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(1)
ABSTRACT

In studying the diamagnetism of free electrons in a
uniform magnetic fleld it was found that reducing the ficld
to zero in the wvavefunction did not yield the experimentally
indicated free particle plane wave wavefunction. However,
solving the Schroedinger Equation resulting from setting the
field equal to zero in the original equation did yield a
plane wave wavefunction. This paradox was not found to be
peculiar to the case of a charged particle in a uniform
magnetic field'but was found to occur in a number of other
systems. In order to gain an understanding of this unexpected
behaviour, the following systems were analyzed: the one-
dimenslonal square well potentlial; a charged, spinless par-
ticle in a Coulomb field and in a uniform electric field; a
one-dimensional harmonic oscillator; and a charged, spinless
particle in a uniform magnetig field. From these studies
the following were obtained:é%pnditions for determining the
resultnof reducing the potential in a wavefunction; the con-
dition under which the potential of a system may be switched
off while maintaining the energy of the system constant; the
relationship between the result of physically switching off a
potential, the result of reducing it in the wavefunction, and
the solution of the Schroedinger Equation obtained\by decreas-
ing the potential to zero in the original wave equation; and
a general property of any wavefunction with respect to

reducing any parameter within this wavefunction.
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CHAPTER 1

INTRODUCTION

1. GENERAL DISCUSSION

One of the problems which arises in studying the
ﬁagnetic properties of solids is that of the orbital dia-
magnetism of free electrons. This can be treatedl by solving
the Schroedinger Equation for an electron in a uniform mag-
netic fleld. ©Since the case of a weak field is of interest,
the result of reducing the field to zero in the solution of
this Schroedinger Equation was investigated.

The apparent experimental result of switching off the
magnetic field is that the electron directly and continuously
goes over to a free particle whose eilgenfunction is a plane
wave. The mathematical treatment of decreasing the field to
zero 1s not so straightforward. If the field is decreased in
the original wave equation for the electron in the field the
result is an equation whose solution is a plane wave. However,
1f the field is reduced to zero in the solution of the original
equation a plane wave is not obtained. Whereas the former case
is consistent with what is expected the latter case is incon-
sistent with what appears to be experimental evidence. ©So the
situation is that the result is consistent or inconsistent with



the apparent experimental observations depending at which
stage of the mathematics the field is decreased to zero. This
paradox of not obtaining the experimentally indicated free
parficle plane wave solution by reducing the field, or poten-
tial, in the eigenfunction solution of the original equation
is not peculiar to the case of an electron in a uniform
magnetic field. It also occurs in other systems such as a one-
dimensional harmonic oscillator, a particle in a square well
potential and a charged, spinless particle in either a Coulomb

or uniform electric field,

The preceding suggests the following questions
regarding a particle experiencing an external field:
(a) Under what conditions, if any, is the séme result
obtained by
(i) reducing the field to zero in the solution to
the original wave equation and by
(11) solving the equation obtained from the original one
by letting the field go to zero?
(b) What is the meaning or significance of these situations
vhere the results are different depending on whether
the field approaches zero in the original equation or

in its solution?

The situation discussed above may be illustrated by

the block diagram



corner 1 > corner 3
solution
J
l field to O 2\ field to O
v
corner 2 > corner 4
solution

where the corners are occupied as follows: corner one by the
original wave equation for the particle in the field; corner
two by the free particle equation obtained from the equation
in corner one by decreasing the potential to zero; corner
three by the solution of the equation in corner one; and
corner four by the solution of the equation in corner two.
If the entry in corner four may also be obtained by reducing
the potential in the wavefunction occupying corner three the

block diagram is said to be closed or completed.

In terms of this block diagram the preceding
guestions may be simply stated as in the following.
(a) Under what conditions can the block diagram be completed?
(b) What 1s the significance of those situations in which

the block diagram cannot be completed?

2. DBOUNDARY CONDITIONS

To completely and uniquely describe a physical
system in either quantum or classical mechanics boundary con-
ditions must be introduced in addition to the differential
equation. ©Since the Schroedinger Equation alone is insuffi-

clent to fully describe a physical situation the block diagramn,



as it stands, deals with incompletely specified systems.
Unexpected results may therefore occur. If boundary condi-
tions are introduced in conjunction with the wave equations,
corners one and two of the block diagram will give a complete
description of their respective physical situations and the
problem will be formulated in terms of fully specified
systems. Henceforth in this thesis the blqdk diagram will be
considered only in terms of fully specified systems, that is,
where corners one and two are occupied by the boundary
conditions corresponding to their respective systems in addi-

tion to the respective wave equation.

Since the transition from corner one to corner two
is made by decreasing the potential to zero in some manner,
it follows that the boundary conditions in corner two should
be obtained by decreasing the potential in the boundary
conditions of corner one. With the exception of the positive
total energy Coulomb and uniform electric field cases, the
above procedure fesults in the boundary conditions being the
same in both corners one and two. These exceptions will be

treated in section two of chapter three and in chapter four.

With regard to boundary conditions two categories of
systems may be distinguished. These types of systems are
those in which
(a) the only potential or~field the particle experiences 1s

that due to an external source; or



(b) in addition to the potential in (a) the particle is

subject to geometric constraints.
The only type of geometric constraint considered in this thesis
is that of a particle being contained in a physical container.
In the latter case, as herein conéidered, the particle is
always bound whereas in the former case it may or may not be
bound. The original system of an electron in a uniform magnet-
ic field can be made to illustrate elther type of system.
corresponding to (a) the system simply consists of an otherwise
unconstrained electron moving in a uniform magnetic field which
fills all.space. In this case the external source is that
which produces the magnetic field. An example of (b) is an
electron confiﬁed within a crystal and experiencing a constant
magnetic field at all points within the crystal.

In the main body of this thesis only the first type
of system will be analysed. In the appendix the second type of
system will be discussed. The only type of geometric constraint
to be treated in the appendix is that of a physical container
which is hathematically described by an abrupt, infinite wall
potential.

3. SINGULARITIES

Since a differential equation is characterized by the
number and type of 1ts singularities, the singularities of the
differential equations in corners one and two of the block

diagram will be studied. The situation the block diagram



represents is that of comparing the result of applying a
given procedure to the solution of an initial equation with
the solution of a derived equation where the derived equation
is obtained by applylng the same procedure to the initial
equation. In effect the solutions of two differential
equations, an initlial and a derived one, are being compared.
If the initial and derived equations have different types of
singularities these equations are from different classes and
it may not be reasonable to a priorli expect the initial
solution to go over to the solution of the derived equation

by application of the same procedure.

With the exception of the square well case, in all
the cases herein considered the derived equation differs from
the initial one with regard to a singularity classification
as seen from the followling table:

Singularity Singularity

Different Eguat at origin at infinity
type order
Free particle none irregular fourth
Square well potential none. irregular fourth
‘Coulomb field regular irregular fourth
Uniform electric field none irregular fifth
Harmonic oscillator none irregular sixth

Uniform magnetic field none irregular sixth



Since the wave equation for both the free particle and the
square well potential have the same singuwlarity pattern the
square well potential will be treated first. The Coulonb
equation is treated next since in addition to its regular
singularity at the origin it has the same type of singularity
at infinity as does the free particle equation. The cases of.
negative and positive total energy are treated separately for
both the square well and the Coulomb potentials. The uniform
electric field, whose equation has a singularity at infinity
one order greater than has the free particle equation, is
treated next. Chapters six and seven are devoted to the
harmonic oscillator and uniform magnetic field cases whose
equations have singularities at infinity two orders larger

then the free particle equation.
4+ TERMINOLOGY

Before completing this introduction the terminology
associated with the potentlial going to zeroc will be specified,
The word "reduce" (and its derivations) refers only to the
potential going to zero in the wavefunction. That is,
"reduction” is associated with the step from corner three
to corner four in the block diagram. This term refers to a
purely mathematical proceduée with no dependence on, or rela-
tion to, any parameter or variable; for example, no connection
with time. An example of reduction is 1lim f(x); x is said to

¥ib
be "reduced'" to b.



The step from corner one to corner two, that is, the
potential going to zero in the wave equation, will not at
present have any definite term ascribed to it. Non-committal
terms such as "the potential is decreased" or the "potential

goes to zero" will be used.

The expression "switch off" and its derivatives
refers only to the physical process of the potential being
diminished to zero. The physical process of "switching off"

a potential is a time dependent process in which the potential
is a function of the time. For example, the switch off may be
exponential with a time constant, a step function with respect
to time or linear over a time interval. To incorporate the
time dependence of the switch off in the wave equation requires
a time dependent Hamiltonian. However the point of interest
in this thesis is to describe the result of switching off
rather than to describe the behaviour of the system while the
potential is being switched off. Hence the precise time
dependence of the switch off is not of interest and all the
Hamiltonians will be independent of time regardless of whether
the time dependent or independent wave equation is used. In
chapter five a distinction will be drawn between two different
types of switch off.
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(a)

()

(e)

(a)

AIM OF THESIS

In this thesis the various aforementioned systems
analyzed with the following intentions:
to obtaln general criteria for determining the wave-
function obtained by reducing the potential to zero
in the initial wavefunction;
to determine under what conditions the block diagram is
completed and the meaning of such a completion;
to determine the meaning of those situations in which
the block diagram is not closed; and
to determine the relationship between reducing the
potential in the wavefunction, decreasing the potential
in the wave equation and the method of switching off
the potential.



CHAPTER II

ONE DIMENSIONAL SQUARE WELL POTENTIAL

1. NEGATIVE ENERGY SOLUTIONS

A particle having ncgative total cnergy in a square well
potential, whose potential is zero at infinity, corresponds to
the physical situation of a particle whose kinetic energy is
less than the absolute value of 1ts negative potential energy
in the region where the potential is non-zero. In the region
where the potential is non-zero the criteria for the above sys-

tem are:

(2.1) E - \/ 20
(2.2) O¢|E[| €V  ana O= TsV

wvhere b denotes the total energy, V the potential energy and T
the kinetic energy. Both conditions follow from the conserva-
tion of energy and the fact that the kinetic energy is positive
while both the total and potential energles are negative. The
particle's negative total energy, caused by the potential
energy déminating over the kinetic energy, implies that the
particle is confined within the region of the potential. 1In
classical mechanlcs there 1s no possibility of the particle »
leaving the region of the well. In quantum mechanics the

probability of the particle being outside the region of the
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potential is small and decreases exponentially as the distance

from the region of potential increases.

The square well potential, V, may be described as

\/ - {-VO -a<XK<a

@) xi>a

follows:

where Vo is positive. The wave equation is then

4y 2m (E+V,)Y =0 a>lxi>a
(2.3) g¢ T HT ’

d* » 2mE =
(2.) §2 T 0 adk

To maintain continuity at x=ta the boundary conditions
Pla) =¢¥(a) | @l-a) =P(-=) , @'(a) = ¥'(a)

and @'(-a) = P! (-a) are imposed. The solution of (2.3)
is \P=A sinax + B sin ax vhere d-= +/ 2m (E:Va) '
and is real by (2.1). ?

To avoid an unbounded solution and to permit normalization
the boundary conditions that ¢ tends to zero as |x[ tends
to infinity are imposed. The solution of (2.4) is then

C e P x>a

‘P = where =+ |=2mE
D e Bx X<-a /)I L
and is real and positive. By matching the solutions at x=2*a

2
two conditions and their corresponding solutions are obtained.

These continuity conditions on the wavefunction determine the

allowed valués for the total energy E.



(a) The solution corresponding to the condition

otta.noaa.'ﬂ

Ce"” x>a
(2.5) B
CoOS X ~a<c<x<a
Ceﬂx X<~-a .

By matching at either boundary the relation between the

coefficients is C = Beﬁa (oS da.

B= o 83
xcostaa +@sinaa cosaa +axp is
+ o0 z
obtained from the normalization condition f IVl dx=1,

—~o0

(b) The solution associated with the condition

o« cotaa=-8 is
-BX
(2.51) Ce® x>a
As'mdx ~asx<a
-Ce”" X<-a

L

C=-ap o . [
- 'FA € co0saa and A FJ«3costaa + ala’c( -p* sinaa cosaa

are obtained as before by matching at a boundary and from

normalization.

as VY, is reduced to zero, B goes to t«. In
order that the wavefunction be well behaved the energy, (3
and « must be determined from the appropriate continuity
condition. The first condition is atanaasf . An obvious
solution when o«  becomes -ip is o«=@=E=0. The other

perndlssible values of E are determined by substituting -0

12
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for o in the above condition and solving the obtained

tan (-ipll) =4, This is equivalent to tanhﬁa--L
The solution of thiis for finite, positive a 1is p"w.
Since p is defined as being positive this is an unacceptable
solution. Hence the only acceptable value for E is zero.

The condition « cot aa=-8 yields the identical result
‘when V, is reduced to zero. Hence as V, is reduced to
zero o and B go to zero. Thus A, B, and C go to zero as
the potential does. Hence for elther condition the wave-
function goes to zero as tne potential does. It should also
be noted that the continuity conditions implying that E being
zero is its only acceptable value is in accord with the

potential going to zero consistent with criteria (2.2).

The result of decreasing the potential in the wave
equation will now be studied in order to determine what
happens when the potential goes to zero in the wave eguation
and the ensuing wave equation i1s solved. If the potential
is decreased such that for all intermediate values of the
potential the criteria (2.2) of the system are satisfied it
is apparent that the final result of decreasing the potential
to zero is a (free) particle with neither kinetic nor poten-
tial energy, that is, the total energy, Lk, is zero. Hence &as
the potential goes to zero all the energy levels collapse to

zero. Since E goes to zero as V does
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(2.6) d*vy
dx?

= 0O

is the equation describing the result of decreasing potential
in the above manner. That is, it is (2.6) [rather than the

1
apparent ‘il_x\f +2_K~_~_1_EW=0, (E#O) ]

which describes the system when the potential is decreased
as above. By a well known theorem3 regarding the solution of
Laplace's bguation with boundary conditions, the solution of
(2.6) with the boundary conditions that Y goes to zero as
Ix| tends to infinity is ¥=o0. 1If, however, the potential
is decreased without explicitly requiring that the criteria
of.the system be satisfied for all intermediate values of the
potential the fesulting equation is
(2.7) &Y  2mE Y= 0

dx* K*
This is the equation obtained if the potential is mathemati-
cally set equal to zero in (2.3). The general solution of
(2.7) is Y = Ae? +Be %" nere o is in general complex
with the real part non-negative. The condition that Va0 at
X = + o0 implies A is zero and Wso at x=- o implies
B 1s zero. Hence the only solution consistent with the
boundary conditions is Y:o regardless whether the criteria
(2.2) are explicitly introduced or not. The reason for

obtaining Y:0 poth times is that the boundary conditions
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are the same. That is, even though in the latter treatment
(2.2) was not explicitly applied to E it was implicitly
applied since the boundary conditions for a bound system

were maintained.

The block diagram can now be considered. The block
diagram for the negative energy solutions for the square
well potential is occupied as follows: cdrner one by equa-
tions (2.3) and (2.4) and the boundary conditions that the
wavefunction be zero at x=%* 3 corner two by the same
boundary conditions and by equation (2.6) or (2.7) depending
on what 1s stipulated regarding decreasing the potential;
corner three by wavefunction (2.5) or(2.5}); and corner four
by'\P=0 . As has been demonstrated the result of reducing
the potential in the wavefunction (2.5) or (2.54) is ¥-0.
Hence the result of reducing the potential in c;rner three
1s the same as solving corner two and the block diagram is

closed,

2. POSITIVE ENERGY SOLUTIONS

The physical situation which the mathematics of
this secfion describes is that of a particle feeling the
effect of a square well potential whose value is such that
the particle's total energy is positive. If the potential is
assumed negative the kingtic energy is then greater than the
absolute value of the potential energy. This is the case of
scattering by a square well potential.
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The procedure for treating this case is similar to
the negative energy case. However the result of reducing the
potential is different. The potential is as in section one
since it is assumed to be negative. For the region lx[>a.
the equation is again (2.4) but with the boundary conditions
that ‘? behaves as a sinusoidally oscillating function at

X=to. Hence ¢ is C sin pr+ D cos BX

there {$=’+..'2":’E . For |x]<a

the equation is again (2.3) with the solution

Y:ASin“X*BCOqu where a=+fzm’("F;+V,2’

The functions @ and ¥ and their first derivatives are again

matched at X=2qa to produce two sets of solutions each
corresponding to a different relation between o and (3 .
(a) Associated with the condi tion dtanaa = @ tan ga

is the solution

(2.8)

{ B cosax [x/<a

D cos 8x  1xiva -

To maintain continuity of the wavefunction at lxi=o. the
relation between B and D is B (oS axa = D cos pga ,

As Vo is reduced to zero, o approaches p and, in order
that the wavefunction be well-behaved, D approaches B. Hence
B Cco0s PX is the solution everywhere when the potential is
zero. Since this solution is applicable in all space the
normalization condition /:ol YI1*dy =] is not applicable

and B is arbitrary. B is usually chosen to be unity as this

normalizes the function to unit flux.



(b) Corresponding to the condition acotaa s peot pa
is the solution

(2.8") A sin«x x| <a
C singx [l >a

By the same argument as in the preceding the solution Sh\ﬁx
is found to apply at all points when the potential is reduced

to zero,

As the potential is reduced to zero a goes to g
and the continuity conditions at x=*ta which determine the
allowed values of E become identities. Hence the end result
is a free particle with an arbitrary total energy E and a

trigononetric wavefunction.

The result of the potential going to zero in the
wave equation will now be investigated. Unlike the negative
eneréy case, E 1s not bounded by the potential. Hence
decreasing the potential to zero does ﬁot influence E and the
resulting wave equation is (2.7) . When the boundary
conditions that Y oscillates sinusoidally at =T are

imposed the solution normalized to unit flux is

t‘l
(2.9") sin /sz' X
“t

or a linear conbination of the two.

The physical significance of decreasing. the poten-
tial is that the particle in question is acted upon by a

diminishing force. When the potential reaches zero there

17
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is no force acting on the particle and it is then & free one.

This is consistent with the above results.

The block diagram for the positive energy square well
case is occupied as follows: corner one by equations (2.3) and
(2.4) and the boundary conditions that ¢ sinusoidally
oscillates at X=*o ; corner two by equation (2.7) with the
above boundary conditions on 9’ 3 corner three by wave-
function (2.8).or (2.8'); and corner four by wavefunction (2.9)
or (2.9'). As has been demonstrated (218) reduces to (2.9), or
(2.8') to (2.9'), when the potentiall is reduced in the wave-
function (2.8) or (2.8') . Hence the block diagram is closed.



CHAPTER III

COULOMB POTENTIAL

1. NEGATIVE ENERGY CASE

A particle with negative total energy in a Coulomb
field corresponds to an attractive potential binding the
particle to the source of the potential as in the example
of the hydrogen atom.

In this CGoulomb case the potential is -A where

v

A 1s a non-negative constant and r is the distance from the
source of the potential to the particle. Corresponding to
the criteria (2.2) in chapter two the total energy in this
case 1s bounded as follows:

(3.1) -mA" < E< O,

24
In fact the exact allowed energy values for the negative
energy case are

1 .
(302) Eﬂ= _MA n=l, 2,3,...
2ntk*

The allowed energles being negative corresponds to the
particle being bound within a finite region of space. ﬁence

the wavefunction satisfies the normalization condbtion

2
f IY1* dc =1, This normalization condition in
all space
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turn implies that Y goes to zero as any spatial coordinate

approaches infinity.
The wave equation for this system is
(3.3) V'Y +im (Ev4jV =0
'\l r

and is expressed in spherical coordinates. By introducing
the quantum numbers 1 and m the equation is separated in the
usual manner into angular and radial equations. The solution
for a given 4 and m is the product Re(r) Yem (0,9)

where Ylm(e,qﬂ is a spherical harmonic. The radial
equation for the Goulomb field is

o _ﬂ_r(n%g),, 2mR (E+4 - m(z..))z

2mr?
The independent variable r is replaced by p= +/ SmlEl v,

5
In terms of p the solution 134

R ()= Core® 0% Ly’ (o) where
L i1s an associated Laguerre polynomial and Cu is a
normalizing coefficient to be determined from

.[o Rn, (¢) v2dp = | and the relation

e-azu [Lzm (Z)J 2 dz = 2n [(n+L)IJ

n+l n 1_0'

The normalized total wavefunction is

(3.4) \EM(( 9;9):‘ {(_QA) (uol)_(l-lnl)'(n-ﬂ-lll-l e’% ¢ Lu”(p P, (coss) €

nk:/ Qrn an.e)']’(lolmlJ'J
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where =&&z%%: is used as it is equivalent to the
n

original definition when (3.2) is used.

If the potential is reduced to zero through A going
to zero then the wavefunction (3.4) also goes to zero.
Furthermore by (3.2) all the energy eigenvalues collapse to
zero. As the energy goes to zero the linear and angular
nomentum, and therefore 3, go to zero. Hence the wave-

. A%
function goes to zero as .

The treatment of decreasing the potential in the
wave equation 1s simllar to that used in the negative energy
square well case., If the potential is decreased such that the
criteria (3.1) and (3.2) are satisfied, E goes to zero as the
potential does and the wave equation describing the result of

decreasing the potential to zero in this manner is
Lﬁ;_
(3.5) v'T:=0

in analogy to (2.6). The solution is Y¥=0 by the same

theorem3

since the boundary condition is Y goes to
zero as ¢ goes to infinity. If the potential is decreased
without explicitly stipulating that E goes to zero the wave

equation becomes
(3.6) LARGREY- V-3 R

in analogy to (2.7). Since the same boundary condition is
maintained the solution is W=o0 by an argument essentially

the same as the one following equation (2.7) in chapter two.
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Again *“‘O is the solution when the potential is decreased
to zero in the wave equation regardless of the explicit
conditions on E. This is because the boundary condition
(that YW goes to zero as r goes to infinity such that

S |#/*dz =1 ) implies the particle is bound, the

all space

energy is negative and (3.1) is satisfied.

The block diagram for the negative energy case of
the Coulomb potential 1s populated as follows: corner one by
equation (3.3) and the boundary condition that \d goes to
zero as:i r goes to infinity; corner two'by elther equation
(3.5) or (3.6)(depending on the conditions explicitly
imposed on decreasing the potential) and the above boundary
condition; corner three by wavefunction (3.4); and corner
four by V=0, Since the result of reducing the
potential in (3.4) is Y=0 the block diagram is closed.

The classical switching off of this potential in a
manner suchh that the criteria of the system are satisfied for
intermediate values of the potential will now be considered.
The classical criteria for the negative total energy CGoulomb

case are the force equation
(3:7) sz't’=A
and the inequality

(3.8) mv' _A¢ o,
bR r
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The latter follows from the conservation of energy for a
bound system with zero potential at infinity. By an analysis
based on (3.7) it will now be shown that the velocity goes to
zero as the potential is switched off. As the potential is
switched off, A goes to zero and hence v?¢y goes to zero.
Since A being decreased implies the force, —éa, is
decreased in magnitude, the result in view of the finite
tangential velocity, v, is that r will tend to increase.
Hence for Vv*r to go to zero v must go to zero with the
result that as the potential is switched off the kinetic
energy goes to zero. Hence the result of switching off in
the above manner is a particle wilithout kinetic or potential

energy, that is with zero total energy.

Before toncluding the classical switching off of this
Coulomb potential some results, which will be useful further

on in this thesis, will be presented. Of the various ways of
discretely switching off the potential consistent with the
criteria (3.7) and (3.8) the least favorable one is if a given
decrease occurs instantaneously. It is assumed that the
potential parameter instantaneously goes from A to A3 where
A1 < A, At the instant of decrease (3.7) is satisfied by A
and (3.8) mus{-, be satisfied by both A and Aj. Combining (3.7)
and (3.8) at this instant yields |

(3.9) 1 mviy =_é.\. <A .

-~
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This inequality implies that the potential cannot be
switched off tolzero in a finite number of steps if the
criteria of the system are to be satisfied for intermediate
values of the potential. OSince all that was required of Ay
was that it be less than A and in view of the fact that a
continuous switching off may be approximated with arbitrary
accuracy by a discrete method of switching off, one may
therefore conclude that in a continuous switching off,
satisfying the criteria for intermediate values of the
potential, the potential must take an infinite time to reach
zero. The final total energy resulting from such a switch

off is again zero.
2. POSITIVE ENERGY SOLUTIONS

The physical situation which this case describes is
that of the scattering of a spinless, charged particle by a
Goulomb force. In this case the total energy is positi&e
and constant for all points of the particle's path.

It is convenient to consider the incident particle
as being described by a plane wave in the z-direction and
£

to work in parabolic coordinates.) Hence a solution of the

form W=e'**F  1s sought for the equation
(3.10) 7Y + (k"-—é_) Y=0 o

where A=imZe* Kk'lmE ?iA.. is the potential and e is
A Wt mr

-~



the charge on the incident particle. The equation satisfied

by F is V2F+Z'tk3_E-Af=o.
Y r

At this stage the transformation to parabolic coordinates is
made. Due to the axial symmetry of the system and the
separating out of the incident plane wave, the solution will
depend on }' 2p-2 only. lence F(r- z) is substituted
for F. After multiplying through by r the resulting
equation in terms of | becomes fdd%El +(l—ikf)£jl; —ATF = 0.

By introducing X='|k_)’ a confluent hypergeometric equation

in x is obtained. Hence F=F (:7:_‘/(3, [, ikj’).

When normalized to unit flux the total wavefunction is

(3.11) “l’(r,e)=e'¥9 (mz%) eikz.E(-_%%_,l,ak)’),

If the potential is reduced to zero in the above
wavefunction, that is A reduced to zero, all the terms
involving A go to unity and the wavefunction becomes the
plane wave eikl .

Since the Coulomb potential is a long range one
with the same value at Z=+00 and 2Z=-o00 the boundary
condition at infinity behaves in a different manner for this
potential than for the square well potential. In this
case the parameter A explicitly appears in the asymptotic

expression for the wavefunction. This and the uniform



electric field are the only cases in this thesis in which the
potential parameter is explicitly involved in the boundary
condition. The boundary condition accompanying the equation
in which the potential is zero will differ from the condition
with the initial equation to the extent that A is set equal
to zero in the initial boundary expression. The boundary
condition at infinity for the positive energy solutions of

the Coulonmb potential i56

(3.13\+%~(/fﬁf;__)exp(ikz+%élogk(ﬁi)) +

4k3(r-u)

Ab csc?s exp(ikr—iA loqkr—if log(i-c $6) +iT + 21 .
4 rmivt 2 P(l v .J'.‘k °3 2k °d ° ) ’Lo)
When A i1s decreased to zero in (3.12) this boundary condition

becomes

(3.13) Y~ eika

The result of decreasing the potential to zero in
the wave equation can nov be studied. As in the positive
energy case of the square well potential, decrezsing the
potential does not place any restrictions on E. The equation

resulting from decreasing the potential to zero in (3.10) is
(3.14) VY kY =0,

The general solution of (3.14) normalized to unit flux is
etsr . By imposing the boundary condition (3.13) for r

going to infinity the general solution becomes e'k?,

The same result may be obtained by recalling that
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the incident wave vector was k= (00 k). In the

—

absence of any potential, as is the case in (3.14), k

remains unaltered. Hence the general solution e'tr

ika

again
becomes € If in a given problem the incident wave
vector is not parallel to an axis a rotation of the
coordinate system is first carried out such that the wave
vector is parallel to an axis in the new coordinate system.
The problem is then treated as above in the new coordinate

system.

The block diagram for the positive energy Coulomb
case is occuplied as follows: corner one by equation (3.10)
and boundary condition (3.1l2); corner two by equation
(3.14) and boundary condition (3.13); corner three by wave-
function (3.11); and corner four by gikz, As has been
demonstrated, the result of reducing the potential in the
third corner is the entry in the fourth corner. Hence the

block diagram is closed.

The physical situation is straight-forward. The
system consists of alparticle with total energy, E, experi-
encing a Goulomb force. The result of switching off this
force to zero 1s a free particle with the same total energy.

This total energy is now all kinetic energy.



CHAPTER IV

UNIFORM ELECTRIC FIELD

1. DESCRIPTION OF SYSTEM

The system under consideration in this chapter is
that of a charged, spinless particle, incident from 3 =+oo
travelling towards 3=—oco, being repelled by a uniform
electric field. This field, ‘E » i1s chosen to be parallel
to the ¥ -axis and the charge on the particle is
denoted by e. In this chapter e is assumed to be positive.
However the arguments and résults are. equally applicable to
a negatively charged particle when the directions are
reversed. In this system the particle experiences a poten-
tial —6F3+C. Since C is arbitrary it is chosen
to be zero thus making the zero of potential at the origin.
The particle's total energy is denoted by €. E is the
total energy associated with the motion parallel to the

} ~axis and is a positive or negative constant.
2. WAVEFUNCTION BEHAVIOUR AND BLOCK DIAGRAM
The Schroedinger Equation for this system is

(4.1) 7Y ;g.(u&;)% 0.
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Y ois expressed as \f/ X,4,% ) X(x) Y(\;)Z(}) and

three ordinary differential equations are obtained which
involve the constants k,‘,k, and k; where
K + k,‘+k;=2.__;n§. ke and ky" are %.\zi‘
times the energy associated with the motion in the x and y
directions respectively and as such are positive. k;‘ is

-2’—'%7E and 1s positive or negative as E is. The
equations for x and Y yield the free particle plane wave
solutions X(X.) - gikeX and Y(g) = etk
The equation for Z(}) is
(4+2) &L, (2neFy . k;)Z “0.

d3? L

If the changes in variables Z =J &_g;‘s.F} . k; W,

V=2 (2ngFs ) 7

and then u=f\1\f
AmefF

are

made in (4.2) the resulting equation for W 1is

uldlu dw 1_1Yw-=
T + UE +(u 9) =0 .

This is a Bessel Equation and its general solution is

W= A .T-/,(u) + B I.y, (U) . The general expression
for Z(}) is therefore

J_—QF} “ [AJ—L 3meF(2meF7*k’)/)+

3/,
k where A and B will Dbe
(3 meF } M )) >]
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chosen to satisfy the boundary conditions.

As was seen in the positive energy Coulomb case, the
asymptotic behaviour of the wavefunction for a long range
potential is not simply a trigonometric or an imaginary
exponential type of function. ©Since this uniform electric
field potential is a long range one, all that will be speci-
fied regarding the boundary conditions is that the wavefunc-
tion goes to zero exponentially as 3 approaches —eo
and that it oscillates as 3 approaches + o0, The
boundary conditions to be satisfied by 2?(}) may be more

quantitatively stated as follows:

(4e3) 3 <<-—j%. implies QZ(}) tends to zero

e

exponentially with decreasing } 3
(4e4) 3 > —1%5 implies 23(}3 osclllates with 3.
e

To satisfy the boundary condition for 3 tending to
—o0 A is equal to -Be'™2, This relation is obtained

by applying the following procedure:

Y (Zmng +3_,,_5)3/’°z R (2meFI3|)3/"
-ﬁ‘-

3meF | &* &
for 3 tending to -e is used and 2meF[3/#™" is

recognized as being positive; the relations7

I+,, ()= P Izv (x e'm/”) are used;
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and A 1s expressed in terms of B such that, for 7 tending
to — o0 , Z(}) is proportional to the K,J function

where8 K.y(x) =TT(I-;«(X) - Iv(")) . B is deter-

2 sin VT

9
mined by using the asymptotic forms

(445) J;y(t)’vf'_g cos(x:gi_rr_g)

2
and the normalization condition VH’( = __  for }
2wk
tending to +o where v 1is the magnitude of the velocity

parallel to the 3 -axis. B is then found to be _} .
/3¢F

With A and B thus specified the asymptotic forms of
Z(}) for I3l tending to infinity can be written down.

10 K Y
By use of ,,(X)'V I € it is seen that for
2x

3 tending to - o0
1 l'ﬂ"I/J 3/2'
(4.6) Z(;)’V 3 (_m__)" e exP[—(zmeFng ]
wH \ 8e Fl3l 3meFH
(4.6) goes to zero exponentially as 3 .goes to —oo, -
By use of (4.5) the asymptotic form of Z(}) as % ‘tends to

+ o0 is seen to be

(o L)~ (22" {ex,,[--.((zmep % )]

ﬂ'zﬂ‘er Ime

oo )]}

ImeFH

(4.7) oscillates with varying 3. Hence with the above

cholces for A and B the boundary conditions are satisfied.
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The solution of (4.2) which is normalized to unit flux at
3 =+ and which satisfies the boundary conditions (4.3)
and (4.4) is therefore

Y - 3/2
(4.8) Z(})‘*’%/Z%(e%*E) {J— [(ZmeFj;l mE) ]

3meFHh

e'™ J, [ (2meFy + zme)”‘]} .

3Ime Fh

The result of reducing the potentlal in the wave-
function (4.8) will be studied in conjunction with the effect
of decreasing the potential to zero in the boundary condi-
tions. This is done in order to determine whether the result
of reducling the potential in the wavefunction satisfies the
conditions on the wavefunction obtained by decreasing the
potential in the boundary conditions. The cases of positive
and negative E must be distinguished.

In reducing the potential in the wavefunction (4.8)
for the case of positive L, equations (4.5) and the small

F approximations /meeng . Z‘hE ]2;35 =Ky
and K (ZmeF} ,k")y‘z:k 3 +k;ﬁ°‘
3meF L X ¢ ? ImefF

are employed. As F 1s reduced to zero the wavefunction (4.8)

becomes

(4.9) Z j::;{exp[ (k,;f%%% _H)}-exp[-a(k,; +§_‘_}5‘3LF -%g')]}
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With E positive F will be decreased to zero in the boundary
conditions (4.3) and (4.4). As F is decreased to zero (4.3)
becomes the condition that for F <<~ Z(}) goes
to zero exponentially with decreasing 3. (4.4) becomes
the condition that for 3 >>-c0 Z(z) oscillates
with 5 As the former is meaningless the latter is the
only condition imposed on the wavefunction by the boundary
conditions when F is decreased to zero. Since (4.9)
oscillates for all % it is consistent with the above con-
dition on the wavefunction. Hence reducing the potential in
(4L.8) when E 1is positive yields an acceptable and

consistent result.

When the preceding approximations for small F and

7, 8, 10 I.

the previous formulas for and K% are used,

-

the wavefunction (4.8) for negative E  becomes

(4200 Lig)= ™ 3 [m )™ expligly - lgls' |

Lk (2E ImeF

as F is reduced. F will now be decreased to zero in the

boundary conditions with E negative. (4.3) becomes the

condition that for g << 00 Z(;) is zero and (4.4)
becomes the condition that for 3 >> 00 Z(‘;) is
osclllatory with respect to } Since the latter is

meaningless the former is the only condition imposed on the

wavefunction by the boundary conditions when F 1s zero and
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B is negative. The result of reducing F to zero in (4.10)
is a zero wavefunction for all 9§ 1less than infinity in
accord with the above condition. Hence reducing the poten-
tial to zero for E either positive or negative produces a
satisfactory result in that the condition on the wavefunction

is satisfied in both cases.

For both positive and negative L the result of

decreasing the potential in the wave equation (4.2) 1is
(4-11) JIZ -+ 1_‘"_\.E Z =0 .
d3* Ly

If E 1s positive the condition on the wavefunction that it
be oscillatory with 3 for 2 >>—00 implies that the
solution of (4.11) corresponding to a particle incident from

3 = + 00 is
(4.12) Z(;) - e™''v¥

If § 1is negative and F is zero the condition on Z is
that it be zero for §<<ao. In this case the solution of -

(4.11) is Z =0,

Since the potential is a function of 3z only, only
functions of, or concerned with, % need be considered in

the block diagram.

As 1t has been explained in chapter one, the poten-
tial in the boundary conditions must be decreased to zero in

going from corner one to corner two. Since the boundary
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condition in corner two is therefore different for positive
E from what it is for negative IE , the two cases of
positive and negative E must be distinguished. Hence a
separate block diagram will be used for each of the two

energy cases.

In the case:.of positive E the block diagram is
populated as follows: corner one by equation (4.2) and
boundary conditions (4.3) and (4.4); corner two by equation
(4.11) and the condition that the wavefunction oscillates
with 3% for 3 >> —ao ; corner three by the wavefunction
(4.8); and corner four by wavefunction (4.12). The entry in
corner four and the equation (4.9) with F reduced to zero,
which 1s the result of reducing the potential in the wave-
function occupying corner three, differ by a phase factor
but describe the same physical situation. Hence to the
extent that the entry in corner four and the result of reduc-
ing the potential in the wavefunctlion in corner three are

physically indistinguishable, the block dlagram is closed.

In the case of negative E the block diagram is
occupied as follows: corners one and three as in the positive
E case; corner two by equation (4.11) and the condition
that for §<<<ao the wavefunction is zero; and corner four
by Z\""O. The result of reducing the potential to zero in
corner three, that is, (4.10) with F=O , and the entry in

corner four are the same. The block dlagram is therefore
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3. PHYSICAL ANALYSIS

In the equation (4.9) resulting fron reducing the
field to zero in the positive E case, the plane wave
momentum~distance expression, that is, k33 , is found in
the argument of the exponential thus indicating the desired
plane wave result. However the tern %&g% introduces an
infinite phase factor as I is reduced to zero. Since only
[Wll corresponds to a physical observable and phase factors
are not physically observable, the presence or absence of
such an infinite phase factor would not be detectable. Hence
no physical explanation of this infinite phase factor is
possible. Furthermore, since at 4=+ an infinite kinetic
energy is required to maintain the total energy constant this
system does not precisely correspond to an actual physical
situation. Hence an unusual and physically inexplicable item
such as an infinite phase factor should not be surprising or
disturbing. It is however satisfying that all the physically

observable features are well behaved.

The classical motion of the particle in this field
will now be analyzed. The classical process which thlis case
represents is that of a charged, spinless particle incident
from §==4—a> being reflected back at some point <. This
is supported in the preceding mathematics by the fact that as
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% approaches + o0  the wavefunction becomes (4.7) which
describes a free particle travelling in the -3 direction.
The fact that the particle is reflected back is supported |
by (4.6) which, for all finite E » indicates zero proba-
bility for the particle being at 2 for Z tending to —eo.

The two cases of positive and negative E have been
distinguished and have given different results. The physi-
cal significance of the value of the total energy, E, is to
indicate at what point in space, once the zero of
potential is fixed, the particle is classically reflected
back by the potential barrier. This point of course corre-
sponds to the position where the particle has zero kinetic
energy. With the zero of potential at the origin, as is
nerein chosen, positive E corresponds to reflection at a
position with negative 4 coordinate and negative E
corresponds to reflection back at a position with positive
% coordinate. The exact coordinate at which the
particle is reflected back is given by 34, = ~-E . 3,

eF
is the value of % for which the argument of the Bessel
Functions J;% in (4.8) is zero. 3> 3, implies this
argument is real; 3 <:5, implies this argument is
imaginary. 3 < 30 corresponds to the region of space

which, in classical mechanics, the particle may never enter.

The effect of the potential being switched off on
the point of reflection will now be studled. For positive
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E, the point of reflection, 30 , goes to —e0 as F is
switched off. That is, for F = O the result is a particle
travelling from f§= +mo {0 3= =00 without being
reflected at an intermediate position. Hence for F = 0 and
E positive the wavefunction for 3 >—oc0 , that is, at all
points, should be a plane wave describing a free particle
travelling from g =+ o0 to g=- 0. As can be seen
from (4.9) reducing the potential in the initial wavefunction
with positive E gives this result. If I is negative Go goes
to + o as F is switched off and the point of reflection is
at F=+oco. If a particle entering from» g =+ eo is
reflected back at Ze+oo the result is that the particle
is never in any finite region of space. This situation is
describved by a zero wavefunction for 54-0-00. As F 1s
reduced to zero in the initial wavefunction and E is negative,
(4.8) becomes (4.10) which is zero for all 54*'00 vhen F is
zero. Hence for both positive and negative total energy
reducing the potential in the wavefunction yields a result in
accord with the physical situation arising from switching off
the potential. '



CHAPTER V

THE HARMONIC OSCILLATOR

1. TIME INDEPENDENT TREATMENT

The time independent harmonic oscillator wave equation

11
and its solution are well known. The wave equation is

(5.1) Y | 2m E-me:x‘)‘l’=o
dx* K 2
where w(:-,e‘“ﬁf- constant ) K : is the classical
mass , m

frequency assoclated with this oscillator. The energy E takes

values given by

(5.2) E, = (n+1) b

where n 1is a non-negative integer. The normalization
condition on the wavefunction is f‘m I‘Vlz dx = 1. This
implies the boundary conditions th-aj: \P goes to zero as X
goes to * o0, For a gilven n the normalized solution of
(5.1) 1is

4 _mw‘x"/zﬁ
(5-3) *IH(X)-’T%We Hn(X{f_"\_ﬁgk).

Since the potential energy is .%m wd x* reducing the
potential to zero is equivalent to reducing K or «, to zero.

Reducing w, to zero reduces the wavefunction to zero for all

values of n. The wavefunction goes to zero as w. '’ or K

Yg



The effect of decreasing the potential to zero in the
vave equation will now be determined. If the potential goes
to zero such that the energy values explicitly satisfy (5.2)
for intermediate values of the potential the resulting wave
equation is
(5.4) d*¥ _o.

dx?
If the potential goes to zero without explicitly requiring
that (5.2) be satisfied the wave equation becomes

(5.5) 2Y , 2mE Va0,
ax* K*

Since the boundary conditions that ‘V is zero at x=%feo are
associated with both (5.4) and (5.5) Y=0 is the solution of
both (5.4) and (5.5) with these boundary conditions. This is
the same as in the negative energy cases of the square well

and Coulomb potentials.

The block diagram for the time independent harmonic
oscillator is occupied as follows: corner one by equation
(5.1) and boundary conditions that N4 goes to zero as X goes
to * o ; corner two by the same boundary conditions and
equation (5.4) or (5.5) depending on the explicit assumpbions
regarding decreasing the potential; corner three by wave-
function (5.3); and corner four by WPz0. The result of

reducing the potential to zero in corner three yields the
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entry in corner four. Hence the block diagram is completed.

2. TIME DEPENDENT TREATMENT

The time dependent wave equation for a harmonic

oscillator is

(5.6) R Y[t _ (_I\L 3 L kxz) Yix,t)
ot Zm ax? 2

where V=4 Kx* 1is the potential energy at position x.
Since the potential is independent of the time the solution
of the time dependent equation may be expressed as an
infinite sum of the solutions of the time independent wave

equation with the coefficient depending on the time. Using

this technique, the normalized solution to (5.6) 1512
0
(507) \P(X,t) = (:‘:)/4 EXP(-M_O‘_!!;- "ﬁz)z(ﬂo)n un(a)t) e-'“wdz
w 2 4 2 nso\ & n!

where az“=m_5 and X, 1is the initial position of the
centre of tge wave packet. When K is reduced to zero w, and
o. also go to zero and q’bgt) becomes zero. Therefore
the result of reducing the potential to zero is the same for
the solutions of both the time dependent and time independent

vave equations.

The result of decreasing the potential to zero in
the time dependent wave equation will now be analyzed. ©Since

E does not appear in (5.6) the result of decreasing the
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potential to zero in (5.6) is

.e

(5.8) ihdY - -5 Q2
2t im 9ox2
regardless of whether or not (5.2) is satisfied for inter-

nediate values of the potential. The solution of (5.8) is

*ikx iBt/h
Ae e* / . For the wavefunction to vanish

at both X=%¥e A must be zero and hence the solution of
(5.8) consistent with the boundary conditions is Y= o.
If the system satisfies (5.2) for intermediate values of
the potential the solution of (5.8), before the boundary

conditions are applied, is W is a constant since E and

K= 1_:'\;_5 go to zero as the potential does. To satlsfy

the boundary conditions this constant is then zero.

The block diagram for the time dependent harmonic
oscillator is populated as follows: corner one by equation
(5.6) and boundary conditions that ‘P goes to zero as Ix|
goes to infinity; corner two by the same boundary conditions
and the equation (5.8); corner three b-y the wavefunction
(5.7); and corner four by ‘P=O. Since reducing the poten-
tial in (5.7) ylelds zero the block diagram is closed.

It should be noted that for both the time dependent
and time independent treatments of the harmonic oscillator
the energy eigenvalues are given by E, = (n*‘:)‘hwc

with n a non-negative integer. Mence in both treatments
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it is apparent, from this eigenvalue equation, that all the
energy eigenvalues go to zero as the potential does if the
potential is decreased in such a manner that (5.2) is

satisfied for all intermedlate values of the potential.

The procedure used to solve the above time dependent
wave equation may be equally well applied to solving the time
dependent equations corresponding to the other potentials.
However, as the preceding has shown, the result of reducing
the potential to zero is the same for the solutions to both
the time dependent and time independent equations. Hence in
studying the result of reducing the potential it is sufficient
to deal with the solution of either the time dependent or time

independent wave equation.
3., CLASSICAL ANALYSIS OF SWITCHING OFF

Before discussing the switching off processes the
classical description of, and criteria for, a harmonic
- oscilllator will be given. The physiczl syétem considered as
a harmonic oscillator consists of a particle oscillating about
an equilibrium position under the influence of a force
directed towards the equilibrium position and of magnitude

proportional to the particle's distance from this equilibrium

position. The equation of motion is X= a cos w.t.
The magnitude of the velocity at position x is [ K(a*-x%
m

where a is the amplitude.
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The kinetic energy, T, potential energy, V, and

total energy, E, of a harmonic oscillator with amplitude "a%
obey the following criteria:

T+V:=E = constant with respect to position and time
(5.9) E’ maximum | = maximum V = z Ka?

05 | € maximum | ;0 & V € maximum V.
fhe first criterion states that conservation of energy holds
for all positions and time. The second criterion indicates
that the total.energy, E, depends only on the elastic
constant, K, and amplitude a.

In this section a detailed classical analysis will
be given of the two basic ways of switching off a potential
in a physical system. The harmonic oscillator has been
chosen for this detailed analyslis since this system 1s common,
useful and relatively simple. However this distinction in
methods of switching off the potential is applicable to all
other systems. The aim of this analysis is to illustrate
the two types of switch off and to make clear the distinction

between them.

These two methods of switching off will be referred
to as type I and type II. A type I switch off is where the
criteria of the particular system are satisfied for all
intermediate values of the potential. For example, in a type
I switch off a harmonic oscillator with amplitude "a" remains

a harmonic oscillator with amplitude "a" for all intermediate
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values of the potential, that is, (5.9) is satisfied for all
intermediate values of the potential. A type 11 switch off
is one in which the potential is switched off without the
criteria of the system being satisfied for all intermediate
values of the potential. That is, the characteristic rela-
tionships between the various parameters are not satisfied

during the switching off process.

Before examining the switching off processes it
should be noted that for a harmonic osclllator the only way
the potential may be switched off without imposing geometric
constraints, decreased in the wave equation or reduced in the

wavefunction is by the elastic constant, K, becoming zero,

The type I switch off of the harmonic oscillator
will be studied first. The conditions on the switching off
process in order that the process be of type I may be formu-

lated in the form of the following theorem.

THEOREM: To satisfy the condition that for all nonzero values
of the potential the system is a harmonic oscillator
with amplitude a, the switch off must be done in the
following manner:

(a) The potential may be switched off only in
discrete decrements and these may occur only
while the particle is at an extremity.

(b) The particle ends up at one of the extremities
with neither kinetic nor potential energy
relative to the equilibrium position, that is,
the final total energy 1s zero.
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Proof: First it will be shown that the final situation is a
particle with neither kinetic nor potential energy relative
to the equilibrium position. Let the potential be physically
lowered by some arbitrary amount. By (5.9) the total energy
is lowered by the same amount as i1s the maximum potential
energy. This is repeated with the result that the maximum
potential energy and the total energy are again lowered by
identical amounts. This procedure is continued until the
potential reaches zero. It 1s obvious, upon reference to
(5.9), that as the potential 1s thus switched off the
velocity, kinetic and total energies all go to zero. So the
result is a particle with neither motion nor potential energy

with respect to the equilibrium position.

Now consider the particle at any position & other

than at an extremity. It then has a potential energy of

5 Kx* » @ kinetic energy of Imv® = 1 Ka? -;-;: Kg*
with corresponding velocity of v =\/K (- &%) and
™m

experiences a force of magnitude i(ﬁ towards the equilib-
rium position. When the particle is at ? let the potential
be lowered by an arbitrary amount. If § =0 the particle
will have a velocity such that its kinetic energy at this
position is greater than the new, lower maximum potential
energy and the condition for a harmonic oscillator is not
satisfied. If k#o the particle will have a greater
velocity at this position than would be the case 1f 1t were
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undergoing a harmonic motion with a maximum potential equal
to the lower potential energy. If the particle is approach-~
ing x=o then at x=o the particle will have a velocity
due to its velocity at E plus the velocity acquired in
going from ? to zero under the influence of the lower
potential. Since the velocity at E is greater than that
which would be the case if the lower potential were opera-
tive during the entire journey from x=a to x=o, the velocity
at x=o corresponds to a kinetic energy at x=o greater than
the maximum of the lower potential. Thus the particle again
disobeys (5.9). If the particle is moving away from x=o0 a
similar argument shows that it would overshoot Ix|=a and
would then no longer be a harmonic oscillator with amplitude a.
Hence the potential may not be lowered at any position such
that §:# *a. Furthermore, switching off the potential in
a continuous manner while the particle executes its motion is
also inconsistent with the stipulation that the system be a
harmonic oscillator since it involves lowering the potential
at points other than * a, Therefore the only remaining
method, and an obviously acceptable one, is to lower the
potential in finite steps when the particle is at * a.

That this method complies with the stipulations of this type
of switch off may be seen from the following argument. While
the particle is at T a the potential is lowered. The
result of this is the following: the total energy and maximum

potential energy are correspondingly lowered; the maximum
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kinetic energy is correspondingly lowered because the force
and acceleration are less over the whole distance from x=a to
x=0; and the system remains a harmonic oscillator with

amplitude a but with a lower total energy and greater period.

Whether the particle eventually ends up at x=a or
Xx= -a depends solely on the technique used to switch off the
potential. For example, if it is wished that the particle
end up at x=a this can be achieved by any type I switch off
wherein‘the last step (to zero) occurs when the particle is
at x=a. It should also be noted that the particle cannot

end up at the equilibrium position. q.e.d.

A type II switch off of the harmonic oscillator
potential will now be illustrated. There are numerous ways
in which a system may undergo a type II switch off. However
the following particular example will illustrate the
principles and the result of such a switch off.

It will be assumed that the potential is switched
off during a time interval very short compared to the period.
The potential is switcheéd off over a time interval At
centred on a time, ts , the latter being called the "time
of switch off." During this time interval the particle
travels a distance Ax. Ax is much less than the amplitude

"at since At is much less than the period. Let X, be

the centre of Ax., In this type 11 switch off the
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result is a free particle with speed within the range
/ﬁ(a‘-(xo-“)‘T to /K- (a*-(xg+ax)* )
m m

unless Xo 1s within Ax of the equilibrium or the extreme

position. If [xol €4ax then the free particle's speed is
in the range £ ’5 to c(jT_(_‘ where 4 is the lesser of
m m

W 1
/ a"-(xo -Ax)" or /a‘-—(xd +ax)* and «

is greater than ! but less than a. If I Ixol —a[ < AX

then the free particle's speed is greater than zero but less

than /% ( @ = (Ixgl = AX‘)LY .

Hence when such a type II switch off is carried out
the result 1s a particle with a speed greater than zero and
less than a lr(_; This speed depends on the particle's posi-
tion at the time of switch off and on the distance éovered
during the switching off process. The significant point to
notice in this example of a type I1 switch off is that
nothing is stipulated, discussed or assumed regarding the

behaviour of the system during the time interval Ot,

The two preceding examples have dealt with a system
and process treated in classical terms., It is now of
interest to describe the system resulting from the classical
switch off in quantum mechanical terms. The result of the
type I switch off was a particle with zero total energy.



In guantum mechanics this particle would be described by a
constant wavefunction. If this wavefunction also had to

+o0
satisfy the normalization condition J |WI*dx=1 then

bt
this constant would be zero. As will be recalled from
sections one and two, the result of reducing the potential

in the wavefunction for the harmonic oscillator was also

zero. The system resulting from the type II switch off is

described by a plane wave e*™ rnere |k| has a value
greater than zero and less than JVKm a. It should
+
be pointed out that the "a" in JKm a 1s not a quantum
= ,

mechanical quantity but enters from the restriction of the
velocity of the free particle being described. This plane
wave was not obtained by reducing the potential in the

harmonic osclllator wave-function.
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CIIAPTER VI

UNIFORM MAGNETIC FIELD

The system under consideration in this chapter
consists of a spinless particle with charge e moving in a
uniform magnetic field ﬁ which fills all space. The
velocity perpendicular to~the field will be denoted by v .

The 3—a>d.s is chosen in the direction of the field.
1. QUANTUM MECHANICAL TREATMENT

When ( - H’, 0,0) is chosen as the vector potential
and when \f)'-‘ e‘("”‘ +ky3) X ('j) is chosen as the form

1
of the wavefunction the equation determining ]( is 3

(6.1) X”»fgg_[E-é_%m(%%)z(w%%)zJ?(:o,

f\"

If =-C and w=€eH are substituted in (6.1) an
Jo é'EL mc
equation formally identical to the Schroedinger Equation for

2 harmonic oscillator is obtained.

To normalize a wavefunction of the above form it is
sufficient to integrate from —o to +00 with respect to
Y only. This is the case since the parts of the wavefunc-
tion depending on x and 3, are already in the form of plane

Y

waves and in unbounded space no further normalization is
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possible or necessary. The normalization condition is there-

+ad 2
fore f (Wi dtj =1. This imposes the boundary conditions

et

that Y goes to zero as lyl goes to infinity.

Using the same techniques as in the harmonic

oscillator case the normalized wavefunction is

5. w: i(k,x - k} 3) 4/ mew "‘m“’(‘;j"‘jo)’/z‘ﬁ _
(O 2) e 2___;._1"(“‘.) = e Hn ( ’ @ﬁ& (‘J ‘jo))-

If the field H 1is reduced to zero ¥ goes to zero.

~afH
The rate of W approaching zero is € as H goes to zero.
This is an essential singularity as H goes to zero and will be

studied in section three.

By again using the analogy between (6.1) andv the wave

equation for a harmonic oscillator the allowed energy values

are seen to beu"
(6.3) En=(nei)ko +py
m
where n 1s a non-negative integer. As the field is decreased
to zero w goes to zero and the only energy is _E; . That
m

is, as H goes to zero the energy values associated with the
transverse motion all become zero leaving only the energy

associated with the unaffected motion parallel to the field.

The result of decreasing H to zero in (6.1) is
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i
(6.4) Xy K=o
2m
where ff is E"ﬂEfl“fg
2m m Zm

since there is no field. When (6.4) is combined with the
boundary conditions that ;( goes to zero as (3) goes to

infinity, the only acceptable solution (as in the previous

cases) 1is 7( = \'P =0,

The block diagram for this system is occupied as
follows: corner one by equation (6.1) and the boundary condi-
tions that V¥ goes to zero as Y goes‘to T o0 ; corner two
by the same boundary conditions and equation (6.4); corner
three by wavefunction (6.2); and corner four by 4)=O. As
has been shown, reducing the field in the wavefunction (6.2)
results in 4)=c), Hence the block diagram is completed.

2. CLASSICAL ANALYSIS OF SWITCHING OFF

In classical terms the force equation for a stable
orbit in a uniform magnetic field is

(6.5) e H=y,
mc r

Stating that a system behaves as a charged particle moving in
a uniform magnetic field implies that the particle is moving
in a stable orbit in the plane perpendicular to the field.
(6.5) is the necessary and sufficient condition for such a
stable orbit. Hence (6.5) may be considered as the classical

criterion of this system.
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Before considering the actual switching off
processes the following point should be emphasized. The
particle's speed, V , remains constant independent of the
field's behaviour bhecause the force is always perpendicular

to the field and no further constraints may be introduced.

In discussing the switching off of the magnetic
field the two types must agaln be distingulished. Type I
will again be studled first.

The type I switch off was defined as being the type
in which the system satisfles the defining criteria for all
intermediate values of the potential. Stating that the
criterion of this system is satisfied for all intermediate
field values means that the equation (6.5) is satisfied for
these intermediate field values. Therefore, the field must
be switched off in a manner such that at all intermediate
stages the particle, travelling with finite velocity,’? R
has sufficient time to reach the distance, v , which
satisfies (6.5) for the various intermediate field values.
Since a continuous switch off may be approximated with
arbitrary accuracy by a discrete switch off, only the latter
need bé considered even though the results will apply to
both methods. The details of a discrete type I switch off

will now be analyzed.

If in a given-step the field is lowered from H to
Hy then the radius, ry, associated with Hy is greater than
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r assoclated with H. TFor (6.5) to be satisfied the radius
nust therefore be r; when the field is Hj. Hence a time
greater than T , where T is nr-—-r , must elapse
before the step from H to Hy can be\;onsidered completed.
This requirement regarding the time is necessary to enable
the particle, with its finite velocity, to reach the
position required by (6.5). Before undertaking any given
decrement the previous step must of course be completed.

In the final step the field goes from some Hl to zero and
the radius goes from some finite r' to r, where ¥, is
infinite. As above a time greater than £§€}f is required
in order that this step be completed in a type I manner.
Since the final step must be completed before the field can
be considered as switched off, this infinite time for the

last step shows that a type I switch off of this uniform
magnetic field cannot be done in a finite time.

The stipulations for a type I switch off also imply
that any result or effect due to any given step must be
identical to the result or effect obtained by carrying out
this same step in an arbitrarily large number of arbitrarily
small, consecutive type I steps. From this point of view
an arbitrary step from H; to H; and then the step from
Ha to zero will be studied. In lowering the field from H;
to H; the radius increases from Yi to vy . 1If a very

large number of steps are employed the radius increases as
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in the monotonic sequence: r;, r, r,, ., Yg-ar, v .

For (6.5) to be satisfied for all intermediate values a time

greater than Vee -rg must elapse before the corresponding
v

decrease in the field can be considered as completed and the
next decrease can be undertaken. Hence the total time which

must elapse in going fronm H-. to H; is greater than

LG £ Yl HB-h o+ .. F \’;*(V;—A\') = Yg-ri.
v v v v v

This agrees with the previous result. The field going from
Ha to zero will nov be studied. If this switching off 1s
done in an arbitrarily large number of small steps the field
goes through the values of the following monotonically
decreasing sequence: Hag , H., Hl, .o .JAH , O.

As previously explained, a time greater than ¥es —¥¢ must
\'%

elapse before the step from HK to HK,, can be considered
as completed. Hence for the switch off from Ha, to zero to

be completed in a type I fashion, the required time 1is

greater than Y —Va 4+ H-N 4+ ... + Vo~ VFaw = % = ¥a »
v v v v

Since Y, , corresponding to zero field, is infinite and ¥,
is finite, this time is infinite. Hence, as before, an
infinite time 1s required for a type I switch off of the mag-
netic field. The point of view that the resultlof any step
must be equivalent to the result of an arblitrarily large
nunber of steps between the same initial and final field
values emphasizes the fact that the switching off process

cannot be considered completed until sufficient time has
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elapsed for the final step to be completed.

Since a type I switch off requires an infinite time
as demonstrated above, any switch off completed in a finite
time 1s of type II. A switch off in which the field goes to
zero in a time comparable to the period of the orbiting
particle is of type II and may be used as an example. The
result of this switch off is a free particle with speed
Vv . Tiie direction of the free particle's velocity depends
upon the details of the switch off. In fact the result of
any type 11 switch off is as above. OSince a type 11 switch
off is done in a finlte time and in view of the particle's
finite velocity, the particle may bhe localized within a given

finite volume for any particular type 1I switch off.

Although the discussion in this section has been in
classical terms only, it is of interest to describe in quantum
mechanical terminology the systems resulting from these two
types of switch off. The result of the type I switch off was
a particle, with velocity, v , at infinity. OSince the
particle is at infinity its probavility of being in any finite
elenentary volume is zero. llence |¢flis zero and ¥ is also
zero. This is also the result obtained by reducing the |

field in the wavefunction. The result of a type II switch
ik

v
off has € ~~ as its wavefunction where k = mv
%
—
and the direction of k is determined by the details

of the switching off process. Tihis plane wave was not

obtained by reducing the field in the wavelfunction.
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Before éompleting this section an apparent inconsis-
tency between the quantum mechanical and classical values for
the transverse energy, when the field is zero, will be pointed
out. As shown in the previous section, the quantum mechanical
expression for the transverse energy becomes zero as the field
is decreased to zero. However in both types of classical
switch off the transverse velocity, and hence transverse
kinetic energy, remains constant for all values of the field

including zero field.
3, WAVEFUNCTION ESSENTIAL SINGULARITY FOR ZERO FIELD

In this system the dominating factor in the wave-
function as the field is reduced to zero is e-"l/H , that
is, the wavefunction goes to zero exponentially as %;
goes to infinity. ©Since this is an essential singularity
an expansion about H=0 1is impossible and therefore -
perturbation techniques will not give the wavefunction for
a charged particle in a uniform magnetic field for small

fields.

Although the harmonic oscillator and magnetic field
wave equations and wavefunctions are formally the same there
is one fundamental difference and it is this difference
which corresponds to the vastly different physical behaviour
between the two systems with regard to the potential being
switched off. In the harmonic oscillator case the independent
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variable 1s simply x--independent of all parameters or any-
thing else. However in the magnetic field case the
"independent variable" is ( Y-Yo ) 8ince H is a parameter
independent of position dy= d(g-ng and ( y-yo ) is
then the independent variable of an equation formally
identical to the one for a harmonic oscillator. In the
harmonic oscillator case the potential going to zero does not
in any way influence the independent variable x whereas when
the magnetic field goes to zero the "independent variable®

( Y- Yo ) goes to infinity. Now it shall be shown how the
behaviour of the magnetic field "independent variable®
mathematically expresses the behaviour of the particle in the
field. Yo ="%g; can be identified as the Yy coordinate

of the centre of the circular path in the plane perpendicular
to the field. OSubstituting Py =mv, - eA, and Ax=—H9
c

in the expression for y, gives Y- Yo = Cm Vg,
14 eH
Similarly x-x°=’S%}v, can be introduced where x,
e

is identified as the x coordinate of the centre of the above

circular path. Squaring and adding produces the familiar

result rt=(x-x,) +(y-yo) = mtc’v'.,  As the field

. el Hl

goes to zero the radius ¥ goes to infinity in agreement
with the result of a type I switch off., These differences
between the magnetic field and the harmonic oscillator cases,
namely the behaviour of the independent variables and the
essential singularity in the former, correspond to the physi-

cal difference that in the magnetic field case the velocity



is undiminished and the particle must go off to infinity in
a type I switch off whereas in the harmonic oscillator case
the velocity becomes zero and the particle is contained

within a finite region of space in a type I switch off.



CHAPTER VII

CONCLUSION

1. DISCUSSION OF SWITCHING OFF PROCESSE

In this thesis two typés of switching off have been
distinguished; namely, type I in which the criteria relating
the parameters of the system are satisfied for all inter-
mediate values of the potential and type II in which these
criteria are not satisfied for intermediate values of the
potential. In all the bound systems considered there was at
least one classical relation or equation which characterized
the system. In all the unboﬁnd systems there was no such
criterion. Hence it follows that distinguishing between the
two types of switching off is meaningful only in the case of

a bound system.

Criteria determining the type of switch off a bound
system undergoes will now be given.. Since the switching off
processes have been discussed in classical terms the criteria
will be given in classical terms. Due to the uncertainty
principle these criteria cannot be directly extended to
guantum mechanics and therefore no specific quantum mechani-
cal.eriteria for distinguishing the two switching off methods

will be given. Even though the characteristics distinguishing
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the two types of switch off are not given in quantum mechani-
cal terms the actual distinction in methods is applicable to
a quantum mechanical description of a system., Furthermore,
since the actual experimental procedures used in switching
off potentials are usually of a classical nature, this
classical differentiation between the types of switching off
is applicable in determining the type of switch off used
experimentally. ©Since a switch off is either of type I or
type 11, it is sufficient to give the criteria for a type'l
switch off since a switch off in which these criteria are

not met 1s necessarily of type II.

In any bound system the maximum kinetlc energy ever
attained must be less than or equal to the maximum of the
absolute values of the potential energy. 1t is therefore
apparent that unless the velocity is somewhere zero the
potential energy camnot go to zero in a finite number of
steps without violating thls energy criterion for sufficlently
small potential. This may be easlly seen in a case where the
total energy is negative. For example, in the negative energy
Coulomb case (see inequality (3.8)) where the velocity is |
nowhere zero, the potential cannot be zero for non-zero
velocity without this inequality being disobeyed. By use of
(3.9) it was explicitly shown that the potential cannot go to
zero in a finite number of steps. The harmonic oscillator

illustrates the case in which the potential can go to zero
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since there is a position at which the velocity is zero and
the potential can there be lowered. If a criterion of a
system stipulates that the particle must be at infinity in
order to satisfy this criterion when the potential is zero,
then the potential in this system cannot be switched off in
a type I manner in a finite time. This was demonstrated in
chapter six section two. Hence, the two requirements of a
system in order that a type I switch off to zero may be done
‘in a finite time are: first, the particle need not necessari-
ly go to infinity in order to satlsfy the criteria of the
system for zero potential; and secondly, there be a position
a2t which the particlel's kinetic energy is zero. In a system
which meets these reqﬁirements the potential may, in prin-
ciple, be switched off to zero in a finite time in a type I
manner by lowering the potential while the particle is at a
position of zero velocity. This however requires a finite
lowering of the potential in a zero time interval. ©Since
this cannot be achieved a type I switch off to zero in a
bound system is not experimentally feasible. Hence any
experimental switch off to zero in a bound system is of type
II.

The preceding discussion is concerned with a type I
switeh off in which the potential is switched off to zero.
However, to an arbitrary degree of accuracy, a type I lover-
ing of the potential from an initial value to a lower, non-

zero final value may be experimentally carried out in those
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cases where the potential may be lowered during a finite,
non~zero time interval and still be in accord with the
conditions for a type I switch off during this lowering.

For example, in the uniform magnetic field and bound Goulomb
cases the potential or field may be experimentally lowered
from some initial value to a non-zero final one in a type I
mamner, The detalls of the procedure may vary from case to
case but the point is that such a type I lowering is experi-
mentally feasible.

Since in an unbound system there is no distinction
between the two methods of switching off, the two types are
identical and both correspond to any given experimental
switch off.

2. REDUCTION OF THE POTENTIAL IN WAVEFUNCTION

In all of the gsystems studied the result of reducing
the potential in the wavefunction was one of the following
two:

(a) a zero wavefunction;
(b) an oscillatory wavefunction -- elther a
trigonometric or imaglnary exponential

function.

Each of the results (b) corresponded to an unbound system.
Egch of the results (a), with the exception of the negative
total energy uniform electric field case, corresponded to



a bound system. This exception will be treated in section
five. The reasons for this correspondence bhetween a zero
final wavefunction and a bound system will be seen in the

succeeding paragraphs.

A significant and satisfying common feature of those
wavefunctions which went to zero, excepting the above
exception, will now be presented. As was previously stated,
the wavefunction went to zero only if it described a bound
system. The fundamental characteristic of a bound system 1s
the normalization condition GJLW"‘lwltdvd.For all bound
systems this condition determines a noﬁmalizatiqn coefficient
which causes the wavefunction to obey this condition. In all
. the wavefunctlons under consideration (see (2.5), (R.5%),
(3.4), (5.3), (6.2)) it is this normalization coefflcient
which goes to zero. DExcept for the magnetic field wavefunc-
tion, these wavefunctions go to zero only on account of thelr
normalization coefficient; If the normalization coefficlent
would have been absent in these systems the wavefunction
resulting from reducing the potential would have been a
constant but not, in general, zero. The physical significance
of this will now be given. In all the bound systems
considered, except for the magnetic field case, the total
energy goes to zero as the potential does in a type I switch
off. (The significance of specifying type I switch off will
be seen further on in this section.) Hence the end result is

a particle with zero total energy. Having zero total energy,
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this particle has an equal probability of being anywhere,

that is, a constant wavefunction to within a phase factor.

In general, it is only upon application of the normalization

condition, with its associated boundary conditions, that

this constant must be zero. In the magnetic field case the

normalization coefficlent also goes to zero. However, the

wavefunction goes to zero more rapidly due to a dominating
exponential factor. As shown in chapter six, this exponen-
tial decrease to zero corresponds to the particle golng to
infinity. The preceding consideretions suggest the following
general statements:

(a) In all bound systems in which it is not imperative that .
the particle go to infinity in a type 1 switch off, the
wavefunction, in general, goes to zero due to the
normalization coefficient.

(b) If the particle must go to infinity in a type I switch off
then the normalization coefficient again goes to zero but
is dominated by an exponentizlly decreasing factor which

describes the particle going to infinity.

The preceding has shown how the characteristic property of a
bound system directly deterinines the result of reducing the

potential in the wavefunction of such a system.

In an unbound system the boundary conditions at T oo

1
are that the wavelunction oscillates since J;poc FVI dt=]
a [

need not be satisfied. Furthermore, there are no conditions
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by which the potential restricts the total energy. Hence
reducing the potential in the wavefunction for an unbound
system yields a free particle wavefunction which satisfies
the boundary conditions. Thus for an unbound system the
result of reducing the potential in the wavefunction is that

expected from experimental observations.

The relation between the result of reducing the
potential in the wavefunction and the results of the two types
of switching off will now be discussed. Bound systems will

again be discussed first.

As demonstrated in the examples of switching‘off in
the previous chapters, the system resulting from a type I
switch off is quantum mechanically described by the result of
reducing the potential in the wavefunction of the original
system, that is, by a zero wavefunction for a bound system.
The reason for this correspondence between the results of a
type I switch off, and reducing the potential in the wavefunc-
tion, will become apparent when the properties of a type I

switch off and of a wavefunction are compared.

In addition to other parameters and variables, the
wavefunction is a function of the potential of a system and
fully describes the system in terms of the potential and
these other parameters and variables. For any specific systen
there 1s a one to one correspondence betwegn the system with a

specific set of parameters and a particula# wavefunction.
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Consider a wavefunction describing any particular system. If
the potential parameter within the wavefunction is changed,
the result is a wavefunction describing a system with the
same characteristics and criteria but with a different poten-
tial energy. That is, the wavefunction now describes the
same kind of system which has adjusted itself such as to
satisfy its characteristic criteria when the potential is
equal to its new value. Now consider a particular system
described by a particular wavefunction. Let the potential

of this system be switched off and consider thé systen as the
potential is being lowered. ©Since the switching off process
is not being described, it is unnecessary to stipulate
whether the‘process is classical or quantum. As long as the
system satisfies the criteria of the original system, the
switch off is of type I and the original wavefunction, with
the potential reduced, may be used to describe the system at
any particular stage. However, as soon as the criteria of
the original system are no longer satisfied, the potential

is no longer belng switched off in the original system but in
another, different system. At this stage, where the switch
off is no longer of type I and the potential is being
switched off in a different system, reducing the potential
in the original wavefunction no longer corresponds to the
physical process and a different wavefunction describing this
different system must now be introduced and the potential

reducéd in this latter wavefunction. Hence it is seen that
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the identification of the result of a type I switch off with

the result of reduction in the wavefunction follows from the

primary property of a wavefunction and a type I switch off.

As shown in section one, any experimental switch off
to zero in a bound system is necessarily of type 1I. It has
just been demonstrated that the result of reducing the poten-
tial to zero in a wavefunction describes the result of a type
I switch off. Hence reducing the potential to zero in a wave-
function describing a bound system does not correspond to an
' experimentally feasible method of switching off the potential
in this system. This is the reason the result of reducing
the potential to zero in the wavefunction of a bound system
does not yield the plane wave wavefunction indicated by
experimental observations. However a type I switch off to a
non-zero value is possible in some bound systems. In these
systems the result of such a lowering to a non-zero value
is described by the result of reducing the potential to this

non-zero, final value in the original wavefunction.

In quantum mechanical terminology, reducing the
potential in the wavefunction of a bound system describes a
process whereby the system proceeds through successive
stationary states of this same system, where each stationary
state corresponds to a lower potential than the previous one,
until the stationary state corresponding to zero potential

is reached. The wavefunction resulting from reducing the
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potential to any value, including zero, is the wavefunction
describing the stationary state corresponding to this reduced

value of the potential.

Since in an unbound system the two types of switching
off are equivalent and reducing the potential in the wavefunc-
tion describes the result of a type I process, it follows that
the result.of reducing the potential to zero in the wavefunc-
tion describes the result of physically switching off the
potential in an arbitrary manner. This is supported by the
examples of unbound systems which have been analyzed in
chapters two, three, and four. Hence in all unbound systems,
the result of reducing the potential to zero in the waveiunc-
tion is-a free particle wavefunction as is. expected from

experimental observations.
3, DECREASING THE POTENTIAL IN THE WAVE EQUATION

The result of decreasing the potential in the wave
equation will now be discussed. The case of a bound system

will'be treated first.

If in the wave equation for a bound system the
potential is decreased to zero and the other parameters are
varied in accord with the criteria of the system, this method
of decreasing the potential obviously corresponds to & type I
switch off. When the resulting equation is solved in

conjunction with the boundary conditions obtained from the
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original ones by decreasing the potential to zero the result

is a zero wavefunction which describes the result of a type I
swltch off. If however the potential is mathematically set
equal to zero in the equation without influencing any of the
other parameters this then corresponds to the potential being
decreased without imposing the criteria of the system., If
the resulting equation is ;olved in conjunction with the
boundary conditions derived from the original ones by decreas-
ing the potential to zero, the solution is again a zero wave-
function which again describes the result of a type I switch
off. This at first appears surprising since the potential in
the equation was decreased in a manner analogous to a type II
sﬁitch off. If, however, this latter resultlng equation is
solved in conjunction with different boundary conditions the
solution will be a different, non-zero wavefunction. If these
different boundary conditlons are chosen to be those for a
free particle the solution is a plane wave which is the wave-

function describing the result of a type II switch off.

The preceding paragraph has demonstrated that the
boundary conditions, associated with the wave equation
resulting from decreasing the potential in the original
equation, determine the type of switch off to which decreasing
the potential in the wave equation corresponds. This 1s
reasonable 1f the following is considered. Malntaining the

boundary conditions of a bound system implies that the system
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remains the same and that therefore the criteria of the bound
system are satisfied. Hence if the boundary conditions are
maintained for all values of the potential it is apparent
that the conditions for a type I switch off are satisfied.

If, however, the boundary conditions are altered while the
potential is being decreased then the resulting equation in
conjunction with these different boundary conditions describes
a system whose characteristics differ from those of the

initial system. This corresponds to a typelIl switch off.

If in the wave equation for an unbound system the
potential is set equal to zero, no other parameters may be
affected since for such systems the potential places no
restrictions on the other parameters. If the resulting equa-
tion 1s solved in conjunction with boundary conditions
obtained from the original ones by decreasing the potential
to zero the solution'is an oscillating free particle wave-
function. Since the boundary conditions are not altered,
with the exception of decreasing the potential if it
explicitly appears in them, the system remains the same and
the above process corresponds to a type I switch off which
for unbound systems is identical to a type II switch off.
Hence the solution of the wave equation for an unbound system,
with the potential decreased to zero, in conjunction with the
above boundary conditions cogresponds to the experimentally

observed result.
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4+ DISCUSSION OF THE ORIGINAL PROBLEM AND PARADOX OF AN
ELECTRON IN A UNIFORM MAGNETIC FIELD

The original problem in section one of chapter one
will now be analyzed. In this problem of an electron in a
uniform magnetic field the system is a bound one and the field
is switched off in a finite time. This switch off is therefore
of type I1. It therefore follows that the experimental result
cannot be described by the result of reducing the field in the

wavefunction.

The paradox aroée in the original treatment because
reducing the potential in the wavefunction gave zero whereas a
plane wave solution, which agreed with experimental observation,
was obtained by solving the equation resulting from decreasing
the potential to zero in the original equation. This plane
wave solution was obtained because no boundary conditions were
associated with the wave equation. That it was this absence of
accompanying boundary conditions which led to the plane wave
solution will be shown in the following paragraph.

Since boundary conditions did not accompany the wave
equation the type of switch off used was not specified.
Heglecting the boundary conditions that the wavefunction goes
to zero at * w 1is the same as imposing different ones. If the
general solution which oscillates at * o0 1s taken as the
solution to the wave equation with zero potential, the effect

is equivalent to specifying these different boundary conditions
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as being done for a free particle. This is what was in fact
done. As shown in the previous section, this change in
boundary conditions results in a wavefunction describing a
type II switch off. Hence the solution obtained in this way
describes the experimental result of a free particle since in
actuality a type II switch off is experimentally carried out.
However, since reducing the potential to zero in the wave-
function corresponds to a type I switch off, these two mathe-
matical descriptions of the final system do not agree. Hence
the original paradox arose because one wavefunction was
obtained by dealing with an incompletely specified bound
system, and it described the result of a type II1 switch off,
whereas the other wavefunction was obtained by dealing with a
fully specified system and it described the result of a type
I switch off.

I1f, however, the original boundary conditions had been
associated with the wave equation in which the potential was
decreased the solution of this equation would have been in
agreement with the result of reducing the potential in the wave-
function. These identical results would not have described the
physical situation with the potential switched off since all
thie mathematics would describe the result of a type I switch

off.
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5. A COMMENT ON THE UNIFORM ELECTRIC FIELD CASE

The uniform electric field system is an unbound one
for both positive and negative values of the total energy, E.
As was shown in chapter four, the significance of the value
of E 1s to iIndicate the position at which a particlé incident
from 3=+ o0 is classically reflected. Hence in this case
negative E does not indicate a bound system. Negative E
corresponds to reflection at 3=+ when the field is zero.
Hence negative & corresponds to a zero probability of the
particle being in any finite region of space when the field
is zero. Rather than a normalizing coefficient, it is this
impossibility of a particle with negative E being in a finite
region of space when the potential is zero which accounts for

the zero wavefunction when the potential is reduced to zero.
6. SUMMARY OF THESIS CONCLUSIONS

(a) For an unbound system.

(1) The result of reducing the potential to zero in
the wavefunction of the system 1s an oscillating
function describing a free particle whose kinetic
energy is equal to the original total energy.

(11) The system resulting from experimentally switching
off the potential in any manner is described by
both the result of reducing the potential to zero
in the wavefunction and the solution of the wave

equation with accompanying boundary conditions
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which are obtained by decreasing the potential
to zero in the original wave equation and .
boundary conditions respectively.

(iii) Only in an unbound system can the potential be
reduced in the wavefunction or be experimentally
switched off such that the total energy remeins

constant.

(b) For a bound system.
(i) Tne result of reducing the potential to zero in
the wavefunction is a zero wavefunction.

(i1) Two methods of switching off must be distin-
gulshed, They are defined in section three of
chapter five.

(111i) A type I switch off to zero is not experimentally
feasible. The system resulting from this type of
switch off is mathematically described by the
result of reducing the potential to zero in the
wavefunction or by the solution of the equation
with accompanying boundary conditions which are
obtained by decreasing the potential to zero in
the original equation and boundary conditions
respectively. Hence, the result of reducing the
potential to zero in the wavefunction does not
describe a system resulting from any feasible

experimental switch off,



(c)

(iv)

(v)

Block
(1)

(i1)
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In some bound systems the potential may be
experimentally lowered to a non-zero value in a
type I manner. The result of such a lowering is
described by the wavefunction obtained by
reducing the potential in the initial wavefunc-
tion to this lower value.

The potential in a bound system can be switched
off to zero only in a type II fashion. The
result of a type II switch off cannot be
described by the result of altering in any
manner the potential in the wavefunction. The
result of a type I1 switch off can be described
by the solution of the equation obtained from
the original by decreasing the potential to zero
only if the accompanying boundary conditions are

changed to those for a free particle.

diagran.

For any system the block diagram is always
completed if the corners are occupied by a
complete description of their respective systems
and if the steps from corner one to corner two
and from corner three to corner four correspond
to the same type of physical switch off.

In order to be closed a block diagram must deal
only with a type I switch off since the step



78

from corner three to corner four can correspond
only to thls process.

(1ii) For an unbound system a closed block diagram is
concerned with the actual physical process and
its fourth corner describes the result of an
experimental switch off.

(iv) In a bound system in which the potential goes
to zero, a closed block diagram must deal with
an experimentally impossible process and the
entry in the fourth corner does not describe the
result of an experimentally feasible procedure.

(v) An actual physical switch off to zero cannot be
expressed as a closed block diagram for the case
of a bound system.

(vi) For some bound systems a partial switch off to a
non-zero value can be expressed in the form of a

completed block diagram.

(d) General properties of a wavefunction.

(i) Since a gilven wavefunction describes a system
with particular criteria, the wavefunction
resulting from altering the value of any parame-
tgr in the initial wavefunction describes the
initial system modified such that it has the new
value for thé parameter and still satisfies all

the original criteria.
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(i1) Changing the value of any parameter in the wave-
function corresponds to the result of physically
changing this parameter by the same amount in a
manner such that the characteristic criteria of
the system are satisfied for the initial, final
and all intermediate‘values of this parameter.
For any given system this manner of changing the

value of the parameter may or may not be experi-

mentally feasible.



APPENDIX

SYSTEMS CONTAINED WITHIN A PHYSICAL CONTAINER

A system conteined by a physical container will now

be discussed in order to see the eifect of reducing the
potential to zero in the wavefunction describing such a
system. In discussing reducing the potential in the wave-
function of such a system one can properly discuss only a
system whose dimensions do not need to exceed the dimensions
of the container in order to satisfy the criteria of the
system for sufficiently small potentials. If for sufficiently
small values of the potential the radius must exceed the
linear dimensions of any given container, then for these small
potentials‘the system is not the one which the wavefunction
describes. For ﬁhese small potentials the system has an
altered motion due to the superimposed rebound motion. Hence
the renormalized wavefunction of the unconstrained system no
longer describes the actual behaviour of the system at these
small potentials. Therefore, reducing the potential in this
wavefunction does not correspond to switching off the actual
'system. To describe such a constrained system for these
small potentials a distribution function may be used. The
potential would therefore have to be reduced in this distribu-
tion function. Hence this appendix applies only to a system
whose dimensions need not exceed those of the container for

very small potentials.
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The constraint imposed by the walls of this
container is expressed by a potential which abruptly goes to
infinity. Let this constraining potential be R where
R=0 for Ix|]<a and Rew for |x{>a , This
potential imposes two significant changes: the boundary
conditions become Y(+a) = ¥(-a)= 0 and the

normalization condition in one dimension becomes
+a

2
Jolelidg =1
Two cases must be distinguished. The first is
where the spatially restricting potential is imposed on an
already bound system and the second is where this potential
is imposed on an otherwlise unbound system. Both these
cases can be illustrated by the harmonic oscillator. The

first will be considered first.

In the first case the total energy is that for a
harmonic oscillator, that 15’ E- (.s+§)ﬁaac
where § 1s not in general an integer. As the potential
is reduced w, goes to zero and the result is again a
particle with zero total energy. Hence a constant wave-
function results. There would appear to be two choices for
this constant; namely, 2'.; to satisfy the normalization
condition or zero to satisfy the boundary conditions.
Chandx'asekha.r:Lé obtains « e -e72 po(1-eX )

as the solution of the first excited state of a bounded

linear oscillator where o and &€ are constants, X is a
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power series in pz and =X [Mmwc , Since @
‘h"
goes to zero as the potential does this wavefunction beconmes
zero. Hence the boundary conditions, rather than normaliza-

tion condition, are satisfied.

The s.econd case will now be considered. The treat-
ment of thls case will be in classical terms but the quantum
mechanical description of the end result will be given. The
situation is that of a particle constrained within a region
[ -—a, a ] by perfectly rigid and elastic walls. Within
this region the particle is subjJect to a force of magnitude
Kx to‘ward‘s the centre, However the total energy of the
particle is such that it still has a finite velocity when it
reaches the walls. Its energy may therefore be written as
'/1 K.az' + Eo where Y2 Kd‘ is the total energy asso-
ciated with the motion under the harmonic force and E, is
the kinetic energy the particle has when it reaches a wall.
If the potential is now switched off in a type I manner
(which corresponds to reduction in the wavefunction) as in
section three of chapter four, the result is a particle with
energy Eo bouncing between the walls. In quantum
mechanics this resulting system is described by the wave-

function for a free particle constrained to the region

[-a, al.

hY



The preceding examples suggest the following

statements:

(a)

(v)

(c)

If the external source potential is reduced to zero

in the wavefunction describing a bound system which is
further constrained by an abrupt, infinite potential,
the result 1s a zero as was the case in the absence of
the constraint potential.

If the external source potential is reduced to zero

in the wavefunction describing an unbound system which
has an infinite constraining potential superimposed,
the result is a free particle wavefunction within the
box formed by this infinite potential.

The boundary conditions, rather than the normalization
condition, are the fundamental characteristics of a

system.

These statements are consistent with the conclusions in

chapter seven.
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