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ABSTRACT

The subject of this thesis 1s the theoretical
investigation of the possibility:of observing magnetic
self-pinching of the hole-eleétron plasma present in a
semiconduqtor. The steédy-staté pinch equations are
derived for conditions which might be expected to pfevail'
in such a plasma, both with and without the effects of
generation and recombination. | |

Recent reports of the observance of pinch effect
in indium antimonide operated under Qv&lanché breakdown
conditions are discﬁssed. All these reports based thelr
claim of observing pinch on slight changes 1n overall ¢
‘resiStance of the sample, a purely secondaryAefféct of selfﬁg
pinéhihg. - It is indicated that a plésmd genérated by
aanénching is a poor medium from which to compare experi-
_mental-results with available theory. Hence it is concluded
that the above reports offer only éircumétantial evidence
of self-pinching.

Finally, an experimental arrangement is suggested
,with which one should be lee to detérmine unambiguously

whether or not pinch can occur in semiconductors.
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1. INTRODUCTION

For a number of years, self-pinching (or magnetic
- self-focusing) of the current carriers in a gaseous plasma
has been discussed in the literature. During the past few
years some interest has aéisen in the possibillity of observing
& similar effect in the hole-electron plasma present in a
semiconducﬁor. This thesis is concerned with a theorgtical
investigution of this possibility.

In chapters 2 and 3 we develop the theory of steady-
state magnetiq pinch. We first neglsct the effects of
generation and recombination (G & R) to develop the pinch
equations for a bounded plasma under conditions expected in -
a semliconductor. This analysis leads to results similar to
those originally derived by Bennett (1934) for an unbound ed
gaseous plasma, We consider two suample geometries: slab and
cylindrical. We also give an estimute of the time requirsed
for pinch to develop. We then consider the effects of G & R
in ﬁhe slab geomsetry.
| The results of numeriéal solution of the reéulting
differential equation show that G & R has a strong inhibitory
effect on the pinch, as would be expected.

In any pinch experiment one must be careful to
eliminate, or at least account for thermal effects. Thus

chupter 4 is devoted'to_the investigation of these effects in



slab and cylindrical shaped semiconductor samples.

Very recently, a number of'worxers (Glicksman
and Steele, 1959; Glicksmaun and Powlus, 1961; Ancker-Johnson
et al, 1961; and Chynoweth and Murray, 1961) have reported
observations of phenomena in indium antimonide operated
under évalanché conditions which they have ascribed to pinch.
Tpeir meaéurements involved slight changes in the resistance

ﬂfthe sample during "pinch". In chapter 5 we discuss the,

:ersults of the above-mentioned workers and point out that
their evidence for pinch is only circumstantial, and that
avalanching is a poor msthod of producing a plasma for rigor-
ous comparison of pinch theory to experimental results.
Finally, chapter 6 1is devoted to investigation
of posslible methods of determining unambiguously‘wheﬁher or
not pinch occurs in a semiconductor. From all considerations
we show that pinch shquld be detectable by probe measurements
of the conductivity distribution.in a pure germanium slab at

about room temperaturse.



2. PINCH EQUATIONS
2.1 Model '
For the starting point in the theoreticéi discus-

'":ision of pinch effect in semiconductors we take & rather

-0 simplified model. We assume that m=p = n; in the undis-

turbed state where n und p are the electron and hole
concentrations respectively, and n; is the initial carrier

. concentration. Initially we will consider only a distribu-
tion of the carriers which is in dynamic equilibrium without
any regard as to how this distribution arises, or to its

stability. (Later we will try to estimate the time required

~“"f"or pinch to develop.)

It will be assumed that the carrier mobilities
( Mp and Mp for holes und electrons, respectively) and the

diffusion coefficients Dp and D, for holes and electrons)

;ﬂ are constants independent of the carrler concentration.

¢?fNeglecting generation and recombination of hole-electron
"»‘pai}s, there will be no net carrier velocity in thé truns-
verse (or radial) directions.

Although initially the hole and electron concen-
trations are both equal to the initial carrier concentration,
we admit the possibility that under pinch conditions, the
local hole and electron concentrations may differ from sach
other slightly.

There are a number of ways in which the "steady-



' state" pineh equations may be obtained. Bennett (1934): -

originally obtained one form of these equations_byfconsider-

;:'ing the relativistic inter-particle forces in twp Qpbositgly

directed streams of oppositely charged particles.;5
In this section, we shall derive the pinch e
ﬂﬁiequations through:

. Tn:qualn(E+vaxe) + (Op/pnVnl
. (e- 1)

% c quplp (BE+xB) - ©p/pplVpl )
where j;,j; are the hole and electron currengidgﬁsities;
5;,6L are the hole and electron velociﬁiéé

-q is ﬁhe electronlic charge
B is the magnetic fleld
and € is the electric field.
We obtain the pinch relations by assuming that
' the net transverse (or radlal) components (denoted‘by the
subscript 1 in the general case) of current density @ue

to each type of carrier vanishes:

JnJ.:JP.L :O

we form the combination of these vanishing current densitles:

Hp Jnj_ - /"nJPL

and then from (2- 1) we get

(l’\"P) E]_ t [(h%“ —P-‘\;'p))(B].L t V.L (;D‘-E n+t -D—EP) =0 (2‘ 2)

Me
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Now it can be shown that under pinch conditions, E*,(iiﬁéQL
and (D,/@m)ﬁﬁ A (where g mqy.beTgead as either n or p) are
all of the same order of maéhitu@e. Since 7%, and ¥p are
oppositely directed, then pfqvided in-pl« n+p (i.e. nzp )
we may neglect the first term of (2- 2). Approximately:

| - 1 Dl'! - ’ ’
nl(¥,- vp\xﬂ]l*(m*%%)vi" =0 (2- 3)

It is customury to introduce the Einstein rela-

- tion at this point

Dg = kTopg /q _ (2- 4)
to define Frg the hole or electron "temperature". This rela-
tion 1is rigorous when the carrier distributions are Maxwellian.
It must be used with caution under high field conditions where
these distributions may be far from Maxwellian, and the
"carrier temperatures™ may be quite different from the -
lattice temperature, and from each other. The "carrier tem-
perature™ will be considered that appropriate to a two dimen-
sional velocity distribution (assumed to be approximately .
Maxwellian) in the plane perpendicular to the drift velogity.
In a more exact analysis, the carrier mobilities and the d4iffu-
sion coefficients would likely be both field and carrier
concentration,dependent.

Substituting (2- 4) into (2- 3) we arrive at

qn [(ﬁ-ﬁp)xé]J_*'k(Tn +Tp)Un =0 (2- 5)



which we use together with the Maxwell relation:

VB = p(Ja+Tp) = pgn (V- 7) (2- 8)
(where p 1is the permeability of the sumple) to obtain the pinch
equations for the two geometries (cylindrical and slab) in which
we are interested. We use the auxiliury condition that |

jéqarriers are conserved under pinch, i.e. that J ndS = Const

(erony -
$ection)

2.2 Cylindrical Geometry

By assuming cylindrical geometry we obtain the
following differential equation for the carrier distribution

~ from equations (2- 5) and (2- 6). i
td(zdn) o Mg M%), op (2- 7)
r or \n ar
k(Tn“'Tpr '
(where v, and <vp are the magnitudes of the respective
carrier drift velocities). A solution of this equation is:
. 2 -2
nie) = ng (1+br?) (2--.8)
where 0= Mo pqt (Varw) /BK(Ta+ Tp) (2= 9)
and n,

» the carrier density along the axis is found by

invoking conservation of carriers:

2 <
Ta'n; = ,{n(r) 2nrdr

where d 1s the radius of the sample. This yields

p1 B

BT NK (T o] (2-10)

No = ni{l"’

where N= ma? h; , the number of carriers of one kind per unit
length. |



In Bennett's (1934) original development of the
pinch equations, he considered only the case of an unbounded
; plasma. In thils situation, one can obtain a critical current,
;'12,., which 1s necessary to malntain the distribution given

;by (2-8) appropriate to an unbounded plasma for which n, and b

: L;:are undetermined.

. .
It, = L8Nk (Ta+Te)/p] (2-11)

The criterion for self-pinching most often quoted in the
literuture is that the current, 1 , must exceed the value of
I¢a &lven in (2-11). ‘However 1f we substitute this value into
(2-10) we obtain an 1nf1nite value of n._indicating thaﬁ all
~of the carriers are conéentrated on the aiis at that current.
Since this cahnot happen physically, our solution must break
down us 11— 1%..

For the purpose of our investigation, let us
define arbitrarily a critical current, l(a , a3 one which will
reduce the number of carriers at the outer surface to one half
the 1nitial value, n;, (or double the concentration on the axis),
Putting r:a 1in (2- 8) and substituting the values of n, and
b from(2- 9) and (2-10) we find that from the above definition,

I/z ' .
Iw = (47 NK(Ty+Te)/p] (2-12)
' !
1f we define Y =(I/1.q) , a meuasure of the strength of the
pinch, we may write some of the previous results in'terms of

it: (over)



' -2
et = g (1-ve) L1 — ’:ir{'_("/‘)z}]

, -1
b = ‘%f Lq‘({—iY)]
, -3
No = ni L1-¢v]
f"I ' r/a N
Be = Zma Ti- yrii-ea'l]

Since carriers are conserved and we assume the
mobilities to remain constant, the resistance of the sample ‘is
given by

R= 2L/Ngq (pn+pp) (2-13)

where 4 1is the length of the sample. From (2-12) and'(é-ls) we

obtain expressions for the longitudinal electric field and the

power dissipation in the sample: i

I/2
E W 4n kK (Tn+Tg) Y
e [ gt N (pntpe)
(2-14)
P = 4uk (Tn +Tp) 1Y

#q (pntpp)
2.3 Slab Geomstry .
. We will choose a coordinate system oriented as

~shown in Figure 2-1 with respect to the sample. (Over)
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Figure 2-1. Orientation of coordinate
system with respect to sample.

If we assume that the thickness @ 1is much
less than the width w , and that transverse components of
current density vanish as before, we need only consider the
x -components of the terms in equations (2- 5) and (2- 6)
since the 3—components will give.a negligible contribution'
to the pinch. (Note that this is true only as long as the
ma jority of the carriérs are outside the region bounded by
x= =2 d/a,.)' As in section 2.2, we can obtaiﬂ a differ-

edtial equation for the carrier distribution:

ax(n x| T k(Tn + To) (2-19)
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‘The solution of (2-15) is of the form

X
D

P
b

n(x) = No seéhz(m x) ” . (2- 15}
| - *‘r
- where No = b L 2k (Tn+Tp)/,4Jq,‘ (v‘tr,,ﬂfp)‘] (2-17)

- and b 1s obtained from the conservation of carriers:

n wd = Zd f h(x)dx
which leads to the following transcendental equation in b

S8 (w2) tanh (VB wre)= (§)[p1VeNk (T To)]  (2-18)

If we define the critical current as in section

) -“2.2, i.e. that at which n(zwnry= n;/2 , then we find that

Va
Ia ¢ [8(d/w)Nk (Tn+Tp)//"] - (2-19)'_

We can also find the current at which our analysis begins to

break down — that at which about half of the carriers uarse within

the region bounded by x:* d/2 ., This is at a current approx-

"2
.-~ imately equal to [0 -55w/d4] Ta -

As 1n sectlon 2.2, with the resistance of the
sample as given by (2-13), we can obtain the electric field sand-

povwer dissipa’tion in the sample:

1

£ _ 8 (d/w) k{Tn + Te] ] ‘t Pllz
long_ - » qz N (Fn*’/’?? .

8 (d/w) k_(Tn 't'Tp) .0 - (2-20)

P )
P 4 (Mn+pp)

where

M= (I/Icu)z.



2.4 Comparison Between the Cylinder and the Slab
Let us compare the current, slectric field, and
power dissipation required to initiate pinching (by our
| arbitrary definition of the onset of pinch -—-Medge)-’%i)- It
‘18 assumed that samples of the same material with the same
rhysical properties and of the same length and cross-

sectional area are to be compared. vAt' I=1c¢n

(Zal/ﬂw)'u )

11.

Iin (stel) /Teq (eyt) =
v o
E-cu (slab) / E“ ((g(.) = ( Zd /“W) : f . (2_21)
Per (slab) [ Pea (eyt.) = 2d/nw J

Since d/w 1s assumed to be much less than unity, the
current, electric field, and power dissipation can.ail be
lower in the case of the slab geomsetry.
2.5 Estimation of Pinch Time in Cylindrical Plasma
In the case of the cylinder, considering oply
the radlal components, equations (2- 1) with (2- 4) may be

written

"

In, qpn{h(ﬁ,i'vnbo) + &:_"Q__g]

Jo, =q pp | p(E ~vBy) - T2 57

The continﬁity equations are

i
QU
5
D
)
o
(%))

V- jn q

(%)

t

b

V-Jp = —q%%



Let us define a new current density

iz _Mn_ —_ Mo -
J' FH+FP JPr ‘ /J_"_:-;I_P Jﬂr (2 24)

‘Our reason for this particular combination of Jn, and Jp, 1is

that 1f, as usual, |ln-pl<d n+p (1.e. n2p ),
approximately:
=/ LA (. T an
V-J = +5(r3) = B T (2-25)

The only component of J’ of ‘interest is the radial one.

From (2-22) and (2-24)

(. M e | K(Th+ Tp) 2 ;
Let us now define
a
9= f nerddr (2-27)

which is proportional to the number moﬁent of inertia of the
hole-electron plasma. So long as 39/t is negative the
plasma is contracting. From (2-25), (2-27) and the condition
that carr}ers are conserved at all times which leads to

J:(q) =0 we get:

ad .z (T
gl

which becomes, from (2-6) and (2-26)

12.
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:
39 _ _ unpe  2NK(TatTe) ) MT - n_c_a_)_) i}
3t T /‘n +Mp ™a 8T NK(Tn+Tp) (‘ " (2-28)
'Not.ice that when 39 /3t=0, n(a) 1is given by
n¢a) |
—,-‘-:— = 1= “i(I/Icu) (2-29)

yWhere I.a 1s defined in equation (2-12), which is the same
as the expression given by the steady state analysis. Thus,
let us suppose that the carrier concentration at the outer

edge approaches the value given by (2-29) exponentially from

N; , the value before pinching commences, i.e. assume

- -t/
na{t) = ng '{e /% + "%(I/Icaﬂ'[i" € 11»)}

where ¥p 1s the "pinching time constunt" to be determined.
Substituting the above into 2-28)

3 _ _ Mk Nk(Tn+Tp)( 1) ot (2-30)
at Ma tMp me Lex

Using the definition of 9 given by equation (2-27),
the initial carrier distribution (N= n; ) and the final

steady state distribution (at t o0 ) glven by equation

(2- 8) in one form, we can obtain an expression for (5

[ (- 2 it () - )] e,

To = (2-31)

8 (—ﬁ%) k (Tn +TP)




14.

1
whers for compactness we have put (1/f¢‘) = Y,
The portion of (2- 31) in the square bracket is
a rather weak increasing function of ¥ ranging from 1/3 at

Y=0 tounity at Y= 2.

3. GENERATION AND RECOMBINATION
3.1 Statement of the Problem

To this time we have not considered the effect
generation and recombination (henceforth abbreviated G & R)
will have upon the pinch distribution. This effect has also
apparently been overlooked in the literature — probably
because the»effect is negligible in & gaseous plasma, and
most of the work concerned with pinch in semiconductors is{a
direct adaptation of the gasseous theory.

In an intrinsic semiconductor under low field
conditions, virtually «ll the carrlers present result from~
thermal generation balanced against recombination. Hence,'
qualitatively, one can see that any effort to disturb the ”
local concentrationlof the carriers will be strongly opposed
by thermal G & R. |

‘3.2 Development of the Equations
We will concern o&rselves in this discussion

oniy with the case of slab geometry. The coordinate axes will

again be oriénted as shown in Figure 2-1. If we define T'as in



equation (2-24) we may combine equations (2- 1) to geﬁ“

(taking only the » ~component since we are agaln assuming

V. Mn Me k(TnfTﬁ)Dn}
= n(v, +ve)B, — o _floZ (3- 1)
JX 1 Mat Mp { P) 3 % Ix |
At this point we do not set J;x = I&»’ 0 as

- in the previous chapter. Instead, we make use of the steady-

state continuity equation:

V‘.TP = "V'j.n = ‘\'(3-/")

where 3 and 4 are the pair generation and recombination rates
respectively.
Since n=p , as usual, we may write to a good

 apprqximation (Smith, 1959, p. 252):

— - 3
VI, - ”V’Jn = 102,0[[ - (n/n;)]
or from the definition of 5',
3d,
35 = 102,‘ [| - (n/n;)z] (3~ ?)

where R“ is the thermul generation rate per unit volume.

Usually at thisvpoint in any analysis involving
G & R, it is assumed that (n-nil« n;. , in which case (3- 2)
.may be lineurized so that El-(ﬂ/naf] becomes approximately
2L~ n/ni] . However doing this in our case @oes not

appreciably simplify'the final equation.

15.
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From equations (2- 6), (3~ 1) and (3- 2)

2fi(on o (upenn) %R [ ,
3x{"(ax e ) [ (n/n)]dx}

n f‘il( Vn*’”?) (5" 5)

k (Tn+TP)

=0

. It was not possible to find an analytical solution to the
above equation. Thus, the equation was put into & form more

amenable to numerical solution by means of the following sub-

stitutions:
P = 2x/w 1
= n/ng
L4 2 2 > (3" 4)
P = uat(vp+v) niw /8K (Ta+Ty) = (T/%ca)
L 2 Mn Mp k(Th+Te) R ‘
i " pntse 4qR. )

. is a form of umbipolar diffusion length in
the undisturbed sample. If nzp=n; , the ambipolar
diffusion length is given by

2 " e -1
L - n\K ( ! + ! ) - .._‘_.. - Dn DE
2 Gl., HnTn FPTP T Dnt+Dp
where T; is the carrier lifetime. This is the same as our
I.gi ; in the special case where Th = Tp . Making the above

substitutions into (3- 3) it becomes
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| A |
33_5{_%[3_’2_ +‘;6({_"6:) £(|-Q1)J;H+ZP’(=O (3- 5)

3.3 Conditions whereby G & R may be Neglected k
Before considering the results of a numerical solu-
tion of (3- 5), we should look at the conditions under which
| ~ the effects of G & R may be considered negligible. The

condition required is simply:

w |
r'z"t;?{(l-%‘)alfl « T;“ (3- 6)

for 0<§< 1.

If we assume that (3- 6) holds, (3- 5) becomes

HAF) e

whose solution is
2

7( = %— sech_z(fsg)

" where 4 must be determined by boundary conditions. 1In this
discussion we neglect.: the effects of surface recombination
at the outer edge of the suample, and hence an appropriate
'boundax'-y condition to apply is that the hole and elsctran
current densities vanish at x= * w/2 . ,Thié condition

leads to the following transcendental equation in 4

(1 + & sinh®(4))
cosh®ld)

3 .
—'r‘;-t tanh(4) - 1 (3= 7)



Condition (3- 6) may now be written
‘llz.
P

L finh(BE)sech w;)(w-smhu;» -5

r\l

4% (o h(5E) Fanh(4)
W/Lp‘ << 4 3

~ for all § in the range of interest. .

The.right-hand expression of (3- 8) has a mini-
#muﬁ at & = O and hence we can obtain the following 1imit on

the ratio w/uy, :

4 '
wilp, << 4 ((if/r./t")');l (3- 9)

or approximately ‘
w/lp, <« ~ 4(3+2r)"t (3j10)

It i1s not the purpose of this section to consider
the practical implications of these results; however, we will
" note that they would be very difficult to satisfy with moét
available semiconductors.

3.4 Numerical Solution

Bquation (3- 5) was solved numerically wi;h;thé
aid of the Alwac III-E digital computor for the values of
P= o.é, 1.5 and 5.0 and values of (WAo)-1, 5, 10, 20 and 30.
While 1t would have been desirable to tuke more values of
these paramsters, the calculations_required a considerable
amount of time. Also as these parameters became larger, the

machine could no longer handle the large range of numbers

which arose in the intermediate stages of the calculation.

18.

" ' (54 8)
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The results of the numerical calculations are
plotted in Figures 3-1, 3-2 and 3-3, where % 1is plotted"
agalinst & for various  and w/,p,. The inhibitory effect
of the G & R is immediately obvious in all cases.

In Figure 3-4a we have plotted O against wAyfor

the three values of " . This D 1is defined as follows
i

0 - w22 | (511)

1

We will use this.as a measure of the strength of the pinch
since it 1s the deviation of the curve of %2 v¢ § from thé
“curve which would result in the unpinched condition, namely
ﬁE 1. 1In Figure 3-4b we have normalized the curves of 4-32.
” Bere‘we see that the :elati§e inhibition of the pinch is,
"Ainitially at any rate, a weukly decreasing function of fi,
a8 would be expected from (3-10).
3.5 Surface Recombination

We have considered only recombination. within
the body of our semiconductor to thistpdint. However, in
thin samples the recombination rate at the surface is
generally much higher than that in the body of the material.
Smith (1959, p. 297 ff.) shows that to a good approximation

the rate at which hole electron pairs recombine at the

'surface, per unit area, EL is given by

Se = By n;i? [(n/n;)‘ ~-1) (3-12)



1(‘__

. ’ S w .-
2t | | Mpiz 20

Fc_.-_".-.v.-u-u_- sExer=e Srezegeay

10

08

0d

Figure 3-1l. Carrier distribution for T’z 0.5; various values of w/ip.
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Figure 3-3.

Carrier distribution for = 5.0; various
values of w/tp.
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in intrinsic material, where Bg is a constant. 1In the

case of the slab, we can take the major portion of the surface
recombination into account merely by modifying the bulk
recombination rate term, ﬂw , changing it to

- 2
ng - a’o + 253 n; /d (5_15)

This does not account for generutions at the edge of the slab,
nor for the surfuace effects in a4 cylindrical sample. Since
the generation rate will be increased considerably at the
edge (or the surface of a cylinder), qualitatively it is
obvious that the value of 7(*1) will be ruised towards unity.
Thus, with surfuce effects, one would expect the distribution
of %  in the x-direction to be, for the most part, as given by
Figures 3-1, -2 and -3 except that near §=1 one should
expect 4 to rise sharply towards unity.
3.6 Recombination Time

.For the purpose of estimating the.recombination
time, we assume that initially % is equal to the value it
would take in the ubsence of G & R (%) and eventually falls
to unity. Neglecting diffuslion and magnetic effects:

whose solution is
3, <osh (2Ret/ni) 4+ sinh(2Ret/n;)

7 sinn (2R.t/m) + cosh (2Rat/mi)




This yields an exponential decay only near the cross-over
- point where ?%:= 1. However, the time required for I9%-Il to
fall to [%,-1| /e ranges from 0.45% for 4,=5 to 1.5% for
}'vQ.=O, where T E%? i1s the carrier lifetime in the undisturbed
sample. Thus, ¥ 18 a reasonable estimuate of the recombina-
tion time, T .

If we should find that ¢, is of the same order
of magnitude or smaller than %Up, the pinch time, we may
assume that the pinch builds up to the degree suggested by
the above numerical analysis somewhat more slowly than as
. l;ndicated by Tr (due to the retarding effect of the G & R).
.T}On the other hand, if T <« T , we could expect the pinch ﬁo
build up to about the extent suggested by the analysls
neglecting G & R in a time Tp, overshooting its final value.
Then after a total time T, it would f;ll to the final‘state

indicuated by the numerical analysis of this chapter.
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4. THERMAL EFFECTS
4.1 Assumptions
The purpose in discussing thermal effects is two-
fold: Thermal pinching gives rise to a carrier distribution
(or rather conductivity distribution) of precisely the same

form as magnetic self-pinching; and negutive resistance due

22.

to therml effects could concelvably give rise to instabilities

which could mask the presence of mugnetic pinch.
In intrinsic semiconductors, the conductivity is
given, to a good approximation, by:
- Sa(F —£)/2n
6= &, e (4~ 1)
where &6 is the conductivity at temperature T, §, the conduc-
tivity at the ambient temperature %, und Eg is the energy
.gap of the semiconductor. In the special cause where
lol = [ (T-T)l < T
we may write |

GO
6= 6, e (4- 2)

where 6= Egq /Zk'nf

For the major portlon of this discussion, we will
be concernsed with the steady state conditions, in which case

the heat trunsport equation is:

Ve + &E*/K =o (4- 3)

where K is the thermal conductivity of the sample =nd E is
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the applied elsctric field. Substituting (4~ 2) into
(4- 3) we obtain
2 Go

Ve + (6E*/K)e ~ =0 (4- 4)

As a boundary conditlion, it will be assumed that
. the outer surface of the sample is mauintained ut the
‘ambient temperature T,, suggesting vigorous cooling of the
sample .

4.2 Cylindrical Geometry
In the case of a cylinder, squation {(4- 4) may be

written
e

—,',-%_(rf-f-) + (4E" /K) e®® -0 (4~ 5)
assuming purely radial heat fiow.
With the boundary condition quoted in section 4.1,
" the double-valued solution to (4- 5) is

8 = - £ In {%([n 2 (1= 72)"] + [nsu-»/z)"‘][r/a]‘)} (o)

where A= 4, a*E*G/K (4- 7)
The upper sign is.taken in (4- 6) for values of current above;j
that at the turn-over field (wnére M= Amay. = 2.0 ) and the |
: lower sign for vulues of current below this value.

Thus, from (4- &) and (4- 2), 2

s = a&{0F 03 I+ Ll al] (o g

which, as can be sesn by comparison with equation (2- 8) gives
the same form of conductivity distribution as doses magnetic

pinéh.
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Negative resistance occurs if the current exceeds

the turn-over valuse,

eyl e
I = 2ma (26, K/6)
at which the power is
P = 4nlK/G (4- 9]

and the electric field is at its muximm possible value

e - (2K /¢s.,e.)“t

P

We should also consider the conditions under which

) = 2 6 . (4-10)
since this condition will give rise to a distribution of
conductivity comparable to that expected in magnsetic pinch.
This condition (4-10) is met if the current, power and electric

fisld reach or exceed thse values

I::l (thermal) =~ 0-64 'I;yl.

B (thermal) = 059 R (4-11)

E::L (thermal) = 091 P;yh
4.3 Slab Geometry

Consider a slab in which the axes are oriented as
shown in Figure 2-1. 1f the insquulity d <<w holds as in
section 2.3, we may safely assume that nearly all of the heat
flow takes place in the 4-direction (i.e. through the thick-
ness of the sample). In this case, (4- 4) may be written
Goe (4-12)

3o 2 = 0
e g + (6,6 /K) e
33 (
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The solution of (4-12) with the surfaces at ‘3:* %- held at
the temperature T, is given by
2T o
o) = &in [seen ”‘”K (4-15)
sech (T)

where T 1is given by the solution of the transcendental
equation

T sech(T) = e (d°G/8K)" (4-14)
Thus from (4~ 2) and (4-13),

z g
) sech (2T3/d)
6(3) = 6o sechr(T) (4-15)

which again gives the same form of conductivity distribution
as does magnetic pinch. (c.f. equation (£-21))
Negatlive resistuance occurs if the current exceeds

the turn-over value, as before:

a i/
1‘1’_”’ ~ 3'°2W(26,K/G) ¢
at which the power is
Pr = B(w/d) R K /6 (4-16)

and the electric field is at its maximum value,

E;l-b o ,T?_g (ZK/soG)'/z
In the cuse of the slab, since the thermal pinch-
ing takes place in the thickness, and mugnetic pinching is
most pronounced in the width direction, aus far as the measured
conductivity distribution is concerned, the two forms of pinch

are orthogonal and should not appreciably interfere with each

other.
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4.4 Comparison of the Two Geometries
In order that the comparison between'the-cylinder
be compatible with the comparison given in the case of mag-
" netic pinch (section 2.4), we will again assume that the
- eross sectional area of the sample, and its length are kept
the same in each case. The appropriaée comparisons are
between the turn-over current, power and fleld for the slab

and the critical current, etc. for the cylinder:
I::"(+h¢rm\) /1:""(+h¢mal) = 135 (a/w)

(4-17)

<

I -
Pow (tneemal) /By ™" (thermal) = 093 (d/w)

E" (thermal) /ES®® (thermal) = 069 (d /a)

4.5 Heating in a Cyiindrfoal Magnetic Pinch

We should consider the interaction between the mag-
netic and thermal pinch in detall, but to do so sxactly
complicates the equations involved. We can look at the /
effect magnetic pinch would have on the temperature distribu-
tion if the temperature dependence of the conductance is
negligible. Let us assume that, in the case of the cylinder,
the conductivity is given by | |

6(r) = 6; (l+bol)/(l+br")l .

from section 2.2 where & is the initial conductivity and & is



as defined in section 2.2. ILquation (4~ 3) now becomes

i+ ba?

o gt drba o .o
L2 (r28) « (s:8'/n) qapmr

which yields upon integration

2 i
i+ lba [+ ba }
o = (6:€°/Kk) %% | {H-br‘

which has the same radiul dependence as that found in
section 4.2. Thus, without considering increased muagnetic
pinching, we would expect the conductivity distribution to

be enhanced by a factor
~ | + bal ]
{ + lort

for moderate or large . Thus for the interaction of

(6ia'E'Eg /BKTIK)

thermal and magnetic pinch to be negligible,

& al E"Es
S

<< 1
8k ot K (4-18)
eyh |
i.e. E << E{f of equation (4- 9)

Of course, the above analysis only serves to give
us a wuarning to look carefully for thermal effects in any
pinch investigatibn, since mugnetic and thermal pinch

enhance each other.
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5. PUBLISHED EXPERIMENTAL DATA
5.1 General Review
.The first report claiming observance of magnetic

;;ééif—pinching in a semiconductor was by Glicksman and Steele

;pfl?sg). This was based upon a comparison of the cufrent¥
fi&iﬁage characteristics of an n-type indlum antimonidé (InSb)
'sample in the presence of a longitudinal m&gnetic field of
varylng strength. It was observed that in the absence of a
magnetlic field, the slope of the I-V curve was slightly

, ;Smaller (in the avalaﬁche breakdown region) than with a
:longitudinal field present. Since the value of current at
which the curve without a magnetic field departs from that
with the field is a not unreasonable estimate of I.. (given
in sectlon 2.2) and since it is well known that a longitudinal
magnetic fleld tends to inhibit pinch in a gaseous plasma,
the observed phenomenon is ascribed to pinch. The reason
fgiven for the increased resistance under pinch conditions 1is
that: the current carriers are compressed into a smaller
-croSs-section than'the geometrical one, "...hence increasing
the apparent resistivity".

In a4 more recent paper (Glicksman.and Powlus, 1961)
further attempts are made to corroborate the observance of
pinch in n-type InSb. 1In this case, the temporal behaviour
0of the voltage across the sample is observed when a constant
~current pulse is passed through 1t. It is assumed that the

electric field throughout the entire length of the sample
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remains homogeneous, and is simply eqgual to the voltage
across the sample divided by its length.

Initially the voltage across the sample wus
observed to rise to a very high value (corresponding to an
1

electric field greater than leO4 V. m. ). The voltugs

dropped (after about 0.04 microsecond) to a value corres-
ponding to about 2xlO4 V.m.'l. After an interval of time,
denoted by ty, the voitage again rose very slightly to a value
at which it remained, aside from very slight fluctuations,
until the end of the pulse.

The above observations were interpreted as follows:
The initial rise was to a value which would result if break-
down did not occur. The drop was to the value required to
sustain the breakdown condition, and the slight rise after a
time té Was ascribed to the establishment of a magnetic
pinching of the hole-electron plusma created by breakdown.

The reciprocal of t, was plotted against the
plasma current (which wus defined as the total current less
the current due to the electrons originally present) and was

compared to a theoretical relation:

tpmen = (I-1) /A (5- 1)
(Ancker-Johnson et al, 1961) where A=2wmWa® /v Pr P where vy
is the electron drift velocity and w, is "the rudial mobility
of the plasma", which would be approximately 24p in this cuase.
I 1s of the same form as given in section 2.2. The compari-

son yielded reasonable values for wp and k(T;-FEl



30 .

Further work done at R.C.a. Laboratories (incker-
Johnson, et al, 1961) involved virtually the same eXperiment
as quoted above, except thut p-type InSb was used. Also,
the initial drop in voltage as described above was ascribed
to injection of carriers rather than avalanching. (The
oscillogruphs shown in this work are identical in form to
those shown by Glicksman and Powlus.) Here again, the
increased observed resistance was explained by: "...the cross-
sectional area carrying the current was reduced from the
geometrical cross-section to the pinch cross-section.”

Chynoweth and Murray (1961) also put forth evidence
of héving observed pinch in n-type InSb. They used thres
different methods; The first was almost identical to that
used by Glicksman znd Steele (1959) described above, except
that Chynoweth and Murray were éareful to see that the criti-
cal current occurred well into the uvalanche breakdown region.
The critical current was observed to be about 4 amperes. They
also derived the critical current by plotting the current at
which "pinch" set in ugainst magnetic field. This is compared
to the well known theory of gaseous pinch (e.g. Linhart, 1961,
p. 221 ): ,

I = Lea (B3 /I pinch ) (%)

where L, is as given in section 2.2. The plot yielded &
critical current of 4.4 amperes and gave a value of a in

excellent agreement with the actual radius of the sampls.
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The third method used involved a similar experimen-
tal arrangement as that of Glicksman und Powlus (1961)
described above. However the observations were guite differ-
ent. The sample wus subjected to constant current pulses.
Below Iclthe voltage remained constant throughout the pulée,
and well above I, the voltage remained constant at a slightly
higher value. 1In the neightorhood of I, the voltage fluctu-
ated between that when I<I. and that when I> I«k. The value
of current at which these fluctuations were the most
pronounced was taken to be I. ( I ®*4 to & amp.)

In this work, three separate methods of obtaining
I(' gave good agreement. Chynoweth and Murray ascribe the
increased resistance of the pinched plasma to the combined
effects of hole-electron scattering wﬁich is increased due to
the higher concentration of cafriers near the center of the
sample, and to a lesser extent increased mugneto-resistance.
" They state that these changes cannot «ccount for « change in
resistunce as lurge as wus observed, at least not according
to prgsent theory. The fluctuations observed when I ¥I, were
explained by a4 pinching-unpinching instubility. ©No instability
in the "pinched" condition was observed.

5.2 Critical Summary

Probably the most disturbing feature of the above
reports of observance of muagnetic self-pinching is that all
the arguments are based on an observed apparent changs of

resistance of the sample between the "pinched" and "unpinched"
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states. It is particularly disturbing to see this change
in resistance dismiséed so glibly as 1is done by Glicksman
and Steele and ancker-Johnson et al (see section 5.1).
Because the curriers are confined to travel.in a smaller
cross-section of the sawmple 1is no reason for the overall
resistance to change in any way whatsoever, if the number of
carriers und their mobilities remain the same. 1In mugnetic
pinching, any resistance change will be a purely secondary
effect,'such a4s thuat suggested by Chynoweth and Murray. We
can dismiss the effect of mugneto-resistunce'on the change
in resistance us follows. Using the small field upproxima-

tion for transverse muagneto-resistance
: | 2
AR/R, = -86/6, = 10B (5- 2)

where the fauctor 10 m.4 weber“2 has been taken from the
measurements of Frederikse and Hosler (1957). The abovs
relation was derived for the chunge of resistance in a sample
with a uniform conductivity and applied transverse magnetic

fileld. We will, without further justification, assume that

AR/R =« 10 (2/6ia")f66?'rc\f

(5- 3)
If 6§ and B are as given in section 2.2, in terms of
Rz D@ /g, 2
i
AR - o (.___ﬂl).a. (g x2Mb=l) ()
R 2na/ 3 %o

whereas if the current density were homogeneous we would

havs r 3

88 - (o._'..(/"r) (5- 5)
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With no G & R at the critical current ( %)= 2) of 4 amperes
and sample radius of 2.5x10"% m. (Chynoweth and Murray, 1961)

(5- 4) gives

AR /R & 13,10 °

and (5- 3) gives AR/R =~ 5 x0°*

Thus the effect of mugneto-resistance on the total resistance
of the sample is negligible, even during pinch.

It is rather difficult to comment on the form of
time dependence of the pinch obtained by Glicksman and Powlus
since their theory is unpublished. However, 1If we look at

equation (2-28) we see that initially

2
(_a_g) = — _MnMe p L (5- 6)
9t 4o Mn 1 Mp 4mtq

If the plusma were to contract at this rute until ¢= 0, we

would get the following expression for the pinch time:

L _Mn M Ly s
_‘ji—r.'.“k T Mat Mp (Va+ ) 2mat (5- 7)

(c.f. Ancker-Johnson's 1/(M W p¥/2ua®) as given in the previous
section; Ua>dVp 50 If My v 2uepefluetas), 1/a is identical to
ﬁhe factor we huve multiplying I ). This is still not quite
the same form as given by Glicksman. However, if he assumes
that no pinching occurs at T < I, , then for 39/3t ¢ O under
these conditions, he would have to replace [ by (T -I, in
equation (5- 7), which then gives the férm quoted by Ancker-

Johnson et al. In the above, the effects of diffusion have
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been completely ignored. Using the values for the propertiesf}fj
of InSb at 77°K. quoted by Glicksman and Powlus (1961),

1/A ~ 3x10°8 coul.-l, giving
| ;i:‘h »  3x10° (T - Ige) sec:?
FF'Our estimate of 1/ Tp from equation (2-31) gives values
ranging from 2.5x106 sec.-l for very weak pinching to
O.85x106 sec."l for very strong pinching. Both methods yield.
about the same size of pinoch time, but completely different
curfént dependence. |
| Another disturbing feature of the above work is
that all of it was done under avalanche breakdown conditions,
under which the theory of the behaviour of semiconductors is
siill rather uncertain. These conditions will tend to
produce non-uniform plasma densities. The possibility that
the observations made by the above workers are due to as yet |
unexplained behaviour of semiconductors under avalanchse con-
ditions, or to injection effects, cannot be complstely ruled
out. In particular, space charge instabilities (not involving N
‘magnetic effectsi merit attention as possible mechanisms.
There would not be 8o great an objection to operat-
'ing the samples in the avalanche region if the experiments
were designed in such a way that the results could unambigu-
ously tell whether pinch were present or not. Measurements

were of effects of secondary importance: change of resistance

and time dependent responses which could conceivably be cuused



by some other mechanism than pinch. During the avalanche
process, the longitudinal electric field and the ratio of
324/3; are inhomogeneous in the longitudinal direction.
Hence we have effectively a plasma whose propsrties vary
along its length and in time. All derlvations of pinch
theory assume that the properties of the plasma are uniform
longitudinally and requ;re (&3 /3'p3 ) to be constant and
equal to M, /Mp . Hence a plasma generatéd by avalanche
glves an unsatisfactory medium for a rigorous comparison of
theory to experimental results. Anomalous effects are also
likely to occur under these conditions and hence only circum-~

stantial and inconclusive evidence of pinch 1s available.

6. EXPERIMENTAL CONSIDERATIONS
6.1 Observable Characteristic of Pinch

Ne have seen that the overall resistance changes
which might occur during the self-pinching are only of
secondary importance. The main characteristic of pinch is
a change 1n the distribution of the carriers, accompanied by
a corresponding change in the conductivity distribution. The
only type of experiment which can unambiguously determine
whether or not pinching is present 1s one which gives us an
indication of the carrier distribution in the sumple. We
will consider a few possible schemes for observing this
redistribution of conductivity und then try to suggest a pos-

sible experimental approsch to follow.

3.



6.2 Radio-Frequency Measurements
Let us consider the application of a high-frequency
magnetic field to the sample by means of a coaxial solenoid.
We will make the following simplifying assumptions:

a) In the absence of the sample, the magnetic
field is homogensous and of the same phase
throughout.

b) Between the sample (radius a ) and the
solenoid (radius f, ), the magnetic field is
the same as 1f the sample were not present.

¢) The skin depth, &= (2//46w),,1<<a . w is the
angular frequency of the r.f. test signal.

d) € w < & so that displacement currents are
negligible.

| When- the above hold, we get from Maxwell's equations
and the boundary conditions, for small changes in conductivity
within the skin depth |
A Z(w)y 2 —-.'.(9_)1_8_ wl (’H-') A
2\ a ° J 6
: where L, is the inductunce of the solenoid in the absence of
the sample. While the above is only vulid for relatively
small changes in conductivity at the outer edge, if the
carrier distribution is « monotonically decreasing function
of the radius (as is the case if there is no surfuce G & R)
the apparent inductancé will be an increasing function of

the strength of the pinch. For greatest sensitivity, the

36. -
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‘radius of the sample should be as close to the radius of
the solenoid as possible.
An alternative method of using'r.f.Atechniques
to obtain an estimate of carrier redistribution is to measure
the impedance seen by a longitudinal r.f. electric field.

We retaln assumptions c¢) and 4) above.

R 3 w/g)® (1+}) AS
A Z(w) ~ Fra (2./“ ) (*'&) <.

for small changes in conductivity within the skin depth.
One of the most important assumptions used in the
above analysis 1s that 9<<4 . This condition must be met
in order that changes in the distribution will be measureable.
We can find the size of & required to meet this
condition for two semiconductors whose properties are given
in the appendix.

InSb at 160%K. : w)) 8x10°/ sec.-l

Ge at 300%. : w?? 5x10°/ sec.”1
where 4 1s measured in meters. For other considerations we
will see that we should not allow a to be much greater than
10"%m. Hence the frequency which would be required is well
into the kilomegacycle region. ,

Thers are two lmportant drawbacks to the use of
microwave measurements. The first is that any changes in
overall resistance would have to be carefully considered. The

other is that this method does not actuully measure the

conductivity distribution, but only gives an indication of
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the chénges which occur near the outer surfaca.‘ ﬁence any .
surface G & R will tend to mask the changes which take
place further into the sample.
. 8.3 Probe Techniques

Probes to measure the change in conductivity dis~. -
tribution could be applied to either the slab or cyiinder{f: 
In the case of the cylinder, however, only ah indication of
the changes in the distribution would be obtained. As witﬁ
the T.f. methods, the effects of surface G & R would tend
to mask any internal changes. In the case of the slab one
would actually measurse the conductivity distribution by
means of an a.c. test signal applied to pairs of probes
'attached to opposite faces of the slab at various distances
from the longitudinal axis. 1In this arrangement the edge
effects will in no way hide the internal carrier rédistri-
bution.-

6.4 Infrared Absorption _ ,

Harrick (1956) has described a method by which the
absorption of infrared by the free carriers in a semiconduc-
tor may be used to determine their distribution. The
experimental arrangement 1s shown schematically in Figure
6-1. For euach position of the slit and detector on the
sampie,”the transmitted intensity Iywould be measured with-
out any current passing through the sample. This would then

be balanced out by a bridge circult. The current would then
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 0.5435 mmt THERMOPILE
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o | e—

BRIDGE DETECTOR

Figure 6-1. Experimental arrangement for
measuring the carrier distribution
by infrared absorption.
be applied to the sample, and AI , the change in transmitted
intensity would be measured. The carrier distribution could

then be found through the relation given by Harrick:

-ni)d
a1/, ~ (&MY 1)

where ¢ 1s a constant and d is the thickness of the sampls.
On the basls of Harrick's measurements on a sample about 1 cm.
thick, one should be able to detect changes in carrier con-

19 m.'3 in a slab 0.5 mm. thick. This

centration of about 10
would adequately demonstrate pinch if 1t were to occur.

It should be noted that it tukes about one second
to make a4 measurement, the time constant of‘the thermopile.
Thus if pinch in semiconductors turns out to be a short-lived

phenomenon as it is in gaseous plasmus, this method would not

detect it.



6.5 Generation of a Hole-Electron Pluasma

We will consider four methods of generating a
hole-electron plasma: avalanche breakdown, injection, thermal
genération, and photd-ionization.

' The majJor objJection to using avalanche breakdown
has been outlined in section 5.2. It is a stochastic cas-
cade process which is ‘not fully understood. Even though
pinching might occur in a plasma generatéd in this way, one
cannot be certain that other phenomena (e.g. space charge
effects) would not interfere with the observations.

Injection would lead to & non-uniform longitudinal
carrier distribution, especially in an intrinsic semi-
conductor. In addition, the dependencé of carrier injection
on the type of contact and the carrier density is not yet
fully understood. It does not seem advisable to search for
a specific phenomenon in a plasma generated by a method |
which 1is likely to give rise to unknown effects.

Probably the best understood method of creating a
hole electron plasmu is by thermal generation. For this
method, the sample used should have as low an impurity con-
centration as may be obtained practically. We can readily
estimute the magnitude of pinch even with G & R in this casse,
which is notAtrﬁe in the previously mentioned situations.

Photo-ionization 1s predominantly a surface effect
unless the radiation is filtered by a slab of the same semi-
conductor in order to pass only those photons with good

penetration. If we consider the effect of shining properly
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filtered light uniformly on both faces of a slab, we can
approximate the photo-ionization by a constant palr genera-
tion rate throughout the sample, dbs m.-% sec.”1. Taking the

x -component, equation (3- 3) becomes:

_3_3_".‘.. = 1[&6 +®,(l-[n/nﬂl)] = 1&.’ (l-a,'l)

o X

4 '/
where R - ﬁ,fﬂs " and "l["- %&[14' 1'2"—] ¢

The net effect of this is to ralse the valuss of ,

n;, (W/._,‘)‘ and P by u factor of ( | + & /R,)% in equation
(3- 5). The situation is then essentially unchanged from
purely thermal generation except thut the effective n; is
increased.

From the above considerations, it would seem that
the best method of producing a plasma for the study of self-
pinching would be thermal generation. With this method
spurious effects are less likely to interfere with the obser-
vations of pinch.

6.6 Geometry and Material

Having decided upon the means of gensrauting the
plasma, we should now_consider the geometry of the sample.
In the case of the slab, we can measure the carrier distri-
bution whereus with the cylinder we can obtaln only a rough
estimate of the way in which this distribution changes. From
this consideration, If all else were equal, it would sesem

that the slab geometry is superior.
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We should now compare the Slab and cylinder from
the consideration of minimizing thermal effects. To do
this, we compare the ratios of minimum powsr required to
initiate self-pinching to the maximum power permitted without
thermal effects becoming important for the two geometrises.

From equations (2-20) and (4-17)

lab b
P:& (Pinch) /P:-’(fhermal) - I 69 (J/w)l
R (pinch /BT (shermal) (6- 1)

Since d<«w it 1s apparent that the slab is superior from
this consideration. Since we require the critical electric
fleld (for mugnetic pinching) to be below the breakdown fleld,

the slab is agaln superior.
. )"l
Recall equation (2-20): Ecg (slab) /B pleviy = (Zd/mw

We should now consider the problem of surface G & R.
We do not expect the bulk G & R to give appreciably different
results in the two geometries. Because the slab has & much
greater surface area for its volume than the cylinder, we
might expect surfuace G & R to present u greater problem in
the slab. However, here the main effect of surface G & R is
to increase the effective bulk recombination rate. 1In addi-
tion a small increase of carrier concentration will result
| at the edges. The primury effect in the cylinder will be to

increase the carrier concentration at the outer surface. This
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increase could mask the measurement of the internal changes
in carrier density, as we have pointed out in the preceding
sections. ‘

Thus, it appears that the slab geometry 1is superior
from all considerations.

We must now consider the material to be used in
any experiment designed to observe self-pinching. In the
appendix, we have listed a number of properties of three
representative semiconductors: Silicon (Si), Germanium (Ge),
and Indium sntimonide (InSb).

From equations (2-19) and (4-16) we get

Pea (pineh) . Egq _é_l (6- 2)
Pr (H\crma” M q (/‘n"'/uf’) T K (W)

where we have assumed that Tn*Tp * T , the ambient
temperature. This is a slightly increasing ?unction of tem-
perature. The minimum temperature at which we could consider
operating the éample would be the one at which the carrier
density is about one order of magnitude greater than the
impurity concentration. The practical minimum Impurity con-
"centrat}on obtainable at the present time is about lolgm.'s.
Thus we will denote the temperature which gives us a carrier

concentration of 102O m.'s as 1}“ , our minimum operating

in.

temperature for a given sample. We will take the temperature

at which the electron gas becomes degenerate as an upper



limit,

TMax. ¢

we have estimated and tabulated

T.m;v\. ’
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{

From numerical values quoted in the appendix

Pra (Pincha) To:
Tmar. ! Pr Cihermal) ( m.")’

2
Ce[d
g‘k /Eb (TP':'\-) 2 ‘CJP (Tmin.), t" ( <z 'C'i mq;-) ) &nd t;h'm.‘ i —Rg.(-i-)

in table 6-1. €_ is the breakdown electric field.

TABLE 6-1
Silicon germunium indium antimonide

T, (°K) 400 310 160
Tons, (°K) 620 555 285

.N( Z
Peq (Pinck.) 360(d/w) 60 (d/w) 0.9% (d/w)’
Pf ('H\!rman .

-3 -3 -3

Ecg /Ey 0.8x10" Y 0.32x10"%w! 1.3x10 7w
Te (sec) 100 wt 13w’ 4.5wt
T, (sec) 1073 1072 10”7
Tinermal (sec,) 5.8x10°4" 7.3x10°4" 2.5x10% 4"
Note: d and w are measured in meters

Since W, the width of the slab can be made greater than

2x10"° meters without any difficulty, there will be no problem

in keeping below the breakdown field in any of these materials.

From Peg(pincs )/Pg(thesrmal] which must be kept less than
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unity to reduce thermal effects, we obtain a limit on d/w:
Si: d/w < .05
Ge : d/w < 13
InSb: dMw < 1.04
The above does not consider the interaction between thermal
and magnetic effects nor the effects of G & R. Hence we
should consider these limits on d/w &s absolute maxima. In
practice it would be difficult to obtain a ratio of
much less than .05 so we can rule out the use of silicon at
once. |
We shall now look at the effect of G & R in ger-
manium and indium antimonide. From the definition of Ly,
given in equation (3- 4) and the numerical values given in
the appendix:

Loi(ﬁe) > l.8x10-3 m.

-5
LDi (I“ Sb) v Z-leo m.

The sampls would likeiy have a width of about
1l cm., in which case |
Ge: w/lLp; ¥ 5.5
InSb: W/Lp; ¥ 480
From chapter 3 we see that the G & R will completeiy dominate
in the case of InSb without even considering the effect of
surface recombination. Thus germanium looks as if it would

be the most sultable material.
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6.7 Summsary
In this section we shall try to outline a pos-
slble experiment to be performed to observe self-pinching.
For the sake of a numerical example, let us assume that we
have a well-etched slab of highly pure germanium of cross-
section 0.5 mm. x 1.0 cm. If the recombination velocity 1is
l m./sec., we find that:

w /Lo 1 12.5

This value is not too high: from the curves shown
in chapter 3, we estimate that with "~ 2-+3 one should
obtain a measurable pilnch. This means a current of about

lig .

I« (hlekrn;a‘/,u) ¥ 1.5 amp.

From table 6-1 we have
v, = 1.0x10"3 sec.

Cermal ¥ 1.8x107% gsec.

Thus all the times involved are of the same order of magni -~
tude. This meuns that we will have to take speclul ocare

to reduce thermal effects, since any of these which occur
will do so about the same time as pinching takes place. Since
To v ¥y we will expect the pinch to develop to the value
calculated with G & R without any appreclable overshoot.
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Some means of cooling the surface would have to
be employed, since about 600 watts per cm. length of the
sample would be dissipated. TIf pulses of current are used,
these must be at least an order of magnitude longer than the
characteristic times involved, i.e. at‘least 1072 sac.

It is proposed that initially the probe method
(see sec. 6.3) should be employed to measure the carrier
redistribution. If it should turn out that the pinch is
stable for up to a second, the infrared ubsorption technique

described ir section 6.4 might be used.

7. CONCLUSIONS

In the abbve analysis we have shown that in order
to make a rigorous comparison between any experiment
designed to observe self-pinching and the theory at its
present stage of development, we must use a thermally gener-
ated plasma, possibly enhanced by illuminatién with properly
filtered light. The only unambiguous indication of self-
pinching is the transverse redistribution of the carriers
and hence the conductivity. Even this indication 1s subject
o interference from thermal effects, which must be. carefully

accounted for in any experimental arrangement.

Finally, we have shown that if self-pinching can
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occur in semiconductors, one should be able to observe it
in a thermally generated plasma in a pure germanium slab
at room temperature. Hence it is completely unnecessary
to consider using the h{ghly unsatisfactory avalanche -

generated plasmi for pinch studies, as has been done to date.
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Some Properties of Three Intrinsiec Semiconducting Materials:

Silicon, Germanium and Indium Antimonide

a) Silicon
Property Valuse Source of
: Information
ni 3.88x1022 T & 7%/ T 3 Smith (1959)
(KT in ev.)

Mn 0.15(300/1)2+® w?/v.sec. Smith (1959)
Mo 0.05(300/1)2°% w?/v.sec. Smith (1959)

K (300°k) 84 watts/m. deg. Smith (1959)
Cp (300°K) 1.64x10% 7. /m.% deg. Smith (1959)
o Y 10-3 sec. | Smith (1959)
Eq 1.21 ev. Smith (1959)
seqen. 620° K. Smith (1959)
E, 2x107 V./m. Chynoweth (1958)
Semin. 10 m/sec. Jonscher (1960)

b) _Germanium
Property VQlue Source of

Information

n; 1.76x1022 7X@ T s Smith (1959)
pn 0.38(300/ T )1°6® u2/v.sec Smith (1959)
My 0.18 (300/ T)2'%% nf/v.sec. Smith (1959)

K (300°K) 63 watts /m. deg. Smith (1959)
cp (300°K) 1.85x10°% 7/m.% deg. Smith (1959)

_(over)




Germanium (continued)
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Property Value Source of
Information
By 107° sec. Smith (1959)
Eq 0.785 av. Smith (1959)
Tiagen. 555° K. Smith (1959)
E, 8x10% v./m. . Smith (1959)
S e 1 m/sec. .Jonscher (1960)
o c) Indium Antimonide
Property Valuse Source of
. Information
n; 1.29710%2 {17200 P ¥F 0"Fely-3 | v g0 (1ose)
pn 7.0 (300/ T)1°8842/v.s6ec. Smith (1959)
Mp 0.09(300/ T)%*1 md/v.sec. Smith (1959)
K (160°K) 87 watts /m.deg. Busch and
Schneider, (1954 )
Cp (160°K) 0.665x10% 7/m® deg. Gul'tyaev and
Petrov (1959)
G s 1077 sec. Smith (1959)
Bq .255 ev. Smith (1959)
Tleqen 285° K. Smith (1959)
By

Kanai. (1959)

2x10% v./m.

In the above, the symbols are defined as follows:

n;

HMn, Mp

K

Cp

thermal conductivity

specific heat per unit volumse

undisturbed intrinsic carrier concentration

electron‘and hole mobilities respectively
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maximum practically obtainable carrier lifetime-
in the undisturbed sample.
Eq - energy gap (extrapolated to 0° K.)
.Qtym— temperature at which the electron gas becomss
degenerate.
E, - electric field required to initiate avalanche
breakdown.
Smin. - ninimum practically obtainable surface

recombination veloclity.
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1, 330, (1959)

Jonscher, A. K., Principles of Semiconductor Device Operation
(John Wiley & Sons Inc., 1960)

Kanai, Y. J. Phys. Soc. Japan, 14, 1302, (1959)

Smith, R. A., Semiconductors, (Camb§idge University Press,
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