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A B S T R A C T 

The Zeeman splitting of nuclear quadrupole resonances i s discussed and 

a formula given for the s p l i t resonance frequencies as a function of the angle 

between the perturbing magnetic f i e l d and the symmetry axis of the crystalline 

electric f i e l d . The direction of this axis i n the crystal can be found If the 

electric f i e l d does not have cylindrical symmetry then for certain angles the 

spectrum becomes simplified and the directions of the three principal axes of 

the electric f i e l d gradient tensor can be found as well as the degree of as­

ymmetry of the electric f i e l d . 

These resonances are observed with the aid of a super-regenerative osci­

l l a t o r . A brief description of i t s operation i s given as well as some signal 

to noise ratio considerations for various methods of detection of the resonances. 

The spectrometer used i s described. 

The Zeeman spectra of the nuclear quadrupole resonances of i n single 

crystals of Zn(B r0^)2 .6H2O and CotBrC^^.&^O are observed. The accuracy of 

the observations i s discussed and the conclusion i s reached that within the error 

of the experiment the crystalline electric fields have cylindrical symmetry with 

four different directions of the symmetry axes in the crystal. They are p a r a l l e l 

to the j l ^ l j > crystal axes. The crystals have cubic structure. 
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1. 

CHAPTER 1, 

ZEEMAN SPLITTING OF NUCLEAR QUADRUPOLE RESONANCES 

Nuclear quadrupole resonances may be observed i n a system where there 

exists a nucleus possessing an electric quadrupole moment located i n an e l ­

ectric f i e l d which possesses a constant average electric f i e l d gradient. The 

resulting interaction energy depends on the orientation of the nucleus i n the 

electric f i e l d . Transitions between adjacent energy levels may be induced by 

a radio frequency f i e l d which interacts with the nuclear magnetic dipole mom­

ent. 

The nuclear charge distribution has rotational symmetry. Also, the e l ­

ectric fields found i n crystals, where the requirement of a constant average 

electric f i e l d gradient may be met, often have cylindrical symmetry to a f i r s t 

approximation. The effect of higher order derivatives of the electric f i e l d on 

the interaction energy i s too small to be observed. 

The observable interaction energy of the svstem i s : 

u' = </ L W e - i ] v „ u) 
.̂ i s the quadrupole moment 

e is the angle between the quadrupole symmetry axis and the 

electric f i e l d symmetry axis and 

^zz ^ s defined by equation 

For example, consider the energy of orientation of a linear electric quadrupole 

where V z z constant. If the four charges are i n i t i a l l y at the origin and then 

moved to the position shown i n the diagram 
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(the quadrupole i s i n the 

x-z plane and the super­

scripts refer to position.) 

the energy needed to do this i s 

~(v--v-) . - ( g \ . . i ~ e - ( ^ s i . e 

and , 1 

therefore 

If the z-axis i s a symmetry axis then 

- O 
and 

V 

K=0 

(3) 

CM a) 



gravity of the energy levels which cannot be observed i n these experiments 

and w i l l be neglected. Hence the usual formulation of the interaction energy 

i s 

The quantum mechanical energy levels- of the system may be found by replacing 

Cos 0 by 7- (where I i s the spin of the nucleus) 

and 

Ĉ i) by ~ "̂ Q since the usual definition of the quadrupole 

moment i s 

^ i s the nuclear charge density 

A. i s the distance of the volume element from the 

center of the nucleus 

2. i s the projection of A on the axis of symmetry of the 

nucleus. 

Also i t i s customary to use the projection of the quadrupole moment on the 

axis of quantization when this projection i s a maximum. So we replace 

Q b y Q x X C I * l) 
U X -1) 

The energy levels are given by N 

a Q - i a t l » ( 1 0 ) 
" H I (XX -1) K 

where the symmetry axis of the electric f i e l d i s the axis of quantization. 

Zeeman splitting of the energy levels occurs when a homogenous magnetic 

f i e l d H i s applied to the system. For our purposes the interaction energy 

between the nuclear magnetic dipole moment^ and the magnetic f i e l d w i l l be 



For convenience we set 

so using equation l^ck. 

It i s mathematically convenient to use a potential V for the interaction energy 

such that 

V „ * V y v * V „ - o fe) 

Now there i s an electron charge density at the nucleus so we have 

v., • v;, * v„ . v;; f vy; . v;; c?) 
where V i s a new potential representing a spherically symmetric f i e l d . That i s 

|l l ' M 
V = v . v 

xx yy 
We can rewrite equation 7 as 

v' - v" * V - v" . v - v; . o 
or 

where 

ry 

= v;> - v ; ; etc . u) 
Using equations (H b) y and 1$) we find 

In nuclear quadrupole resonance experiments we are interested i n differences 

between energy levels. The f i r s t term in equation \̂ \) w i l l give a set of energy 

levels whose "center of gravity" i s constant, i . e . the arithmetical sum of the 

energy levels i s zero. The second term represents a shift of the center of 
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where 

much smaller than the unperturbed interaction energy. In this case the per-

turbing energy TJ i s 

( j " - ^ ^ cos 0 (11^ 

where 0 i s the angle between the applied magnetic f i e l d and the nuclear mag­

netic dipole moment. The energy levels of the system are given by 

-- F \ ( W t - I ( u l ) ) + L-b^S c o s Q 0 )̂ 

In this experiment X' i n fact, the magnetic interaction 

energy i n the state Hl^ =• i s too large to be considered as a perturbation 

of the electric interaction energy. The Hamiltonian for the case 1 = ̂ -

i s , i n general ̂  A t 

Where Q and <j> are the polar angles of the magnetic f i e l d with respect to 

the axis of quantization and i f 

I Vxxj ̂  |V Yy| ̂  | Vj^j then the asymmetry 

parameter W i s defined as 

m - v - in) 
For /TJj-O and S" « fl the only important off diagonal matrix elements are 

those connecting the 07} t - t 4^ states and the Hamiltonian i s 

/3r\*3Stos9, o o o 

o o o -+3B-3f<.os& 



6 

The roots of the secular equation are 

A, 3R + 3£ cos 0 ^ 

- -3R - J C e o ^ Q ^ s ^ Q ) ^ 

AH * 3R - 3 J c o s © 
and for the allowed A'"Hj- - 1 transitions five resonances are expected but th'at 

with frequency of the order of -=L w i l l not be considered. The four re­

sonance frequencies are given by(Figure l ) 

W - GP\ t 35 C o s 9 t $ U°s l© + <tsi* 4Q^ 05") 
The curves of the Zeeman s r l i t resonances are symmetrical about the un-

s p l i t frequency 6A . The two resonances with the smaller frequency spl i t t i n g 

are called the "inner lines" and the other two resonances are called the "outer 

lines". 

In general the secular equation for the energy eigenvalues i s 

A" - K{ log* -v K R z + b a y ] 

+ A l^UPlf + 7* 5 u v ^ 0 - 2 7 f l t f % ^ * 0 COSZ^} 

^ 7 - 2 S u v , 2 0 C O S Z</> ( K> ) 

* o 
A simplification to a quadratic i n A occurs i f the coefficient of A i s made 

zero. This corresponds to two resonance frequencies being the same, or that 
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the inner and outer lines coincide. This coefficient i s zero when 

/n C o s X(b - 3 - =̂ 

If Y[_ - O the inner and outer lines w i l l coincide when 

then the roots of the secular equation are given by 
X 

A , * 3 R 

A , -
A, * 
\ - 3ft 

A 1 = si + I B x ± V/cr^^^fl^ 1 

If f ̂  A and using the expansion ( I - I \ for small * then 

the four roots are 

_ 1 1 

and the three resulting resonance frequencies are given by 

If \ fo the inner and outer lines w i l l coincide i f 

^ u>s2< i > = 3 - T^-Q- W O 

The directions of the three principal axes of the tensor describing the electric 

f i e l d gradient may be found by f i r s t examining the splitting of the inner lines 

to find the direction of the z-axis. 
When the magnetic f i e l d i s along the z-axis the Hamiltonian becomes 

3 f t + 3 5 , fJftv. O , O 
O , o , + 5 v3*H 
0 , 0 , v ^ A ^ . , - 3 5 

and the roots of the secular equation are given by 
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and 

Using the expansion ( | t X ) 1 = I + J - £ for small X. the energy levels 
2 

are , „X\'L r- _ * 

A* = -3A0 + - j i + i - j _ i l _ _ 

Cl + V)*'" 3 Ft C I + ̂  } vz 3 

and the resulting resonance frequencies are given by 

t 

3 

l 
"I 

V ^ (1+2^)''* 3 A ( H - ^ H . 3 
and ' ' 7

 z 

for any value o f a n d to the second order i n the magnetic f i e l d . VJhen the 

magnetic f i e l d i s paral l e l to the z-axis the frequency difference between the 

inner lines i s a maximum (from symmetry considerations of the Zeeman spectra) 

and i s equal to H ^ . 

The value of 47 e ^ O X <fc - 3 ~ — — ^ ° o J ) 

may be determined by observing the angle at which the inner and outer 

lines coincide. Then rotating the system^- radians about the z-axis, the 

value of ^ 

may be determined. Then 
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Using eq\iations(Z0c^{7jL)^and C.2-0 the x and y- principal axes may be found. 

For example, once the inner lines of the spectra are identified from a 

general inspection of the s p l i t lines, the crystal can be oriented so that the 

frequency difference between them i s equal to H $ . This determines the d i r ­

ection of the z-axis (forrnula^^ t)). In practice this may be d i f f i c u l t , how­

ever, the directions of the z-axes i n the crystal can often be determined from 

symmetry considerations. 

Once the direction of the z-axis i s found the directions of the x-axis 

and y-axis can be found as mentioned previously by using formulae (20 cS)} Ĉ -Ow) 

and . Alternatively, i t i s possible to rotate the crystal about the 

z-axis and determine the x-axis and y-axis directions, as well as 7£ , from 

the maxima and minima of the s p l i t t i n g of the inner components."*" 
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CHAPTER II 

THE SUPER-REGENERATIVE OSCILLATOR 

Nuclear quadrupole resonances may be observed by placing a suitable 

crystalline sample i n a solenoid which has an oscillating voltage of the 

proper frequency applied to i t . The internal f i e l d of the solenoid can be 

considered as the superposition of two magnetic fields rotating i n opposite 

directions. The sample w i l l absorb energy from the magnetic f i e l d by means 

of the coupling between the magnetic f i e l d and the nuclear magnetic dipole 

moments. Classically, the resonating nuclei can be pictured as precessing 

around the z-axis of the electric f i e l d . About half of the nuclei w i l l tend 

to be aligned and rotating in one direction while the others w i l l tend to be 

aligned and rotating i n the other direction. Energy w i l l continue to be 

absorbed as thermal motions tend to dephase the precessing nuclei and i f the 

oscillating voltage i s removed the net magnetization w i l l decay with a time 

constant characteristic of the sample while i t i s inducing a voltage i n 

the solenoid. For maximum coupling the axis of the solenoid should be at 

right angles to the electric f i e l d z-axis. 

To observe the Zeeman splitting of nuclear quadrupole resonances the 

sample must be a single crystal because of the frequency dependance of the 

sp l i t lines with angle between the electric f i e l d z-axis and the applied mag­

netic f i e l d . Also, since the magnetic f i e l d removes the 1 W[ degeneracy of 

the energy levels, only one rotating component of the solenoid f i e l d w i l l 

cause the nuclei to precess. This i s the same as i n nuclear magnetic resonance. 



1 1 . 

In practice this solenoid forms part of a tuned c i r c u i t tuned at the 

resonance frequency and the production of the oscillating voltage and the 

observation of the resonance can be accomplished by a super-regenerative 

oscillator. A super-regenerative oscillator i s an ordinary oscillator which 

has a periodic voltage applied to one of i t s electrodes so that the o s c i l l ­

ations occur i n bursts. This periodic voltage i s called the quench voltage. 

An idealized super-regenerative oscillator using a square wave quench 

voltage can be described by the following equivalent c i r c u i t 

X i 
L j C ; &̂  represent the tuned c i r c u i t and L i s the sample c o i l . The osci­

l l a t o r c i r c u i t may be adjusted so that the conductance supplied by the tube, 

G"x~G[ i s negative. 
rp 

The action of a square wave quench voltage of period ' i s to open and 

close the switch £ . When the switch i s closed at tj = O the oscillations 

w i l l be given by 

where r 

î JL = c< t > O • ^ = o< < O 

When the switch i s opened at time the oscillations w i l l be given by 

If -<£ i s long enough, the oscillator w i l l saturate and the envelope of the 
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oscillations i-d.ll become f l a t with a constant voltage ( J . This 

mode of operation i s depicted i n Figures 2 and 3. 
m 

If at time I rp 

where "K̂  i s the average amplitude of the noise voltage i n the tuned c i r c u i t 

the oscillations w i l l start up again from this voltage Ŷ , (1*) and coherent 

operation w i l l result. (Figure 2a. ). However, i f Y b ( i s much less than 

^ then the oscillations w i l l start up from the randomly phased noise volt­

age present and incoherent bursts of oscillations vrill result (Figure 2b.). 

The frequency spectrum of the oscillator energy i s a Fourier transform 

of the time variation of the energy present in the tuned c i r c u i t . Without a 

sample, i n the coherent state the frequency spectrum consists of a central 

line with a number of sidebands separated by the quench frequency. (Figure 2 c ) . 

As the tuned ci r c u i t i s varied i n frequency the set of lines w i l l shift acc­

ordingly i n frequency. 

In the incoherent state the frequency spectrum i s a continuous noise 

spectrum with the shape that of the frequency response curve of the tuned c i r ­

cuit to a f i r s t approximation and the half-power points are separated by the 

bandwidth Bj t of the tuned c i r c u i t (Figure 2d. ) where 

^ % = G - L / 2 T T C 
corresponding to a noise bandwidth 

Also as the tuned ci r c u i t i s varied i n frequency the peak of the noise 3pectrum 
shifts accordingly i n frequency. 

http://i-d.ll
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The behaviour of the super-regenerative oscillator which, without a 

sample i s operating i n the incoherent state,is somewhat different with a 

sample present i n the solenoid. When the switch i s closed at t - O the 

oscillations build up and energy i s absorbed by the sample and the nuclei 

caused to precess as described previously. When the switch i s opened at 

"t ~ there i s , i n addition to the voltage given by equation (2.1b) , a vo l t ­

age induced by the precessing nuclei 
- Ct - V> 

where i s the frequency of the nuclear quadrupole resonance. 

At time rf1 the oscillations w i l l start up from this voltage and coherent 

oscillations w i l l result with the frequency of oscillation determined by L>JQ . 

The radiated energy has a frequency spectrum similar to that for coherent oper­

ation without a sample except that as the tuned ci r c u i t i s varied i n frequency 

the center line and sidebands stay constant i n frequency but their amplitudes 

w i l l change because of the tuned ci r c u i t frequency response. (Figure 3. ). 

The relaxation tine of the sample must not be too short otherwise the 

signal Y s w i l l be less than the noise voltage and incoherent operation w i l l 

result. The most sensitive point of operation would seem to be that where, with­

out a sample, the super-regenerative oscillator i s almost entering the coherent 

state. This point can be reached by adjusting various c i r c u i t parameters such 

as feedback, quench voltage and frequency, and electrode potentials. 

The signal to noise ratio of a resonance w i l l be determined by the signal 

voltage across the resistor^) , as well as the effective noise voltage per 

unit bandwidth)2 across G, and the effective noise bandwidth BL^of the detection 
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system. Since the signal voltage i s 

X ( t ) = e 
the mean square signal voltage i s 

and the mean square noise voltage i s 

where 

-fc i s Boltzmann's constant 

Teff i s the effective temperature of the noise present i n the system. 

The value of Teff i s given by the temperature of a resistor that w i l l prod­

uce the same available noise power per unit bandwidth as the system does since, 

over a small frequency range, the system noise power per unit bandwidth i s 

constant. 

Part of this system noise i s produced by the conductance which usually 

i s at room temperature. The temperature of the noise produced by the tube de­

pends upon i t s operation. A tube when operated as a super-regenerative oscillator 

i s probably somewhat noisier than when i t i s operated as an amplifier since, as 

with a mixer, i t i s not operated at i t s least noisy point at a l l times. An 

external quench oscillator can introduce noise since variations i n the quench 

frequency (assuming a square wave quench voltage) w i l l cause variations i n the 

starting up time of the oscillations and hence add a certain incoherence i n them. 

If the detection process takes place i n the super-regenerative oscillator 

c i r c u i t and the detected signal passed through an audio amplifier of effective 

noise bandwidth B~ AF the signal to noise ratio i s 
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(as) 

In the case where B^AF^-B^ the effective noise bandwidth of the 
rp 

system i s . For best results the quench period I i s 
r p _ co-nstft*t _ VS _ X _K 

VJhere the constant K i s chosen so that the oscillations i n the tuned c i r c u i t 

without a sample w i l l just die down below the noise level before the next 

cycle begins. 

This expression i s a maxinum for 

and the signal to noise ratio i s 

Therefore, for optimum c i r c u i t constants, the signal to noise ratio w i l l be 

proportional to the decay time ^ of the sample. 

Alternatively, i t i s possible to amplify the signal radiated by the 

super-regenerative oscillator, f i l t e r i t through an effective noise bandwidth 

B.^RF detect i t , and pass i t through an audio f i l t e r of effective noise 

bandwidth AF . B^RF i s assumed to be less than and B^AF ^ B^RF 

The signal to noise ratio i s 
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The factor (I-v S) arises i n the denominator because when the super-

regenerative oscillator i s operating i n the coherent state with a sample i n 

the solenoid i t can be considered as an amplitude modulated oscillator where 
T 

the modulation i s a complex combination of sine waves of periods n 

where H i s integral. Therefore, signal voltage w i l l be modulated and poss­

ess several sidebands on either side of the signal frequency spaced by the 

quench frequency (Figure lib. ) The noise can be considered as several 

(i n f i n i t e l y many) noise voltages with instantaneous frequencies spread through­

out the spectrum determined by the tuned c i r c u i t of the Super-regenerative 

oscillator (Figure Ua.). Hence each noise voltage w i l l have several sidebands 

on either side of the instantaneous frequency and spaced by the quench f r e ­

quency. 

The effect of the modulation i s to place more noise voltages within the 

noise bandwidth B^RF (Figure lie. ). The noise voltages add incoherently so 

that the increase i n noise power may be described by & where £ depends upon 

the complex modulation and the shape of the tuned cir c u i t response curve. I f 

a large enough bandwidth B^RFx^Bj i s used then a l l the energy radiated by 

the Super-regenerative oscillator i s accepted and the presence of the quench 

voltage has no effect on the signal to noise ratio which w i l l then be that 

given i n equation ( 5 ) • 

For very weak signals, inaximum sensitivity i s obtained using some form 

of phase-sensitive detection. Usually i n this method of detection the signal 

i s modulated at an audio frequency with the modulation being detected and then 

passed into a phase-sensitive mixer whose local oscillator signal i s taken from 

the modulation oscillator with a possible phase change. A direct current out-
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put i s obtained and passed through a resistance-capacitance f i l t e r of time 

constant,^ and then displayed with an ammeter. Because of the large local 

oscillator voltage present at the phase-sensitive mixer the effective noise 

bandwidth i s 

B^ DC = two times the effective noise bandwidth of a single 

stage R- C f i l t e r 

The factor two occurs since both the upper and lower noise sidebands resulting 

from the mixing process contribute to the noise output. Therefore, we have 

a. ^D.C. &i 
V 1 

In the case where the signal i s frequency modulated and the modulation 

recovered by passing the signal through a linear frequency discriminator the 

signal voltage may be represented by 

> 

1 -

1-. 
-2. 

Di scriminator 
Response Curve 

frequency 

The factor -| occurs since the undeviated signal i s kept at the mid-point of 

the discriminator curve. The factor < 1_ allows for the frequency deviation 

of the signal being less than the width of the frequency discriminator curve. 

When this voltage is passed through a quadratic detector where 

V M Ct) = i ) v*w 
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the output voltage i s 

4 
where ^ means a time average long compared to <_ow but short compared to to • 

Without modulation the direct current output signal voltage would be 

V . „ t - D Y L ^ > U ^ 

With the coefficient of the Cos u)̂ ,tT o u t p u t ^ e q u a l to \ Y°«t given 

by(xc\Vj)» 1^ t n e spectral density of the noise power i s independent of f r e ­

quency over the range which the signal i s deviated, then frequency modulation 

of the noise produces no extra noise output at the modulation frequency after 

being passed through a frequency discriminator and a quadratic detector. There­

fore, this particular type of recovery of frequency modulation reduces the s i g ­

nal to noise ratio by a factor of two assuming equal effective noise bandwidths 

i n each case. 

The maximum signal to noise ratio w i l l be most easily obtained by using 

a phase-sensitive detection system with a direct current f i l t e r of long time 

constant while using as high a quench frequency as possible. 
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CHAPTER III  

THE NUCLEAR QUADRUPOLE RESONANCE SPECTROMETER 

The basis of the spectrometer i s a push-pull grounded-grid super-

regenerative oscillator with cathode quench voltage injection using type 

955 acorn triode tubes. The tuned circuits are shorted p a r a l l e l wire trans­

mission lines. The cathode line i s adjusted to give the proper feedback and 

the plate line, which has the sample c o i l i n parallel with i t , determines 

the frequency of operation of the osc i l l a t o r . 

The value of Teff i s assumed to be of the order of a few thousand 

degrees Kelvin *?hen the system i s operated at 150 mc/s. The tuned c i r c u i t 

bandwidth B 1 i s of the order of ?00 kc/s at this frequency. The quench f r e ­

quency i s normally 50 kc/s. 

If the detection process takes place i n the super-regenerative o s c i l l ­

ator c i r c u i t the signal can be amplified and displayed on an oscilloscope with 

the oscillator frequency modulated using a vibrating condenser and the o s c i l l ­

oscope swept i n synchronism with the frequency changes. Since the feedback, 

which i s controlled by the tuning of the cathode line, does not have to be 

changed over a f a i r l y wide frequency range of plate line tuning the spectro­

meter i s suitable for searching for nuclear quadrupole resonances. For maximum 

sensitivity i n searching, phase-sensitive detection may be used where the re­

sonance i s modulated by using a Zeeman modulation f i e l d supplied by a set of 

small Helmholtz c o i l s . ^ 

The disadvantage of the self-detection process i s that the adjustments 



20. 

are much more c r i t i c a l than when the detection i s accomplished separately. 

It also tends to be unsuitable for observing Zeeman splittings of nuclear 

quadrupole resonances since the resolution i s essentially determined by the 

bandwidth B A of the tuned c i r c u i t . Greater resolution can be obtained by 

amplifying the radiated signal from the super-regenerative oscillator and 

passing i t through a f i l t e r of bandwidth B R ? which determines the resolution 

and then detecting the resonance. 

The radiation of the super-regenerative oscillator i s fed to a bal­

anced germanium diode crystal mixer through capacitive coupling consisting 

of a short length of wire situated near the super-regenerative os c i l l a t o r 

tuned c i r c u i t . The l o c a l oscillator voltage i s supplied to the mixer by a 

triode frequency t r i p l e r stage excited by a quartz crystal controlled o s c i l l ­

ator (Figure 6a.). The difference frequency i s fed into a Haramurlund HQ-129-X 

communications receiver. The difference frequency i s determined by a BC-221-A 

frequency meter. The receiver i s equipped with a crystal f i l t e r so that the 

bandwidth B R F can be varied from a few hundred to a few thousand c/s. B^RF , 

the noise bandwidth, i s of the same order. The nuclear quadrupole resonance 

which appears as a series of noisy peaks separated by the quench frequency at 

the output of the receiver can be heard with earphones or i t may be recti f i e d 

and displayed with an ammeter (Figure 5a. ). 

Since the signal from the superwgenerative receiver into the mixer i s 

large no extra noise i s introduced by the rest of the spectrometer. The r e c t i ­

fied noise voltage at the output of the receiver was found to vary inversely 

as the quench frequency over a wide range of quench frequencies. 

In practice, when observing the Zeeman splitting of the resonances, the 
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receiver i s set to a given frequency with the aid of the frequency meter, 

and the super-regenerative oscillator tuned for maximum noise at the receiver 

output. The crystal i s rotated i n the magnetic f i e l d and, since the local 

oscillator frequency is known, the frequency of the resonance as a function 

of crystal orientation i n the magnetic f i e l d may be determined. Since there 

are several peaks for each resonance the center line can be found by changing 

the quench frequency since only the central line w i l l remain unchanged i n f r e ­

quency. If the resonance is f a i r l y strong, a frequency modulated quench osc­

i l l a t o r may be used and the resulting unmodulated center line picked out 
t 

quickly (Figure 7.). 

For more sensitivity phase-sensitive detection i s used. Modulation of 

the signal i s obtained by modulating the high frequency oscillator and i s re­

covered by sweeping the resonance back and forth over one side of the receiver 

response curve. The resulting variations are f i l t e r e d and passed into the 

phase sensitive mixer, the signal being displayed on an Esterline-Angus graphic 

meter. A time constant TT-D.C. °f three seconds i s usually used. (Figure £b.) 

Suitable frequency modulation of the crystal controlled oscillator was 

not obtained and amplitude modulation of this oscillator has the disadvantage 

that the noise i s modulated also, introducing a D.C. component when passed into 

the phase-sensitive detector. The long term D.C. s t a b i l i t y was not good enough 

for the weak signals encountered. Instead, another local oscillator was used 

where the frequency was determined by an ordinary tuned c i r c u i t . The plate 

voltage was modulated slightly causing the resulting local oscillator signal 

to be almost entirely frequency modulated. The second harmonic was used for 

mixing. (Figure 6b.). 
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Modulation of the magnetic f i e l d could be used vjhen Zeeman s p l i t reson­

ances are observed but the frequency deviation of the resonance i s proportional 

to the spli t t i n g and i n some cases a resonance would not be observed. 

The main magnetic f i e l d i s supplied by a set of water cooled Helmholtz 

c o i l s . Each c o i l has a bobbin with a winding space of 50 mm by 50 mm f i l l e d 

with #lU B. and S. gauge enamel covered copper wire. This gives 620 turns. 

The wire i s spaced every two layers by thin strips of card and the bobbin has 

holes punched i n the sides to allow a free flow of cooling water. The bobbin 

has a brass ring for the center and another brass ring i s slipped over the 

outer edge. Circular Tufnol plates with grooves and neoprene washers are 

placed on either side and held together with long bolts to make a water tight 

jacket. The inlet and outlet pipes for the water also act as terminals for 

the c o i l s . 

The f i e l d strength along the axis of one of the coils was measured using 

a flux meter and a graph (Figure 8.) drawn to determine the position of most 

nearly linear variation of f i e l d strength with distance, i . e . the point of i n ­

flexion of the curve. The graph indicated that the'two coils should be placed 

as close together as possible. The spacing was actually limited by the pro­

jection of the outlet pipes from the inner faces. 

The crystal holder i s mounted on a rotating shaft and the supporting 

post which acts as a bearing i s attached to the base of the Helmholtz c o i l s . 

The crystal holder, shaft, and post are made of lucite to avoid distorting the 

magnetic f i e l d near the crystal. The system was aligned i n order to have the 

axis of rotation as nearly normal to the magnetic f i e l d as possible. At a 

current of 25 amperes through each c o i l the f i e l d at the crystal i s l . U kilogauss 

and l i t t l e heating of the coils i s noticed. 
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CHAPTER IV 

BIFORMATION OBTAINED ABOUT SINGLE CRYSTALS 
OF Z n(B r03) 2 .6H20 AND C o ( B r 0 3 ) 2 .6H20 FROM 

THEIR ZEEMAN SPECTRA. 

The Zeeman splitting of the nuclear quadrupole resonances of single 

crystals of Z ^ B ^ ^ .6H20 and C o ( B R 0 3 ) 2 «^ H2° W E R C observed. The crystals 

were grown by evaporating an aqueous solution of the salt from a beaker i n 

which a seed crystal had been placed. The resulting crystals had volumes of 

about one cubic centimeter. 

The lucite crystal holders were turned on a lathe so that the face 

would be normal to the axis of rotation of the shaft. The crystals were 

usually attached by gluing one crystal face to the holder with a thin layer 

of polystyrene glue, which had the advantage that the crystal could be pried 

off easily without damage and could be remounted with a different orientation 

i n the magnetic f i e l d . If necessary lucite shims could be used to mount the 

crystal i n any given position. 

The current for the Helmholtz coils was supplied by a generator and 

was kept at a constant value of 25.00 - .05 amperes by means of a high-wattage 

variable carbon compression resistor. Care had to be taken to avoid the mag­

netic f i e l d from the Helmholtz coils affecting the reading of the D.C. ammeter 

used to measure the magnet current. 
Q-i 

Since most unsplit resonance frequencies of the B r
 x isotope i n the 

metallic bromates l i e i n the 1U0 mc/s to 150 mc/s range a U5.5 mc/s quartz 

crystal was used so that the resulting frequency of 136.500 - .015 mc/s allowed 
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a convenient difference frequency to be accepted by the receiver. Absolute 

frequency measurements were estimated to be accurate to within i 20 kc/s. 

Relative frequency measurements where the receiver was set at a given f r e ­

quency with the frequency meter and then used to determine the resonance 

frequencies were estimated to be accurate within t 5 kc/s over periods of 

an hour or so. 

In practice the measured unsplit resonance frequency did not show this 

s t a b i l i t y . Variations i n the quench voltage and frequency and variations of 

the tuned c i r c u i t frequency of the super-regenerative oscillator i-rauld change 

the central line frequency by as much as - 20 kc/s. Daily variations i n the 

central line frequency amounted to as much as - 30 kc/s. 

Although i t i s assumed i n Chapter II that the super-regenerative osci­

l l a t o r does not react- on the sample, by "pulling" the nuclear quadrupole 

resonance frequency, f o r example, i t may do so to a small extent but the main 

source of error i s believed to l i e i n the dependence of the resonance frequency 

on the temperature of the sample. The resonance frequency increases about 

5 mc/s. when the temperature of ZnCBpO-^^H^Ois changed from room temperature 

to l i q u i d air temperature. 

At room temperature the unsplit resonance frequencies of ^(BrO^^^H^O 

and Co(B r03) 2.6H 20 are lU8.028t . 0 2 5 mc/s and lkl.926 - . 0 2 5 mc/s respectively 

for the B r ^ isotope. The line width (the frequency separation between half-

power points) i s about U kc/s for both substances. When the perturbing magnetic 

f i e l d was applied the line width increased to about 1 5 kc/s due to inhomogen-

ieties i n the magnetic f i e l d . 

The axis of rotation of the crystal holder was perpendicular to the 

magnetic f i e l d within 0 . 1 ° . - Since the secular equation for the energy levels 
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depends upon s i n 2 © (formula (j 6)) replacing 0 b y - © w i l l not change the 
o 

resultant frequencies. When the samples were rotated 180 the difference 

between the two observed frequencies was less than 3 kc/s or 0.2% of the 

amount of the frequency s p l i t t i n g . A right angle was assumed in calcul-

ations. The d i a l on the shaft could be read to 0.2 . 

In the case of ZnCBj.O.^.o'H^O the positions of the molecules in the 

unit c e l l are given by Wyckoff^. 

H 2 O similar to 0 

^ V\40 U - , vj= . 0 5 - 0 * = . 6 ^ 5 " ) 

Because of the 3-fold symmetry about the Br-Zn-Br axis, the electric 

f i e l d Z-axes should have direction cosines > ff, ; fg^and the asymmetry 

should be zero. The four Z-axes are p a r a l l e l to the £ I, I, 1̂  crystal axes. 7 

A crystal of Zn ( 3 ^ 3 ) 2 * 6 ^ 0 was mounted with a face perpendi­

cular to the axis of rotation and a plot of the frequencies of the s p l i t lines 

versus the d i a l reading of the shaft d i a l was made. (Figure 10). Formula ( l 5 ) 

was used with cos Q replaced by S ^.^n. Cos ^ ( 

^ C 3 o ) 

where f i s the d i a l reading 
°C i s the angle between the z-axis and the axis of rotation 
• _ y~5~~ 

5vn <\ — : from symmetry considerations. 
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The value of § was obtained by calibrating the magnetic f i e l d using 

the Co(B r03) 2.6H 20 crystal with two of t h e ^ l l j j type faces perpendicular to 

the axis of rotation (as mentioned on page 21), and using formula Q % ] . This 

was j u s t i f i e d because the crystal seemed to be accurately mounted and experi­

mentally i t had cubic symmetry with negligible asymmetry. 

Because of the combination at times of weak signals and several side­

bands some of the experimental points (FigureID) may be i n error by — 5>0 kc/s., 

the quench frequency used. However, the plot shows that formula(3o)[s satisfied 

closely which indicates that the crystal has a cubic structure and the asymm­

etry parameter i s negligible to a f i r s t approximation. 

The ai gles i n space LS/^ ) W"X^/^^y to^bf the z-axes were found with 

the aid of 

\ .c^^nejKi a*is 

Here5wio^ i s calculated with the aid of formula(31\ Second order frequency 

changes i n the s p l i t lines to the magnetic f i e l d are subtracted out. 

Using formulae (^\)and(\7t)Tables 1 and 2 were prepared. An e s t i ­

mate of the experimental accuracy was obtained from the two values of 

given by each table. The two values d i f f e r by l°2ki. A l l the values 

given f a l l within 70° 32 ± hi' where 70° 32' is the value expected from symm­

etry considerations. The value of 0^ as indicated by the angles at which the 

inner and outer lines coincide i s estimated to be less than 0,0$ since the 
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OBSERVATIONS OF THE ZEEMAN SPECTRA OF 
Z n(B r0 3) 2.6H 20 AND CALCULATIONS OF THE 

CRYSTAL FIELD PARAMETERS 

#1 Z-symmetry axis par a l l e l to axis of rotation 

H = 1U30 gauss 2 ^ ( 6 ^ 3 ) 2 . 6 ^ 0 

Maximum frequency separation Dial reading Y 
between inner lines 

#2 2.789 mc/s 2L-.0.0 ° 
#3 2.7U8 359.1 ° 
#U 2.79U 119.8 ° 

SVA\C\ where cX i s the angle between the Z-symmetry 

axis and the axis of rotation 

n .9U58 
#3 .91*15 
#U .9U65 

Angles [3^^. between the Z-symmetry axes 

fth2 = 69° U71 1^23 a 71° 07' - 69°U5' 

Dial reading Y where inner and outer lines coincide 

#2 292.U° ; 187.6° 
#3 306.9 ° , 51.U ° 
#U 171.8 ° , 67.8 ° 

Observed angles of coincidence Calculated angles (\*°) 

#2 52.U ° 52.U & 

#3 52.3 ° 52.2 ° 
#U 52.0 a 52.U ° 
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OBSERVATIONS OF THE ZEEMAN SPECTRA OF 
Z n(B r0 ?) 2.6H 20 AND CALCULATIONS OF THE 

CRYSTAL FIELD PARAMETERS 

#3 Z-symmetry axis paralled to axis of rotation 

H = 1U30 gauss Z n(B rO ?) 2.6H 20 

Maximum frequency separation Dial reading ^ 
between inner lines 

ftl 2.70U mc/s 2U0.0 ' 
#2 2.780 359.8 ° 
#h 2.706 119.U ° 

5w\ D{ where °^ i s the angle between the Z-symmetry axis and 

the axis of rotation 

#1 .9365 
#2 Mo 

#U .9366 
Angles ^^between the Z-symmetry axes 

f% - 71* n ' Pzx- 71°01' ( 9 ^ , 70- 27' 

Dial reading K where inner and outer lines coincide 

#1 292.0 ' , 187.9 
#2 307.2 ° ; 52.3 ° 
#U 171.6 4 , 67.3 ° 
Observed angles of coincidence Calculated angles C ^ - 0 ) 

#1 52.1 ° 51.9 
#2 52.6 ° 52.3 
#3 52.1 ° 51.9 
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0 
determinations seem to be limited by the 0.2 error i n the d i a l reading and 

the line width of the s p l i t lines. 

According to Groth^, Co(BR03)2.6H20 as well as Zn^rOi^.&^O has a 

cubic structure. A crystal of C o(B r0T)2 »^ H 2° w a s mounted so that (I \ ,0 and 

0.v,V)faces were parallel to the axis of rotation and the(i ~\ ,v) and (_\̂\ ,\) 

faces each made an angle of 5U.7 with the scds of rotation. Table 3 was pre­

pared using formulae (3o], (̂>\) and(lA). Table 3 gives the angles between the 

Z-axes of the ei c t r i c f i e l d . Similar considerations of error as for 

Zn(Br03) 2.6H 20 apply except for the two Z-axes at 5U.7 to the axis of ro­

tation. Since the rate of change of frequency with angle Y was slow the 

lines were harder to position accurately than the others. Table U deals with 

the observation of second order effects caused by the magnetic f i e l d as given 

by formula(is) . 

The unsplit resonance frequency of Ni(Br0^)2.6H20 was found to be 

1U8.2U6 "t .030 mc/s at room temperature with a line width of about 10 kc/s. 

The signal to noise ratio was about one-fourth that of the unsplit resonance 

from Z n(B r03) 2.6H 20. The determination of the directions of the principal 

axes of the electric f i e l d gradient tensor as well as the asymmetry parameter 

i n this salt xrould be of interest since, according to the "Handbook of Chem­

ist r y and Physics" this crystal has a monoclinic structure whereas, according 

to Groth, this crystal has a cubic structure as do the other two crystals 

studied here. Also, i f Ni(Br03) 2.6H 20 i s monoclinic then the information about 

the electric f i e l d gradient cannot be deduced from crystal symmetry. 

Unfortunately the Zeeman s p l i t resonances were not observed. This i s be­

lieved to be due to the weaker, broader unsplit resonance produced by this 

crystal compared to that of Z n(B r03) 2.6H 20. However, the signal to noise 

ratio might be improved enough to obtain f a i r l y accurate data by increasing 
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OBSERVATIONS OF THE ZEEMAN SPECTRA OF 
Co(B r0 3) 2.6H 20 AND CALCULATIONS OF THE 

CRYSTAL FIELD PARAMETER 

#1 and #3 Z-symmetry axes perpendicular to axis of rotation 

H = 1U30 gauss Co(Br03)2.6H20 

Maximum frequency separation Dial reading Y 
between inner lines 

#1 3.296 mc/s 53.2 ° 

#2 3.299 123.7 

S w ^ where °i i s the angle between the Z-symmetry axis and 

the axis of rotation 

#1 1.000 

#2 1.000 

Angle ^^between the Z-symmetry axes 

/?13 » 70.5 ° 
Dial reading X" where inner and outer lines coincide 

//l 358.6 ° , 107.9 ° 

#3 178.6 ° , 68.9 

#2 and 4k 358.2 ° , 178.2 ° 
Observed angles of coincidence Calculated angles C.^" 0) 

#1 5U.7& 5U.7 
#3 5U.9° 5U.7 ° 
#2 and #U 90.0 " 90.0 ° 

Assuming 1^=-o and using formulae (j 7k)and (31) then 

/?2k * 7 0 ^ " ft 12 =" 70*7 ° = 70aU° 
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OBSERVATIONS OF SECOND ORDER EFFECTS OF 
THE ZEEHAN SPLITTING OF THE NUCLEAR QUAD­
RUPOLE RESONANCE OF Co(B r 0 3 ) 2 . 6 H 2 0 . 

Co(B r03) 2 .6H 20 with ?"1 and f'3 Z-symmetry axes perpendicular 

to axis of rotation 

H = 1U16 gauss 

Unsplit resonance frequency 

Dial reading Y 

17.7 " 

87.8 * 

158.6 

197.U 

268.0 

338.5 

f l ~ = 18 kc/s 
3A 

LU7.926 mc/s 

Frequency difference between 
unsplit li n e and coincidence 
of inner aid outer l i n e . 

2U kc/s 

23 

23 

a. 

22 

22 

Unsplit resonance frequency 

V 

Outer line 87.8 ° 
268.0 " 

Outer line (--) 87.8 
268.0 

1U7.930 mc/s 

Observed 
frequency 

150.778 mc/s 
150.776 

1U5.119 
1U5.120 

Calculated 
frequency 
150.756 mc/s 
150.756 

1U5.10U 
1U5.10U 
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the sample size, lowering the sample temperature, and using a more homogen­

ous magnetic f i e l d . In conclusion the folia-ring has been achieved, 

(i) A nuclear quadrupole resonance spectrometer has been b u i l t to work 

on narrow band operation with sufficient s t a b i l i t y to measure the Zeeman 
8l 

splitting of the nuclear quadrupole resonance lines of B r at 1U8 mc/s. 

( i i ) This instrument i s sufficiently stable to detect second order 

effects i n the Zeeman splitting of these lines but not to measure these quan­

t i t a t i v e l y . 

( i i i ) Two salts, Z^Bj.O^g.&^O and C o(B r0^)2»6H20 have been examined. 

Both have been reported to be cubic i n structure, although l i t t l e data i s 

given for the cobalt salt. The nuclear quadrupole resonance spectrum i s con­

sistent with a cubic crystal structure. There are k non-equivalent (B r0^) ions 

per unit c e l l . To within the accuracy of the experiments, the principal axis 

of the electric f i e l d gradient at the Bj. site i s along the ̂  I \t \ j crystal axes, 

and the asymmetry, which farthis cubic structure should be zero, i s measured 

to be less than 0.05? i n each case. 

(iv) An unsuccessful attempt was made to determine the crystal f i e l d 

parameters i n monoclinic Ni(Br0^)2.6H20. In this system these parameters are 

not determined by symmetry considerations. The reason for lack of success was 

poor signal to noise ratio for the weak, broad lines i n this s a l t . 
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