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ABSTRACT

This thesis 1is a theoretical study of some
aspects of space charge waves and hydromagnetic waves in
solids. Dispersion equations obtuined in the hydrodynamic
approximation are studied to guln information concerning
trunsverse waves propagdating aslong an applied mugnetic field,
and the conditions for which space charge waves may grow.

For the hydromagnetic waves various assumptions
are made as to the ratio of the electron and hole masses uand
electron and hole number densities.- Particular attention is
paid to the extrinsic und intrinsic cuses. It is shown that
often wuves which dre apparently different from waves
previously studied, may be considered as simple extensions
or special cases of the type of wave motion that are well
established.

In studying groWing space charge waves it is
assumed that the solid is intrinsic, the hole muss equals the
electron mass, and the plusma found in the solid is cold.
Recombination and damping of the carriers is taken into account
at all times. For this model exuct conditions are given for
which growth of spuce charge waves propagating along an

applied elsctric field may occur.
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I. INTRODUCTION.

This thesis investigates some aspects of wave
motion in the gas of electrons and holes which may be found
in solids. Section II is devoted to waves propaguting along
a constént magnetic fleld; section 111 studies space charge
waves propagating in the direction of an applled electric
field. TFor the hydromagnetic waves varlious assumptions are
made as to the ratios of electron and hole masses and number
densities; this discussion is thus valid also for gaseous
plasmas. For the third section, which is essentially indepen-
dent of the second, it is assumed that the holes and electrons
are identical except for the sign of the charge.

We shall first study plane transverse waves
propagating along an applied magnetic field. Transverse
unperturbed magnetic fields and longitudinal perturbations are
assumed to be non-existent. The discussion wus motivated by a
recent puper by T. Watanube (1961) which seeks the frequency
raenges in which undamped Alfven waves may propagate in a gas
of any degree of lonization, the mass of neutral and positively
charged particles being equal and large compared with the
electron mass. In this thesis we shall discuss a gas which
corresponds to the gus of electrons and holes in solids: neutral
and charged particles with both signs are present with a mass
so heavy that at the frequencies considered these particles
may be considered to be immobile, and light positively charged
particles and negatively charged particles are present in such

numbers thaut overall charge neutrality is maintained. We



shull not restrict ourselves to the dumped or undamped Alfven
waves as commonly known, but instead seek those conditions
for which the mugnetic field is a dominant influence on the
waves. Alfvén waves are such waves, and the oscillations in
Sodium which have recently been found at low temperatures by
Bowers et al (1961) are included in this scheme. We shall
find thuat the mugnetic field dependence is not the same in
extrinsic (monopolar) and intrinsic (bipolar) cases.

In the third section we study a paper by
Groschwitz (1957) in which a dispersion equation is derived
for space charge waves which propagate in a solid along the

direction of an applied electric field. The dispersion

equation contains the diffusion and recombination coefficients,

important in solids. 1In its derivation it was assumed that
electrons and holes have equal mauss and are present in equal
numbers. The equation was solved for the complex wave
number ¥ = K, +iK, . We show in the third section that the
solutions given are not correct, and that thermal velocity
fluctuations are not taken into account correctly. The Gros-
chwitz puper is extended to a study of the conditions for
"double-stream amplification” in intrinsic semiconductors for
which recombination is not ignored but the velocity distribu-
tion functions are delta functions centred on the drift
velocities of the electrons and holes.

Throughout this thesis dispersion equations are
studied which are obtained from hydrodynamic equations using

a linearization method. It is well to consider briefly the



3.

limits to the validity of this derivation. We consider the holes
and electrons in the effective muss approximation. The charac-
teristic times and distances over which macroscopic variables
change (such as the period and wavelength of any wave motion
'present) must be large compared with the mean free time - not
mean collision time - and mean free puth of the collision mechan-
isms: the particles are "locked" together and local equilibrium
is attained. The system may then be described by such muacro-
scopic variables as mean density, mean umiss flow} and a parameter
such as temperature describing the fluctuations about the mean.
Finally a linearization method 1is used to make the equations
more amenable to study and a superposition theorem is called upon
to muke the approach worthwhile. Again, it must be kept in mind
that the linear approximation loses meaning if higher order
terms become important as the waves grow.
II. TRANSVERSE WAVES PROPAGATING ALONG AN APPLIED
MaGNETIC FIELD.
1. Introductory Comments and Organization.
On the following pages we study transverse hydro-
dynamic waves propagating along an external magnetic field.
Two charged carrler species, electrons of charge -e and
positive ions or holes as we shall call them of churge +e, and
a neutrul or charged background are present. Elesctron-hols,
electron-background and hole-background scattering is taken
into account, and no restrictions are placed on the hole mass

nor on the electron and hole number densities. For most

1. Tt should be noted that a mean velocity may not be defined
for low mobility semiconductors, as the mean free path may be
of the order of or smaller than the interatomic spacing or the
electron wavelength.



of the discussion the buckground medium is assumed to be
immobile. Much of the work is thus wvalid for such plasmas
as semiconductor plasmas and gaseous plasmas; the principal
assumption is the validity of the hydrodynamic approximation.

The discussion is an extension of several
published papers. Hines in 1953 treated the case of an
unspecified number of carrier species interacting only with a
mobile neutral medium. Oster in 1960 discussed wave motion in
general, devoting a few pages to the type of wave we are
interested in but assumes no background is present. Watanabe
in 1961 studies these waves with our assumptions except that
in his treatment the background medium is neutral and mobile
and the ion mass is large. Tanenbaum (1961) has discussed
plane waves for any angle betwsen the direction of propagation
and the mignetic field but agaln the ion mass is taken to be
much larger than the electron mass. As this author is
interested in solid state plasmas this assumption is too
restrictive and hence not made.

In ssction 11.2. the dispersion equation is
derived and briefly discussed. Section II1.3. is devoted to a
discussion of "general alfven waves™, und a study of the
dispersion equation for the extrinsic and near intrinsic cuases.
The approuch we use 1s compared with Watanabe's approach in II.4,
and a recipe for including the effects of a mobile neutral
background is given in section II.5. Finally, matters for

future investigution are suggested in I1II1.6.



2. The Dispersion Equation.

Consider an ionized gas consisting of electrons
of mean veloclity tﬂ_, number density N,., mass M, and charge
-8; ions (U;,NP,MP,e), and a4 third species of particles which
are immobile (more exact criteria are given in section II.5.)
but may be neutral or charged. In the presence of an electric
field € und magnetic field ® the equations of motion then

are (Watanabe (1961) and Tannenbaum (1961)):

QE.\. Mp — —~ — - — i
Pa OF + favup ety (Ua-Ue) vpuvar Uy = ~e N (B + T E) 2.1
and
oa.f' " — — — Ead — -—>
Pr Dt + yP\)P"' T"TN\,—VTP (UP..U,J‘.._PP\)PL Uf,: QNP (E.+ LLPX 8) 22

The collision frequenéy of an electron with the holes is
denoted by Vap ; it is‘assumed to be constant. Vap, Vab,Veb
are defined similarly; Pa=NaMa , Pp=NeM, . The Lagrangian
time derivative is denoted by é% .

Due to conservation of momentum 9np=‘§ﬁ_vpn .
Define = %a , and o« = %ﬁ’ .

Let plune waves propagate along the 3 - axis
which lies along the primury magnetic field'E; . Let no
primary electric field be present, and assume 8-8. and all
other vectors lie in the x-y plane and vary as exp (i (wt-K3)).
By standard perturbation techniques it follows (see Appendix A)

from equations 2.1, 2.2, and the Maxwell equations that



W a2nd K obey
.
MEWLan
= =
e (&~ pme)
_ (O Qp-i Ve WO _iVub) - ﬁ‘: [(U‘_’;‘Jp'-.l‘bpb)4-;!(;(“10.‘\_-;\)‘5)]\)“"

wid?‘-‘vfb" %(Ulw&‘.‘\)nb)-i %)-1-‘%& \)n.p

The signs are coupled. The lower signs give the Ordinary (O)
wave (the field vectors rotate with the holes), the upper
signs give the Extraordinary (E) wave (rotation with the elec-
trons). This convention will be followed throughout the
following discussion. These waves are very familiar from

ionospheric studies.z The plasma frequency ®ee for the con-

P
plete lonized gus has been defined as J(h':ﬁ*' %%)_ée_ .

The plasma frequency Wewn for the electrons has been defined

as,lﬁ&i , and similarly for Wep . The permittivity € and

permeability 4 will be assumed to be real. The gyrofrequencies
On and Wp are defined as - %%f and E%i respectively.

The mugnetic field affects both numerator «nd
denominator of the right-hand side. The denominator and
coefficlent of Vap 1in the numerator involve a term in B,
which vanishes as = %& tends to one. Generally the numerator
includes a term in B2 , but for fixed d4={%i and large enough

p» (or small enough s ) the numerator and denominuator have a

common factor and only a B, dependence remains. Varying « for

@ different from one has a similur effect.

2. Any book on the physics of the ionosphere may be consulted.
A very detailed study is given by Ratcliffe in his book on the
magneto-ionic theory (1959). In much of the discussion he
assumes the ion mass is large compared to the electron mass.



These matters are discussed in greater detail
on pages following.
4. Discussion of the dispersion equation.
(i) Generul .1fvén Waves.
Usually Alfvén waves ure considered to be truns-
verse waves propagating through a two-carrier gas along the
direction of uan applied magnetic field such that the equations

oU.  T.O@ 34
P& ot T x -

and

—

_E.-Q' U‘K—B.ozo 3.2

are valid (Watunabe (1961)). The mean mass density and mean

velocity are defined as p = p, . pp y B = PalntPele
yv\. +fP

For these waves the phase velocity is given by
3
& —_—2e

K Jmnp. ’
i1f this velocity is smaull compared to the velocity of light.

In generul

1 et
..";'.'_)ue MN Pe 33

In the following sections the descriptions
"Alfven Waves" shall be restricted to these waves. They are
one form of « more general type of wave which is essentially
governed by the applied maugnetic field. For example, consider

those waves which satisfy the dispersion equation (III.2.):

we __ 2w(RE0.-iVab)
K> We.
LIy en
oL M




These waves are not essentially dependent on the magnetic
fleld for @y lwal or Y.b 2 lWal , and even if w<<loal
and Vab<< |0l the right hand side varles not with BJ ,
but B.. However, in this discussion a sufficient condition
for these waves to be in u cluss called "General iAlfven Waves"
shall be that @=<<1Oxl . These waves may be heavily damped.

This convention is suggested as plasma physics
is overburdened with technical terms and descriptions.

(ii) The Extrinsic Case.

If <<l ,ofd<<i , A< X, %Q,L<<ka » and
;%, Yeb > Ypb the holes cease to exert any influence3 and
the dispersion equation becomes the familiar appleton-Hartree
formula for a purely longitudinal magnetic field:

_Me 20 (D% On=idub) 3y

Si-me e

If the inequalities given ure reversed a similar equation for

the holes is of course found. This equation has been studied

in great detaill (see Ratcliffe (1959) and Oster (1960), for

example). We briefly discuss some of the important featurss.
(a) High Frequency Waves.

If W> lwal,Yab equation 3.4 yields the familiar equation
wt = '5 Daw + K™,

putting c*= YLQ . The group velocity is less than € and

the product of the group and phase velocities is exuctly equal

3. These inequalities may be unnecessarily restrictive. a4t
high frequencies, for example, the collision freguencies are
not importunt.



to et , a characteristic of high-freque

(b)

¢
Genersl alfven Waves.

Tor lL.l>>W we have
me QU(‘!‘.U.‘—;\)nk)
‘_‘j_;_}gg ‘Jc:-

. . 4
which describes generul aslfven waves.

should «lso be ignored. We may demand

ney radio waves.

If \’.‘, s w vub

’

that W be real, thus

restricting X* , or we may, depending on the problem, demund

that X be real.

chz and Q

If W 1is real and

have opposite sign und

= K, + 1 Ka

then

’

.._1_‘1'.5.‘;- . LJ:.., Vb
Klz—Kzl * Wen ‘Unl#w(\’.b’"&U:)

Thus the waves are damped and X tends
ary as Wal/y., becomes lurge. This may

from 3.5; lgnoring VY. it becomes

o(1onl® 20 ) = ok

Let @ be positive and real. Then for
positive and hence K 1is real; for the

1
for co>L“*/&u»| and imaginary for o

latter cuses may not be possible. If
for exuample, we cannot have

Wew 2"_&\’\&5

Vap << lnl< TG ~ 3 T

Hence K must be rsal.

to be reual or imagin-
be readily ascertained

kS

E-vave K is

the
O- wave K is real
< “*“4w|. One of the

Len ~ YV b and Os>Y.b

\
<< I Vb



10.

For low frequencies (specifically,
|U(1U.+h7.b)|<<'3.0¢: ) equation 3.4 yields
TMED Ve = K"(_*.ILJ.J%Q.L)

and, for real w ,

Z.K.Ka. — ':_
KooK

If Y»*/u. >> 1  then K is imiginary for the (O-wave . For

real K and W= O+ , W3 is positive and

Wy Vub

-E;l- = X luul 3’6 ’
(9 2

& = = N, e K 3.7

Equation 3.7 has recently been derived by Bowers
et al (1961) who find that it gives good agreement with a new
oscillutory effect in Sodium which they found experimentally
at low temperatures. These uwuthors do not discuss damping
theoreticully. Equation 2.6 predicts damping for the Bowers
experiment which is smuller by a factor of ten than the damping
actually observed. The discrepuancy is probably due to the fact
that we have treuted media infinite in extent.

(¢) Heavily damped waves.

For 1Wul, Q<<V,b,

ne — 1I.L-)\’hb
ol UC-:'
B M

If © 1s real und “/ovee << 4 , ®* and K, both tend to

&elwll-‘:u .

2V



Let us consider whut we have found for the
extrinsic case. In general, the appleton-Hartree formula is
valid. We have the familiuar behuviour of the high frequency
waves and, for generul Alfvéh waves (L <<\0al) the O-wave
oy only propagute under severely restricted conditions. For
very low frequencies the Bowers formula is found. Thus the
oscill.tory effect in Sodium is a4 special case of the type of
wave originually discussed for the rare ionospheric guses; it
may also be described as a low frequency general 41fven wave.

(11i) The Near Intrinsic Cuse.

N
For p=1 und (%-.:?5 Vap << | O-iVpe + X (0-iv, B)\ ,
+

the dispersion equation is

Me w0 [-iv (D2 0= i Va ) (D2 Op =i V8) ]
Iy - x [} 159 -
,_L:;—,ug Le L' Hret TRP O-iVao+ g (V-1 Vpr) 3.8

Agalin, aus in the following, the signs ure coupled. TFor
'll
¢=-§i>-1 we must certainly have lWal>>W  for the wuves to

4
be generul alfven wuves. If ©>>Vue,Vpb,

3.9

which d4re general alfven waves without furtherrestrictions.
In equation 3.9 and 3.8 as elsewhere, the lower signs corres-
pond to the O-wave, the upper signs to the E-wave , If we have

not high frequencies but ex< Vb, Vpb,

ML W = £ Vob+(W20pIVab +i L £ On (04 We)= Ve Vpb ] ]
o= b Litia e -

2 e
oM

\)pb + c_‘i Yub

11.



These are general Alfvén waves 1§ Lp >> O Or Ul Vpb>>W Vb,
Thus, approximately w<<Wp ; then
mnt 20 [ *UL(Vpb-3Vab)? o VphVpy ~Lallp ]
= == H v —_ .10
Z\KT‘-}N. Dew [ Voo + X Vub * ( s Vee + Vob+ Vel ) °

The real part of the right-huand side of this equation -
" which is always smzller in mugnitude thdan the imaginary part
- varies as 8, while the imuginary purt may vary as 8,5 if
v-b\,'b z ‘U.\Up .
Interparticle collisions play an important role
1 ol
it JotOp-iveel 2 g Ve and loxo.-ivabl S Tx Yep

If it i1s completely dominant,

U\?.\p

2L =5
3
bc-me

an equation similar to that obtained for heavily damped waves
in the extrinsic cass.

]
If ‘Uiup-;\)pb‘>> r-b—cl‘)vp and 'U:LU,\-.'J,.L‘>> FL;;‘\)‘P'

interparticle scattering may be ignored and

2w (Utun_—i\)nh)(wtup‘;\)pk)
KY e T W W-ivpb + % (V-iVak) 3.11

—

U\

Let us treat this equation in more detail.
For frequencies higher than the collision und
gyro-frequencies, ‘
ot - ‘i Ve + Kre*
a similar equution wus obtained under the same conditions for
the extrinsic case. Thus at high frequencies the gas behaves

"essentiully as a monopolar guas, the particle mass being equal

iz.
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to the reduced mass.
Consider 3.11 for the cuse of general Alfvén

waves. Then from 3.9 for the high frequency waves (u>>Yab,Vph)

M€ 210 (L L) 5.12
Z%—-:../ue. Lee *

For U reul, X is real. If «=~1 we obtain the fumiliuar disper-

/
sion equation for Alfven waves:

ke Bo NeNw=N
_:T(.;_IME‘— MNPC 3 =n= e 5'13

For low frequency waves such that in addition to
W<<Vub, Vpb and W<<Wp , O Up + VubVpb) <<Wei (Vpb + X Vb ),
3,10 and 3.11 show that for rea«al O ,

* 1klkl = luu‘“p 4+ \)uhipb
K.""K;’. i‘unl(\)nb—‘a\’pk)

For real K, %% equals the same expression. Ignoring the

trividl cuse Vo= &‘Qpb the right-hund side 1s seen to
be large but decreasing with increasing magnetic field for
(Ul Wp < Vol Vol , reach a minimum for | LullUpg ~YVebVeb

and then increase with increasing magnetic field.

Thus for very high frequencies or collision
frequencies larger than the wave frequency and gyro frequenciles
the behaviour of the bipolur gus is not more complicated than
the behaviour of the monopolur gus. 1In general the behuviour

is more complex, the magnetic fleld not only appearing in the



reqal part of the right-hand side of the dispersion equation,
s in the cuse of Alfven waves, but also in the imaginary
part. The reul part may vary both as 8. (3.13) but also
as B, (3.10, or 3.12).

4, Some Notes on Watunabe's approach.

In section I1.3. the dispersion equation has
been used to study the bshaviour of the waves. As Watanabe
(1961) has shown, the equations of motion may be used
directly to shed some light on at least the Alfven wuaves.

B From 2.1 «nd 2.2,
Ouc — — > - =
P. OE + PaVao Un #PVpbUp = e (P-1)NLE + Tx B85,

oI

ot + \7“’,—3: 4+ &No\. ((5 )’Pb—a.p -‘\)‘Ba.& ) —

— = ﬁ(d-‘/d) — v —
Ucl‘(l“— %)(E'f“c”‘gg)—l-)gt ‘+°((5 (up—u-)xeo

3

the equation of motion for the plusma and the generallized
form of Ohm's luw. The conditions may be sought for which
we obtuin 3.1 and 3.2, the equations churacterlizing the
undamped Alfven wuves. These are obtained approximstely for
examble if x4, A=1, O>Vib, Vb and \.’..Hﬂ_,,h«"—%‘-t

This «grees with II.3.

14.

This method is more difficult to use for general

4

« and A , however.” Furthermore, a study of general Alfvén

waves would seem to be easier with the dispersion equation.

4. See also section IT.5. and Appendix B.



5. The Background Medium.

In the equations of motion 2.1 and 2.2 a
damping force per unit muss of the form Voo Us or VyeUp
has been used. The cause of this damping force muy be quite
general; it may be due to neutral or ionized impurity scat-
tering or phonon-scattering in solids, or it may be due to
scattering between ions and heavy molscules in gaseous plas-
masS. Even though the model we use 1s somewhat ideal, such
a damping term is used for a great variety of scattering
mechanisms.

It is evident from the papers of Hines (1953) and
Wautanabe (1961) that for Alfven waves, which are a special
case of the waves we study, the mass of the background
particles is very important. From Watanabe's table I, for
example, it muy be seen that many frequency ranges exist for
which Alfven waves muy propagaute in highly lonized gas
( %E lurge). Only for high frequencles may the effect of
the finité mass of the background particles be ignored.

This behaviour could be studied in solids also.
The mass of neutral impurities could be introduced, or also
the mass of lonized impurities, although the latter would
creuate more difficulties as the churge of the background
particles would have to be introduced. Phonon scattering
seems to present difficulties. Shockley (1951) has shown
that as far as energy and momentum transfer are concerned
the scattering between electrons and acoustical phonons is

equivalent to the scattering between two gases of hard spherss,



16.

KT
one species of muss Mw , the other species of mass "g> |,

S the velocity of sound for the mode considered. The number
density of the heavy spheres may not be determined howevsr,
4S8 the mean free path for hard sphere scattering - which must
be compared to the actuaul mean free path for electron-
acoustical phonon scattering - is a function of both this
density and the cross-sectional area of the spheres.

It is a simple matter to introduce the mass of
neutral background particles (density No , mass M,) Into the

dispersion equation. We only substitute the expressions

(219 3 1°%
N"- \’.b laep

— -~ —y
(u-\—ub) for Nu Ma Yuo Un .

’ nPr‘b — — g 4

NP VPL np’ ﬂL (up—ub) 'tof NP Hr 9PB up
in the equutions of motion, and in addition use the equation

of motion for the neutral particles:

oy, b Oa — . Mp e —— — )
Py nt*N{WunUmm(ur“n)+“w%prm+n,(ub‘ub =0 -

Ul may then be eliminated from 3.1 and 3.2. It is found that

. JwVeb Vpbo «
Sy o
T Vap + TP+ Juke +Fpopn must be substituted for i+aVap,
i]b\)-h w
NOP + Pu Vit + P th for Ve s
and iPuVeha for Ve -
:UPB *Ju\’.b ’.Pb\)'h

Vb /Yo and Vee/Vup oObey a relation similar to thut given
for Yap and Vee .

From these substitutions criteria for the
validity of ignoring cffects due to the finite value of Pb may

be obtained. The frequency is of prime importance as is to



be expected. It must be noted that Ne must equal Nu .

These substitutions were carried out and the
resultant equation compared with equation 3.11 of Watanabe
(1961) and equation 19 of Hines (1953) for this condition
under which these equutions are vulid. Complete agresment
with Watanabe wdas found; aS the algebra becume involved
consistency with Hines was tested only for several limiting
cases.

The equations which Watanabe uses to discuss
ALTVén waves may be readily extended so that they are valid
for any value of the raho-%i . The resultant equations ure
given for completeness in Appendix B. These equations may
then be studied directly, following Watanabe's example closely.
This was not done in general; it was only found that for Mp~n,
the conditions for alfven waves to exist in weakly lonized
plasmaus are almost exactly those given by Watunube for Hp>>Mfln,

6. Discussion.

Let us summuarize the results of the preceding
pages. Although o dispersion equation for transverse waves
propugating dalong an applied magnetic field is rarely given
for general vdalues of o= %E;L and p = !‘,ﬁ (the paper by Hines
(1953) 1is un exception; he ignores electron-ion scattering),
it was found that this dispersion equation is readily derived.
We then treated this equation for the two cases Np aNu und
Np<<Np withela 1,

The extrinsic case ( Np<<Nu) has been previously

17.
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studied in the literature. It is interesting that the classic
Appleton-Hartree dispersion equation which has been used
extensively in ionospheric studies was seen to agree closely
with the oscillatory effect that Bowers and his fellow workers
discovered recently in sodium at low temperatures. aAs the
ionospheric gaseous plasma and the plasma found in sodium are
at first sight quite different, this agreement is striking.

It wdas shown thdat although the sodium oscillations dare not
Alfven waves as these are usually thought of, the similari-
ties between these two wave motions are such that it is too
restrictive to not describe the sodium waves as "general
alfven waves".

The intrinsic cuse was found to be in general
more complex. The inclusion of elsctron-hole scattering did
not lead to any different type of wave motion. The dependence
of the waves on the magnetic field was found to be gquite
different for different cases; for one frequency range it
could be as thut of the 4lfven waves ( Ba dependence) while
at other frequencies the variutlion could be with 8, as for the
sodium oscillations.

There are several topics which could be studied
in more detail. Boundary conditions could be introduced,
although Sturrock (1958) points out that little new informu-
tion would be introduced in so doing. The effect of the
lattice upon the waves could be investiguted. One method would
be to use the dispersion equation with the muss of the back-

ground particles included, or the equations of aAppendix C. A



second method would be to treat the electron-lattice inter-
action as the neutron-lattice interaction has been dealt with
in scattering or thermalization studies. Finally, the
behaviour of the Ordinary and Extraordinary waves could be
Studied for the waves in the intrinsic cuse (with ot~ 4 ) as

i1t has been studied in the literature for the extrinsic cuse.
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I1T. ON GROWING SPACE CHARGE WaAVES IN SOLIDS.
1. 1Introductory Comments «nd Organization.

The following pages shall dedl with unstable
longitudinal space charge waves in solids. The dispersion
equation we use, which has been previously derived by
Groschwitz (1957), includes the effects of damping, recombi-
nation, and, supposedly, diffusion.

The word "unstable" requires careful defini-
tion. Sturrock (1960) has recently shown that the distinction
between umplifying und evanescent waves (the latter are
familiar from optics) requires some attention. In this thesis
monochromatic waves are considered, and the term "growing
wave" shall be used for a4 Wave which has real frequency @ but
complex wave number K such that the real and lmuginary parts
of K are of the same sign. Thus, putting KaX.+iX. in

. K0
axp (i(vt-ky) una 3:%1?, we obtain axp —t which

shows an instability for %Ei‘>o or Kakiwzo., This criterion
avoids the pitfall of callling an attenuating wave a growing
wave from the reverse direction. We shall assume throughout
the discussion with only few exceptions that the frequency is
real, i.e. the waves are excited with a constant amplitude at
any given position.
Ne first determine the conditions for which

waves obey this criterion while diffusion miy be ignored. We

shall find some errors in the Groschwitz unualysis which,

although only involving a sign, indicate that growing waves
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exist at all times. We then discuss the case for which
diffusion is supposedly tuken care of, und show that growing
waves dre lndicated in the absence of any applied fields. The
reason for this contradictory result is that spatial density
gradients are not tuaken account of correctly in the Groschwitz
equations. This mutter is briefly dealt with «nd finally a
paper discussing instubilities in semiconductors using the
Boltzmann equation is discussed.
2. Derivation of the Dispersion Equation.

The dispersion equation we shall analyzse hads

been derived by Groschwitz in 1957. He proceeds from the

equations of motion

—

DUn — e. ——  — —
pt+\7“u=—T—,’(E+uu,x .) 2.1
o Uy
et —ay [=4 — — —
ot + YUp_ F(E\turxﬂ)\

2.2

in which it huas been uassumed thut the damping coefficients and
masses of the electrons and holes are the sume. The slectric
field hus been defined as a macroscopic averdge of the fields
acting on the paurticles, ond hence « pressure term is not used
explicitly. We shall see that this wmatter requires further

discussion. The equations of continuity are

e 1 e 3ne
ST+ EVT, o (NaNp-Nt) |, 3

-5 _!L-. V“:_r.: =3 —‘Q(MnNP—an) s

+

R being the recombination coefficient, 3;==N,etﬂ - e0VYNp |
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f.=-ﬂneau+¢-0vn . D 1is the diffusion coefficient

which is like R, assumed to be the same for electrons and holes.
Let plane space charge waves propagate along the

d-axis, the direction of an applied elsctric field E ; no

applied magnetic field is present. Thus f’,‘_gara =0 |, :%5 =—-iK |,
2 aiv.

4 Dperturbation method is used as in section II to
obtain the dispersion equation. The unperturbed values of Na
and N¢ are assumed to equal N; (the intrinsic case); the unper-
turbed drift velocities are of equal magnitude Uo and opposite
in direction as Mu=Mp= M and 8,=0, Defining -ai 4S8 the

vector sum of the perturbations in U, anda: , o, satisfies

3¢l 3d, 38d, %4, 4,
~-uro* Y }(: + 0" al"at" &1(\70 +u, 0) "t -2 0)3’)1‘ + (\7‘014“:‘ leOﬂ;“,z) e
) Uy 2

-2(2v0 +@0N; +ug )3‘5’51’ . 3t + (2@N; +2v) > ;ts -2(v 0+VU 4 2VRON; + 3Weq

RN L;’ac - (Ve D +2VRON; ~Wer UT + ¥ uz)
A J
d AU,
s (VWee +2V*AN; +2 Ok AN ) ST + 20 YRY; U+.~_o

+(U¢¢,+\7 *‘4\7&“) at’,

This equation differs from that given by Groschwitz
<
in two coefficients. Letting Us vary as exp(i(wt-k3)), the

dispersion equation follows:

CykE+ (o wiol Yk s (G eid) KPrCoride = 0 2.4

C, = 0*(v-0*) vu (2RON; cu?)

dy= 200 (vo+uyr)

Ci= (V-0 N2R0N; 4 U ) 4 V0 (02 - H*) cu (s )



d = wo(pd ~20%) 420U (RN;+Y) +29 0D (2RN; +v)
¢, = avaN; (D -20%) - (V*+ Lel o)

do= 20N (V02 -w?) vV (Vi -20%)

’au;c‘
We have used the plasma frequency @ee=J"fJme instead of

u“,u,_,,=j%——e_: which Groschwitz uses.

4S this equation involves only powers of K* it is
reversible in space. It 1s reversible in time only if 0=0and
V=0 . 4S a result of the exponential variation assumed for
the perturbutions the complex conjugutes of & and K may be
inserted for & und K simultaneously but not separately. If
and only if 040 and U.{o is the equation a cubic in KL; ir
one of O and Uo 1s zero it is reduced to a quadratic equation.
If U, and 0 equal 2ero only <o and d. are non-zero and

(w-2ieN; Y v-iv)[L(W-iv) -vi ]l =0

Thus the field vectors rotate over the whole space with
w(V-iv) = wee , which for @>>v yields the familiar Tonks
and Langmuir result w*=Weéc  (Oster (1960)). It should be
stressed that not even in this simple equation may damping be
taken into account by replucing O in the collision-free
dispersion equation by @-iV ,
3. analysis of the Dispersion Equution.

Let us seek the conditions such that at leust
one root of the dispersion equation is growing, or ths
boundary between growing and attenuating waves. We shall first

study the dispersion equation when one of E, und O vanish, and

23.



then briefly when neither vanishes.
(1) Non-Zero Drift Velocity, Diffusion
Neglected.

Consider the case Eo40 but 0=0 , Let us in
addition put V=0 und R=© for ua preliminury study. For
these undamped waves the dispersion equation 1is

USKY - (20% Vs YUL K +O> (0 -Wec ) =0
or, equivalently,

wc.t + U¢: = 4
(0+4uok)* (L -us)* 3.1

This equation is familiar from the theory of double stream
amplification. The frequency and wavelength may be readily

solved for; we obtuin

kS [ Y] )
Uk s S Wee +O 2 T fsw‘«)«_ + O

a Y
20 s W +auUlk* x J BU K I sWee

From the first equation it follows that for ©>Wec,Kis

real for all four waves, but for w<Wee K 1is resl for two

waves and imuginary for the other two. If it is desired to

keep K real it follows from the second equation that for
u,<lE%5‘ two solutions in O are real and two are imaglnary;
for U, F%?l all four waves ure real. This type of evanescent
but undamped wave 1s also found in lossless waveguides (for

which the cut-off frequency 1is a function of the wavegulde
dimensions). The anulogy may not be carried too far as we have

an applied electric field and longitudinal waves.
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These four waves have been the subject of much
discussion in the literature. The dispersion equation has
been used to study such devices us the travelling wave tube,
but several errors huve been made as to the exact waves which
exhibit amplification. The situation hus recently been
clarified by Swift-Hook (1960) who finds the pair of solutions
in @® for real K which may leud to amplification.

If the effects of damping but not recombination

are lincluded in 3.1 it becomes

”&:.. + U:p _
(Uok « )UK +(0-iV) 1 (Uk-I[ Usk - CL-iv)]

1 Bg

Let us discuss this equation more fully with in addition the
effects of recombination included. If only diffusion is
ignored - the plusma is thus "cold" - we have

e ks Cvid) K+ Coride =0 3.3

4 quadratic in k*. Thus two roots in k* exlst, and for each
root K* two roots in K. The values of K/*-ki~ and X.Ka
occur in palrs; growth or attenuuation are displayed by an even
number of roots. The roots in K may readily be found, but as
we shuall obtain results different from those of Groschwitz the
method for solving 3.3 is given in uppendix C.

The equation of interest is equution 4 of

appendix C:

qcl Klkz_:

1

' :
-d x5 J-ctrdtaucens Jler-d*-uc.c ) s (2cd - ue, do)? 3.5




Define the right-hand side us -o, 22 . A4S d, has the same
sign as W and & and ® are positive, we may without loss of
generaulity assume >0 (henceforth assume & reual). Hence
two modes are attenuating at all times, and two modes are

growing if and only if 2> o, . Or,

kS
J (c‘t" d|1.-"‘ COCL)1+ (’-Cl A| - H CZ do) > C."-\l C"Cz 44‘1

Consequently two modes are growing if

HE6C > cll* dlt 3.6
or, if 3.6 does not hold,
C’_"ngﬁcoC‘d"-)c.cl.dodl 3.7

Substituting the values the c's and d's take on,
uo“ L(v*- U:c.)‘-o- HLJ"Q"-oBU"U:c. +
a 3.8
RNy (24 -8 Wee ) + HL*R*N:* 1 <0

and
" 3,3 9
U, L2 R N7V (e -20™) + 20 (Wee +39* 02 ~uvror- wr ol )
4 s ‘ 3 2
4N,V (T 0e - SO Wew + T VUL ~HLV*-9Y) + TV (2 Ve ~HL*-v*) >0

3.9

A48 an exumple let =0 ; then 3.8 cannot hold and

3.9 becomes 3 2
V20 (F Wee -4V )>0

2 =

Consequently all four modes are attenuating if WO +V*> T Oec
3

and for 4L'+v*< T Lee two modes are attenuating and two

are growing.

26.
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If no damping occurs but recombination does occur,
3.8 cannot hold and 3.9 becomes w*<Wee . IfR tends to
zero we obtain the evanescent waves previously discussed.

The conditions for which X is real or imaginary
may also be obtained from equation 3.5. If 4G KKya -di-Z |
K* is real if and only if d +Z=o0 . Thus d and Z must
both equal zero, as both ure non-negative. As Z is‘of the form
_V+J\7‘+_u—f“ y 2=0 if V=0 and W=o ; for V<o,2do0 , If

HCiKKy=-dl, + 2 , we must have d,=2 , or the inequality
of 3.7 must become an eqguality.

Let R agaih equal zero, aS an example. Then Z ﬁuy
equal zZero,as V>0 . Upon simplifying the inequalities given
in the preceding paragraph it is found that two modes have

K* real if H4o*+v*= 2 wel | und k” is real for four modes

if w=0 orv=0 . It follows that all four modes have K real
or imaginary on the axis of the (o,v) coordinute system, but
two of these modes are of this nature on the axis only and
are attenuuting elsewhere, while two modes are real or imuginary
on the axis and on the ellipse 4Ho*+ vi= % Wee y daTe
attenuating on the exterior of this ellipse and growing on
the interior.

The situation for non-negligible recombination is
similar. Two modes are always attenuating, and two modes are
growing under the conditions given by 3.8 or 3.9 and the
converse of 3.8. Growth in bands is not possible as 3.8 and

3.9 are both low frequency inegquulities.



28 .

These results differ from those of Groschwitz, who
finds that four modes are always growing. Our expressions
for K, and K, (see equation 5 of appendix C) are almost
identicul to those of Groschwitz ( P; in his equation Il should
be changed to -®; ) but we disagree with the signs of k, and

K,. The actual signs muy be obtained as in appendix C.
(ii) Zero Drift Velocity, Diffusion Not Neglected.
A someﬁhab disturbing result is obtained if the
electric field 1s assumed to be completely absent, but
diffusion is not ignored. We then find that, if in addition
recombinat ion may be ignored, the dispersion equation after
some manipulation to make the leading coefficient real becomes

(4o kM Lo [oSVsiw(~0d savre20M)] Kk

3.10

Using the msthods of section (i),

W
KKy _ ..(-p‘...u"')-& %.U:c.((‘_"_ I.LTl-)

o o(v* + L)

The two roots in K* correspond to the two signs possible; the

two roots in K corresponding to the upper sign display attenu-

a
ation for Weec >V'+ and growth for Wee <V'+0* | The

lower sign gives ";_:‘ -0 at ull times.
This result is contrary to expectations as in the

absence of a primary electric field no growing waves are

possible. It is suggested that the dispersion equations involv-

ing D (such as 3.10) are in error. This mutter is discussed in

II1.4; we first treat the generul case briefly for completeness.



(i1ii) The Generul Case.

Let us consider equation 2.2, making no restric-
tions on R,0, or €5 . Although this equation could be
studied to find the exuct conditions for which kK k, Wws>o |
we shall not do so. The muin reuson as we have seen is that
there 1s some doubt us to the correctpess of this equation for

O# 0 ; a second reuson is that the algebra becomes quite
involved. 1Instead of this we shall briefly discuss the condi-
tions when K 1is real or imaginary.

As the left-hand side of equation 2.2 equals the
product of all the terms Kt—K: , Where Ks is any solution,
we find upon expanding this product that if not all three of
do,oli , and d, are zero at leust ome root Ki is complex. If

do = oy = dp =0 and in addition all roots are real it must

be true that (Burnside and Panton (1904), p.84)
an3
(co-3¢,Ca 4263 ) 4u(C-C) <0,

a neceséary condition. If 4t leust one root is real,C.S yields

two equations from which we have
4 -dsal; >0

and

d, (dec,- Cody) +Codi (Cady -l Cy) + dtcy (AaCy - 26,0h2) + dy (d,¢,-Cody)
63 C.do d‘dlcb + dodl C‘b (CI d. 'docz) - d.C, d.Cl d;_:o ’

ugaln necessary conditions.

29.
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4. Discussion.

Ié is uppurent from section 3.{ii) that there
is reuson to doubt the correctness of the complete dispersion
equation. It is suggested that the error is due to incomplets
equations of motion. It has been assumed that the pressure
term, which is of course very important for longitudinal waves,
may be absorbed into the alternating electric field by virtue
of a collective effect or pseudo force. The effect of a
concentration gradient has been at least partially taken 1into
account through the diffusion current. It is apparent that
we may not without some justification group the effect of a
carrier concentration gradient or pressure under the electric
field in the equation of motion, but tuke the effect of this
gradient explicitly into uccount in the equation of continuity
a8 a drift current. Equivalently, the temperature of the
plasma may not be taken into account through the diffusion
coefficient while it is arbitrarily left out through the’
pressure. A more rigorous procedure would be to use a suit-
uble pressure term and then determining from the dispersion
equation or the equutions of motion themselves those condi-
tions for which 'the pressure term may be ignored.

Oster has shown that the pressure term may
cause the electron acoustic velocity to appedr in the equations,
and increase the number of modes possible. The complexity of -
the dispersion egquation would thus be increased; six or more
modes may exist in general. This matter is further discussed

by Fried and Gould (1961).
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The results of section 2.(i) are valid for those
conditions for which the velocity fluctuations about the mean
may be neglected; i.e., the plasma is "cold". This is further
borne out by comparing our results and other published papers.
It may bes seegn from squation 3.2 and 3.3 that the roots K vary
inversely as Uo : If Uo decreases the wavelength decresases,
but the amplification or attenuation factor %ﬁ remains fixed.
The drift velocity muy be reduced to any non-zero valus and
still amplifying waves may exist. Other authors have shown
(see e.g. Pines and Schrieffer (1961)and their references) that
no amplifying waves are possible for drift velocities less
than a certain critical value which is a function of the mean
thermal velocity. This criticul velocity tends to zero as the
momentum distributions of the carriers tend to delta functionms.

Recombination may still occur, as instead of
averaging the effect of recombination over the distribution
function the recombinution coefficient has that value which
corresponds to the drift velocity at which the delta function
has its sharp peak.

We have found the conditions for which growing
waves may exist in a cold plasma. It remuins to be determined
which of the growing waves may serve for the amplification of
an injected signal. This would perhaps be done using the
criterion of Buneman which is given in J. E. Drummond's book
(1960). Buneman determines those conditions for which power

may be transferred to un external load by studying « dispersion



equation obtained by matching audmittances betwesen the plusmu
and the field perturbuations. This method has also been used
by Swift-Hook (1960). It will not be used by this author.

The Boltzmann equation has recently been used
by Pines and Schrieffer (1961) to study the possibility of
observing high-frequency instabilities In InSb plasmus. The
Boltzmann approdch is more strictly valid, more elegant, and
more powerful than the hydrodynamic approximation. Thess |
authors postulate a displaced Mauxwellian distribution for both
carriers and from derived dispersion equutions find conditions
such that the imaginary part of the fregquency & 1s positive,
for several different electron and hole concentrations. The
conditions are found for which the energy and momentum
exchange for elaectron-electron inteructlions dominate the
exchange for electron-lattice interactions and hence the pos-
tulate of a displuced Maxwellian distribution for the electrons
is valid. Similar calculations are curried out for the hole-
lattice interaction. The electron-hole interaction is not
. mentioned; the electron and hols gases probably exist in
separate quasi-equilibria because of the large (~14) hole to
electron mass ratio. This fuct also mukes InSb more suitable
for observing the drift instability.

It may be added that the displuced Maxwellian
carrier distribution is often postuluted when instublilities
or negative resistancs are sought. Plnes and Schrieffer
have postulated it to study the twin-stream instability, which

may occur when the distribution function for the composite gas
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departs sufficiently from the unperturbed single peaked
distribution function. aAdawi (1961) has shown that negative
resistance cannot occur for extrinsic semiconductors for which
the carrler distribution is displaced Muxwellian. This result
may be interpreted as follows. according to the familiar low
field theory, the conductivity varies as

[T 32 de
where 2(t) is the energy dependent relaxation time of the
perturbutions of the unperturbed carrier distribution f$.(e) .
Unlike other suggested forms for fo (<) - such as the Davydov
or pruyvestein distributions - the displaced Maxwellian distri-
bution has the property that %%“>o for a4 finite energy
range. Thus Adawi has shown that 2C€) varies with energy in
such a manner that the positive contribution of %é% is not

large enough to muke the integral positive.
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APPENDIX A. Derivution of the Dispersion Equation of Section II
Let © =8, +8 erp (i(wt-x3)),

E:é“p(i(bt-l(’», and simil‘arly for Ua and Ur . The perturbation

symbol (V) is used only in this uppsndix. Elsewhere its

omission will cause no confusion. As the waves are purely truns-

v v A4 v

verse [ ,E R a.r and W lie in the x-y plane and are pervendicu-
lar to Z": .

It is well-known (Oster (1960)) thut under these
conditions N and Nu are constunt in time and spuce. For
example, from the equutions of continuity for semiconductors
as given in section III it follows that

(iurOK‘)[incn("«-Q(Naoi—'«loo)]
with R the recombination coefficient, O the diffusion
coefficient and N«, , Np, the unperturbed carrier densities.

This dispersion equation is completely independent.

The equations 3.1 and 3.2 may be linearized:

U e S X o . )
.pn_)-_ *P-\’.p Muetp (un#up)-i-].\)hh Un = —C“‘(E +Ua x B,

-
Pp Ot + PpVen n.'ﬂr(“r-u*)*fryrbur——— eNp (B + Up x 3. )

v v

The assumption that -E:-:o may be equivalently stated:
0 )

.

v > —
‘uho l‘a l<< lu.\,x Bo\ dnd O—t > ; .
. From Maxwell's equuations it follows that
- N. X . S 2
T <Tn +Tp = -ilew -K/4wu)E . Hence the dispersion equation

becomeas (over)



of,
iw+\>,5¢--‘;"‘-;\7.,, +Y -, ~OY = Trx Yup o
L 3
Un U+ Voot i Vup+ ¥ o 0= Tra Vnp
Y ! ] 6
- o - \l\"""(* \’-p o "U"'."P""'WPQ"P" x Y "“')l’
Y | 1 LS
[~ - - (Sid(sv-‘r U' -|U+\)'h+ WQ"P*:Y
N.\ eL C$° ¢'6° t

Expanding the determinant leads to

(31 1 s 2
LGoedup sz Vap sV Ni04Jpb 4 i + =)- (7eap Do+ (T2 Vmp s Y) - w00, ]

. v BY 12
=wnpl T lwsv,e + ,‘?.2 Vup+¥)= (W4 Dyt +arap Inp + “

The dispersion equation given is found upon taking

the square root (which gives the double sign) and solving for ¥
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~PPZNDIX B. The Hatanabe [Equations for any
Watunube's formula numbers .are

the corrected equations. The notution is
to the notution of the present puper, which

common to solid stute studiss.

refer to variables of the buckground medium.

S

—-

p=1gMNpata=m N, Define P=pPc+Po, U=

The subscript 'b!

36 .

Volue of %/ Ma .
given followed by
changed to conform
uses the notution

is used to

.9‘1 e Pulls

FPe+Po
Using M.K.S. units,
T - e
we.8: Po oT = N N, (dpb+°(";°)(uc—ut,+ LI)
ou o, . _.
2.9 Pg OT = -fb ot + §x6.
S = [ Pp-P.
e —_— - r " ey —=
2.18: > Ot-&-[o-v\:lNng (“p‘-w(..bﬂf * TN_p. T x8,
2T 4 U B NN Colpb vl MUy - )
o, O _3_) - -
or 'b"-yc ot f,?ot(uct_ +3J = G‘(E.“-o- Ee)’WhGre
\) MPMK
I . Lithdd
\4&2-4- dpn_—- Nv\. Mpf”.\
Vhb M-\"b
We WO Ay = No MarMp
“ \)PB Mpﬂb
W2.6: Lpb = No ™p+tig
L L pn Ny olpts Hab
e = et + Ne*(oApbsetat)
b .?nO(P’O-.PPq'-L’

eNe Do (Apbt dnts )



-v,w_' —— Bo
E - € + ™ x
ou

—-<e

Most of these equations are given in the

references in Jatandbe's paper. Je add one equation «nd

disagree in some minor points.
For Mp=otMn, M << Mp  but not

nP<<mb,

oa.b Zdﬂcﬂn\)x

- — 9, 7]
Po DL = . oL Mafhry, [ Uc-Up - eNcClr o) V2
10T AMw [ Vo Vpb*".s).. V. 9_-“._%
Dez O + N e*\Ttx+ Zouv, /T + eNc(1rw1V, Je OF
— — Oa'
— Up + sdee > s ot
= E + e By + mLP ot
— 1 __?4 v - =~
N3.2: U -8, 2 —71‘12\3)'7‘3*'(5—5‘"'5:_‘3‘-)3-‘1
N et <= Po BT \)1.5,1_ li;w (%a-‘)(lfd‘?ﬁ)y‘a
D - V, - >
T Q. [ —3‘
3.3 U -6 SCIRIL AN L »  where
VP + 50 ()0 % 7)) Pb
A
1. = By
i fa
W2.22 V= 7L+ n.,)\hon?p'o]
1 o
W .23 ‘)1= K[_(\+o( rl‘o)\)u‘o-i-t(\yp'bl

flatanabe's equutions follow from these for

Mp = My, >> Ma.



\e\‘l 2 . 8

wz.18

W3e2

I\"'irz . 2 3

N2 .24

For Mp << My s

— —r 2?’\- l-J,.\). —
.Pb ot =2y~1‘72. (uﬁ—ub\)" [ - Ug‘ueo T

(_35_ o3 U - — —
Ogw \T+a 0t 4933 - o571 O IKT)=—§+u¢xB,

U, = B8
< Oj’"_ 91?+'5’_|U lt(d_?h
\)l ~— Q e~y
DZ a oo I - Bz' Ta
ViP+ fiw 2 %%
i
\7‘:_- —J:C\J.‘\,—\DPL‘)
L )
Vo= 2 \Vab + o4 Vplb
o“ 2 u(\)pb‘v\)h‘a

These equations dre of the same form as those

of Watanabe's paper.
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APPENDIX C. The Quartic Equation With Complex Coefflcients.

Consider the equation

kY46 vid)K & aide =0 c.l

Hence

26K = —c,-idy 2 Jerool*ouc,cu +i(26di-He, do)

= -¢-iol, = V+i W

c.2
Lot X +ive sIVeiwW  ; as 2XY-W ,we mist have:
o+ i 2 g Lo ol T |
c.3

weo: + Vet = = o Lw /P LS T ]

The outer sign (which we shall call §, ) gives the
two solutions K~. If 8, is the same for both signs of W ,
then as W becomes zearo and changes sign the value of S-JVHW
changes smoothly for V>o, but to obtain a smooth transition
withV<o, 8§ must change sign ot W=o. 4s it is reasonable
that a solution in K changes smoothly 4s such parumsters as
©,&,V vary, we adopt the following:

v W S, 3,
First solution in K" >o

R L4 +i +1
>0 <O +{ -1
<0 <O +1 ~1

<o P -1 +1
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vV W & 3
Second solution in k* o0 o0 S
>0 <0 -1 -1
Lo <O -1 -1
<o >0 +1 -1

The inner sign in Jvsiw has been defined

as 8, . asV changes from -IVI to +IVl withWso , the first
solution must become the second and the second the first, and
similarly for the reverse change.

Thus,

26 (Kr=Ky + 2iKy Kq)

-

31 K .
z-c-idi v &F [Jer-d*-ucoc, + \/(c\‘- d2uc,G) 4 uled, -2cado)”

-

) C.4
i 8,_ -C,z'-b- o'.l—ﬁ-u CoCy +\/(C|7'~OI.L—UC0CL)1 +4 (¢ d.—?.C)_ do)z

From this equation K,K, may be obtsined directly.
The sign of <G KK, equals the sign of

1‘
-d, & % jjc.‘ st ruc,con \/(c.‘_ol,‘- hCC Y ruCcdi-2Cads)

nl

Our convention does not alter the fuct that if this expression

with §,3,=+1 1is positive, ut least two roots have <k, ks

positive.

From equation C.4, which may be put in the form

K*= P+iQ , it follows that

K.zss“'ﬁ? PePrq® C.5

Ky Su 1 J-Pe PRa0"

C.6

whers 53 and Su equal *( and 8354 has the same sign as Q@ .
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