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ABST

The alpha=-particle redﬁced widths for the ground state
in Po?1? are calculated on the basis of the nuclear shell
model, employing the technique of Harada, but treating the
nuclear surface in a more direct maﬁner. It is contended
that the calculations of previous authors, who have generally
used a square-edge nucleus and a Coulomb barrier founded-off
ﬁy the nuclear potential of Igo, have, essentially, psed fhe
equivaient square-edge nucleus model of Vogt, Their J.W.K.B.
estimate of the barrier penetrabilities is checked by an ana-
lytic calculation in Chapter 3 and is found to be reasonable,
It is shown in Chapter 4 that, in the scattering of an alpha=-
particle from the ground state of szoa, the diffuse nuclear
edge considerably enhances the one-body reduced widths and,
in a direct manner, that it similarly enhances the one-body
differential elastic scattering cross-section, in this mane
ner, it is demonstrated that the radius involved in the
equivalent square-edge nucleus model must be considerably
larger than that of the diffuse-edge nucleus to whichAit
correéponds.. This is shown directly in Chapter 5, where the
validity of the equivélent square-edge nucleus model in heavy
_nUclei is examined, It is contended that this explains the
large radii found in previous calculafions. This is demon-
strated directiy by repeating the calculation of Harada with.
the diffuse nuclear edge being introduced in a'direct manner,
Although the effects of configuration mixing have not been

direétly examined, it has been concluded that shell model
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calculations can explain the major part of the empiridal decay
rates provided'tha.t_the nuclear surface is treated in a direct -

manner,
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CHAPTER 1 INTRODUCTION

The aim of this thesis is to estimate the extent to which
the independentrpartiqle model can explain alpha-particle decay - 4
rates in heavy nuclgi.' A considerable amount of earlier work
has had this aim (c.f. Mang (1964)), but past estimates of the
alpha-particlg decay_rates have tended to be smaller than the
observed decay rates, The calculated rates are a product of
two factors:' a) a spectroscopic facto;, which accounts for
thg many-bodyvaspects of the nuclear problem; b) a one-body
deqay constant, w@ich aécounts for the average interaction of
phe alpha-particle with the daughter nucleus. We find that
much of phe remaininé discrepancy between the calculated and
theiobserved_decay rates éan be removed by a more direct and
more accurate treaiment of the nuclea; surface in the calcu-
1a§iqnﬂof the opefbody decay constant, We will demonétrate
that, apart from a difference in their reflection_properties,
a heavy nucleus having a diffuse-edge behaves like a conside
erably larger nu9leus“having.a squére-edge in the analysis
of alpha-particle decay rates or‘alpha-pa:ticle scattering
cross-sections, (The decay rates are related to the scat-
tering cross-sections in a simpie manner; the decay constant
és’p;opqrtional to the width of thé elastic scattering cross-
section,) | ' ) | ,

Vogt (1962) has_suggested that one may, in general,
'replace a conventional” diffuse-edge nucleus with an "eduivalent
B} séﬁére-edge nucleqs"'which.he defines<in the following manner,

He considers a simple one-body model in which the incident
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particle is scattered by a potential well, This is the nuclear
problem without the many-body‘aspects; in fact, the spectro-
scopic factor (which accounts for the many-body aspects of the
problem) is rather insensitive to the nature of the nuclear
surface and to the size of the nucleus. He replaces the
diffuse~edge nuclear potentiai well with an “equivalent square-
edge well"™ whose radius and depth are chosen so that it»ex-
hibits a resonance af the resonance energy of the diffuse-
edge well and so.that the resonant wave function of the square-
edge well satisfies the following conditions: a) it has the
same number of nodes as the resonant wave function of the
diffuse-edge well; b) it has the same amplitude as the reso-
nant wave function of‘the diffuse-edge well at the radius of
the square—edge well, Now the one-body scattering width (or
decay constant) is a product of two factors: a) & one-body
reduced width, which depends only upon the amplitude of the
resonant wave fﬁnction at the nuc;ear radius (and, hence, on
the internalAaspects of the nucleus); b) & penetrability, which
dépends only upon the reflective properties of the poteﬁtial
barrier outside of the nuclear radius. Apparently the only
differeﬁce in the one-body problem between the diffuse=-edge
'welx'and the corresyponding equivalént square-edge well is the
anomalous reflection of the latter; this Qiffgrence in reflec~
tion is assigned to a "reflection factor",

Vogt (1962) has found for neutrdn scattering, and Vogt,
Uichaud, and Reeves (1965) for alpha-partiéle scattering from

light nuclei, that the equivalent square-edge well has a con-
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siderably larger radius than the corresponding diffuse-edge
well; in general, itvhas about the same depth as the diffuse-
edge well and the reflection factor is found to be small,

In fact, the parameters of thevequivalent square~edge well
are found to be rather insensitive to the nature of the reac-
tion and to the many-body aspects of the problem so that the
diffuse-edge nucleus does behave like a larger square-edge
nucléus. In this ihesis, we will show that these results
apply to the alpha-particle decay rates of heavy nuclei; in
fact, we will show that the previous calculations have gener-
ally used this equivalent square~edge well, thus hiding the
true radius of the decay problenm,

It is of considerable value to show that'the discrepancies
between the empirical and the calculated alpha-particle decay
rates found in the earlier calculations have lain in the method
of calculation rather than in the independent-particle model
assumptions, The failure of the independent-particlé model
would imply that the model does not introduce sufficient cor-
relations into the.nuclear wave functions to account for the
' observed clustering into alpha-particles., The fact that the
Pauli Exclusion PYrinciple becomes less inhibitive in the
surface region makes it seem naturél to attribute much of the
clustering to the nuclear surface. Wilkinson (1961) has inter-
preted the disciepancy between the empirical and calculated
alpha-particle decay'rates»as evidence that one cannot easily'
 describe the nuclear wave function in thé.surface region by

shell-model wave functions; in fact, he has suggested that
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it might be necessary to resort to a phenomenological cluster
model, A naturazl way in which to introduce correlations into
the independent-particle model wave functions is through con-
figurationlmixing; Harada (1961) and Zeh and Mang (1962) have
found this enhances the calculated decay rates by an order of
magnitude, We’contend that the remaining diScrepancy between
the empirical and the calculated decay rates can be removed by
a correct interpretation of the radius igvolved in the calcula-
tions.,

The procedure used in calculating the alpha-particle decay
rates is familiar ffom the theory of nuclear reactions, In
Chapters 2 and 3 of this thesis, we have derived a formula fbr
the-décay constant by this procedure., However, we have devel-
' oped the decay constant from a point of view which is aprro-
priate to the decay problem rather than to the SCattering
problem., The formula for the decay coqstant has been devel-
oped‘in thié manner by several other authors, particularly
Zeh (1963) and Mang (1964).

Igo (1959) has used the elastic scattering data to empir-
ically determine the modification of thg Coulomb fields in the
nuclezr surface by the real, average interaction of an alpha-
particle with a heavy nucleus. We.use.Igo's nuclear potential‘
to round off the Coulomb barriers, The penetrability through
a rounded=-off Cbulomb barrier can be determined quite easily
and, in Chaptef 3, the penetrability is evaluated for either

<08

the scattering of an azlpha-particle from Fb or of its decay

from P0212. The results are compared with those obtained from
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the J.W.K.B, and square=-well estimates; the latter estimates
have been used.in host of the previous calculations,

We have previously noted that most of the effects of the
nuclear surface upon the alpha-particle debay rates are as-
signed to the one-body decay constants rather than to the
spectroscopic factors., In Chapter 4, we invesfigate the effect
of the nuglear surface upon the one-body decay constants. By
comparing the resonant wave function of a diffuse-edge nucleus
with that of & square-edge nucleus of the same radius, we show
that the diffuse-edge enhances the reduced widths of the one-
body problem. In fact, it is seen from these resonant wave
functions_that the diffuse-edge nucleus corresponds to a con-
siderably larger equivalent square-edge nucleus., This sug-
gests that the one-body scattering cross-sections should be
considerably enﬁanced by the diffuse-edge; in fact, Qe show -
this in a direct manner by calculating the differential elas-
tic scattering cross-section for the scattering of an alpha-
particle from a potential well appropriate to a Ppe08 nucleus,

We include the many-body aspects of the decay problem
by repeating the independent-particle model calculation of
Harada (1961) for the alpha-pafticle decay rate of poel2,
Harada has used & square-edge Well.of radius ten fermis to
to evaluate the &mﬁlitude of the one~body resonant wave func=
tions; he has rounded-off the Coulomb barrier with the nuclear
popential of Igo (1959). He has chosen his model wave func-
tions to be infinite harmonic oscillator wave functions and

.has determined the harmonic oscillator size parameter by
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taking the amplitude of the mode of the relative motion to be
equal to the amplitude of the one-~-body square-well wave func-
tions, While it is not obvious that tﬁis procedure really
represents a square-well calculation, it might be suspected
that it does since the effects of the internal modes‘are rather
insensitive to the size parameter. The radius of Harada's
calculation is considerably larger than those believed typi-
cal of heavy nuclei; in fact, we contend that he has essen-
tially used the equivalent square-edge well of a smaller
diffuse~-edge well, In Chapfer 4, we repeat his calculation
but replace the one-body wave functions of the square-edge
well with the one-body wave functions of a smaller diffuse-
edge well, We show that the decay consfant obtained in this

manner for Po212

is comparable to that which Harada has ob-
tained with the larger square-edge well, In fact, we cal-
culate the equivalent square-edge well of a typicél diffuse-~
edge well in Chapter 5 and find that the difference in the
radii of the twé wells is similar to that found in the pre-
ceding decayv:ate calculations.

In addition to discussing alpha-particle decay, we use
the barrier penetration calcu;ations to study absorption pro-
cesses. In Chapter 5, we give thé»extent to which the equiv-
alent square-well model is found to apply to the alpha-particie

absorption of a'Pb208

nucleus., The effect of the strength of

the optical model potential inlthe electrostatic barrier is

also studied. |
A summary of the preceding calculations ié given in

Chapter 6,



CHAPTER 2 A DERIVATION OF THE DECAY CONSTANT

The systems which will be discussed in this thesis are
nuclear systems which decay by means of simple alpha-particle
disintegration, The formalism for describing such systems is
familiar from the theory of nuclear reactions; in fact, Thomas
(1954) has derived the decayAconstant of such a system by the
standard techniques of nuclear reaction theory. The purpose
of the derivation provided in this thesis is to employ these
techniques in a similar manner, but from a point of view which
is more natural to thé study of decay problems.

The most obvious method in which to describe a>decaying
system would be to find the wave functioh of the system at
some convenient time, say toe If.at this time it 1is found
that the system is described by the quantum numbers, N (ty),
then the temporal evolution of the system is governed by the
Schroedinger Equation; o

(2.1) ih‘al_fl'n.(t)? T nin(t)7.
(Here H is the Hamiltonian of the system and % is the crossed
Planck's con;tanﬁ.)

A natural choice for'to would be at a time prior to the
formation of the system. If t, were chosen sufficiently nega-
tive, one could think of the system as éonsisting of the wave
packets of the constituent particles, with negligible overlap
and interacting through slowly varying potenfials, and as cone=
verging on'the point at which the system formed; the dynamics
" of the wave packets (at the speeds of‘interest) are then New-

tonian so thatl'f_l(topmay be determined precisely,
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The difficulty in this médus operandi is that, after
‘having converged and forméd. the system does not decay for a
time many orders of magnitude longer than the typical period
of & constituent nucleon's motion within the formed system,
The temporal fluctuations of the wave function of the formed
system, which at first were strongly correlated to the forma-
tion process,vafter & time become statistical.,

It is, therefore, more expedient to choose t, after the
formation process and to construct a statistically determined
wave function of the constituent nucleons, the nucleons being
assumed to be within the nuclear volume. In préctice, it may
be hoped to reaiize this statistical distribution by forming
the nuclear wave functions from models such as the independent-
particle model. For this reason, the wave function of_the
formed state is commonly referred to as the “parent nucleus"
wave function, |

Care must be exercised in interpreting this stationary
state approximation., Such statioﬁary wave functions are irreg-
ular at infinity, while the parent nucleus wave function is
not only regular at infinity but essentizlly vanishes outside
the nuclear radius. Therefore, the approximation is useful
only within the volume of the formed system.,

Assuming a parent nucleus at t = 0, and assuming two
fragment break?up, it would seem reasonable to choose the

wave function of the decaying system to be of the form,

- LK 2N 4

(202) W(&:ﬁlvﬁzoﬁg,o..,&'&,gﬁ,t)

iec 2 a(t)m(}_(.l'il’zz’EZ"°'2&A’iA) + o0

vt Z S atverep(€, ) Vo, (e Wogladlby o (B, 1),

c1%2



where

Wo(ﬁlaﬁl’zzo_s.z:'-O»l(.At_s.A) S e
e ee = q] (_}El'ﬁl.gz,_s_z',...,_}EA,_S_A,O).
and where (xj,s;) are the spatial and spin co-ordinates of

the i®h

' . i J
nucleon, respectively. nge,lycl(ql) and.Wcz(qz) are
the wave functions of the first and second decay fragments;

cl‘énd d2 are the appropriate Quantum numbers, ¢ (R,€) is

Cico'=
a stationary state of the felative motion; € is the relative
energy and R the separation of the fragments,

A theory'of alpha-decay has been developed from this point
of view by Mang (1960). In applications to the alpha-decay of
heavy nuclei, he finds that,

(2.3) a(t) # EXp( -& (€- i¥)t),
In fact, the form@la which he obtaiﬁs for ¥ is essentially the
same as that which will be obtained in the calculation to De
discussed., |

At large positive timés, the parent nucleus will have
decezyed and shquld be describable as an alpha-particle and a
daughter nucleus at some large relative separation. Zeh (1963)
has noted that, in a suitably smzll space-timé region, the
time dependence of the parent nucleus wave function may be
taken to be that of Eq. (2.3) and thexwave functions in each
channel of break-up,

(2.4) Ggyop(Rit) = 1R (t),
may be taken to be those of purely outgoing flux. 1In this

theéis we shall follow this approach. The parent nucleus

wave function will be expanded in the nuclear volume in terms
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of a complete set of stationary states which explicitly include
the alpha-decay channels; the boundary conditions at the nu-
clear radius will be chosen so that the channel wave functions
are asymptotically waves of outgoing flux. To determine the
required expansion coefficients, it will be assumed that the .
parent nucleus wave function can be described by the independ-
ent-particle model. Of course, this procedure is well-known
and has often been used in the analysis of nuclear reactions,
In the construction of the parent nucleus wave function,
it will be assumed that non-local and many-body potentials
‘can be neglected and that the Hamiltonian of the system, which
will be assumed to consist of A nucleons (N neutrons and 2

protons), can be written in the form,

A

(2.5) H = 1%1 Hy,
where,
. 2 o A
(2.6)  Hy = Vi T d 2 V(v ),
Here,

Vi = (251:51) ’

are the spatial and spin co-ordinates, respectively, of the

ith nucleon; the proton and neutron masses have been assumed
to be equal,
The construction of the independent-particle model wave

functions is well-known (Preston (1962))., One calculates the
spatial average of the potential term in Eq. (2.6) at the ith
nucleon; from this average potential one derives the one-

nucleon orbitals, The parent nucleus wave function is then

formed of linear combinations of the Sléter Determinants of
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the assumed configuration; the linear combinations are chosen
~appropriate to the quantum numbers of the parent nuéleus.

The residual interaction does not, in general, vanish; if it
can be treated as a small perturbation, one can introduce the
resultant mixing of the configurations by the techniques of
perturbation theory.

To find the nature of the stationary stafes of the Ham-
iltonian commensurate with the system after decay, it is de-
sirable to introduce the approximations in a manner convenient
for constructing alpha-particle and daughter nucleus wave func-
tions, In the discussion of this chapter, it will Dbe assumed
that the alpha-particle and daughter nucleus wave functions
have been antisymmetrized with respect to the interchange of
. proton or of neutron co-ordinates; the parent nucleus wave
functionAto be constructed from these wave functions will,
therefore, only be partially antisymmetrized., Hoﬁever, it
will be shown that the parent nucleus wave function can be
regarded as a sblution of a Schroedinger Equation having a
complex eigenvalue (Eq. (2.25)). Since the Hamiltonian is
symme tric in the interchange of the co-ordinates of any two.
identical particles, the completely antisymmetrized wave
function will be an eigenstate of the above Schroedinger
Equation if the partially antisymmetriéed wave functions are
solutions, Only the latter fact will be used in the argu-
ments to follow.

It will be assumed that the system)of nucleons labelled
by (1234) constitutes the alpha-particle, where 1 and 2 are

protons and 3 and 4 are neutrons; the remaining nucleons,
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(56...4), will be taken as constituting the daughter nucleus.
It is convenient to make the definitions,
X ® (X1.2%0.%3.%4) 5 Ko = (X5,%6,0000X8);

5. % (87,85,83,84) 55 % (85.86s004,84);

and to introduce the relztive co-~ordinates,

1 .
(2.,7) R, = 4(x1+ x2+x3+%4); R, “&-T (xg+Xg+ ""** X4);

.
Bcﬁ '-‘J:KL‘ (251‘*952-r ceet+ Xp); g_lA"' Xy "2_(_2;
Fo = Xz - %45 Ea T b(xg+r xg) - dxz+x,)s
¢ = (5y,8,,65); E=R, - E,. |
(The Jacobian of the transformation (51'32’56'54) —_—
(R, i.ln T2, 13) is unity_.)
i After'decay, the nuclear system can be described by a
"one-body" model; by'this we mean that the interaction bet-
ween the daughter nucleus and5the alpha-particle is a func-

tion only of their separation. If the calculations are per-

formed in the center-of-mass frame,
2
=0,
3(ﬁm q;
and if A is sufficiently large that the recoil in the daughter

nucleus wave function can be neglected,

5 o
2'(_'4 WO

then one can wrlte,

(2.8) H = HEt HtHe,

where,
(2‘9) a‘) H,( s l"l V +ﬁ. i= l Jal j(yi, "V‘j);
: A -nd 2 A A
- = .
) He = 1%5 2m v§i+é‘ i=5 j%5 Vis (i, v


http://x1.X2.2L3.2L4
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o &
o) He = BV, T UR).

Here,

are the reduced masses with respect to the relative co-ordi=:

.
’

nates R, El’ {2, and {6' respectively; U(R) represents the
averege interaction between the decay fragments,

The effect of the residual interaction between the deczay
fragments cen be accounted for by taking U(R) to be an optical
model potential:

(2.11) U(R) = V(R) + iWw(R). (V and W are real.)

It is well-known that the complex term, W(R), simulates many
of the effects of the residual inﬁeraction; it essentially
vanishes outside of the nuclear leume. In practice, both
"V(R) and W(R) are regarded as being phenomenological; in gen=
eral, they will be dependent upon the relative energy of.the
decay fragments and upon the channeis bging consiaered, We
will neglect this dependence.

In this thesis, we will be concerned. only with the sther-
ical nucleus,_szOB. U(R) then depends only upon the distance
between the decay fragments so that the states of relative
motion are solutions of the Schroedinger Equation,

(2.12) (-%;.Vz + UER)HY(R) =€Y(R).
The solutions ofBEq. (2.12) have the form,
(2.13) W(r) = ULE({R) YiL (2),

where Y%L (%;)'is a spherical harmonic and UL(R) is a solution
‘R

of the radiél Schroedinger Equation,

.2 2 2 11y RY = e
(2.14) _12_17 %RZuL(R) + (U(R)+ g_ﬁuﬁz_l_l) ug,(R) |

oo 2 €1 ur(R).
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The eigenstates of the total Hamiltonian, H, are then -of the

form,

= (47 Te ur (R) L )
(2.15) (orag = B 2 Vg g, (5, 80 ’%L(ij'

~ T‘ 3 ' .
where qjixm« and q)j,m, are standard élgenstates of the angular
momenta, j, and j, , resiectively, and are solutions of the
Schroedinger Equations,

T« Yo —m
(2.16) &) H Wy, =EFYS,

Te Te i
b) H{ jd md_ jo‘ J-‘ m, o-

& and T are the remaining quantum numbers required to specify
theﬁsﬁates completely.

The many-body aspects of the decay problem are contained
within the nuclear volume, Fof the purposes of analyzing
alpha-decay rates, it is convenient to define a set of func-
tions in the following manner., In each channel, one can define
& boundary condition number, b,;

(2.17) (R gRuch)) + u®(Rr) Re, = b .

Here, Ry is taken as the radius of the parent nucleus; the
functions, u®(R), are taken to be normalized in_RféRo. (We
will later show that.the boundary conditions can be chosen
in almanner which is natural to the decay problem.) These
boundary conditions, together with the differential equation,
Eq. (2.14), yiéld a set of solutions of Bgq. (2.14) which are
complete within R‘<Ro. These solutions may be taken to be,

uS(r) , where n is the number of nodes of ul . Since the
solutions of Eq. (2.16) (which are defined over all space)

are complete, one can define a complete set of functions in

the following manner."One defines the channel wave function
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to be,
My,

S T . L
(2.18) I, = % Y i m. mZM Germprg | ey WS vt
L‘ L

where ¢ denotes the channel quantum numbers, (j“,md,‘n,j,,ﬁg,'
L,J,M), The set of functions,
= ,C
(2.19) U, = ug Vo,

is then complete within R Rd so that one can make the expan-
sion,

" (2.20) U)o
where,

¥ ¥
(2.21) ¢, ﬂpo ud WC av.

Nuclear systems exhibiting alpha-decay typically have

' c
Eic cncunwc'

’

long lifetimes whence it might be expected that they should,
in sdmé sense, behave like a stationary state. To sée in what

sense this is true, it will be assumed that the coefficients,

a(t) and bclcg(éit) of Eq. (2.2), are of the form,
(2.22) a(t) = BXP(-3 Eot)EXP(-%:— £);
- < _
bopeglért) = BXP( Bot) (1 - BXP( - 5 )b, o (€).:

(This temporal dependence has, in fact, been jusﬁified from
theoretical considerations by Mang (1960),) © Accepting Eq.(2.22),
‘the time-dependent wave function is of the form,

(2.23) U (t) = E)CP(-TI_l_EOt) O, me(-L o) -

nl.o - » _2’_ bl
v -E(- g0V,
where Q)d represents the system after decay. The Schroedinger

Equation of the system then becomes,

~ew

(2.24) i‘nb‘Pgt) = (By - i?f)UJ(t) + il'EXP.(-.fi—l' Eot)wd =z B (t).
TRt

Since ¥ is, in general, small, a good approximation to the



- 16 -
parent nucleus wave function should be obtained by solving the

complex eigenvalue problem,
(2.25) HP, = (B, - i’)q}o-
Written in fhe form,
i)Y, = 5.0,
it is seen that 7 can be treated as a perturbation with the
zeroth order approximation of Eq. (2.25) being a stationary
state,
From Eq. (2.25),
(2.26) -20l0F =.l]]tHT]}0 - QJOHQ]t

Defining the decay constant Dby,

(2.27) A= .}217’.,

employing Eq. (2.9) and Green's Theorem, and integrating Eq.

" (2.26) over all space,

. Ro ” ) |
(2.28) X = & off W'V - ’(IJOHI]J: )R4dR§g_dg<_,d§dn

1]
Lo
-

Jd il x
D, Je % ié Real(y T i Cnj v gV g, m,
L,

j*)uo

. 3 T_l_y z .‘l
oo E%l iv z‘)x(iz-m&;r' Cnit mix' 3,7 LJMQUJJHQ)

. ..xd{? di-(

Real (.2 . .
i f ( eally™y, Cnjomen 5, 7% LM
: *'ﬂ T2 J, M
L% A 1
ceeX ;.i,(g‘ Lm, M| Jl\u) q}j‘ YX 12,5 m V f1)

TrE jd %', Cnjumatd, ' L3 0! ‘:; <J;Lm:MLIJM7
I, ’

,T;l
coex Witng)ad as,
. ' 1
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*
Zc: Real[( % Cncug )x( d x( z Cy s )J Rk,

ET dR) n' “n'c*n?

Eq. (2.28) is of the form,

nJ(, ij_—)” .( [L\TIYI d'gf_

n J-cvmo(»jg "an-( m, mL dg

(3) Z e J’.‘g’dﬁ.

where jJj denotes the probability current in the specified

channels. ‘For heavy alpha-emitters, decay through channels
other than simple alpha-decay is generally negligible so that
terms (1) and () in Eq. (2.28) can be neglected. Egq. (2.28)

can then be written in the form,

+
1 = _,lh 2 C C uc du c duc
(2.29) 2y c,m,n' “ne'n'e o - 0w ) R=R,.

A natural choice of the boundary conditions is to match
the radial wave functions in each channel onto the wave of
purely outgoing flux in that channel., This is accomplished
by choosing, | A

(2.30) by = Sc(€c,Ro) + iPG(€c,Ro); (&= By - Ej - EY )
'3Sc and P, are the nuclear 'shift function and the nuclear

penetrability:
(2'31) Sc(vectRo) + iPc(ec,Ho) = * .

G4 (€. ,R) + iF!(€c,R)
Geleg,R) + iFg(€,,R) VR=Rq .

COOBR.

Here_fe and Ec are those solutions of Eq, (2.14) which are

asymptotic to the regular and irregular. Coulomb functions, ¥,

and G,, in the channel c¢. (The one-body potentiél is essen-~
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tially the Coulomb potential outside of the nuclear surface.)

The optical model potential, U(R), is essentially phenom-
enological, Its behaviour in the nuclear surfuce has been
determined from the elastic scattering data by Igo (1959), but
the depth.of-the real and imaginary terms within the nuclear
volume is largely arbitrary. (Values of 100-150 MEV for V(R)
and 5-10 MEV for W(R) are currently fashionable.) To the
extent ﬁhat the residual interaction can be neglected, we
need only retain the real term, V(R), in Eqg. (2.14). It would
then seem natural to choose the depth of the well in such a .
menner that, for some n,

(2.32) égo = &€, .

This one-body wave function should then reﬁresent many of the
radial properties of the actual wave function of the decaying
system, (The arﬁitrariness.in the number of no@es feflects
the ignorance of the well depth.)

l , 1s defined by,

The one
(2.33) B2 -/ DR u’(Ry )

By noting the boundary condition, Eq. (2.30), Eq. (2.29) can

be written in the form,

2 | o
¢S R)XCJ S % ¥c ¥y¢,
(2.34) jk = P 2P ( nag’o n c_C n n
o] = n’n' ncn'e lycn 2 .

Defining the one-body decay constants,

(2.35) }Z.b.'___ 2P, éno, lX JZ
i ,

and the spectroscopic factors,

(2.36) S, \zcc_“g’_;

Eq. (2.34) can be written in the form,
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(2.37) A = %)2‘1" Sc.
Eqg. (2.37) is convenient for calculations‘of the deczy constant
from the nuclear models.
It is seen from Eg. {(2.25) that we may approximate the
parent nucleus wave function,q7o, by Xg, where X, is the
familiar resonant state of reaction theory defined by,

(2.38) I'IX = EOXO .

)
It is a result of reac£ion theory that the width of the elastic
scattering cross-section (as determined by the Breit-Wigner -
single~-level resonance formula) is,
(2.39) r'oc - % xgéb. Sc,
where S, is the spectroscopic factor of Eq. (2.36) and 'lgéb.
is the one-body width, ' 0
(2.40) [o:°- =2Pc(ego,Ro)\3{gol .
Comparing Eq. (2.40) and Eq. (2.35),
(2.41) Ty, = Am,
which is an expression of the Uncertainty Principle.

If the residual interaction is sufficiently small, then
only the one-body wave functions, u%o, are contained appreci-
ably in the parent nucleus wave function. Eq. (2.36) then
reduces to, |

o= lond’
(2.42) 8, = Cno ,
and Eq. (2.37).to,
(2.43) A = %7\8°b'\cnoc\2 .
To test the validity of the one-body model, we note that

many of the effects of the residual interaction can be accounted

for by the optical model potential (Eq. (2.11)). The absorp-
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tion cross-section for such a potential is of the form,

(2.44) 6. =T Z g, k. = [ZPEc
absk2 L cTc (C \—:ﬁ——-)

T¢ is the optical model transmission function in the channel,
¢c; L is the relative angular momentum in the chaﬁnel, c; 8¢

is a numerical factor depending on the angular momenta of the
parent nucleus, the daughter nucleus, and the alrha-particle,
If WO is taken as the order of magnitude of the depth of the
complex part of the optical model potential, then, in the one-
body approximation about Eg, the transmission function is of

the form,

2 W
Fy . T OA—
(2.45) To(E) # 4PL(€p,Ro) oL TR (g o eg e F e,

cy, being a numerical'factor. Thus the relative residual inter-
action spreads the one-body state;lbgé; through a width, Wy
Since in typical heavy nuclei, the separations,\ég -eﬁal, are
greater than fiftéen MEV and reaéonable values fﬁr W, are less
than ten MEV, it would seem reasonable that the parent nucleus
wave function should contain appreciably only the one-body
wave functiqn,\lgo, and its nearest neighbours. Hence, Egs.
{2.42) and (2.43) should be a moderately good approximation,
The statistical factors,kcnoc\? ’ are reasonably inter-
preted as measuring the probabiliﬁy that the iesonant state
can be represented by the appropriate decay products, The
extent to which the independent-particle model cofrectly
accounts for these correlations will belshown to provide a

a test of its validity in the nuclear surface,
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CHAFPTER 3

EXIERIMENTAL RID
We have conténded in the Introduction that the calcula-
tions upon alpha-particle decay rates pefformed by previous
authors have, essentially, used thé equivalent square-edge
nucleus model of Vogt. 'They have customarily written the
decay constant as a product of two factorsf a) a nuclear
reduced width, which depends only upon.the internal aspects
of the nucleus and which is interpreted as measuring the
frequency at which alpha?particles appear at the~nuclear
surface; b) a penetrability, which depends only upon the
potential barrief and which is interpreted as measuring the
ease with which an alpha-particle cazn penetrate the barrier
and appear on the oﬁtside. The reduced widths have generally
been calculated uéing square;edge nuclei{.whilehthe,barrier
has generally been rounded-off with the nuclear potential of
Igo (1959). ‘Hence, the anomalous reflection of the square-
edge nucleus has implicitly been removed; in fact, thié cor=-
responds to a calculation with the equivalent square-edgé
model, In the present section, we will check that previous
J.W.K.B. estimates of the penetrabilities are reasonable;
in the language of Vogt, this is equivalent to checking that
the reflection factors have been calculated accurately. We
have also included the penetrability estimates for the unmod-
ified Coulomb Barrier. For completeness, we have checked the
reduced derivative widths which have been used by some previous
authoré; ~

2
The nuclear reduced widthq[K;\ R is:defined in terms of
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: _the probabi1ity amplitude,

(3.1) ¥, 'jzmo fgcﬂ]o wc Agc
In the channels of glpha-decay, the channel wave functions
are of the form, :

-1 =

(302) LPC - Hox(z.i .S..x) mJ m <JLm ML‘JI‘&7LVm (Xdl _L (Q)'
where the single bound-state of the alpha-partlcle, which has
zero angular momentum, has been denoted by X (i, S¢) and where

. T
the bound states of the daughter functions, Qerm{\E(,g‘),
. )

have been denoted by WGm(gc,gf)'.
It follows from Eq. (2.20) that,

(3.3) U, @OLEX q/'*)(z

| r
o Tmy,mMy <Jl‘mjmh‘m7ujjm3

2.0, 2 2 J

. B Ml‘
“e+ Y afdidx,ds,

whence,
>
2 = P c c
(3.4) ¥ J% = oo cnccnc 5SS, .
It was noted in Chapter 2 that all the coefficients, Cror MY
be neglected except C, .. lhen,
. o »
cle

2 . 1
(3.5 cnofj = |

and, from Egs. (2.35) and (2.43),
. ’ C 2
(3.6) A = 20 2 PP(;%' Rol \Zc]

The reduced derivative width has also been used by some

authors, in particular, by Mang (1960). Yhomas (1954) has
defined the reduced derivative width as,

(3.7) 14, |2 = s2l¥ l®
where S, is the shift function of Eq. (2.31).

3 - 1: THE REACTION Po2l2 —— pp<08 +

In the subsequent discussion, only the particularly simple
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decay from the ground state of Po212 to the ground state of
208

PY plus an alpha-particle has been considered. Since the
parent nucleus and both of the decay products have spin zero,
it is seen that the orbital angular momentum of the alpha-

particle relative to the Pb208 nucleus must be zero., Ffrom

Eq. (3.6), the decay constant is then simply,

(3.8) A = 2RTd?
Tl .
where the subscript refers to the relative angular momentum

of the channel,
The radial Schroedinger Equation,. Eq. (2.14), then becomes,
(3. Y 'a—iiz (VC(R)+V‘N(R)) u - eo u,
where we have neglected the imaginary part of the optical model
potential and where we have set the relative orbital angular
rnomentum equél to zero, Here VC(R) is ‘the electrostatic poten=-

tial as calculated from the.Pb208

charge distribgtion; Vi (R)
is the nuclear one-body potential; éo is the relative energy
of the decay fragments, Rasmussen (1959) has stated a value
of 8,81 MEV for the decay energy in the laboratory frame yield-
ing a relative decay energy of 8,98 MEV,

>In the present calculation, the electrostatic potential
has been taken as the Coulomb potgntial and ﬁhe nuclear poten=-
tial as that derived by Igo (1959) from the elastic scattering

data:

\

wp 1/3
1,174 - R MEV .

0.574 )

(3.10) Vyx(R) = =1100 EXP(

( |vy(R)IZ10 uEV)
The nuclear potential is somewhat uncertain, TFirstly,

it has been derived &t higher energies (~~40 MEV) and it is
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probably energy dependent. Secondly, it will be extended
inward a littlé beyond the range of velidity determined from
the 40 MRV scattering experiments. Thirdly, only the real
rart of the optical model potential has been used; the scat-
tering data can, in fact, only be fitted,with & full optical
model potential, It is the imaginary term in the opticzl
model which brings in the many-body aépects of the problem
in.a phenomenological way; its neglect in the pénetrability
is justified if the imaginary potential is ascribed to the

nuclear interior,

3 =2 COMPARISONS WITH J.W.K.B. AND SQUARE-WEILL ESTIMATES

The penetrability and shift function have been éalculated
from Eq., {2.31) using Egs. (3.9) and (3.10). In heavy nuclei,
- Gy is much greater than fs at the nuclear surface so that

Eq. (R.31) essentially reduces to,

dG,(R)
(3.11) Po(&,.,R,) = o . i So(€6,Ry) = R &R ‘ o
Go(Ro) Go(R) IR=R, .
N
(%= [2

We need therefore only evaluate the irregular function,

The numerical calculation of the shift function and the
penetrzbility has been performed'by evaluating the Cdglomb
functions at 24 fermis with an Airy function expansion and
then integrating the irregular solution of Eq. (3.9) back-
wards to the nuclear surface, This calculation was pefformed
by employing thé Runga-Kutta method of order four with the
use of the U.B.C. IBM 7040 computer,

In Figure 1, the potentials defined in Eq. (3.9) have
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been plotted,
The reduced width and the reduced derivative width have
been calculated from Eq. (3.8) and (3.7), respectively; the

results of the calculations are tabulated in Table 1.

TABIE 1
EXPERIMENTAL RLDUCED WIDTHS
R . 2 2
| B S, P, T, 0 4o
_ (fermis) o ' . (e.v.) (k.e.v.,)
10.5 | -15.4 3,02 x 1071 24 5.9
10.0 -14.1 6.76 x 107%% 111 221
9.5 -11.2 1.72 x 10”12 436 55.2
9.0 - 4.0 6.71 x 10+ 1119 17.8

212

The lifetime of Po has been taken as 3.04 x 10-7 sec,

(Rasmussen (1959)).
The square-well approximation ‘of the pénetrability and
the.shift function are given by,
dG, (k) ’
= kR . - —or 7
(3.12) Py(&y,R,) = = ; 2 S,{€5,Ry) = R 3R .
ot™o GoiRi R=R,

where Gg is the irregular Coulomb function.

The J.W.,K.B. estimate is given by,

. . I‘o.
] .
(3.13) P0(60,R0) ok EXP( -2 ﬁr 'q(R_)dR' .

_ o
S,(€5,Ry) = =Ryq(Ry);
where RO is the nuclear radius, T, is the outer classical
turning point, and where

o (R) = Jzy(vG(R);vN(R) - €5)

In Figure 2,'the penetrability, shift function, reduced

width, and reduced derivative width have been plotted as
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calculzted by each of the above methods,

It would seem from Figure 2 that previous estimates of the
empirical reduced widths using the J.%W.XK.B. approximation. have
not incurrea serious error; in fact, the J.¥.K.B. approxima-
tion is seen to be quite good to within a tenth of a fermi of
the classical inner turning point. It is also seen that the
error incurred in using the unmodified Coulomb barrier is‘less
than an order of magnitude outside of the classical inner turn-
ing point.

Bencze and Sandelescu (1966) have recently investigated
the validity of the J.W.K.B. estimate of the penetrability in
the reaction Pu<38 _ U234 £ . They find that the
J.W,K;B. estimate is low by a factor of from two to five near

'the inner turning poinp, in agreement with the results pre-~
sented in this chapter. In fact, they claim a much deepér
one-body potential than is customariiy believed G*b 231 MEV)
and, in this manner, obtain a further increase in_the pene=-
trabilitieé.. Iﬁ Chapter 4, we show fhat,.if the nuclear sur-
face is treated in a direct manner, it is not necessary to re-
sort to such extreme well depths to_obtgin a reasonable agree-

ment with the empirical decay rates.



CHAITER 4 INDEPENDENT-PARTICIE MODEL
DECAY RATES OF PoRil

In the present chapter, we will examine the effect of
the diffuse nuclear edge upon the calculated alpha-particle
decay rates of heavj nuclei. In particular, we will re-examine
the square-well calculation of the alpha-particle decéy rate
of Po%l® performed by Harada (1961). With the inclusion of
configuration mixing, Harada has obtained reasonable agree-
ment with the empirical decay rates, but has had to resort to
larger radii than those believed to be typical'of a heavy
nucleus. It is our contention that his calculation corre-
sponds to a calculation with the equivelent square-edge nucleus
model of Vogt; in fact, we will show that thg rzdius involved
in this model is much larger than that of the éonventional
diffuse-edge nucleus to which it corresponds, We will also
repeat the calculation of Harada, introducing the diffuse-
,edéé'into the calculation in a direct manner.

The effect of the shape and surface of the nucleus upon
the decay rates is, primarily, a one-body effect, 3By this
we meen that in Eq. (2.37),

(2.1 %= AP s, |
the one-body decay constants,'lZ'b", arenquife sensitive to
the éize and to the nature of the Surface of the nucleus
whereas the spectroscopic factors, S,, are rather insensitive
to these characteristics., - It is our coﬁtention'that previous
calcglations have calculated the spectrbscopic.factors'(and,
hence, the many-body effects) correctly, but have misinter-

preted the radius involved in the calculation of the one-body .~
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decay constant,
It has been customary in previous calculations to cal-

culate the alpha-partlcle decay rates from Eq. (3.6):

(3.6) } - f/:. 2Pc(€go’ R) l\[}‘

The penetrability has,“generally; been calculated for & dif=-

fuse-edge barrier, as has been discussed in Chapter 3. On

the other hand, the nuclear reduced width has, generally, been
calculated by using the resonant one-body wave function of a
square~-edge well in the following sense: one sets the ampli-
tude of that mode of the nuclear wave funcﬂion which describes
the relative motion of the decay products equal to the ampli-
tude of the resonant one-body wave function at the nuclear
radius., It is in the sense of the latter procedure that the
nucleus is taken to be square. We have noted in Chapter 3
that these procedures for calculating the decay rqtes cor-
respond to & calculation with the equivalent square-edge
nucleus of Vogt (1962).

It is of heuristic value to consider the freedom with
which an alpha-particle can move within the nucleus, To see
how far an alpha-particle can travel in the nuclear volume
before being absorbed, consider a square-well potential hav-
ing typical real and imaginary parts, Vo and W , such that

Vo7 Ve €q
#ssuming the Coﬁlomb effects to be incorporated in'Vo; the
regular solution of Eq. {3.9) is of the form,

U(R) = sin KR,

where,
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T kW
K"\/k\/ 0 + 1 0 7 )
S ST . (x = Vo _~ 1.3 )
°° T

For a typical heavy nucleus, V, may be taken to be about

100 MEV and Wo to be from 5 MEV to 10 MEV, The mean free

‘path of an alpha-particle within the nuclear volume,

~J Vo€
k\.‘.}o

then ranges from gbout five to about two fermis (respectively).

(4.1) 1y .
There is some evidence that the imaginary potenfial is large
only in the surface region, so that the alpha-particle might
have even greater freedom within the nuclear volume; in gen-
eral, W is then larger in the surface region so that here the
alpha-particle has less freedom, 'Thds, to the extent that
the.dne-body model is valid, the alpha-particle moves rather
'.freely within,the.nucleuS‘except in the vicinity of the nuclear
surface, | |

It can easily be shown from the J.W.K.B. appfoximation
thet the mean free path of an alpha-particle in the barrier

region is abvout,

1
(4.2) l.bf'\./
-2k IV _ ’
JE'

where V is the heiggt of the bvarrier, If we attribute the
many-body aspects of the problem to the nuclear interior, we
may teke the imaginary potential (which accounts for the many-
body aspects of the problem) as vanishing outside the nuclear
radius, This is the assumption made in Chapter 3, where ve
have attributed all the penetration effect§ of the barrier

to the penetrabilities, and is probébly extreme, With this

assumption, it is seen from ¥Figure 1 and Eq. (4.2) that the
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mean free path in the barrier and near the surfazce for a
square-ecdge well is considerably less than that for the dif-
fuse-edge well, It is in this sense that we expect a diffuse--
edge well ﬁo behave like a square-edge well of larger radius.

In the discuséion to follow, this effect is develogped
from the following point of view. The effect of the diffuse-
edge on the one-body resonant wavelfunctions is eXamiAed‘and
it is found that the diffuse~edge enhanées the resonant wave
function at and beyond the nuclear rsdius. Hence, the one-
body reduced widths are enhanced in a similer manner. Fronm
Eq. (2.40), one would expect to observe this enhancement in
the elastic scattering cross-sections (the width of the elas=-
tic. scattering cross-section is proporticnal to the decay
 constant), Wé have demonstrated this in a direct manner by
calculating the differential élastic scattering cross-séction
of Pb208 at 9OOCM . We have includéd the many-body effects
by repeating the independent-particle model calculation of
the decay constant of szlz performed by Harada (1961) with
the diffuse-edge of the nucleus . now being taken into account

in a direct manner.

4 - 1: ONE-BODY PEDUCED WIDTHS AND EXPERIMENTAL SPECTROSCOPIC
FACTORS

~In the present section, we Will eﬁamine the effects of
diffuse-edge of the nucleus upon the one-body reduced widths,
We also provide an estimate of the correction in the gxperis=
mental spectroscopic factors due to the diffuse-cdge.
The reduced mass in Eq. (3.9) has the value 5.9031 x lO"24

grams,
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The electrostatic potential, Vo (R), has been calculated
from the Pb98 charge distribution of Hill and Ford (1955):
(4.3) () 1 - 4+ EXP(R/6.7 - 10) if R€6.7 £,
k EXP(10 - R/6.7) if R>6.7 £. .
. .
hen, R ,
N - o 1 .2
(4.4) Vc(h) =82 X 2 X e~ x T GI)DKR')R' dR* + -
Ko R, . -1
cee F Rf _P(R‘)R‘dR'] x L)f °p (R')R"dR'J .
The nuclear potentials, VN(R), have been chosen to be of the
Saxon-Woods form,
_ - -1
(4.5) vVy(R) =V, x [1+ EXP( (R - r,)/a )] .
In Figure 3, the potentials have been plotted corresond-
ing to & nuclear Saxon-Woods shape of thickness (a) 0.5 fermis,

radius (r_ ) 9.0 fermis, and depth (V,) 105 MEV; we have also

o}
plotted & square-well of the same radius and of & similar
depth. The depths of the wells were chosen so that the regu-
lar solutions Qf Eg. (3.9) were resonant and had the same‘
number of-nodes; these resonant wave functions have been plot-
ted in Eigure 4. |

The analysis of decay rates and scattering cross-sections
assigns all of the effects of the interior of the nucleus to
the reducd widths, thése being evaluated in the nuclear sur-
face., It is exactly in this sense that the diffuse-edge well
can be replaced by a square-edge well of greater radius, If
the diffuse-edge well is replesced by that square-edge well
having a radius such that their reduced widths are equal, the

wells are indistinguishable within the nuclear volume; the

difference in the reflection of the wells outside of the
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nuclear volume is accounted for by a typically small reflec-
tion factor. In fact, this is essentially the equivalent
square-edge nucleus model of Vogt (1962),

It is seen from Figure 4 that the radius of this "equiv-
alent square-well" should be significantly larger than the
radius of the diffuse?edge well, This is the basis of our
contention that a diffuse-edge well should behave like a
larger ;quaréQedge well in the analysis of decay rates, To
exhibié this clearly, we will‘calculate the.one-body reduced
widths with a diffuée-edge well and Compare-ﬁhem with the
square-edge well estimate of Harada (1961),

A single nucleon in a heavy nucleus moves in a poténtial
heaving a'depth of about 50 MEV, It would, therefore, seem
tﬁat reasonable debths for the poﬁential well should lie be-
tween 50 MEV and 200 MEV, values of 100-150 MEV currently
being fashionable; It:is also seen from Bg. (3.10) that the
Igo potential is known inwards only to about 9.7 fermis so
thkat the shape of the well edge may be chosen rather arbitrar-
ily within this radius, It, therefore, seemed reasonable to
choose the potentials of the type of Egq. (4.5) in the fol-
lowing manner,

The thickness of.the surface, a, was chosen to have the
values tabulated in Table 2, The depth, V,, and the radius,
Rg, were‘then varied so that the potentialrwas simultaneously
equal to the Igo potential at 10 fermis and so that the regu-
lar solution of Eq. (3.9) was asymptotic to the irregular Cou-

lomb function --- the condition for resonance. (There is
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only one such potential for a given number of nodes.) By
the discussion of Chapter 2; one of these potentials shouid
be & good representation of the actual pdtential. Exactly
which one is the actual potential cannot be decided until
some fﬁrther criterion is established for deciding the well
depths more precisely. Neither fundamental nuclear theory
not the analysis of alpha-particle scattering data defines
-the well depth ver& cleaerly within the range 50 MEV to 150
VRV, |

Examples of the resulting potentials are summarized in
Table 2, The behaviour of the resonant wave functions as a
funcfion of the well depth has been illustrated in Figure 5

and their behaviour as a function of surface thickness in

Figure 6.
TABLE 2
ONE -BODY POTENTIALS
POTENTIAL NODES THICKNESS DEPTH - RADIUS
vy "o | (feimis) (Mgg) (feiﬁis)
A 4 0.5 - 49,1 - 8.94
B 6 0.5 - 64.5 8.79
c 8 0.5 - 86.3 8.63
D 10 0.5 | -114,5 8.48
B 12 0.8 ~-149,6 8.34
F 10 0.3 -103.4 ‘ 9.12
G 10 0.7 -128.,9 . 7.79

The one-body reduced widths have been cazlculated from

the resonant wave functions (Eq. (2.33)) ahd have been used
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to calculate the experimental spectroscopic factors (Eq. (3.5)

and Table 1).

TABLE 3
EXPER TMENTAL SEECTROSCOPIC FACTORS
POTENTIAL EVALUATED AT 9,0 f, EVALUATED AT 10,0 £,
T | T, COns R E A
(xev) {(kev) (kev) | (kev)
A 105 | 1.12 {1.07x107% | 11.5 | 0.111 | 0.98x107%
B - 150 | 1.12 |0.75 ° 16,9 | 0.111 [0.66 * |
C 188 | 1.12 0,59 21.8 | 0.111 | 0.51
D 223 | 1.12 |0.50 26.3 | 0.111 ; 0.42
E 256 1.12 0.44 30.5 | 0.111 ] 0.36
F 101 | 1.12 |1.11 42,4 0.111 | 0,26
G 170 1,12 |0.65 15.5 | 0.111 | 0.71

If‘the potentials chosen in evaluating the experimental
reduced widths and the one-body redqced widths haa been the
same, the exyerimental spectroscopic factors would be inde-
rendent of the radius. The radial dependence has been in-
cluded to indicate the effect of the nature of the surface
chosen-and, for reésonable surfaog thicknesses of 0.5 - Q.7
fermis, this is seen to bhe slight;

Harada, using a square-edge well of radius 10 fermis,

‘ has obtained a value of 0.145 for the experimental reduced

'width and a vélue of 0.08 % 10'2 forvthe experimental speciro-
scopic factor. It would aprear from Table 3 fhat the spectro-~
scopiclfacpor might be about an order of maénitude larger than

this value,
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4 - 2: ONE-BODY DIFFERENTIAL ELASTIC SCATTERING CROSS-SECTION
OF Pv°08 FOR AN ALFHA-PARTICLE AT 900y, |

One of the most direct ways in which to illustrate the
effects of the diffuse-edge on the decay rates is to calculate
its effect on the one-body elastic scattering cross-sections.
(As has previously been noted, the oné-body wiath is propcr-
tional to the one-body decay constant.) In this section, the
one-body differential elastic scattering cross~-section for the
scattefing of an alpha-particle from the ground state of Pb208
will be calculated‘by direct and well-known ﬁrocedufes. Vhat
one does is to study the behaviour of the logarithmic deriv-
ative of the wave function about the resonaﬁce; the one-body
width can then be éalculated in a étraightforward manner. The
procedure for calculating the cross-sections by these tech-
niques is discussed in Appendix C,

It is worth noting that the calculation of the logarith-
mic derivative is very tedious due to the very small widths
involved; inifact, the calculations performed in this thesis
required seventeen place accuracy in the potentials and re-
guired many héurs of computer time on the IBM 7040 computer
used in these calculations. For this reason, such direct
calculations have previously been avoided'by other authors,

208(C<,°<)Pb208 differential elastic scattering

The Fb
crosse-section atiQOOCM has been plétted in Figﬁre 7, both
for a square-well and for & diffuse-edge well of the same
radius, It is seen that the diffuse-edge enhances the elaé-‘

tic scattering cross-section (and, hence, the one-body decay
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constant) by about an order of magnitude.
The diffuse-edge well has here been taken to be of the
Saxon-Woods type, Eq. (4.5), with the parameters,
V, = - 48.9 MEV; r_ = 9,0 f£.; & = 0,5 f.;
the parameters of the square?well'are taken to bé;
Vg = = 47.8 MEV; rg = 9.0 f, ,
The depths of the wells have been chosen sb that the wave
functions are resonant at 8.9795 MEV and have the same number
of nodes. |
The cross-sections have been plotted by studying the
behaviour of thé logarithmic derivative of the wave functions
at 24,0 fermis, | | |
A widtn of 1.37 x 10"%+3 UEV was found for the diffuse-
edge well and a width of 1,94 MEV fof the sguare-edge well;
hence, the enhancement in the cross-section (or decay con-

stant) due to the diffuse-edge is a factor of 7.1.

4 - 3: HARADA'S FORMULA FOR INDEPENDENT-PARTICLE MODEL REDUCED
~WIDTHS '

A convenient technique for evaluating indepéndent-parti—
cle model reduced widths has been developed by Harada (1961).
We provide here only an outline of his result for the simple

case of Pozld; a more complete discussion is given in Appendix

A, |

‘It will be éssumed that the zeroth order approximation
of Eq. (2.25) can be described by the ground state configu-
rztion of the independent-particle model, ZEmploying the par-

tial antisymmetrization scheme of Chapter 2, and neglecting

core excitations, the parent nucleus wave function can be
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written in the form,
(4.6) Wol12...4) = &(1234) Woolse...a) ,
where U/Zd is the wave function of the dogbly magic szoé
core, (Thé notation is that of Chapter 2.) From Zq. (3.3},
‘and noting that the parent nucleus, daughter nucleus, and |
alphg-particle have spin zero, _ '
(4.7) ¥, /32@‘ /{ 1234) X (1234) Y9(2 ) an aias. .
Harada has chosen the alpha—particle wave function to

be of the Gaussian type:

(4.8) A(1R34) = <i3/2‘>'3/-2' EXP(—%(’E;E + §2 t 5%))

coe (am)79/2 X9(12) XQ(s4)
where :(g denotes thé spin singlet function. Here, ii‘has.
beéh written in terms of.its radial and angular components,
‘§i'and ., fespectively.# Herada chooses the parameter B so

that the r.m,s. radius of the charge density is equal to the

measured value (1.6 fermis); he'finds a value of 0.44'fermis“2

for 3. | )
In Appendix 4, it is shown that Eq, (4.7) can be written
in the form,

(4.9) ¥ = J4—’f./ Ef(oo j1d1) T(OO 3335 |
> 4N,0n70;0\V11{U717;0
: {/’gl 752:’5'3» A1.82, 1 . M o >
: Ny

o+ KNZOnZ0; V515V 3’O>(NOn 0; o} ‘\T10N20 0>

u/nlo EZl. wnzo ?52 Q)n;go qjl\f 1

ce [18(12) 18(34)] af gld§l§§d§2g§d§3d§_x .

Here it has been assumed that the one-nucleon wave-functions'
# The definition of % ; differs from Harada's, (c.f., Appendix A)
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for the two protons iﬁeutrons) in the unfilled shell are de=-
scribed by the quantum.numbers (Vy11dymy) (U%13j5m3) ),
where’Ui (Vs), 11 (13), iy (j3)' and 10y (ma) denote the prin-
cipal quantum number, the orbital angular momentum, the total
angular momentum, and the magnetic quantum numbers of the one-~
proton (one-neutron) orbitals. In Eq.l(4.9), the first brack-
eted term contains the T coefficients of Rose (1957) for trans-
forming the j - j coupling scheme to an L - S coupling scheme ;
the sécond bracketed term expands the wave function in terms
of the relative co-ordinates; the finél bracketed term con-

- tains the spin functions, & statistical constant and a dou-
ble parentage coefficient, both of which are‘unity,4have been
omitted from the discussion. u)nio (1= 1,2,3 ) and 'UJNO
are one-nucleon orbitals of zero angular momenta with prinf
cipal éuantum numbers n, (1= 1,2,3 ) and N, respectively,
The coefficients appearing in.the‘summation.of tﬁe seconq
bracketed term are the-Talmi coeffiqients.(Talmi (1953)); a
formula for the Telmi coefficients incurredAig the t;ansfor-
mation of barmonic oscillator wave functlons is derivea in

" Appendix B.

The radial harmonic oscillator wave function is of the

form, : . :
- v - ’2n1b372 + L ’ 1 =iprl
(4.10) Wnl(r) "‘ m Lz’-l 2(‘bl‘z) ( ‘FDI‘) € zor »
where, S

n :

L © n /ntlvg) (-1) 2yh
1t 2y = = 2) 1 (or<) »

2y = = (N7

b being the harmonic oscillator size parameter, It will be

convenient to write Eq,. (4.7) in the form, -
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Z > @
= h RO N N(RO)’
2V

and to assume that the one~-nucleon wave functions of the inde-

(4.11) Y,

pendent-particle model and the functions Q)nio (i=1,2,3)
and IVNO can be approximated by harmonic oscillator wave func-

tions. The overlap integral,

- 2O
(a.12) (R = %O,
is found by performing the integrations; the result is,

= T N P )« 4z 4 b . N ON_ O -
(4.13) @/N(Ro?” (00;3137) T(OO,3633)nm24110n30,0114101‘20,O>

"** 4N, 0ny 0301V 11,50 L Ny0n50;0]251,V,1,;0)

s (1) 732 Roged) tmped) tHnged) 3 (27T /2
nl'.nzln:s! B4 P

B - b\Ryt Bothz
o (_m) \-)jno (Rg) .
The radial functions, Q)NO? define the benter-of-mass'_'
dependence of the system (‘1234)f If most of theAcontribution

comes from & principal node, N

o» one would expect the principal

fgnctiqp,Q}Nod , to be similar to the resqnént solution of

BEq. (3.9) having thgisame number of nodes. Since the only

free paramétér‘of the harmonic oscillatof_wave fpnction is the
'size parameter, b, its choice nust be somewhat arbitrary. Since
only the amplitudes enter the determination of the reduced
width, it might seem reasonable to choose the amplitude or the
principal function at ﬁhe nuclear radius to be egual to the
corresponding amplitude of the one-body wave function as selec-
ted from Table 2. . 0f course, such a solution will, in gen-

eral, neither yield the correct energy nor satisfy the bouhdafy
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condition, Eq. (2.30).

It 1is not clear that connecting‘the independent-yarticle
model calculation with the one-body problem in the above man-
ner introduces the surface and thé size effects of the one-
bedy problem into the calculation correctly; It is seen from
Eq. (3.5) that the spectroscopic factors should be rather in-
sensitive to the surface and the size of the nucleus so that
ﬁheSe features should affect only the one-hody aspects of the
calcuiation; in fact, in this calculation, the spectroscopic
factors are connected to the one-body problem only through the
choice of the size parameter, Hence, if the use of the har-
monic oscillator one-nucleon functions is reasonable, the cri-
terion for the vealidity of the above procedure becomes that
the spectrcscopic factors must not depend sensitively upon the
choice of the size parameter.

4 - 4: NUMERICAL INDEPENDENT-PARTICIE MCODEL REDUCED WIDTHS

In the present section,'we will,célculatelthe independent-
particle model reduced width of Po212 by the technigue of
Harada, but employing the one-body resonant wave functions of
a diffuse-edge well rather than those of a square-edge well,

In his calculation! Harada has assumed a squarc-edge well of
radius ten fermis; with the introduction gf configuration mix-
ing in the parent nucleus wave function, he obtains a reason-
able value of aﬁout one-twentieth the empirical decay constaﬁt.
A larger radius would produce & larger decay constant but,

from Figure 1, it would appear that over ten fermis is too

large & nuclear radius. In fact, as will be shown in the sub-
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sequent discussion, this large square-edge well corresponds
to a smaller diffuse-edge well,

Harada has chosen the size parameter so that the prin-
cipal function should have an amplitude at the nuclear radius
(ten fermis) equal to that of a square-well resonant wave
function; the square-well has been cnosen so that this wave
function has the same nunber of nodes as the principal func-
tion and satisfies the boundary condition, Eq., (2.30), exactly,
The only aspect in which the present calculation differs from
Harada's is that the size parameter has been chosen so that
the amplitude of the priﬁcipal function is equal to the ampli-
tude of the corresponding resonant function of & diffusa-edge
well as selected from Table 2. Tnis procedure is intended to,
incoryporate the properﬁies of thé diffuse-edge into the calcu-
lated reduced widths in a more direct way. It makes much
clearer the rolé of the potential and the value éf the radius
of the resonant state,

The contributions to the'ovérlap integral from each node,

g,

"N
has been chosen to have ten nodes and the results are tabu-

(RO), are given in Table 4. Here, the principal function

lated for vafious nuclear sizes and surface'thicknesses. The
rates of contribution were found tb be.rather insensitive to
the harmonic oscillator size parameter.

The calculated values of the reduced widths are tabulated
in Table 5. A comparison with the experimental values (Table
1) and, hence,.of the decay rates, has also been included in

the tabulation,.
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TABLE 4
OVERLAY INTEGRALS

a) Surface Thickness: 0.5 fermis

s | Bo=9.0f. R, = 9.5 f, R, = 10,0 £,
(f?“/ )| #o = 0.116 £7° b = 0,095 f£7R b = 0.116 22
04 5.68%x10~8 2,73%10"" 1.76x10~2
Os 4.43x10°8 1.67%x10"7 1.83%10°
s 4,89x1077 1.43x1076 2.76x1078
&y 7.98x107% 1.75%x107° 6.35x10" "
Cs 6.06x10° 9.62x10~° 7.168x10°°
Gy 1.31x1074 1.39x1074 2.46x10°
O10 9.61x107° 5,41x1075 3,32x107°
11 1.59%10°2 1.08x10~6 1.42x10°°

# This was the largest possible amplitude and is slightly
less than the resonant amplitude.

b) Surface Thickness: 0,7 fermis

R.=10.0 f.,

: Ro.=19.o,f.. R, =.9.5 f.- o

(£:3/2) | b = 0,120 £3% | - b = 0.092 £3¥ b = 0,120 £7%
O 4 1726X10'7 5.93x1§‘7 | é;ZVXIO”lo'
C’s 8,84x19‘8 2,28x16f7_ 1.61x10'9
6 8.,75x107" 1.84x1076 1.62x10°8
O 1,27x107° ©2,10x107° 399107
T8 8.36x107° 1.06x10™4 4,82x107°
Oy 1.51x107" 1.36%10"4 1.78x10"°
10 8.52x107° 4.,05%x10"% 2,61x10"°
031 6.81x10"6 4.49x10°6 1;23x10-5




TABLE 5

CUMPARISUN OF DECAY RATES

Size of R, a ¥ %neor TExp Atheor
Nucleus (f.l, (f.) (ev) (kev) Aexyp
~8.5 f. 9,6 0.5 5.20 1,119 1/220
9.5 0.5 5,19 .
'1o.o 0.5 0.36 0.111 1/310
~8,0 9.0 0.7 6.16 1.119 1/186
9.5 0.7 5,18 _
10.0 0.7 0.22 0.111 1/500
#Harada: o '
~10.0 10.0 0.0 1.3 0.143 1/110

# (Harada (1961))

We have previously noted that the spectroscopic factors

should be rather insensitive to the size and the surface of

the nucleus,

In Tgble 6, the spectroscopic factors found in

the present calculation have been compared with those of Har-

ada.,
TABIE 6
CALCULATED SPECTROSCOPIC FACTORS '
Evaluaied at 9.0 . | Evaluated at 10.0 7.

Size of Surface C2 . C2
Nucleus |Thickness o o
~8.5 f. | 0.5 f. 2.,4x1072 1.3x10°5
~8,0 . 0.7 f. 3.6x10°° 1.4x%10°°
Harada: a ‘ s
~10.0 f.| 0.0 f. ‘ 0.9x107°

# (Harada‘(l961))
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It is seen from Table 5 that, by treating the one-body
.aspects of the problem with a diffuse-edge Well, an agreement
with the empirical decay rates can be obtained that is as good
as that found by Harada employing an anomalously large radius;
in fact, the values suggested for the nuclear sizes in Table 5
are rather modest sizes for heévy nuclei. Harada has found
that the introduction of configuration mixing increases the
calculated decay rates by a factor of between five and ten,

It should be possible to remove much of the remaining discrep-

-

ancy by choosing a larger, but still reasonable, size for the

nucleus,



CIAPTER 5 THE BEQUIVAILILNT SQUARE-EDGE NUCLEUS MODEL
In the present chapter, we will define, for & conven-

tional diffuse-edge nucleus, & square-edge nucleus which, for
the purposes of studying decay rates, scattering data, and
absorption processes, exnibits many of the properties of the
diffuse=-edge nucleus to which it corresponds. In fact, the
"equivalent square-edge nucleus" which we will define is, es-
sentially, that which has been used by previous authérs, in
particular Harada (1961), in the calculation of the alyha-
particle decay rates of heavy nuclei,

| The usefulness of replacing a diffuée-edge nucleus with.
an “equivalent" équare-edge nucleus has been noted previously
by Vogt (1962); he has defined and employed the "eguivalent
square-edge nucleus" in the analysis of the scattering and
absorption of neutrons. In particular, he has found.that the
parameters of this model are insensitive to the incident energy
~and channel and also to the many-body aspects of the nuclear
rroblem; hence,.the eguivalent square-edge nucleus is defined
in a reasonably unigue manner for & given diffuse-edge nucleus.
Vogt, Michaud, and Reeves (1965) have found similar results
for alpha-particle scattering from.light nuclei. The useful-.
ness of the equivalent square-edge nucleus is then two-fold:
a) once having determined the parameters of the modél, it al-
lows one to exﬁloit the simple analytic properties of square-
wells in subsequent calculatipns; b) it provides a convenient
seﬁ of parameters for studying the effect of the diffuse nu-

clear edge on decay rates, scattering cross-sections, and-ab-
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sorption cross-scctions. This is particularly helpful in the
study of absorption cross-sections at the low energies of in-
terest to astrophysics where the calculations are otherwisé
guite tedious.

In the discussion to follow, we will provide the defini-
tion of the eQu;valent square-ecdge nucleus model and will
check the extent to which it applies to alpha-particle scat-

tering and absorption in heavy nuclei,

)

5 -~ 1: THE BOUIVALENT SGUARE-EDGE NUCIEUS MODEL

' The'equivalent séuaré-edge'nucleus of a diffuse?edge
nucleﬁs is defined in the following manner. The radius and
depth of a real square-well potential are choéen so that the
following conditions are satisfied: a) it exhibits a reso-
nant wave function in the channel,'c, at the resonance energy,
éc, appropriate to the decay,'scattéring, or absorpﬁion orob-
lem of intgrest; b)the resonant wave function of the squarc-
well has the same number of nodes as thzt of the correspond-
ing resonant function of the diffuse-edge well which descrides
the average interaction between thg inqident particle and the
“target nucleus in the channel, c¢, and at the resonance energy,
éc; c) the reduced widths of the two wells, evaluated at the
radius of the square-well, are eqgual in this channel and at
this energy. One defines the "reflection factpr“,AWhigh ac-
counts for the.anomalous reflection of the squgre-well, as

the ratio of the penetrability of the diffuse-edge well to
that of thé square-well at the square-well radius, If the

many-body aspects of the nuclear problem have been accounted
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for by choosing the diffuse-edge well to be an optical model
potential, the imsginary term in the square-well potential is
chosen to have the radius of the square-well and the depth of
the diffuse-edge well. The electrostatic potential is chosen
to be the same for both Wells. The sqguare-well defined in
this manner is called the “equivélent square-well" (ESW),

In general, the parameters-of the BSYW are rather insen-
sitive to the channel and the energy. Since the ESW and the
corresponding one-body diffuse-edge well have the suame pen-
etrabilities and reduced widths, they are interchangeable in
the one-body problem. It is seen from Eq. (3.5) that the
spectroscopic factors should be rather inscnsitive to the nu-
clear size and surface since the nuclear reduced width and
the one-body reduced width depend upon these aspects.of the
nucleus-in & similar manner; in fact, we have checked this
assertion in Table 6. Thus the Sﬁectroscopiq factors, which
account for the many-bvody aspectsAof the nucleqr prpblem,
should be about the same Whether the nucleus 1s chosen to
have the size and.surfacé of the‘diffusc-edge well or of the
corresponding ESW, Thus we can in_a meaningful manner re-
place the conventionaludiffuse-edge nucleus with the equiv-
alent sqguare-edge nucleus for the purposes of analyzing decay
rate, scattering, and abscrption data,

5 = 2: AFPPLICATIONS TO HEAVY NUCIETI

In the present section, we will examine the validity of
the equivalent sqguare-edge nucleus model in heavy nuciei by

considering the absorytion of alpha-particles., The technigue



55 -
employed is to evalunte the ESW for a fashionable ouptical
model potential and then to study the dependence of the re-
flection factor upon the parameters of the problem by con-
siderihg the transmission functidns.of‘the two one-body poten-
tial,

The one-body.radial Schroedinger Equation, with an optical

model potential, is of the form,

- . ‘
(5.0) " B2 SHe b (vo(R) v vy (R) +avg(R) 4T LI ) =equ,

2¥ GRre
Defining the incoming wave in the channel, c, by,
N ~—I ,—'(L) ~ e .
(5.2)7 Io(B) = e™e (G, +iF ),
one has, at sufficiently large radius, that
(5.3) ui(r)

uciRj

C.(R)+ 1D (R)
_ _Ié(R) N 621(4C-+130) Ié(R)
) - e2i(%g7ikg) I_(R)

where C, and DC are the real and_imagina:y ﬁg:ts of the log-
arithmic_dsrivativeuof U, and where «,+ iﬁclis the phasg shift.
In‘gengfal,,ﬁc'is very small whence it is easily shown from
Eq. (5.3) that, |

4 = = = =
_Ec (CeGe - G& - DFe)? + (FE -C Fe - DgGe)

3
ofje

where Tc is the optical model transmission function and where
R, is sufficiently large that there is no further absorption
due to the optical model ypotential,

If there is no absorption due to the optical model poten-

tial beyond the ESW radius, one can define,



, - 56 =

' ' e} .

(5.5) &) Pj, = -KRggyPc,
) 8j, = -kRpgCo,

and write the optical model transmission function in the form

(k= VEPE )
: -h .

A)
-

‘(Preston (1962)),

2
dR.

uc(R)

(5.6) | 4P, MR, RO l
uc(RQ

0
. s ; : : Wi{R
e (8¢ - Sic)4+ (PQ *iPj )% n? g, NF )

Assumihgﬂuc to be normalized in Ry, and npting that the sur-
_face;thickness is small, one can write BEq. (5.6) in the form,
(5.7) T = 4Pc W,

:C (Sc - Sic)2+ (PC'+ iPic)z‘ fc‘Ro) ' -

where,

(5.8) fcho) \Végﬁé)\ZA

i

Choosing the nuclear“radius, R to be the ESW radius; and not-
ing that, at resonance, f(RLSW) is the one-body reduced width,

one mlght expect in general that

(5,9)',fEsw(REsw) ~ 1.
. fairr(Rgsy)

Numerlcal calculatlons show that the denomlnator,‘(Sé_- Sic)2
+ (P +-P )3, is 1ndependent of the internal features of
the Well~to_with1p a(few percent. Thus,h ' |
(5.10) Tediff ; P diff
T Esw * Pemsy

_‘It>will be copvenient to regérd the t?ansmisgipn.cqgf-
ficient, Ty, of Eq. (5.4), as a function of the Tadius of
gvaluapioﬁﬁ Ra. To study the effects of'the imggipary‘potgn;.
tial Within'the barrier, -one needwﬁhgj‘pnly consider the ratio

of the transmission function of the diffﬁse—edge well to that
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: )
of the ESW, Within the barrier,
’ Go? 7 Fo .
D <<1 -
so that,

(5-11) 'g(R) Tairr(R) . Dgire(R)

TESW(R7 DEsw(R) )

One may then con51der that the absorptlon due to the dlffuse

imaginary potential ceases where g(R) becomes asymptotic to
the reflection factor, f. o

From Eq. (5.1),

_.(5 12) a) dR_.C L).R = 2 (Ye , W . 1? - C%(R) - Dz(R).‘

b).ggﬂil k2Wy -HZC(R)-D(Rj ; (L =0)
: : r . . . .

The solution of Eq. (5. 12) b)'in the Barrier is of the form,
- (5.13) ' TS —
since, in the barrler, D is very small and |
'c(R)f~ok]%§_ -1,

If Vo/¢ is sufficiently large, the first term dominates the
'second S0 that the absorptlon from the optical model poten-
tial exceeds that from the barrier, ) !

- The numerrcal exemple“cpnsidered was that ef'sfyave scat-
teriqgkof an alphaeparticlelfrem‘e_szosA@erger.‘wihe poten-

tial‘of'the Pb298 target was taken to be of the form,

(5.14) vi(R) + iWy(R) = (v, + i) (1 F Exp(2gEe ) )71,
where the parameters where selected to be, : |

Vo, = =-99.,58 MEV; r, = 8,566 f.; a = 0,5 f,;
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W, = -10 MEV,
The correqupding ESW was foﬁnd‘tb have the. parameters,
| Vgsw = -99.99 MEV; Rggy * 9.39 f.; Wgow = =10 MEV;

f =1.9;

N

©
0°12 decay.

‘at an incident relative energy of 8,9795 MEV (P
energy). The technique employed waé to solve the coupled _
‘differehtiél.equations,_Eqs. (5.12) a) and b), for C and b.
The effecté of the heigh£ of the Coulomb barrier are
illdstrated in Figure 8, It is seen thaﬁ, for hgavy nuclei,
the trahsmissioﬁ of the bafrier is very sensitive po'the
tail of the imaginary potential within‘ﬁhewbarrier. - This
Along:range absorption is an intrinéic‘propefty'of all.0pt@9al,
model calculations,.even though it may nﬁt‘have a goodAphys:
ical Yasis, Where it becomes dominanp, a modification of the
absorptive potential (to'remove its tgil) shall be cpnsidgred.
'In Figure 9, the imaginary part of the diffuse-edge po-
tential'has been chpsép to be the same as that of thé_ESW" A
reflection factor of 1.9 'is obtained at the alpha-decay energy
“of 8.9795 MEV, comparing with a va1ue“§f 2.0 obtained by ana-
lytic calculation of the‘peneprabilipies.as.Qiscusged in Chap-
ter 3, The valuglof'the refleptiqn factor was found to be
rather insenéitive to fhe%hgight of the Coulomb bgrrigr; from
thi§7~and noting that’it does nop'dgpgnq_sensitively upon the
energy, it is seen that the ESV parameters should be rather
insensitive tb the~decay qhanngl and enérgy. 'Ip_was ngo found
to be insens;t}ve”tqvthg,strength of the.iﬁaginary part of the

optical model potential,
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In the calculation of Vogt, Michaud, and Reeves (1965)

‘the diffuse-edge opticél mbdel potential waé'chosen to have

‘a diffuse compléx-part. They obtain a value of 4.62 for the

reflection factorj replacing the diffuse-édge complex_par;
by the complex pért of the appropriate ESW yields a yalue_of
2.8, . Itvmigh;, therefore,'seem that the reflection factor
has been overestimated by a factor of two, They also state
a reflection factor Qf‘lOO wﬁen the'ESW is réplace_with a
squafe-well having the same radius as the diffuse-edge well,
In the present calculation, the ratio pf the‘penet;ébilipy_
of the diffuse;edge well to a square-well was found to vary
rather slowly with the radius selected.

v 'it is seen .from the example studied in this“Chapter that »
the rédips ¢f_the’ESW is about a fermillargef"than that of.

the corresponding diffuse4edge well, It_is apparent from

Harada's calculation that he has, essentially, used such an

ESW for calculating the iﬁdepgndent-particle model reduced
widths, Thus the'large"rédius in his caléulgtion is consist~

ent with conventional nuclear sizes,_provided that it is in=- .

" terpreted as the radius ofugn’equivalent square-edge nucleus,
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CHAPTER 6 CONCLUSIONS
| In thié thesislwelhaVé shown‘that much of the discrepancy-
between the empirical élpha-particle decay rafes of heavy
nuclei and those esti@ated from nuclear shell-model calcu-
lations can be removed by & more direct treatment of the -
‘nuclear surface. We have contended that previous calculations
on alpha-particle decay rates have essentially used the equivF
alent square-edge‘nucieus modél of Vogt; we have shown by con-

sidering the one-body problem that the equivalent square-edge

' nucleus has a considerably larger radius than the diffuse-edge

nucleus to which it cdrresponds. We have concluded that the
large radii which were found necessary in previous calcula-
tions on alpha-particle decay rates fo obtain agreement with-
" the émpirical values were the radii“of the. equivalent- square-
edge nuéléus model rather than the actual fadii_of the decay=-
ing systems béing cénsidered.- In fact, we have shown that
'ﬁhe radii of the”corresponding diffuse-edge nuclei agree with
theAconvéntional radii believed to be typical of & heavy nu-
'cleus.v |

- In our calculzations, we have checked that the J.W.K.B.
and the square-well eéfimates of the nuclear penetrability
qséd by: previous authors aré in reasonable'agreement with‘
the analytic,values. In féct, we:ha§e found in Chapter 3
that the J.W.K.B. estimate is_quite-good to within about one-
tenth -of a’ fermi of‘the classical ihnerjturning.point and
that the square-well estimate differs by less than an order

of magnitude at the classical inner turning point,
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We have demonstrated in Chapter 4 that the one-body
reduced widths appropriate to the decay of Po212 are enhanced
considerably by a diffusé nuclear edge. In fact, we have
checked the effect on the one-body decay constant directly
by calculating the differential elastic scattering cross-
section for the one?body scattering of an alpha-particle

from Ppe98

at 9O°CM. We have iﬁcluded the many-body aspects
of the problem by repeating the calculation of Harada with

the square-well oné-body wave functions of his calculation
ﬁeing replaced with the resonant wave functions of a diffuse-
edge well}' We have found that his square-well calculation
corresponds to a diffuse-edge well calculation of a smaller
and morevconventional nuclear radius. In fact, We have con-
tended that his calculation corresponds‘to the equivalent
square-edgé-nucleus calculation for such a diffuse-edge well,

| ‘We have examined the dependence of the equivalent square=-
‘edge nucleus quel parameters in Chapter 5 by calculating the
one=body transmission functions for the aEsorption of an alpha-

particle by a Pp=08

nucleus., We have found that, provided the
tail of the imaginary part of the optical mbdel potential is
truncated at the nucléar radius, the equivalent square-edge
nucleus model parametefs are rather insensitive to the nature
of the reaction and to the many-quy aspects.of the problem,
We have from this concluded that the equifalent square-edge
'nucleus model should have some validity in heavy nuclel,

We have interpreted the results of our calculations as

suggesting that the independent-particle model, with only
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those cbrrelations introduced by configuration mixing, can
satisfactorily account for the qlustering into complex per-
ticles in the nuclear surface; in particular, we believe that
such a model can predict reasonablé values for the alpha-

particle decay rates of heavy nuclei,
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APFENDIX A HARADA'S FORMULA FOR THE REDUCED WIDTHS FOR
ALPHA-PARTICLE DECAY IN EVEN-EVEN NUCLEI

Earada (1961) has derived a convenient formula for eval-
uating the independent-particle model reduced widths for the
ground state alpha-particle decay transition in even-even
nuclei with the use of harmonic oscillator ene-nucleon wave
functions. In this appendix, we present an outline of the
derivetion of his result,

The reduced width amplitude for zlpha=-particle decay has

‘been defined in Eq. (3.3), .
5 W

aE,x.,8. 0 00 MmNy

. Y%L dadidx, ds #

’

where: QJO is the parent nucleus wave function; DC is the
alpha-particle wave fﬁnctipn;,\p;;j is the daughter nucleus
wave functioh; Y%L is the spherical harmonic describing the
relatlve motion of the decay fragments. Here,txjand u);;J
are assumed to be properly antlsymmetrlzed and @} is assumed
to be‘partlally antisymmetrized in the sense defined in Chap-
ter 2, |

We assume the parent nucleus and daughter nuc;eus to be'
even-even nuclei and ﬁe be represehted.by independent—particle
model wave functions of seniority Zero, We censiderlonly the
ground state transitions, so that the parent nucleus,»daughter
nucleus, and the alpha-particle have zero angular momentﬁm;

the relative orbital angular momentum of the decay fragments

is then also zero,

# The notation is that of Chapter 2 and Chapter 3.
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It is convenient to expand the parent nucleus wave func-
tion in the two-proton and the two-neutron wave functions
which can be formed from the unfilled subshell of the parenf.
nucleus‘configuration; iﬁ is these nucleons which we expect
to contribute to alpha-decay.‘

In qrder to make the above expansion, we require the

double parentage coefficienﬁs, (jm'z(sj)jz(J')JB jMsSJT), Here,
jm denotes the angular momenta of the m one-nucleon wave func-
tions of the unfilled subshell of the parent configuration; j2
denotes thé angular momenta of the two one-nucleon wave func-
tions of the unfillea subshell which are taken to constitute
the two-nucleon wave function; jm'z denotes ‘the angular mo-
menta of the remaining‘m-2'one-nucleon wave functions of the
daughter'configuratioﬁ.' S and J are the seniority and the
total angular momentum of the parent nucleus; respectively;
s and j are the seniority and the total angu;ar momentum of
the daﬁghter nucleus,-respectively; J' is the total angular
momentun of the two=-nucleon system formed from the unfilled
‘subshell |

Notlng the partlal antlsymmetrlzatlon of Ujo, using the
subscripts 1 and 3 to denote proton and neutron quantum num-

~

bers, reopectlvely, and 1nvok1ng our previous assumptions,

6-2°dd =
(4.1) .J;é.S(U} (V | ’ Fe02e T
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A4 =2 Az =D ‘
gt S 3
oo (pp(Jp,Jl) CP (Ji,Jé) WJ:}J 1 Jn Sz .
: JA.l -2, 3&3 -2 o
e ujog dxsds o
= 2 (574 00) 50003 'AlOO)'(jAs'z(oo)Jﬁ(o)ol3J’ﬁz’oo)
LI I ) A —L - ‘
1 (9] ¥ koo
) F % _ _ : .
Hi/:) (géﬂ (55272 (00)55(0)q]3 J“Q‘IOONJﬁ‘3'2<oo>j§(o>o|2a-‘f;Soo)
RONE:S o) O, (55,0 o
= | (A1 Aﬁ% {(EJPL?)'A (23 t3 - Ax)| &
EZ) (2) I—“l-l) (231 ASfl 23‘5.,_1_—-1( Cpp Jp )Cp (32 0),

Here, ¢L ( ¢E) depends only upon the proton {neutron) co-ordi-.
M ’

nates, (xy, X5) ( (xz,.%4) )3 & (4z) denotes the number of
protons {(neutrons) in the unfilled proton (neutron) subshell,
Jp (jg), of the parent configuration, the angﬁlar momenta of
the protons (neutrons) in this subshell being denoted by j;
(jS)' In the first step of Eq. (A.1l), we have expanded thé
parent nucleus wave function in the two-proton (two-h;utron)

2
malization factor accounting for the fact that the two protons

AN =%
" wave functions of the unfilled subshell [Zig <.Eﬂ “ is a nor-

(neﬁtrons) may be selected from the unfilled proton (neutron)
subshell in (29 A (é%) ) ways. 1In the second step, the in-
tegration has been performed; in the third step, we have summed
over the ways of selecting two protons (neutrons) from the
unfilled proton {neutron) subshell. In the final stepe we

have noted the result of Noya, Arima, and Horie (1959),

(&.2)  (3™%(00)3%(0)0|3 j™00) = Ei]f?bzﬁﬂ))_i
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Noting,
¥g = (amt,

and Eq. (&4.1), and writing,

hk'_ + 3 = )3 (2iz1 3 - Az)l %
(A.3) §.-2 = 1 3 3/
J1J33 J [ -1)( 2Jl+1]_J )(2j3+g1 ’

Eg. (3.3) becomes,

(A.4) B« = = h RO gA183 43 o) fP o))fdndéds
JlJ5 5,8 .

We have defined the alpha-particle wave function,‘ , in

Chapter 4:

. - - 3/2\ 3/2 2 2 5
(60 Xazsa) = () e 4T+ 2 455))

| | se e (am) "3R8 (12) X(G (34)
To perform the integration in Eq., (£,4) it is, therefore, con-
veniént to transfdrm thé proton and the neutron wave functions
to the L - S representation and to then transform the proton
‘and neutron'co-ordinates to tne internal-and relative co-or-
dinates of the alpha-particle,

To see the manner in which to transform the two-nucleon
wave functions to the L - S representation, we consider only
the j - j coupled two-proton wave function, QL(ji,O). (The

neutron case is analogous.)

i - j representation: L - S representation:.
(1 (1) ( . - 4 (1) (2) .
l£ ),= Ly )? R o S R
(2) - (2 (2) . (1 :
i?) = 14 )+§l ; s = s{1)y s{?)

1= 3P+ 5f®) =0

je

=L+ 5 =0;
the superscript (1) or (2) denotes the first or second proton,
respectively. Both the j - j coupled wave functions and the

#Harada emnloys the co-ordinates §1H=;%£l; §2H=—%§2; Ezp=53.
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L - 8 coupled wave functions form complete sets so that we

may make the expansion,

|(1§1)s{1))j£1),(1£2)s§2))j§2); =

§<1(1)1(2))L,(s§1)5§2))S;JM\ (1§1)s£1))j(1),(1(2)s£2))vj§2);n>

{11 (o (1) (g, @ .

We adopt the notation of Rose (1957):

(LS J(l) ( )) =

.

(i, (s esm| 1 (V1) 51, 1 [2)af2) )312) ),

From Eq. (4.8), oniy that matrix e;ement for which §_= 0
(and, hence, L = 0) can contribute to the integral in Eq.
(4.4). We.need, therefore, only consider coefficients of the
form, T(OO;jj). We evaluate this coefficient by -first express-

ing it in terms of a 9-j symbol:

- 11 0
" T(00;33) = (25%¥1) ¢¥ + 0 ;
‘ ' J Jo

the 9-j symbol can be reduced to a W coefficient (or & 6-j
symbol) which is readily'evaluated. Conforming with Harada,
we wrlte the solutlon in the form,

1+ 3 - |
(£.5) T(00;33) = 5:1.). = J(2j+1)W(jljl;-‘§-O) #

2
-1 [2ir
JZy 21+ .

We write Eq. (A.4) in the L - S coupled scheme as,

#The value of the matrix elements, T(00;jj), stated by Harada
contains a misprint {being in error by a factor of l/f’
This error does not appear to have been carried through in -
his subsequent calculatlons.



o /thQ AqA .
(A.6) '/, .19 T(OO;JlJl)T(OO;jsjs)
3133 Q,

cee CPn(L=O,§=O)Id_nd§~d§_* .
The one-nucleon wave functions are taken to be harmonic

oscillator wave functions:

£.7) P (zs) = Uy () Zmer sy (B0

where,
U1 Zn+1+-55: L, #(pr®){(JVor)~e
l"'-fé* 2 _ & n+l++ -1 h 5. h v
L, *(or<) = H%b( f)L_H%ﬁ.(brd) .

(b is the harmonic oscillator size parameter.) Then,

(A.9) 1) CPP(‘L_?O.&’O) =WV111(X1)WV111 (x,)Z <111 1-#1100>

- ii) (Pn@:b,g:o) = W’U:_Sls(xs)(p’\f‘alz 2 <1 J/ '){3100)

"'Yls( )Yl5( ) X8(34) ;

\G'and 1, CUB and 1 are the principal and orbital guantum

3)
numbers, respectively, of the unfilled proton (neutron) sub-
shell,

To evaluate the integrals in Eq. (4.6), it is convenient

to write the co-ordinates, 24, in terms of their radial and
angular components, Si andfli, respectively. It is also con-

venient to define the co-ordinates,
Iy ¢ '%‘(251'1“&2); Loy = 15(?;3 +_3£4).
Expressing the two-proton and the two-neutron wave func-

tions in terms of these co-ordinates,
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. -y
| . . (ELyy L (%2
(A.10) 1)w7flll(xl)qj’v‘lll(x2 )l<111 M - Lo Yll yl)[ll(x )

2

" Ny,I QG Lpny 1'°Wl 1‘O>WN151(1'12)

21
nl,ll
'”‘u)nlil Jg(Lljl')J p11°°>Y (_M @7) g
j)u P
ii) V1, (%, <11)/,uooy(—‘5Y(~4
%)Y 5l 0P¥1 (N,
3 4
) - _(%
= Z—-<N2 Long 2'017/l Vlyo)W 34)Wn212 2)
¥_,T.,
2170
ng s dy
e Wy P2
_.2<L212- o Pg 100> Y- ré‘%)y_.( ) .

grating overﬂ andﬂ
A . .
(&.11) T, =Jd F 1 3 T OO.;Jlgl)T(OO;Jng)

f S Gromsoazinis
(o ny,n2
32)_39‘-‘

co e _ rl?_,‘
<N20n20,o)7f 12Uzl 0>L}/N 0(r12 YO( )

T12
e L}Jngo(rm) Y0 (%)Xg(lg)xg(“) q/nl'o-(gl).
q)n‘zo(52)3(cm‘Ts?d?lE‘;’*‘d??’d%d_s_‘,<
Noting,
(A".lz) WN.O(rL‘B)YO (E12 )wl\ Yo(éz) z ...

Z<\10n 0; O]NlONZO °>% (R,)Y2 () (%S)

LI 3N ) o
Yo (fl;,)

#The Talmi transformation coefficients, N3LjNoLs;L njlynsls;L ,
are defined and evaluated in Appendix B.
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substituting Eq. {(4.8) and Eq. (A.12) into Bq., (4,11), and

integrating over 3 and ,
(8.13) T.= n* Ho gt18s Or )
J1J3 o’
where, ' o3/
3/2
(£.14) 6(Ro) = T(Ooijljl)T(OO;j333) <%,‘—)‘>

) Eni n<N0n50;o\N10N20;0><N10nlo;olvlllvlll;@
By,0g,03

e : : 2.2
¥4 0n50; 0] Vslsj%ls»?j\%lo(?l)mr( 2 %l)ﬁ 17451

W ot mo g s,

f\V Ea & 5 ’g 3955 \VNO(RO) .

Performing the integrations in Eq. {A.14), we can write the
‘overlap integral in the formn,

(.15 Tz = 2 OLiw,)
where,

(4.16) UN(RO) = 7(0033737)7(00;3234) Z <‘\T0n50 0l ¥, 0%50; o}
: 1,05

~,..<1410n 0;0[V 1V 1, o><N 0n,0;0[V,1,U1,;0)

»

s l- nyt 5) L)':(né*’ )J 2f‘b> o2

1.n2.n3. A2+

-b +n:)+n7 ’ |
(£+b LR WielRe)

The reduced width can now be calculated from Bq. (A.13) and

(4.186).
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APPENDIX B TAIMI TRANSFORMATION COEFFICIENTS

The Talmi'transformation coefficients are the transfor-
mation coefficients for expanding the shell model wave func-
tion of a two-particle system in terms of the wave function
of their relative and center-of-mass co-ordinates. If the
average field is taken to be an harmonic oscillator well,
these coefficients can be calculated in a simple manner, In
this appendix, a recursive relation is derived which(is con-
venient for the computer evaluation_of those Talmi coeffi-
cients which have been used in Chapter 4 and ﬁppendix A, A
‘more general recursive relation for the Talmi coefficients
appropriate to an harmonic oscillator well has been derived
by Arime and Terasawa (1959), and the technique employgd.in
the present dlscusclon is based upon their calculation,

In the discussion to follow, the wave functions discus-
sed will be assumed to be harmonic oscillétor fuﬁctions. The
spatial harmonic oscillator functioﬁs are of the form,

¥ Y
(3.1) P (2.0 = (20002,
where: T andil are the radial and angular components of r,
"respectively; Y{ is a spherical harmonic; b is the harmonic
oscillator size parameter; Q%l(r,b) is the radial harmonic
oscillator function defined in Eq. (A.8),

The spatial single-particle states will be taken to be

< S e~ s .
111(1 ,b) and &)21 (g ,b). The spatial wave function of
the two particles is then,
. ( ) = U/
(8.2) Qwvyipvp1, tE1a2e.0) F 111 (rs5,0)

—_— )Jl M .
_“ﬂl"’zzg@llzuluzzm:) 'Yll(nl) Y 0,).
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The relative co-ordinate and the center-of-mass co-ordi-

nate will be denoted by,

I 2 Iy - Iy; R = #(x; + z2);
respectively. The one-particle wave function in the relative
‘co-ordinate will be denoted by q>§l(£Jc), and the one-particle
wave function in the center-of-mass by C?;L(EJC). -It is eaéily
shovn that,

c = +b; C = 2b.
One can construct the two-particle wave functions from the

relative and center-of-mass wave functions:

L M
(B.3) @le - ﬁb\w dpnl Ean.mmr? v, Y

M,m
Since both the set of two-particle states defined by Eq, (B.2)
and that defined by Eqg. (3.3) are complete, we can make the

expansion,’

’ _LE' LtIr!
(B.4) i = > (NInl; L ) Tl 12 Qb ,
) ) V111Vl T yTT n< ! P 0y 3
1 L'H'
ii) (b Tt = Z(Vl 12L'M | NLn1; LM>¢V11 Vi1,
NInl l
3,1
Lt ﬁ'

where (NLnl;T'E'| V411p1,:Tikna <t 7212 T'H'|NLnl;TH) are
expansion coefficients. The propertles of these coefiicients
were first studied by Talmi, and the coefficients bear his
name (Talmi (1952)).

To derive & formula for the Talmi coefficlents, we follow
the procedure of Arima and Terasawa (1959). Ve first note

that, from conservation of energy,
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(B.5) (2Vl+1l+ 2»”2 +12) = (2N+L+2n +1).

Moreover, from the orthogonality of the angular momentum
eigenstates, f{ = f.; ' = ¥, In fact, We assert that the
Talmi coefficients are independent of the magnetic guantum
number, M.

To see the latter point, it is convenient to choose r

and 22 to be parallel. Making this assumption, and noting

that,
:E: 41 lgmlmn}LM;7Y 1@57) Y?g@fl) =
l’
(5L, 7 1)(2L. + 1) _m
T CrE A <111200/Toy Y (%) ,

Eq. (B 2) can be written as,

(B.6) Cplll 212(_1. W’Vlll(rlpb)wvglg(rg.b)
(21, + 1)(21,+ 1) e ey
[47r (2T + 1) g 0010y YLt

and Eq. (B.3) can be written as,

(B.7) CP?IIJ 1 (B.x,C,c) =WNL(R’C)%1(“°2/ (j%+(;%'(+21)+1)

(LlOOILO)f $2) .

Noting the linear independence of the spherical harmonics,

Eq. (B.4) can be written as,

(B.8) 1i) uhﬁ;l(rl,b)ufvzlg(rg,b)J (217 + 1) (215 + 1)
eee (111500 T0Y | :
Z(NLnl;ﬁﬁlﬁllﬁlgfﬂ7%L(R,c) \Pr”ll(r c)

N,L
n,l

cee VR F LY(BT+ 1) £11001T0Y

.
2
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ii) \VNL(}:‘,C)Wnl(r,c)f(zw 1){(21+ 1) <L100|T0) =
Zlcrll 51 LINInL; LM 1 (v, )

RSS!
’U’z,lo

* Prala(rg, o)V (2111 1) (21, + 1) <1;15001T07 .
It is seen that the Talmi coefficients are, indeed, independ-
ent of the magnetic Quantum number,ﬁ; we will henceforth denote
them by QInl;TiV1V515302 and 4Vl glz;leanl;f7 o |
For the purposes of this thesis, only the Talmi coeffi-
cients of the form, (NOnO;Olvillvill;q7 will De reqﬁired.
Taking T to be zero in Eq. (B.8) i),

(B.9) (// 1,(r 0 Wll r,,0) (21&1)(111 00j00y =

NZ <NLnL; olV 117 111.0> WNO R C)ano r,c)
L

‘o - (2L +1) <1100(00)

Now, o
(8.10) W1, (2,00 w15 (x5, 0) (213+ 1) £351500000p =
. : 3/2 " o
2Ui b ( 242
ve. =TT T - b (2R®tr=/2 )
VERTL i ¢ T
R V2 ; o4 -
> % Pl S (Vl*ll*% 1*ly*s| (R3*1y
¢ e » j=o k=o p:O q::o ’Vl—j —V—l"k p
S Jtrk=qa . '
oo (BETY O (41) LItk p2(5%kn) - (pra),
o Ik ‘
e ¢ @ Rp+q ’
and,.
(B.11) N}:;l {¥InL;0}V31.V51q; o>% .R ,2%) LVno (r,zb)
» ?
L. .. '

*e* (2L + 1) <ILLoO\0O> =



S cum PR— n1(20-50)%7
cee = <l\anL;Ol'U'lllVlll;O7 2L 1 1 (ITfL-{-_é.) T LL) !
N’n’ " .
L
_ (20) g% 1) 2 N =n <N+L+§) (n+L+é)
2 T2 z z T CLE
e e 520 t=0 N-s n-t
(-1)° © +4L t+3L 2t+L _2s+L
(2p) " °7 (4b) r R

sit!

whence (eliminating common factors) Eq. (B.9) can be written

in the form, : vy, Wy 251, 2%+1. (1 ‘
' 2v7 1 j} 5} 17h 3; 1({1tlitz
(B.12) ¥y 21+ 1 ; Sh Lo Uy -
1 (vi+11+g)g j=0 k=0 p=0 q=0 179
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A recursive formula for the required Talmi coefficients
can be found by equating the coefficients of the monomials,
0-258 . . . .
tYR®%, in BEq. (B.12). TFor these coefficients:

Lz t=0; D q=s; jrk+ly=s; p=2j+ly; q=2k+1;

and we ovptain the relation,
(B.13) 2Vvy! > m~*11* 1t
CRI T (T ke v / Tk
3, k=vy
.S . 4Nin! Nt
" Wrn=lg CWOn0;01 Yy 19y 1330 (wes) T(mv )T ln-s

Ni2s
S

(n*% 2
R n S’. ,
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where,

From Eq. (B.13), it is straightforward to show that,

(B.14) <s0(N,-s)0;0/Vy1v411;0> =

R [ PN
fs'(l\m s){(s, ) (+1) [2‘% 21,7 I 1yl
) 2

(Nm-S').

UV FL b)Y 2 (g - )t (v - )t
1 1 1 1
jrkyl,=s
jnkﬁv—l

N ‘
e — N%“l <NO(Ny-N)0;01V17v71y;0)

o

N +35)! +) ! : -1
oo [ HEN nl? fn'*?) RN-—S)! (s+t3)! st &!

.

The Talmi coefficients employed in this thesis have been

evaluated from the recursive formula, Bq. (B.14).
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APPENDIX C CALCULATION OF THE ONE-BODY DIFFERENTIAL
ELASTIC SCATTERING CROSS-SECTION

In this appendix, ﬁe derive the s-wave differential elas-
tic scattering cross=-section for the scattering of a particle
from a spherical one-body potential. The approach which is
adopted is to express the cross-section in terms of the log-
erithmic derivative of the resonant one-body wave function,
This general method of approach is familiar from the ®-matrix
theory of nuclear reactions, the present case being, perhayps,
the simplest example,

~

We take the one-body Schroedinger equation to be,
_Tl2 2 ZZ'e2 / | -
(c.1) B0V + 222 v v(m)] O(r) = €4(r)
where M is the reduced mass of the one-body system; Ze and

Z'e are the charges of the two interacting particles, Here,

_ ZZ'eR
R

(c.2) V(R) = Vg(&) yvyg(R)

where VC(R) and VN(R) are the one-body electrostatic and nu-
clear potentials, respectively. Due to ﬁhe short range of
the huéiear force, V(R) is typically a short-range potential,
The scattering cross=-section from such a potential is well-

known (Messiah (1962)):

| 2
(c.3) 6(e) = |z(e)| 2,
where, .
(c.4) f£(e) =»-—71—.,)—.— EXP(-iM1n(sin®%6) +2ic,) -
: by
2ksin®56
vee L T (21+1) eRP°1 2idy _ P (cost
5TE 120 ( ) e (e 1) l\cose) .
Here,
(€.5) 1) x = VEES

T >
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.. _ ZZ'e2 »
ii) N AN

iii) 6 = argl (1+1+in) ;
and ¢, is the phase shift of the 1%B partial wave. Defining,
(c.6) i) B = M 1in(sin~i6)

. n
11) ¥ 2 L .
sin®¥e °

and neglecting contrivutions to the cross-section from all
partial waves other than s-waves (1 = 0), Eq., (C.3) becomes,

2 o M
- 3 . .
(C.?), 6(0) - H{—g - %COS(ﬁ+JO)S.an; + Slngdo
: : Xk

°

It is seen from Eq. (C.7) that, to evaluate the differ-
ential elastic scattering cross~-section, we need only evaluate
the phase.shift, JB. The phase shift is defined by the as-
ymptqtic property,

(C.8) wuy(R) ~ &[(G, - iF,) - egi‘yO(Gof iFoﬂ )
which holds since V(R) is a éhort-range force, Here, Fg and -
G, are the regulgr and irregular Coulomb functiohs.of ZETO
angular momentum; uO(R) is the radial part of the zeroth par-
tial wave solution of Eq. (C.1l), being‘a‘solution of the ra-

dial Schroedinger equation,

v 2) .
hz d™u AT =
(c.9) - 27 E§§o + [é;§9_ + V(Ri]uo = €ou, .

It is convenient to define the ® function to bve,

(C.10) &y = uo(R)
R du.lﬂ
dR

R=R,

where R, is & suitably large radius, It is then easily shown

that,

9

(c.11) Jg(e,) = tap-l [BFS(R,e') - Fg(R, es)ﬁﬁ]
GolR, €')/®R - RGb(R.GL'll R=R,



Noting the Wronskian relation,
(C.12) PG, = GLF, T X

]

Eq. (C.11) can be written as,

(c.13) Jo(er) = tan"t| B - Fo
ol TGy Ofese .

The cross=-section in section 4 - 2 of this thesis was
plotted by numerically evaluating the logarithmic derivative
of the one-body wave function of Eg. (C.9) about resonance.

The phase shift was then found from Eq. (C.13), and the cross-

section from Eqg. (C.7).

The width of the cross-section can be obtained from the
Breit-Wigner one=level formula; a discussion of the one—level
approximation can be found in the book by Preston (1962).' It
can be shown from the formulas for the scattering cross-sec-

tion stated by Preston that,

2 | | 5
(C.l4) 6(6) = _z(_. - L COS()B-‘-DO)SinDO ‘f— Sln_DO
4}(2' . ka kd »
where,
' : 2
. 20 o B< /4 .
(€.15) i) sin®D, G i oy .
ii) B o= —l
1 -an |
dc 1€%¢% .

Here, " is the width of the scazttering cross-section; &  is the
resonance energy;

' 2
(C.16) A= =5,%"

is the level shift (So being the shift function and"ﬁ? the one- -

body reduced width). By comparing Egs. (€.7) and (€.11), it
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is seen that we may identify Dy with the phase shift, $0° The
coefficient, B, can then be found from Bg. (€.15) i) by mak-
ing a 1eést sqguares fit to the ghase shift, JB.
To evaluate the width of the scattering cross=-section

from Eq. (C.lﬁ) ii), we require the energy deﬁendence of the
level shift. For heavy nuclel, where there are large Coulomb
barriers, this energy dependence is given‘to good &approxima-
tion_by,

(c.17) 2_42_ = _fz‘?[%-e-%s + %(%}R___Ro ,(f= kR, G, = ac_‘_gp_
~In this thesis, the effect of the energy dependence of the

level shift has been estimated from Eq., (C.,17).by calculating

the energy dependence of Gg,



