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ABSTRACT

The Bose-Einstein distribution is derived, and from
this the mean values and fluctuations of the thermodynamic
quantities describing a volume V of black body radiation at
absolute temperature T, are calculated,

The problem of the energy fluctuation of a body of
emissivity £, in thermodynamic equilibrium with'a Volume of
black body radiation, is considered from a statistical
approach, The result var E = KT C s, known to be correct
from thermodynamics, is obtained,

The zero point energy difficulty in the mean energy
of the radiation is discussed in detail., Arguments are
presented supporting the inclusion of the zero point energy
- in the thermal radiation theory. The pfoblem of the number
of distinguishable levels that can be obtained from a certain
éignal power in a resonator is discussed in this section.

Finally the results of the theory above are employed
to determine the ultimate sensitivity of radiation detectors.
Care is takeﬂ to isolate factors which are not fundamental
properties of the @etector, from the treatment of the detec-
tor sensitivity. A bolometer and a phototube, energy and

quantum detectors respectively, are discussed in detail.
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CHAPTER 1 -~ INTRODUCTION

The first objective of this thesis is the provision
of a complete statistical treatment of the theory of thermal
radiation. Beginning with the derivation of the Bose-Eihstein
distribution law we shall derive the mean values and the
fluctuations of the thermodynamic functions describing black
body radiation. Most of this groundwork, included in the
thesis for completeness, can be found in statistical mechan-
ics textbooks,

The problem of a body of emissivity €, # 1 placed in
an enclosure of biack body radiation is now considered from
a statistical approach. Lewis (1947) has obtained an expres-
sion for the fluctuation of the number of photons absorbed
in unit time by a body with £,=1, while Fellgett (1949)
has attempted the more general case of £,# 1. Our results
are in agreement with Lewis for £&,=1, but as we shall
mention in the text, we disagree with Fellgett's treatment,
We then extend our ‘analysis to obtain the well-known expres-
sion for the energy fluctuation of a body in thermodynamic
equilibrium with its surroundings, var E = szc;

The next topic which will be discussed is the zero
point energy problem arising in the theory of thermal radia-
tion. This difficulty is often gldssed over or omitted
completely by authdrs discussing the radiation energy. We
shall outline the problem in detail and present arguments

for the inclusion of the zero point energy in thermal radia-



tion theory. The effect of the zero point energy on the
number of distinguishable signal levels is discussed with
reference to a result of Gabor (1950),

Finally we shall apply some of the results of the
thermal radiation theory in .a discussion of the fundamental
limitations of the sensitivity of thermal radiation detec-
tors. This question of the sensitivity of thermal radiation
detectors has been widely discussed in the literature by
such authors as Jomes (1947, 1953), Fellgett (1949), Smith,
Jones, and Chasmar (1957), and others, some of whom we shall
mention in the text, In discussing the detectors we shall
strive to restrict our treatment to the fundamental prop-
erties of the detector avoiding any purely technical factors.
Noise reduction processes such as the observational technique
and the use of filters, will be kept separate from the funda-
mental properties of the detector itself. We shéil intro=-
duce severél parameters which will give a quantitative eval-
unation of the detector performance, The fact that we have
all the radiation fluctuation formulas and their derivations
close at hand, should add considerably to the clarity of

the detector discussion.



CHAPTER 2 <~ BLACK BODY RADIATION,

2.1 Properties of an Assembly of Bosons in an Isothermal

Enclosure.

2.,1.1 The number of distinguishable modes of vibration of

electremagnetic radiation in a frequency interval ¥ to Y+ dv.

Consider a cubical box of volume V and length of
side L. In order that standing waves be set up in the box,
each side of the box must intersect with an integral number
of half wave lengths of the radiation. Therefore, for stand-

ing waves to exist we must have:

.__L__.—-— = n l_ = N L = r\3
A ' )y * A
/gcosoc /éC°5/3 /écosl’

where A is the wavelength of the radiation; n,, n,, and
n,, are positive integers, and cose, cos3, and cos ¥
are the direction cosines of the direction of propagation
of the radiation. 'Since

cos*o¢ + cos’B + cost¥ = 1

NE+ Ny + ny, = Ll_\;j
In n space, co-ordinates n..n1 n, , this equation represents
a sphere of radius r=2L/, . The total number of modes of
vibration, that is the total number of possible stahding
wave arrangements, in the frequency interval V to » + dv

can be represented in n space by the volume of the positive



octant of a spherical shell of radius r and thickness dr,.
This result must be doubled to account for the two possible
orientations of the polarization of the radiation. 9, is
defined as the number of modes of vibration in the frequency

interval dv about ). Therefore:

g, = (XgXdwrdr)

Ly
where r = gf’ = T
—2Ld\ _ 2L dv
dvr = - =
N M

v and u are the phase and group velocities respectively of

the radiation. Therefore we have finally:

gy = 8Tr\/)/"dv
viu

2,1.2 The number of photons in a volume V of black body

radiation.

-~

N, 1is defined as the number of photons in a volume
V of black body radiation in a frequency interval dv
about ). Now consider the number of different ways, W,
in which N, indistinguishable photons can be arranged in
g, distinguishable cells, réferring to a mode of vibration
as a cell, when there is no restriction on the number of

photons allowed per cell:



qv(.gv"‘nv'ﬂ)!
9,! n, !

This equation is the basis of Bose-Einstein statistics.

Applying Stirling's approximation for factorials,
in N! & Ninn-N

and neglecting the term unity with respect to ¢, , we obtain:-

In W = nyin(1+ %‘i) + g,ln(1* Qz.)

»

We wish to determine the mean value of n,, The mean value
of n, can be defined as the equilibrium value or most
probable vélue of ny,, It is known that the equilibrium
state of a physical system corresponds to the state of
greatest disorder. W, the number of different arrangements
of the n, photons in the g, cells, can be thought of as a
measure of the disorder of our system. ‘Therefore the mean
value of N, is the value of n, for which W, or In W, is a

maximum., In addition we require that:

E, = Nn,hy = constant

Applying Lagrange's method of undetermined multipliers,

we obtain:

A(an) + ﬂ dEv = O

IN, dn,

9y
e —————



This is the well-known Bose-Einstein distribution function.

In Appendix 1, /3 is shown to be equal to —,= . Replacing

g, by the value obtained in section 2.1.1 we have:

— gmVy*dv
T yru(eF -

This is an expression for the mean number of photons with
frequencies in an interval dv¥ about ¥ in a volume V of
black body radiation at absolute temperature T,

The mean total number of photons in the volume V

is obtained by integrating N, over all frequencies:

o0 o0
— n. gV ytdy
n= -JJL-dv = . ™
S dv v,u(ekf—i)

o
At this point the properties of the medium in which the

radiation is confined must be considered. If the medium
is dispersive v and u are functions of ¥ and the integral
above cannot be evaluated for the general case, In a non-

dispersive medium: o
[

v=m = (€n)
€, the dielectric constant, and/u , the magnetic permea-
bility of the medium, are frequency independent for a non-
dispersive medium. Note that it is the product and not the
individual values of these two quantities which determines
the velocity of propagation of electromagnetic radiation

in the medium., Throughout this work we shall consider the
media carrying the radiation to be non-dispersive. The
integral for the total number of photons can now be evaluated

and we obtain:



gmVk T’

R g (2.vou)

See Appendix 2 for the details of the integration.
2.1.3 Thermodynamical functions of black body radiation.

Energy, E.
The mean energy of the photons in the frequency.

interval dv about V 1is obtained from:

The zero point energy has been omitted in this expression
and will be discussed in chapter 3. From the above relation

we have directly:
8Thv v3dvy
vi(eX -1)

E =

Integrating over all frequencies to obtain the total radia-

tion energy in the volume Y, we obtain:

amsv kT
5 hu? (Appendix 2)

E =

Entropy, S.
Boltzmann and Planck have shown that the entropy,
a measure of the disorder of a system, can be related to

the number of possible states of the system by the expression:

g, = kinW

For equilibrium this becomes:



g-y = kan

max

It should be noted that this Boltzmann Planck expression

is a special case of the more general relation:

w
S, = -k & P in R

i=1
in which R, the probability of a photon being in the i
state, is equal to &7, a constant,
Replacing ln W__ by the expression given in section
2.1.2, we have for the mean entropy of the radiation in a

frequency band dy about y:
< - " + )+ g,ln 1*-5; }
S, = k{mIn(1+2)+ gin(1e )

We replace g, and N, by the expressions in sections 2,1.1

and 2.,1.2 respectively and obtain:
hy

3 gnhvyidy 8MV k in(1 - er)vzdy

The mean entropy for all the radiation in the volume V is

obtained by integrating over all frequencies:
(-]

g = J_g_-&_.dv

g dv
z - e wiVK'T? | 4E
4s h*v?® 3T

(Appendix 2)

Helmholtz Free Energy, F.
The Helmholtz free enérgy is obtained directly from

the thermodynamical equation:

F= E- TS



Therefore we can obtain directly:

n,
£ = n,hv - kT{"R‘"“"%%) * g"n(1+—‘—3—v)}
F - - 8uwiVk'T"

- E
45 h3v? 3
Radiation Pressure, P.
From thermodynamics: pP=" (éf)
IV /v
— 4L =
Hence: P = gk T - E
us hivu? 3V

Gibbs Free Energy, G.

Also from thermodynamics:
G= E+PY-TS

Therefore we see immediately:

——

G = O

2.1.4 The probability distribution function for the number

of photons in the frequency interval d¥ about V.

For a system in which V and T are kept constant,
the probability distribution of a suitable variable x des-
cribing the system, is given by:

) = F(X)
P(x)dx = P(X) exp i“ [F(ka X ]}dx

Let us consider the probability distribution of the number

of photons N, in the frequency interval dv about v :



We have from thermodynamics:
AFy = AEV - TASV

and we know:
AE, = h)’ any,

AS, = k olln W)

Let us expand 1n W in a Taylor series about 1ln W,, with

respect to variations in n.:

dan?
Nng=n, ny=N.

InW = Inw +(dmw)'wwm%%£ﬁﬂimﬁ)

dn, =

Therefore:

AF, = [hv- kT( d;:‘;N)n

F, can now be expanded in a Taylor series about F

—_— _— | 2 r3
FV = FV + (d—'F:)' (nv"nv) + -L(é___.h‘) . (nv_h‘v)

2 >
dnv nv=_ﬁ' dnv nv'-ﬁy

At equilibrium F is a minimum. Therefore:

(é_Ev) _ ku_k-r(dlnw) = 0
dﬂ, n, -, dnv nv=n—-'

As we have seen in section 2.1.2, this equation leads to
the Bose-Einstein distribution function for n.. Returning

to AF,, we have:

. kT c_i_‘_ln_\'}). 7)Y
AF, _?( dM,nzén,nJ

Therefore we can express the probability distribution

function P(n.)as:

P(n,) = P(R,) exp [-‘2—( %‘R"%\l—)m:m(m’ﬁu)z]

10
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We know from the law of large numbers that the probability
distribution function for a large number of photons will be

Gaussian in form. For a Gaussian probability distribution:

P(n) = P(A) exp[-— (”v“ﬁ»)z]

2 var n,

Therefore by comparison we see that:

1

var n, = — (dz InW)
dn, n, =

From section 2,1.2 we have for 9,» 1 :

W= ndn(ie Z) + gln (1 )

14
1 4

dinw - ‘n(1+§1)
dn, ny

d*lnw _ _ 1
dn 1+ )

Therefore, finally:

var n, = ny(1+'%%)

This result is obtained in a slightly different manner and
is discussed fully in section 2.2.1.

2.1.5 The partition function.

Each distinguishable mode of vibration as defined in

section 2.1.1 may be thought of as a resonator having a

frequency ¥ and containing f, photons. (4,=0, 1, 2--- <o)
__.—",T;- b‘(_.-,;— )—1
ﬁ=9y-(e 1

The partition function for one resonator is defined as:

-hp

(Zu)1 = Z CXP( ﬁ:.hv) _ (1_ eﬁ_)-

11



As a result of there being an unlimited number of photons
available, the number of photons in one resonator will be
independent of the number of photons in any other resonator.

Therefore the partition function for two resonators will be:

- hy
<0 L = .2
£+ 8, hy kT
(2), = = = exp(-Gukalby) o (1 e ¥T)
fv=0 "&go
vyidy
It was shown in section 2.1.1 that there are QI;;?‘—'

resonators in the volume V of black body radiation in the
frequency interval dv about ), Therefore the total parti-

tion function for the radiation in the frequency interval

dv will be: o
bz, - (1-e¥)
_hy
In 2, = - 8TVY'dY |, (|—e ¥)

U"S
An integration of 1ln Z, over all frequencies will give the

natural logarithm of the total partition function for the
o0

radiation. ln2 = f I_"_?.'. dy

J av

gmsy KX T?

Inz =
4s h*v?

(Appendix 2)

The value of the partition function lies in the ease with
which the thermodynamical functions can be obtained from it.

This is shown by the following equations:

E - sz(‘H—ILz')V F=-kTInz

P (E), S [l

aT v

12
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2.1.6 The relation between the photon flux and the photon

density in a volume of black body radiation.

Let us place a small ring of area A in our volume
V of black body radiation., We wish to calculate the flux
of photons, m, passing through A in one direction.,

We shall divide the volume V into many very small
volumes V; , each V; containing n; photons. The normal to
the area A makes an angle O; with the vector ;i from A to V..
Also A subtends a solid angle.ﬂ? at V;. The situation is
illustrated below:

Normal
} +oA —A

Let b; be the fraction of the photons in V{ which

will pass through A in time dt=dr/v . From geometry:

—k; L Acos 8
" TR Y

Define m as the photon flux in one direction through A,

and m; as the contribution to this flux from V;. That is:
m= =m;
v

From the definition of b :
m.A dt = bin:



m A dt ZL:bLnL

n
0

mAdt - S bn o= 2 bon

since b; and n; are uncorrelated., However:

n,
j; = photon density

no
\
— 7.
mAdt = ZL} b;-(-\z)'\/a
We can express the infinitesimal element of volume V; in

spherical co~-ordinates as:
v, = 2T sin §; dri de;

Expressing the summation as an integral we obtain:

Y2
— Acs® R 2 _.
= A = OS5 T, .2Trfsine drde
dt Yty ? Vv

The limits of O to:% on the integration of 6 give us the
flux in one direction only. From this integration we get:

mo= ¥R

4V
which relates the mean photon flux in one direction to the
mean photon density for black body radiation in a non-disper-
sive medium, From section 2.1.2 we can obtain expressions

for n, and n , from which we obtain:

W o= 2Ty >dy
vi(ew-1)

—  _ 2mk'T?

m = =55 (2. 4ou)

m, is the mean photon flux for photons having frequencies
in a frequency interval dv about ) for black body radiation.

m is the mean total photon flux for all frequencies.



The photon energy flux is defined as:

H, = hyv m,

This can also be written as:

H- U E
v
From the expressions for m, or E; we can obtain:
o . _2unhyvidy
1% Uz(el%/r_ )

and upon integration over V:

H - 2wkt
|S hSVZ



16

2.2 TFluctuations of the Parameters describing the Radiation.

2.2.1 The fluctuation of the number of photons.

Einstein has obtained in a nonrigorous manner, the
following expression for the fluctuation of the number of

photons in a system kept at constant temperature and volume:
_ kT
var N = ThaE)y
LA
Refer to Appendix 3 for this derivation, In section 2.1.3

we saw that:

FF = nhy = kT i{n,In 1+ ) & 3,|n(1+!’_v
nv 9"

Differentiating twice with respect to n,, we get:

) = F G )
Y . 1 4 + ¥
dnv n,‘ﬁ- 9’
This expression combined with Einstein's result leads to:
—\&
var n, = rT, + (_rﬂ)_
9.

This relatidn agrees with the result we obtained in section
2.1.4 for var n, from the probability distribution function
for n,.

Up to this point in our discussion the wave approach
and the corpuscular approach to radiation have been comple-
mentary. However, in the above equation for var n,, one
can see what appears to be two independent contributions to
the fluctuation., The first term,

var n, = nO,

is the fluctuation we would expect if the photons were distribe



uted throughout the volume in a completely random manner,
This term is referred to as the quantum or corpuscular
contribution to the fluctuation,

Lorentz has shown that the second term,

— \2
var n, = (A
9.

is the result to be expected if the fluctuation were entirely

due to the interference of a random mixture of harmonic waves,
This term is often referred to as the classical or wave con-
tribution. Therefore if we wish to retain the corpuscular
approach to radiation we must realize that the photons are
not randomly distributed in the volume but are distributed
according to Bose-Einstein statistics., These statistics
modify the random distribution to account for the wave effects
mentioned above,

Return now to the expression for var n, and replace

g, and n, by the values given in sections 2,1.1 and 2,1.2

respectively. TV v e“%dy
var n = 3 hy 2
v?(ew ~ 1)

This is an expression for the varilance of the number of -
photons in volume V having frequencies in the interval dv
about vV for black body radiation in a non-dispersive medium,

The variance in the total number of photons is:

(2T k’r)s\/

var n =
3hiy?

The integration of var n, to obtain var n is shown in

Appendix ‘2,
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At this point it is interesting to consider the ratio

ﬂ%%1L which is unity for a Poisson process and is greater

than unity for a system obeying Bose-Einstein statisties,
For the frequency interval d» about V :

var n, _ 1
. ez 1
In the classical limit, hy « kT:

varn, _, KT 59
m, hy

This represents a large departure from the random corpuscular
theory of radiation. As was mentioned earlier, the wave
properties of radiation dominate at low frequencies, 1In

Var ny

the quantum limit, hy » kT , approaches but is

greater than one, This emphasizes the tendency of thermal
radiation to behave as random particles when the mean energy

per mode is small compared with the energy quantum hy.
2.2.,2 The fluctuation of the energy of the radiation.

The fluctuation of the energy of the photons in a
frequency band dv about V 1is entirely due to the fluctuation
of the number of photons in the frequency interval. Therefore
we can write:

2
var E, = (hy) varn,
: hy
or: sTVh*y*e* dv
v? [exp(‘%’_) - 1]2
The variance of the total energy of the radiation in the

vyar E,

volume V is obtained by integrating var E, over all frequencies,

(2wkT)’V
15 h?y3

From Appendix 2: bar E



-
D

2.2.,3 The fluctuation of the photon flux.

Recall the situation which was discussed in section
2,1.6. A ring of area A was placed in the volume of radia-
tion. The volume V was divided into many small volumes V;,
each containing n, photons. In section 2.1.6, from the
definition of b; we had:
mAdt = Zbin; = 'Jijn;
mf(Adt) = = = bibjnin
m(Ad) = Z = bbnn = == b

since b and n are statistically independent. Also:

MAdt = = bn = =bn

j 4 3
Therefore:

m(adt) = == bbb AT

3

Hence:

(Ad‘t)z var m = g,z'(-g"—g“ ?\i_ﬁj ——BQ_BJ‘ ﬁ;?,)

Since b, and n; are independent of b; and n, respectivelyﬁ

— e

b:b, = bib; for L #j
- b for =)
nn; = A for L# ]
= ng for (=}
Therefore: (A dt)z arm - ?:(B? K‘ - (Ei.)z(?\—")z)
Regall from section 2,1.6: —E . Acos &
¢ 4 r?

b; represents a fraction of 4W steradians subtended by A
at V. Any fraction of this solid angle is equivalent

statistically to any other fraction of equal size, Therefore



b; will have a Poissonian type of distribution which means

that: b = (Ec)z+ b,
We are permitted to choose A very small and r; very large,
thus justifying the approximation:
E ~ _ga since E «1

In addition we may choose V; very small so that n; will be
very much less than one, and:

var n; = ng
With these approximations:

(Adt)z varm = =. b, var n

= RcoS 8 var n: v,

¢ Y’ Vi
Recall: Vi = 2nrf sine; dr; d6;
and note that var n is proportional to V in section 2,1.6.
Therefore: Yﬁ&%ﬂi = Yg&;ﬂ

Now if we replace the summation over i by an integral over

6 from O to %3 and if we replace dr by v-dt, we obtain:
T

(A dt)z varm = (Adtz)y Var n facos 6 sin® do

The elemental time dt represents the time of observation of
the fluctuations. For a continuous observation for a time
t, , we may replace dt by t,. Therefore we obtain:

v
4VAt.

varm = var n

The preceding analysis has been in no way concerned with
the frequencies of the photons., As a result the above

expression will apply to both var m,, the variance of the

flux of photons in a frequency band d» about ), and var m,

20



the variance of the total photon flux., Therefore:

var m, = m, (1+ fE)
Ate ‘3'
or: var m, = 2my’'exp ( r,—l:‘,’-) dy

‘UlAt;[exp(E¥)_1]z
The variance of the total flux is:

3
var m = 2(wkT)
3h*vrAte

2.2.4 Fluctuation of the photon energy flux,

We have seen in section 2.2.2:

4
var E, = (hy) varn,
Similarly: var H, = G1Vf var m,
or: =
var H, At Var E,

Therefore: 2 h* »* exp ( %—#) dv

VAt [exp (2)-1)°

var H = 8(wkT)®
1S h*u?At.

var H,

H

and:



2.3 Energy Fluctuations of a Material Body in a Volume

of Black Body Radiation.

2.3.1 A perfectly absorbing (black) body with radiative

thermal coupling only between the body and the é}roundings.

In our volume V of black body radiation, a small
black body of heat capacity C is placed, The fluctuation
in the photon fluxes incident on and emitted by the body
will causes fluctuations in the energy content of the body.
These energy fluctuations will produce fluctuations in the
body temperature, a phenomenum known as temperature noise,

The situation under discussion is:

Black body
- heat capacity C
- area A
~ temperature T

Black surroundings
- heat capacity » C
- temperature T,

In Appendix 4 it is shown that the heat capacity C
of a volume of typical solid material is very much greater
than the heat capacity C; of an equal volume of black body
radiation., Therefore we are justified in neglecting the
heat capacity of the radiation,

We wish to obtain the energy or temperature response



of the black body when a photon of energy hy strikes the
body at time t= 0, We shall assume the time required for
the photon to transfer its energy to the lattice of the body
is very short and may be neglected. The temperature of the
body, T, can be written as:
T = Ta + AT,

where AT, is the temperature response of the body and is
equal to %g at t=0,

From section 2.1.6 we can obtain an expression for
the total power radiated by the small body:

5 % 4
5 . AW - 2Tk A(Ta+ AT,
o= AR - 5h£;2 ;

Similarly the power absorbed by the body from the surround-

ings is given by:

P - AL = 2UKAT

. {Sh3v?
The differential equation for the temperature response of

the body is: C d(AT,) = ?i - ?i

dt
If we assume AT, K Ta
then (e+ o)~ 7' =~ 47047
and CAlBL) o AeaT, - 0
where A = 8Tk T, A
R 15 h3vy?®

AR is the thermal conductance between the body and the sur-
roundings due to black body radiation and will have units
of watts per dggree absolute in the MKS system,

The solution of the differential equation is:
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AE, = CAT, = (hy) EXP('AC"}-)

The following objection might be raised against the previous’

discussion. It appears from the above equation for the

energy response that the energy quantum hy absorbed by

the body is radiated in a continuous rather than a discrete

manner, We know from the corpuscular theory of radiation

that the smallest energy unit for radiation of frquency Vv

is hy joules. The explanation of this apparent disagree-

ment is that the energy response equation represents an

average of the responses for a large numbér of events. For

any single event a photon of energy hv will be emitted at

a time t = 0 and the plot of AE, versus t will have the

form: AE;)
hvp — - — — =

t=0 t=t

The average of a large number of responses of this type will
lead to our energy response equation. In addition, for a

P&)= Kexp(’é%)

where P(t)dt is the probability that the photon of energy

single event:

hy will be emitted from the body in the time interval
between t and t+dt. K is a normalizing constant,

We now must modify Campbell's theorem to enable us to
apply this theorem to our photon system which behaves accords=

ing to Bose-Einstein statistics. Campbell's theorem, in



its original form, expressed the mean and the variance of
a parameter influenced by a Poissonian sequence of events,
in terms of the response of this parameter to a single event.

Let us divide the time scale into segments of length L:

i " I 1 (! L 1 i [\ po t

[ 3 2 1 =« interval
Number

Define; A,(t) - response of the system at t=0 to a
photon striking the body a time t ago.
/1, (t) = Ak,

m,. - the flux of photons in the frequency
interval dv about vy, arriving at the
body during the i"" time interval.

A - area of the body.
The number of photons striking the body during the (™ time
interval, having frequencies in a band dv about Y, will be:
My, - A- L
The energy response at t=0 to photons striking the body a
time 1iL beforg will be:
E, = = m,-aL- A, (L)
P=

oo

E, = = m,-AL- A, (L)

=1

£ - (ALY = = Fam, 4,60 A6

=1 j=t

var £, = (AL 2 2 (mm, - m,, my,) A0 A

=1 §=!

Now mwmv.-,_rﬁvamvj = 0 for L # )
= Yar My, +or l;=')
Therefore: o

var £, = (A )2 Z var mv,;'/l:_(“—)

(=1
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As we let L=dt — 0 ; oo
var £, — (Adt)A fvar m, - A (1) dt

[~

We have seen previously that
(t) = (hy) exp( )
Therefore integrating over t gives us:
AZdt- var m, - ()"
2 M/c
The elemental time dt represents the time of continuous

var E, =

observation and may be_replaced by t,. In this analysis

we have considered only the incident flux, which, in this
.special case of a black body, is equal to the absorbed

photon flux, The same argument can be applied to the emitted

flux so that we can write finally the important relation:

var E, = AC | at, var m,, (hu)
a)\.z

where (m,,)+om is the emitted photon flux plus the absorbed
photon flux, or in other words, (m,),,, is the photon flux
which contributes to the thermal exchange between the body
and the surroundings. Considering photons with frequencies
in the interval dv about », this expression relates the -
variance of the energy of a body to the variance of the
fluxes of photons contributing to the energy exchange be=-
tween the body and its surroundings.

In section 2.2.3 the expression

h .
var m, = 2yiexp () dv
VAt (exp (") - 11°

was obtained, This is the variance of the flux of photons

in one direction with frequencies in the interval dv about

y for a stream of black body radiation. In our problem
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we have two independent streams of black body radiation,
the absorbed radiation and the emitted radiation, which
constitute the entire radiative thermal connection between
the body and the surroundings. Since these two streams of
radiation are statistically independent, the variance of
the total flux contributing to the thermal exchange between

the body and the surroundings will be:

yylexp () dy

AtoU* (exp(B)-1)°

If we put this expression into our equation for var E, and

var(zm,) =

integrate over all frequencies to.obtain var E, we arrive at:

°o hy
var E = 2TACH V“CIP(F?)dV
ARV [exp(%ﬁ~1]z
_ s(nkT)’AC
var & SRUE A, (Appendix_Z)

If we replace Am by its radiative value given earlier in

this section, we obtain the familiar expression:
var E = kT*C
This result has been obtained from a statistical approach

under the following conditions:
i) Black body and black surroundings.
1i1) Radiative thermal,coupling only.

jii) Thermal equilibrium between body and surroundings.

2.3.2 A statistical treatment of the energy fluctuations
of a body of emissivity £, in a volume of black body radia-

tion.

Following previous notation the subscript V will



indicate that photons in a frequency band d» about V are
being considered. In this problem, since the incident
radiation is divided into reflected and absorbed radiation,

we will have four radiation streams to consider,

Non-dispersive medium Body having emissivity
containing black body £, for photons of
radiation. frequency V.
[— mus
————
~~~~~ -~ — — -
my va — —
My —

m, =~ photon flux of incident black body radiation.
m, = photon flux of reflected radiation.
m, = photon flux of absorbed radiation.
m, = photon flux of emitted radiation.
Let us introduce M,, the number of photons incident upon
the body in time t, as;
M, = m, At
in which A is the area of the body. In a similar manner
My, s M, , and M,_, may be defined,

The absorption process may be thought of as a binomial
selection process with M, attempts, M, successes, and €,
the probability of a success .per attempt. If M, were a
nonfluctuating quantity, we could write:

M, £, M,

Va
M= e m(1-6) + (M)



These are the expressions for the first and second moments
of a quantity MyA subject to fluctuations of a binomial
nature with probability coefficient &,., Let P(M,) be the
probability distribution function for M,. P(M,) is the
probability that M, photons will arrive at the body in time

t,. Therefore, for any P(M,)

P ¥ | Va M=t
'M’;A - 2 P(Mv) é ( :;: ) EyM (1 - Ev) . MVA
. roe Mg ) My -™,,
However: é' (,;44:‘\) gymm (1_. E,) . MVA = Ey M,

since both these expressions are equal to the first moment

of Mn‘ which is subject to binomial type fluctuations,

. Therefore Fﬁk = Eyfﬁ; as expected.,
Similarly; “ " My =M
— <O v ™M, Ya voa 2
ME = = P = () & (1-8) T M,
A My-0 Myp=1 Ya
<— Second moment of M&
Therefore; M,,: = £, ﬁ;‘ (1-g,) + & M:A
and; var MVA, = gi var M, + g, M-y (1"2,)

From this expression for the variance of M,,A we can obtain
directly the variance of M,,R by replacing & by 1- €, ,
since the probability of a reflection per incident photon
is 1- &, . Therefore:
var M, = (]-E,,)z var M, + £, M, (1-¢,)

The principle of detailed balance requires that
ﬁih== Eﬂt. However it is important to realize that this
principle of detailed balance does not require that the
variance of M,,A equal the variance of MyE. Let us now

consider the fluctuation in the emitted radiation. As a
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result of our system being in thermal equilibrium, the total
radiation incident on the body must be equal to the total
radiation leaving the body. That is to say:

M, = M_+ N,
In addition we would expect the fluctuations of the incident
radiation to be equal to the fluctuations of the radiation
leaving the body. That is:
var M, = var (M, + M, )
However since the emitted and reflected streams of radiation
are statistically independent, we can write:
var M, = var M, + var M,
Therefore, from our expression for var M,., we can obtain:
var M, = £(2 —€,) var M, — EM,( 1~ £,)
The emitted radiation and the absorbed radiation constitute
the entire radiative connection between the body and the
surroundings. In addition these two streams of radiation
are statistically independent. Therefore:
var (M,E-+ MVA) = var My, + var M,,

2& var M,

1

Returning to the flux notation:
var (m, + m,, ) = 2&varm,

h
HT(éyvlexp(i¥)dv
UIA-to [exp(%:‘)_]']?.

Recall the equation derived in section 2.3.1 expressing

var E, in terms of varm, . Replacing var m, by var (myE+

m,. ), we have: h
" var E, - 2TACHY's exp(iF)dy

v? Ag [exp()-1)°




The radiative thermal conductance, AR, for a body of emis-
sivity £, will be given by:
AR = b JEV h)/ m' A d)f

Assuming &, is independent of temperature, and recalling

— 2y dy
Y v exp( "”) 1]
we have: A = enAh? ((v*e, exp( r) dv
R

2972 hy 2
kT*Ut S [exp(¥)-1]
Var E, is now integrated over all frequencies to obtain:
h
a.m\hz I V', elP(ﬁ)dV
[exp (&) - 11"

R
Immediately it can be seen that the integrals in var E and

var g =

in AR are equal. Therefore we have directly:

var E = kT®C
This result, known to be correct from thermodynamics, has
been obtained statistically for a body of emissivity £, in
thermal equilibrium with black body radiation.

Fellgett (1949) has obtained an expression for the
variance of the number of photons absorbed by a body of
emissivity £, in a volume of black body radiation, His
result is: var My, = g, var M,
compared with our result:

var M, = €& var M, + £ M, (1-&)

Fellgett has not considered the fluctuation introduced by

31

the absorption process, In addition the unjustified assump-

tion that the varlance of the absorbed photons is equal to
the variance of the emitted photons is implicit in his

argument,
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2.3.3 The energy flucﬁuations of a black body in a volume
of black body radiation in a nonequilibrium steady state

condition,

The problem to be discussed here is similar to that
discussed in section 2.3.1 with one difference., We wish
to consider the situation when a nonfluctuating power P
is applied to the body keeping the mean body temperature T,
appreciably higher than the temperature of the surroundings T..

As in section 2.3.1 we wish to obtain the enefgy
response function when a photon of energy hv strikes the
body at t= 0, Let the body temperature be:

T= To + AT,

where _ AT, = h/'/c at t=o0.
The temperature response equation for this problem is:
d(aT,) 5 _B
C dt = P + Pa Pr
From section 2.3.1 we have:
7 - 2kt AT B - 2kt AT
a 1ISsh*uU? r ISh*v?

From the steady state form of the temperature response
2 kYA (T -TLY)

equation we obtain: P =
Is h?u?

If we require AT, KT then;
T'-T = 4T aT
and we can obtain directly:

C,Ciéij;) + Ag 0T, = O

where N = s k* T, A
R = 'S h2u?




This differential equation is identical to the one obtained
in section 2.3.1, and we have shown there in detail the
calculations leading to the result:

var £, = %%—R- At, var m

(hy)®

In this problem we have two statistically independent streams

Yotat

of black body radiation making up the radiative thermal
connection between the body and the surroundings. These
streams are the emitted radiation at temperature T and the
incident radiation at temperature T,. Therefore, recalling
from section 2.2.,3 the expression for the variance of the

flux of a stream of black body radiation, we can write:

h
At varm, - 2myiexp(ir)dy 21y exp () dv
’ Tt Ve ()-1)° v lexp(g)-1]°

Now if we substitute this value for At,var m,, . into our
‘equation for var E,, and integrate over all frequencies,
or better still, compare with the similar calculation in
section 2.,3.1, we obtain:

4T kAC
var B = TshiuTa, (794 7a)

or var E =
o

e )

This result haé been obtained for a black body of température
T > T,, the temperature of the surroundings, for a thermal
conductance which is entirely radiative.

Notice that when T = T,, var bk = kT*C as expected.
Also notice that when Tq= O, var E = 3T C. This result is
intuitively agreeable since by having T, 0, we are removing

the incident radiation stream aléng with the energy fluctua-

33
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tions caused by this stream. Hence we would expect the

be ’
energy fluctuations to,one-half of the equilibrium value,

2.3.4 The effect of conductive thermal connection between

the body and the surroundings.

Up to now we have considered the thermal coupling
between the body and the surroundings to be radiative only.
(A= Ag). We now wish to consider the situation where
A= Ag+ Acs A being the thermal conductance due to
conduction by a medium connecting the body to the surround-
ings.

The expression for var E, obtained from the modified
Campbell's theorem for a general A will have the form:

AC : Ato var mv.h,*“\ : (hy)l
Z’(AR *’f\c)

However mxr"will now consist of all corpuscular fluxes

var E, =

which contribute to the thermal exchange between the body
and the surroundings. In the radiative A case m,,,, was the
total photon flux only. In the conductive A case we have

a phonon flux, a phonon being a quantum of lattice vibration
energy. It 1is necessary to realize that equal fluxes of
photons and phonons are indistinguishable from the point of
view of energy exchange or energy fluctuations. Phonons,
like photons, behave according to Bose-Einstein statistics,
Refer to Appendix 4 for an illustration of this photon phonon
similarity,

In section 2.2.4, for black body radiation, we saw:
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var m, = M (1+ E;)

At, 9,,
Also, from sectigp 2.3.2:
= bf My A dy for € =1
Ae a3 hvdv A or

A similar equation will define A. only in this case W, will
be a phonon flux. From these two equations and the equation
for var E,, it can be seen that if m, is increased by a
constant factor, there will be no change in the value of
var E,, Therefore the relation var E = KT°C will not be
affected by a change in m,.

With this brief argument we have outlined a justifi-
cation of the generalization of the equation var E = KT C
to include conductive as well as radiative thermal conduct-

ance,
2.3.5 The electrical analog of temperature noise.

Previously temperature noise was defined as the
fluctuation of the temperature of a body in a volume of
black body radiation., This temperature fluctuation is an
observable: effect of the quantized nature of radiation.
In the preceding sections we found that temperature noise

caused by photons in a frequency band dy about Vv is given
var £, _ A*t, var m.,mm-(h»)z

c? 2CA
We shall now point out an electrical analog of this

by : var T,

temperature noise, Consider the following electrical

circuit:



A\ WS
o

-

éé R - C V

l

—0

The variance of V as a result of the shot noise in the diode

is obtained from Campbell's theorem in its original form,
el R e’ YR

and is given by: var V =

zC 2C
e - electronic charge
¥ - mean rate of arrival of electrons at the anode

The electrons arrive at the anode in a completely random

manner. Therefore: var (¥t.) = ¥t., from which we see:
¥ = t¢,var¥. Therefore:
_ e*¥R _ e*Rt.vary
var V.= =S— = ZC

The following table is a list of the electrical and radia-

tive parameters which can be identified as analogs:

Electrical Parameters Radiative Parameters
C capacitance C heat capacity
R resistance . thermal resistance
¥ mean rate of arrival m,A | mean rate of arrival
of electrons : of photons
e electronic charge hy photon energy
I current flaw P, power fléw
\'f potential T, temperature
Q charge E, energy
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Substituting the appropriate radiation parameters into the
equation for var V, we obtain:

var T, = () A*t, var my
2AC

which is the result obtained from the statistical treatment

of radiation, Since the charge on an electron is constant
we can only apply this analogy to photons with constant
energy, that is to photons in the frequency interval from

Y to Y+dy.



38

CHAPTER 3 - THE ZERO POINT ENERGY PROBLEM.,

3.1 The Mean Energy.

The concept of a resonator in radiation theory was
first mentioned in section 2.1.4 in connection with the
partition function. There, a resonator was defined as a
distinguishable mode of vibration. A resonator of this

type may be represented electrically by an LC circuit with

-
resonant frequency W = (LC) :

. The radiation energy is
represented by the thermal energy of the resonator.

The energy levels of such a resonator can be deter-
mined from Schroedinger's equation (Schiff 1954) as:

€, = (f,+ %) hy f,= 0,1, 2,---

Notice that the energy of the lowest quantum state is ihy ,
This energy is often referred to as the zero point energy
of the resonator.

In section 2.1l.1 we derived an expression for the
number of distinguishable standing waves, or resonators,

in a frequency interval dv about vy, in a volume V of

electromagnetic radiation. We obtained the result:

_ 8TmVVvidy
gv - UB

Knowing the number of resonators and the energy per resonator

in the frequency interval dy about ¥, we can obtain the

mean radiation energy in this interval as:

—

— ra {
Ey = 9): €y = (‘Fy+ 5)9*’ h))
The mean number of photons per resonator, ?;, has been deter=-

mined previously in section 2.1.2 as:
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T s Do -
Y 9. exp ﬁa-1.

As before, the mean total radiation energy is 6btained by
integrating E; over all frequencies., Immediately we see
that this integration will lead to the result obtained for
E in section 2.1.3 where the zero point energy was omitted,
plus an infinite term arising from the zero point energy

of the resonator. Note that this infinite term exists even
when T = 0,

This infinite zero point energy of the radiation
field is only one of several infinite additive terms which
arise in quantum electrodynamics and have not been explained
or satisfactorily avoided., One hesitates to omit the zero
point energy as it arises from wave mechanics and is connected
with the uncertainty principle. In fact, in view of the
successes achieved by these theories one is almost forced
to accept the zero point energy. In addition, there exist
several observable effects of the zero point energy in other
materials, One of théSe can be seen in the case of liquid
helium where the zero point energy is sufficient to keep the
helium from solidifying under its own vapour pressure in
the region of T=0. A second example is the scattering of
X - rays by the zero point vibrations of a crystal lattice
in the region of T= 0, Also several observable effects of
the interaction between electrons and the zerovpoint energy
of the electromagnetic field have been discussed by Welton
(1948). Among these is the displacement of the 2S5 energy

level of hydrogen known as the Lamb shift,



Therefore it appears as though we must accept the
zero point energy along with the resulting theoretically
infinite mean energy of the radiation field. It should be
noted that this infinite additive term included in the mean
energy is a purely theoretical difficulty. As one would
expect, this infinite energy is not observable because of
the fact that any procedure used to measure this energy of
the radiation field introduces a finite upper frequency
cutoff. Welton (1948) and Weber (1956) both discuss the

factors which determine this frequency cutoff,

3.2 Fluctuations.

3.2.1 Energy fluctuations,

Intuitively one would not expect a change in the
zero point of the energy to affect the energy fluctuations,
The Einstein-Fowler equation for the thermal energy fluctua-
tions supports this intuitive reasoning. Recall the expres=-

sion for the mean thermal energy of a resonator:

- _ hy hv - hy hv
The Einstein-Fowler equation is:__
E
var £ = kTZ%:I:

Therefore we obtain for the thermal energy fluctuation of

2 h 2
a resonator: var €, = (h») exp(-,;‘,’—) - ( 'hv hv)
[exp(%_};_)_ 1]2 e sinh o6T

LO

Note that this result is not affected by the zero point energy

but that the form of the relation between var €, ahd €, is:
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var € = (&-% e - @&V (%)

3.2.2 Quantum modification of Nyquist's theorem.

An interesting point arises in connection with the
quantum modification of Nyquist's theorem. Nyquist has
shown that the spectral density of the voltage fluctuation
across a resistance R(f) at temperature T is given by:

Sy(f) = LKTR(f) £l
Planck's modification of this theorem was to replace kT,
the mean thermal energy of a resonator for classical fre-
quencies, by hf(ek";- 1)-‘ , the Planck mean thermal energy
of a resonator for quantum frequencies. However the sugges-~ v
-1
) + h+4

—

53
tion has been put forth that kT be replaced by h4'(€J“;] >

the mean thermal energy of a resonator including the zero

point term, for the quantum case. Therefore:
ht h+
5.0 = 1R [ + k]
The variance of the voltage across R(f),

var V = [S,(f) df
now contains an integf;l of the form; J/g R() df

From a purely theoretical standpoint we could choose R(f)

to be frequency independent and the variance of V would
diverge. However, as in the mean energy case, this theoreti=-
cally infinite voltage fluctuation is not observable because
of the finite cutoff frequency introduced by any procedure

used to observe the fluctuations. In addition a frequency



o
)

independent resistance is physically unattainable and it is
possible that R(f) will vary as £" where n is greater than
two. This frequency dependence of R(f) will result in a
finite value of the voltage fluctuation.

This quantum modification of Nyquist's theorem is
merely a different approach to the mean energy problem,
since the mean enérgy is proportional to the mean square of
the voltage. The fact that the voltage fluctuations depend
upon the zero point energy is not in disagreement with the
Einstein-Fowler equation which is concerned with energy
fluctuations., We have shown that the energy fluctuations

are not affected by the zero point energy.

3.2,3 The fluctuation of the energy of a resonator when

both signal energy and thermal energy are present.

The following electrical representation of a reso-

nator shall be used:

L Signal Source
Resonator

p—— ‘ Thermal Energ\_,
Source

First consider the resonator with only the signal
energy present., The signal source is such that a voltage
of the form Vg sin wt is produced across the capacitor,

Therefore the current through the resonator will be:
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dv

Ca—t- = CwVYgcos wt

ls =
The instantaneous electromagnetic energy in the resonator is:
= 3Li® +  3cv@
However W = (LC;é , and therefore €, = icv®
Now in a similar way let us represent the thermal
energy in the resonator when the signal energy is zero,
Let the instantaneous voltage across the capacitor as a
result of the thermal energy be: Vi sin (wt + ¢ ). Hence,
following the treatment of the signal voltage, we obtain :
i = CwVicos (wt + ¢ )
E, = 4CV.
We have now considred the signal energy and the ther-
mal energy in a resonator, each when the other is absent,
Let us now consider the situation when both energies are

present simultaneously. The principle éf superposition

may be applied to the voltage across the capacitor:

V = Visinwt + V. sin (wt +« ¢ )
and as before: ’

i = Cw [Vscoswt + Vicos (Wt + @)

€ = 3cVia4+ 3Lit

= 4C [v: + Vf + 2VsV:sinwt sin (wt + ¢ )
+ 2VgVicos wt cos (wt + & )]

The following notation shall be used for averages. An aver-

age over one cycle of wt shall be written as:
FA\t

TPy = L 5 F(wt) dlwt)

2m
An average over all phase‘sngles ¢, in addition to an aver=-

age over one cycle of wt, shall be denoted by:



bl

F = —2-1;‘[<F(¢)> d

The total energy of the resonator when averaged over one
cycle of wt becomes:

€y = [+ “@ v Ve cos )]
The phase angle @ between the signal voltage and the thermal
voltage can have any value from O to 27T , all values having
equal probability. Therefore we must average over gS to

obtain the mean energy. This leads to:
e - [we W]
or € = éi v+ &, which is the expected result,
Now consider the second moment of €, If we average
€% over one cycle of wt and then average over all &,
as was done in the mean energy case above, we get finally:
G S R A

Since the thermal and signal energies are independent we

have : €* = €2 + €2 + Y4 €, &
_— — 1\
yar € = Er — (é)
Therefore: Y3r € = N3r €, + var €y + 2€; €

This result is somewhat surprising. First, if a
noise-free signal is applied, the energy fluctuation in the
resonator increases with the signal energy. Secondly, the
magnitude of the energy fluctuation depends upon the mean
thermal energy and therefore upon the zero point energy of
the resonator, |

A result of Gabor (1950) brings to light what appears

to be a strange coincidence. Gabor obtains the result for



var € as we have done. However, for the.mean thermal
energy Gabor uses the Planck mean energy which we shall
denote by €4 That is: €&/ = Z:“Eg. It is easily shown
that; varé€/ = varé€r = hy € *(é—rl)z
Gabor's interpretation of the equation for var € can be
written as: var € = varé& + var €l + 2& €7
Gabor now states that a noise-free signal will be free of
classical or wave interference noise only and still will be
subject to the quantum fluctuations, That is to say, for
a noise-free signal: var € = hy €
and: var € = hvés + hyé€r + (EX)° + 2e.€
which can be written as:
var € = hv€ + 2E&é&/ ’(é—r’)a

However it is our contention that the expression for
var € should be interpreted, in terms of the Planck mean
energy 53, as:

var € = var €s + var &/ + 2@;(€7~+%¥)
That is, the zero point energy of the resonator should be
included., Now we may assume a noise-free signal to be free
of both classical and quantum noise, that is var €5 = 0 for
a noise-~free signal, Therefore we have:

var € = hvéEr + (E)° + 2e. (& + by)
or: var € = hy€é + R2€e€/ —(é—r’)z
which is equivalent to the result obtained by Gabor. The
fact that the term lost by omitting the zero point energy
of the resonator, can be regained by assuming quantum noise

to be present in the signal, appears to be a coincidence,

L5
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3.2.4 The signal energy required for L distinguishable

signal levels.

The definition of a distinguishable signal level is
gomewhat arbitrary. It is generally agreed that the signal
energy must be greater than or equal to the square root of
the energy fluctuations in order that a distinguishable
level exist, Figure 1 shows the first few distinguishable
levels as we shall choose to define them. K is a constant

which is determined by the allowable error. From figure 1
we see that: €s = = [wavar € + Kivar é‘]

and in general:

€5 - € = s[kfvar €., + tvar e )

We have seen in section 3.2.3 that for a noise~free signal:
var €, = var € + 2€;€,

Using this expression for var €, in the preceding equation

for €5 , we obtain: Q:_G_s. = K%+ 2rc4]Var €x
€x \J (&)°

and in general: 2 (65‘.;6&_') - K%4 ZK\I Yar €1
&

+ 2651_‘
(&) &

Recall the expressions for varé&r and €. for a resonator

from section 3.2.1: _ hv hy
s = = coth —/=
4 2kT

- [huy Ko

= (V) ¢ BAs

var €x 1 4 1

. —_— = Z  hv =

Therefore: _ (érf cosh I

With this result it is easily shown that:



2€s, _ r\—(Kcoshz-b—kyT +2)
€ cosh h»
2kT
Similar expressions for € € --- can be obtained in

order., Finally a general expression for the energy required
for L + 1 distinguishable levels can be obtained inductively;
€, - Lt KL
= P4 cosh zhk%r
In a signalling system a signal energy of zero can be used
as a signal level., Hence we obtain L + 1 distinguishable
signal levels from L nonzero signal energies, E?;L, the
mean signal energy used when L + 1 distinguishable levels

are available, can be calculated assuming that all signal

levels have an equal probability of being used:

—— L
ESL. = l e_f.:
. L+1 T3 €
This leads to the result:
- hy
ST E_\:[K(al.ﬂ) + 6 sech ,j;T]
= 2

=
K is determined by the allowable probability of an

error. Chebyshev's inequality (Feller 1954 ) states that

for a fluctuating variable x, with mean value X, the proba-
bility per observation of finding x such that

- 5| > s
is less than '?%1 no matter what the law of the fluctua=-
tions may be, This probability is, by our definition of
distinguishable levels, just the probability of an error.
The probability of an error is represented in Figure 1.

Consider the probability distribution for the energy of the



resonator when a signal energy €s, has been received. This
probability distribution is the curve centred on é; in
Figure 1. The probability of an error, Q , is represented by
the area of the shaded region under this curve, The area
under the entire curve is equal to unity because of the
normalization requirement, If the curve is Gaussian in
form, that is if the probability distribution of the noise

is Gaussian, we can calculate this probability of an error

Q@ in terms of K.

P(e,) -

(e,—é)z]

e)CP -
ﬂ2ﬂvar€z 2 var €,

% Var €, _ (el,__é_;)z o
= 1- 2 ‘ _‘l————-—-——l QXP{ 2var e, } d(é; él)

2ZTvare,
(<]

Y re X
2 Vda > e 2

- Ay
Q = 1—1-%-_ g dx = cert 37

It is interesting to compare the actual Q for Gaussian
noise with the upper 1limit on () given by the Chebyshev

inequality, for several values of K.

K Q = cerf 5’% Upper bound on
(Gaussian noise) @- (Chebyshev)
22 0.157 0.500
Wiz L7 x 10 0.125
62 2,2 x 10 0.056

4

It is easily seen from this table that the probability of

an error when the noise is Gaussian is well beldw the upper

1imit given by the Chebyshev inequality.
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Shannon has developeq_ph? expression
Lae= (14 &2)°

for the maximum number of dis;inguishable levels attainable.
with a negligible probability of an error per signal for a
long message., EZL is the mean signal energy available and
é; is the mean noise energy present., This limit of Shannon's
can be approached only with the optimum coding procedure
and with a Gaussian probability distribution of the signal
levels and of the noise,

For interest let us compare the number of distin-
guishable levels calculated on the basis of our definition

S o1

v

with this upper limit given by Shannon. For
— {
L = (_E__S_\.)/az .K_“:
= C\E 18
where L is the number of levels calculated on the basis of
our definition. We have neglected the extra level arising
from the no signal condition since L has been assumed to be
very much greater than one in the above approximation. Let
-3
us make the rather loose assumption that a Q of 4.7 x 10
constitutes a "negligible™ probability of an error as con-
sidered by Shannon. We have seen earlier that if the noise
-3
is Gaussian, a Q of 4.7 x 10 can be attained with K = 4y 2.

Hence L., = %%f = 2,3 L forK = h\ri. Therefore we see

max
-3
that even when we assume "negligible" to be 4.7 x 10 , and
when we choose our noise to be Gaussian, the L we obtain is
still considerably less than L, , the maximum number of

distinguishable levels attainable, as given by Shannon.



CHAPTER 4 - RADIATION DETECTORS

4.1 A Consideration of the Effects on the Detector Sensitiv-

ity of Factors which are not Fundamental Properties of the

Detector.
4.1.1 The ideal energy detector,

In the above heading we refer‘to factors which are
not fundamental properties of the detector. We intend to
discuss three such factors; the procedure by which the
detector output is observed, the signal waveform, and a
low;pass filter between the detector and the observer.,

These factors will influence the noise level of the overall
detection system. The expressions obtained for the sensi-
tivity of the detection system will include quantitative
measures of the smoothing effects of the low-pass filter

and the observational procedure., However it is possible

to obtain the sensitivity of the detector itself from these
expressions by choosing the filter and the observational
technique in such a way that they do not reduce the fluctua=-
tions of the .detector output. The sensitivity of a detector
is not discussed as such in the folldwing work. Instead

we have chosen to use var H, the uncertainty in our estimate
of the incident flux, as a parameter to specify the detector
performance. For real detectors we introduce the minimum
detectable flux, defined as (var Hf%, as a performance speci-

fication for the detector. The.sensitivity of the detector
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could very well be defined as (var H) .

The ideal energy detector shall be used as an example
for discussing these three factors mentioned above., The
response of an energy detector depends upon the energy of
the incident photons in contrast with a detector such as
the photoelectric cell, the response of which depends upon
the number of incident photons with energies above the thresh-
hold level., An ideal energy detector is an energy detector
in which the only source of noise is the temperature fluctua-
tion of the sensitive element, known as temperature noise,
caused by the fluctuations of the emitted and incident photon
and phonon fluxes which comprise the thermal connection
between the detector element and the surroundings. In
addition we require that the detector element be in thermal
equilibrium.with the surroundings in a 1deal energy detector.

We now shall obtain an expression for the response
of the temperature of the detector element when a sinusoid-
ally modulated power flux is incident upon the element,

The notation which is to be used is:
c - heat capacity of the detector element. (joules deg. )
A - total thermal conductance between'the element and
the surroundings, (watt-deg.')
- sensitive area of the detector element. (meter )

A

T = C/A - thermalbtime constant of the detector. (sec.)
T - temperature of the detector element, (deg. Abs, )
T

- - temperature of the surroundings. (deg. Absolute)
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AT = T- T, - response of the element temperature to
| an input signal. (deg,)

H(t) =~ signal power flux, (watts-meter )
W, =~ angular modulation frequency. (sec.')
F(t) - fluctuations of the total power incident upon and

emitted by the détector element. (watts)

F(t) = O (time average)
The differential equation for the temperature response of

the element to a signal flux H(t) can be written as:

C d_i_g__ﬂ = = ABT) + F(4) + AH()

If the signal power flux is of the form H(t) = 23H (1 + coswg)
the solution of the differential equation is:

-t t
_ T _ AH % 1
AT = (aT.)e 2y © [1 N 1+w3”f’] (u.01)

t
+£~,ﬂ[ cos (wt + @) -2 (F) &%
AT el T T e

[-]
where (AT), is the value of AT at t = O,
L,1.2 A step function signal and the (t_N) procedure.

The observational procedure to be used throughout
our discussion consists of observing the detector output
N times at equally spaced inﬁervals, each of duration t,/N.
This sampling technique shall be referred to as the (t N)
procedure. In the ideal detector we assume that the temper-
ature response AT can be observed directly., In a real
detector it would be necessary to observe a secondary effect
such as the thermoelectric voltage in a thermocouple or

the temperature resistive effect used in a bolometer,



In this discussion the following arrangement shall

be considered:

H(t —*

) T N

Incident signal Detector (tx,N) procedure
flux

H(t) will have the form:
H(t)

t>0 =t
The readings obtained from the (t,N) procedure will .be
denoted by: (bT) i=0,1, 2,--- N

When Wo= 0, the general temperature response equation,

4,01, can be written: N
AT = (oT.) et AR (] ~ e-i‘) v e X (EM g% g
° DY ~ n
For the L. reading L e
-ito -ite Lt, N‘C( ) 11/1
@T), - (a7, €% - A (1- ™)+ %] FW e an (1o

. . th
From this ( reading, the estimate of H which can be made is:

to
(M), - & L7k -7, e |

1"e~t

Now in our observational procedure we take N such readings
and hence we could make N such estimates of H and average

these for a best estimate of H., However, since the temper-
ature fluctuation is present to the same extent for all the

readings and the temperature response to the signal is
~ito
CH

increasing in proportion to 1— € , We can see that
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the estimates of H become more accurate as the time increases.,
Therefore we should give more weight to the later readings

in our averaging system by a factor proportional to AT,

Let us define the best estimate of H for the N readings

taken in time t., as:

= L= (1-e)(n),

L=

where L is a normalization constant. If we were to repeat
our process over many time intervals t, and average our

results, we would expect:

He = H

~

_t

Lg: 2l (a1 - T e

L= H(1-e ™)

t=\

~

1

from 4.02, since F(t) = 0, Therefore:
1

L = N - ite
= (1- e+

L=t

Consider the second moment of H

e P Z E (1- e ) - (1- e *)(n)

est

i

re s X [(AT) (7). e""tfl[ (a), - (a7, )

=1 J ]
From equation 4.02 we can write:

ito ite

= 22 H (1-e™)(1-e ™) +

L=y

Z. _.(u))t _:’_ ik ___11'
L 22 AECE [fF(mF(E) e T dndd

(S ] J =1

The first term reduces to H = (HN) o« Therefore:
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tto Jto

% _(MJ)t. jom
var Hy = L Z f ACe jF(n)F(k) €T dndd

Uhlenbeck and Ornstein (1930) have shown:

FODFG) = 2kT2A S(n-%)
Since §(mM-%) 1is equal to zero when Y¥# 7 we need only

integrate up to the smaller of the two limits for both
integrations., Let us denote the smaller value of i or jJ

by m. Introducing the new variables:

y- M+ 3= M- ¥
the integral in the expression for var H becomes
to

z:l‘ y 2 2mto
{ = ] 2 _ NY
E-Je”ﬂdy [akT%S(%)o\} ~vaC(e 1)

o over'fh_e
Therefore: 2 fenctien 8 —(i+]to  amt

z)* N zmt
var Hy = L ‘—‘Al% = Ze™ (e™-1)
L= 3=
Since 1 and j are symmetrical we may write this expression
as: 2 (s )'to m_? N _2ite
var H, = EXLA e A [222 e (e%-1)-=(1-é™ )]

t=1 Jl L=

Recalling the value of L, the normalization constant, and
making use of the expression for the sum of a finite

geometric progression, we can write the above equation as:

KT2AR I N(1- éz"tf) aé3;(1+e—"t:)(l e T) +e'z"t5(1 ézt°)
var Hy = (4.03)
A C _ ‘%
C[N(1-eR)- eRa-eY)]®

In order to maximize the information obtained per reading
of the (t,N) procedure, it is necessary to minimize the
correlation between each of the individual readings. This

is accomplished by choosing t, and N so that N & to/7.
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With this choice of t, and N, equation 4.03 can be written:

kT2 A® +o
var Hy = A C 71; (N&F) (u.0u4)

As N approaches infinity we have a continuous averaging

process for which 4.03 becomes:

kT2A? [l 3+ % éz—‘?
Z ye (4.05)

W e - €

In the continuous case it is desirable tqvhave little or

var Hoo =

no correlation between the initial and final readings.

This requires t, to be » ¥ for which 4,05 becomes:

r3
var H_ = 2:;)‘ (ta>» ) (4.00)

Therefore we have obtained a general expression for the

uncertainty in our estimate of H, given by 4.03, for a
step function input signal and using the (t,N) procedure.
Equations 4.04, 4.05, and 4,06 give the uncertainty in
our estimate of H for certain special cases of the (toN)
procedure,

The problem we have just discussed has been con-
sidered by Dahlke and Hettner (1941) and Kappler (1946).
The latter paper contains an expression for the detector
sensitivity which becomes infinite as the observation time
approaches zero, This is obviously an unsatisfactory ten-
dency. We believe that our treatment, which has considered
a more general observational procedure, is an improvement

upon the analyses of the above authors,
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L.1.3 The frequency response function Q(f), and the

equivalent bandwidth B,, of the (t N) sampling procedure,

In the previous section, because of the transient
nature of the temperature response, we found it necessary
to introduce a weighting factor in averaging the readings
of our (t,N) procedure. Here we shall consider the (toN)
procedure for the case when all readings are given equal
weight as would be the case in a steady state situation.

Consider the following arrangement:

x (&) t., N Yy

From the definition of our (t,N) procedure:

N
y(t) = ﬁ“ g x ((t - B

Consider the response to an impulse, x(t) = S(‘t-{.)

3 _nt.
YO = = s(t-t, BN‘“)

Not

L

The frequency response of any system can be expressed
oo
Q) = [T(0 exp(-znift) at

where J(t) is the response of the system to a unit impulse.



FIGURE 2

Freauency Response Function for THE (toN) Procepure.

8¢ a%ed Hutioed



Therefore for the (t,N) procedure:
—iewft

N ‘to
a() - g%fg(t-t: ) e gt

-1 to
_ 1 e o.z'nf_ ] e'LZWFt-
N 'e";%ﬁ'g_ 1

*_ 1, 2-2cos(anft.)
la({)l N?® Z—ZCOS(ZlN‘f_‘!_o)

|O(f)|z = (M)a (4.07)

N sin Tfte
N

Refer to Figure 2 for a plot of \C1(¥)|Z against ft for
N=1, 2, and o,
The equivalent bgndwidth of a system is defined as:
[la®izas
lat)l?
where f, is the signal frequency. For a dc¢ signal:
la)|® = Ja@)|® = 1
for the (t,N) procedure. Therefore the bandwidth of the

= o

(toN) procedure for a dc signal is :

B, = f( sin wfts )de (4.08)

fﬂsiangb
This integral is infinite for finite values of N. However

for the continuous observation prbcedure, that is as N— o,

"rsin Tite)? _ 1
B, =[( Tt ) = 5y

o

The infinite bandwidth for a finite number of observations
can be realized by considering the averaging effect of

this process on the set of fﬁhuencies:

f=(TN (i=123 - =)
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For these frequencies our observations will be separated
by exactly 1 wavelengths in the time plane. Since each
reading is taken at the same phase position on the wave=-
form, there is no caﬁcéllation and
la(%}')lz = 1 (i=01,2, - )

A filter which has unity transmission for an infinite
number of discrete frequencies, must have an infinite
bandwidth,

It should be noted that when a modulated signal
is being observed by this (t,N) procedure, t,, N, and f,
must be chosen so that f, = it,/ N. ( 1 is an integer).
With this condition satisfied the signal will be paséed
undiminished whereas the amplitude of the random noise

will be reduced,

Lelo.4k A sinusoidally modulated signal being observed in

a steady state condition.

In section 4.1.2 we studied the smoothing effect
of the (t,N) procedure when the input signal H(t) was a
step function, and we found that it was necessary to use
a weighting factor when averaging the individual readings.
In our present discussion the signal will be sinusoidally
modulated and it will be assumed that the detector has
been exposed to the signal for a time t >) ¥ . Therefore
all transient effects may be disregarded and the afore-
mentioned weighting factor will not be required. That is,

the (t,N) procedure will have the frequency response func-



tion and the equivalent bandwidth given by 4.07 and 4,08

respectively. Once again we are considering:

t _ i
/—~\_ﬁ5~l‘,f-\.- T AT t. N ot

DETECTOR 0B8S. PROCEODVRE
where this time H(t) = 3H-(1 + cosw,t).

We must now leave this specific situation briefly
in order to calculate the spectral density of the temper=
ature fluctuation of the detector element., In general,
for a fluctuating variableagz

var x = fsx(f)df = S_.(0) B,
where Bx is the noise eéaivalent bandwidth. In addition,
for a system characterized by a single time constant T,

it is easily shown that:
1 S, (o)

B, = T and S (f) = 1+ wit

Therefore, for a single T system:

- {1t varx
Sx(‘F) l+ wZTZ

We have seen earlier that the temperature fluctuation of

the detector element is given by &ar' AT = kTZ/C. In

addition we know that the temperature response is depenw-

dent upon the single time constant T-= 94\ o« Therefore

the spectral density bf the temperature fluctuation is:
YkTZ

S (f) = A (4;o9>
AT( ) 1+ we*t?

Returning to our problem, let us define a smoothing

factor for the (t,N) procedure in thé following way:



_ var AT' _ ofS,,T(F)-ICl(*C)l df (1.10)

var AT fo'osm({:)df

“ (2
‘Cl({)l for the (t,N) procedure is given by equation
4.07 and S, (f) by 4.09. Therefore:

o . 2
LH(TZ. 1 . (Sln “‘F't., ) d_r

R “‘(‘tu
D = of A ivut¥r \NsiTE
" fﬁ’k’rf 1. of
1+ wett
Integration of this expression gives:
—g-£° —‘fo
NT
D, = N(l € ) et ( ) (q'“)

NF(1- e =)’
The integration of the numerator is shown in detail in
Appendix 5. Equation 4,11 agrees with a result obtained
by Burgess (1951).
If we require 1, » T, that is if we neglect all
transient effects in the temperature response equation

L.0l, we are left with:
AH . cos (w,t + &)

at = 41 W}

Recalling that the input signal was H(t) = 3H(1+ cosw.t),

we can see that the frequency response function of the

detector, Cloéf), can be written:

a,() = AL - coslwtrdl A
- H/Z vl-v wtt A /
and ldo(ﬂl (1+w r?)" (4.12)

From the definition of G,¢) and D,, it is apparent that

the uncertainty in our estimate of H is equal to:
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var AT
var H, = mz'[),.

That is: -%% - 1o -t
(UK (1, wer)|Mme ™) -ee” (1-e7
A*C ° Nz (1— e—:’c)z

As in section 4.1.2, for as little correlation between

) (4.13)

var H, =

t
individual.readings as possible, we require N <K-ﬁ?.

When this condition is applied to 4.13 we obtain:

21\2
var H, =k;é_U+uﬁﬁ%%— (N«%) (4.1y)

For the continuous averaging procedure we let N approach

infinity and 4.13 becomes: ’
242 2 -1
- kT°A 2T to _ ¥

In the continuous case in order to have as little correla-
tion between the readings taken at t = 0 and t = t,,as pos=-

sible, we éﬁuire that te 7T . Therefore from 4.15 we

get:  yar HOn = 3{;&5(1+tu§t? (to»Qﬁ (4J6)

when W,= 0, equations 4.14 and 4.16 are equal to
4.04 and 4.06 respectively in section 4.1.2. Recall that
in section 4.1.2 we considered a step function signal
with the accompanying transient effects., However these
transient effects are removed when we insist that N ;%,
or t,»7T in the continuous case, as we have done in equa-
tions 4.04 and 4.06 respectively, and the problem is reduced
to considering the response to a steady state de¢ signal,

Similarly when W,= O this present problem also is a con-

sideration off a steady state dc signal. Hence the similarity
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between the results of this sqction and section 4.,1.2

could have been expected.
L.1.5 The addition of a filter to the detection system,

The detection system to be considered in this
section is the same as in the previous section except
that a low-pass filter has been added between the detector

and the observer,

&2 v [ & | 8 T, [ tn | o
DETECTOR ) FILTER 08S. PRO(ZDURE
Qo(f) Q. (f) a(f)
The frequency response function of the filter is:
|Qe (O] = 1 ot f £ B
|C1.:(§)l2 = 0 g< f <@

As our detector is characterized by the single time con-
stant T , the effective bandwidth of the detector is
By = 1/4Y . It is obvious that our filter will have the
greatest smoothing effect on the detector output noise
when B & By, and this is the situation we shall consider.
The lower limit on B is usually determined by the modula-
tion frequency fo which is to be detected. If the detector
is used primarily to observe dc signals thecbandwidth B
must be sufficiently large to permit the signal response
to build up or decay in a reasonably short time.

We have shown in section L.l.4 that the spectral

density of the temperature fluctuation of the detector



WkT*
element is: SAT({) = N (4:09)

1+w?iT?

The spectral density of the temperature fluctuation
appearing at the output of the filter will be:

[4
S(M)B(\c) = “};\T ost<«B . since BT K1,
S(me({) = 0 B< <
Therefore: var (aT), {S(AT)B(F
_ 4kT8 _ KT° B
A C B«

The smoothing effect of the (t,N) procedure, defined by

4,10, will have the form
f Sem, (1) [@ ()] “df

(g -
j 5<m>,, (£) df
which leads to: /(BSin “;{o)zd‘F v
(0., = N'sin Tt (wa7)
B
From equations 4.10 and 4.12 it is apparent that:
_var(an),
Var(Hu)a ——-——-———lao Gl " (Du)s

From this we obtain:

T sin T V2
KT\ (Sm.‘n' o )
VBY‘(HN)B = ’ —g_t‘ (1+w§'r‘) OI Nsm—"iNtd d

AZC (‘+. \8)
B

Since we hawve required B to be & B,, the requirement for
very small correlation between the individual readings
of our (t,N) procedure becomes: N & Bt,. When this

condition is applied to 4.18 we have:
KTZA® B 22y, |
var(HN)8 = Ac B, (1+wlT) N (N« Bl)  (4.19)
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It should be noted that 4,19 is exact for:
Bt _ 1 .
N 37 (i=1,2, 3, «© )

For the case of continuous observation, that is as N— &

in 4.18, we obtain:
TzAl B 1 COS(ZTT'toB) -1 .
var (Hg), = L——'(“ w; ) Tt.8 { 2mt.8 + Sifert.8)

8 AZC Bq;
where SL(X) - (s‘:"u d (4.2'0)

o

In order that there be little or no correlation between
the initial and final readings in the continuous obser-
 vation process we require Bt.>> 1. This condition reduces

. T2A
L.20 to: Var(Hco)B - -Z%to_‘

Again we have obtained a general expréssion for

(1+w2r?) (Btoe1)  (4.21)

the uncertainty in our estimate of H given by 4.18,

Recall that the situation under discussion consisted of

a sinusoidally modulated steady state signal, a low-pass
filter at the detector output, and our (t,N) procedure
following the filter. In addition we have calculated var H
for three special cases of the (toN) procedure; see equa-
tions 4.19, 4.20, and 4.21.

Notice that equation 4.21 is identical to 4.16,
that is the filter has had no effect on the noise level.
This stems from the requirement thaﬁ Bto>> 1. Recall the
equivalent bandwidth of the continuous (t,N) procedure
from section 4.1.3 as B9==1/2t°. Hence it can be seen
that B,, the bandwidth of the (t,N) procedure, is much
less than B, the bandwidth of the filter when Bt,> 1,
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and the smoothing effect of the filter has been obscured
by the much greater smoothing effect of the observational

procedure,

4.2 The Specification of a Real Detector.

The discussion of detectors up to this point has
been concerned with the effect on the sensitivity of an
ideal energy detector of such'factors as the detector put-
put sampling technique, the inclusion of a low-pass filter,
and the modulation of the input signal. The ideal energy
detector, a most unrealistic device, was used as an example
in order to confine the discussion as much as possible to
the effects of these factorsmentioned above, by avoiding
the numerous additional problems encountered in a real
detector. We will now restrict our treatment as much as
possible to the fundamental properties of a real detector,

In order to give a quantitative evaluation of the
performance of a real detector, we shall introduce several
quantities which can be used as a basis for comparing
different types of detectors. The first of these is the

frequency response function which is defined as:

als) =

where f, is the modulation frequency of the signal. The

Detector Output
Signal Input

parameters describing the detector output and the signal
input are chosen so the detector behaves in a linear fashion.

The frequency response is determined basically by the detec-
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tor time constant ¥ , which in the ideal energy detector
we saw was equal to ?i' In the photoemissi#e detector,
to be diécussed later, T is determined by the stray.
capacitance in the circuitry of the detector. The dc gain
Cup)depends upon many factors as will be shown in the
discussion of the bolometer and the phototube. The fre-
quency response function of the detector does not include
the effects of output filters or observational techniques.

A second parameter used to specify the performance
of a real detector is the minimum detectable flux or mini-
mum detectable power. The obtiéal system focussing the
radiation on the detector element determines which of the
two parameters, flux or power, is more suitable for a
measure of the detector sensitivity. I1If the incident
radiation flux varies appreciably over the area of the
detector element, the minimum detectable power must be
used, However if the detector element is in a region of
uniform radiation flux, the minimum detectable flux is the
more informative quantity. 1In order to avoid duplication
of equations we shall consider the minimum detectable flux
Hpn only. The minimum detectable power P, can be obtained
directly from the relation: Fiw = AHm, . The minimum
detectable flux is defined as the signal flux which will
result in a signal to noise ratio of unity at the output
of the detection system. That is:

Hoi =-ﬂvar H

Var H is the ﬁncertainty of our estimate of H, the signal
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flux, as a result of all noise sources which are significant
for the detector under consideration. This minimum detec-
table flux will be affected by the smoothing of our obser-
vational technique and of the output filtering system.
However, as we pointed out earlier, the minimum detectable
power flux of the detector itself can be obtained by re-
quiring that B>» B, and that the smoothing factor of the
(t,N) procedure be equal to unity. When these conditions
are satisfied the filter and the (t,N) procedure do not
reduce the fluctuations of the detector output, and therefore
the minimum detectable flux of the detector alone can be
obtained., This quantity is of little practical value,
however, since for the optimum performance of a detection
system we require that the noise level be as small as pos-
sible and a filter with bandwidth B € B, will reduce the
noise considerably. We have defined the minimum detectable
flux from the point of view of an energy detector in which
the parameter deicribing the input signal is H, an energy
flux, As a result the minimum detectable flux mentioned
will actually be the minimum detectable energy flux for
an energy detector. For.the quantum detector the parameter
describing the input signal is m, a particle or photon flux,
and therefore in this case we will be concerned with
the minimum detectable photon flux.

A third parameter which is used to specify the per=-
formance of a detector is the noise factor. We shall

define the noise factor in the following way.

!
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Tl _  Hun (real detector) > 1
Huwim (ideal detector)

In general, Tz‘will not depénd on any factors such as obser-
vational procedure, which are not fundamental properties of
the detector. However, the main disadvantage of the noise
factor is that the minimum detectable flux which defines 7]
will be different for an energy detector than for a particle
detector, Therefore we shall consider72 more fully in the

discussion of the bolometer and the phototube,

L.3 The Bolometer.

The operation of the bolometer, an energy detector,
depends upon the fact that the electrical resistance of most
materials varies in an easily determined manner with the
temperaturé.of the material, The temperature change of the
detéctor element as a result of the signal radiation, will
cause a change in the electrical resistance of the element
which can be observed as a voltage reading AV in the

following circuit:

|I| — O
(t) v T

H
N~ %; 3: | %; :z A
I |

L.3.1 The frequency response function.
Let us choose an incident flux of the form:

H(t) = H exp(iwt)



)

This oscillatory flux will cause oscillations in T, Z, V.,
and I. Therefore let ﬁs write theée quantities in the form:
T="Te+ T exp({iwt) Z = R,+ R,exp(iwt)

I = I,+ I expliwt) V=V _+ V, exp(iwt)
where we will assume that the amplitude of the oscillations
is much less than the d¢ value in each case,

The dependence of Z upon T is given by the equation:
z = R1+ oc(1 — 1,
R, 1s the resistance of the bolometer element at the ambient
témperature Tae ©C is the temperature coefficient of resis-

tance of the detector element and is defined by:

1 dR

R dT

The d¢ and ac components of the above equation for Z give

o

us respectively: Ro = Ro [l + cK(TQ—-Ta3] (LeR2)
R, = XR,T, (4o23)

Recall the form of the temperature response equation

for the detector element:
‘ C%;{+)\(T—TQ)= P

P is the toﬁhl power dissipated in the detector element and
consists of the radiation power plus the electrical heating
power, P = AH(t) + I°Z A is the sensitive area
of the detector element. Note that we are representing the
joule heating power by I1*Z and not the real part of‘IZZ,
even though we shall see that both I and Z are complex.
However the reactive components of I and Z are caused by the
thermal inertia of the element combined with the feedback

cycle T—*—Z-*'I-—>IZZ-*—T, and the detector element does
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not contain any inductive or capacitive elements capable of
storing electromagnetic energy. Hence the joule heating
power will be I°Z. We have:

1’2 = IR+ I’R,exp(iwt) + 2I,R, I, exp(iwt)
Therefore the dc and ac components of the temperature res-

ponse equation are respectively:

MTo— T,) = IZR. (Le24)

AH, + IR, + 2I,R,I, = 41WCT, + AT, (L.25)
Also we have: Vo = I(Z + Rg), the ac.components of which
are: 0 = IR+ I,( Ro+ Ry) (4.26)
Finally we can see directly that: V;, = I,Rg (4.27)

By combining equations 4.23, 4.25, 4.26, and 4,27 we can

obtain the frequency response function for the detector.

%t

- Ns —-OCIgﬁgA Rs .
-F = =2 = o .
() Ho A+iwC-TLR® R+ Ro(A+iwC+IRX) “”'2?)
AMiwC-TER o

The analysis we have just completed can be considered
from a different point of view. The incident flux can be

represented by a voltage generator V, in series with the

bolometer as shown: ) l

z
TIE Rs

J)-o———u‘<-—0-b

Y i

If V, & V,, we have from circuit theory:

Rs

Vso = Vi Rz
S
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FIGURE 3

I THE DC CURRENT VOLTAGE
‘° CHARACTERISTIC FOR THE DETECTOR ELEMENT
for X > O

— et et —— —— ——— ——— ——— — s . et et it o e e mmmrre e e e m—— e

{
/ Stope = —R—;,

—\

a%ed Butroes

zL



Vs, 1s the response of the voltage V5 to the signal V.
Comparing this expression with 4.28, the frequency response

function, we can conclude that:
. 2
Ro(}w‘ iwC + [SRo¢ )
. 2
AiwC - LR ot
In Appendix 6 the dc and ac impedances of the detector

element are calculated using a direct circuit analysis apy
proach, The ac impedance obtained is in agreement with
equation 4.29, Figure 3 is a plot of the de¢ current voltage
characteristic,

We may now write 4,28 as:

AMiwC-T2R,0¢ RgZ

2 («¢I.RAY R:
Nl = a .
|a,()] (v TR+ e [ 2T

This expression can be written, using 4.22 and L4.24, in the

CL(F) - - o< I.R.A Rs

form: R 2( s
q ({) 2 — a ROA TO—- —TC-L)Z . RS =
o [1+ G+ P WX |Re 2]

(4.30)

4.3.2 The minimum detectable energy flux,

Letﬁus first consider the output voltage fluctuation
resulting from the temperature noise., From.;he definition
of the frequency response function we can write:

sy, (£) = la ()l s, (431)
Sy is the sﬁectral density of the fluctuation of the incident

radiation energy flux, In section 2.2.3 we saw that:
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51 5+5
var H = 1%5%2{70
This is an expression for the fluctuation of the black body
radiation energy flux arriving at an area A and observed
continuously for a time t,. In section 4.l.3 we showed
that the equivalent bandwidth of a continuous observation
process of duration t, is given by B,=1/2t,.

At this point in order to simplify the analysis, we
shall assume that the incident and emitted radiation streams
are both at temperature T; We know that the incident radia-
tion is at temperature T,, the temperature of the surroundings,
but the inclusion of this nonequilibridﬁvcondition in our
analysis is complicated by the impending generalization of
our formulas to include conductive as well as radiative
thermal coupling. The dependence of var H upon T for the
conductive thermal connection is no longer a fifth power
relatiogship, and hence the ratio of the radiative coupling
to the conductive coupling would have to be determined in
order to include this nonequilibrium condition in our fluctua-
tion formulas., The assumption that both streams of radiation
are at temperature T will result in a pessimistic value for
the semsitivity of the detector.

Returning to our equation for var H, we replace 1/2t,
by Bo, and multiply by two to account for emitted and inci-

dent radiation streams, Therefore:

32T KT B or  var H - 4KTAeBe

var H = —s
ishu®A A*
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Appealing to the argument of section 2.3.4, we shall gener-
alize this result to include” conductive .as well as radiative

thermal coupling. var H = 4kT2A Bo
AZ

The spectral density of this fluctuation can be written as:

5. = BT2A
g —N (4.32)

From L.Blﬁand 4.32 we can obtain the spectral density of the
fluctuatign of Vg. We shall now attach a low-pass filter of
bandwidth B to the detector output. The véitage fluctuation
at the output of the filter will 2ow be given by:

(var Vy), = ofsvs(f)df
For the case where BK B,, that is when the filter is the
dominant factor in the noise reductionasystem:
= LkT°BR, o®(To— Ty ) ‘Tfi——z—lz (4433)

At first the factor T,— T,may seem surprising, since we know

(var Vs )‘femp_
that the temperature fluctuations of the element exist when
To= T,. However the condition T,= T, represents the trivial
" case of Vg = O since I, must equal zero if there is to be
no joule heating. .

For the case where B>> B, which is of theoretical
interest only, we have:

(kTe)( o ? [To'Ta] Ro), Rsz
C 1+ o [To-Tal/ |Re+2|°

(var Vs), (4a34)

(var Vslhmp is the fluctuation of the output voltage of the
filter following the detector, resulting from the temperature
fluetuation of the detector element.

The second and only other major source of noise in



the bolometer is the thermal or Johnson npise present in
the detector element and in R¢. From Nyquist's theorem we
know that the spectral density of the current fluctuations

through an impedance Z = R + iX will be given by:

In our detéction system the bandwidth of this Johnson noise

will be limited by the filter at the detector output. There-

fore: T2 - varl = 4KTRB.

The Johnson noise can be represented by the following circuit;

O
T 13- 4KkTR.B
V,

— _— Ro '2\2
I;o Z % I: RS§ s .
T : T ] l I = 4kTuB
) ] Rs

We choose an R; with a large heat capacity thus enabling us
to assume that the temperature of Rg remains equal to T..

The total current fluctuation will be:‘

T2 = HkB[I—% + Ta]

E Rs
' Rs Z
The output impedance of the detector is g 4z . Therefore:
TRo 4 T RsZ | °
= k [‘_— + ‘&] 2
(var Vol = wkB| 55 v 2|55 (4.35)

This is the fluctuation in the output voltage of our filter, .

caused by the Johnson noise.
The total output voltage fluctuation of the detection
system—is obtained by adding the temperature noise contri-

bution to the Johnson noise contribution. That is:
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var Vg = (var Vg ), _+ (var Vs ),
These individual sources of noise can be added because the
Johnson‘n01se is completely 1ndependent of the temperature
noise, In order to simplify the expre351ons somewhat we

shall assume that R.> Z, Therefore from 4.33 and 4.35 we

have:  var Vs = 4kTBRo [1+oa?T(To-Ta)] (4.36)
| ‘ or BKB
and from 4.34 and 4.35: | B ¥
- T (To-Ta) . B
var Vg = HkTBRo[l + T T) 81:] (L.37)
-{\or B*)) B‘t

Gill (1958) states an equation for the output voltage
fluctuations of a bolometer which is equivalent to our equa-
tion L4.36., He then questions the validity of the addition
of the Johnson and temperature noise, comparing this situa-
tion to a galvanometer subject to Brownian fluctuations with
a resistor across the terminals. We know that the Brownian
fluctuatibns of the'galvanometer indicator and the Johnson
noise of the resistor are hot added and that equipartition
determines the galvanometer fluctuation for all values of
the resistor. This results from the fact that the Brownian
fluctuation spectral density is changed when a resistor is
connected across the galvanometer terminals because of the
damping effect which results., Therefore both the Brownian
fluctuation and the Johnson noise depend upon the value of
the resistance and hence are not independent fluctuations.

However no such relationship exists between the temperature

noise and the Johnson noise in a bolameter and we cannot see
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any justification for comparing the two situations,
It is interesting to consider the ratio of the tem-
perature noise to the Johnson noise which can be easily

obtained from h.36 and 4,37:

Temperature noise _ (var Vs )ioe = 0T (To~Ta) \ror. B K By
Johnson noise (var Vy)

" Johnson

= O('ZT(T_"-T“) for B By
1+ o (Te-Ta)

Consider a metallic detéctor element in which o = :%;:

Temperature noise _ To—Ta < 1 for | B K By
Johnson noise To ,
- (To—Ta ) B_‘c_ &« 1 for B> By
ETB—TO. B

" In both cases, B By and B> By, the Johnson noise pre-
dominates over the temperature noise in a metallic detector
element, In the case B> By the temperature noise may bé
neglected in comparison with the Johnson noise,

The minimum detectable energy flux can now be obtained

- directly from the relation:

l var Vs
H: = varH = —=
Min ‘ao(+)‘2
From 4.30 and 4.36 we get:
2 _ ykT2AB 1 2 e 1]
.- + q T;‘Ta w r
Hein Az [d‘T(T°~Ta) + 1][] + {1 .( )} o)

for BK By. The case for B> By can be obtained directly

from 4.30 and 4.37. For a metallic detector element in

which o~ —%—, and when wWt«K1, T, = 1,4 T, is the value of

o

T, for which Hp, 18 @ minimum in equation 4.38. It is

(341

apparent that the optimum value of A 1is the smallest attain=-
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4
able value. However one must remember that it is desirable
to have T = C/% <K.1/h,, where w is thé modulation fre-
quency of the signal., Therefore we must minimize c, the
heat capacity of the detector element, and then minimize A,
keeping A » Cwin W « The dependence of C and A upon A,
the area of the detector element, prohibits us from making
AAlarge in an attempt to decrease H,, . A suitable detector
area must be chosen as the first step in the detector design.,
A large value of &, the temperature coefficient of resis-
tance of the bolometer element, is desirable and negative
values of o are acceptable, In fact for frequencies at
which WT is comparable to or greater than unity, negative
values of o are preferable, Note that the electrical
resistance R, of the bolometer element, does not affect the
sensitiviﬁy of the detector,

The smoothing effect of the observational procedure,
which was discussed in detail earlier in this chapter, has
been omitted in this treatment éf the bolometer noise in an
attempt to confine the discussion to the fundamental prop-

erties of the bolometer,
4.3.3 The noise factor.

The noise factor was defined previously as:

72 _ Hmn (real detector)
- H,.. (ideal detector)

In section 4.,1.1 we defined the ideal energy detector and

~in sections 4.1.2, 4.1.4, and 4.1l.5 we calculated var H = H;m



for this device with various input signals and smoothing

arrangements. From equation 4,18, when the smoothing of the
: 1

noise is dohe entirely by the low-pass filter of bandwidth B,

we have for the ideal energy detector:

2
H;;n = qk:2)‘6 (]»+ wztl)
For the real energy detector, in this case the bolometer, we
have equation 4.38 for H.,, when the filter is the dominating

factor in the noise reduction, Therefore immediately:
1+[y+a(trT;ﬂszTZ>

712=(1+ =) e

{Or 5 << B‘C

L.4 The Vacuum Phototube.

In cbntrast to the bolometer which is an energy detec-
tor, the vacuum phototube is a quantum or particle detector.
That is its response depends upon the number of photons, not
the energy of the photons, with energies above a certain
threshold value, The vacuum phototube can be used as a radia=-

tion detector in the folléwing way:

B i

e — =

N radiation R
T Vs

V. is the voltage across the tube,

The greatest sensitivity will be obtained from this
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device when all the electrons emitted from the cathode, reach
the anode. The currents involved in detecting the radiatién
will be small and there will be no space charge effect. The
potential energy diagram for electrons in the phototube must

have the following shape:

Potential ' .
Ene "8 y “ }

of the

Etectrons We -

|

W
eV, . lﬂ
;’rhode—— o ‘:ac_:ur: - anode

= Distance

We is the work function of the cathode and W, is the work
function of the anode. The work function of a metal is the
enérgyvrequired by an electron to enable it to leave the

- metal, From the potential energy diagram we can see that if
all electrons emitted by the cathode are to reach the anode,
we require; eV + W > W,. In addition; Vo= Vi + IR.

Therefore we have an upper limit on the value of R:
Vo_- Wa = W

80

R < = e is the charge of an electron.

I

The dark current I,, is the current flewing in the
phototube in the absence of signal radiation. This current is

caused mainly by thermionic emission of electrons from the

cathode. The thermionic current shall be denoted by Ig .

Photoemission by the black body radiation from the surroundings

at temperature Tq contributes a small current which we shall

call I,,. HRichardson's equation gives the total dark current

4
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from a perfect cathode surface in thermodynamic equilibrium

with the surroundings:

(Lmemk2

2 - [
Lo= lor+ Top h3 )ATa exP( %—Q)

A is the area of the photocathode., Consider briefly the
magnitude of Iop. From section 2,1.6 we have an expression
for the mean photon flux with frequencies in the interwal dy

about VY, in one direction, for black body radiation at

temperature T ; ﬁﬁ7 Zﬂvzdy
Y

o v Cexp = 1)

If q()y ) is the quantum efficiency of the photocathode;

I, = Ae fcb M)y o1y

Let us assume q(y )=1 for VYV = ¥
a{v)=0 for V< ¥
We shall carry this assumption through the entire discussion

of the phototube, Therefore :
a4 m

I. = ETTAeJ Vzd"
oP _,U.z exp(

. W
Since W, is considerably larger than kT, for room temperatures
and for the lowest known work functions, we can approximate
the integral and obtain finally:

WZ

C
Ie ® Zrmmoi Lo < Lo

Therefore the dark current is almost entirely due to the

thermionic current.
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L.4.,1 A monochromatic radiation signal,

a) Frequency'response function.
We define a monochromatic signal of frequency Yy to

have a bandwidth AY about )Y, where AV )Y, In addition

we require that VYV > %? so that q(v ) will equal unity., Wwe

can obtain from section 2.1.6 the mean photon flux for a

monochromatic signal of frequency V:

s
A

.,’__ 2
I L 1 . (4.39)
v lexp(()- 1)
Since q(v ) = 1, the signal current will be:

2mAev Ay ‘ (A.AO)
V2 exp{fy) - 1]

The upper 1limit on the signal modulation frequency

I, = eAqm, =

which can be used is determined either by the transit time
of the electrons in the phototube or by the time constant
Y = RC caused by the stray capacitance C, of the circuit,
Some typical values for these quantities could be:

R ~ lO6 ohms, C ~ 10—“ farads, Therefore RC ~ 10-5 séc.
The transit time of the electrons in the tube will be of the
order of lO-G'Seconds. Therefore we shall neglect the tran-
sit time of the electrons and assume that the stray capaci-
tance of the circuit determines the frequency response of
the detector, The equivalent circuit of the detector will

be:

I

| |
Fhototube % R —— V¢
| !
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1sR

Vs| = 15121 = T wer?

(hokl)

W is the signal modulation frequency. The frequency res-
ponse function for a quantum detector is defined as:

a,§) = Vs : (4ok2)
. ms
Therefore, from equations 4.39 to L.42 we can obtain the

frequency response function of the phototube as:

eAR

la, ()| =

for a mo@ochromatic radiation signal.
b) Minimum detectable photon flux. ,

In the vacuum phototube we have th;ee major sources
of noise: i) Signal noise- The fluctuation of the siénal
photon flux Which behaves according to Bose-<Einstein sta-
tistics will cause a similar fluctuation in the emitted
electrons. 1ii) Shot noise of the dark current- Since the
dark current is almost entirely caused by thermionic emission
we can assume the electrons are emitted randomly and the
spectral density of the current fluctuations caused by this
random emission will be given by the familiar Schottky rela-
tion: S;(f) = 2eI, . Note that the mean value of the
dark current does not affect the noise level, iii) Johnson
noise in R~ Nyquist's theorem tells us that the Johnson noise
may be represented by a voltage generatorlvz in series with
R having a spectral density of: Sve (f) = A4kTqR. By choos=
ing R with a large heat capacity, we can assume that the

temperature of R will remain equal to Ta. In addition we



arrange that the heat capacity of the cathode is very large
so that there wiil be no appreciable fluctuation of the
cathode temperature.

Let us consider the signal noise first of all, From
section 2,2.3 we can obtain an expression for the fluctuation

of a monochromatic signal flux:

h
var mus = LF“U Bo exp(k“;’;) AV

UPA [exp(22)-1)°

where we have replaced the bandwidth of a continuous obser-

vation of duration t, by B, = 1/2t,. The spectral density
of the flux fluctuation will be:

?exp (E2)
Smy - ymyTexe \ %1/ AV
’ 4 A[exp( ) 1]
or from 4,39:
S, = 2m, exP(E—H

A{exp(h”) 1]
From 4.42 we have:

:' ¢ = eZARZ . aexf(h-r, —rﬁs
56 = Al S, e (WeR [exp (Y- 1]

This is an expression for the spectral density of the output
voltage fluctuations resulting from the signal noise,

We have already seen that the spectral density of the
current fluctuations as a resultof the shot noise of the

dark current is given by; S;(f) = 2el,. Immediately from
2
) ® 1+ (wcRYy
This is the contribution of the dark current shot noise to

the spectral density of the fluctuation of Vg.

The Johnson noise cohtribution to the fluctuation of
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V. may be determined from the following circuit:

-0

R T
Phototube - —_— C Vs
Va ‘

ﬂ

C is the stray capacitance.

S, (f) = tkT,R

| v
S, ) _(_)__2 Suglf)
R? ()

Sy (f) = UKTR_
> 1 + (WCR)?

We have now calculated the contribution of each of
the major sources of noise to the fluctuation of Vg. Since
each of these noise sources is statistically independent of
the other two, we may add the individual contributions to

the fluctuation of Vs, to obtain the total fluctuation of Vs.

hy
= R® 2 e2Am, e)cp(kfs) + u'kTa
2, ) 1T wiciRe exp () - +eel
ol 7L
- Immediately we have:
- _
varV = REB, |2EIAMs exp (T +eel, + L”‘T“ (hoddy)
exP(KT)-‘ e

where B, = 1/LRC is the bandwidth of the phototube. Notice
that the bandwidth of the detector has a smoothing effect on
the Johnson noise. Recall in the bolometer the detectér

. bandwidth had no effect on the Johnson noise.

We now can obtain an expression for the minimum

detectable photon flux:
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2 var Vs
Mmia = var Mg lao“)‘ 2

" , 4kTe
(eR) exp() -1 K

(4.45)

| hy
2C?R? 2 YexpliT
mﬂz\(n = B‘t [1+ wec R] 26 A(mm"‘) P(kTS) + aelo + L”(Ta}

Solving this quadratic equation for m,; , we obtain:

r4
_ Bellrwesflexplig)) ], [exe(@R)-1) (el 4T, ]

min

hy\ _ 2 2hy 2
A [eIPL_k_ﬁ) 1] e* B, exP( kT) [1 + (WcR) }
| (4.+6)
This expression, and in fact the entire preceding
analysis, can be simplified if we assume exp(%%%) >»> 1.
5

By requiring exp({gé)‘to be >> 1, we are saying that radia-
tion behaves according to the corpuscular theory rather than
the wave theory, a condition which is reésonable for a
photoemissive prbcess. If this assumption were méde at the
beginning of our analysis we could have treated the signal
noise using Schottky's relation; SI(f) = 2elg, since the
photons tend to arrive randomly when the corpuscular pro-
perties of the radiation are dominant.,

c¢) Noise factor,

We define the noise factor for a quantum detector as:

= >1

m,;, (ideal detector)

71 m,.. (real detector)

An ideal quantum detector can be conveniently defined as one

in which the only source of noise is the signal noise., There-

fore from L.,4,5 we have immediately:

2B, (1+w?c?r?) exp (%%

Alexp(22)-1) (4ek7)

mrm'n ('dea') =

¢
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Therefore from 4..46 and 4.47 we have:

u kTa ) (4.48)

p-tde [r Exet) Tt -

B e, exp(%’%’)[u (ch)‘]

As expected, when we remove the dark current noise (I,= 0},

and the Johnson noise (T,= 0), 77 = 1.
L.4.2 Black body radiation signal, -

a) Frequency response function,
From section 2,1.6 we can obtain an expression for
the flux of photons in the frequency interval dvV about Y

for a stream of black body radiation at temperature Tg:

(/) = amyidy
y
s vt [exp( 2)- 1]
We
Recall; qlv)=1 for V= T
qly) =0 for V¥ < v—:ﬁ—
Therefore the signal current will be:
. m ’
1. = aneAf yidy
s 2 exp(%a—l

=
h

From equation 4.4]1 we have:

VAR aﬂeAR . g yidy ‘
Y (1+ w2 ceR?) 2 exp(%)- 1

%

h

We-~can obtain the total photon flux for black body radiation

by integrating (m, ), over all frequencies Y, as in section

2.1.6 to obtain: —_ 2Tk T,
o obtain T, = ——E;;’"‘(ZWOH)
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Therefore immediately:

(s <]
_ vl eAR xfdx
|G (f)] = T, 240y (1+ wic?r’)% exp(x) — 1 (1 49)
We - ‘
. ﬁs
For the physically unrealizable case of W.= O, we see that:

. eAR

|as )| = NEWoTd | uhsg)
which we have seen is the frequency response function for
the monochromatic signal (equation 4.43). This is to be
-expected since when W.=0, q(¥ ) = 1 for all photons, and
the quantum detector does not distinguish between the energies
of thé photons once the enefgy is sufficient to eject an
elecﬁron from the photocathode..

| For the physically more probable situation of

exp( ¢ -T ) > 1:

ot We
| j____xzdx ~ sze.xdx = e"T’[(:‘_[f) + %VT—‘+ 2]

ex s s

w/ €1 W
KTy kTs

The value of this integral will be less than one for the
values of;ch/kTS for which the approximation is valid,

Therefore:

. eAR Weyd . 20
las ] ¥ === exp(" m)[( )+ ?‘] (-21)

As W, increases, fewer photons are capable of ejecting
electrons and the frequency response function becomes smaller,
b) Minimum detectable photon flux,

The Johnson noise and the dark current shot noise will

be the same for the black body radiation signal as for the.
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monochromatic signal. However the signal noise must be
reconsidered, From section 2.2.3 we have an expressionn

for the flﬁctuation of the flux of photons in the frequency

$ ) N V
interval dy about V: var mys . 41y 2 B, exp(%-ﬁ) dyv
v A[exp —1]

where we have replaced 1/2t, by B,. Immediately the spectral
density of this flux fluctuation will be:

g - hmwyiexp| ) gy

3 2
ve A[exp kT;) :]]
The spectral density of the resulting current fluctuation

[s.-]

will be: 2
G - 4meA JV exp(fL) dy
I ve ! [ex’P(F‘E)—‘I] ’

Now we can obtain the spectral density of the resulting oute

put voltage fluctuations:
RZ
SYs = 1+ (wc R)z ) 615
it x
2
q. = telARCK TS jxxe d:
g 12 h? (1+w‘C’R’) (e '1)

kﬁ
Let us first consider the practical case where

exp(ﬁ)» l:

~ 4TEARTKTY | oo [ We®, 2We +2]
Sy, (f) DTRI (11 e ©) P( kT) (k'r) ks

R zel
——————————— e
1+(wer)®  — °

Recalling that S(f)= Tiiwcey  S:r(f) , we can see that

i

2

the signal noise can be represented by the Schottky formula;

SI(f) = 2elg. As we mentioned previously, the requirement



o0

exp(igi) >» 1 1is equivalent to assuming that all photons
capable of causing photoemission are behaving according to
the corpuscular theory of radiation. Therefore we can use a
special case of equation 4.46, for exp(%% ) » 1, to obtain
the minimum detectable photon flux for a black body radia-

tion signal;
2 Yk Ta
Mo = Be (110 C*R?) 1+\,1+261°+ ; }

A € By (14 w2c?R?)
For the unrealistic but theoretically interesting

case of W.= 0; we have for the signal noise contribution to

S\JS (f); SVS(#> - Ytrie? AR? k3T53

3u2h® (1+w2ciR?Y)

_ R*? I e
T Ir@eR) ST 32 wow)

Notice that the signal noise cannot be represented by
Schottky's formula in this case as the wave properties of

the radiation have an appreciable effect on the fluctuation.
Following the procedure used in the case of the monochromatic
signal we can obtain the minimum deteptable photon flux for:a

black body radiation signal when W.= 0 as:

r4 2p2 kTa
%8, (1+ w2c?R?) ’ v(2el, + %
mmfn = t( 1+ 1+_1T ( R )

3(z.yo4) A 3(2.4o4)%e? B, (1+wC?R?)

Let us consider the optimum value of some of the para=-
meters of the phototube, Obviously it is desirable to have
the dark current Io as small as possible, The optimum value
of R is the largest value of R that will alléew R« l/wC,.. ,

where C,;, is the smallest stray capacitance that can be



4

attained. The value of the voltage source used in the detec-

WA—Wc
tor must satisfy the condition; Vo, > IR + —%

A large detector area is beneficial but it must be remembered
that both I, and C vary directly with A,

Throughout this discussion of the phototube, in order
to confine our analysis to the phototube itself, we have not.

considered the smoothing effects of filters or observational

procedures, If a filter of bandwidth B« By is used to reduce

the noise, our equations will still apply if B4 is replaced
by B. |

It is interesting to note that for a phototube of this
type 4kTa/R 1is usually much larger thah 2el,. In addition
LT, /Re®*B is usually very much gfeater than one, and the ex-

pression for m., can be approximated as:

2 1+ w2c?Rr?
My HkTRB- (—?-A—Z—Ra—>

That is, as in the bolometer, the Johnson noise of R is
usually the most significant noise source in the phototube.
¢) Noise factdr;

Following the treatment of the monochromatic radiation

signal, we have directly:

kT
‘)’Z -.-_1&_ ]+,{1+ 2ely + 2 exP(RW?Z) » 1

e? B’t (1+ wic? Rz)

n=41 ]+1[1 pJoleel + te) We=o

9(2.4o4)° €7 B, (1+ wic?R?
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“APPENDIX 1
To Show that (3 equals -1/kT.

Consider a small change in energy of the system
5Ey: SE, = 5huhy )=n,95(hy )+ hv§n,
The firsg term is the change in energy as a result of .
the change in volume: n,S(thy) =-P Sv
whereas the second term represents the change in energy
resulting from eiternally added heat: hyén, = $Q
From the Lagrangian maximization procedure in section
2.1.2 we have: $(1n W)=-/3 hvén, =73 5Q (1)
Recall the Boltzmann equation: 8 = k 1ln W
from which we have: 9(ln W)= $S/k (2)
The second law of thermodynamics is $Q=T9%s (3)

Equations 1, 2, and 3 lead immediately to:

1 ¢
/3 kT
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APPENDIX 2
Integrals.
’ «©
e -1 . {
° m"‘ -ax n:;c
We know X'e dx = a
s o] o oo _
Now: IEEZBQZi _ [’7cmt3 * A
e -1 1-e™

-2%

[;me-x(l*’e—x;e = )d‘x

|

= m!(1+‘2’r7~?|* 31“14'"' )

= m! §(m+1)
§ (n) is the Riemann zeta function tabulated in the
Jahnke-Emde tables,
In the integral for n, the total number of photohs,
m= 2 and the integral is equal to 2.404 since %(3) = 1,202,
In the‘intégral for E, the total energy of the photons,

v "
= 3 and the integral equals Yﬁg since %(4) = T;;b

2, — fx"‘ ln (1-€7%) dx

o ® e
Recall - XY = - =
lh( -e’) f%; /gm, -
Therefore:  — fxmln (- € )dx x” dx
P (
c0 |
i i
= m! §(m+2)

In the integral for S, thé entropy of the radiation,

v
m= 2 and the integral equals T since §(a) =

4s 90
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APPENDIX 2 (continued)

f xm+1 e dX
Integrating by parts: o o
x™e*dx o ox™ f(mﬂ)xmdx
(&1 =1, 1
= ( 1 -1
(m+1)' (l + Zm#l + —3‘,“';| + )

= (m+1)! §(m+1)
2
The integral for var n equals V/g since m = 1 in this
2
integral and -§(2)==TLZ . The integral for var E equals

4 ¥
'ﬂSE since m = 3 in this integral and §(4)= L-.
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APPENDIX 3
Einstein's Treatment of Fluctuations in n,.

We know that at equilibrium the Helmholtz free

energy is a minimum, Therefore: (

(), .- &

n, = ﬁ; min

%) -6

Iy by
Expand F, in a Taylor series about the equilibrium value
with respect to variations in n,:

2
— dFy (nu‘ﬁ;')‘Z a_—Ey)
Fu = (F”) -—-+ (ny—nyx JFTV) j c an‘? ﬂv=;v

nﬂ= n’

n.="y

Neglecting terms beyond the second order in (n, - W, ),

we are left with:

—_— (nv"ﬁ—;)z _5_15/)
F-Ff = 2 Iny

n,=n,
In a system in which V and T are kept constant, the

probability distribution of a suitable variable describing

the system is given by:

- [Fe0) - F(x)]} A
kT

In this discussion we are interested in the variable n,.

: | Sf =— - Fy':
Therefore P(n)dn, = PG exp{ ( F)}dny

Plx)dx = P(3) exp{

kT
From the Taylor expansion of F,, we can write P(n, )dn, in

the form:

(_(n-B) (IR
P(n)dn, = P(A) exp{ ﬂz—ﬁqf ( 3N )n.=‘n‘,} dn,

Now we can write: + o0
— R (G
var n, = (h-m) = -&

ww

f p(n,) d(n-m,)

bl s+
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APPENDIX 3 (continued)

Substituting into this expression for P(n,) and integrat-

ing we obtain directly:
kT

————

Val" nu = (ava>
any

nv=’-1_v

The integrals encountered are of the form:
+ 00 2 f
t

-ax . IL
fxze dx = Za\a
o
Ctxz
- = L
(e - 12



97

APPENDIX 4

A Comparison between the Energy Content of a Volume of

Photons and an Equal Volume of Phonons.,

In section 2.1.3 we saw that the mean energy

density of a volume of black body radiation was given

by: ) E; - grh ([ v2dv
v v Je¥-1

The Debye model of the lattice heat capacity of a solid
leads to the expression (Kittel 1956) :

’,
Eo - 3 gmh [Y’dy
vz 2 -
o S 1

for the meaneenergy density of a solid material. 1In the
Debye equation, )/ is the lattice vibratibn frequency and
v, the propagation veéldcity of the lagtice vibration
waves, We have assumed that this prdpagétion velocity is
equal for transverse and longitudinal waves.
3N )3
Y = U"(FTTV)

where N is the number of atoms in the volume V of solid,
A quantum of electromagnetic energy 1is knoﬁn as a photon
while a quantum of lattice vibrational energy.is known
as a phonon, These expressions for E,/V and E/V illustrate
the similarity in the behaviour of photons and phonons,

The factor 3/2 in the phonon mean energy equation
arises from the fact that there are three possible polari-
'zations for the lattice vibrational wave; one léngitu-

dinal and two transverse, whereas the longitudinal polari-
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APPENDIX 4 (continued)’

zation does not exist in the electromagnetic radiation.
The finite upper limit of the integral in the phonoh case
arises from the requirement that the total number of modes
of vibration of the lattice waves be equal to 3N, N being
the number of atoms in the material, In the photon case,
all frequencies and hence an infinite number of modes of
4vibration, are allowed. Consider the ratio of the energy
densities: E,/E < 3v’/2v}. The upper limit of the
integral in the phonon energy expression gives rise to

the nonequality gign. However this nonequality is over-
ridden by the very large value of the ratio v /v2. v,

the photon velocity or the propagation velocity of the
electromagnetic radiation, is of the order of 108 meters
per second, whereas vo,'the phonon velocity or the pro-
pagation velocity of the lattice vibration wave, is of

the order of 5 x lO3 meters per second. Therefore the
ratio v’/ v} will be in the vicinity of 10 . Physically,
this means that there a;e approximately 10|3 times as many
modes of vibration per unit volume for phonons as there
are for photons., As a result Eo» E ,:and also the heat
capacity of a volume of. typical solid material will be
very ﬁuch greater than the heat capacity of an equal
volume of radiation. For example:

C/V= 8,2 x ld—sjoules deéj meter  for radiation at T = 300 K.
C/V = 3.4 x 10° joules deg. meter for copper at T = 300 K.



99

APPENDIX 5

The Integration of D,:

) df ~sin” wite
D“ = 47T J l+‘ﬂ\'2'p'tz N"'Sinz Tl'_‘EC_o
- N

[

Consider: i )
.2 12N 2X
Sin°NX _ p-cosanx _ (e -1) e
Sin?x “1-c0s82%X (eczx_ 1) eazux
Realizing that:
eLZNX 1 N-t L2ax
== = =, €
e -1 a =0

we can obtain the result:
. 2 N |
Sin NX . 2 2a cos 2(N-a)x) -
Sinc X a3
Returning to the 1ntegral for M ; 1f we put 2T fr =y,

we have: . o _ 2 dy _sin tf%
N Ter 1+j . 2 t‘,‘
sin® =%

S ] [ 2(N- qtoy]

Ne {+ { §2QCOS 2NT N
o
- 2 1o - 1
T EXxP (T)Zaexp N’t N

With some algebraic manipulations it can be shown that:

a exp [Sde) = N exp (% )[1 exp(z )] exp(Njfg)[exp(i{)—ﬂ
z P( ) P [1“exP m:\)) ‘

Thefefofe we obtain finally:
- n(-exp(B)] - 2exp( \[1 exp(%)]
D, = 2

N [1" GIP( ﬁ)]
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APPENDIX 6
The Impedance of the Bolometer Element,

The circuit to be considered is:
Ill

F

Vo

@) Vv, exp(iwt)

N

I

Py

When I =0, T=17T,, and 2 = R,. The oscillator will
cause oscillations in I, T, and Z, so we shall write:
V=V, + Viexp(iwt) Z = Ro+ R,exp(iwt)
T = T, + T,expliwt) I = Io,+ I expliwt)

We shall assume the amplitude of the oscillation is much
smaller than the dc¢ value for all quantities, The depend-

ence of Z upon T is given by: Z = Rq[}-rcx(T - Ta)]

from which we have the dc and ac components respectively:

Ry = Ra[l + (To— Ty ] (1)
R, = RXT, (2)

Also we know that; Vv =12 , the dc and ac compoments of
which are; Vo = I,R, | (3)
V, = IR + I, Ry (4)

The temperature response equation is:
C%{: —MT-Td) + IV

Once again we use IV instead of the real part of IV for the
reasons discussed in section 4.3.1. The de and ac components

of ﬁhe temperature response equation are respectively:
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APPENDIX 6 (continued) ,

A(TO—TQ) = VoIo (5)
(iwWC+A) T, = IV, +V,I, . (6)
From equations 2, 4, and 6, we can obtain:
> A Ro[)\+th+o<I§Ra]
I\ )\+1LUC - OCIg Ro.

which is identical to equation 4.29.

From equations 1, 3, and 5, we have:
1, Ra
1 - «12Ra
A

A plot of V, versus T, is given in Figure 3.

Vo =
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