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Abstract

We study two aspects of the problem of a particle moving on a lattice while subject to dissipa-
tion, often called the “Schmid model.” First, a correspondence between the Schmid model and
boundary sine-Gordon field theory is explored, and a new method is applied to the calculation
of the partition function for the theory. Second, a traditional condensed matter formulation of
the problem in one spatial dimension is extended to the case of an arbitrary two-dimensional
Bravais lattice.

A well-known mathematical analogy between one-dimensional dissipative quantum mechan-
ics and string theory provides an equivalence between the Schmid model at the critical point
and boundary sine-Gordon theory, which describes a free bosonic field subject to periodic in-
teraction on the boundaries. Using the tools of conformal field theory, the partition function
is calculated as a function of the temperature and the renormalized coupling constants of the
boundary interaction. The method pursues an established technique of introducing an auxiliary
free boson, fermionizing the system, and constructing the boundary state in fermion variables.
However, a different way of obtaining the fermionic boundary conditions from the bosonic the-
ory leads to an alternative renormalization for the coupling constants that occurs at a more
natural level than in the established approach.

Recent renormalization group analyses of the extension of the Schmid model to a two-
dimensional periodic potential have yielded interesting new structure in the phase diagram for
the mobility. We extend a classic one-dimensional, finite temperature calculation to the case
of an arbitrary two-dimensional Bravais lattice. The duality between weak-potential and tight-
binding lattice limits is reproduced in the two-dimensional case, and a perturbation expansion
in the potential strength used to verify the change in the critical dependence of the mobility
on the strength of the dissipation. With a triangular lattice the possibility of third order
contributions arises, and we obtain some preliminary expressions for their contributions to the
mobility.
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1. Introduction

Ever since Caldeira and Leggett proposed their model of dissipative quantum mechanics [1],

attempts have been made to apply the formalism to simple situations and determine the effects

of dissipative forces in the quantum regime. A particularly important and general problem is

the question of the mobility of a particle in a periodic potential in the presence of friction.

The application of the Caldeira-Leggett theory to the particle mobility problem at zero

temperature was first studied by Schmid [14]. His results suggested a sudden transition in

the dimensionless mobility from 1 (diffusive hopping) to 0 (localization) as the magnitude of

the friction passes through a critical value. Subsequently, Fisher and Zwerger [7] generalized

Schmid’s model to non-zero temperature, obtaining general expressions for the mobility at

arbitrary temperature. These results apply to the case of a one-dimensional periodic potential,

or to hyper-cubic lattices where the behaviour in the different dimensions is decoupled.

Following the discovery of a mathematical analogy between dissipative quantum mechanics

and open string theory [4], the problem was opened up to attacks and extensions from a string

theory perspective. The similarity arises in the context of open strings with end-points tied to

some world-sheet boundary [3]. When the closed string modes in the bulk of the world-sheet

are integrated away, the resulting effective action term for the open strings on the boundary is

identical to the non-local interaction found in dissipative quantum mechanics upon elimination

of the oscillator bath representing the environment.

More recently, Yi and Kane attacked the two-dimensional particle mobility problem for the

additional cases of equilateral triangular and hexagonal lattices [15]. Their interpretation of
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the renormalization group results of Schmid led them to propose an intermediate fixed point for

the non-square geometries that was unstable in the triangular case but stable in the hexagonal

case. They conclude that in a certain transition regime, the fixed point for the mobility in the

hexagonal lattice varies continuously from 0 to 1.

In chapters 2 and 3 of this work, we look at the string theoretical formulation of the Schmid

model at the critical point in terms of a free bosonic field theory with interactions on a boundary.

We demonstrate a new calculation of the partition function using fermionization. The solution

is given in a form such that the renormalized parameters may be more closely related to the bare

parameters of a given condensed matter problem. While acknowledging certain weaknesses of

the model’s applicability to real systems, there is some hope that attempts at analyzing similar

systems might benefit from the alternative approach outlined here.

In chapters 4 and 5, we attempt to clarify the origins and consequences of the behaviour

Yi and Kane suggest. The analysis of Fisher and Zwerger is generalized to non-rectangular

two-dimensional Bravais lattices, and traces of the behaviour predicted by Yi and Kane are

investigated.

Each of the two parts of this thesis contains an introductory chapter that provides a basic

explanation of the origins and machinery of the problem at hand. In the remainder of this

chapter, we will introduce Caldeira-Leggett dissipative quantum mechanics and the Schmid

model, and then outline the nature of the connection between the Schmid model and open

string theory.

1.1 Overview of Problem

The models studied here consider a particle of mass M moving in a periodic potential V (x), and

subject to some constant applied force F . Dissipation is introduced by Caldeira and Leggett’s

prescription of coupling the particle to a bath of oscillators with a particular spectrum. The

bath variables are eliminated, leaving an effective action for the particle.
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In the absence of dissipation, the effect of the periodic potential is to create Bloch bands

in the energy spectrum. The Hamiltonian eigenfunctions are also eigenfunctions of the crystal

momentum, and these states are extended. A particle cannot be restricted to any small region;

it will quickly disperse to fill the entire volume.

In the presence of dissipative forces, on the other hand, we might expect some restriction

of the particle’s mobility. Classically, “friction” impedes the free propagation of the parti-

cle. Quantum mechanically, long-distance correlations in the wavefunction may be destroyed,

leading to the localization of the particle.

Classically, friction is added to a system by including a force that is proportional to the

particle velocity. The constant of proportionality is the friction coefficient η, and the equation

of motion for the system is then

M q̈ + ηq̇ + ∇V (q) = F . (1.1)

The mobility µ indicates the ratio of the terminal velocity v to the applied force. In one

dimension we have

µ =
v

F
(1.2)

while in higher dimensions the more general mobility tensor µij describes the particle’s response

in the i direction to an applied force in the j direction:

vi = µijF
j . (1.3)

The tensor may in general depend on F and v. For vanishingly small force we might only take

the constant part of µij ; this is the linear mobility.

In the absence of the potential V , the classical mobility is found from the steady state
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solution to (1.1):

µij0 =
1

η
δij . (1.4)

In quantum mechanics, where a particle’s position is not well defined, we approach the

mobility in a way that generalizes to the classical result in the high temperature limit. Using

the expectation value of position as a function of time in response to an applied force, the linear

mobility is then

µij =
δ

δFj
lim
t→∞

Xi(t) −X i(0)

t

∣∣∣∣
F=0

(1.5)

with the particle’s mean position X obtained from the reduced density matrix ρ(q, q ′; t), where

q and q′ represent spatial coordinates, which takes into account the effects of dissipation:

X(t) = 〈q(t)〉 =

∫
dq ρ(q, q; t) q. (1.6)

In the absence of an applied force, the mobility may be studied by analyzing the natural

tendency of a localized state to spread out in space with time. Such behaviour is encoded in

the two-point correlation function
〈
qi(t)qj(0)

〉
. An alternative definition of mobility is then

to take the (suitably normalized) coefficient of the logarithmic dependence of
〈
xi(t)xj(0)

〉
−

〈
xi(0)xj(0)

〉
. This quantity can be extracted from the two-point function’s Fourier transform:

µij = lim
ω→0

|ω|
∫
dt eiωt

〈
xi(t)xj(0)

〉
. (1.7)

As we will see, Schmid’s original analysis was made using this form of the mobility, while

Fisher and Zwerger took the “terminal velocity” approach and used the definition (1.5).
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1.2 Caldeira-Leggett Dissipative Quantum Mechanics

In Caldeira and Leggett’s model of dissipative quantum mechanics (DQM) [1, 2], a heat bath is

represented as a set of oscillators, indexed by α, with coordinates xα, mass mα, and frequencies

ωα. The oscillators are coupled linearly to the particle, with coupling constants Cα.

The action for the entire system is then

S[q, {xα}] = S0[q] + Sbath[{xα}] + Sint[q, {xα}] (1.8)

where

S0[q] =

∫ t

0
dτ
(

1
2M q̇(τ)2 − V (q)

)
(1.9)

Sbath[{xα}] =
∑

α

∫ t

0
dτ
(

1
2mαẋ2

α − 1
2mαω

2
αx

2
α

)
(1.10)

Sint[q, {xα}] =
∑

α

∫ t

0
dτCαxα · q (1.11)

The density matrix ρ in position space, as a function of time t, is obtained by propagation

of the initial configuration:

ρ(q, q′; {xα}, {x′α}; t) =
∫
dQ

∫
dQ′∏

α

∫
dXα

∫
dX ′

α K(q, q′, {xα}, {x′α};Q,Q′, {Xα}, {X ′
α}; t)

× ρ(Q,Q′; {Xα}, {X ′
α}; 0) (1.12)

with the propagator K given by

K =

∫ q

Q
Dq̃
∫ q′

Q′

Dq̃′
∫ xα

Xα

Dx̃α
∫ x′α

X′
α

dx̃′α exp
(
i
~
S[q̃, {x̃α}] − i

~
S[q̃′, {x̃′α}]

)
(1.13)
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For our purposes it is reasonable to assume that the initial density matrix factors cleanly

into some initial distribution for the particle and a bath distribution in thermal equilibrium at

temperature T = 1/kβ:

ρ(q, q′, {xα}, {x′α}; 0) = ρ(q, q′) × ρβ({xα}, {x′α}). (1.14)

Since we are only concerned with the particle’s properties at time t, we can trace out the

final state of the bath from the complete density matrix to leave the part relevant to particle

expectation values:

ρ(q, q′; t) =
∏

α

∫
dxα ρ(q, q

′; {xα}, {xα}; t). (1.15)

Caldeira and Leggett showed that these integrations can be done for a general S0, and that

this leaves a simplified expression for the particle density matrix that incorporates the bath

through an influence phase iΦ:

ρ(q, q′; t) =

∫
dQ

∫
dQ′ρ(Q,Q′; 0)

∫ q

Q
Dq̃
∫ q′

Q′

Dq̃′ e i
~
S0[eq]− i

~
S0[eq′]+iΦ[eq,eq′] (1.16)

The influence phase Φ[q, q′] couples the “forward” and “backward” paths q and q ′,

iΦ[q, q′] = −2i

~

∫ t

0
dt′
∫ t

t′
ds y(s)αI(s− t′)x(t′) − S2[y], (1.17)

with x and y the centre of mass and difference coordinates

x = 1
2(q + q′) y = q − q′, (1.18)
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and S2 a temperature-dependent term coupling difference paths only,

S2[y] =
1

~

∫ t

0
dt′
∫ t′

0
ds y(s)αR(s− t′)y(t′). (1.19)

The functions αI and αR determined by the oscillator spectrum and the temperature:

αI(s) =

∫ ∞

0
dωJ(ω) sinωs (1.20)

αR(s) =

∫ ∞

0
dωJ(ω) cosωs coth

(
1
2β~ω

)
(1.21)

J(ω) =
∑

α

Cα
mαω2

α

δ(ω − ωα). (1.22)

The most interesting behaviour results from taking an “ohmic” spectrum for the oscillators,

where J(ω) = ηω. In the high temperature limit, this choice of spectrum yields the classical

frictional force −ηq̇. It is thus the spectrum most appropriate for systems where such friction

is observed at high temperatures.

1.3 The Schmid Model

Schmid studied the general problem of a particle in one dimension moving in a potential

V (q) = −V0 cos(2πq/a0). (1.23)

In order to extract correlation functions from the system, he worked with a generating

functional in imaginary time:

Z[F ] =

∫
Dq e−Seff [q]−

R
dt q(t)F (t) (1.24)

where F (t) is a time-dependent source term and Seff [q] is obtained from (1.8) by tracing out

the bath modes with ohmic dissipation (this is a simplified version of the approach described
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in the last section):

Seff [q] =

∫ ∞

−∞
dt

(
M

2
q̇(t)2 + V0 cos q(t)

)
+

η

4π

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

(q(t) − q(t′))2

(t− t′)2
. (1.25)

Both the mass term and the interesting non-local influence functional term can be Fourier

transformed (with the convention f̃(ω) =
∫
dt eiωtf(t)) to give

Seff [q] =
1

2

∫ ∞

−∞

dω

2π

(
Mω2 + η|ω|

)
q(ω)q(−ω) + V0

∫ ∞

−∞
dt cos(q(t)). (1.26)

With the friction term associated with a linear term in ω, the mass term Mω2 serves only

as an high energy cut-off. In renormalization group language, the terms in ω are marginal while

the ω2 terms are irrelevant. We may then often treat M as zero in what follows, while picking

up a characteristic frequency

γ =
η

M
(1.27)

that acts as an effective ultraviolet cut-off for the low-energy theory.

Dealing with the cosinusoidal potential in this framework is achieved by a “Coulomb gas ex-

pansion.” This is essentially perturbative in V0. First the exponential of SV [q] = V0

∫
dt cos q(t)

is expanded:

e−SV [q] =
∞∑

n=0

(−V0)
n

n!

(
1
2

∑

σ=±1

∫ ∞

−∞
dt e2πiσq(t)/a0

)n
. (1.28)

Now the exponentials from the cosine interaction provide effective terms for the particle action:

e−SV [q] =

∞∑

n=0

(−V0

2

)n ∑

{σi=±1}

∫
dt1

∫
dt2 . . .

∫
dtn exp

(
2πi

a0

n∑

i=1

σiq(ti)

)
. (1.29)
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The exponent is rewritten as an integral over a charge density ρ(t′),

2πi

a0

n∑

i=1

σiq(ti) = − i
~

∫
dt′ q(t′)ρ(t′) (1.30)

where

ρ(t′) = −2π~

a0

n∑

i=0

σiδ(ti − t′). (1.31)

Using this expansion we may write the generating functional (1.24) for the correlation

functions as

Z[F (t)] =

∫
Dq e− 1

2

R
dω
2π

eD−1(ω)|q(ω)|2

×
∑

n

∫
dt1 . . . dt2n

(
(−V0/2)

n

n!

)2

e−
i
~

R
dt′(iF (t′)+ρ(t′))q(t′) (1.32)

where (anticipating the imminent functional integration) the propagator is

D̃(ω) =
(
Mω2 + η|ω|

)−1
(1.33)

and we have used that only neutral charge distributions (i.e. with σi = (−1)i for i = 1, . . . , 2n)

contribute finitely to the path integral. Note that for ω � γ, the dominant term in D̃(ω) is

1/ηω.

The path integral is gaussian and gives

Z =
1√

detD

∑

n

∫
dt1 . . . dt2n

(
(−V0/2)

n

n!

)2

× exp

(
−1

2

∫
ds ds′ (iF (s) + ρ(s))D(s− s′)

(
iF (s′) + ρ(s′)

))
. (1.34)
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with D(t) the inverse Fourier transform of D̃(ω),

D(t) =

∫ ∞

−∞

dω

2π
e−iωtD̃(ω) =





− 1
2ηγ|t| , |t| � 1/γ

− 1
πη ln γ|t| , |t| � 1/γ

. (1.35)

From this we may pull down the correlation function

〈q(t)q(0)〉 =
1

Z

δ

δF (t)

δ

δF (0)
Z

∣∣∣∣
F=0

= D(t) −
∫
ds

∫
ds′ D(t− s)

〈
ρ(s)ρ(s′)

〉
D(s′) (1.36)

with charge density correlation function given by

〈
ρ(t′)ρ(0)

〉
=

1

Z[0]

1√
detD

∑

n

∫
dt1 . . . dt2n

(
(−V0/2)

n

n!

)2

ρ(t′)ρ(0)

× exp

(
−1

2

∫
ds

∫
ds′ ρ(s)D(s− s′)ρ(s′)

)
. (1.37)

We see from this expression that the “charges” in ρ interact via the essentially logarithmic

potential D(t′). This analogy to electric charges moving in one dimension is the origin of the

term Coulomb gas expansion. Using the expression (1.31) we can rewrite the exponential in

(1.37) as

exp

(
−1

2

∫
ds

∫
ds′ ρ(s)D(s− s′)ρ(s′)

)
= exp


−1

2

∑

j,k

(
2π~

a0

)2

σjσkD(tj − tk)




= exp


−1

2

2π~

α

∑

j,k

σjσkD(tj − tk)


 . (1.38)

where we have introduced the very important dimensionless dissipation parameter

α =
ηa2

0

2π~
. (1.39)
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From (1.36) the mobility (1.7) is then

µ = lim
ω→0

|ω| (D(ω) −D(ω)S(ω)D(ω)) (1.40)

=
1

η

(
1 − lim

ω→0
D(ω)S(ω)

)
(1.41)

where S(ω) is the Fourier transform of the charge density correlation function (1.37).

This perturbative expansion in powers of V0 should be valid for weak V0. Renormalization

group arguments [7, 14] show that in fact V0 flows to 0 provided that the dimensionless friction

α given in (1.39) is less than one. We then have the dimensionless mobility

µ/µ0 = 1 for α < 1. (1.42)

The region where the periodic potential does not flow to zero is not accessible to the

perturbation theory. The approach to this side of the “phase diagram” has been to instead

work in the strong potential limit. In this sort of tight-binding limit, the particle lives mostly

in harmonic oscillator levels localized in the wells of the potential. The possibility of motion is

provided by tunneling through the barrier between minima; these are instantons [6].

A single instanton tunnels from, for example x = 0 to x = a0 through a barrier of height

V0(1 − cos(2πx/a0). In an inverted potential formulation, we obtain the action of the classical

path associated with this (this is the WKB phase):

s =

∫ a0

0
dx
√

2MV0(1 − cos(2πx/a0)) =
4a0

π

√
MV0. (1.43)

The paths associated with these jumps have the form

f(t) =
2a0

π
tan−1 eω0t (1.44)

with ω0 = 2π
a0

√
2V0/M the effective harmonic oscillator frequency in the base of the wells. A
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good approximation to a multi-instanton path is constructed as a sum of jumps of the type

(1.44). For n jumps at times t1, . . . , tn in direction ej = ±1 we have

q(t′) =
n∑

j=1

ejf(t− tj), (1.45)

which we may Fourier transform (using an integration by parts) to get

q(ω) =
i

ω
h(ω)

∑

j

eje
iωtj (1.46)

where h(ω) is the Fourier transform of d
dtf(t). Note that since the path (1.44) is a smoothed-out

step function, its derivative h(t) is a smoothed-out delta function. When integrated alongside

functions that vary on time scales longer than 1/ω0, h(t) ≈ a0δ(t).

The effective action is infinite unless the paths start and end at the same position, which

allows us to impose charge neutrality
∑

j ej = 0. For the n instantons described by (1.45) we

get effective action

Seff = ns+ 1
2

∫
dω

2π
D−1(ω)q(ω)q(−ω) + i

∫
dt′F (t′)q(t′)

= ns+ 1
2

∑

j,k

ejek∆(tj − tk) + i

∫
dω

2π

F̃ (−ω)h(ω))

ω

∑

j

eje
iωtj (1.47)

where ∆(t′) is the inverse Fourier transform of

∆̃(ω) =
η|h(ω)|2

|ω| . (1.48)

As mentioned above, on time scales shorter than 1/ω0, the function h(t) acts as a delta

function a0δ(t). In this regime we then have

∆̃(ω) ≈ ηa2
0

|ω| =
2π~α

|ω| (1.49)
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and we see that the double sum term in the effective action (1.47) has the same form as that

in (1.38) with the replacement α→ 1/α.

Calculating the generating functional using the effective action (1.47) by integrating over

times ti we obtain an expression very similar to (1.34), but with no quadratic term in the source

F . The lack of quadratic term yields a mobility (calculated from the two point correlation

function as in (1.36) that lacks the leading classical behaviour of (1.41):

µTB = lim
ω→0

∆̃(ω)Σ(ω). (1.50)

Just as ∆̃(ω) and D̃(ω) are very similar on long time scales, so are the factor Σ(ω) and S(ω).

This leads to an approximate duality between the mobility µ in the weak potential limit given

by (1.41) and the mobility µTB in the tight-binding limit described above:

µ(α)

µ0
= 1 − µTB(1/α)

µ0
, (1.51)

with α defined in (1.39). The implication of this, given the renormalization argument that

µ/µ0 = 0 for α < 1, is that

µ/µ0 = 0 for α > 1. (1.52)

In (1.42) and (1.52) we see that there is a sudden transition from classical dissipative

particle behaviour (µ = 1/η) to localized tight-binding behaviour (µ = 0) as the friction α

passes through 1.

A finite-temperature approach to this problem was undertaken by Fisher and Zwerger [7].

Their approach involved the full evolution of the density matrix according to the Caldeira-

Leggett prescription. An outline of their approach and a generalization of it to more complicated

lattices is investigated in chapters 4 and 5.
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1.4 The String Theory Connection

The connection between Caldeira-Leggett dissipative quantum mechanics and string theory

was first pointed out by Callan and Thorlacius [4]. An essential technique in string theory

for dealing with world-sheets of complicated topology is to cut up the world-sheet into various

“fixtures” of simple topology (for example a disk or a cylinder). Calculations may be done on

each fixture, and the results sewn together in a prescribed fashion.

When dealing with closed strings, which are closed loops, cutting the world-sheet into

fixtures results in the severing of some of the strings. The severed closed strings become open

strings with endpoints that live on the boundary of the fixture. The behaviour of these open

strings is influenced by interactions in the bulk of the fixture, but these degrees of freedom

can be integrated away to leave a boundary state. The boundary state is a functional of the

boundary field degrees of freedom. Two adjacent fixtures are re-linked by taking the product

of their boundary states; this is equivalent to a functional integral over their shared (boundary)

degrees of freedom.

Without developing too much formalism (some of which will be covered in chapters 2 and

3), the boundary state for free bosons without interactions is

|B〉free = exp

(
−

∞∑

m=1

1

m
α−mα̃−m

)
|0〉 (1.53)

where αm and α̃m are mode operators for the string fields in the bulk of the world-sheet and

|0〉 is the famous SL(2, C) invariant vacuum, annihilated by the positive (m > 0) modes. In

the presence of the gauge field the boundary state is modified to [3]

|B〉 = exp

( ∞∑

m=1

1

m
α−mα̃−m

)∫
DX(s) exp (−Sreg − S0 − SA − Sls) |0〉 (1.54)

where the path integral is over the field configurations on the boundary, with s ∈ [0, 2π]
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parameterizing the boundary (which is assumed to be periodically identified). The various

action terms S are

S0[X] =
1

8πα′

∫ 2π

0

ds

2π

∫ 2π

0

ds′

2π

(X(s) −X(s′))

sin2 1
2(s− s′)

(1.55a)

SA[X] =
i

2

∫ 2π

0

ds

2π
Aµ(X(s))

dXµ(s)

ds
(1.55b)

Sls[X] =

∫ 2π

0

ds

2π
α(s) ·X, where αµ(s) =

∞∑

m=1

i(α̃µ−me
−ims + αµ−me

ims) (1.55c)

Sreg[X] =

∫ 2π

0

ds

2π
1
2M(Ẋ(s))2. (1.55d)

The non-local term S0 is very similar to the dissipative term in (1.25), and in fact can be

obtained from this other by enforcing 2π-periodicity of the paths q(t′) to rewrite the second

integral. Alternatively, we may take the limit of the S0 term as the boundary length goes to

infinity, and recover the (s− s′)2 denominator seen in (1.25).

The term SA is the topological term arising from the gauge field in the bulk. We may freely

take this to be zero now that we have used it to extract the other terms. (The inclusion of this

term in the problem described in chapters 2 and 3 has been discussed in [10]).

The linear source term Sls we choose to ignore, since its function is to share the boundary

fields back into the bulk modes, and may be treated as a c-number and shifted away. The mass

term Sreg is necessary to regulate the theory, which is the role of the identical mass term in

the DQM model once friction has been introduced.

The conclusion we draw from this analogy is that calculations done with the DQM action

(1.25) may be relevant to calculations in string theory for models of the type (1.54). Conversely,

to find the boundary state in string theory (perhaps by some other means than the formula

(1.54)) is also to perform the path integral in (1.54). A calculation based on the string theory

side can thus provide insight into condensed matter problems.

To construct the Schmid model, we can consider the free bosonic field theory of the closed
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strings in the bulk with a periodic interaction on the boundary. By finding the boundary

state for the theory, we are evaluating the path integral expression (1.54) with the periodic

interaction included. We end up working with the theory defined by action

S =
1

4π

∫ ∞

−∞
dτ

∫ π

0
dσ
(
(∂τX)2 + (∂σX)2

)
−
∫ ∞

−∞
dτ
(g

2
eiX(τ,0) +

ḡ

2
e−iX(τ,0)

)
. (1.56)

This is the boundary sine-Gordon model, and is discussed in chapter 3.

Since string theory and thus the boundary state formalism is developed in the context of con-

formal field theory, any condensed matter problem being studied by these methods will inherit

symmetries from the string model. In condensed matter systems, extreme reparametrization

invariance tends to arise at the critical points of phase transitions (between localized and delo-

calized phases for example), so it is these critical theories that might be approached using the

string theory analogy.
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2. Free Bosonic Field Theory

Conformal field theories arise in a variety of contexts, most famously in string theory and in the

statistical mechanics of condensed matter systems. The basic feature of conformal theories is a

total insensitivity to the parametrization of the underlying space (and thus is often associated

with scale invariance). This feature leads to tight constraints on correlation functions and

limits the spectrum of possible theories (by dictating the number of space-time dimensions in

string theory, for example).

The theory of a free boson in 2 dimensions is one of the simplest conformal field theories,

and is the basis for many others. In this chapter we review the important features of free

bosonic field theory that will be applied in order to find the partition function of the boundary

sine-Gordon model. At the end of the chapter we also touch on the subject of free fermion field

theory. The material here is mainly drawn from [12] and [8].

2.1 Action and Equations of Motion

Let us consider fields Xµ(σ, τ) which live on the world-sheet parametrized by the spatial co-

ordinate σ and the euclidean time τ . In string theory, the fields Xµ represent coordinates in

space-time, so the field represents a time-dependent embedding of a one-dimensional entity in

space-time, or string.

Our world sheet will live on a strip in the σ, τ plane:

τ ∈ (−∞,∞), σ ∈ [0, π]. (2.1)
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Greek indices will be used to index the fields, and these will always contract with the Euclidean

metric, gµν = δµν . Roman indices, as in ∂a, refer to the coordinates (σ, τ) which also contract

with a Euclidean metric. The action that interests us (for now) is the one that minimizes the

area of the string:

S =
1

4πα′

∫ ∞

−∞
dτ

∫ π

0
dσ∂aX

µ∂aXµ. (2.2)

We may obtain the classical equations of motion by varying the fields and integrating by

parts:

δS =
1

4πα′

∫
d2σ (−(2∂a∂

aXµ)δX
µ + ∂a(∂

aXµδX
µ)) (2.3)

This gives an equation of motion

∂a∂
aXµ = 0, (2.4)

and we must impose boundary conditions to ensure that the total derivative term is zero as

well. This is usually done by either forcing the derivative term normal to the boundaries to be

zero (the Neumann boundary condition), or by preventing the variation of X at the boundaries

by fixing it to some specific coordinate (the Dirichlet boundary condition).

Since we have boundaries at σ = 0 and σ = π the Neumann condition reduces to

∂σXµ(0, τ) = 0

∂σXµ(π, τ) = 0. (2.5)

For the Dirichlet condition, fixing the endpoints of the string is equivalent to asking that the
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derivative of the field along the boundary be zero. The Dirichlet condition is then

∂τXµ(0, τ) = 0

∂τXµ(π, τ) = 0. (2.6)

Note that these are the most common boundary conditions but not the only possibilities. When

we later add boundary interactions to the action, our boundary conditions will become more

complicated.

Expectation values are defined by a functional integral of the fields, weighted by the expo-

nential of the action. The expectation value of the operator F is

〈F〉 =

∫
DXeS[X]F [X] (2.7)

where the functional integral is over all field configurations that satisfy the specified boundary

conditions.

It will be advantageous to work in an alternative coordinate basis defined by

w = τ + iσ w = τ − iσ (2.8)

(it is quite standard to use the complex variable z here, but we wish to reserve that symbol

for the radial quantization coordinate transformation). This is simply a linear coordinate

transformation, and w and w should be treated as independent variables. Since τ and σ are

real, however, it will always be true that w = w∗. We will commonly abbreviate ww = |w|2.

Our fields Xµ(w,w) are functions of the two new independent variables. All of our previous
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expressions can be rewritten by applying

∂w = ∂τ − i∂σ (2.9)

∂w = ∂τ + i∂σ, (2.10)

which gives us an action

S =
1

2π

∫
dw dw ∂wX

µ∂wXµ (2.11)

and equations of motion

∂w∂wX
µ = 0. (2.12)

The equation of motion tells us that the fields Xµ are harmonic functions

Xµ(w,w) = Xµ
L(w) +Xµ

R(w) (2.13)

with the “left-moving” field XL holomorphic (∂wXL(w) = 0), and the “right-moving” XR(w)

antiholomorphic (∂wXR = 0). Since a derivative with respect to w (or w) makes X holomorphic

(or, respectively, antiholomorphic), we can omit the dependence on w (or w), and write simply

∂wX(w) (or ∂wX(w)).

In quantum field theory, the equation of motion holds only as an operator equation, meaning

that expectation values involving ∂w∂wX are zero as long as there are no other field operators

near w or w. In a path integral formulation, this is easily obtained using the properties of

functional derivatives:

20



∂w∂w 〈Xµ(w,w) . . .〉 =

∫
DX e−S[X]∂w∂wX

µ(w,w) . . .

=

∫
DX π

δe−S[X]

δXµ(w,w)
. . .

= 0 (2.14)

The final line in this equation only follows if . . . contains no field operators at w,w; in this

case the functional derivative is a total derivative and its integral is 0.

The complications that arise when field operators coincide are dealt with in the next section.

2.2 Normal Ordering

We now consider the two-point function, or propagator, 〈Xµ(w,w)Xν(0, 0)〉. Now allowing

w,w to approach 0, we find the “naive” equation of motion is adjusted as follows:

∂w∂w 〈Xµ(w,w)Xν(0, 0)〉 =

∫
DX e−S[X]∂w∂wX

µ(w,w)Xν(0, 0) . . .

=

∫
DX π

δe−S[X]

δXµ(w,w)
Xν(0, 0)

= π

∫
DX

(
δ(e−S[X]Xν(0, 0))

δXµ(w,w)
− e−S[X] δX

ν(0, 0)

δXµ(w,w)

)

= −πηµνδ(2)(w,w) (2.15)

The propagator is thus the green function for the operator ∂w∂w (which is just the two

dimensional Laplacian if we return to σ, τ coordinates):

〈Xµ(w,w)Xν(0, 0)〉 = − 1
2η

µν ln |w|2 (2.16)

A normal ordered operator is one that, in each of its constituent fields, satisfies the equation
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of motion. An example is the normal ordered two point function:

:Xµ(w,w)Xν(0, 0) : = Xµ(w,w)Xν(0, 0) + 1
2η

µν ln |w|2 (2.17)

Then the expectation value of :Xµ(w,w)Xν(0, 0) : satisfies

∂w∂w 〈:Xµ(w,w)Xnu(0, 0) :〉 = 0 (2.18)

for all w, since the double derivative of the ln |w|2 term will exactly cancel the delta function

from (2.15). The normal ordered operator is well-defined even if its constituent fields are

coincident; :Xµ(w,w)Xν(w,w) : is a meaningful operator.

An unordered operator differs from its normal ordered form by the sum of all possible

contractions of its constituent fields. For the two-point function, this means

:Xµ(w,w)Xν(0, 0) : = Xµ(w,w)Xν(0, 0) − 〈Xµ(w,w)Xν(0, 0)〉

(2.19)

Informally, the normal ordered operator is the sum of all possible ways of pairing fields in

the unordered operator and replacing pair with the corresponding propagator. We may express

this more formally: let F({wi, wi}) be an unordered product of local field operators at wi, wi,

for i = 1, . . . , n. Then let

:F : = exp

(
−
∫
d2w

∫
d2w′ 〈Xµ(w,w)Xν(w′, w′)

〉 δ

δXµ(w,w)

δ

δXν(w′, w′)

)
F

= exp

(∫
d2w

∫
d2w′ ln |w − w′|2 δ

δXµ(w,w)

δ

δXµ(w′, w′)

)
F .

(2.20)
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(Here the integration measures are abbreviated, e.g. d2w = dw dw.) This will guarantee that

∂wi
∂wi

〈:F :〉 = 0 for each of F ’s coordinates wi.

2.3 Operator Product Expansion

We have already seen in (2.15) that the product of two local operators may become ill-defined

as the coordinates approach each other on the world-sheet. This can be dealt with by using

the operator product expansion (O.P.E.) which approximates the product of nearby operators

as a sum of local operators. For a set of operators {F}, for each pair Fi and Fj there is a

neighbourhood of w about w0 such that

Fi(w,w)Fj(w0, w0) =
∑

k

ckij(w − w0, w − w0)Fk(w0, w0) (2.21)

where the coefficient functions cij(w,w) are holomorphic in w and antiholomorphic in w in this

neighbourhood of 0 except possibly at 0.

O.P.E.s are used to move the singularity of the operator product into the singularity of the

otherwise holomorphic/antiholomorphic coefficient functions. For that reason it is usually only

the singular terms of the O.P.E. that are of interest. Normal ordering can be used to identify

the singular terms (since the normal ordered form of the operator satisfies the naive equations

of motion, only the contractions of the operator will be present as non-singular terms). For

example, consider the product of two field operators at neighbouring points (w,w) and (0, 0).

Xµ(w,w)Xν(0, 0) = :Xµ(w,w)Xν(0, 0) : − 1
2η

µν ln |w|2 (2.22)

The normal-ordered product satisfies (2.16), and thus is well behaved at 0 and can be expanded
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in a Taylor series.

Xµ(w)Xν(0) = −1
2η

µν ln |w − w′|2+ :Xµ(0)Xν(0) :

+
∞∑

k=1

1
k!

(
:∂kwX

µ(0)Xν(0) : wk+ :∂kwX
µ(0)Xν(0) : wk

)

∼ −1
2η

µν ln |w − w′|2 (2.23)

The first line above is the complete O.P.E., with all fields evaluated at 0. The second line

introduces the equivalence ∼, which indicates that the expressions on either side are equal up

to non-singular terms (so that we may drop all “well behaved” terms). Note that in the power

series expansion the mixed derivative terms are zero by the equation of motion (which applies

to the normal ordered product).

2.4 Conformal Transformations

Our action should be invariant under world-sheet reparametrization. Going from coordinates

w to w′ = f(w) for some analytic f and requiring that the new fields satisfy

X ′µ(w′, w′) = Xµ(w,w) (2.24)

means that the action naively written in the new coordinates

S′ =

∫
dw′ dw′ ∂w′X ′µ(w′)∂w′X ′

µ(w
′) =

∫
dw dw ∂w′Xµ(w)∂wXµ(w) = S (2.25)

is equal to the original action. Thus any change of world-sheet coordinates does not change

the basic theory; this is conformal invariance. In boundary conformal field theory, the world-

sheet boundaries will move with the transformation but the boundary operators appearing in

the action and thus the derived boundary conditions must retain their form under conformal
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transformations. The set of boundary operators that is conformally invariant is not the same

as the set of operators that are conformally invariant in the bulk of the space.

The world-sheet energy-momentum tensor is a set of Noether currents that arise from

variation of world-sheet coordinates. Operating locally, it generates infinitesimal coordinate

changes. In the w,w coordinates it can be shown that the energy-momentum tensor has only

two independent components. The first,

T (w) = − :∂wX
µ∂wX

µ :, (2.26)

generates transformations in w, while

T (w) = − :∂wX
µ∂wX

µ :, (2.27)

generates transformations in w. In the next section we discuss how these tensors may be used

to determine the conformal transformation properties of field operators.

2.5 Primary Fields and Conformal Dimension

A primary field A(w,w) is a field that, under a conform transformation w ′ = f(w) transforms

according to

A′(w′, w′) =

(
∂w′

∂w

)−h(∂w′

∂w

)−eh
A(w,w), (2.28)

where (h, h̃) are called the conformal weights of the primary field A.

From (2.24), for example, we know thatXµ is a primary field with weights (0,0). The energy-

momentum tensor is useful for identifying and determining the weights of primary fields. It can

be shown that the O.P.E. of the energy-momentum tensor acting on a primary field satisfying
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(2.28) is

T (w)A(0, 0) ∼ h

w2
A(0, 0) +

1

w
∂wA(0, 0) (2.29)

Using this we may confirm, for example, that ∂wX
µ(w) is a primary field of weights (1,0).

We accomplish this by finding the O.P.E. of T (w)∂Xµ(w0), by expanding the normal ordering

of T (w) and then re-normal ordering the resulting operator products (this is equivalent to

cross-contracting the fields in T (w) with the ∂Xµ(w0) but it is instructive to work it out very

explicitly):

T (w)∂Xµ(wo) = − :∂Xν(w)∂Xν(w) : ∂Xµ(wo)

= − lim
w′→w

∂w∂w′

(
Xν(w′, w′)Xν(w,w) + 1

2η
ν
ν ln |w′ −w|2

)
∂woX

µ(wo)

= − lim
w′→w

(
1
2η

ν
ν

1

(w − w′)2
∂Xµ(wo)

+ ∂w∂w′∂wo

[
:Xν(w′)Xν(w)Xµ(w0) : − 1

2η
ν
ν ln |w′ − w|2Xµ(wo)

−1
2η

µ
ν ln |w − wo|2Xν(w′) − 1

2η
µν ln |wo − w′|2Xν(w)

])

∼ 1

(w − wo)2
∂Xµ(w) (2.30)

We want local operators at wo, so we Taylor expand Xµ(w) = Xµ(wo)+(w−wo)∂Xµ(wo)+ . . .

to get

T (w)∂Xµ(wo) ∼ 1

(w − wo)2
Xµ(wo) +

1

w − wo
∂Xµ(wo); (2.31)

from which we conclude that ∂Xµ is a primary field of weights (1, 0) (since ∂Xµ has no w

dependence, it trivially has weight h̃ = 0).
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It is also important for our purposes to know the weights of an exponential of the fields:

T (w) :ekµXµ(wo) : = − :∂Xν(w)∂Xν(w) ::eikµXµ(wo) :

= − :∂Xν(w)∂Xν(w)eikµXµ(wo,w0) :

− (−1
2 ikµ∂w ln |w − wo|2)(−1

2 ik
µ∂w ln |w − wo|) :eikµXµ(wo) :

− 2∂Xµ(w)(−1
2 ikµ∂w ln |w −wo|) :eikµXµ(wo) :

∼
( |k|2/4

(w − wo)2
+

1

w − wo
∂wo

)
:eikµXµ(wo) : . (2.32)

The O.P.E. has terms from contracting both or just one of the fields in T (w) with the ex-

ponential. Acting with T (w) gives a similar result, and we find that : eikµXµ
: has weights

(kµk
µ/4, kµk

µ/4).

2.6 Radial Quantization

It is often advantageous to perform the coordinate transformation

w → z = ew w → z̄ = ew. (2.33)

Referring to our original coordinates, circles about the origin in z coordinates are lines of

constant τ ; τ = −∞ maps to z = 0, τ = ∞ maps to z = ∞.

In radial quantization it is very advantageous to make use of a connection between operators

and states. Consider an operator very close to z = z̄ = 0. This position corresponds to τ = −∞,

and thus in the original τ, σ coordinates it establishes an “ingoing” state for our subsequent

calculations. A path integral on the z world-sheet with the operator at the origin corresponds

to a path integral on the strip (w world-sheet) with some initial state defined at τ = −∞. This

relationship will be explored further in the next chapter.
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2.7 Mode Expansions

Since ∂Xµ(z) satisfies ∂̄(∂X(z)) = 0 everywhere except perhaps at z = 0, it has a Laurent

expansion about 0. This is customarily expanded as

∂Xµ(z) = −i
√

1

2

∞∑

m=−∞
αkz

−k−1 (2.34a)

where the αk are operators. (Note that in the original σ, τ coordinates, this is just a Fourier

decomposition; so it should not surprise us if the αk turn out to act as harmonic raising and

lowering operators.) Similarly,

∂Xµ(z̄) = −i
√

1

2

∞∑

k=−∞
α̃kz̄

−k−1. (2.34b)

These can be integrated to give the general mode expansion for Xµ(z, z̄) = Xµ
L(z) +Xµ

R(z̄):

Xµ
L(z) =

1√
2

(
xµL − ipL ln z + i

∑

n=0

αn
n
z−n

)
(2.35a)

Xµ
R(z̄) =

1√
2

(
xµR − ipR ln z̄ + i

∑

n=0

α̃n
n
z̄−n

)
(2.35b)

The α0 and α̃0 mode operators have been reinterpreted as momenta. It can be shown, for

example by careful commutation of contour integrals that extract the various modes from the

field Xµ, that the operators xL, pL, αL satisfy commutation relations

[xL, pL] = i and [αn, α−n] = n, (2.36)

with all other commutators zero. The analogous relations hold for the right-moving modes:

[xR, pR] = i and [α̃n, α̃−n] = n, (2.37)
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and the left- and right-moving modes commute with each other.

The vacuum states consist of eigenstates |kL, kR〉 of the momentum operators

pL |kL, kR〉 = kL |kL, kR〉 pR |kL, kR〉 = kR |kL, kR〉 (2.38)

are annihilated by positive mode oscillators;

αn |kL, kR〉 = α̃n |kL, kR〉 = 0 for n > 0 (2.39)

2.8 Free Fermion Theory

The discussion of fermions will not be as deep as the discussion of bosons. Free fermionic

field theory has many similarities with the bosonic development, and several more complicated

aspects.

A free fermion ψ(w,w) = ψL(w) + ψR(w) has action

S =
i

2π

∫ ∞

−∞
dτ

∫ 2π

0
dσ
(
ψ†
L(w)∂wψL(w) + ψ†

R(w)∂wψR(w)
)
. (2.40)

where w = τ + iσ is on the Euclidean cylinder.

Since only fermion bilinears must be periodic under σ → σ + 2π, there are two sectors of

fermions, depending on whether they are periodic (Ramond) or antiperiodic (Neveu-Schwarz)

in their spatial coordinate. Explicitly,

σ → σ + 2π =⇒





(ψL, ψR) → (−ψL,−ψR) “Neveu-Schwarz” (NS)

(ψL, ψR) → (ψL, ψR) “Ramond” (R)
(2.41)

with all fields evaluated at τ, σ The resulting mode expansions, in radial quantization z = ew,
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z̄ = ew, are

ψL(z) =
∑

n

ψnz
−n ψ†

L(z) =
∑

n

ψ†
nz

−n (2.42)

ψR(z̄) =
∑

n

ψ̃nz̄
−n ψ†

R(z̄) =
∑

n

ψ̃†
nz̄

−n (2.43)

where the index n ranges over integers or half-odd integers depending on the sector:

NS sector n− 1
2 ∈ Z

R sector n ∈ Z.
(2.44)

We will refer to the modes ψn, ψ
†
n as left-moving, and the ψ̃n, ψ̃

†
n modes as right-moving. We

will frequently use the index r to sum over half-odd integers in the NS sector.

The modes have anticommutation relations

{
ψn, ψ

†
−n
}

= 1
{
ψ̃n, ψ̃

†
−n
}

= 1, (2.45)

and all other inter-mode anticommutators are 0.

The vacuum state is different in the Ramond and Neveu-Schwarz sectors. In both cases, all

positive mode (n > 0) oscillators annihilate the vacuum and negative mode operators (n < 0)

create excited states. In the Ramond sector, the n = 0 modes complicate the notion of vacuum

somewhat; we define our Ramond sector vacuum |0〉R such that

ψ̃†
0 |0〉R = ψ0 |0〉R = 0 (2.46)

In the Neveu-Schwarz sector the Hamiltonian is

HNS =
∞∑

r=
1
2

(
rψ−rψr + rψ̃−rψ̃r

)
− 1

12
. (2.47)
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The Hamiltonian for the Ramond sector is

HR =

∞∑

n=1

(
nψ−nψn + nψ̃−nψ̃n

)
− 1

6
. (2.48)

We will ultimately be fermionizing a bosonic system, and most of our difficult work will

involve the fermion operators.
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3. Boundary Sine-Gordon Model

In this chapter we will calculate the partition function of the boundary sine-Gordon model

at the self-dual radius. The theory is free in the bulk, while the periodic interaction at the

boundaries modifies the boundary conditions. The results of this section, along with several

extensions of the model, have been published in [10]. The approach was previously applied to

the rolling tachyon problem [11]

We will first develop basic ideas about calculating partition functions using boundary states.

In a path integral expression for the partition function, the field configurations are restricted

to be periodic in the euclidean time; at the same time we have to impose our boundary con-

ditions at spatial extremes of the world-sheet. To re-enter familiar string theory territory, we

interchange the spatial and time coordinates so that the spatial component is periodic while

the boundary conditions are recast as incoming and outgoing states.

The success of this approach comes from fermionizing the system. In free field theory,

fermions are obtained as exponentials of bosonic fields, with the exponent containing a factor

of i/
√

2 to ensure the correct conformal weights for the fermions. Since the bosonic boundary

interactions are constrained to have the right conformal scaling dimensions, the exponentials

appearing in the action appear without the factor 1/
√

2. The disparity is remedied by intro-

ducing an additional boson field Y with trivial boundary conditions, and forming new boson

fields (X ± Y )/
√

2. The new fields can be fermionized, and the boundary interaction is still

marginal.

Upon fermionizing, the momenta of the bosons are related to fermion number. Since fermion
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number is discrete, so must the boson momenta be. This leads to a requirement that the target

space of the boson be compactified at a certain radius. Once this has been ensured, the partition

functions may be calculated in the fermion system.

3.1 The Model

The boundary sine-Gordon model is the model of a free bosonic field X on a 2d space, subject

to a periodic interaction at the boundary of the space. As in section (2.1), we let world-sheet

Euclidean time parameter τ run over all real values, while the spatial coordinate σ is restricted

to the interval [0, π]. The sinusoidal interaction is present at the σ = 0 boundary, and we

impose either Neumann or Dirichlet conditions at the σ = π boundary. The action is then

S =
1

4π

∫ ∞

−∞
dτ

∫ π

0
dσ∂aX∂

aX −
∫ ∞

−∞
dτ
(g

2
eiX(τ,0) +

ḡ

2
e−iX(τ,0)

)
. (3.1)

One would typically take g = ḡ to make the Hamiltonian hermitian. We need not insist on

this for now, however. The equations of motion are as in (2.4). However, the derivative term

in (2.3) that leads to the Neumann boundary condition equation is modified to

∂σX(τ, 0) + i g2e
iX(τ,0) − i ḡ2e

−iX(τ,0) = 0. (3.2)

This is the new boundary condition at σ = 0.

3.2 Boundary States

The thermal partition function can be obtained in a path integral formalism from

Z =

∫
DXe−βH (3.3)
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where the path integral is over configurations of X(σ, τ) that are periodic in the τ direction

(remember τ is already the Euclidean time) with period β = 1/T . In this problem we must

also enforce the boundary conditions at σ = 0 and σ = π.

In string theory we are much more accustomed to σ being the periodically identified coor-

dinate, while τ is subject to notions of “in-coming” and “out-going” states. For this reason

we redefine our coordinates, using conformal invariance. In particular we want to make the

β-periodic τ into a 2π-periodic σ′:

σ′ =
2π

β
τ τ ′ = − 2π

β
σ

Now σ′ is 2π-periodic and our boundaries are at τ ′ = 0 and −2π2/β. So (τ ′, σ′) parametrize a

finite length of Euclidean cylinder.

In the Boltzmann factor (3.3), the conformal transformation to σ ′, τ ′ will preserve the form

of the double integral over Hamiltonian density H, but the integration limits are adjusted:

βH =

∫ β

0
dτ

∫ π

0
dσ H =

∫ 2π

0
dσ′
∫ 2π2/β

0
dτ ′ H =

2π2

β

∫ 2π

0
dσ′H =

2π2

β
H ′. (3.4)

So our partition function (3.3) becomes

Z =

∫
D′X exp(−αH) (3.5)

where α = 2π2/β and the prime on the integration measure indicating that the paths are

restricted to satisfy the boundary conditions at τ ′ = 0 and α. We may let X roam freely over

all paths, provided that we enforce the boundary conditions some other way. Let Ψ1[X] be a

functional of the path that enforces the boundary condition at τ ′ = 0, and Ψ2[X] do the same
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at τ ′ = α. Then

Z =

∫
DXΨ2[X] exp(−αH)Ψ1[X].

= 〈B1| exp(−αH) |B2〉 (3.6)

where |Bi〉 are the boundary states corresponding to functionals Ψi[X] that enforce the bound-

ary conditions [12]. To do this they must satisfy

Bi |Bi〉 = 0 (3.7)

where Bi are the operators obtained from the left hand side of the boundary condition equation

(3.2).

We also need the form of the new Hamiltonian H ′. It is obtained in the canonical fash-

ion from the free action in the new coordinates. The action preserves its form (other than

integration limits) under the conformal transformation, so the new Lagrangian is

L′ =
1

4π

∫ 2π

0
dσ′∂aX∂

aX

(3.8)

and the new Hamiltonian is then

H ′ =
∂L

∂(∂τ ′X)
− L

=
1

4π

∫ 2π

0
dσ′
(
(∂τ ′X)2 − (∂σ′X)2

)

=
1

2π

∫ 2π

0
dσ′
(
(z∂zX(z))2 + (z̄∂z̄X(z̄))2

)
(3.9)

where now the derivatives are with respect to z = eτ
′+iσ′ , z̄ = eτ

′−iσ′ . The fields ∂zX(z) and
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∂z̄X(z̄) have mode expansions given in (2.34a) and (2.34b), and we may may integrate them

very easily by realizing that σ′ ∈ [0, 2π] is a contour integral in the complex plane. Then with

dσ′ = dz/iz = dz̄/iz̄ we find

H ′ =

∮
dz

2πi
z(∂zX(z))2 +

∮
dz̄

2πi
z̄(∂z̄X(z̄))2

= 1
2p

2
L + 1

2p
2
R +

∞∑

n=1

(α−nαn + α̃−nα̃n) − 1
12 . (3.10)

(Here the 1/12 comes from the commutation of αn past α−n which results in a
∑∞

n=1 n. The

requirement of modular invariance demonstrates that this sum is best interpreted as ζ(−1) =

−1/12, with ζ the Riemann zeta function.)

3.3 Auxiliary Boson

In order to facilitate fermionization, we must introduce an additional bosonic field Y to the

system [9, 13]. Our free action, on the cylinder in σ ′, τ ′ space is then

So =
1

4π

∫ ∞

−∞
dτ ′
∫ 2π

0
dσ′ (∂aX∂

aX + ∂aY ∂
aY ) . (3.11)

where we may extend the τ ′ domain to ±∞ since our boundary conditions will be enforced by

the boundary states. To make Y easy to deal with, we give it Dirichlet boundary conditions at

both boundaries.

Our real purpose is to change the scale of interaction term, however. We perform a unitary

rotation on the fields X,Y to get

φ1 =
X + Y√

2
φ2 =

X − Y√
2

. (3.12)
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The free part of the action (3.11) becomes

So =
1

4π

∫ ∞

−∞
dτ ′
∫ 2π

0
dσ′ (∂aφ1∂

aφ1 + ∂aφ2∂
aφ2) . (3.13)

Our mode expansion for the new fields φi(z, z̄) = φiL(z) + φiR(z̄) has the same form as (2.35),

explicitly

φiL(z, z̄) =
1√
2


ϕiL − iπiL ln z +

∑

n6=0

1
nβnz

−n


 (3.14)

and similarly for φiR.

We will also write the consequences that simple boundary conditions on X and Y have for

φi. For the case of the boundary state |N,D〉 where X has Neumann boundary conditions and

Y has Dirichlet boundary conditions,

(XL −XR)|N,D〉 = 0

(YL + YR)|N,D〉 = 0





=⇒





(φ1L − φ2R)|N,D〉 = 0

(φ2L − φ1R)|N,D〉 = 0
(3.15)

with all fields evaluated at τ = 0, arbitrary σ.

Similarly the boundary state |D,D〉, for the case ofX and Y both having Dirichlet boundary

conditions at τ = 0, satisfies

(XL −XR)|D,D〉 = 0

(YL − YR)|D,D〉 = 0





=⇒





(φ1L − φ1R)|D,D〉 = 0

(φ2L − φ2R)|D,D〉 = 0.
(3.16)

3.4 Fermionization

Fermionization is a process by which the bosonic fields of a system are combined into operators

that have fermionic commutation relations. If the inherited properties of the derived fermions

can be shown to follow from some fermionic action, then expressions obtained in the fermionic
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theory (in particular the form of the partition function) are valid in the bosonic context as

well. To perform our computation in the fermion system, we will need the Hamiltonian, the

boundary conditions, and thus the boundary state must be obtained in terms of the fermionic

operators.

For the boson fields φi, the fermionic field operators are [8, 11]

ψ1L(z) = ζ1L :e−
√

2iφ1L : ψ†
1L(z) = :e

√
2iφ1L : ζ†1L

ψ2L(z) = ζ2L :e
√

2iφ2L : ψ†
2L(z) = :e−

√
2iφ2L : ζ†2L

ψ1R(z̄) = ζ1R :e
√

2iφ1R : ψ†
1R(z̄) = :e−

√
2iφ1R : ζ†1R

ψ2R(z̄) = ζ2R :e−
√

2iφ2R : ψ†
2R(z̄) = :e

√
2iφ2R : ζ†2R.

(3.17)

The operators ζiH (where H is the handedness, L or R) are cocycles, and are necessary in the

two boson case to ensure that the ψ1 and ψ2 fields anticommute (without it, the two kinds

of fermions would commute instead). It is enough to use bosonic momentum operators in the

cocycles [11]:

ζ1L = ζ1R = exp −iπ
2 (π1L + π1R + 2π2L + 2π2R)

ζ2L = ζ2R = exp −iπ
2 (π2L + π2R) (3.18)

In resolving the anticommutator of, for example, ψ1L and ψ1R, factors of e±iπ/2 are obtained

when commuting the cocycle from one operator through the exponential factor of the other.

The exponential in the boundary condition (3.2), acting on the boundary state |B,D〉 can
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then rewritten in the following way:

g

2
eiX |B,D〉 =

g

2
ei(X+Y )|B,D〉

=
g

2
ei
√

2φ1 |B,D〉

=
g

2
ei
√

2φ1Lei
√

2φ1R |B,D〉

=
g′

2
:ei

√
2φ1L ::ei

√
2φ1R : |B,D〉

=
g′

2
ψ†

1Lψ1R|B,D〉 (3.19)

with all fields evaluated at the boundary.

In the first line of this equation, the introduction of Y is allowed since X and Y are

independent and eiY |B,D〉 = |B,D〉 from Y ’s Dirichlet boundary condition. In the third line,

the left- and right-moving parts of φ1 are independent and the exponential can be factored.

The normal ordering in the fourth line, however, introduces an infinite constant that must

be absorbed into the coupling constant. This is a standard coupling renormalization. We will

continue using the symbols g and ḡ in the fermion theory, but we should remember that these

are renormalized versions of the original couplings. In a similar fashion we obtain

ḡ

2
e−iX |B,D〉 =

ḡ′

2
ψ†

2Lψ2R|B,D〉 (3.20)

The operator product in bosonic operators can be used to show that, for a bosonic holo-

morphic field X(z), [8]

:eiαX(z)e−iαX(z) : = iα∂zX(z). (3.21)

So our bosonic field derivatives may be expressed as fermion bilinears. In terms of the original
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X and Y fields we then have

:ψ†
1Lψ1L(w) : =

√
2i∂wφ1L(w) (3.22a)

:ψ†
2Lψ2L(w) : = −

√
2i∂wφ2L(w) (3.22b)

:ψ†
1Rψ1R(w) : = −

√
2i∂wφ1R(w) (3.22c)

:ψ†
2Rψ2R(w) : =

√
2i∂wφ2R(w) (3.22d)

The derivative operator in the boundary condition (3.2) is expressed as a fermion bilinear

using (3.22):

∂τX = (∂w + ∂w) 1√
2
(φ1 + φ2)

= 1√
2
∂w (φ1L + φ2L) + 1√

2
∂w (φ1R + φ2R)

= 1
2i

(
:ψ†

1Lψ1L : − :ψ†
2Lψ2L : − :ψ†

1Rψ1R : + :ψ†
2Rψ2R :

)
(3.23)

Introducing the vector notation

ψL =



ψ1L

ψ2L


 ψ†

L =

(
ψ†

1L ψ†
2L

)
(3.24)

and similarly for ψR and ψ†
R, along with the Pauli matrices σi we can write the complete

boundary equation in fermion variables as

(
:ψ†

Lσ
3ψL : − :ψ†

Rσ
3ψR : + πgψ†

L(1 + σ3)ψR − πḡψ†
L(1 − σ3)ψR

)
|B,D〉 = 0. (3.25)
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In a similar fashion, the analogue of the Dirichlet boundary condition (2.6) for Y is

(
:ψ†

LψL : − :ψ†
RψR :

)
|B,D〉 = 0 (3.26)

3.5 Boson momenta and fermion numbers

The boson momenta πiL and πiR can be obtained from the spatial integral of the derivative

of the boson fields φi; this follows from the mode expansion (2.34a). In radial coordinates we

have

πiL =

∮
dz

2πi
(i
√

2∂zφiL)

= −
∮

dz

2πi
(−1)i :ψ†

iLψiL :

=





∑
r=1

(
ψ†
i,−rψi,r − ψi,−rψ

†
i,r

)
Neveu Schwarz

∑
n=1

(
ψ†
i,−nψi,n − ψi,−nψ

†
i,n

)
+ ψ†

i,0ψi,0 − 1
2 Ramond

(3.27a)

and similarly

πiR =





−∑r=1

(
ψ†
i,−rψ̃i,r − ψi,−rψ̃

†
i,r

)
Neveu Schwarz

−∑n=1

(
ψ†
i,−nψ̃i,n − ψi,−nψ̃

†
i,n

)
− ψ̃†

i,0ψ̃i,0 + 1
2 Ramond.

(3.27b)

Since the fermion numbers are integers (in the Neveu Schwarz sector) or half-odd-integers

(in the Ramond sector), this limits the spectrum of the momenta in the bosonic theory. The way

to handle this is to compactify the boson theory, which identifies target field values separated

by 2πR where R is the compactification radius.

From the bosonic mode expansions (2.35a) and (2.35b), the parts of X(σ, τ) linear in σ and

τ are

−i√
2
((pX,L + pX,R)τ + (pX,L − pX,R)iσ) (3.28)
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which leads to the definition of total momentum p and wrapping number w:

p = pL + pR w = pL − pR (3.29)

Since taking σ → σ+ 2π must map X to an equivalent X (in the sense that X ∼ X + 2π), the

wrapping number for X must satisfy

1√
2
w = mR =⇒ w =

√
2Rm (3.30)

with m ∈ Z. The total momentum, is quantized according to

2πR 1√
2
p = 2πn =⇒ p =

√
2

R
n (3.31)

with n ∈ Z. At R = 1,
√

2pX,L and
√

2pX,R are integers and either both are even or both are

odd. The same must apply to Y , and the implication for the φ bosons is that 2φ1,L, 2φ1,R, 2φ2,L,

and 2φ2,R all must be integers with the same parity. The significance of this is that our partition

function expression (which originated with a trace over all possible states) must respect these

relationships between momenta, and thus between fermion number as described in (3.27). This

means that our partition function must be the sum of fermionic expressions for the Ramond

and Neveu-Schwarz sectors:

Z = ZNS + ZR. (3.32)

By compactifying at R = 1, we are guaranteed that the half-integral spectrum of the

fermion number operators spans the same values as the φ boson momenta; and by separating

the partition function into the sum over the two fermion sectors we are enforcing the relationship

between those φ boson momenta.
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3.6 Gluing relations

Having established that the boson momenta are integers, we are set to establish another im-

portant set of relationships for the fermion fields acting on boundary states. Using the “gluing

relations” (3.15) for the boson fields at the boundary, we obtain gluing relations for the fermion

operators. For example, acting on the |N,D〉 state with the vector ψ†
L(0, σ) gives



ψ1L

ψ2L


 |N,D〉 =



ζ1L :e−

√
2iφ1L :

ζ2L :e
√

2iφ2L :


 |N,D〉 =



ζ1L :e

√
2iφ2R :

ζ2L :e−
√

2iφ1R :


 |N,D〉 (3.33)

with all fields in this expression evaluated at (τ = 0, σ). Since the boson momenta have been

restricted to integers, we have ζ †1Lζ2R|B,D〉 = |B,D〉 and thus



ψ1L

ψ2L


 |N,D〉 =



ζ1L :e

√
2iφ2R : ζ†1Lζ2R

ζ2L :e−
√

2iφ1R : ζ†2Lζ1R


 |N,D〉 =




−iζ2R :e
√

2iφ2R :

−iζ1R :e−
√

2iφ1R :


 |N,D〉

= −i



ψ2R

ψ1R


 |N,D〉 (3.34)

A similar computation can be performed for ψ†
L and ψ†

R. The result is the two gluing

relations for the vectors (3.24):

(ψ†
R(0, σ) + ψ†

L(0, σ) iσ1)|N,D〉 = 0 (ψR(0, σ) + iσ1ψL(0, σ))|N,D〉 = 0, (3.35)

where σ1 = ( 0 1
1 0 ) is the Pauli matrix acting left on the row vector ψ†

L or right on the column

ψL.

If instead we impose Dirichlet boundary conditions on X, this leads to the much simpler

43



relations

(ψ†
R + ψ†

L)|D,D〉 = 0 (ψR − ψL)|D,D〉 = 0. (3.36)

3.7 Fermion boundary state

We have found the expression for the partition function as a matrix element (3.6) of boundary

states, and we have developed an equivalent fermionic theory with Hamiltonian (2.47) or (2.48)

and boundary conditions (3.25). We will now establish the form of the boundary states in

fermion variables. Then the computation of the partition function will be possible.

The action for the pair of fermions ψ1, ψ2 can be written exactly as (2.40), though now the

field operators, such as ψL, represent the vectors defined in (3.24):

S =
i

2π

∫ ∞

−∞
dτ

∫ 2π

0
dσ
(
ψ†
L(w)∂wψL(w) + ψ†

R(w)∂wψR(w)
)
. (3.37)

This action is invariant under the unitary transformation

ψL → UψL and ψ†
L → ψ†

LU
−1 (3.38)

and similarly (and independently) for ψR. These symmetries have corresponding currents [8]

JaL = 1
2 :ψ†

Lσ
aψL : (3.39)

where σa are Pauli matrices acting on the vectors ψL and ψ†
L. In fact

[ψL, J
a
L] = 1

2σ
aψL [JaL, ψ

†
L] = 1

2ψ
†
Lσ

a. (3.40)

For a vector θa of angles, the currents JaL generate finite SU(2) transformations according
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to

e−iθaJa
LψLe

+iθaJa
L = UψL (3.41a)

e−iθaJa
Lψ†

Le
+iθaJa

L = ψ†
LU

−1 (3.41b)

where U = eiθaσa/2.

Note that the gluing relations (3.35) for the |N,D〉 and |D,D〉 states appear related by this

sort of rotation, in particular it can be shown that

|N,D〉 = eiπJ
1

L |D,D〉 (3.42)

We will attempt to construct the boundary state |B,D〉 that satisfies the boundary conditions

(3.25) as an intermediate rotation of the |N,D〉 state in the σ1 direction. Our ansatz is thus

that

|B,D〉 = exp(−iθaJaL)|N,D〉 (3.43)

for some vector of (possibly complex) angles (θa).

Using (3.41b) in (3.35) we obtain gluing relations for the boundary state:

0 = e−iθaJa
L

(
ψ†
R(0, σ) + ψ†

L(0, σ)iσ1
)
eiθaJa

L |B,D〉

=
(
ψ†
R(0, σ) + ψ†

L(0, σ)U−1iσ1
)
eiθaJa

L |B,D〉 (3.44)

and similarly

0 =
(
ψR(0, σ) + iσ1UψL(0, σ)

)
|B,D〉. (3.45)

Applying these to the boundary state equation (3.25) gives an equation for U . Beginning
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with the boundary state equation, we apply (3.41a) to change ψR to ψL:

0 =
(
:ψ†

Lσ
3ψL : − :ψ†

Rσ
3ψR :

+ πgψ†
L(1 + σ3)ψR − πḡψ†

L(1 − σ3)ψR

)
|B,D〉

=
(
:ψ†

Lσ
3ψL : − :ψ†

Rσ
3(−iσ1UψL) :

+ πgψ†
L(1 + σ3)(−iσ1UψL) − πḡψ†

L(1 − σ3)(−iσ1UψL)
)
|B,D〉 (3.46)

We will suppress normal ordering for a while. We can then separate the ψL vector on the right,

and anticommute the fermion operators left (note the introduction of indices a to handle the

vector product). The anticommutators of the ψL, ψ
†
L fields vanish because the matrix between

them is traceless. The first two terms on the right hand side of (3.46), then, satisfy

(
ψ†
Lσ

3ψL − ψ†
Rσ

3(−iσ1UψL)
)
|B,D〉 = − (σ2UψL)a

(
ψ†
Lσ

3U−1σ2 − ψ†
R

)
a
|B,D〉

= − (σ2UψL)a
(
ψ†
Lσ

3U−1σ2 + iψ†
LU

−1σ1
)
a
|B,D〉

= ψ†
L

(
σ3 − U−1σ3U

)
ψL|B,D〉 (3.47)

and so the complete boundary state equation is

0 = ψ†
L

[
σ3 − U−1σ3U + πg(σ2 − iσ1)U + πḡ(σ2 + iσ1)U

]
ψL|B,D〉. (3.48)

The matrix U is then obtained by solving

0 = σ3U−1 − U−1σ3 + πg(σ2 − iσ1) + πḡ(σ2 + iσ1), (3.49)

46



to obtain

U =



√

1 − π2|g|2 −iπg

−iπḡ
√

1 − π2|g|2


 (3.50)

Here, the diagonal elements of U are fixed by demanding that U be unitary. This also forces

ḡ = g∗.

The boundary state for the full boundary condition is a rotation of the Neumann and thus

of the Dirichlet boundary states. In the two possible fermion sectors, the Dirichlet-Dirichlet

boundary state |D,D〉, which satisfies (3.16), is

|D,D〉NS = 2−
1
2

∞∏

r=
1
2

exp
(
ψ†
−rψ̃−r + ψ̃†

−rψ−r
)
|0〉NS (3.51)

|D,D〉R = 2−
1
2

∞∏

n=1

exp
(
ψ†
−nψ̃−n + ψ̃†

−nψ−n

)
exp

(
ψ†

0ψ̃0

)
|0〉R . (3.52)

The operators ψr, etc., are vectors containing the modes of the L and R fermion operator

vectors (3.24), for example

ψi (z) =
∑

n

ψi,nz
−n ψn ≡



ψ1,n

ψ2,n


 . (3.53)

We are interested in the action of the Hamiltonian on the boundary state. Since the currents

JaL commute with the Hamiltonian, we can move them left,

e−αH |B,D〉 = e−αHe−iθaJa
LeiπJ

1

L |D,D〉 = e−iθaJa
LeiπJ

1

Le−αH |D,D〉.

and work with the |D,D〉 state instead. The action of the Hamiltonian on the Dirichlet-Dirichlet

state can be examined mode by mode. We will work it out carefully in the Neveu-Schwarz
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sector. Combining (2.47) and (3.52) we have

e−αHNS |D,D〉NS = eα/6
1√
2

∞∏

r=
1
2

exp(−αHL
r − αHR

r ) exp(Dr) |0〉NS (3.54)

with

HL
r = r(ψ†

−rψr + ψ−rψ
†
r)

HR
r = r(ψ̃†

−rψ̃r + ψ̃−rψ̃
†
r) (3.55)

Dr = (ψ†
−rψ̃−r + ψ̃†

−rψ−r).

For different values of r > 0, the operators in (3.55) commute with each other. For equal

r, we have

[HL
r , Dr] = rDr [HR

r , Dr] = rDr (3.56)

and thus

e−α(HL
r +HR

r )Dr = Dre
−α(HL

r +r)e−α(HR
r +r) = Dre

−2αre−α(HL
r +HR

r ) (3.57)

and finally

e−α(HL
r +HR

r )eDr = ee
−2αrDre−α(HL

r +HR
r ). (3.58)

Since HL
r |D,D〉 = HR

r |D,D〉 = 0, (3.54) becomes

e−αHNS |D,D〉NS =
eα/6√

2

∞∏

r=
1
2

exp
(
e−2αr(ψ†

−rψ̃−r + ψ̃†
−rψ−r)

)
|0〉NS (3.59)
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Re-rotating the left-moving fields gives

e−αHNS |B,D〉NS =
eα/6√

2

∞∏

r=
1
2

exp
(
e−2αr(iψ†

−rU
−1σ1ψ̃−r − iψ̃†

−rσ
1Uψ†

−r)
)
|0〉NS (3.60)

Not surprisingly, the result in the Ramond sector is simply

e−αHR |B,D〉R =
eα/3√

2

∞∏

n=1

exp
(
e−2αn(iψ†

−nU
−1σ1ψ̃−n − iψ̃†

−nσ
1Uψ†

−n)
)

exp(iψ†
0U

−1σ1ψ̃0) |0〉R (3.61)

3.8 Evaluation of the Partition Function

Using the boundary states found in the last section, we can construct the fermion theory matrix

elements associated with the boson partition function. Continuing from above, the NS sector

partition function is

ZNS = 〈D,D| e−αHNS |B,D〉

=
1√
2
〈0|NS

∞∏

r′=
1
2

exp
(
ψ†
r′ψ̃r′ + ψ̃†

r′ψr′
)

× eα/6√
2

∞∏

r=
1
2

exp
(
γ(ψ†

−rM
−1ψ̃−r + ψ̃†

−rMψ†
−r)
)
|0〉NS (3.62)

where we have abbreviated

M = iσ1U M−1 = − iU−1σ1. (3.63)

and γ = e−2αr.
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The exponentials can be broken up and grouped:

ZNS =
eα/6

2
〈0|NS

∞∏

r=
1
2

(
eψ

†
r

eψreγψ
†
−rM

−1 eψ−r

)(
e

eψ†
rψreγ

eψ†
−rMψ†

−r

)
|0〉NS . (3.64)

Then we can obtain

e
eψ†

rψreγ
eψ†
−rMψ†

−r |0〉 =
(
1 + ψ̃†

rψr + ψ̃†
1,rψ1,rψ̃

†
2,rψ2,r

)(
1 + γψ̃†

−rMψ†
−r+

+ γ2M11M22ψ̃
†
1,−rψ

†
1,−rψ̃

†
2,−rψ

†
2,−r

+ γ2M12M21ψ̃
†
1,−rψ

†
2,−rψ̃

†
2,−rψ

†
1,−r

)
|0〉

= (1 + γtrM + γ2 detM) |0〉 (3.65)

where in the first line, the first two terms in each set of brackets are still in our vector notation,

while the remaining terms have been broken down into their components. Since detM = 1, its

eigenvalues are ζ and ζ−1 with

ζ =
π(g + ḡ)

2
+ i

√
1 − π(g + ḡ)

2
. (3.66)

Then our factor from (3.65) is

(1 + γtrM + γ2 detM) = 1 + e−2αr(ζ + ζ−1) + e−4αr

= (1 + ζe−2αr)(1 + ζ−1e−2αr). (3.67)

The other pair of exponentials in (3.64) works out the same way and the partition function

is

ZNS =
eα/6

2

∞∏

r=
1
2

(
1 + ζe−2αr

)2 (
1 + ζ−1e−2αr

)2
(3.68)
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Using the Jacobi triple product identity,

∞∑

k=−∞
zkqn

2

=

∞∏

n=0

(1 − q2n+2)(1 + zq2n+1)(1 + z−1q2n+1), (3.69)

we have

ZNS = 1
2e
α/6

(
∑

n

ζne−αn
2

∞∏

k=1

1

1 − e−2αk

)
. (3.70)

By a similar procedure in the Ramond sector we obtain

ZR = 1
2e
α/6

(
∑

n

ζ(n+
1
2)e−α(n+

1
2 )2

∞∏

k=1

1

(1 − e−2αk)

)2

. (3.71)

As explained leading up to (3.32), the partition function for the bosonic system is obtained

as the sum of the Ramond and Neveu-Schwarz partition functions. In this sum we face the

combination

[
∑

n

ζne−αn
2

]2

+

[
∑

n

ζn+
1
2 e−α(n+

1
2 )2

]2

=
∑

n,m

ζn−m
(
e−α(n2+m2) + e−α((n+

1
2 )2+(n+

1
2 )2)

)

=
∑

n,m

ζn−me−
1
2α(m−n)2

(
e−

1
2α(m+n)2 + e−

1
2α(m+n+1)2

)

=
∑

n,n′

ζne−
1
2αn

2

e−
1
2αn

′2

. (3.72)
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Then our partition function reads

Z = 1
2e
α/6

( ∞∏

k=1

1

1 − e−2αk

)2∑

m,n

e−
1
2α(m−n)2ζm−n

(
e−

1
2α(m+n)2 + e−

1
2α(m+n+1)2

)

=

(
1√
2
eα/12

∑

n

e−
1
2αn

2

∞∏

k=1

1

(1 − e−2αk)

)

×
(

1√
2
eα/12

∑

n

ζne−
1
2αn

2

∞∏

k=1

1

(1 − e−2αk)

)
. (3.73)

The first bracketed term is ζ independent, and is exactly the bosonic partition function of

the free Dirichlet boson Y . We may remove it to get the desired partition function for X only:

ZX =
1√
2
eα/12

∑

n

ζne−
1
2αn

2

∞∏

k=1

1

(1 − e−2αk)
. (3.74)

Recalling that β = 2π2/α is our physical parameter, we use Poisson resummation to get

∑

n

ζne−
1
2αn

2

=
∑

n

e−
1
2αn

2+n ln ζ =

√
2π

α

∑

k

e−
2π2

a
(k−i ln ζ/2π) =

√
π

β

∑

k

e−β(k+δ) (3.75)

where from (3.66) we know

δ =
−i ln ζ

2π
=

1

2π
cos−1

(
1
2π(g + ḡ)

)
. (3.76)

We can also write

eα/12
∞∏

k=1

1

(1 − e−2αk)
=

[
η

(
iα

π

)]−1

=

[√
π

α
η
(
− π

iα

)]−1

=

√
2π

β
eβ/24

∞∏

k=1

1

(1 − e−βk)

(3.77)

where η(τ) is the Dedekind eta function (for which the identity η(−1/τ) = (−iτ)1/2η(τ) holds

generally).
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Combining these results, we have the partition function for the compact boson subject to

a periodic potential on one boundary and a Dirichlet boundary condition on the other:

ZB,D = eβ/24
∑

n

e−β(n+δ)
∞∏

k=1

1

(1 − e−βk)
. (3.78)

3.9 Conclusions

The expression for the partition function (3.78) is not new, nor is the idea of attacking the

problem using fermionization [13]. However, our approach differs in the way that the renormal-

ization of the coupling constants is performed. In the reference [13], the coupling is redefined

inside an exponential of the boundary condition, leading to a relationship between their cou-

plings g′, ḡ′ and the ones obtained here:

sin2 π
√
g′ḡ′ = π2gḡ and

g′

ḡ′
=
g

ḡ
. (3.79)

Our calculation, which involves a more direct renormalization of the couplings, in some sense

justifies their renormalization arguments and provides an alternative approach for constructing

boundary states using periodic operators.

Ultimately, the realization of a system described by the boundary sine-Gordon model at the

self-dual radius is physically very difficult. At the self-dual radius, other interactions besides the

periodic boundary potential become marginal; in particular the bulk operator ei:X: is relevant

and destroys any hope of maintaining the critical boundary theory.

An interesting extension, discussed in [10], involves compactification at rational radii R =

n/m. The boundary state and partition function are then obtained by fermionizing and pro-

jecting out combinations of fermion number that coincide with the boson momenta at the

rational radius. Perhaps these rational CFTs might be more easily realized in real systems.

Future work using this approach should be possible, in particular it should be possible to
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apply it to the dissipative Hofstadter model [5], where there are two bosonic degrees of freedom,

a periodic potential for each, and a magnetic field term that couples the two directions.
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4. Mobility at finite temperature

In this chapter we return to the condensed matter context and consider two other important

results relating to the Schmid model. The first is a finite temperature analysis of the one-

dimensional problem, and the second is a renormalization group analysis of the zero temperature

problem on a two-dimensional lattice.

4.1 Non-zero temperature approach

Fisher and Zwerger [7] attacked the Schmid model at arbitrary temperature, obtaining inter-

esting results for the temperature dependence of the mobility. Their approach was also very

explicit in its development of the duality between the weak potential and tight-binding limits

of the problem. In anticipation of generalizing the results to two dimensions, we present some

details of their calculations.

Working at finite temperature requires the full density matrix approach to Caldeira-Leggett

dissipative quantum mechanics, presented in section 1.2. We will use much of the notation from

that section. We work towards an expression for the mobility as defined in (1.5). We are now

working in real time t.

Our applied force F is now a constant that we include in the potential:

V (q) = −V0 cos(2πq/a0) − Fq (4.1)

Putting this into the expression for the reduced density matrix (1.16) involves the difference in
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particle actions

S0[q] − S0[q
′] = S0[x+ 1

2y] − S0[x− 1
2y]

= M

∫ t

0
dt′ẋ(t′)ẏ(t′) +

∫ t

0
dt′
∫ t

0
dt′Fy(t′)

+

∫ t

0
dt′
[
cos 2π

a0
(x+ 1

2y) − cos 2π
a0

(x− 1
2y)
]

(4.2)

where as before, x = 1
2 (q+q′) and y = q−q′. Each cosine is then expanded in a Coulomb gas as

in section 1.3. The first cosine is represented as a sum over n charges σi = ±1 and the second

is indexed by n′ charges ej = ±1. For each n, n′ and times ti, tj we have charge distributions

ρ(t) =
2π~

a0

n∑

i=1

σiδ(t− ti) ρ′(t) =
2π~

a0

n∑

j=1

ejδ(t− tj). (4.3)

We are interested in the classical probability distribution P (X; t) for the position of the

particle as a function of time, which is obtained as the diagonal component of the reduced

density matrix ρ̂(q, q′; t) described in (1.16)

P (X; t) ≡ ρ̂(X,X; t) (4.4)

=
∞∑

n=0

∞∑

n′=0

(
iV
2~

)n (−iV
2~

)n′ ∑

σi,ej=±1

∫
dt1 . . .

∫
dtn

∫
dt′1 . . .

∫
dt′n′

∫
dx0

∫
dy0 ρ̂(x0 + 1

2y0, x0 − 1
2y0; 0) ×G(ρ, ρ′;x0, y0) (4.5)

where the propagator corresponding to charge distributions ρ and ρ′ is

G(ρ, ρ′;x0, y0) =

∫ X

x0

Dx
∫ 0

y0

Dy exp

[
i
~

∫ t

0
dt′
(
Mẋẏ + ηxẏ + Fy + x(ρ− ρ′) − 1

2y(ρ+ ρ′)
)

− S2[y]

]
. (4.6)
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The path integrals may be performed to yield

G(ρ, ρ′;x0, y0) =
M

2π~d(t)
exp

(
i
~
MXẏcl

∣∣∣
t

0
+ i

~

∫ t

0
dt′
[
F − 1

2(ρ− ρ′)
]
ycl(t

′) − S2[ycl]

)
(4.7)

where

d(t) = 1
γ (1 − eγt), (4.8)

γ = η/M, (4.9)

and the classical path ycl(t
′) solves

ÿcl − γẏcl = (ρ′ − ρ)/M (4.10)

subject to ycl(0) = y0 and ycl(t) = 0.

Note that if the charge distribution is not neutral, then the integral in S2 generates terms

linear in t which effectively kill that configuration’s contribution to the probability distribution.

Thus we may restrict our attention to the case of “neutral” total charge distributions, which

means n+ n′ is even and
∑
σi −∑ ej = 0.

To go further, we take the spatial Fourier transform of P (X),

P̃ (λ, t) ≡
∫
dXeiλXP (X, t), (4.11)

and use it as a generating function for the expectation value of the position at time t:

X̄(t) ≡ 〈X(t)〉 =

∫
dX XP (X) = −i d

dλ
P̃ (λ, t)

∣∣∣∣
λ=0

(4.12)

In the generating function (4.11), the integral over X produces a delta function in y0, and
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the resulting x0 integral involving the initial particle density matrix has no dependence on λ

(which comes from the initial state having zero total momentum; the details are given the

appendix of [7]). The result is that the expectation value of X(t) is

〈X(t)〉 =
F

η
t− 1

η

〈
1
2

∫ t

0
dt′(ρ+ ρ′)

〉

0

(4.13)

where the average on the right hand side is a weighted average over the set of configurations

of the charges:

〈A〉0 ≡
∞∑

n,n′=0
n+n′ even

(
iV
2~

)n (−iV
2~

)n′ ∑

σi,ej=±1
neutral

∫
dt1 . . . dt

′
n′A exp(Ω[yp]). (4.14)

The influence phase is

Ω[yp] = i
~

∫ t

0
dt′
[
F − 1

2(ρ+ ρ′)
]
yp(t

′) − S2[yp]. (4.15)

with yp(t
′) the particular solution to (4.10) for the given charge distributions,

yp(t
′) =

a0

α




n∑

i=1

eih(t
′ − ti) −

n′∑

j=1

σjh(t
′ − tj)


 . (4.16)

The dimensionless friction α is defined in (1.39), and

h(t′) = θ(t′) + θ(−t′)eγt′ (4.17)

is the Green function for the operator 1
γ
d2

dt2
− d

dt .

Using (4.13) in the expression for the mobility (1.5) we get

µ

µ0
= 1 − lim

t→∞
1

Ft

〈
1
2

∫ t

0
dt′(ρ+ ρ′)

〉

0

. (4.18)
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As in Schmid’s original calculation, we can show a duality between this expression and an

expression originating in a tight-binding approximation. The approach of Fisher and Zwerger

is to reorganize and relabel the terms in (4.18) so that the smoothed-out paths become series of

tight-binding hops, and the smoothness is absorbed into the form of the bath spectrum J(ω).

We begin by defining paths qs and q′s on a tight-binding lattice with lattice constant ã0 =

a0/α according to

qs(t) = ã0

n∑

i=1

eiθ(t− ti) = 1
η

∫ t

0
dt′ρ(t′) (4.19a)

q′s(t) = ã0

n∑

i=1

σiθ(t− t′i) = 1
η

∫ t

0
dt′ρ′(t′). (4.19b)

Now by creating sum and difference paths xs(t) = 1
2 (qs + q′s) and ys(t) = qs − q′s we can

rewrite (4.13) and (4.15) as functionals of these sharp tight-binding trajectories instead of yp.

The result is that (4.15) becomes

Ω = iF
~

∫ t

0
dt′ys(t

′) + iΦγ [xs, ys] (4.20)

where iΦ is defined in (1.17), and the superscript γ indicates that instead of an ohmic spectrum

given by (1.22), the weighted density of states is to be taken as

J(ω) =
ηω

1 + (ω/γ)2
. (4.21)

The expectation value term in the expression for the mobility (4.18) can then be written

lim
t→∞

1

Ft

〈
1
2

∫ t

0
dt′(ρ+ ρ′)

〉

0

= η lim
t→∞

1

Ft
〈xs〉γ (4.22)

=
µtb
µ0

(4.23)
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where the average 〈·〉γ indicates the use of weight (4.20) with spectral function (4.21). The

mobility µ in the weak potential limit with lattice spacing a0 is thus related to the mobility

µTB of the same particle on a tight-binding lattice with spacing ã0 = a0/α. This disparity

in lattice spacing a0 ↔ a0/α is equivalent, given the definition of α, to α ↔ 1/α. The other

parameter of the mobility is the force F ; this is regrouped into energy change due to a single

hop ε = Fq0. Then we may write the duality equation for the mobility

µ(α, ε)

µ0
= 1 − µTB(1/α, ε/α)

µ0
. (4.24)

Working in the tight-binding framework, Fisher and Zwerger calculate µTB as a function of

temperature to order V 2, by looking at all possible “one-blip” paths. This involves summing

over all paths with n = n′ = 1, σ1 = e1. The four contributing paths are written

yb = ξã0(θ(t
′ − t1) − θ(t′ − t′1)) (4.25)

xb = ζã0(θ(t
′ − t1) + ζ(t′ − t′1)) (4.26)

where ξ and ζ each take on the values ±1. For these simple paths the integrals can be simplified

to leave

µ

µ0
= 1 − 2πV 2

0

ε~

∫ ∞

0
dt sin(εt/α~) sin[(2/α)Q̃1(t)] exp[−(2/α)Q̃2(t)] (4.27)

where

Q̃1(t) =

∫ ∞

0
dω

sinωt

ω(1 + (ω/γ)2)
(4.28)

Q̃2(t) =

∫ ∞

0
dω

1 − cosωt

ω(1 + (ω/γ)2)
coth(1

2β~ω). (4.29)

This is enough to reproduce the zero-temperature result of Schmid. In taking the β → ∞
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limit it is necessary to replace the cut-off function (1 + (ω/γ)2)−1 with an exponential cut-off

e−γt; then the integrals can be performed to give

µ(ε)

µ0
= 1 − π2

αΓ( 2
α )

(
V0

~γ

)2( ε

α~γ

)2(1/α−1)

exp(−ε/α~γ), (4.30)

where ε = Fa0 is the potential energy difference between adjacent minima. The mobility then

clearly has a critical dependence on α, and it can be seen that as the applied force F → 0 (the

linear mobility limit), the coefficient of V 2
0 goes to zero as long as α < 1. The perturbation

expansion breaks down for α > 1, but the duality argument implies an abrupt transition in the

dimensionless mobility to 0 as α passes through 1.

The finite temperature expression is also used by Fisher and Zwerger to divine the behaviour

of the mobility with temperature. In particular they note in the weak-potential limit where

µ = mu0 at zero temperature, there is a drop in the mobility as the temperature rises above

zero before it starts to approach its classical value of 1/η.

4.2 Yi-Kane Generalization to 2d

Yi and Kane [15] looked at the renormalization behaviour of a generalized two-dimensional

Schmid model. From the lattice vectors {R} they construct an arbitrary periodic potential that

contains Fourier components corresponding to each reciprocal lattice vector G. They eliminate

the friction as a parameter in favour of the lattice spacing, and show using Schmid’s renormaliza-

tion approach that the perturbative stability of the mobility depends (in this parametrization)

only on the lengths of the shortest lattice vector and the shortest reciprocal lattice vector.

Having stated the problem in this way, they apply their simple rules to more general cases,

such as the triangular and hexagonal lattice.

Beginning from (1.26), we rescale the particle coordinate and define imaginary time path

r(τ) = q(τ)
√
η/2π = (q/a0)

√
α, with α the dimensionless friction defined in (1.39). Now the
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free parameter of the system is the lattice spacing, corresponding to
√
α. We may also go to

two dimensions, in which case the particle coordinate is the vector r(τ) and the action, adapted

from (1.26), is

S[r] = 1
2

∫
dω|ω|e|ω|τc |r(ω)|2 −

∫
dτ

τc

∑

G

vGe
2πiG·r(τ). (4.31)

In lieu of the mass term, we now have an exponential which enforces a short time cut-off τc. The

cosine potential has been generalized to include Fourier components vG = v∗−G at all reciprocal

lattice vectors G (here the reciprocal lattice is defined as all vectors g such that for any lattice

vector R, g · R is an integer).

The duality between weak potential and tight binding limits is established very explicitly

by considering the dual action of the tight-binding model; for a momentum space path k(τ)

the tunnelling amplitudes tR between sites separated by R leads to the dual action

S[k] = 1
2

∫
dω|ω|e|ω|τc |k(ω)|2 −

∫
dτ

τc

∑

R

tRe
2πiR·k(τ). (4.32)

From Schmid’s analysis in 1.3 we know that in the absence of any potential (all vG = 0) we

have dimensionless mobility µ/µ0 = 1. In the tight-binding case, in the absence of tunnelling

(tR = 0) we have localization µ/µ0 = 0. The stability of these couplings is obtained by a

standard renormalization. For the weak potential limit, renormalization of the couplings vG

gives flow equations

dvG = (1 − |G|2)vG (4.33)

and thus if all reciprocal lattice vectors are sufficiently small then the couplings vG flow to zero;
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i.e.

|Gmin| > 1 =⇒ µ

µ0
= 1 (4.34)

Analogously, the flow equations in the tight-binding limit send all tunnelling couplings tR to

zero provided that the lattice spacing is sufficiently large:

|Rmin| > 1 =⇒ µ

µ0
= 0 (4.35)

For a square lattice we will once again have the transition from free particle to tight binding

behaviour as α passes through 1. This is only the case for certain geometries however, where

|Rmin| = |Gmin|−1. For a general Bravais lattice, there is some structure factor Σ which

describes the relationship between the shortest scales of the lattice and its reciprocal:

|Rmin| =
√

Σ|Gmin|−1. (4.36)

For lattice spacing |Rmin| =
√
α, the reciprocal lattice spacing is |Gmin| =

√
Σ/α. The

perturbative stability of the µ/µ0 = 0 regime is still guaranteed for α > 1, but the µ/µ0 = 1

limit is now stable for α < Σ.

For a general Bravais lattice in two dimensions, we may take a basis {R1,R2} such that R1

is the shortest non-trivial lattice vector and R2 is the shortest lattice vector that is not parallel

to R1. The relative length of the two basis vectors is γ ≡ |R2|/|R1| > 1, and φ the angle

between them. (It can be shown that in order to satisfy the other restrictions, γ cosφ ≤ 1
2 ,

with equality in the case of a rhombic lattice). The reciprocal lattice has the same structure,

but oriented differently and with structure factor Σ = 1/γ2 sin2 φ. For the square lattice, this

recovers S = 1, while for an equilateral triangular lattice we have Σtri = 4/3.

For the equilateral triangular lattice, in the region where 1 < α < 4/3, both the tight-
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binding and zero-potential limits are stable. (This implies that there is then some intermediate

unstable fixed point as well.)

Very interesting consequences result from Yi and Kane’s extension of their argument to the

case of non-Bravais lattices. They note in particular that changing the sign of the equilateral

triangle potential yields its dual lattice, which is hexagonal. Since only the sign of the potential

has changed, the structure of the reciprocal lattice is the same. However, the lattice constant

of the triangular lattice is a factor of
√

3 larger than the nearest neighbour separation on the

hexagonal lattice, and thus the structure factor is Σhex = 4/9. Now, for 4/9 < α < 1, neither

of the two perturbative limits is stable. The result is that for these values of α there must exist

stable intermediate fixed points 0 < µ/µ0 < 1.

The behaviour predicted by Yi and Kane for non-square lattices is an interesting and poten-

tially observable phenomenon. In the next chapter we investigate the two-dimensional problem

from the perspective of Fisher and Zwerger, and attempt to generalize their approach to a

general two dimensional Bravais lattice.
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5. Particle Mobility on a Bravais

Lattice

Here we apply the methods of Fisher and Zwerger to the problem of the mobility of a particle

moving on a two dimensional Bravais lattice subject to dissipation. The lattice is modelled

using a potential that is a sum of plain waves oriented along a small number of reciprocal

lattice vectors. The generalization of Fisher and Zwerger’s expressions from the 1d case is

straightforward, though cumbersome.

We then proceed to expose the duality between the weak potential and tight-binding mo-

bilities, commenting on subtleties that arise in two dimensions. For the case of a triangular

lattice, there is the possibility of terms arising at third order in the perturbation expansion in

the potential strength. A useful parameterization and expressions for these terms is developed.

5.1 Reformulation in two dimensions

We will consider a general two-dimensional Bravais lattice, with an associated potential that

is a sum of cosine plane waves along certain reciprocal lattice vectors. We will denote these

reciprocal lattice vectors as gb, and generally use the index b to sum over the corresponding

potential components. Note that in the simplest rectangular lattice potential, the g b would

consist of two elements, each parallel to a rectangular axis of the lattice. For an equilateral

triangular lattice, however, it is necessary to take three cosine plane waves (corresponding to

the presence of six equivalent nearest neighbours in the triangle’s reciprocal lattice).
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We write our potential, as a function of the particle position q, as

V (q) =
∑

b

Vb cos (2πq · gb) . (5.1)

We anticipate that this will need to be expanded in a Coulomb gas,

exp

(
i

~

∫ t

0
V [q]

)
=
∏

b

exp

(
−iVb
2~

∫ t′

0
dt′(e2πigb·q + e−2πigb·q)

)

=
∏

b




∞∑

nb=0

(−iVb
2~

)nb ∑

σb
i =±1

∫ t

0
dt′ . . . dt′nb

exp

(
− i
h

∫ t

0
ds q(s) · ρb(s)

)
, (5.2)

and as usual we will need a corresponding construction for the forward-going potential V [q ′].

We now have component charge densities that are vectors parallel to their associated g b,

ρb(s) = 2π~gb

∑

i

σbi δ(s− tbi)

ρ′
b(s) = 2π~gb

∑

j

ebjδ(s− tbi), (5.3)

and the total charge density is just the sum of these:

ρ(s) =
∑

b

ρb ρ′(s) =
∑

b

ρ′
b. (5.4)

The early steps of the problem factor exactly, and the initial expressions from section 4.1

may be immediately adapted by replacing the paths q, q ′, x, y with their vector equivalents, with

dot products forming the necessary linear combinations. This is true of the particle position

probability distribution (4.5), although the propagator (4.7) picks up another prefactor of

M/2π~d(t). Ultimately the behaviours in the two dimensions are not independent because

the two components of the charge distributions ρ are correlated (assuming a non-rectangular

lattice).
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We once again encounter the issue of charge neutrality; unless the distributions ρ and ρ ′

have the same net charge the S2[y] will kill the contribution to the probability distribution

P (X). As a result, the neutrality condition

∫ t

0
dt′

(
ρ′(t′) − ρ(t′)

)
= 0 (5.5)

is imposed on the charge distributions.

Without any new complications, we come to the expression for the linear mobility analogous

to (4.18):

µij

µ0
= δij − lim

t→∞
δ

δFj

1

t

〈
1
2

∫ t

0
dt′(ρ+ ρ′)i

〉

0

∣∣∣∣
F=0

. (5.6)

The average 〈·〉0 involves all the gb contributing to the potential

〈
Ai
〉
0

=
∏

b



∑

nb,n
′
b

(
iVb
2~

)nb
(−iVb

2~

)−n′
b ∑

σb,eb

∫ t

0
dt1 . . . dt

′
nb


Ai exp(Ω[yp]) (5.7)

with the weight Ω the obvious generalization of (4.15), and the particular solution yp(s) to the

vector version of (4.10) given concisely as

yp(s) =
1

Mγ

∫
ds′ h(s− s′)(ρ′(s′) − ρ(s′)). (5.8)

The function h(s) is defined in equation (4.17).

5.2 Tight-binding duality

We can rewrite this as a tight-binding expression and expose the duality as in section 4.1. The

only complications are in dealing with the structure factor Σ (defined in section 4.2) for non-

square lattices, and the relative orientation of the tight-binding lattice to the original lattice.
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We give our original (real-space, not tight-binding) lattice a basis {a1,a2} whose members

satisfy the relations imposed on R1 and R2 in section 4.2, namely that they open at acute

angle φ, |a2|/|a1| = γ ≥ 1, and γ cosφ ≤ 1
2 . The structure factor is Σ = 1/γ2 sinφ2.

We may then take the reciprocal lattice basis {g1, g2} to satisfy

gi · aj = εij (5.9)

where εij =
[

0 1
−1 0

]
, which implies

|g1| =
1

|a2| sinφ
|g2| =

1

|a1| sinφ
. (5.10)

Just as in the one-dimensional case, the particular solution yp(s) is the basis for our tight-

binding expansion. We then take basis {ã1, ã2} for our tight-binding lattice as

ãi =
|a1 × a2|

α
gi =

2π~

η
gi. (5.11)

where in two dimensions the dimensionless friction coefficient involves the area of the unit cell:

α ≡ η|a1 × a2|
2π~

=
η|a1||a2| sinφ

2π~
. (5.12)

Now we may produce tight-binding paths

qs(t
′) =

∑

b

ãb
∑

i

σbi θ(t− tbi) q′
s(t

′) =
∑

b

ãb
∑

i

ebiθ(t− tbi) (5.13)

and note that this definition leads to

1

η

∫ t′

0
ds ρ(s) = q(t′) (5.14)
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as desired. We can then rewrite (5.6) as

µij

µ0
= δij − µijTB

µ0
(5.15)

with

µijTB = 1
η lim
t→∞

δ

δFj

1

t
〈xs(t)〉γ

∣∣∣∣
F=0

(5.16)

the mobility on the tight binding lattice defined in (5.11) and the average (5.7) is taken with

respect to the revised spectrum (4.21).

Since the reciprocal lattice, and thus the tight-binding lattice, is rotated relative to the

original lattice, directional information should be extracted with care.

The relation between the dimensionless friction α and the corresponding quantity α̃ of the

tight binding lattice is

α̃ =
η|ã1 × ã2|

2π~
=

sinφ

α
. (5.17)

5.3 Second order contributions

In the original one-dimensional analysis, the zero-temperature stability of the weak-potential

limit was shown to second order by showing that the coefficient of V 2
0 in (4.27) is zero as long

as α′ < 1. For α′ > 1 the perturbation expansion breaks down. (We use α′ to refer to the

dimensionless dissipation parameter in the 1d problem.)

The dependence on α′ in the 1-d calculation comes from the integrals in the influence phase

(1.16), which involves products of the paths x and y. These paths, on the tight-binding lattice,

each contribute a factor q̃0 = q0/α
′ which combine with the other factors to leave a residual

1/α′. In two dimensions, the paths in the order V 2
b term each contribute |ãb| = |ab|/α, and

69



combine with the surrounding factor η/2π~ to produce, in the case of V1,

η

2π~

( |a1|
α

)2

=
1

α

( |a1|
|a2| sinφ

)
=

√
Σ

α
(5.18)

From this we conclude that at zero-temperature, V1 = 0 for α <
√

Σ. For the case of V2, the

exponential factors combine to give

1

α sin2 φ
√

Σ
(5.19)

and thus at T = 0, V2 = 0 for α < sin2 φ
√

Σ.

When |a1| 6= |a2|, the limits on α are different, and this suggests that the behaviour

renormalizes differently along the two directions, or that it is simply determined by the smaller

bound. When |a1| = |a2|, such as for the equilateral triangular lattice,
√

Σ = 1/ sinφ and these

limits on α are the same. (In the triangular case there would also be a V3 term which would

have the same features).

Upon accounting for the different definition of α used in this section and 4.2, we are not

surprised to find that the limit α < 1/ sinφ agrees with Yi and Kane’s renormalization group

argument for the stability of the µ/µ0 = 1 fixed point in the equilateral triangular lattice.

5.4 Third order contributions

A potentially interesting aspect of the triangular lattice is the possibility for paths of odd order.

For a reasonably constructed triangular lattice, the potential will consist of 3 terms where any

two of the associated reciprocal lattice vectors gb form a basis for the reciprocal lattice, and

the third can be formed from some combination g3 = ±g1 ± g2. Then there are many paths of

length 2 and length 1 that end at the same point. Here we will work out some of the details of

the third order contributions.

Our potential in this case consists of components in three directions, g i for i = 1, 2, 3, with
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g1 = g2 + g3. One contribution to the average position at time t results from the tight-binding

paths

qs(t
′) = a1θ(t

′ − t1) (5.20)

q′
s(t

′) = a2θ(t
′ − t2) + a3θ(t

′ − t3). (5.21)

This contribution is weighted by the potential strengths

(
iV1

2

)(−iV2

2

)(−iV3

2

)
=

−iV1V2V3

8
. (5.22)

The integrals in the influence phase contribute terms depending on the relative positions of the

times ti. Assuming that t1 < t2 < t3 we have corresponding centre and difference vectors xs(t
′)

and ys(t
′) satisfying (here we suppress the subscript s)

x(t′) =





0 , t′ < t1

1
2a1 , t1 < t′ < t2

1
2 (a1 + a2) , t2 < t′ < t3

a1 , t3 < t′

(5.23a)

y(t′) =





a1 , t1 < t′ < t2

a1 − a2 , t2 < t′ < t3

0 , otherwise

(5.23b)

Defining τ1 = t2 − t1, τ2 = t3 − t2 our weighting factor for this path is eΩ with (here we

combine equations (4.20), (1.17) and (1.19) and extend them to two dimensions)

Ω = iΩ1 + iΩ2 + Ω3 (5.24)
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with

iΩ1 = i
~

∫ t

0
dt′F · ys(t′) (5.25)

iΩ2 = −2i

~

∫ t

0
dt′
∫ t

t′
ds y(s) · x(t′)αγI (s− t′) (5.26)

Ω3 = −1

~

∫ t

0
dt′
∫ t′

0
ds y(s) · y(t′)αγR(s− t′). (5.27)

Working these out one by one for the particular paths 5.23, for all t1 < t2 < t3 < t we have

iΩ1 = i
~

(∫ τ1

0
dt′F · a1 +

∫ τ2

0
dt′F · (a1 + a2)

)

=
i

~
F · (a1τ1 + (a1 + a2)τ2); (5.28)

iΩ2 = − i

~

[∫ t2

t1

dt′
∫ t2

t′
ds+

∫ t2

t1

dt′
∫ t3

t2

ds+

∫ t3

t2

dt′
∫ t3

t′
ds

]
y(s) · x(t′)αγI (s− t′)

= − i

~

(
(a1 · a1)

∫ τ1

0
dt′
∫ τ1

t′
ds αI(s− t′) + a1 · (a1 − a2)

∫ τ1

0
dt′
∫ τ2

0
ds αI(s− t′ − τ2)

+(a1 + a2) · (a1 − a2)

∫ τ2

0
dt′
∫ τ2

t′
ds αI(s− t′)

)

= − i

~
((a1 · a1)A0(τ1) + a1 · (a1 − a2)A1(τ1; τ2) + (a1 + a2) · (a1 − a2)A0(τ2))

(5.29)

where we have defined the required double integrals of αγI as

A0(τ) =

∫ τ

0
dt′
∫ τ

t′
ds αγI (s− t′) (5.30)

A1(τ1; τ2) =

∫ τ1

0
dt′
∫ τ2

0
ds αγI (s− t′ − τ1). (5.31)

72



Similarly, we have

Ω3 = −1

~

∫ t

0
dt′
∫ t′

0
ds y(s) · y(t′)αγR(s− t′)

= −1

~

(
(a1)

2B0(τ1) + a1 · (a1 − a2)B1(τ1, τ2)

+(a1 − a2)
2B0(τ2)

)
. (5.32)

where

B0(τ) =

∫ τ

0
dt′
∫ τ

t′
ds αγR(s− t′) (5.33)

B1(τ1; τ2) =

∫ τ1

0
dt′
∫ τ2

0
ds αγR(s− t′ − τ1). (5.34)

These expressions for Ωi represent only one of 72 similar paths contributing at order V 3.

The others are obtained by the following 4 independent operations:

1. Re-ordering the times; t1 < t2 < t3 is only one of 6 possibilities. Reordering of the

times makes a significant difference to the phases Ω2 and Ω3, particularly in the cross

terms associated with A1 and B1.

2. Taking an alternative single vector into ρ; we chose a1 but there are 3 distinct

options. This has no effect on factors Ω2 and Ω3 if the lattice is equilateral, since x and

y are rotated in the same way and their dot products feel nothing. The force term Ω1

does change, as does the final coordinate x(t) = ai that eΩ is weighting.

3. Changing the overall parity; we get a new configuration by taking the negative of all

three vectors. There are 2 ways to do this; doing it flips the sign of Ω1 as well as the sign

of x(t) that eΩ is weighting.

4. Interchanging the forward and backward paths ρ and ρ′; this removes the asymme-

try in putting only one vector in ρ and two in ρ′. There are 2 choices for this assignment,
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which changes the sign of Ω1 and Ω2. It also changes the sign of the contribution in the

average, since (iV1)(−iV2)(−iV3) = −i∏b Vb → (iV2)(iV3)(−iV1) = i
∏
b Vb.

Using index j = 1, . . . , 6 for the timing arrangements and k = 1, 2, 3 for the single vector

choice ρ(t′) = akθ(t
′ − t1), we then have weights Ωjk

i (τ1, τ2) associated with these six possibili-

ties. Letting ξ = ±1 represent the parity and ζ = ±1 the forward or backward path assignment,

we can write the order V 3 contribution to the expectation value of xs(t):

〈xs(t)〉(3) =
−iV1V2V3

8~3

∑

j,k

∑

ξ=±1
ζ=±1

ξζ ak

∫ t

0
dt1

∫ t

0
dτ1

∫ t

τ1

dτ2 exp(iξζΩjk
1 + iζΩjk

2 + Ωjk
3 ) (5.35)

=
−V1V2V3

2~3

∑

j,k

ak

∫ t

0
dt1

∫ t

0
dτ1

∫ t

τ1

dτ2 sin(Ωjk
1 ) cos(Ωjk

2 ) exp(Ωjk
3 ) (5.36)

(5.37)

Having parametrized the terms and reduced the problem to a sum over 18 similar pieces,

the integrals remain difficult to simplify because of the cross-coupling of the integration times

τ1 and τ2 in the A1 and B1 terms. It may be interesting to pursue this calculation further, to

verify that the critical dependence on α is not altered by these third order terms.

5.5 Closing remarks

In chapters 4 and 5 we have presented the core results of Fisher and Zwerger’s analysis of

a particle in a periodic potential subject to dissipation, and extended the analysis into two

dimensions. This has included adapting the second order perturbative expressions for the

mobility at finite temperature to the case of an arbitrary Bravais lattice, as well as making

investigations into the form of the third order contributions (which appear in the case of a

triangular lattice).
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The generalization is consistent with the renormalization group arguments of Yi and Kane

for the zero temperature problem, but is formulated at finite-temperature and permits pertur-

bative calculation of the non-linear mobility.
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