IS100
THE TIME-DEPENDENCE OF THE LOCAL
STELLAR VELOCITY DISTRIBUTIUN
by
. JOHN BYL
B.Sc., University of British Columbia,-l969

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
~ THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

in the Department
of

Astronomy and Geophysics

We accept this thesis as conforming te the
required standard

THE UNIVERSITY OF BRITISH COLUMBIA
November, 1972



In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

Department of éf-/p,;fyfzzf ot/ %Zx{a,m»},/

The University of British Columbia
Vancouver 8, Canada

Date Ton /8, 1775




(i)

ABSTRACT

It is a well-known observational fact that the
velocity distribution of a group of stars is related to
the spectral classes of the stars. In particular, a large
vertex deviation exists for stars of early spectral types,
which disappears for stars of later spectral types. Also,
the velocity dispersions tend to increase with later spectral

types.

An examination of the nearby stars yielded rela-
tions between the velocity distribution and the spectral
type. Since it was possible to estimate ages for a number
of stars, the dependence of the velocity dispersions on

age could also be determined.

It was proposed that the observed effects are
due to spiral density waves. If account was taken also
of the fact that the orbits of the younger stars are not
yet well-mixed, then it was found that the predicted values
of the vertex deviation agree quite well with the obser-
vational values. The increase in the velocity dispersion
can be explained if the spiral pattern has dissolved and
reformed a number of times. From a comparison of the
theoretical age~dependence of the velocity dispersion and
the observational curve it was possible to estimate the
number of spiial patterns which have existed, their ampli-

tudes and their decay rates.
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CHAPTER 1

INTRODUCTION

l.1 The Problem

If the Galaxy were in a steady stéte, the velocity
distribution would be expected to be of the Schwarzschild
type-~an ellipsoid with the vertex pointing towards the
galactic centre. It would also be expected that the vel-
ocity distribution would be independent of the ages of
the stars. 1In fact, it has been observed thatvalthougﬁ
the velocity distribution does approximate an ellipse,
the vertex deviates from the galactic centre. The vertex
deviation and the velocity dispersions are observed to be
correlated to the spectral classes of the various sub-
populations. This appears to imply that the velocity
distribution may be related to the ages of the stars.

It is the object of this thesis to examine the nearby
stars and hence to determine a relation between the vel-
ocity distribution and the age. An attempt will then be
made to derive an explanation of the observed relation

from the theoretical point of view.

1.2 Review of Previous Work

Although the large velocity dispersion of very

old stars is almost certainly a relic of the rapid initial
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collapse of the early Galaxy, it appears unlikely that

the galactic gas disk can have>been sufficiently different
a few times 109 years ago from its present state., It thus
seems probable that the velocity dispersions increased
after the stars were formed. Some mechanism should then
be contained in the galactic system which is capébia of

producing the observed increase in the velocity dispersion.

It has been shown by Chandrasekhar (1942) that
star-star encounters are not satisfactory since the
resulting relaxation fime is much larger than the ac-
cepted age of the Galaxy. Spitzer and Schwarzschild
(1953) suggested that random momentum exchanges between
large cloud aggregates and individual stars could cause
the observed increase in the velocity dispersion.
However, Barbanis and Woltjer (1967), find it doubtful
that enough massive cloud complexes do exist in inter-
stellar space. Toomre (1964) suggested that gravita-
tional instabilities developing in the galactic.disk
might be responsible. According to Julian (1967),
instabilities that might have some relation to spiral
structure would be effective. This treatment is, however,
only local and has not been applied to the global spiral

pattern.

It was proposed by Marochnik and Suchkov (1969)

that the relaxation of the younger stars is due to the
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fact that the system of Population 1 stars rotates faster
than the system of Population Il stars. Interactions be-
tween the two systems cause Landau instabilities which
produce density waves. The growing density waves %hen_
cause the velocity dispersions to grow. To obtain an
increase of the observed magnitude it was required to
assumehthat 90 percent of the stars belonged to Population
II and that the éystem of Population Il stars was non-
rotating. Observationél evidence does not support these

assumptions,

Barbanis and Woltjer (1967) have shown that for
stars with small peculiar velocities the gravitational
action of spiral pertutbations which decay exponentially
with time can account for the increase in the velocity
dispersion., This was done using first-order epicyclic
theory. More recently, Pomagaev (1971) approached the
problem in a similar manner but expanded the theory to
include second-order terms. This approach differed in
that he considered the spiral pattern to be growing
exponentially. Although it is possible to estimate in
this manner the mean velocities due to the spiral waves,
the rate at which the velocity dispersion changes_with
time is difficult to determine even if it is assumed that
the stars are well-mixed and that averages are taken over

all angles.,
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Although the vertex deviation has been attri-
buted to the presence of spiral arms, two basically dif-
ferent approaches have been used. In the first, it is
assumed that the deviation is a reflection of initial
conaitions; Stars are formed in the spiral arms and
migrate, the influence of small-scale density fluctuations
not deleting their memory of origin. According to Woolley
(1970) the origin of Gliese's A stars can be traced back
to a thin strip resembling a spiral arm. Yuan (1971)
also studied the effect of the origin of the stars., He
assumed stars were formed in the spiral arms. Then he
calculated orbits for a number of hypothetical stars to
arrive at a statistical prediction of the velocity dis-
tribution at the Sun. For A stars this compared fairly
well with observation. However, Yuan also assumed that
at formation the stars are in a well-mixed state. This

appears to be unlikely.

In the second app:oach, the deviation is pos=-
tulated to be caused by a stationary distribution in the
presence of the spiral gravitational field. Kalnajs
(1971) found that if the spiral field is 5% of the mean
gravitational field it is insufficient to produce the
observed deviation. Independently, Mayor (1970) sﬁowed
that under certain conditions such a field could cause
the distribution of a group of stars with a small velocity

dispersion to be distorted so that it becomes similar to
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the observed distribution. However, to do this two
assumptions were made--firstly, that the low-dispersion

had reached a‘well-mixed state and secondly, that the Sun
is located on the inner edge of a major spiral arm.

Whether or not the local spiral arm belongs to the main
two-arm pattern is a controversial topic. However, most
observations favor the local OUrion arm as an inter-arm

spur (Simonson (1970)). Even if the local arm were a

major arm, the parameters of the density wave would have

to be chosen consistently. According to Yuan, a simple re-

orientation of Lin's pattern is not permissable,

Recently, a number of authors have considered
the Galaxy as consisting of a continuum of stars. The
evolution of the system is then studied by using hydro-
dynamic equations. These are derived from the Boltzmann
equation as equations for the first few moments of the
distribution function. GSince the equation for the nth
moment includes a term dependent on the spatial derivative
of the (n+l)th moment, the moment equations form an open
coupled system. In a small number of special cases the
chain of equations can be broken and a closed system of
equations is obtained., These cases will be briefly
examined below.

(1) If collisions dominate so that one has local
"thermodynamic" equilibrium, it is possible to apply the

Chapman-Enskog expansion technique (Chapman and Cowling

?
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(1953)). Since in the Galaxy collisions have a negli-
gible effect (Chandrasekhar), this is not applicable.

(2) Marochnik (1964) found that it is possible to
obtain a closed set of equations for motion perpendicular
to the rotation axis if one is interested in the evolution
of the Galaxy over a time-scale very much longer than the
period of rotation. He used the method developed by Chew,
Goldberger, and Low (1956) who examined the analogous
case of a collisionless plasma having a strong magnetic
field.

Since this method is not valid for timescales
comparable fo the rotation period, effects such as orbital
mixing cannot be examined. Hence this method limits the
description of the evolution of the system to a first-
order approximation.

(3) The last case is when the term containing the
next higher moment can be neglected. This is true if the
spatial variation of the higher moment can be neglected
(Hunter (1969)) or if the characteristic velocity of the
system is much greater than the velocity dispersion and
the next higher moments are small compared to the lower-
order moments. The latter is known as the low temperature
approximation and is described in more detail by Bernstein
and Trehan (1961). This method is valid only if the
stellar velocity distribution is at equilibrium. If this
is not so, orbital mixing occurs and the spatial deri-

vatives of the moments become very large. It should be
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noted that "equilibrium" is used here to denote the state
where orbital mixing has been completed and all memory

of the origin of the stars has vanished.

In spite of their shortcomings, the hydrodynamic
equations have been used with some success. Kato (1968)
was able to calculate the form of the velocity ellipsoid
if the stars had a systematic mean motion superposed on
the circular velocity. This was limited to the steady-

state case.

The time variation of the velocity éllipsoid

due to star-cloud encounters and due to galactic rotation
was examined by Kitamura (1968). Near the Sun, the effect
of star-cloud encounters was.found to be negligible,
Kitamura also found that if initially the vertex deviation
or axis ratio were different from the eqdilibrium values,
the velocity ellipsoid would oscillate, without damping,
about the equilibrium values. The period of oécillation

was ~108 years,

However, Kitamura assumed‘that the stafs had no
systematic mean motions in addition to the circular
velocity and that third and higher order moments could
be neglected. These assumptions are valid only if the
velocity distribution is at all times at'équilibrium, as

is true locally when collisions are frequent., If the
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initial velocity distribution is not at equilibrium or

if systematic motions do exist, orbital mixing will occur
and equilibrium will be approached. The oscillations
about equilibrium will hence be damped. The damping is
due to the fact that the spatial derivatives of the third
and higher moments gradually becohe dominant because the
stars have orbits with differing periods and thus get out
of step with each other. Since Kitamura assumes that the
initial velocity distribution is not at equilibrium, his
assumptions concerning mean motions and third and higher
moments are not justified, His hydrodynamic approach is

therefore invalid.

In conclusion, it was found that the hydrodynamic
equations are applicable only if the velocity distribution
is time-independent or if we are intérested in the
evolution of the system over very large time-scales,

Due primarily to the phenomenon of orbital mixing, the
method is inadequate for describing the time variation
of the velocity ellipsoid caused by small perturbations

from equilibrium.

1.3 Scope of the Thesis

Relationships between the velocity distributions
and the ages of groups of stars will be determined by
examining the nearby stars in Gliese's (1969) catalogue.

These stars were selected because their sample is
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relatively complete and because their data are more
accurate than those for more distant stars. The stars
will be divided into groups according to spectral type.
For each group the velocity distribution will be then
calculated. This will furnish a relation between the
velocity dispersion and the vertex deviation. Since

the spectral type may be considered to be a rough indicator
of age, this will provide also a zeroth-order estimate

of the age-dependence of the velocity distribution. Using
Iben's (1966) stellar models it is possible to estimate
(for a number of stars) their ages from their positions

on the color-magnitude diagram. Hence, by dividing the
stars into various age groups, the age~dependence of the
velocity distribution can be found, This will all be

dealt with in Chapter 2.

It is emphasized that the age estimates will
have unavoidable uncertainties. However, the importance
to this thesis of the derived functional variation of the
velocity dispersion with age lies not in the precise details
of the function but in the demonstration that the théoretical
mechanism through which it is explained is important in

the dynamical evolution of the Galaxy.

It is postulated that the observed age-dependencs

of the velocity distribution is due primarily to the
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presence of spiral density waves, Since the density waves
proposed by Lin, Yuan a%d Shu (1969) appear to be supported
observationaliy, the waves are assumed to be of this form.
However, Toomre (l§69) has found thet unless the waves are re-

plenished they will be damped due to interactions.with the stars.

Harrison (1970) has suggested that spiral waves are
generated by the interaction of radial flow from the
galactic centre with the galactic rotation flow. The
resulting spiral waves trail and are propagated outward.

These waves grow or daéay exponentially.

In Chapter 3 the response of a sub-population
of stars to such density waves will be determined. This
will be done for the gensral case of a velocity ellipsoid
with arbitrary axis ratio énd vertex deviation. The
density waves will be assumed to vary exponentially with
time. The results will then be examined to test the
sensitivity of the response to the values of the axis

ratio and vertex deviation.

If a sub-population of stars initially has a
velocity distribution which is not at equilibrium, then
the stellaf orbits gradually become "mixed" due to
differences in orbital periods. As mixing reaches

completion, the stars will be said to approach "equilibrium",
p P q
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In Chapter 4 such collisionless relaxation is studied in
detail in order to determine How and how quickly equi-
librium is reachéd. This will make it possible to cal-
culate the axis ratios and vertex deviatioﬁs (and hence
the respoﬁse.of the stars to density waves) for sub-
pobulations of stars which have not yet reached tﬁe

equilibrium state,

Using the mixing theory and being able to deter-
mine the response to density wavés, it is now possible to
calculate the perturbed velocity distribution of a sub-
population whose unpérturbed velocity distribution has
not reached equilibrium,. This will be done in Chapter S.
A theoretical relation between the vertex deviation and
velocity dispersion will be obtained and will be compared

to the empirical results,

In Chapter 6 the effect of deﬁsity waves on the
velocity dispersion will be examined. The waves will bse
assumed to have decayed exponentially. Using the methods
of Chapter 3, the mean velocity of a sub-population due
to the wave can be calculatedi As the amplitude of the
wave diminishes the mean velocity also diminishes as
mixing occurs. The resulting inﬁrease'in the.velocity
dispersion can then be easily obtained, Relations between
the velocity dispersion and time will.then be determined
for density waves of various initial amplitudes and decay

rates. These will be compared with the empirical curve.



CHAPTER 2

AN ANALYSIS OF THE OBSERVATIONAL DATA

2.1 Relation of Velocity Distribution to Spectral Type

In order that the samples of stars considered
be relatively complete, only nearby stars were selected.
The stars were all taken from Gliese's (1969) catalogue
of nearby stars. Only those within 22 parsecs of the
Sun were used. This left 1105 stars having known
velocity components, approximately 900 of these having

a known (B-V).

The mean velocities and the velocity dispersions

were determined from the following formulae, respectively

- l n

V = = .Zl vy (1)
2 1 2 -2 '

gl o= = i'gl (Vi=-V) (2)

where n is the number of stars in the sample and Vi is the
velocity of the ith star. This method of calculating
velocity dispersions is unfortunately highly sensitive

to stars with larger velocities, giving them an unduly
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high weight. Woolley (1958) found that for a Gaussian

velocity distribution the velocity dispersion is given by

o; = 1.483 x median of (V. -median velocity) (3)

He preferred the median to other Gaussian characteristics
as it avoids giving high weight to exceptionally high
velocities., However, large numbers of stars are needed
in this approach. If the number is small and there are
few stars with velocities near the average velocity, then
the median may differ greatly from the average, causing
large errors ianv. For groups of stars having large
velocities the distribution in v is not Gaussian but
asymmetrical--large negative values of v occuring more
frequently than equally large positive vélues. This is
due to the fact that stars with laige positive v {(greater
than 65 km/sec) escape from the Galaxy. Hence the sig=-
nificance of O;is weakened for the high velocity stars,
For groups containing only a small fraction of high
velocity stars, the distribution is well approximated by

a Gaussian distribution.

The difficulty of stars with large velocities
was avoided in the following manner. Using equation (2)
the velocity dispersions were calculated for each class
of stars. Stars having velocities differing from the
mean by more than twice the velocity dispersion were then

eliminated.
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Having eliminated the high velocity stars, the
vertex deviation ) was found using the relation
ZiZ&(”i'U)(Vi'V)

tan 2% = (4)
A Z(ui—u)z - Z('\li-v)2

where u is the velocity component.away from the galactic
centre and v is in the direction of rotation. The stars
were first divided into spectral classes. In each class
the giants, sub-dwarfs and white dwarfs were eliminated.
The velocity dispersions were then célculated for each_ .
class and the high velocity stars eliminated. The mean
velocities, the velocity dispersions and the vertex
deviation were then calculated for each group. The resulfs

are shown in Tables I and II.

From Table II it is apparent that the kinematic
properties of stars are correlated with the spectral type.
The phenomenon of asymmetric drift is demonstrated by the
change in v. It is, howeyér, primarily a function of the
velocity dispersions. The velocity dispersions exhibit a
steady growth through the spectral types, réaching their
maximums in the white dwarf and sub-dwarf classes. The
vertex deviation, on the other hand, has large values
for early spectral types and then gradually diminishes,
Although Delhaye(1965) has observed muﬁh larger vertex
deviations for young stars these values are not repro=-

duced here because there are very few early type (0-B)
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stars within 22 parsecs of the Sun.

The median velocities and the velocity dispersions
obtained by then using equation (3) are liétéd in Table
III., The agreement between Tables II and III is quite
good, suggesting that a Gaussian distribution weli
represeﬁts the velocity distribution aof the stars. The
differences in the various velocity dispersions of the
white dwarfs and sub-dwarfs are ;aused by the small numbers

of stars in thsse samples.

It is emphasizéd that in the determination of
the velocity distributions stars with large velocities
were omitted only because the velocity dispersions and the
vertex deyiation were highly sensitive. to such stars.
Since the vast majority of the stars were still left, it~
was still possible to obtain good estimates of the
velocity dispersions and the vertex deviation for each

group.

Table Il conveys the suggestion of equi-
_partition of energy. By this is meant that the velocity
dispersion increases with spectral type simply because the
masses of the early-type stars are greater than those of
of the stars of later spectral type. However, Woolley

(1958) found that when the w-velocity dispersions are



(16)

classified according to stellar mass there is no signi-
ficant variation. Von Hoerner (1960) has found that for

. stars of spectral type later than G5 no correlation exists
- between stellar mass and velocity dispersion in the plane.
" It thus appears inikely that equi-partition of energy

exists here.

It has been shbwn that the velocity distribution

. of the nearby stars is related to the spectral type. Since
the spectral type may be considered to be a rough indicator
of age, this is in fact a zeroth-order estimate of the age

~dependence of the velocity parameters. A more accggate

e

estimate will bz attempted in the next section.
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2.2 The Determination of Stellar Ages

To estimate ages of stars from their positions
bn the colour-magnitude diagram, it was first necessary
to determine a number of isochronic lines for the diagram.
The age of a star may then be determined by its positian
relative to these lines. The lines were found by the

following procedure.

Iben's (1966) evolutionary stellar model tracks
for 1,0, 1.25, 1.5, 2.25 and 3 solar masses were used.
These assumed an initial composition of 70.8 percent
Hydrogen and 27.2 percent helium. Since only a small number
of isochronic points could be determined from the five
tracks, it was necessary to interpolate between the models.
Through such interpolation Schlesinger (1969) has derived
some convenient formulae. He finds the zero age main

sequence (ZAMS) to be given by

| log L -0.1514 + 5,293M - 1.31 (log myte7 (1)

log T_ = 3.7486 + 0.678 (log )08 (2)

where L is the luminosity, Te is the effective temperature
and M is the mass in solar masses. The hydrogen burning

times were found to be

log t '9.5650 - 3.8075 log M + 1.31 (log M)1*T (3)

l =

log t, 9.4817 - 4,293 log M + 1.6312 (log M)1-7 (4)

where tl is the time needed for half of the initial central

hydrogen to be depleted (i.e., from Iben point 1 to 2) and
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t, is the time needed from there until overall contraction

2
starts (from Iben point 2 to 3). If M is between 1 and 3
solar masses, these relations give log L, 1laog Te and log t

to within 0.03, 0.01 and 0.02 respectively.

The ZAMS thus obtained and the empirical main
sequence determined by Johnson (1963) differ significantly.
Adapting the method of Sandage and Eggen (1969), the two
were reconciled by displacing the theoretical ZAMS horizon-
tally (i.e. in log Ta) to fit the empirical line while
keeping the luminosity constant. Justification for such
a shifting of the model tracks from the calculated effective
temperature comes from Demarque's (1968) demonstration that
ages are insensitive to differences in model radii,

provided the luminosity is correctly given.

The tables given by Schlesinger were used to convert
luminosity and temperature to visual magnitude and (B=-V)
color. They consisted, in part, of Johnson's (1966)
bolometric corrections and the (B-V, Te) relation due to
Harris (1963). A value of 4.72 magnitudes was used for the
sblar bolometric magnitude. Using equations (1) to (4),
model tracks were calculated for stars from 1.0 to 2.5
solar masses at intervals of 0.1 solar hass. These were
then adjusted to fit the empirical main sequence (see Table
IV)., The hydrogen burning times and thé-starting point on
the ZAMS having been determined for each model, the tracks

were then plotted on the color-magnitude diagram (Fig. 1)
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by interpolating from Iben's model tracks. From the plotted
tracks isochrones were drawn by connescting points representing

identical ages. The resulting isochrones are shown in Fig 2.

Ages for stars which have evolved far from the
main sequence could be estimated by noting their positions
on the color-magnitude diagram with respect to the isochrones.
Probable errors in the ages were estimated by observing the
deviations in the positions caused by the uncertainties in
the magnitudes and (B-V) colors. The uncertainty in (B-V)
was assumed to be less than 0.02 magnitudes. The uncertainty
in the absolute magnitude was taken from Gliese and included
the probable error in the parallax. FfFor each star a
ﬁaximum and a minimum age were estimated. The following
assumptions were then made--(1) that the rate of star
formation had not changed appreciably between the minimum
and maximum age and (2) that the stars in the solar
neighbourhood are well-mixed, representing stars of all
ages. With these assumptions, the star could have any age
between the minimum and maximum with equal probability.
Since we are interested in the mean age of a group of
stars, the age for each star was estimated by taking the
average of the minimum and maximum age. Essentially these

assumptions introduce a correlation between age and spectral

type.

According to von Hoerner (1960) the rate of star

formation has been approximately constant except for the



(20)

very.old stars. The ages for the very old stars must
therefore be weighted accordingly if the minimum and maximum
estimates differ greatly. The assumption that the stars
are épatially mixed is valid only for stars older than
abdut 109 years, Hence, in the final analysis, only the

stars older than lOgyears will be used,

For stars which have not yet evolved far from the
main sequence, ages were estimated by determining the
positions of the stars with respect to the points on the
model tracks corresponding to t and ts. Stars lying more
than one magnitude below the main sequence were discarded.,
The maximum ages of stars still being below or on the ZAMS
were taken to be the corresponding-tl times, Since the
minimum ages, thé contraction times, were small, thé
final age estimates were taken to be half of the tl times.
This was justified by our assumptions on the rate of star
formation. fha age estimates forlthese stars were consi-
derably more uncertain than those fér the evolved stars,
particularly for the main sequence stars having a (B-V)
greater than 0,50 magnitudes. For this reason only those
main sequence stars having a (B-V) of less than 0.5

magnitudes were considered.

The estimated ages for the evolved stars and
for the upper main sequence stars are listed in Tables V
and VI respectively. The first column contains the number

of the star given in Gliess's catalogue while the fourth
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column lists (Q, the quality of the'magnitude. The values
of Q and the corresponding uncertainty ranges are listed

in Table VII,

Age estimates for the giants were obtained by
‘using a composite of galactic cluster sequences. A com-
parison of the cluster sequences and the previously deter-
mined isochrones (Fig. 2) provided estimates of the cluster
ages., The ages of the giants copld then be calculated by

noting their positions with respect to the cluster sequences,

The cluster sequences which were used to form the
composite (Fig. 3) were those drawn by Sandage and Eggen.
In Table VIII, age estimates are given for the clusters.,
Our estimates for NGC 188 and M 67 agree quite well with
those of Sandage and Eggen and Iben. However, our values
are consisfently much larger than Lindqff's (1968) estimates.
This is partly due to the fact that Lindoff used the tables
in Allen (1963) to convert (L, Te) to (Mv’ B-V). These
tables, outdated, are inferior to those of Schlesinger.
More important, Lindoff had not adjusted his theoretical
ZAMS to fit the empirical ZAMS, Since they differ signi-
ficantly} this would cause large differences in the resulting
age estimates. The isochrones of Sandage and Eggen yielded
age estimates of NGC 3680 and NGC 7789 which were similar
to ours. A comparison of the results of Harris and Schlesinger
suggested that the uncertainties in converting (L,Te) to

: (Mv' B-V) were no greater than (DTOS, 0.01).
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From the composite in Fig. 3 it can be seen that
at certain places the sequences come very near to each
other, at some points even crossing. At those positions
it is extremely difficult to arrive at accurate age
estimates. Small uncertainties in the magnitudes or colors
cause very large probable error in the ages then. Hence
it was not possible to obtain ages for all of the giants.

Estimates for the ages of the giants are given in Table IX,

Due to low metal content, the subdwarfs lie about
one magnitude below the normal ZAMS, If the metal content
of the original interstellar material were negligible and
if the timescale for homogeneous mixing of the interstellar
medium is short compared to the age of the Galaxy, then

the subdwarfs must beiong to the very oldest stars.,

The giants and the upper main sequence stars are
all relatively bright and thus their samples can be assumed
to be almost complete. The subdwarfs, however, are quite
faint and selection effects can easily give rise to a
biased sample. The most important selection effect, according
to Von Hoerner (1960) is the magnitude effect. Faint stars
are difficult to observe and are put on observing lists
only if they have noticeably high proper motions. Thus,
on the average, the faint stars are expected to show

higher velocities. Opposing this is the quality effect.
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Stars whose parallaxes have been overestimated will appear
to lie below the main sequence. However, if the parallax
has been overestimated the spéce velocity will be reduced.

Hence this effect tends to. give stars lower velocities.

The subdwarfs were selected by considering all
stars with (B-V) greater than 1.2 magnitudes and lying at
least one magnitude below the ZAMS., For very faint stars
the main sequence of Gliese (1968) was used. Since Gliese
(1956) has shown that emission stars do not exhibit a
dependence on spectral type and that they have smaller
velocities that is normal, stars with emission spectra
were omitted. To minimize the quality effect, only stars
of quality classes (Q) 1, 2 and 3 were used. Finally,
in order to reduce the magnitude effect, only stars whose
‘velocities differed from the mean velocities by no more
than twice the standard deviation for the class were

considered., This left only 18 subdwarfs.

From their relative positions with respect to
the isochrones, the oldest evolved stars appeared to be
about 12 x 109 years old. Hence this was taken to be the

age of the subdwarfs.

2.3 Relation of Velocity Dispersion to Age

The stars whose ages had been estimated were

then divided into a number of groups corresponding to
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various age ranges, The subdwarfs and white dwarfs were
considered separately. For each group the velocity
distribution was determined by using equations (1) and (2)
of section 2.1 again. The mean age was also calculated
for each group but since each individual age had an
uncertainty due to inaccuracies in the star's magnitude
and color, the mean age likewise had a prdbable error.

This uncertainty, (, was found using the relation

5 02
g% - =i (1)

n

where n is the number of stars and(j; is the uncertainty

in the age of the ith star.

The probable errors in the velocity dispersions
were estimated by assuming the samples to be from Gaussian
populations and then calculating 70% confidence intervals.
Our samples were too small to obtain reasonable estimates
of the vertex deviations. The uncertainties are summarized.

in Table X,

The components of the velocity distribution for
each group are listed in Table XI, Although u and w
appear to vary irreqularly with age, v increases steadily
in magnitude (asymmetric drift). The velocity dispersions,
in all three directions, also increase with age, This may

be seen more clearly in fFig. 4. Error bars have added
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to only the radial velocity dispeision since they will

be similar to the error bars for the other dispersions.
It appears as if the curves could be divided into two
intervals., Until an age of about 2.5 x ldg years there
is a rathef rapid increase,but from fhere on the_increase

continues more slowly.

Oncé stars havsz becoﬁe well-mixed they approach
an "equilibrium" velocity distribution. Hence for older
stars it can be assumed that, after correcting for the
influence of the spiral arms, the velocity distribution
is near equilibrium, If the velocity distribution is at
equilibrium, the ratio of the velocity dispersions,
Oﬁ/@f s, will equal 0.4 at the Sun., From Table II it can
be seen that for(j&NZO km/sec equilibrium is already

approached.
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The theory that will be developed can of course
be applied to any function of age and velocity dispersion
derived from observations. However, the actual variation
of velocity dispersion with age derived here will be simply
interpreted by the.theory. The significance of the theory

is not dependent on minor re-interpretations of the data.

The age estimates ére, admittedly, subject to
a number of uncertainties due to the assumptions regarding
star formation rates, stellar composition and the evolutionary
tracks, among others, This is true particularly for stars
near the main sequence where the assumptions about star
formation rétes become important, Here Qe have relied
heavily on von Hoerner's results which indicated an almost
constant.rate of star formation over the last ~6. x 109 years.
This clearly injects an age-dependence on the spectral
type for main sequence stars. Hopefully, the uncertainties
may be reduced in the future. It is felt, however, that
the age estimates cannot be greatly improved upon with: the

presently available data.



CHAPTER 3

 THE RESPONSE OF STARS TO A SPIRAL GRAVITATIONAL FIELD

3.1 Changes in the Distribution Function

The response of a stellar disk sub-population to
a spiral gravitational fisld will now be examined. In the
initial stages of development the proﬁedure will resemble
* that of Lin, Yuan and Shu (1969) and.Mayor (1970). We
have borrowed freely from these sources. However, whereas
Lin and Mayor considered only the case of a well-mixed
("equilibrium") sub-population in a time-independent spiral
field, we shall examine the more general case where the
stars need not be well-mixed and the spiral field may

change with time,

Let r represent the distance from the galactic
center and let € be the anéqlar diéplacement measured
clockwise from the galactic radius passing through the Sun.
The galactic co-ordinates of a star are then given by (r,8).
For an infinitesimally thin disk the collisionless

Boltzmann equation in such a co-ordinate system is given by

2
df o df .~ of, AUBL, df 15U ThEL, of
&ﬂl§+q—5—e+(g;+?)ﬁ+(;a—e——-—f—)@l— =0 (l)

where f is the distribution function, U is the gravitational
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field and (FH,C&) are the components of the total stellar
velocity. If  is the angular velocity of the circular
motion defined by balancing the centrifugal acceleration
rﬂz with the symmetrical gravitational field and if the
peculiar velocity éomponents of the centroid are given by
(TL,C%), then the velocity components relative to the

centroid velocity are

n=-n,-mn (2)

® ®l - ®D - r..Qf (3)

Since the centroid velocity components are, in
general, small compared to (I,®) they will be neglected.

This reduces equations(2) and (3) to
n= 1 (4)
®= 8 -rQ | (5)

In order to transform the Boltzmann equation to

(iI1,®), the following relations are needed:

>f 3 ‘
of _ _of 6)
o® db®1 (
of _ »f

5o & (7)
of _ &f , ¥ 29 (8)
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The last equation becomes

df df B\ Of
¢ = or ~ m-”%?’;?@

Equation (1) may now be rewritten as

af +(m@)§f+(au+rnz+2‘ﬂ@+@)af léU ,(2 J%@)(% =

Sttt T3 S ot (255

where K, the epicyclic frequency, is defined by

. 2 0
K = “‘““5-55’

(9)

0 (10)

(11)

Suppose that U consists of a symmetrical gravitational

field Uo upon which is superimposed a spiral gravitational

field Ul of the form

U, = A(r,t)exp[i(mwt-m@+é(r)]

1

(12)

where A defines the amplitude of the pattern, n is the

number of arms, é represents the phase and w is the relative

angular velocity of the pattern. The spiral is then defined

by lines of canstant phase through the relation
n(6-8) = $ (r)—é(ro)

where (ro'ao) is the initial reference position.

defines the phase term as

Pir)-f(r) = D1l

tan 17
o

(13)

Lin

(14)
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where i is the inclination of the pattern.

Since the radial derivative of Uo is given by

-rﬂ?, equation (10) becomes, on substituting U0 + Ul for q&

aU
5—+H 3-4- (Q+r XB (a——+2ﬂ

o)af 151m< H.b

g‘ 36 20 B—O (15)

For convenience, the left-hand side of this equation will
be written symbolically as L(f). 1If only a symmetric field

exists (i.e. Ul=0) it will be written as Lo(f).

Let fo be the distribution function which the
stars would have had if no spiral field existed. The
addition of a.spiral field will result in a perturbation
¢fo in the distributien function. It is our aim to determine
an expression f’or¢ . A knowledge of¢ makes it possible
to then calculate the perturbations in the cbmponents of
the velocity distribution. The perturbed distribution

function f is given by
Fo= f_(1+¢) (16)
Assume that fo is of the form

f, = c(Br,t)exp[-A(6,x,,81D)] (17)

o]

On substituting equations (16) and (17) into equation (15),
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we then obtain

LW = - W)+ L () o ae)
whers Ly () = 231%‘13 +;-221?§é) a9
Now, 15 ie small, equ‘ation (18) may be J?inearized to
become

L@ = L@ (20)

If the spiral field components are of the form described by
equation (12), then it is naturally expected thatﬁb has a

similar form;
¢=¢ (x.1,0)exp| i(nwt-ng + & ()] (21)

‘where é defines the amplitude of¢ .

Linvhas shown that solutions of this form are
possible. Mayor, however, has found that the linear
approximation is no longer valid if the spiral field is
large or if the velocity dispersions of the stars are small.
Hence non-linear terms must be included. From equation (18)
it is evident that the first non-linear effects associated
with a perturbation of type (12) will appear as terms

proportional to

exp[Zi(mwt-m9+§)] . (22)
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The non-linear effects will therefore be estimated by

assuming Ul and ¢ have the forms

oo

u, = bj(r,t) exp[ij(mwt-m9+§)] (23)
j=1
o

% = kZ:ak(r,t,TL@)exp[ik(mwt-n8+§)] (24)
=1

If these are substituted into equation (18) it is found that

Lo(ak)+ikak(-m@+mw+ bé) = Elk(Q)"' > [antlj(m'zln(aj)]ék j+n
(25)

where ZL indicates summation over all values of n and j,

’
6ij is the Kronecker delta, and

Y- (), ijm. ()
Li_]( ) = -(lJb +——l)§— ——@- (26)

Equation (25) may be simplified somewhat by introducing a

change of variables, from (,®) to (T,.). These are related

as follows:

® = vzrsin! (27)
I = VchosJ (28)
where
2
v, = % (29)
v = r (30)
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With this transformation the derivatives, in terms of the

new variables, become

a( ) bTb( ), 083( )

ST - ST oT tonoT (31)
200 | AT 343 ) (32)
>0 LN CEY ,
200 _ 2,37 ) 20 ) (33)
9r  Or B?aT Torof

Using relations (27) and (28), equations (31)-(33) may be

rewritten
o) 1 ( ) sind () ,
S = VI[cosz%T--§+——E;7—] (34)
g(@) _ vi[Slngb( )+cosf b(/e)] (35)
2 ,,2
S)  TIVERR) 8 [t nfO1n (Vy+V3) L 3V, }a( L)
=T Z—T"" ST o7 ot
(36)

Assuming that the residual velocities 1] and @ are small
compared to the circular velocity and ignoring second-order

terms, the operator of equation (26) becomes

ijmbjcosfz 3 )

iimbi . N ) [E..sinf+ V2 J RY
Lij( ) = [-cijcosl+ 5i35151n1] ST lJ»_ -
and _ (37)

o = 3t or T oX
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The system (25) may now be rewritten as

da, Ja, kda 2
k- 6f+ikak[mw-2.0,+(2—ﬂ‘?£)(%%)*-cosﬁ] =5 (T, (39)

where

Sk = le(Q)+j§%[alen(Q)-Lij(anﬂ(5k,j+n (40)

If a  changes only slowly with r then equation (39) may be

further simplified to

-1 03 ‘ -1
K —a-w-}lk[l/‘fO(TCOS/a] ak = K Sk (41)
where
_ nw=20)
and
X = 20%z 08 ' | (43)
= K or
We now depart from Lin and Mayor and continue as fol-
ows. To solve equation (41) it is necessary first to

specify the variation of Ui with time. Knowing the dependence
of the bj's (the amplitude of Ui) ﬁn time, one could then
apply a Laplace transform and reduce equation (41) to a
differential equation in one variable,,[. In certain

cases it is possible to use a more direct approach. Ffor

example, if the partial differential equation is of the form

9
s

g(Lh(t) (44)
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and if the right hand side can be rewritten in the form
g(Dh(t) = g (Dh (t+§) (45)

where g,h,hl and g, are arbitrary functions, then if the

solution of

a - %5. = gl(f) (46)
is
alf) = g,(Q) (47)

the solution equation (44) is

all,t) = gy (Dhy (t+d) (48)
This result holds for all'functions h(t) yhich are of the farm
hitsg) = hy (0, (D) + hytd) (49)

If it is assumed that the amplitudes bj vary either

exponentially or sinusoidally, this may be represented by

bj = bijexp93¥) (50)

where/g is inversely proportional to the timescale of spiral
persistence and is real for exponential changes and imaginary
for sinusoidal variations. It is evident that for such

functions condition (49) holds. Since equations (37) and



(36)

(40) show Sk to be proportional to bj’ Sk may be written as

S, = g(Dexp(Gt) (51)

To satisfy equation (45), S, is rearranged as
S, = g(f)exp( L) exp/@(t+£ ] (52)

Hence, instead of solving equation (41), only the following

simplified equation need be solved:

(53)

B
3-[+¢ ak = «hk

where

-iK(V + xTcosd )

S~
]

-Skexp[jéﬂt+éﬂ

x
"

Equation (53) has the solution
)R

a, =.exp[.f¢dﬂ](ck +L hkexp[fsﬁdﬁ] df) (54)

where Sk is an integration constant.

Since a, will be perlodlc in Q
a (N) = a (f+2m) (55)

From equations (54) and (55) it is possible to determine Cy»

which was found to be given by
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¢, = 1825J7[%ggjjofh exp [¥d1 (56)

From the definitions of é,h and Cp equation (54) may now

be rewritten as

Y
a, = Kiexp U’ Y—d9+ fY—df] (57)
where
Yl = exp[ik(Z&LdeinQ ﬂ
Y, = exp[2n(ikid)]

If k=1 we have the linear approximation. For the non-linear
case only the first two terms are important. Hence only

h1 and h2 are needed. These were found to be as follows:

hy = =Ly, (Qexp| Be+d) | (58)
hy = =[L(@ + L) (@ - L (a))] exp[-Bied)]  (59)

To solve equation (57) it is necessary first to determine
the distribution function fb. For a two-dimensional,
ellipsocidal distribution it can easily be shown that the

distribution function may be written as

2 2 '
f, = ¢ exp(-xfT -x2@ -2x3n(» (60)
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where c, Xx X5 and x4 are defined as follows

l'

2%
(x,x,=-x5)
c . Rt ;’ 3 (61)

2

GG - g

xloﬁ ' ' (63)
—
oh
2
‘xfjén
Xq = —2;2- . | (64)

®

(62)

Here f; is the star density.
If the transformation defined by equations (27) and (28)

is now made equation (60) becomes

fo = c exp(-Tz(lelcosgf+x2V§sin%Q+2x3VlV2costinQ)) (65)

The new parameters p, q and¢ are now introduced by the

relations
pcos® = 0.5(x,VZ - x,V3) (66)
| psing = x3V Vs (67)
q = 0.5(x,V + x,V2) (68)

Using trigonometric relations, equation (65) may be rewritten

f, = c exp(=T2(q+p cos(2[-$))) (69)
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The expreséion in the exponential corresponds to the Q

introduced in equation (17). To solve equation (57) it is

1

Since by its definition (equation (37)) Lij is dependent

on the terms %g and %%, these will be derived first. From_

necesséry first to determine h, and h2, and hence Lij(Q)'

equation (69)
Q@ = -T%(q + pcos(2f-4)) (70)

Differentiating Ql it is found that

%% = §$ | (71)
%91 . [(lei - xz\lg)sin 2f - 2x4V,V,cos 21] (72)

If these expressions are now substituted in equation (37),

it follows that

L0 = Bijrcosﬂ + Bijrsinﬂ {73)
where N
b, 413b x.V
X 3V,
Bij = -2lel(1Jb33; + ) + (74)
.S ob., 4ijb. x2V2
Bij = -2x (1Jb35; + r) + ————————- (75)

With these relations it is now possible to determine hl

and h, and hence a, and a We shall now proceed to

2 2°

determine a solution for the amplitude equation, equation

(57).
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3.2 The Solution of the Amplitude Equation

The linear case will first be considered. From
equation (57) of section 3.1 it is clear that the amplitude

a; is given by the relation

{
h Y h
a, = Ylexp(ﬁ% + éﬂ)LL Yidﬁ + I:$E g? Yidﬁ}/K (1)
where
Yl = exp[i(Uﬂ + 2Tsin/ ﬂ
Y2 = exp[Zﬂ(iU + é)]
hl = (Blchosﬁ + BZlTsinQ )exp[fﬂ§t+£ﬂ

It is evident that a singularity exists when Y2 equals
unity. For a time-independent wave (i.e.[}:O) this implies

that

mw - ZQ _ + (2)

Hence the singularity occurs when

+
-nK + 20
m . (3)

If the spiral pattern has two arms (i.e.m=2), the

. ‘s +
singularities at n=-=1 occur when

w =) b g (4)
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These correspond to the Lindblad resonances. Because of

the very large resulting amplitudes, the linear approximation
is no longer valid at the resonance points. We shall,
thereforz, limit the development to situations far away

from the resonances. Since the Sun is, fortunately, not

near a resonance position, such a treatment will be

adequate for stars in the local vicinity.

The form of hl may be simplified somewhat by using the

relatians
cos I = exp(if) ; egp(-if) (5)
sin { = _iexp(iﬁ) 5 exp(-i{) (6)

The equation for hl then becomes

hl =T exp(qﬁk +v£%%>Alexp(i£) + Azexp(-iﬂ) (7)
where
B + 1iB
11 21
Al = (8)
B,, - iB
11 21
AZ = ——— (9)

To solve the integralé in equation (1) it is convenient
to use Bessel functions. The fcllowing relation is given
by Watson:

(aiT)exp (=ind) (10)

o0
exp(-ideinI ) = ;Z;ogn
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where Jn«XT) is the Bessel function defined by

(-l)n(dT/Z)n+2m

n!(n+m)!

Jm(dT) (11)

0

hingh:

Substituting equaticns (7) and {10) into equation (1),

the first integral becomes

1 o0
:L T AJ;xp(iﬂ) + Azexp(-igﬂ ;i;ogn(dT) exp[(in-el)ﬁ]dﬂ
(12)
where | e = i) +/@ (13)
1 R
This expression can be easily integrated and becomes
o0
T ;i;ogn@xT)[Aaexp(-[el+in-i]Q)+Adexp(-[el+in+i]Q)-Aa-Ad]
(14)
where )
A
1
Ay = v oI (15)
1
A
2
Ay = s Tnvs . (16)
1 _
Similarly, the second integral in equation (1) may be
integrated to yield
oQ
T 2;;ygn(dT)[A3+A4][exp(-Zﬂel)-l] (17)
since - exp(in2/T) = 1 (18)

for all values qf N, -
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If expressions (14) and (17) are now substituted into
equation (1), a number of terms disappear. The following

simplified relation is left:

= A.explil-ind)+A exp(=il(1+n))

exp(iX-in¥)+A,exp(-1i +n

a, = Texpng+ideinQ);i;°gn(dT) 3 7 4
(19)

In the linear approximation, the distribution function is

given by

f = fo(l + alexp[i(mwt - nB +§)]) (20)

Since an expression for a; has now been obtained, it will

be possible to solve equation (20) for f.

3.3 The Elements of the Velocity Distribution

A knowledge of the‘change in the distribution
function due to a spiral density wave makes it possible to
determine the corresponding changes in the velocity
distributibn.- The perturbations in the star density, the
mean velocities and the velocity dispersions are of ﬁrime

interest.

Let f% denote the star density in the absence
of an asymmetric gravitational field. With the addition

of a spiral field the perturbed density, O, becomes

P= H(1) | (1)
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where H is an operator defined by

o0

H(x) = jf xf (IT,®) d11d®
0% 00

Similarly, the mean velocities and the velocity dispersions

may be written as

f = E.%H | (2)
5 = ﬂgl . | (3)
a2 - H,(oHZ) _ =2 | | (4)
0y = ugﬂ_@z (5)
P - HOm _ oo | ()

As was noted in the previous sesction, the distribution

function f is given by

f = fo(l + a (7)

191)

where

9, = exp[i(mwt—m9+§)]: (8)

If the form of f_  is taken to be that of equetion (69) in

section 3.1, equation (/) becomes. .

f = cg,(1 + ag,) (9)



(45)

where

9, = exp[-TZ(q + p cos(2£-¢)ﬂ (10)

However, if this form of fo is used then the variables []
and ® must be transformed to expressions in T and,ﬂ.
Recall that

IT= VT cos / g (11)

&= V,T sin{ (12)
If equations (1) to (6) are to be integrated over T and A

rather than J] and®, then the following relation must be used:

o0 .
ﬂom.@)dm@ = JFpeeD l(%‘f%%‘)) - <§g@[dndr (13)

Using equations (1l1) and (12), the right-hand side reduces to
o0,
O/é"jf(T,[)TvlvszdJZ_ (14)

Substituting equation (9) and (14), equation (1) may be

rewritten as

oor2n
P= vlvzcofo Ta;9,9,d0dT + O (15)
Expressions for the mean velocities and the velocity

dispersions can be obtained in a similar fashion. All the

resulting equations will have terms containing combinations
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of cos{ and sind after substituting for Il and ®, The
integration of the equations can be simplified slightly if

the following identities are used again:

COS/Q - exp(ig) ; EXP(-i«Q) - (16)
ein d = _iexp(iﬁ) 5 exp(-ig) (17)

On substituting equation (19) of section 3.2 for
a, in the equaticns, it was found that, in general, the

following integral must be evaluated:

00
IZ(A,y) =':7§792Txgi;ogn(aT)Azexp[—ig(n-y)+idT sing]d Lat

(18)
where z,A,and y are integers.,

In terms of integrals of this form, the components of the

velocity distribution may be written as

13(1,1) + 14(1,—1)

p= eV Vg, exp(f3t) — (19)
1.(2,2) + 1,(2,=-2) + 1,(2,0) + 1,(2,0)

= 2 3te LY RLY 3le 4\

= cViV,g,exp(Qt)
gl 1V29,0%p (G 2KpP (20)
1,(2,2) - 1,(2,-2) - 1,(2,0) + 1 (2‘10)
- ] ? 4 b4 ? 4 ’
@ = -1chV§glexp(,3t) 3 2K/03

(21)
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13(3,3)+14(3,1)+I3(3,-l)+1d(3,-3)+213(3,l)+

4K

RN - X (22)
aKpP

2 3
Cfﬂ, = chVZglexp (/31:)

1,(3,3)+1,(3,1)+1,(3,-1)+1,(3,-3)=21,(3,1)-

3
(jé = -cV,V5g,exp gBt)

4KP
21,(3,-1) -5
—_ - ® (23)
4K/°
1,(3,3)+1,(3,1)-1.,(3,-1)-1,(3,-3)
2 . 2yl 37 4 3°7 4 "
| d@ﬂ= -1chvzglexp(/8t) Ko
et (24)

It now remains to evaluate the general integral Iz(x,y).
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3.4 The Solution of the General Integral
In order to determine the elements of the velocity
distribution it is necessary first to solve the integral

given by

(o)

IZ(A,y) =°?[§nexp(-l§[q+p cos(29-¢)})TA |
nZLogn(aT)Azexp(if(y-n)+idT sinﬂ)dﬁdT

' (1)

"It will again be convenient to use Bessel functions; The

following identities from Watson will be used:

o0

exp[szp cos(2f-¢ﬂ = kz;ogk(pTz)exp[ik(21-¢+ﬂﬂ (2)
0o
exp[iaT sinﬁ] =.m21°3mfaT) exp(imﬁ) _ (3)

where Ik(z) is the Bessel function of an imaginary

argument, defined by

~18

(Z/2)k+2n ,(4)

Ik(Z) = n=0 ni{k+n

Substituting equations (2) and (3) in equation (1) and
rearranging terms, it is found that

(o0

0 o0 _
IZ(A,y) =-£T EXP('QTZ)kELogk(pTz)nglégn(aT)Az

(o]
,,,,Z_og,,, (m)ﬁ%xp [i (k (2f-B4m) 4 (y-n)L +m D] afaT
(5)
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Clearly, the integral in f will vanish unless
y-n+2k+m = 0 ()

If this condition is satisfied, then
t2::7]’e><p[i'k(Tr-?s)]d,(z = 2 exp[ik(n-é)] (7)
Introducing this into equation (5), the equation becomes

fo,\ 2, ¥ 2, &
A y) = [ Pexp (-aT) & L (574 2, OMA,

m;_ogm(o(r) 21 exp[ik(n-gﬁ‘)]dT (8)

with the condition that-

y=n+2k+m = 0 A (9)

To evaluate equation (8), vafious properties and
relations of the Bessel functions and hypergeometric
functions will be used. These can all be found in Watson.
The Bessel functions Jn and J"‘may be>combined by using the

relation-

o0
n+m+2s s (n+m+2s)!
Jn(X)Jm(X) = Z;U(X/Z) (-1) s!(m+s) I {n+s) T (n+m+s]!

(10)

for n and m greater than or equal to zero. When n or m is

negative, Jn may be transformed to the corresponding
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Bessel function of positive n, J-n’ by the identity

J__(x) = (1" (x) (11)

Equation (10) can now be generalized to hold for all values

‘of n and m if it is rewritten as

[0 0]
v
J (x)d (x) = Z;UEx (12)
whers v = Inl + Iml+2s (13)
S,=V, N N, m M v! '
= (172U ) SR s T O s TvssTT (14)

It will be convenient to replace also Ik(x) in equation

(8), by using the relation
I (x) = (=1)%J, (ix) (15)
k - k :

With these modifications, equation (8) now becomes

. O ' oo .
I (Ay) =LrAexp(-qrz)n;’ss(an"Az ki/:_a-gk(ipTz)(-i)k
2nexp[ik(n-¢ﬂ dT (16)

where oo co oo
n,;s = nZ—oomZ-oos};ﬂ (17)

The last summation may be reduced with the help of equation

(11) by noting that

[ o]
;Zjogk(ipTz)('i)kexp[ik(ﬁ-¢ﬂ = ;;;(i)chos ké 3, (ipT?) +

Jo(ipTZ) (18)
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If the following change of variables is introduced,
(19)

then equation (16) is transformed to

oo . oo
I (/1 y) =7 Z JEA O Lx exp(- qx)[kz i¥2cos k?SJ (ipx) +

Jo(lpx)}dx (20)
where
W = V+/1—l (21)

Watson has shown that

O

.LBXP(-at)Jn(bt)tm-ldt = _F (m+n,m+n+l +1: __?)r7m+n)a-n

21 2 2 n+l
(22)
where 25, is the hypergeometric function defined by
fons)
SORSRRPN KU i T N

and r1is the well-known gamma function,

If equation (22) is substituted for the integral in equation

(21), it is found that

O
1,(Ay) ="n,Zn:,sE“z°‘Van cos<k¢)l"<ul SF1(u/2,u,/2;k+1;
~2) (-p/2) K gkt (24)

where

uy = w o+ k + 1 (25)
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U2 = w + k + 2 (26)
and
= 2 for k>0 (27)

1 for k=0

From the definitien of the hypergecmetric functicn it

follows that

o0
() - [l [ty /24y /244) o2
21 T T 727 u,727  I=0 k+ +1)n! P79

(28)

For the gamma function there exists a duplication formula
M22) = (2m~F 22279 (o) Mzep) (29)

Applying this twice to equation'(éB), oF, is simplified

w S Mye)
u,+2
Mke) ) 1 24

ZFl( ) = TTEIT— 2:0 TTE:—:TTIT (p/q (30)

If use is made of the fact that for positive integers n
[C(h+1) = nt (31)

then equation (24) becomes

o0

IZ(A,y) =7Tn2;,SEAZaV;;;ckcos(k¢) (-2)-kq-w-l

(wrk+20) t (p/q)
=0 (k+f)!ﬂ!

k+21
(32)
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with the constraint that

y-n+2k+m = O .(33)
If equation (33) is rewrittan as

m = n-y=-2k o (34)

then, on substituting this in equation (32) the summation

2 | N
n,m,s may be replaced by nZ;oo;Z;' Hence the final form

of equation (32) may be written as

}: v ~k -w=1
IZ(A,y) = T fo oo b=otA X =0ckcos(k¢) (-2)""q
(w+k+2ﬁ) k+2{
35
= OW (P/Q) ( )
Although equation (35) still looks somewhat formidable,
the series do in fact converge very rapidly. For this
reasan it is much more efficient to determine the pertur-
bations in the velocity distribution by this method than
by straight numerical integration., If the stars are well-

mixed, then p vanishes. The equation then reduces to

o0
I(Ay) =rrnZ_°oZJ EA OVwiq "1 (36)

3.5 Results
Using the procedure described in the previous
sections, it is now possible to determine the distortian

due to a spiral density wave on the velocity distribution
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of a sub-population of stars. The resulting equations are
valid for any arbitrary, unperturbed ellipsoidal velocity
distribution and for any degree of exponential or sinusoidal

time variaticn of the spiral pattern.

Thus far, only the linear case has been considered,
The non-linear terms can be found by using equation (57)
in section 3.1. Since only the first non-linear term is
imbortant, the.computation is quite straightforward. -After
the linear term (al) has been determined the non-linear
term (az) can be readily calculsted. The elements aof the
velocity distribution are then found by the same method as
used in the lineaf case., However, since the resulting
equations béccme quite complicated, the develop ment in
this £hesis will be limited to a discussion of anly the

linear case.

It is emphasized that the linear approximation
vié valid only if the perturbation in the distribution
function is small compared to the distribution function.
This will not be the case when the spiral field is very -
'strong or if the velocity dispesrsions of thebstars are very
small., However, Barbanis and Woltjer, using first-order
epicyclic theory rather than our method, were able to show
that the mean velocities of the stars will be directly

proportional to the strength of the spiral field. If this
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is so, our estimates for the mean velocities will be valid
regardless of the strength of the field or the size aof the

velocity dispersion, -

In considering perturbations in the velocity
dispersions we will be int=srested only in the spiral pattern
now existing., The linear approximation gives reliable
results if the velocity diépersion is greater than abo&t
20 km/sec. The use of the linear approximaticn is, there-~

fore, justified in such cases.

The parameters of the spiral pattern weres taken
to be those used by Lin, Yuan and Shu. They are listed in
Table XIII. Yuan (1969 I,II) has shown that the pafameters
must be limited to gquite narrow ranges. Hence the values
in Table XIII must be near to the actual ones. If the
reference position is (8,26 kiloparsec, 0°), then the center
of the nearest sﬁiral arm at the same galacto-centric
distance as the Sun will be situated 70°.5 clockwise from

“the Sun.,

Our method was checked by comparing our results
with those obtained using Lin's approach. This could, of
coursz, be done only for the case whefe the stars were
well-mixed and the pattern was not timg dependent. From
Table XIV it can be seen that the agreement is good, as

should be the case. The small differences are caused by
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the fact that we have determined the mean velocities to
an accuracy of 3%, this being sufficiently accurate for

OUI PpuUrposes.

To determine the sensitivity of the perturbed
velocity distribution to the choice of initial axis ratio
and vertex deviation, the components of the perturbed

velocity distribution were calculated for varicus values

" of the axis ratio and vertex deviation. The results are

summarized in Tables XV to XX. The velocity dispersions
and axis ratios in each table refer to the unperturbed
values, It is readily seen that the berturbed velaocity
distribution is highly sensitive to the values of the
unperturbed axis ratio and vertex deviation. In all cases,
the components are most sensitive to the unperturbed
distribution at low velocity dispersions. As the disper-

sion increases, the sensitivity declines.



CHAPTER 4

COLLISIONLESS RELAXATION IN THE GALAXY

4,1 Introduction

In the previous chapter it has been shown that
the response of a sub-population of stars to a perturbation
in the galactic gravitational field depends to a large
extent on the parameters of the unpsrturbed velocity
distribution., The time-variation of the distribution

parameters will now be examined.

When stars are formed,>their vélocity distributiaon -
is primarily determihéd by the internal and systematic
motions of the parent gas clouds. However, due to the
fact that stars with differing velocities will have dif-
fering periods, the stellar orbits will gradually get
out of step with each other. Such orbital mixing causes
the initial conditions to be smoothed out. The approach
to a well-mixed state will be referred to as "relaxation",
while the well-mixed étate itself will be described also
by the term "equilibrium", By this is meant a dynamic,

rather than a statistical, equilibrium.

The relaxation of stellar sub-populations with

various initial conditions will be examined. This will
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be done by calculating the orbits of the individual stars
by means of first-order epicycle theory. The parameters
of the velocity distribution will then be determined for
various values of time by integrating over all the orbits

at a particular location in the Galaxy.

4,2 The Epicycle Theory

Although the epicyclic theory has been described
in detail by Mihalas (1968), Chandrasekhar (1942) and
others, a brief account will be given here. Motion only

in the galactic plane will be considered.

Consider a star initially with co-ordinates
(Ro’ 60) having a tangential velocityfa, equal to the
circular velocity CL(RD) but with a small radial velocity
ﬂ;. The orbit of the star will now be considered using a

rotating co-ordinate system centered at R, and moving with

velocity G% about the galactic center.

If r is the distance to the center of the Galaxy
and if U(r) is the gravitational potential of the Galaxy,

then the radial acceleration of the star is given by

= _-y + rQ (l)

@= rg . | (2)
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and 2
ou Ck (3)
r - "t

equation (1) may be rewritten as

2
2 @
e B )e
b o = —; - -—r (4)
If we now write
r = RO + X (5)

where x is the change in r due to the radial velocity II ’

then

T = x (6)

Due tc conservation of angular momentum

Pr = CLRO (7)
Hence
. 2.2

@2 B.Rq

If we assume x is small comparsd tc r then, on substituting

for r and carrying only first-order terms, we find

2
& - (?{2)(1-31) (9)
o o

If x is small the circular velocity CL may be expanded in
the solar neighbourhood by a Taylor's series. To first-

order, we obtain
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e
B (r) = B_(R) + c-gg)Rox' (10)

Squaring equation (10) and dividing by r, we find to first-

order that 2 2
e(r) @ 30, @% @gX

2
= = + 2( ) - (ll)
T R; ot R°~F; Eg- .

On substituting equations (6), (9) and (11) in equation (4),

the equation may be reduced to
= -l( X (12)

where K is called the "epicyclic frequency" and is defined by

(Zcﬁ (d@) Cb)%
K = + 2 (=
Z * 2D, 7

A  solution to equation (12) is

X = ]IE sin Kt (13)

X
]

T = TTocos‘kt (14)

Hence, knowing the initial radial velocity]];, it is
possible to determine the galactocentric distance (R°+ x)

and the radial velocityfjhat any later time.

Using similar approaches, the tangential velocity can also

be found. Since angular momentum is conserved, it follows

that o
. . R
5= 22 - (- (15)
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Again, we have neglected second-order terms. The difference
in the angular velocity between the star and the epicyclic

frame is

AS = - =2 | (16)

Substituting equation (13) and converting to a linear

velocity, this becomes

A@ =Aré = -2 (T-IEROHE) sin '(t (17)
o

In determing the mean peculiar velocity of a group of
stars which are at a certain position (r,B8) and which have
differing initial conditions and orbital parameters, we
are not interested in the mean/\® but in the mean of

(&(r) - CL(r)). To first-order, this is found to be

givea by

T1 K

' R
o o .
®(r) - CL(r) = - ZCB ) sin Kt - (18)

Since equationg (14) and (18) provide .a very simple first-
order estimate of the peculiar velocity components of a
star at any time they will be very useful in this chapter.
The main limitation of the epicycle theory comes from

the fact that>0nly first-order terms have been carried.
Although this~causas some discrepancies between the actual
and estimated orbits when the epicyclic amplitude is
large, the differences are very small for stars with small

peculiar velocities,



(62)

4.3 Mathematical Formulation

The general case will be considered where a sub-
population of stars initially has mean velocity components
u and v in the radial and transverse directions, respec-
tively., The initial velocity distribution about the mean
velocities need not be at equilibrium but is assumed to

be of the form

f = ¢ exp(—*gTz - y&@z - ZZgﬂT) (1)

where ¢ is a constant,rT and ® are the radial and transverse

velocity components with respect to the mean velocity and

X 5, ¥

o and z are defined_as follows:

o

2 . .
"o - ‘626@ e @
2(@0127-0’@“)
x 0%

o
Yo = —22 (3)
(%9 ,
zZ = - dezn- (4)
o sz . _
@ X

The velocity dispersions, the mean velocity components and

the constant ¢ may vary with the spatial coordinates.

Consider a star initially at (RO,E%) with an
initial velocity (with respect to the mean velocity} of
¢ ,
(TL,@L). The total peculiar velocity (T%,C%) is then

given by (T£+u, C%+v) and the probability of finding such:
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a star is f(@g, Ro’ITo' C%). The distance Ro is related

to the galacto-centric distance of the epicyclic frame,
Rys by

a(CL+v)'
R =z R + =
o 1 - k (5)

where, if () denotes the angular velocity of the epicyclic

frame, a is defined as

At a time t later, the prcbability of such a star existing
will, of course, still be the same. Its position and

velocity will, however, have changed as follows:

T = (TL + u)cos kt + a(C% + v)sin kt (6)
@' = (@o + v)cos kt - %(no + u)sin kt (7)
- = R +a@® (8)
9' = B, +0t + E(T‘I'- Ho - u) (9)

If the perturbations are such that the variations of the
parameters with § are slow compared to the variations with
R, as in the case of spiral waves with small angles of

, »
inclination, then & may be approximated fo first order as

8" = 6_+Qt (10)
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We now define

Il = TTO cos kt + a sin Kt (11)
n .
® = (Do cos Kt - —% sin kt _ (12)

These correspond to the velocity components the star would
have had if initially no mean velocity (u, v) existed.
In terms of I] and ®, equations (6) to (7) become

/

TT =11 + u cos Kt + av sin kt » (13)
/ u .
® = @ + v cos Kt - 3 sin kt (14)
R’ = R, + 8 (@+ v cos kt -~ 2 sin Kkt) (15)
1 74 a

The probability of finding the star may also be Qritten

in terms of Il and ®, as

’ y
f=f(O0-0t, R -a(@+vcoskt-§sinkt),TIcoskt-aCbinkt,®coskt +

Igsinkt) (16)

This may be rewritten more conveniently as

f = c exp (-xT1 -.yCF - 2200 (16a)
where

y : y z
X = %(xo - —g)cos 2Kt + '}(xo + —%) - -% sin 2kt (17)
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<
[

. N x
%(yo - —g)cos 2kt + i—(yo + -%) + z_ a sin 2kt (18)
a a

N
]

| Yo . -
%(—3 - axo)51n 2Kt + z_cos 2Kt (19)

To determine the components of the velocity
‘distribution it is necessary to find the averages‘of all‘
the individual stellar velocity components weighted by
their respective probabilities. From equation (16) it is
evident that the probability of finding a star with thé
velocity (I, ®) is dependent on time. In the case of a
well-mixed initial distribution the timé-dependent terms
vanish, as would'be expected. The stars will be averaged
at a particular position (R,,é9l). Since the quantities
R/ and E?lmay thereforé be considered to be known, it

remains to find 90, Ro’ k and ) for each value of (II,® ).

If Maarten Schmidt's (1965) mass modél of the
Galaxy is used, the angular velocity {l and the epicyclic
frequency K can be determined for various values of Rl’
To simplify the determination of the relationships,
polynomials were fitted through the values of { and k by
using a least squares fit. The best fits were found to

be given by the following polynomials.

2

£ (R) (20)

72.559 - 6.5874R + 0.18254R

140.55 - 15.906R + 0.50856R% (21)

k(R)
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A comparison between the values from equations (21) and
(22) and those derived directly from Schmidt's model is

shown in Table XXI,

The initial distance R0 is related to the distance

V4

R at time t by

Ro = R{ + E(C)- y)(coskt - 1) + E%L%in Kt (22)

If u and v depend on R while 8§ and k depend on Ry» the
solution for Ro and Rl is non-trivial. However, if we
consider the ratio of the spiral force to the total
galactic gravitational force to be of the same order as

the ratio of the epicyclic amplitude to Rl’ the variqtion
of u and v over the epicylic orbit is of second order and
can thus be neglected. The value of Rl may then be found
by substituting equations (20) and (21) into equation (15)
and iterating. Knowing Rl’ it is now possible to calculate

k,a and 600

The components of the velocity distributioh at
(RI, 91) may be found by integrating the individual
velocity components and combinations thereof over all
values of (I, ®). Since Rl( and hence k,§) and 85) are

independent of [l, integration over Il is trivial. Using

equation (l16a), the following integrals were evaluated:
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(o o]
2
‘jﬂfdﬂ= - (DT exp((E - y)O?) (23)
-00 X X X
fo o} 22 2
-oofdn: C(;) exp ((;(- - y)@ ) (24)
[o_o]
J 20471 € 22° 2. % 22 2
| _[TPreTl= 5201 + 2 02)(5)F exp (5 - y)6P)
(25)

Since K, and EL all depend an®, integration
over ® is, unfortunately, not so trivial. Numerical
integration techniques must be applied. The UBC Library
Subprogram COSIM was used. This pfogram integrates functions
by means of a stratified form of Romberg integration which

uses Simpsan's rule on strips of varying widths.

The components of the velocity distribution were then found

to be
T o= H(~- §@+ u.cos Kt + avsin kt) (26)
® = H{®+ vcos kt - L-;sin Kt) (27)

2~2
dz H(; [1 + ZZx@ ] - 25@[ucoskt + avsinkt] + ulcos®Kt 2+

a?v2sinkt + auvsin2kt)-[1(28)
2
dé = H(@z + 2@[vcoskt - gsinkt] + vPcos®kt + ujsinzkt -

l-"-%sinZkt) -.élz

(29)
02 = H(- 592 +® [ucoskt + avsinkt - Zvcoskt + nginkt] +
@H X 2 x xXa
u ]sinZkt) é"’ (30)
—) -

2
uvcos2kt + [av - =3



where

(68)

(31)
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4.4 Results

The relaxation of a number of sub-populations
having various initial velocity distributions was examined.
In each case, equilibrium was approached after a time in
the order of 109 years. Two of the cases are discussed

‘below in more detail.

In-the first case it was assumed that the sub-
population was at equilibrium and that all the stars then
instantaneously received a velocity increment u of 10
km/sec. The initial velocity dispersion was 20 km/sec.

The variation of the velocity components with time is shown
in Figures 5 to 9. The mean velocities oscillate with a
period of 2 x 108 years which corresponds to the epicyclic
period. However, due to orbital mixing, the oscillations
are gradually damped. At 4 x lD8 years fhey have decayed
to half their original ampiitudes. They have all but
vanished after 109 years. The velocity dispersion oscillates
with a period of 10B years but increases steadily. It

is important to note that the vertex deviation and the
laxis ratio also experience oscillations. After 109 years
all oscillations have ceased, the stars have again reached
equilibrium and the only change has been an increase in

the velocity dispersion. For this case, the amplitudes of
the oscillations are, in general, governed by the choice

of u and v. The time for equilibrium to be reached (i.e.
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for mixing to be completed) depends solely on the initial
velocity dispersions, Here it was assumed, for simplicity,
that u did not vary with GB. If u dces depend on eo, the
same equations can still be used but more parameters are
needed to specify ‘the dependence of u on 8. For spiral

armé with low inclinations, this will make little difference
in the results., It was alsa assumed that c was independent

of B and R.

In the second case under consideration, it was
assumed that no mean velocities existed, but that the
radial velocity dispersion equalled the transverse veiocity
dispersion. It was again assumad that the effect was
‘axi-symmetric. Results are shown in Figures 10 to 14 for
an initial dispersiocn of 17 km/sec. The resulting curves
show features similar to those discussed in the first case.
Equilibrium is again reached after a time of about 109

years and an increase in the velocity dispersion is obtained.

From these studies it can be concluded that a
sub-population of stars will approach equilibrium even in
the absence of collisions. The relaxation time for the
system depends entirely on the initial velocity distribution,
It has been shown that the collisionless relaxation is
accompanied by an increase in the velocity dispersion and

also that, for sub-populations not at equilibrium, the
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mean velocities and the vertex deviation are in general
non-vanishing. It should be noted that the collisionless
relaxation does not depend on the masses of the individual

stars,

The phenomenon of orbital mixing has also
been discussed by Lynden-Bell (1962), among others,
His treatment was, however, limited to a qualitative
description and did not include an examination of the

time variation of the velocity distribution parameters,



CHAPTER §

THE VERTEX DEVIATION

A relationship between the vertex deviation
and the velocity dispersion has been found in Chapter 1
(see Table II), The results have been plotted in Figure
15. The crosses refer to our data points while the
triangles represent Delhaye's weighted ﬁean values for
various sub-populations. As can be seen, there is a good
agreement. The dashed line represents the expected
relationship for well-mixed stars perturbed by the present
Spiral.density pattern., It is apparent that the estimates
from the wave theory are significantly lower than the
observational values. If the observations are considered
to be reliable, it follows that some assumption in the

theoretical approach must be invalid.

.The gravitational field has been assumed to be
completely represented by a two-armed spiral density wave
superimposed upon the axi-symmetric gravitational field.
It is, however, a well-known observational fact that local
irregularities in the spiral arms do occur. The Sun is
located in such an irreqularity, the inter-arm Orion spur,

According to Yuan (1971), the presence of the Orion spur
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may cause a deviation of the vertex of the relatively old
stars but the velocity distribution of the younger stars

is unlikely to be influenced by it. Since the nature of

the effect is at present not well understood from either

the observational or theoretical point of view, it is,
unfortunately, impossible to determine a reasonable estimate
of any veriex deviation it may cause. It éppears to be
possible, at any rate, that the presence of the Orion spur
may explain the observed vertex deviation of the older

stars.,

Such an explanation will not suffice for the
young stars. However, it has been assumed that the stars
are well-mixed., Since it was shown in the previocus chapter
that about 109 years are required before mixing can be
completed, it is expected that populations younger than this
will still have retained some memory of their origin.
From Table X it appears likely that the first three age
groups are not yet well-mixed. This brings us to a
maximum velocity dispersion of 21 km/sec for group 3. .It
must therefore be considered that, in detérmining the

response of stars to the spiral field, the younger groups

(with small velocity dispersions) are not yet well-mixed.

According to Roberts (1970), stars are formed
in the spiral arms. The velocity dispersion of the newly

~ born stars will be due primarily to the turbulent velocity
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of the parent gas cloud. Velocities are also imparted to
the gas balls, out of which the stars are formed, by heat
and radiation pressure emitted from recently formed O-stars,
Since these effects are unrelated to the galactic rotation,
the initial velocity dispersion will be isotropic (i.e, the

radial and transverse velocity dispersions will be equal).

The youngest stars were found to have a velocity
dispersion of about 15 km/sec. If this is corrected for
the effect due to the spiral arm, it corresponds to an
unperturbed velocity dispersion of about 17 km/sec (éee
Table XVIII). It is assumed that this is the value of the
initial velocity dispersion, At formation, the mean
velocity of the stars will equal that of the parent gas
complex., Since, in general, this will be smaller in
magnitude than the mean velocity which the spiral wave
will impart to the stars, no mixing will occur as a result

of the initial mean velocity.

After formation, theAisotropic velocity distri-
bution will cause orbital mixing. Simultaneously, the
presence of the spiral waves will influence the stellar
motions. These effects may be separated if the amplitude
of the spiral pattern does not change significantly during
the mixing process. If the amplitude decreases then
additional mixing will occur due to the resulting decrease

in the mean velocity imparted by the spiral waves., This
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complicates the analysis considerably, For convenience,
it will be assumed here that the amplitude is independent
of time. In the next chapter, where the time-dependence
of the spiral pattern will be estimated, the validity of

this assumption will be checked.

The time-dependence of the velocity distribution
was determined in the following manner. The stars were
considered to be formed near the centres of the spiral
arms., Orbital mixing was then assumed to occur. This
was entirely due to the initial isotropic.velocity distri-
bution which had a value of 17 km/sec. Neglecting the
influence of the spiral arms, the components of the velocity
distribution were found for various times by the method
described in the previbus chapter. These were then corrected

for the effect of the spiral arms,

If the Sun is located 70°.5 counterclockwise from
the center of the nearest spiral arm at the same distance
from the galactic center and if the pattern has an angular
velocity of 135 km/sec/kﬁc,_then the time required for
stars to migrate from the spiral arm to the Sun is 1.6 x
108 years., Stars from the other arm arrive after 4.2 x
lO8 years. The velocity dispersions and vertex deviations
corresponding to these times are represented by the dots
in Figure 15, They appear to agree quite well with the

" observed relation,
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Since the initial distribution function varied
with the spatial co-ordinates, it was implicitly assumed
that the velocity distribution had not changed appreciably
due to the mixing of the original group of stars with
neighbouring stars. 0On examining this assumption in
detail, it was found that after 4.2 x lD8 years the dis-
tribution parameters had changed, through spatial mixing,
by no more than 10 per cent. The approximation is thus

justified for times less than 4,2 x 10a years,

It is concluded that the large deviation of the
vertex which has been observed for the young stars may be
explained by the fact that the orbital mixing of these
stars has not yet been completed, When this effect is
combined with that of the spiral arms the resulting rela-
tionship between the velocity dispersion and the vertex

deviation agrees well with the observational result,



CHAPTER 6

THE AGE DEPENDENCE OF THE VELOCITY DISTRIBUTICN

6.1 Introduction

The orbital mixing of initial conditions which
was shown to caﬁse an increase in the velocity dispersion of
young stars cannot explain the large dispersions observed for
older stars. Although the presence of a spiral density wave
causes variations in the velocity distribution of a étellar
sub-population, no net chaﬁge is recorded when these are
averaged over all angles. Thus far it has been assumed that
the wave amplitudes do not vary with time, However, Toomre
(1969) has found that unless the waves are somehow replenished,
interactions between the stars and the waves will cause the
waves to be damped. The effect of such decéying waves on

the stellar velocity dispersion will now be examined.

The following first-order model is praposed.
Spiral waves are initially caused by some unknown mechanism
far from the local vicinity. As the waves propagate over
the galactic disk energy is transferred from the source.
It is assumed that while the wave is growing the stellar
velocity dispersion increases by a neg;igible amount, This
implies that the growth must be rapid (<<109 years). In the

model of Marochnik and Suchkov only a few timeSlO8 years are

77
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needed for spiral waves to form., A similér timescale is
found by Toomre (1969) if the spiral waves are due .to a
close encounter with the Large Magellanic Cloud. The assumption

of rapid growth hence seems reasonable.

Since Pomaéaev finds that the perturbations of the
stellar velocity diétribution are determined pri-
marily by the graQitational field when the waves
have completed their growth, the assumption of.rapid

growth‘will not effect the final perturbations.,

According to Toomre (1969), non-linear
effects become important when the rapid growth'is
completed. Interactions between the stars and the
waves cause the waves to be damped. This stems from
a slight phase mixing of the perturbed oscillations of
various stars even in the presence of those collective
forces that maintain the ;piral.wave. As the waves
decay thé velocity dispersions of the stars will
increase by an amount equal to the loss of gravita-
tional energy of the wave. Since the damping is of
a Landau nature it is assumed (as suggested by

Harrison) that the time variation be exponential,
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If we were interested in the time-dependence of
the velocity distribution of a particular sub-population, then
orbital and spatial mixing would have to be taken into account.
However, since all the observations were taken at the present
epoch, no memory of mixing will have remained except for the
velocity increments obtained wifhin the last 109 years. Mixing
may thus be assumed to have been completed for stars older
than 109 years if the most recent increments are neglected. -
The effect of orbital mixing may then be considered to occur

instantaneously and the orbits may be averaged over all angles.

It is assumed that, as the spiral wave decays, the
excess mean velocity of the gas in the galactic disk is lost
very rapidly due to coliisions among the.clouds. The mean
velocity of the gas will therefore be considered to be that
due to the spiral fieid. It is assumed also that thé
turbulent velocity of the gas does not change appreciably,
so that all stars will have the same velocity dispersion

at formation.
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6.2 Mathematical Formulation

The amplitudes of the mean motions and the density
fluctuation due to the spiral field will be denoted by Uy
vy andlfl, respectively. At a time t the mean motions and

the density may be written as

Pt) = P 1+ Pexpliy+/Se)) (1)

uy oexp(i¢<+%9t)

u(t) = 2
o (2)
u(t)
v(it) = ——G—:l (3)
1

where /% is the average density,/? represents the decay
rate and ¢ is the angular position with respect to the

spiral arms.,

Avérages will now be taken ovef all angies ¢} Since the
variationAin star density with ¢ suggests that stars spend
more time in the denser regions, the chances that a star
will obtain an orbital Velocity increment there are
correspondingly greater. A weighting term [2 should
theréfore be applied. It is then found thatothe average
density equals the unperturbed value and the aQerage

T

velocities vanish., =

It is assumed that as the wave decays the loss
of gravitational energy of the wave is accompanied by an

increase in the energy of peculiar motions. This is
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equivalent to assuming that the mean velocities of the stars
due to the spiral wave will be converted to a corresponding

increase in the stellar velocity dispersions.

After averaging over all angles ¢ it is found that

u? (

) = fufexp(23t) (4)

vz(t) = %viexp(%ﬁ%) : (s)

For stars which had been formed before the decay began,
the resulting changes in the oscillation amplitudes will

correspond to an increase in the velocity dispersians of

ACYZ = ‘Hui + 2.5y]2_)(l - exp_(2/37t)) (6)

u

for stars near the Sun. For stars which were formed at

a time to after the beginning of the decay, this becomes
AO/LZI = -}(ui + Z.SVi)(exp(ZBto) - exp(Z/Bt)) . (7)

These equations will be used to determine the theoretical

relation between age and velocity dispersion,

6.3 Results
Since for young stars mixihg has not yet been
completed, only stars older than 109 years were used in

determining the age-dependence of the velocity dispersion.
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The quantities in Table XI' were corrected (for the effect
of the present spiral wave) to the unperturbed values,
The velocity dispersions were squared and plotted in Figure

16'.

At first sight it might appeér that the large
velocity dispersions of the older stars could be explained
if these stars had been formed during the initial collapse
of the early Galaxy to its present form. However,
according to Eggen, Lynden-Bell and Sandage (1962) the
collapse was very rapid, lasting only about 108 years,

Stars formed during this time would be expected to exhibit
very large velocities perpendicular to the galactic plane.
Since no such velocities are apparent, it follows that these
stars have most likely been formed after the initial col-

lapse.,

From Figure 16 it is evident that the square of
the dispersion increases from 400 té 3000 kmz/sec2 in
11 x 109 years. The possibility of such an increase being
due to just one spiral pattern will now be investigated.
If_A denotes the amplitude of the present spiral field,

/Brepresents the decay rate and A0 is the maximum ampli-

tude of the Spirai field 12 x 109 years ago, then

A = Ao exp(-lZ/gx 109) (1)
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Stars initially having an isotropic velocity
dispersion of 17 km/sec will soon become mixed, causing
the radial velocity dispersion to reach 22 km/sec. A
spiral field of the present strength (5 per cent of the
mean gravitational field) will cause a mean velocity
(u, v) of an amplitude of about (7, 1) km/sec. When the

spiral field has vanished, this will correspond to an

increase in the square of the radial velocity dispersion
of 13 kmz/secz. The difference in the square of the
dispersion between the youngest and oldest stars is then
given by
| 13(A2-1)

Ac? = 2600 = —— o (2)

Solving equations (1) and (2), it is eésily
found that the initial amplitude of the wave must have
beenlld timees the present amplitude. The reciprocal of
/gis then 4.4 x 109 years. When the age-dispersion
ralatibn corresponding to such a pattern {(curve a) is
compared to the observational curve in figure 16 it is
evident that large discrepancies exist between the two.
It was thus concluded that more than one pattern must

have existed,

It was found that if two spiral patterns have
existed the resulting curve (curve b in Figure 16) coin-
cided quite nicely with the observations. The maximum

amplitudes aof the waves were 6 and 14 times the present
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pattern amplitude. The /2reciprocals were found to be
11.3 x 109 ana 3.0 x 10? years, respectively. In deter-
mining the theoretical curve it should be taken into
consideration thét the mean velocity caused by the spiral
wave is dependent on the veiocity dispersion of the stars.
This is important only for the older stars whose velocity

dispersions have been significantly increased by the first

spiral wave. Since the uncertainties involved are large,
it ig, of course, possible to fit various combinations of
patterns to the curve. However, the break in the curve
at 2.4 x 109 yeafs and the rapid increase at 1010 years

do suggest that at least two major patterns have existed.,

The break at 2.4 X 109 years was examined
'closely to ensure that it is real and not due to uncer-
tainties in the stellar ages. After eliminating the main
sequence stars and others having large age uncertainties,
it was found that the break still existed, becoming
perhaps even more distinct. It was therefore concluded
that the break was not a result of uncertainties in the
ages, Figure 17.shows that the same spiral pafterns cah
be fitted to the revised curve.

In the preceding chapter it was assumed that
| the amplitude of the spiral wave had not changed appre-
ciably during the mixing process. If fhe present pattern

is the residue of a spiral wave 6 times the amplitude of
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the present wave and if the decay started 2.4 x 109 years
ago, then the amplitude of the wave 4.2 x 108 years ago
would have been 1,28 times the present amplitude. Such

changes are small enough to be neglected.

The decay was assumed to be exponentiai; If,
however, the decay were more rapid,thén assumed'then it follows
that the present wave could not be a remnant of the wave whose
decay began 2.4 x ng years ago. At least three spiral waves

are then needed to explain the observations,

It was also assumed that éll the wave energy is eventually
transformed into an increase in the velocity’dispersions of the
stars., If, in fact, only a fraction of the wave energy is thus
transferred (as suggested by Toomre) then the wave amplitudes
must be increased Cof:espondingly to account for the observed

effect.

The uncertainties in the observational curve and in
the assumptions regarding the stellar velocity dispersions at
star formation and the growth and decay of spiral waves suggest
that not too much emphasis shoqld Be put on the actual numerical
values hefe obtained. What is important is that the proposed
model can be used to explain the cbserved age effect rather

simplyi It is hoped that in the future new, more accurate’ data

and a deeper understanding of the origin and evolution of spiral

waves will permit a more precise determination of the history

of spiral patterns in our Galaxy.



CHAPTER 7

CONCLUSION

From the evolutionary tracks of stellar models
it was possible to estimate ages for a number of stars.
The age dependence of the velocity distribution of the
neérby stars could then be found. A relaticnship was also
found between the velocity dispersion and the vertex

deviation.

The phenomenon of collisionless relaxation due
to a non-equilibrium initial velocity distribution was
investigated. The sub-population of stars soon approached

dynamic eqﬁilibrium as a result of orbital mixing.

A method for determining the response of a non-
equilibrium sub-population to a spiral density wave was
developed. The response was found to be quite sensitive

to the form of the velocity distribution.

It was found that the deviation of the vertex
for young stars could be caused by the effect of the present
spiral wave on a sub-population of stars whose orbital

mixing has not yet been completed. Ffor the older stars,
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the vertex deviation may be due to the presence of the

Orion spur.

The increase of the velocity dispersion with
age was explained by pastulating that the spiral pattern
has decayed and reformed a number of times. A good
agreement with observation was obtained if two spiral
patterns have existed with amplitudes of 6 and 14 times
the present amplitude and with decay rates of 1.3 x 109

and 3 x 109 ysars, respectively,
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TABLE 1

Variation of Velocity Distribution with Spectral Type

Spectral Number Mean Velocities (km/sec) Velocity Dispersions (km/sec) Vertex

Type u v w off d. of Deviation
BS-A9 30 - 3.0 - 6.6 - 7.3 1€.5 8.4 5.1 17°.3
FO-F4 41 =-17.1 -10.4 - 6.9 20.8 15.3 12.8 22°.2
Fs~F9 96 -10,7 -13.0 - 8.3 26.5 17.0 15,0 8°.4
G0-G4 118 -17.2 -21.4 - 4,3 '36.4 24.6 20.8 12°.9
G5-G9 103 - 9,2 . =25.2 -10.1 34.4 29.3 17.3 23°.9
KO-K4 167 ~-12, -19.7 - 7.5 35.6 23.1 18,6 14°.3
K5-~-K9 157 -11l.1 -23.3 - T.7 35.0 21.4 18.8 14°,0
MO~-M9 321 -~ 6.8 -21.4 - 8,5 40,8 49,6 20,7 -12°,0
sub
dwarf 21 -10.4 -31,1 4,2 63.2 71.4 43,3 -38°,2
white v

- 3.4 112.5 119.9 39.1 42° .4

dwarf 23 18.8 -82.1

(L8)



Spectral
Type

BS-A9
FO-F4
FS-F9
GO-G4
G5-GY
KO-K4
KS-K9
MO-M9

white
dwarfs
sub-

~ dwarfs

Number

30
39
89
95
93
154
140
291

22
18

TABLE

Mean Velocities

(km/sec)

w

(.. RV, FR RN, NN
L ] * L] L] L] L] L] L ]
OCoON~b OOV W

L
w
L]
w

"’19 .4

Il

u

16.5
20.1
24.2
26.2
26.3
31.4

"30.7

31.4

49.9

56.0

of

8.4
13.2
13.9
17.2
19.6
1901

18.3

19.3

26,0
33.4

Adjusted Velocity Distributions

Velocity Dispersions"
(km/sec)

Ou

5,1
13.1
15.0
17.5
15,6
18.1
16.7
18.8

42.4

31.2

Vertex
Deviation

()

17.3
22.7

Axis
Ratio

0.26
0.44
0.33
0.43
0.55
0.37
0.36
0.38

0.27
0.36

(88)



TABLE III

Velocity Distributions from Medians

Spectral Number Median Velocities (km/sec) Velocity Dispersions (km/sec) Axis
Type u v w o (from medians) Ratios
OL - O; O;
BS-A9 3s -4 -8 -9 17.8 8.9 4.5 0.25
FO-F4 39 =15 -1l1 -10 20.8 13.4 11.9 0,42
F5-F9 89 -9 ~-16 -9 28,2 13.4 10.4 0.23
GO-~G4 a5 -18 -15 - 4 25,2 19.3 14.8 0.59
KD-K4 154 -15 . =16 - 8 31.1 14,8 14.8 0.23
K5-K9 140 -11 -19 ‘- B 26.7 14,8 14.8 0.31
white o : :
dwarfs 22 -2 -15 - 4 59.3 14.8 32.6 0.06
sub-~

56.4 38.6 13.4 0.47

1
n
e

dwarfs 18 -18 -33

(68)



TABLE 1V

The Zero-Age Main Sequence from Schlesinger's fFormulas

M log L Mb Mv (B-V) tl (ng yrs)t2 (109 yrs)
.0 0.0 4.72 3.8 3.0
1 "0.062 4,565 4,64 0.957 2.6 2.1
o2 0.250 4,095 4,16 0.49 1.9 1.45
.3 0.419 3.67 3.73 0.43 ' 1.45 1.08
.4 0.572 3.29 3.35 0,37 - 1.13 0.83
.5 0.712 2.94 3.01 0.31 D.92 0.65
.6 0.841 2.62 2.695 0.25 D.75 0,52
ol 0.960 2.32 2.41 0.18 0.62 .42
.8 1.071 2.04 2.16 0,13 0.53 0.35
.9 1,175 l.78 1,95 0.08 D.45 0.30
.0 1.272 1.54 1.75 0.04 0.39 0.25
.1 1,363 1.31 1,59 0,01 0.34 0,215
.2 1.449 .08 1.42 -0.008s 0.30 0.19
.3 1.531 0.89 l1.28 -0.02 0.25 - 0,16
.4 1.608 0.70 1.19 ~0.04 0.235 0.145
S 1,681 0.52 1.10 -0,06 0.21 0.13

NN NI NI NI N b b et bt pt b et s et s

For each mass the bolometric magnitude, M,_, was calculated. To fit the main
sequence the effective temperature was shifted. M and (B-V) are the
starting positions (on the main sequence) and tl and t2 are the hydrogen
burning times.

(06)
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TABLE

vV

Age Estimates for the Evolved Stars

Gliese No.

8.00
10.00
19.00
34.10
54.21
55.31
58.10
61.00
78.10
80.00
83.00

105,60
124.00
127.00
143,21
147.00
155.00
177.10
197.0

240,10
242,00
264.11
279.00
280,01
284 .00
297.10
299.21
305.00
335.01
354,01
397.20
449.00
527.01
549%9.01
550.21
580.20
€09.10
657.00
681,00
721.00
725,20
743.11
759.00
767.11
794 .00

1.37
3.80
3.80
3.40
3.50
3.30
1.20
3.06
1.90
1.70
2.10
3.30
3.72
3.30
3.40
3.21
3.10
4.20
3.84
3.80
2.10
4.30
3.30
2.64
3.80
3.50
3.80
2.50
3.40
2.00
3.50
3.60
3.50
3.22
3.10
3.60
2.30
2.10
0.96
0.50
2.80
3.70
4.00
3.35
3.70

B~V

0.34

0.49

0.62
0.50
0.46
0.47
0.13
0.54
0.48
0.13
0.28
0.59
0.60
0.51
0.39
0.57
0.42
0.65
0.62
0.50
0.43
0.65
0.51
0.42
0.77
0.43
0.49
0.40
0.49

0.46

0.50
0.55
0.48
0.50
0.74
0.53
0.52
0.40
0.15
0.0

0.46
0.52
0.78
0.46
0.53

0
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Gliese No.

805.00
822.11
826.00
836.61
837.00
848.00
855.11
872.01
881.00
904,00
512.10
602.00
770.10
771.01
600.00
635.01
695.01

Table V (continued)
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3.70
2.32
1.50
3.10
2.00
3.14
4.30
2.60
2.03
3.39
3.60
3.35
3.60
3.00
3.60
2.97
3.89

0.43
0.40
0.22
0.49
0.29
0.44
0.65
0.50
0.09
0.51
g.71
0.57
0.75
0.86
0.79
0.64
0.75

f =)

NHEA_LOUWOLOBNNALBNOVDWWWLW

Age fstimate
(10° years)
1.2 7 1.0
2.2 : 0.3
1.15 e 0.05
4.5 : 0.5
104 : Ool
3.d ; 0.3
12 3 2
306 I 100
0.3 ; 0.2
5.5 - 0.5
+
9 T 2
7.0 = 1.4
+
9 e 2
5 - 2
+
8 T 2
6.0 : 005
11 -1
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TABLE VI

Age Estimates for the Upper Main Sequence Stars

Gliese No. Mv B-V Q Age fstimate
' (107 years)
6.00 4,20 0.47 4 1.5 5 1.0
20.00 2.80 0.17 4 0.5 ¥ 0.3
31.11 2.60 -0.01 5 0.3 ¥o.3
106.11 1.90 0.09 3 0.3 £ 0.2
107.01 3.62 0.49 2 2.0 ¥ 0.4
111,00 3.70 0.48 a 2.5 2 1.5
121.00 2.40 0.16 4 0.5 £ 0.3
167.10 3.10 0.31 5 0.5 ¥ 0.3
174,11 2.90 0.34 4 0.8 ¥ 0.6
176.10 3.50 0.38 4 0.8 = 0.6
178.00 3.76 0.46 2 1.4 0.4
187.00 3.80 0.42 4 0.7 £ 0.6
189.20 3.50 0.45 4 2.0 ¥ 0.6
196.00 3.70 0.48 3 2.5 ¥ 1.5
209.10 3.60 0.46 4 1.6 X 0.6
217.10 1.80 0.10 3 0.3 ¥ 0.2
219.00 2.50 0.17 3 0.4 ; 0.3
225.00 2.80 0.33 4 0.9 = 0.5
244,01 1.42 0.00 1 0.1 ¥ 0.05
248.00 2.10 0.21 4 0.6 ¥ 0.3
249,10 3.50° 0.45 4 2.0 ¥ 0.6
268.10 2.80 0.32 4 0.8 ¥ 0.6
271.01 2.46 0.34 3 1.4 { 0.3
274,01 2.84 0.32 3 0.8 T 0.6
278.01 1.14 0.04 2 0.4 o1
303.00 4.10 0.47 3 1.2 2 1.0
306 .00 4,30 0.46 3 1.2 21,0
321.31 0.50 0.04 4 0.5 5 0.05
331.01 2.24 0.19 3 0.5 T 0.4
332.01 3.50 0.37 2 1.1 2 0.8
333.10 3.60 0.42 3 1.2 Y 0.8
333.30 2.50 0.14 5 0.3 0.2
339,20 0.30 0.01 4 0.5 ; 0.1
348,01 3.90 0.45 3 1.4 2 1.0
351.01 3.18° 0.36 3 0.8 7.0.5
391.00 3.30 0.36 4 0.8 7 0.6
403.10 3.70 0.46 3 2.0 T 1.5
419.00 1.40 0.12 5 0.7 3 0.3
448,00 1.54 0.08 3 0.5 7 0.3
455,30 3.10 0.32 3 0.5 7 0.4
459.00 1.90 0.08 3 0.3 T 0.2
471,20 2.90 0.37 5 1.1 2 1.0
482.01 3.46 0.36 3 0.6 7 0.5
501.01 3.69 0.45 3 1.4 L o.8
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Table VI (continued)

Gliese Na. M B~V Q Age fstimate
v ' (107 years)

503.00 3.70 0.48 3 2.5 ; 1.5
508.10 1.30 0.03 3 0.3 T 0.1
525.10 2.70 0.38 4 1.3 ¥ 0.3
557.00 3.20 0.37 4 0.6 ¥ 0.5
560,01 2.00 0.24 3 0.8 ¥ 0.3
563.40 3.90 0.41 4 0.8 ¥ 0.6
564,10 1.50 0.15 4 0.7 ¥ 0.2
578.00 3.70 0.43 3 1.0 ¥ 0.8
594,00 3.40 0.41 3 1.5 2 1.0
601.00 2.40 0.29 4 0.8 ¥ 0.6
603.00 3.40 0.48 3 4.6 £ 1.0
615.21 4.00 0.50 3 2.0 1.5
648.00 3.70 0.48 3 2.5 £ 1.5
656.11 1.40 0.06 3 0.4 ¥g.2
670.01 . 3.30 0.40 3 1.4 2 1.2
673.10 2.60 0.28 A 0.5 } 0.4
£86.20 3.10 0.40 4 1,2 3 1.0
692.00 3.60 0.47 4 2.5 ¥ 2.0
694.11 3.00 0.43 3 2 ; 1

700.11 3.50 0.39 5 1.0 £ 0.8
708.10 3.40 0.40 3 1.2 31

713.00 4,13 0.49 2 2 1
760.00 2.60 0.32 3 0.8 3 0.2
764.20 3.70 0.50 5 2.5 T 2

765.01 . 3.20 0.39 4 1.0 3 0.8
768.00 2.24 0.22 1 0.6 3 0.1
773.40 3.90 0.49 3 2.0 T 1.5
822.01 3.93 0.50 3 2.0 T 1.5
849,10 3.60 0.49 4 3.1 7 1.5
886.20 3.60 0.29 5 0.6 T 0.5
891.10 2.80 0.30 3 0.5 3 0.4
482.02 3.48 0.29 2 0.6 0.5



(95)

TABLE VII

Quality Classes

Quality (Q) Uncertainty range
1l <0,08
2 0.09--0.15
3 0.16--0.25
4 0.26--0.35
5 0.36--0.50
6 >0.50
TABLE VIII

Cluster Ages

Age (107 years)

Cluster Fig. 3 Lindoff (1968) Sandage and Eggen Iben (1967)
NGC 188  10.0 6.4 9 I 11 2
M 67 6.0 4.0 5.5 5.5 =1
NGC 3680 3.2

NGC 7789 2.0 0.9

Hyades 1.4 0.7

M 11 0.3
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TABLE I

Age Estimates for the Giants

Gliese No. MV B-V Q Age Estimate
(107 years)
31.00 0.70 1.01 3 2.0 } 0.7
81.01 2.70 0.85 4 4,5 ¥ 1.0
84.30 0.60 1.15 3 1.4 Yo,
150.00 3.77 0.92 1 10 ¥
154,20 2.30 1.13 5 10 %o
167.30 3.50 1.06 4 10 2
171.11 -0.60 1.54 3 7,
194,01 0.09 0.80 2 0.7 ¥ 0.2
224 .01 3.00 1.05 6 7 2
286.00 0.98 1.00 2 1.5 } 0.4
321,10 2.50 0.87 5 4 1
412.10 3.30 1.03 5 8 32
534,00 2.72 0.58 2 5.0 X g.5
539.00 1.20 1.00 4 2.0 £ 0.5
541.00 -0.24 1.23 2 ?
624.11 1.00 0.91 5 1.6 } 0.4
626.10 2.70 0.91 4 4.5 2 1.0
636.00 1.80 0.92 4 3.0 ¥ 0.5
639.10 1.10 1.16 5 2
711.00 1.80 0.94 4 3.0 £ a.5
806.11 0.80 1.03 4 2.0 ¥ 0.5
807.00 2.72 0.92 2 5.5 } 0.5
893,21 1.80 1.11 5 7 I2
903.00 2.27 1.03 3 6 1
835.10 2.30 0.99 5 4.5 % 2.0
239,10 2.60 1.05 3 7 } 1
596.20 1.10 1.17 3 4 2
355.10 2.90 0.77 4 4.5 T 1.5
894,21 3.60 0.79 4 8 T2
355,20 3.20 1.02 4 9 I2
6 10 o

$32.10 4,60 1.02



TABLE X

Uncertainties in the Ages and Velocity Dispersions

Group Numberxr Mean Age Age Velocity Dispersion Lower Limit . Upper
(10° years) Uncertainty (km/sec) (70% confidence) Limit
1 22 ‘ 0.38 - 0.07 15.5 13.5 18.7
2 21 0.72 0.12 16.8 14,6 20.5
3 21 1.16 0.18 18.3 16.0 22.2
4 20 1.72 0.18 21.6 18.8 26.3
5 16 2.32 -0.38 28.4 24.2 35.7
6 15 3.23 0.21 30.8 26.2 39.1
7 19 4.67 0.26 30.3 ) 26.0 37.3
8 16 6.81 0.37 35.3. 30.1 44 .4
9 16 10.50 0.45 ' 46,1 39.2 58.0
white :
dwarfs 22 49.9 43.4 60.3
sub~ ”

dwarfs 18 56.0 48.1 68.8

(L6)



TABLE XI

Velocity Distributions of the Various Age Groups

Group Mean Velocities (km/sec) Velocity Dispersions (km/sec) Vertex
u Y w cL : O; , Ow Dev?gflon

1 --3.0 = 5.0 <~ 6.8 15.5 9.0 5.4 13.9
2 -12.8 - 6.6 - 8.2 16.8 10.9 7.1 26.4
3 -11.9 -11.9 - 8.4 18.3 10.8 ’ 12,6 20.0
4 -14.8 -10.5 -10.3 21,6 15.3 . 10.2 12.4
] - 9.7 -12.1 - 5.6 28.4 19.8 15.9 2.1
6 -11.6 -11.6 -13.7 30.8 - 21.3 12.2 -14.6
7 - 8.7 -20.1 - 4,8 30.3 22.9 16.3 22.5
8 - 8.4 -21.1 -14.6 35.3 20.5 21.2 3.2
9 -34.2 -35.1 -11.7 46.1 30.4 19.9 20.1

(86)
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TABLE XII1I

Parémeters of the Spiral Pattern

Parameter Numerical Value

A (Strength of spiral field) 5% of the mean galactic -
gravitational field

i (Angle of inclination of arms) 6°.2

w (Pattern angular velocity) 13.5 km/seé/kpc
r, (Reference position) (8.26 kpc, 0° )
n (Number of arms) 2

TABLE XIV

Comparison of Results for the Time-independent Case

Velocity Mean Radial Velocity Mean Transverse Velocity

Dispersion (km/sec) (km/sec)
(km/sec) Our results Lin Our Results Lin
15 B,52 B.56 3.03 3.01
20 5.68 5.72 0.88 0.895

24 4.13 4.16 0.22 0.23



ispersion

Radial Velocity D

Radial Velocity Dispersion
(km/sec)

(km/sec)

18
20
22
24
28

18
20
22
24
28

Variation of

18
20
22
24
28

18
20
22
24
28

Apoou

TABLE XV

Variation of the Mean Radial Velocity

0.20

7.02
5.41
4.34
3.57
2.54

13.51
9.10
.67
5.18
J.uu

0.20

-2.27
-1.08
-0.32
0.16
0.59

-5.84
-3.05
-1.50
-0.57

0.38

Axis Ratio

0.30

8.49
6.38
4.98
4.00
2.74

11.50
8.07
6.00
4.66
3.04

TABL

5.42 5.74
4.29 4.48
2.98 2.91
11.12 11.22

7.76 7.83
5.67 5.76

4.35 4.43
2.93 2.82
E XVI

11.25
7.96
5.89
4.55
2.98

11.46
7.90
5.73
4.39
2.86

the Mean Tangential Velocity

Axis Ratio

0.30

-2.10

-1.00

~0.34

0.05
0.u1.

-3.84
~-2.04

-0.98
'Ol uw
0.34

-0.88 -0.78
-0.30 -0.25

-2.92  -2.41
-1.49  -1.18
-0.66 -0.49
-0.16 -0.10

0.31 0.27

-1.60
-0.69
-0.21
0.0u
0.28

-2.07
-0.98
-0.39
-0.08

0.26

4

0

10

0



Radial Velocity Disparsidn
(km/sec)

Radial Velocity Dispersion
(km/sec)

(1n1)

TABLE XVII

Variation of the Radial Velocity Dispersion

18
20
22
24
28

18
20
22
24
28

18
20
22
24
28

Axis Ratio

0.30

15.45
19.05
21.78
24,14
28.36

15.66

19.92 -

22.64
24.89

.28.86

0.40

13.57
17.98
21.04
23.59
27.99

14.12
18.82
21.80
24,18
28.34

TABLE XVIII

Variation of the Axis Ratio

Axis Ratio

1.11
0.70
0.60
0.56
0.53

1.03
0.67
0.59

0.56 "

0.53

0.60

9.36 {=0°
16.00
19.73
22.61
27.42

10.35 f=10°
16. 66
20.20
22.90
27.37



Radial Velocity Dispersion
' (km/sec)

Radial Velocity Dispersion
(km/sec)

18
20
22
24
28

18
20
22
24
28

20

24
28

18
20
22
24
28

18

(102)

TABLE XIX

Variation of the Vertex

Axis Ratio

0.20 0.30 0.40
-4.73 -10.47 -23.32
~5.10 -9.04 -15.41
-4.70 -7.45 -11.22
-4.12 -6.07 -8.45
-3.05 -4.08 ~5.13
21.86 18.54 19.45
11.71 8.79 5.94

8.32 6.29 3.84

7.35 5.91 4,81

7.33 6.74 8.71

TABLE XX

‘Deviation

-u8.64 -66.30 £-0°
-27.06 -46.92
-17.42 -29.39
-12.10 -18.12

-6.49  -9.05

50.86 -82.82 f=10°
1.37 =40.00

2.01 -5.29
3.74 2.35
6.53 7.25

Variation of the Density

Axis Ratio



TABLE XXI

Comparison of Angular Velocities and Epicyclic Frequencies

Galacto-centric
Distance R
(kpc)

6
7
8
9
10
11
12
13
14

Angular Velocity {2

(km/sec/kpc)
Schmidt Polynomial (20)
39.7 39.6
35.3 35.4
31.5 31.5
28.1 28.1
25.0 24.9
22.2 22.2
1G.8 19.8
17.8 17.8
16.1 16.1

Epicyclic Frequency K

(km/sec/kpc)
Schmidt Polynomial (21)
62.8 63.4
54.4 54.1
46,7 45,8
39.2 '38.7
31.6 32.3
26.5 - 27.1
22.8 22.9
20.0 19.7
7.7 17.5

(€EQT)
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FIGURE 1

Model tracks from Schlesinger's Formulas
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FIGURE 2

Isochrones

1

0.3

(B-V)

]

T T —T T

0'e 0'€E a'b 0
J0NLINIGW TENSTA

S

0.6 0.7 0.8

0.5

0.4
(MAGNITUDES)

0.2

0.1

0.0



(106)

FIGURE 3

Cluster Cémposite

M/

VISUAL MAGNITUDE

& ,
~7] HYADES
a <:/;GC 7’789
/ﬂGC%SO
(=]
\\
Mg 7
NGC /88
o
< -
l‘l:'; | 1 | |
-0.2 0.2 1.4

0.6 1.0
(B-V} (MAGNITUDES)



70.0 80.0

60.0

40.0

30.0

VELOCITY DISPERSION (KM/SEC)

20.0
1

10.0

c.0

50.0
|

1

(107)
FIGURE 4

Age-dependence of the Velocity Dispersions
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FIGURE 6

Time~dependence of Tangential Velocity
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FIGURE 8

Time-dependence of Axis Ratio
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FIGURE 3

'Time—dependence of Vertex Deviatian
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FIGURE 10

Time-dependence of Radial Velocity
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FIGURE 11

Time-dependence of Tangential Velocity
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FIGURE 12

Time-dependence of Radial Velocity Disbersion
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FIGURE 13

Time-dependence of Axis Ratio
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FIGURE 14

Time~-dependence of Vertex Deviation
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FIGURE 15

Relation between Velocity Dispersion and Vertex Deviation
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FIGURE 16

Age Dependence of the Radial Velocity Dispersion
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FIGURE 17

Revised Age Dependence of the Radial Velocity, Dispersion
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