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Abstract

This thesis examines the two photon decay widths of non—-standard Higgs
‘bosons. These widths are calculated for Two-Higgs-Doublet models in
general, and for the minimal broken supersymmetry model in particular. For
Two-Higgs—-Doublet models a large enhancement of these widths relative to the
standard model is possible. This in turn leads to larger production rates
for the spin-0 bosons in ep and ete™ colliders. However, we find that for
the minimal broken supersymmetry case, a severe upper bound on this possible
enhancement is imposed by the supersymmetry features. We find that while
the Higgs bosons of the Two-Higgs-Doublet model could possibly be produéed
at readily observable rates with the HERA collider, this will not be the
case in the minimal supersymmetry model. Hence detection of these Higgs
bosons could provide an experimental test of supersymmetry, which would rule

out the minimal model.
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I. INTRODUCTION

At present the basic building blocks of matter are thought to be the
twelve spin-1/2 fermions known as quarks and leptons. Four fundamental
forces are responsible for the interactions which describe their behaviour.
These forces are the familiar gravity and electromagnetism;‘the strong force
which binds nuclei together; and the weak force responsible for certain
nuclear decays. The six leptons do not interact via the strong force. They
consist of the electron, muon and tau particles which carry electric charge,
along with three neutrinos which do not. The six quarks also carry electric
charge, and in addition they have a "colour” charge through which the strong
force acts.

The four fundamental forces can each be described by an underlying
invariance or symmetry of nature. Such a symmetry implies a conserved
quantity. Many of our physical laws are based on this principle.
Theoretical models known as gauge theories, which are based on underlying
symmetry groups, have been very successful in describing ;hree of the basic
interactions. The exception is gravity, which has not as yet been
adequately described by such a gauge theory. However the effects of gravity
are very small and may be neglected at the scale where elementary particle
physics is currently studied.

A general feature of these gauge theories is that the forces between
the basic fermions are mediated by the exchange of a new particle called a
gauge boson. These gauge bosons must be massless in order to preserve the
underlying symmetry of the gauge theory. The gauge theory for the
electromagnetic force, known as quantum electrodynamics (QED), is the most

familiar. Here the gauge boson is the massless photon, which is exchanged



between electrically charged particles. In the gauge theory of the strong
force, knowh as quantum chromodynamics (QCD), interactions are also mediated
by exchange particles. In this case massless gluons are exchanged between
colour charged quarks. Early attempts to extend this highly successful
approach to the weak force postulated that it must be mediated by the
exchange of what are now known as W bosons. However, the existence of a
massless W boson was not consistent with experiment. The observed weakness
and very short range of the weak force could only be explained if the W

" boson was very massive. Hence these first attempts to describe the weak
force by a gauge theory were unsuccessful.

The observation that the W boson must also carry electric charge
suggested to some that perhaps the weak and electromagnetic forces were one
and the same. The disparity in their observed strengths and ranges could be
explained by the different masses of the photon and W boson exchange
particles. The first models to attempt to unify these two forces also
predicted the existence of another massive exchange particle, called the
Z boson, which carries no electric charge. However, such neutral currents
were not at that time observed. The need for massive exchange bosons in
these models destroyed the underlying symmetries that one originally wished
to incorporate. This led to divergent results when higher order
calculations were done. Such problems frustrated these subsequent attempts
at describing the weak force.

The solution to these early theoretical problems was the phenomenon of
spontaneous symmetry breaking. This refers to the fact that although a
theory may contain a given symmetry, the vacuum or ground state of the
system described by the theory need not respect that symmetry. A simple

example is that of a ferromagnet. In general its spins are randomly aligned



and the theory possesses a‘rotational symmetry. In the ground state however
the random spins all align in one chosen direction, and hence the rotational
symmetry of the theory is "spontaneously broken" by the ground state. It
can be shown that whenever such a symmetry is spontaneously broken, a
massless particle known as a Goldstone boson must result. For the
ferromagnet the Goldstone boson corresponds to long range sbin waves.

In the present gauge theory of the weak interaction, a new fundamental
scalar called a Higgs particle is introduced. The ground state of this new
matter field is such that the original symmetry of the theory is
spontaneously broken. In this case the massless Goldstone boson appears not
as a physical particle, but instead as the longitudinal component of the |
massless gauge boson. In this way masses can be generated for the gauge
bosons without destroying the underlying symmetry of the original theory.
This technique is known as the Higgs mechanism and it solves the theoretical
problems of the weak model, giving finite or renormalizable results for
higher order calculations.

At this point there existed a well behaved éauge theory which unified
the weak and electromagnetic forces. The model predicted masses for the W
and Z exchange gauge bosons, implied the existence of neutral currents, and
also a new fundamental Higgs scalar. Both neutral currents and the gauge
bosons themselves [1,2] have subsequently been observed, in very good
agreement with prediction. Only the Higgs scalar remains to be discovered.
The phenomenological successes of this electroweak theory have been such
that, togethér with the theory of the strong force (QCD), it is now accepted
as the standard model of elementary particle physics. Thus far, all the
experimental tests of the standard model have proven successful, and it is

now thought to be correct for energies up to at least the order of 100 GeV.



1.1 The Standard Model

The subsequent chapters of this thesis all begin with the implicit
assumption that the reader is familiar with the standard model. ‘As the
currently accepted theory, it is the basis against which any new physics
must necessarily be compared. A detailed description of the standard model
can be found in most modern textbooks on particle physics. 'Consequently
only a brief summary of the main features will be presented here. As the
strong interaction has no direct bearing on our results, only the
electroweak aspects of the model are described.

In the standard model the fundamental particles of matter consist of
twelve spin-1/2 fermions. There are three massive leptons which carry
electric charge —e. They are known as the electron, muon and tau (e”,u",7")
particles. Associated with each one of these charged leptons is a massive,
electrically neutral lepton (ve,vu,vT) called a neutrino. The remaining six
fermions are massive particles called quarks. Three of them carry electric
charge (2/3)e, and are known as the up, charm and top (u,c,t) quarks. The
other three carry electric charge (-1/3)e and are called the down, strange
and bottom (d,s,b) quarks. The standard model classifies these twelve
fermions into three generations or families. The structure of each family
is very similar, and consists of one charged lepton, one neutrino, one
charge 2/3 quark and one charge -1/3 quark.

Since these quarks and leptons are spin-1/2 fefmions, they may be in
either of two helicity states, namely left-handed or right-handed. Hence we
can decompése their wave functions into left and right components. There
exists a symmetry in the standard model which involves only the 1eft;handed
components of the fermions, and it 1s convenient to group them into pairs or

doublets as shown below. Thus the three families are written as
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where the subscript L denotes the left-handed component. The corresponding
right-handed components are treated separately as individual singlets.
Experimentally only left-handed neutrinos are observed. Hence the
right-handed neutrino singlets are not included in the standard model.

Having introduced the fundamental fermions, we turn now to the spin-1
exchange bosons which mediate their electroweak interactions. There are
four of these gauge bosons in the standard model. Three of them are quite
massive. They consist of the electrically neutral Z boson, as well as a
pair of W bosons which carry opposite charges of *e. The fourth exchange
boson is the famfliar massless photon. With the exception of the Higgs
boson described below, this completes the description of the particle
content in the standard electroweak model.

The gauge theory of the standard model is based upon what is
technically known as the SU(2)xU(l) symmetry group. A requirement of any
gauge theory is that its fermions and exchange bosons must be massless in
order to preserve the underlying symmetry. Thus in order to generate masses
for the particles described above, the basic gauge theory must be |
supplemented by the introduction of one or more fundamental spin—-0O scalars.
As described earlier, these so called Higgs fields are responsible for the
spontaneous breaking of the underlying symmetry. ‘In the case of the
standard model this is done in the simplest way, through the addition of one
doublet of Higgs scalars. The Higgs field is said to acquire a non-zero
vacuum expectation value (VEV), meaning that its ground state does not

respect the same symmetry as the theory describing it, and hence the



SU(2)xU(1l) symmetry of the standard model is spontaneously broken. One
neutral Higgs boson and three Goldstone bosons result from this breaking.
The latter are then absorbed via the previously described Higgs mechanism as
the longitudinal comporents of the W and Z bosons. 1In this way masses are
generated for the exchange bosons. Through theilr so called Yukawa
interactions with the Higgs fields, the basic fermions can also acquire a
mass. Unfortunately the model makes no prediction for the mass of the
physical Higgs boson itself, and it has not been found by experiment. To
date however, the addition of these fundamental scalars has been the only
successful method_of generaﬁing masses within gauge theories. Hence the
Higgs sector is a neéessary and very important part of the standard model,
and indeed of any gauge theory description of particle physics.

This concludes our look at the main features of the standard model.
Most of the technical details have been suppressed for simplicity, and the
interested reader is referred to the literature. We have introduced the
particle content of the model, and stressed the importance of the Higgs
sector. These should be sufficient background for a general understanding
of the standard model aspects of the thesis. Other features and specific

details of the standard model are discussed as they arise.

1.2 Why Alternative Models?

Despite all of its successes, there are still some untested and little
~understood aspects of the standard model; most notable is the all important
Higgs sector needed for spontaneous symmetry breaking. The model does not
predict a mass for the fundamental Higgs scalar, which has yet to be
detected. Also as will be discussed, there are many technical reasons for

expecting new physics beyond the standard model.



There are several arguments [3] which suggest the need for improving
upon the standard model. Numerous details about the structure of the model,
and the values of its roughly 20 free parametérs all need to be explained.
Also the standard model is not asymptotically free, meaning that it will
become strongly interacting at some larger energy scale, where perturbation
methods will break down. Why this breakdown occurs is discussed in more
detail below.

In particle physics, calculations are performed primarily using
perturbation techniques. An unknown quantity 1s expanded In a power series
of some small parameter. In this way each successive term in the expansion
serves as a small correction to the previous term. The coefficients of the
expansion are then evaluated term by term to the desired accuracy of the
approximation. However, it is a general prdperty of gauge theories that the
coefficients of the higher order terms in the perturbative expansion can
often contain undesirable infinities. Fortunately, for what are known as
renormalizable gauge theories, these troublesome infinities can be
eliminated simply by a redefinition of parameters. The sources of these
infinities are quantities which diverge for large energy. In general these
divergences are cut off at some scale A, and the infinite piece absorbed
into the new parameter definitions. The perturbation series is then once
again convergent. This so called renormalization scheme will of course only
make sense 1f the cutoff scale A is larger than the energy scale of the
process we are interested in. If this is not the case, then the infinitles
cannot be eliminated and perturbation methods will break down.

The scale A used in the renormaliza;ion scheme above is not an
arbitrary parameter. There must be some physical quantity in the theory

which fixes the scale. In general this is taken to be the mass of the



heaviest particle in the theory, so that perturbation techniques will be
valid over as large an energy range as possible. Thus for energies greater
than this mass, perturbation methods break down and the gauge theory can
make no quantitative predictions.

In the standard model the heaviest possible particle is the Higgs
boson. Its mass MH varies as Mﬁ = 2Av2. The parameter A\ 1s a measure of
the strength of the Higgs self-interaction coupling. - The quantity v is the
vacuum expectation value (VEV) that the Higgs field acquires from
spontaneous symmetry breaking, as discussed above. In certain perturbation
calculations A 1s used as an expansion parameter. Therefore it must be
small since otherwise the Higgs sector would become strongly interacting and
perturbation theory would fail. This contradicts the many successful
predictions of the standard model which are obtained perturbatively. Thus
we can establish an upper bound on A. The VEV parameter v in the expression
for the Higgs mass is simply the scale at which the electroweak symmetry is
broken. In other words it is the energy at which the strengths of the
electromagnetic and weak forces become equal. This is established
experimentally to be v = 246 GeV. Combining these results for X and v, one
finds that the mass of the Higgs boson is expected to be less than the order
of 1 TeV. This then sets the scale at which the renormalization scheme, and
hence perturbation methods, will break down in the standard model.

Presently the highest attainable energies which have been tested are on
the order of 100 GeV, and the results have béen consistent with the
predictions of the standard model. Soon a new generation of particle
accelerators (see appendix A) will be operating at energies up to the TeV
range. This is exactly the region where we should begin to see evidence of

the breakdown in the standard model, and this is one reason for expecting



new physics to be observed in these machines. Hence there 1s now an
immediate need to develop alternative models, and establish a theoretical
framework with which to describe this expected new physics.

Despite its possible breakdown at higher energies, the standard model
has had great phenomenological success to date. This then suggests that it
i8 valid only as an effective low energy description of some more
fundamental theory. This new theory should be based on some larger
symmetry, which when broken at low energy, results in the standard model.

- Evidence for such a theory would manifest itself at a higher energy scale in
the form of new physics. At presently available energies however, the
experimental data is consistent with the standard model. Hence any attempt
to formulate a new underlying theory must at this point be guided by purely
theoretical motivations. These are discussed in the next two sections. We
begin by examining some of the technical problems which occur in the crucial

Higgs sector.

1.3 Fundamental Scalars

The existence of a fundamental scalar Higgs particle is an essential
component of the standard model, and indeed of any gauge theory with massive
exchange bosons. It 1s the Higgs particle which induces the spontaneous
symmetry breaking needed to generate the gauge boson mass. Thus the
motivation for fundamental scalars is very strong. Nevertheless there are
still many technical difficulties associated with these scalars.

The above 1 TeV bound on the standard model Higgs mass leads to our
first problem with scalars; namely understanding why the scalar field is so
light. More specifically, the question is why is the electroweak breaking

scale v so small? One would wish in developing a new fundamental theory



that we could also incorporate the unification of the strong and electroweak
interactions, and possibly even gravity. The scales at which the strong
force (grand unification 10!2 TeV) or gravity (Planck mass 10! TeV) become
comparable to the electroweak force are very large compared to the Higgs
mass (<1 TeV). Understanding how to relate these very large energy scales
to the much smaller scale at which the electromagnetic and weak forces are
unified is known as the so called naturalness problem. The "natural” value
for the scalar boson mass should be the same as the mass scale for the
fundamental theory. The disparity of these scales in the theory could be
understood if theré were some mechanism, such as an approximate symmetry,
which ensured that the scalar mass parameters are very small. However, what
such a mechanism could be is very difficult to determine for these
fundamental scalar particles.

The solution to the naturalness problem proposed above leads
immediately to a related difficulty known as gauge hierarchy. Although
originally synonymous with "naturalness"”, the term "gauge hierarchy”™ is now
used in the literature to refer to the following specific aspect of the
problem. Even i1f a mechanism could be found which ensures a small scalar
mass at lowest order of perturbation theory, the higher order corrections to
the scalar mass can be very large. Thus the naturalness problem reappears
via these corrections. The mass parameters must be chosen at each order in
perturbation theory with incredible accuracy to avoid this. Such fine
tuniné is not a very satisfactory way to solve the naturalness problem.

These are two of the principal difficulties associated with fundamental
scalars which will arise in trying to construct alternative theories to the
standard model. One approach has been to avoid these problems by

eliminating fundamental scalars altogether. Composite models and

10



Technicolour theories [4] try to treat the scalars as extended objects
constructed from more basic fermions. However, these attempts have not been
very successful thus far. The other approach is to retain the fundamental
scalars which work so well in the standard model, and try to solve the
problems discussed above. Indeed this will prove to be possible by
employing a higher symmetry which eliminates the naturalness and gauge
hierarchy problems. This is the elegant supersymmetry approach. Of all the
possible alternatives to the standard model, supersymmetry is now the

leading candidate.

1.4 Supersymmetry

What is different about.supersymmetry models is that they incorporate
both fermions and bosons into the gauge theory on an equal basis. Each
boson (fermion) has a superpartner fermion (boson) of equal mass, and they
differ only by their spin quantum number. Gauge theories which are
supersymmetric [3,5] must remain invariant under transformations between
these superpartners. In order to be phenomenologically acceptable,
supersymmetric gauge models must contain the usual standard model quarks,
leptons and gauge bosons. The superpartners to these particles are known
respectively as squarks, sleptons and gauginos. In addition it is necessary
in these models that at least two Higgs fields be employed in order to
generate different masses for up and down type quarks. Thus the minimal
supersymmetric extension of the standard model is a two Higgs doublet model.
The details of these models will be examined in later chapters. At this
point we merely wish to illustrate some of the reasons why supersymmetry'is
the leading alternative to the standard model.

As a candidate theory for an alternative to the standard model,

11
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supersymmetry has many desirable features. To begin with the fundamental
scalars are no longer supplemental to, but rather are now a natural part of
the gauge theory, on the same footing as the basic fermions. Also certain
divergent quantities, which arise in the higher order corrections to the
scalar masses, now cancel at each order in perturbation theory. This
cancellation occurs because the divergent contribution from each particle is
exactly cancelled by the contribution from its superpartner. Hence the
higher order corrections remain small and do not cause a large scalar mass.
This eliminates technical problems such as gauge hierarchy. Thus
supersymmetry models are much better behaved. Furthermore the naturalness
problem can easily be solved by supersymmetry. In general it has been
difficult to identify any mechanism which could enforce a small scalar mass.
However it is well known that'imposing an exact chiral symmetry enforces a
zero mass for fermions. In supersymmetry a massless fermion leads naturally
to a massless scalar partner. Hence the naturalness problem can be solved
for supersymmetric models with approximate chiral symmetries.

Perhaps the most intriguing aspect of these supersymmetry models is
that local supersymmetry transformations are related to space-time
transformations. There then exists the potential to couple gravity with
supersymmetry, and this would allow for the possible unification of all four
of nature's fundamental forces into one theory. (For a review of such
supergravity models, see reference [3]). This exciting possibility, along
with the solutions of the naturalness and gauge hierarchy problems, are the
main reasons for examining supersymmetry in more detail.

At this point in time, it must be noted that these motivations for
supersymmetry are purely theoretical. No experimental evidence has been

seen to date. Indeed, if it exists then the supersymmetry must be "softly”



broken at low energies. The description softly refers to the fact that
although the supersymmetry must be broken, one wants to preserve the
cancellation of the various divergent quantities in the scalar mass
corrections. The cancellation will no longer be exact, but if the breaking
is soft enough only finite parts will remain. This breaking of the
supersymmetry must occur since no superpartners have been observed for known
particles. Also aﬁ exact chiral supersymmetry implies a zero mass for the
Higgs scalar, which is inconsistent with the standard model. Still the
potential exists for supersymmetry to be the fundamental theory which will
reduce to the standard model at low energy.

The scale at which supersymmetry is broken will establish the size of
the scalar mass, and hence should be related to the electroweak breaking
scale of v = 246 GeV. The breaking of the supersymmetry would 1lift the
degeneracy in the masses of superpartners, and their resulting mass
differences should also be on this same scale. Thus given the masses of the
known particles, one would exﬁect to see evidence of supersymmetry at or
before the TeV energy range. This is exactly the region to be studied in
the new accelerators. Thus the supersymmetry hypothesié is one which can be

tested in the very near future.

1.5 Thesis Overview

Regardless of whether or not supersymmetry is a correct approach, it is
clear that the fundamental scalars will play a key role in constructing
alternatives to the standard model. We wish to learn more about this
_important Higgs sector, and consequently this thesis will focus on these
non-standard spin-0 Higgs bosons. Additionally we would like to know what

form of new physics to expect in the new particle accelerators. The
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dominant modes of producing Higgs bosons, and the rates at which they should
be observed in these machines are then examined for certain models.

Given all of the motivation previously discussed, it should not be
surprising that the specific model chosen for study 1s one of minimal broken
supersymmetry. As stated earlier, this choice 1is a specific example of a
model with two Higgs doublets. We would like to be able to distinguish
between the features of this supersymmetry model which arise from either the
new superparticle content, or because there are additional Higgs fields
present. Hence a more general Two-Higgs—Doublet ﬁodel with no supersymmetry
will first be examined. Both of these models can be found in the
literature. What is new in this thesis are the calculations to which the
models are applied. These calculations and the various results obtained are
discussed in more detail below.

In general the Higgs boson interacts with other particles with a
strength proportional to their mass. Hence the dominant decay mode of the
Higgs boson will be into the heaviest particles allowed by energy
conservation. If its mass is greater than 160 GeV/c?2, the Higgs then decays
into a pair of gauge bosons. This 1is potentially undesirable since there
can be relatively large backgrounds associated with such gauge boson pairs.
Also, fewer heavy Higgs bosons could be obtained to begin with. Smaller
mass Higgs bosons are more likely to be produced with the limited energies
available at the new colliders (see appendix A). For these reasons it was
decided to study Higgs bosons in the intermediate mass range from 40 to
160 GeV/c2. However, it is quite straightforward to extend the analysisvfor
larger Higgs masses.

In the intermediate mass range the primary decay mode of the Higgs

boson is into a quark—antiquark pair, which subsequently will form two

14



hadronic jets. Such a signal would be lost in the much larger jet

backgrounds of hadronic colliders, and hence we shall only consider ete™ and

ep machines. The discussion to follow 13 similar for both these types of

machines, and hence for the moment we restrict ourselves to ete™ colliders.
I1f production of the Higgs boson HO is possible at the SLC or LEP

colliders, then it would proceed via reactions such as

et e » 20 go (1.5.1) .

et em > Q¥R HO (1.5.2)

These are the usual processes used in standard model Higgs searches, and
they produce Higgs bosons at an essentially unobservable rate. Generally,
little change is found for the non-standard models studied. The exception

is for a specific case of equation (1.5.2), which is the reaction
et e= » et e~ HO (1.5.3)

Of the many processes which contribute to this reaction, one will be of
particular interest. It is known as the two photon fusion mechanism [6].
This mechanism is essentially the same as the process shown 1in
figure 8b. The Higgs boson is produced during the exchange of a photon
between the colliding particles. The detailed reasons as to why this
mechanism is such an important process will be given in chapter IV. The
point is that although this two photon fusion mechanism is not an important
one in the standard model, it can be enhanced substantially and actually

dominate in models with more than one Higgs doublet. This idea is one which
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has not been explored in the literature, and is the central new feature upon
which the thesis 1s built.

For the class of models studied, the size of the Higgs boson to two
photon interaction can be greatly increased over what it is in the standard
model. This large enhancement is what causes the two photon fusion
mechanism to dominate Higgs boson production. The actual Higgs—photon
interaction is best studied by examining the two photon decay widths of the
Higgs boson. Production cross sections for the two photon fusion mechanism
can then be expressed directly in terms of these widths. For this reason we
wiil initially examine only the Higgs 2y-decay widths. Later these results
are used to estimate the various production cross sections and rates. These
points are all discussed in more detail as they arise in the thesis.

Finally the thesis contents are briefly outlined below. Chapter II
begins with a description of the Two-Higgs-Doublet model. The twq photon
decay widths for the non—-standard Higgs bosons of this model are then
calculated. In chapter III the minimal broken supersymmetry model is
introduced, and again the Higgs 2y-decay widths are evaluated. Comparing
the two models, we are able to distinguish which features of the
supersymmetry model arise from the new superparticle content. The
calculation of the Higgs 2y-decay widths for these models is a new result,
and in each case we discuss how large an enhancement relative to the
standard model width is possible. Chapter IV examines the production cross
gsections for the Higgs bosons in e+e' and ep colliders. The details of the
two photon fusion mechanism are discussed, as well as how one can relate it
to the 2y-decay widths previously calculated. The numerical procedures used
are also described. Based on this analysis, we make a prediction of what

rates to expect for Higgs boson production in the new particle accelerators.



A comparison with the actual experiment would then determine if the expected
new physics is consistent with a supersymmetric description. Lastly the

many results and conclusions are summarized in the discussion of chapter V.
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II. TWO-HIGGS-DOUBLET MODEL

This model is a simple extension of the standard model, with two
doublets of Higgs fields rather than one. A knowledge of this model will be
important in the next chapter for comparison with the minimal broken
supersymmetry model, which is a specific example of a Two—Higgs—Doublet
model. This allows one to be able to distinguish between the features of
the supersymmetric model which arise from either the supersymmetry or the
additional Higgs field content. Although they are reviewed extensively in
the literature, the details of the Two-Higgs—~Doublet model will be presented
below in order to familiarize the reader with the general features of the
model and to establish notation.

The particle content of the Two—Higgs—-Doublet model differs from the
standard model only in the Higgs sector. As discussed below, instead df
just one neutral scalar particle there are a pair of charged Higgs, a
neutral pseudoscalar and two neutral scalars. The key result to note
however, 1s that the Higgs to fermion couplings differ from those in the
standard model by factors of tana, which is the ratio of the vacuum
expectation values of the two Higgs fields. If tana is very different from
one, then there is the possibility of greatly enhancing these fermion
couplings, with important consequences for the Higgs to 2y decay process.

In the second section of this chapter is presented the calculation for
the standard model Higgs 2y—-decay width. These results can also be found in
the literature. They serve to provide some background and establish the
pattern of the similar calculation for the Two-Higgs-Doublet model. The
first result to note will be that in the standard model the Higgs boson

decays into two photons predominantly via gauge boson loops.
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More importaptly the contribution of the two photon decay process is shown
to be a negligible part of the total Higgs decay width.

Finally the calculation of the Higgs 2y-decay width is presented for
the Two-Higgs—-Doublet model. Although the calculation is very similar to
that for the standard model, the results are new and will be needed in
chapter IV, Specifically the enhanced Higgs to fermion couﬁlings in the
model lead to a much larger 2y-decay width. Maximum possible values for the
enhancement factor tana are taken from the literature. Thus the 2y-decay
process is considerably more important than it was in the standard model.

The consequences of this result will be discussed further in chapter IV.

2.1 The Model

Recalling the standard electroweak model [7], we see that one of the
simplest extensions to it is to include an extra doublet of Higgs scalars.
One need only consider the changes in the Higgs sector, since all other
features in Two-Higgs—-Doublet models will reméin the same as in the standard
model. The two Higgs scalars are described by complex.field operators ¢a:

+ +

3, = "1 , b, = %2 C(2.1.1)
¢,°
which both have hypercharge +1, where the superscripts denote electric
charge. The charge conjugate fields 112¢:, where Ty is the usual Pauli
matrix, have the opposite hypercharge to ¢a. The vacuum is characterized by

two vacuum expectation'values (VEV's) for these field operators

0 0
<¢1> - a ’ <¢2> = b (2.1.2)
/2 V2
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It is convenient to define the rotated fields

' =
él Qlcosa + stinu (2.1.3a)
Qé = - ¢lsina + ¢2cosu » (2.1.3b)
so that '
1 0
' = — M =
<¢1> /3 2 . <¢2> 0 | (2.1.4)
(a2+b2)
and
tana = b/a (2.1.5)

Then the field @i can be considered as the "true” Higgs doublet, as in the
standard model. The gauge transformation U(f) takes us to the unitary
gauge, where the five physical fields which are mass eigenstates can be

identified. Assuming the physical fields have zero VEV's, we can write

0
¢i -— U(E)Qi = (2.1.6a)
vin
72
X

2;2&
2

where v2=a?+b2, The two scalar fields are ¢ and n, the pseudoscalar field
is ¥ and the charged Higgs are xt. The three degrees of freedom not
accounted for by the physical fields are the usual would-be Goldstone
bosons, which have been absorbed via the Higgs mechanism as the
longitudinal components of the gauge bosons Wt and 20.

Transitions between like charged quarks of different families by so

called flavour changing neutral currents are suppressed in the standard
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model, in agreement with observation. The scalars of the Two-Higgs-Doublet
model will in general allow such currents, and these must somehow be
suppressed. Glashow and Weinberg have shown [8] that this can only be
gccomplished by having quarks of the same charge couple to only one Higgs

field. This is done by demanding that the Lagrangian remain invariant under

. dR - -dR (2.1.7a)

where u dR are u,d-type right handed quarks. This symmetry will restrict

R,

the allowed Yukawa couplings, as discussed later in this section. For
supersymmetry models (see chapter III), this restriction occurs
automatically.

The most general renormalizable scalar potential is given by [9]

e - 26 To - 428 T te V2 te 32
V(8,%,) | 2,70, — ude, 0, + A (870,02 + 2,00, 0,)

. (2.1.8)
+ x3(¢lfo1)(¢2f¢2) + Aa|¢1T02 R+ (AS/Z)[(¢IT¢2)2 + (¢2T¢1)2]

with u%

with respect to ¢

,ui > 0 for spontaneous symmetry breaking. Minimizing the potential

1 and ¢2 leads to the conditions

*[ T[A o, to, + 26T ]

¢ 481 %2 T A% Y

1 =0 (2.1.9a)

-2
w2 +2x 08, P+ 2,0, Pl + o,

try o 1 t
(2,0, 8 + 158, 0]

AZIL] 58 0 (2.1.9b)

.'.
°, [‘“§ + 2A2|¢2 R+ A3|¢1 Rl + ®,

where the fields Qa are evaluated at their VEV's. These conditions can then



be solved for the VEV's

2 . 2
2 (2>\2u1 Au2 )

g = -  (2.1.10a)
(41,2, = A2)

2 (2x,u,2 - A 2)

r - 22 ; | (2.1.10b)
(412, = A2Z)

where A=A3+A4+A5. Expressing the potential in terms of the rotated

fields of equation (2.1.3), we find that

‘ +
V(Ql',QZ') = - (01' le)[uIZCOSZG + u2231n2a]

1.

(¢2' Qz')[ulzsinzu + uzzcosza]

+ (1/2) (w2 - uzz)[él'foz' + ¢2'T¢1']

+ (Ql.fél.)z[xlcosua + Azsin“a + (A/4)sin?2q]

1.

+ (Qz' ¢2')2[Alsin“a + Azcos“a + (A/4)sin22a] (2.1.11)

+ Lo Te,m2 + (0,0 Te, D21 (176 (1A ,0)s1n?20 + 23]

t t

+ (0,00, ")(8," 0, )(1/2)[ (A A ,-M)sin?2a + 22,] ‘

t t
(00,0 0yt + 0,

TQI')[-Alcosza+kzsin2a+(A/2)cosZa]sinZa

t t )
+ (Qzl ‘1’2')(‘1’1' ¢21 + °2l

T¢1')[-Alsin2a+12cosza-(A/2)cos2a]sin2a

.1
+ [o,7 e, P(1/2)[ (A #3,-M)sin?2a + 22, ]
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Choosing the unitary gauge and substituting from equation (2.1.6) will give
the scalar potential in terms of the physical fields.
V=- (v2/2)[u12coszu+u2281n2a] + (v“/4)[A1cos“a+xzsin“a+(A/4)sin2Za]

+ v¢(sin2a)[ulz-u22+v2{—k1c032a+xzsin2a+(A/2)cosZu}]/2‘

- vn[n,cosa+y,sin?a-v?{i cos*atr,sin*a+(A/4)s1n? 2u}]

+ x+x'[-ulzsinza-u22c052a+(v2/4){(A1+A2-A)sin22a+2A3}]

- 32 2 2 2 24—(v2 - 2 -

) [u1 sin“atu, cosa-(v /4){(A1+A2 A)sin®2a+2(A 4+, XS)}]/Z

- nz[u12c032a+u2281n2a-3v2{Alcos“a+kzsin“a+(A/4)sin22a}]/2 (2.1.12)
- ¢2[u12sin2a+u22cosza-(v2/4){3(A1+12-A)sin22a+2A}]
+ n¢[u12-u22+3v2{-A1c032a+kzsin2a+(A/2)cosZa}](sinZa)/Z
+ nx+x'v[(A1+A2-A)sin22a+2k3]/2

+ ¢x+x‘v[-klsinza+k COSZG-(A/Z)COBZG]SiHZG

2

+ (3 neutral scalar terms) + (4 scalar terms)

The terms linear in n and ¢ can be eliminated using the conditions in
equation (2.1.9). The actual mass eigenstates will in general be mixtures
of the two neutral scalars, and the diagonalization of the n,¢ fields is

achieved through a rotation given by

o
L]

$cosem + 'ﬁ'sinem : (2.1.13a)

=
N

- $sinem + 'ﬁ‘cosem (2.1.13b)
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The mixing angle 65 can be expressed in terms of the Ai{ parameters by

[(Alaz-kzbz)(az—b2) + 20a2b2?]

2v2[ (A 22 12 )2 +a2 1242 ] 1/

‘singe = % -

o (2.1.14)

With em as a parameter, the mass eigenstates $ and ; are now orthogonal.

The masses of the spin-0 fields simplify to

1/2

20 N = 2 2 = 2. 2324021272

My o Aa2 + A, 0% 7 [(A 822,12 )2+a?b2A? ] (2.1.15a)
2 = =yl

M X v (x4+xs)/2 (2.1.15b)
2 = - .

L A5V (2.1.15¢)

The parameters A4 and XS can be chosen to be negative without loss of
generality and hence equations (2.1.15) do not pose a consistency problem.
The Lagrangian describing the interactions of Ql and 62 with the gauge

bosons is given by

_ t,.u t,.u
:fg = (0#) (%) + (@ 2,) (00,) (2.1.16)

where

_= - A - a
nu = au i(g /2)3u i(g/Z)TaAu (2.1.17)

and T, are the Pauli matrices.



The gauge boson sector is the same as in the standard model with

Al =wt+wIN2 2.1.18

] (u u)/ ( a)
A2 =iwt-wyN2 (2.1.18b
. (11 u)/ ( )
A3 =38in8 A + cos8 Z ' (2.1.18¢)
u w i W U

B =cos9 A - sind 2 (2.1.184)
%) w U w

One can rewrite equation (2.1.16) in terms of the fields 7,$,x,¥ via the

same procedure used for the scalar potential. This gives the result

= 2 He = _ o= 2.H + -
:tg (g /2)vcosemw+ Wun (g2/2)vsin6mw+ W;¢ + eZA Aux X

- ieAu[(aux+)x' - x+(8ux')] + others (2.1.19)

where only terms in the Higgs sector which will contribute to the two photon
decay width are explicitly shown.

Either one of the two Higgs doublets can be used for the lepton Yukawa
term. Choosing ¢;, one finds that the allowed Yukawa interactions must

take the form

—_— * —_ —_
;(y = yl(“ d)L1724>1 u, + Y, (u d)L°2dR + y3(v£)Ld>1£R + h.c. (2.1.20)
under the discrete symmetry of equation (2.1.7). Only one quark-lepton

family will be {important for the two photon decay width analysis. Thus the

quark mixings and family labels will be omitted. As before one can express
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equation (2.1.20) in terms of the physical fields, and we find that

:ty = yl[vcosazé+gzécos(6+u)-$Eésin(e+u)-iwzﬁsesina]//7

+y2[vsinuﬁidR+;3£dRsin(e+u)+$ELdRcos(9+u)-inLdRcosa+h5c.]//7

+y3[vcosaﬁLuR+qﬁiuRcos(6+u)-$G£uRsin(e+u)-inLuRsinu+h.c.]//i

+ others (2.1.21)

where again'only those terms which contribute to the two photon decay
width are explicitly shownm.

This completes the description of the Higgs sector for the Two-Higgs-—
Doublet model. Some of the important couplings obtained in this section are
summarized in Table I. Note that the Higgs—fermion couplings differ most
significantly from those in the standard model by factors of tana (cota), as
well as to a lesser extent due to the mixing angle em. Thus for large
values of tana (cota) these couplings can be enhanced relative to the
standard model. In section 2.3 this will be discussed further.

As a final point it should be noted that all the calculations in this
section were performed in unitary gauge. It is quite straightforward to
repeat the derivation for a general gauge. Indeed this is what is done for
the supersymmetry models in chapter III. However, in the Two-Higgs-Doublet
case, the unitary gauge results will be sufficient for the remainder of the

discussion.



Table I -~ Two-Higgs—Doublet Model Vertices
Vertex HO n ¢ ¥
~im cos(8 +a) sin(6 +a)
eeX y £ y —_— -y -z -~y iy .tana
e v e cosa e cosun e '5
-im cos(6 _+a) sin(6 +u)
uuX y L y —r -y - -y iy tana
u v u cosa u cosa u 'S
-imd sin(6_+a) cos(8 _+a)
ddx y y-————JE——- y — = y ,iycota
d v d sina d sina d'5s
whix g 1g2v g cosfb -g sind 0
W 2 w = m W m

Yukawa and gauge couplings of scalars and pseudoscalar to fermions

and W-bosons for the Two-Higgs-Doublet model.

The mixing angle of

the two VEV's is a and the mixing angle between scalars is 6p.
The standard model vertices for H® are shown for comparison.
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2.2 Standard Model 2y-Decay Width

The standard model's results will first be summarized, since the
Two-Higgs-Doublet model is similar to it in 8o many ways. This serves as a
benchmark for the subsequent discussions of non-standard spin-0 boson
decays. |

In the standard model, three classes of diagrams contribute to the
2y-decay width of the Higgs boson; namely fermion loops, gauge boson loops
and scalar loops. This separation is for later convenience since the
standard model has no physical charged scalars, so the scalar loops consist
only of would-be Goldstone bosons. If one writes the gauge invariant
amplitude M for H® — y(k;) + v(ky) as

M = Aeluezv[guv - (klvkzu)/(klokz)] (2.2.1)

where e; and e, are polarization vectors of the two photons, then the

structure function A is given by

A = [1e?gM,/(8n2M )] [A +A +A ] (2.2.2a)

f

where

A, = 3, - 2 (253 DIO) (2.2.2b)
Ag = - % (eZe A )[2+(41 ~1)I0 )] (2.2.2¢)
AS = (1/2) +.AwI(Aw) (2.2.24)

with A=m?/MHZ and the function I(A) is given in appendix D. The subscript
on A indicates the loop particle mass, in this case either My or mf.

Here the charges of the fermions are ece. The quantities Aw’Af’As
correspond to contributions from gauge boson loops, fermion loops and scalar

28
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loops respectively. The sum in equation (2.2.2c) is taken over all charged
fermion species with the colour factor cg=3 (1) for quarks (leptons). The
calculation of the results in equation (2.2.2) is presented in appendix B,
and can also be found in reference [10].

The two photon decay width of the standard Higgs boson is then given by
T (HO-—>yy) = |A B/(16mMy) (2.2.3)

The gauge boson loop gives the largest amplitude and is roughly a factor 5
larger than the next contribution due to the t-quark loop. These two
contributions interfere destructively. The other fermion loops and the
scalar loop are unimportant. For a large range of My, say between 40 to

160 GeV/c2, one can approximate equation (2.2.3) by
T(HO——syy) = 1075M3 keV (2.2.4)

with My measured in units of GeV/c?. Hence the standard model two photon

width is only about 10 keV (i.e. a branching ratio of less than 0.17%).

2.3 Two-Higgs—-Doublet Model 2y-Decay Widths

The model described in section 2.1 has one pseudoscalar and two scalar
neutral Higgs bosons. This section will discuss the possibility that one or
more of these non—-standard spin—0 bosons has a two photon decay width which
is great1y>enhanced relative to the standard model.

Recall the vertices given in fable I. The magnitude and sign of the
scalar coupling to charged Higgs is highly model dependent and will be
discussed below. As expected the pseudoscalar y is not affected by ﬁhe
mixing parameter 9,. It does not couple to the W-bosons or to the charged
Higgs bosons, but only to fermions. Hence the pseudoscalar decay width is

the least model dependent. In general the scalar couplings to the W-boson



are smaller than in the standard model. Thus one must look to the fermion
loops for any possible enhancement. For simplicity we take 8,=0, which in

fact produces the constraint equation
Aob2-1qa? = (b2-a?) (A3t +rg) /2 (2.3.1)

If all the A{'s are of the same order, this equation can be naturally
satisfied. With this choice of 6, the couplings for one of the scalars,
;, become identical to those of the standard model Higgs boson, giving the
same width as discussed in the last section. The other scalar, $, now does
not couple at all to the W-boson, eliminating the destructive interference
and leaving only the fermion loop amplitude.

There gre two ways to enhance the contribution of the fermion loops.
From Table I it can be seen that if tana (cota) is large then the lepton and
u-type quark loops will be enhanced (decreased), and the d-type quark loops
decreased (enhanced). This is true for both the scalar and pseudoécalar
bosons. From the standard model 1t was found that only the t-quark loop
made a significant contribution, and thus it is the logical one to try and
enhance. Hereafter the discussion will focus on the Two-Higgs-Doublet model
with large tano enhancement. The results for models with large cota will be
similar except that the width being enhanced is much smaller to begin with.

The dominant contribution for both the scalar $ and the pséudoscalar ]
now comes from the t—quark loop enhanced by tana. To find the maximum
enhancement allowed by the model, bounds on the magnitude of the enhancement
factor can be determined by low energy phenomenology; The virtual effects
of the charged Higgs in Bhabha scattering, muon decays [11,12,13]} and the
K%-Kg mass difference [l4] give an upper limit for tana as a function of the
charged Higgs mass Mx. The approximate bound tanzu < ZMx/mc is taken

from reference [14] where m. is the charm quark mass.
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Limits on My can be obtained from considering charged Higgs effects in the
W and Z-boson propagators. For MX > M;’M$ the change in the mass ratio of
the gauge bosons is proportional to MX. Specifically M* = 1.2 TeV/c? will
give a 5% change in the p-parameter [15] where p=Mé/M%coszew. This 1is

within the allowed experimental error [1,2]. Thus we find
tana < 40 (2.3.2)

In the Two-Higgs-Doublet model there is an additional contribution to the
ZY-decay width of the Higgs scalars coming from the charged Higgs scalar
loops. The Feynman diagrams for this process are the same as those in
section B.2 of appendix B, except the loop particle is a charged Higgs x+
rather than a would-be Goldstone boson. From equation (2.1.12) the relevant
scalar coupling to charged Higgs terms of the Lagrangian are

5 v[-xlsin2a+k cosZa-(A/2)cos2a]sin2a (2.3.3a)

2

xTxT% =~ v[ (A #A,-A)sin? 20421 5] /2 (2.3.3b)

with 6m=0. The magnitude and sign of these couplings is not determined
by theory. Above it has been argued that MX < 1.2 TeV/c? which means that
A4 and ks are of the order of unity. It is natural to assume that all the
Ai's are of the same order. This argument is by no means rigorous but is
supported by partial wave unitarity plus perturbation theory [16,17] which
gives a similar bound on MX' With these caveats it can be said that the
couplings of equation (2.3.3) are ﬁot enhanced. Hence the scalar y—loops
give a negligible contribution to the two photon decay width.

For large tana the two photon decay width of the Higgs scalar is then

dominated by the t-quark loop and is given by
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T( +» yy) = tan2a|(-1e2gm2t/6n2nw)[2+(4xt-1)1(xt)] F/(16m$) (2.3.4)
where At= i/M$2' This result is obtained using the same techniques,
described in appendix 3, as were used for the standard model calculation.
The pseudoscalar fermion loop calculation is performed in section B.4 of

appendix B. Again the t-quark loop dominated with the result
T(y + vy) = tan2a|(-iezgmi/6ﬂ2Mw)I(At) F/(16"M¢) (2.3.5)

where Xt=m§/M$. These widths are indeed greatly enhanced over the standard
model result for large tana. The other scalar width F(ﬁ + YY) is the same
as the standard model result. In general 8,#0, and the 2y-~decay widths of
the scalars $ and n lie somewhere between the two extremes of the standard
model result [equation (2.2.3)] and the best case result [equation (2.3.4)].
This concludes the chapter on the Two-Higgs-Doublet model. The reader
" has been introduced to the general features of the model, and this knowledge
will be useful background for the discussion of the results to be presented
in the remaining chapters. Also illustrated were the methods needed to
calculate the standard model Higgs 2y-decay width. These calculational
methods can be found in the literature, and the Two-Higgs-Doublet model
itself has been extensively reviewed. The only new result has been to
perform the Higgs 2y-decay width calculation for the Two-Higgs—Doublet
model, obtaining equations (2.3.4) and (2.3.5) given above. For large
values of the enhancement factor tana, these widths are much larger than is
the case for the standard model. Henée the two photon decay process is much
more important in Two-Higgs—Doublet models. The consequences of this result

will be discussed at length in chapter IV.
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III. MINIMAL BROKEN SUPERSYMMETRY MODEL

This chapter also looks at the two photon decay widths of non-standard
spin-0 bosons [18]. Iﬁ this case however, the model is one of minimal
broken supersymmetry, which is a specific example of a Two-Higgs-Doublet
model. The motivation for supersymmetry has been discussed in the
introduction. As was the case in the last chapter, the minimal broken
supersymmetry model itself can be found in the literature. Again the
details are presented below for the readers edification and to establish
notation. The remainder of thé chapter is devoted to the calculation of the
Higgs 2y-decay widths for this model. These are all new results, and their
significance is further discussed in the next chapter.

The particle content of the minimal broken supersymmetry model is quite
similar to that of the Two-Higgs—Doublet model, and is discussed in more
detail below. The main difference 1s that each particle is now accompanied
by a superpartner which differs by one half a unit of quantum spin. We will
discover later in this chapter that these new superparticles do not
significantly affect the two photon decay widths of the Higgs bosons. In
fact they slightly reduce the widths through destructive interference with
the usual particle contributions. Once again it is the additional Higgs
field content, leading to an enhancement of the Higgs to fermion couplings,
which has the largest effect on the 2y—decay widths. However, unlike the
Two-Higgs-Doublet model, we find that supersymmetry imposes a new comnstraint
on the maximum possible value of the enhancement factor tana. This new
constraint has important consequences, which will be discussed in the next

chapter.
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3.1 The Model
Deriviﬁg the actual supersymmetry Lagrangian is too complicated to

present here. The results in component field notation will be summarized
below. The component field content needed for the minimal supersymmetric
model is listed in table II [18]. It includes, in the gauge sector, the
usual SU(2) triplet of vector bosons, Vua (a=1,2,3), and the U(l)y
vector boson Vu' along with their corresponding fermionic partners
represented by two component spinors A8 (a=1,2,3) and \' respectively.
The matter sector contains a left-handed SU(2) lepton doublet of two
component fermions Li (i=1,2) along with a two component SU(Z) singlet ei.
Similarly, for the quark sector there is a doublet Qi (1=1,2) and two
singlets, uﬁ and dg. The scalar partners of the quarks are_denoted as 6;
and G;,E; for the SU(2) doublet and singlets, respectively. The slepton
SU(2) doublet and singlet are ii and Z; respectively. As in the Two-Higgs-
Doublet model, only one quark lepton family will be of interest. Thus the
quark mixings and family labels are omitted, although these can be included
straightforwardly. The matter sector is completed with the addition of

Higgs multiplets. Three sets of Higgs field, H,, H, and N are employed to
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break the SU(2)xU(l) symmetry [19]. At least two scalar Sﬁ(2) doublets are
necessary to give mass to both the up— and down-type quarks. With the
additional constraints present in suﬁersymmetry models, the Higgs doublets
alone are no longer sufficient to break the SU(2)xU(l) symmetry. Although
not necessarily pfesent, the addition of an extra Higgs field N 1is the
simplest way to remedy this problem. Enlargement of the Higgs sector to
include an SU(2) and U(l) singlet field N allows for discussion of the

supersymmetric limit, with the gauge symmetry broken to U(l)em. Finally

these scalars are all accompanied by the fermionic partners W; ’ w; and wN.
1 2
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Table I1 - Supersymmetric Field Content

Gauge Bosons Gauginos SU(2) Y
ve 22 1 0
A Al 0 0
Leptons Sleptons
i - i o~ oA
L =(v,e )L L =(v,e )L 1/2 -1
c ~4
ey ex 0 2
Quarks Squarks
Lo, 3G iy 12 1/3
Q =(u,d)y Q=(uy,dy
c ~% |
uy up 0 -4/3
c ~%
dL dR 0 2/3
Higgs Bosons Higgsinos
al Gl 2 ) 1/2 -1
1 H,’"H
1 1
i 1 g2
2 2 2
N ¥y 0 0

Field content of the minimal supersymmetric SU(2)xU(l) model with one
family. SU(2) gauge bosons carry the label a=1,2,3 and the matter fields
have the SU(2) index i=1,2. The last two columns give the SU(2)
representations and the U(l) hypercharges of the respective fields. The
superscript ¢ indicates charge conjugation.



The component field Lagrangian has been extensively reviewed [3,5,20]

and is presented below. The total interaction Lagrangian, L is divided

int’
into a supersymmetric pilece, ;CSS’ and a plece which softly breaks

supersymmetry, :(SSB’ The supersymmetric part is invariant under

transformations between bosons and fermions. Thus one has

P =L+ (3.1.1)

int SS SSB

which is constructed out of the fields listed in table II. A derivation of
;tSS from superfield formalism can be obtained in reference [21].

For clarity and completeness ;CS will be presented in several pieces.

S

The interactions of the gauge multiplets among themselves and the matter

fields are described by ;t . This is given by
gauge

a ,,a ,* -a- ig' v, ¥ _ T
1g/'iTij(x VAL T NVAD 7%— (A'bA - X'VA)

gauge
- 1g7® V3[[ATs¥A, - 3¥AD)A,] - 1.5%v .}
13ttt 7y 173 A
i * * %* _—
- =5 vi{y,la o¥a - @"aha] - 1y oM} (3.1.2)

* a2 1. ' b Lub 1. WM
+ AiAj(gTikvp + 28 yAGikVu)(ngjV + 38 yAijV )

—acuxbvc

+ igeabc "
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In the above equation, A denotes the scalar fields and ¥ represents
generically the Majorana spinor fields of table II. The U(1l) hypercharge of
the scalar field A is Ya and that of the matter fermion field is Yeo A sum
over all scalar fields A is implicit. The SU(2) generators are Tij where
a=1,2,3 and 1,j=1,2. Also ou=(1,3) where 0 denotes the three Pauli
matrices.

The Yukawa interactions between the fermions and the scalar bosons are

described by a second piece, i « Also included are the scalar-fermion

Y
Higgs field interactions since they are the supersymmetric partner

interactions to the Yukawa ones. Explicitly

- i=j 215t 3 CRrS v
:fY ey sE HL egthece + £2|H, Pege, + |£f e, sl egthye, Q7dp 3

~ K ~k~ Ok
+ 2Re[(hsij gN)(f € LkeR+hdeikadR) ] + 2Re[(heiniN)(hueikauR) ]

+ |f sinlLJ P+ hgH HQd +hee. + |hge lqj P+ |he, HyG) P

i_j i~ - i~ ~ j~
+ ) b HyQ upthec. + | (hyHydp=h Hyu ) P+ IhueijQ U, P (3.1.3)

where fo, hy and h, are the Yukawa couplings. As usual :ty gives
rise to quark (squark) and leptén (slepton) masses. In the absence of
supersymmetry breaking terms, the fermions and corresponding sfermions will

have degenerate masses.



The third pilece, :CS’ is the superpotential and it is given by [5]

_Z, -

J + 8 F

= h2(|H R+ |H BYINP + Iheij 1H2

1 i* 1 1 i L 1p,x1
+ge?{4lnt uy P - 2my Plag P+ L, [4ntEl R - opmlpial
1%~1 1pai Fi*vi ~i podl
+4|a LT F - 205 PIT° P] +4]Q) L7 B - 2] RIL™ P (3.1.4)
1 1, . i~ o1
+ B F+(E, P+ QP+ T}
+§8'2[IH2F - |H1F +§|Q -§|uRF +§|dRF - |LF +2|eR F]Z

*
where |A1 M (Ai Ai)2 for the scalar field A. Finally for completeness

the usual gauge fixing Lagrangian

L., = - %[ 2, ¥ + tge(n I§<Hi> - >*1u1) 12
- [av? + 282y (wla> - @pl) |2 (3.1.5)

and Fadeev-Popov (FP) ghost Lagrangian have to be added. The simple case
of equal VEV's for the two Higgs doublets will be sufficilent to illustrate
the important features of the FP Lagrangian. 1In the expression below the
ghost fields are Ci,CY,CZ; the would-be Goldstone bosons are Gt,Go; the

+
usual gauge bosons are W u,AP,Zu; and the Higgs scalar field is H. Thus
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a2, _t2 2 42t 2
:fFP c,3°C, - Cc3°C_ qYa cY C,3°C, - EMZC.C,/cos®0

2tete wote Y - t, ot t 2
gMZ(c,c +c C_) - (£gM /2)[(C,C,+C_C_)H + C,C H/cos 0]

JPPURPE RS | B SR ||
+ igE[(auC+)W+ (auC_)W' ](Cysinew + Czcosﬂw)

_ t t u -l

igE[(BuCY)sinew + (auCZ)cosew](C_W+ +CW) (3.1.6)
} orete _ atey - t tom

(1geM /2)6%(c,c, - cc_) - geM sing (C 6T + CcG )cY

+

(gng/Zcosew)[C;(C+G-+C_G+) - (2coszew—1)(CIG++CIG')CZ]

t _ t u _ ok
1gg[(auc+)c+ (auc_)c_](A sing - Z'cose )

The 't Hooft-Feynman gauge will be chosen. Combining all the pieces

together, the supersymmetric standard model Lagrangian is just

=Y +IY+§CS+RFGF+§(

ss gauge (3.1.7)

FP

The above interaction Lagrangian is globally supersymmetric. To be
phenomenologically realistic, the supersymmetry must be broken. This can be
achieved by soft breaking terms [22] which are thought to be induced by
supergravity at the scale of the Planck mass, Mp-. The effective low

energy (i.e. below the Planck mass) Lagrangian that breaks supersymmetry can

be written as [23,24]
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L - L+ T) - BOm® +
- % mié*A - my,(h(2) + huc.) (3.1.8)
where
h) = ) + 38 7, (3199
and

+ hye, H o +he HiﬁJGR + h.c. (3.1.9b)

As before the sum over A represents a sum over all scalar fields. The

gaugino masses m' and m as well as the gravitino mass m are free

3/2
parameters. Equation (3.1.9a) contains terms that split the degeneracy in
the masses of the sfermions and fermions. Because of the simplicity and the
added attraction of having a structure close to the unbroken supersymmetric
model, it is usual {23] to take the parameter in equation (3.1.9a) to be
A=3.

It 1s often argued that the gaugino and the scalar masses can be taken
to be all equal to the m3j/p at the Planck scale. However, there are
many uncalculable effects involving gravitons in the high energy theory and

it is not clear that a common mass can still be maintained at low energies.

Hence the mp's are different in general. Hereafter, these parameters will
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carry subscripts denoting their particle species. Thus My My s My etc.
1 72

will be the bare mass terms of the scalar fields N, Hl’ HZ’ etc.
respectively.
The gauge symmetry'breaking is achieved by letting the three sets of

Higgs fields, Hl, H2 and N develop vacuum expectation values (VEV's), given

by
1
V2
<H > = (3.1.10a)
0
0
<H,> = (3.1.10b)
V2
72
<N> = v3
7_2‘ (3.1.10(:)

As was done in the Two-Higgs-Doublet model, a set of constraint equations on
the VEV's can then be obtained by minimizing the scalar potential contained

in equations (3.1.4) and (3.1.8). They are

v 2

3
m, /2(%hvlv2+s) + 72-(“%412‘ 2)

]
o

(3.1.11a)

) =20 (3.1.11b)

b

3 h 1
7283 /20V,V3 * mﬁlvl + glhvy (Vi+vd)+2ev,] + 582, (v]-

1
g8 V2 (vi~v3)

35”3/2hv1v3 +mg vyt §[hv2<v§+v§>+28v1] 0 (3.1.1lc)
2



where

2=+ (3.1.12)

and

g2 = g2 + g'2 (3.1.13)

In the limit that vy=vy#0, taking the difference of equations (3.1.11b)

and (3.1.11c¢) gives
(mﬁ - mﬁ vy =0 (3.1.14)

Hence it is necessary for the 'bare' masses of H} and Hy to be equal if
they are to develop the same VEV. The special case where vi=vp=a and

=m_, =m_=m is solved in reference [23]. A particularly simple solution
Ty, T, PN 3/2

in this limit is given by

V2

m
a=v/I32(1-20 )1/2 (3.1.15b)
3/2
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Next the phenomenologically more interesting case of vy#vyp is
investigated. For this case, the constraint equations can be recast into

the following forms

2 —m2
3 1 h ' mHz )
7Em3/2hv3 - Zgzvlvz + E(hv1v2+23) =Y (3.1.16a)
2™
(02 + 7?2 v2)(v2-2) + mgllvzl - mﬁzvf;_ =0 (3.1.16b)
3 1 V12
7im3/2hv3 + Eh(hv1v2+25) + 5 (mﬁ +m% +h2v§) =0 (3.1.16¢)
v 1 2

which are useful in simplifying the mass matrix for the Higgs bosons.

Equations (3.1.16) simplify for the case o, =m, =m in the non-degenerate VEV
1 2 :

region. In particular equation (3.1.16b) becomes

hzvg +2m?2 = - = g2v2 (3.1.16b")

The three Higgs fields H HZ and N are not the physical mass

1)

eigenstates and a diagonalization has to be performed. There are six

neutral spin-0 fields given by the real and imaginary parts of the three



Higgs fields; explicitly they are given by

v, + ReH? + 1ImH?

Hy = (— ;_ L, B  (3.1.17a)
: 7
v, + ReH? + 1ImH?
H, = ( H; , 2 2 2 ) (3.1.17b)
2
N = 7%-(v3 + ReN + 1ImN) (3.1.17¢)

The superscripts on the H-fields are SU(2) indices. Two charged scalars

form the following combinations

TR Y 2%

HT = v(leZ + V2H1 ) (3.1.18)
+ - Lo gl oy g2?*

G' = V(VZHZ v,H ) (3.1.19)

with H and G~ given by the conjugates of equations (3.1.18) and (3.1.19).
The physical charged Higgs fields are Ht. The G* are the would-be
Goldstone bosons which enter in the gauge-fixing conditions for the W-bosons

given by

+
T ¥ + 3.1.20
auw 7t v G (3.1.20a)
u - i -
auw 'jzg v G (3.1.20b)

where £ is the gauge fixing parameter. Noting that M€=g2v2/4, equations

(3.1.20) are seen to be the usual gauge conditions for the standard model.
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For the 't Hooft-Feynman gauge £E=1. The combinations in equations
(3.1.18-19) can be shown to diagonalize the charged scalar mass matrix when
the constraint equations (3.1.16) are used. The unphysical bosons G* have
~mass M, in the 't Hooft-Feynman gauge as expected. The mass of the

physical charged scalars is given by

M2 = th?3 + mIZi + mﬁ + M‘ZJ (3.1.21)

for the general case of vi#Vvg. This equation further limits the allowed

values for and .« One example is the case where v.,#v,_, and =m. .
", "H, 1772 "8, H,

Using equation (3.1.16b') gives

W, = - % g'2y2 (3.1.21")

and hence if the effective Lagrangian is not to give unphysical masses to

the charged Higgs bosons, then ny #mH in the region where v1¢v2.
1 2 '

It is instructive to consider the case of degenerate VEV's, i.e.

vi=v2. Further simplification is made by the choice of

- -m (3.1.22)
Mnl “u2 3/2

and the solution of equation (3.1.15a). Then we obtain

2
L

= 2
. 4m§/2 + M2 _ (3.1.23)
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Thus the simplest solutions lead to the conélusion that the charged Higgs
boson is heavier than the W-boson quite independent of the coupling
. parameters in the scalar potential. It must be emphasized that this need

not be true in general for v #vz and my #mH .

1 1 H

The six neutral spin-O'bosons consist of three scalars and three
pseudoscalars. One of the pseudoscalars is the would-be Goldstone boson

which gives mass to the Z°, and it is given by

6o =

< I

(v,ImH) - v, InHY) (3.1.24a)

Orthogonal to G0 is a pseudoscalar hg; explicitly written as

< I

h) =

A (v,Im) + v,Inn)) (3.1.24Db)

1 2

and a third pseudoscalar ImN. In this basis G% decouples from the other two
and only plays the role in z0 gauge fixing, i.e. terms like Gohg and GO ImN
are rotated away. However, the mass matrix of the two remaining 0~ bosons
is still not diagonal. As usual the diagonalization is achieved by a

rotation, leading to the two physical pseudoscalars, HO and H?, below.

4 5°
Hz = hg cosx — ImN sinx (3.1.25a)
Hg = hz sinx + ImN cosx (3.1.25b)

The mixing angle x can be obtained in terms of the scalar potential
parameters via

6h m v
tan 2x = 3/2 (3.1.26)

72 (] + (o, ved o)




In the degenerate VEV case with oy =My =mN=m3/2 and solution (3.1.15a), this
1 2

reduces to

fith
tan 2x = 0 (3.1.26")
& U3/2

The pseudoscalar masses are given by

M = (hzvg+m§1+m%2+§hzvz) cos?x + (gh2v2+nd) sinlx

6 ‘ (3.1.27a)
+ 7y hm3/2v cosx sinx :
1 1
Mg = (h2v§+mﬁl+mﬁ2+2hzv2) sin’x ¥ ($h2v24md) cos?x
6 (3.1.27b)
-7 hm3/2v cosx sinx
which satisfy the sum rule
2 2 = RK2 2 2 2
MZ + M = h (v§+v ) + wd o+ omd + mﬁ (3.1.28)

1 2

The remaining degrees of freedom are the scalar (07) fields ReHl , ReH% and
ReN which again have a non-diagonal mass matrix. The physical mass
eigenstates shall be denoted by Hg with eigenvalues M1 (where 1=1,2,3), and

they are obtained from the above by a unitary transformation

= 0 eloe
Hi Uij ReHj (3 1‘29)
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In equation (3.1.29) it is understood that ReN is to be substituted for j=3.
In general the elements of U are complicated functions of the VEV's and the
bare scalar masses. These will not be examined here as they are not

particularly illuminating. However, the interesting sum rule

= M2 + M2 (3.1.30)

i=1

should be noted. Phenomenologically the Uj4 can be treated as free
parameters. From the above discussion one would expect that these spin-0
bosons have masses of the order of Mw or m3/2, unless the transformation
parameters are wildly different.

In addition to the mixing in the Higgs sector, the scalar fermions will
also mix to a certain extent. Attention is focused in particular on the
scalar t—quarks, since they will be the only relevant ones contributing to

the 2y-decay width calculation. A mixing between the distinct states ZL and

~

te arises from the last term in equation (3.1.9b) when HZ develops a VEV.

The mass matrix for ;L and ER is given by

hv1
2 —
me m (my/p + v, v3)
(3.1.31a)
hv1
mt(m3/2 + —;; v3) mi
where
1
2 = = 2 -l
n2 2 g' (v% vz) + ng (3.1.31b)
1
2 = — 2 v2_v2 + 2 3.1-31
and m =gy 8TV gy ( e)



with m, being the fermion t-quark mass and mB,R(L) the bare mass appearing

in :£SSB' In general mBR¢mBL' The mixing angle 8 between tL and tR can be

deduced from equation (3.1.31) giving

l16m m
tan 28 = 3/2 ¢ (3.1.32)

8(n? pp-n? o) + (g'2-g?)(v3-v2)

= 2 = ~-—
In the symmetrical case of V1=V, and mBR_m%L then 6fﬂ/4. In general however
v1¢v2 and mBRthL' If one takes LYY m3/2 then 6 is of the order of

tan™! [mt / m Preliminary data from CERN [25] indicates that

3/21"
20 < o < 50 GeV/c? and it is possible that m3/2 can be a few times heavier
than Mw' Thus 8 is generally quite small even for the scalar t-quarks. For
simplicity this small mixing is neglected, and the scalar quarks EL and ;R
are treated as mass eigenstates.

There 1s yet a third set of mixed states that are important in the
2y-decay width calculation. These are the states formed from the mixing of
the W—-gauginos and charged Higgsinos. In the Lagrangian [see eq. (3.1.2)]

+
the charged gauginos and Higgsinos are represented by Majorana spinors A~

and wh and wﬁ » respectively with
1 2

I+

A= (A s 22 (3.1.33)

Again they are not the physical mass elgenstates. These physical states are
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constructed explicitly as follows:

-+ 1
ix cos¢+ + wHZ s1n¢+
Xy = (3.1.34a)

i cosp _ + V2 sing _

-+ -yl
i sin¢+ wH cos¢+

= _ (3.1.34b)

-1 sinp _ + V2 cosd _

Notice that there are two separate mixing angles ¢4 and $_.

One can read off directly from equations (3.1.2) and (3.1.8) the mass
terms involving the W-gauginos and charged Higgsinos. Diagonalization is
achieved using equation (3.1.34), which then gives the mixing angles ¢+
and the masses ﬁl,Z of the two physical chargino states Xy and X9
respectively. In terms of the parameters appearing in the Lagrangian, these

angles are given by

n L(1+sin2a)1/2 iI(l—sinZa)llz]

sin 2¢i = Tom = e (3.1.35)
Y {1+ EﬁYJZ - sin?2a }
w
where
tana = Vv, / v, (3.1.35")
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This result agrees with that presented in a different form in reference

[19]. For v, >> v, or v, >> v. the angles become

2 2 1
2 m ‘
sin 2¢+ = =z (3.1.36a)
M (1 +—2-2M)
w
and
¢ =0 (3.1.36b)

On the other hand with equal VEV's the angles become equal ¢+=¢_=¢ and

equation (3.1.35) reduces to

~

sin2 2¢ = (1 + 4—;1“;-)'1 (3.1.37)
: w

~

The calculation also yields the masses M, and M.. These are written

1 2
explicitly as
~ 1 m2\1/2 _ w2y 1/2
Moo=, [(1+sin2a + _Zﬁf,') t (1-sin2a + pis ] (3.1.38)

This completes the discussion on the physical states which will appear in
the 2y-decay width calculation for the minimal broken supersymmetric model.
The detailed Feynman rules which are obtained from the Lagrangian are given

in appendix E.
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Figure 1 - One Loop Contributions to the 2y-Decay of the Scalar H°
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The diagrams are grouped into separately gauge invariant sets. (I) gauge
boson, would-be Goldstone boson, and ghost loops (II) would-be Goldstone
boson loops (I11) physical charged Higgs boson loops (IV) charginos loops
(V) fermion loops (VI) scalar-fermion loops




3.2 One Loop Calculation of X0 » YY

The Feynman rules listed in Appendix E are used to calculate the matrix
elements which contribute to the two photon decay widths of the spin-0
bosons, denoted by XO, in the one-loop approximation. The internal loops
for all of the scalar H% decays consist of fermion and scalar fermions,
gauge bosons and gauginos, and physical charged Higgs bosons. The would-be
Goldstone boson and Fadeev-Popov ghost loops are also included. The
one-loop contribution to the two photon decays of the scalar H% are
displayed in six sets of diagrams in figure l. Each set is separately gauge
invariant. Set 1 is the gauge ‘boson loop contribution, denoted by a4ws
aﬁd includes mixed would-be Goldstone bosons—gauge bosons and Fadeev-Popov
ghosts. Set 2 is denoted by aig and consists only of full would-be
Goldstone boson loops. Both of these sets have the same structure as in
standard model Higgs boson to two photon decays [6]. In addition there are
contributions from loops containing the physical charged Higgs boson, Hi,

+
and the charginos, xl (i=1,2). These are sets 3 and 4, contributing amounts

ajHand an respectively. If the Yukawa couplings are non-vanishing then
1,2

the fermion loops of set 5 will give the ajfe Finally set 6 shows the
scalar-fermion contribution aj¥, which contains both gauge and Yukawa
pleces. As noted in the previous section, the small mixing between left and
right types of scalar-fermions has been negiected for simplicity. Combining
all the contributions, the matrix elements for the scalar H% (3=1,2,3)
decays into two photons with polarization vectors ei and es are presented
below. The details of the calculation are given by combining the Feynman

rules of appendix E with the calculational techniques of appendix B. The

results are
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UV 1.2
a, = (a ta, ta, +a, +a, +a, +a ) N "e'e
h| jw jG jx jX jH jf jf uv
1 2 :
ie2gM v, U, +v, U, .
with a4, " ki [6+(-8+122 )T )][ 213 223,
(4m)2 v
ieZgM2 v.U. +v.U
ayg = ——L (12 10)]] L13 22 4
(4m)2M v
w
2/2 iezgﬁi
. = - 2+(4x,-1)I(A _c, U, .+ _U
"y (4m)? (2400110 P [s70,0) jro, 050y ]
2ie?gM v, U, 4v.U 2h2v_ U
W 11y, 1715 '2°23
a, = ———— [1420_I(A 1- 571 +
T gop]{G- pON R+ 2
21ge2e2m2c v :
a,=- I ELL [+ -nrap]vE
J £ (4m)2M
W
2ie2e2c g2(v, U, ~v.U_ ) =~ ~
ff 2725 1173 f f
anx == I ——7— [14220I0) ]| N, o =2m2V- }
if g (4M) £ 2c0526w LR) f
where Vf(f) = %— Ulj for f=d-fermions (sfermions)
1
1
= - U for f=u-fermions (sfermions)
vy 23
Furthermore,
F_l 2 £ _ 2
NL 2 g e_sin ew s NR efsin ew
and A= m /M2

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8a)

(3.2.8b)

(3.2.9)

(3.2.10)

54



The subscript of the A's corresponds to the mass of the internal loop

particle. Here n_ is +l1 (-1) for up (down) type sfermions. Also s , c

+

3

denote sin¢,, cos¢, respectively [see eq. (3.1.34)]. The colour factor ce

is 3 for quarks and 1 for leptons. The gauge invariant quantity Ny, is

= [ By pfq” ] ' (3.2.11)

where p and q are the photon momenta, of the first and second photon

respectively, and

() = gldx i Inf1 - % x(1-x)] (3.2.12)

The function AI(A) has a very weak dependence on A for values of A >> 1/4.
This dependence is shown in appendix D.

Similarly the matrix elements for the two photon decays of the
pseudoscalars Hg and H% are computed. The diagrams which contribute are
displayed in figure 2, and consist only of fermion and gaugino loops. The

matrix elements for the pseudoscalar H% (k=4,5) are

= Wy 1.2
a, (akx1+akx2+akf) Npseuev (3.2.13)
4/2 ezgﬁ}
with akXi = ——ZZ;;;;— (VZcht + vlstcx)l(li)nk (3.2.14)
4be2e2gm?c_ v, 7
a, ==t —=—LL( 10 m (3.2.15)
f (4n)2M v
w 2
where NHY = gHVPW ;Egﬂ— 3.2.16
ps “4p*q (3.2.16)

and N, 1is cosx (sinx) for k=4 (5).
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Figure 2 - One Loop Contributions to the 2y-Decay of the Pseudoscalar Hﬂ

(1) chargino loops (I1) fermion loops
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The above gives the general amplitudes for scalar or pseudoséalar Higgs
Boson to two photon decays 1in broken supersymmetric theory, calculated with
component field techniques. (Note that these remain non-vanishing in the
supersymmetric limit [21]). Obviously these amplitudes contain many unknown
parameters such as mixing angles and masses of unseen particles. In the
next two sectlions are some reasonable simplifying assumptioﬂs, and an
estimate of the widths. Also examined carefully i1s the allowed gnhancement

of these widths in broken supersymmetric gauge theories.

3.3 Pseudoscalar Widths of X0 + yy

The pseudoscalar widths of X0 » YY can now be calculated from the
results presented in the last section. However, first one must establish a
range for the many parameters appearing in the amplitudes. The two extreme
cases for the ratio of the two VEV's, vy and vy, are denoted as case A
for v, >> vy and case B for V)T Ve

In case A, the mixings of the charginos are given by equation (3.1.35).

Substituting into equations (3.2.15) and (3.2.16) one finds the dominant

contributions come from Xq and the t—quark; thus for Hz decays

/7 g Wy
a =-—————TI(A ) cosx sin¢+ (3.3.1)
X1 4q2 Xy
2
a_ =~-28 M tan —E-I(A ) cosx (3.3.2)
t 3_"2 w M2 t

w

From equation (3.1.26) there 1s no apparent reason why the mixing between
the pseudoscalars should by small. Hence, one expects COSX = 1//2. Notice

| that the relative phases of a, and aX are destructive since ¢, is in the
1
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first quadrant. The width for Hg decays is then obtained to be

aaMécoszx ﬁl 4 mi
T(H2+YY) = [v2 =100 )sing -3tana ——-I(At)]2 (3.3.3)
(4n)2s1n20 M, M Xy w2

The width of the H% decay is obtained from the above by subsfituting sinx

for cosx and M, by M

4 5°

At first sight, bounds on the magnitude of tana can be determined by
low energy phenomenology just as in the Two-Higgs-~Doublet model. Again this

is achieved by examining constraints from Bhabha scattering, muon decays

[11,12,13] and the K%—Kg mass difference [l4]. Taken together these gave
tana < 40 (3.3.4a)
Moreover, one could also argue for the much more stringent bound of
tana < 12 (3.3.4b)

from theoretical reasons which take into account partial wave unitarity plus
perturbation theory [26].

In supersymmetry there is a further constraint on tana. This is due to

~

the relation between the masses, M1 and ﬁZ’ and tana. Now recall from

equation (3.1.37) that

M ~
ﬁ; = = [ (1+sin2a + —Efﬂl/z

™\ 1/2
2 )]

t (1-sin20 + —

(3.3.5)
2M2 2M2 '
w w
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For the case of interest, it is easily proven that
tana = 2M2 / WM, (3.3.6)

As can be seen in equation (3.3.5), Xo is the lighter of the two charginos.
It must have a mass greater than 20 GeV/c? in order to agree with ete”

experimental data [27]. This then puts
tana < 8M_ / ﬁl (3.3.4¢)

for Mw=80 Gev/c2 and ﬁz > 20 GeV/c?. Hence in order to remain in case A, Xy
must have a mass no more than ~7 times Mw' The consistent range for ﬁl

would be v?2 Mw < ﬁl <7 Mw' Thus the upper bound becomes
tana < 5.7 , (3.3.44)

Figure 3 displays the width of Hz decaying into two photons as a
function of its mass, for the range of allowed x] masses, with the mixing
angle x chosen to be n/4. It is seen that this width is typically of the
order of 60 keV or less for an intermediate mass pseudoscalar.

The width is dominated in this'case by the t—-quark loop contribution.
The dependence of tana via equation (3.3.4c) on the X, mass is the reason
for the large range of possible widths for a given pseudoscalar mass. As
the pseudoscalar mass approaches and then crosses the threshold for decay
into a pair of real t-quarks (mt=40 GeV/c2), the rise in the width
respectively increases sharply and then slows abruptly. In general this
type of behaviour will occur whenever the thresho}d for pair production of a
particle which makes an 1mportant loop contribution to the decay width is

crossed. Similar results hold for H% decays.



Figure 3 - Pseudoscalar 2y-Decay Width for Case A
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Case A (v1>>v2): two photon decay width as a function of mass for the
pseudoscalar H& (k=4,5) with mixing angle x=r/4, for the range of allowed

X, masses.
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Figure 4 - Pgeudoscalar 2y-Decay Width for Case B

o
©
(@)
D
o %
HO 3
(03]
e
=
40
~
1 ] O
To) o) <

25

T (Aev) I

Case B (v1=v2): two photon decay width as a function of mass for the
pseudoscalar Hﬁ (k=4,5) with mixing angle x=w/4, for the range of allowed
X] masses.
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Next examine case B. With a = w/4 one obtains again ¢+=¢_=¢ and explicitly

¢ = 3 stnl L ] (3.3.7)

(1 +._';'L.2_1/2

4M2
w

The masses of the charginos are given by

~ P m
M = M 1 + — 1/2 + —_— 3.308
} o 4M€) M ) ( ‘

and they are the order of Mw' Now the two photon widths of Hg and H% are

easily obtained to be

~ ~

aaMacoszx Ml M2 4 T

r(H2+w) = [ —=1(A. ) + —=I(A_ ) sin2¢ - 3 —I(At)]z (3.3.9)
(4m)2sin20 M, M X1 M X2 M2
w 4 w W W

and similarly substituting sin?x for cos?x and M_ for M4 to get F(Hg*yy).

5
These widths as a function of their mass, for the range of allowed
chargino masses, are plotted in figure 4. Neither Xy» X DOT the t-quark
loop contributions dominate, since there is no tana enhancement.
Consequently the width is much smaller than in case A, i.e. less than

25 keV. The upper bound curve in figure 4 corresponds to both charginos

having mass Mw, and hence is sharply peaked near the threshold at ZMW.

3.4 Scalar Widths of X0 + yy

It is now straightforward to carry out the same analysis for the two

photon widths of the scalar Higgs bosons H% (j=1,2,3). For definiteness

consider only Hg decays. It is clear that the same analysis can be pushed

through almost verbatim for Hg and Hg. Just as in the case of the
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pseudoscalars there is no apparent reason for the mixing Uij between these
scalars to be small. For simplicity, assume that they are all approximately
equal, i.e. U1j=02j=U3j=U=1/f§ for j=1,2,3.

As seen in figure 1 there are many more internal loop contributions
compared to pseudoscalars; hence, more free parameters in the form of
internal masses appear. It has already been noted that the'combination
AI()) does not vary a great deal over a wide range of values for A. Thus,
one does not expect the two photon widths to be too sensitive to the values
chosen for these masses.

Observe that the amplitude due to fermion loops of equation (3.2.6) is
dominated by the t—quark for both cases A and B. This is due to the mass of
the t—-quark being much larger than other fermions in the minimal 3 quark
.lepton families universe. For case A further enhancement is due to the
presence of the vE factor. Notice that the scalar-fermion loop

contribution of equation (3.2.7) is dominated by the scalar-top for both

cases A and B. To the extent that A¥I(A¥) is insensitive to the choice of

scalar fermion mass, the term involving Ni(R) will give zero when summed
over all scalar fermion types. The remaining Yukawa term is proportional to

the square of the corresponding fermion mass, and hence the scalar-top

~

dominates. Again in case A there is further enhancement by the Vf factor.
Incorporating the above considerations, one.finds that for case A the

gscalar decays have

1
0 = e +3 + ~ .
T(H + yy) T Ia +aG a a +aH+a +a F (3 1)
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where

iengw
=——16 -8+12x )I(x )]u .
a_ 2 [6 + (-8+ w) ( w)] (3.4.2)

iengw [ .
a, = ———[A7 + 21I(2_ )]|U (3.4.3)
G (4m)2 w W ]

-Z/Eiezgﬁé

ax% = -—(—;52——— [2 + (AX}-l)I(Aé)]U sing (3.4.4)

ZiezMw : 1 2h2 v
ay = —— [T+ 2, 10)]{(1 - 3271) +

(47)2 gM

Ju (3.4.5)

81ge2mi
a, = - ——[2+ (axt-l)rcxt)]u tano (3.4.6)
3(4m)2M :

16ie2gm€
ay = —— [1 + 2x§1(x;)]u tana (3.4.7)
3(417)2Mw

(ag

This width as a function of the scalar mass is displayed in figure 5. The
standard model scalar width is also shown for comparison. The major
contribu;ions to the scalar width in this mass range are the t-quark loop,
W-gauge boson loop, and to a smaller extent the chargino loops. For larger
scalar masses, the scalar-top and charged Higgs loops will also contribute,
but only near or above their thresholds. Destructive interference between
the t—quark and W-gauge boson loops results in a generally smaller width
than in the standard model which by comparison is dominated only by the

W-gauge boson loop. All the curves in figure 5 rise sharply near

160 GeV/c2, which corresponds to the threshold for W-gauge boson pairs.



Figure 5 - Scalar 2y-Decay Width for Case A
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Case A (v1>>v2): Two photon decay width as a function of mass for the
scalar HO (3§=1,2,3) with mixing angles U1j=U2j=U3 =1//3, for the range of
allowed X, masses. The broken curve shows the standard model Higgs boson
width for comparison.
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Figure 6 - Scalar 2y-Decay Width for Case B
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Case B (v1=v2): Two photon decay width as a function of mass for the scalar
H% (j=1,2,3) with mixing angles U1j=U2j=U3 =1//3, for the range of allowed
X, masses. The broken curve shows the standard model Higgs boson width for

comparison.
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Similarly for case B one has

iengw /2
= ——=[6 + (-8+12)_)I(x )]uU ' 3.4.8
a_ oy [ ( W (w)] ( )
ieZng [ ]
a, = —— 271 + 2100 )]uw2 (3.4.9)
G (4“_)2 w w
-2/§ie2gﬁ}
a =—————[2+ (42y-1)I(2;)]U sin2¢ (3.4.10)
X; . (4“)2 } 5 ]
21e2MW 1 2h2v3
ay = -(-4—-—2 [1+ 2, 1()]{(1 - ;1 1)/2 + }u (3.4.11)
™) gM
w
Sigezmi
a_ = - ———[2+ (& -DIQ)]W2 (3.4.12)
3(41)2M
w
161ie? gm?
ay = ——= [1 + 2:=1(x)] 02 (3.4.13)
3(4m)2H

Substituting these into equation (3.4.1) gives the width I‘(H0 + yY) which is
again displayed as a function of scalar mass in figure 6. Once again the
staﬁdard model width i1s shown for comparison. The discussion is similar to
that for case A, except that the t-quark loop is not an important
contribution here, since there is no tana enhancement. Consequently the
width is a bit larger, and dominated mostly by the W—-gauge boson loop. The
gaugino loops interfere destructively with the W-gauge boson loop and hence
the scalar width is still smaller than in the standard model.

Finally note that thus far only the example where the mixings Uij are
all approximately equal has been used. Now consider the best case

'possibility, where the relative phases between mixings is such that the
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Figure 7 - Scalar 2y-Decay Width for Best Case A
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Case A (v >>v2): Two photon decay width as a function of mass for the
scalar HO (j=1,2,3) with mixing angles Ulj=-U2j=U3j=1//3, for the range of
allowed X, masses. The broken:-curve shows the standard model Higgs boson

width for comparison.
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dominant loop contributions interfere constructively. This is not possible
in case B since the gauge boson and gaugino loops contain the same
combinations of Uij with an overall relative minus sign. waever, for
case A one can greatly inc?ease the width if Ulj = —Uzj. This will give
constructive rather than destructive interference between the two main
contributors, namely the gauge boson and t-quark loops. The scalar width
for this best case scenario is plotted in figure 7 and it is indeed now
enhanced relative to the standard model width, although not by a great
amount.

This concludes chapter III on the minimal broken supersymmetry model.
The model, which is also described in the literature, was first introduced
and then applied to the calchlation of the 2y-decay widths of the Higgs
bosons. The results of this calculation are all new, and we remind the
rgader of some important highlights. First the additiqnal superparticle
content did not significantly alter the Higgs 2y-decay widths, generally
causing a small decline through destructive interference effécts. Once
again it was the enhancement of the Higgs to fermion couplings, due to the
additional Higgs doublet, which led to a greatly increased Higgs 2y—decay
width. Unlike the case for the Two-Higgs-Doublet model however,
supersymmetry imposes a much more severe bound on this possible enhancement.
The next chapter will discuss the effects of this new constraint, as well as

the significance of the other results obtained thus far.
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IV. NON-STANDARD SPIN-O BOSON PRODUCTION

The results of the last two chapters will now be used to determine
production cross sectioﬁs for the spin—-0 bosons in ep and ete™ colliders.
These cross sections can be expressed in terms of the Higgs boson to two
photon decay widths previously calculated. If its 2y-decay width is large
enough, the dominant production mode in these colliders for the Higgs boson
will be via the two photon fusion mechanism. This mechanism and the
specifics of how to calculate the production cross sections are discussed in
detail below. The point is thét the Higgs boson production rates can be
directly related to their 2y—-decay widths, if the widths are large enough.
This is indeed the case for the supersymmetry and Two-Higgs-Doublet models
previously introduced, if the enhancement factor tana is large. Spin-0
boson production rates are caiculated for each of these models in ep and

et

e~ colliders. These new results are presented for discussion and
comparison below.

Detection of the Higgs bosons in these colliders is achieved by
observing a peak in the invariant mass distribution of their decay products.
For the Higgs mass range studied, these decay products will comnsist of two
hadronic jets of particles, which form from the original pair of quarks that
the Higgs predominantly decays into. Hence the cleanest signal will be for

et

e~ machines. Unfortunately we will find that the production rates at the
SLC collider will be too low for observation even in the most optimistic
scenario. Thus we must turn to the higher luminosity ep machines, at the
expense of larger backgrounds and potential problems in distinguishing decay

jets from the initial beam jets. Nevertheless we will find promising

results for the Two-Higgs-Doublet model, with production rates in the best
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case which are readily cbservable at the HERA collider. For the minimal
broken supersymmetry model however, we will find tha£ once again the rates
are unobservable, as a result of the more severe constraints on the
enhancement factor tana. The significance of these results is discussed

below.

4.1 The Calculation

This section studies the production of scalar (S°) and pseudoscalar
(P%) spin-0 bosons in electron-proton and ete™ colliders. The ep

semi~inclusive reactions studiéd are

e+p—e+580 +Xx (4.1.1a)

e+p-—e+P0 +X (4.1.1b)

where X denotes any hadronic states. The quark-parton model is assumed for
the collision in equation (4.1.1). The electron—quark scattering

subprocesses are

e() + Q(q) —— e(R") + s0(h) + Q(q") (4.2.2a)

e() + Q(q) = e(Q") + PO(h) + Q(q") (4.2.2b)

where Q denotes either the u?type or d-type quark in the proton. In
equation (4.2.2) the 4-momenta of the various particles are given in their

respective parentheses.



Figure 8 - Feynman Diagrams for the Reaction eq + equ
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(a) t-channel Z-boson exchange (b) t-channel photon exchange
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It is well known that the production rate for the standard model Higgs
boson is very small [28] for an ep collider such as HERA. This can be
understood by examining the production mechanism for reaction (4.2.2). 1In
ep collisions, Higgs boson production proceeds via the t—channel diagrams
depicted in figure 8. The process of figure 8a 1s suppressed by the two
Z-propagators, although this is partly compensated by the lafge H0zz
coupling. On the other hand the process in figure 85 has no such
suppression but is enhanced by the double photon exchange poles. However,
the Hlyy vertex is of higher order thereby rendering this amplitude small.
In most cases the standard model amplitude of figure 8a is lafger than that
of figure 8b, but it still results in an extremely small production rate as
discussed below.

The situation is more optimistic for Two-Higgs—Doublet models. As seen
in the previous chapters, both the SOyy and P0yy vertices can be enhanced
substantially. For the scalar this makes the photon exchange amplitude
dominate over the Z-exchange one since the S0ZZ coupling remains unchanged
" to lowest order. The pseudoscalar will be produced only through the photon
exchange amplitude. Thus one can express the production cross sections of
these spin-0 bosons in terms of their 2y-decay widths.

In the same view one should also consider the production of S0 and PO
in ete” scattering. The purpose is to compare the relative strehgths of the
above two types of colliders for scalar and pseudoscalar production. The

reactions studied here are ones similar to equation (4.1.1); namely

et + e —» et + e~ + 80 (4.1.3a)

et + e ~—— et + e + PO (4.1.3b)
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Being interested in cases where the SOYY and/or POYY vertices are enhanced,
one again concentrates on the two photon production mechanism.. This is the
same as figure 8b with quark lines being replaced by et lines. There is an

added complication for the et

e~ reaction not present for the ep case. The
s—channel equivalent of the diagram in figure 8b should be included. The
resulting destructive interference with the more dominant t-channel exchange
graph causes a small correction. 'This correction can be neglected for the
purposes of obtaining order of magnitude estimates for the production cross
section. Hence only the dominant t-channel process will be retained.
Otherwise the calculation is the same as for the ep case, except that one
does not need to convolute over parton distributions.

The production cross sections for the processes in equation (4.1.1)

were calculated using the equivalent photon approximation (EPA) [29 30].

The photon spectrum used is given by [31]

] .
_a s ds' _ §v sv2 . .
oeq(s) =2ln - f . [1 s+ z—sz]qu(s ) (4.1.4)

This method relates the photon-quark cross section (see figure 8b) to the
electron—quark cross section for the subprocesses in equation (4.1.2).
Details of the calculation are described in appendix F. The approximation
is useful in that equation (4.1.4) can solved analytically. The EPA has
been demonstrated to be good to within ten percent in resonance production
in ete” collisions, and it is expected to be of the same accuracy in ep
collisions. As a check the production cross sections were also calculated
directly using the Monte-Carlo method (see appendix G), which evaluates the
integrals numerically. The convergence of fhe Monte-Carlo routine is very

slow in ep collisions due to the Lorentz boost between the lab and the



cm frames. This boost prevents the use of importance sampling techniques,
which concentrate the effort of the Monte-Carlo routine near the important
photon poles. Nevertheless the results agree to within the accuracy of the
two methods.

The results of the EPA calculation for the cross sections of the

subprocess equation (4.1.2) are given below. For the scalar one obtains

M2
-3 A g0 .
oeq(g) = 4a2eq2MSOP(S° > Yy)ln[agzﬁ{ ln(;ryﬂ[p2+2p—3-(2+2p+92/2)1np]
e q
+ (p2/4)1n2p + (2p2+4p-6)1n(1l-p) - (2.5p2+4p=5)1np (4.1.5)

+ (25-24p-p2) /4 + (p2+4p+4)[-L1(1)+Li(p)+(1n2p)/2] }

where pEMgo/Q, and Qs(l+q)2 is the (cm energy)? for the subprocess. The

quark charges are given by eeq and Li(x) = —gxdtln(l—t)/t is the dilogarithm

function. For the pseudoscalar one obtains the slightly different form

given by
-3 2 Mo
o, (8) = 4oZe ZMT (PO + yY)1in(==7){ 1n(=7)[p?+20-3-(2+20+02/2)1np]
eq q me mq
+ (1+p+p2/4)1n2p + (2p2+4p—-6)1n(l-p) + (6~4p-7p2/4)1np (4.1.6)

+ (47-28p-1902)/8 + (p2+4p+4)[-L1(1)+Li(p)+(1n2p)/2] }
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The 2y-decay widths in equations (4.1.5) and (4.1.6) were calculated in the
previous chapters. The quark-parton model is then used to estimate the
cross section for the physical processes of equation (4.1.1) by convoluting

over the quark distribution functiouns fq(x). Explicitly

oep(s) = {1 dx Efq(x) oeq(xs) : (4.1.7)

My

where this last integration is done numerically. The specific quark

distributions used were

£ (x) = 2.2x "% (1-x)2"8 (4.1.8a)
£4(x) = 1.25x-'49(1-x)3'8 (4.1.8b)
£ () = £,(x) = 0.27x"1 (1-x)8*1 (4.1.8¢)

which are taken from reference [32].

Similarly the results for the ete™ collisions of equation (4.1.3) are
easily obtained. They are simply given by equations (4.1.5) and (4.1.6)
with € replaced by s, the (cm energy)? of the ete” system. Of course there
is no need to convolute over parton distribution functions, as the result is
already in its final form. Again the results agree with the numerical
Monte-Carlo check For this case the lab énd'cm frames are the same.

The importance sampling techniques mentioned above can therefore used, and
convergence of the Monte-Carlo routine is quite rapid.

Thus the production cross sections of the spin-0 bosons are now

expressed in terms of their 2y-decay widths for both ep and ete™ colliders.
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4.2 Numerical Results and Discussion

The photon-exchange production cross section as a function of Vs is
given in figure 9 for the standard model Higgs boson in an ep collider. 1In
accordance with previous calculations [28] this cross section is
distressingly small, typically on the order of 10740 cm? for collider
energies. The lower curve in figure 10 depicts the same cross section as a
function of the Higgs boson mass for Vs=320 GeV, appropriate for HERA. Also
indicated 1is the cross section due to the two Z-boson fusion mechanism
alone. Similar curves for v¥s=l TeV are shown in figure 11. Although
obscured somewhat in figure 10 by the effects of phase space, there is a
rise in the photon exchange cross section for large My, which is very
apparent in figure 11. This rise is due to the behaviour of the function
I(A) as discussed in appendix D. .The biggest standard model contribution
comes from the W-boson loop, and hence the cross section rises near the
threshold at Mg=2My. Standard model Higgs boson production in ep
collision is dominated by the two Z mechanism. At v¥s=320 GeV the cross
section is at least one order of ﬁagnitude too small for observation even
for light Higgs. For v¥s=1 TeV the two Z mechanism becomes just large enough
if the same luminosity can be maintained, and the production rate for the
two photon process is too low. Thus for the standard model, the prediction
for the production of Higgs bosons 1s that ep colliders will not be able to
observe them. Similar results hold in ete™ machines. These conclusions are
well known and the standard model results have only been shown for
comparison with the more interesting Two-Higgs-Doublet model.

Plots of the enhanced cross sections as a function of mass, using
tana=40, are given for the spin—-0 bosons of the Two-Higgs-Doublet model in

figures 10 and 11. Again there is a peak in the cross sections of figure 11
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Figure 9 - Standard Model ¢ vs Vs for ep + eH'X
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Photon exchange production cross section with Myg=40,150 GeV/c2.
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Figure 10 - Cross Sections o vs MH for ep + eH'X for Vs=320 GeV
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The dash—-dot (dashed) line is for sténdard model photon (Z-boson) exchange.
The solid (broken) line is for Two-Higgs—Doublet model photon exchange
scalar (pseudoscalar) production with tana=40.



Figure 11 - Cross Sections o vs MH for ep + eH'X for /s=1 TeV
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The dash—-dot (dashed) line is for standard model photon (Z-boson) exchange.
The solid (broken) line is for Two-Higgs-Doublet model photon exchange

scalar (pseudoscalar) production with tana=40.
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due to the behaviour of I(A). However in this case the t-quark loop
dominates so that the threshold occurs for My=2my. In the scalar case

the peak is less pronounced and is displaced at larger My due to the

factor (4A-1) which multiplies I(A) in equation (2.3.4). Similar behaviour
in figure 10 is somewhat obscured since the more restrictive phase space
dominates the shape of the cross section. For a range of Higgs mass, the
enhanced photon exchange cross sections are much larger than the unchanged
Z-boson fusion mechanism by roughly an order of magnitude. The pseudoscalar
rate is about three times that of the scalar. Although the actual cross
sections for a Two-Higgs-Doublet model may fall below the bounds shown,
reasonably large cross sections (up to 10737 cm?) are possible even at HERA
energies. Hence one may be able to observe Higgs boson production in ep
collisions within the context of the Two-Higgs-Doublet model.

Plots of the enhanced (tana=40) photon exchange cross sections are
givén in figure 12 for the Two-Higgs-Doublet model bosons produced in ete™
collisions. The variation of cross section with /s for Mp=60 GeV/c?, and
the cross section versus My for Vs=150 GeV are displayed. These values
were chosen to facilitate comparison with the standard model gfaphs given in
reference [33]. The behaviour is similar to that found for ep scattering
above. The peak in the ¢ vs. Mg distribution is sharper since there is no
smearing by the parton distributions. The enhanced cross section is roughly
an order of magnitude larger than for the standard model one [33] which
makes it just observable as discussed below.

As in the standard model, the intermediate mass scalar or pseudoscalar
bosons will decay primarily into a pair of heavy quarks, leading to a signal
of two jets. ‘In figure 13 the rapidity distributions of the Higgs scalar 3

for ep and ete” photon exchange mechanisms are given. The pseudoscalar
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Figure 12 - Production Cross Sections for ete™ + ete HO
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Production cross sections as a function of (a) Vs for My=60 GeV/c2 (b) My
for Ys=150 GeV. The solid (broken) line is for Two-Higgs~Doublet model
photon exchange scalar (pseudoscalar) production with tana=40.
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Figure 13 - Rapidity Distributions

do/dy (ep~eHX)
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Scalar boson rapidity distribution in the cm frame for (a) ep + eHOX with
Y8=320 GeV and MH=40 GeV/c? (b) ete™ + ete"H? with V/s=150 GeV and MH=60 GeV.

The normalization is arbitrary.
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rapidity distributions are very similar. 1In both cases the cm frame
rapidity is broadly peaked about zero. It is straightforward to obtain
these distributions from the EPA calculation of appendix F, or directly from
the Monte-Carlo calculation. For the ete™ + ete™HO process, the lab frame
and the cm frame coincide. The two Higgs decay jets should therefore sfand
out well away from the beam axis, providing a good signal. However in the
ep * eHlx process, the cm frame has a large velocity in the 1lab frame. The
resulting Lorentz boost will shift the scale on the rapidity distribution in
figure 13a by roughly -l1.6 at HERA. Hence in the laboratory frame the Higgs
rapidity will peak at less than 10° from the beam axis, and at least one of
the decay jets may be difficult to distinguish from the beam jets. In order
to resolve this problem, much higher event rates may be needed for ep

colliders than for et

e~ machines.
The ep event rates discussed below are for HERA assuming V/s=320 GeV and
an integrated luminosity over one year's running of 1.89x103% cm™2. The

et

e~ rates are for SLC assuming Vs=100 éeV and an integrated luminosity over
one year of 9.45x1037 cm™2. 1In the standard model, Higgs boson production
is dominated by the Z-boson exchange mechanism and the event rates of <3 per
year are too small to be observed. On the other hand the cross sections for
the Two-Higgs-Doublet model can be quite substantiai. This is due to the
possibility of enhancing the Yukawa coupling of the t-quark in this model.
Without folding in detection efficiency, the upper bound estimates on the
event rates in ep colliders are calculated to be <65 for the scalar boson
and <176 for the pseudoscalar. In ete™ colliders the corresponding event
rates are <2 for the scalar and <13 for the pseudoscalar.

Although the cleaner signal may be found with ete” machines, the upper

bound production rates for SLC are not large enough. A higher luminosity

Y
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et

e~ machine, perhaps LEPII, would be useful in providing both larger rates
and a clean signal. On the other hand the ep production rates are élready
quite large, especially for the pseudoscalar boson. Hence it can be
concluded that it may be possible to detect non-standard spin-0 bosons in ep
colliders such as HERA.

The results for the minimal broken supersymmetry model are not as
promising as ‘for Two-Higgs-Doublet models in general. The qualitative
results are similar, but the more stringent bound on tana in equation
(3.3.4d) gives a reduction in the production cross sections by roughly a
factor of 50. Thus the best possible event rates for one years running will
be <3 for the pseudoscalar in ep collisions, and even smaller rates occur
for the other cases. These rates are much too low, and hence it will not be
possible to detect the non-standard Higgs bosons of the minimal broken
supersymmetry model with this method.

This concludes chapter IV. The new results obtained were the
production rates of Higgs bosons in ep and ete™ colliders for the Two-Higgs-
'DOublet and minimal broken supersymmetry models. It was found that ete”
machines could not produce observable quantities of the Higgs bosons and
hence the emphasis shifted to ep colliders. Here it was found that for the
Two-Higgs-Doublet model, readily observable rates on the order of 100 events
per year were possible for the HERA collider. For the minimal broken
supersymmetry model however, production rates were once again unobservable
due to the smaller tana enhancement factor. From these results we may
conclude that the production of Higgs bosons in supersymmetry models 1is asv
difficult as in the standard model. More importantly we now have a
potential experimental test of supersymmetry. If Higgs bosons are detected

at HERA as allowed by Two-Higgs-Doublet models; then we can rule out the



minimal broken supersymmetry model. How general a supersymmetry model could

be ruled out is discussed in the next chapter.
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V. SUMMARY AND CONCLUSIONS

The two photon decay widths of non-standard spin-0 bosons were
calculated for the two doublets extension of the standard SU(2)xU(1)

electroweak model, and for the minimal broken supersymmetry model. The

results were then used to obtain production rates for these spin-0 bosons in

ep and ete™ colliders, for the intermediate mass range (40-160 GeV/c2)
studied.

Features of the Two-Higgs-Doublet model include the scalar and
pseudoscalar bosons which are ﬁresent in addition to the usual standard
model Higgs scalar. Also there is the possibility of enhanced fermion .
couplings to these bosons relative to the standard model, if the ratio of
the two VEV's, tano, is large. The largest uncertainty of the calculation
lies in the charged Higgs boson loops (see figure 15), but fortunately their
contribution is negligible if the parameters in the scalar potential are not

large. If not, one encounters either strongly interacting scalars or vacuum

instability. Larger 2y-decay widths than in the standard model are possible

by enhancing the fermion loops (see figure 14). 1In the best case the
t-quark loop is enhanced by the upper bound value of tana=40, and it
dominates the other processes. This occurs for both the pseudoscalar and
one of the scalar Higgs bosons. The other scalar would behave as in the
standard model but with the gauge boson loop suppressed, and hence 1its
smaller width is of little interest. The bound of tana < 40 was obtained
using only phenomenological constraints on the mixing of the two VEV's.
Perturbative partial wave unitarity constraints [26], which would lead to
the more stringent bound of tana < 12, were not used. If one adopts this

then the numerical results discussed should be scaled accordingly.
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The minimal broken supersymmetry model is a specific example of a Two-
Higgs-Doublet model, with some added theoretical motivation. Conseduently
it too has all of the features just described. In addition there are new
features associated with the underlying albeit broken supersymmetry.
Specifically the charged gauginos and scalar-fermions will give additional
loop contributions to the two photon decay widths. 1In the ihtermediate mass
range studied (40-160 GeV/c?), it was found that these additional
contributions are not very large and in fact they in general reduce the
width by interfering destructively with the usual contributions. One
important new feature arising from the supersymmetry is the upper bound
imposed on tana by the allowed range of the gaugino masses. The upper limit
of tanax < 5.7 in the minimal broken supersymmetry model 15 less than half of
the most restrictive bound for a general Two-Higgs—-Doublet model, and much
smaller than the phenomenological bound. The width varies as tanZa for
large tana, so that the largest possible width for this model is from 4 to
50 timés smaller than one might have hoped for. A more optimistic situation
can arise if the mixings between the scalars, coming from the breaking of
the supersymmetry, have phases such that constructive interference occurs
between the W-gauge boson and t-quark loops. 1In this case the scalar width
is enhanced to partially coﬁpensate for the smaller tana factor. Even this
best case possibility allows an enhancement of the scalar width of less than
an order of magnitude over the standard model width. For the pseudoscalar
this best case possibility does not occur since the relative phases are
fixed, and hence the pseudoscalar width is definitely smaller.‘ Hence, it
can be concluded that the supersymmetry imposes a much lower upper bound on
the possible tana enhancement of the two photon decay widths than do Two-

Higgs-Doublet models in general. Widths of the order of 100 keV are the
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best one can hope for, for both scalars and pseudoscalars, in the minimal
broken supersymmetric gauge theory.

The production cross sections in ep and ete™ colliders were calculated
for the non—-standard spin-0 bosons in terms of their two photon decay
widths. From the rapidity distributions it was found that the cleanest
signal will occur for ete™ colliders. Unfortunately the production rates
were too low to be observed at the SLC collider for all cases studied.
Therefore one must concentrate on the ep results.

The ep upper bound production rates for the Two-Higgs—Doublet model are
very large, being of the order of 100 events per year at HERA. Hence one
concludes that it may be possible to detect these non-standard Higgs bosons
in ep colliders. The ep results for the minimal broken supersymmetry model
are more disappointing. The much stricter upper bound on the possible
enhancement in this model leads to very low production rates for the
non-standard spin-0 bosons, which again are not observable. Thus the
observable production of non—-standard Higgs bosons for minimal supersymmetry
models will not be possible at HERA. The two photon decay widths of these
Higgs particles in supersymmetry models are of little more importance than
is the case for the standard model. This negative conclusion for the two
photon process does not of course prevent supersymmetry from manifesting
itself in other processes.

It should be noted that if non-standard spin—-0O Higgs bosons are
produced at HERA by this mechanism, as allowed by general Two-Higgs-Doublet
models, then the minimal broken supersymmetry model would definitely be
ruled out. Thus we have a possible experimental test of supersymmetry.
Sucﬁ an occurrence would not however completely rule out supersymmetry. We

have only considered the minimal model with three families of quarks and '
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leptons. If there are more than three families, some of the additional
heavy fermions could contribute to the 2y-decay width as much as the t-quark
does. Thus the predicted production rates could be much larger. This will
not occur in the standard model unless incredibly large numbers of
additional families (>35) are used. However, for supersymmetry models the
addition of only one extra family leads to an increased rate by a factor of
nine. This 1s because the t-quark, the new heavy u-type quark, and the new
heavy lepton would each contribute roughly the same to the 2y-decay width.
Thus we could still have a supersymmetric model, although a more complicated
one than the minimal model.

This concludes the presentation of this thesis. We have examined the
two photon decay widths of_non-standard spin—-0 bosons for Two-Higgs-Doublet
models in general, and the minimal broken supersymmetry model in particular.
While the models themselves are established in the literature, their
application to the Higgs 2y-decay width and the subsequent calculation of
the various Higgs production rates all represent new results. In these
models with additional Higgs doublets, there is the possibility for enhanced
spin-0 boson to fermion couplings if the ratio of the two vacuum expectation
values (tana) is large. This in turn leads to enhanced production of these
bosons via the two photon fusion mechanism at rates which coﬁld readily be
observed_at the HERA collider. In supersymmetry models the new
superparticle content will give rise to additional contributions to the
2y-decay process. We found that these are not very large and that their
effect is to slightly reduce the width via destructive interference with the
usual contributions. The important new result arising from suﬁersymmetry is
that it imposes a much smaller upper bound on the possible tana enhancement

of the fermion couplings than do Two-Higgs-Doublet models in general. The
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origin of this additional constraint lies in the experimentally established
lower limits for the mass of the supersymmetric gaugino particles. .Hence
even for the best case possibility, the Higgs bosons of the minimal 3-family
supersymmetry model cannot be produced at observable rates. Only
supersymmetry models with additional generations of heavy fermions can
produce Higgs bosons at rates which could be observable at HERA. Therefore
we have a possible experimental test of supersymmetry in that the.detection

of Higgs bosons at HERA could rule out the minimal model.
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APPENCIX A - SOME ACCELERATOR PROPERTIES

Table I1I - Accelerator Properties

Collider Type Luminosity (cm™2s71) Vs (GeV)
SLC ete” 3x1030 100
LEP I ete 6x1031 : 100
LEP II ete” 2x1032 170
HERA ep 6x1031 320

SSC PP 1033 40,000



APPENDIX B -~ EVALUATION OF FEYNMAN DIAGRAMS

Consider a spin-0 Higgs particle decaying into two photons with
4-momenta kl,k2 and polérization vectors eu(kl),ev(kz) respectively. One
would a priori expect the matrix element for this process to have the gauge

invariant forms

uv uv _ VMg
M = Ag Vklkz/kl k,] (B.la)

(B.1b)

1 2

M*Y = e VOB okog /Ry K
for a scalar or pseudoscalar Higgs particle respectively. These terms are
the only tensors one can make from the two independent momenta (kl’kZ) which
do not vanish when the scalar product is taken with the polarization
vectors. The contributions of the different Feynman diagrams to this matrix
element are shown below.

Each set is separately gauge invariant as is demonétrated. Although
the defails of the coupling strengths will depend on the model studied, the
methods of calculation 1llustrated are the same for the standard model, Two-
Higgs-Doublet models and supersymmetric models. Consequently only one
representative example is evaluated for each set of Feynman diagrams. The

standard model Feynman rules needed can be found in reference [10].

B.1l Scalar Higgs 2y—-Decay via Fermion Loops

The contribution of the fermion loop in figure 14 is demonstrated for
the standard model. Such a contribution will arise from quarks and leptons

in all the models studied, as well as from chargino loops for supersymmetry.
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Figure 14 - Fermion Loop Contribution to Scalar 2y-Decay

The matrix element, obtained using the standard model Feynman rules, is

v at
e bl - D) () (tee ) (i)

X (-ieefy )(Th—_-m—f) ] (B.1.1)

where h=k +k is the Higgs 4-momentum and kl,kz are the photon 4-momenta.

2

Evaluating the trace results in

2
£ BV _ M —oH UV
{ acy 2C1(h+k1) 2k1C1 + (kyh +h k )Cq

+ g"[- % +2c

2% 1kt (m%—kloh)co] } (B.1.2)

where the loop integrals CO’CI’CZ are given in appendix C. Substituting the
results from appendix C, and retaining only those terms consistent with the

form of equation (B.l) gives

21ge?e2m2 e e
152 .
M;“ = -__-_-5-5 [- 2 - (4A-D1_) e - ] (B.1.3)
1672M k. ek
W 1 2

where A=m§/M§ and 1_1 is given by equation (C.1). An additional factor of 2
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is included in equation (B.1l.3), arising from the crossed diagram where
identical photons are interchanged. Note that the coefficients of both the
»guv and k;k;/klokz terms are identical, explicitly demonstrating the gauge

invariance of the matrix element.

B.2 Scalar Higgs 2y—-Decay via Scalar Loops

The contribution of the scalar loops in figure 15 is demonstrated for
the standard model in the 't Hooft-Feynman gauge. In this case the scalar
loop particle is the would-be Goldstone boson. In Two-Higgs-Doublet models
this set of Feynman diagrams arises for both would-be Goldstone bosons and
physical charged Higgs bosons. Similar contributions occur for

supersymmetry models, along with scalar-fermion loops.

Figure 15 - Scalar Loop Contribution to Scalar 2y-Decay
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The matrix elements, obtained from the standard model Feynman rules, are

MY = f _ﬂiﬂ_ [ (-ie(kl-Zq)u)Q—————i-———)(-ie(h-2q+k1)v)

S(a) (2“)4 (q-k )2—M?
| i W
x ( 12 2)( )( > 2) ] (B.2.1a)
(Q'h) 'Mw ZMw q —Mw
-ig 2
M‘S"Eb) -5 e (21e2g")(—2—) i (—2) (B.2.1b)
(2m)* (q-h)2-M2" " 2~ q2-M2

Rewriting in terms of the loop integrals Co,Cl,CZ,C' from appendix C gives
1AV engﬁ uv H,V (TBRY V. U u v
Mo(ay = '@‘[“Cz - 4C1k; - 2Cik, = 2C ky + ky(2k;+k,) Co]  (B.2.2a)
2 M2
e gMH
gy o ___H w
Ms(b) 2Mw g C (B.2.2b)

Combining these two matrix elements with the results of appendix C,
retaining terms of the form in equation (B.l) and including a factor of 2

for the identical photons gives \

ieZg 2
MY = i (1+2a1_) (8" - ==

s - (B.2.3)
16m2M
w

. .-:c
el A
N
—

where A=M€/M§. Again note the explicit gauge invariant form of eq. (B.2.3).
As discussed in appendix D, the factor (1+2AI_1) is small for A >> 1/4 and

consequently the scalar loop contribution is usually small as well.

B.3 Scalar Higgs 2y-Decay via Gauge Boson Loops

The diagrams in figure 16 are the lafgest set to contribute to the

scalar Higgs decay width. The loop particles include W-gauge bosons,



Figure 16 - Gauge Boson Loop Contribution to Scalar 2y-Decay’

99



100

would-be Goldstone bosons and the Fadeev-Popov ghosts. Such a contribution
arises in all the models studied, and is demonstrated for the standard model
in 't Hooft-Feynman gauge. As was done in the previous sections, one

obtains the matrix elemeéents given by

\Y

=
{1

it engw[locuv - oc¥k’ - k¥c” + 5c kYK

(a) 2, 1 021
+ g (zcza - C o (k +k,) = 2C <k - bk, +k,Cq) ] (B.3.1a)

uv - - 2 HV '

M(b) 3e ng g C (B.3.1b)
Hv engW Hv U, v Vv, U uv , o

My =~ 3 [- c,” +3Cik; - 4Cik; + 8 (Cy + 2C;0k,)] (B.3.1c)
HV eZgMW Hv H, Vv V, U, v

Mgy =3 [c, u; 50151 + C k, + 2kyk;Cy

+ g (- Cyy + (bk +2k,)eC) = 4k1-k200)] (B.3.1d)

UV L e2oM3 MY :

M(e) e ng g C0 | (B.3.1le)

e2gM Mﬁ .

uvo W v
uv e2gMw uv B,V

Moy =~ 3 (- 2¢5" - 2¢ k] (B.3.1g)

2

WS e [2¢hY - 2"k - 4cixb + 4kiKhC, ] (B.3.1h)
(h) 2 2 1 1°2 17270 e
w2 T

M(i) e ng g C (B.3.14)
wv o _ 2 TRV TR

M) e?gM [C) Cik; ] (B.3.13)

where only terms of the form in equation (B.l) have been kept. Substituting

from appendix C gives the expected gauge invariant form, with X=M$/M§, as

,  ie?eM. . k?k;
MY = —— ¥ (6 + (-8x120)1_.][&"" - ] (B.3.2)
-1 k ok

16n2 1 2
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B.4 Pseudoscalar Higgs 2y—-Decay via Fermion Loops

The fermion loop contribution of figure 17 is demonstrated forrthe Two-
Higgs-Doublet model. Similar contributions arise in supersymmetry models.
The matrix element is given by

d4 i
MUV = (-1) f q Tr[(q—m

) (~teeqr”) (;_-E-;‘-_E;)(-ieefw) -

x (-(T::l_—lnf-)(-yfys)] (B.4.1)

where Ye is the coupling strength of the pseudoscalar to two fermions.

Evaluating the trace results in

MY _ 2.2 uvap

M., = 41eely m. € [ch6 + kla(k1+k2)eco] (B.4.2)
f N\ \N\\N\ ),
'f VAVAVAVAVAV o )/

Figure 17 - Fermion Loop Contribution to Pseudoscalar 2y-Decay



Substituting for the loop integrals CO,C2 and multiplying by 2 for identical

photons gives

2 a2
e‘ety m
w _ - fff uvag .
M ——Z;;——— I,c¢ klakZB/kl k, (B.4.3)

which is the form expected.

This concludes the demonstration of the evaluation of the Feynman
diagrams which contribute to the two photon decay width of Higgs bosons.
The relative weights due to the coupling strengths will vary for different
models, but the basic structure as shown in equations (B.l1.2), (B.2.2),

(B.3.1) and (B.4.2) is the same.
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APPENDIX C - EVALUATION OF LOOP INTEGRALS

The one-loop Feynman diagrams which contribute to the Higgs two photon
decay width contain sevéral integrals which are evaluated in this appendix.

A useful definition is

(c.1)

1 n A
In(k) - {dx X ln[ m ]
where A= Z/Mé is the ratio of the loop particle mass squared over the Higgs

mass squared.

First consider the integral

d*q 1
(2)*  [q?-m?][(q-k)2-n?][(q-h)Z-m?]

(C.2)

where h=k1+k2 is the Higgs 4-momentum and kl,k2 are the photon 4-momenta.

Expanding with Feynman parameters gives

co =/ _d'q {h"ﬁyghz r¢3) s(1-x-y-z) (C.3)
2n)4 [(qz-m?)x+(q2—2q~k1-m?)y+(q2-2q-h+M§—m2)z]3

Performing the integral over the loop variable q gives the result

1 —_——
6 = —— [axfay — U= - (.4)
16“2M§ [x(l-x—y) - A]

Finally integrating over y and using definition (C.l) gives

d = ———1_ . (C.5)
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Second consider the integral

S ¢ ~(C.6)
(2r)*  [q?-m?][(q?-kZ)-n?][(q-h)2-m?]

Again expanding with Feyman parameters and evaluating the integral over the

loop parameter q gives

1 1 [yku + (1—x—y)hu] 8 (1l-x~y)
= —L  faxfay —2L (€.7)
16n2M§ é 0 [x(1-x-y)=2]

Then integrating over y and using definition (C.l) results in

v i
¢

16n2M%

(k15 = 1_;) - kyI,] (c.8)

Third consider the integral

A L g
2 (2n)*  [q2-n2][(q-k,)2-n2][(q-h)2-u?]

(c.9)

which is expanded using Feynman parameters as before. Unlike the previous
two cases, C;v is not finite and the integral over the loop variable q must
be regularized. This is performed in d=4-e dimensions using the method of

dimensional regularization, and yields

[yk)+(1=x=y)h" ] [yk  +(1-x-y)h"] 6 (1-x-y)

1 1
C;v=—i—fdx y
16n2M§ 0 0 [x(1-x-y)-)]
W1 1 -
+ 18 £dx£dy [ &+ 1n[x:;zfé;:;sﬂ } e(1-x-y) (C.10)
3272
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where K-é §+w(1)+ln(4nu2/m2) and u is the arbitrary mass scale introduced

by the regularization. The integral over y then gives

cy L - % + Iy = A1)k + Kky) ] (C.11)
2m2
16w MH
1"V -
+E— [FT+1-15+201_ ]+ (terms = Kk) ,k“ 139)
64m2 - 11

When contracting indices on C;v it must be remembered that the metric is in

4—e dimensions so that guu=4-e. Thus

u i -
c - [ & +2a1_, ] (C.12)
Zu 16n2 1
Next consider the integral
N
cr = f 44 1 (C.13)

(2m)*  [q2-w?][(g-h)2-u?]

Expanding with Feynman parameters gives

c' = [ dq gﬁx hy I[(2) §(1-xy) (C.14)
(2m)* [ (42-n?)x+(q2-2q- h+MZ-n?)y]2

Again the integral over the loop parameter must be regularized giving

(C.15)

Similarly

"+
C"=I dq 1 = i

(2m)*  [q2-0?][(q-k,)?-n?] 1672

>|

(C.16)



APPENDIX D - PROPERTIES OF THE FUNCTION I())

This appendix describes the function I(A) where

A—x(l-x)]

X (D.1)

I(A) = {hx i 1n[

Note that I(A) is just I_1 as defined in equation (C.l). This function
appears in all of the matrix elements for spin-0 boson to two photon decay

widths. Evaluating equation (D.l) gives

2

- 1 1
- 2[ sin 1 (m) ] A > Z
I(A) = ) (D.2)
1+'1-4 1+'1-4
- % + Zlnz[T-A—i] - Ziﬂln[wl-)\—)‘] A < %

The function AI()) is plotted in figure 18. The real part shows a very weak
dependence on A for values of A >> 1/4, and there is a sharp peak at A=1/4.
The imaginéry part is zero for A > 1/4, and peaks between 0 < A < 1/4. Both
the real and imaginary parts go to zero as XA + O.

Physically A=1/4 corresponds to the threshold to produce a pair of real
rather than virtual particles at the Higgs—-loop particle vertex. Hence one
should see this peaking behaviour whenever a threshold is crossed.

[In equation (B.1.3) I(A) is multiplied by a factor of 4\A-1, and hence in
this case the peak at A=1/4 is suppressed.]

Providing that one is well below threshold, i.e. A>>1/4, then
equation (D.2) can be approximated by I(1) = %A-l + 0(172) which is useful
in making simple comparisons. In particular 1 + 2XI(A) = O(A71), and hence

the scalar loops in equation (B.2.3) will make small contributions below

threshold.
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Figure 18 - Plot of the Function AI(A) vs A
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The solid (broken) curve shows the real (imaginary) part.



APPENDIX E - FEYNMAN RULES FOR MINIMAL BROKEN SUPERSYMMETRY

The effective Lagrangian for broken supersymmetric standard models is
given in equation (3.1.25-(3.1.8) in component fields. The component field
content of the theory 1is displayed in table II. In working Vith component
fields, the usual Wess-Zumino gauge of supersymmetry [34] is chosen. The
gauge of the SU(2)xU(l) symmetry is fixed to be the 't Hooft-Feynman gauge.
The Fadeev-Popov (FP) ghost is thus the same as that of the staﬁdard model
[35]. Due to the mixing of the scalars all three fields H% (3=1,2,3) couple
to the ghost field. As expected the pseudoscalars HZ and H% do not couple
to the FP ghosts.

The relevant couplings for the calculation of the amplitudes of X0 » YY
are given in different sets below. The first set involves the scalér
couplings to fermions, sfermions, charged Higgs bosons Hi and their
companion would-be Goldstone bosons, Gt, as well as the gauge bosons Wi and
the FP ghosts. This is displayed in figure 19. The set of diagrams in
figure 16 is gauge invariant in the standard model and in the two Higgs
doublet model. Demanding that this gauge invariance holds in supersymmetry
18 a reasonable condition, which greatly simplified the GtGHO vertex

h|
(and consequently the HHHHO vertex). Figure 20 gives all the photon

b
couplings. The mixed states of charged Higgsinos and W-gauginos, X1 and Xgs
have couplings to the Higgs scalars given in figure 21. Sewing together the
vertices given below gives the full set of Feynman diagrams displayed in
figure 1 for H% to two photon decays.
For the pseudoscalars the couplings are simpler. Only two are

relevant; namely Xy and Xy and fermion couplings are involved and these are

represented in figure 22.
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Figure 19 - Feynman Rules for Scalar H? Couplings
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Figure 20 - Feynman Rules for Photon Couplings
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Figure 21 - Feynman Rules for Chargino-Scalar H% Couplings
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Figure 22 - Feynman Rules for Chargino-Pseudoscalar Hﬂ Couplings
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Here k=4,5 and nf=+1 (-1) for up (down) type
fermions. Also nk=cosx (sinx) for k=4 (5).
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APPENDIX F - EQUIVALENT PHOTON APPROXIMATION

The equivalent photon approximation (EPA) [29,30] is used to simplify
the calculation of the éross section for the electron-quark scattering
process in figure 8b. It involves treating one of the exchange photons as a
parton—-like object, calculating the photon-quark cross section and then
convoluting over a photon spectrum distribution to obtain the electron—quark
cross section.

The photon—-quark “subprocess™ is depicted in figure 23. This leads to

a matrix element given by

— -1g
M= u(ql)[ieeqY“]u(pl)( t"v)Mov(-pz,-pl+q1)eo(p2) (F.1)

where Mov(kl,kz) is the Higgs to 2y decay width matrix element, and eo(pz)
is the polarization vector of the incoming photon. The usual Mandelstam

variables will be used. The structure of Mcv(kl,kz) must be of the form

, Vv, o

ov ov k1k2
M (ky,k,) = F (g7 - vy ) (F.2a)

1 72

for a scalar Higgs, or

k, k

Mk, ,k,) = F (V%6 Lo 28 | (F.2b)
1272 k1-k2

for a pseudoscalar, as described earlier in appendix B.
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Figure 23 — Photon Quark Subprocess

Substituting these into equation (F.l) leads to photon quark cross sections

of the form -

aelF2 s(8-M2 )2 26 (=12 )2
Oyqlecalan) = — = { = 5 s <s-M§>1n[_‘M:' —]
4g m qbql Ma;[ mquH
2s(s-M2)
} ‘TMH } (F.3a)
My
and
ae? F2 s(s-M2 )2
0. (pseudoscalar) = —4— { 1n[ "y ]
va 4s2 m2 M%
q
2s s(s- 2)2 3(s- 2)2
T MLﬂz I - - i } (F.3b)

™ M 2y

respectively. These are then convoluted with the photon spectrum in

equation (4.1.4) to give the electron—-quark scattering cross sections. The

results are shown in equations (4.1.5) and (4.1.6).
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Identical steps are taken to obtain electron—electron cross sections
with this method, and for that matter any differential cross sections which
may be needed. The main advantage in using the EPA method is that all
integrals may be done analytically. It should be noted that for the
electrén—quark scattering process, the electron's photon must be the one
treated with EPA. This is to avoid the subsequent complications which arise

when the quark is convoluted over the usual parton distributions.
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APPENDIX G - MONTE CARLO INTEGRATION ROUTINE

This appendix contains the FORTRAN code for numerically calculating a
general 2 to N body scattering cross section. It is a generalization of a
program first developed in reference [36]. All of the integration routines
used were modified versions of this program. The “amplitude; wﬁich must be
supplied for the given process, refers to the matrix element squared.
Differential cross sections are easily obtained by using the BIN subroutine,
which stores the desired variable with the appropriate weight for each
event. The convergence of the routine was quite good except where noted in
chapter 4. A general description of the Monte-Carlo method can be found in

reference {37].
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FILE 5: INPUT FROM SOURCE

FILE 6: OUTPUT TO SINK

FILE 74: ANSWER EVERY 1000 PTS FOR DISPLAY
FILE 75: STORE LATEST ANSWER FOR RESTART
FILE 76: STORE MASSES FOR RESTART

FILE 77: MISCELLANEOUS FOR DISPLAY

11,JJ,KK ARE ABBREVIATIONS FOR OFTEN USED INTEGER EXPRESSIONS

NPTS IS THE NUMBER OF POINTS TO BE USED IN THE MONTE CARLO

N IS THE NUMBER OF PARTICLES IN THE FINAL STATE

SEED IS A PARAMETER NEEDED BY RANDOM NUMBER GENERATOR GGUBFS

P IS THE INITIAL PARTICLE MOMENTUM IN THE LAB CM FRAME

M(I) IS THE MASS OF PARTICLE I

M2(I) IS THE SQUARE OF M(I)

MSUM(I) IS THE SUM OF M(J) FOR J=I TO N

MX(1) IS THE MASS OF THE VIRTUAL PARTICLE ABOUT TO DECAY INTO

M(I) AND MX(I+1)

MX2(1) IS THE SQUARE OF MX{(I)

THE MATRIX B(4,4,1) BOOSTS THE MX(I) CM FRAME ONE BACK

LAMBDA(I) IS THE MAGNITUDE OF THE MOMENTUM OF PARTICLE 1 IN
THE MX(I) CM FRAME

STOT IS THE CM ENERGY SQUARED OF THE PROCESS IN LAB CM FRAME

X1,X2 ARE THE USUAL PARTON MOMENTUM FRACTIONS

S IS THE CM ENERGY SQUARED OF THE SUBPROCESS

V,.X1 ARE VELOCITY AND RAPIDITY OF ONE FRAME W.R.T. ANOTHER

THETA,PHI ARE THE USUAL ANGLES

K4Vv(4,I) IS THE MOMENTUM 4-VECTOR CF PARTICLE I

LK4V(4,1) IS K4V(4,1) AFTER BOOSTING TO LAB FRAME

DVt IS A DUMMY 4-VECTOR USED FOR PROGRAMMING EASE

A 1S THE SUBPROCESS AMPLITUDE SUPPLIED BY THE USER

W IS THE ELEMENT OF X-SECTION CALCULATED ON EACH LOOP PASS

SUMW IS THE SUM OF THE ELEMENTS W FOR ALL LOOP PASSES

JAC IS THE JACOBIAN FACTOR FROM THE INTEGRALS

INTEGRAL IS THE FINAL ANSWER

INTEGER II JJ,KK,NPTS,START,N,RAT

REAL*8 M(9),M2(9),MSUM(9) ,MX(9),Mx2(9),B(4,4,9),LAMBDA(8)
REAL*8 SEED,P,DUMMY,STOT,X1,X2,S,V,XI,COSTHETA,THETA,PHI ,PI
REAL*8 K4V(4,9),LK4Vv(4,9),DV1(4)

REAL*8 A,W,SUMW,JAC,FLUX,FACTOR, INTEGRAL

COMMDN SEED

WRITE(6,12)
FORMAT(’ NEW CALCULATION (TYPE O) OR RESTART (TYPE 1) ?')
READ(5, 15)JJ
FORMAT(I1)
IF(JJ.NE.O.AND.JJU.NE. 1) THEN
WRITE(6,17)
FORMAT(‘ YOU MUST TYPE O OR 1’)
STOP
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END IF
WRITE(6, 18)

18 FORMAT(’ ENTER NUMBER OF EVENTS DESIRED (17)’)
READ(S, 19)NPTS

19 FORMAT(17)

IF(JJ.EQ.0) THEN
START=1
SUMW=0.0
SEED=12345.0
WRITE(6,21)
21 FORMAT(’ ENTER P (F15.8)’)
READ(S,22)P
22 FORMAT(F15.8)
WRITE(6,23) :
23 FORMAT(’ ENTER NUMBER (3-~9) OF PARTICLES (I1)’)
READ(S, 15)N
IF(N.LT.3.0R.N.GT.9) STOP
DO 29 I=1,N
WRITE(6,26)1
26 FORMAT(‘ ENTER M(’,T1,’) (Fi15.8)’)
READ(S,22)M(1)
M2(1I)=M(I)*=*2
WRITE(76,32)M(1),M2(1)
29 CONTINUE
END IF

RESTART: READ ENTRIES FROM FILES
17 (JU.EQ.1) THEN
- READ(75,31)START,N,SEED, SUMW, P, DUMMY

31 FORMAT(17,12,4D18.10)

START=START+1

IF(START.GE.NPTS) STOP

DO 33 I=1,N

READ(76,32)M(1),M2(1)

32 FORMAT(2D18.10)
33 CONTINUE
END IF

DO 42 I=1,N
MSUM(I)=0.0
‘ DO 41 U=I,N
41 MSUM( I)=MSUM(I)+M(J)
42 CONTINUE
KK=N- 1§
11=3*N-4
STOT=4.0*P*p
IF((2.0*P).LE.MSUM(1)) THEN
WRITE(6,43)
43 FORMAT(’ NOT ENOUGH ENERGY FOR REACTION’)
STOP
END IF
PI=3.1415982654
MX(N)=M(N)
MX2(N)=M2(N) °



WRITE(6,48)
48 FORMAT(’ BEGINNING MAIN MONTE CARLO LOOP’,/)

c ___________________________________________________________________
cc BEGIN MAIN MONTE CARLO LOOP
C ___________________________________________________________________
DO 999 IJ=START,NPTS
c ___________________________________________________________________
c GENERATE X1,X2 AND CHECK IF ENOUGH ENERGY
C ...................................................................
50 X1=1.0
X2=1.0
S=X{1*X2*STOT
MX(1)=SQRT(S)
Mx2(1)=5S
c IF(MX(1).LE.MSUM(1)) GO TO 50
c ___________________________________________________________________
c GENERATE VIRTUAL PARTICLE MASSES
C ...................................................................

DO 65 I=2,KK
MX(I)=(MX(I-1)-MSUM(I~1))*GGUBFS(SEED)+MSUM(I)
MX2(I)=MX(I)**2

65 CONTINUE

c ___________________________________________________________________
c FIND BOOST MATRIX FROM SUBPROCESS CM TO LAB FRAME
c ___________________________________________________________________

V=(X1-X2)/(X1+X2)

XI=LOG((1.0+V)/(1.0-V))/2.0

COSTHETA=2 . O*GGUBFS{SEED)-1.0

THETA=ACOS(COSTHETA)

PHI=2.0*P1*GGUBFS(SEED)

CALL BOOST(B(1,1,1),XI,THETA,PHI)
[ et e e LT
c LET THE PARTICLES DECAY. GET THE BOOST MATRICES AND 4-VECTORS
c..“. .................................................................

DO 79 1=1,KK
79 CALL DECAY(MX(I),MX(I+1),M(I),KAaV(1,1),B(1,1,I+1))
KAV{1,N)=MX{KK)-KAV(1,KK)
K4Vv(2,N)=~K4Vv(2,KK)
K4V(3,N)=-KaV(3,KK)
K4V(4 ,N)=~KaVv(4,KK)

(o it b ittt R el
c BOOST 4-MOMENTA TO LAB FRAME
[ e etttk b R Rkt
DO 88 I=1,N
DO 81 K=1,4
81 DV1(K)=KaV(K,1)
DO 84 UK=1,I
Jel-JK+1
IF(I.EQ.N) JU=I-JUK
IF(J.EQ.0) GO TO 84
CALL MULT(B(1,1,J),0V1,LKaV(1,1))
DO 83 K=1,4
83 DV1(K)=LK4V(K,I)
84 CONTINUE
88 CONTINUE
C ....................................................................
c CALL AMPLITUDE -- MUST BE LINKED TO, OR PART DF THE PROGRAM
C--_--------_-_-_-_-_--_--_-_----___-__---___-_--_____--___-_; _______
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Cc CALCULATE PHASE SPACE DENSITY AND ELEMENT OF INTEGRAL

w=1.0
D0 92 I=1,KK
LAMBDA(I)=-4.0*M2(I)*MX2(I+1)+(MX2(I)-M2(I)-MX2(I+1))**2
LAMBDA(1)=SQRT(LAMBDA(1))/(2.0*MX(1))
W=W*LAMBDA(1I)
92 CONTINUE
JAC=(4.0*P1)**KK
DO 93 I=1,KK-1
93 JAC=UAC* (MX(I)-MSUM(I))
FLUX=1.0/(2.0*S)
FACTOR=SQRT(S)*(2.0*PI)**I1l
FACTOR=FACTOR*(2.0**N)
W=W*A*JAC*FLUX/FACTOR
SUMW=SUMW+W

IF(IJU.LE.10.0R.W.LE.O) THEN
WRITE(77,101)
101 FORMAT(’ 1u 1 LK4V(1,1)’,10X,72*,14X,"3’,14X,’4")
DO 103 I=1,N :
WRITE(77,102)IJ,1,LK4aV(1,1),LK4V(2,1),LK4V(3,1),LK4V(4,1)

102 FORMAT(I7,1X,12,4D15.5)
103 CONTINUE
WRITE(77,104)
104 FORMAT(/ 1J A w’)
WRITE(77,105)1J,A W
105 FORMAT(17,2D12.4,/)
END IF
B o e R N it ittt
c STORE ANSWER EVERY 1000 EVENTS FOR RESTART IF SYSTEM CRASHES
C ___________________________________________________________________

RAT=MOD(1J, 1000)

IF(RAT.EQ.O) THEN
WRITE(74,31)I1J,N,SEED,SUMW,P,SUMW/FLOAT(1J)
OPEN(UNIT=75)
WRITE(75,31)IJ,N,SEED,SUMW,P,SUMW/FLOAT(IJ)
CLOSE(UNIT=75)

WRITE(6,112)1IV

112 FORMAT(’ FINISHED ‘,17,’ POINTS')

END IF
o g
cC END MAIN MONTE CARLO LOOP
c ___________________________________________________________________
998 CONTINUE
c ___________________________________________________________________
cC CALCULATE THE INTEGRAL AND OUTPUT
c ___________________________________________________________________

INTEGRAL=SUMW/FLOAT(NPTS)

- WRITE(77.113)NPTS,P

113 FORMAT(‘ NPTS= ‘,17,4X,’ P= ',D15.6)
WRITE(77,114)INTEGRAL

114 - FORMAT(’ X-SECTION= ‘,D15.6)
END
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Cm=mmmmmmmmmmmeee e G L LR E PP PP PP PP R R R c
RTNS.FOR CONTAINS MONTE-CARLO SUBROUTINES c
___________________________________________________________________ C

REAL*8 M1,M2,M3,v2(4),v3(4),BM2(4,4),8BM3(4,4)
REAL*8 COSTHETA,THETA,PHI,V,SEED,.PI, XI
COMMON SEED

EXTERNAL GGUBFS,BOOST
PI=3.141592654
V3(1)=(M1*M1+M3*M3-M2*M2)/(2.0*M1)
V3(4)=DSQRT(V3(1)*V3(1)-M3*M3)
V2(1)=Mi1-v3(1)

v2(4)=-v3(4)

V=v2(4)/v2(1)

IF(V.EQ.-1.0) STOP
XI=DLOG((1.0+V)/(1.0-V))/2.0
COSTHETA=2.0*GGUBFS(SEED)-1.0
THETA=DACOS(COSTHETA)

PHI=2 .0*PI*GGUBFS(SEED)

CALL BOOST(BM2,XI,THETA,PHI)
v=v3(4)/v3(1)

IF(V.EQ.-1.0) STOP
XI=DLOG((1.0+V)/(1.0-V))/2.0
COSTHETA=2.0*GGUBFS(SEED)-1.0
THETA=DACOS(COSTHETA)
PHI=2.0*PI1*GGUBFS(SEED)

CALL BOOST(BM3,X1,THETA,PHI)
RETURN

END

SUBROUTINE BOOST(B,XI,THETA,PHI)
REAL *B B(4,4), XI, THETA, PHI
B(1,1)= DCOSH(XI)

B(1,2)= -DSINH(XI) * DSIN(THETA)

8(1,3)= 0.
B(1,4)= DSINH(XI)*DCOS(THETA)
B(2,1)= 0

B(2,2)= DCOS(PHI)*DCOS(THETA)

B(2,3)= -DSIN(PHI)

B(2,4)= DSIN(THETA)*DCOS(PHI)

B(3,1)= 0.

B(3,2)= DSIN(PHI)*DCOS(THETA)
" B(3,3)= DCOS(PHI)

B(3,4)= DSIN(THETA)*DSIN(PHI)

B(4,1)= DSINH(XI)

B(4,2)= -DCOSH(XI)*DSIN(THETA)

B(4,3)= 0.

B(4,4)= DCOSH(XI)*DCOS(THETA)
RETURN

END

SUBROUTINE BIN(F,AR,INF,SUP, W)

CLASSES F INTO ONE OF 1C1 BINS BETWEEN INF AND SUP AND PUT 1
IT INTO ARRAY AR 1



REAL*8 F,AR(101),INF,SUP,W

INTEGER POS

POS = DINT(100. * (F - INF)/(SUP - INF)) + 1
IF (PDS .GT. 101) POS = 101

IF (POS .LT. 1) POS=1

AR(POS) = AR(PDS) + W

RETURN .

END

SUBROUTINE SCALP3(V1,V2,VSV)

REAL*8 Vi(4), v2(4), VsV

VSV = V1(2)*v2(2) + V1(3)*v2(3) + Vvi(4)*v2(4)
RETURN

END

SUBROUTINE MULT(B,V1,V2)

C CALCULATES THE PRODUCT BETWEEN THE MATRIX B AND 1
o VECTOR V1 AND PUTS RESULT INTO v2 1

REAL*8 B(4,4), Vi(4), Vv2(4), PH
DO 300 1=1,4
PH=0.
DO 301 J=1,4
301 PH = B(I,J) * Vi(J) + PH
v2(I) = PH
300 CONTINUE
RETURN
END

" SUBROUTINE DECAY(M1,M2,M3,V3, M)
C ____________________________________________________________________
c FOR DECAY OF M1 INTO M2 AND M3, CALCULATE THE 4-VECTOR V3
C OF PARTICLE 3 IN M1 REST FRAME, THEN CALCULATE BOOST MATRIX
c FROM M2 TO M1 REST FRAME
c _____________________________________________________________________
REAL*8 M1,M2,M3,v3(4),M(4,4) COSTHETA,THETA,PHI,V,SEED,PI . XI
COMMON SEED '
EXTERNAL GGUBFS,BOOST
PI= 3.141592654
V3(1) = (M1*M1+M3*M3-M2*M2)/(2.*M1)
v3(2) = 0.
v3(3) = 0.
v3(4) = DSQRT(V3(1) *V3(1) - M3*M3)
PX2 = -v3(4)
EX2 = M1 - Vv3(1)

C ___________________________________________________________________
c COMPOSE BOOST MATRIX BETWEEN QUARKS CM AND X CM
C ...................................................................

V = PX2/EX2

IF(V .NE. -1.) XI= DLOG((1. + V)/(1. - V))/2.

IF(V .EQ. -1.) RETURN

COSTHETA = 2.* GGUBFS(SEED)-1.

THETA = DACOS(COSTHETA)

PHI = 2. * PI* GGUBFS(SEED)

CALL BOOST(M, XI, THETA, PHI)

RETURN

END

SUBROUTINE SCALP(V1,vV2,S)
o T e e L L L DS bbb
c TAKE THE SCALAR PRODUCT OF THE TWO 4-VECTORS Vi
c AND V2 AND PUT THE RESULT INTO S
Cm e mmm e mm e m e mem e cmmmmmm———meeeeeeeemmmemm————ee——=e==

REAL*8 V1(4),v2(4),5S

S = Vi(1)*v2(1) - v1(2)*v2(2) - Vi(3)*v2(3) - vi(4)*v2(4)
RETURN

END
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APPENDIX H - GLOSSARY

chargino: This charged superparticle is a fermion. Its mass eigenstate is
actually a mixture of the superpartners for the W-boson and the Higgs.

chiral symmetry: A symmetry which preserves the handedness of massless
fermions. Technically this means a ys5 invariance.

electroweak breaking scale: Energy scale at which the electromagnetic and
weak forces are unified. Experimentally established as being = 246 GeV.

Fadeev-Popov ghosts: Mathematical constructs known as ghosts are introduced
in addition to the physical fields to preserve gauge invariance. These are
simply a convenient technical invention which allow us to express the
complex mathematics of a physical process in a simple graphical form.

Goldstone boson: Massless particle which results whenever a continuous
global symmetry is spontaneously broken.

Higgs mechanism: Process through which gauge bosons acquire mass, where a
Goldstone boson becomes the longitudinal component of the gauge boson.

loops, loop diagram, loop particle: Physical processes can be represented
graphically, with particles represented by a line and their interactions by
a vertex. The diagrams for higher order processes will involve loops formed
by the particles.

one-loop approximation: Used with the graphical representation of a physical
process, where only diagrams with one loop are included.

renormalization: Procedure in which divergent quantities that arise from
higher order corrections are absorbed into a redefinition of parameters,
thereby making a perturtative expansion convergent.

spontaneous symmetry breaking: The ground state of the system does not
respect the same symmetry as the Lagrangian which is used to describe it.

superparticles, superpartners: The supersymmetric partners to the usual
standard model particles, which differ by 1/2 integer unit of quantum spin.

two photon‘fusion mechanism: Any process in which the final state is
produced by the interaction of two initial photons. In this case used to
describe a method of producing Higgs bosons during the exchange of a photon
between colliding particles.

vacuum expectation value (VEV): The value which the scalar field acquires in
its ground state.

would-be Goldstone boson: This refers to the degree of freedom which would
normally be a Goldstone boson, but is instead absorbed via the Higgs
mechanism as the longitudinal component of a gauge boson.

Yukawa interaction: The interaction between scalars (or pseudoscalars) and
fermions. In our case it is the Higgs boson-fermion interaction.




