r e n t i a l equation i s characterized by the 

number and type of i t s s i n g u l a r i t i e s , the s i n g u l a r i t i e s of the 

d i f f e r e n t i a l equations i n corners one and two of the block 

diagram w i l l be studied. The s i t u a t i o n the block diagram 
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represents i s that of comparing the r e s u l t of applying a 

given procedure to the sol u t i o n of an i n i t i a l equation with 

the s o l u t i o n of a derived equation where the derived equation 

i s obtained by applying the same procedure to the i n i t i a l 

equation. In e f f e c t the solutions of two d i f f e r e n t i a l 

equations, an i n i t i a l and a derived one, are being compared. 

I f the i n i t i a l and derived equations have d i f f e r e n t types of 

s i n g u l a r i t i e s these equations are from d i f f e r e n t classes and 

i t may not be reasonable to a p r i o r i expect the i n i t i a l 

s o l u t i o n to go over to the sol u t i o n of the derived equation 

by a p p l i c a t i o n of the same procedure. 

With the exception of the square well case, i n a l l 

the cases herein considered the derived equation d i f f e r s from 

the i n i t i a l one with regard to a s i n g u l a r i t y c l a s s i f i c a t i o n 

as seen from the following table: 

S i n g u l a r i t y S i n g u l a r i t y 
D i f f e r e n t i a l Eauation at origin. at i n f i n i t y 

type order 

Free p a r t i c l e none i r r e g u l a r fourth 

Square well p o t e n t i a l none. i r r e g u l a r fourth 

Coulomb f i e l d regular i r r e g u l a r fourth 

Uniform e l e c t r i c f i e l d none i r r e g u l a r f i f t h 

Harmonic o s c i l l a t o r none i r r e g u l a r s i x t h 

Uniform magnetic f i e l d none i r r e g u l a r s i x t h 
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Since the wave equation for both the free p a r t i c l e and the 

square well p o t e n t i a l have the same s i n g u l a r i t y pattern the 

square well p o t e n t i a l w i l l be treated f i r s t . The Coulomb 

equation i s treated next since i n addition to i t s regular 

s i n g u l a r i t y at the o r i g i n i t has the same type of s i n g u l a r i t y 

at i n f i n i t y as does the free p a r t i c l e equation. The cases of 

negative and p o s i t i v e t o t a l energy are treated separately f o r 

both the square well and the Coulomb p o t e n t i a l s . The uniform 

e l e c t r i c f i e l d , whose equation has a s i n g u l a r i t y at i n f i n i t y 

one order greater than has the free p a r t i c l e equation, i s 

treated next. Chapters s i x and seven are devoted to the 

harmonic o s c i l l a t o r and uniform magnetic f i e l d cases whose 

equations have s i n g u l a r i t i e s at i n f i n i t y two orders l a r g e r 

then the free p a r t i c l e equation. 

4. TERMINOLOGY 

Before completing t h i s introduction the terminology 

associated with the po t e n t i a l going to zero w i l l be s p e c i f i e d . 

The word "reduce"' (and i t s derivations) ref e r s only to the 

p o t e n t i a l going to zero i n the wavefunction. That i s , 

"reduction" i s associated with the step from corner three 

to corner four i n the block diagram. This term r e f e r s to a 

purely mathematical procedure with no dependence on, or r e l a ­

t i o n to, any parameter or variable; for example, no connection 

with time. An example of reduction i s l i m f ( x ) ; x i s said to 

be "reduced" to b. 
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The step from corner one to corner two, that i s , the 

p o t e n t i a l going to zero i n the wave equation, w i l l not at 

present have any d e f i n i t e term ascribed to i t . Non-committal 

terms such as "the p o t e n t i a l i s decreased" or the "potential 

goes to zero" w i l l be used. 

The expression "switch o f f " and i t s derivatives 

r e f e r s only to the physical process of the p o t e n t i a l being 

diminished to zero. The physical process of "switching o f f " 

a p o t e n t i a l i s a time dependent process i n which the p o t e n t i a l 

i s a function of the time. For example, the switch o f f may be 

exponential with a time constant, a step function with respect 

to time or l i n e a r over a time i n t e r v a l . To incorporate the 

time dependence of the switch o f f i n the wave equation requires 

a tiiae dependent Hamiltonian. However the point of i n t e r e s t 

i n t h i s t h e s i s i s to describe the r e s u l t of switching o f f 

rather than to describe the behaviour of the system while the 

p o t e n t i a l i s being switched o f f . Hence the precise time 

dependence of the switch o f f i s not of i n t e r e s t and a l l the 

Hamiltonians w i l l be independent of time regardless of whether 

the time dependent or independent wave equation i s used. In 

chapter f i v e a d i s t i n c t i o n w i l l be drawn between two d i f f e r e n t 

types of switch o f f . 



5. AIM OF THESIS 

In this thesis the various aforementioned systems 
are analyzed with the following intentions: 
(a) to obtain general c r i t e r i a for determining the wave-

function obtained by reducing the potential to zero 
i n the i n i t i a l wavefunction; 

(b) to determine under what conditions the block diagram i s 
completed and the meaning of such a completion; 

(c) to determine the meaning of those situations i n which 
the block diagram i s not closed; and 

(d) to determine the relationship between reducing the 
potential i n the wavefunction, decreasing the potential 
i n the wave equation and the method of switching off 
the potential. 



CHAPTER I I 

ONE DIMENSIONAL SQUARE WELL POTENTIAL 

1. NEGATIVE ENERGY SOLUTIONS 

A p a r t i c l e having negative t o t a l energy In a square v e i l 
p o t e n t i a l , whose p o t e n t i a l i s zero at i n f i n i t y , corresponds to 
the physical s i t u a t i o n of a p a r t i c l e whose k i n e t i c energy i s 
l e s s than the absolute value of i t s negative p o t e n t i a l energy 
i n the region where the po t e n t i a l i s non-zero. I n the region 
where the p o t e n t i a l i s non-zero the c r i t e r i a f o r the above sys­
tem are: 

(2.1) E - V >/0 

(2.2) 0*(E| ̂ VO and 0* T* Va 

where E denotes the t o t a l energy, V the p o t e n t i a l energy and T 
the k i n e t i c energy. Both conditions follow from the conserva­
t i o n of energy and the fact that the k i n e t i c energy i s p o s i t i v e 
while both the t o t a l and p o t e n t i a l energies are negative. The 
p a r t i c l e ' s negative t o t a l energy, caused by the p o t e n t i a l 
energy dominating over the k i n e t i c energy, implies that the 
p a r t i c l e i s confined within the region of the p o t e n t i a l . I n 
c l a s s i c a l mechanics there i s no p o s s i b i l i t y of the p a r t i c l e 
leaving the region of the w e l l . I n quantum mechanics the 
p r o b a b i l i t y of the p a r t i c l e being outside the region of the 
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p o t e n t i a l i s small and decreases exponentially as the distance 

from the region of p o t e n t i a l increases. 

The square well p o t e n t i a l , V, may be described as 

follows: 

- Vo -<K < x <: a 

where V 0 i s p o s i t i v e . The wave equation i s then 

v-f-

( 2 . 3 ) £ ? ^ ( E * V - J * - ° • a > M > * 

(2.4) & * ^ ' -° ' " ' " I 

To maintain continuity at x=±a the boundary conditions 

and <p'(-«.) = are imposed. The so l u t i o n of (2.3) 

i s VPBA^«noix + B sin ccx where c{ - +1 2m j£+v0) ' 

and i s r e a l by (2.1) . 

To avoid an unbounded so l u t i o n and to permit normalization 

the boundary conditions that <̂  tends to zero as |*/ tends 

to i n f i n i t y are imposed. The solut i o n of (2 .4) i s then 

<f> = 
C e'p* xxx. 

U e x < - a 

and i s r e a l and p o s i t i v e . By matching the solutions at x=»±a. 
2 

two conditions and t h e i r corresponding solutions are obtained. 

These continuity conditions on the wavefunction determine the 

allowed values f o r the t o t a l energy E. 
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(a) The s o l u t i o n corresponding to the condition 

(2.5) 

«. t a n oca. • 0 

B cos «<x - a< x<a. 

By matching at either boundary the r e l a t i o n between the 

c o e f f i c i e n t s i s O B e ^ cos .ca. 

obtained from the normalization condition f 1^1 dx*/. 
+ oo 

(b) The s o l u t i o n associated with the condition 

ci cot oca = - p i s 

(2,5') [ C e" **X x>a. 
-a <X<a 
x< - a 

f _ _ * A A / f / 3 * — 
v> ~ ^ cos oca and n " v * coslot.a + a^'oc"-^j1 sin<*a. cos a: a 

are obtained as before by matching at a boundary and from 

normalization. 

As V 0 i s reduced to zero, ft goes to i«. In 

order that the wavefunction be well behaved the energy, p 

and oc must be determined from the appropriate continuity 

condition. The f i r s t condition i s ct tan oca- (3 . An obvious 

s o l u t i o n when a becomes -ip i s ot=(3= E = o . The other 

permissible values of E are determined by substituting -i(3 
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f o r o( i n the above c o n d i t i o n and s o l v i n g the o b t a i n e d 

tan ( - i p a) a I . T M s i s e q u i v a l e n t to tanh|5a»-A 

The s o l u t i o n o f t i l l s f o r f i n i t e , p o s i t i v e a i s |S = - c o , 

S i n c e |3 i s d e f i n e d as being p o s i t i v e t h i s i s an un a c c e p t a b l e 

s o l u t i o n . Hence the o n l y a c c e p t a b l e v a l u e f o r E i s zero. 

The c o n d i t i o n acot«.aa-^ y i e l d s the i d e n t i c a l r e s u l t 

when V0 i s reduced to z e r o . Hence as V0 i s reduced to 

z e r o c< and ^ go to zero. Thus A, B, and C go to zero as 

t h e p o t e n t i a l does. Hence f o r e i t h e r c o n d i t i o n the wave-

f u n c t i o n goes to zero as the p o t e n t i a l does. I t should a l s o 

be noted t h a t the c o n t i n u i t y c o n d i t i o n s i m p l y i n g t h a t E being 

z e r o i s i t s o n l y a c c e p t a b l e v a l u e i s i n ac c o r d w i t h the 

p o t e n t i a l going to zero c o n s i s t e n t w i t h c r i t e r i a ( 2 . 2 ) . 

The r e s u l t o f d e c r e a s i n g the p o t e n t i a l i n the wave 

e q u a t i o n w i l l now be s t u d i e d i n o r d e r to determine what 

happens when the p o t e n t i a l goes to zero i n the wave eq u a t i o n 

and the ensuing wave e q u a t i o n i s s o l v e d . I f the p o t e n t i a l 

i s decreased such t h a t f o r a l l i n t e r m e d i a t e v a l u e s o f the 

p o t e n t i a l the c r i t e r i a (2.2) o f the system are s a t i s f i e d i t 

i s apparent t h a t the f i n a l r e s u l t o f d e c r e a s i n g the p o t e n t i a l 

t o zero i s a ( f r e e ) p a r t i c l e w i t h n e i t h e r k i n e t i c nor poten­

t i a l energy, t h a t i s , the t o t a l energy, E, i s zero. Hence as 

the p o t e n t i a l goes to zero a l l the energy l e v e l s c o l l a p s e to 

z e r o . S i n c e E goes to zero as V does 
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(2.6) d l ^ = 0 

i s the equation describing the r e s u l t of decreasing p o t e n t i a l 

i n the above manner. That i s , i t i s (2.6) [rather than the 

apparent + z * E T = o , ( E * o) ] 
dx* K l ' v ' 

which describes the system when the p o t e n t i a l i s decreased 
3 

as above. By a well known theorem regarding the so l u t i o n of 

Laplace's Equation with boundary conditions, the soluti o n of 

(2.6) with the boundary conditions that y goes to zero as 

I x l tends to i n f i n i t y i s T=0. I f , however, the p o t e n t i a l 

i s decreased without e x p l i c i t l y requiring that the c r i t e r i a 

of-the system be s a t i s f i e d f or a l l intermediate values of the 

p o t e n t i a l the r e s u l t i n g equation i s 

(2.7) 4i£ + i-EY=o. 
dx1 

T h i s i s the equation obtained i f the pot e n t i a l i s mathemati­

c a l l y set equal to zero i n ( 2 . 3 ) . The general solu t i o n of 

(2 . 7 ) i s f B Ae" + Be*<rx
 where IT i s i n general complex 

with the r e a l part non-negative. The condition that 4̂  =»o at 

x = *• 00 implies A i s zero and M-̂o at x=- 00 implies 

B i s zero. Hence the only solu t i o n consistent with the 

boundary conditions i s Y=o regardless whether the c r i t e r i a 

( 2 . 2 ) are e x p l i c i t l y introduced or not. The reason f o r 

obtaining V-O both times i s that the boundary conditions 
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are the same. That i s , even though i n the l a t t e r treatment 

(2.2) was not e x p l i c i t l y applied to E i t was i m p l i c i t l y 

applied since the boundary conditions f o r a bound system 

were maintained. 

The block diagram can now be considered. The block 

diagram f o r the negative energy solutions f o r the square 

w e l l p o t e n t i a l i s occupied as follows: corner one by equa­

t i o n s (2.3) and (2.4) and the boundary conditions that the 

wavefunction be zero at %- ± 00 ; corner two by the same 

boundary conditions and by equation (2.6) or (2.7) depending 

on what i s st i p u l a t e d regarding decreasing the p o t e n t i a l ; 

corner three by wavefunction (2.5) or (2.5 f ) ; and corner four 

by Y=0 . As has been demonstrated the r e s u l t of reducing 

the p o t e n t i a l i n the wavefunction (2.5) or (2.5^) i s V » 0 . 

Hence the r e s u l t of reducing the p o t e n t i a l i n corner three 

i s the same as solving corner two and the block diagram i s 

closed. 

2. POSITIVE ENERGY SOLUTIONS 

The physical s i t u a t i o n which the mathematics of 

t h i s section describes i s that of a p a r t i c l e f e e l i n g the 

e f f e c t of a square well p o t e n t i a l whose value i s such that 

the p a r t i c l e ' s t o t a l energy i s p o s i t i v e . I f the po t e n t i a l i s 

assumed negative the k i n e t i c energy i s then greater than the 

absolute value of the po t e n t i a l energy. This i s the case of 

sca t t e r i n g by a square well p o t e n t i a l . 
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The procedure for treating this case i s similar to 
the negative energy case. However the result of reducing the 
potential i s different. The potential i s as i n section one 
since i t i s assumed to be negative. For the region |x/>a 

the equation i s again (2.4) but with the boundary conditions 
that <P behaves as a sinusoidally oscillating function at 

X=±co. Hence f i s C sin + D cos (3X 

where f>- ^ j 2 " ^ ' • For 1*1 < a-

the equation i s again (2.3) with the solution 
V= A SinotX + BeOS <*X where OL = + (2m(£ + Vo) r 

The functions <p and V and their f i r s t derivatives are again 
matched at X = ± a to produce two sets of solutions each 
corresponding to a different relation between c£ and f$ 
(a) Associated with the condition <L tan oi CL = |3 tan ficc 

i s the solution 

5 C O S OCX /x/<a 
D cos 0x /x/ > a 

To maintain continuity of the wavefunction at |xt=-a the 
relation between B and D i s B COS cLQ. = 0 COS ($& . 
As V0 i s reduced to zero, oC approaches and, i n order 
that the wavefunction be well-behaved, D approaches B. Hence 
Bc0S|3X i s the solution everywhere when the potential i s 
zero. Since this solution i s applicable i n a l l space the 

/

+*> z 

lV\ dx = I i s not applicable -00 
and B i s arbitrary. B i s usually chosen to be unity as this 
normalizes the function to unit flux. 



(b) Corresponding to the condition ai cotaca. = (3 co t pa. 

i s the sol u t i o n 

(2.8') Asinocx |x|<a 
C si n /3x / x / > a . 

By the same argument as i n the preceding the sol u t i o n s i n p% 

i s found to apply at a l l points when the po t e n t i a l i s reduced 

to zero. 

As the p o t e n t i a l i s reduced to zero ct goes to /S 

and the continuity conditions at x =* a which determine the 

allowed values of E become i d e n t i t i e s . Hence the end r e s u l t 

i s a free p a r t i c l e with an a r b i t r a r y t o t a l energy E and a 

trigonometric wavefunction. 

The r e s u l t of the pot e n t i a l going to zero i n the 

wave equation w i l l now be investigated. Unlike the negative 

energy case, E i s not bounded by the p o t e n t i a l . Hence 

decreasing the p o t e n t i a l to zero does not influence E and the 

r e s u l t i n g wave equation i s ( 2 . 7 ) . When the boundary 

conditions that Y o s c i l l a t e s s i n u s o i d a l l y at x = - co are 

imposed the sol u t i o n normalized to u n i t f l u x i s 

( 2 . 9 ) COS / 2 m E ' x 

( 2 . 9 ' ) s i n jzm£' X 

or a l i n e a r combination of the two. 

The physical s i g n i f i c a n c e of decreasing, the poten­

t i a l i s that the p a r t i c l e i n question i s acted upon by a 

diminishing force. When the po t e n t i a l reaches zero there 
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1 s no f o r c e a c t i n g on the p a r t i c l e and i t i s then a f r e e one. 
T h i s i s c o n s i s t e n t w i t h the above r e s u l t s . 

The block diagram f o r the p o s i t i v e energy square v e i l 
case i s occupied as f o l l o w s : corner one by equations (2.3) and 
(2.4) and the boundary c o n d i t i o n s t h a t <p s i n u s o i d a l l y 
o s c i l l a t e s at X=ico ; corner two by equation (2.7) w i t h the 
above boundary c o n d i t i o n s on 4̂  j corner three by wave-
f u n c t i o n (2.8) or (2.8'); and corner f o u r by wavefunction (2.9) 
o r (2.9'). As has been demonstrated (SIS) reduces to (2.9), or 
(2.8') to (2.9')* when the p o t e n t i a l i s reduced i n the wave-
f u n c t i o n (2.8) or (2.8') . Hence the block diagram i s c l o s e d . 



CHAPTER III 

COULOMB POTENTIAL 

1. NEGATIVE ENERGY CASE 

A p a r t i c l e with negative t o t a l energy i n a Coulomb 

f i e l d corresponds to an a t t r a c t i v e p o t e n t i a l binding the 

p a r t i c l e to the source of the p o t e n t i a l as i n the example 

of the hydrogen atom. 

In t h i s Coulomb case the p o t e n t i a l i s - A where 

A i s a non-negative constant and r i s the distance from the 

source of the p o t e n t i a l to the p a r t i c l e . Corresponding to 

the c r i t e r i a (2.2) i n chapter two the t o t a l energy i n t h i s 

case i s bounded as follows: 

(3.1) -mA1 < E < 0. 

I n f a c t the exact allowed energy values f o r the negative 

energy case are 

(3.2) £n = -mA1 on, z,3,... 

The allowed energies being negative corresponds to the 

p a r t i c l e being bound within a f i n i t e region of apace. Hence 

the wavefunction s a t i s f i e s the normalization condition 

This normalization condition i n 
a l l s p a c e 
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t u r n implies that Y goes to zero as any s p a t i a l coordinate 

approaches i n f i n i t y . 

The wave equation f o r t h i s system i s 

(3.3) Vlf - l a ( E*A ) 4 / = 0 

and i s expressed i n spherical coordinates. By introducing 

the quantum numbers I and m the equation i s separated i n the 

usual manner into angular and r a d i a l equations. The s o l u t i o n 

f o r a given I and m i s the product Rt (r) sjltn 

where ^m(^f) i s a spherical harmonic. The r a d i a l 

equation f o r the Goulomb f i e l d i s 

i _ <J M J f U Lsss\( E+A -hhMAn))= o. 

The independent Variable r i s replaced by PsImlEl 

I n terms of p the so l u t i o n i s ^ 

Kt (fO = C n i e'Pk Lj '* ' ( p) where 

L i s an associated Laguerre polynomial and C f t t i s a 

normalizing c o e f f i c i e n t to be determined from 

£ * R*< (*') f 1 <lr = / and the r e l a t i o n 

The normalized t o t a l wavefunction i s 
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where p = Af* A r i s used as i t i s equivalent to the 

o r i g i n a l d e f i n i t i o n when (3.2) i s used. 

I f the po t e n t i a l i s reduced to 'zero through A going 

to zero then the wavefunction (3.4) also goes to zero. 

Furthermore by (3.2) a l l the energy eigenvalues collapse to 

zero. As the energy goes to zero the l i n e a r and angular 

momentum, and therefore tt go to zero. Hence the wave-

fu n c t i o n goes to zero a: i s r\ 

The treatment of decreasing the po t e n t i a l i n the 

wave equation i s sim i l a r to that used i n the negative energy 

square well case. I f the po t e n t i a l i s decreased such that the 

c r i t e r i a (3.1) and (3.2) are s a t i s f i e d , E goes to zero as the 

p o t e n t i a l does and the wave equation describing the r e s u l t of 

decreasing the p o t e n t i a l to zero i n t h i s manner i s 

(3.5) V l t - 0 

i n analogy to (2.6). The solut i o n i s f = 0 by the same 

theorem^ since the boundary condition i s goes to 

zero as r goes to i n f i n i t y . I f the po t e n t i a l i s decreased 

without e x p l i c i t l y s t i p u l a t i n g that E goes to zero the wave 

equation becomes 

( 3 . 6 ) V l f + £mE V * o 

i n analogy to (2.7). Since the same boundary condition i s 

maintained the solution i s s O by an argument e s s e n t i a l l y 

tlie same as the one following equation (2.7) i n chapter two. 



Again » -0 i s the sol u t i o n when the p o t e n t i a l i s decreased 

to zero i n the wave equation regardless of the e x p l i c i t 

conditions on E. This i s because the boundary condition 

( t h a t y goes to zero as r goes to i n f i n i t y such that 

energy i s negative and (3 .1) i s s a t i s f i e d . 

The block diagram for the negative energy case of 

the Coulomb p o t e n t i a l i s populated as follows: corner one by 

equation (3.3) and the boundary condition that f goes to 

zero as;] Y goes to i n f i n i t y ; corner two by either equation 

(3.5) or (3.6)(depending on the conditions e x p l i c i t l y 

imposed on decreasing the potential) and the above boundary 

condition; corner three by wavefunction (3.4-) j â d- corner 

four by 4̂  ~ 0. Since the r e s u l t of reducing the 

p o t e n t i a l i n (3.4) i s ^=0 the block diagram i s closed. 

manner such that the c r i t e r i a of the system are s a t i s f i e d f o r 

intermediate values o f the p o t e n t i a l w i l l now be considered. 

The c l a s s i c a l c r i t e r i a f o r the negative t o t a l energy Qoulomb 

case are the force equation 

\y\ dp =•1 ) implies the p a r t i c l e i s bound, the 

The c l a s s i c a l switching o f f of t h i s p o t e n t i a l i n a 

(3.7) 

and the i n e q u a l i t y 



23 

The l a t t e r follows from the conservation of energy for a 

bound system with zero p o t e n t i a l at i n f i n i t y . By an analysis 

based on (3.7) i t w i l l now be shown that the v e l o c i t y goes to 

zero as the p o t e n t i a l i s switched o f f . As the p o t e n t i a l i s 

switched o f f , A goes to zero and hence v 2 f goes to zero. 

Since A being decreased implies the force, -A , Is 

decreased i n magnitude, the r e s u l t i n view of the f i n i t e 

tangential v e l o c i t y , v, i s that r w i l l tend to increase. 

Hence f o r v l r to go to zero v must go to zero with the 

r e s u l t that as the p o t e n t i a l i s switched o f f the k i n e t i c 

energy goes to zero. Hence the r e s u l t of switching o f f i n 

the above manner i s a p a r t i c l e without k i n e t i c or p o t e n t i a l 

energy, that i s with zero t o t a l energy. 

Before -concluding the c l a s s i c a l switching o f f of t h i s 

Coulomb p o t e n t i a l some r e s u l t s , which w i l l be use f u l further 

on i n t h i s t h esis, w i l l be presented. Of the various ways of 

d i s c r e t e l y switching o f f the p o t e n t i a l consistent with the 

c r i t e r i a (3.7) and (3.3) the l e a s t favorable one i s i f a given 

decrease occurs instantaneously. I t i s assumed that the 

p o t e n t i a l parameter instantaneously goes from A to Aj. where 

A i < A. At the instant of decrease (3.7) i s s a t i s f i e d by A 

and (3.8) must be s a t i s f i e d by both A and A i . Combining (3.7) 

and (3.8) at t h i s instant y i e l d s 

,(3.9) i *w"V - A < A, . 
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T h i s i n e q u a l i t y i m p l i e s t h a t the p o t e n t i a l cannot he 

s w i t c h e d o f f to:• zero i n a f i n i t e number o f steps i f the 

c r i t e r i a o f the system are to be s a t i s f i e d f o r i n t e r m e d i a t e 

v a l u e s o f the p o t e n t i a l . S i n c e a l l t h a t was r e q u i r e d o f Aj_ 

was t h a t i t be l e s s than A and i n view o f the f a c t t h a t a 

continuous s w i t c h i n g o f f may be approximated w i t h a r b i t r a r y 

a c c u r a c y by a d i s c r e t e method o f s w i t c h i n g o f f , one may 

t h e r e f o r e conclude t h a t i n a continuous s w i t c h i n g o f f , 

s a t i s f y i n g the c r i t e r i a f o r i n t e r m e d i a t e v a l u e s o f the 

p o t e n t i a l , the p o t e n t i a l must take an i n f i n i t e time to r e a c h 

z e r o . The f i n a l t o t a l energy r e s u l t i n g from such a s w i t c h 

o f f i s a g a i n z e r o . 

2. POSITIVE ENERGY SOLUTIONS 

The p h y s i c a l s i t u a t i o n which t h i s case d e s c r i b e s i s 

t h a t o f the s c a t t e r i n g o f a s p i n l e s s , charged p a r t i c l e by a 

Coulomb f o r c e . I n t h i s case the t o t a l energy i s p o s i t i v e 

and constant f o r a l l p o i n t s o f the p a r t i c l e ' s p a t h . 

I t i s convenient to c o n s i d e r the i n c i d e n t p a r t i c l e 

as being d e s c r i b e d by a p l a n e wave i n the z - d i r e c t i o n and 
5 

t o work i n p a r a b o l i c c o o r d i n a t e s . Hence a s o l u t i o n o f the 

form y= e i k* f I s sought f o r the e q u a t i o n 

( 3 . 1 0 ) ^ f + ^ ^ v O - c 

where A*lm2el k l » imE. , ft2,A . i s the p o t e n t i a l and e i s 



25 

the charge on the incident particle. The equation satisfied 

by F i s V z F + 2«k 2 £ - AL - o. 

a* r 
At this stage the transformation to parabolic coordinates i s 
made. Due to the axial symmetry of the system and the 
separating out of the incident plane wave, the solution w i l l 
depend on j* = r- z only. Hence F (V-H ) i s substituted 
for F. After multiplying through by r the resulting 
equation i n terms of j becomes 
By introducing X a i k j f a confluent hypergeometric equation 
i n x i s obtained. Hence F = ,F, > 'i '^J*^. 
When normalized to unit flux the total wavefunction i s 

( 3.11) T M = e& r(i.̂ L) e'k i.R (-A ,. ,»ior). 
I f the potential Is reduced to zero i n the above 

wavefunction, that i s A reduced to zero, a l l the terms 
involving A go to unity and the wavefunction becomes the 
plane wave Q 

Since the Coulomb potential i s a long range one 
wi th the same value at z = + <=© and z ° - «x> the boundary 
condition at i n f i n i t y behaves i n a different manner for this 
potential than for the square well potential. In this 
case the parameter A exp l i c i t l y appears i n the asymptotic 
expression for the wavefunction. This and the uniform 
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e l e c t r i c f i e l d a r e the o n l y cases i n t h i s t h e s i s i n w h i c h the 

p o t e n t i a l parameter i s e x p l i c i t l y i n v o l v e d i n the boundary 

c o n d i t i o n . The boundary c o n d i t i o n accompanying t h e e q u a t i o n 

i n w h i c h the p o t e n t i a l i s z e r o w i l l d i f f e r from t h e c o n d i t i o n 

w i t h the i n i t i a l e q u a t i o n t o t h e e x t e n t t h a t A i s s e t e q u a l 

t o z e r o i n t h e i n i t i a l boundary e x p r e s s i o n . The boundary 

c o n d i t i o n a t i n f i n i t y f o r the p o s i t i v e energy s o l u t i o n s o f 

t h e Coulomb p o t e n t i a l i s 

(3.12) V^tl-nA* ) cxp (ika- [A Uj WO-z)) + 

.At»_ c s c l 0 expAkr-jA lo«kK-|A lo^O-cose) •*-2"ii»e') . 

When A i s d e c r e a s e d t o z e r o i n (3.12) t h i s boundary c o n d i t i o n 

becomes 

(3.13) t ~ e ' ' k * 

The r e s u l t o f d e c r e a s i n g t h e p o t e n t i a l t o zer o i n 

t h e wave e q u a t i o n can now be s t u d i e d . As i n t h e p o s i t i v e 

e n e r g y case o f the square w e l l p o t e n t i a l , d e c r e a s i n g the 

p o t e n t i a l does n o t p l a c e any r e s t r i c t i o n s on E. The e q u a t i o n 

r e s u l t i n g from d e c r e a s i n g t h e p o t e n t i a l t o z e r o i n (3.10) i s 

( 3 . 1 4 ) V 2 f + k z f - 0 . 

The g e n e r a l s o l u t i o n o f (3.14) n o r m a l i z e d t o u n i t f l u x i s 

6 ~ . By i m p o s i n g t h e boundary c o n d i t i o n (3.13) f o r r 

g o i n g t o i n f i n i t y t h e g e n e r a l s o l u t i o n becomes e 1 k a . 

The same r e s u l t may be o b t a i n e d by r e c a l l i n g t h a t 



the incident -wave vector was k = (o, o, Jc). In the 

absence of any p o t e n t i a l , as i s the case i n (3.I4), k 

remains unaltered. Hence the general s o l u t i o n e ' ^ " r again 
• k * 

becomes e . I f i n a given problem the incident wave 

vector i s not p a r a l l e l to an axis a r o t a t i o n of the 

coordinate system i s f i r s t c a r r i e d out such that the wave 

vector i s p a r a l l e l to an axis i n the new coordinate system. 

The problem i s then treated as above i n the new coordinate 

system. 

The block diagram f o r the p o s i t i v e energy Coulomb 

case i s occupied as follows: corner one by equation (3.10) 
and boundary condition (3.12); corner two by equation 

(3.14) boundary condition (3.13); corner three by wave-

f u n c t i o n (3.11); and corner four by 6 1 " . As has been 

demonstrated, the r e s u l t of reducing the p o t e n t i a l i n the 

t h i r d corner i s the entry i n the fourth corner. Hence the 

block diagram i s closed. 

The physical s i t u a t i o n i s straight-forward. The 

system consists of a p a r t i c l e with t o t a l energy, E, experi­

encing a Coulomb force. The r e s u l t of switching o f f t h i s 

f o r c e to zero i s a free p a r t i c l e with the same t o t a l energy. 

T h i s t o t a l energy i s now a l l k i n e t i c energy. 



CHAPTER IV 

UNIFORM ELECTRIC FIELD 

1. DESCRIPTION OF SYSTEM 

The system under consideration i n t h i s chapter i s 

that of a charged, spinless p a r t i c l e , i n c i d e n t from ^ = -*-oo 

t r a v e l l i n g towards 1 ~ ~~ 00> being repell e d by a uniform 

e l e c t r i c f i e l d . This f i e l d , F , i s chosen to be p a r a l l e l 

to the "^--axis and the charge on the p a r t i c l e i s 

denoted by e. I n t h i s chapter e i s assumed to be p o s i t i v e . 

However the arguments and r e s u l t s are. equally applicable to 

a negatively charged p a r t i c l e when the di r e c t i o n s are 

reversed. In t h i s system the p a r t i c l e experiences a poten­

t i a l -©F̂+C. Since C i s a r b i t r a r y i t i s chosen 

to be zero thus making the zero of po t e n t i a l at the o r i g i n . 

The p a r t i c l e ' s t o t a l energy i s denoted by £ . E i s the 

t o t a l energy associated with the motion p a r a l l e l to the 

^ -axis and i s a p o s i t i v e or negative constant. 

2. WAVEFUNCTION BEHAVIOUR MD BLOCK DIAGRAM 

The Schroedinger Equation f o r t h i s system i s 
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Y i s expressed as [ x, y> y) - X(x) Y(y) (}) and 

three ordinary d i f f e r e n t i a l equations are obtained -which 

involve the constants k X ; k ^ and kj where 

k x * + k u 1 Ut s ZmC . k£ and kJ*" are im 
' y *x ft1 

times the energy associated with the motion i n the x and y 

d i r e c t i o n s respectively and as such are p o s i t i v e . i s 

1 m E and i s p o s i t i v e or negative as E i s . The 

equations f o r X and Y y i e l d the free p a r t i c l e plane wave 

soluti o n s X(JO = e ' k * X and Y(y) = e 1 ^ * 

The equation f o r Z(}) i s 

( 4 . 2 ) £ Z + f i f a i ^ . U j ) Z a o . 
d j 1 V *«• 7 

I f the changes i n var i a b l e s ~L. ~ J ^ssFy + k£ W f 

\T = * ( Intfx + k t . ) V : t and then U = ^ V _ are 
31 ft* yl XmeF 

made i n ( 4 « 2 ) the r e s u l t i n g equation f o r W i s 

l ^ & J L + U ^ + ( U l _ l ) W = 0 . 

T h i s i s a Bessel Equation and i t s general s o l u t i o n i s 

W = A X/3(u) + B J-y, (u). The general expression 

f o r Z.(}) i s therefore 

Z 

where A and B w i l l be 
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chosen to s a t i s f y the boundary conditions. 

As was seen i n the p o s i t i v e energy Coulomb case, the 

asymptotic behaviour of the wavefunction f o r a long range 

p o t e n t i a l i s not simply a trigonometric or an imaginary 

exponential type of function. Since t h i s uniform e l e c t r i c 

f i e l d p o t e n t i a l i s a long range one, a l l that w i l l be speci­

f i e d regarding the boundary conditions i s that the wavefunc­

t i o n goes to zero exponentially as J approaches — °o 

and that i t o s c i l l a t e s as ^ approaches <*> . The 

boundary conditions to be s a t i s f i e d by 

q u a n t i t a t i v e l y stated as follows: 

tends to zero 

exponentially with decreasing > 

U.4) implies o s c i l l a t e s with J . 

— oO 

To s a t i s f y the boundary condition f o r ^ tending to 

A i s equal to -Be'""'3 , This r e l a t i o n i s obtained 

by applying the following procedure: 

f o r ^ tending to -«o i s used and T-meFjjIii 1 i s 
7 

recognized as being p o s i t i v e ; the r e l a t i o n s 

= e ' are used; 
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and A i s expressed i n terms of B such that, f o r y tending 

to - oo , ^(j) i s proportional to the Kp function 

where 8 K„(x) =TT(L„(X) - I V U ) ) . B i s deter-
9 

mined by using the asymptotic forms 

( 4 . 5 ) X^W -~ co*(x + liF-E) 

and the normalization condition v | 4 *| l r J — f o r Z 

tending to + oo where v i s the magnitude of the v e l o c i t y 

p a r a l l e l to the 3--axis. B i s then found to be __L 
j3eF 

With A and B thus s p e c i f i e d the asymptotic forms of 

fo r 1̂1 tending to i n f i n i t y can be written down. 

By use of Ky(x)^/liL e~X i t i s seen that f o r 
^ tending to - ao 

( 4.6) Z V - f i T / a n — l ^ e ^ ^ x p f - f e s ^ ^ l . 

( 4 . 6 ) goes to zero exponentially as ^ goes to - <*» . ' 

By use of ( 4 . 5 ) the asymptotic form of as tends to 

+ 00 i s seen to be 

( 

-^Hlte^ -?)]} • 
( 4 . 7 ) o s c i l l a t e s with varying % . Hence with the above 

choices for A and B the boundary conditions are s a t i s f i e d . 
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The solution of ( 4 . 2 ) which i s normalized to u n i t f l u x at 

^ - 00 and which s a t i s f i e s the boundary conditions ( 4 . 3 ) 

and ( 4 . 4 ) i s therefore 

(4 . 8 ) Z ( 0 - ± . / Xm ( e F K E ) ' ( I . \(l~ef} + l~>t)ih ] 
0 H J 3 T ? I 3 L 3 m e F t i J 

- e i T r / 3 Jj. I" d ^ f i > 2 ^ £ ) 

The r e s u l t of reducing the p o t e n t i a l i n the wave-

f u n c t i o n ( 4 . 8 ) w i l l be studied i n conjunction with the e f f e c t 

o f decreasing the p o t e n t i a l to zero i n the boundary condi­

t i o n s . This i s done i n order to determine whether the r e s u l t 

o f reducing the p o t e n t i a l i n the wavefunction s a t i s f i e s the 

conditions on the wavefunction obtained by decreasing the 

p o t e n t i a l i n the boundary conditions. The cases of p o s i t i v e 

and negative E must be distinguished. 

In reducing the p o t e n t i a l In the wavefunction (4*8) 

f o r the case of p o s i t i v e E , equations (4«5) and the small 

F approximations j 7"™*^ * ^ \ ̂ rc ~ 

and J L - ( s k, y + 

are employed. As F i s reduced to zero the wavefunction (4*8) 

becomes 



With E p o s i t i v e F w i l l be decreased to zero i n the boundary-

conditions (4-3) and (4-4-) • As F i s decreased to zero (4-3) 

becomes the condition that f o r j«~oo goes 

to zero exponentially with decreasing ^* (4-.4-) becomes 

the condition that f o r $ >>-oo o s c i l l a t e s 

w ith J . As the former i s meaningless the l a t t e r l s the 

only condition imposed on the wavefunction by the boundary 

conditions when F i s decreased to zero. Since (4-.9) 

o s c i l l a t e s f o r a l l j i t i s consistent with the above con­

d i t i o n on the wavefunction. Hence reducing the po t e n t i a l i n 

(4-.8) when E i s p o s i t i v e y i e l d s an acceptable and 

consistent r e s u l t . 

When the preceding approximations f o r small F and 
7 8 10 T i/ the previous formulas ' ' f o r 1 + i and Ki are used, 

the wavefunction (4-8) f o r negative E becomes 

U .io) Z( ,) * e ' " A H2 / . « . ) * e x P [ I^I j - y v 1 

as F i s reduced. F w i l l now be decreased to zero i n the 

boundary conditions with E negative. (4-3) becomes the 

condition that f o r < j « oo i s zero and (4-.4-) 

becomes the condition that f o r ^ >>oo Z($) i s 

o s c i l l a t o r y with respect to |,, Since the l a t t e r i s 

meaningless the former i s the only condition imposed on the 

wavefunction by the boundary conditions when F i s zero and 
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E i s negative. The r e s u l t of reducing F to zero i n (4.10) 

i s a zero wavefunction f o r a l l ^ l e s s than i n f i n i t y i n 

accord with the above condition. Hence reducing the poten­

t i a l to zero f o r E either p o s i t i v e or negative produces a 

s a t i s f a c t o r y r e s u l t i n that the condition on the wavefunction 

i s s a t i s f i e d i n both cases. 

For both p o s i t i v e and negative E the r e s u l t of 

decreasing the p o t e n t i a l i n the wave equation (4.2) i s 

(4.11) + ̂ TLE Z = o • 

I f E i s p o s i t i v e the condition on the wavefunction that i t 

be o s c i l l a t o r y with 3 . f o r ^ > > - « 3 implies that the 

s o l u t i o n of (4«ll) corresponding to a p a r t i c l e incident from 

^ = + 00 i s 

(4.12) e- ' , k >* . 

I f E i s negative and F i s zero the condition on Z i s 

that i t be zero f o r <^<<<co m In t h i s case the solut i o n of-

(4.11) i s Z-O. 

Since the p o t e n t i a l i s a function of only, only 

functions of, or concerned with, -̂ need be considered i n 

the block diagram. 

As i t has been explained i n chapter one, the poten­

t i a l i n the boundary conditions must be decreased to zero i n 

going from corner one to corner two. Since the boundary 
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condition i n corner two i s therefore d i f f e r e n t f o r p o s i t i v e 

E from what i t i s f o r negative E , the two cases of 

p o s i t i v e and negative E must he distinguished. Hence a 

separate block diagram w i l l be used f o r each of the two 

energy cases. 

In the case::of p o s i t i v e E the block diagram i s 

populated as follows: corner one by equation (4.2) and 

boundary conditions (4«3) and (4«4)J corner two by equation 

(4.H) and the condition that the wavefunction o s c i l l a t e s 

w ith ^ f ° r ^ >> -<x> ; corner three by the wavefunction 

( 4 . 8 ) ; and corner four by wavefunction (4.12) . The entry i n 

corner four and the equation (4*9) with F reduced to zero, 

which i s the r e s u l t of reducing the p o t e n t i a l i n the wave-

f u n c t i o n occupying corner three, d i f f e r by a phase factor 

but describe the same physical s i t u a t i o n . Hence to the 

extent that the entry i n corner four and the. r e s u l t of reduc­

i n g the p o t e n t i a l i n the wavefunction i n corner three are 

p h y s i c a l l y i n d i s t i n g u i s h a b l e , the block diagram i s closed. 

In the case of negative E the block diagram i s 

occupied as follows: corners one and three as i n the p o s i t i v e 

E case; corner two by equation ( 4»H) and the condition 

that f o r ^<<oo the wavefunction i s zero; and corner four 

by ~L.~0. The r e s u l t of reducing the p o t e n t i a l to zero i n 

corner three, that i s , (4.10) with F = 0 , and the entry i n 

corner four are the same. The block diagram i s therefore 



completed. 

3. PHYSICAL ANALYSIS 

In the equation (4.9) r e s u l t i n g from reducing the 

f i e l d to zero i n the p o s i t i v e E case, the plane wave 

momentum-distance expression, that i s , k^j , i s found i n 

the argument of the exponential thus i n d i c a t i n g the desired 

plane wave r e s u l t . However the term t;r introduces an 

i n f i n i t e phase fac t o r as F i s reduced to zero. Since only 

\y\ X corresponds to a physical observable and phase factors 

are not p h y s i c a l l y observable, the presence or absence of 

such an i n f i n i t e phase fac t o r would not be detectable. Hence 

no physical explanation of t h i s i n f i n i t e phase fac t o r i s 

p o s s i b l e . Furthermore, since at ^ =-•-co an i n f i n i t e k i n e t i c 

energy i s required to maintain the t o t a l energy constant t h i s 

system does not p r e c i s e l y correspond to an actual physical 

s i t u a t i o n . Hence an unusual and p h y s i c a l l y i n e x p l i c a b l e item 

such as an i n f i n i t e phase factor should not be surprising or 

d i s t u r b i n g . I t i s however s a t i s f y i n g that a l l the p h y s i c a l l y 

observable features are well behaved. 

The c l a s s i c a l motion of the p a r t i c l e i n t h i s f i e l d 

w i l l now be analyzed. The c l a s s i c a l process which t h i s case 

represents i s that of a charged, spinless p a r t i c l e i n cident 

from +00 being r e f l e c t e d back at some point J 0 . This 

i s supported i n the preceding mathematics by the f a c t that as 



^ approaches oo the wavefunction becomes (4.7) which 

describes a free p a r t i c l e t r a v e l l i n g i n the - j . d i r e c t i o n . 

The f a c t that the p a r t i c l e i s r e f l e c t e d back i s supported 

by (4.6) which, f o r a l l f i n i t e E , indicates zero proba­

b i l i t y f o r the p a r t i c l e being at ^ f o r ^ tending to -00. 

The two cases of p o s i t i v e and negative E have been 

dist i n g u i s h e d and have given d i f f e r e n t r e s u l t s . The physi­

c a l s i g n i f i c a n c e of the value of the t o t a l energy, E, i s to 

i n d i c a t e at what point i n space, once the zero of 

p o t e n t i a l i s f i x e d , the p a r t i c l e i s c l a s s i c a l l y r e f l e c t e d 

back by the p o t e n t i a l b a r r i e r . This point of course corre­

sponds to the p o s i t i o n where the p a r t i c l e has zero k i n e t i c 

energy. With the zero of p o t e n t i a l at the o r i g i n , as i s 

h e r e i n chosen, p o s i t i v e E corresponds to r e f l e c t i o n at a 

p o s i t i o n with negative ^ coordinate and negative E 

corresponds to r e f l e c t i o n back at a p o s i t i o n with p o s i t i v e 

sfr coordinate. The exact coordinate at which the 

p a r t i c l e i s r e f l e c t e d back i s given by ^ 0 = -JL. . | e 

i s the value of ^ f o r which the argument of the Bessel 

Functions T±L i n ( 4 . 8 ) i s zero. ^ > J© implies t h i s 

argument i s r e a l ; ^ <C | c implies t h i s argument i s 

imaginary. j < J0 corresponds to the region of space 

which, i n c l a s s i c a l mechanics, the p a r t i c l e may never enter. 

The e f f e c t of the p o t e n t i a l being switched o f f on 

the point of r e f l e c t i o n w i l l now be studied. For p o s i t i v e 
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E, the point of r e f l e c t i o n , j t f , goes to - oo as F i s 

switched o f f . That i s , f o r F = 0 the r e s u l t i s a p a r t i c l e 

t r a v e l l i n g from «> to ^= c o without being 

r e f l e c t e d at an intermediate p o s i t i o n . Hence f o r F = 0 and 

E p o s i t i v e the wavefunction f o r | > - oo , that i s , at a l l 

points, should be a plane wave describing a free p a r t i c l e 

t r a v e l l i n g from c + oo to | = - oo. As can be seen 

from (4«9) reducing the p o t e n t i a l i n the i n i t i a l wavefunction 

with p o s i t i v e E gives t h i s r e s u l t . I f E i s negative -fro goes 

to -i-oo as F i s switched o f f and the point of r e f l e c t i o n i s 

at ^ e + * . I f a p a r t i c l e entering from ^ = + « o i s 

r e f l e c t e d back at | = + oo the r e s u l t i s that the p a r t i c l e 

i s never i n any f i n i t e region of space. This s i t u a t i o n i s 

described by a zero wavefunction f o r ^ 4.+<x>. As F i s 

reduced to zero i n the i n i t i a l wavefunction and E i s negative, 

(4 .8 ) becomes (4.10) which i s zero f o r a l l when F i s 

zero. Hence f o r both p o s i t i v e and negative t o t a l energy 

reducing the p o t e n t i a l i n the wavefunction y i e l d s a r e s u l t i n 

accord with the physical s i t u a t i o n a r i s i n g from switching o f f 

the p o t e n t i a l . 



CHAPTER V 

THE HARMONIC OSCILLATOR 

1. TIME INDEPENDENT TREATMENT 

The time independent harmonic o s c i l l a t o r wave equation 
11 

and i t s sol u t i o n are v e i l known. The wave equation i s 

(5.1) £ l + W E - i « « c y | t « o 

dx* v\ x I 
r-—— 1 

where /.va/«l*stic constant , K j . s the c l a s s i c a l 
4 mass j fn 

frequency associated with t h i s o s c i l l a t o r . The energy E takes 

values given by 

(5.2) En = ("+i)*o)c 

where n i s a non-negative integer. The normalization 

I TI dx a 1. This 

imp l i e s the boundary conditions that Y goes to zero as x 

goes to ±oo. ' For a given n the normalized s o l u t i o n of 

(5.1) i s 

( 5 •3) r - w = SS? E"M "X /Z*HRT (X/^F) • 

Since the p o t e n t i a l energy i s L m <oc* x1
 reducing the 

p o t e n t i a l to zero i s equivalent to reducing K or <uc to zero. 

Reducing cd c to zero reduces the wavefunction to zero f o r a l l 

values of n. The wavefunction goes to zero as A > C ' / 4 O R 
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The e f f e c t of decreasing the p o t e n t i a l to zero i n the 

wave equation w i l l now be determined. I f the po t e n t i a l goes 

to zero such that the energy values e x p l i c i t l y s a t i s f y ( 5 . 2 ) 

f o r intermediate values of the p o t e n t i a l the r e s u l t i n g wave 

equation i s 

( 5.4) £ 1 s o . • 

dx* 
I f the p o t e n t i a l goes to zero without e x p l i c i t l y requiring 

that ( 5 . 2 ) be s a t i s f i e d the wave equation becomes 

( 5 . 5 ) £ f + & a E 4>-o. 
6*x V-

Since the boundary conditions that ^ i s zero at * = are 

associated with both (5.4) and ( 5 . 5 ) 4 = 0 i s the so l u t i o n of 

both (5.4) and ( 5 . 5 ) with these boundary conditions. This i s 

the same as i n the negative energy cases of the square well 

and Coulomb p o t e n t i a l s . 

The block diagram for the time independent harmonic 

o s c i l l a t o r i s occupied as follows: corner one by equation 

( 5 . 1 ) and boundary conditions that 4* goes to zero as x goes 

to i co ; corner two by the same boundary conditions and 

equation (5.4) or ( 5 . 5 ) depending on the e x p l i c i t assumptions 

regarding decreasing the p o t e n t i a l ; corner three by wave-

f u n c t i o n ( 5 . 3 ) ; and corner four by 4=0. The r e s u l t of 

reducing the p o t e n t i a l to zero i n corner three y i e l d s the 
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entry i n corner four. Hence the block diagram i s completed. 

2. TIME DEPENDENT TREATMENT 

The time dependent wave equation f o r a harmonic 

o s c i l l a t o r i s 

(5.6) i * 3Wx,t) / fc* a* ^ . l c , » ) * W , i ) 

where V= 1 Kx i i s the p o t e n t i a l energy at p o s i t i o n x. 

Since the p o t e n t i a l i s independent of the time the so l u t i o n 

o f the time dependent equation may be expressed as an 

i n f i n i t e sum of the solutions of the time independent wave 

equation with the c o e f f i c i e n t depending on the time. Using 
12 

t h i s technique, the normalized s o l u t i o n to (5 .6) i s 
co 

( 5 . 7 ) ¥(«,t) = e i p f - a t - j ^ - t f ) E t e f I k We-" , o u * 
\ T T /

 1 v i 4 . x / x / n| 

where d^- m K 3 1 1 ( 1 *o * s the i n i t i a l p o s i t i o n of the 

centre of the wave packet. When K l s reduced to zero u>c and 

oi also go to zero and S x̂̂ i) becomes zero. Therefore 

the r e s u l t of reducing the p o t e n t i a l to zero i s the same f o r 

the solutions of both the time dependent and time independent 

wave equations. 

The r e s u l t of decreasing the po t e n t i a l to zero i n 

the time dependent wave equation w i l l now be analyzed. Since 

E does not appear i n (5.6) the r e s u l t of decreasing the 
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p o t e n t i a l to zero i n ( 5 . 6 ) i s 

( 5 . 8 ) = 

regardless of whether or not ( 5 . 2 ) i s s a t i s f i e d f o r i n t e r ­

mediate values of the p o t e n t i a l . The s o l u t i o n of ( 5 . 8 ) i s 

A t i k x • i E t / f c 

n c 6 . For the wavefunction to vanish 

at both x=*oo A must be zero and hence the s o l u t i o n of 

( 5 . 8 ) consistent with the boundary conditions i s ^ e O. 

I f the system s a t i s f i e s ( 5 . 2 ) f o r intermediate values of 

the p o t e n t i a l the s o l u t i o n of ( 5 . 8 ) , before the boundary 

conditions are applied, i s i s a constant since E and 

kef lrr\%T go to zero as the p o t e n t i a l does. To s a t i s f y 

the boundary conditions t h i s constant i s then zero. 

The block diagram f o r the time dependent harmonic 

o s c i l l a t o r i s populated as follows: corner one by equation 

( 5 . 6 ) and boundary conditions that ^ goes to zero as 1x1 

goes to i n f i n i t y ; corner two by the same boundary conditions 

and the equation ( 5 . 8 ) ; corner three by the wavefunction 

( 5 . 7 ) ; and corner four by ^=0. Since reducing the poten­

t i a l i n ( 5 . 7 ) y i e l d s zero the block diagram i s closed. 

I t should be noted that f o r both the time dependent 

and time independent treatments of the harmonic o s c i l l a t o r 

the energy eigenvalues are given by E n = ( n + i ) ^ c o t 

with n a non-negative integer. Hence i n both treatments 
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i t i s apparent, frora t h i s eigenvalue equation, that a l l the 

energy eigenvalues go to zero as the p o t e n t i a l does i f the 

p o t e n t i a l i s decreased i n such a manner that (5.2) i s 

s a t i s f i e d f o r a l l intermediate values of the p o t e n t i a l . 

The procedure used to solve the above time dependent 

•wave equation may be equally well applied to solving the time 

dependent equations corresponding to the other p o t e n t i a l s . 

However, as the preceding has shown, the r e s u l t of reducing 

the p o t e n t i a l to zero i s the same fo r the solutions to both 

the time dependent and time independent equations. Hence i n 

studying the r e s u l t of reducing the p o t e n t i a l i t i s s u f f i c i e n t 

t o deal with the s o l u t i o n of either the time dependent or time 

independent wave equation. 

3. CLASSICAL ANALYSIS OF SWITCHING OFF 

Before discussing the switching o f f processes the 

c l a s s i c a l d e s c r i p t i o n of, and c r i t e r i a f o r , a harmonic 

o s c i l l a t o r w i l l be given. The physical system considered as 

a harmonic o s c i l l a t o r consists of a p a r t i c l e o s c i l l a t i n g about 

an equilibrium p o s i t i o n under the influence of a force 

d i r e c t e d towards the equilibrium p o s i t i o n and of magnitude 

proportional to the p a r t i c l e ' s distance from t h i s equilibrium 

p o s i t i o n . The equation of motion i s X s d cos coc-t . 

The magnitude of the v e l o c i t y at p o s i t i o n x i s / K ^ - x ^ 1 

where a i s the amplitude. 
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The k i n e t i c energy, T, pot e n t i a l energy, V, and 

t o t a l energy, E, of a harmonic o s c i l l a t o r with amplitude "a" 

obey the following c r i t e r i a : 

(5.9) 
T * V : E 5 constant to'i-m r-esp«ct t o post+> on a.r>ol t i m e 

E 3 maximum T - maximum V 3 1 K a 2 

w O f T ^ maximum T ' 0 - V * maximum V. 

The f i r s t c r i t e r i o n states that conservation of energy holds 

f o r a l l positions and time. The second c r i t e r i o n indicates 

that the t o t a l energy, E, depends only on the e l a s t i c 

constant, K, and amplitude a. 

In t h i s section a detailed c l a s s i c a l analysis w i l l 

be given of the two basic ways of switelling o f f a p o t e n t i a l 

i n a physical system. The harmonic o s c i l l a t o r has been 

chosen f o r t h i s d e t a i l e d analysis since t h i s system i s common, 

u s e f u l and r e l a t i v e l y simple. However t h i s d i s t i n c t i o n i n 

methods of switching o f f the po t e n t i a l i s applicable to a l l 

other systems. The aim of th i s analysis i s to i l l u s t r a t e 

the two types of switch o f f and to make clear the d i s t i n c t i o n 

between them. 

These two methods of switching o f f w i l l be referred 

to as type I and type I I . A type I switch o f f i s where the 

c r i t e r i a of the p a r t i c u l a r system are s a t i s f i e d f o r a l l 

intermediate values of the p o t e n t i a l . For example, i n a type 

I switch o f f a harmonic o s c i l l a t o r with amplitude "a" remains 

a harmonic o s c i l l a t o r with amplitude "a" fo r a l l intermediate 



values of the p o t e n t i a l , that i s , (5.9) i s s a t i s f i e d f o r a l l 

intermediate values of the p o t e n t i a l . A type II switch o f f 

i s one i n which the p o t e n t i a l i s switched o f f without the 

c r i t e r i a of the system "being s a t i s f i e d f o r a l l intermediate 

values of the p o t e n t i a l . That i s , the c h a r a c t e r i s t i c r e l a ­

t i o n s h i p s between the various parameters are not s a t i s f i e d 

during the switching o f f process. 

Before examining the switching o f f processes i t 

should be noted that f o r a harmonic o s c i l l a t o r the only way 

the p o t e n t i a l may be switched o f f without imposing geometric 

constraints, decreased i n the wave equation or reduced i n the 

wavefunction i s by the e l a s t i c constant, K, becoming zero. 

The type I switch o f f of the harmonic o s c i l l a t o r 

w i l l be studied f i r s t . The conditions on the switching o f f 

process i n order that the process be of type I may be formu­

l a t e d i n the form of the following theorem. 

THEOREM: To s a t i s f y the condition that f o r a l l nonzero values 
of the p o t e n t i a l the system i s a harmonic o s c i l l a t o r 
with amplitude a, the switch o f f must be done i n the 
following manner: 

(a) The p o t e n t i a l may be switched o f f only i n 
d i s c r e t e decrements and these may occur only 
while the p a r t i c l e i s at an extremity. 

(b) The p a r t i c l e ends up at one of the extremities 
with neither k i n e t i c nor p o t e n t i a l energy 
r e l a t i v e to the equilibrium p o s i t i o n , that i s , 
the f i n a l t o t a l energy i s zero. 
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Proof: F i r s t i t w i l l be shown that the f i n a l s i t u a t i o n i s a 

p a r t i c l e with neither k i n e t i c nor p o t e n t i a l energy r e l a t i v e 

to the equilibrium p o s i t i o n . Let the p o t e n t i a l be p h y s i c a l l y 

lowered by some a r b i t r a r y amount. By (5.9) the t o t a l energy 

i s lowered by the same amount as i s the maximum po t e n t i a l 

energy. This i s repeated with the r e s u l t that the maximum 

p o t e n t i a l energy and the t o t a l energy are again lowered by 

i d e n t i c a l amounts. This procedure i s continued u n t i l the 

p o t e n t i a l reaches zero. I t Is obvious, upon reference to 

(5.9), that as the p o t e n t i a l i s thus switched o f f the 

v e l o c i t y , k i n e t i c and t o t a l energies a l l go to zero. So the 

r e s u l t i s a p a r t i c l e with neither motion nor p o t e n t i a l energy 

w i t h respect to the equilibrium p o s i t i o n . 

than at an extremity. I t then has a p o t e n t i a l energy of 

w i l l have a v e l o c i t y such that i t s k i n e t i c energy at t h i s 

p o s i t i o n i s greater than the new, lower maximum p o t e n t i a l 

^ energy and the condition f o r a harmonic o s c i l l a t o r i s not 

v e l o c i t y at t h i s p o s i t i o n than would be the case i f i t were 

Now consider the p a r t i c l e at any p o s i t i o n $ other 

s a t i s f i e d . I f the p a r t i c l e w i l l have a greater 



undergoing a harmonic motion with a maximum p o t e n t i a l equal 

to the lower p o t e n t i a l energy. I f the p a r t i c l e i s approach­

i n g x=o then at x=o the p a r t i c l e w i l l have a v e l o c i t y 

due to i t s v e l o c i t y at ^ plus the v e l o c i t y acquired i n 

going from ^ to zero under the influence of the lower 

p o t e n t i a l . Since the v e l o c i t y at ^ i s greater than that 

which would he the case i f the lower p o t e n t i a l were opera­

t i v e during the entire journey from x=a to x=o, the v e l o c i t y 

at x=o corresponds to a k i n e t i c energy at x=o greater than 

the maximum of the lower p o t e n t i a l . Thus the p a r t i c l e again 

disobeys ( 5 . 9 ) . I f the p a r t i c l e i s moving away from x=o a 

s i m i l a r argument shows that i t would overshoot U | = a and 

would then no longer be a harmonic o s c i l l a t o r with amplitude a 

Hence the p o t e n t i a l may not be lowered at any p o s i t i o n such 

t h a t )-=fc±<x. Furthermore, switching o f f the p o t e n t i a l i n 

a continuous manner while the p a r t i c l e executes i t s motion i s 

also inconsistent with the s t i p u l a t i o n that the system be a 

harmonic o s c i l l a t o r since i t involves lowering the po t e n t i a l 

at points other than ± a . Therefore the only remaining 

method, and an obviously acceptable one, i s to lower the 

p o t e n t i a l i n f i n i t e steps when the p a r t i c l e i s at - a . 

That t h i s method complies with the s t i p u l a t i o n s of t h i s type 

of switch o f f may be seen from the following argument. While 

the p a r t i c l e i s at * a the p o t e n t i a l i s lowered. The 

r e s u l t of t h i s i s the following: the t o t a l energy and maximum 

p o t e n t i a l energy are correspondingly lowered; the maximum 
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k i n e t i c energy i s correspondingly lowered because the force 

and acceleration are l e s s over the whole distance from x=a to 

x=o; and the system remains a harmonic o s c i l l a t o r with 

amplitude a but with a lower t o t a l energy and greater period. 

Whether the p a r t i c l e eventually ends up at x=a or 

x= -a depends s o l e l y on the technique used to switch o f f the 

p o t e n t i a l . For example, i f i t i s wished that the p a r t i c l e 

end up at x=a t h i s can be achieved by any type I switch o f f 

wherein the l a s t step (to zero) occurs when the p a r t i c l e i s 

at x=a. I t should also be noted that the p a r t i c l e cannot 

end up at the equilibrium p o s i t i o n , q.e.d. 

A type II switch o f f of the harmonic o s c i l l a t o r 

p o t e n t i a l w i l l now be i l l u s t r a t e d . There are numerous ways 

i n which a system may undergo a type II switch o f f . However 

the following p a r t i c u l a r example w i l l i l l u s t r a t e the 

p r i n c i p l e s and the r e s u l t of such a switch o f f . 

I t w i l l be assumed that the p o t e n t i a l i s switched 

o f f during a time I n t e r v a l very short compared to the period. 

The p o t e n t i a l i s switched o f f over a time i n t e r v a l At 

centred on a time, t 5 , the l a t t e r being c a l l e d the "time 

o f switch o f f . " During t h i s time i n t e r v a l the p a r t i c l e 

t r a v e l s a distance Ax . Ax i s much l e s s than the amplitude 

"a" since At i s much l e s s than the period. Let x 0 be 

the centre of Ax . In t h i s type II switch o f f the 



r e s u l t i s a free p a r t i c l e with speed within the range 

/\L(*x-(x0-±x)1)' to 11 (a l-rx.*Ax)* )' 
V m \j m 

unless x 0 i s within AX of the equilibrium or the extreme 

p o s i t i o n . I f | x 0 | ^ 4 X then the free p a r t i c l e ' s speed i s 

i n the range t VW to or IK where I i s the l e s s e r of 

c ^ - C X a - d x ) 1 or / a. l-(x d+AX) 1 and OL 

i s greater than I but l e s s than a. I f J lx0l - aj * AX 

then the free p a r t i c l e ' s speed i s greater than zero but l e s s 

than J 11 ( a l - C i x e | - A X ) 1 ) ' . 

Hence when such a type II switch o f f i s ca r r i e d out 

the r e s u l t Is a p a r t i c l e with a speed greater than zero and 

l e s s than a / K . This speed depends on the p a r t i c l e ' s p o s i -
v m 

t i o n at the time of switch o f f and on the distance covered 

during the switching o f f process. The s i g n i f i c a n t point to 

n o t i c e i n t h i s example of a type II switch o f f i s that 

nothing i s stipulated, discussed or assumed regarding the 

behaviour of the system during the time i n t e r v a l A t . 

The two preceding examples have dealt with a system 

and process treated i n c l a s s i c a l terms. I t i s now of 

i n t e r e s t to describe the system r e s u l t i n g from the c l a s s i c a l 

switch o f f i n quantum mechanical terms. The r e s u l t of the 

type I switch o f f was a p a r t i c l e with zero t o t a l energy. 
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I n quantum mechanics t h i s p a r t i c l e would be described by a 

constant wavefunction. I f t h i s wavefunction also had to 

s a t i s f y the normalization condition J |4M dx=l then 

t h i s constant would be zero. As w i l l be r e c a l l e d from 

sections one and two, the r e s u l t of reducing the p o t e n t i a l 

i n the wavefunction f o r the harmonic o s c i l l a t o r was also 

zero. The system r e s u l t i n g from the type II switch o f f i s 

described by a plane wave Q±>itK where IM has a value 

greater than zero and l e s s than J K m a . I t should 
M 

be pointed out that the "a" i n /Km a. i s not a quantum 

mechanical quantity but enters from the r e s t r i c t i o n of the 

v e l o c i t y of the free p a r t i c l e being described. This plane 

wave was not obtained by reducing the p o t e n t i a l i n the 

harmonic o s c i l l a t o r wave-function. 



CHAPTER VI 

UNIFORM MAGNETIC FIELD 

The system under consideration i n t h i s chapter 

co n s i s t s of a spinless p a r t i c l e -with charge e moving i n a 

uniform magnetic f i e l d H which f i l l s a l l space. The 

v e l o c i t y perpendicular to the f i e l d w i l l be denoted by V . 

The ^ - a x i s i s chosen i n the d i r e c t i o n of the f i e l d . 

1 . QUANTUM MECHANICAL TREATMENT 

When ( - 0,0) i s chosen as the vector p o t e n t i a l 

and when i s chosen as the form 

X 1 3 i s 

I f M „ = - c p x and o> = c W are substituted i n ( 6 . 1 ) an 
J e t r mc 

equation formally i d e n t i c a l to the Schroedinger Equation f o r 

a harmonicx o s c i l l a t o r i s obtained. 

To normalize a wavefunction of the above form i t i s 

s u f f i c i e n t to integrate from — «o to + ©o with respect to 

y only. This i s the case since the parts of the wavefunc­

t i o n depending on x and ^. are already i n the form of plane 

waves and i n unbounded space no further normalization i s 
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p o s s i b l e or necessary. The normalization condition i s there-

l o r e ay - 1 . This imposes the boundary conditions 

that 4* goes to zero as goes to i n f i n i t y . 

Using the same techniques as i n the harmonic 

o s c i l l a t o r case the normalized wavefunction i s 

(6.2) t=ei(k-**k^ J«« -e-«»iwJf** Hjn^irJ). 
\l 2 X n ( n » ) Y f c W * / 

I f the f i e l d H i s reduced to zero 4^ goes to zero. 

The rate of approaching zero i s G as H goes to zero. 

This i s an es s e n t i a l s i n g u l a r i t y as H goes to zero and w i l l be 

studied i n section three. 

By again using the analogy between (6.1) and the wave 

equation f o r a harmonic o s c i l l a t o r the allowed energy values 

are seen to be 1^ -

(6.3) En = (n*i)fc«a +££ 
where n i s a non-negative integer. As the f i e l d i s decreased 

to zero co goes to zero and the only energy i s . That 

i s , as H goes to zero the energy values associated with the 

transverse motion a l l become zero leaving only the energy 

associated with the unaffected motion p a r a l l e l to the f i e l d . 

The r e s u l t of decreasing H to zero i n (6.1) i s 
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( 6 . 4 ) X" +P * * X =0 
2 m 

where 2x i s ^ " -EjL ~f£ 
Zm i r n 1m 

since there i s no f i e l d . When ( 6 . 4 ) i s combined with the 

boundary conditions that 'jC goes to zero as 1^1 goes to 

i n f i n i t y , the only acceptable solu t i o n (as i n the previous 

cases) i s ~ ^ ~ 0 . 

The block diagram f o r t h i s system i s occupied as 

follows: corner one by equation ( 6 . 1 ) and the boundary condi­

tions that 4̂  goes to zero as goes to ± 00 • corner two 

by the same boundary conditions and equation ( 6 . 4 ) ; corner 

three by wavefunction ( 6 . 2 ) ; and corner four by 4̂ *0. As 

has been shown, reducing the f i e l d i n the wavefunction ( 6 . 2 ) 

r e s u l t s i n H^=o. Hence the block diagram i s completed. 

2 . CLASSICAL ANALYSIS OF SWITCHING OFF 

In c l a s s i c a l terms the force equation f o r a stable 

o r b i t i n a uniform magnetic f i e l d i s 

( 6 . 5 ) .e_H = Y _ . 

(TIC *" 

Sta t i n g that a system behaves as a charged p a r t i c l e moving i n 

a uniform magnetic f i e l d implies that the p a r t i c l e i s moving 

i n a stable o r b i t i n the plane perpendicular to the f i e l d . 

( 6 . 5 ) i s the necessary and s u f f i c i e n t condition f o r such a 

stable o r b i t . Hence (6..50 may be considered as the c l a s s i c a l 

c r i t e r i o n of t h i s system. 
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Before considering the actual switching o f f 

processes the following point should be emphasized. The 

p a r t i c l e ' s speed, V , remains constant independent of the 

f i e l d ' s behaviour because the force i s always perpendicular 

to the f i e l d and no further constraints may be introduced. 

In discussing the switching o f f of the magnetic 

f i e l d the two types must again be distinguished. Type I 

w i l l again be studied f i r s t . 

The type I switch o f f was defined as being the type 

i n which the system s a t i s f i e s the defining c r i t e r i a f o r a l l 

intermediate values of the p o t e n t i a l . Stating that the 

c r i t e r i o n of t h i s system i s s a t i s f i e d f o r a l l intermediate 

f i e l d values means that the equation (6.5) i s s a t i s f i e d f o r 

these intermediate f i e l d values. Therefore, the f i e l d must 

be switched o f f i n a manner such that at a l l intermediate 

stages the p a r t i c l e , t r a v e l l i n g with f i n i t e v e l o c i t y , "v , 

has s u f f i c i e n t time to reach the distance, r , which 

s a t i s f i e s (6.5) f o r the various intermediate f i e l d values. 

Since a continuous switch o f f may be approximated with 

a r b i t r a r y accuracy by a discrete switch o f f , only the l a t t e r 

need be considered even though the r e s u l t s w i l l apply to 

both methods. The d e t a i l s of a d i s c r e t e type I switch o f f 

w i l l now be analyzed. 

I f i n a given->step the f i e l d i s lowered from H to 

H x then the radius, r x , associated with % i s greater than 
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r associated with H. For ( 6 . 5 ) to be s a t i s f i e d the radius 

must therefore be rj_ when the f i e l d i s % . Hence a time 

greater than "C , where t i s rx-r , must elapse 
v 

before the step from H to 1^ can be considered completed. 

T h i s requirement regarding the time i s necessary to enable 

the p a r t i c l e , with i t s f i n i t e v e l o c i t y , to reach the 

p o s i t i o n required by ( 6 . 5 ) . Before undertaking any given 

decrement the previous step must of course be completed. 

In the f i n a l step the f i e l d goes from some H 1 to zero and 
the radius goes from some f i n i t e r' to ra where r 0 i s 
i n f i n i t e . As above a time greater than ^ o - < i s required 

v 
i n order that t h i s step be completed i n a type I manner. 

Since the f i n a l step must be completed before the f i e l d can 

be considered as switched o f f , t h i s i n f i n i t e time f o r the 

l a s t step shows that a type I switch o f f of t h i s uniform 

magnetic f i e l d cannot be done i n a f i n i t e time. 

The s t i p u l a t i o n s f o r a type I switch o f f also imply 

that any r e s u l t or e f f e c t due to any given step must be 

i d e n t i c a l to the r e s u l t or e f f e c t obtained by carrying out 

t h i s same step i n an a r b i t r a r i l y large number of a r b i t r a r i l y 

small, consecutive type I steps. From t h i s point of view 

an a r b i t r a r y step from W\ to Hf and then the step from 

H a to zero w i l l be studied. In lowering the f i e l d from H; 

to the radius increases from *\ to ^ . I f a very 

l a r g e number of steps are employed the radius increases as 



i n the mono tonic sequence: r,-, r (, rX) . . . iri~ari r f . 

For (6.5) to be s a t i s f i e d for a l l intermediate values a time 

greater than r*+i - rK must elapse before the corresponding 

decrease i n the f i e l d can be considered as completed and the 

next decrease can be undertaken. Hence the t o t a l time which 

must elapse i n going from to Hf i s greater than 

V V V V v 
This agrees with the previous r e s u l t . The f i e l d going from 

H a to zero w i l l now be studied. I f t h i s switching o f f i s 

done i n an a r b i t r a r i l y large number of small steps the f i e l d 

goes through the values of the following monotonically 

decreasing sequence: H a ; H 4 , H 1 } . . . , A H t O. 

As previously explained, a time greater than K K ^ t - r K must 
v 

elapse before the step from H K to H**, can be considered 

as completed. Hence f o r the switch o f f from Wa. to zero to 

be completed i n a type I fashion, the required time i s 

greater than rx — f"a .». r x - n ^ .. . •+• r a - r A t t - r 0 - „ 

Since f 0 , corresponding to zero f i e l d , i s i n f i n i t e and 

i s f i n i t e , t h i s time i s i n f i n i t e . Hence, as before, an 

i n f i n i t e time i s required f o r a type I switch o f f of the mag­

n e t i c f i e l d . The point of view that the r e s u l t of any step 

must be equivalent to the r e s u l t of an a r b i t r a r i l y large 

number of steps between the same i n i t i a l and f i n a l f i e l d 

values emphasizes the f a c t that the switching o f f process 

cannot be considered completed u n t i l s u f f i c i e n t time has 
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elapsed for the f i n a l step to he completed. 

Since a type I switch o f f requires an i n f i n i t e time 

as demonstrated above, any switch o f f completed i n a f i n i t e 

time i s of type I I . A switch o f f i n which the f i e l d goes to 

zero i n a time comparable to the period of the o r b i t i n g 

p a r t i c l e i s of type II and may be used as an example. The 

r e s u l t of t h i s switch o f f i s a free p a r t i c l e with speed 

V . The d i r e c t i o n of the free p a r t i c l e ' s v e l o c i t y depends 

upon the d e t a i l s of the switch o f f . In f a c t the r e s u l t of 

any type II switch o f f i s as above. Since a type II switch 

o f f i s done i n a f i n i t e time and i n view of the p a r t i c l e ' s 

f i n i t e v e l o c i t y , the p a r t i c l e may be l o c a l i z e d within a given 

f i n i t e volume fo r any p a r t i c u l a r type II switch o f f . 

Although the discussion i n t h i s section has been i n 

c l a s s i c a l terms only, i t i s of i n t e r e s t to describe i n quantum 

mechanical terminology the systems r e s u l t i n g from these two 

types of switch o f f . The r e s u l t of the type I switch o f f was 

a p a r t i c l e , with v e l o c i t y , V , at i n f i n i t y . Since the 

p a r t i c l e i s at i n f i n i t y i t s p r o b a b i l i t y of being i n any f i n i t e 

elementary volume i s zero. Hence l ^ i i s zero and 4̂  i s also 

zero. This i s also the r e s u l t obtained by reducing the 

f i e l d i n the wavefunction. The r e s u l t of a type II switch 
± i k • r 

o f f has 6 as i t s wavefunction where k = my 
_^ * 

and the d i r e c t i o n of k i s determined by the d e t a i l s 

of the switelling o f f process. This plane wave was not 

obtained by reducing the f i e l d i n the wavefunction. 
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Before completing t h i s section an apparent i n c o n s i s ­

tency between the quantum mechanical and c l a s s i c a l values for 

the transverse energy, when the f i e l d i s zero, w i l l be pointed 

out. As shown i n the previous section, the quantum mechanical 

expression f o r the transverse energy becomes zero as the f i e l d 

i s decreased to zero. However i n both types of c l a s s i c a l 

switch o f f the transverse v e l o c i t y , and hence transverse 

k i n e t i c energy, remains constant f o r a l l values of the f i e l d 

i n c l u d i n g zero f i e l d . 

3. WAVEFUNCTION ESSENTIAL SINGULARITY FOR ZERO FIELD 

In t h i s system the dominating fa c t o r i n the wave-

fu n c t i o n as the f i e l d i s reduced to zero i s Q. , that 

i s , the wavefunction goes to zero exponentially as -pj-

goes to i n f i n i t y . Since t h i s i s an e s s e n t i a l s i n g u l a r i t y 

an expansion about H° 0 i s impossible and therefore 

perturbation techniques w i l l not give the wavefunction f o r 

a charged p a r t i c l e i n a uniform magnetic f i e l d f o r small 

f i e l d s . 

Although the harmonic o s c i l l a t o r and magnetic f i e l d 

wave equations and wavefunctions are formally the same there 

i s one fundamental difference and i t i s t h i s difference 

which corresponds to the v a s t l y d i f f e r e n t physical behaviour 

between the two systems with regard to the p o t e n t i a l being 

switched o f f . In the harmonic o s c i l l a t o r case the independent 



v a r i a b l e i s simply x—-independent of a l l parameters or any­

thing else. However i n the magnetic f i e l d case the 

"independent v a r i a b l e " i s ( 'J-^o )• 3ince H i s a parameter 

independent of p o s i t i o n = d(y-y„) and ( y - <̂ c ) i s 

then the independent v a r i a b l e of an equation formally 

i d e n t i c a l to the one f o r a harmonic o s c i l l a t o r . In the 

harmonic o s c i l l a t o r case the p o t e n t i a l going to zero does not 

i n any way influence the independent v a r i a b l e x whereas when 

the magnetic f i e l d goes to zero the "independent va r i a b l e " 

( v^- vj D ) goes to i n f i n i t y . Now i t s h a l l be shown how the 

behaviour of the magnetic f i e l d "independent va r i a b l e " 

mathematically expresses the behaviour of the p a r t i c l e i n the 

f i e l d . u 0
 3 - Cpx can be i d e n t i f i e d as the <-j coordinate 

C H 
o f the centre of the c i r c u l a r path i n the plane perpendicular 

to the f i e l d . Substituting px = mvx -» e j ^ x and A x=-Hu 
c J 

i n the expression f o r u gives u - u = C m v x . 
14 

S i m i l a r l y X-X 0
 a c™ Vy can be introduced where x e 

i s i d e n t i f i e d as the x coordinate of the centre of the above 

c i r c u l a r path. Squaring and adding produces the f a m i l i a r 

r e s u l t r x = (x-xj 1-^(w-iwJ X= c* v x . As the f i e l d 

goes to zero the radius V goes to i n f i n i t y i n agreement 

w i t h the r e s u l t of a type I switch o f f . These differences 

between the magnetic f i e l d and the harmonic o s c i l l a t o r cases, 

namely the behaviour of the independent variables and the 

e s s e n t i a l s i n g u l a r i t y i n the former, correspond to the physi­

c a l difference that i n the magnetic f i e l d case the v e l o c i t y 
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i s undiminished and the p a r t i c l e must go o f f to i n f i n i t y i n 

a type I switch o f f whereas i n the harmonic o s c i l l a t o r case 

the v e l o c i t y becomes zero and the p a r t i c l e i s contained 

w i t h i n a f i n i t e region of- space i n a type I switch o f f . 



CHAPTER VII 

CONCLUSION 

1. DISCUSSION OF SWITCHING OFF PROCESSES 

In t h i s thesis two types of switching o f f have been 

distinguished; namely, type I i n which the c r i t e r i a r e l a t i n g 

the parameters of the system are s a t i s f i e d f o r a l l i n t e r ­

mediate values of the p o t e n t i a l and type II i n which these 

c r i t e r i a are not s a t i s f i e d f o r intermediate values of the 

p o t e n t i a l . In a l l the bound systems considered there was at 

l e a s t one c l a s s i c a l r e l a t i o n or equation which characterized 

the system. In a l l the unbound systems there was no such 

c r i t e r i o n . Hence i t follows that d i s t i n g u i s h i n g between the 

two types of switching o f f i s meaningful only i n the case of 

a bound system. 

C r i t e r i a determining the type of switch o f f a bound 

system undergoes w i l l now be given. Since the switching o f f 

processes have been discussed i n c l a s s i c a l terms the c r i t e r i a 

w i l l be given i n c l a s s i c a l terms. Due to the uncertainty 

p r i n c i p l e these c r i t e r i a cannot be d i r e c t l y extended to 

quantum mechanics and therefore no s p e c i f i c quantum mechani­

cal, c r i t e r i a f o r d i s t i n g u i s h i n g the two switching o f f methods 

w i l l be given. Even though the c h a r a c t e r i s t i c s d i s t i n g u i s h i n g 



62 

the two types of switch o f f are not given i n quantum mechani­

c a l terms the actual d i s t i n c t i o n i n methods i s applicable to 

a quantum mechanical d e s c r i p t i o n of a system. Furthermore, 

since the actual experimental procedures used i n switching 

o f f p o t e n t i a l s are usually of a c l a s s i c a l nature, t h i s 

c l a s s i c a l d i f f e r e n t i a t i o n between the types of switching o f f 

i s applicable i n determining the type of switch o f f used 

experimentally. Since a switch o f f i s either of type I or 

type I I , i t i s s u f f i c i e n t to give the c r i t e r i a f o r a typeM 

switch o f f since a switch o f f i n which these c r i t e r i a are 

not met Is necessarily of type I I . 

In any bound system the maximum k i n e t i c energy ever 

attained must be l e s s than or equal to the maximum of the 

absolute values of the p o t e n t i a l energy. I t Is therefore 

apparent that unless the v e l o c i t y i s somewhere zero the 

p o t e n t i a l energy cannot go to zero i n a f i n i t e number of 

steps without v i o l a t i n g t h i s energy c r i t e r i o n f o r s u f f i c i e n t l y 

small p o t e n t i a l . This may be e a s i l y seen i n a case where the 

t o t a l energy i s negative. For example, i n the negative energy 

Coulomb case (see i n e q u a l i t y (3.8)) where the v e l o c i t y i s 

nowhere zero, the p o t e n t i a l cannot be zero f o r non-zero 

v e l o c i t y without t h i s i n e q u a l i t y being disobeyed. By use of 

(3.9) i t was e x p l i c i t l y shown that the p o t e n t i a l cannot go to 

zero i n a f i n i t e number of steps. The harmonic o s c i l l a t o r 

I l l u s t r a t e s the case i n which the p o t e n t i a l can go to zero 



63 

since there i s a p o s i t i o n at which the v e l o c i t y i s zero and 

the p o t e n t i a l can there he lowered. I f a c r i t e r i o n of a 

system st i p u l a t e s that the p a r t i c l e must be at i n f i n i t y i n 

order to s a t i s f y t h i s c r i t e r i o n when the p o t e n t i a l i s zero, 

then the p o t e n t i a l i n t h i s system cannot be switched o f f i n 

a type I manner i n a f i n i t e time. This was demonstrated i n 

chapter s i x section two. Hence, the two requirements of a 

system i n order that a type I switch o f f to zero may be done 

I n a f i n i t e time are: f i r s t , the p a r t i c l e need not necessari­

l y go to i n f i n i t y i n order to s a t i s f y the c r i t e r i a of the 

system f o r zero p o t e n t i a l ; and secondly, there be a p o s i t i o n 

a t which the p a r t i c l e ' s k i n e t i c energy Is zero. In a system 

which meets these requirements the p o t e n t i a l may, i n p r i n ­

c i p l e , be switched o f f to zero i n a f i n i t e time i n a type I 

manner by lowering the p o t e n t i a l while the p a r t i c l e i s at a 

p o s i t i o n of zero v e l o c i t y . This however requires a f i n i t e 

lowering of the p o t e n t i a l i n a zero time i n t e r v a l . Since 

t h i s cannot be achieved a type I switch o f f to zero i n a 

bound system i s not experimentally f e a s i b l e . Hence any 

experimental switch o f f to zero i n a bound system i s of type 

I I . 

The preceding discussion i s concerned with a type I 

switch o f f i n which the p o t e n t i a l i s switched o f f to zero. 

However, to an a r b i t r a r y degree of accuracy, a type I lower­

i n g of the p o t e n t i a l from an I n i t i a l value to a lower, non­

zero f i n a l value may be experimentally ca r r i e d out i n those 
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cases where the p o t e n t i a l may be lowered during a f i n i t e , 

non-zero time i n t e r v a l and s t i l l be i n accord with the 

conditions f o r a type I switch o f f during t h i s lowering. 

For example, i n the uniform magnetic f i e l d and bound Coulomb 

cases the p o t e n t i a l or f i e l d may be experimentally lowered 

from some i n i t i a l value to a non-zero f i n a l one i n a type I 

manner. The d e t a i l s of the procedure may vary from case to 

case but the point i s that such a type I lowering i s experi­

mentally f e a s i b l e . 

Since i n an unbound system there i s no d i s t i n c t i o n 

between the two methods of switching o f f , the.two types are 

i d e n t i c a l and both correspond to any given experimental 

switch o f f . 

2. REDUCTION OF THE POTENTIAL IN WAVEFUNCTION 

In a l l of the systems studied the r e s u l t of reducing 

the p o t e n t i a l i n the wavefunction was one of the following 

two: 

(a) a zero wavefunction; 

(b) an o s c i l l a t o r y wavefunction — either a 

trigonometric or imaginary exponential 

function. 

Each of the r e s u l t s (b) corresponded to an unbound system. 

Ea^ch of the r e s u l t s (a), with the exception of the negative 

t o t a l energy uniform e l e c t r i c f i e l d case, corresponded to 
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a bound system. This exception w i l l be treated i n section 

f i v e . The reasons f o r t h i s correspondence between a zero 

f i n a l wavefunction and a bound system w i l l be seen i n the 

succeeding paragraphs. 

A s i g n i f i c a n t and s a t i s f y i n g common feature of those 

wavefunctions which went to zero, excepting the above 

exception, w i l l now be presented. As was previously stated, 

the wavefunction went to zero only i f i t described a bound 

system. The fundamental c h a r a c t e r i s t i c of a bound system i s 

systems t h i s condition determines a normalization c o e f f i c i e n t 

which causes the wavefunction to obey t h i s condition. In a l l 

the wavefunctions under consideration (see ('2.5), (2.5*), 
(3.4), (5.3), (6.2)) i t i s t h i s normalization c o e f f i c i e n t 

which goes to zero. Except f o r the magnetic f i e l d wavefunc­

t i o n , these wavefunctions go to zero only on account of t h e i r 

normalization c o e f f i c i e n t . I f the normalization c o e f f i c i e n t 

would have been absent i n these systems the wavefunction 

r e s u l t i n g from reducing the p o t e n t i a l would have been a 

constant but not, i n general, zero. The physical s i g n i f i c a n c e 

of t h i s w i l l now be given. In a l l the bound systems 

considered, except f o r the magnetic f i e l d case, the t o t a l 

energy goes to zero as the p o t e n t i a l does i n a type I switch 

o f f . (The s i g n i f i c a n c e of specifying type I switch o f f w i l l 

be seen further on i n t h i s section.) Hence the end r e s u l t Is 

a p a r t i c l e with zero t o t a l energy. Having zero t o t a l energy, 

the normalization condition 
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t h i s p a r t i c l e has an equal p r o b a b i l i t y of being anywhere, 

t h a t i s , a constant wavefunction to w i th in a phase f a c t o r . 

I n general , i t i s only upon a p p l i c a t i o n of the normal izat ion 

c o n d i t i o n , with i t s associated boundary condi t ions , that 

t h i s constant must be zero. I n the magnetic f i e l d case the 

normal izat ion c o e f f i c i e n t also goes to zero. However, the 

wavefunction goes to zero more r a p i d l y due to a dominating 

exponent ia l f a c t o r . As shown In chapter s ix , t h i s exponen­

t i a l decrease to zero corresponds to the p a r t i c l e going to 

i n f i n i t y . The preceding considerat ions suggest the fo l lowing 

general statements: 

(a) I n a l l bound systems i n which i t i s not imperative that . 

the p a r t i c l e go to i n f i n i t y i n a type I switch o f f , the 

wavefunction, i n general , goes to zero due to the 

normal izat ion c o e f f i c i e n t . 

(b) I f the p a r t i c l e must go to i n f i n i t y i n a type I switch o f f 

then the normal izat ion c o e f f i c i e n t again goes to zero but 

i s dominated by an exponent ia l ly decreasing fac tor which 

describes the p a r t i c l e going to i n f i n i t y . 

The preceding has shown how the c h a r a c t e r i s t i c property of a 

bound system d i r e c t l y determines the r e s u l t of reducing the 

p o t e n t i a l i n the wavefunction of such a system. 

need not be s a t i s f i e d . Furthermore, there are no condit ions 
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by which the p o t e n t i a l r e s t r i c t s the t o t a l energy. Hence 

reducing the p o t e n t i a l i n the wavefunction for an unbound 

system y i e l d s a free p a r t i c l e wavefunction which s a t i s f i e s 

the boundary conditions. Thus f o r an unbound system the 

r e s u l t of reducing the p o t e n t i a l i n the wavefunction i s that 

expected from experimental observations. 

The r e l a t i o n between the r e s u l t of reducing the 

p o t e n t i a l i n the wavefunction and the r e s u l t s of the two types 

o f switching o f f w i l l now be discussed. Bound systems w i l l 

again be discussed f i r s t . 

As demonstrated i n the examples of switching o f f i n 

the previous chapters, the system r e s u l t i n g from a type I 

switch o f f i s quantum mechanically described by the r e s u l t of 

reducing the p o t e n t i a l i n the wavefunction of the o r i g i n a l 

system, that i s , by a zero wavefunction f o r a bound system. 

The reason f o r t h i s correspondence between the r e s u l t s of a 

type I switch o f f , and reducing the p o t e n t i a l i n the wavefunc­

t i o n , w i l l become apparent when the properties of a type I 

switch o f f and of a wavefunction are compared. 

In addition to other parameters and variables, the 

wavefunction i s a function of the po t e n t i a l of a system and 

f u l l y describes the system i n terms of the p o t e n t i a l and 

these other parameters and va r i a b l e s . For any s p e c i f i c system 

there i s a one to one correspondence between the system with a 

s p e c i f i c set of parameters and a p a r t i c u l a r wavefunction. 
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Consider a wavefunction describing any p a r t i c u l a r system. I f 

the p o t e n t i a l parameter within the wavefunction i s changed, 

the r e s u l t i s a wavefunction describing a system with the 

same c h a r a c t e r i s t i c s and c r i t e r i a but with a d i f f e r e n t poten­

t i a l energy. That i s , the wavefunction now describes the 

same kind of system which has adjusted i t s e l f such as to 

s a t i s f y i t s c h a r a c t e r i s t i c c r i t e r i a when the po t e n t i a l i s 

equal to i t s new value. Now consider a p a r t i c u l a r system 

described by a p a r t i c u l a r wavefunction. Let the p o t e n t i a l 

of t h i s system be switched o f f and consider the system as the 

p o t e n t i a l i s being lowered. Since the switching o f f process 

I s not being described, i t i s unnecessary to s t i p u l a t e 

whether the process i s c l a s s i c a l or quantum. As long as the 

system s a t i s f i e s the c r i t e r i a of the o r i g i n a l system, the 

switch o f f i s of type I and the o r i g i n a l wavefunction, with 

the p o t e n t i a l reduced, may be used to describe the system at 

any p a r t i c u l a r stage. However, as soon as the c r i t e r i a of 

the o r i g i n a l system are no longer s a t i s f i e d , the p o t e n t i a l 

i s no longer being switched o f f i n the o r i g i n a l system but i n 

another, d i f f e r e n t system. At t h i s stage, where the switch 

o f f i s no longer of type I and the p o t e n t i a l i s being 

switched o f f i n a d i f f e r e n t system, reducing the p o t e n t i a l 

i n the o r i g i n a l wavefunction no longer corresponds to the 

p h y s i c a l process and a d i f f e r e n t wavefunction describing t h i s 

d i f f e r e n t system must now be introduced and the p o t e n t i a l 

reduced i n t h i s l a t t e r wavefunction. Hence i t i s seen that 
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the i d e n t i f i c a t i o n of the r e s u l t of a type I switch o f f with 

the r e s u l t of reduction i n the wavefunction follows from the 

primary property of a wavefunction and a type I switch o f f . 

As shown i n section one, any experimental switch o f f 

to zero i n a bound system i s nece s s a r i l y of type I I . I t has 

j u s t been demonstrated that the r e s u l t of reducing the poten­

t i a l to zero i n a wavefunction describes the r e s u l t of a type 

I switch o f f . Hence reducing the p o t e n t i a l to zero i n a wave-

fun c t i o n describing a bound system does not correspond to an 

experimentally f e a s i b l e method of switching o f f the p o t e n t i a l 

i n t h i s system. This i s the reason the r e s u l t of reducing 

the p o t e n t i a l to zero i n the wavefunction of a bound system 

does not y i e l d the plane wave wavefunction indicated by 

experimental observations. However a type I switch o f f to a 

non-zero value i s possible i n some bound systems. In these 

systems the r e s u l t of such a lowering to a non-zero value 

i s described by the r e s u l t of reducing the p o t e n t i a l to t h i s 

non-zero, f i n a l value i n the o r i g i n a l wavefunction. 

In quantum mechanical terminology, reducing the 

p o t e n t i a l i n the wavefunction of a bound system describes a 

process whereby the system proceeds through successive 

stationary states of t h i s same system, where each stationary 

state corresponds to a lower p o t e n t i a l than the previous one, 

u n t i l the stationary state corresponding to zero p o t e n t i a l 

i s reached. The wavefunction r e s u l t i n g from reducing the 
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p o t e n t i a l to any value, including zero, i s the wavefunction 

describing the stationary state corresponding to t h i s reduced 

value of the p o t e n t i a l . 

Since i n an unbound system the two types of switching 

o f f are equivalent and reducing the poten t i a l i n the wavefunc­

t i o n describes the r e s u l t of a type I process, i t follows that 

the r e s u l t . o f reducing the p o t e n t i a l to zero i n the wavefunc­

t i o n describes the r e s u l t of p h y s i c a l l y switching o f f the 

p o t e n t i a l i n an a r b i t r a r y manner. This i s supported by the 

examples of unbound systems which have been analyzed i n 

chapters two, three, and four. Hence i n a l l unbound systems, 

the r e s u l t of reducing the po t e n t i a l to zero i n the wavefunc­

t i o n i s a free p a r t i c l e wavefunction as i s . expected from 

experimental observations. 

3 . DECREASING THE POTENTIAL IN THE WAVE EQUATION 

The r e s u l t of decreasing the p o t e n t i a l i n the wave 

equation w i l l now be discussed. The case of a bound system 

w i l l be treated f i r s t . 

I f i n the wave equation f o r a bound system the 

p o t e n t i a l i s decreased to zero and the other parameters are 

v a r i e d i n accord with the c r i t e r i a of the system, t h i s method 

of decreasing the po t e n t i a l obviously corresponds to a.".type I 

switch o f f . When the r e s u l t i n g equation i s solved i n 

conjunction with the boundary conditions obtained from the 
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o r i g i n a l ones by decreasing the po t e n t i a l to zero the r e s u l t 

i s a zero wavefunction which describes the r e s u l t of a type I 

switch o f f . I f however the p o t e n t i a l i s mathematically set 

equal to zero i n the equation without influencing any of the 

other parameters t h i s then corresponds to the p o t e n t i a l being 

decreased without imposing the c r i t e r i a of the system. I f 

the r e s u l t i n g equation i s solved i n conjunction with the 

boundary conditions derived from the o r i g i n a l ones by decreas­

i n g the po t e n t i a l to zero, the so l u t i o n Is again a zero wave-

f u n c t i o n which again describes the r e s u l t of a type I switch 

o f f . This at f i r s t appears surprising since the p o t e n t i a l i n 

the equation was decreased i n a manner analogous to a type II 

switch o f f . I f , however, t h i s l a t t e r r e s u l t i n g equation i s 

solved i n conjunction with d i f f e r e n t boundary conditions the 

s o l u t i o n w i l l be a d i f f e r e n t , non-zero wavefunction. I f these 

d i f f e r e n t boundary conditions are chosen to be those f o r a 

f r e e p a r t i c l e the s o l u t i o n i s a plane wave which i s the wave-

fu n c t i o n describing the r e s u l t of a type II switch o f f . 

The preceding paragraph has demonstrated that the 

boundary conditions, associated with the wave equation 

r e s u l t i n g from decreasing the p o t e n t i a l i n the o r i g i n a l 

equation, determine the type of switch o f f to which decreasing 

the p o t e n t i a l i n the wave equation corresponds. This i s 

reasonable i f the following i s considered. Maintaining the 

boundary conditions of a bound system implies that the system 
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remains the same and that therefore the c r i t e r i a of the bound 

system are s a t i s f i e d . Hence i f the boundary conditions are 

maintained f o r a l l values of the po t e n t i a l i t i s apparent 

t h a t the conditions f o r a type I switch o f f are s a t i s f i e d . 

I f , however, the boundary conditions are altered while the 

p o t e n t i a l i s being decreased then the r e s u l t i n g equation i n 

conjunction with these d i f f e r e n t boundary conditions describes 

a system whose c h a r a c t e r i s t i c s d i f f e r from those of the 

i n i t i a l system. This corresponds to a type II switch o f f . 

I f i n the wave equation f o r an unbound system the 

p o t e n t i a l i s set equal to zero, no other parameters may be 

af f e c t e d since f o r such systems the p o t e n t i a l places no 

r e s t r i c t i o n s on the other parameters. I f the r e s u l t i n g equa­

t i o n i s solved i n conjunction with boundary conditions 

obtained from the o r i g i n a l ones by decreasing the p o t e n t i a l 

to zero the s o l u t i o n i s an o s c i l l a t i n g free p a r t i c l e wave-

fu n c t i o n . Since the boundary conditions are not altered, 

w i t h the exception of decreasing the p o t e n t i a l i f i t 

e x p l i c i t l y appears i n them, the system remains the same and 

the above process corresponds to a type I switch o f f which 

f o r unbound systems i s i d e n t i c a l to a type II switch o f f . 

Hence the so l u t i o n of the wave equation f o r an unbound system, 

wi t h the p o t e n t i a l decreased to zero, i n conjunction with the 

above boundary conditions corresponds to the experimentally 

observed r e s u l t . 
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4 . DISCUSSION OF THE ORIGINAL PROBLEM AND PARADOX OF AN 

ELECTRON IN A UNIFORM MAGNETIC FIELD 

The o r i g i n a l problem i n section one of chapter one 

w i l l now be analyzed. In t h i s problem of an electron i n a 

uniform magnetic f i e l d the system i s a bound one and the f i e l d 

i s switched o f f i n a f i n i t e time. This switch o f f i s therefore 

o f type I I . I t therefore follows that the experimental r e s u l t 

cannot be described by the r e s u l t of reducing the f i e l d i n the 

wavefunction. 

The paradox arose i n the o r i g i n a l treatment because 

reducing the p o t e n t i a l i n the wavefunction gave zero whereas a 

plane wave solution, which agreed with experimental observation, 

was obtained by solving the equation r e s u l t i n g from decreasing 

the p o t e n t i a l to zero i n the o r i g i n a l equation. This plane 

wave so l u t i o n was obtained because no boundary conditions were 

associated with the wave equation. That i t was t h i s absence of 

accompanying boundary conditions which l e d to the plane wave 

s o l u t i o n w i l l be shown i n the following paragraph. 

Since boundary conditions did not accompany the wave 

equation the type of switch o f f used was not s p e c i f i e d . 

Neglecting the boundary conditions that the wavefunction goes 

to zero at - oo i s the same as imposing d i f f e r e n t ones. I f the 

general s o l u t i o n which o s c i l l a t e s at * oo i s taken as the 

s o l u t i o n to the wave equation with zero p o t e n t i a l , the e f f e c t 

i s equivalent to specifying these d i f f e r e n t boundary conditions 
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as being done fo r a free p a r t i c l e . This i s what was i n f a c t 

done. As shown i n the previous section, t h i s change i n 

boundary conditions r e s u l t s i n a wavefunction describing a 

type II switch o f f . Hence the s o l u t i o n obtained i n t h i s way 

describes the experimental r e s u l t of a free p a r t i c l e since i n 

a c t u a l i t y a type II switch o f f i s experimentally carried out. 

However, since reducing the p o t e n t i a l to zero i n the wave-

fu n c t i o n corresponds to a type I switch o f f , these two mathe­

matical descriptions of the f i n a l system do not agree. Hence 

the o r i g i n a l paradox arose because one wavefunction was 

obtained by dealing with an incompletely s p e c i f i e d bound 

system, and i t described the r e s u l t of a type II switch o f f , 

whereas the other wavefunction was obtained by dealing with a 

f u l l y s p e c i f i e d system and i t described the r e s u l t of a type 

I switch o f f . 

I f , however, the o r i g i n a l boundary conditions had been 

associated with the wave equation i n which the p o t e n t i a l was 

decreased the s o l u t i o n of t h i s equation would have been i n 

agreement with the r e s u l t of reducing the p o t e n t i a l i n the wave-

function. These i d e n t i c a l r e s u l t s would not have described the 

p h y s i c a l s i t u a t i o n with the p o t e n t i a l switched o f f since a l l 

the mathematics would describe the r e s u l t of a type I switch 

o f f . 
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5. A COMMENT ON THE UNIFORM ELECTRIC FIELD CASE 

The uniform e l e c t r i c f i e l d system i s an unbound one 

f o r both p o s i t i v e and negative values of the t o t a l energy, E. 

As was shown i n chapter four, the sig n i f i c a n c e of the value 

o f E i s to ind i c a t e the p o s i t i o n at which a p a r t i c l e incident 

from ^ = + 00 i s c l a s s i c a l l y r e f l e c t e d . Hence i n t h i s case 

negative E does not ind i c a t e a bound system. Negative E 

corresponds to r e f l e c t i o n at <^=+oo when the f i e l d i s zero. 

Hence negative E corresponds to a zero p r o b a b i l i t y of the 

p a r t i c l e being i n any f i n i t e region of space when the f i e l d 

i s zero. Rather than a normalizing c o e f f i c i e n t , i t i s t h i s 

i m p o s s i b i l i t y of a p a r t i c l e with negative E being i n a f i n i t e 

r egion of space when the p o t e n t i a l i s zero which accounts f o r 

the zero wavefunction when the p o t e n t i a l i s reduced to zero. 

6 . SUMMARY OF THESIS CONCLUSIONS 

(a) For an unbound system. 

(i) The r e s u l t of reducing the p o t e n t i a l to zero i n 

the wavefunction of the system i s an o s c i l l a t i n g 

function describing a free p a r t i c l e whose k i n e t i c 

energy i s equal to the o r i g i n a l t o t a l energy, 

( i i ) The system r e s u l t i n g from experimentally switching 

o f f the p o t e n t i a l i n any manner i s described by 

both the r e s u l t of reducing the p o t e n t i a l to zero 

i n the wavefunction and the so l u t i o n of the wave 

equation with accompanying boundary conditions 
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which are obtained by decreasing the p o t e n t i a l 

to zero i n the o r i g i n a l wave equation and 

boundary conditions respectively, 

( i i i ) Only i n an unbound system can the p o t e n t i a l be 

reduced i n the wavefunction or be experimentally 

switched o f f such that the t o t a l energy remains 

constant. 

(b) For a bound system. 

(i) The r e s u l t of reducing the p o t e n t i a l to zero i n 

the wavefunction i s a zero wavefunction. 

( i i ) Two methods of switching o f f must be d i s t i n ­

guished. They are defined i n section three of 

chapter f i v e . 

( i i i ) A type I switch o f f to zero i s not experimentally 

f e a s i b l e . The system r e s u l t i n g from t h i s type of 

switch o f f Is mathematically described by the 

r e s u l t of reducing the p o t e n t i a l to zero i n the 

wavefunction or by the s o l u t i o n of the equation 

with accompanying boundary conditions which are 

obtained by decreasing the p o t e n t i a l to zero i n 

the o r i g i n a l equation and boundary conditions 

respectively. Hence, the r e s u l t of reducing the 

p o t e n t i a l to zero i n the wavefunction does not 

describe a system r e s u l t i n g from any f e a s i b l e 

experimental switch o f f . 
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(iv) In some bound systems the po t e n t i a l may be 

experimentally lowered to a non-zero value i n a 

type I manner. The r e s u l t of such a lowering i s 

described by the wavefunction obtained by 

reducing the po t e n t i a l i n the i n i t i a l wavefunc­

t i o n to t h i s lower value, 

(v) The p o t e n t i a l i n a bound system can be switched 

o f f to zero only i n a type II fashion. The 

r e s u l t of a type II switch o f f cannot be 

described by the r e s u l t of a l t e r i n g i n any 

manner the p o t e n t i a l i n the wavefunction. The 

r e s u l t of a type II switch o f f can be described 

by the so l u t i o n of the equation obtained from 

the o r i g i n a l by decreasing the p o t e n t i a l to zero 

only i f the accompanying boundary conditions are 

changed to those for a free p a r t i c l e . 

(c) Block diagram. 

(i) For any system the block diagram i s always 

completed i f the corners are occupied by a 

complete d e s c r i p t i o n of t h e i r respective systems 

and i f the steps from corner one to corner two 

and from corner three to corner four correspond 

to the same type of physical switch o f f . 

( i i ) I n order to be closed a block diagram must deal 

only with a type I switch o f f since the step 
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from corner three to corner four can correspond 

only to t M s process, 

( i i i ) For an unbound system a closed block diagram i s 

concerned with the actual physical process and 

i t s fourth corner describes the r e s u l t of an 

experimental switch o f f . 

(iv) I n a bound system i n which the p o t e n t i a l goes 

to zero, a closed block diagram must deal with 

an experimentally impossible process and the 

entry i n the fourth corner does not describe the 

r e s u l t of an experimentally f e a s i b l e procedure, 

(v) An actual physical switch o f f to zero cannot be 

expressed as a closed block diagram f o r the case 

of a bound system, 

(vi) For some bound systems a p a r t i a l switch o f f to a 

non-zero value can be expressed In the form of a 

completed block diagram. 

General properties of a wavefunction. 

(i) Since a given wavefunction describes a system 

with p a r t i c u l a r c r i t e r i a , the wavefunction 

r e s u l t i n g from a l t e r i n g the value of any parame­

ter i n the i n i t i a l wavefunction describes the 

I n i t i a l system modified such that i t has the new 

value f o r the parameter and s t i l l s a t i s f i e s a l l 

the o r i g i n a l c r i t e r i a . 
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( i i ) Changing the value of any parameter i n the wave-
function corresponds to the result of physically 
changing this parameter by the same amount i n a 
manner such that the characteristic c r i t e r i a of 
the system are satisfied for the i n i t i a l , f i n a l 
and a l l intermediate values of this parameter. 
For any given system this manner of changing the 
value of the parameter may or may not be experi­
mentally feasible. 



APPENDIX 

SYSTEMS CONTAINED VITHIN A PHYSICAL CONTAINER 

A system contained by a physical container w i l l now 

be discussed i n order to see the e f f e c t of reducing the 

p o t e n t i a l to zero i n the wavefunction describing such a 

system. In discussing reducing the p o t e n t i a l i n the wave-

fu n c t i o n of such a system one can properly discuss only a 

system whose dimensions do not need to exceed the dimensions 

of the container i n order to s a t i s f y the c r i t e r i a of the 

system f o r s u f f i c i e n t l y small p o t e n t i a l s . I f f o r s u f f i c i e n t l y 

small values of the p o t e n t i a l the radius must exceed the 

l i n e a r dimensions of any given container, then f o r these small 

p o t e n t i a l s the system i s not the one which the wavefunction 

describes. For these small po t e n t i a l s the system has an 

altered motion due to the superimposed rebound motion. Hence 

the renormalized wavefunction of the unconstrained system no 

longer describes the actual behaviour of the system at these 

small p o t e n t i a l s . Therefore, reducing the p o t e n t i a l i n t h i s 

wavefunction does not correspond to switching o f f the actual 

system. To describe such a constrained system f o r these 

small po t e n t i a l s a d i s t r i b u t i o n function may be used. The 

p o t e n t i a l would therefore have to be reduced i n t h i s d i s t r i b u ­

t i o n function. Hence th i s appendix applies only to a system 

whose dimensions need not exceed those of the container f o r 

very small p o t e n t i a l s . 
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The constraint imposed by the walls o f t h i s 

container i s expressed by a p o t e n t i a l which abruptly goes to 

i n f i n i t y . Let t h i s constraining p o t e n t i a l be R where 

R = 0 for |x{ < a and R=<x> for jx| > a . This 

p o t e n t i a l imposes two s i g n i f i c a n t changes: the boundary 

conditions become *¥(+a) = ¥(-<*•) = 0 and the 

normalization condition i n one dimension becomes 

Two cases must be distinguished. The f i r s t i s 

where the s p a t i a l l y r e s t r i c t i n g p o t e n t i a l i s imposed on an 

already bound system and the second i s where t h i s p o t e n t i a l 

i s imposed on an otherwise unbound system. Both these 

cases can be i l l u s t r a t e d by the harmonic o s c i l l a t o r . The 

f i r s t w i l l be considered f i r s t . 

In the f i r s t case the t o t a l energy i s that f o r a 

harmonic o s c i l l a t o r , that i s 1 ' 5 E - ( s + ^ - ) ^ w c 

where $ i s not i n general an integer. As the p o t e n t i a l 

i s reduced coc goes to zero and the r e s u l t i s again a 

p a r t i c l e with zero t o t a l energy. Hence a constant wave-

fun c t i o n r e s u l t s . There would appear to be two choices f o r 

t h i s constant; namely, - L to s a t i s f y the normalization 
2 cc 

condition or zero to s a t i s f y the boundary conditions. 
16 - e x/z f v i 

Chandrasekhar obtains oC e r ' p{i-€]J 

as the solution of the f i r s t excited state of a bounded 

l i n e a r o s c i l l a t o r where o( and £ are constants, X i s a 
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power series i n p and p = X /"Wc . Since p 

goes to zero as the p o t e n t i a l does t h i s wavefunction becomes 

zero. Hence the boundary conditions, rather than normaliza­

t i o n condition, are s a t i s f i e d . 

The second case w i l l now be considered. The t r e a t ­

ment of t h i s case w i l l be i n c l a s s i c a l terms but the quantum 

mechanical d e s c r i p t i o n of the end r e s u l t w i l l be given. The 

s i t u a t i o n i s that of a p a r t i c l e constrained within a region 

[ - a ; a ] by p e r f e c t l y r i g i d and e l a s t i c walls. "Within 

t h i s region the p a r t i c l e i s subject to a force of magnitude 

Kx towards the centre, However the t o t a l energy of the 

p a r t i c l e i s such that i t s t i l l has a f i n i t e v e l o c i t y when i t 

reaches the walls. I t s energy may therefore be written as 

' / i K a 1 •*• E 0 where 2̂ Ka 1 i s the t o t a l energy asso­

c i a t e d with the motion under the harmonic force and E c i s 

the k i n e t i c energy the p a r t i c l e has when i t reaches a wa l l . 

I f the p o t e n t i a l i s now switched o f f i n a type I manner 

(which corresponds to reduction i n the wavefunction) as i n 

secti o n three of chapter four, the r e s u l t i s a p a r t i c l e with 

energy E0 bouncing between the walls. In quantum 

mechanics t h i s r e s u l t i n g system i s described by the wave-

f u n c t i o n f o r a free p a r t i c l e constrained to the region 



The preceding examples suggest the f o l l o v i n g 

statements: 

(a) I f the external source p o t e n t i a l i s reduced to zero 

i n the vavefunction describing a bound system vhich i s 

further constrained by an abrupt, i n f i n i t e p o t e n t i a l , 

the r e s u l t i s a zero as vas the case i n the absence of 

the constraint p o t e n t i a l . 

(b) I f the external source p o t e n t i a l i s reduced to zero 

i n the wavefunction describing an unbound system which 

has an i n f i n i t e constraining p o t e n t i a l superimposed, 

the r e s u l t i s a free p a r t i c l e wavefunction within the 

box formed by t h i s i n f i n i t e p o t e n t i a l . 

(c) The boundary conditions, rather than the normalization 

condition, are the fundamental c h a r a c t e r i s t i c s of a 

system. 

These statements are consistent with the conclusions i n 

chapter seven. 
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