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ABSTRACT 

A theoretical investiation of steady radiation 
fronts was carried out for the experimentally realistic 
situation in which ionizing or dissociating radiation 
passes through a transparent window into an absorbing 
gas. It was shown that five different types of radia-
tion fronts may occur -depending on the ratio of photon 
flux to absorber density. It was possible to calculate 
the flow in each case provided the final temperature 
behind the radiation front was assumed. This final temp-
erature may be calculated if the structure and all re-
actions within the radiation front are taken into accountc 

An analytic expression can be obtained if part-
icle motion and recombination are neglected , and the 
radiation is assumed to be monochromatic. This ideal 
case corresponds closely to a weak R-type radiation front. 
A first order relativistic correction indicates that the 
width of the front decreases as the velocity of the front 
approaches the speed of light. 

In an associated experimentt radiation fronts in 
oxygen and iodine were produced by an intense light pulse 
from a constricted arc. The experiment in iodine demon-
strated the beginning of the formation of a radiation 



front during the 1 0 ^ sec light pulse. Radiation induced 
shock waves were observed in oxygen after the decay of 
the light pulse. These Mach 1.1 shocks were considered 
theoretically as unsteady one-dimensional flow and were 
treated by the method of characteristics, which was mod-
ified to include the energy input. The agreement between 
the theoretical and experimental results was satisfactory. 
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C H A P T E R I 

: INTRODUCTION 

1.1 The Problem 
In most plasmas produced in the laboratory, 

radiation is considered an undesirable energy loss mech-
anism, of interest only to spectroscopists for analysis 
of the conditions within the plasmas. However, absorp-
tion of radiation may be used to produce plasmas. This 

n 
was first illustrated by Stromgren (1939) in his investig-
ation of expanding H II regions in interstellar space. 
These H II regions a.re produced by a hot star emitting 
ionizing radiation into a rarified cloud of hydrogen atoms. 
Kahn (1954) and Axford (1961) have made extensive theor-
etical studies of the ra.dia.tion fronts which presumably 
occur at the edges of these H II regions. 

With the advent of the giant pulsed lasers, it 

has become possible to study radiation produced laser 

spark plasmas in the laboratory. Following the early 

work of Ramsden and Savic (1964) there has been a flood, 

of investigations of the breakdown mechanisms and dynamics 

of these laser sparks. The absorption of the radiation 

in this case is of a special nature and does not correspond 
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to the single photon absorption mechanism. It is, there-

fore, perhaps, surprising that these laser sparks exhibit 

properties of detonations or Chapman-Jouguet waves which 

is a singular point on the manifold of radiation fronts 

which Kahn predicted to exist. 

Let us consider the single photon absorption mech-

anisms which occur at the edge of a radiation produced plasma. 

When ionizing or dissociating radiation is incident upon an 

absorbing gas, a radia/tion front tends to form and propagate 

into the gas such that ahead of the front the gas is in its 

original state while behind it the gas is ionized or dis-

sociated (i.e. a plasma). Behind the radiation front the gas 

is a,t a considerably higher temperature and there are more 

particles per unit mass than ahead of the front. The result-

ing pressure gradient across the radiation front may result in 

considerable motion of the plasma. 

Most of the theoretical work in the literature on 

radiation fronts deals with interstellar H II regions and 

consequently, the equations used are expressly adopted for 

conditions found in interstellar space. One of these 

equations which is used by many workers is a relation bet-

ween the particle density No, the- photon flux and 

the velocity of the radiation front,"V^ (e.g. Goldsworthy 

(1961)). ' _ F V f - Fo/ N o 

This relation assumes that each photon ionizes (or 

dissociates) exactly one particle and F C , wherecis-

the speed of light (see section 3.1)« Since we.wish, to 
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consider recombination and collisional ionization, we 

introduce a coefficient,5, which is the average number of 

photons required to ionize one particle. (We shall consider 

this coefficient in more detail in section 3.2). 

We thus write *u<F ̂  • 1*1 

The terminology in this thesis has been adopted 

from the definitive work of Kahn (1954): Supersonic radia-

tion fronts which compress the gas weakly are called weak 

R-type fronts since they occur if the radiation front prop-

agates into a Rarified gas. Subsonic radiation fronts which 

heat and expand the gas are called weak D-type fronts since 

they occur if the radiation front propagates into a Dense 

gas. Radiation fronts across which the flow switches from 

supersonic to subsonic are called strong R-type, whereas 

radiation fronts across which the flow switches from subsonic 

to supersonic are called strong D-type fronts. These only 

occur under very specialized conditions, and are not encoun-

tered for the conditions described in this thesis. In 

general, weak R-type radiation fronts occur when the ratio . 

of radiation flux to particle density, is large com-

pared to the speed of sound behind the radiation front and 

weak D-type fronts occur when this ratio T?0/N0 i s small. 

Conditions in the Middle between these two extremes where 

the ratio F 0/N 0 is of the order of the speed of sound of 

the gas behind the radiation front are referred to as M-type. 

The singular point which separates the M-type and weak 

R-type conditions is called R-critical and the point which 

separates the M-type and weak D-type conditions is called 



D-critical. In both of these singular cases, the radiation 

fronts propagate at exactly sonic speed with respect to the 

gas behind them. This scheme is illustrated in Fig. 1.1 

below. 

R-critical D-critical 

weaic weak 
R-type M-type D-type 

Pig. 1.1 Classification of conditions encountered by 
radiation fronts 

The reader may be familiar with a classification 

of isolated discontinuities in the literature in which the 

relative velocity? v, is compared with the local speed of 

sounds a. Using the subscripts 1 and 2 to refer to condi-

tions ahead of and behind the radiation front respectively, 

this classification may be conveniently tabulated as follow 

I weak critical strong 
j v, < O- , -zr, < ex, 1/; < a, 

D-type = ir^ >ftj 
| iT, > a, •p~, > (X, 

type j ĝ. >- & a •Vk = fti 

In this thesis, we wish to make further theoret-

ical and experimental investigations of the development 

and propogation of radiation fronts and phenomena/assoc-

iated with such fronts. For this purpose, we consider an 

experimentally realistic situation in which ionizing or 

dissociating radiation passes through a transparent window 

into a semi-infinite tube containing the absorbing gas. 

The boundary conditions for this situation permit unique 

solutions' to be obtained. These experimental conditions 

differ from laser spark experiments in two ways, First, 
Measured in the frame of reference of the closest discontinuity 



the radiation front is considered in plane geometry. 

Secondly, the incident radiation may have any frequency 

distribution and is of long time duration. 

Corresponding to this idealized experimental sit-
uation, let us consider a tube containing N0 absorbers per 
unit volume with absorption cross section «<(v), which are 
dissociated (we use the term dissociation generally to 
include ionization) by photons in the frequency interval 
Vi to?/2 . At time iz = o, a steady parallel beam of F 0 

photons/ cm2sec .in the interval ~V\ toV^ and with average ener-
gy is directed into the absorbing gas, see Fig. 1.2. 

-transparent /- radiation 
window / front 

Y /Ekaions) oicm sec } 
absorbing gas 
N 0 (cm ) 

Fig. 1.2 Hypothetica,l experimental'situation. 

A radiation front will form and propagate away from the 

window into the undisturbed gas. According to eq'n (1.1) 

the velocity of the front w i l l be proportional to the 

ratio of the photon flux F 0 to the particle density N"0 of 

the absorbing gas. It is one aim of this thesis to show 

that the properties of the radiation front which develops 
F 

depend critically upon the magnitude of -^compared with 

the speed of sound behind the front. 



We feel that with the completion of this thesis, 
we have achieved three major points. First, it is now poss-
ible to predict the flow pattern for any value of F0/N0 in 
this experimental situation and (by assuming a reasonable 
temperature behind the radiation front) to calculate the 
velocities and thermodynamic quantities associated with the 
steady radiation front. This was not possible from the 
existing literature, where due to the lack of definite 
boundary conditions only general statements about the poss-
ible fronts had been obtained. Secondly, we have pointed 
out that the final temperature behind steady radiation 
fronts can (at least, in principle} be obtained from a 
detailed analysis of the structure of and mechanisms occur-
ring within the radiation front„ A knowledge of this 
temperature makes unique solutions possible. Thirdly, the 
experiments performed here, indicate the existance of rad-
iation fronts in agreement with our theoretical investigation 
For this, we have modified the theory of unsteady one-dimen-
sional flow to include energy input. The method of character 
istics at fixed time intervals or the method of finite 
differences may now be applied to predict the flow for any 
developing or unsteady radiation front and for any time 
varying photon flux, F „ 



The main requirement for an experiment to observe 

radiation fronts in the laboratory is an extremely intense 

light source which radiates a large number of photons in 

the frequency interval in v/hich the test gas has a high 

photoionization or photodissociation cross section and 

which radiates for as long a period of time as possible. 

Our light source was an arc v/hich was forced to pass through 

a narrow channel in a polyethylene rod similar to that 

described by Bogen et al (1965). This source radiated with 

an effective black body temperature of the order of 105 

for a period of 10^sec« Iodine and oxygen which have large 
o 

photodissociation cross sections in the region 5000 A and 
o 

1420 A. respectively were used as the absorbing gases. 

1 •2 An outline of the thesis. 
The thesis consists of two main sections? a theor-

etical investigation of steady radiation fronts and an 
experimental part. • 

In Chapter 2, we list the various steady radiation 
fronts which we expect to occur and then we develop the 
equations necessary to describe the flow for each case. 
There is always one more unknown than equations. .Thus, in 
order to obtain unique solutions, it is either necessary to 
assume the final temperature behind the radiation front or 
to calculate the detailed structure of the front. 

In Chapter 3, we carry out the calculations for a 

simplified model. Also, by assuming the final temperature, 

we calculate the flow for each of the cases v/hich are ex-

pected to occur, in Chapter 4, we outline how to obtain the 



detailed structure of a radiation front and the temperature 

behind it. . 

The radiation source is described in Chapter 5. 

•Experiments and results are discussed in Chapter 6. 

In order to understand details of the experimental 

results, in Chapter 7, we develop the theory of unsteady 

one-dimensional flow with energy input and apply it to the 

temporal development of the shock fronts observed experimen-

tally. 

The main results of the thesis are summarized in 

Chapter 8. 



C H A P T E R 2 

BASIC EQUATIONS AND ASSUMPTIONS 

Let us now consider in more detail^ the experi-

mental situation illustrated in Pig 1.2 for various values 

of F 0/N 0. 

2• 1 The possible types of flow 

We assume that after a certain length of time, a 

radiation front forms and that the flow associated with it 

approaches a steady state.* We then may treat the radiation 

front as a discontinuity across which the standard conser-

vation equations of mass and momentum may he applied. The 

energy equation must he .modified to include the radiant-

energy absorbed within the front. Thus, the problem may 

be treated as steady one-dimensional flow with energy input 

For values of F 0/N 0 either large or small compared 

with the speed of sound behind the radiation front, a^ 

(we always use the subscript 4 to refer to quantities be-

hind the radiation front) there is no difficulty in predic 

ting the type of flow which will occur. For F 0/N 0>^a4, 

the radiation front propagates so rapidly that the parti-

cles do not have an opportunity to react to the pressure 

* This assumption is never strictly true; its validity will 
be discussed in section 2.5 and the following two chapter 
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gradient across the front and consquently, there is only 

weak compression and little particle motion behind the front. 

At the other extreme, F 0 / H 0 « £4, the particles can, and do, 

react to the pressure gradient. The compression wave over-

takes the radiation front and becomes a shock which propa-

gates ahead of the radiation front. The radiation front 

in this case is an expansion wave since the gas entering 

it is in a compressed state and is heated and expanded as 

it passes through the front. 

However, conceptual difficulties arise in the 

transition region where Po/ffo85* a4 • I»et us envisage what 

occurs as we decrease the radiation flux F 0 from a value 

at which vr = ^0/5 a4* -?he various cases are illustrated 

in Fig. 2.1. Initially, the radiation front will propagate 

supersonically with weak compression and little particle 

motion, as discussed above. Since there is a small driftV 

velocity v p imparted to the particles passing through the 

front a rarefaction wave will be set up (see Fig. 2.1) 

which eventually brings the particles to rest. The head 

of the rarefaction v/ave travels at the speed of sound rel-

ative to the particles entering (vH = Vp+a^)while the 

tail travels at the speed of sound of the stationary par-

ticles behind it ( vf = a^, where the subscript 5 refers to 

quantities behind the rarefaction v/ave). Following Kahn 

(1954) we describe such a front as weak R-type (weak com-

pression wave) followed by a, rarefaction v/ave. 



velocity 

Fig. 2.1 Schematic representation of flow velocities 
for various values of P0/N0 



As the incident radiation flux is decreased, we 
eventually reach a point where the front travels at the 
speed of sound relative to the gas behind it (Vp = vp+a4 

where vp is the particle drift velocity). The head of the 
rarefaction wave travels with the same speed and is in 
conjunction with the radiation front. This is called an 
R-critical front. 

If the intensity of the incident radiation is 
decreased still further, a shock wave travels ahead of the 
front causing the gas between the shock and radiation front 
to be compressed and heated. The slower moving radiation 
front now enters a gas of higher density; the gas passing 
through the front is heated and expanded. We expect the rare 
faction wave to follow the radiation front in the same 
manner as in the R-critical case. In this case, we adopt 
the terminology "M-critical front preceded by a shock wave". 

As we further decrease the radiation intensity, the 
velocity of the radiation front decreases until it equals 
the velocity of the tail of the rarefaction wave. The rare-
faction wave is thus merged with the radiation front. The 
front travels with the speed of sound, â ., relative to the 
gas behind it which itself is stationary in the lab frame 
of reference (vp= a/f). This case is called a D-critical 
front preceded by a shock wave. 

Finally, for still lower values of F0, w,e have the 
low velocity extreme Fo/3%<<a4.» which the radiation front 



travels at subsonic speed relative to the stationary 
particles behind it (Vp< a ^ and a shock front propagates 
ahead of it. The discontinuities appear in the same order 
as for the D-critical case. We call this a weak D-type 
front preceded by a shock wave. 

We note that in the above scheme, there are three 
regions of solution (weak R-type, M-critical, weak D-type) 
separated by two point solutions (R-critical and D-critical). 
Two other types of fronts, the strong R-type and strong 
D-type, which we mentioned previously and which are men-
tioned in the literature (liahn (1954), Axford (1961)) do 
not occur in our case. 

2.2. Conservation equations for, a discontinuity in one -
dimensional flow 

We have assumed that the flow associated with the 
radiation front reaches a steady state such that the rad-
iation front may be considered as a discontinuity across 
which the conservation equations of mass and momentum.and 
the modified energy equation are valid. We label all 
quantities immediately behind the radiation front with the 
subscript 4, see Pig. 2.2, and the initial undisturbed 
quantities carry the subscript 1. Similarily, the sub-
script 2refers to quantities behind the shock front and 
subscript 5 refers to quantities entering an M-critical, 
D-critical or weak D-type front. The thermodynamic 

http://c3.se
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K 

4 f, 

K h, 
If, 

(a) 
iTr^CLs 

F 
fA % & « f, 
pA . ^ r* = • Pz 

= h3 
p, h, = • Pz 

= h3 
p, h, 

1 1 7 
< 

(b) 

Pig. 2.2 (a) Steady discontinuities in an R-critical 
front 

(b) Steady discontinuities in an M-critical 
. front-

quantities with the subscripts 2 a n d 3 a r e assumed to be 
identical, the velocities v2 and v3 are, of course, dif-
ferent in their respective frames of reference.* If a 
rarefaction wave exists, the quantities behind it are la-
belled with the subscript 5. 

In the frame of reference of the discontinuity, 
the conservation equations of mass, momentum and energy 
may be 'written as (e.g. for an R-critical or weak R»type 
front) 

Compare footnote on page 4 

j C _ L JL tr  z  

Z. 

2.1 

2.2 
2.3 



v (em/sec) is the velocity of the ga,s particles relative 
to the discontinuity,y7 (gm/cm^) i s the mass density, p 
(dynes/cm 2) is the pressure, h (ergs/gm) is the enthalpy 
and W (ergs/cm 2sec) is the energy flux which is absorbed 
by the gas, W is defined by 

W — < hr> = </r 2 * 4 

We have neglected the radiation pressure in eq'n (2.2) 
since it is negligible for any cases that we consider. 

With proper choice of the indices all discontinu-
ities associated with the radiation front can be described 
by these conservation equations. For an M-critical, D-
critical or weak D-type front, the indices on the right 
hand side of eq'ns (2.1) to (2/3) have to be changed to 3f 
(compare Figs 2.2(a) a.nd 2.2(b)). For shocks which precede 
the radiation front, the quantities on the left hand side 
of these equations are labelled with the subscript 2 and 
the energy flux W Is zero.. These conservation equations, 
however, cannot be applied to rarefaction waves which are 
treated in the next section. 

From these conservation equations and the equation 
of state, see section 2.4, it is possible to express the 
compression ratio in terms of an effective adiabatic 
exponent, g (Lun'kin(1959)). For an ideal gas g is analo-
gous to the ratio of specific heats £" (see Zel'dovich and 
Raizer (1966), p 207). The value of g varies between 1.06 
and 1.7 and often ma»y be estimated quite accurately a priori. 
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Ahlborn and Salvat (1967) show the compression ratio (for 
an R-critical or weak R-type front) is 

^ / p, 
ML= ! JLJLJEI * - - , —| ji'I/I-(-&!•) ^p1'^ 

2.5 

where we have used the equation of state in the form 
h = (g/g-1) (P/VO to eliminate the enthalpy from the energy 
equation (Lun'kin (1959)). Note that aq'n (2.5) has two 
roots signifying the mathematical possibility of two dif-
ferent compression ratios. The negative root corresponds 
to the weak R-type solution; the positive root corresponds 
to the strong R-type solution .which does not occur in.our 
case. • • 

We have pointed, out previously that for the crit-
ical cases (R, M and D-critical) the radiation front travels 
with the speed of sound, a^, relative to the gas behind it. 
We refer to the quantity a4 as a thermodynamic speed of 
sound since it is defined as 

.i 

a 4 ~ (S/^/fA)2 2< b 

Usually, the speed of sound, cs„ is defined by a differen-
tial along an isentrope 

c s ~ Vr' 's 
3?or a polytropic gas (p where this equation 
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reduces to e^'n (2.6). In a plasma (e.g. behind a rad-
iation front) the isentropic exponentr" is not, in general 

fi 

equivalent to the effective adiabatic exponent g (see 
Zel'dovich and Raizer (1966), p 207); however, it has been 
shown by Ahlborn (1966) that the approximate speed of 
sound given by eg,'n (2.6) differs by less than 10$ from 
more accurate calculations based on eq'n (2.7). In this 
thesis we will use the speed of sound as defined by eq'n 
(2,6). 

With this definition of the speed of sound, the 
term inside the square root sign of eg'n (2.6) becomes 
identically zero for the three critical cases. This yields 
an extra relation and simplifies the solutions considerably. 

2.3 Rarefaction, wave s in a one-dimensional flow' 

For the boundary conditions considered in this thesis 
fast rad.ia.tion fronts are always followed by rarefaction 
waves. Though the properties of such waves are well known 
from the literature, for the convenience of the reader, 
we summarize the important facts in this section. 

Consider a semi-infinite tube of gas closed at the 
left end, travelling in the +X direction (i.e. to the right) 
with the speed Vp^. At time t = o, the tube comes to a 
complete stop. What is the motion of the gas at the left 
end? 

This is the age old problem of Riemann and the 
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solution is well kn-own (see von Mises (1958) or C our ant 
and Friedrichs (1948)). A rarefaction wave is formed which 
causes the particles to decelerate through an expansion 
fan as illustrated in Pig. 2.3. The head of the rarefaction 
wave travels at the speed, v^ = vp/f + a^ (where is the 
speed of sound in the gas in region 4); the tail of the 
wave travels at the speed, v-j- = The expansion through 
the rarefaction fan occurs isentropically and it can be 
shown that in an isentropic expansion, the quantity 2a/(g~1)-
is conserved at every point along the expansion (we use the 
effective adiabatic exponent g in place of the isentropic 
exponent g~"). Thus we may write 

_ ^ = - 2.8 

For a polytropic gas the quantity p f ̂ xs conserved; 
hence 

P 5 / 5 P4 A • 2.9 

We now assume g^ = g^ = g (an approximation which is not 
generally true for a plasma) and combine eq'ns (2.8) and 
(2.9) to obtain , fJL 

' r z - • 2.10 ^ V / 

To obtain the temperature T5 we use the relation 

7V _ ^ Jl 9 n 
-T% - 4 AS* ' 

where M4 and M5 are the initial and final molecular weights 
of the gas in regions 4 and 5. 



rarefaction rarefaction 

I * 
I P+ j * 

• s~ | •—:—s- _ 

Pig. 2.3 Propagation of a rarefaction wave 

We have tailored our treatment above to apply-

directly to the rarefaction fans which occur behind 

M-critical, R-critical and weak R-type radiation fronts 

One may expect problems to arise when the assumption 

g = g^ is not valid and when g differs markedly from / 

If this occursf one must use more accurate values and 

iterative techniques. 

£ 
4 
a 
n 
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2.4 The ..'equations-.;of state 

An equation of state relates the thermodynamic 
quantities such as the pressure, density, enthalpy, tempe-
rature, I, and internal energy,£ . Throughout this thesis, 
we find it convenient to use several different forms of the 
equation of state. We have already had occasion to use the 
equation which relates the enthalpy to the pressure and 
density "by means of the effective adiabatic exponent, g, 

/j — J - / . 2.12 

Similarily, for the internal energy,£ , we may 
write 

LI 

k. = -f y 2.13 
since . We note that the temperature does not appear 
explicitly in these equations, however, the adiabatic expon-
ent g is a weak function of temperature and pressure (or 
density).. For a monatomic gas such as argon g varies from 
1.67 at 300 °K to 1.13 at 2Q000 °K; while for a diatomic 
gas such as oxygen it varies from 1.4 at 300 °K to 1.06 at 
10,000 Curves of g (p.(T)plotted versus T may be found 
for various gases in Ahlborn and Salvat (1966) and Kuthe 
and Neumann (1964). (See Zel'dovich and Raizer (1966), 
p 207 for a different approach.) 

The pressure in a multicomponent plasma may be 
written as the sum of the partial pressures of the individual 



components. 
= 2.14 

where for a diatomic gas the index j = m, a, e, i = 1,2,3?.. 
refers to molecules, atoms, electrons and degree of ioni-
zation respectively, n- is the particle density of the d 
component, T. is the temperature associated with the tran-j ( 

slational degrees of freedom of the j1* component and k 
ji c 

(=1.38 X 10" ergs/°K molecule) is Boltzmann's constant. 
She internal energy, £, is defined to be the sum 

of the energies in the various degrees of freedom of all 
the components of the gas. For a diatomic gas £(ergs/gm) 
may be written as 
' k 2.15 y — Z- J J ' ,/jfg 

^ tti 

where the quantities k n - j and T j are defined as in eq'n 
(2.14). m-i (gm) is the mass of the component particle, 
D (ergs) is the dissociation energy- of the diatomic molecule 

(ergs) is the ionization potential of the 1th stage of 
ionization and ̂  is the partition function of the fa com-
ponent excluding the electrons. (The terra containing -j 
gives the energy in the vibrational and rotational states 
of the molecule and the excited electronic states of the 
atoms and ions.). The denominator of eq'n (2.15) is the 

0 mass density,7-= m^. S ti tJ 

By combining eq/ns (2.14) and '(2.15 ) it is possible 
to obtain an equation of the form of eq'n (2.13) and thus 



obtain an explicit expression for the effective adiabatic 
exponent, g. To illustrate, let us consider the gas in 
a dissociation front in oxygen initially at room temper-
ature. We assume that there is no ionization and we neglect 
the energy in the excited electronic states of the atoms 
and molecules. At room temperature, the rotational degrees 
of freedom of the molecules are in full excitation and 
contribute nfflkT to the internal energy of the gas. The 
excitation of the vibrational degrees of freedom becomes 
appreciable at temperature larger than 1000 Assuming 

. the molecule vibrates as a harmonic oscillator the contri-
bution to the internal energy is given by (see Zel1dovich 
and Raizer (1966),"p 181) 

/ - V J6 M ^ L - • 2 .16 £ -tr-Lli — ^ h vy^ J ) 

where for oxygen hY'/k = 2228 This expression assumes 

that the vibrational degrees of freedom are in complete 

equilibrium with the translational degrees of freedom. 

We may thus write eq'n (2.15) as 

M 

where M is the mass of the oxygen molecule (M=nim=2ma) and' 
where the degree of dissociation y is defined as 

y^- ' 2.17 

Similarily, eq'n (2.14) may be written as 

r = f 4f ; • 2.14' .; 
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where /= (nm + &na> M. 

Combining eq'ns (2.14') and (2.15') we obtain an 
expression for £, in the form 

•L~- J 2 . 13 1 

where the term in the square brackets corresponds to (g-1) 
of eq'n (2.13). We note that in our simplified example ^ 
is a function of temperature a,nd the degree of dissociation 
y only. In general, one should also include the degree 
of ionization and invoke equilibrium relations or rate 
equations to relate the various particle concentrations. 

2.5 Estimation of the temperature behind the.radiation 

front -

Let us consider a non-relativistic weak R-type 

•front across which the conservation equations (2.1) to (2.3) 

can be applied. If we assume that the rate of energy in-

put W is known, then these three equations plus an equa-

tion of state and an equilibrium relation*g.i.ve us five 

equa.tions with six unknowns v^, v/f ~f ̂ , T ^ (one may 

argue that v^ = vF is known from eq'n (1 .1); however, this 
is no help since then the coefficient j is unknown.) -
Similarily, if we consider any other type of front we al-
ways have one more unknown than equations. We must, there-
fore, obtain a further specifying equation or fix a parameter 

* for the particle concentrationsy 



to solve the problem. 

In order to obtain the specifying equation, one 

must be able to calculate in detail the state of the par-

ticles as they pass through the radiation front. It is 

also necessary to know the detailed structure of the 

discontinuity. In general, this is a formidable task since 

one must consider the reaction rates occurring in the front, 

collision and excitation cross sections, transition proba-

bilities, energy transfer by means of radiation and so 

forth. In addition to the obvious complexity, we have a 

further problem in that quantitative values of many of the 

reaction rates, etc. are either inaccurate or unknown. 

Por the present, we will not attempt to obtain 

the structure of the radiation front but will, instead, 

show how to estimate or give limits for the final temper-

ature, T/m behind the radiation front. A first order 

approximation to the temperature behind the radiation front 

may be obtained by considering the energy equation (2.3). 

If we consider a dissociation front entering a diatomic 

gas at room temperature , the enthalpy h-j is given by 

h-| = 3.5 kT-j/M, where M is the mass of the molecule. The 

enthalpy behind the front is given by h4 = (5kT4 + D)/M 

where D is the dissociation energy and where we assume com-

plete dissociation but no ionization. In section 3.2 we 

will show that the term ¥ / / 1 v 1 may be written 

J H = 5<^> 3 '29' 
7? if, " — ? 



Thus eq'n '(2.3) becomes 

3.5 kl-i/M + h ^ 2 + 5 < h ^ / M = (5k T 4 + D)/M + £ v 4
2 

which may he solved for the end temperature behind a 

dissociation front 

* " ~ 5 - 2.18 

The corresponding temperature for an ionization front is 

2-s^A >7 5'<" -•£• + -j -m*. z) 
• ~ ~ : : i 2.18-

where E is the ionization energy and m„ is the mass of ci 
the atoms. From-eq'ns (1.1) and (2.18) or (2.19') it is 

evident that values of f and v^ are required to calculate 

the final temperature. 

One can expect the temperature to be between rela-

tively narrow limits. For a dissociation front the equi-

l i b r i u m temperature behind the discontinuity must be larger 

that some minimum temperature.,' T m i , at which virtually 

all the particles are dissociated (for example, we arbit-

rarily assume that"virtually all " is 99.8$). For an ioni-

zation front the equilibrium temperature* behind the 

discontinuity must be at least such that a. 11 the particles 

are still ionized after passing through the rarefaction wave. 

In fact, even if radiation losses from the plasma behind 
the discontinuity are ignored, an equilibrium temperature 
cannot be reached since there is a finite probability 
of particles recomblning even at extremely high tempera-
tures. On the other hand, if radiation losses are con-
sidered, then it is not possible for the radiation front 
and the flow associated with it to reach a steady state 
unless (perhaps) the radiation flux increases in time 
in some special way. Nevertheless, the concept of an' 
equilibrium temperature is necessary in the "steady 
state" approximation of radiation fronts. 



For a dissociation front in oxygen at atmospheric pressure, 

we choose* T m i n = 6000 °K at which temperature only 0.2# of 

the gas is in molecular form and 0.005^ is ionized (Landolt-

BOrnstein II.4, p 717). 

On the other hand, we can define another tempera-

ture, This temperature is that value of T 4 v/hich 

one obtains from eq'n (2.18) for a weak R-type front with 

v 1 = v 4 and f. = 1. As an example, let us consider a dis-

sociation front produced by 1420 A (8.8 eV) photons enter-

ing a cloud of oxygen molecules which have a dissociation 

energy of 5.1 eV. In this case, T _ ^ 8 9 0 0 °K. max 
If the photon flux JP is extremely high ( such 

that the weak R~type front travels so rapidly 

that there is little compression (v^ = v^) and there is 

little time for the hot dissociated atoms to dissociate 

other molecules In. collisions. Also, at a temperature of 

8900 °K, one could expect little recombination. Thus one 

photon dissociates only one molecule,, such that ^ = 1 . In 

this case, we expect the temperature behind the radiation 

front to be T N = 8900 max 
If the intensity of the 8.8 eV" radiation is rela-

tively low ( such that 3 ? 0 / N 0 « a^) we shall obtain a weak 

D-type front preceded by a shock. In this case, although 

there is a large expansion (such that v ^ > > v^) the term 
o p 

(v 3 - v^ ) is small compared v/ith ?<h'Z//-D in eq'n (2.18), 

Also, there is plenty of time for the hot dissociated 

* For convenience of calculation v/e assume the temperature behind 
the radiation front, T 4, rather than the temperature behind the 
rarefaction wave, Tg, This assumption is of little consequence 
since the temperature drop across the rarefaction wave is small,, 
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particles to cool by colliding with and dissociating other 
molecules. Thus, one photon will dissociate more than 
one molecule such that 5< 1 . In this case we expect T4__slmin 

= 6000 

For intermediate values of (such that Po/.No^-a4) 

for which we obtain D, M or R-critical fronts, the situation 

is more uncertain. In this case, the term (v.,2- v, 2) or 
2 2 

(v1 -v^ ) is appreciable. Collisions In the radiation 

front result in both dissociation and recombination. If 

three body recombination is predominant over collisional 

dissociation, then1>1 and we expect T. „ . If collis-4 max 
ional dissociation is predominant over recombination, then 

j < 1 and we expect T . < 1 A • T , . Unfortunately, there ' uiJ-Xi _ [flci.A 
seems to be no criteria by which one could predict the 

relative importance of collisional dissociation and three 

body recombination within the front. 

As another idealized example, consider radiation o at 912 A entering a gas of hydrogen atoms with an ionization 
potential of 13.6 eY. There is no excess energy of the 

ionization <fhf V- Es=o such that T = •§• T. « T . and, \ , • max i idj.D 
therefore, on the average, one would require substantially 

more than one photon (i.e. 5->1) to ionize one atom and heat 

the gas to a. minimum temperature of the order of 10,000 

The results of this section may be summarized as 

follows s 
T. = T if ^ J i T ^ k , f = / 4 max 
T4 = Tmin i f ,• S ^ 

or (ii)- <(h^>~~?f > f o / N < , « ° L < t T%<i 



T4 < \>ax ' i f <*>*> I , - ^ , S < 
T4> Tmax if , f'/rt* 7 5 -

where"X-is the dissociation energy for a dissociation 
front and the ionization energy for an ionization front. 



C H A P T E R ? 

PROPERTIES OP STEADY RADIATION FRONTS 

In the discussion of radiation fronts in a gas 
filled tube closed on one side by a transparent window, 
we postulated the existance of five different types of 
radiation fronts assuming that the flow in each case would 
reach a steady state. We also developed the equations 
which will enable us to calculate the thermodynamic prop-
erties and the flow velocities of the gas for each of the 
five types o Por this calculation,, we must make two assum-
ptions o First, we assumed that the flow is steady in 
every case (we consider a rarefaction wave with its head 
and tail both travelling at constant but different speeds 
as being a steady state situation). Secondly, we assume 
the temperature» is -known (either by assumption or 
by a calculation of the detailed structure of the front). 

3.1 Idealized propagation of a radiation front 

In our hypothetical situation, the dissociating 
radiation of F Q photons/cm2sec passes through a transparent 
window into a semi-infinite tube containing NQ absorbing 
particles per unit volume, let us now make the further 
assumptions that all particles are stationary and that 



there is no recombination of the dissociated particles9 
such that there is a 1:1 correspondence between photons 
absorbed and. absorbers depleted. (We assume that the dis-
sociated particles are transparent to the incoming radiation.) 
It turns out that this situation is closely approximated by 
a supersonic (weak R-type) radiation front. 

After a sufficient length of time , we expect the 
radiation front which forms and propagates down the tube 
with velocity vf to approach a steady state. Let us con-
sider such a steady front for the case where the radiation 
Fq consists of photons of one frequency and also for the 
case of black body radiation F( ̂  ) with absorption cross 
sections o<r( y ). 

3.1.1 Casej3i one fr e que nc an d one absorpt ion 
cross section,, . — The diagrams in Fig. 3.1 illustrate 
the radiation front as a discontinuity on one side of which 
there are only absorbers and no photons and on the other 
side of which there are photons but no absorbers. In the 

3 
lab frame of reference Fc/c ™ c/V0 photons/cm travelling 
with the speed of light, c, enter a stationary gas of NQ 

absorbers/cm3. The velocity ox the front is v,, „ Vle may 
make a Lorentz transformation into the frame of reference 
in v/hich the front is stationary. Following Schwarz (1964)t 
p 392,and considering the photons as a flux of relativistic 
particles, we find the flux of atoms entering from the right 
is - tfvF N 0 (absorbers/cm2sec) , while the flux of photons 
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M B SYSTEM 
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~x 
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0 ( <2/0 
absorbers 
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-X' 
V - C vj=0 

Fig, 3<>1 Radiation front travelling in tx direction 
with velocity v F. \ 

entering the front from the left is F^ y(l - v^/c)WQ 

(photons/cm2sec ) , where X s (X » v^2/c2) * . 

Equating the photon flux to the particle flux, we 

obtain 

? 

which may be solved, for vF to give 

We note that for very high intensities such that I ^ / N ^ c , 

the f r o n t velocity approaches the speed of light as we 

expect (vp~>c). For low intensities such that F0/Nq c, 

we obtain the expected non relativistic relation, vF = ^ 



Since the photoabsorption cross section is not 
infinite, the radiation front will have a finite thickness. 
The intensity F(x) of the radiation at any point within 
the front will vary from 'F at the extreme•left to zero 
at the extreme right. Similarily, the absorber density 

X ) varies from N at the extreme right to zero at the 
extreme left. We define the position of the front to be 
the point where = £ = U(x)/N . By" equating the. 
number of absorbers depleted in an interval of length A^ 
to the number of photons absorbed, in the interval, we 
obtain* 

Substituting for from eq'n (3.2), eq'n (3.3) becomes 

—-TJ- = -n 51 a. -n't / . o - 4 

The usual exponential decay equation in the lab 

frame of reference, F(x;t) = exp (~of|jx) , should be 

generalised in our case to be 
I 3.5 

PCX,*). = 'Ac exF , /-irp/<r 

since the number of absorbers I is a function of position, 
X, and time, t. Also, the source is moving away from the 
front with velocity - so, in general, we must include 
the first order correctionf F' - (1 -w/c )F. Thus instead 
of the usual differential equation for exponential decay 

* Since we are not particularly interested in the relativ-
istic regime v/e now and in the following equations assume 
r= i. 



£F(X)/£X«= -C<N F(7f), we must write 

3 /Yx,t£) 
3>T- = At(y>£) Ffx,*) , 3.6 

which by virtue of eq'ns (3.2) and (3.4) becomes 

S f - A - - - ^ . 3.7 
This differential equation is readily solved by separation 
of variables using the transformation u = (F/F0) and then 
y = u - ! • f ^ = ^M, {/-f- fc/K 

i-?/-?*) - ( / />/«£-//„ ) x4 

or, retransforming 

/ 

3.8 
where the proportionality constant yQ(t) can still be a 

function of time. 

So far, we have ignored the time variable. Since 

this steady wave must necessarily satisfy the wave equation 

Q x' 
the function yQ(t) may be evaluated. 

A solution which satisfies the wave equation and the boundary 

conditions 
d 

is 

FK.-t) 
F0 ' 

f(Xj-t) 

/ fof X - , zfr ~ > 

L t for • K = o > 

° > for- X—^ 

/ _ 
3.10 

From eq'ns (3.4) and (3.10) we obtain the particle density 
/ — 



These two equations will hereafter be referred to as. 
the " radiation front equations!' Eq'ns (3.10) and(3.11) are 
derived for an ideal case but they correspond closely to a 
weak R-type front which has little particle motion and no 
recombination. 

(i) Thickness of an ideal radiation front. — We 
define the thickness of radiation front, <Tx as the distance 
between the points where F/F0 is O.S and 0.1. Using these 
values in eq'n (3.10). we obtain 

We note that for high intensities and low particle densities, 
such that F 0/N 0»c, the width of the front is inversely 
proportional to the intensity FQ. In this case, the front 
travels with the speed of light. Conversely for low inten-
sities and high particle densities such that F 0/N 0«c, the 
width of the front is inversely proportional to the particle 
density N0. The front speed is given by the ratio F0/N0. 

These dependencies are illustrated in Fig. 3.2 in 
whibh F/F0 and N/No of eq'ns (3.10) and (3.11) are plotted 
versus «<N0* for F0/cN0=o, 1 and 10, and for t = o. 

(ii) Typical values. — Radiation fronts occur 

under extremely varied conditions. The high intensity, 

low density extreme is illustrated by ionization fronts 

associated with H II regions in interstellar space. In this O 
case, a star radiates photons at wavelengths below 912 A 

into a cloud of hydrogen atoms. Typical values are 
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Nq = 10 cm , F q= 1020cm 2 sec"^ and photoionization cross 
section for hydrogen at 912 A, <*„=. 6.3 X 10~18 cm2. This 
ionization front, if it satisfies the assumptions made in 
this section, would travel with the speed of light and have 
a width of 2 X 108 cm. 

Our own experiment described later in this thesis, 
in whach photons in the 1400 A wavelength region dissociate 
oxygen molecules is an example of the low intensity, high 

1 q density extreme. Here, typical values are N = 10 cm , 

F 0 = 10 2 2 cm 2 sec~^ and the photodissociation cross sec-
—1 ° 2 

tion o(Q2 - 15 X 10 cm . Thus (neglecting recombination, 
etc.} the dissociation front should travel at 10^ m/sec and 
have a width of 0.03 cm. 

3.1.2 Case of black body radiation F(^) and con-
tinuous absorj>tion_ cross section <*(?'), — Most radiation 
sources which are available in the laboratory or which occur 
in nature have a continuous spectrum over a wide range of 
frequencies. Furthermore, the absorption cross section cxr(̂ ) 
of the absorbing gas varies widely over the frequency spec-
trum. Eq'n (3.12) indicates that the width of the radiation 
front is inversely proportional to the absorption cross sec-
tion. For example, if at the maximum absorption cross section 

o ^ at some frequency ̂  the the thickness of the radiation 
front is 1 cm, then at some frequency where is 0.01 o^ tho 
thickness will be 100 cm. Thus, it is often necessary to 
ignore the absorption cross section outside a chosen frequency 
region. A good rule of thumb is to consider only photons 



•with absorption cross sections in the range ^ «:(-//)<o. 2><ro. 
The differential equations may be set up in a manner 

similar to the preceding subsection. We pick two frequencies 
and /*2 between which the absorption cross section is 

finite and outside of which it is negligible. (We assume 
the gas is transparent to photons with frequencies outside 
this region. In general, this is not the case and it is 
necessary to consider several such frequency intervals). 
The total number of photons contributing to the front is 

K 
pr^) J f 3.13 

The velocity of the front is again given by eq'n (3.2). The 
equation corresponding to eq'n (3.3) is 

[> - ^ ( C ^ x ) J r .̂ 14 
such that again 

— — ^ ; 3.15 

where v;e emphasize that this equation is valid across a 
steady radiation front propagating at a velocity vF, 

Corresponding to eq'n (3.5) and (3.6) we may write 
in the frame of reference of a semi-infinite tube with a 
transparent window at x = o, 

r 

and 

Integrating over the frequency and. using the identity 

.16 
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(1- vp/c) 1 = (l+F0/cN0) from eq'n (3.2) v/e obtain 
-Vl 

[h fW*,*) jr) = -{<+ tH/) N M . 3.18 

The following procedure proves convenient in obtain-
ing a solution of these equations. The procedure consists of 
transforming the x co-ordinate in which N(x) varies to a ^ 
co-ordinate in which N (z) is a constant (we set N(») <= N0) . 
The problem then corresponds to black body radiation into 
a non-depleting cloud of absorbers in which the intensity 
at each frequency^decays exponentially with a decay length 
which depends on 

In this terminology eq'n (3.16) may be rewritten 

as 

where 7£ 
ZfX,*) •== No + f ^/rrJ*] 3.20 

and where is the maximum absorption cross section in the 
range ̂  t o ^ - Also, we have written o, t) — o ) 
since the incident radiation is constant in time. We now 
integrate eq'n (3.20) over the frequency range and normalize 
to obtain ^ ^ ^ 

** 3.21 

This equation must be solved (numerically, if necessary)to det-
ermine F(Z') as a function of ̂  for any functions F(/%o) an 

We now invert eq'n (3.20) to solve for X 
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•Now from eq'n (3.15) we may write 

Hil) _ . _ _ ft*) 
" t i * £ o o. zo 

where we have used the fact that the number of photons pas-
sing a point in the x co-ordinate system is the same as that 
passing the same point in the ̂ co-ordinate system. Eq'n (3.22) 
has been derived in a frame of reference where 2 = o when 
x = o. For numercial solutions, it is more convenient to 
shift to the frame of reference of the radiation front with 
boundary condition x= o when x = -<~and x = o where F(55-)/F0 = o. 5. 
Substituting eq'n (3.23) in eq'n (3.22) we obtain for positive x 

Xf- - (I + ib<„ 

and fox' negative x 

A / -* /j ) 3.24 

d z' 
1 J - 3.24 

where we have broken the integration up into two parts 
for' convenience in carrying out numerical caculations. ^0.5 
indicates the value of where F(2-)/F = 0.5. Care must be 
taken that the limit of integration.in eq'n (3.24') app-
roaches but never reaches £—>0. 

We now have F(2-)/FQ as a function of from eq'n 
(3.21) and x as a function of from eq'ns (3.24). We may 
thus plot F(x)/F0 as a function of x to obtain the overall 
structure of the radiation front. The individual frequencies 
FC^x)/F0 may also be plotted since we know that they decay 
exponentially in the ̂ -co-ordinate system. 



Fig.3.3 Idealized radiation front in oxygen for black body radiation.F(^) 



An example is plotted in Fig. 3.3 to demonstrate 
the technique. It shows a dissociation front in oxygen 
produced by black body radiation from a source at a temp-
erature of 6 X 1Q4 °K. The photo dissociation cross sec-
tions in the Schumann - Runge region from 1280 A to 1800 A 
were taken from Metzger and Cook (1964), see Fig.B.3, 

Appendix B. The program to carry out the numerical cal-
-1 

culation of F(xj/F0 and the integration of (1-F(2-)/F0) 
to obtain z-(x) appears in Appendix A. 

We note in Fig. 3.3 that photons with low absorption 
cross sections penetrate substantially further than photons 
with high values of absorption cross section. 

In concluding this section on idealized radiation 
fronts, we should like to point out that although we have 
assumed that there is no particle motion, if Langrangian 
co-ordinates are adopted, the results obtained here are va-
lid regardless of the flow of the gas. Of course, it is 
still necessary to transform back to Eu/erian co-ordinates. 
Secondly, the radiation front equations (3.10 and (3.11) 
which are derived for planar symmetry can easily be adapted 
to consider spherical symmetry such as expanding H II 
regions in interstellar space. 
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3• 2 of restrictions on particle motion and 
recombination 

The assumptions in the last section that all particle 
are stationary and that recombination and collisional ion-
ization or dissociation are negligible permitted us to ob-
tain the radiation equations (3.10) and (3.11). We now 
wish to relax these assumptions and, in particular, redefine 
the front velocity vF and the coefficient $ . 

3.2.1 The coefficient.5 . — In the last section, 
we used the relation (1 - ^L )FQ = vA N0 to equate the number 
of photons entering the front from the left to the number 
of absorbers entering the front from the right. There, we 
insisted, that one photon dissociate or ionize only one 
absorber. However, if we allow collisions to occur such 
that the energetic, dissociated or ionized particles either 
dissociate or ionize other absorbers or recombine to become 
absorbers again, then on the average, we could have one 
photon dissociate or ionize either more than one absorber 
or less than one absorber. We now define—the coefficient, 
S , to be the number of photons required to dissociate or 

ionize one absorber (o<j' Thus instead of eq'n (3.1) 

we write 
(j -<t*/*)F0 = j X 3.25 

or 
ac = — — - — — ~ F / + ^ / c $Wo 3 .25' 



We emphasize that vr is the rate at which the front is 
receding from the source. The photon flux density is de-
fined by eq'n (3.13). 

3.2.2 The energy imput, v-| . — The last 
term W//^ v-̂  in eq'n (2.3) is the net energy imput per unit 
mass inside the front. If we neglect radiation losses, we 
may write 

0 - ^ / c ) - f j 1 ^ 3 . 2 6 

whei'e F < T h = /, h//F(^)d^/ is the energy flux and 
O / ' I 

(1 -fp/c) is the usual relativistic correction. If the par-
ticles ahead of the front are stationary with resjject to 
the source then v = . The density may be written as 

-/f M <w0 -t . --••/; 3.27 
where the subscript 0 refers to the absorbers (of density 
N ) and the index j refers to the dissociated or ionized 
particles and to any impurity particles which may be pre-
sent in the absorbing gas but which are not affected by the 
incoming radiation. 

xij is the particle density of j t h particles and m 

refers to the mass. Thus we may write 

"^f^T ~ " - w . + )Ar/= > 3.28 

which with the help of eq'n(3.25') becomes 

-wlc, I M, / f 3.29 

v/here we have written V]_ - vF. 
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We note that if there are no impurities in the 
absorbing gas and if there are no dissociated or ionized 

particles ahead of the front then the term m- in 
''J.J 

eq'n (3.29) is zero and we may write 

3.29' 
We have used this equation previously in section 2.5 where 
we shov/ed how the temperature behind the radiation front 
can be estimated. The coefficient f and eq'n (3.29) are 
especially useful when considering R-critical, or weak R-type 
radiation fronts. 
3.3 Weak R-type front 

A weak R-type radiation front moves supersonically 
relative to the gas ahead and behind it. The hot gas is com-
pressed with a compression ratio between 1 and 2 
(1 /4//1 < 2). The asymptotic solution (v^—>c) of this 
type of front corresponds to the idealized front described 
earlier in section 3.1. When the front velocity is compar-
able with the speed of light one finds -f = 1, an 
approximate value for T 4 may be obtained from eq'n (2.18) 
or (2.18' ) with vj_ = v4 (assuming 5 - 1, for (b^-J- > kTrnin . 
otherwise for <{h i /)>-'X ^ kTmin> T4 Tmin^ a n d t h e Pressure 
P 4 may be obtained from eq'n (2.14). 

In the non relativistic region (where v? = F 0 / S N Q ) 
we may make various approximations to simplify eq'n (2.5). 

Et For all weak R-type fronts the terms ^ P3.//1 and ~~ 
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may be neglected with respect to the term '-̂ -Vj2. This 
corresponds to the standard notation of gas dynamics M ^ » 1, 
where M^ is the Mach number. For front velocities at least 
10 times larger than the speed of sound in the gas behind the 
front (i.e. FD/J Nq > 10a4) we can make the further approx-
imation s W/K - « 1. We may now expand the square root 
of eq'n (2.5) (taking the negative root to correspond to the 
weak R-type solution) to obtain 

•A- ̂  / * -tr^i) ̂  * £ • - • 

« frg) i M • • • 
3.30 

where K = * ~f \ V1 • 
Substituting for W/ "?f vj from eq'n (3.29') we obtain 

A ~ , ̂  fklz'll^f! h fe^lfe*-') • 
vf [_ Mors J  z '[ 3.30' 

where v/e have let = NQM and =» as defined in eq'n (3.25 

For the non relativistic case (vA = F0/5N0) we obtain to 

first order 

which illustrates the relationship between the compression 
ratio and F0, N0 and % . 

The particle velocity behind the front (v = vi~v4) 
is related to the density through the relation v p y(/^//^-l 
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Thus from eq'n (3.30*) we obtain 
2 
/ 

3.31 
and for the non relativistic case to first order we obtain 

_ . iV. 
3.31' 

Note that the particle velocity behind the front is inver-
sely proportional to the velocity of the radiation front, 
Vfz . The coefficient J and the function g4 depend upon 
the assumed temperature of the gas behind the front. 

Finally, the pressure ratio for the non relativistic 
case may be written from eq'ns (2.2) and (3.31') as 

— / ^ fezOJ^* 

^ ' 3.32 

where we have used the eq'n of state p̂ ^ = N 0 kTi and = 

nQ M. This ratio should check with the value obtained from 

the equations of state. 
Obtaining numerical solutions from the above equa-

tions is straight forward. With the assumed temperature T 4 

(e.g. we choose T 4 = Tfflax) we approximate the enthalpy by 
h 4 ^ (5kT4 + X ) /M and the internal energy by f 4 ^ (3kT4 +ZJ/M 
where X is the ionization or dissociation energy. The effe-
ctive adiabatic exponent is then g4 = h 4/£ With this 
value of g 4 and f = 1 (if T 4 = T m a x) approximate values of 
/>4 and are obtained from eq'ns (3.30") and (3.32). It 
is then possible to obtain g 4 accurately either by calcula-
tion or from curves of g (p;T) vs T. Accurate values of all-
quantities may then be obtained either from the asymptotic 
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r 
v.=1 .1 TxlOf-cm/sec 
v =.456x10 cm/sec 

X(10 cm) 
F_=2.69x1025ph/cm2sec F -2.69x10 ph/cm sec 

.Fig. 5-,4 Weak R-type radiation front 



formulae above or directly from eq'n (2.5} and the con-
servation eq'ns (2.1) to (2.3J. 

An example of a weak R-type radiation front is 

shown in Fig. 3.4. For this and other examples (Figs 3.4 

to 3.8 inclusive) we use oxygen at a pressure of 0.01 
1 HI Q 

atm (N0 = 2.69 X 10 particles/cm )and a temperature of 

Tj = 300 °K. We work out the examples for two final tem-

peratures T m i n ~ 6000 °K and T m a x » 8900 °K. For Train we 

use h 4 = 2.31 X 1011 ergs/gui, g4 « 1.146 and a 4 = 1.835 X 

10 5 cm/sec. For T m a x > h4 -=5: 2.78 X 1011 ergs/gm, 

g 4 = 1.228 and a 4 = 2.517 X 105 cm/sec. The dissociating 

photons have an average energy of 8.8 e K and a value of 

5.08 e V is used as the dissociation energy of oxygen. The 

upper diagram in these examples is a plot of time,t versus 

position X showing the velocity of propagation of the var-

ious steady discontinuities in the flow. The lower three 

diagrams are plots of the pressure, density and temperature 

as a function of x at a constant time, t = 1 sec. 

In Fig. 3.4 we assume a value of F 0/N 0 = 10s cm/sec. 

At T m a x we find vx = 1.17 X 106 cm/sec ( 5 FQ/vA N 0 - 0.855) 

and at T m i n, vx = 1.33X106 cm/sec ( $ = 0.752). Notice that 

although the pressure and temperature rise sharply behind 

the front, the density is almost constant. 

3.4 R-critical front 

If the velocity of a supersonic radiation front is 

reduced, either by reducing F Q or by increasing N q, one will 
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reach the point where the velocity relative to the hot gas 
behind the front is exactly sonic, but the velocity rela-
tive to the undisturbed gas ahead of the front is still super-
sonic. This is an R-critical front. It corresponds to the 
Chapman - Jouguet point and can be considered the high den-
sity limit of weak R-type radiation fronts. The compression 
ratio is always slightly below 2-. The structure of the 
front is quite complicated - a shock starts to develop in 
the radiation front and the head of the rarefaction wave which 
follows is merged with the front. 

Approximate analytical relations are readily obtained 
1/2 

for this case. The condition v4 = (g4 f -f ̂) s= a4 

(a4 is the speed of sound in the gas behind the front) re-
sults in the quantity under the square root in eq'n (2.5) 
being identically zero. Thus after some algebra we obtain 
the compression ratio 

= ^ - ^ 1 1 3.33 
2 

where we note that px/ -fxvl ^ 1 f o r a n R-critical front 

(M 1
2 » 1). The particle velocity behind the front is given 

bv ft 
• Vr ^ ^ _ f ^ 1 

2 which to first order in p ^ may be written as 



3 
3.36 

The pressure behind the front as given by eq'n (2.2) is 

ft. = Fft^Kust 7 

3*35 
where we have substituted from eq'ns (3.33) and (3.34) and 
retained only first order terms in Pj/V-jV-^2. 

The condition that the square root in eq'n (2.5) is 
zero gives us an extra relation between v-̂ , -Z7̂  and W. 
Neglecting terms of p ^ / / ^ we obtain 

• ^ (z^-')^,) 

or, solving for and substituting for v^ from eq'n (3.33), 

r " * ~ • 3.37 
Finally, we obtain a relation for the coefficient $ 

from eq'ns (2.3) and (3.29') 

- /1+- I tr, ) - A, } 

from which with the help of eq'ns (2.12) and (3.33) we 
obtain 

S » ^ ' ^ - 3 .38 

The R-critical case is a point solution separating 
the M-critical fronts and weak R-type fronts. For a given 
set of conditions eq'n (3.37) is useful in predicting the 
type of front which one can expect to occur. For this pur-
pose, one must approximate the value of a 4 by the relation 
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where we emphasize that m is the average value of the mass 

of the particles behind the front, m == s-n-i m./^nj. A value f J j J J 
of g4 is obtained as outlined previously for the weak R-type 
case. 

A complete numerical solution for the R-critical case 
is straightforward once an accurate value of g4 is obtained. 
We treat the rarefaction wave following the front as an isen-
tropic expansion in a manner outlined in section 2.3. For a 
f i r s t approximation we assume g5• « g4. (Quantities behind the 
tail of the rarefaction carry the subscript 5). Once the 
temperature T &, pressure p5, density -f5 and enthalpy h 5 are 
approximately known, a more accurate value of g 5 may be ob-
tained and the final properties of the gas calculated more 
accurately. 

An example of an R-critical radiation front calcul-
ated for the same conditions as used in the weak R-type case 
(see Fig (3.4)) is shown in Fig. (3.5). We find that for T m a x, 
we require F 0 = 9.50 X 1022 photons/cm 2 sec and the front-
travels at a velocity vx = 4.55 X 105 cm/sec ( S -0.777). 
For T • F = 6.25 X 1022 photons/cm2sec and Vj = 3.41 X 105 
• A ^mm' o 
cm/sec ( 5 = 0.680). Notice that the pressure ratio is large 

whereas the compression ratio is still quite small. The rare-

faction wave is dominant. 

3 • 5 Weak D"typ_e__fi'_Qnt preceded by_a_shoc^va^ 

Weak D-type fronts lie on the opposite extreme on 

the density scale from weak R-type fronts, they occur for 



53 

high densities'and relatively low radiation intensities. 
This subsonic radiation front has many similarities with 
combustion zones. It moves subsoncially with respect to 
the gas ahead and behind it. As explained previously, a 
shock discontinuity propagates .ahead of the front compressing 
the gas, the slower moving radiation front heats and expands 
this compressed gas. A rarefaction wave would travel at 
sonic speed and overtake the radiation front and, therefore, 
does not exist. We now have two discontinuities to consider-
the shock wave with no energy imput, and the weak D-type front 
with energy input. 

3.5.1 General equations. — The conservation equa-

tions across the shock corresponding to eq'n (2.5) with 

W = o give ^ ___ — -Tn 

r - r - ' l i W y c * J 
3.40 

where we have chosen the positive root. We note in passing 
2 2 that for strong shocks such that v-j_ » p \ / f \ (or Mj_ ^ 1) 

we obtain the well known approximate relation 
-A ~ 3.40' 

If we assume a velocity for the shock front vx we 
may solve for all the parameters behind the front as out-
lined in Gaydon and Hurle (1963), Chapter 3 or Ahlborn and 
Salvat (1967). (Preferably we use plots of ^ , ̂  and-in-
versus Mach number as given in Gaydon and Hurle , page 52). 
At any rate the solution is straightforward and we shall 



not comment on this point any further. 
The conservation equations across the weak D-type 

front corresponding to eq'n (2.5) give 

is. 1// 
1 ^ / / // ( 

^3.41 

where we have again chosen the positive square root. (The 
negative root corresponds to a strong D-type front — an 
expansion shock with energy input, which does not occur in 
our case.) 

Since the partic3.es are stationary ahead of the 

shock front and behind the radiation front we have the fol-

lowing relationship for the particle velocity between the 

shock and radiation fronts: 

o .42 

where the velocities are defined as in Fig. 2.2; the sub-
scripts s and. p refer to shock and front respectively. 

The final pressure, obtained from a momentum equa-

tion corresponding to eq'n (2.2), is 
3.43 

where the particle velocity v is defined in eq'n (3.42). 
For future reference we note that the final pressure p4 

must fall in the limits £P 2 <^^4 ^ p2' 

The equations in this weak D-type case do not 
lend themselves to approximate solutions as easily as in 
the weak R-type and R-critical cases. We, therefore, fol-
low a numerical method of attack. As usual, we assume the 
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final temperature T4. We then assume a reasonable shock 
velocity v^, calculate the thermodynamic quantities behind 
the shock front, calculate the velocity of and thermodyna-
mic properties behind the radiation front and finally, cal-
culate the radiation intensity required to produce the vel-
ocity. An iterative procedure is required to obtain exact 
solutions. 

For potential users of this technique, we will out-
line the iteration procedure in more detail in the next sec-
tion. Readers who are not particularly interested in details 
may omit this subsection and proceed to Fig. 3.6 at the end 
of the section. 

3.5.2 Iterative procedure for calculations.— The 
prbcedure is as follows: We choose a shock velocity, v-j,, 

and calculate p2, f2, T 2, h2, g2, and the velocities v 2 and 
Vp. (For oxygen we use curves of p2//?1, T2/"rl v e r s u s 

Mach number given by Gaydon and Hur.le/page 52). We will see 
below that the final pressure p4 must fall between £ P 2 < P4_<P2 
and can thus calculate a value of h 4 within 5% (using assumed 
T4) and. g4 quite accurately. 

The term beneath the square root sign in eq'n (3.41) 
must have a numerical value between o and 1. By assuming 
that it is zero we obtain a maximum value of 

2 / ^ V ^ )Z ^ _I±. • 3.44 
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where we have used the energy equation 

—r -f- h 4. — JL- J- In s- —— 

and eq'n (2.12) for the enthalpy. Since v4 = v p + v3 

we may solve eq'n (3.44) by iterating to obtain an upper 
limit for V3. 

With the square root equal to zero the rest of eq'n 
(3.41) gives a minimum value for 

... / s v 

* i ̂  W ' 3.45 
which we solve using the value of v3 obtained from eq'n (3.44). 
We then obtain a minimum value for V3 

^ = 7 T T ^ Z ^ ) . 

The numerical values of v 3 m and v 3 m i n usually agree within 
a factor two. We substitute the mean of these two values 
into eq'n (3.41) to obtain a first approximation for 
and then utilize eq'n (3.46^to obtain a better value of v . 
We repeat this iterative procedure until we obtain a self~ 
consistant value of v3 and -f^. (The solutions of v^ tend to 
oscillate about the final value and it is thus best to aver-
age the initial value of v3 v/ith the result of the iteration 
as a starting point for the next iteration. Two or three 
iterations are usually sufficient to obtain an accurate value 
of v3.) We then calculate v4 and P 4 from eq'ns (3.42)and 
(3.43). 
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With a relatively accurate value of P4 we can obtain 
accurate values of h^ and g^. Similarily, one can calculate 
accurate values of V3, v^, f A and P^. 

Finally v/e use eq'n (2.4) and the energy equation 
corresponding to eq'n (2.3) to obtain the radiation intensity 
required to produce the observed front: 

where we assume V3/C 1. 
If one wants to calculate v^ and other quantities 

for an experimentally given - f a n d F0, one must vary the 
assumed (eventually by interpolation) until the value of 
F 0 calculated from eq'n (3.47) agrees with the experimentally 
given flux density. 

An example of a weak D-type radiation front (for 
our standard conditions as in Fig. 3.4) preceded by a 
Mach 3 shock front is shown in Fig. 3.6. For T m a x, the 
photon flux, F Q = 4.72 X 1021 photons/cm2sec, enters the 
shocked gas with a velocity v3 = 0.4.17 X 104 cm/sec 
< S = Fo A / v 3 ^2 No - 0.719). For T m i n, F 0 = 4.62 X 1021 

photons/cm2sec and v3 = 0.491 X 104 cm/sec (f =• 0.549). 
We notice that in this case the pressure ratio is not as 
large as in the other cases. However, if we study the den-
sity distribution for this weak D-type (subsonic) front, 
it is seen that these radiation fronts act like "leaky" 
pistons, pushing the shocked gas away from the radiation 
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5 - 1 
x( 1 Cr c m ) — x(l05cm) 

]?o=4.62x1021ph/cm2sec 1^=4..72x1021ph/cm sec 

Fig.3.6 V/eak D-type. radiation front preceded by a shock 
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source into the undisturbed gas. Behind the radiation 
front the density of the gas (which is completely at rest) 
is substantially lower than the initial density N0. This 
behavior is markedly different from the weak R-type (super-
sonic) radiation fronts. 

3.6 D-critical front preceded by a shock 

We will now discuss the low density limit of sub-
sonic (weak D-type) radiation fronts. This limiting solution 
is called the D-critical front. The appearance of a D-cri-
tical radiation front is exactly the same as for a weak D-
type frontJ the only difference is that the front travels 
at sonic speed with respect to the gas behind it. At 
slightly higher velocities a rarefaction wave begins to 
form. The D-critical case represents a singular solution 
which separates weak D-type fronts from M-critical fronts. 

As for the weak D-type fronts we must consider two 
discontinuities. Approximate analytical relations are again 
more difficult to obtain than in the R-critical case. As 
before, the condition v4 = a4 results in the quantity under 
the square root in eq'n (3.41) being identically zero. 
Corresponding to eq'n (3.33) the compression ratio is 

_ -4 _ %i±l L 
^ ~ " > {' + >• 3.48 

where we note that contrary to the R-critical front the 

term P2//2 v3 2 ̂  1 (°r M3
2-£<1) for a D-critical front. 

Eq'n (3.48) may be rearranged and solved for vo 
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^r - - I 1 — , T,u 

2 where we have used the definition a^ « ggP^/'r,. The term 

in the square brackets is approximately equal to unity, 

The condition that the square root in eq'n (3.41) 

is zero gives us an extra relation involving the energy 

flux W. We solve this equation for v g to obtain 

•v* - sv -irJr ' -syp/ 3 5 0 

where again a^ is the speed of sound ahead of the front 

and the terms in the square brackets may be considered to 

be correction factors which are set equal to unity in a first 

approximation. We now equate.eq'ns (3.49) and (3.50) and 

solve for the pressure p 2 to obtain 

t e* - 'ggv'.l't&fr - W . 
3.51 

We note that except for the small correction factors the 

pressure ahead of the front depends only on the energy flux 

W. 

The relationships for the particle velocity be-

tween the shock and the radiation front and for the pres-

sure drop across the radiation front are the same as for 

the weak D-type case (see eq'ns (3.42) and (3.43)). From 

these equations and eq'n (3.48) we may obtain the pressure 

ratio 

3.52 



If typical numerical values are inserted we find P 4 ^ g- P 2 -

From this equation and equation (3.51) we obtain the pressure 

behind the radiation front 

+ [_ - ^ / J ~ 3 . 5 3 

With a lengthy calculation we can obtain the shock 

front velocity associated with a D-critical front. For this 

purpose we use the relation v p = a 4 - v 3 to rewrite eq'n 

(3.49) as 

^ = ^ _ f/ H+ 

3.54 

We must now write Vp and a 2 in terms of the velocity v^. 

For this purpose v/e assume that the effective adiabatic 

exponents ahead and behind the shock are identical, g a - g^, 

and use the ordinary shock equations for an ideal gas. The 

particle velocity behind the shock is 

v p - ( * / * * • ! ) - / ^ J / vlf 

v/here M-̂  3 v^/a^ is the Mach number of the shock. For strong 

shocks the term in brackets approaches unity. We may write 

a 2
2 = a x 2 (TaAj.) , 

where • • o 

Substituting these equations into eq'n (3.54) we obtain a 

quadratic equation,the solution of which is 

\ O t 0 0 
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with the correction terms 

J f c j ^ r i ^ / y ^ J 3.56 

/ 

h q = 

In calculating numerical values of v-^ oC), one first 

obtains an approximate value by neglecting the correction 

terms and then an accurate value by repeating the calculation 

with the correction terms included. 

The critical density may be calculated by using the 

pressure ratio 

where again we assume, g 2 = g±. From the definition 

a 1
2 - g x

 w e obtain 

f<t*+i\ %rJL-
Jfps) =Y-T). ft'tixr) > 3 / 5 8 

where the initial pressure P 2 ( ^ ) and. velocity v x (PC) are 

defined in eq'ns (3.51) and (3.55) respectively. We note 

that in the first approximation depends linearly 

upon the photon flux F c. Since the D-critical case is a 

singular solution separating the weak D-type and M-critical 

cases eq'n (3.58) is useful in predicting which front shall 

occur for a given set of conditions. 
A numerical solution for a specific set of condi-I 

tions may be obtained from the above equations. However, 

for exact solutions it is preferable to apply the basic 
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equations across the shock and radiation front such as 
eq'ns (3.40) and (3.41). The procedure is similar to that 
used for calculating weak D-type fronts. 

Fig. 3.7 shows an example of a D-critical radiation 
front (for our standard conditions as in Fig. 3.4). In 
this case for T m a x, a Mach 8.10 shock (vx = 2.67 X 105 

cm/sec) precedes the radiation front. The radiation flux, 
22 2 

F Q = 3.96 X 10 photons/cm sec enters the shocked gas with 
a velocity, v3 = 0.183 X 105 cm/sec ( F Q /?

1/v3 / 2 NQ = 
1.02). For T m i n ;a Mach 6.02 shock (vi =1.98 X 105 cm/sec) 
precedes the front. F Q ^ 2.32 X 1022 photons/cm2sec and 
v ^ 0.162 X 105 cm/sec ( 0.893). We notice that the «J 
appearance of the flow is very similar to the weak D-tyBe 
case| however, the shocked region is narrower and the pres-
sure and compression i-atio are higher. A D-critics,! front 

"sweeps up" less gas than a weak D-type radiation front. 

3.7 M-critical front preceded by a shock 

We have studied radiation fronts at low and high 
densities and have given limiting densities for these super 
and subsonic radiation fronts„ If one calculates numerical 
examples with given F Q, NQ and Ta it is found that the high 
density limit /j of the supersonic radiation fronts 

is still considerably below the low density limit /]_ (0C) 
of the subsonic radiation fronts (see Fig 1.1). The region 



between (*<r) and ^ (^r) corresponds to the M~type 
conditions of Kahn. Thus radiation fronts which occur in 
this region are called M-critical reminding us that these 
fronts exist over an extended range of densities which lie 
in the Middle between the Rarified and Dense conditions. 

A radiation front which travels slightly faster 
than a D-critical front, >aA! must have a rarefaction 
wave following it. On the other extreme when the front 
velocity is slightly less than the R-critical velocity, a 
shock must propagate ahead of the radiation front and a 
rarefaction wave follow it. We thus see that an R-critical 
front can also be described as a D-critical front slightly 
preceded by (or merged with) a shock but with both travel-
ling at the same velocity. This can be confirmed by num-
erical calculations. We assume that in the M-critical 

region a radiation front propagates at sonic velicity rel™ 
7 /? 

ative to the gas behind it such that v̂ . - a^ (g/.p̂ / f^Y 
and such that the term under the square root in eq'n (3.41) 
is identically zero. 

The velocity relationships are now slightly more 
complicated. Corresponding to eq'n (3.42) we now have 

where v^, is the velocity of the particles leaving the 
radiation front measured in the lab system. From the equa 
tion of conservation of mass, vg ** a n d from eq'n 

59) we obtain 

3.59 
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= . irp- flk _/J 3o60 

Corresponding to eq'n (3.43) the pressure behind 
the front is 

. 3.01 
We note that for all M-critical fronts P 4 - (l/2)p2 to about 
5% accuracy. 

To obtain a numerical solution we follow roughly the 

same procedure as outlined in section 3.5.2 for weak D-type 

fronts. Assuming a reasonable shock velocity v^ we calculate 

all the thermodynamic quantities behind the shock. Since 

P4 ~ fl/2j P 2 we can calculate h^ and g4 quite accurately 

(using an assumed value of T^)„ A value of Vg is obtained 

by iteration from eq'n (3 „ 44) using a value of a 4 obtained 

from eq'n (3.39). The compression ratio, - f t is 

obtained from eq'n (3.48), and the particle velocity behind 

the front, v p A f is obtained from eq'n (3.60). Finally an 

accurate value of p 4 is obtained from eq'n (3.61) and an 

accurate value of a^ from the definition, a^J ĝ p̂ //̂ .-. 

If there is insufficient accuracy the whole procedure is 

repeated. 

The radiation intensity associated with the initially 

assumed shock velocity 15 found from eq'n (3.47). The rare-

faction wave is treated in exactly the same manner as des-

cribed in section 3.4 for the R-critical case. . 
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Fig. 3 . 8 illustrates an M-critical shock preceded 

by a Mach 9 shock front. (Again the calculations are for our 

standard conditions as for the weak R-type case in Fig„ 3.4.) 

For T m a x , the photon flux, F q » 4 . 6 3 x 1 0 2 2 ph/cm2secs 

enters the shocked gas with a velocity, v,, = 0.200 x 10 5 

cm/sec ( $ 0 . 9 6 8 ) . For T m i n , F 0 = 4 0 8 7 x 1 0 2 2 ph/cm2sec 

and v 3 0 . 2 7 7 x 1 0 5 cm/sec ( S = 0 . 7 3 5 ) . The pressure and 

compression ratios are still higher than for the D-critical 

case; the appearance, however 9 is similar except for the 

rather weak rarefaction wave which follows the radiation 

front. 
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Jig.3.8 M-critical radiation front preceded "by a shock 
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C H A P T E R 4 

THE STRUCTURE OF STEADY RADIATION FRONTS 

In the last chapter- we treated radiation fronts 

as ideal discontinuities behind which the gas was all 

dissociated,, It was necessary to assume a final tempera-

ture in order to calculate the flow associated with the 

front. The previous results would be unique, if the final 

temperature could be calculated. We feel that it is one 

major contribution of this thesis to realize that this 

temperature can (at least, in principle) be obtained if 

all details of the rates of ionization, dossociation and 

recombination processes within the front are considered s 

and a stepwise integration across the front is carried out. 

It is the aim of.this chapter to outline such a detailed 

calculation. As an example we will discuss a dissociation 

front in oxygen. Again, we consider the radiation front 

as a one-dimensional steady state discontinuity with energy 

input. . 

Unfortunately, it turns out that most of the 

required rate coefficients are not yet known, and also that 

the numerical integration is quite difficult (and was 

actually finally not successful). Therefore, the merits 
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of this chapter lie more in the outline of a procedure 
to obtain T 4 than in the production ox numerical results. 
The cohesion of the thesis is not lost, if the reader 
turns over to section 4.4, He may later return to some 
parts of this chapter in order to study two definitions 
which are used in Chapter 7, namely, the local power input 
and the local degree of dissociation. 

4„1 Conservation equations of massp momentum and energy. 

(Zel'dovich and Raizer (1966)f Chapter VII), we will include 
viscous forces and heat transfer in our discussion of the 
radiation front structure. The conservation equations may 
be written • 

Similar to the treatment of shock front structures 

f (X) Vfx) = 4.1 

PCX) -h ffx) ~ 
e/jrfxl 
J X 

z 4.2 

JTCx) 
c/ X 

•f \ i dirod\ ' 
^ "ITx/ - 7T>. 
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The terms on the right hand side of these equations are con-
stants of integration, expressed in terms of the initial 
values of the flow variables, distinguished by the subscript 
"o". vQ is the front velocity relative to the particles 
ahead of the front. ^c and 7< are coefficients of viscosity 
and thermal conductivity respectively (one usually assumes 
that these coefficients are constant. ) The term is the 
rate of energy input per unit mass such that far behind the 
front 

/_ /A/ ' 

8 ~ ; 4.4 
where W/^v^ is the total energy input per unit mass as 
defined in eq'ns (2.3) and (3.29'}. All the other variables, 
are defined as in eq'ns (2.1) to (2.3). 

We note that these equations are valid at any point 
inside the radiation frontj in fact, far behind the radia-
tion front these equations are identical with eq'ns (2.1) to 
(2.3) since the terms containing viscosity and heat conduction 
vanish. 

4.2 Reactions within a radiation front 
In general, many kinetic reactions occur within a 

radiation front. The photodissociated particles tend to 
recombine either directly by two body or three body recom-
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bination or indirectly through a chain process in which 
"intermediate" stable or metastable compounds are formed. 
Negative a.s v/e 11 as positive ions may occur, atoms and mol-
ecules are found in various stages of electronic, vibrat-
ional and rotational exitation. Collisions between hot 
particles within the front tend to cause further dissocia-
tions . Finally, at sufficiently high temperatures and 
radiation intensities the gas in the radiation front absorbs 
and radiates as a grey body (see Zel'dovich and Raizer, 
Chapter IX), presumably through an inverse bremsstrahlung 
mechanism with the free electrons. 

If the incident radiation has a black body frequency 
distribution one could expect each type of particle to 
absorb in some region of the frequency spectrum. Further-
more, the front may produce its own radiation through free-
free or free-bound two body collisions or radiational de-
excitations. "Trapping"of resonant radiation may occur. 

The various typos of particles in the radiation 
front are generally not in equilibrium with each other such 
that equilibrium relations (e.g. Safia relations) must be 
used with caution,if at all. Thus the concentration of each 
type of particle must, in general, be described by a separate 

conservation equation. 
Let us consider the various mechanisms which occur 

in a diatomic gas. As pointed out by Zel'dovich and Raizer, 
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Chapter VI, studies of relaxation times of the various 
processes behind a shock front indicate the following: 
Complete equilibrium between the translational, rotational 
and electronic degrees of freedom is reached after less than 

~9 
20 collisions per particle (3 X10 sec at atmospheric pres-
sure ) . It takes a much longer time to reach equilibrium 
between the vibrational and translational degrees of freedom„ 
Blackmail (1956) estimates that 2.5X10 7 collisions at 19 o 
300 ° K (9.6/ftiec at a standard density of 2.69 X 10 cm u ) 
and 1.6 X 103 collisions per particle at 3000 °K (0.083^sec 
at a density of 2.69 X 1019cm~3) are required to reach equil-
ibrium in oxygen. On the other hand, equilxbriation between 
the individual vibrational states is extremely rapid (of the 
order of 20 collisions). Mathews (1959) has determined that 
behind, shock fronts the dissociation time is an order of 
magnitude larger than the vibrational relaxation time. The 
collisional dissociation mechanism seems to be due to col-
lisions between a particle in a highly excited vibrational 
state and a particle with high translational energy. Col-
lisions between molecules in the ground state rarely produce 
dissociation. Conversely the three body recombination mech-
anism presumably leaves the molecule in a highly excited 
vibrational state. 

Various types of reactions may occur to produce 

complex molecules in the radiation front. For example, in 

oxygen at low temperatures and low degrees of dissociation 



atoms tend to combine with molecules to form ozone. (If 
ionization were present we would also have to consider 0"'" 

/ A 
and C>2 particles. ) 

4.3 Special case of a dissociation front in oxygen 

To illustrate the concepts let us consider a dis-
sociation front propagating in pure oxygen caused by black 

o 
body radiation above 1280 A (we assume that there is no 
ionization). Y/e choose a sufficiently high particle density 
such that excited oxygen atoms are collisionally de-excited 
and the dominant recombination mechanism is by means of 
three body collisions. According to the mechanisms outlined 
in the previous section, the following reactions are-
dominant : 

/ /& OO 

^ ^ — ^ & 
* & At s M ^ +Af 

O £>x ^ • — + M . 

& + ^ ^ 4.5 

where M, the third body in the collision stands for any of 
0„ (% t O'o , the superscript "*" denotes a molecule in a 

° * 1800 
vibrationals excited state, the notation h ^ 1 2 8 o indicates 

that the 0o molecule has a high photodissociation cross ^ o o 
section in the wavelength regions 1280 A to 1800 A. 
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The set of reactions above is perhaps not completej 
but these reactions clearly illustrate the principle and con-
cepts which we wish to emphasize later. Unfortunately, the 
reaction rate constants for most of the reactions in eq'n (4.5) 
are not known. For calculation purposes we further simplify 
the reaction scheme of eq'ns (4.5) as follows 

that is, we neglect ozone formation and vibrationally excited 
molecules. (A general treatment for the reaction scheme of 
eq'ns (4.5) is given in Appendix C.) 

4.3,1 Conservation equations for absoxMng ;part-
icles. Since we only have two types of particles In the 
reactions eq'ns (4.6), the conservation equations for the 
atoms and molecules differ only by a factor 2, 

«?// guAh ' _ f JHi ^ 
+ ^t / / 4.7 

where u is the flow velocity, N is the particle density and 
the subscripts j and 2 denote 0 and 0 2 particles respectively. 
The conservation equation for the molecules may be written 

^ M h r = _ m f __ - m)* 

+ ( f l , ) 3 ' , 4.8 
where k is the reaction rate constant and the subscripts d 

and /t donote dissociation and recombination respectively. 

The term SfJ in eq'n (4.8) is equal to the number 



of molecules which have been destroyed by absorbing photons 
and is defined by eq'ns (3.18 and (3.16). We assume 

that the photon flux is sufficiently small so that the term 
(1 + F0/cN0) may be neglected.* The solution of eq'n (3.18) 
may be written as • 

„ fix * 
L tj.x&Jr - i ' ̂ e * ' 4j9 

where for a black body radiating at a constant temperature 
the photon flux entering the absorbing gas is 

f [If^^jjf/ ̂ s cnst 6 j 4.10 

where (for future reference) we have separated the time 
variation, G (t)f from the frequency dependure F(^/)d//. 

The mass density of the gas for the case under con-

sideration is 
; 4.11,, 

where M is the mass of the 0 2 molecule. The degree of dis-

sociation y is defined as 

such that we may write 
//,_ - , 4.13 

Using eq'n (4.13) in the left hand side of eq'n(4.8) we 

have . jua/z __ ^ JO-;/) 

M 4 ' 1 2 

) 
-1 

In * Actually the term (1 » vF/c) » (I + F 0 A N Q ) „ :LS„ 
ropriate only if we have a steady radiation iroac 
general, one should omit this term and write tne photon 
flux as F ( x f t/ ) j where t' is the regarded tine, c « 
(t - x/cj„ 



since 3/Vat + oVu)/^x « o. Thus eq'n (4.8) can he 

written in terms of the more usual thermodynamic variables 

,7 

4.14 
where we have differentiated eq'n (4.9) to obtain the first 
term on the right hand side. 

Collisional dissociation and three body recombina-
tion coefficients in oxygen have been measured by various 
workers (Rink et al (1961), Cemac and Vaughan (1961), 
Mathews (1958}}. The reaction rate constants depend only 
on the temperature and are related to each other by the 
principle of detailed balancing 

^ 1 ' 4.15 
where K(T) is the equilibrium constant, which determines 
the equilibrium degree of dissociation y at a given temper-
ature and density; A is a constant. Although eq'n (4.15) 
is strictly valid for an equilibrium situation, presumably 
it is also, at least approximately, valid for non equili-
brium situations (Hurle (1967)}. 

The dissociation coefficient is assumed to be of 
the form 

£ [ exr {-Mf) j •/.*<*< 3.0 • ' 

where E is stfme constant, D is the dissociation energy and 
the exponent n is believed to have a value between one and 
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three. The value ox n is difficult to determine since 
the temperature dependence is swamped by the exponential 
tex'm. 

The oxygen atom is roughly three times as effective 
as a molecule in recombination reactions, thus using the 

• • • . "3 values of Rink et at (1S61 and a value of A - 115 X 10 we 

We must emphasize that these values were obtained from shook 
wave .studies in oxygen near 4000 °K and the exponent (~I) in 
the equations for k^ was used by Rink et al to obtain an 
approximate temperature dependence. It may, in fact, be as 

temperature the values of k̂ . obtained from eq'ns (4.17) may 
be significantly in error. Nevertheless we shall use these 
values for calculations In the thesis. 

/( X; t) % ( X, — T h e energy input for radiation fronts 
or radiation produced shocks is through absorption of photon 
For high radiation intensities and low number densities 
(corresponding to weak R-type conditions) there is little 
part icle motion so a knowledge of the energy input at any 

obtain 

4.17 

large as (-3) and small as (- -t). Consquently, at room 

4,3.2 The rajte of energy input per unit volurae 



point in space and time is not necessary. Nevertheless, 

if recombination of the particles behind the radiation front 

is negligible this energy input may be easily calculated 

in a manner analogous to the methods outlined in section 3.1. 

If recombination is not negligible then the calculation 

is much more complicated and furthermore depends upon whether 

the recombination is due to two body collisions with resul-

ting photon emmission or due to three body collisions with 

no emission. 

Recombination of the particles would tend to broaden 
the radiation front and distort the energy input across the 
front since the photons of high absorption cross section 
would tend to be absorbed by the recorobined particles which 
presumably are formed relatively far behind the leading edge 
of the front. Also, if the particle density is relatively 
low (1016crif3) the dominant recombination mechanism is by 
two body collisions with photon emission. This results in 
substantial "diffusion" of radiant energy in the vicinity 
of the front and it is necessary to employ the theory of 
radiative transfer (Chandrasekhar (I960)) to obtain the net 
energy input at any point in space and time. 

in weak D»type fronts preceded by shocks there is 

substantial motion of the gas and therefore a knowledge of 
the energy input at every point in space and time is of 
dominant importance if one wishes to analyze the develop-
ment of a radiation or shock front or the structure of a 
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steady state radiation front. 
The rate ox energy input for the reaction scheme in 

eq'n (4.6) is obtained directly from the j-^J term as defined 
in eq'ns (4,8) and (4.9) simply by replacing the photon flux 
F with the energy flux E. (See /jppendix C for the general 
case.) . The relation between the energy flux and photon flux 

, / ' sy st 

• ~ U- -tr e . , 4.18 

where we have used eq'n (4.9) and where t) df is de-
fined by eq'n (4.10)., Thus differentiating eqfn (4.18) we 
obtain 

/ 4. Ii/ 

which in the notation used in eq'n (4.14) is 

^ In general, if there is more than one type of absor-
bing particles in the radiation front, an equation similar 
to eq'n (4.19} must be written for each type. This is ill-
ustrated in Appendix C for the reaction scheme shown in 

eq'ns (4.5). 

4.3,3 ra illation of the front .structure. -- For 
given boundary conditions one can, in principle, calculate 
the structure of a steady radiation front from eq'ns (4.1), 
(4.2) and (4.3) where to evaluate the term //(*) fl.OOdx 
in eq'n (4.3) it is necessary to use eq'ns (4.19*) and (4.14). 
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For a steady radiation front one replaces the time deriva-
tive with the spatial derivative d/dt—- v> ,where 

is the velocity of the front,such that the left hand 
side of eq'n (4.14) becomes 
A f ij^) u j^ji 2- (t-^)- sjr^ . 9n m I 3 X / A/ cPX /yf ^ , 4,<1U 

where -tr- u - ŷ  is the particle velocity relative to the 
front. 

An attempt was made to calculate the structure of 
a weak D-type front in oxygen preceded by a Mach 3 shock 
front. For this we used eq'ns (4.1), (4.2), (4.3), (4.14) 
and (4.19') as well as the equation of state. In this man-
ner we hoped to obtain a value of the temperature behind tho 
radiation front which we had assumed for the calculations In 
Chapter 3. The procedure was to divide up the radiation 
front into equal sections (in L&grangian co-ordinates) with 
the first section at the point where the photon flux was 1% 
of the initial value. Calculations were then carried out 
for each succeeding section. First,, the degree of dissocia-
tion was calculated from eq'n (4,14), -/q was calculated 
from eq'n (4.19') and v2/2 from eq'n (4.3). Unfortunately, 
the iterative procedure did not converge negative values 
of the density and imaginary values of the velocity always 
occurred. Perhaps this is hardly surprising since the v2/2 
term is about 10" times smaller than the Vq and the h terms 
in eq'n (4.3) — our iterative procedure could hardly be 
expected to produce such accuracy. Perhaps some other cal™ 
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culation procedure would prove to be more satisfactory. 
However, further work in this direction was abandoned. 

We shall return briefly to this proplem in Chapter 7 
where we will use the equations developed in this section. 

4• 4 Concluding rem^^jon_Chapters 2, 3 and 4 

In the previous chapters we have treated steady 
radiation fronts propagating in a semi-infinite tube and 
showed that five different types of fronts were possible. 
In Chapter 3 we carried out detailed calculations (for an 
assumed temperature, T 4) for each of the five types of 
radiation fronts which occur, We would like to stress one 
of the most interesting phenonema: Radiation fronts may 
act like driving pistons to accelerate the gas ahead of 
them. The results are best presented by plotting the vel-
ocities vp5J vP and vs as a function of N0/F0, The diagrams 
in Fig. 4.1 show such a plot. The values of these curves 
were obtained from Figs. 3.4 to 3,8 which were calculated 
for standard conditions as outlined in section 3.3. 

In Chapter 4 we introduced concepts and equations 
to calculate the structure of any steady radiation front wit! 
given boundary conditions, Tn this way it is possibly in prxncipl 
to calculate the final temperature behind the front so as 
to make the solutions of Chapter 3 and the relations pres-
ented in Fig 4.1 unique in terms of the final temperature. 



Pig.4 .1 Plot of velocities versus Nq/F0 for and T 



This, in effectj yields an additional equation so that 
now there are as many equations as unknowns (see section 
2.5) andP therefore, no assumptions are necessary. Although 
we failed to obtain a numerical solution for a simplified 
case we believe that the ideas developed in this chapter and 
Appendix C will point the way to succesful calculation in 
the future. 

We have intimated several times that in the 
strictest sense of the word steady radiation fronts do not 
occur in real gases. All radiation fronts will possess non 
steady state characteristics to some degree. The application 
of steady state equations to radiation fronts will yield 
approximate results - in some cases quite accurate and in 
others, less reliable. Howevers even in obviously non steady 
state situations, the results of these chapters are useful 
in estimating the properties of and thermody.ua.mic quantities 
associated with the radiation front0 

In the next tv;o chapters we describe an experiment 
which matches the geometry, which we have considered through-
out this thesis. In trying to understand the details of our 
experimental results we found it necessary to consider aspect 
of non steady radiation fronts. Consequently, in Chapter 7 
we develop a method to consider such fronts0 



C H A P T E R 5 

THE BOGEN LIGHT SOURCE 

Having treated steady radiation fronts in the first 
part of this thesis we will now focus our attention on an 
experiment to produce radiation fronts in the geometry of 
Fig. 2.1. 

An extremely intense light source radiating in a 
wavelength region where the photoabsorption cross section 
of the test gas is large is a necessary requirement for ex-
perimental work on radiation fronts. An ideal source would 
be a powerful pulsed laser radiating at the desired frequenc 
and for a period of several tens of microseconds. Compari-
son of the experimental results with the theory for such a 
monochromatic source would be much simpler than for a black 
body source. 

Unfortunately such ideal lasers are not available 
at present. For our experiments we choose a light source 
similar to that described by Bogen et al (1965). This sourc 
consists of an arc constricted through a narrow channel in 
a polyethylene rod and radiates as a black body with an ef-
fective temperature of the order of 105 °K for a period of 
about 10 yu. sec. 
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5.1 Description of light source 

The light source is illustrated schematically in 
Fig. 5.1 A 25 ji. F capacitor bank capable of being charged 
to 20 kKis discharged through a 2 - 4 nun diameter hole 
drilled through a 4.2 cm long polyethylene rod. The dis-
charge, squeezed through the hole, vaporizes the polye-
thylene at the walls and produces an extremely hot, high 
density plasma which radiates along the axis of the hole 
as a black body. The radiation passes into the test 
chamber either directly or through a glass, quartz or 
LiF window. 

Unfortunately much of the polyethylene plasma con-
sists of vaporized carbon which tends to settle on the walls 
of the chamber and on the window. Consequently it is nec-
essary first to remove the test chamber as far from the 
source as practical, secondly, to insert baffles between 
the source and the test chamber and thirdly to use large 
dump chambers to disperse the spent plasma. Otherwise, the 
window must be cleaned after every one or two shots. 

The sequence of events in firing the light source 
is as follows: The system is pumped down to below 0.05 
Torr which is sufficiently low to ensure that breakdown does 
not occur« The condenser bank is charged to the desired 
value (usually 3 k V ). The light source is fired by directing 
a jet of helium onto the hole in the polyethylene. This 
raises the pressure until for the applied voltage a point 



on the Paschen curve is reached where breakdown occurs. 
The spent plasma and excess helium are pumped out and the 
whole pi-ocess may be repeated every 30 to 60 seconds. 
After about 1000 shots the discharge channel becomes enlarged 
and the polyethylene must be replaced. 

An alternate method of triggering the discharge 
would be supplying a pulse of approximately ~ 12 k/ at the 
negative electrode by means of a brush cathode. This method, 
was not used since the electrical noise associated with the 
triggering pulse tended to trigger the oscilloscope prem-
aturely. 

Various designs of the light source were tried 
before the design illustrated in Fig, B.I, Appendix B was 
successful. It consists of two electrodes embedded in and 

inlet 
for 

helium 

polyethylene dump chambers 

window 

baffles 

test 
gas 

\ 
test 
chamber 

25AB\20kV 
capacitor bank 
over clamped 

Fig. 5.1 Schematic representation of light source 
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separated by epoxy strengthened with fibreglass , A 3/4" 

diameter threaded polyethylene rod is screwed into the epoxy 

such that the 2 - 4 mm diameter hole serves as the axis of 

the cylindrically symmetric apparatus. 

Although this design was quite satisfactory the 

polyethylene tends to crack after many shots especially 

at relatively high discharge voltages ; Also, the 

ringing frequency of the bank decreases as the discharge 

channel in the polyethylene increases in diameter. Con-

sequently, the light intensity was not strictly reproduc-

ible from shot to shot and the peak intensity tended to 

become delayed after many shots were fired„ 
The dump chambers consisted of 6 inch diameter 

aluminum tubing of various lengths (2 inches to 12 inches) 

sealed with 0 - rings. 

The LiT? and quartz windows were 1/4" thick by 1" 

diameterj the actual aperture for the radiation entering 

the test chamber was 1.7 cm diameter. A mechanical shutter 

consisting of sheet metal, was installed to stop the light 

from e n t e r i n g t h e t e s t chamber . It w a s operated from 

outside the chamber by means of a magnet. 

5.2 Measurement of intensity 

A typical oscilloscope trace of the light pulse is 

The peak intensity of the light pulse shown in Fig. 5.2, 
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was measured as a function of wavelength and as a function 
of discharge voltage. 

2 v/divj g jisec/div 
X =s 5000 A', discharge voltage = 2. 5kV 

Fig. 5.2 Light pulse from Bogen source 

5.2.1 Absolute intensity at 5000 A with discharge 

voltage at 3.0 k V. -- The absolute intensity was measured 

by comparison with a standard carbon arc (made by Leybold, 

with Ringsdorf RW 202 anode and RW 401 cathode). The arc 

was operated as prescribed by Null and Lozier (1962) The 

experimental setup is indicated in Fig. 5.3. Care was taken 

to ensure that the optical systems were identical for the two 

light sources. This was accomplished by means of a mirror — 

first measuring the Intensity of one system, rotating the 

mirror by 90° and measuring the intensity of the other system. 



monochromator 

source mirror 
aperture 

chopping 
wheel 

Pig.5.3 Experimental setup for absolute intensity rneasuremen 
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By adjusting the size of the source aperture (see 
Fig. 5.3} it v/as possible to adjust the effective size of the 
light sources. By adjusting the solid angle aperture it 
was possible to measure the intensity of the Bogen light 
source as a function of solid angle. Measurements show that 
the intensity per unit cross-section tends to decrease slightly 
with the size of the hole in the polyethylene insert. The 
optimum size (at a discharge voltage of 3.0kV and at a wave-

o 
length of 5000 A ) was found to be approximately 4 mm. 
Measurements also show that the light from the Bogen source 
is concentrated in quite a narrow beam in the axial direc-
tion since,the intensity per unit solid angle decreases 
markedly for large solid angles (perhaps by a factor 3 for 
•_/!=»0.1 sterad). 

o 

Measurements indicated that at 3.0 kV and 5000 A 
the average intensity of the Bogen light source for a solid 
angle of 0.1 sterad was (1.9 + 0.2)' X 103 times as bright 
as the carbon arc. Along the axis this value is roughly 

o 

three times larger. Since the carbon arc intensity at 5000 A 
is 200 watts/(cm2ster \i.) we calculate that at the source 

p.'l 

aperture we have a photon flux of about 3.6 X 10*" photons/ 
(300 A cm2sec) (for _/L = 0.064 and area magnification of 5.3). 
From Stefan's law the effective black body temperature of 
the Bogen source is in the region 60,000 °K to 150,000 °K 
depending on the solid angle, 
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5.2«2 Intensity as a function of wavelength at 
:Ll£J£L. T o measure' the intensity in the wavelength 

o 

region from 2500 A a procedure similar to that described 
above was used. However, no lenses were used and the 

neutral density filters were replaced by a set of frosted 

quartz windows (the transmission of the various, combinations 

was measured as a function of wavelength prior to intensity 

measurements), The measurements show that the intensity of 

the Bogen source gradually increases with wavelength to a 

value of 4.2 X I0 6 watts/ (cm2ster |i) at 2500 A (i.e. about 

10 times larger than at 5000 A). Unfortunately the i.nten-
o 

sity of the carbon arc is very small at 2500 A and accurate 

measurements are difficult. Neverthe less bs? comparison 

with Planck black body radiation the values of the intensities 
o 

at 2500 A indicate an effective black body temperature of 

the order of 40,000 °K. 

5,2.3 Intensity as function pf_discharge voltage. ---. 
At low voltages the intensity of the Bogen light source inc-

reases quite linearly. However, at higher voltages it tends 

to increase more slowly indicating a saturation level is 

being reached„ at around 6 kV. Also this saturation level 

seems to be larger for larger diameters of the channel in 

the polyethylene insert. A typical curve of intensity versus 

discharge voltage is shown in Fig, 5,4. From this curve it 
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discharge voltage (kV) 

Fige 5.4 Intensity of Bogen light source as a function of 
discharge voltage. 

appears that the optinura discharge voltage is around 5 to 

6 kV. Unfortunately, unless the window is very far from 

the light source, it gets badly chipped at these voltagesj 

consequently, it was preferable to use lower - discharge vol 

tages and place the window closer to the light source. 
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have 
ated 
dow. 
a window which transmits photons of energy below the ion-
ization potential of the test gas (esg, the ionization 

o 
limit of hydrogen atoms is 912 A). We know of no material 
which transmits radiation at such. low wavelengths. Lith-
ium fXouride, which transmits radiation down to a wave-

o 

length, of about 1200 A has the lowest cut off limit. 
Consequently we could only study dissociation fronts in 
test gases which have photodissoeiation cross sections in o • 
a wavelength region above 1200 A. Iodine and oxygen ful-
fill this requirement and were used as test gases. 

When we examine the temporal variation of the light 
pulse from the Bogen source, v/e find, that it is of much 
too short a duration for a steady dissociation front to 
develop . Therefore it was decided to study .two phenomena 
(i) the beginning of the formation of the radiation front 
at low absorber densities during the time of the light 
pulse and (ii) the formation of shocks at high absorber 
densities after the light pulse was over. Such experimental 

C H A P T E R 6 

EXPERIMENTS AND RESULTS• 

Throughout our theoretical investigations we 
considered steady radiation fronts which are gener-
in a semi infinite tube sealed by a transparent win-
For experiments with ionization fronts one must use 
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investigations are described below. 

6.1 Beginning of formation of dissociation front. in 
iodine 

An experiment to observe the beginning of the for-

mation of a radiation front requires a test chamber of 

finite length (see Fig.6.1). If v/e choose a test gas which 

absorl 3S in the visible wavelength region (where v/e may use 

conventional monochrornators, filters and photomultipliers), 
it is possible to measure the amount of light passing 

through the test chamber. An increase with time in the 

amount of radiation passing through the test chamber rel-

ative to the radiation incident on it (i.e. an increase in 

transmission) indicates the development of a-dissociation 
front. Furthermore p if the conditions correspond to a 

weak R-type case (see Chapter 3) or if the predicted, width 

of a steady radiation front corresponding to such condit-

ions is wide (such that the pressure gradient is small), 
then there will be little motion of the particles during 

the 10/M sec light pulse and, therefore, the interpretation 

of the results is simplified. 

To carry out such an experiment iodine was chosen 

as the test gas since it is photodissociated by radiation 
o ° 

in the region 4600 A to 5000 A. It has a photoabaorption 

cross section of 2.4 X 1 0 ~ 1 8 c m 2 at 4995 A (see results of 



Fig.6.1 Schematic'representation of experiment with Iodine 
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Rabinowitch and Wood (1936) in Pig.B.2, Appendix B) and 
a recombination coefficient of 7,6 X 1Q~30 Cm6/moIecuIe2sec 
for three body recombination with l 2 particles as the third 
body (Porter and Smith (1961)). There were three conditions 
to satisfy in the choice of the length of the test chamber 
and the initial pressure so as to obtain a maximum in the 
variation of the transmission. First we wanted about 90% 
of the radiation at 4995 A to be absorbed within the chamber 
since for this case the signal to noise ratio ( ̂  trans-
mission: transmission) was large. Secondly, we wanted to 
use a short focal length lens to focus the light into the 
test chamber and thus obtain a large photon flux, F . This 

• dictated the use of a short, test chamber. On the other hand, 
the chamber could not be too short since this would require 
the use of high particle densities at which three body re-
combination would not be negligible. To satisfy these con- . 
di.tions we chose a test chamber 10 cm in length and used a 
particle density of 1.12 X 1017 particles/ cm3. 

The test chamber was a 3.5 cm diameter evacuated 
glass cell (containing iodine crystals) enclosed in a brass 
container which was equipped with heating elements to con-

trol the temperature. The particle density of the iodine 
vapor was regulated by adjusting the temperature of the cell. 
We used 70 ± 0,5 °C which corresponds to jfl̂ j =s (1,12 t 0.03) 
X 10 cm 



S8 

The experimental setup, is shown in Fig.6.1. It 

has an optical system similar to the arrangement for measur-

ing the absolute intensity of the Bogen source (see Fig. 5.3) 

A 2.5" focal length lens was used to seal the dumping cham-

ber of the Bogen source and also to focus the radiation into 

the test chamber (with an area magnification of 5.3). It 

was necessary to clean this lens after every four shots. The 

transmitted light F passed into a monochromator and was 

measured by photomultiplxer A plane glass plate was 

inserted to divert a small fraction of the incident radiation 

F 0 , into a second monochromator and photomultiplier which 

served as a monitor, A D~ 4.0 neutral density gelatin fil-

ter could be placed either in front of or behind the cell. 

Since the difference between the signals F and F Q is 

small and, furthermore, not reproducible, it was necessary 
to use a differential technique. The experimental procedure 

is as follows: The neutral density filter is placed in front 

of the iodine cell and the amount of light, F , entering 
° 

phototube ^"2 (at 4S95 A) is adjusted to reasonable levels 

and equalized to F entering phototube by means of addit-

ional neutral density filters (not shown in Fig, 6.1). The 

difference.of those two signals is displayed on an oscillo-

scope, (ideally this difference should be zero, but in 

practise this never occurs) and recorded on polaroid, film. 

The 4,0 N.D, filter is then placed behind the iodine cell 

and the procedure repeated. If there is substantial depietio: 
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of the 1-2 molecules ia the cell during the time of the light 

pulse 5the signal from phototube should be larger than the 

signal of the monitor. The difference in these two signals 

is a measure of the development of the radiation front. 

Typical oscilloscope traces are shown in Fig. 6.2. 

Unfortunately the signals are not reproducible and in order 
to obtain a meaningful measurement it was necessary to aver-

age measurements over 12 shots. The results are shown in 
indicate the standard deviations. 

Fig. 6.3.The solid error bars/ The dashed error bars indicate 

the results obtained with no iodine vapor in the cell (accom-

plished by keeping the cell at liquid nitrogen temperatures) 

for which we should obtain a straight line along the horiz-

ontal axis. The deviation from the expected result and the 

large error bars are testimony of the difficulty in detecting 

the radiation front in this experiment. 
The two solid curves in Fig. 6,3 give upper and lower 

limits for the expected theoretical results;1 Here we used 

a photon flux F Q = 1.44 X 1G22 ph/300 A cm2sec) and a photon 

flux half this value (corresponding to the results of section 

5,2 using solid angles ox 0.256 steradians and 0.128 stera-
dians). The calculations are carried, out as outlined in 

Chapter 7. (Drift motion and diffusion of the particles 

as well as wavelength dependence of the absorption cross 

section were neglected. Also, the radiation v/as assumed 
to be parallel, ) D e s p i t e the obvious shortcomings of tho 

Rather than plotting the original and the increased flux 
which differ only by about 5%, we gave the expected d e -
ferences of'both signals in Fig. b.4. . 
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monitor, 2.0 v/div ) 4 > Q f i l t e r 

CP - Fc), 0.5 v/div) ± n fr°nt °f C e l 1 

monitor, 2.0 v/div ) , ' j N.D. 4.0 filter 
(F - F0), 0.5 v/div) behind cell 

Fig. 6.2 Typical oscilloscope traces for measurements in 
iodine. 

2 5 0 -

200 -

150 -

100 -

8 10 
t(/<sec)-

solid error bars -- with iodine vapor in_cell 
dashed error bars' 
theoretical curves 
dashed error bars-- no iodine vapor in cell 

/ S "" I* =1 .44x10^ph/cm^sec & ^ o ' " ' ' ~ ' 0 

Fig.6.3 Increase in light intensity during of light pulse 
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measurements and theoretical curves there is general agree-
ment between theory and results. We would like to emphasise 
the difficulties encountered in these measurements — the 
intensity and time duration of the light pulse from the 
Bogen source were simply insufficient to measure the develop-
ment of the radiation front precisely. 

In concluding this section the author would like to 
suggest that an experiment similar to the one described above 
but using a strong d.c. light source be attempted. (Possibly 
a large carbon arc such as are used as projectors in drive-in 
theatres would be satisfactory). Also, other gases (or mix-
tures of gases} such as chlorine, bromine and sulphur dioxide 
may be preferable as test gases. 

6.2 Shock fronts in oxygen 

In the experiment in iodine a low density was used 
such, that little particle motion could be expected. In this 
section we wish to accentuate the dynamics of the test gas so 
as to produce shocks As shown in Chapters 3 and 4 one has 
to use a high absorber density and a test gas with a high 
absorption coefficient in order to produce significant par-
ticle motion over short periods of time. Oxygen was chosen 
as test gas for this purpose. It has a high photodissocia-
tion CSPOSS section, in the Schumann Runge region from about 

o o 
1280 A to 1800 A (see results of Hetzger and Cook (.1934 
Fig. 8.3, Appendix B) j, its maximum value of 14,9 X lcT18cm2 

Similar shocks were reported by Elton, (1964). 
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at 1420 A is six times larger than the value for iodine 

O 
at 4-995 A. Also the particle densities used were in the 

region of 10 1 8cm ° to 2,69 X 1 0 1 9 cm" 3
 s substantially 

higher than for the case of iodine. Consequently s a radia-

tion front tends to be much narrower than in the case of 

iodine and the pressure gradients much larger. 

Fig. 6.4 Schematic of experiment in oxygen. 

The experimental setup is illustrated in Fig. 6.4. 

The test chamber consisted of a 2" diameter pyrex T-junc-

tion filled, with oxygen at the desired pressure. The rad-

iation passes through the 1.7 cm diameter opening in the 

lithium flouride (LiF) window, is absorbed in the oxygen 

gas and produces a shock which travels in the direction 

• S^nce there are no containing walls it also tends to d:l 
perse outwards in the radial direction, however, this 
Tseems to have no effect on the axial propagation of -cue 
shock since a 1.8 cm I.D. tube inserteo co prevent xa?.s 
diffusion resulted in no detectable dxfierencc xn w e 
strength of the shock. 
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A piezo electric pressure probe, (pressure transducer LD-15/B9 
of the Atlantic Research Corp., Alexandria, Va.) was placed 
directly facing the incoming radiation, the distance between 
it and the LiF window could be adjusted to any desired value 
by means of a threaded screw. The face of the piezo probe 
was coated with aluminum paint to prevent the radiation from 
falling directly onto the crystal. This probe measured the 
time of arrival and strength of any shocks or compression , 
waves which were formed. 

The procedure was simply to set the piezo probe at 
any desired distance d, fire the Bogen source and record the 
signal from the piezo probe as displayed on an oscilloscope. 
(It was necessary to clean the LiF window after every 6 shots.) 
Typical traces are shov/n in Fig. 6.5. V/e notice that the 
sharp shock signals are superposed on a long duration slowly 
.decaying signal. This signal is presumably due to thermal 

o 
heating of the crystal when radiation (above 2000 A) strikes 
and is absorbed by the face of the probe. In fact, the 
amplitude of this signal proved to be a convenient way of 
monitoring the intensity of the radiation passing through 
the LiF window. The secondary peak which appears after the 
primary signal is due to the reflected shock (from the piezo 
probe, back to the LiF window and back to the piezo probe). 

From these signals we may calculate the speed and initial 
point of formation of the shock at various/pressures. V/e 
find that at high pressures (600 Torr) the shock forms very 
near the LiF window while at low pressures, (20 Torr) the 



distance d must be at least one centimeter before a signal 
can be detected. In general, as the distance d is increased 
the. amplitude of the signal first increases to a maximum and. 
then decreases gradually. Presumably this indicates that the 
compression wave initially builds up in strength to a max-
imum and then slowly decays. This is illustrated in Fig. 6.6 
for an initial pressure of 400 Torr at which the maximum is 
at about 0.5 cm. We will examine these results in more detail 
in Chapter 7. 

The velocity of the shocks at all pressures is 364 t 8 
m/sec. In fact, the velocities at low pressures seemed to be 
slightly larger than at high pressures but certainly no more 
than 8 m/sec0 The time of arrival of the shock as a function 
of distance d is plotted in Fig. 6.7 for an initial pressure of 
400 Torr. From the slops we obtain a velocity of 368 rn/sec 
while from the reflected shock the velocity is 363 iii/'sec, 
Notice that there is a slight bend in the curve at 0o5 cm, 
indicating that near the window the velocity may be different 
than the measured value. Unfortunately, it is difficult to 
obtain, reproducible results in this region. We compare these 
results with theory in Chapter 7. 
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d a 3.0 cm 

d = 5.0 cm 

Pressure «= 400 Torr Oxygen 
0.05 v/div 
50 |isec/div 

Fig. 6.5 Oscilloscope traces of piezoelectric probe. 
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Fig.6.6 Shock strength as function of d at 400 Torr oxygen 



Fig,6.7 Velocity of shock at 400 Torr oxygen 
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6•3 ionization In the test chamber 

If one removes the window which was used in the 
two previous experiments then it is possible for ionizing 
radiation to enter the test chamber. Indeed large signals 
of the order of 100 volts were measured by means of elect-
rodes inserted into the test chamber. However, these 
signals did not seem to be correlated with the light pulse 
in any way, seeming to start at or just after breakdown of 
the Bogen source whereas the light pulse is delayed 2 or 3 
y^sec. Also, the signals depended upon the grounding of the 
dump chamber and polarity of the test chamber. Furthers 
work along these lines was abandoned. 

We also observed the photoeffect from metal sur™ 
o 

faces due to radiation in the range of 1200 to 2000 A^ 
With the intense Bogen light source it seems to be easy to 
produce a cold electron plasma, ideally suited for the 
measurements of electron-neutral collision cross sections. 
However5 no systematic investigations were carried out. 



C H A P T E R 7 

UNSTEADY ONE-DIMENSIGNAL FLOW WITH ENERGY INPUT 

In the theoretical section of this thesis we con-
sidered only the steady state cases in which the radiation 
front was fully developed and the incident radiation was 
constant as a function of time. In this chapter we will 
consider the development of radiation fronts with the in-
cident radiation varying with time in an arbitrary manner. 
In particular, we will set up the theory to calculate the 
development of the shock fronts in oxygen which were obser-
ved experimentally in Chapter 6. 

The boundary conditions.again are a tube bounded 
at one end by a window. The motion of the gas may be des-
cribed as unsteady one-dimensional flow with energy input. 
If the energy input as a function of time and position al-
ong the tube is known, the evolution of the flow along 
the tube may be calculated by the .method of characteristics 
or by the method of finite differences. The rate of energy-
input q(x,t) may be calculated quite generally according 
to the treatment outlined in Appendix C for the case of 
oxygen. However, we will base our calculations of this 
quantity on the simplified treatment outlined in section 
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7.1 Method of characteristics 

A detailed explanation of the method of character-
istics is given by Shapiro (1954), Chapters 23-25 and Oswa-
titsch (1957), Chapter 3. Hoskin (1964) describes a method 
of calculation at fixed time intervals which is particularly 
applicable to our case. In order to show the limitations 
of this method we will first give a brief explanation. 

Consider the x-t plane shown in Fig. 7.1(a). Let 
us assume that 

Fig. 7.1 Mach lines and path lines of characteristic net. 

the complete state of the gas at points 1 and 2 is known. 
Any disturbance travelling to the right from point I will 
propagate with the speed Uj + cgij any disturbance travel-
ling to the left from point 2 will propagate with the speed 
u2 - c s 2 (where u is the particle drift velocity and cs is 
the speed of sound at the point in question). We refer to 



the loci of right travelling waves as characteristics or 
Mach lines and to the loci of left travelling waves as J 
characteristics or Mach lines. The loci of the individual 
particles are called path lines. The and j characteris-
tics intersect at some point 3. 

The basis of the method of characteristics rests on 
the fact that along the Mach lines and path lines the ther-
modynamic quantities vary according to certain specified 
equations (see below) such that the state (and velocity) of 
the gas at point 3 may be calculated,* 

The characteristics net is constructed as illustrated 
in Fig 5.1 (b). Using our case as an example we choose 
equally spaced points along the x~axis where the particle 
velocity is zero and the speed of sound is constant. We 
then find the intersection points of the 71 and J" 
characteristicsp and determine the thermodynamic quantities 
at these points. We then simply repeat the procedure to 
obtain the next set of points. As we feed in energy the 
characteristics net becomes distorted indicating the forma-
tion of compression and rarefaction waves. A shock forms 
at a point where two or more characteristics of the same 

family intersect. 
The method of characteristics at fixed time intervals 

* Thj s is strictlv true only if the n. and J characteris-
tics can be drawn as straight linesj however, we can sat-
isfy this condition to as high an accuracy as v/e wish 
simply by decreasing the distance between points 1 and 2. 
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is similar in concept to the above explanation except that 
the points at which the state of the fluid is calculated 
are selected beforehand. For this purpose one usually 
selects a rectangular mesh in time -Lagrangian space co-
ordinates and uses the required differential equations in 
Lagrangian form. The Mach lines are drawn backwards in 
time from the pre-selected point into the region where the 
state of the gas has already been calculated, 

7.1.1 Physical characteristics in Eulerian and 
Lagrangian co-ordinates, — In Eulerian co-ordinates the 
equations of the Mach lines is 

m k i 

where the upper sign of i refers to the ̂  characteristic 
and the lower sign refers to the Jj characteristic. The equa-
tion of the path lines is simply 

UA , = m 7-„" 
/ d-l<;) P^-th ... ' • ^ 

In Lagrangian co-ordinates z , eq'ns (7.1) and (7.2) 
may be written as 

(dS- j - ± f£5-
/I J 7.3 

and 

( S ) ? ^ 7.4 

where /is the mass density, cs is the speed of sound and fQ 

is a constant reference density (e.g. the density at t « 0 
when (x) is constant). 
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7.1.2 State characteristics. — In Lagrangian co-
ordinates the properties of the fluid along the path lines 
are described by the second law of thermodynamics 

) _ fa?) 
r.Utl* = $ 7.5 

where h is the enthalpy per unit mass, is the density and 
p is the pressure. is the rate of energy input per unit 
mass as given in eq'n (4.19'). 

In Lagrangian co-ordinates the equations of momentum 
and mass may be written as (Hoskin (1964)) 

ju , i _ 
. ^ + 7f ^ ; 7.6 

and 
J^ D f . f Jji . 

1.7 

where is a reference density defined in eq'n (7.3). (We 
neglect thermal conductivity and viscosity as was done in 
Chapter 4.3 If we multiply eq?n (7.7) by the speed of sound 
c„ and use the equation of state in the form of eq'n (2.12) s 

, - ̂  >'F h ~ 2i 12 

eq'n (7.7) may be written in the form 

Using the energy equation and the equation of state (eq'ns 

(7.5) and (2,12)) we may write the right hand side of eq'n 

(7.9) in terms of the rate of energy input Thus eq'n 

(7.9) becomes 
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7.10 
We now add and subtract eq'n (7.6) from eq'n (7.10) 

to obtain two equations in characteristic form 

' -jr + Sc53F.\ + f 3 u ^ -yr j^J -( ^ - -^.J 

Thus along the characteristics (d. ̂  / d t = ± / C g / ^ 0 

we have 

£Mks iMk, 4 W . . 7.« 
We emphasize that the differentials on the left hand side 
are evaluated along the Mach lines whereas the differentials 
on the right hand side of eq'n (7.11) are evaluated along the 
path lines. 

There are two points in eq'n (7.11) which we would 
like to discuss. First, the term containing ( dg/ cK)^ is 
usually small (though not necessarily negligible) compared 
to the term (g ~ 1)/^-. For calculations in this thesis we 
will neglect this term.* Secondly, the speed of sound cg 

was introduced ad hoc and has not yet been defined. The 
problem here is that for a system of particles not in ther-
modynamic equilibrium the speed of sound depends on the 
frequency of the sound wave (see Zel'dovich and Raizer (1966) 
chapter VIII). (We should point out that we are really 
interested in the velocity of propagation of a disturbance 

* see addendum Appendix D, page 138 



at some point in the radiation front which we assume to be 
equal to the speed of sound at that point rather than in the 
speed of sound itself.) Classically the speed of sound is 
defined as the rate of change of pressure with respect to 
density at constant entropy (see eq'n (2.7)) 

where is the isentropic exponent. We pointed out in 
Chapter 2 that replacing with tbeeffective adiabatic 
exponent g may not be a very good approximation. 

For non-equilibrium situations the validity of 

such an approximation is still more questionable. Neverthe~ 
2 

less j for calculations in this thesis we will assume cg « 

gp/y7 such that the term containing {a-f/Jt)z in eq'n (7.11) 

is zero. With these two approximations we obtain a simp-

lified form of eq'n (7.11) 

7.2 Method of finite_differences in Lagrangion co-ordinate 

If we use a constant energy input then the method 
of characteristics will determine the evolution of a radia-
tion front and eventually the steady state structure as 
given in Chapter 3. However, once a strong shock has formed; 
a special procedure is required to calculate the thermody-
namic auantities across it. If the structure of the shock 
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is of no importance it is more convenient to use the method 
of finite differences to calculate the flow. 

A treatment of the method of finite differences in 
one space variable and no energy input is given by Richtmyer 
and Morton (1967), Chapter 12. Once their equations are 
modified to include the energy input, their treatment is 
directly applicable to our case for numerical solution on 
a computer. 

One drawback of the method of finite differences is 
that it is incapable of handling shock discontinuities and 
sharp gradients in the thermodynamic quantities. The pre-
sence of such a discontinuity results in an oscillatory 
solution. To overcome this difficulty Richtmyer and Morton 
introduce an artificial viscosity which "smears out" the 
discontinuity over a finite distance and thus eliminates or 
reduces the oscillations in the solution. 

This artificial viscosity Q s is of the form 

• ~ y fa 7.12 

where "a" is a numerical constant (a>"l), the value of 

which one chooses at ones convenience and fa is the velocity 

change over the space interval between lattice points. 

This viscosity appears in the momentum and energy equations 

(see eq'ns ( 7 . 6 ) and ( 7 . 5 ) ) . One simply makes the substit-

ution p 5>p + Qc, . 



Since wo do not develop any new concepts in using 
this method we relegate the differential equations for 
this treatment to Appendix e. 

7' 3 . the two methods to dissociation fronts 
in oxygen 

The equations given in the two sections above 
(and in Appendices D and E), together with eq'n (4.19') 
for the energy input and eq'n (4.19'J for the energy in-
put and eq'n (4.14) for the degree of dissociation, permit 
us to calculate the development and flow of any radiation 
front. One drawback is that in many cases the amount of 
computer time necessary for such calculations is prohi-
bitively long (and expensive). Perhaps the procedures 
outlined in Appendices D and E could he modified to make 
more efficient use of computer time. (One possibility 
is to obtain a better first approximation in the iterative 
procedures by extrapolating the values of the variables 
from the previously calculated values.) 

Nevertheless, these methods were used to help 
explain the results obtained previously. For the calcul-
ations we assumed that the incident radiation had a black 
body spectrum corresponding to a temperature of 6 X 10^ °K. 
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71,3 1,1 for time_dependgnt radia-
tion from Bogen source.— The results of section 6.2 indi-
cate that the shock front in oxygen at a high pressure forms 
more rapidly and nearer the LiF window than at low pressure. 
Also , near the LiF window the speed of the shocks may he 
lower at high pressures than at low pressures. , It was not 
known if the signal measured by the piezo probe was due to 
a shock or a compression wave. In order to compare these 
results with the theory, the development of the shock was 
treated by the method of characteristics at fixed time inter-
vals. (The method of finite differences cannot be used in 
this case since the artificial viscosity "smears out" any 
shocks which may form.) 

The calculations were carried out for pressures of 
1.0 atm and 0.1 at®, The various constants, the difference 
intervals and the computer programme which were used are 
given in Appendix D, (A computing time of 10 minutes was 
used.) Figs..7.2 and 7.3 show computer plots of the various 
thermodynamic quantities as a function of dimensionless 
distance X at various times. 

The pressure profiles are of special interest since 
this is the quantity which produces the signal measured in 
section 6.2. At 1.0 atm the pressure rises to a maximum of 
p » 1,9 p0 within 3.0 |jisec, then decreases as the pressure 
wave propagates away from the window. At 8 |j.sec the compress 
wave is at 0,295cm and is travelling at a velocity of 460 
ta/sec. At 0.1 atm the maximum pressure is p = 3.8 pG within 



3.2 (isec, is 3.3 pQ at 8 jisec and 3.2 pQ at 16-jisec. 
At 16 [isec the comjjression wave is at 0.85 cm and. is 
travelling at a velocity of about 562 m/sec. In section 
6.2 we obtained velocities of 364 m/sec at distances 
far from the LiF window. The fact that the calculated 
values are consistantly higher than the measured value 
indicates that the photon flux (F = 1.16 X 1022 ph/cm2sec) 
which'we used in our calculations was too high. On the 
other hand the velocity measurements were taken relat-
ively far from the LiF window whereas the calculations 
were carried out to distances relatively near the LiF 
window. Finally, it is possible that our programme gives 
a systematically high value for. the velocity. 

These pressure profiles indicate that the com-
pression waves do not become shocks within the computing 
time. However, we should consider this statement with 
caution since it was.not practicable to show that if suf-
ficient time were allowed the compression waves do become 
shocks. 



.7.2 Computer profiles, 1.0 atm. 
Method of characteristics at fixed time 
Energy input from Bogen light source. 
Peak photon flux, F0=1.16 x 1022.ph/52oS 

Time, t=(N-l , with ^t=0.10 (isec. 
Distance from window, x=0.00249 X [cm] . 

Curves plotted for (N/10)=1,2,3, •••8. 
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Fig.7.3 Computer profiles, 0.1 atm. 

Method of characteristics at fixed time intervals. 

Energy input from Bogen light source. 

Peak photon flux, F 0=1.16 x 1 0 2 2 ph/520A cm 2sec, 

Time, t=(N-l)At , with At=0.20 (isec. 

Distance from window, x=0.0249 X /cm/. 

Curves plotted for (N/10)=1,2,3, •••8. 
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7,3.2 S t r u c t u r e _ o f _ . d l s s o c i a t l o ^ 0 — 

The results of Chapter 3 indicate that a steady photon, flux 

F c = 4,72 X 1 0 2 2 ph/cm 2sec (with an energy of 8.8 eV) is 

required to produce a weak D-type radiation front preceded 

by a Mach 3 shock at an initial pressure of 0.01 atm oxygen„ 

We applied the method of finite differences to calculate the 

evolution of the flow for this case. The constants, differ-

ence intervals and the computer programme for these calcula-

tions are given in Appendix E. 

Again it was impracticable to carry on with the cal-

culations until steady state W a s reached. However , the plot 

of the pressure as a function of distance X, see Fig. 7»4{. 

indicates that within 15 jj.sec the pressure is 7.2 times the 

initial value. At this point the degree of dissociation 

at the window is only 36%, the temperature is 4000 °K and 

the compression ratio (final : initial density) is 0.3S 0 The 

maximum particle velocity is 1.4 c Q 460 m/see. Although 

the radiation front is in the initial stages of development, 

it already exhibits some of the properties predicted in 

Chapter 3„ • 

These results must be considered as preliminary 

since cons:Lderab1e difficulty was encountered in preventing 

the calculations from going into oscillations and as many 

as 15 iterations were necessary to obtain self-ccmsistant 

values. In fact, such oscillations are already in evidence 

in the computer profiles shown in Fig, 7.4, 



Fig.7.4 Computer profiles, 0.01 a tin. 

Method of finite differences, applied to Cond 

for a weak D-type radiation front preceded by 

Mach 3 shock. 

Photon flux, F q=4.72 x 10 2 2ph/cm 2sec. 

Time, t=NAt , with At=0.303 jisec . 

Distance from window, x=0. 249 X [cml . 

Curves plotted for (N/10)=l,2, -5. 
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C-H A F T E R 8 

SUMMARY AND CONCLUSIONS 

The object of this thesis was to investigate both 

theoretically and experimentally phenomena associated with 

radiation fronts for the experimentally realistic situation 

of ionizing or dissociating radiation } passing through a tran-

sparent window into a tube containing the absorbing gas. 

Five different types of steady radiation fronts may 

ofccur for the experiments,! situation under consideration. 

At one extreme of high radiation intensity and. low particle 

density there is little particle motion associated with the 

front, at the other extreme of relatively low intensities 

and. high particle densities the particle motion is dominant 
and a shock front propagates ahead of the radiation front. 

The speed, of the various discontinuities and all thermodyn-

amic quantities may be calculated either if the detailed 

structure of the radiation front and mechanisms occuring 

within it are known or if the temperature behind the rad-

iation front is assumed. Conversely a measurement of this 

temperature would yield important information about these 

mechanisms. ' 

It was shown that for the case of no recombination 

or collisional dissociation, the structure of a steady 
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radiation front produced by monochromatic radiation could 

be described by a simple analytical expression in terms of 

Lagrangian co-ordinates. This expression depends only on 

the absorber density and on the absorption coefficient, oc. 

A simple relativistic correction must be made if the vel-

ocity of the radiation front is near that of light; this 

causes an apparent steepening of the front. 

A treatment of the structure of a dissociation front 

in oxygen for a simplified reaction scheme was outlined. 

It was pointed out that, in general ; it is necessary to con-

sider all the reactions within the radiation front. A num-

erical solution was attempted for a weak' D-type front pre-

ceded by a Mach 3 shock but was unsuccessful. 

For an experimental investigation, of radiation fronts 

an intense pulsed light source, which consists of an arc 

discharge through a Barrow channel in polyethylene, was coa» 
structed. The average intensity of this "Bogen" light source 

(in a solid angle of 0.1 sterad, at 5000 A and operated at 

a discharge voltage of 3.0 kV) was measured to be (1.9 t 0.2) 

X 10' times as bright as a standard carbon arc. Along the 

axis the intensity is about three times larger than this 

value. This indicates that the effective black body tem-

perature of the source is from 60,000 °K to 150,000 °K. 

Experiments were carried out at low and high absor-
ber densities, N0. " An experiment in iodine at a low density, 
N j, illustrated the beginning of the formation of a radiation 
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front. Although the measurements were quite crude the 

agreement with theory was quite reasonable. The author sug-

gests a similar type of experiment be attempted with a strong 

d.e. light source. 

Shock fronts in oxygen at a high density, N Q } were 

detected bj' means of piezoelectric pressure probes. At 

high pressures (1 atm) the shocks formed very near the 

lithium fluoride window, while at low pressures (0.03 atm) 

the point of formation was about one cm from the window. 

The speed, of propagation of the shocks was 364-- 8 m/sec 

for all pressures, at least at distances far from the 

Li]? window. '•' 

Attempts to detect pliotoionijsation in the test 

chamber showed only that photons in the wavelength region 
o o 

from 1200 A to 2000 A were especially efficient in knocking 
out electrons from brass or dielectric material,. Attempts 

to detect ionization fronts proved- fruitless. 
It was shown how the development of a radiation 

front may be considered as unsteady one-dimensional flow 

with energy input and treated by the method of characteris" 
tics at constant time intervals or by the method of finite 

differences. These theories were applied to calculate the 

evolution of the shocks which were observed in oxygen. The 

theoretical results agreed well with the experimental 
results. It was also pointed out that if sufficient com-

puter time were available and a constant energy input were 
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used, these methods could he used to obtain steady state 
solutions.(complete with thermodynamic quantities, veloci-
ties and the front structure) which we had attempted to 
calculate previously. It had been hoped that it would be 
possible to compare the results of such a calculation with 
the structure obtained by the method outlined-in Chapter 4 
(an attempt at which proved unsuccessful).. Since this was 
not practicable the author hopes that he has at least pointed 
out a possible mode of attack for future work in this field,, 

In conclusion, the author would like to point out 
that future work in this field depends upon the development 
of extremely intense sources of radiation both d.c. and 
pulsed„ The author can only dream in anticipation of a 
gigawatt laser j, radiating for tens of - microseconds and. ad-
justable to any frequency desired. 
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A P P E N D I X A 

NUMERICAL CALCULATION OF A STEADY RADIATION 
FRONT IN OXYGEN 

The programme used to calculate the structure of an 
idealized radiation front in oxygen for a black body spec-
trum F(#} and absorption cross section oc ( (see section 
3C1»2) is given below. For the calculations we use the 

o o 

photoabsorption cross section between 1280 A and 1800 A as 
given by Metzger and Cook, Fig. B.3, Appendix B and assume 

A o 

a frequency distribution of a black body source at 6 X 10 ~ 31 
as given in eq'ns (4,10) and eq'n (D.7), Appendix D, 

First the total photon flux is calculated by Sira~ 
psOn*s rule and then standard Runga-Kutta subroutine is applied 
to eqrns (3.21) and (3,24) to calculate the photon flux, 
F/F and co-ordinate x, at selected intervals ^ z-. The o " 
initial value of x = 0 is chosen arbitrarily at a point 
where F/FQ — „ The terminology in the programme is as 
follows: h 7-V'kT = >: —** f(2)'> ^ — a n d 



$ F O R T R A N 
C I D E A L I Z E D R A D I A T I O N F R O N T F O R B L A C K B A D Y R A D I A T I O N A T 6 0 0 0 0 K E L V I N 

7 C C O R RE 'S P O N D T N ' G ' r N ~ t r X T G " E t l " ~ — — — — 
C U S I N G R U N G A - K U T T A S U B R O U T I N E 

D I M E N S I O N V ( l O ) » F i l O ) ) Q U O , ) 
— — cOMMair-FU'F'WTDX^ ... : — — — 

D A T A A / 0 . 0 0 2 5 1 ' 0 . 0 0 8 7 1 > 0 . 0 2 7 4 ' 0 . 0 4 9 8 1 u 7 0 v 0 . 1 8 9 U » U . 3 0 1 » 
1 0 . 4 1 6 > 0 . 5 4 8 > 0 . 6 7 2 > 0 . 7 8 4 ' 0 . 8 9 4 > u . 9 6 3 ? l . u > u . 9 8 5 > u . 8 9 4 > • 
2 T̂Tr&47T0TZ2TV"O7t)'7̂ 5Tt)lTr4"9"8"rcrrO"3T"3T" . ' — ™ — — : 

T = 6 . 0 
X ( 1 ) = 8 . 0 / T 

—--DX=o".Ter7T""'"~~— :—: : : : — : — — ~ 
D O 10 I = l > 2 0 

1 0 ' X ( I + 1 ) = X { I ) + D X • 
DO-'li- I = 1 > 21 — : : : — :— . : •• • 

1 1 F 0 ( I ) = ( X ( I ) * X ( I ) ) / ( E X P ( X ( I ) ) - l . U ) 
F O T = F O ( 1 ) - F 0 ( 2 1 ) 

__ D O 12 = 1 ' 1 0 : — - — : ^ . ' . ..••••. , . 
1 2 F 0 T = F 0 T + 4 « ' P * F 0 ( 2 * " K ) + 2 . 0 * F O ( 2 * K + . l ) -. ' ' 

F w = F 0 T * D X 7 3 • 0 . 
W R I T E ( 6 » 6 0 T FVv : — — — — ; : -

6 0 F O R M A T ( 1 X » 1 0 E 1 2 . 4 ) 
D Z = - 0 > 0 6 , 

. D Q 2 J = y,2 " - ' : : — ~ — — - — _ 

Y ( 1 ) = 4 . 5 1 8 8 7 6 
Y ( 2 ) j = 0 . 0 - • 
D O i 1 = 1 , 7 5 
G A L L RK. ( Y ' F >Q > D Z > 2 > 1 ) 

_ A _ W R I T E ( 6 * 6 0 ) Y ( 1 ) » 'Y ( 2 ) » F J _ _ 
2 ' D Z = - 2 . 0 * D Z ' ~ - — - — — — ~ • -

S T O P 
E N D 

"" " S U d R U u T I , \ L " " A U X ~ R . K X Y , F T — ~ — ? — ~ ~ 1 — 1 " 
C O M M O N F J » F W , D X > A < 2 1 ) > X ( 2 1 ) ' F 0 ( 2 1 ) 

' D I M E N S I O N Y ( 1 0 ) » F ( 1 0 ) » F Y ( 2 1 ) ' 
D O 21 1 = 1 » 21 ~ " ~ ' ' ~ ~ 

2 1 F Y ( I ) = F 0 ( 1 ) * ( E X P ( - A ( I ) * Y - ( 1 ) ) ) 
F Y T = F Y ( 1 ) - F Y . ( 21 ) 

~ : DO' "2'2" K=I vio : — :— — — — : 
2 2 F Y T = F Y T + 4 . 0 * F Y ( 2 ' * K ) + 2 . 0 * F Y ( 2 - * K + 1 ) . 

F Z = F Y T - * D X / 3 ® 0 
.... F J = F Z / F W : : : : — : " " 

. F ( 2 ) = 1 . 0 / ( 1 . O - F J ) 
R E T U R N 
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A P P E J D I X B 

Fig.B.1 Scale drawing of Bogen light source consisting 
of cylindrically symmetric electrodes separated 
by epoxy and strengthened with fihreglass. 

Figs«B„2 and B.3 Absorption cross sections for iodine 
and oxygen reproduced directly from the literature. 
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Fig. B e1 Scale drawing of Bogen light source. 
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. 4500 0000 5500 A 6000 
Fig. i.—Extinction-curves of iodine vapour. 

Pig.£.2 Iodine absorption cross sections (Rabinowitch and 

Wood (1936)) 

9-54 SH8 
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FIG. 6. 0 2 absorption. A few examples of results obtained by the first and second arrangements are 
indicated by circles and triangles. 

Fig.B.3 Oxygen absorption cross sections (Metzger and Cook (1964)) 
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A P P E N D I X C 

EQUATIONS FOR SPECIAL REACTION SCHEME 

The reaction eq'ns (4.5) are written to indicate 
different groups of particles (0 atoms, molecules, Og 
molecules, molecules). We can write one conservation 
equation for each group. The equations corresponding to 
eq'n (4.8) in the simplified case considered in Chapter 4 
(using the subscripts i = 1, 2, 3, 4 to indicate 0, 02, 
°3j °2 Particles respectively) are 

+ ^ Jdi - X ; Jsi-i //,*Af£ 

~ ^ M, Nzri - JE,- J W MA/+ Mi 
1 Z+l—>3 4-l~f->'3 1 C.l 

<£jh v- _ jj£ j __ / gr 
' /zyJ^j /T* I 

j-t /-rr/ 

-/• ̂  //, /i/, ^ ^ //, ŷ ' C.: 
3+1—>3 > 3 / 

*C. 2 
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+ +f3£l + 

Jli fa/Ji V- ^ // //,• 

'l 'Mtf+tti — ^-Jut //<? A/c 
/ C.4 

The notation is as for eq'n (4„8j, the arrows indicate the 

reaction process (e.g. k/ii is the recombination rate 

process for the reaction 0 2 + 0 -v M^ •—> 0 3 + M -L f where 

M is the third particle in a three body collision). 

Corresponding to eq'n (4,9) the photon flux passing 

through four different types of absorbers is 

where is the photoabsorption cross section for the 
•th _ , . , x particle. 

We may now obtain the individual j terms in eq'ns 

(C.l) to (C 

.4 ) „ since 

h if, fc 

C, 6 
The individual terms are thus 

, / , -/i-^/VJcfX 

N 3 f f ^ o ^ ) e -dVj 

m 
<?X/VrW C.l 

< <P A / 3 r ' C.8 

C. 9 a/ r ' < ^ , 

/ 
/ 

- 71 / J 

/ /4{ / {*) 0, <3 or J 
C . 10 
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where we have split the photoabscrption cross section of 

Og molecules according to the end product of the reaction 

2 ^ ̂  ^ i s J c h e c r o s s section associated with the reaction 

h ^ 0 (3*). Their sum is equal to the total cross 

section 

C o l l 

Finally the density of the gas is related to the 

concentration of the various types of particles by the rel-

ation 

^ ^ - i M M + & (X,*) + 4 + -

C.12. 
In order to solve eq'ns (C.1) to (C,4) one must 

know 24 (6 X 4 « 24) reaction rate constants as a function 

of temperature for the various collisional processes and 

four photoabsorptiori cross sections. Unfortunate1y most 

of these quantities are not known; What have been measured 

experimentally are combinations of reaction rates constants. 

For example, the vibrationally excited molecules are ignored 

and are lumped with the ground state molecules. Thus the 

recombination rate constants of the reaction 0 + 0 M 

•£^0 4- M has been measured (over a small range of tein-/a 

poratures), the intex'ir.ediate step involving the vibration--

ally excited molecules has been ignored. We wish to empha-

size that the use of these constants in calculation;? invol-

ving radiation fronts would be strictly permissible only if 
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the vibrational and translational degrees of freedom were 

in equilibrium,. Furthermore in such a case it would be 

necessary to use a photoabsorption cross section which had 

been measured as a function of wavelength and as a function 

of temperature (i.e. the photoabsorption cross section would 

be temperature dependent). 

As for the simplified case treated in Chapter 4, 

the energy input for each group of particles may be obtained 

directly from eq'ns (C.7) to (C.10) (see eq'ns (4.18) and 

(4,19)), Thus we obtain 

= £> 
• C. 13 

ffc - f^ K M octM) , f l"%r ) 

C. 14 

/? > r • I / S r-s i dK . 

C. 15 
JET (/ Jx 

C. 16 

where -fa-, - 0 since o ^ ( p ) = 0, The total rate of 

energy input is simply the sum of these individual contri-

butions 

£ fx, -£-) - -Ax,*) (p * f<) . C , 17 
This treatment of the more general reaction scheme 

in eq'n (4.5). indicates that it is necessary to consider all 

the intermediate steps in a chain reaction process. In gen-

eral the energy flux contributing to the front is larger 

than if these steps were ignored, because the intermediate 
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particles absorb photons in a different part of the energy 
spectrum than the initial pure gas. 
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A P P E N D I X D 

METHOD OF CHARACTERISTICS AT FIXED TIME__^NT^VALS 

An excellent treatment of the equations of un-
steady flow with no energy input by the method of char-
acteristics is given by Hoskins (1S64) in a form 
directly applicable for calculations on a computer. 
Here, v/e will extend Hoskin1 s treatment to include energy 
input„ 

Fig0 Del shows the typical mesh in Lagrangian 
space and time. In order to determine conditions at the 

i+t 

Fig0 D„1 Calculation of an ordinary point D, 

point D on the tj + -j baseline we require values of the 
flow variables at A and B on the t-; baseline which may 
be obtained by linear or quadratic interpolation between 
the known values at Sj ™ j„ and + The equ'a-* J 
tions to be solved as given in section 1 of Chapter ? 
may be written in dimensionless units by making the 



133 

substitutions 

So 
'A/ O Tfr-

for the length and time dimensions „ where o ( m is some 

convenient reference cross section as defined following 

eq'n (3.20) . The velocities are made dimensionless by-
dividing by the speed of sound in oxygen at 300 °K, c Q s 330 

m/sec. The thermodynamic quantities are made dimensionless 

by dividing by their initial values at t = 0. Thus. 

r - p/pQf h » h / h o s u, = u / c o s c - c/coo 

The rate of energy input q is made dimensionless with 
respect to the equation in which it occurs. Since the 

affective adiabatic exponent g is already dimensionless 

we use g Q »> 1.4. 

These dimensionless equations may be written in 

finite difference form. Eqrns (7.11 ) and (7.3) evaluated 

along the Mach lines are written 

XJ o 

{-£„ = p c j ^ o d . 2 

. t & p - X c ) ^ D.3 

D.4 



Along the pathline BD„ eq'ns ( 7 „ 5) and (7„4) are 

(ho-Q - ep 

zz 

D 0 5 

D 0 6 
The rate of energy input corresponding to eq fn (4„19') is 

= ca/4$ t-
/ 

<9 ' Ji y j f 

'f,: f-
's. e*-/ 

D„ 7 

where 

CONS - 3 ' & O 
and. where we have used h ^ / k t , c/<{5 ) ~ S m! 
E Q is the energy flux entering the gas as defined in eq'n 

'(4„X8) s G(t) is the diinensionless time dependence of the 

energy flux normalised (in our case) such that « yJ J!i olJ\ 
when G(tJ =3 1 0 0 0 

The conservation equation for 0 particles (or 

dissociation equation) as given by eq fn (4.14) may be eval-

uated- along a pathline to be 

(>y) 
(Mf* J 

n ^ziA If) / 
M 

D o 8 
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where we have substituted for kdf and kyz/from eq'n (4„17). 
In this equation M is the mass of the oxygen molecule and. 
Fq is the photon flux entering the gas. Substituting from 
eq'n (4017j for k d ? and k / i 2 eq9 n (D. 8} becomes 

= * Je^S* Cy) •—77, JiZ > " 

ffe -'SVr-r-7- // 
> D„ 9 

where the temperature T > T T/T « T/300 °K and where 
AONS j, BONS and DONS are 

AONS 
tfcl 

k % CotiS D „ 10 

3. & & A /a' .3 

^ r  %  
D „ 11 

* X/o' 
r0 J 

D012 

The equation of state 3."elates the various thermody-
namic quant it ie s 

l / ~ r jo-t ' / r 7 Do 13 

y- DO 14 

where 

' J ts:.._ 
/ ~ ' ^ iiH?)- + rye D„ 15 
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Finally the speed of sound and the position in 
Eulerian co-ordinates are 

and 
- Xe 

D.17 
The procedure for obtaining a solution at the point 

D is to calculate approximate values of and from 
eq'ns (D.8J and (D07)„ Next one calculates u„ and p 
from ,eq?n*s (D „ 1) and (D„3) (using values of the thermody-
namic' quantities at points A and C which are located 
approximately from eq'ns (D.2) and (D.4))0 Next one cal-
culates h p , g p s £ , Tp from eq'as (D.5), (D.15) s 
(Dc13) and (D„14) respectively0 

Finally ap is obtained from eq'n (D.16J. Using 
these calculated, values the whole iterative procedure is 
repeated until all the quantities have converged to the 
desired accuracy. Finally the position X^ is obtained 
from eq'n (D017)„ 

The point of formation of a shock is located by 
calculating the point where the right flowing Mach lines 
first intersect,, The shocks may be treated, according to 
the procedure outlined by Hoskin (1964}„ 

For the case of no energy input, the choice of the 
difference intervals /it and Zs, sr- depends upon how well a 
straight line approximates the actual curved. Mach lines (i0e 
upon the relative change in the variables across these 



intervals}. If energy input is included then we have an 
additional constraint in that the interval ẑ- must be 
small enough such that the energy absorbed in the interval 
is small compared to the energy incident upon it (i.e. such 
that straight lines segments may be used to approximate 
the exponential-like decay curves, see Fig. 3.3). From 
practical experience v/e found that it is best to use 

= ^z- (in dimension!ess units] and also that the 
product ^ 2* CONS should not exceed 10. 

The procedure outlined above was used in section 
• 7o30.l to calculate the development of the shock fronts 
observed experimentally in oxygen in section 6.2. The cal-
culations were carried out for initial pressure of 1.0 atm 
and 0.1 atm. The peak photon flux was assumed to be 1.16 

22 ° 9 X 10 " ph/520 A cm "'sec and the time variation was taken to 
simulate the shape of the Bogen light pulse. 

The values of the constants and difference inter-
vals which were used for each case v/e ret 

1.0 atm O.J. atm 
/0/M - 1.69 X 10lscnf'3 f Q/M = 1.69 X 1018cm~3 

AONS w 0.0131 AONS 0.131 

BON.S r*0„llS5 X 107 BONS ==0.1X95 X 107 

CONS « 3 .0 CONS 30.0 
DONS ^ 0o 80 DONS «0.08 
^ t « 1.32—^(0.1 jisec) At =» 0.264 —^-(0.2 |>sec) 
A 2 r* 2.64 —s*(o00657 cm) ^sr ~ 1.056 —s-(0.0263 cm) 
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The computer programme used in the calculations 
is given on the following pages. The symbols used corres-
pond to the terminology used above except for the following 
temperature , T — E £ h f /kT s J *—>• S j density s - f — ^ R j 
effective adiabatic exponents g-—t-GAMj enthalpy, h—s-KHj, 
time, t — ^ t — D j Zv z — ^ d z ; Eulerian spatial 
co-ordinate„ x—^X^ The symbols XX, IIU and CO refer to 
the posit ion j, particle velocity and speed of sound of 
(right flowing) Mach lines0 

ADDENDUM: In section 7.1.1 we stated that for calculations 
in this thesis we would neglect the term ( 3g/ < 9 1 i n 
eq'n (7.11). It was found that this resulted in the calcul 
ated density being consistantly too high (violating the 
principle of conservation of mass). To overcome this 
difficulty we were forced to include this term. As shown 
in eq'ns (D. 1) and (D. 3) we assumed that ( ^ g)s at the 
midpoint of the Mach lines AD and CD was equal to ( ^g). 
gp - g J along the pathline BD (see Fig. 7.1). 



S P A L i S E M O U N T T A P E : ~ ~ : : : ~ : ~ ~ ~ 
$ J O B 7 9 0 8 7 H . A . B A L D I S 
S P A G E , 1 0 0 
ST I M E ' — "10 : : : - :

 ; — 
5 I B F T C M A I N 
C M E T H O D O F C H A R A C T E R I S T I C S A T F I X E D T I M E I N T E R V A L S 
G~ "" P R E S S U R E = 0 . 1 ' A T M ^ ~ • • ' 
C F F R O M B O G - E N L I G H T S O U R C E 

D I M E N S I O N S A M ( 8 > 6 5 » 8 ) > D X ( 2 0 ) > X M I N ( 2 0 > 
~ D T M E N'ST'O S ' ( ^ 2 T ) » ' P O " ( " 2 T . " l " l T L " r 2 T l ~ F X t 7 2 T T T r F 7 L ( 2 i ) » A ( 2 1 ) — ; 

D A T A A / Q . 0 0 2 5 l > 0 . 0 0 8 7 1 » 0 . 0 2 7 4 » 0 . 0 4 9 8 ' 0 . l 0 7 0 » 0 . 1 8 9 0 » 0 . 3 0 l » 
1 0 . 4 1 6 > 0 . 5 4 8 > 0 . 6 7 2 > 0 . 7 8 4 ' 0 . 8 9 4 > 0 . 9 6 3 ? 1 . -0 » 0 . 9 8 5 > 0 . 8 9 4 > 
2 0 . "6 4 7 > 0 . 2 2 T » 0 . 0 7 4 - 6 ~ > " 0 T 0 4 W > " 0 T 0 3 T T /—~~~~- = • : — ^ 
• T W = 6 . 0 • 

S ( 1 ) = 8 • 0 / T W 
~ D S = 0 - . 1 6 / T W — ; : — — 

D O 10 I = 1 > 2 0 
1 0 S ( 1 + 1 ) = S ( I ) + D S 

D O - 11 1 - 1 > 2 1 — — ; — — — : : — - — — 
• F L ( I ) = ( S ( I ( I ! ) / ( E X P ( S ( I ) ) - l . o ) 

11 F O ( I ) = S ( I ) F L ( I ) ' 
FL"7'= F L ! 1 ' ) - F L ( 21 ) — — : — r — — : — . 
F 0 T = F 0 ( 1 ) - F O ( 2 1 ) 
D O 12 K = 1 > 1 0 

: F L T = F L T + 4 • 0 * F L ~ — — — — • -

1 2 . FO -T = F O T + 4 . - 0 * F O ( 2 * K ) + 2 . 0 * F 0 ( - 2 * K + 1 ) 
F W L = F L T ' * D S / 3 • 0 - • 
F w'=r o T * D S / 3 . 0 " ~ ~ — — — : : 

6 0 F O R M A T ( 1 X > 7 E 1 2 . 4 ) 
W R I T E ( 6 > 6 0 ) FW ? F W L 
^ j M E i ON'" X T 9 9 > 3') "> U"( 9"9 > ' T ) ~ T T 9 " 9 ~ * T f r V T S T T S T ^ ' T ^ ^ 

1 H ( 9 9 > 3 ! >Q t 9 9 > 3 ) > H H < 9 9 > 3 ) »GAM'. ( 9 9 > 3 ) » X X ( 9 9 > 3 j > U U ( 9-9 » 3.) » C U ' ( 9 9 > 3 ) 
D A T A X ( 1 > 1 ) > U ( i » l ) . » Y < 1 > 1 ) > V ( 1 > 1 ) > R ( i , l } , p ( l > i ) , H ( 1 > 1 ) > H H ( 1 > 1 ) » 9 • xx t rv 1") > w ( i >' n>i:ijrmTTcn.TTTT6"A>raTr)-r :—: ;—~— ; — ~ — ~ ~ 
8 0.0>0.0>0.0>1.0>l.o>l.o>1.0>1.0>0.0>0.0>1.0>1.0>1.4/ 

D A T A M s . L / 6 5 > 8 0 / __ Q ( 1 = 0 < Q - - - --•• - - : : — — _ 

M l = M — 1 
M2 = M - 2 

1 A O N 5 = 0 . 1 3 1 — — 1 " — — — — — " — : — s 1 — 
B O N S = 0 . 1 1 9 5 E + 0 7 
C O N S = 3 0 • 0 

00NS=0o080 : ~ — — 
D T = 0 . 2 6 4 
D Z = 1 , 0 3 6 



dza=0 .528 ~ t * :—: : ~ 
do 1 i=1>m 
U( 1 + 1,1 )=u'( 1,1) 
YTi+-iTi"r=r(TVT"r~~ ~ — r — : — " ~~ — : — — 
q ( 1 + 1 v i ) =q ( i • 1 ) 
v ( 1 + 1 ,1 ) =v ( i , - l ) . 
r ( 1 + 1 ,1 ) =r ( 1 , 1 ) ' : ' " : : : — — r 
P( 1 + 1,1)=P(1,1) 
H(1+1,1)=H(1,1) 
rriTrTT7 = C(T7TT : ! — — — : — :—;

 : — 
H H ( 1 + 1 , 1 ) = H H ( I » 1 ) 

UU( I + l, 1) =UU( 1,1) 
c'j (1 + 1,1) =cu ( r , t ) ~ 1 ~~~ — - ~ : 1 : ~~ 
g a m ( i + i ' i ) = g a m c i > i > 
x x ( i + 1 » 1 ) = x x ( i , 1) + dz 
x"a+irnT̂ x"n~,T)+D"z ~~~J : ; ~ : — : — ~ — : — : — — — : 
dimension g t (29 ) » t t ( 2 9 ) ' g < 100 ) , t ( 100 ) , t 5 (100 ) 
data g t / 0 . 0 > . 0 4 8 4 , . 0 9 6 8 r .219 » . 387» .580* . 813» .981 • 1.0 , .99-ov 

1 .968vv935 » . 903, . 86'5 > . 8"2"6" >y739v.6~58v.583 v . 5 t 6 v . 4 ^ z , ~ 
2 . 4 2 6 » . 3 8 7 , . 355? .332* .313 * . 2 0 0 , . 1 0 9 6 > . 0 4 5 2 > 0 . 0 / 

data t t / 0 . 0 , 2 . 64 » 5 .28 » 7.92 »10.56 >13 ® 2 0 > 1 5 . 8 4 , 1 8 . 48 »21.12 » 2 3.76 > 
1 26V40V29TO4V3 . 
2 6 8 . 6 4 > 7 3 . 9 2 ' 7 9 . 2 0 , 8 4 . 4 8 , 8 9 . 7 6 , 1 1 6 . 1 6 » 1 4 2 . 5 6 » 1 6 8 . 9 6 » 1 9 5 . 3 6 / 
G(1)=0.0 
TCI) = 0.0 : ~~ : : 
t 5 ( 1 ) = 0 . 0 
ATM = 0. l • • 
do 554 j = 2 ,29 ~~~ ~ : : ; 

t5 ( j ) =atm*tt'( j ) 
do 557 1 = 2 , l ' 
t ci )=t c i - l t + d t ~ : : — 
do 556 j = 2 , 2 9 
i f ( t ( i ) . g e . t 5 ( j ) > go to 556 
G I T R G T Q ) ~ R R 5 T T Y ^ T N T T R R G I ( J ) - C I U - I ) ) / 1 R S U ) - 1 5 U - I ) ) 

go to 557 
g ( i ) =0 .0 

"cont inue ' : : : — 
l l l - l / 1 0 
do 3 n n = 1 » l l l 
do 3 nm = 1vt0'" — : ' : — 
n=nm+(nn-1)*10 
do 4 j = 1»m 
gam ( j , 2 ) = gam ( j» i t ' : : : 1 : ~ : 

ih j , 2 ) = u ( j , 1 ) 
C(J>2)=C(J »1 ) 
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"GAM ("JTT) =1.0+11 • Y i J » 2 )•) /GA 
v ( j»2 )=3 '»5* ( gam ( j » 2 ) - 1 . 0 ) *hh i j > 2 ) ' i gam i j * 20 *p i j »2 ) ) 
r ( j 5 2 ) = 1. 0 / v ( j »2 ) 
WtUT2~r=PT'U"r27W-(-3TZT7^T0TYTDT2TT~—;—;—;—— 
numg=numc+1 
i f ( n u m c . l e . 2 ) go to 101. 
cccc=c ( j > 2 ) '— : — : : — — — ~ — : — — 
c < j > 2 ) = s q r t ( ( g a m ( j > 2 ) - 1 . 0 ) * h h < j » 2 ) / 0 . 4 ) 
numb=numb+1 . / 

j > z ) r~b o i o l urr 
i f ( a b s ( y ( j > 2 ) - y y y y ) . g l . . o o l ^ y ( j > 2 ) ) go to luu 
i f ( abs ( c (-j > 2 ) -cccc ) . g i • • u u 1 # c \ j > 2) ) go io l uu 
•xtotz)•'='x-(-j- ', • • :— 
zom^zon 
z i m = z i n 
co n t t n u e :— :—" :—:— : — — -
do 86 k=1>m1 
x x ( k ' 2 ) = x x < k » 1 ) + ( u u ( k > 1 > + c u ( k » 1 ) ) * d i 
dc 32 j j = 1tm — ' : : — 1 

i f ( x ( j j » 2 ) « g t . x x ( k > 20 ) go 10 83 
do 84 i = 1> m2' • 
LT = M-I : : : : — — — 7 — : — 
uu (1_l »2 ) =uu ( l l— 1 > 2 ) 
c u ( l l » 2 ) = c u ( l l - 1 ' 2 ) 
xx ( l l »2 ) = x x ( l l - 1 » 2 ) : : : : ~ 
uu (1» 2 ) =0 • 0-
c u l . i > 2 i - c ( l » 2 ) 
XX ( 1 Tz) = 0 ® o 
go to 86 
xf = x( j j > 2 ) 
x e = xt u j - 1 > 2 ) ~ : 1 • • 
x f e = x f - x e 
u f = u ( j j > 2 ) • 
0e = ij ( j j - i » 20 — ~ : : : 

u f e = u f - u e 
c f = c c j j. >. 2 ) 
ce='c( j j - l > 2 ) : : : • :— : — — : 
c.fe=cf—ce 
b e s = 0 . 5 * d t * ( u f e + c f e ) / x f e --
c e s"= o 7B"*DT*"cwncrrr-pcutktitwetcet" : — 
xx(k>2) = (xx(k.»1 )+ 'ce5 -be i>*xe) /u . -w -bes ) 
txx = ( x x ( k » 2 ) - x e ) / t x f - x e ) 
u u t k j 2 )=ue+txx*ure " ~ ' ~~ ~ ~ 
cu(k > 2 )=ce+txx*c fe 
cont inue 



62' FORMAT (1X,I6) . 'j l 
WRITE (6,62) N . ;e' ' 

- W'R I » r t I , 2 ) ' GT̂ f' 2 ) ' P 1 I ' 2 ) > RTT'TM : ~ ~ — ' 6 
1 H ( I ? 2 ) » HH £ 1,2) » GAM i I » 2 } > AA I I , 2 ) » I = 1' M1 ) ' <n • 
RNM=NM TP 
-IF( RNM-lO.T7bV71V7T"'~ • •. ' •. •• : : : — — — :zi 

71 DO 72 1 = 1 »M 
SAM ( N'N > I »1 )=X( I ,2 ) _ _ s-AiVi( KNTI^-r^DTFT2T-- .—_ : 

SAM CNN,I>3)=PCI,2) 
SAM( NN»I , 4 ) = Y (I ,2) 
S A M C N N , I ,5)=G( I,2 ) : — 

SAM(NN,1,6)=Rt1,2) 
SAM(NN»I,7)=H(I,2) 

'72 SAM( NN , I ,6)=GAM ( 1,2 ) — — _____ 
7 0 CONTINUE 

DO 32 1 = 1 >M ' 
~ - v(I,3)= Y(I , 1) ; : ~ ; : 

3 2 Q.( I , 3 ) =Q( I > 1 ) 
DO 33 1=1,M • ~ " _ _____—: ; ________ 
U(I»1)=U(I , 2) 
Y( I ,1)=Y( I ,2) 

' V ( I , 1) = V (1,2) — : — : : 
R(I,1)=R(I,2 ) '.•'•.. 
P(I,1)=P(I,2) 
q'('i'7i j~=U ( I", 2 )'~ : 1 : ~~ ~ 
H ( I , 1 ) =H(1,2) 
HH(I,1)=HH(1,2) 

-3-3- GAM( I , 1T=GAM ( I , 2 ) ~ : : : : ^ — 
DO 34 1=1,Ml 
XX(1,1)=XX(1,2) : — uurrrrr=uu-cTT2n—: - :—: — — 

34 CU(I , 1)=CU(1,2) 
3 CONTINUE _ W R ITE( 7 ) SAiv; — 

CALL PLOTS 
M8=M*8 
DO 200 1=2,8 
CALL SCALE ( SAM ( 1»l.» I V » M8 »6 • U »AMI N 1 I ) , DA ( I ) , 1 ) 
CALL AXIS CO„"OVOTOV-rHX>̂ rr9VOVOVOVX?TrNVrr'"D̂ "TTT 
CALL AXIS(0.,0. »1H v 0 , 6 . »9U . , AM IN 1 I ) »• DA ( I ) ) 
DO 201 J=1 ,8 



c aT l pltotts/cm ( jti~» i") rsam ( j t 1 > n »+3 ) 
do 202 k=1>m 

20.2 c a l l plo'ubama j»k»1) >oafh j>fs. i > > + 2> 
:zoT~~coNTTNaE" ~ ~~ ~~ ; ~ ~ 

c a l l p l o h 1 2 . u > u . u » - 3 ) 
200 cont inue -^Qj-P1I0TWE, • ' ' — — 

stop 
end 

•SENTRY"- ~—~~ ~~ 1 — 
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A P P E N D I X E 

METHOD OF FINITE DIFFERENCES 

The method of finite differences to calculate fluid 
flow in one space variable is illustrated in Fig, E.l. The 
general procedure is to calculate the state of the fluid at 

£ 
Tn-r 

77 

n-i 

1 1 1 

— 

1 

1 
— u 

N ..,.,„„ P 

1 

1 
— 

1 

1 

1 

1 
— 

1 I 1 
3-1 Sf-l 

Fig0 E o1 Lagrangian mesh for finite difference 
calculations 

constant time tQ in each cell in the -2 direction with 
special techniques being employed at the beginning and 
end of the interval. One then repeats the procedure 
at intervals of tin:3 ^ t 0 Each cycle depends upon 
quantities calculated during the preceding cycle0 Thus 
the state and dynamics of the gas can be calculated as 
a function of s? (or x) at any time,, t. 

The procedure which v/e describe below is similar 
to that described by Richtrnyer and Morton (1S67), Chapter 12,, 
(together with comments on "centering"f stability criteriap 
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etc.) and a potential user should refer to this reference 
before attempting to use it„ Since our equations contain 
the rate of energy input q and our centering is slightly 
different from that of Richtmeyer and Morton and v/e present 
these equations in difference "form in dimensionless units. 
(These equations are very similar to those presented in 
Appendix d,j They are; 

i ^ < 

u , - & e . I (b) 
ri-f, , 

JL? - :U 
-t -> ) Jj o 3 

Wri- / / 
r • i -f S-, _ —• 

yj 

^ ' • * ( ' - K - ^ j . J ^ — — — ^ 

r / _(-• 

-h SortS-ft I / . ^ l i •'-I Si l/f+'k. 
jV ' 

HTIf'^-^) 

^ Js - 2 . 

a f/-?* 

E» 5 
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The various constants found in these equations are 

defined in Appendix D 0 The superscript - n { r indicates 

an average value (e.g. P ^ « 0 0 5 ( P ^ + P ^ ) j „ On the 

other hand the subscript j ^ does not indicate an 

average value J it implies that the value of P is calculated 

in the middle of the interval between j and j + 1 

(see Fig„ E o1}o 

The calculation procedure used, is as follows: 
"Ti ' 1 1 1 1„ Calculate U i ' and X. from eq'ns (E0.1) and 

j j 
(E02j for all values of j (using a special procedure 

at both ends}„ 
n -!- 1 

2. Calculate Vj + x (appearing as Y(J ~ 1, 2) in pro-
gramme ) from eq rn (E„3) 

+ 1 

3o Calculate Y. from eq'n (E.4) using approximate 

or average values for Y j , ^ „ T̂ f If lA .A special 

procedure is needed for Tt )d;f. 
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•4. Calculate q" from eq'n (E.5). (Note Q is cal-
culated in the middle of the time interval.) 

5 0 Calculate E3? + ^ from eq 9n (E.6). J z 
6. Use an iterative procedure to calculate P1? and 

J z 

H ? + -1 from eq'ns (E.7) and (E.8) 

7. Repeat steps 2 to 6 for all values of j„ 

8„ If necessary (because of instabilities or to shorten 

the number of iterations required) calculate weighted 
, „ ,„n + 1 n + 1 , values ox P.; . and. II-j . j. (i.e. average or weigh J ' ̂  o z 

the results of step 6 with those obtained in a previous 

iteration). 

9. Check the self-consistancy of the results obtained and 

if there is insufficient accuracyy store the values and 

return to step 1. 

10. If sufficient accuracy is obtained calculate Qs"' .<„xfor j z 
all values of j. 

11. Increase time index and return to step 1, 

V/e have not examined the stability criteria for 

our case in detail. In general 9 however, v/e find that the 

increase in the variables per ^ t interval should not ex-

ceed about 30% (even in this case we are not sure about the 

accuracy of the results since we use a large value for the 

artificial viscosity). 

The procedure outlined above was used in section 

7.3.2 in an attempt to simulate the development of a steady 

weak D-type front preceded by a Mach 3 shock. The condi-

tions for this case were the same as used in Fig. 3.6 
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initial pressure of 0.01 a tin and a photon flux, F = 4.72 
21 2 

X 10 ~ photons/cra sec for which the various constants were 

AONS » 0.532 

BONS ^ 0.1195 X 1 0 7 

CONS » 121.8 

DONS « 0.008 

DT » 0.04 

D Z * 0„08 

The value of a 2 8 was chosen for the numerical constant 

appearing in the artificial viscosity,, see eq'n (7.12}° 

The computer programme used for these calculations is 

given on the following pages„ Most of the symbols vised 

in the programme are virtually the same as used, in Appe:o,™ o dix D. The artificial viscosity is Q ^ — > Q S and a — A A . 



SPAUSE ' MOUNT TAPE" ' : ~ • ~~~ ~ 
$JOB 79296 ROB MORRIS 
SPAGE , 100 
S-fTM'ET"—~ ; to--— — — :—: — J- — — : — 
$ IBFTC MAIN 
C METHOD OF FINITE DIFFERENCES 
C — PRESS'URE = 0.0r A T M ~ — — "—: > ^ : — ; 
C WEAK D-TYPE + MACH 3 SHOCK 

DIMENSION SAM ( 5*80.* 8) »DX(20> »XMlNI2U) 
— :—DTME~N~STON~"Si~2T")~>~FQ~(̂ l̂  t 21) > A I 21) — ; -

DATA A/0.0°251 »0.00871 »0,0274'U.:U498'u. iu7u»u.l89u»u. 3^1 v 
l0.416'Q.548'0.672>0.784>0.894»0.963'1.0v0.985»0.894> 

: 2 o.647'0'.2'2r'Ov0746rvO-.t)4:98̂ 0vO-3-737 :— ^ ~ 
T W-6.0 
S ( 1) = 8 . 0 / T W 
Q5 = 0 .16/ TW —; : ; — ; :— 
DO 10 1=1 >2:0 

10 S( 1 + 1)=S(I)+DS 
. D 0 J — J. • 21 : : — 

FL< I )=(S( I )*S( I ) )/(EXP(S( I ) >-1.0) 
11 FO( I ) =S,( I )*FL( 1 ) 

F L T = f"'L"( 1) - F!_'('21 ) : - — — — : — 
FOT=FO(1) —FO(21 ) 
DO 12 K=1>10 

_ p L T = F L T + ̂  ,0 * FL" ("2*K')+2T0^FLT2^K+X) ~ 
12 FOT=FOT+4.0*FO(2*K)+2.0*FO(2*K+1) 

FWL = FI_T#DS/3.0 . . • " - ' • • • ' • • • ' - • 
FWi= F0T #D S/3. 0 " 

60 FORMAT (1X»7E12.4) 
WRITE(6>60) FW »FW L 

- D I MEN'S I ON OT3 ")"• »"0"r9UT3 ) » Y -l 9 U »3 )'» v i 9o > 3 ) »E < 9 v » 3. )•»P't'9 v•> 3) » 
1 H(90 > 3)>Q(90 > 3) »QS(90 > 3). 

______ DATA X ( 1 >1 ) >U( 1., 1) > Y( l, l) ,V I 1 > 1) >E<1 > 1) >P l 1 >1 ) >Hl 1 '1) / _ . _ _ _ _ _ ——— -

DATA M'L/80 > 50/ 
AONS=0.532 
B 0 N S = 0 . • 119 5 E+07 ' "— — 
CONS=121.8 
DONS=0.008 - ' . 

:—~G=T. o : — — - — : :—: — 
dt=o.04 
DZ=0.08 

; AA=8 .0 ~~~ : — — — — ; — — -
QS(1»1)=0.0 
DO 1 1=1?M 
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Q ( M > 2 ) =0 ( Ml, 2 ) """" • " " .-: " 
QS(M,2)=QS(Ml, 2 ) 
FORMAT (IX , 9 E12 . 4 ) 

"F0R M AT~~"( TXT2 I6T — • — — — — — — - — — — — — 
WRITE (6>62) N , NUMB 
WRITE .( 6 > 6 1 ) (X(.I »2 ) »U( I »2) »Y ( I-i »2 ) »V( I-l»2 } »E< I-l»2 ) »'p< -r-l»2) » 
I""' Hfl-i'i2 ) VQ (T-X»-2 ~ ~ ~ : 7 
RNM=NM 
I F (RNM-10 • ) 7 0 , 71 > 71 • . " ' • • ' • ' : . ' 

D0~~7 2" 1=1 »M ~~~ ~ ~~~ ~ " ~~ ~~ : _ 
SAM ( NN, I »1)=X( 1,2). 
SAM (NN,I,2)=U(I,2 ) , 
"SAM (NNYTY3 )~= P (1,2) . ~ ~~ ~~ ~ : 
SAM(NN,I > 4 ) = Y (I>2) 
SAM (NN, I * 5)=Q( 1,2) 
5AMrN.N¥TT6T=VTr>2rr : : : : : — — -— 
SAM{NN»I>7)=H ( I > 2) 
SAM(NN,I>8)=E(I>2)__ •' _ \ 
GO TO 32 ~ , ' " : ~~~ : 

DO 9 I = 2 »M 1 
U(I,3)=U(I>2) 
"p"n-i'T3")=PTr-TT2")" : • ~ . ~ : : ~ " 
H (I—1»3)=H(I—1* ) 
NUMB = NUMB+1 
go to ioo L : : : ~ : : ~ - ~~ ~ ~ : 
DO 20 I = 2 > M ". .. 
x ( i , i ) = x ( i , 2 ) 
"U ( i > 1) = U ( I ? 2 ') ' 
Y(1-1,1)=Y(1-1,2) 
V( 1-1,1 )=V( 1-1,2). . ' ' •• , • • - • •-•• ' . ' . • 
E (I-1,1 f = E ( 1-1,2) : — — — — : ~ — - ^ " -
P<I-1,1)=P(1-1,2) 
QS(.1-1, 1) =QS( 1-1,2 ) 
CONTINUE 
WRITE (7) SAM 
CALL PLO IS - - 7— : : 1 ; : 

M8=M*5 • • 
CALL SCALE(SAM(1»1»1)»M8»10.,XMIN(1),DX(1),1) 
DO 200 1=2,3 "" — — — — 
CALL SCALE(SAM(1>1»I ) >M8,6•0 »XMIN(I) ,DX( I) , 1) 
CALL AXIS (0.0»0.0»lHX-»-l»iO#»0.0»XMIN<-l> *DX(1)> C A LL A XTS ( 0 . * 0 V'»l:H"T""0"»"6T"»~9''0T"»-XM"rN"rr)~»"D"X_(T"r) : 
DO 201 J =1,5 
CALL PLOT I SAM( J ,1 »1) »SAM( J ,1 » I ) ».+3 ) 



~ " D O * 
2 0 2 C A L L P L O T ( S A M ( J » K » D » S A M ( J » K » I ) » + 2 ) 
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