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ABSTRACT 

The Bose-Einstein d i s t r i b u t i o n i s derived, and from 

t h i s the mean values and fluctuations of the thermodynamic 

quantities describing a volume V of black body radiation at 

absolute temperature T, are calculated. 

The problem of the energy fl u c t u a t i o n of a body of 

emissivity £„ i n thermodynamic equilibrium with a volume of 

black body radiation, i s considered from a s t a t i s t i c a l 
2. 

approach. The resu l t var E = kT C , known to be correct 

from thermodynamics, i s obtained. 

The zero point energy d i f f i c u l t y i n the mean energy 

of the radiation i s discussed i n d e t a i l . Arguments are 

presented supporting the in c l u s i o n of the zero point energy 

i n the thermal radiation theory. The problem of the number 

of distinguishable l e v e l s that can be obtained from a certain 

signal power i n a resonator i s discussed i n t h i s section. 

F i n a l l y the results of the theory above are employed 

to determine the ultimate s e n s i t i v i t y of radiation detectors. 

Care i s taken to i s o l a t e factors which are not fundamental 

properties of the detector, from the treatment of the detec

t o r s e n s i t i v i t y . A bolometer and a phototube, energy and 

quantum detectors respectively, are discussed i n d e t a i l . 
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CHAPTER 1 - INTRODUCTION 

The f i r s t objective of t h i s thesis i s the provision 

of a complete s t a t i s t i c a l treatment of the theory of thermal 

ra d i a t i o n . Beginning with the derivation of the Bose-Einstein 

d i s t r i b u t i o n law we s h a l l derive the mean values and the 

fluctuations of the thermodynamic functions describing black 

body ra d i a t i o n . Most of t h i s groundwork, included i n the 

thesis f o r completeness, can be found i n s t a t i s t i c a l mechan

i c s textbooks. 

The problem of a body of emissivity £ v 1 placed i n 

an enclosure of black body radiation i s now considered from 

a s t a t i s t i c a l approach. Lewis (1947) has obtained an expres

sion f o r the f l u c t u a t i o n of the number of photons absorbed 

i n unit time by a body with £ v = 1, while F e l l g e t t (1949) 

has attempted the more general case of £>, / 1. Our r e s u l t s 

are i n agreement with Lewis f o r £»,=•!, but as we s h a l l 

mention i n the text, we disagree with F e l l g e t t f s treatment. 

We then extend our 'analysis to obtain the well-known expres

sion f o r the energy f l u c t u a t i o n of a body i n thermodynamic 

equilibrium with i t s surroundings, var E = kT C. 

The next topic which w i l l be discussed i s the zero 

point energy problem a r i s i n g i n the theory of thermal r a d i a 

t i o n . This d i f f i c u l t y i s often glassed over or omitted 

completely by authors discussing the radiation energy. We 

s h a l l outline the problem i n d e t a i l and present arguments 

f o r the inclu s i o n of the zero point energy i n thermal radia-
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t i o n theory. The eff e c t of the zero point energy on the 

number of distinguishable signal l e v e l s i s discussed with 

reference to a resu l t of Gabor (1950). 

F i n a l l y we s h a l l apply some of the res u l t s of the 

thermal radiation theory i n a discussion of the fundamental 

l i m i t a t i o n s of the s e n s i t i v i t y of thermal radiation detec

t o r s . This question of the s e n s i t i v i t y of thermal r a d i a t i o n 

detectors has been widely discussed i n the l i t e r a t u r e by 

such authors as Jones (1947, 1953), F e l l g e t t (1949), Smith, 
Jones, and Chasmar (1957), and others, some of whom we s h a l l 

mention i n the text. In discussing the detectors we s h a l l 

s t r i v e to r e s t r i c t our treatment to the fundamental prop

e r t i e s of the detector avoiding any purely technical f a c t o r s . 

Noise reduction processes such as the observational technique 

and the use of f i l t e r s , w i l l be kept separate from the funda

mental properties of the detector i t s e l f . We s h a l l i n t r o 

duce several parameters which w i l l give a quantitative eval

uation of the detector performance. The fact that we have 

a l l the radiation f l u c t u a t i o n formulas and t h e i r derivations 

close at hand, should add considerably to the c l a r i t y of 

the detector discussion. 
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CHAPTER 2 - BLACK BODY RADIATION. 

2.1 Properties of an Assembly of Bosons i n an Isothermal  

Enclosure. 

2.1.1 The number of distinguishable modes of v i b r a t i o n of 

electromagnetic radiation i n a frequency i n t e r v a l ll to )) + diA 

Consider a cubical box of volume V and length of 

side L. In order that standing waves be set up i n the box, 

each side of the box must intersect with an i n t e g r a l number 

of h a l f wave lengths of the ra d i a t i o n . Therefore, f o r stand

ing waves to exist we must have: 

where A i s the wavelength of the rad i a t i o n , n,, ntt and 

n 3 , are posit i v e integers, and cos«., cos/3 , and cos If 

are the d i r e c t i o n cosines of the d i r e c t i o n of propagation 

of the ra d i a t i o n . Since 

c o s 1 oc * cos^fi + cos 1- Y - 1 

X 

In n space, co-ordinates n, n x n, , t h i s equation represents 

a sphere of radius r= 2L/^ . The t o t a l number of modes of 

vi b r a t i o n , that i s the t o t a l number of possible standing 

wave arrangements, i n the frequency i n t e r v a l 1/ to 

can be represented i n n space by the volume of the po s i t i v e 
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octant of a spherical s h e l l of radius r and thickness dr. 

This r e s u l t must be doubled to account f o r the two possible 

orientations of the p o l a r i z a t i o n of the r a d i a t i o n . 3v i s 

defined as the number of modes of v i b r a t i o n i n the frequency 

i n t e r v a l dv about y . Therefore: 

where i ~ 

d r = — r — — ' 

v and u are the phase and group v e l o c i t i e s respectively of 

the r a d i a t i o n . Therefore we have f i n a l l y : 

3» — 

2.1.2 The number of photons i n a volume V of black body 

rad i a t i o n . 

n y i s defined as the number of photons i n a volume 

V of black body radiati o n i n a frequency i n t e r v a l dv 

about y* Now consider the number of d i f f e r e n t ways, W, 

i n which n v indistinguishable photons can be arranged i n 

g v distinguishable c e l l s , r e f e r r i n g to a mode of v i b r a t i o n 

as a c e l l , when there i s no r e s t r i c t i o n on the number of 

photons allowed per c e l l : 
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W = 
<3» (<3* » 0» " ' ) ! 

This equation i s the basis of Bose-Einstein s t a t i s t i c s . 

Applying S t i r l i n g ' s approximation f o r f a c t o r i a l s , 

Irt N ! ~ N In N - N 

and neglecting the term unity with respect to <$v , we obtain: 

We wish to determine the mean value of The mean value 

of n „ can be defined as the equilibrium value or most 

probable value of n*. I t i s known that the equilibrium 

state of a physical system corresponds to the state of 

greatest disorder. W, the number of d i f f e r e n t arrangements 

of the rv photons i n the <JW c e l l s , can be thought of as a 

measure of the disorder of our system. Therefore the mean 

value of f\y i s the value of n * f o r which W, o:r In W, i s a 

maximum. In addition we require that: 

Applying Lagrange's method of undetermined m u l t i p l i e r s , 

we obtain: 

constani 

<)nv 
o 

O 

<3* 
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This i s the well-known Bose-Einstein d i s t r i b u t i o n function. 

In Appendix 1, i s shown to be equal to - ~ . Replacing 

g v by the value obtained i n section 2.1.1 we have: 

n* = v*x<(e£ -0 
This i s an expression f o r the mean number of photons with 

frequencies i n an i n t e r v a l dv about v i n a volume V of 

black body ra d i a t i o n at absolute temperature T . 

The mean t o t a l number of photons i n the volume V 

i s obtained by integrating n„ over a l l frequencies: 

j dv JvzM[e.^-{) 
o o v 

At t h i s point the properties of the medium i n which the 

radiation i s confined must be considered. I f the medium 

i s dispersive v and u are functions of V and the i n t e g r a l 

above cannot be evaluated f o r the general case. In a non-

dispersive medium: 

V = M 

£ , the d i e l e c t r i c constant, andyt< , the magnetic permea

b i l i t y of the medium, are frequency independent f o r a non-

dispersive medium. Note that i t i s the product and not the 

ind i v i d u a l values of these two quantities which determines 

the v e l o c i t y of propagation of electromagnetic r a d i a t i o n 

i n the medium. Throughout t h i s work we s h a l l consider the 

media carrying the radiatio n to be non-dispersive. The 

in t e g r a l f o r the t o t a l number of photons can now be evaluated 

and we obtain: 
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1 hv 

See Appendix 2 f o r the d e t a i l s of the integration, 

2 . 1 . 3 Thermodynamical functions of black body r a d i a t i o n . 

Energy, E. 

The mean energy of the photons i n the frequency 

i n t e r v a l Av about V i s obtained from: 

E"w = FT* \\v 

The zero point energy has been omitted i n t h i s expression 

and w i l l be discussed i n chapter 3 . From the above r e l a t i o n 

we have d i r e c t l y : 
~ 8 T f h v v*<*y 

Integrating over a l l frequencies to obtain the t o t a l radia

t i o n energy i n the volume y, we obtain: 

- _ 8TTSV k HT H 

^ I 5 h"*ir* (Appendix 2 ) 

Entropy, S. * 

Boltzmann and Planck have shown that the entropy, 

a measure of the disorder of a system, can be related to 

the number of possible states of the system by the expression: 
S, - k In W 

For equilibrium t h i s becomes: 



k In W max 

It should be noted that t h i s Boltzmann Planck expression 

i s a special case of the more general r e l a t i o n : 

s v = - k h pi *\ 
i n which PT , the pr o b a b i l i t y of a photon being i n the I 

state, i s equal to ~j , a constant. 

Replacing In by the expression given i n section 

2.1.2, we have f o r the mean entropy of the radiatio n i n a 

frequency band dv about j/: 

We replace g y and ru by the expressions i n sections 2.1.1 

and 2.1.2 respectively and obtain: 

b* " V 3T(e&-l) ^ > 
The mean entropy f o r a l l the radiatio n i n the volume V i s 

obtained by integrating over a l l frequencies: 

(Appendix 2) 

Helmholtz Free Energy, F. 

The Helmholtz free energy i s obtained d i r e c t l y from 

the thermodynamical equation: 

F - E - T S 
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Therefore we can obtain d i r e c t l y : _ 

F - - 8 l T * V t ^ T * = - E. 

Radiation Pressure, P. 

From thermodynamics: 

Hence: p -
r ^ 5 V M l 3 V 

Gibbs Free Energy, G. 

Also from thermodynamics: 

O = E + PV - T S 
Therefore we see immediately: 

2.1.4 The p r o b a b i l i t y d i s t r i b u t i o n function f o r the number 

of photons i n the frequency i n t e r v a l d*> about V. 

For a system i n which V and T are kept constant, 

the p r o b a b i l i t y d i s t r i b u t i o n of a suitable variable x des

cr i b i n g the system, i s given by: 

p ( x ) d x = P ( x ) exp [ - l- j d ^ 

Let us consider the p r o b a b i l i t y d i s t r i b u t i o n of the number 

of photons n„ i n the frequency i n t e r v a l dv about v : 



We have from thermodynamics: 

and we know: 

ASv = k M i n W) 

Let us expand In W i n a Taylor series about In with 

respect to va r i a t i o n s i n n»: 

a n , L J" W n , / _ In W lnVY_ ^ i - r - i - y dn// 2. 
fly = rt„ rt^-fl-

Therefore: 

F», can now be expanded i n a Taylor series about R, : 

At equilibrium Fv, i s a minimum. Therefore: 

O 

As we have seen i n section 2.1.2, t h i s equation leads to 

the Bose-Einstein d i s t r i b u t i o n function f o r n„. Returning 

to AF V f we have: 

Therefore we can express the p r o b a b i l i t y d i s t r i b u t i o n 

function P(n„)as: 

P K ) = P ( n W l ( ^ f ) ._(n,-n.f] 
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We know from the law of large numbers that the probability-

d i s t r i b u t i o n function f o r a large number of photons w i l l be 

Gaussian i n form. For a Gaussian p r o b a b i l i t y d i s t r i b u t i o n : 

P(n„) = p(n,) expf- (!2>zJ& 1 
r L Z var ny J 

Therefore by comparison we see that: 
1 

V dn„ / n, *n„ 
From section 2.1.2 we have f o r g v » l : 

d l n W = | n ( l + 2*) 
dru n " 
dMnW _ _ 1 

Therefore, f i n a l l y : 

v a r n , - n * ( n - i £ ) 

This r e s u l t i s obtained i n a s l i g h t l y d i f f e r e n t manner and 

i s discussed f u l l y i n section 2.2.1. 

2.1.5 The p a r t i t i o n function. 

Each distinguishable mode of v i b r a t i o n as defined i n 

section 2.1.1 may be thought of as a resonator having a 

frequency V and containing f v photons. (-fv= 0, 1, 2 • • • °° ) 

The p a r t i t i o n function f o r one resonator i s defined as: 



As a re s u l t of there being an unlimited number of photons 

ava i l a b l e , the number of photons i n one resonator w i l l be 

independent of the number of photons i n any other resonator. 

Therefore the p a r t i t i o n function f o r two resonators w i l l be: 

IE,), = 2 £ « p ( - « i l £ 2 ± * ) - ( i - e'")1 

It was shown i n section 2.1.1 that there are — ~ n 

resonators i n the volume V of black body radiati o n i n the 

frequency i n t e r v a l dv about V• Therefore the t o t a l p a r t i 

t i o n function f o r the radiation i n the frequency i n t e r v a l 

dv w i l l be: ^ = M - C k T j v > 

In E y = - 8TTV^dv, | n ( | - e w ) 

An integration of In ~2.v over a l l frequencies w i l l give the 

natural logarithm of the t o t a l p a r t i t i o n function f o r the 

ra d i a t i o n . \n = f 'jLBj'. dv 

, 2 = 8TTyV k*T* ( A d l x 2 } 

its h'o;* 

The value of the p a r t i t i o n function l i e s i n the ease -with 

which the thermodynamical functions can be obtained from i t . 

This i s shown by the following equations: 



2.1.6 The r e l a t i o n between the photon f l u x and the photon 

density i n a volume of black body ra d i a t i o n . 

Let us place a small r i n g of area A i n our volume 

V of black body r a d i a t i o n . We wish to calculate the f l u x 

of photons, m, passing through A i n one d i r e c t i o n . 

We s h a l l divide the volume V into many very small 

volumes VL , each VL containing n t photons. The normal to 

the area A makes an angle di with the vector rL from A to Vj, 

Also A subtends a s o l i d angle Sli at V,; . The s i t u a t i o n i s 

i l l u s t r a t e d below: 

Let b L be the f r a c t i o n of the photons i n V\ which 

w i l l pass through A i n time dt - dr/v • From geometry: 

"u = ^± = A c o s 6 i  
L H-TT ^ rt* 

Define m as the photon f l u x i n one d i r e c t i o n through A, 

and m-L as the contribution to t h i s f l u x from V; . That i s : 

i 

From the d e f i n i t i o n of b : 
mi A di = be n£ 
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m A d t = 2 be n t 

m A d t - 2 b,-^ = E b ( n t 

since and n;. are uncorrelated. However: 

XL = 

V v = photon density 

We can express the i n f i n i t e s i m a l element of volume i n 

spherical co-ordinates as: 
Vj. = 2.TTt~i sin 0L d r 4 d9; 

Expressing the summation as an i n t e g r a l we obtain: 

F ^ A d t = f A c o s f - . J l . 2Trr*sin e d r d e 
y iftrr" V 
o 

The l i m i t s of 0 to \ on the integration of 0 give us the 

f l u x i n one d i r e c t i o n only. From t h i s integration we get: 
4" v 

which rel a t e s the mean photon f l u x i n one d i r e c t i o n to the 

mean photon density f o r black body radiati o n i n a non-disper

sive medium. From section 2.1.2 we can obtain expressions 

f o r ny and n , from which we obtain: 

v(efc-i) 

h v 1 

m",, i s the mean photon f l u x f o r photons having frequencies 

i n a frequency i n t e r v a l dv about v f o r black body r a d i a t i o n , 

m i s the mean t o t a l photon f l u x f o r a l l frequencies. 



The photon energy f l u x i s defined as: 

This can also be written as: 

f V 

From the expressions f o r m~„ or E„ we can obtain 

and upon integration over V: 
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2.2 Fluctuations of the Parameters describing the Radiation. 

2.2.1 The f l u c t u a t i o n of the number of photons. 

E i n s t e i n has obtained i n a nonrigorous manner, the 

following expression f o r the f l u c t u a t i o n of the number of 

photons i n a system kept at constant temperature and volume: 
kT 

var n = j^f. 
Refer to Appendix 3 f o r t h i s derivation. In section 2.1.3 

we saw that: 

D i f f e r e n t i a t i n g twice with respect to n v , we get: 

This expression combined with Einstein's r e s u l t leads to: 

var n„ = FT* + i-Oil 

This r e l a t i o n agrees with the r e s u l t we obtained i n section 

2.1.4 f o r var ny from the p r o b a b i l i t y d i s t r i b u t i o n function 

f o r n„ • 

Up to t h i s point i n our discussion the wave approach 

and the corpuscular approach to radi a t i o n have been comple

mentary. However, i n the above equation f o r var n v , one 

can see what appears to be two independent contributions to 

the f l u c t u a t i o n . The f i r s t term, 

Var n v = n~v 

i s the f l u c t u a t i o n we would expect i f the photons were d i s t r i b -
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uted throughout the volume i n a completely random manner. 

This term i s referred to as the quantum or corpuscular 

contribution to the f l u c t u a t i o n , 

Lorentz has shown that the second term, 

var n„ = ^L\l 

i s the r e s u l t to be expected i f the f l u c t u a t i o n were e n t i r e l y 

due to the interference of a random mixture of harmonic waves. 

This term i s often referred to as the c l a s s i c a l or wave con

t r i b u t i o n . Therefore i f we wish to r e t a i n the corpuscular 

approach to radiatio n we must r e a l i z e that the photons are 

not randomly d i s t r i b u t e d i n the volume but are d i s t r i b u t e d 

according to Bose-Einstein s t a t i s t i c s . These s t a t i s t i c s 

modify the random d i s t r i b u t i o n to account f o r the wave e f f e c t s 

mentioned above. 

Return now to the expression f o r var ny and replace 

q„ and n v by the values given i n sections 2.1.1 and 2.1.2 

respectively. , z x& , 

This i s an expression f o r the variance of the number of 

photons i n volume V having frequencies i n the i n t e r v a l d.v 

about V f o r black body radiatio n i n a non-dispersive medium. 

The variance i n the t o t a l number of photons i s : 

3 h J u 3 

The integration of var n v to obtain var n i s shown i n 

Appendix'2. 



At t h i s point i t i s in t e r e s t i n g to consider the r a t i o 

—=—~- which i s unity f o r a Poisson process and i s greater 

than unity f o r a system obeying Bose-Einstein s t a t i s t i c s . 

For the frequency i n t e r v a l about V : 

var n„ 1 > 1 

In the c l a s s i c a l l i m i t , hy « k-T : 

v a r n „ k T > ; > ^ 

n v h v 

This represents a large departure from the random corpuscular 

theory of r a d i a t i o n . As was mentioned e a r l i e r , the wave 

properties of rad i a t i o n dominate at low frequencies. In 

the quantum l i m i t , hv » kT , — = — ~ approaches but i s 

greater than one. This emphasizes the tendency of thermal 

rad i a t i o n to behave as random p a r t i c l e s when the mean energy 

per mode i s small compared with the energy quantum hy. 

2.2.2 The f l u c t u a t i o n of the energy of the ra d i a t i o n . 

The f l u c t u a t i o n of the energy of the photons i n a 

frequency band dv about V i s e n t i r e l y due to the f l u c t u a t i o n 

of the number of photons i n the frequency i n t e r v a l . Therefore 

we can write: 

var E v = (hvf var n„ 

° r :

 Y a r £ _ 8TTVh e y*e^dv 
v'[exp(&) - l]Z 

The variance of the t o t a l energy of the radiation i n the 

volume V i s obtained by integrating var E^ over a l l frequencies 

From Appendix 2: var E = U ^ T ^ Y 

i 5 h ' v 3 
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2.2.3 The f l u c t u a t i o n of the photon f l u x . 

Recall the s i t u a t i o n which was discussed i n section 

2.1.6. A r i n g of area A was placed i n the volume of r a d i a 

t i o n . The volume V was divided into many small volumes , 

each containing n L photons. In section 2.1.6, from the 

d e f i n i t i o n of b; we had: 

m A d t = ^ be n,: = ! < l b j n ; 

tn2(Ad-tf = ^ & bL bj ru rij 
<• J 

r W A d t ) = bi bj rii n5 = b; b; n ( m 
i j i j 

since b and n are s t a t i s t i c a l l y independent. Also: 
m A dt - b; n< = £ k 

Therefore: 
(m)'(Adtf - b i b ^ n ] 

v i j 
Hence: a . 

(Adt) var m = ^ ^ ( b̂  ^ n t n, - bi b> n t n,) 

Since b L and nL are independent of bj and nj respectively: 

b i b,- for L * j 

w -for L = j 

Hi rij -For I * j 

n? -For L 

Therefore 
(Ad*)' var m - ^ ( b - n? - (biffm) 1) 

Reeall from section 2.1.6: — A c o s 9; 

bi represents a f r a c t i o n of 4-TT steradians subtended by A 

at . Any f r a c t i o n of t h i s s o l i d angle i s equivalent 

s t a t i s t i c a l l y to any other f r a c t i o n of equal s i z e . Therefore 



bi w i l l have a Poissonian type of d i s t r i b u t i o n which means 

that: - (b c)* + R 

We are permitted to choose A very small and rL very large, 

thus j u s t i f y i n g the approximation: 

b* ~ be since be « 1 

In addition we may choose V T very small so that n; w i l l be 

very much les s than one, and: 
v a r m ~ 

With these approximations: 
(Adtf var m « ^ be var rw 

i 

= ^ \ A c o S 9 i v a r r»; y. 

R e c a l l : V; - S i n e ; d r c d e c 

and note that var n i s proportional to V i n section 2.1.6. 
v a r n< v a r n Therefore: —eT :— = ~ — 

Now i f we replace the summation over i by an i n t e g r a l over 

6 from 0 to f , and i f we replace dr by v-dt, we obtain: 
1! ( A d t f v a r m = (Adt )y var n J ' c o 5 e s ine 

The elemental time dt represents the time of observation of 

the f l u c t u a t i o n s . For a continuous observation f o r a time 

t 0 , we may replace dt by t c . Therefore we obtain: 

V A R M ' 5 V M T V A R N 

The preceding analysis has been i n no way concerned with 

the frequencies of the photons. As a r e s u l t the above 

expression w i l l apply to both var mv, the variance of the 

f l u x of photons i n a frequency band dv about }st and var m, 



the variance of the t o t a l photon f l u x . Therefore 

var m y = rn V 
A t . V 

o r : var m, = 2TTV- e ^ p ( f e ) dv 
v»At. [exp(£)-i] 2 

The variance of the t o t a l f l u x i s : 

v a r m = ZJ-nkr)* 

2.2.4 Fluctuation of the photon energy f l u x . 
We have seen i n section 2.2.2: 

var Ey - (ny) var n„ 

S i m i l a r l y : var H„ = (hv)2 var m, 
o r : var H„ = - -̂ var E v 

or 

4VA"t« 

Therefore: v 3 r ^ = 2 l T e x P ( ^ ) dv 

and: 
Y*r M = 8 ( l T k T ) 

15 h ' - u ' A i 
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2.3 Energy Fluctuations of a Material Body i n a Volume  

of Black Body Radiation. 

2.3.1 A pe r f e c t l y absorbing (black) body with rad i a t i v e 

In our volume V of black body radiation, a small 

black body of heat capacity C i s placed. The f l u c t u a t i o n 

i n the photon fluxes incident on and emitted by the body 

w i l l causes fluctuations i n the energy content of the body. 

These energy fluctuations w i l l produce fl u c t u a t i o n s i n the 

body temperature, a phenomenum known as temperature noise. 

The s i t u a t i o n under discussion i s : 

In Appendix 4 i t i s shown that the heat capacity C 

of a volume of t y p i c a l s o l i d material i s very much greater 

than the heat capacity CR of an equal volume of black body 

ra d i a t i o n . Therefore we are j u s t i f i e d i n neglecting the 

heat capacity of the r a d i a t i o n . 

We wish to obtain the energy or temperature response 

thermal coupling only between the body and the surroundings. 

Black surroundings 
- heat capacity » C 
- temperature T̂ . 

Black body 
- heat capacity C 
- area A 
- temperature T 



of the black body when a photon of energy hy s t r i k e s the 

body at time t = 0. We s h a l l assume the time required f o r 

the photon to transfer i t s energy to the l a t t i c e of the body 

i s very short and may be neglected. The temperature of the 

body, T, can be written as: 

T = T* + AT; 
where AT^ i s the temperature response of the body and i s 

equal to — at t = 0. 

From section 2.1.6 we can obtain an expression f o r 

the t o t a l power radiated by the small body: 
5, V / \1 

p = ATT = K A (T* -4- AT; ) 

S i m i l a r l y the power absorbed by the body from the surround

ings i s given by: 

The d i f f e r e n t i a l equation f o r the temperature response of 

the body i s : C d ^ T y l = - ?r 

d t 

I f we assume A T V 4( To 

then ( T k + A T „ ) H - T* m 4T* AT. 

and c a ( A T ^ + A A T Q 

dt 
where \ E 8TT5k'fTa A 

ish 3-u* 
A R i s the thermal conductance between the body and the sur

roundings due to black body radiation and w i l l have units 

of watts per dggree absolute i n the MKS system. 

The solution of the d i f f e r e n t i a l equation i s : 



AE„ = C A T . = (hy) e x p ( - ^ l ) 

The following objection might be raised against the previous 

discussion. It appears from the above equation f o r the 

energy response that the energy quantum hv absorbed by 

the body i s radiated i n a continuous rather than a discrete 

manner. We know from the corpuscular theory of radiati o n 

that the smallest energy unit f o r radiation of frquency v 

i s hi/ joules. The explanation of t h i s apparent disagree

ment i s that the energy response equation represents an 

average of the responses f o r a large number of events. For 

any single event a photon of energy hv w i l l be emitted at 

a time t - 0 and the plot of AE„ versus t w i l l have the 

form: &R 

t=t 

The average of a large number of responses of t h i s type w i l l 

lead to our energy response equation. In addition, f o r a 

single event: p ( t ) _ K e J c f > ( - ) w t ) 

where P(t)dt i s the p r o b a b i l i t y that the photon of energy 

w i l l be emitted from the body i n the time i n t e r v a l 

between t and t+ dt. K i s a normalizing constant. 

We now must modify Campbell fs theorem to enable us to 

apply t h i s theorem to our photon system which behaves accord

ing to Bose-Einstein s t a t i s t i c s . Campbell's theorem, i n 
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i t s o r i g i n a l form, expressed the mean and the variance of 

a parameter influenced by a Poissonian sequence of events, 

i n terms of the response of t h i s parameter to a single event. 

Let us divide the time scale into segments of length L: 

* - - i - • • 3 2 i n t e r v a l 
hmmb<r 

Define; A„(t) - response of the system at t = 0 to a 

photon s t r i k i n g the body a time t ago. 

/Z,(t) = Z\EV 

R\Vi - the f l u x of photons i n the frequency 

i n t e r v a l dv about v , a r r i v i n g at the 

body during the l i W time i n t e r v a l . 

A - area of the body. 

The number of photons s t r i k i n g the body during the 1 time 

i n t e r v a l , having frequencies i n a band dv about V, w i l l be: 

I T V i • A • L 

The energy response at t = 0 to photons s t r i k i n g the body a 

time i L before w i l l be: 
cO 

F = ^ m„. - A L • nAiL) 
oO 

m„.- AL • /l„(iL) 
c 
OO oO 

E* = (AL) m w . m v . A y ( i . i ) /2 „ ( j u ) 
j, CO oO , 

v a r b~v = ( A L ) ^L , ( m V i m „ . - m „ . m j / I V UL) A^CJL) 

Now m^. m „ - m ^ r n ^ = o -Tor i. * j 
= v a r m i , , -for L = j 

Therefore: ^ 
v a r E „ = ( A L ) 2 ^ v a r • ( i L ) 



As we l e t L = dt 0 ; ^ 

v a r E „ — ( A d i ) - A j Mar m . • h i (t) d t 
o 

We have seen previously that: 

Therefore integrating over t gives us: 

var E = A2 dt • var m, • (hv)* 
2 K/c 

The elemental time dt represents the time of continuous 

observation and may be replaced by t 0 • In t h i s analysis 

we have considered only the incident f l u x , which, i n t h i s 

s p e c i a l case of a black body, i s equal to the absorbed 

photon f l u x . The same argument can be applied to the emitted 

f l u x so that we can write f i n a l l y the important r e l a t i o n : 

var E v = 4 f • At, var fnv • {hvf 

where (m„) , i s the emitted photon f l u x plus the absorbed 

photon f l u x , or i n other words, (m y) M t t, i s the photon f l u x 

which contributes to the thermal exchange between the body 

and the surroundings. Considering photons with frequencies 

in the i n t e r v a l dv about v , t h i s expression re l a t e s the r 

variance of the energy of a body to the variance of the 

fluxes of photons contributing to the energy exchange be

tween the body and i t s surroundings. 

In section 2.2.3 the expression 

v a r m v = ETT e x p (^-) dv 

was obtained. This i s the variance of the f l u x of photons 

i n one d i r e c t i o n with frequencies i n the i n t e r v a l dv about 

V f o r a stream of black body r a d i a t i o n . In our problem 



we have two independent streams of black body r a d i a t i o n , 

the absorbed radiation and the emitted radiation, which 

constitute the entire r a d i a t i v e thermal connection between 

the body and the surroundings. Since these two streams of 

radiation are s t a t i s t i c a l l y independent, the variance of 

the t o t a l f l u x contributing to the thermal exchange between 

the body and the surroundings w i l l be: 

I f we put t h i s expression into our equation f o r var E y and 

integrate over a l l frequencies to.obtain var E, we a r r i v e at 

v a r EL = STiACh' 7 d v 

I f we replace A R by i t s radi a t i v e value given e a r l i e r i n 

t h i s section, we obtain the f a m i l i a r expression: 
Y a r E = k T £ C 

This re s u l t has been obtained from a s t a t i s t i c a l approach 

under the following conditions: 

i ) Black body and black surroundings. 

i i ) Radiative thermal,coupling only. 

i i i ) Thermal equilibrium between body and surroundings. 

2.3.2 A s t a t i s t i c a l treatment of the energy fl u c t u a t i o n s 

of a body of emissivity £ y i n a volume of black body radia 

t i o n . 

Following previous notation the subscript V w i l l 
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indicate that photons i n a frequency band &v about V are 

being considered. In t h i s problem, since the incident 

radiation i s divided into r e f l e c t e d and absorbed radiation, 

we w i l l have four radiation streams to consider. 

Non-dispersive medium k Body having emissivity 
containing black body ^ Sv f o r photons of 
radiation. ^ frequency V. 

mv_ 

m„ - photon f l u x of incident black body r a d i a t i o n . 

m̂ R - photon f l u x of r e f l e c t e d r a d i a t i o n . 

nv - photon f l u x of absorbed r a d i a t i o n . 
m v e ~ photon f l u x of emitted r a d i a t i o n . 

Let us introduce My, the number of photons incident upon 

the body i n time t 0 as; 

t*V = rn„A-to 

i n which A i s the area of the body. In a s i m i l a r manner 

M V R , M V a , and , may be defined. 

The absorption process may be thought of as a binomial 

selection process with M , , attempts, MVft successes, and 8 V 

the p r o b a b i l i t y of a success -per attempt. I f were a 

nonfluctuating quantity, we could write: 

ft 



These are the expressions f o r the f i r s t and second moments 

of a quantity subject to fluctuations of a binomial 

nature with p r o b a b i l i t y c o e f f i c i e n t Let P(M V) be the 

prob a b i l i t y d i s t r i b u t i o n function f o r My. P(MV) i s the 

pro b a b i l i t y that My photons w i l l a r r i v e at the body i n time 

t 0 . Therefore, f o r any P(M„) : 

However: g ( v ( i " g J ^ , £ ^ ^ 

since both these expressions are equal to the f i r s t moment 

of Uy which i s subject to binomial type f l u c t u a t i o n s . 

Therefore M,, = My as expected. 

S i m i l a r l y ; „ M M 

Second moment of M. 

'"A Therefore; = 6 y PV A ( l - £„) + £^ Mj 

and; var F V - v a r M „ + FFV (l-£„) 

From t h i s expression f o r the variance of M„ we can obtain 

d i r e c t l y the variance of M„^ by replacing Sy by 

since the p r o b a b i l i t y of a r e f l e c t i o n per incident photon 

i s 1- Ey . Therefore: 

v a r M„ R = (l-£ „ ) 2 v a r M„ + £„M„(l-£„) 
The p r i n c i p l e of detailed balance requires that 

M„ = M V e. However i t i s important to r e a l i z e that t h i s 

p r i n c i p l e of detailed balance does not require that the 

variance of equal the variance of M„ . Let us now 

consider the f l u c t u a t i o n i n the emitted r a d i a t i o n . As a 



r e s u l t of our system being i n thermal equilibrium, the t o t a l 

radiation incident on the body must be equal to the t o t a l 

radiation leaving the body. That i s to say: 

In addition we would expect the fl u c t u a t i o n s of the incident 

radiation to be equal to the fluctuations of the r a d i a t i o n 

leaving the body. That i s : 

var Mv = var (M„ E + M.R ) 

However since the emitted and r e f l e c t e d streams of r a d i a t i o n 

are s t a t i s t i c a l l y independent, we can write: 

var Mv = var Mw +- var M„ D 

Therefore, from our expression f o r var M„ R we can obtain: 

var M y e = £y(2 - £ J var M„ - S>MA 1 - ) 

The emitted r a d i a t i o n and the absorbed radiat i o n constitute 

the entire r a d i a t i v e connection between the body and the 

surroundings. In addition these two streams of r a d i a t i o n 

are s t a t i s t i c a l l y independent. Therefore: 

var (M y •+ M„ ) = var M„,_ + var M,, 

= 2£„var M v 

Returning to the f l u x notation: 

var (m, + ra>, ) - 2 £ yvar mv 

4TT £ v v'exp ( KT) dv 
[ e x p C g . ) - ! ] 1 

Recall the equation derived i n section 2.3.1 expressing 

var Ey i n terms of var mv . Replacing var mv by var (m„ 

m y A), we have: , ,. / u \ 
v a r E = a i r A C h ^ ^ . e x p t ^ ) d * 



The radiative thermal conductance, A R, f o r a body of emis-

s i v i t y w i l l be given by: 

o 

Assuming i s independent of temperature, and r e c a l l i n g 

that: mv = —r? 7~n—=; 

we have: V - LHAh.2 { €» e x P ^ r ) d v 

Var E>, i s now integrated over a l l frequencies to obtain: 

a f T A h 2 C r V g y exp(i£)d.y 

Immediately i t can be seen that the inte g r a l s i n var E and 

i n A R are equal. Therefore we have d i r e c t l y : 
var E. = kTzC 

This r e s u l t , known to be correct from thermodynamics, has 

been obtained s t a t i s t i c a l l y f o r a body of emissivity £„ i n 

thermal equilibrium with black body r a d i a t i o n . 

F e l l g e t t . ( 1 9 4 9 ) has obtained an expression f o r the 

variance of the number of photons absorbed by a body of 

emissivity £ v i n a volume of black body r a d i a t i o n . His 

r e s u l t i s : var M„ A = £ v var M„ . 

compared with our r e s u l t : 
var My, = El var My + £>, Mv (l-£*) 

F e l l g e t t has not considered the f l u c t u a t i o n introduced by 

the absorption process. In addition the u n j u s t i f i e d assump

t i o n that the variance of the absorbed photons i s equal to 

the variance of the emitted photons i s i m p l i c i t i n h i s 

argument. 
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2 . 3 . 3 The energy fluctuations of a black body i n a volume 

of black body radiation i n a nonequilibrium steady state 

condition. 

The problem to be discussed here i s s i m i l a r to that 

discussed i n section 2 . 3 . 1 with one difference. We wish 

to consider the s i t u a t i o n when a nonfluctuating power P 

i s applied to the body keeping the mean body temperature T 0 

appreciably higher than the temperature of the surroundings T^. 

As i n section 2 . 3 . 1 we wish to obtain the energy 

response function when a photon of energy hi/ s t r i k e s the 

body at t= 0 . Let the body temperature be: 

T = To AT, 

where AT V = t^r °d "t = ° • 

The temperature response equation f o r t h i s problem i s : 

oLt 
From section 2 . 3 . 1 we have: 

From the steady state form of the temperature response 
equation we obtain: p = 2~n '"k* A ( T 0 -Ik") 

15 h 3 u - 2 

I f we require AT V « T then; 

and we can obtain d i r e c t l y : 

C ^ i ^ ) + A R A T V = O 
dt 

where i 8 T T 5 k * T 0
3 A 

A R = 
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This d i f f e r e n t i a l equation i s i d e n t i c a l to the one obtained 

i n section 2.3.1, and we have shown there i n d e t a i l the 

calculations leading to the r e s u l t : 

In t h i s problem we have two s t a t i s t i c a l l y independent streams 

of black body radiation making up the radiative thermal 

connection between the body and the surroundings. These 

streams are the emitted radiat i o n at temperature T and the 

incident rad i a t i o n at temperature T^. Therefore, r e c a l l i n g 

from section 2.2.3 the expression f o r the variance of the 

f l u x of a stream of black body radiation, we can write: 

Now i f we substitute t h i s value f o r A t Q v a r nv + o + a l into our 

equation f o r var Eyt and integrate over a l l frequencies, 

or better s t i l l , compare with the s i m i l a r c a l c u l a t i o n i n 

section 2.3.1, we obtain: 
i n r g k g A C / 5 5\ 

v a r E. = , 5 h * u * XR VT To. ; 

o r var E = ~- 5) 

This re s u l t has been obtained f o r a black body of temperature 

T > T^, the temperature of the surroundings, f o r a thermal 

conductance which i s e n t i r e l y r a d i a t i v e . 

Notice that when T = T a, var E = kT zC as expected. 

Also notice that when T a= 0, var E = £kT 2C. This r e s u l t i s 

i n t u i t i v e l y agreeable since by having To= 0, we are removing 

the incident rad i a t i o n stream aiding with the energy f l u c t u a -



tions caused by t h i s stream. Hence we would expect the 
be 

energy fluctuations to Aone-half of the equilibrium value. 

2 .3.4 The e f f e c t of conductive thermal connection between 

the body and the surroundings. 

Up to now we have considered the thermal coupling 

between the body and the surroundings to be r a d i a t i v e only. 

( A = A* ). We now wish to consider the s i t u a t i o n where 

A= A R + A C » A C being the thermal conductance due to 

conduction by a medium connecting the body to the surround

ings. 

The expression f o r var E v obtained from the modified 

Campbell's theorem f o r a general A w i l l have the form: 

Var E = AC - At, var m,^ • (hy)* 
m * + A c ) 

However m. w i l l now consist of a l l corpuscular fluxes 

which contribute to the thermal exchange between the body 

and the surroundings. In the radiative A case mv, . , was the 
Tot* I 

t o t a l photon f l u x only. In the conductive A case we have 

a phonon f l u x , a phonon being a quantum of l a t t i c e v i b r a t i o n 

energy. It i s necessary to r e a l i z e that equal fluxes of 

photons and phonons are indistinguishable from the point of 

view of energy exchange or energy f l u c t u a t i o n s . Phonons, 

l i k e photons, behave according to Bose-Einstein s t a t i s t i c s . 

Refer to Appendix 4 f o r an i l l u s t r a t i o n of t h i s photon phonon 

s i m i l a r i t y . 

In section 2.2.4, f o r black body radiation, we saw: 



Also, from section 2.3.2: 
X = A- { ™>. A dV lor 6v = l 

o 

A s i m i l a r equation w i l l define A c only i n t h i s case m„ w i l l 

be a phonon f l u x . From these two equations and the equation 

f o r var E y , i t can be seen that i f m̂  i s increased by a 

constant fa c t o r , there w i l l be no change i n the value of 

var E„. Therefore the r e l a t i o n var E = kT*C w i l l not be 

affected by a change i n i " y , 

With t h i s b r i e f argument we have outlined a j u s t i f i 

cation of the generalization of the equation var E = kT 2C 

to include conductive as well as radi a t i v e thermal conduct

ance. 

2.3.5 The e l e c t r i c a l analog of temperature noise. 

Previously temperature noise was defined as the 

fl u c t u a t i o n of the temperature of a body i n a volume of 

black body r a d i a t i o n . This temperature f l u c t u a t i o n i s an 

observable' e f f e c t of the quantized nature of r a d i a t i o n . 

In the" preceding sections we found that temperature noise 

caused by photons i n a frequency band dv about v i s given 

V a r T " ' C* ' ' EGA 
We s h a l l now point out an e l e c t r i c a l analog of t h i s 

temperature noise. Consider the following e l e c t r i c a l 

c i r c u i t : 
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R 

The variance of V as a re s u l t of the shot noise i n the diode 

i s obtained from Campbell's theorem i n i t s o r i g i n a l form, 
e I R = e T R 
zc zc 

and i s given by: v a r V = 

e - elec t r o n i c charge 

X - mean rate of a r r i v a l of electrons at the anode 

The electrons a r r i v e at the anode i n a completely random 

manner. Therefore: var ( Xta) = V t a from which we see: 

X = toVar^T, Therefore: 

var V - - z c 

The following table i s a l i s t of the e l e c t r i c a l and rad i a 

t i v e parameters which can be i d e n t i f i e d as analogs: 

E l e c t r i c a l Parameters Radiative Parameters 

C capacitance C heat capacity 

R resistance thermal resistance 

IT mean rate of a r r i v a l 
of electrons 

m~vA mean rate of a r r i v a l 
of photons 

e electronic charge photon energy 

I current fldw K power fldw 

V pot e n t i a l T„ temperature 

Q charge K energy 



Substituting the appropriate r a d i a t i o n parameters into the 

equation f o r var V, we obtain: 

var Ty = ( M 2 A* t o var rriw 

which i s the r e s u l t obtained from the s t a t i s t i c a l treatment 

of r a d i a t i o n . Since the charge on an electron i s constant 

we can only apply t h i s analogy to photons with constant 

energy, that i s to photons i n the frequency i n t e r v a l from 

v to v + d.v . 
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CHAPTER 3 - THE ZERO POINT ENERGY PROBLEM. 

3 . 1 The Mean Energy. 

The concept of a resonator i n radiation theory was 

f i r s t mentioned i n section 2 . 1 . 4 i n connection with the 

p a r t i t i o n function. There, a resonator was defined as a 

distinguishable mode of v i b r a t i o n . A resonator of t h i s 

type may be represented e l e c t r i c a l l y by an LC c i r c u i t with 

resonant frequency u> = (LC) . The radiation energy i s 

represented by the thermal energy of the resonator. 

The energy l e v e l s of such a resonator can be deter

mined from Schroedinger»s equation (Schiff 1 9 5 4 ) as: 

£„ = (f„ + i ) hv f„ = 0 , 1 , 2 , - • • 

Notice that the energy of the lowest quantum state i s ghv . 

This energy i s often referred to as the zero point energy 

of the resonator. 

In section 2 . 1 . 1 we derived an expression f o r the 

number of distinguishable standing waves, or resonators, 

i n a frequency i n t e r v a l dv about y, i n a volume V of 

electromagnetic r a d i a t i o n . We obtained the r e s u l t : 

a _ 8IT V yz d y 

Knowing the number of resonators and the energy per resonator 

i n the frequency i n t e r v a l dv about y , we can obtain the 

mean radiation energy i n t h i s i n t e r v a l as: 

The mean number of photons per resonator, f v , has been deter

mined previously i n section 2 . 1 . 2 as: 



As before, the mean t o t a l radiation energy i s obtained by 

integrating E„ over a l l frequencies. Immediately we see 

that t h i s integration w i l l lead to the r e s u l t obtained f o r 

E i n section 2.1.3 where the zero point energy was omitted, 

plus an i n f i n i t e term a r i s i n g from the zero point energy 

of the resonator. Note that t h i s i n f i n i t e term exists even 

when T = 0. 

This i n f i n i t e zero point energy of the radiatio n 

f i e l d i s only one of several i n f i n i t e additive terms which 

ar i s e in quantum electrodynamics and have not been explained 

or s a t i s f a c t o r i l y avoided. One hesitates to omit the zero 

point energy as i t ari s e s from wave mechanics and i s connected 

with the uncertainty p r i n c i p l e . In f a c t , i n view of the 

successes achieved by these theories one i s almost forced 

to accept the zero point energy. In addition, there exist 

several observable e f f e c t s of the zero point energy i n other 

materials. One of these can be seen i n the case of l i q u i d 

helium where the zero point energy i s s u f f i c i e n t to keep the 

helium from s o l i d i f y i n g under i t s own vapour pressure i n 

the region of T = 0. A second example i s the scattering of 

X - rays by the zero point vibrations of a c r y s t a l l a t t i c e 

i n the region of T= 0. Also several observable e f f e c t s of 

the interaction between electrons and the zero point energy 

of the electromagnetic f i e l d have been discussed by Welton 

(194#). Among these i s the displacement of the 2S energy 

l e v e l of hydrogen known as the Lamb s h i f t . 



Therefore i t appears as though we must accept the 

zero point energy along with the r e s u l t i n g t h e o r e t i c a l l y 

i n f i n i t e mean energy of the radiation f i e l d . It should be 

noted that t h i s i n f i n i t e additive term included i n the mean 

energy i s a purely t h e o r e t i c a l d i f f i c u l t y . As one would 

expect, t h i s i n f i n i t e energy i s not observable because of 

the fact that any procedure used to measure t h i s energy of 

the radiation f i e l d introduces a f i n i t e upper frequency 

cutoff. Welton (194& 4 ) and Weber ( 1 9 5 6 ) both discuss the 

factors which determine t h i s frequency cutoff. 

3 . 2 Fluctuations. 

3 . 2 . 1 Energy f l u c t u a t i o n s . 

I n t u i t i v e l y one would not expect a change i n the 

zero point of the energy to a f f e c t the energy f l u c t u a t i o n s . 

The Einstein-Fowler equation f o r the thermal energy f l u c t u a 

tions supports t h i s i n t u i t i v e reasoning. Recall the expres

sion f o r the mean thermal energy of a resonator: 

The Einstein-Fowler equation i s : 

var E - k T 2 ^ f 

Therefore we obtain f o r the thermal energy f l u c t u a t i o n of 
a resonator: var £ u = ( h v f e x p f e ) = / hv V 

Note that t h i s r e s u l t i s not affected by the zero point energy 

but that the form of the r e l a t i o n between var € v and 6̂, i s : 
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3.2.2 Quantum modification of Nyquist's theorem. 

An i n t e r e s t i n g point arises i n connection with the 

quantum modification of Nyquist's theorem. Nyquist has 

shown that the spectral density of the voltage f l u c t u a t i o n 

across a resistance R(f) at temperature T i s given by: 

S v ( f ) = 4 k T R ( f ) f « ^ 

Planck's modification of t h i s theorem was to replace kT, 

the mean thermal energy of a resonator f o r c l a s s i c a l f r e -

quencies, by h+^e^-l) , the Planck mean thermal energy 

of a resonator f o r quantum frequencies. However the sugges-

t i o n has been put forth that kT be replaced by h-f ( 6 * r -1} + -gf 

the mean thermal energy of a resonator including the zero 

point term, f o r the quantum case. Therefore: 

The variance of the voltage across R(f), 

var V = {S„(f) ctf 
° T now contains an i n t e g r a l of the form; ^ J[-f 

o 

From a purely t h e o r e t i c a l standpoint we could choose R(f) 

to be frequency independent and the variance of V would 

diverge. However, as i n the mean energy case, t h i s t h e o r e t i 

c a l l y i n f i n i t e voltage f l u c t u a t i o n i s not observable because 

of the f i n i t e cutoff frequency introduced by any procedure 

used to observe the fl u c t u a t i o n s . In addition a frequency 
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independent resistance i s ph y s i c a l l y unattainable and i t i s 
- n 

possible that R(f) w i l l vary as f where n i s greater than 

two. This frequency dependence of R(f) w i l l r e s u l t i n a 

f i n i t e value of the voltage f l u c t u a t i o n . 

This quantum modification of Nyquist's theorem i s 

merely a d i f f e r e n t approach to the mean energy problem, 

since the mean energy i s proportional to the mean square of 

the voltage. The fact that the voltage fluctuations depend 

upon the zero point energy i s not i n disagreement with the 

Einstein-Fowler equation which i s concerned with energy 

f l u c t u a t i o n s . We have shown that the energy fluctuations 

are not affected by the zero point energy. 

3 . 2 . 3 The f l u c t u a t i o n of the energy of a resonator when 

both signal energy and thermal energy are present. 

The following e l e c t r i c a l representation of a reso
nator s h a l l be used: 

Resonator 
Signal Source 

Thermal Cner^vj 

Source 

F i r s t consider the resonator with only the signal 

energy present. The signal source i s such that a voltage 

of the form Vs s i n u»t i s produced across the capacitor. 

Therefore the current through the resonator w i l l be: 
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L s = C ^ =• C u u V s c o s u i t 

The instantaneous electromagnetic energy i n the resonator i s : 

6 - | L i 2 + l e v 1 2 

However UJ = (LC) e , and therefore £ s = |CV a 

Now i n a s i m i l a r way l e t us represent the thermal 

energy i n the resonator when the signal energy i s zero. 

Let the instantaneous voltage across the capacitor as a 

res u l t of the thermal energy be; V x s i n (uut +- 0 ). Hence, 

following, the treatment of the signal voltage, we obtain : 

i T = CuUVT cos (tut + 0 ) 

We have now considred the signal energy and the ther

mal energy i n a resonator, each when the other i s absent. 

Let us now consider the s i t u a t i o n when both energies are 

present simultaneously. The p r i n c i p l e ©f superposition 

may be applied to the voltage across the capacitor: 

V = V s s i n uut + V T s i n (tut 96 ) 

and as before: 

i =• CU ) [ y scosuut •+• V Tcos (tot-t- 0 ) 

e = | c v £ + ^ L i 2 -

= [ v , + VT
2 +- 2V $V Tsincut s i n ( u i t t t ) 

+ 2V sV xcos tot cos ( uut •+• 0 )J 

The following notation s h a l l be used f o r averages. An aver

age over one cycle of tot s h a l l be written as: 

< F > = ^ j F(wt) dM) 

An average over a l l phase angles <f> , i n addition to an aver

age over one cycle of uut, s h a l l be denoted by: 



4 4 
air 

F - ^ / < F C 0 ) > d 0 

The t o t a l energy of the resonator when averaged over one 

cycle of uut becomes: 

The phase angle 0 between the signal voltage and the thermal 

voltage can have any value from 0 to 2TT , a l l values having 

equal p r o b a b i l i t y . Therefore we must average over <f> to 

obtain the mean energy. This leads t o : 

€ = | [ V? + V ] 

or 6 = + 6 T which i s the expected r e s u l t . 

Now consider the second moment of £ . I f we average 

£ 2 over one cycle of wt and then average over a l l 0, 

as was done i n the mean energy case above, we get f i n a l l y : 

- £ [ v? * v ? + ^ v T v 7 ] 
Since the thermal and signal energies are independent we 

have: i f * = € 5 + e / •+ 4 £f5 iTr 

v a r e = - C ^ V 

Therefore: v a r 6 = v a r 6 a + v a r 6 T + £~ T 

This r e s u l t i s somewhat surp r i s i n g . F i r s t , i f a 

noise-free si g n a l i s applied, the energy f l u c t u a t i o n i n the 

resonator increases with the signal energy. Secondly, the 

magnitude of the energy f l u c t u a t i o n depends upon the mean 

thermal energy and therefore upon the zero point energy of • 

the resonator. 

A r e s u l t of Gabor (1950) brings to l i g h t what appears 

to be a strange coincidence. Gabor obtains the resu l t f o r 



var £ as we have done. However, f o r the ;mean thermal 

energy Gabor uses the Planck mean energy which we s h a l l 

denote by £{» That i s : £ T' = 6 T - ̂  . I t i s e a s i l y shown 

that; var 6T' = var er = hv eT
f + (e/)* 

Gabor's inte r p r e t a t i o n of the equation f o r var £ can be 

written as: var £ = var£-, -4- var 6/ + 2. £T' 

Gabor now states that a noise-free signal w i l l be free of 

c l a s s i c a l or wave interference noise only and s t i l l w i l l be 

subject to the quantum f l u c t u a t i o n s . That i s to say, f o r 

a noise-free s i g n a l : var £ 5 = h ^ 6 s 

and: var £ = hv £ s +• hy €4 + ( £ ~ 7 ) 2 + 2 £ s £ ? 

which can be written as: 

var 6 - h i ; e + a e £ 7 -
However i t i s our contention that the expression f o r 

var € should be interpreted, i n terras of the Planck mean 

energy 64, as: 

var € = v a r 6 5 + v a r e4 * 2€~s ( ^ 7 + ^ ) 

That i s , the zero point energy of the resonator should be 

included. Now we may assume a noise-free signal to be free 

of both c l a s s i c a l and quantum noise, that i s var €^ = 0 f o r 

a noise-free s i g n a l . Therefore we have: 

var € - h v £ / -* ( e ? ) * + 2€» 

or: var £ = £ + 2 ? i 7 - ( e ^ ' ) * 

which i s equivalent to the re s u l t obtained by Gabor. The 

fact that the term l o s t by omitting the zero point energy 

of the resonator, can be regained by assuming quantum noise 

to be present i n the si g n a l , appears to be a coincidence. 
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3 . 2 . 4 The s i g n a l energy required f o r L distinguishable 

signal l e v e l s . 

The d e f i n i t i o n of a distinguishable signal l e v e l i s 

somewhat a r b i t r a r y . It i s generally agreed that the s i g n a l 

energy must be greater than or equal to the square root of 

the energy fluctuations i n order that a distinguishable 

l e v e l e x i s t . Figure 1 shows the f i r s t few distinguishable 

l e v e l s as we s h a l l choose to define them. K i s a constant 

which i s determined by the allowable error. From figure 1 

we see that: ^ _ ± [^ar €T t K V v a T i , ] 

and i n general: _____ 

We have seen i n section 3 . 2 . 3 that f o r a noise-free s i g n a l : 

var € i = va r € T 2 6 T £ 5.. 

Using t h i s expression f o r v a r € t i n the preceding equation 

f o r , we obtain: _. ft* 2K-. I v a r 6 r 

and i n general: g ^ . - ^ ) = K * + 7 t c I v a r 6 T 2 6 5 i „ 

Recall the expressions f o r var £ T and 6- f o r a resonator 

from section 3 . 2.1: _, hv hv 

2 
var £ T = c o s e c h * i £ 

V 2. / 2(rT 
var €-r _ 1 ^ 

Therefore: - cosh1 ~ 1 

With t h i s r e s u l t i t i s e a s i l y shown that: 



26s, = K ( K c o s h 2 ^ T + Z) 
€r cosh ha 

Similar expressions f o r €s^ £ s 3 " " °an be obtained i n 

order. F i n a l l y a general expression f o r the energy required 

f o r L 1 distinguishable l e v e l s can be obtained inductively; 

2" 2 cosh 

In a s i g n a l l i n g system a signal energy of zero can be used 

as a signal l e v e l . Hence we obtain L •+• 1 distinguishable 

signal l e v e l s from L nonzero 3ignal energies. 6 3 u , the 

mean sign a l energy used when L + 1 distinguishable l e v e l s 

are a v a i l a b l e , can be calculated assuming that a l l s i g n a l 

l e v e l s have an equal p r o b a b i l i t y of being used: 

^ = i u± 

This leads to the r e s u l t : 

K i s determined by the allowable p r o b a b i l i t y of an 

error. Chebyshev's inequality ( F e l l e r 1954) states that 

f o r a f l u c t u a t i n g variable x, with mean value x, the proba

b i l i t y per observation of fi n d i n g x such that 

i s less than no matter what the law of the f l u c t u a 

tions may be. This p r o b a b i l i t y i s , by our d e f i n i t i o n of 

distinguishable l e v e l s , just the p r o b a b i l i t y of an error. 

The p r o b a b i l i t y of an error i s represented i n Figure 1. 

Consider the pr o b a b i l i t y d i s t r i b u t i o n f o r the energy of the 
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resonator when a signal energy 6 3 i has been received. This 

p r o b a b i l i t y d i s t r i b u t i o n i s the curve centred on 6 X i n 

Figure 1. The pr o b a b i l i t y of an error, Q , i s represented by 

the area of the shaded region under t h i s curve. The area 

under the entire curve i s equal to unity because of the 

normalization requirement. I f the curve i s Gaussian i n 

form, that i s i f the p r o b a b i l i t y d i s t r i b u t i o n of the noise 

i s Gaussian, we can calculate t h i s p r o b a b i l i t y of an error 

Q i n terms of K. 

P ( 0 - J = =
 e x P Z var 6j 

Q - 1 - Z 

Put x - £q- e> 

-Jan var £ z 

Q - l - A 
t r r . 

R - X . dLx = c e r f 

It i s i n t e r e s t i n g to compare the actual Q f o r Gaussian 

noise with the upper l i m i t on Q given by the Chebyshev 

inequality, f o r several values of K. 

K ^ _1 
Q = cerf 2fa 

(Gaussian noise) 
Upper bound on 
Q. (Chebyshev) 

2 -{2 0.157 0.500 

4 f 2 4.7 * 10"3 0.125 

6 f 2 2.2 x i o " 5 0.056 

It i s e a s i l y seen from t h i s table that the p r o b a b i l i t y of 

an error when the noise i s Gaussian i s well beldw the upper 

l i m i t given by the Chebyshev ine q u a l i t y . 
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Shannon has developed the expression 

f o r the maximum number of distinguishable l e v e l s attainable 

with a n e g l i g i b l e p r o b a b i l i t y of an error per signal f o r a 

long message. € 5 u i s the mean signal energy available and 

€ T i s the mean noise energy present. This l i m i t of Shannon's 

can be approached only with the optimum coding procedure 

and with a Gaussian p r o b a b i l i t y d i s t r i b u t i o n of the s i g n a l 

l e v e l s and of the noise. 

For i n t e r e s t l e t us compare the number of d i s t i n 

guishable l e v e l s calculated on the basis of our d e f i n i t i o n 

with t h i s upper l i m i t given by Shannon. For » 1 •' 

where L i s the number of l e v e l s calculated on the basis of 

our d e f i n i t i o n . We have neglected the extra l e v e l a r i s i n g 

from the no sign a l condition since L has been assumed to be 

very much greater than one i n the above approximation. Let 

us make the rather loose assumption that a Q of 4 . 7 * 1 0 

constitutes a " n e g l i g i b l e " p r o b a b i l i t y of an error as con

sidered by Shannon. We have seen e a r l i e r that i f the noise 

i s Gaussian, a Q of 4 . 7 * 1 0 3 can be attained with K = 4^/~2. 

K" U i — 
Hence L ^ = y= = 2 . 3 L f o r K = 4-\| 2 . Therefore we see 

- 3 

that even when we assume " n e g l i g i b l e " to be 4 . 7 x 1 0 , and 

when we choose our noise to be Gaussian, the L we obtain i s 

s t i l l considerably l e s s than L m a x , the maximum number of 

distinguishable l e v e l s attainable, as given by Shannon. 



CHAPTER 4 - RADIATION DETECTORS 

4 . 1 A Consideration of the E f f e c t s on the Detector S e n s i t i v  

i t y of Factors which are not Fundamental Properties of the  

Detector. 

4 . 1 . 1 The i d e a l energy detector. 

In the above heading we r e f e r to factors which are 

not fundamental properties of the detector. We intend to 

discuss three such factors; the procedure by which the 

detector output i s observed, the signal waveform, and a 

low-pass f i l t e r between the detector and the observer. 

These factors w i l l influence the noise l e v e l of the o v e r a l l 

detection system. The expressions obtained f o r the sensi

t i v i t y of the detection system w i l l include quantitative 

measures of the smoothing e f f e c t s of the low-pass f i l t e r 

and the observational procedure. However i t i s possible 

to obtain the s e n s i t i v i t y of the detector i t s e l f from these 

expressions by choosing the f i l t e r and the observational 

technique i n such a way that they do not reduce the f l u c t u a 

tions of the detector output. The s e n s i t i v i t y of a detector 

i s not discussed as such i n the following work. Instead 

we have chosen to use var H, the uncertainty i n our estimate 

of the incident f l u x , as a parameter to specify the detector 

performance. For r e a l detectors we introduce the minimum 

detectable f l u x , defined as (var H) 2, as a performance speci

f i c a t i o n f o r the detector. The s e n s i t i v i t y of the detector 



could very well be defined as (var H) . 

The i d e a l energy detector s h a l l be used as an example 

f o r discussing these three factors mentioned above. The 

response of an energy detector depends upon the energy of 

the incident photons i n contrast with a detector such as 

the photoelectric c e l l , the response of which depends upon 

the number of incident photons with energies above the thresh-

hold l e v e l . An i d e a l energy detector i s an energy detector 

i n which the only source of noise i s the temperature f l u c t u a 

t i o n of the sensitive element, known as temperature noise, 

caused by the fluctuations of the emitted and incident photon 

and phonon fluxes which comprise the thermal connection 

between the detector element and the surroundings. In 

addition we require that the detector element be i n thermal 

equilibrium with the surroundings i n a i d e a l energy detector. 

We how s h a l l obtain an expression f o r the response 

of the temperature of the detector element when a sinusoid-

a l l y modulated power f l u x i s incident upon the element. 

The notation which i s to be used i s : 

C - heat capacity of the detector element, (joules deg."') 

X - t o t a l thermal conductance between the element and 

the surroundings, (watt-deg."1) 

A - sensitive area of the detector element, (meter ) 

T = /x - thermal time constant of the detector, (sec.) 

T - temperature of the detector element, (deg. Abs.) 

T a - temperature of the surroundings, (deg. Absolute) 
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AT = T - T 4 - response of the element temperature to 

an input s i g n a l , (deg.) 

H(t) - sign a l power f l u x , (watts-meter*) 

uJo - angular modulation frequency, (sec. - 1) 

F(t) - fluctuations of the t o t a l power incident upon and 

emitted by the detector element, (watts) 

F(t) = 0 (time average) 

The d i f f e r e n t i a l equation f o r the temperature response of 

the element to a si g n a l f l u x H(t) can be written as: 

C *L*J} = - A (AT) + F i t ) + A H ( t ) 
dt 

I f the si g n a l power f l u x i s of the form H(t) - |H (1 + cosu; 0t) 

the solution of the d i f f e r e n t i a l equation i s : 

AT , ( * r . ) e * - f f e ^ U ^ ] (4OI) 
where (AT) e i s the value of _T at t = 0. 

4.1.2 A step function s i g n a l and the (t 0N) procedure. 

The observational procedure to be used throughout 

our discussion consists of observing the detector output 

N times at equally spaced i n t e r v a l s , each of duration t©/N. 

This sampling technique s h a l l be referred to as the (t 0N) 

procedure. In the i d e a l detector we assume that the temper

ature response AT can be observed d i r e c t l y . In a r e a l 

detector i t would be necessary to observe a secondary e f f e c t 

such as the thermoelectric voltage i n a thermocouple or 

the temperature r e s i s t i v e e f f e c t used i n a bolometer. 
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In t h i s discussion the following arrangement s h a l l 

be considered: 
H ( t ) 

Incident si g n a l 
f l u x 

H(t) w i l l have the form: 
H(t) 

Detector (t eN) procedure 

The readings obtained from the (t„N) procedure w i l l , b e 

denoted by: ( & T ) L i = 0, 1, 2, • • • N 

When iu 0= 0, the general temperature response equation, 

4.01, can be written: t AT = (AT.) e V AH(I- e*) +• e~^[ fin) 
c 

. t h 

For the I reading: 
-ito 

(lt\ - (M) c e « AH (i - e +• e 

its 
. i t . f N T H 

« F(H) ' e*dn (H.02) 

From t h i s L reading, the estimate of H which can be made i s : 
ito 

1 _ - i t o - e « 
Now i n our observational procedure we take N such readings 

and hence we could make N such estimates of H and average 

these f o r a best estimate of H. However, since the temper

ature f l u c t u a t i o n i s present to the same extent f o r a l l the 

readings and the temperature response to the signal i s 
-ito 

increasing i n proportion to 1 - 6 N X , we can see that 
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the estimates of H become more accurate as the time increases. 

Therefore we should give more weight to the l a t e r readings 

i n our averaging system by a f a c t o r proportional to AT. 

Let us define the best estimate of H f o r the N readings 

taken i n time t 0 as: , 

where L i s a normalization constant. I f we were to repeat 

our process over many time i n t e r v a l s t e and average our 

re s u l t s , we would expect: 

- L £ H ( i - e N t ) 
from 4.02, since F(t) = 0. Therefore: 

e **) 
Consider the second moment of H : 

t - i j - i est C > 1 

- L! £ £ I [(AT), - (AT), e *11UT)J - (ATI e &] 
From equation 4.02 we can write: 

H J = L £ ^ H* ( i - e N T) i - e Nt) +• 

The f i r s t term reduces to H = (H N) . Therefore: 
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r ^ 

F ( 7 j ) F ( i ) e T d ^ d * 
o o 

Uhlenbeck and Ornstein (1930) have shown: 
F(Tli F(*) = 2^T2A 

Since $(n-*0 i s equal to zero when ?f^7j we need only-
integrate up to the smaller of the two l i m i t s f o r both 
integrations. Let us denote the smaller value of 1 or j 
by m. Introducing the new v a r i a b l e s : 

the i n t e g r a l i n the expression f o r var H becomes 

j e * d j JakT*A ^(^)di> - k T l c ( e ^ - 1 ) 

0 over +he 
Therefore: _ t \ t N N -li-»j)t. , z__to x 

v a r H „ = C £ £ e T T e " - l ) 

Since i and j are symmetrical we may write t h i s expression 

i=i j=i c ^ 
a s :

 u L l kT 2A* 

Recalling the value of L, the normalization constant, and 

making use of the expression f o r the sum of a f i n i t e 

geometric progression, we can write the above equation as: 

L-T2 A H M i l - ft 1 - ? A I 1 + P . « l ( l - P T ] 4. 
va 

f / - i _ / - . i s \ / - _ ? \ ~ _ i s / 

ru = k T i A t j K i ( i - e H i - ) - e e ' , 1 ' ( n - e " ' X i - e T ) + e"U-e T) 
" [N(i-e"*»)-e*(i-e-*)] 1 

In order to maximize the information obtained per reading 

of the (t eN) procedure, i t i s necessary to minimize the 

c o r r e l a t i o n between each of the i n d i v i d u a l readings. This 

i s accomplished by choosing t D and N so that N « to/%. 
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With t h i s choice of t e and N, equation 4.03 can be written: 

var H, = ' ^ U « ± f ) ( M . O H ) 

As N approaches i n f i n i t y we have a continuous averaging 

process f o r which 4*03 becomes: 
t o - i i 

var H - ^ £ 5*e - 3 - r l i e * - e T 1 ( 4.o5) 

In the continuous case i t i s desirable to have l i t t l e or 

no c o r r e l a t i o n between the i n i t i a l and f i n a l readings. 

This requires t 0 to be » X for which 4.05 becomes: 

V a r = (io»X) (4.0(b) 
A to 

Therefore we have obtained a general expression f o r the 

uncertainty i n our estimate of H, given by 4 .03, f o r a 

step function input si g n a l and using the (t 0N) procedure. 

Equations 4 .04, 4 . 0 5 , and 4.06 give the uncertainty i n 

our estimate of H f o r cer t a i n s p e c i a l cases of the (t 0N) 

procedure. 

The problem we have just discussed has been con

sidered by Dahlke and Hettner (1941) and Kappler (1946). 

The l a t t e r paper contains an expression f o r the detector 

s e n s i t i v i t y which becomes i n f i n i t e as the observation time 

approaches zero. This i s obviously an unsatisfactory ten

dency. We believe that our treatment, which has considered 

a more general observational procedure, i s an improvement 

upon the analyses of the above authors. 
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4.1.3 The frequency response function G(f), and the 

equivalent bandwidth B o t of the (t 0N) sampling procedure. 

In the previous section, because of the transient 

nature of the temperature response, we found i t necessary 

to introduce a weighting f a c t o r i n averaging the readings 

of our (t 0N) procedure. Here we s h a l l consider the (t 0N) 

procedure f o r the case when a l l readings are given equal 

weight as would be the case i n a steady state s i t u a t i o n . 

Consider the following arrangement: 

x C t ) 

From the d e f i n i t i o n of our (t„N) procedure: 

ytt) - "jj- x ( t - < £ ) 
Consider the response to an impulse, x(t) = 

y(t) » £ k i C i - t . " ^ ) 

y i t ) 
l Z 5 

t , 
N 

"t. + tc 

The frequency response of any system can be expressed 
CO 

as: _ | j ( t ) e xp(-iTTi^t) dt 
o 

where J ( t ) i s the response of the system to a u n i t impulse. 
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a w l 
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Therefore f o r the (t 0N) procedure: 

aw - ^ j t U ( t - t r ^ ) e di 

(4.07) 

Refer to Figure 2 f o r a plot of |a(£)| against f t 0 f o r 

N = 1, 2, and co. 

The equivalent bandwidth of a system i s defined as: 

j7a.(«l2ctf 
B = * |a(f.)|* 

where f 0 i s the signal frequency. For a dc s i g n a l : 

|a(f.)|* - |a(o)l* = 1 
f o r the (t 0K) procedure. Therefore the bandwidth of the 

(,t0N) procedure f o r a dc sign a l i s : 

(4.08) 

This i n t e g r a l i s i n f i n i t e f o r f i n i t e values of N. However 

f o r the continuous observation procedure, that i s as N-* 0 0, 

AS in TT-fto\2 ,r 1 

6 

The i n f i n i t e bandwidth f o r a f i n i t e number of observations 

can be r e a l i z e d by considering the averaging e f f e c t of 

t h i s process on the set of frequencies; 
f - LN ( i - 1, Z > 3, • • - co) 
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For these frequencies our observations w i l l be separated 

by exactly i wavelengths i n the time plane. Since each 

reading i s taken at the same phase position on the wave

form, there i s no cancellation and 

| a ( £ ) p = 1 (L - o,l,a,- •• co) 
A f i l t e r which has unity transmission f o r an i n f i n i t e 

number of discrete frequencies, must have an i n f i n i t e 

bandwidth. 

It should be noted that when a modulated sig n a l 

i s being observed by t h i s (t„N) procedure, t 0 , N, and f 0 

must be chosen so that f 0 = i t 0 / N. ( i i s an integer). 

With t h i s condition s a t i s f i e d the signal w i l l be passed 

undiminished whereas the amplitude of the random noise 

w i l l be reduced. 

4.1.4 A si n u s o i d a l l y modulated signal being observed i n 

a steady state condition. 

In section 4*1*2 we studied the smoothing e f f e c t 

of the (t t tN) procedure when the input s i g n a l H(t) was a 

step function, and we found that i t was necessary to use 

a weighting f a c t o r when averaging the i n d i v i d u a l readings. 

In our present discussion the signal w i l l be si n u s o i d a l l y 

modulated and i t w i l l be assumed that the detector has 

been exposed to the signal f o r a time t » % . Therefore 

a l l transient e f f e c t s may be disregarded and the afore

mentioned weighting f a c t o r w i l l not be required. That i s , 

the (t„N) procedure w i l l have the frequency response func-



t i o n and the equivalent bandwidth given by 4 .07 and 4.03 

respectively. Once again we are considering: 

Hit) 

D E T E C T O R 0 8 5 . PROCEDURE 

where t h i s time H(t) = ^H-(l +- cosu) et). 

We must now leave t h i s s p e c i f i c s i t u a t i o n b r i e f l y 

i n order to calculate the spectral density of the temper

ature f l u c t u a t i o n of the detector element. In general, 

f o r a f l u c t u a t i n g variable x: 

var x - J s x ( f ) d f = S^(0)-
where B» i s the noise equivalent bandwidth. In addition, 

f o r a system characterized by a single time constant X , 

i t i s e a s i l y shown that: 

S . ( f ) = 

S « C o ) 

and 1+ u» f cT 

Therefore, f o r a single T system: 

* 14 IMZXZ 

We have seen e a r l i e r that the temperature f l u c t u a t i o n of 

the detector element i s given by var AT = kTZ/Q. In 

addition we know that the temperature response i s depen

dent upon the single time constant X -  C/\ . Therefore 

the spectral density of the temperature f l u c t u a t i o n i s : 

S a T ( f ) . ^ (4.09) 

Returning to our problem, l e t us define a smoothing 

fact o r f o r the (t aN) procedure i n the following way: 



rs _ v a r & T 

" v a r A T " 
o 

I [d(-f)I f o r the (t 0N) procedure i s given by equation 

4 . 0 7 and S a T ( f ) by 4 . 0 9 . Therefore: 

D. = 

Integration of t h i s expression gives: 

D _ N ( i - e - ) - a e - ( i - e ^ ) f l M c )  

N (l - e "<J 

The integration of the numerator i s shown i n d e t a i l i n 

Appendix 5 . Equation 4 . 1 1 agrees with a r e s u l t obtained 

by Burgess ( 1 9 5 1 ) . 

I f we require t e » X , that i s i f we neglect a l l 

transient e f f e c t s i n the temperature response equation 

4 . 0 1 , we are l e f t with: 

Recalling that the input signal was H(t) = |H ( 1 + cosuvt), 

we can see that the frequency response function of the 

detector, CX (f), can be written: 
n (X\ - - cos(uJo-t + 0) A 

H/e " l l . u j ' - t * ' A 

and |a 0(f)| 2 = £ ( l + u ) . T ) " (4. 12.) 
From the d e f i n i t i o n of G.p0f) and 0M , i t i s apparent that 

the uncertainty i n our estimate of H i s equal to: 
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yar AT 
var H N = i a D ( f ) | * ' D N 

That i s : 
N d - e T - e e ^ d - e ^ ) 1 

N 2 ( i - e ' A ) 2 

(1 . 13) 

As i n section 4 .1 .2, f o r as l i t t l e c o r r e l a t i o n between 

individual,readings as possible, we require N ^ ~x . 

When t h i s condition i s applied to 4 . 1 3 we obtain: 

v a r H N = ^ ' i V ( N < < ^ 
For the continuous averaging procedure we l e t N approach 

i n f i n i t y and 4 . 1 3 becomes: 
• to-i 

(4. IS) var « 2 1 ( 1 * ^ ) ^ ( ^ - i + e * ) 

In the continuous case i n order to have as l i t t l e c o r r e l a 

t i o n between the readings taken at t = 0 and t = t o l a s pos-

Therefore from 4.15 we s i b l e , we require that t 0 » t 

g e t : v a r H ~ " ^ ( i + w j x') (t.»-r) (tie) 
When UJ0= 0, equations 4.14 and 4.16 are equal to 

4.04 and 4.06 respectively i n section 4 . 1 . 2 . Recall that 

i n section 4.1.2 we considered a step function signal 

with the accompanying transient e f f e c t s . However these 

transient e f f e c t s are removed when we i n s i s t that N « 

or "t 0»t i n the continuous case, as we have done i n equa

tions 4.04 and, 4.06 respectively, and the problem i s reduced 

to considering the response to a steady state dc s i g n a l . 

S i m i l a r l y when UJ0 = 0 t h i s present problem also i s a con

sideration ofi a steady state dc s i g n a l . Hence the s i m i l a r i t y 



between the re s u l t s of t h i s section and section 4.1.2 

could have been expected. 

4.1.5 The addition of a f i l t e r to the detection system. 

The detection system to be considered i n t h i s 

section i s the same as i n the previous section except 

that a low-pass f i l t e r has been added between the detector 

and the observer. 
H(t) 

X AT 8 (AT)B t.N 

DETECTOR F I L T E R 08S. PROCEDURE 

a„(f) a F(f) a(f) 

The frequency response function of the f i l t e r i s : 

|aF(f)|2 = i o*f ̂  B 
| a F ( f ) | 2 = 0 6 < f < oo 

As our detector i s characterized by the single time con

stant X , the e f f e c t i v e bandwidth of the detector i s 

B x = l/4t . It i s obvious that our f i l t e r w i l l have the 

greatest smoothing e f f e c t on the detector output noise 

when B BXt and t h i s i s the si t u a t i o n we s h a l l consider. 

The lower l i m i t on B i s usually determined by the modula

ti o n frequency fo which i s to be detected. I f the detector 

i s used primarily to observe dc signals thecbandwidth B 

must be s u f f i c i e n t l y large to permit the sign a l response 

to b u i l d up or decay i n a reasonably short time. 

We have shown i n section 4.1.4 that the spectral 

density of the temperature f l u c t u a t i o n of the detector 



element i s : 
HkT' 

( T . 0 9 ) 

The spectral density of the temperature f l u c t u a t i o n 

appearing at the output of the f i l t e r w i l l be: 

O f ± B . since BT « 1 , 

If) 
Therefore: 

O 00 B < T < oo 

var (AT)6 = J 5 _ B 

A " C 6 T 

The smoothing e f f e c t of the (t 0N) procedure, defined by 
4 . 1 0 , w i l l have the form: 

which leads to: 

B 
(H.I7) 

From equations 4 . 1 0 and 4 . 1 2 i t i s apparent that: 
var(AT)6 

v a r ( H J 6 -

From t h i s we obtain: 

var(H.) r 6 

Since we haste required B to be <<( B T, the requirement f o r 

very small c o r r e l a t i o n between the i n d i v i d u a l readings 

of our (t QN) procedure becomes: N Bt.. When t h i s 

condition i s applied to 4 . 1 & we have: 

v a r ( H „ ) e 
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It should be noted that 4 . 1 9 i s exact f o r : 
= i ( i = l , 2 , 3 , - • • 0 0 ) 

For the case of continuous observation, that i s as N —*- °° 

i n 4 . I S , we obtain: 

v a r + . 8 ) ZTfto B J v TTt 08 

where $ l ( x ) = ( ̂ d<* (4.Zo) 

In order that there be l i t t l e or no co r r e l a t i o n between 

the i n i t i a l and f i n a l readings i n the continuous obser

vation process we require B t « , » 1 . This condition reduces 

* - 2 0 t o : v a r ( H „ ) 9 = ( l + U S * 1 ) ( B t . » l ) ( H . 2 1 ) 

Again we have obtained a general expression f o r 

the uncertainty i n our estimate of H given by 4 . 1 S . 

Recall that the si t u a t i o n under discussion consisted of 

a s i n u s o i d a l l y modulated steady state s i g n a l , a low-pass 

f i l t e r at the detector output, and our (t 0N) procedure 

following the f i l t e r . In addition we have calculated var H 

f o r three s p e c i a l cases of the ( t 0N) procedure; see equa

tions 4 . 1 9 , 4 . 2 0 , and 4 . 2 1 . 

Notice that equation 4 . 2 1 i s i d e n t i c a l to 4 . 1 6 , 

that i s the f i l t e r has had no ef f e c t on the noise l e v e l . 

This stems from the requirement that B t 0 » 1 . R e c a l l the 

equivalent bandwidth of the continuous (t 0N) procedure 

from section 4 . 1 . 3 as B 0 = l / 2 t 0 . Hence i t can be seen 

that BQt the bandwidth of the (t cN) procedure, i s much 

less than B , the bandwidth of the f i l t e r when B t 0 » 1 , 
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and the smoothing e f f e c t of the f i l t e r has been obscured 

by the much greater smoothing e f f e c t of the observational 

procedure. 

4.2 The S p e c i f i c a t i o n of a Real Detector. 

The discussion of detectors up to t h i s point has 

been concerned with the ef f e c t on the s e n s i t i v i t y of an 

id e a l energy detector of such factors as the detector put-

put sampling technique, the inclu s i o n of a low-pass f i l t e r , 

and the modulation of the input s i g n a l . The i d e a l energy 

detector, a most u n r e a l i s t i c device, was used as an example 

in order to confine the discussion as much as possible to 

the e f f e c t s of these factors mentioned above, by avoiding 

the numerous addit i o n a l problems encountered i n a r e a l 

detector. We w i l l now r e s t r i c t our treatment as much as 

possible to the fundamental properties of a r e a l detector. 

In order to give a quantitative evaluation of the 

performance of a r e a l detector, we s h a l l introduce several 

quantities which can be used as a basis f o r comparing 

d i f f e r e n t types of detectors. The f i r s t of these i s the 

frequency response function which i s defined as: 
/ . __ Detector Output 

U-^ol - Signal Input 

where f Q i s the^modulation frequency of the s i g n a l . The 

parameters describing the detector output and the signal 

input are chosen so the detector behaves i n a l i n e a r fashion. 

The frequency response i s determined b a s i c a l l y by the detec-



t o r time constant X , which i n the i d e a l energy detector 

we saw was equal to In the photoemissive detector, 

to be discussed l a t e r , X i s determined by the stray 

capacitance i n the c i r c u i t r y of the detector. The dc gain 

Q(o) depends upon many factors as w i l l be shown i n the 

discussion of the bolometer and the phototube. The f r e 

quency response function of the detector does not include 

the effects of output f i l t e r s or observational techniques. 

A second parameter used to specify the performance 

of a r e a l detector i s the minimum detectable f l u x or mini

mum detectable power. The o p t i c a l system focussing the 

radiation on the detector element determines which of the 

two parameters, f l u x or power, i s more suitable f o r a 

measure of the detector s e n s i t i v i t y . I f the incident 

radiation f l u x varies appreciably over the area of the 

detector element, the minimum detectable power must be 

used. However i f the detector element i s i n a region of 

uniform radiation f l u x , the minimum detectable f l u x i s the 

more informative quantity. In order to avoid duplication 

of equations we s h a l l consider the minimum detectable f l u x 

H m i n only. The minimum detectable power Pmln can be obtained 

d i r e c t l y from the r e l a t i o n : Pmin = AH m i n . The minimum 

detectable f l u x i s defined as the signal f l u x which w i l l 

r e s u l t i n a signal to noise r a t i o of unity at the output 

of the detection system. That i s : 

Hmf„ =^jvar H 

Var H i s the uncertainty of our estimate of H, the signal 



6$ 

f l u x , as a re s u l t of a l l noise sources which are s i g n i f i c a n t 

f o r the detector under consideration. This minimum detec

table f l u x w i l l be affected by the smoothing of our obser

vational technique and of the output f i l t e r i n g system. 

However, as we pointed out e a r l i e r , the minimum detectable 

power f l u x of the detector i t s e l f can be obtained by re

quiring that B » B T and that the smoothing f a c t o r of the 

(t cN) procedure be equal to unity. When these conditions 

are s a t i s f i e d the f i l t e r and the (t cN) procedure do not 

reduce the fluctuations of the detector output, and therefore 

the minimum detectable f l u x of the detector alone can be 

obtained. This quantity i s of l i t t l e p r a c t i c a l value, 

however, since f o r the optimum performance of a detection 

system we require that the noise l e v e l be as small as pos

s i b l e and a f i l t e r with bandwidth B « B,. w i l l reduce the 

noise considerably. We have defined the minimum detectable 

f l u x from the point of view of an energy detector i n which 

the parameter describing the input signal i s H, an energy 

f l u x . As a resu l t the minimum detectable f l u x mentioned 

w i l l a c t u a l l y be the minimum detectable energy f l u x f o r 

an energy detector. For the quantum detector the parameter 

describing the input signal i s m, a p a r t i c l e or photon f l u x , 

and therefore i n t h i s case we w i l l be concerned with mmin 

the minimum detectable photon f l u x . 

A t h i r d parameter which i s used to specify the per

formance of a detector i s the noise f a c t o r . We s h a l l 

define the noise factor i n the following way. 
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n = 
H m i n (real detector) 
Hyn (ideal detector) > 1 

Iri general, 7^ - w i l l not depend on any factors such as obser

vational procedure, which are not fundamental properties of 

the detector. However, the main disadvantage of the noise 

factor i s that the minimum detectable f l u x which defines 7̂  

w i l l be d i f f e r e n t f o r an energy detector than f o r a p a r t i c l e 

discussion of the bolometer and the phototube. 

4 . 3 The Bolometer. 

The operation of the bolometer, an energy detector, 

depends upon the fa c t that the e l e c t r i c a l resistance of most 

materials varies i n an e a s i l y determined manner with the 

temperature of the material. The temperature change of the 

detector element as a r e s u l t of the signal r a d i a t i o n , w i l l 

cause a change i n the e l e c t r i c a l resistance of the element 

which can be observed as a voltage reading AVS i n the 

following c i r c u i t : 

detector. Therefore we s h a l l consider 7̂  more f u l l y i n the 

•o 

•o 

4 . 3.1 The frequency response function. 

Let us choose an incident f l u x of the- form: 

H(t) = H, exp(iui t ) 



This o s c i l l a t o r y f l u x w i l l cause o s c i l l a t i o n s i n T, Z, Vs , 

and I. Therefore l e t us write these quantities i n the form: 

T = T 0 •»• T, exp(iujt) Z = R 0+ R, exp(iout) 

I = I 0+ I, exp(iu)t) Vs = V5o-t- VSi exp(iuo t) 

where we w i l l assume that the amplitude of the o s c i l l a t i o n s 

i s much les s than the dc value i n each case. 

The dependence of Z upon T i s given by the equation: 

Z = R a [ l -r oc(T - T a j ] 

R a i s the resistance of the bolometer element at the ambient 

temperature T a. oc i s the temperature c o e f f i c i e n t of r e s i s 

tance of the detector element and i s defined by: 
oc = J L ^ . 

R d T 
The dc and ac components of the above equation f o r Z give 

us respectively: R0 = R^ [l +• c*(T 0- T^ )] (4.22) 

R, = ocR^T, (4.23) 
Recall the form of the temperature response equation 

f o r the detector element: 

+ X ( T - T j = P 
P i s the t o t a l power dissipated i n the detector element and 

consists of the radiatio n power plus the e l e c t r i c a l heating 

power. P = AH(t) +• IZZ A i s the sensitive area 

of the detector element. Note that we are representing the 

joule heating power by IZZ and not the r e a l part of IzZt 

even though we s h a l l see that both I and Z are complex. 

However the reactive components of I and Z are caused by the 

thermal i n e r t i a of the element combined with the feedback 

cycle T — - Z — 1 —*-I 2Z-*~T, and the detector element does 
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not contain any inductive or capacitive elements capable of 

storing electromagnetic energy. Hence the joule heating 

power w i l l be I 2 Z. We have: 

I 2Z = IoRo* IoH. exp(iujt) +• 2I 0 R 0I, exp(iujt) 

Therefore the dc and ac components of the temperature res

ponse equation are respectively: 

A ( T 0 - T^) = IoRo (4.24) 

AH. +• l|R,+-'2IoRoI, = iWCT, +- AT, (4.25) 

Also we have: I(Z + R s), the ac components of which 

are: 0 = IeR,+ I, ( R0+- R s) (4.26) 

F i n a l l y we can see d i r e c t l y that: VS( = I, R 5 (4.27) 

By combining equations 4.23, 4.25, 4.26, and 4.27 we can 

obtain the frequency response function f o r the detector. 

0 H , A+iiwC-T ; R O O " R s+ RoCA + imc ÎoR^cc) ( / - 2 8 ) 

X+LuiC-IjR^oc 

The analysis we have just completed can be considered 

from a d i f f e r e n t point of view. The incident f l u x can be 

represented by a voltage generator V, i n series with the 

bolometer as shown: i | t | t — 

T 

Vo 
R 

I 

I f V, « V c , we have from c i r c u i t theory: 



F I G U R E 3 • 
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H -

TS 

CD 



£ = ° Y t 2 1 1 (4 . 2 9 ) 

VS( i s the response of the voltage Vs to the signal V, . 

Comparing t h i s expression with 4.28, the frequency response 

function, we can conclude that: ' 

In Appendix 6 the dc and ac impedances of the detector 

element are calculated using a di r e c t c i r c u i t analysis apf 

proach. The ac impedance obtained i s i n agreement with 

equation 4.29. Figure 3 i s a plot of the dc current voltage 

c h a r a c t e r i s t i c . 

We may now write 4.28 as: 

CL(f) 
A + i i u C - U R j x Rs+ 

| a o W | 2
 = (<*I.RA)* . _ R l 

This expression can be written, using 4 . 2 2 and 4 . 2 4 , i n the 

form: 

[14 t i + « ( T . - T j ] u/TfjX | R s
+ z l 

4.3.2 The minimum detectable energy f l u x . 

Let 'his f i r s t consider the output voltage f l u c t u a t i o n 

r e s u l t i n g from the temperature noise. From the d e f i n i t i o n 

of the frequency response function we can write: 

s V s ( f ) = | a 0 ( f ) | 2 s H (4.31) 

S H i s the spectral density of the f l u c t u a t i o n of the incident 

radiation energy f l u x . In section 2.2.3 we saw that: 



var H = 8 T T 5 k 5 T y 

i5h»ir 2Ai 0 

This i s an expression f o r the f l u c t u a t i o n of the black body 

radiation energy f l u x a r r i v i n g at an area A and observed 

continuously f o r a time to. In section 4.1.3 we showed 

that the equivalent bandwidth of a continuous observation 

process of duration t 0 i s given by B 0 - l / 2 t 0 . 

At t h i s point i n order to simplify the analysis, we 

s h a l l assume that the incident and emitted radiation streams 

are both at temperature T. We know that the incident radia

t i o n i s at temperature T,̂ , the temperature of the surrounding 

but the inclusion of t h i s nonequilibrium condition i n our 

analysis i s complicated by the impending generalization of 

our formulas to include conductive as well as r a d i a t i v e 

thermal coupling. The dependence of var H upon T f o r the 

conductive thermal connection i s no longer a f i f t h power 

re l a t i o n s h i p , and hence the r a t i o of the r a d i a t i v e coupling 

to the conductive coupling would have to be determined i n 

order to include t h i s nonequilibrium condition i n our f l u c t u a 

t i o n formulas. The assumption that both streams of r a d i a t i o n 

are at temperature T w i l l r e s u l t i n a pessimistic value f o r 

the s e n s i t i v i t y of the detector. 

Returning to our equation f o r var H , we replace l / 2 t 0 

by Bo, and multiply by two to account f o r emitted and i n c i 

dent radiation streams. Therefore: 

var H = 32. Tf5 k ?T ? Bo 
is hs ir* A or Var H 

A 2 
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Appealing to the argument of section 2.3.4, we s h a l l gener

a l i z e t h i s result to include conductive .as well as radi a t i v e 

thermal coupling. v a r H = H k T 2 A 8 q 

A 2 

The spectral density of t h i s f l u c t u a t i o n can be written as: 

c = 4 k T 2 A 

3 h A 2 (4 . 3 2 ) 

From 4.31,and 4.32 we can obtain the spectral density of the 

flu c t u a t i o n of V S. We s h a l l now attach a low-pass f i l t e r of 

bandwidth B to the detector output. The voltage f l u c t u a t i o n 

at the output of the f i l t e r w i l l now be given by: 
B 

(var V S) = f s v ( f ) d f 
3 Temp- J *S 

0 

For the case where B « Bxt that i s when the f i l t e r i s the 

dominant f a c t o r i n the noise reduction system: 

(var V S ) + e m p = 4kT BR0 O C 2 ( T 0 - T a ) • | F ? ^ 2 , 2 (4.33) 

At f i r s t the fact o r T c- Tamay seem surpri s i n g , since we know 

that the temperature fluctuations of the element exist when 

T 0= Ta.. However the condition T c= T^ represents the t r i v i a l 

case of V S = 0 since I Q must equal zero i f there i s to be 

no joule heating. 

For the case where B » B T, which i s of t h e o r e t i c a l 

i n t e r e s t only, we have: 

(var V«- ). i s the f l u c t u a t i o n of the output voltage of the 
3 Temp. 

f i l t e r following the detector, r e s u l t i n g from the temperature 

f l u c t u a t i o n of the detector element. 

The second and only other major source of noise i n 



the bolometer i s the thermal or Johnson noise present i n 

the detector element and i n Rs. From Nyquist's theorem we 

know that the spectral density of the current fluctuations 

through an impedance Z = R +• iX w i l l be given by: 

In our detection system the bandwidth of t h i s Johnson noise 

w i l l be l i m i t e d by the f i l t e r at the detectpr output. There

fore: Ti = v a r j _ kT R B 

The Johnson noise can be represented by the following c i r c u i t 

We choose an Rs with a large heat capacity thus enabling us 

to assume that the temperature of R s remains equal to T^. 

The t o t a l current f l u c t u a t i o n w i l l be: 

The output impedance of the detector i s + 2 • Therefore: 

This i s the f l u c t u a t i o n i n the output voltage of our f i l t e r , 

caused by the Johnson noise. 

The t o t a l output voltage f l u c t u a t i o n of the detection 

system i s obtained by adding the temperature noise c o n t r i 

bution to the Johnson noise contribution. That i s : 



var V\- = (var V, ), +- (var V< )_, 
.> J Temp. ' •> J o h n s o n 

These i n d i v i d u a l sources of noise can be added because the 

Johnson4/noise i s completely independent of the temperature 

noise. In order to simplify the expressions somewhat we 

s h a l l assume that R s » Z. Therefore from 4.33 and 4.35 we 

var V S - 4 k T B R 0 < X 2 T ( T 0 - T J ] (4.36) 
• f o r B « B ^ 

have: 

and from 4.34 and 4.35 

var Vs = 4 k T B R 0 
1 _̂ e * 2 T ( T e - T a ) . B (4.37) 

- T o r B-» 8-t 
l + C X ( T o - T a ) Bx 

G i l l (195#) states an equation f o r the output voltage 

fluctuations of a bolometer which i s equivalent to our equa

t i o n 4.36. He then questions the v a l i d i t y of the addition 

of the Johnson and temperature noise, comparing t h i s s i t u a 

t i o n to a galvanometer subject to Brownian fluctuations with 

a r e s i s t o r across the terminals. We know that the Brownian 

fluctuations of the galvanometer indicator and the Johnson 

noise of the r e s i s t o r are not added and that e q u i p a r t i t i o n 

determines the galvanometer f l u c t u a t i o n f o r a l l values of 

the r e s i s t o r . This r e s u l t s from the fact that the Brownian 

fl u c t u a t i o n spectral density i s changed when a r e s i s t o r i s 

connected across the galvanometer terminals because of the 

damping eff e c t which r e s u l t s . Therefore both the Brownian 

fl u c t u a t i o n and the Johnson noise depend upon the value of 

the resistance and hence are not independent f l u c t u a t i o n s . 

However no such rela t i o n s h i p exists between the temperature 

noise and the Johnson noise i n a bolometer and we cannot see 



any j u s t i f i c a t i o n f o r comparing the two si t u a t i o n s . 

It i s i n t e r e s t i n g to consider the r a t i o of the tem

perature noise to the Johnson noise which can be e a s i l y 

obtained from 4.36 and 4.37: 

Temperature noise _ (var V S ) w _ OC^TCTO-TO for B « e ^ 

Johnson noise ( v a r V a L 
_ ^ z T ( T o - T a ) 4 o r 6 » BT; 
* 1+ oc(To-To.) 

Consider a meta l l i c detector element i n which oc 

Temperature noise _ T 0-T, < j -for B « 6 t 

Johnson noise 

_ i _ 

T 0 

= / To-To \ Br // 1 W B » 6 x 
VeTo-Tcj B 

In both cases, B « and B » BXt the Johnson noise pre

dominates over the temperature noise i n a metallic detector 

element. In the case B » B T the temperature noise may be 

neglected i n comparison with the Johnson noise. 

The minimum detectable energy f l u x can now be obtained 

d i r e c t l y from the r e l a t i o n : 
? • I Var V* H_ = varH = 

laP(*)l' 
From 4.30 and 4.36 we get: 
u z

 = i * k T 2 A B 1 + 1 1+ [l+ ot(T 0-Ta)]Vt Z] 
( 4 . 3 8 ) 

f o r B « B-r. The case f o r B » B ^ can be obtained d i r e c t l y 

from 4.30 and 4o37. For a me t a l l i c detector element i n 

which « - * 4 T , and when u)t«l, T0 = 1.4 T^ i s the value of 

T c f o r which H m m i s a minimum i n equation 4.38. It i s 

apparent that the optimum value of A i s the smallest a t t a i n -



able value. However one must remember that i t i s desirable 

to have X - C/^ << l / ^ , where UJ i s the modulation f r e 

quency of the si g n a l . Therefore we must minimize C, the 

heat capacity of the detector element, and then minimize A, 

keeping A » C m u ) u> . The dependence of C and A upon A, 

the area of the detector element, prohibits us from making 

A large i n an attempt to decrease H m i n 0 A suitable detector 

area must be chosen as the f i r s t step i n the detector design. 

A large value of oc , the temperature c o e f f i c i e n t of r e s i s 

tance of the bolometer element, i s desirable and negative 

values of oC are acceptable. In fact f o r frequencies at 

which UJt i s comparable to or greater than unity, negative 

values of cc are preferable. Note that the e l e c t r i c a l 

resistance R, of the bolometer element, does not a f f e c t the 

s e n s i t i v i t y of the detector. 

The smoothing e f f e c t of the observational procedure, 

which was discussed i n d e t a i l e a r l i e r i n t h i s chapter, has 

been omitted i n t h i s treatment of the bolometer noise i n an 

attempt to confine the discussion to the fundamental prop

e r t i e s of the bolometer. 

4.3.3 The noise f a c t o r . 

In section 4 . 1 . 1 we defined the id e a l energy detector and 

The noise factor was defined previously as: 

H (real detector) 

i n sections 4 . 1 . 2 , 4 . 1 . 4 , and 4 . 1 . 5 we calculated var H = H^ 
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f o r t h i s device with various input signals and smoothing 

arrangements. From equation 4.1#, when the smoothing of the 

noise i s done e n t i r e l y by the low-pass f i l t e r of bandwidth B, 

we have f o r the id e a l energy detector: 

For the r e a l energy detector, i n t h i s case the bolometer, we 

have equation 4.33 f o r H m i n when the f i l t e r i s the dominating 

fa c t o r i n the noise reduction. Therefore immediately: 

7( = ( l + c*'T(T.-T,4 " l 4 U ) e T * ) W B < < B ^ 

4.4 The Vacuum Phototube. 

In contrast to the bolometer which i s an energy detec

t o r , the vacuum phototube i s a quantum or p a r t i c l e detector. 

That i s i t s response depends upon the number of photons, not 

the energy of the photons, with energies above a certain 

threshold value. The vacuum phototube can be used as a radia

t i o n detector i n the following way: 

V T i s the voltage across the tube. 

The greatest s e n s i t i v i t y w i l l be obtained from t h i s 



device when a l l the electrons emitted from the cathode, reach 

the anode. The currents involved i n detecting the radiati o n 

w i l l be small and there w i l l be no space charge e f f e c t . The 

poten t i a l energy diagram f o r electrons i n the phototube must 

have the following shape: 

of tWe 
Electrons 

T 

c a t h o d e vacuum anode 
P i s t a - n c e 

Wc i s the work function of the cathode and WA i s the work 

function of the anode. The work function of a metal i s the 

energy required by an electron to enable i t to leave the 

metal. From the potential energy diagram we can see that i f 

a l l electrons emitted by the cathode are to reach the anode, 

we require; eVT +• Wc > WA . In addition; Vc = V T +• IR. 

Therefore we have an upper l i m i t on the value of R: 

R < -± =e=L e i s the charge of an electron. 

The dark current I 0 , i s the current flowing i n the 

phototube i n the absence of signal r a d i a t i o n . This current i s 

caused mainly by thermionic emission of electrons from the 

cathode. The thermionic current s h a l l be denoted by I O T . 

Photoemission by the black body radiation from the surroundings 

at temperature T a contributes a small current which we s h a l l 

c a l l I o p . Richardson's equation gives the t o t a l dark current 
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from a perfect cathode surface i n thermodynamic equilibrium 

with the surroundings: 

lo = 1OT+ I op * [ ^3 j A T * e * ? \ Wfj 

A i s the area of the photocathode. Consider b r i e f l y the 

magnitude of I 0p» From section 2.1 .6 we have an expression 

f o r the mean photon f l u x with frequencies i n the i n t e r v a l di> 

about V , i n one d i r e c t i o n , f o r black body radiation at 

temperature T ; , v gTTl/ edv  

I f q{y ) i s the quantum e f f i c i e n c y of the photocathode; 
cc 

Joe - A e ( < } ( W ( - f W 
O 

Wc 
Let us assume q( v ) - 1 f o r V 55 ^ 

q( v ) = 0 f o r V < ^ c 

We s h a l l carry t h i s assumption through the entire discussion 

of the phototube. Therefore: 
CO 

T = £TTAe f 
Wc K la. 

Since Wc i s considerably l a r g e r than kTo. f o r room temperatures 

and f o r the lowest known work functions, we can approximate 

the i n t e g r a l and obtain f i n a l l y : 

In « To X O P ~ 2kT t t mv J 

Therefore the dark current i s almost e n t i r e l y due to the 

thermionic current. 



4.4.1 A monochromatic radiation s i g n a l . 

a) Frequency response function. 

We define a monochromatic signal of frequency V to 

have a bandwidth about Vt where A^<«.V. In addition 

we require that V> ^ so that q( V ) w i l l equal unity. We 

can obtain from section 2.1.6 the mean photon f l u x f o r a 

monochromatic signal of frequency V: 
f 

Since q(V ) = 1, the signal current w i l l be: 

The upper l i m i t on the signal modulation frequency 

which can be used i s determined either by the t r a n s i t time 

of the electrons i n the phototube or by the time constant 

t = RC caused by the stray capacitance C, of the c i r c u i t . 

Some t y p i c a l values f o r these quantities could be: 

R^ 10 6 ohms, C ~ 10 " farads. Therefore RC ~ lo" 5 " sec. 

The t r a n s i t time of the electrons i n the tube w i l l be of the 
- 8 

order of 10 seconds. Therefore we s h a l l neglect the tran

s i t time of the electrons and assume that the stray capaci

tance of the c i r c u i t determines the frequency response of 

the detector. The equivalent c i r c u i t of the detector w i l l 

be: 
Fhototabe 
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1 * (uJCRf (4.41) 

UJ i s the signal modulation frequency. The frequency res

ponse function'for a quantum detector i s defined as: 

Therefore, from equations 4 .39 to 4.42 we can obtain the 

frequency response function of the phototube as: 

f o r a monochromatic radiation s i g n a l , 

b) Minimum detectable photon f l u x . 

In the vacuum phototube we have three major sources 

of noise: i ) Signal noise- The f l u c t u a t i o n of the signal 

photon f l u x which behaves according to Bose-Einstein sta

t i s t i c s w i l l cause a s i m i l a r f l u c t u a t i o n i n the emitted 

electrons, i i ) Shot noise of the dark current- Since the 

dark current i s almost e n t i r e l y caused by thermionic emission 

we can assume the electrons are emitted randomly and the 

spectral density of the current fluctuations caused by t h i s 

random emission w i l l be given by the f a m i l i a r Schottky r e l a 

t i o n : S j ( f ) = 2 e l 0 . Note that the mean value of the 

dark current does not a f f e c t the noise l e v e l , i i i ) Johnson 

noise i n R - Nyquist's theorem t e l l s us that the Johnson noise 

may be represented by a voltage generator V R i n series with 

R having a spectral density of: S V r (f) =• 4kTo.R. By choos

ing R with a large heat capacity, we can assume that the 

temperature of R w i l l remain equal to T a. In addition we 

(4.42) 

e A R 
(4.43) 
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arrange that the heat capacity of the cathode i s very large 

so that there w i l l be no appreciable f l u c t u a t i o n of the 

cathode temperature. 

Let us consider the signal noise f i r s t of a l l . From 

section 2 . 2 . 3 we can obtain an expression f o r the f l u c t u a t i o n 

of a monochromatic signal f l u x : 

H-Tt V2 Bo e x p f e ) AV 

where we have replaced the bandwidth of a continuous obser

vation of duration t 0 by B 0 = l / 2 t 0 . The spectral density 

of the f l u x f l u c t u a t i o n w i l l be: 

var m„ 

or from 4 . 3 9 : 

From 4.42 we have: 

5 = 2 m» exp 
A [ e x P ( ^ - l ] 

; S U) = In ( f ) l ' S = e*/VR2 , 2 e x P ( R ) m> 

This i s an expression f o r the spectral density of the output 

voltage fluctuations r e s u l t i n g from the signal noise. 

We have already seen that the spectral density of the 

current fluctuations as a r e s u l t -of the shot noise of the 

dark current i s given by; S j ( f ) = 2 e l 0 . Immediately from 

4.41: c (r\ _ p p j . R Z 

This i s the contribution of the dark current shot noise to 

the spectral density of the f l u c t u a t i o n of V S . 

The Johnson noise contribution to the f l u c t u a t i o n of 



Vs may be determined from the following c i r c u i t 

P h o t o + u b e ( l l ) 

C i s the stray capacitance. 

= VaJC/ . 

VUJC) 
, 4 k T a R 

1 + ( U J C R ) S 

We have now calculated the contribution of each of 

the major sources of noise to the f l u c t u a t i o n of V s. Since 

each of these noise sources i s s t a t i s t i c a l l y independent of 

the other two, we may add the i n d i v i d u a l contributions to 

the f l u c t u a t i o n of V S l to obtain the t o t a l f l u c t u a t i o n of V s« 

S a) = __J? ?_e2Ams ex-p(j%) 
R 

Immediately we have: 

var V = R2 B, ( 4 . 4 4 ) exp (hjA - i ' R 

where B x = 1/4RQ i s the bandwidth of the phototube. Notice 

that the bandwidth of the detector has a smoothing e f f e c t on 

the Johnson noise. Recall i n the bolometer the detector 

bandwidth had no e f f e c t on the Johnson noise. 

We now can obtain an expression f o r the minimum 

detectable photon f l u x : 



86 

m L . s v a r m 
var Vs 

m 2 = B t f r + m * ^ ] 
'"•min • (eA)* 

2 e 2A ( m , n J exp(^) k T 

( 4 . 4 5 ) 
Solving t h i s quadratic equation f o r i m i - n , we obtain: 

A M ^ H ] ( \ ^ , e x p ^ ) [ M w c R f ] 

This expression, and i n fact the entire preceding 

analysis, can be s i m p l i f i e d i f we assume exp( j ~ ) » 1. 

By requiring exp( ~ ) to be » 1, we are saying that r a d i a 

t i o n behaves according to the corpuscular theory rather than 

the wave theory, a condition which i s reasonable f o r a 

photoemissive process. I f t h i s assumption were made at the 

beginning of our analysis we could have treated the signal 

noise using Schottky's r e l a t i o n ; Sj. (f) = 2 e l s , since the 

photons tend to a r r i v e randomly when the corpuscular pro

perties of the radiation are dominant, 

c) Noise fa c t o r . 

We define the noise f a c t o r f o r a quantum detector as: 

m m f„ (real detector) ^ ^ 
l m„lt, ( i d e a l detector) 

An i d e a l quantum detector can be conveniently defined as one 

i n which the only source of noise i s the signal noise. There

fore from 4.45 we have immediately: 

a B x ( l + w 2 c * R 4 ) e x P ( ^ 



Therefore from 4.46 and 4.47 we have: 

As expected, when we remove the dark current noise (I 0= 0), 

and the Johnson noise (T^= 0), T[ - 1. 

4.4.2 Black body radiation s i g n a l . 

a) Frequency response function. 

From section 2.1.6 we can obtain an expression f o r 

the f l u x of photons in the frequency i n t e r v a l dv about V 

fo r a stream of black body radiation at temperature T s: 

Wc 
Recall; q( V ) - 1 f o r V ^ 

q( v ) = 0 f o r V < ^ 

Therefore the signal current w i l l be 
QO 

T _ 2-TTeA ( Vld<V 
l c ~ —ZZT- \ h 

Wc 

h 

From equation 4.41 we have: 

1 5 1 v ^ ^ w ) * J e ^ l ^ ) - i 
We-can obtain the t o t a l photon f l u x f o r black body radiati o n 

by integrating (m^)% over a l l frequencies V, as i n section 

2.1.6 to obtain: — 2TT k 3 T s
3 

h 3ir : 



Therefore immediately: 
GO 

In (HI - l^-1 - ( ( u u a ) 
| a D U J | J e x P ( x ) - l W » 

Vic 
For the physically unrealizable case of Wc= 0 , we see that: 

|a DCf)| = , e A R . ( 4 . 5 0 ) 

which we have seen i s the frequency response function f o r 

the monochromatic signal (equation 4 . 4 3 ) . This i s to be 

expected since when Wc= 0 , q(V ) = 1 f o r a l l photons, and 

the quantum detector does not distinguish between the energie 

of the photons once the energy i s s u f f i c i e n t to eject an 

electron from the photocathode. 

For the physically more probable s i t u a t i o n of 

exp ( ) » 1: 

The value of t h i s i n t e g r a l w i l l be l e s s than one f o r the 

values of ;Wc/kTs f o r which the approximation i s v a l i d . 

Therefore: 

As Wc increases, fewer photons are capable of ejecting 

electrons and the frequency response function becomes smaller 

b) Minimum detectable photon f l u x . 

The Johnson noise and the dark current shot noise w i l l 

be the same f o r the black body radiation signal as f o r the 



monochromatic s i g n a l . However the signal noise must be 

reconsidered. From section 2.2.3 we have an expressionn 

f o r the f l u c t u a t i o n of the f l u x of photons i n the frequency 

i n t e r v a l dv about V: ^ ^ = B o e ^ p f e ) o> 

- 2 A [ e x P ( ^ ) - l ] 2 

where we have replaced l / 2 t 0 by B 0. Immediately the spectral 

density of t h i s f l u x f l u c t u a t i o n w i l l be: 

= H"tT V" e x p \ 5 = H T T V 2 e x p ( ^ ) d v 

v ' A [ ^ p ( S f , ) - i l 8 

The spectral density of the r e s u l t i n g current f l u c t u a t i o n 

W i l 1 5 = 4TTe2A f V'exp(^)c{] 
k T 5 , 

Now we can obtain the spectral density of the r e s u l t i n g out

put voltage f l u c t u a t i o n s : 

00 
X 

c _ 4-Tre2A R2 k*Ts
3 * 2 e d x 

Let us f i r s t consider the p r a c t i c a l case where 

exp ( T^p ) » 1: 

R i . Zel. 

PT 

Recalling that S v ( f ) = ^^(^CR) 1 * S r(-f) , we can see that 

the signal noise can be represented by the Schottky formula; 

S j ( f ) = 2 e l s . As we mentioned previously, the requirement 



exp( j^- ; » 1 i s equivalent to assuming that a l l photons 

capable of causing photoemission are behaving according to 

the corpuscular theory of radia t i o n . Therefore we can use a 

special case of equation 4.46, f o r exp( ^ ) » 1, to obtain 

the minimum detectable photon f l u x f o r a black body radia-

t i o n s i g n a l : 
= B c ( l + u>2C*R2) J i + 

-un •! < J. . A 
1 + Zel, 

e2 Qx [i + UJ'C 2 R 2 ) 

For the u n r e a l i s t i c but t h e o r e t i c a l l y i n t e r e s t i n g 

case of Wc= 0; we have f o r the signal noise contribution to 

S ( - 0 = HTT 3 e 2 A R 2 k 3 T S
3 

• 2 e L 

Notice that the signal noise cannot be represented by 

Schottky's formula i n t h i s e a s e l s the wave properties of 

the radiation have an appreciable e f f e c t on the f l u c t u a t i o n . 

Following the procedure used i n the case of the monochromatic 

signal we can obtain the minimum detectable photon f l u x f o r a 

black body radiation signal when Wc= 0 as: 

m mm 3 (z.404) A .1 1 + 
1 T 4 ( 2 E I 0 - r 

Let us consider the optimum value of some of the para

meters of the phototube. Obviously i t i s desirable to have 

the dark current I 0 as small as possible. The optimum value 

of R i s the largest value of R that w i l l allow R « l/uUC^ m , 

where Cw,-„ i s the smallest stray capacitance that can be 



attained. The value of the voltage source used i n the detec-

to r must s a t i s f y the condition; V0 > IR + — g 

A large detector area i s b e n e f i c i a l but i t must be remembered 

that both I 0 and C vary d i r e c t l y with A. 

Throughout t h i s discussion of the phototube, i n order 

to confine our analysis to the phototube i t s e l f , we have not 

considered the smoothing e f f e c t s of f i l t e r s or observational 

procedures. I f a f i l t e r of bandwidth B « B r i s used to reduce 

the noise, our equations w i l l s t i l l apply i f Bx i s replaced 

by B. 

It i s i n t e r e s t i n g to note that f o r a phototube of t h i s 

type 4kT a/R i s usually much larg e r than 2 e l c . In addition 

4kTa/Re*B i s usually very much greater than one, and the ex

pression f o r mmirt can be approximated as: 

That i s , as i n the bolometer, the Johnson noise of R i s 

usually the most s i g n i f i c a n t noise source i n the phototube, 

c) Noise fa c t o r . 

Following the treatment of the monochromatic ra d i a t i o n 

s i g n a l , we have d i r e c t l y : 

77 = l ) i t , J l t 2el.+ I cxp (£')»] 

77 = i ] + 1 r z i L ^ ^ £ i 
v a ) 1/ 9U.HoH)ze2eT(Htu2c2R 

1 

z 

J 



APPENDIX 1 

To Show that ft equals - l A ? . 

Consider a small change i n energy of the system 

£E„ : &Ey = £(n vHy ) = n v % (hv ) + hv 

The f i r s t term i s the change i n energy as a r e s u l t of , 
c 

the change i n volume: n 1 / S ( h v ) - - P & V 

whereas the second term represents the change i n energy 

r e s u l t i n g from externally added heat: hi/ Snv = 

From the Lagrangian maximization procedure i n section 

2.1.2 we have: S(ln W) - -ft \iv $ny = -(h £Q (1) 

Recall the Boltzmann equation: S - k In W 
from which we have: £(ln W) = £ s A (2) 

The second law of thermodynamics i s $Q = T Ŝ S (3) 

Equations 1, 2, and 3 lead immediately to: 
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Integrals. 

.00 

x w d * 1. 

j 
-a-x 

We know j x' ne d x - al 
oo o CO 

Now: (X^oLx = f X w e " d x 
i e x - i J l - e~* 

cr 

= in ! (1 + + - ^ S T , + • • • ) 

= ml £(m+i) 

^ (n) i s the Riemann zeta function tabulated i n the 

Jahnke-Emde tables. 

In the i n t e g r a l f o r n, the t o t a l number of photons, 

m = 2 and the i n t e g r a l i s equal to 2.404 since ^ ( 3 ) = 1.202, 

In the i n t e g r a l f o r E, the t o t a l energy of the photons, 
m = 3 and the i n t e g r a l equals since 3(4) = 3 ^ 

CO 

2. - f x " In ( i - e ' x ) c ( x 

R e c a l l - j ^ - e - * ) = ^ — -

Therefore: _ (x

m | n (| - e~%) d x = f ^ * e . d x 

< T _mj_ 

In the i n t e g r a l f o r S, the entropy of the ra d i a t i o n , 

m=2 and the i n t e g r a l equals since 5 ( 4 ) = 
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3 . 

Integrating by parts: 
x c ax - x 

m+t 

e~- i 

(m+l) X m d x 
e x - 1 

4 -

= ( m * i ) l (1 + -pn, -K •am+i / 

The i n t e g r a l f o r var n equals since m = 1 i n t h i s 

i n t e g r a l and 5 ( 2 ) = /£ . The i n t e g r a l f o r var E equals 

Iffi. since m = 3 i n t h i s i n t e g r a l and $ ( 4 ) = J ^ . 
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Einstein's Treatment of Fluctuations i n n y . 

We know that at equilibrium the Helmholtz free 

energy i s a minimum. Therefore: /£f \ 

Expand F„ i n a Taylor series about the equilibrium value 

with respect to variatio n s i n n„: 

Neglecting terms beyond the second order i n (n v - ny ), 

we are l e f t with: 

F, - R, - — \ 
In a system i n which V and T are kept constant, the 

pr o b a b i l i t y d i s t r i b u t i o n of a suitable variable describing 

the system i s given by: 

P(x)dx - P ( x ) e x p | t — — J d x 

In t h i s discussion we are interested i n the variable n„. 

Therefore: N 1 o/ — \ J~" CF> — F»*)7 , 

P(n„)dn> = P ( n „ ) e x p [ K, T j d n „ 

From the Taylor expansion of F v we can write P(nv)6ny i n 

the form: 
f ( n „ - n , ) 2 I£F>) 1 , 

P ( r v)c( n „ * P ( n , ) exp | -J^f ' I a n J / h v = F r J 
Now we can write: 

v a r riv = ( n „ - n , ) 1 = - » 

T O f 

Jp ( n „ ) ( n „ - n . , ) z cC(a,-r7„) 

P ( n , ) c t ( n - n „ ) 
- c o 
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Substituting into t h i s expression f o r P(n v) and in t e g r a t 

ing we obtain d i r e c t l y : 

var n t ' 

The i n t e g r a l s encountered are of the form: 

CL 
-oo 
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A Comparison between the Energy Content of a Volume of 

Photons and an Equal Volume of Phonons. 

In section 2.1,3 we saw that the mean energy 

density of a volume of black body radiati o n was given 
OO 

by: ][_ _ &lh ( ^dy-
v v" ) e & - i 

o 

The Debye model of the l a t t i c e heat capacity of a s o l i d 

leads to the expression ( K i t t e l 1956) : 
( j / M y 

o 

f o r the mean energy density of a s o l i d material. In the 

Debye equation, V i s the l a t t i c e v i b r a t i o n frequency and 

v 0 the propagation vel&city of the l a t t i c e v i b r a t i o n 

waves. We have assumed that t h i s propagation v e l o c i t y i s 

equal f o r transverse and l o n g i t u d i n a l waves. 

Mn - ^ \ 4-TTV / 

where N i s the number of atoms i n the volume V of s o l i d . 

A quantum of electromagnetic energy i s known as a photon 

while a quantum of l a t t i c e v i b r a t i o n a l energy i s known 

as a phonon. These expressions f o r E 0/V and E/V i l l u s t r a t e 

the s i m i l a r i t y i n the behaviour of photons and phonons. 

The f a c t o r 3/2 i n the phonon mean energy equation 

ar i s e s from the fact that there are three possible p o l a r i 

zations f o r the l a t t i c e v i b r a t i o n a l wave; one l o n g i t u 

d i n a l and two transverse, whereas the l o n g i t u d i n a l p o l a r i -
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zation does not ex i s t i n the electromagnetic r a d i a t i o n . 

The f i n i t e upper l i m i t of the i n t e g r a l i n the phonon case 

arises from the requirement that the t o t a l number of modes 

of vi b r a t i o n of the l a t t i c e waves be equal to 3N, N being 

the number of atoms i n the material. In the photon case, 

a l l frequencies and hence an i n f i n i t e number of modes of 

v i b r a t i o n , are allowed. Consider the r a t i o of the energy 

den s i t i e s : E 0/E~ < 3v3/2v0
J. The upper l i m i t of the 

i n t e g r a l i n the phonon energy expression gives r i s e to 

the nonequality sign. However t h i s nonequality i s over

ridden by the very large value of the r a t i o v J / v 3 . v, 

the photon v e l o c i t y or the propagation v e l o c i t y of the 
8 

electromagnetic radiation, i s of the order of 10 meters 

per second, whereas v 0 , the phonon v e l o c i t y or the pro

pagation v e l o c i t y of the l a t t i c e v i b r a t i o n wave, i s of 
i 

the order o f 5 * 10 meters per second. Therefore the 
i » 

r a t i o v / v0
3 w i l l be i n the v i c i n i t y of 10 . Ph y s i c a l l y , 

t h i s means that there are approximately 10 times as many 

modes of v i b r a t i o n per unit volume f o r phonons as there 

are f o r photons. As a r e s u l t E 0 » E , and also the heat 

capacity of a volume o f - t y p i c a l s o l i d material w i l l be 

very much greater than the heat capacity of an equal 

volume of r a d i a t i o n . For example: 
- & — I - 3 o 

C/V = 8 .2 x 10 joules deg. meter f o r r a d i a t i o n at T = 300 K. 

C/V = 3 . 4 * 10 joules deg. meter f o r copper at T = 300 K. 
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The Integration of D N : 

( ° _ d L _ sin 2 i r fU  
D * = * X J 1+mrTt 2 ' HZS\WZ irft« o 

Consider: , 
12TIX * i2"X 

Sin N X = v- c o s 2Noc = (e - 1J e 

sm 2 x " 1 - C O S 2 X ( e i 2 x - 1 ) 2 e U N X 

Realizing that: 
i Z N * N-t 

e - i = ^ P

i 2 < x x 

we can obtain the r e s u l t : 

5g£ - (Jf 2acos£ ( N-a ) x ) - -jj-

Returning to the i n t e g r a l f o r M ; i f we put 2TrfE = y, 
OO i 

we have: _ 2 f dv_ # s i n * l£f 

oo 

With some algebraic manipulations i t can be shown that: 

^ [ i - e x p ( - £ ) r 

Therefore we obtain f i n a l l y : N 0 - e x p ( - & ) ] - E e x p f t k ) [ i - exP(4°)] 
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The Impedance of the Bolometer Element. 

The c i r c u i t to be considered i s : 
l|l 

T @ v, exp(iuit) 

I 

When 1 = 0 , T - T^, and Z = R^. The o s c i l l a t o r w i l l 

cause o s c i l l a t i o n s i n I, T, and Z, so we s h a l l write: 

V = Ve +• V,exp(iuot) Z = R 0 + R,exp(iu)t) 

T = T 0 +- T.exp(ioot) I = I G + I, ex p ( i i o t ) 

We s h a l l assume the amplitude of the o s c i l l a t i o n i s much 

smaller than the dc value f o r a l l quantities. The depend

ence of Z upon T i s given by: Z = R a [ l + c*(T - T^)] 

from which we have the dc and ac components respectively: 

R 0 = R^[l+" <*(To- T j ] ( 1 ) 

S, = R<*T, ( 2 ) 

Also we know that; V = IZ , the dc and ac components of 

which are; V c - I 0 R 0 ( 3 ) 

V, = I0R, +- I,R 0 ( 4 ) 

The temperature response equation i s : 
it C £T = - A(T- T J +• IV 
dt 

Once again we use IY instead of the r e a l part of IV f o r the 

reasons discussed i n section 4 . 3 . 1 . The dc and ac components 

of the temperature response equation are respectively: 



APPENDIX 6 (continued) 

A(T 0- T J = V 0 I 0 

(iu) C +• A) T, = I0V, + V 0I, 

From equations 2, 4, and 6, we can obtain: 

2 s — RQ [A* LmC + oclo R«,] 

which i s i d e n t i c a l to equation 4 .29. 

From equations 1, 3 , and 5 , we have: 

V = l o R "  
° i - <* Io2 Rft 

A 
A plot of V 0 versus I 0 i s given i n Figure 3 . 
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