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ABSTRACT

Nuclear magnetic resonance studies in single
crystals of aluminum and tin have been done at liquid helium
temperatures. The Knight shift in tin has been studied as
a function of crystal orientation in a constant magnetic
field for different values of field and temperature. The
anisotropic Knight shift in tin was observed directly for
the first time. The line width of the tin resonance was
also studied and found to depend on the crystal orientation
in the magnetic field. The second moment of the line has
been calculated in terms of dipole-dipole interactions and
indirect exchange interactions between nuclei of different
magnetic moments and compared with the experimental results.

The Knight shift was studied as a function of
external field for both tin and aluminum in a search for
de Haas-van Alphen type oscillations. No indication of
these was found. An upper limit for this effect was

determined for each sample.
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CHAPTER 1
INTRODUCTION

The change in the nuclear magnetic resonance fre-
quency of a nucleus in a metal from that of the same nucleus
in a non-metallic state was first explained in terms of an
electrop;nucleus interaction by Townes, Herring and Knightl.
This change in resonance frequency, the Knight shift, has
been studied experimentally and theoretically quite exten-
sively for many metals and alloys. The results of much of
this work are summarized in a review article by Knight2 and
a rigorous theoretical treatment of the Knight shift is
given by Abragam3.

Because of the small skin depth of almost all
metals, nuclear magnetic resonance experiments have been
almost entirely confined to studies in metal powders whose
individual particle sizes are less than the skin depth of
the metal. In any metal with cubic symmetry, the Knight
shift is independent of the orientation of the metal crystal
with respect to the external magnetic field. However, if

the symmetry of the crystal is less than cubic, this is not

true. The nuclear magnetic resonance signal will be



broadened when observed in a powder whose particles are ran-
domly oriented in the magnetic field or shifted wﬁen observed
in a single crystal.

The purpose of this work has been to study the nuclear
magnetic iesonance in metal single crystals, in particular,
white tin and aluminum?1 The advantages of using a singie
crystal to study the nuclear magnetic resonance of tin are:
(a) the anisotropy of the Knight shift due to the tetragonal
éymmetry of the tin crystal can be studied directly; (b) the
line shape of the resonance can be studied without the large
broadening caused by the anisotropic Knight shift; and
(c) the measurements of the resonance frequency can be made
more accurately because the resonance line is narrower.

The snil?

and Sn119 isotopes were studied in a
white tin single crystal as a function of crystal orientation
in the magnetic field, as a function of the magnetic field
itself, and as a function of temperature in the liquid helium
range. The two parameters which describe the Knight shift in
a metal with tetragonal symmetry were determined. A slight
dependence of the Knight shift on temperature and externai
magnetic field was observed. The line width of the tin
resonance was studied and found to have contributions from
both the dipole~dipole interactions of nearest neighbours and
from indirect exchange interactions which couple two nuclei

of different magnetic moments by way of the conduction

electrons.



A search for a variation of the Knight shift caused
by oscillations in the diamagnetic susceptibility as the
external field is varied (de Haas-van Alphen effect) was
made in single crystals of both tin and aluminum. An upper

limit to the effect has been set for both metals.,



CHAPTER 2
THEORY OF THE KNIGHT SHIFT

The Knight shift in metals with tetragonal symmetry
can be explained in terms of the hyperfine interaction which
involves essentially three terms in the spin Hamiltonian and
which couples the electron spins to the nuclear spins. The
coupling energy is small compared to the atomic energy split-
tings so that perturbation theory can be used. Further, the
electrons are assumed to be non-interacting, i.e., the free
electron model is used.

The Hamiltonian for the magnetic interaction of the

electrons with the nucleus can be written as4

3r(S.r) 81T
—_— 75.31 S(r )]

(1)34=zeh7;.[~%_~§§+
r T
where @ is the Bohr mégneton
v is the nuclear gyromagnetic ratio
I is the nuclear spin
) is the electron orbital quantum number
S is the electron spin
r is the radius vector from the nuclear spin to

the electron spin



The first term of this Hamiltonian will give almost no contri-
bution to the electron-nucleus interaction in most metals
because the orbital angular momentum is quenched or nearly so
(bismuth is a notable exception). In other words, the diamag-
netic contribution is usually small compared to the
paramagnetic contribution. The diamagnetic contribution might
be detected, however, by the observation of oscillations in
the Knight shift at low temperatures as the magnetic field is
varied. This point will be diséussed in Chapter 5. For
crystals with no lower than cubic symmetry, the second and
third terms, the dipolar terms, of the Hamiltonian give no
contribution to the Knight shifts. For crystals of tetragonal
symmetry, they account for the anisotropic part of the Knight
shift. The last term in the Hamiltonian couples only
s-electrons to the nucleus and gives rise to the Knight shift
in crystals of cubic symmetry or to the isotropic part of the
Knight shift in crystals with tetragonal symmetry.

The standard derivation of the Knight shift is now
given in detail following mainly the treatment given by
Slichter®. This is being done for completeness. Since this
work represents the first direct observation of the aniso-
tropic contributions to the Knight shift, by giving this
derivation the type of information obtainable in such an
experiment should be more comprehensible.

For simplicity, first consider the interactions



involving only the last term, or the contact term, in the

Hamiltonian

@) W=t emies S

Because the electrons and nuclei are only weakly interacting,
the complete wave function Y can be approximated by the
product of the many particle electronic and nuclear wave

functions, Yg and Y,

Y - \ye LVn

The antisymmetrized electronic wave function is considered to

be6

1 P ~
@ Y =—r-§2p 1P W @) Yrgr @) v Ppnge 0
where Y ¢ = uy elk T H)S , the Bloch function including
the spin term, and p is an index to indicate an odd or even
number of interchanges in the permutation.

The contribution of the electron-nuclear inter-

actions from all electrons to one nucleus is

(4) aichj = —15,,6'[ B h Xy "jk\"e* % 5 d (r;-) We dT,
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Since the operator SQ c{(%e) involves only one electron,

there are no contributions from terms in which electrons are

exchanged. Thus using equation (3), we can rewrite (4)
167 *
(5) \4-, = 22T n I . [

b3 B&@ 1) ... ]dﬁd& cee

If the electrons are quantized along the z~direction by the
external state field H,, the only contribution to equation (5)

comes from SZQ' The integral then becomes

2
6) P =Sl Mm Iy S lw @l ng 2G,9)

i 3 s
where the sum is over all k and s, and f(k,s) is the Fermi
distribution function éiving the probability that a given
state described by the wave vector k and spin coordinate s is
occupied. The factor mg is just + % or - % and u (0) is the
spatial part of the electronic wave function evaluated at

‘the nucleus. For a given k, equation (6) can be written

k
) e Tanag (28 1 286D

13
2
x £0,-3) ] | ug(o)]



The factor in square brackets is the average contribution of
the k state to the z component of magnetization of the sample.
If this factor is called T the total z magnetization of
the electrons in a sample of a unit volume is ﬁ;

k

(8) Rz - L g

The total spin susceptibility for a unit volume can be defined

as

(9) n, = X, H

and the spin susceptibility for one value of k

s

(10) ) e k B ><k H°

which means that

(10') ME -2
= k

The total effective interaction for the jth nuclear spin is

then

-8 2 s
(11) Hy; =3~ vn ;| ‘ﬁ; \luk(o)\ Xk ] H



In order that this sum may be evaluated, the follow=-
ing quantity must be considered. g(Ek , A) dEk dA is
defined as the number of allowed_grvai:és lyinév§ithin a small
cylindrical volume of k space having a cross-section area
dA anp'lying between the energy surfaces E, and EE + dE; .

The coordinates of the surface are denoted by A. The total
number of states dN between Ek and Ek + dEE_ is given by

-

|
summing the contributions over the whole constant energy

surface.

(12) dN = dEng(Ek , A) dA

Ek = const

————

= P @& ) aE

P(Ek ) is a density of states per unit energy interval at
the ;ﬁergy surface Ek for a unit volume. For convenience
later, N(Ep) can be similarly defined as the density of
states per unit energy interval at the Fermi surface for one

i
atomic volume V_ . The sum in equation (11) can now be

evaluated in. terms of these quantities if the sum is replaced

by an inpegral
I

!

| 2 2 s
(13) % ]u£(o)| X;= j‘\ul{v ()| xlsg(Ek_ ,A) dEg dA
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:K:z depends on the Fermi functions f£(k ,%) and £(k ,-3)
and"bn the difference in energy between two spins in the Lg
state, one with spin parallel to the magnetic field and the
other with spin antiparallel. Clearly, )Ci will be the same
for any states k having the same value of Ey . It is there-

—

fore assumed that D(; can be written as a function only of

—

the energy E.

(14) xXE - XE &)

Equation (13) can now be written

2
_<15? Zk \uli ()| xz - j\u}}~ SR G (B )

- ‘ —

x g(gg_,A) dA d E

2
The average value of \uk (0)\“ over a surface of

constant energy is defined as

j\‘Lk )\ % g(® ,4) aa

as) Ly @*) - S
~ g(E, ,A) dA

2
j\“&a ()| g(E, ,A4) dA

9(15&)
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so that

2~s ]
an i |y ;o)\ XL- S<\u§ <o>\2>][.i15 XE )

x Q@ ) am

Because the electron spins are either paired off or the
electron spin energy states are unoccupied, for all QE not
near (not within a region of the order of kT) the Fermi sur-
face Ep, the contributions of )QS(Ek ) to the total spin
susceptibility will come only from égérgy states near the
Fermi surface. If it is assumed that <\u5 (o)\2> B
varies slowly with E. , this in turn can be taken -

—

outside the integral

2. g |
(18) zk |y (0| )(k= <\u}§ (o)\2>EF§)G‘§E£ )Q (B ) aE,

r——— s

Using equation’(IO'), we can write

S s S

.,j)qs (B, ) g(Ey ,A) dE, dA

or
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(19) xS - j)(smq}i ) P @ ) ag,

Combining equations (11), (18), and (19), we get the inter-

action with the jth huclear spin to be

(20) C\QL.lJ B I, [% <\u§ (0| 2> EF)(SlHO

This interaction represents an extra magnetic field added to
the applied magnetic field Hy which gives rise to the Knight

shift. The Knight shift can then be written

AH 8 2\ - s
.(21) —xH_Q = ..?TT <\uk (o)) >EFX

(g 1% ) &

\uAio)\z

if § is defined as the ratio

where \uA(o)\z is the probability density of electrons in
a free atom, then the expression for the Knight shift can be

written in terms of the free atom hyperfine coupling constant.
(22) a(s) = 15T ym 8lu, ()12

Equation (21) then becomes
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a(s) § Xp M
2ynQ

(23) LH
. H,

In order to conform with more usual notationz, ')is has been
rewritten as :K:pM, where ')(p is the Pauli susceptibility
per unit mass and M is the atomic mass.

Equation (23) is the expression for the Knight shift
in a crystal with at least cubic symmetry. If the crystal has
tetragonal symmetry as does white tin; then equation (23)
represents the isotropic part of the Knight shift. As was
mentioned earlier, the dipole-dipole interactions in the
Hamiltonian of equation (1) will contribute an anisotropic
term to the expression for the Knight shift7.

Consider the Hamiltonian

] 8 _ 3 (§,-..1:)]
(24) “Nanis = - 287 1 [r_s" 5

If the angle between H, and the radius vector g is o¢ ,

equation (24) becomes

+ -
(25) <¥£anis = ~-yhm (1 -3 cosad.) r~3

where the + or - sign is determined by the electron spin

being parallel or antiparallel to the magnetic field H,.
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To determine the energy difference due to this Hamiltonian

for a nucleus of spin % (A& my ==’1), we must integrate
equation (25) over the electronic wave functions in a way
similar to that done for the isotropic case.’ For a unit
volume, only the 2 G»Ho N(EF) electrons with unbalanced spin
near the Fermi surface will contribute to the interaction

arising from <¥( If V, 1is the atomic volume, the energy

anis’
difference due to <¥Lanis is
(26) AW =y 8 288V NED (W]
anis = TN 0'0" \“F ek

x (3 coszd.k - 1)\r£'3 LVek dV>%F

——

where Wjek. is the electronic wave function of an electron
in the k th state. If we introduce an average wave function
W) so that WJ\V* represents the average electron density
in space of the conduction electrons near the Fermi surface,
then equation (26) gives for the anisotropic part of the
Knight shift

(27) _A_EEEE = 2@2 Vo N(Ep) Xk\)*(S cosze( - 1) \r\—3dedydz
(o)

To evaluate this integral, we let the field have .the polar

angles © and (@ and the radius vector r have polar
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angles @ and & with\ respect to the x, y, 2z coordinate
system. The ferm (L -3 coszoa ) can then be expressed in
terms of these angies by a well known addition theorem in
terms of tesseral ha‘rmonics‘ in the angles © and ¢ and
©® and ¥ respectively
2

(28) 3(3 cos - 1) = & (-1)" P.P(cos @) P, M(cos )
s 2 2

x eim(@ -®)

We assume that Y can be represented by a mixture of p-wave

functions of the form W ,, _1 (Y  +Y_ ) and
2
—-\?‘—_2- (b(_*_ -Y . These wave functions are real and therefore

represent quenched p orbitals. For axial symmetry, the

electron density can be written as

(20)  YW* o g(r) [A(xz + y2) + sz] = r2 g(r) {A.+ (C - A)

X ;:osz@]

where g(r) is a radial distribution function whose form is
unimportant for this calculation. Substituting equations (29)
and (28) into equation (27), we get

AHanig

(30) — - g 2 Vo N(Ep) a(3 cosZ @ - 1)
o



-16-

where © 1is the angle between the z axis and the applied

magnetic field, and q is given by

q = SXVf(S cos%@ - 1) \r\_3kP av

‘ oo
- Agl (C - A) ﬁ‘ r g(r) dr
o

q is the electric field gradient at the nucleus caused by

electrons near the Fermicsurface.

In order to explore the orientation dependence of
the Knight shift with respect to the magnetic field, we can

rewrite this expression as

AH
(31) ———%515 = constant * (3 cosz‘O - 1)
o

The total Knight shift4including the anisotropic part is

then given by equations (23) and (31) and can. be .written8

2
(32) l%g = K+ %K (3 cos” 0- 1)
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. CHAPTER 3
EXPERIMENTAL APPAﬁATUS AND TECHNIQUE

The nuclear magnetic resonance spectrometer used in
this work is essentially of standard @esign. Figure 1 is a
schematic diagram of the spectrometer. The circuit diagfams
are all given in Appendix C.

Since the object of the experiments has been to
measure resonance frequencies‘and line shapes, a Pound-Knight-
Watkins9 marginal oscillator was chosen for this work. ?he
oscillator was very slightly modified from the original design.
Instead of a 6J6 tube, a 396A was used as the oscillator tube.
Also the rf amplifier was fed from the cathodes of the 396A
instead of from the grid to which the sample coil was
attached. The capacitanée for the resonant circuit was pro-
vided by a Varicap (variable capacity diode). The frequency
of the oscillator was then swept by varying the voltage
across the diode. The voltage source for the diode was
provided by the sawtooth waveform from a modified Tektronix
waveform genergtorlo’ll. The modified waveform generator can

provide a negative going sawtooth voltage from 100 to O volts

with periods which vary from several seconds to several hours.



Maa v\e'\'

/

Power Altenvator Auvdio Hor ‘?.CF) ntal
W3
AmPHfuer 1 | Osciliator Amgn\dmr
Phace Shifter
N w
p—— P. K. W Sl'fd
- -- Occillator Audio
It AMP‘IFIG'V'
‘ )
1
1 Modified
: ' Tt\k:'ZfOV\\x ® Coun+ev-
| | *-——] and
i ' PY Pflh+€f
i N
|
"
|
P K. W. Botter
Y
. and
Occillator thpo{'

Phacge

l

Detector

Senaitive

Recorder

Figure 1. Block Diagram of the Spectrometer



-19-

Any voltage between 10 and 100 volts can be used as the initial
voltage of the sawtooth and the sawtooth rundown can be stopped
at any time with the voltage returning to its initial set value,
ﬁsing a Varicap instead of a variable air condenser eliminates
noise from a driving motor and provides a more uniform frequency
~sweep, especially at the slower rates.

Following the marginal oscillator is a model 216 White
twin tee narrow band audiorémplifier. Two bandwidths at
‘15 cps were used in this work: a 23% bandwidth (about 4 cps)
network and a 1.3% (about .2 cps) network. The latter band-
width corresponds té a time constant of about 5 seconds and
thus was used only for comparatively slow frequency sweeps.

The phase sensitive detector used is in principle
the same as Shuster'slz, although different tubes were employed.
The signal recorder was a Varian recorder, model GllA.

The frequency of the oscillator as it swept through
the signal was monitored by a Hewlett-Packard elecfronic
counter, model 524C, with the appropriate plug-in unit. The
frequency measured was in all cases the average frequency over
.1 second. The frequency reading was recorded by a Hewlett-
Packard digital recorder, model 516B. The digital recorder in
turn activated an indicator pen on the signal recorder each
time the electronic counter measured the frequency. This
method of measuring and recording frequency gave fast, accurate,

|

and frequent monitoring of the oscillator frequency as it
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passed through the nuclear magnetic resonance signal.

The magnet used throughout this work was a Varian
rotating magnet with twelve inch pole faces and a 2 1/4 inch
gap and was capable of giving a magnetic field of 11.4 kilo-
gauss. Modulation of the magnetic field was accomplished
using two modulation coils each wound with 60 turns of No. 18
copper wire on bakelite forms which were mounted around the
pole caps. The modulation coils were supplied by an audio
oscillator through a 20 watt power amplifier.

A schematic diagram of the low temperature system
is given in Figure 2. The helium cryostat is a standard
double glass dewar system. Temperatures down to 1.15°K were
obtained by pumping on the'iiquid helium with a 3 inch Kinney
pumﬁ. The temperature was controlled bﬁ controlling the pump-
ing speed with a needle valve in parallel with a 1% inch
vacuum valve, and was measqred by opserving the vapour pres-
sure of the helium with a ﬁercury manometer in parallel with
one containing di-butylpthalate. The dewars and dewar cap
were mounted so that they could slide in and out from between
the magnet pole faces.

The sample was mounted on the end of a 3/8 inch
thin wall stainless steel tube which formed the outer conduc-
torjof the coaxial line connect}ng the sample coil to the
marginal qscillator. The centre conductor of the coaxial

line was a No. 32 copper wire held in place with teflon spacers.
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Three semi~-circular radiation shields made from sheet metal
copper were mounted on the stainless steel coaxial ling”

The tin single crystal was made from "Extra Pure"
tin, VS-151, obtained from the Vulcan Detinning Company. The
purity quoted was 99.999+% tin with impurities of .0008% lead
and .000018% iron. The single crystal was grown by pouring
molten tin into a é inch by é inch by 4 inch graphite mold,
then slowly (one inch every 14 minutes) withdrawing the mold
from the furnace. In order to grow a crystal with the desired
orientation, that is with the boi] direction approximately
perpendicular to the crystal axis, a seed crystal which had
the desired orienfatibn'was used. The seed was joined to
the moiten tin just outside the furnace mouth by drawing out
a small stream of tin from the main melt with a glass rod.
The interface of the seed and molten tin was "puddled" or
stirred until the seed bégan to melt back from the interface.
The mold was then ﬁithdrawn from the furnace as described
above: The cast tin slab thus obtained was etched electro-
lytically in a fairly dilute HC1 solution, and if no grain
boundaries were apparent, an X-ray photograph was taken (Laue
bBack reflection photograph) to determiﬁe the crystal orienta-
tion. This method will give the orientation to within about
one degree.,

The seeds were prepared and analysed in a similar

manner. Instead of drawing the molten tin out to join a seed
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as described above, it was drawn out to a fine point. The

first tip of this point to solidify does so to form a single
crystal which is then propagated along the whole specimen as

it is withdrawn from the furnace. By using this seed placed
properly in the mold, a new seed with an orientation closer to
the desired orientation can be grown. This process is continued
until a suitable seed crystal is obtained which is then used for
all subsequent crystals.

Once a crystal quite near the desired orientation was
obtained, it was sliced along planes containing the [001] axis
with a jeweller's saw into slices about 1 mm thick. These
slices were etched in a mixture of concentrated HCl and HNOg
for a few minutes until they were about .3 mm thick. They were
then glued together with Q dope. The resulting laminated
crystal was made up of thirty slices and was about % inch by
% inch by 3/8 inch.

The crystal slices were aligned probably to Witbin
one degree and possibly better. The error of alignment would
seem then to be of the same order of magnitude as the error in
determining the crystal orientation from the X-ray photograph.
Although no subgrain boundaries were observed, they may well
have been present and could give a misalignment of perhaps
one-half degree. The experiments performed were mostly not
sensitive to misalignments of less than a few degrees, and no

evidence of misalignment was observed.
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The aluminum crystal was obtained commercially from
Metals Research Ltd., Cambridge. It was a cylindrical speci=
men % inch diameter by 3/4 inch long and was made from
99, 9999% pure aluminum.

For experiments with both the aluminum and tin
crystals, the sémple coil was wound directly on the crystal
rather than having the coil and crysfal separated by a layer
of some insulator like electrical tape or mylar. In order to
have the oscillator oscillate at the correct frequency with
minimum capacity, a four strand 44 turn coil wound from No. 28
wire was used on the tin crystal and a fifty turn coil of
No. 28 wire was wound around the aluminum crystal. Winding
the coil directly on the aluminum crystal improved the signal-~
to-noise ratio considerably, presumably because the filling
factor of the coil was increased and because the inductance
of the coil was reduced, allowing the coil to have a greater
number of turns. Using No. 32 wire further reduced the induc-
tance, but with more than about 40 turns in the coil, the low
Q of the inductance prevented the oscillator from oscillating.

Because the magnetic field drifts somewhat during
'an experiment, the procedure followed was to measure the
magnetic field frequently with a probe containing D50 mounted
Jjust outside the dewars. fhe deuteron resonance was observed
directly on an oscilloscope through a‘wide band audio

amplifier while at the same time the oscillator frequency was
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measured with the Hewlett Packard frequency meter. For the
measurements of the anisotropic Knight shift, the magnetic
field was measured before and after each set of readings
taken at a’particular crystal orientation. The second field
measurement often agreed with the first to within one part in
600,000 and never differed by more than five parts in 106 for
the measurement of the tin resonance to be considered valid.
For the measurements described in Chapter 5, somewhat more
care was taken in measuring the field. The field was measured
before and after every metal resonance.and did not differ by
more than two parts in 600,000 for the measurement to be
considered valid.

Almost all of the resonances were recorded using
5 or 10 second time constants in the phase sensitive detector.
Nearly all of the tin resonances were observed using a modu-
lation of less than one-~third gauss. For the aluminum
resonances where there seemed to be some problems of satura-
tion anq where only the resonance frequency was wanted, the
modulation used was increased from less than two gauss to
about four gauss for the last set of measurements. Figures 3

and 4 show typical tin and aluminum signals at 1.15° K.



Figure 4.

Figure 3.

Derivative of the Al Resonance

Derivative of the Sn Resonance
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CHAPTER 4

THE KNIGHT SHIFT AND LINE WIDTH OF :
THE TIN SINGLE CRYSTAL

" Measurements of the nuclear magnetic resonance of

117 and Sn119 in the single crystal of white 'tin described

Sn
in Chapter 3 were made as a function of the crystal orienta-
tion in the applied magnetic field, as a function of the
applied magnetic field, and as a function of temperature in
the liquid helium range. Figure § summarizes some of these
results. The different curves show the variation of the
Knight shift as the external field is rotated through an
angle of 180° at temperatures of 4.2°K and 1.15°K and at
fields of 10.1 kilogauss and 6.13 kilogauss. The Knight
shift was found to be equal within experimeptal errors for
both isotopes. Measurements of the Knight shift as a
function of crystal orientation in two different planes of
rotationi3 (appendix B) assured that the electronic environ-
ment of the nucleus showed tetragonal symmetry. All of the
measurements recorded in this chapter were made in the
crystal plane containing the [001] axis. Table 1 gives
values of K and Kﬁ for different temperatures and applied

magnetic fields.
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Fig. 5. The Knight Shift in Tin as a Function of the
Crystal Orientation in the Magnetic Field
(Orientation measured from the [001) axis)
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TABLE 1
Temperature  Field kx10* k! x10*
1.15° K 10.1 kg 71.9 ¥ .1 5.4 F ,1
4,2° K 10.1 kg 71.6 ¥ .1 5.4 ¥ ,1
1.15° K 6.13 kg 70.7 % .2 5.4 ¥ .2

7

As has been noted by Bloembergen and Rowland , KR
is positive indicating that q of equation (30) is positive.
Furthermore, K; is quite large, almost ten percent of K.
Because the hyperfine interaction for p-wave functions is

less than for s-wave functions and because only the aniso-
tropic part of the p-wave function interaction contributes

to Kﬁ , the large value of K; indicates a substantial p-wave
function component in the electronic wave function.

In metals whose specimen size is large compared to
their skin depth, the power absorbed by the sample is propor-
tional to X' +X", the real and imaginary parts of the nuclear
spin susceptibility, rather than to X" alone as would be the
case for non-metals or for metals whose particle size is

small compared to their sﬁin depth, Chapman, Rhodes, and

Seymour14 have determined that this effect would decrease the
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measured zero of the derivative of the observed absorption
signal by about .3 of the line width as determined from the
maxima of the derivative., This would decrease K by about

2 X 10'4 or less than one-~half percent of the value of K. It
would also decrease the value of K| by about one percent of
its value. The corrections to K and K| may well be even
smaller because, as noted by Karimov and Shchegolevls, for
resonant circuits of low Q as is the case when the coil of the
circuit is wound on a metal specimen, the contribution of X°
to the observed absorption may be quite small. That this
could be true/in our case is substantiated by the large degree
of symmetry shown by the observed absorption curve. Figure 6
shows the asymmetry expected in the derivative of Lorentzian
and Gaussian line shapes. The ratio of the amplitudes of the
extrema of the derivative of the Lorentzian curve is .39 and
of the Gaussian curve is .55, but the ratio of the observed
derivative was about .7. This means either the line shape of
the observed resonance is ''squarer" than a Gaussian line

shape or that the dispersion mode does not contribute equally
with the absorption mode to the observed resonance. Since the
corrections to K and Kﬁ computed on the basis of equal con-
tributions from both the absorption and dispersion modes are
just barely larger than the errors in the measured K and KR s

when the additional point of unequal contributions is

considered it seems unnecessary to make any corrections to
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the observed results.

Figure 7 shows the line width of the tin specimen
as determined by the extrema in the derivatives of absorption
lines. The line width cannot be explained in terms of.dipole-

dipole coupling between nearest neighbours alone. The second

moment, AW 2 , for dipole-dipole coupling for a substance

with two spins is given by Van Vleck16

(33) awi2 T Caw® t (awdg

where

2 2
—— (1 - 3 cos”® O4k)
Zy =34 49% 1141 22
(awI )II 2 Y1 CI(I+1) 21:{ r6
Jjk

and

2 2
1 (1 - 3 cos ij)
(frwD) =24 2492%2563+1 0% 5 - ‘ *
I s . N K r. 6
j

are the contributions to a nucleus from like nuclei labelled
I and unlike nuclei labelled S. In the case of tin, for

%) = 0 only the two nearest neighbours give a significant

Jjk
contribution to the second moment. When the natural abund-

ances of the two tin isotopes are considered, this formula
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The Line Width of the Tin Resonance as a
Function of the Crystal Orientation in
the Magnetic Field i
(Orientation measured from the [001] axis)



gives a sé@ond moment of .15 (kc/s)?2 at ojk = 0, Taking the
second moment of the observed'signal to be approximately equal
to the square of the separation of the extrema of the deriva-
tive of the resonance signal, we get a result of 2 (kc/s)z,
more than ten times the theoretical value. If the line shape
is in fact Gaussian, the experimental second moment is

1.6 (kc/s)z.

If the calculated second moment due to dipole-dipole
intéractions is subtracted from the observed second moment,
there remains an isotropic second moment of .6 (kc/s)z. One
possible origin of this second moment is broadening due to
misalignment of the slices which make up the crystal specimen
(although this broadening will not be isotropic). A simple

!
calculation (see Appendix A) shows this second moment to be

1\ 2
—— VoY)
(34) (1)—')'5)2 = (—‘2—-""\) §12 cosZ © cos? sin? © sinZet

+ % sin4 14) sin4d~%

where A& = K y H, © is the angle between the [001)
crystal axis and the'magnetic field, and <K is a parameter
expressing the degree of misalignment. The contribution to
the second moment will be greatest for © = 45°, Misalignment
is believed to be the explanation for previously reported

broad 1ine513. In order to explain the measured second
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moment of .6 (kc/s)z, A must be set at 18°, an improbably

high figure. Further, a study of the line width as a function
of magnetic field for O = 45° revealed no change in the line
width when the field went from 10.1 kilogauss to 6.13 kilogauss.
The uncertainty in the measurement of the line width was about
.1 ke/s. Assuming the change in line width over this region of
magnetic field to be the maximum value within this uncertainty,
we find the corresponding change in the second moment would
mean a misalignment of < = 4°, still a somewhat high value.

If it is assumed that misalignment of the crystal
slices (or misalignment due to sub grain boundaries) does not
contribute to the line width, then there must be some fairly
large isotropic broadening mechanism such as that arising from
indirect exchange interactionsl7’18 between the two tin
isotopes which contributes to the line width. Karimov and

Shchegolev15

suggested that this mechanism is present in tin

and attributed a second moment of about .5 (kc/s)2 to it.
Indirect exchange interactions in metais result

from a coupling between the magnetic moments of two nuclei by

way of their conduction electrons and the hyperfine interaction.

If only the contact term of the spin Hamiltonian of equation

(1) is considered, this coupling is purely scalarl?, The

exchange interaction energy between unlike nuclear spins in

a metal is of the form17
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Iy I

J =J

(35) H- 5 s a
3

i>» j

Van Vleck16 shows that the second moment of the absorption line

of the nuclei with one magnetic moment due to the exchange

interaction with the nuclei of another magnetic moment is

(36) n? (2% = 1@+t 5 A, 42
J

where f is the fraction of the lattice sites occupied by the

nuclei with the different magnetic moment. He also shows in

the same paper that exchange interactions between nuclei of

1ike'magnétic moments do not contribute to the second moment

of the resonance line.

Several assumptions are made to calculate Aij' It
- n2k2

2m
m* is the effective mass of the electrons with wave number k.

, Where

is assumed that the energy Ex 1is given by Ej

The number of orbital states Z(k) a3k in the space of wave

3 .
%g-%% » the number for free
T

electrons. Also the excited states Ek' are assumed to

vectors is assumed to be

extend from the Fermi level, Ep = EEE% , to infinity, that
is, there are no energy gaps Jjust abgse the Fermi surface.
Finally, it is assumed that the main contribution to the
exchange interaction comes from values of k such that

&? —_gﬂz is very small, and that Lgl = |§f| o= |kFL
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k being the wave vector of a filled state and k' of an
unfilled state. Under these assumptions, the scalar coupling

coefficient becomes '

(37) A Q% m*f @ § AW 1
13 2r (214 + 1)(2ij £ 1) <;1J

4
5 {ZkF Ry cos(2kgRy )

- 2knR

where () is the atomic volume
m* is the effective mass of the electron involved
in the exchange interaction |
€ is the ratio of the hyperfine interaction in
crystal to that in a free atom

V. is the observed atomic hyperfine structure

a
splitting

Rij is the separation of the two nuclear spins
I, and I:j

kF is the wave vector of an electron at the Fermi

surface

It is difficult to ascribe a value to Aij for tin
given by this formula because tin does not have even a nearly
spherical Ferml surface. However, assuming that this formula
for Ai-

J
magnitude estimation of the second moment due to exchange

is not entirely invalid, we can make an order of
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broadening. It is assumed that m = m*. This is not true for
all electrons as is shown by the many periods of the de Haas-

20,22 which give values of %;

van Alphen oscillations in tin
varying between .05 and 1.0. From electronic specific heat
measurements, %; is found to be 1.2. Likewise the value of the
wave vector kp depends on which part of the Fermi surface is
being considered, but some average value can be approximated
using the measured values of the electronic specific heat.
Within the limits of these approximations, it is reasonable to

assume E = 1, and to assume some average value of 7V, measured

in the different fine structure levels of the ground state of
the free atom of tin21.

In order to perform the summation of equation (36), we
perform the sum over the first n-1 shells of nearest neighbours,
and replace the sum by an integral for the rest.

n-1 8
2 _ .2 1 2 2 2 _
38) X a7 - 5§i 'EIE) §4kF Ry 4~ cos” (2kgRyj) +

Sin2(2kFRij) ~ 4kpR4 ; cos(2kgRj j) sin(2kFRij)

J

- B 28, 2 cox2
. a2 S0 g‘ 4kp“R; 5 cos”(2kpRj j)

8
Ry 5

Rin J

% .
+©Q g sin2 (2kFRy i)

dv

oo

8
Rin Rij
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where A represents the constant terms in equation (37),
dv = 4vRij2 dRij, and Q is the number of atoms pér unit

volume. The three integral terms give

e 2 2 2
(39) = Ay = arQ (k)5 A% ) EE L EInE gy
J=n J 3a3 5a2

where o
si b= - g Sin X gx
b
and

b = 2a = 4kp Rin

For large b (in our case b & 80), si b can be expanded in

a series, and the sum can be written

2
2 2 5 cos“a 4 cos b 4sin b
(40) > A..° = 470 A% (2kp) -2 -

j-n *J 9 F 3a3 3

.+ sin®a , 16 cos b , oL
529 5b° b6
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Using an IBM 1620 computer, equation (38) was

1 and 2.5 x 108 en L at

evaluated for kp between .5 x 108 cm™
intervals of .01 by performing the sum over fifteen shells
(84 nearest neighbours) and replacing the sum by an integral
from the sixteenth shell outwards. Figure 8 shows the result

of this calculation with a plot of %% Ay s kp. As can
. A2

be seen, the sum is very sensitive to kp. The value of kg

obtained from the electronic specific heat of tin is

1.5 x 108 cm—l, which happens to be near a maximum point of

the curve. Thus a small error in kyp, although it will cause

2

a considerable error in %:AiJ , will give less error than
A2

another value might. Further, this value of kp will give the

upper limit to the exchange broadening coefficient unless the
correct value of kg is considerably larger than that expected

from electronic specific heat measurements. For

2
kp = 1.5 x 108 em™, = 243" = 1,75 x 10°2, The integral

Jd Ag
part of equation (38) contributes only about one percent to

this sum, and the terms neglected, those of the‘ordef
6
47 Q (2kF)5 io(%) } are down by a factor of 108, 1In fact,

for this value of kp, the most significant contribution comes
from only the first two nearest neighbours in the first shell.

10 c/s, we get A = 2,66 x 10794

Assuming V, to be 10
and using equation (36), we get (£>1))2 = ,57 (kc/s)z. This

excellent agreement between theory and experiment can be no
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more than fortuitous considering the approximations involved
in deriving the formula for Aij’ let alone considering the
approximations in the value of the constants such as Vg, andg'.
However, the agreement is encouraging insofar as it gives
some Jjustification for choosing kF in non-cubic metals from
measurements of the electronic specific heat and indicates
that the approximation of a spherical Fermi surface in the
derivation of the expression for Aij may not be particularly
restrictive. Because this result can be considered only an
order of magnitude calculation, no attempt to separate the
quantities DCp and ? has been madez.

' Figures 5 and 9 show the temperature dependence of
the Snll7 and snll® resonance. The measured change of f%ﬁ in
going from 4.2°K to 1.15°K was only - .002% or considerably
less than 1% of the total Knight shift. If a free electron
model holds, A%E is expected to vary as Vo'1/3, where V_ is
the atomic volumez. The accuracy of the temperature dependence
measurements is too poor over this range of temperature to
enable any statement about temperature variation of the Knight
shift other than it increases slightly as the temperature is
decreased. Figure 5 shows that only K and not KR is tempera-
ture dependent within the accuracy of the experiment.

117

The magnetic field dependence of the Sn and

Snll9 resonances shown in Figures 5 and 10 is fairly small

over the range of fields consideréd, but is well outside
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experimentél error, No simple explanation of the field
dependence seems to exist since X D is believed to be field
independent. The field dependence can be explained perhaps
in terms of polarization of the ion cores, or in terms of

some diamagnetic field dependence.



~45-

CHAPTER 5

THE POSSIBILITIES OF DE HAAS~-VAN ALPHEN TYPE
OSCILLATIONS IN THE KNIGHT SHIFT

As mentioned in Chapters 1 and 2, if the orbital
angular momentum of the electrons in a metal is not completely
quenched, there exists the possibility of an oscillatory
behaviour of the Knight shift caused by oscillations in the
diamagnetic susceptibility as the external field is varied.
This effect would be similar to the de Haas-van Alphen

effect22’23’24

which has yielded so much information about
the Fermi surface of many metals. The idea for this experi-
ment first arose in discussions in this laboratory between
Dr. R. Barrie and Dr. M. Bloom who mentioned it to T. P. Das.
The problem of calculating the diamagnetic field at the
nucleus is rather formidable, although attempts at it have

25

been made by Das and Sondheimer followed by other

26,27,28,29,30 and estimates of the change in the

authors
Knight shift have been made.

The de Haas-van Alphen effect is a low temperature,
high magnetic field phenomenon. Typically, experiments are

done at 1.2°K in magnetic fields between 15 and 100 kilogauss.
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Although the temperatures required are readily accessible,
these magnetic fields are somewhat high for typical nuclear
magnetic resonance studies. To obtain fields of 100 kilogauss,

Shoenberg22

and others have used pulsed magnets whose rate of
change of field is something like 5 x 106 gauss/sec, quite
unsuitable for nuclear magnetic resonance work. The work
described here was performed in a field of about 10 kilogauss
at 1,15°K,

The magnetic field at the nucleus due to orbital
motiqn of electrons at the bottom of a non-degenerate band is

26

given by Yafet to be

(41) AHg = (4r -D) * X4+ H

where DCd is the diamagnetic susceptibility tensor, D is
the demagnetizing coefficient tensor, and H is the applied
magnetic field. The tensor X d will have a term which is
independent of H and a term which oscillates as H is varied.
These two terms will be superimposed on the paramagnetic
term which gives rise to the Knight shift. Stephen27 has
calculated the oscillatory part of the shielding factor,

sq = 424 , and has found it to be
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12N1r3 *pep 5o
(42) 54 (osc) = ~ —re_ . 3 (-l)nI(n)cos(nv—ﬁl—m*)sin(nwgo)
*
< VS, H  n=1 nX H

sinh (nwikT
nin

where % is the density of electrons involved in this
interaction
m¥* is the effective mass of the electron
p: is the "effective" Bohr magneton (m* replaces m)
.So is the Fermi energy
I(n) is an integral to be evaluated numerically
k is Boltzmann's constant |

T is temperature

As can be seen from equation (42), &4(osc) varies
periodically in %. Further, since m* depends on‘the orienta-
tion of the Fermi surface, that is the crystal orientation

in the magnetic field, the sin(ﬁ"§b> factor means <y (osc)

 moH

will be anisotropic. For comparatively low fields such as

10 kilogauss, where _;Eig A& 500, this anisotropy would
o H

completely mask any effect in a powder whose particles are
randomly oriented in the magnetic field.
For fields of the order of 10 kilogauss and for

liquid helium temperatures, the amplitude of the first term
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of equation (42) is

2
12Nr Mo I(D)
\\, So o : ' "\

(43) | ( 5 a5 pax =

where Stephen gives I(1) a value of about .1. If we substitute

H
in suitable values for the parameters, we find that £8d is

of the order of 10~% for both aluminum and tin. This is less

than one.percent of the Knight shift and would be an upper

limit to the effect since D has been assumed to be zero. The

period of the oscillations is given by Zk(?z:59> = 211 . Usiﬁg
RoH -

the experimental value for the periods of aluminum and tin

given by Shoenbergzz, we find that at 10 kilogauss aluminum has

a period of about 30 géuss and tin has one between 20 gauss and

60 gauss, depending on the crystal orientation in the magnetic
field.

Because the theory for these diamagnetic oscilla-
tions in the Knight shift is at best only an order of
magnitude theory, it was felt worthwhile to search for them
in spite of their small predicted amplitude; The measurements
were all done at 1.5°K at fields near 10 kilogauss. The
method of recording the data to ensure greatest possible

accuracy has already been described in Chapter 3. Signals

were recorded at intervals of a few gauss over a range of

magnetic field corresponding to at least one period. The
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results of the experiments are shown in Figures 11 and 12,
Within the accuracy of the experiment, neither the aluminum
nor tin crystal gave any indication of these diamagnetic
oscillations. An upper limit to their contribution to the
Knight shift was found to be about .002% for the aluminum
crystal and .001% for the tin crystal.

Similar experiments were attempted on a bismuth
single crystal which should have a much greater amplitude of
G64q(osc) than either tin or aluminum. However, no signal
from bismuth was observed at liquid helium temperatures,

probably because of the long relaxation time of bismuth26.
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APPENDIX A

THE SECOND MOMENT OF THE RESONANCE LINE DUE TO
MISALIGNMENT OF THE CRYSTAL SLICES
The resonance frequency in a single crystal with
tetragonal symmetry measured from its average value

Y, (1+K) is
V=38V @Beos®Po -1)

where Ay = K| V. . This equation follows from

o
equation (32). We assume that the slices are misaligned
such that © varies between @, - oL and O, + oL , where <€ is
a measure of the misalignment of‘the crystal sliées. To
calculate the second moment of the absorptioﬁ signal due to

misalignment, we consider the following quantities. The

average value of V 1s defined by
37=f\)f(u)) dv

where f£(v» ) dy is the probability that the resonance

frequency is between 7V and V+ dv . If we assume an
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isotropic distribution in © between the two limits Oo - <

and ©, +<¢ , then

du _ 1 du
f(u?du Ty rrlirry dv £(v) dv
where u = cos @, b = cos(6y -<), and a = cos(0, +ot).

Thus ¥ can be written

b
- ' 2 _
5 . _&Y S @2 -1

2 b - a

?
. A

> (b2 + ba + a2 - 1)

. Similarly 2 can be written

b
‘ 2 2
Vi) | e
2 b - a
a

2
A ]
= ( 2\)“> {% % + b3a + a2b2 4 pald 4 a4) -

22 + ba + a2) * 1}

The second moment due to misalignment of the crystal slices

is



If b = cos(@ =-ok)

]
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and a = cos(@ +°L), then

2
— : AN
V2 L (D)2 - <_2.._Il> %12 cos? 0 cos®c sine sin%x +

-g- sin4 e Sin4o<§
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The nuclear magnetic resonance signal in white
tin has been studied in some detail in the pow-
der 1'3), and it has been established that the ob-
served broad line is a consequence of the anisotro-
py of the Knight shift in tin together with the effect
of nuclear spin exchange between different iso-
topes 4), Bloembergen and Rowland 5), from ob-
servations on thallium, have suggested that the ex-
change interaction need not be isotropic.

In the hope of clarifying these ideas, a direct
study of the anisotropy of both the Knight shift and

the line width has been carried out in a single crys-

tal specimen of white tin. The specimen was con-
structed in the form of a multiple layer sandwich
of 0.1 mm thick oriented in tin layers separated by
0.05 mm layers of Mylar; the whole cemented to-
gether with a silicone resin spray. The tin layers
were formed by etching down 1 mm thick tin slices
cut from a single crystal.

The signals were observed with a Pound-Knight
spectrometer, and in view of the comparatively
weak tin signal, measurements were taken at the
lowest available temperature (~ 1.15°K). A steady
magnetic field of 10 kilogauss was produced by a
Varian 12 inch rotatable magnet and was monitored
by the deuteron resonance in D9O. Rotations were

* Research supported by the National Research Coun-

cil of Canada.
** Holder of International Nickel Company of Canada

Research Fellowship.
*** National Research Council of Canada Postdoctoral

Fellow.

[001) .

~

(W]

[

Fig. 1. The (110) plane containing the [001] and the {111]
directions, and the plane perpendicular to it. The
magnetic field is rotated in either of these planes.

performed in the mutually perpendicular planes
shown in fig. 1. The observed anisotropy 1n the
Knight shift and in the line width determ%ned by

the maxima in the derivative of the Sn~** reso-
nance are shown in figs. 2 and 3. The amisotropy
was checked for 180° symmetry by two pomnts at
2259 and 315°.

The Knight shift is closely expressible in terms

s

108
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Fig. 2. The Sn119 Knight shift as a function of crystal
orientation in the magnetic field.

of the expected relation for tetragonal symmetry 6)
M g4+ 1 K (3 cos2e - 1),
H Il
where ¢ is the angle between the magnetic field and
the (001) axis. Our results are compared with

other values in table 1.

Table 1. Knight shift constants,

T
Kx10* { Kjx 10t

Ref.1) 70.9 + 0.7

Ref.2) 75.7 2.3
Ref.3) - 6.6+ 0.6
Present experiment | 71.3+0.2 [ 5.4+0.2

The anisotropy of the line width differs in both
form and magnitude from that expected from dipo-
lar broadening alone. The mean value is in agree-
ment with that of Karimov and Shchegolev for the
second moment (1.2 (ke/ s)2) and if the additional
broadening is attributed to the exchange interaction,
this interaction has a large anisotropic component.
A detailed expression for this is available 5§ and
calculations on the implications of the observed
anisotropy are in progress.

In these experiments the sample size is much
greater than the electromagnetic skin-depth. Theo-
ry 7) indicates that the line-shape should then be an
equal mixture of absorption and dispersion modes.
No obvious contribution from the dispersion mode
was observed, in agreement with previous obser-
vations 3,8) that there seems to be an effective
skin-depth for nuclear magnetic resonance which
is greater than the electromagnetic skin-depth. In

Fig. 3. The Sn119 line width as a function of crystal
orientation in the magnetic field.

any case, such a mixing would increase our value
of K by only one percent and would have a negligi-
ble effect on K .

One can readily understand errors in an analysis
of the powder line shape since a weighting factor
corresponding to the anisotropy of the line width
should be used. This factor probably explains most
of the discrepancy between the results quoted in
table 1.

The observed line-shape showed some asymme-
try which appeared to be a function of orientation.
Work is continuing on a detailed investigation of
these points together with a study of the snll7 res-
onance.

We would like to thank Dr. E. Teghtsoonian and
Mr. A. L. Causey for providing the tin single crys-
tal and Dr. Myer Bloom for illuminating discus-
sions.
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APPENDIX C

This appendix includes circuit diagrams of the non~
commerical items of the spectrometer. One or two comments
on the apparatus are appropriate.

The heaters of the Pound-Knight-Watkins oscillators
and of the White amplifiers are supplied by a 6 volt storage
battery in parallel %ith a Heathkit Battery Eliminator.

A dc source for the heaters was found necessary especially
for the White amplifiers to eliminate 60 c¢/s interference.

The Pound-Knight-Watkins oscillator used to measure
the deuteron resonance employed a Varicap in the same way as
shown in Figure C1l, except that a 90 volt battery and a 100 K
Helipot provided the voltage sweep instead of the modified
Tektronix 182 waveform generator.

The initial voltage of the sweep of the modified
Tektronix 162 waveform generator is set with the confrol
marked Vernier, and the sawtooth run-down is begun or
terminated with the switch marked Gate Out or Pulse Out.
Figure C2 shows the modifications of the waveform generator
in dotted squares. The rest of the circuit can be found in

the Tektronix 162 waveform generator manual.
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