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ABSTRACT 

The adequacy of the approximation method used by 

McMillan and Opechowski (I960} in their theoretical study 

of the temperature dependence of the paramagnetic 

resonance line shape function is very difficult to 

ascertain for the case of a typical paramagnetic crystal. 

For this reason the approximation method has been investi-

gated, in this thesis, for the very simple case of the 

one-dimensional Ising model. Exact expressions for the 

line shape function of the model are compared with 

expressions obtained by the above mentioned approximation 

method. The agreement between the two expressions is 

found to be very good for all temperatures, and in 

particular, for extremely low temperatures. 
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SECTION I 

Introduction 

Magnetic Resonance and Line Shape Function 

Let us consider a paramagnetic ion to the extent that 
it is characterized by a total angular momentum vector S 
and a magnetic moment vector ST satisfying the relation 

where the various constants take their usual meaning. We 
shall call such a quantum mechanical model, with arbi-
trarily fixed values of g and S, a "spin". We shall call 
a system containing an arbitrarily large number N of 
identical spins, i.e., spins with the same values of g 
and S, a "spin-system" or simply a "system". 

When such a spin-system is placed in a constant 
external magnetic field H, in the absence of interactions 
among the spins, the energy of the system will then be 



quantized into a finite number of distinct Zeeman energy 
levels. The number of such levels depends on the 
angular momentum quantum number S as well as the number 
N of spins present in the system. These levels, except 
for the highest and the lowest, are highly degenerate. 
The degeneracy is in general different for different 
energy levels, and depends again on the values of S and N. 

When a weak, sinusoidally varying magnetic field "H ,̂ 
frequency V , is superimposed perpendicularly onto the 
constant magnetic field H, and is so weak that its 
influence on the energy levels of the system is entirely 
negligible, transitions will take place among those levels 
if and only if the condition 

is satisfied, where E and E' are the energy levels of the 
system among which transition is induced. 

In the case where there is no interaction among the 
spins, we have 

where M* and M are the quantum numbers corresponding to 
E' and E respectively with the selection rule 

where 

£•'-£ -ffiH(M'-M) 

\m'-M\ =/ 



Thus 

Hence an absorption line will be observed at the 
frequency Vo and we shall call this process "Magnetic 
Resonance". •..•:•. 

Were it not for the fact that the occupation numbers 
are different for different energy levels, there would be 
neither net absorption nor net emission of energy. Since 
according to a general result of quantum mechanics, the 
transition probability between two levels is the same 
both ways. The average absorption and emission of 
energy in unit time thus cancel. But in the actual case, 
the system of paramagnetic ions is in a more or less 
well-defined thermodynamic equilibrium state, to which 
let us assign an absolute temperature T. The occupation 
number of the energy level E of a system of spins will 
be proportional to the Boltzmann factor namely exp 
where k is the usual Boltzmann constant. 

When E > E' 

then exp (- g r ) > exp (-

so there will be more spins at lower energy levels than 

at higher ones. Consequently there will be more transitions 

from lower states into higher ones resulting in the net 

absorption of energy from the oscillating magnetic field H^. 
When weak exchange as well as dipole interactions 



exist among the spins, each energy level of the system 

sublevels, each of which may or may not be degenerate. 
As a result of this, the magnetic resonance will take 
place at a large number of frequencies in the neighbour-
hood of V0 . Instead of a single monochromatic 
absorption line at , we have a large number of 
absorption lines with different intensities distributed 
in the close neighbourhood of >£ forming an absorption 
band. Each component line of this band, say a line at' 
frequency *, is characterized by an intensity 
function I( )£ ) (p = 1,2, ... ©, the number of component 
lines in the band). The number © of component lines 
present in the band depends on the type and the magnitude 
of the interactions as v/ell as on the geometrical proper-
ties of the system. 

We shall define a function ^ (>p J in terms of the 
intensity function as follows 

will be decomposed into a large number of closely spaced 

We shall call normalized discrete frequency 
function at frequency corresponding to a component 

* See note at the end of this section. 



line in the band. 

When the interaction is very weak, the band is very 

narrow. If, in addition, the interactions are such that 

the number of component lines present in the band is 

very large, we can approximate the discrete distribution 

of intensity function with a continuous one, i.e., 

6 
Z Ibf) « 
p-i 

On the other hand, when the absorption band is very 

narrow, we can still call it a line but it now has a 

"shape". The "shape" of the line is then characterized 

by a normalized continuous frequency function 

known as "shape function" defined as follows 

i ( r ) 

= (1-3) 
JlOrJdV 

Note ••.•••• 

We shall use the following notations consistently: 

f t 0 correspond to Zeeman transition frequency 

and transition energy •• 

yj> > tp correspond to a particular component in the 

absorption band , 

y, t correspond to any component in the 

J I (r) dr (1-2) 
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absorption band without specification} also 

used when we want to speak about the 

frequency distribution as a whole. 



SECTION II 

Statements of the Problem in General Terms and 
the Description of One-Dimensional Ising Model 

Let us describe more explicitly the spin-system which 

is discussed in McMillan and Opechowski *s paper (McMillan 

and Opechowski I960 ). 

The spin-system consists of an arbitrarily large 

number N of identical spins forming a three-dimensional 

rigid lattice. The properties of each spin are determined 

by a spin-Hamiltonian ft? , which incorporates the effect 

of the external constant magnetic field II and of the 

crystalline electrostatic field. 

The total Hamiltonian of the system is then given by 

K ft* + K' * K 
a 

(2-1) 

where 
N 

K (2-2) 



The Hamiltonian K describes the spin-spin inter-
actions which include magnetic dipole-dipole interactions 
as well as exchange interactions. ft" describes the 
effect of the high frequency oscillating magnetic field 
H, on the system. 

We shall assume that the spin-spin interactions are 
.weak, i.e., 

K° » K' (2-3) 

and also 

ft' » K" (2-4) 

That is, the weak oscillating magnetic field H^ only 
induces transitions, its effect on the energy levels of 
the system is entirely negligible (see p.2). 

Thus the Hamiltonian of the system can be written 
approximately as 

a = + K l (2-5) 

We shall call the unperturbed Hamiltonian and "ft the 
perturbation. 

In this case, due to the presence of the weak per-
turbation stfj and the huge number N of spins in the 
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system, the discrete frequency function (1-1) can be 
taken, to a very good approximation, as a continuous one 
(1-3). 

The calculation of for this system is a very 
difficult and still unsolved problem. Since we know 
from mathematical statistics that a distribution function, 
such as the line shape function -f(y) in the present 
case, is uniquely determined by its moment generating ,• 
function, instead of trying to obtain directly 
we calculate its moments which are defined as follows 

f r l f c r ) d r (2-6) 

where Jl = 1,2 ... give the first, second ... moments 
of f (y) . The moments about the frequency >£ of 
Zeeman transition energy £0 fare given by 

The formulae for the first and second moments have 
been obtained by various authors (see Van Vleck 1948, 
Pryce and Stevens 1950, Kambe and Usui 1952 and McMillan 
and Opechowski 1960). They are of the following forms 
(see McMillan and Opechowski) 

h - c1,)/b 
(2-8a) 
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h < A ^ y = d ' / B ( 2 - 8 b ) 

where B , ^ 1 ' and D^1' are expressions containing the 
Boltzmann factor JZ/Xfl (- ) where is a 
projection operator defined as follows 

S = f\/M \KK> (2-9) 

and M>, k )> satisfies the eigenvalue equation 

K° U k > = j^K} (2-io) 

(k = ly 2p «* # . $ the degeneracy of E^ ) 

These moments characterize sufficiently the position 
and shape of a line shape function -fcrj of a para-
magnetic resonance to make possible a comparison of the 
theory with experimental data. 

In order to evaluate these moments, McMillan and 
Opechowski employed the following method of approximation. 
Since a°>yfC (2-3), they expanded the Boltzmann 
factors appearing in (2-8a) and (2-8b) in the following 
way ••• 
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RKR 

e 
KT KT 

= e (2-11) 

We shall call the approximation consisting of keep-

ing only the first term in the square bracket "the first 
approximation" and so on. In this way the expressions 
for the first and second moments in both the first and the 
second approximation have been obtained (see McMillan and 
Opechowski I960). 

The calculation based on this method of approximation 
may seem, at first sight, to be entirely incorrect at 
very low temperature. In equation (2-11), as T tends to 
zero. ~ tends to infinity, hence the terms in the square 

' kT 
bracket containing this factor goes to infinity and thus 
the method of approximation seems to be inappropriate at 
very low temperature. However, the approximation may 
still be good. The presence of the Boltzmann factors in 
both the numerators and the denominators of (2-Sa) and (2-8b) 
as well as in (1-1) or (1-3) indicates that at very low 
temperature, the terms contained in the square bracket 
in (2-11) in the numerator and denominator may to a good 
approximation cancel each other. 

This thesis is primarily concerned with the investiga-
tion of this rather queer, low temperature behaviour of 



the line shape function 

To investigate the low temperature behaviour of <f(v) 

for the system discussed by McMillan and Opechowski is 

by no means easy. For this reason it may be useful to 

discuss a much simpler system such as a one-dimensional 

Ising model (Ising 1925) in the hope that we can throw 

some light on the low temperature behaviour of / 6 0 in 

the actual problem. 

Apart from the simplification of the three-dimensional 

to -one-dimensional lattice of the system of N spins, the 

employment of a one-dimensional Ising model consists of 

the following modifications to the model discussed by 

McMillan and Opechowski (see p. 'J of this thesis): 

(a) the angular momentum quantum number S of a spin 

is taken as S = 1/2 , 

(b) the crystalline electrostatic field is omitted , 

(c) the dipole-dipole interactions are omitted , 

(d) the isotropic exchange interactions Jj 

J = G w W : • L 2L Sj. S 

( £ ,m labels the spins in the system andTLi 
. t,m • 

means summation over all neighbouring pairs 

• of: spins )• 

are replaced by highly anisotropic exchange interaction 

JA 
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J a - ComX^nX. 

Since we are dealing with one-dimensional Ising model, an 
adjacent pair of spins can be labelled as £ and £ + 1 
respectively. Therefore 

Ja ~ OmA^tcunX ŷ-/, y 

where f means summation over all adjacent pairs of 
I 

spins. 
In order to write down the general expression of the 

energy levels for this one-dimensional Ising model, we 
shall use the following terminology: We shall call a 
spin positive if its magnetic moment vector /CO is 
parallel to the constant external magnetic field H, 
negative if it is antiparallel. We shall assume that 
the exchange energy for an adjacent pair of spins is 
positive if the spins are antiparallel, and negative if 
otherwise. 

We introduce the following notations: 
N = total number of spins in the system 

external constant magnetic field 
\T1 = number of positive spins in the system 
V£ = number of negative spins in the system 
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Q+_ = number of adjacent pairs of antiparallel spins 
Q «= total number of adjacent pairs of spins 
J = positive constant of exchange interaction 
M = magnetic moment of individual spins 

The general expression for the energy levels of the 
system is then given by 

the Zeeman and exchange energy of the system. 
Due to the frequent appearance of the Boltzmann 

factor in the following work, we shall consistently use 
the abbreviations 

t=suH(v,-v,) + jQ+_ -J(Q-Q^) 

or 

(2-12) 

are respectively 

J_ 
and e "KT 

The intensity function at the transition energy £ 
f 

can be written as follows 

(2-13) 

(p = 1 ... 9) 



-15-

where 

W(n,n' ) = number of permissible transitions from the 
level E„ to the level E„. where the Zeeman 
energy of level E n is greater than the 
Zeeman energy of level En' 

L = summation over all pairs of n,n' for 
n.n' 

and 

which | - En/ I = <£p > 0 

The frequency function (1-1} at Yj> can then 
be written as 

i ( n I ® 
fttp) = e . . (2-14 j 
' Z ikf) P'=I R 

r 1 (p = i e) 

Before proceeding, we must say a few words about a 
special feature of the one-dimensional Ising model. In 
this case the only interactions present among the spins 
are the exchange interactions. The number © of the 
component lines in the discrete absorption band is indeed 
very much limited. The reason for this will be explained 
in detail in Section IV. It is due to this fact that we 
must not replace the summation over in (2-14) with 

an integration over <£ in contrast to what we did at the 
end of Section I. 

The JL moment of about the Zeeman transition 
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nergy is given by (see (2-6) and (2-7) ) 

0 
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SECTION III 

One-Dimensional Ising Model (Open-Chain) for ,M«=4 

As a sample calculation, we shall take a one-dimen-
sional open-chain Ising model consisting of only four 
spins and calculate the frequency function "f^p) > "the 
first and the second moments about £e , the Zeeman 
transition energy, in the exact expression, first approxi-
mation and second approximation at various temperatures. 

In this case, since N is small, we can construct the 
energy spectrum explicitly as shown in Fig. (3-1). Simply 
by counting all the permissible transitions amoncj, the 
various energy levels, we see that there exist only five 
distinct values of transition energy, namely: 

Zp-H±4J , 2jlH . (3-2) 

The reason for this will be explained in general terms in 

the next section. 
The McMillan and Opechowski's expansion (2-11) now 

takes the following form: 
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L + KT f"'J (3-3) 

We shall assume = 20 J. 

By using the equations (2-12), (2-13), (2-14) for 
'•f(£p) and equation (2-15) for the moments of ^fCt) , 

the exact values of frequency function ^Ctp) at the 
transition energies (3-2) and the first and second moments 
of --̂ (t) about 

to = £M>H (3-4 ) 

are calculated at the temperatures 

T - + O O , T - Z O J / K , T ~ Z T / K , T - + O {3*5) 

The values in the first and second approximation are 
also calculated by making use of the equation (3-3). 

The results were tabulated in Table (3-6) for 
comparison. A graph (3-7) was plotted to show the general 
features of the temperature dependence of the function 
in the exact calculation, the first approximation as well 
as the second approximation. 

Our calculation shows that for a one-dimensional 
open-chain Ising model consisting of four spins, McMillan 
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ancl Opechowski's method of approximation, in general, holds 
satisfactorily. At very low temperature, that is, when 
KT is of the order of exchange constant J, the approximate 
values become so close to the exact values that the 
deviation is really entirely negligible. 
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Arrange- Zeeman 
inent Energy Total Energy Exchange Energy 

tm M L 

mt 

tw 2xi H 
ttlf M M ZMJi-J 

tm 

utt wt tm 3j tm mt 3i_ 

Mt tut m J mt m m t t t i f m un J 

!M ttu - J M W mi M M Hit d L 

tHf mt mi -JL 
M 

M Wi m -zu-H+J 

g ^ JttJW 
WH 

{Ill 'JMM 

P -4M>H-3J 

Fig. (3-1) Energy levels and transition scheme of 
one-dimensional Ising model (open-chain) with 4 spins. 



yU,ll - 20 J 

tr 

>J> — o O T=20J/k T=2J/k T — 0 

tr Exact 
1st 

app' n 
2nd 

app' n Exact 
1st 

app'n 
2nd 
app'n Exact 1st & 2nd app'ns* 

2/<H~4j 9/80 1/8 9/80 .0053 .0071 .0053 0 0 
- 2 J 19/80 1/4 19/80 .0490 .0596 .0495 0 0 

2jUE 20/80 1/4 20/80 .0932 .1050 .0939 0 0 
21/80 1/4 21/80 .4463 .4404 .4459 1/2 1/2 
11/80 1/8 11/80 .4062 .3879 .4055 1/2 1/2 

h<*y> 0.15J 0 0.15J 2.3982J 2.2846J 2.3948J 3J 3J 

6J2 6 J 2 6J2 8.5652J2 8.3196J2 8.5496J2 10J2 10J2 

Table (3-6) Results show that in general, McMillan and Opechowski's method 
of approximation holds satisfactorily at all temperatures. 
At temperatures below say , the differences between approximate, and exact 

values are too small to be shown here. 
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Fig. (3-7) Comparison of frequency function 
in the exact and first approximation. The 2nd approxi-
mation values nearly coincide the exact values and are 
not shown. 



SECTION IV 

One-Dimensional Ising Model (Ring) for Arbitrary N 

For the model discussed in the previous section, we 
have seen that McMillan and Opechowski's method of 
approximation holds sufficiently we.l I at all temperatures, 
and particularl y so at very low temperatures. In order to 
investigate the low temperature behaviour of the frequency 

one-dimensional Ising model consisting of an arbitrarily 
large number N of spins arranged into a ring. We shall 
call this model a "ring model" or simply a "ring". When 
N is sufficiently large, the results obtained for the ring 
model can be applied to the one-dimensional open-chain 
Ising model as well, since if N is very large, the end 
effect associated with an open-chain is indeed negligible. 

To calculate the general expression for the frequency 

terminology introduced by Ising: By a "negative (positive) 
gap", we shall mean a series of negative (positive) spins 
v/ith positive (negative) spins situated at the two ends. 

function in more general terms, we shall take a 

function model, we shall use the following 



Since the arrangement is a ring the number of negative gaps 

is always the same as the number of positive gaps in the 

same arrangement. The gap is single if it consists of 

only one spin, multiple otherwise J as shown diagramatically 

as follows: 

double positive gap 
+ • + 

single negative gap - double negative gap 

+ + 
double positive gap 

Biagle negative gap multiple positive gap 

Let 3 be the number of negative (positive) gaps in 

the ring, then (see ) 

*• 2S 

Q = N 
(4-1) 

Equation (2-12) then becomes 

E = H-4S) 

Hence the Zeeman energy of the system is determined by S, 
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the number of negative gaps in the ring. 

Let us define 

4 V* = - V z 

AS * S'-S 

AE = E'-E 

then for a transition of the type 

i.e. = -/ 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

the change in energy -a E can be obtained as follows: 
"Since • •. 

E ** ju,H (zVt-N) - (N-4S)j 

by using (4-4 J, (4-5) and (4-7), we have 

A E = -ZJU.H + 

(4-2) 

(4-2) 

(4-8) 
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Hence for each transition of the type (4-6), the 

Zeeman energy decreases by a fixed amount of 2/*H while 

the exchange energy variation depends on the change in S. 

Thus we can label A E as A E -4S 

= - 2/cH * * (4S) J (4-9) 

For any transition of the type (4-6), a S can have 

only one of the three values: -1, 0, +1, that is 

(4-9) A S = / 

f -1 if the transition takes place at 

a single negative gap; 

0 if the transition takes place at 

either end of a multiple negative 

gap; 

+1 if the transition takes place 

elsewhere. 

This is shown diagramatically as follows: 

+ + + -- - - - + + - - +- + 
1 t t t f I t t 

A s = 0,1,1,1,0, 0 , 0 , -1 

Here for convenience, we have cut up the ring into an open 

chain where the two end spins should be taken as adjacent 
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spins in the original ring. The arrows point to where the 

transition of the type (4-6) is to occur with the value AS 

associated with .such a transition. 

Combining (4-8) and (4-9), we shall have the follow-

ing three cases: 

A S - - / fat-H+47) (4-10a) 

i ^ 5 - 0 = -ZjU,H (4-10b) 

A S = + I = - ( ^ H - 4 7 ) (4-10c) 

Note that in the case of a one-dimensional open-chain 

Ising model, there exist five distinct values of transition 

energy A E, two among which, namely 2/mH tZJ , arise 

from the end effect of the open-chain (see Section III). 

By choosing a ring instead, we have discarded the end 

effect; thus only three values of transition energy are 

left, namely: Z&H+47 , &>H , ZJ^H- 4J . In 

general, for an Ising model with an arbitrary form of 

lattice, if the number of closest neighbours of a spin is 

K which is a constant, then the number of transition energy 

values is K + 1 provided that the number of spins in the 

system is sufficiently large that we can neglect the 

effect of the boundaries. A proOf of this statement will 

be found in Appendix I. 
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From equation (4-2), the energy levels are uniquely 

defined by giving Yg and S, therefore we can replace the 

quantum number "n" and "n"' by v2,S and v2',S'. 

Equation (2-13) thus becomes 

x f e ; - i L - 1 E k - s ) w W s * . s ) (4-I I 

Since a transition is permissible if and only if 

condition (4-6), namely 

AV* = ~l 

is satisfied, this imposes a relation between V 2' and V 2 

in equation (4-11). Moreover (see (4-5), (4-lOa), (4-^lOb) 

and (4-lOc)), 

r ' 1 (4-12) 

Hence for an intensity function corresponding to a 

particular component line in the absorption band, the 

values A V 2 and A S are fixed. Thus equation (4-11) 

reduces to the following form 

-L(b'-'^-b™;w* (*,s) <4 

where V V ^ (Vr,5) denotes the number of permissible 
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transitions from the level E v g to the level Eva-1,5+^5 ; 
and JEj means summation over all V 2 and S such that : vZ/S " 

F - E v * = a E C (4-14) 

The subscript ^ S appearing in both ^E^s a n d ^ s 

specifies the particular component line we are interested in 

in the absorption band. 

In order to calculate (VZ,S) in (4-13), we have 

first to know the following quantities: 

A) G(V0,S) «= the number of different arrange-tu 

ments of spins for given values of 

V 2 and 3, i.e., the degeneracy 

of a given energy level , g (4-14) 

B) D(V2,S) = the total number of single 

negative gaps appearing in all 

possible arrangements for given 

values of V 2 and S (4-15) 

To find G ( V 2 , S ) we essentially follow Ising's method 

(Ising 1925). In order to have S negative gaps, we need 

at least S positive ana S negative spins arranged into an 

alternating series in the form of a ring. The remaining 

Vi-S positive spins and V2~S negative spins are to be 
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distributed arbitrarily among the S positive and S negative 

gaps respectively. This leads to the following expression 
for G(V2,S) 

[v,,vz] 5 = 0 (4-16b j 

where the notation [a,b] is defined as follows 

a Xj. 

b Ij. (X >b 

M ] = (4-17) 

The factor 1 arises from the cyclic symmetry property of 

the arrangement. 

To find D(V2»S), we proceed as follows: 

Let "i" be the number of multiple negative gaps in a given 

arrangement of spins, let di be the number of arrangements 

belonging to G(V2S), each of these d ± arrangements has "i" 

multiple negative gaps. Then it is clear that 

D(VZ/5) (4-18) t. • 

where means summation over all values of i present in 
the G(V2,S ) arrangements. 

To evaluate di, we must distinguish the following 



cases which give the relations among V2,S and i: 

(a) Vz>S>2. implies l ^ / 
Since there are more negative spins than negative 

gaps, some of the negative gaps must contain more than 

one negative spin. 

(b) Vz >5 = I implies t =»/ 

Since there is only one negative gap, all the V 2 

negative spins must be contained in this gap. 

(c) V% =5 implies 1 ~o 

This means that all the negative gaps are single. We 

shall label the three cases of D as D a, Db and D c and shall 

deal with each of them as follows: 

Case (a) 

Since number of ways to form S negative 

gaps with V^ positive spins; 

see (4-16a) 

= number of ways to form S negative 

gaps with V 2 negative spins, S-i 

gaps being single; see (4-16a) 

number of ways to choose i multiple 

negative gaps out of S negative 

gaps, 

hence we have the expression for d i 

(4-19) 
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where again, the factor £ arises from the cyclic symmetry S 
property of the arrangement. 

Substituting (4-19) into (4-18), vie obtain 

Ck(K,»-Zo-o*m:WZ-') (4-20) 

where the lower limit of summation is certainly i = 1 

as required by the condition which implies 

the upper limit is [v2-S, S-lJ as can be seen from the 

equation (4-20) remembering that S ^ [v*,V2 ] (see 4-16a), 

Hence we have 

Da <*, 5) f f Z o m S M W ) 
««=/• 

•• Case (b) :•••. . 
Since there exist no single negative gaps, 

D b U , S ) ~ 0 (4-21b) 

Case (c) 

Since all the negative gaps are single, it is clear 

from the discussion of case (a) that: 

% (*.S) - N {tfi  ( 4' 2 1 o i  

With the help of equations (4-9)(410a)(4-lOb) and (4-10c), 
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the factor W^ tyz,S) i n t h e equation (4-13) can be 

expressed as follows: 

(!) ^ 5 | <= - (Z^tt+4-j) 

Since this type of transition takes place only at 

single negative gaps, 

• Wi, (vif 5) = D ( 5 ) (4-22a) 

(II) a s = O 

Since this type of transition takes place only at 

either end of a multiple negative gap, 

W0te,s)=2(S$-D) <^-22b) 

where SG(V2,S) is the total number of negative gaps and 

SG(V2,S) - D(V2»S) is the total number of multiple 

negative gaps for given V2 and S. 

( i n ) = 

Since this type of transition takes place "elsewhere" 

and there are altogether V2G(V2»S) possible transitions for 

given V2 and S, 
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w,, {v2/ s ) = Vz (k - w . ,-W 0 = {yt-ZS)Q- tp (4-22C ) 

where 

D(V2,S) = 
' D a(V 2,S) if V 2 > S ^ 2 
D b(V 2,S) if V 2 > S = 1 (4-23) 
D C(V 2,S) if V 2 = S 

Combining (4-lOa,b,c)(4-13)(4-14) and (4-22a,b,c) we 

have the following set of expressions for the intensity 

function; 

I {zmH+^j) =/_Jb -b D 
VI,S J 

(4 -24 a) 

AE0 - - ZyU-H 

I(z/iH) - -

xZx(S(k-D) 

= - [ZM'4-J) 

x[(vz-25)<t + D] (4~*fcJ 
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Since S = [fV-V2 , the upper limits of 
summation over S in the above set of equations depend on 
whether V 2 > | or V 2 < | . If N is even, there is a case 
where V£ = hence the problem is slightly more complica-
ted than in the case of N odd. For sufficiently large N, 
the intensity function will not depend on whether N is 
even or odd. Therefore we will assume, in the remainder 
of this thesis, that N is odd. 

By substituting equations (4-23)(4-21a)(4-21b) and 
(4-21c ) into equations (4-22a)(4-22b) and (4-22c) remember-
ing that N is odd, we obtain the following set of expres-
sions :•••••••••••••.••• 

x N x 

JJ-I vi-i Bi-ss-il 

rr'j ^ M ? ) ^ 1 . ) 
•Nr 

+ Z, b ( w J 
Vz = | J 

(4-* fa.) 
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i b M =(l-t>2AHJ 4 
(N+ZX-UH-NT 

** ttYz .zvzMH+45jiN-vt-r 

S=2 \ 
2 

M-l 

xzbl* 

i 

b 
z^z.icH +4J 

+ 2 L Z L H 
Vz =3 5=2 

ZYzMH + 45 J (N-Vz-f 
S- | 

fltL z. 
Z L b i 

(4-25 b) 

(H+2)MH -a1-4)7 

N-2 N-V2 

= S=2 L 
s-ij+Acs-

N-l 

+ L b Wz-Z) 

V ZNjlhl 
Mzl 

+ Z Z , b 
V̂ =3 5=2 

2Vz/lH +4SJ 1 /N-Vg-l 

t 
2 Vî w-H -f-4 J 

{4-25 C ) 
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In order to determine the upper limit of summation 
over i, we proceed as follows: 
Let V 2 = 2j for even V2, then 

(4-26a) 
zj-S >5-1 ^ - 7 

and V 2 s 2j+l for odd V2, then 

/2/-5 + K5-I JLj. S ^ - ^ ^ ^ + Z 

2.1-Sfl =5-I .If. s = -^f1- ® 
(4-26b) 

Zj.-S+\>5-\ JLj. 

No confusion will arise by using the same letter "j" 
to express both even and odd V2, since we shall replace 
the summation over V2 by a summation over even V2 and a 
summation over odd V2- This is necessary because the 
upper limits of summation over i are different In the two 
cases as seen from equations (2~26a) and (2-26b}. In 
carrying out this replacement, however, we have to specify 
whether VVj = , the lower limit of summation 

N~Z N-l Y , as well as V 2 = —s— , the upper limit of 
vfrkL 

z , . . is even or odd. For this reason we Vc =3 
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shall assume that N has the following particular form 

N S 4P-1 CP=t2'"") (4-27) 

This particular choice of N will certainly not affect 
the generality of our results thus obtained provided that 
N is sufficiently large. 

This choice of N leads to the following set of 
simple yet important relationships: 

JLtL-m 2 even V£ a Zj. V ^ ^ - ^ p 

(4-28a) 
odd y ^ H g => j - p 

w=i3zp-i o d d vfc-J^l ^u-p-l 

(4-28b) 

By using (4-26a ) (4-26b)(4-28a) and (4-28b) we obtain 
the following set of replacements; whenever we have in 
a formula a sum 

ti-z H-yft bt-S,S-i] 
L L L 
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Y/e shall replace it by 

Lx L^Li + 

Vp even 

Similarly v/e shall replace 
v-J 

~~2T~ vi-f [Vj-5̂5 -1J 

5-2 i = l 
by 

v 2 odd 
(4-29a) 

p-| / j- S-| p-/ / j- S-l 2-j- 2/-S-/ P-J j-

2 L Z . I L + 2 L Z L + L L , + Z L z L + L Z L 
s=i+\ j j-2 \ s-z (•=) S^t2 i=i / i m 

V2 even V2 odd 
(4-29b) 

After making use of expressions (4-29a) and 
(4-29b) equations (4-25a,b,c j become: 
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ZP-2 2/-S P-l Zl-1 2C-S 

+LL L + L L L 

/-2S«2«1 ^ps^+2 !=/ j.*Z s*j+z i-1 1 /WW// 

2P-Z 

2p-| 

•z, 
Vi®/ 

Of-30 a) 

IL L*LL t r H * w e ^ u - r n m =P 5=h-| ,'=/ >=2 S=>t| i=J ^ 

J ŷ i 
r' h 
ir-z 

+L 
Vz=Z 

zVtJiH+4 J 
a 

I 
(4-30b) 
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I (M-4ll) = (l-[>^H'4J)xUy:b'(^)MH'(N'4)7 • 

Jzprz J: 5-1 zp-z jp-x-i zjhs P-1 zj-\ zc-s .. ( ^ry. r o-i fp-Z-1 p-1 Zt-J Zi-S . ,, r 

i LL+L L L + L L t ^ m r L m i d ( t ; f n t=i r z  s =r 
ZP-l r 5-1 zpz 4P-2J.-Z «_5t, p., ̂  2l'-S+[ , . ĈI* <y-5t/ r-l Zl. 2i-s+ 

.=1 f 1 J-

Vi»3 

jZN/IH I 
b (4-30c) 

The summations over i appearing in the above set of expres-
sions can be reduced by applying combinatorial analysis. 
The fundamental equalities we are going to use are the 
following: 

(r) = ("r ') +C?-i) (4-31a) 

and •..••• 

z m j - n v <«»> 
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We observe that: 

then we have, for example: 

2 L '(rnrw-w-'jj-s&MTfc (tv 
« = / t-i • j J 

Following the same procedure, all the other summations 
over i can be performed. After some simple manipulations 
we arrive at the following forms: 

: M +4T)-(i-r
H" J)*b'UtVMH-M 

[zp-2 jr 2P-2 4P-Z}-I P~l Zi-\ . . „,] „. , 

ll+L L *it 
•
r
z S-Z -

r
p S^i-I -

r
z S'f+l 

s=2 /-P /«* 5'jtz 

^ t 4 Q i - O T ^ f P ^ s ^ ^ l J 

f 

Yz«=j 

(4-3ZCL) 
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•rz 5=2 -rz S 

' p-) ai ,, 
* z z * l l - * L L r V M H " 5 r ; r x r , ) 
r z 5=2 S=/r2 S=fu 

ti } i . 

| 
£=2 J 

(4-32 b) 

i(1^1-47!)-b-iT"-47) * , N X 

(2P-Z y ZP-2 4P-ZC-] p-l 2j-z ' £ 

L L * L L ' i L L tf^mmm 

z Z £ z 2 / ^ z H b ^ ^ n ' x r ) 
JaZ J-P 

•• 2P-2 ' 

r 2 ' " " / ' V 

Vi=3 •• • • 

(4-32C) 
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Now by rearranging the summations, applying repeatedly 
the equalities (4-31a) and (4-31b), and after some 
algebraic manipulation, it is possible to reduce the 
above set of expressions to the following forms: 

f I j / ^ ^ X - l ) ) (4.33a) 
' :1" v . f=2 S-2. : > 

I M J - ( / - r t x t - ^ " " -

a . 33b) 

r Z L b ^ ^ T s - r T s 2 ) I 
-3 5=1 1 {4-33c) 

As an independent check of these expressions we have 
calculated the values of intensity function for the ring 
model with N « 7 (or p = 2, N = 4P-1) by constructing the 
energy spectrum explicitly and counting all the permissible 
transitions among the various energy levels, as we once 
did for the N = 4 linear-chain model (see Section III). 
Results are compared with those obtained by using the 
expressions (4~33a)(4-33b} and (4-33c ), and found to be 
identical. 



In order to evaluate the double summations in the 
expressions (4-33a ) (4-33b) and (4-33c ), we introduce the 
following transformation: 

T 
r 
R 

A 

3 

t - 2 
S - 1 

N - 3 

,4j 

(4-34) 

then we have, 

(4-3fa) 

xwu) 

U -35b) 

l(kuti-4Jl)-(l-l> J*b xN*lh Uji-b J 
(4-35'c) 
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where 

R-l r+i 

0, = fg Z^'A* Z L Br(RrT)(r-i) (4-36a} 
T=O 

P. 

d - L A t L B'P-rVIT) <4-36b> 

Qs-IbL a t L b-(R;T)(rl) <4-36°) ts/ r=o 

To evaluate Q's let us consider a generating 
function: 

fur (},b) = (l+}Id)R~r (l + fj5)T T*R (4-37 J 

which is analytic except at the origin. 
Using binomial expansion, we have 

R- 7 -v 
f..r<}.B)~L ( W f - L ( z m y 

u LL—O U U 

' L L C Z K M ' " } " " 
U.-0 V"0 V 

R-T i „ R-TT . " ~ . t/lt-irj f 
yzz-f ' tts=0 VfeO U 

(4-38) 
Let 

R-T T 

u, r ) Q ( J e n -XT r (4-39 J fl RfT u-o r=o 
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then 

R-r 

"T 

• • K-T 

fB,T (J, B) = L s f R T (r, B; ^ (4-40) 

and ••. • 

.. , // 1 • U.BO U.= | . 
(4-410.) 

R-T T 

z. tu=»o 
r=o, a.- (qB) =ZL(V)(I)(/b)ZU' = Z IVXDb"' 

* ' . : iL—o •• ' ii^o ••• • 
(-f-4/ W 

r H s ; - ZL ( V ) & ) ( J B ) 1 - I b L (VXa+Jd"' 

Comparing (4-41a), (4-41)3) and (4-4lc) with (4-36a), 

(4-36b) and (4~36c), we have 

R-1 

Q, = Z J ^ ^T -O / S ) (4-42a) r-o v ' 

R 

6?3 - Z L /\T H s ) < 4~ 4 2 c) 

By applying Cauchy integral theorem to (4-40), we have 

If,®) j r+l 
(4-43) 
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where contour c denotes any closed path of integration 
around the origin in the counter-clockwise sense (see 
Appendix 2 for proof). Substituting (4-37) into (4-43), 

we have • . 

f ^ f o ) « zvtJ o + ( I +f/d)  T ^ (4-44) 

Substituting (4-44) into (4-42a), (4-42b) and (4-42c), 
after interchanging the finite summation with integration, 
we obtain 

R 

If. 

1 

rfffiff 

(4-45a) 

(4-45b) 

(4-45c) 

Substituting these expressions for Q's into expres-

sions (4-35a), (4-35b) and (4-35c ) respectively, we finally 

obtain: . 

* / 
VIH+ZT J_ { D£( R-)*R ALL^LI 

A ^lf(l^fe) Z^A ^ 

(4-46a) 
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(4-46b) 

(4-46c) 

Let us summarize what we have done so far. We have 
calculated the set of three exact expressions (see pages 
27-29) for the intensity function as defined by (4-13) 
for a ring Ising model consisting of an arbitrary number 

N of spins, where N is of the form N = 4P-1 (P = 1,2, ). 
For large N, this restriction on N will be of no import-
ance, so that the above set of expressions can be assumed 
to hold quite generally for large N. However once we 
assume that N is very large, we can greatly simplify these 
expressions. This point will become clear in the next 
step when we try to derive an explicit expression for the 
intensity function. 

Let us resume our calculation: 
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Since 

ZZ [ A 
T-O 

[ao* mi] 
hi /t/B^J. 

A d rfflf) 

R 

1- /1-

equation (4-45a) can then be written as 

' L H-I&y J 

zml {B } 

(4-47) 

where c denotes any contour around origin, and z 2 and Zg 
are the roots of the equation 

namely 

where 

1 

> -ikh'l+V + ° < J 

- oi 

c< -W- A)z t4AB 

(4-48a) 

(4-48b) 

(4-49) 
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e x a c t evaluation of (4-47) leads to a combinatorial 
sum (see Appendix 3) which is no easier to use than the 
equation (4-33a) which we have started from. It is for 
this reason that we shall assume that N is large, and we 
shall examine the asymptotic behaviour of the function 
(4-47) with respect to R (=N-3). Expression (4-47) can 

Note that the integrand in (4-47) has one and only one 

singularity, namely at the origin} the two integrands in 
(4-50) however, have each three singularities, namely at 
z = o, z = z 2 and z = z3> This does not lead to any 
difficulty so long as the two contours in the two integra-
tions in (4-50) are the same; in that case, the contri-
butions due to the singularity z = z 2 and to the singularity 
z = z 3 in the two integrations cancel. We can now choose 
a contour c' such that for R tending to infinity, 

be rewritten as follows: 

(4-50) 

Hence the contribution from the second term in (4-50) i 
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arbitrarily small in comparison with that from the first 
term and is consequently dropped (see appendix 4 for the 
choice of contour c* ). Equation (4-50) can then be 
written, to a good approximation, as 

h - I M l M f 
U - ZTTHR I I 7o~7V7r"V\ * (4-52) 

where contour c' and R satisfy the condition (4-51) and 
the symbol "A " denotes the asymptotic value. 

Now Cauchy Residue Theorem states that 

zkJ f(p (Ly Rju5 iffy), fc} <4"53 > 

and 

(4-54) 

for simple poles. By using (4-53) and (4-54), we obtain 

A = x f_L , J2M&2^ , SHJEk^L ] (4-as.) 

Similarly we obtain 

S ^ O f j f L . o f ^ L ] 

$ . x r M l i m ^ , M l U M Z L ] ( 4_ 5 5 c, 
^ >-b h-% 



-53-

By using (4-48a) and (4-48b), we have the following 
set of relationships: 

h -W: 

I* is it 

c< /rs 

--A 

— ~z (l-rA -I-**) 

(4-56) 

Combining (4-35a), (4-35b), (4-35eJ, (4-55a), (4-55b) 
(4-55c ) and (4.-56), we arrive at the following set of 
expressions: 

,.R+Zr R+l ft-fi -j) 
'HtJ LI-li-A-«)(li-A+C<) -(-I+A+°0(h-A-x) JJ 

(4-57a) 

i(ZJU,H) )*b 'xzti* 

(4Sjb) 

a,. , I \ r .7.^-4-7 \ i-H(M#-tZ)+(2/lHl-+J) 
I UwH'4jO~(hb )xb 

X fiS:?*Z [(-1 tA +«Xl+A t4* ]- (-l+A-«)(l+A 

(4S]c) 



If we assume that B ? i\, i.e., ^ 4j, then we 
have the following relations (see appendix 5 for proof): 

1 > • 1 + A ~<x > 0 
4 > 1 + A +<* > 2 
2 > | - 1 + A -ocj > 1 

I 2 ^ - 1 + A +cx (4-58) 

When R approaches infinity as required by the condition 

(4-51), 

R+l 
» (l+A-«) (4-59) 

hence we can omit the term consisting of (1+A- ) ̂  in 
each of the expressions (4-57a), (4-57b) and (4~57c). 
Moreover, since we are interested only in the relative 
magnitude of these expressions, a common factor can be 
extracted, where 

0 

Let 1 = 1 * ® » remembering that R = N-3, we finally 

arrive at the following set of expressions: 
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i V ^ j (4-6 la) 

i'UMH) (4-6ib) 

=(l-b*»H-4T)b2»H'%+A-0 (4-eicj 

where ^ = ^ K T 

A «= e * T  

* = L O - c £ / f r 

It is clear from the expressions (4-61a), (4-61b) 
and (4-61c) that if 2^112* 4j, then the intensity function 
is independent of N, the number of spins present in the 
system, provided that the conditions imposed on N are 
satisfied.• 

If 2yUE < 4J, we have to use the expressions (4-57a ), 
(4-57b) and (4-57c ) which hold for any values of ̂  II and J. 

Let us summarize what we have done. We have obtained 
the set of expressions (4-61a), (4~6lb) and (4-61c) for 
the intensity function as defined by (4-13) for a one-
dimensional Ising model consisting of an arbitrarily large 
number N of spins arranged into a ring, where N is of the 



form N = 4p-l (p = 1,2, }. The assumption that N is 
large enters our calculation for the expressions (4-61a), 
(4-61b) and (4-6ic) at the following points: 
1) that N must be sufficiently large such that (see (4-51)) 

where z satisfies the condition imposed on the contour c' 
(see appendix 4), 

2) that N must be sufficiently large such that (see 4-59) 

However for large N, the restriction that N takes 

the particular form N = 4p-l will be of no importance, so 

that the expressions (4-61a) (4-61b) and. (4-61c ) can be 

regarded as quite generally valid. Moreover, when N is 

large these expressions can be used for a one-dimensional 

open-chain Ising model as well. 
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SECTION V 

Intensity Function in the First Approximation for 
the Ring Model with Arbitrary N 

The first approximation calculation (2-11) amounts to 
putting j = o (i.e. B = 1, see (4-34)) in our previous 
calculation for the intensity function of the ring model. 
By so doing, the set of expressions (4-32a), (4-32b), 
(4-32c ) (4-33a ), (4-33b), (4-33c ); (4-57a), (4-57b), 
(4-57c) and (4-61aJ, (4-61b), (4-61c), as well as the 
expressions (5-a), (5-b) and (5-c) in Appendix 3, are all 
reduced, to the same set of expressions which is as follows: 

i* (2/^47.), =d-b 2 M j H)z 

I*(ZM,H) ~{}-bmH)4lf¥M 

and 

(5-la) 

(5-lb) 

(5-lc) 

(5-2) 



where (gj is given by (4-60) with J = 0, i.e., 

/ ® - ± F, ,2AHSN-3 , -NAOH 
• W, = £(/ + b J K b K N (5-3) 

and the subscript "1" at the lower right corner indicates 
that the various expressions are in the first approximation. 

The frequency function in the first approximation can 
be easily obtained by substituting (5-la), (5-lb) and 
(5-lc ) into (1-1): 

'i I 
f (zM>H-i-4T), = (5-4a) 

f(2AH)r (5-4b) 
(i+b^y 

* r+M'H 
f (IZAH'+JQ, = {L*BZM,HT (5-4C ) 
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SECTION VI 

Comparison of the Asymptotically Exact Expressions 
(4-61a ),(4-Slb),(4-Slc) with First Approximation Expressions 
(5-la),(5-lb),(5-lc) at Very Low Temperature and Conclusions 

i - W + P * * 4 7 

1*0Zjrii-nQ H i ' (4-61C ) 

i*{zj*H+4T),-0-b*Ul)Z (5-la) 
i V H ) , 

(5-lbJ 

f w - f i O r d - r t ^ 4 * " 
(5-lc ) 

Nov; let us resume our original question about the 
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goodness of McMillan and Opechowski *s .. : approxima-
tion at very low temperature. Since ( oi - A •+ 1J and 
( o( + A - 1) are finite at all^temperatures (4-58), it is 
clear that at very low temperature the factor 
in (4-61b) and (4-61c), and b 2 J l E in (5-lb) and (5-lc), 
tend to zero; hence the frequency function calculated from 
both sets of expressions tends to the same limit, namely 

/A 

f0 - 0 

(6-1) 

where we have used a subscript "o" to denote the tempera-

ture T = 0°K. 1 ; 

A graph (6-2) is plotted by putting jub H = 20J for the 
frequency function ^(L) calculated from both the 
expressions (4-61a), (4-61b), (4-61c), and the expressions 
(5-la), (5-lb), (5-lc) at various temperatures. It is 
seen from the graph that the method of approximation is 

quite good in general and extraordinarily good at tempera-
4 J ture below, say, T = — . 

Note that the expressions (4-33a), (4-33b) and (4-33c) 

can be written as follows: 
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i = i * <f> (6-3) 

where 
(6-4) 

and 

t"2 S=2 

•H- v , , z wH \ I 
I (zaH) ~(l-b ) 4 

fH-l M 
L L 

(6-Sb) 

t=2 3-1 

N-J t'Z 

i W - f i - O ' L f ^ M ^ i 

(6-5c) 



then 
r b 

47 
'O (6-6 J 

and 
b 
-2MH DO 

-4T 
b — 0 0  (6-7) 

hence 

•H-
f I0 O/tH-Mj) = I 

rt 

Ia (ZyUCH) = O 

IoG^l-4-Tl) = 0 ( 6 - 8 ) 

It is easy to see that the frequency function tends 
to the same limit as (6-1), namely: 

f0 (2/lH+4J) = I 

f0 (ZAH) 

f0(\ZM>H-4Tl) —O 

(6-9) 
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This shows that the frequency function calculated 
from the set of expressions (4-33a), (4-33b) and (4-33c ) 
tends to the same limit (6-9) in the following two 
processes: 

(1) We first let N tend to infinity and then let T tend 
to zero, 

(2) We let T tend to zero and impose no new condition 
on N. 



Kr/r 
Fig. (6-2) Comparison of the asymptotic values of frequency function in 

the exact (4-61a,b,c) and first approximation (5-la,b,c}. 



APPENDIX I 

General Formula of the Number of Component Lines Present 
in the Absorption Band for an Ising Model with an 

Arbitrary Form of Lattice (see p.27J 

Since the Zeeman transition energy is always the 
same (2/tH), the number of transition lines in the absorp-
tion band is given by the number of different values the 
transition exchange energy can take 

Let K = number of closest neighbouring spins 
(constant) 

V^ = number of positive spins among the K spins 
V 2 = number of negative spins among the K spins 

then 

Vi + V 2 = IC [Vlfy2] £ 0 (1) 

The number of different values that the transition 
exchange energy can take is equal to the number of 
different values that Vi and V 2 can take such that 
equation (1) is satisfied. It is obvious that this 
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number is K + 1. Hence the number of transition lines in 
the absorption band is K + 1 , provided that we neglect 
the effect of the boundaries. 
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APPENDIX 2 

(see p.47) 

To prove 

3c,r i n ^r-t-l ( 4 - 4 3 ) 

where 

R-T 

( 4 - 4 0 ) 

Proof. Substituting ( 4 - 4 0 ) into R . H . S . of ( 4 - 4 3 ) 

we have, 
R-T 

R-H.S. 1 X & t (KB) 

c 2 

••• 1 ? r'+l 
o r A-r 

.ZTfi v'^r 

R.H.S. L.H.5. 

Q. E.D. 
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APPENDIX 3 

The Exact Evaluation of Q-p Qp and Qg (see p.4S) 

Since 

^-zirilfB f (4-47) 

by taking an arbitrary contour around the only singularity 

of the integrand, namely the origin, and applying 

Cauchy's Residue Theorem for both simple pole and pole of 

higher order, we obtain 

In order to calculate the higher order derivative 

in the above expression, we proceed as follows: 
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and the coefficient of z R in the above expression is 

& L . m i t J d f r, R-r + S + t, R 

(2) 

7 
where means summation over all possible combinations '/j, t 

of r , s and; t. •• 
. •• Since. 

. w 
AL -
CLf I 

ft- - tf-w 

0 
(3) 

R<W 

substituting (2)(3) into (1), we thus have 

-m-£\£-h L v i u L, „ J (4) 

Combining (4-35a)t (4-48a}, (4-48b), (4-56) and (4) 

we have 
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T/ U ,-r\ ! -ti(M>Ht J) 

Similarly we obtain 

i m j ) - (i - r x +
1 2 W , 

K t* . . • • • ^ 

(5-bj 

f i / z , ( 7 u n h A * 4 % h A - « j % t i 
•. • K t 

•e.f/V-z;̂ /.]' 
+ t J ( 5 - c ) 



APPENDIX I 

To Prove the Existence of the Contour c' (see p.52) 

The contour c' in (4-52) must satisfy the condition 

lA(i + f&/})l <1 l+/aj-1 (1) 

wnere 

-IMbL 
I > f\ s e KT >0 (2) 

I > 6 - e K T & o < 3 ) 

i.e. A and B are positive quantities independent of z but 

dependent on the absolute temperature T. 

Let 

and 

A i f ® ( 5 ) 
J ~ X * f 
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then (1) can be written as follows: 

A I l-r ^.(x-if)! < I I +JQ (x+.y;/ 

A2 I I t f x t ^ < j \tzJEx t6 

(6) 

This is the condition that the contour c1 must satisfy. 
Let us choose x and y such that 

f-X*+f >I (7) 

If T = 0, we have, by (2) and (3), A = 0 and 3 « 0, 
hence condition (6) is satisfied. 

If T > 0, by (2j and (3), A > 0 and B > 0, hence by 



(7) we always have 

(X + yz-A ) 6 > 0 (3) 

I.-A* > o 

( 9 ) 

However, we must distinguish the case X > 0 and the case 

X < 0. If X ^ 0, then 

JE ( l ' f ) x (10) 

hence, by (S), (9) and (10), condition (6) is satisfied. 

If X< 0, we can choose y sufficiently large such 

that 

> M 

hence condition (6) is again satisfied. 
Therefore the contour c' can always be found and the 

approximation (4-52) always valid. 
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APPENDIX 5 

To Prove the Inequalities (4-58) (see p.54) 

Given 

cx! ~ j(l-A)z+4Ab ( i ) 

f * B & A 

or 

( 2 ) 

first we need to prove the inequality 

( 3 ) 

Proof: the inequality (3) can be rewritten as 

(!-A)Z +4A& > A* 

/ - 2A(l-28) >0 (4) 
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If & >-t then /-2B < O ( 4 ) h o l d s 

l f • /-2B=0 .-.(4) holds 

If o< B <i •• A * B <£ 

hence 
/-2B<I 

ZA<\ (4) holds 

if 8 = 0 then (4) holds 

he/ICC . (3) is always true. Q.E.D. 

V.'e always need to prove the inequality 

* < 2 • ( 5 ) 

Proof: 
7 0 « 6 S I 

= ](/-A)*+4AB 

<]0-A)z-t-4A - !+A (6) 

but o ^ A ^ ) 

o< ^ Z Q.E.D. 
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Since 

* BJ(l-A)z +4A6 

We now have the following set of relationships: 

by (2) , Z 1+ A & I (9 

(6) , I t A & (10 

(3) cK ̂  A (11 

(7) U > \-A if A,B * 0 (12 

(8) c< - J if A ,B <= 0 (13 

It is then easy to see that 

by (2), (5) and (11) -4 ** I + A t c< Z 

(11) and (10) / > ! + A - <x 5*0 

(2), (5) and (12) 2 > -/ + A + >0 

(10), (11) -/ > -/ i-A &.-1+A- (f+A) = -2 (14) 

by (14) ^ 2*1-1+A-«/ > / 

> I-A y ? O />. r ^ o o 

(7) 

= I J j . A,B = O i.e. 7 = CO 

18) 
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Kenee the set of inequalities (4-58) is proved. 

i 
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