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ABSTRACT

The mathematical problem of the pipette aspiration of a
liquid sphere is studied in the low Reynolds number limit. Two
distinct models are proposed for the deforming body. They are:
1) a liquid droplet of constant viscosity, and 2) a viscoelastic
cortex encapsulating an inviscid interior. These models
represent energy dissipation distributed in the interior and on
the surface of the body, respectively. Because the in-flow
rates vary differently with the pipette size for the two models,
this is suggested as a means of experimentally identifying the’
dominant region of viscous dissipation, and thus provide insight

into the internal structure of the test sample.

For the droplet problem, the linear Stokes equations are
solved in the interior of the deforming body. The solutions,
for some specified stress boundary conditions on a sphere, can

be expressed as infinite sums of Legendre polynomials.

In solving the surface flow problem, the complexities of the
equations necessitate approximate solutions by computational
means. A numerical procedure is developed which compares well

with analytical results when the latter is available.
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I. INTRODUCTION

Micropipette aspiration, which involves the manipulation and
deformation of test samples with a suction pipette, has become
an important technique in studying the mechanical properties.of
biological cells. Since its first application by Mitchison and
‘Swann (1954) to their work on sea urchin eggs, the technique has
developed extensively, particularly in the research area of red
blood cell membranes (Rand and Burton, 1964; Evans, 1973; Evans
and Hochmuth, 1977; Skalak et al., 1973). Recently, the
micropipette technique has been adapted to the direct
measurements of weak adhesive interactions between surfactant
bilayers (Evans and Needham, 1986). All these applications
involve measurements of static forces in equilibrium
configurations. Time dependent behaviour of bodies (leukocytes)
in a micropipette has also been investigated for small
deformations (Schmid-Schonbein, et al., 1981; Chien and Sung,
1984). In these cases, the cell is treated as a "standard
viscoelastic" material (see Fung, 1965), which, in essence, is a
solid body with an elastic limit to deformation. The aim of
this present work is to analyze the pipette aspiration of a
liquid-like body in the context of continuum mechanics. The
body of interest is assumed to be sufficiently large that it
must deform upon entering the pipette. Models of the material
properties of the body can then be used to predict its

deformation and flow under the given external forces.



As the name implies, the theory of continuum mechanics
requires the deforming body to have, even when its size is
reduced to the limiting resolution of the experiment, a
sufficient number of particles to enable a thermodynamic
characterization of its macroscopic properties. The experiment
that motivates this present analysis is the aspiration of human
white blood cells (granulocytes) into micropipettes, as shown in
figure 1, in an attempt to understand their rheological
behaviour (Evans and Kukan, 1984). Here, the cells of interest
are on the order of 10 cm in diameter - a length scale that is
much lérger than molecular dimensions. Ultrastructural evidence
(Bessis, 1973; Schmid-Schonbein et al., 1980) has shown that the
granulocyte is encapsulated in a plasma membrane that has a
reservoir of excess surface area in the form of evenly
distributed ruffles. This membrane, when in the flaccid state,
is likely to offer little or no mechanical resistance to cell
deformations (Evans and Skalak, 1980). Anchored to the
underneath of the plasma membrane is a meshwork of densly
packed, randomly oriented actin filaments (Southwick and
Stossel, 1983; Amato et al., 1983). When stimulated to
contract, these filaments are believed to provide for the cell's
active locomotory. Because we are only interested in cells that
are not "turned on", the cortical meshwork is considered.here as
a passive gel with its specific rheological properties. The
small size of the actin filaments (8 nm in diameter) enables us
to treat the gel as a continuum; moreover, because the filaments

are randomly oriented on the cell surface, isotropy and



Figure 1: Aspiration of a human granulocyte at 23°C.
The pipette inner radius is 2 microm?ters and
the suction pressure is 500 dynes/cm .



homogeneity in the surface plane (excluding the thickness
dimension) can be assumed. In contrast to the cortex, the cell
interior is highly heterogeneous in structure; that is, it
contains organellar bodies like the nucleus and granules. This
is a composite structure with each component being a continuum
itself. To understand the overall property of this sturcture,
we will model the cell interior as a three-dimensionally
isotropic and homogeneous substance. 1In doing this, it is
understood that the material properties assigned refer to the
bulk of the interior, and should not be attributed to any one of

the organellar components.

For the analysis in this thesis, the complicated structure
of a granulocyte has been idealized as a three dimensionally
isotropic substance surrounded by a two dimensionally isotropic
gel. The next simplification is to identify the cell as
essestially a liquid body. This is evidenced by the continuous
flow of such cells into micropipettes when the suction pressure
is in excess of a certain threshold value. This threshold
pressure in turn is established by a cortical stress much like
the interfacial tension between two liquids. The fact that the
flow is continuous without any approach to static equilibrium
indicates that no limiting elastic forces exist in the cell
interior. Further, the cortical tension can be shown to be
independent of deformation by lowering the suction pressure to
the initial threshold. 1In such a case, the flow ceases and the

aspirated projection of the cell inside the pipette remains



stationary.

In general, both the cortical shell and the interior may
contribute to the viscous resistance to flow. The two limiting
models proposed here are ones that have the viscous dissipation
dominated by one of the regions, with the other region being
essentially inviscid. In particular, the models are: 1) a
liquid droplet with é constant viscosity, resulting in energy
dissipation distributed throughout the interior, and 2) a
viscous cortical shell encapsulating an inviscid fluid. The
condition of volume conservation, as well as a cortical tension
are incorporated into both models. Also, the viscous drag of
the exterior aqueous solution on the cell is neglected because
of the extremely slow response observed for cell entry into
pipettes compared with the rapid in-flow of water at the same
suction pressures (ie: flow rates that differ by a factor of
105). Because the dissipation of mechanical energy is
volumetrically distributed in the former case and two
dimensionally confined in the latter, the functional dependence
of any flow related quantity (eg., the cell entry flow rate) on
any characteristic length scale (eg., the pipette radius) should
be distinctly different for the two models. These functional
behaviours can be obtained by solving the above mentioned
mechanical problems in the entire region that the cell occupies.
The results will provide an experimenter with a means to
discriminate the different viscous dissipation zones by

performing aspiration tests with various sized pipettes.



Continuum mechanical analyses are composed of three

~ independent and distinct developments. They are: 1) the
quantitation of deformation and rate of deformation in relation
to changes in the body's geometry; 2) the balance of forces
within the body, as dictated by Newtopian mechanics; and 3) the
modelling of the material properties of the substance.

Knowledge of any two of these aspects can be used to predict the
third one. For example, the deformation and rate of deformation
of a body in response to controlled forces can be analyzed to
give the material properties (eg: elastic and viscous
coefficients). It is important to note that these three
developments are formulated in terms of intensive quantities,
ie: quantities that do not depend on the size of the sample.

For instance, deformation is measured by strain, which is a
dimensionless ratio of the material displacement to some initial
" length. Likewise, the distribution of forces is measured by its
intensity (ie: on a per unit area basis) called stress.

Material properties, which are coefficients relating the
stresses and the deformations, are therefore based on local
functions as well. The virtue of such formulations is that
intrinsic properties of the substance can be defined independent
of the nature of the experiment. 1In the following chapters,
these three developments will be followed in arriving at the
equations that govern the flow field. Analytical solutions to
these equations are not available except for a few simplified

cases. For the more general problem, we must be content with



7
approximate solutions by numerical means. These methods will
also be discussed in the next chapters and the results will be

presented.



IT. PIPETTE ASPIRATION OF A DROPLET

The two models proposed in the introduction attributed the
cell's stress bearing component to the interior and to the
cortical region, respectively. To address the first problen,
the pipette aspiration of a liquid droplet is analysed in this
chapter. The droplet is to have a spherical initial geometry
due to an interfacial tension, and the interior is modelled as
an incompressible newtonian fluid. A similar problem is solved
by Schmid-Schonbein et al. (1981) with the cell interior treated
as a "standard viscoelastic solid". Because the authors have
used the linearized strain tensor in their analysis, the results

are valid only for small deformations.

Two simplifying assumptions are made here: 1) during
aspiration, the portion of the body exterior to the pipette can
be approximated as a spherical segment; and 2) viscous
dissipation inside the pipette can be neglected. The first
assumption is equivalent to the situation where the Laplace
pressure (created by the interfacial tension) greatly exceeds
the dynamic stress normal to the surface boundary. This
criterion can be verified a posteriori from the final solution.
The second approximation is introduced to represent the free-
slip condition between the cell surface and the pipette wall
(Evans and Kukan, 1984). By putting in proper boundary
conditions, the present problem will have a unique solution in

the form of a velocity field. We start our analysis by first
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summarizing some equations relevant to the theory of continuum

mechanics.
2.1: THE CREEPING MOTION EQUATIONS

Let X (i=1,2,3) be a coordinate system set up within the
continuous body that locates every material point. If the
velocity vy (i=1,2,3) is continuous everywhere, then the rate of

strain tensor is defined as

. ov .
v, = 2, 7y,
ij 2 axj axi (2.1)
with the property that
1
d 2 2
. - = .« . Ax. 2.2
3t (As Aso ) 2 Vlj Axl xJ ( )

Here, Axi is an instantaneous position vector connecting two
points that are infinitesimally close, As is the absolute length
of Axi, and Aso is the distance between the same two material
points in the initial configuration. Because equation 2.2
involves only the difference between absolute lengths, the rate
of strain tensor excludes all rigid body displacements and is

therefore a true measure of deformation.

The trace of the rate of strain tensor represents volume

'The repetition of an index will imply summation with respect to
that index over its range.
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dilatation. Because the fluid is assumed incompressible in this
case, Vii vanishes. Expressed equivalently in terms of velocity

components, the incompressibiliy condition is

ov .
1

5. = O (2.3)

-

The stress vector T,(N) corresponding to a unit vector N is
defined as follows: Consider a cross sectional area AA that is
normal to n. Let AFi be the total force exerted on the positive
side of AA (ie: the side on which N points outward). Obviously,
the amount of force will decrease as the area shrinks. 1In the'
limit as AA vanishes, the stress vector is given by the ratio of
AFi to AA:

AF

) =~ lim i (2.4)
T; (M) AA+0 TR

The stress tensor, 0.

iy is defined as the jth component of the

stress vector on a plane whose normal is in the X direction:

= 2.5

Here, the unit vectors ei are the basis set vectors.

For a newtonian liquid, the stress tensor is related to the

rate of strain tensor by a proportionality constant:

= -p&.. + 27 V,. - (2.6)
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47 is called the coefficient of shear viscosity. The
hydrostatic pressure p is introduced so that the trace of Uﬁ
remains non-zero. It can be viewed as a Lagrange multiplier

associated with the incompressibility constraint.

The balance of forces within a continuum is expressed by the

equation

dvi aai.
- - _1] 2.7
P& . + Fy (2.7)

J

where Q is the mass density of the body, Vi the velocity, and Fi
the body force per unit volume. Because the test samples
(granulocytes) are freely suspended during experiment, there are
no body forces (or rather they are negligible in comparison to
the suction forces), and hence Fi= 0. The left hand side of
equation 2.7 represehts the inertial forces while the term j%Z&

%

for a newtonian fluid, as indicated in the last paragraph,
represents the viscous forces. The ratio of the former to the
latter is known as the Reynolds number (Landau and Lifshitz,
1982). From the characteristic sizes and flow rates of the
micropipette experiments, the Reynolds number is estimated to
have an upper bound of 16%, thus leaving the left hand side of
equation 2.7 completely negligible. The equation of mechanical

equilibrium for our purposes is therefore

aai.
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Combining equations 2.1, 2.3, 2.6, and 2.8, we arrive at the

linear Stokes equation for creeping motions:

vp = 7 v2 v (2.9)
By taking the curl of equation 2.9 and using the vector
identity
Vxvwp = 0
the creeping motion equation can be further simplified to
contain only the velocity term:
2 = b
vi(vxv) = 0 (2.10)

By defining the quantity Ix¥ as the vorticity vector, we see
that the creeping motion equations have been reduced to a

" homogeneous Laplace equation of vorticity.
2.2: PROBLEM FORMULATION AND SOLUTION

Equation 2.10 has to be satisfied at every point inside the
droplet. In addition, proper boundary conditions have to be
prescribed for the problem to be Vell posed. Consider the
situation depicted‘in figure 2. Because of the body's geometry,
it is natural to ﬁse spherical coordinates ((7,6). Here, the
azimuthal angle 47 drops out due to axisymmetry while ©, the

polar angle, can be alternatively represented by its cosine:
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Figure 2: Definition of coordinates and various dimensions
for the pipette aspiration problem. Note that
there is a finite region of contact between the
droplet and the pipette, as defined in egn. 2.11.
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L = cos ©

In terms of 7/ , the outer surface of the sphere can be divided
into three regions that are subjected to different stresses.
First, there is the part inside the pipette (-1 < Z < &; ) that
experiences a suction pressure AP. The region in contact with
the pipette (<&, < L < Zpt€) is under a uniform compressive load
ﬂ,/é ( being a small quantity), while the remaining spherical
portion (Z}fé < £ < 1) is stress free. The magnitude of A can
be related to AP by requiring the total axial force on the body
be zero. The externally applied normal stresses are

collectively called [ (% ) such that

AP ; -1 <{ < cp
a(f) = -\ e ; cp < < §p+e (2.11)
0 H §p+e <{ <1

with AP and A both positive quantities. The stress boundary

conditions are therefore

o (0) = a({) (2.12)
PP p=R
for the normal stress, and
o g (C) = 0
pB p=R (2.13)

for zero tangential stress. In an axisymmetric problem, the

quantities app and Upe are the only possible non-zero stresses
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on the coordinate surface Q = R.

The solution to the Laplace equation for vorticity (equation
2.10) can be expressed as infinite sums of polynomials in ( and
angular harmonics in Z , as developed by Happel and Brenner,
1973 (see appendix A). By matching boundary conditions 2.12 and
2.13 to the general solutions of equation 2.10, the final form
of the solution is obtained. 1In particular, on the boundary
p = R, they are

[+ o]

v = -v©°rp - (n=1) 2n-1) L . ) 14
g z nz3 2 (n-2) (2n®+1) n Fp-y (O (2-142)
ve(£) = vz° sin 8 + } 3n(n-1) R a I.() (2.14b)
n=3 2(n-2)(2n2+1) T sin e

AP (147 ) (147 +e) (2.14c)

p() = - 2(2( +e)

o0
+ 7 E n(2n+1) a P ()
2 2 n " n-1
n=3 n“+1

where Pn(l>) is the Legendre polynomial of degree n, and In(g.)

the Gegenbauer polynomial given by

P__,(0) = P_(5)

I (C) = (2.15)
n 2n - 1
with the degenerate cases defined as
I(0) = PO = 1 ;5 I,() = -P(0) = -0 (2.16)

The condition that 1; = 0 at the point where the sphere touches

the pipette is satisfied by superimposing an axial velocity
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onto the series solutions. The Legendre coefficients a, are

functions of AP, 7, and geometry. The expression for a as

nl
well as a derivation of equations 2.14 are given in appendix A.

2.3: SURFACE TENSION EFFECTS

The normal stress boundary condition, equation 2.11, does
not include any interfacial tension contribution. Adding the
lLaplace pressure term -ZTO/R (50 being the interfacial tension
with units of force/unit length) to the right hand side of 2.11
in fact leaves the final expression for an s and hence the
velocity field, unaltered. This is because the geometry of a
droplet (ie: sphere) is the equilibrium configuration created by
the interfacial forces. The velocity fields in equations 2.14,
representing the balance of viscous stresses against forces that
deform the sphere, are therefore independent of To. Any
deviation from this equilibrium shape, however, will be resisted
by the interfacial tension. By calculating this resistance to
shape changes, it is shown that despite of the surface tension
effect, the results from section 2.2 are still useful if the
quantity AP is interpreted as a pressure in excess of some

thershold value.

Consider the aspiration of a liquid droplet that has a
constant interfacial tension To. The pressure Peq required to
hold the droplet at static equilibrium at a projected length d

is calculated, keeping the volume of the drop fixed. Figure 3
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R/RP =6

Figure 3: Suction pressure required to hold a liquid
droplet at static equilibrium versus the projected
length for different initial cell sizes.
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shows the plot of the dimensionless pressure, Pequ/To’ as a
function of d/Rp for various cell sizes. The common feature to
all these curves is the steep rise in pressure for projections
less than one pipette radius (ie: before a hemi-spherical cap is
formed in the pipette), followed by an essentially constant or

even decreasing pressure level. The pressure required to form

the hemispherical cap can be calculated from the equation
A = 1
P = 27T (fx -} (2.17)

This is the threshold that must be exceeded for flow to
commence. For pressures above the threshold, the amount in
excess of 6 (approximately) is the effective pressure that is
balanced against the viscous forces. Assuming there is no
pressure drop along the aspirated length (the plug flow
assumption), this excess pressure is just the quantity AP in

equation 2.11. To be exact, we write
A
AP = P - P (2.18)

Where P is the applied suction pressure. With this new
interpretation of AP, the velocity fields (egns. 2.14a & 2.14b)
remain unchanged, while the quantity p(€) in equation 2.14c
should be replaced by

p(e) - 2T /R ,

which is the correction for the Laplace pressure.
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2.4: RESULTS AND DISCUSSION

The volumetric flow rate into the pipette is derived from

the relation

¢]
2 P

Q = =~2rR S v, sin 6 a6 (2.19)
0

where ep is the value of 6 at the pipette entrance. Equation

2.19 can be integrated using the formula

¢
g Po(x) dx = - TI (0)
to obtain
= 2 o s R?jn-ll
= w7 R“v - a P () -P (€ 2.20
P n=3 (n-2)(2n2+1) n[ nop n-2 p) ]( )

The rate of growth of the projection inside the pipette is

calculated from the volumetric flow rate:

Q = nrR?2L (2.21)

All quantities in the above equations are made dimensionless by
scaling with Rp,’7 , and AP. Figure 4 shows a plot of the
dimensionless rate of entry as a function of the pipette radius.
As the sphere radius approaches infinity, the dimensionless flow
rate, L 7/(APRp), has a limiting value of 0.25. The similar
problem of viscous flow from an infinite half-space into an
orifice is solved by Happel & Brenner (1973) and Torzeren et al.

(1984) with different velocity boundary conditions along the
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Figure 4: The dimensionless flow rate as a function of the
pipette radius for a newtonian liquid droplet.
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septum: the former used the no slip boundary condition while
the latter assumed the velocity be driven by a radially
convergent membrane (ie: radial velocity proportional to 1/r).
Because the present problem involves the free-slip boundary
condition (egn. 2.13), we expected the flow rate to be greater
than the no-slip case, and less than that for the membrane |
driven flow. Indeed, with the same scaling as used above, the

dimensionless flow rates are respectively —é%—(O.ZlZ) and 1/2.

Oon the surface €~= R, our initial assumption of negligible
normal stress in comparison to the Laplace pressure (created by
the interfacial tension) can now be verified. Using equation
2.14c, the dynamic pressure is calculated on the surface of the
sphere. The result, as shown in figure 5, is that there is no
appreciable pressure difference (relative to the external
medium) on the segment exterior to the suction pipette. This
" implies that all the pressure drop must be concentrated in a
small region at the orifice entrance where the velocity

gradients are large.
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e/ Tt
Figure 5: The dimenéionless hydrostatic pressure vs. the

curvilinear distance on the surface € = R.
The sharp drop in pressure at /7 = 0.83
corresponds to the pipette contact region.



23

III. TWO-DIMENSIONAI. MEMBRANE MECHANICS

The theory of two-dimensional thin shell mechanics has been
extensively developed by Evans and Skalak (1980), which forms
the theoretical basis of this chapter. The principles will be
applied to the axisymmetric problem of the pipette aspiration of
a cortical shell. The fluid inside the cell is assumed to be
inviscid and incompressible, resulting in a uniform internal
pressure. Material properties of the cortex, on the other hand,
can be quite general. 1In addition to having an isotropic
interfacial tension that accounts for the cell's spherical
shape, the cortex can also be "viscoelastic". This is a general
description of a family of models that are combinations of two
basic idealizations: the linear elastic body and the linear
viscous body. These will be discussed in more details in later
sections. Because of the sharp bend observed for aspirated
cells at the edge of the pipette entrance (see figure 1), we
anticipate a negligible bending rigidity in the cortical layer.
As such, the problem is reduced to consideration of forces that
act only in the surface plane. The development of this chapter
will thus be based on two simplifications: axisymmetry and the

neglect of bending moments.

In contrast to a thin sheet of rubber, for example, which
has small scale structure even across the thickness dimension, a
two-dimensional membrane can have isotropy characterized only in

the surface plane. Though it may seem unusual as an engineering
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material, such a concept finds itself quite common in the field
of biological membranes. As an example, consider the
fundamental component of the biological cell membrane - the
lipid bilayer. It is composed of two layers of lipid mosaic as
shown in figure 6. Because each lipid molecule only occupies an
area of approximately 100 iz, on a cellular scale (ie:
micrometers), the surface plane of the bilayer can be considered
a continuum. Across the thickness, however, there are precisely
two molecules. The principles of continuum mechanics are
obviously invalid in this dimension. This anisotropic structure
is reflected in the mechanical properties of the bilayer
membrane, as measured by Kwok and Evans (1981). For example,
bilayers above the acyl chain crystallization temperature
exhibit a very strong static resistance to area expansions, but
has no such resistance to shape changes under constant area.
These conflicting values of static rigidities are
uncharacteristic of a thin membrane that is three-dimensionally
isotropic. It can however be rationalized by recognizing the

discontinuity in the third dimension.

The assumption of a two-dimensional membrane is a general-
ization rather than a restriction. In general, deformations of
a thin sheet can be expressed as a superposition of two
fundamental modes: area dilatation and in-plane shear. The
resistance of the material to these two modes of deformation are
expressed numerically as the "moduli" of elasticity (or the

moduli of viscosity for resistance to rates of deformation).



25

QOQQOOQP

N

AV VAR VA VA V4
SO
90000000\
90000000

@
90006

N

Figure 6: Schematic illustration of a section of the lipid
bilayer, which comprises of two layers of lipid
molecules arranged in two-dimensional arrays.
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For a three dimensionally isotropic shell material, the moduli
associated with the two modes of deformation are uniquely
related whereas in the case of a two-dimensional material, this
restriction is removed and the two moduli can be completely
independent of each other (see Evans, 1973 for a more detailed

discussion).

The first parts of this chapter will be devoted to the
theoretical aspects of two-dimensional thin shell mechanics. A
numerical algorithm that applies the principles to the pipette

aspiration of a cortical shell will then be discussed.

3.1: ANALYSIS OF STRAIN

To analyze the deformation of a thin membrane, we
conceptualize the initial (undeformed) surface as a grid of many
elemental squares, with each region small enough that locally it
can be treated as a flat surface. By comparing the size and
shape of each instantaneous element to its initial
configuration, we can have complete information on the body's
deformation field. Each differential element can be oriented so
that a square maps simply into a rectangle in the deformed
state. This especially convenient orientation is said to be in
the principal coordinate system. For an axisymmetric surface
(ie: a surface generated by revolving a meridian curve about an
axis) with deformations symmetric about the same axis, the

principal coordinates are immediately given - they are in the
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meridional and the azimuthal directions.

Two quantities are needed to relate the instantaneous
rectangle to the initial square. The simplest are the extension
ratios ﬁm. and ﬁb , which are the ratios of the deformed length
to the original length in the meridional and the azimuthal
directions, respectively. In the case of axisymmetry, any
quantity can be expressed as a function of one spatial variable
alone - namely the curvilinear position s of a material point
along the meridian. This variable in turn can be uniquely
related to the initial curvilinear distance of the same material

point, S,- In this manner, the extension ratios are given by

; _ ds '
An(Sg) = as_ (3.1)
_ r
"= (3.2)

where r(so) and ro(so) are respectively the radial distances
from the axis of symmetry in the instantaneous and the initial

configurations.

Although the extension ratios proyide a complete description
of the strain field, there are other deformation variables that
have more relevance to the physics of the membrane material.
Consider the uncoupling of a general deformation into the two
fundamental modes: 1) expansion or contraction without shape

changes; and 2) deformation at constant area. Figure 7 shows
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Figure 7: The uncoupling of a general deformation into the
two independent modes.
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such a case in the principal coordinate system. The actual
deformation that involves the two extension ratios can be broken
down into two steps - the first one characterized by X , the
fractional area change, and the second one by A , which
measures the amount of extension. These deformation variables
can easily be related to the extension ratios:

Aahg L (3.3)

Q
i

>
|

%
(Ap/2g) (3.4)

The two variables, & and A , form a set of linearly
independent functions (with respect to ﬁm and Q& ) that
completely specifies the geometric features of the deformation.
Likewise, the time rates of deformation can be seperated into
the same two modes. In an Eulerian formulation (ie: with the
instantaneous coordinates as the reference geometry), the rate
of deformation variables are not the time derivatives of & and

 , but of their logarithms (see Evans and Skalak,1980):

d
v, = It In(1l+a) (3.5)
_ d (3.6)
VS = 3% In A

Thus, the deformation and rate of deformation of an
axisymmetric body is quantitated in terms of four intensive

variables - each of which can be expressed as a function of the
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initial curvilinear distance Soe

3.2: BALANCE OF FORCES IN A TWO-DIMENSIONAIL MEMBRANE

In Newtonian mechanics, the sum of all forces and the sum of
all moments acting on a body must be zero in the absence of
accleration. As mentioned earlier, the bending moments in the
cortical layer is assumed negligible in this study. The
membrane force resultants therefore must act tangent to the
plane of the surface. For an axisymmetric problem, these forces
are expressed in terms of two tension resultants, Tm and T¢ ,as
shown in figure 8a. These are intensive quantities defined as
the force per unit length in the meridional and the azimuthal
directions respectively. From the characteristic sizes and flow
rates of the micropipette experiment, inertial effects are
negligible in comparison to other forces. Thus, mechanical
equilibrium requires the balance of the internal forces in the
thin shell (eg: elastic and viscous forces) against the applied
stresses (eg: the suction pressure). In an axisymmetric
configuration, the equilibrium equations for a membrane are (see

Evans and Skalak, 1980)

———Ss (r Tp) - Ty g—’; + o, = 0 (3.7a)
T, T (3.7b)
=® Yt R T “n
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(a) (b)

The tension resultants and coordinate variables
are illustrated for an axisymmetric geometry.
(a) The tension resultants act only in the
meridional and azimuthal directions, which are
also the principal directions.

(b) Definition of the coordinate variables. Rm'
the meridional curvature, is not shown.
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All variables in equations 3.7 are as defined in figure 8. Note
that U, and 0; are the externally applied stresses that have
dimensions of force per unit area (unlike the tension
resultants, which have dimensions of force/length). The
quantities Rm and R¢ are the radii of curvature in the
meridional and azimuthal directions. They can be related to the

coordinate variables by

dae
R =
m ds (3.8)
— r '
R¢ - sin @ (3.9)

where @ is defined as the angle between the outward normal
vector and the axis of symmetry. It follows from this

definition that

sin 6 = -TS (3.10)
dr
g = GI

cos ds (3.11)

Equations 3.7 are the differential equations of mechanical
equilibrium. It is also possible to cumulate the axial
component of the external stresses and equate to the meridional
tension, resulting in a set of integrated equations which are
alternatives to 3.7. They are

F

Z /‘v .
= - 3.12a
Tm 27 r sin 6 ( )
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F
r z do
= 7 - 3.12b
T¢ sin 0 (as 2r r sin 0 ds) (3.12b)
where
s

Equations 3.12 are valid for an axisymmetric geometry with the
curvilinear coordinate s originating from a pole. They can be
shown to be equivalent to 3.7. Because the fluids both iﬁterior
and exterior to the cortical shell are assumed inviscid, there
can be no shear stresses on the membrane, and hence U: = 0.
Also, for the same reason, there is a uniform pressure U, inside
the cortical shell (relative to the external medium) that is
independent of the coordinate s. With these simplifications, we
can readily evaluate the axial force in equation 3.13 and

substitute into 3.12. The equations of equilibrium then become

= T - r - _xr dé - (3.14a)
€q = 4T %% sin © ( sin 0 dg =0
= r r ae
= - - - —_— - = .4b
€s 4T °h sin © (51n 0 ds 1) 0 (3.14b)

where T and T, are respectively the isotropic and deviatoric

tensions defined as

(3.15)

H|
il

% (T, + Ty)
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Ts = K (T, - T,) (3.16)

The above equations of equilibrium express the balance of forces
(an extrinsic quantity) in a thin membrane that has no bending
rigidity. The equations have to hold regardless of the
structure of the membrane. For example, the questions of
whether the material is isotropic, or whether it is solid or

liquid, are irrelevant.
3.3: CONSTITUTIVE RELATIONS

Any relation that describes the propefty of a material can
be called a constitutive relation. In this present work, we are
interested in mathematical functions that relate the intensive
deformation variables ( X, Z) to the intensive stress variables
(T,Ts) at constant temperature. Much information about the
material is revealed in these relations. For instance, an
elastic solid is one that has conservative internal forces (ie:
forces that can be represented as the gradient of a scalar
function). Elastic stresses can only depend on the body's
deformation and not on its time rate. A liquid, on the other
hand, is characterized by its inability to sustain shear
stresses in a state of rest. In the process of deforming,
however, there is inevitably internal molecular friction and
structural changes that appear macroscopically as a resistance
to flow. The stresses of a viscous liquid will therefore depend

only on the rate of deformation variables.
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The simplest way to model solid and liquid behaviours is to
take the first order approach. For an elastic solid undergoing
isothermal deformations, the mechanical work done can be shown
to be equivalent to the change in the Helmholtz free energy of
the body (the body is considered here as a closed system). It
follows from the definition of mechanical work that the stresses
are the derivatives of the Helmholtz free energy with respect to
the corresponding strain variables. To obtain a first order
stress-strain relation, the free energy is written as a Taylor
expansion in terms of the deformation variables up to the
quadratic terms (see Evans and Skalak, 1980). In this manner,

the elastic stresses are given by

T = T, + Ka (3.17)
2 -2 '
e = A - A
T, o (DX (3.18)

where the superscripts "e" denote elastic stresses. To is a
constant isotropic tension which may arise from interfacial
effects. K and/x are respectively the isotropic and shear
moduli of elasticity. For a three dimensionally isotropic
material, it can be shown that K = 3+, whereas for a matefial
that is anisotropic in the thickness dimension, these two moduli

are completely unrelated.

The viscous forces in a liquid arise from internal friction



36
and heat dissipation that are thermodynamically irreversible.
Because of their complexities, these non-conservative forces are
best described by phenomenological relations. To first order,

such relations are
—v ' (3.19)
TV = 2qv (3.20)

where the supérscripts "v" denote viscous stresses. » and ¥
are respectively the isotropic and shear moduli of viscosity.
Like the elastic solid, the moduli of viscosity are related by a
3:1 ratio for a three-dimensionally isotropic material, and are

unrelated in the two-dimensional case.

In reality, most materials do not exhibit purely elastic or
purely viscous characteristics. The two first order models
introduced can be thought of as the idealized "extremes" of
material behaviours: 1) the elastic solid that is capable of
instantaneous deformation when subject to impulsive forces, with
mechanical work fully recovered ﬁpon unloading, and 2) the
viscous liquid that has a finite rate of deformation and with no
tendency of returning to the initial configuration upon removal
of external forces. Work done by a viscous liquid is completely
irrecoverable. These two first order idealizations can be
combined to model "intermediate" cases of mixed behaviours.

Although in principle there can be an infinite number of
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combinations, we will introduce three models that account very

well for most material behaviours.

illustrated metaphorically

The first two models are

in figure 9, using a spring to denote

the elastic component and a piston to denote the viscous

counterpart. In the first

case, the so-called Voigt model, an

elastic element is placed in parallel with a viscous element to

represent solids that have
dissipation. Although the
the original configuration
(which characterizes it as

always show hysteresis due

model, the total force is

and the deformation is by

appreciable internal energy

material is capable of returning to
upon removal of external forces

a solid), the load-unload curve will
For this

to viscous dissipation.

the sum of the two contributions:

(3.21)

(3.22)

(3.23)

(3.24)

Unlike the Voigt material, which can be considered as

essentially a solid, there are other substances which show

internal stress relaxation mechanisns.

These materials are

characterized by two observations: 1) an elastic response to



(a) (b)

Figure 9: Metaphorical representations of viscoelastic
models using combinations of springs (elastic
component) and dashpots (viscous component).
(a) the Voigt model; (b) the Maxwell model.

38
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impulsive forces, and 2) liquid flow behaviour under constant
shear stresses. Such materials can adequately be described by a
first order Maxwell model, as shown in figure 9b. Because of

the serial coupling, the stresses are common to both elements:

(3.25)

T, 6 = T = T (3.26)

and the total rate of deformation is defined as the sum of the

two individual parts:

_ e v

v, = V% + v (3.27)
e v

v, = VST o+ v (3.28)

For the general first order constitutive relations given by 3.17
to 3.20, the rate of deformation variables for a Maxwell model

can be expressed in terms of the stresses as

8 In(l+e) _ 13T , _T (3.29)
ot o ot K
— aT T
3 1n A _ : 1 aT S _S
-5t - 2T 2 02 + &2 pd)* (Tg 38 * © ats) t 25 (3.30)
where

o = T~T_ + K (3.31)
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The ratio of the viscous modulus to the elastic modulus in a
Maxwell model define a relaxation time T that determines its
semi-solid behaviour. In particular, the model predicts an
elastic response to forces that are applied for a time duration
much shorter than T , and a liquid response to durations that
are large compared to T . 1In the limit that the relaxation time

approaches zero, the Maxwell model becomes an ideal liquid.

While the Maxwell body is characterized by a time constant
related to its internal stress relaxation, there is another
class of semisolid - the viscoplastic material (or the Bingham
material) that is characterized by a stress magnitude called the
yield shear. In this case, the body behaves elastically under
stress levels below the yield shear. Beyond this point, the
material begins to show liquid flow with the rate of deformation
proportional to the amount of stress in excess of the yield.

The constitutive relation for a two dimensionally incompressible

ideal plastic is

= 2 -2 A

T, = %u (A° -\7%) : |Ts| < T (3.32a)
A A

|Ts| -T, = 2n IVSI ; ITSI > T (3.32b)

where %S is the yield shear which is a positive quantity. 1In
equation 3.32b, the rate of deformation Vg is to have the same

sign as Tg- The elastic coefficient.ﬂ.can be made very large to
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account for the negligible yield strain in most plastic
materials. In the limit the yield shear vanishes, the ideal

plastic becomes a liquid.
3.4: THE LINEAR QUASI-ELASTIC SOLUTION

In the previous sections, we have introduced equations that
describe the time evolution of a two dimensional membrane under
external stresses. In particular, the balance of mechanical
forces, as expressed in equations 3.14, must be satisfied. The
quantities T and Ty in these equations are characteristic of the
material model chosen, with the constitutive relations as
outlined in equations 3.17 to 3.32. The deformation and rate of
deformation variables in the constitutive relations are in turn
quantified in 3.1 to 3.6. The geometric features of the
deforming body are expressed in terms of the coordinate
“variables in equations 3.8 to 3.11. To model the pipette
aspiration of a cortical shell, all the above equations have to
be accounted for over the entire surface at any instant of time.
For a general constitutive model, it is not surprising that only
approximate solutions can be obtained by numerical means.
However, a closed form solution does exist in the case of
membranes with no resistance (static or dynamic) to in-plane
shear. Here, because the shear resultant vanishes, the portion
of the cell exterior to the pipétte must remain spherical (see
equation 3.14b). It follows that the isotropic tension, and

hence o, is uniform over the deforming surface at any time. A
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detailed outline of the solution to this isotropic problem is
given in'appendix B. These results can be used to verify the
validity of the numerical approach to the more general case,
where the shear viscosity and the shear elasticity can be non-

zZero.

We will now describe the numerical method for solving the
general cortical shell problem with both isotropic and in-plane
sﬁear resultants. Here, the time evolution of the flow process
is approximated by a series of small displacements, each over a
short time interval At. At each time step, the viscous
component of the constitutive relation is treated "quasi-
elastically” by dividing the viscous moduli by At. The
resulting solution, in the form of a displacement field, is then
added to the original geometry to approximate the cell shape at
the end of the time interval. Let the shape at time t be
specified by cylindrical coordinates (r,z), and that at time‘

t+At by (r',z'). The incrementing functions are defined as

]

2]
I

H

Ar(so) (3.33a)

Az(so)

]
]
!
N

(3.33b)

All geometrically related variables (eg: Am, sin ©, Rm,etc) can
now be written in the same manner; ie: for any such quantity x,

let x' be its value at time t+4t, x be the value at t, and

Ax = x' - x
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In general, Ax can be expanded in a Taylor series in terms of Ar
and 4z. For small At, the problem is linearized by truncating

the series after the first powers.

The rates of strain are approximated by dividing the
increments by At. For example, the dilatory strain rate , which

was previously written as

_ 1 8a
Va T 14a 8t
can now be approximated by
~ Aa
Vo F (1+a) At

where AKX is linear in Ar(so) and Az(so). With these
approximations, constitutive relations that involve viscosities
now become quasi-elastic. For instance, let T' be the isotropic

tension in a Voigt material at time t+4t, then

T' = K (a + Aa) +xVa
K
= Ka + [K+ﬁ_'|:¢-)_At]Aa
= T + AT

where T = K& is the cumulated elastic stress up to time t, and

AT = [K+TTI§7Kf]Aa is the increment in stress resultant (also

linear in Ar and Az) due to perturbation in geometry. The

effective elastic modulus is K+TE:£TKE , which, for small At,

is dominated by the guasi-elastic term.
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We see that the numerical scheme is a systematic way of
writing all quantities in terms of their values at time t, plus
an incremental amount due to geometric perturbation over a time
interval At. The increments are linearized to contain only the
first powers of the basic perturbation functions Ar(so) and
Az(so). The residual functions, as defined in equations 3.14,

are also written in the same manner:
e ' = e + Aea = 0 (3.34a)
s s s (3.34Db)

These are the equations of mechanical equilibrium that must hold
everywhere on the cell surface. Note that by requiring the
primed quantities be zero, we are satisfying the force balance

- condition in the perturbed geometry. Here lies the reason for
using the linear quasi-elastic approach: For the pipette
aspiration of a spherical shell (ie: the starting geometry) with
non-zero shear viscosity, there is no solution consistent with
the volume conservation requirement. To avoid violating the
incompressibility condition, the equilibrium equations must be
applied to a slightly perturbed sphere. This perturbation,
however, is not arbitrary since it defines an average velocity
field in the time interval At, from which the viscous stresses

are calculated.
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The object of the quasi-elastic approach is to obtain
incrementing functions (Ar and Az) for the entire cell surface.
This is done by seperating the cell into two regions: For the
portion exterior to the suction pipette, equations 3.34 are used
to solve for the two functions Ar(so) and Az(so). The method to
do this will be discussed in the next section. The problem
inside the pipette is much simpler because Ar=0. Further, it
can be seen from equation 3.7a that the axial tension is uniform
along the tube. There is therefore only one force balance
equation (in the axial direction) from which Az(so) can be
evaluated. The two solutions are matched at the pipette
entrance, subject to the constraint of volume conservation; The
cell shape (r,z) at time t is then incremented and the procedure
is repeated again. In this manner, the viscous flow is

approximated by a series of small quasi-elastic displacements.
3.5: IMPLEMENTATION OF NUMERICAL METHOD

So far, all the variables we have introduced (eg: tensions,
curvatures, extension ratios, etc.) are continuous in space.
Because the problem is axisymmetric, they can be written as
functions of the instataneous curvilinear distance s alone. An
alternative approach, known as the Lagrangian formulation, is to
express all quantities (including s itself) in terms of the
initial, time-independent curvilinear distance Sqe This can be
done because "mapping" between the instantaneous space and the

initial space are assumed to be one-to-one. The next step is to



46
discretize the s, Space into a number of grid points. All
continuous functions will now be represented by a series of
nodal values located along the meridional curve. A first
derivative with respect to So is approximated by dividing the
difference between two adjacent nodal values by the local grid
size. Such is the simplest form of numerical differentiation
called the forward-difference formula. In dealing with
curvatures, it is necessary to evaluaté second derivatives of
the coordinate variables. These quantities can be represented
by applying the forward difference formula to the first
derivatives of the variables. Additional equations are then
needed to approximate the first derivatives themselves. Thus,
by restricting all derivatives to be at most first order (at the
expense of additional equations), we can cast the two
equilibrium equations (egqns. 3.34) into a finite difference form
that involve nodal values of only two neighboring points. As
will be summarized in appendix C, there are four FDEs (finite
difference equations) in total: two from equations 3.34 and two
to represent the first derivatives of Ar and Az. The four
unknowns at each node are Ar, Az,:%;Ar and.ﬁiAz. Because the
FDEs are written between two neighboring points, locally there
are four equations that involve eight unknowns (four nodal
values at each point). Futher, because the equations are linear
in the incrementing functions Ar and 4z, they can be put into a
matrix form. For a grid of N points, there will be N-1 sets of
four algebraic equations in eight unknowns. These equations can

be solved globally if the four boundary conditions (the number
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of boundary conditions must equal the number of FDEs) are put
in. The matrix organization for a general set of M difference
equations is shown in figure 10. For clarity, this is done for
a grid with only three nodes, although in the actual
implementation, N is typically several hundred. N, is the
number of boundary conditions at the first node, and N is that
for the end node. The condition of

Nc + NS = M
is required for a unique solution. 1In our case, M=4 and N can
be as large as 500. It is obviously impractical to solve a set
of 2000 linear equations by Gaussian elimination or by any other
direct means. Appendix D describes a method, due to Press et
al. (1986), that takes full advantage of the sparsity of the
matrix in figure 10. Subroutines coded in FORTRAN language that

implement these methods will also be given.
3.6: RESULTS AND DISCUSSION

The quasi-elastic method can be applied to any shell
material model discussed in section 3.3. As a first step, the
flow behaviour of a liquid shell will be investigated. The
algorithm is set up for the constitutive relations given in
equations 3.19 and 3.20, where X and 7’ are the viscous
parameters. By normalizing with the following three quantities:
the dilatory viscosity %, the suction pressure P, and the
pipette radius Rp, the problem has only two dimensionless

parameters. They are '7/7( and Rp/R, where 7 is the deviatoric
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N.x M

Mx 2M X — b

Mx 2M

NsX M

Figure 10: Global matrix structure for a set of M finite-
difference equations. The dimensions of each
block are as labelled. For simplicity, this is
done for a grid with only three nodal points.
Matrix elements that lie outside of the blocks
are zeros.
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viscosity and R the initial cell radius. The validity of the
numerical method is then checked by comparing the results with
that of the analytical solution for the case Y = 0.(see
appendix B). Figure 11 shows the time evolution of the cell
projection inside the tube for two different pipette radii. The
_instantaneous velocity fields are shown in figure 12. These
plots clearly show the agreement of the results obtained by
three entirely different means (the analytical results actually
involve two methods). Another feature of the numerical method
not shown here is the that by setting 17/1L to zero, the cell
shape remains perfectly spherical, even after 30 to 40 time
steps. It is also interesting to look at how the initial flow
rates vary with pipette radius, as shown in figure 13 for
different values of 77/%.. Note that in order to be consistent
with actual data reduction, which is plotted as f../Rp vs. Rp/R,
we are normalizing the flow rates with a time constant defined

as

since it is the cell radius R that remains unchanged as the
parameter Rp/R varies. From this plot, it is evident that very
small shearing stresses can have large effects on the overall
flow rates. The cell shapes are also strongly affected by the
shear viscosity, as shown in figure 14 for Rp/R = 0.4. It is
seen from these computed shapes that cell flattening towards the

pipette is indicative of the presence of shearing stresses.
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Figure 11: Comparing numerical results to the analytical
solution of the time evolution of a surface flow
process.
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Figure 12(a): Comparing the numerically calculated radial
velocity field to the analytical solution.
S is the position at the pipette entrance.
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Figure 12(b): Comparing the numerically calculated axial
velocity field to the analytical solution.

Shax is the position at the pipette entrance.
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The initial in-flow rate is plotted as a
function of the dimensionless pipette radius for

several values of 72/1, .

Figure 13:
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Figure 14: Cell shapes predicted by the numerical method
for various values of 7)/7 . The initial cell
radius is 2.5 R_, and the cell projections are
3 Rp in all thrBe cases.
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IV. SUMMARY AND DISCUSSION

The work in this thesis is an attempt to better understand
the pipette aspiration of a liquid body with a differentiated
cortical shell in the low Reynolds number situation. Although
presented as a mathematical problem, the analysis is motivated
by our investigation into the mechanical properties of
granulocytic white blood cells. As mentioned in the
introduction, because these cells do not show any elastic limit
to deformation, they can be treated, to first order, as liquid
bodies. Based on biological considerations, one anticipates two
possible regions in which different levels of viscous
dissipation may occur: they are in the cell periphery and in the
interior. Two continuum mechanical problems are posed that
model the cell as having its viscous dissipation dominated
entirely in each of the two regions. Only first order
constitutive relations are used in both cases. These are
equations that relate the viscous stresses to the rates of
deformation by a constant of proportionality. For the interior
model, this amounts to solving the familiar creeping motion
equations in a sphere subject to prescribed stress boundary
conditions. Notable results are the variation in flow rates as
a function of pipette radius as shown in figure 5, and the fact
that the net pressure drop is concentrated in the vicinity of
the orifice entrance. As such, flow rates iﬁto the tube will be
insensitive to the geometry of the segment exterior to the

pipette - implying the possibility of representing the flow
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process as a pressure drop at the pipette entrance that is
proportional to the in-flow rate. In solving the droplet
problem, viscous dissipation (and hence the pressure drop)
inside the suction pipette is neglected. This assumption,
although appears reasonable based on experimental observation
(ie: the fact that the cell slides freely on the pipette wall),
should be examined critically especially in cases of membrane
driven flows. This can be done by solving the creeping motion
equations inside the cylinder with either stress- or velocity-

boundary conditions on the surface adjacent to the pipette wall.

The cortical model is fundamentally different from the
droplet model because energy dissipation is confined within the
surface plane. By neglecting bending moments in the cortical
layer (as justified by the sharp bend around the pipette edge in
figure 1), the tension resultants must act tangent to the
- deforming surface, thus simplifying the equations of mechanical
equilibrium considerably. These equations are solved by a
quasi-elastic numerical method which accounts for the viscous
stresses both inside and external to the suction pipette.
Satisfactory agreement is obtained between the numerical results
and the analytical solution for the case T, = 0 (see figures
11,12,13). The numerical procedure is then extended to flow
situations where shear viscosity can be non-zero. A kinematic
consequence of surface flow into a tube is that very large
magnitudes of in-plane shear occur (ie: squares become highly

extended rectangles), especially in regions near the pipette
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entrance. This is reflected in the significant changes in flow
rates with the introduction of very small values of shear
viscosity into the constitutive relations, as shown in figure

13.

The flow rates in figure 5 and 13 are normalized to be
consistent with actual data reduction, which is plotted as
d(L/Rp)/d(tAP). In comparing the two theoretical plots, it is
evident that the entry flow rates for the droplet model has less
variation with pipette radius. This may be attributed to the
loaclization of the viscous dissipation region near the orifice
entrance, which, for small values of Rp/R, becomes insensitive
to the external boundaries. It is therefore possible to
identify the dominant region of viscous dissipation by
performing aspiration tests with different sized pipettes. This
information can be combined with ultrastructural evidence in

‘creating a more complete picture of biological cells.
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APPENDIX A: SOILUTION TO CREEPING MOTION EQUATIONS

In this appendix, we propose to solve the creeping flow

equations

2

vC (Wx V) = 0 (2.10)

in the case of a spherical newtonian droplet subject to the

stress boundary conditions

a(C) (2.12)

app<c)|p=R

o o (0) = 0
PO ,p=R (2.13)
The applied stress ® (L) is defined as
AP ; -1 < < Cp
a(@) = { -Me {p <€ < L te (2.11)
o ; §p+e << 1

which represents a pipette suction pressure. The general
axisymmetric solution to equation 2.10 is developed by Happel
and Brenner (1973). In spherical components, the velocity

fields are given by

v, o= =) et e et By () (A1)
n=2
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Vg = 2 [n Al pn_2 + (n+2) Ch pn} —Eﬂigl—

n=2 sin 6 (A.Z)

where the constants A and Cn are arbitrary. Pn(g ) is the
Legendre polynomial of degree n, and In(z ) is the Gagenbaur
polynomial given by equation 2.15. By combining this solution
with equation 2.9, an expression for the pressure field is
obtained. Since 2.9 involves the gradient of p, the pressure
distribution can only be determined up to an additive constant

(say T ):

- - 2 (2n+1) _
P n 2 [ <0 c, o1 ] P._.(C) + m (A.3)
n=2

The viscous stresses can be expressed in terms of the pressure
and velocity fields according to eqn. 2.6, which is written in
tensor form. In terms of spherical polar coordinates, we have

(see Landau and Lifshitz, 1982)

avp
Upp = —-p + 27 —a-— (A.4)
p
av ov v
po P a6 3p p

By substituting A.1 and A.1 into A.5, and using the identity

dap I (0)
P O n(n-1) -2 (A.6)
de sin 0

the free-slip boundary condition (egn. 2.13) becomes
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2n(n-2) R*3 a_ + 2(n%-1) R"? c, > (A.7)

I
o
3
N/
[\V]

n

For n=2, we must have
2 : (A.8)

while A2 can be arbitrary.

In a similar fashion, we substitute equations A.1 ,A.3 into
A.4 and equate to the external normal stresses according to

2.12. The resulting expression is

(]

2
n-3 2n -6n-2 n-1
5 [2(n-2) R34+ 2228 R cn] P__, (D)

n=2
= - % [n + a(g)] (A.9)

7

The right hand side of A.9 can be expanded as a sum of Legendre

polynonials with coefficients a:

[+ ]

2 a, P () = - % [" + a(C)] (A.10)
n=1

Using the orthogonal property,the coefficients a are given by

[H + a(f)] P, (0) & (A.11)

The series in A.9 excludes terms associated with n=1 to avoid

infinite velocities at the poles. Accordingly, a, must be set

1
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to zero. This results in the expression
2 + AP(1+§p) -A = 0 (A.12)

Also, because C2=0, we see from A.9 that a, has to vanish as
well. This is in fact equivalent to the balance of axial forces
on the spherical body, which leads to the equation
2 -1
AN = Ap —PB (A.13)
2 + e
(p
Combining equations A.12 and A.13, the integration constant
T can be related to the suction pressure AP by

ap  (1+LL) (140 +e)
2 2§p+e (A.14)

For n> 3, A.1l1l can be integrated using the relation

fp ar = -2 n=2 , ¢ (A.15)

n-1

to obtain

1 -
o = -2 { o[y - mey)
A
- g—[Pn(fp+6) - Pn-2(§p+e) - Pn(Cp) + Pn_z(fp)] } (A.16)

The normal stress boundary condition can now be matched at each

separate harmonic according to A.9. For n >3, we have
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2
n-3 2n“-6n-2 n-1
2 - L LIS L =
(n-2) R A+ =3 R cC = a (A.17)

Equations A.17 and A.7 can now be solved simultaneously. In

terms of the Legendre coefficients, the constants An and Cn are:

A - _(n+l) (n-1)2 %n
n 2 (n-2) (2n°+1) rP3
nzs3 (A.18)
c = . -Rn(n-1) %n
n 2(2n%+1) r771

Substituting A.18 back into A.1 - A.3, the final solutions for

e = R are
(n-1) (2n-1)

v = - A g - R a P - (g)
p 2 nz3 2(nA2)(zn2+1) n n-1 (A.19)

T ) I_(C)

_ . 3n(n-1) n
Vg = A, s1n 6 + R a .

2 nz3 2(2n%+1) (n-2) N sin o (A.20)
p = I + n E Eiggill a, P _,(C) (A.21)

n=3 (2n“+1)

where the arbitrary constant A, can be interpreted as an axial
velocity superimposed onto the existing velocity field. This is
allowed because neither the pressure nor the rate of strain

tensor are affected.
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APPENDIX B: PIPETTE ASPIRATION OF CORTICAL SHELL IN THE
ABSENCE OF IN-PIANE SHEARING STRESSES
The problem of the aspiration of a liquid membrane can be
solved analytically when there are no surface shear stresses.

In this case, the constitutive relation is

T = x vV (3.19)

while & ,the shear viscosity in equation 3.20, is identically
zero. It is important to recognize that since there are no
shearing stresses, the cell geometry must remain spherical at
all times. There are actually two seperate problems involved,
they are: 1) the solution of the instantaneous velocity field
for a given geometry, and 2) the time evolution of the cell.

These will be dealt with by two different methods.

To obtain expressions for the velocity profile, we first
rewrite the dilatory strain rate in terms of the velocity

components (see Evans and Skalak, 1980):

+ ) (B.1)

where Vg and v, are the tangential and normal velocity
components, respectively. Because the cell is spherical with
radius R, equation B.l1l can be written, using the relation s=Re,

as
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2 Vv
_ 1 d . n
Va - R sin 6 96 (Vs sin 6) +

B.2
R ( )
Since the cell is to remain spherical, the normal velocity,
relative to the centre of the sphere, must be a constant (say
R). We substitute this, along with equation 3.19 into B.2 to

obtain

5§ (vs sin ) = a sin 0 (B.3)

where the quantity

H|
el

. (B.4)

is independent of ©. Equation B.3 can now be integrated to
obtain the velocity field. 1In a reference frame fixed at the

centre of the sphere

v - l - cos 6 (B.5a)
s sin 6
v, = R (B.5b)
Using the transformations
Ve = Vg Cos 6 + v, sin 6 (B.6a)
v, = Vg sin 68 - v, cos 6 (B.6b)
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the velocity field in B.5 can be rewritten in terms of the
radial and axial components. Also, to be consistent with the
numerical solution, an axial velocity is added to the velocity
field so that the base of the sphere (s=0) remains stationary.

The final results are

= cos B(1 - cos 6 : .
Vr a sin @ ) + R sin 6 (B.7a)
v = (a+R) (1 - cos 8) (B.7b)

2

The two parameters a and R are uniquely related if volume

conservation is accounted for.

The time evolution of the cell can be expressed as a closed

form solution by rearranging equation 3.19:

da - T (1+a
dt K

(B.8)
where T and oL are both uniform over the deforming surface. The
object is to relate T to &, and hence integrate equation B.S.

Consider an aspirated cell with tounge length L and a spherical

segment of radius R, as shown in figure 15. The volume and

surface area in this configuration are given by

2 T -3 2 2 3 (B.9)
= -— - — R
\' L4 Rp L + 3 R (1+§p) (2 (p) + 3T p
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Figure 15:

Definition of various dimensions for the problem
posed in appendix B.
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»
I

2 2
2r R.L + 27 R (14C,) + 2n R, (B.10)

where

= 0
(. cos Yy (B.11)

is a positive quantity. Given V and A,zfp can be solved for from

the following cubic equation:

1+c2 3 (1+c)2 2
— (p - 3 > (p
c c
B.12
+ 3 {i*c) (3+c ¢ - J{itc) (5+c) ( )
c? P 2 0
c
where the quantity
6V - 3R A
= — P
c = + 1 (B.13)
2w Rp3

for constant volume, is a function of A alone. Thus, given A
(or X ), we can solve for {p using B.12. The quantities R and L

follow immediately:

Ry / (109
A R2(1+§p) (B.15)
L+ Rp = 27 R - R )
p P

By requiring the meridional tension to be continuous across the
pipette entrance, the isotropic tension can be expressed in

terms of the suction pressure P and the instantaneous radius R
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as

P R,
2(1 - Rp/R) (B.16)

A3
I

Since the suction pressure is constant, T is only dependent on
R. Thus, given the initial cell size (which establishes the
total volume) and the instantaneous value of &, we can
determine the constant c in B.13. Zr)is then solved for from
equation B.12, from which we can obtain R, L, and T. 1In this
manner, equation B.8 can be integrated numerically (eg: by the

Runge~Kutta method) to very high accuracy.
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APPENDIX C: FINITE DIFFERENCE EQUATIONS

A set of four finite difference equations is written between
every pair of nodal points. At each node, say node number i
(i=1,2,...,N, with i=1 corresponding to s=0), there are four
unknowns: Ar(i), aAz(i), ﬁiar(i), i&Az(i). The first two

difference equations are to approximate the derivatives of Ar

and Az:
3 . Ar(i) - Ar(i-1)
== A
gs_ Ar(1) By (c.1)
a . _ Az (i) - Az(i-1)
2 ] =

where i ranges from 2 to N, and hi is the local grid spacing

defined as
h, = s, (1) - s, (i-1) (C.3)

The other two difference equations are based on equations 3.34.

By expressing the eight unknowns at the two nodes collectively

as a, (k=1,2,...,8), equation 3.34 can be rewritten as
_.a 3 -
3a, de, may = -~ & (C4.a)
9 Ae - = ' |
aak s ak = -65' (C4 -b)

This is valid because A€y and A€ are linearized to contain only
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the first powers of the solution vector. From the definitions

of the residual functions (egns. 3.14), it follows that

_ = 2 1
he, = 4AT + o (2R, /R - 3) AR, + o R, A(—i;? (C5.a)

_ _ 2 1 C5.b
4T, + 0 (1 - 2R,/R)) AR IRy AC Rm) ( )

Ae

I

The curvatures and their increments are given as follows:

_ r
Ry = 3Sine (C.6)
AR _ 1 Ar - r cos 6O A0
¢ sin 6 sin29 (C.7)
1/R - 1 ( ar 8%z _ 8z a%r )
m >\m3 aso 3s 02 ds as 02 (C. 8)
A( 1 ) _ -3 n + 1 [ 3 Ar 8%z 4, or 324z
R R_A m 3 ds 2 ds 2
m m m km o aso o aso
3 Az 8°%x _ 8z 3%%r ]
aso asoz aso asoz (C.9)

For the stresses, the forms of T and Ts depend on the particular
material model chosen. As a simple example, consider the

tension resultant in a liquid (egns. 3.19-3.20):

H3|
i
o

(C.10)

T G = 0 (C.11)
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AT = £ (A /A + Ax¢/k¢) (C.12)
AT, = Kg' (AN /A = AhG/A,) (C.13)

The tensions T and Ts are zero because they represent elastic
stresses accumulated up to the present configuration. All the
increments introduced above can be expressed in terms of the

basic deformation variables using the following relations:

_ d Ar . d Az
Axm = cos 6 3= + sin 6 —ggg- (C.14)
A)\¢ = AI‘/I‘O (C.15)
_ 1 d Az _ . d Ar
46 = —= ( cos 6 “Bs sin 6 —5 ) (C.16)
m o o
a°Ar . 1 [ 8 Ar,. 8 Ar .
s (1) = - gs (1) - =35 —(i-1) (C.17)
o i o o
2 C.18)
3°Az . ! 3 Az . d Az ,. (
3s (1) = [ 3s (Y~ s _(i-1) ]
o i o _ o

Since there are four equations, there must also be four boundary
conditions to ensure a unique solution. If we choose to locate
the reference frame at the base of the cell (s=0), two boundary

conditions immediately follow:

iy = o (C.19)
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Az(1) = © (C.20)

Also, © at the base must be always zero. The requirement of A®
vanishing at s=0 leads to another boundary condition at the
first node:

d Az
ds

(1) =09 (C.21)

At the other end of the grid, a tangential velocity \GPcan be

prescribed. Using the transformation relation

= ; C.22
vS vr cos 6 + vZ sin 6 ( )

the last boundary condition becomes
Ar(N) cos 8 + Az(N) sin® - v .PAt = o (C.23)

In actual implementation,‘Uf is an iterative parameter that is

used to satisfy the volume conservation condition.
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APPENDTX D: MATRIX SOIUTION TO FINITE DIFFERENCE EQUATIONS

Figure 10 shows the matrix structure of a typical finite
difference scheme, where a system of M differential equations
are approximated by difference formulas that involve nodal
values of two adjacent points. The method of solution, as
outlined by Press et al. (1986), is to reduce the given matrix
to a special upper triangular form, as shown in figure 16. To
do this, only matrix elements from two blocks need be
manupilated at any time. We start with the top N _xM block in
figure 10. This block, along with the first Nc elements on the
right hand side, is Gauss reduced until the first Nc columns
form an identity matrix. At the end of this process, only the
last N columns and the corresponding portion of the right hand
vector need be stored. This information is then used to
eliminate the first Nc columns in the second block, which lies
directly underneath the identity matrix. The remaining elements
of this block are then Gauss reduced until the next M columns
(columns N_+1 to NC+M) form an identity matrix. Again, only the
last Ns columns, and the corresponding portion of thé right hand
side are stored. This procedure is repeated until we get to the
last block, which has dimensions Nst. As before, the first N,
columns are eliminated using information from the previous
block. The remaining part of the block is then reduced to an
identity matrix, thus attaining the desired form in figure 16.
Note that at this stage, only the sub-blocks labelled "S", and

the altered right hand side, are stored. From here, the
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Figure 16:
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The desired form of the upper triangular matrix
which minimizes storage space for the finite-
difference solution scheme. Only blocks
labelled "S" are stored. The square blocks
labelled "I" are identity matrices, and all the
remaining entries are zeros.
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solution follows quickly by back substitution.

Subroutines coded in FORTRAN are given which implement the
above tasks. GJPP performs Gauss-Jordan elimination (with
partial pivoting) on a given matrix until an identity matrix is
formed. The elimination of the first N_ columns in the sub-
blocks is done by subroutine REDUCE. UPTRI is a driver routine
which uses GIJPP and REDUCE to form the upper triangular matrix
shown in figure 16. The user has to supply subroutines BC1,
FDE, and BC2, which generate the first (chM), the intermediate
(Mx2M), and the last (Nst) blocks in figure 10, respectively.
The final solution is obtained using BKSUB which perform the

necessary back-substitutions.
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SUBROUTINE GJPP(A,MA,NA,NC1,IP)
Input is matrix A of dimensions MA by NA (NA.GE.MA+NCl).
The first NC1l columns are ignored. The rest of the matrix
is Gauss reduced (with partial pivoting) until the next
MA columns become an identity matrix.

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION A(4,9),IP(4),S(4)

DO 20 I=1,MA

S(I)=0.

DO 10 J=1,MA

IF (DABS(A(I,J+NC1)).GT.S(I)) S(I)=DABS(A(I,J+NC1))

CONTINUE

IF(S(I).EQ.0.D0) GOTO 80

IP(I)=1

DO 70 ID=1,MA

JD=ID+NC1l

BIG=0.

DO 30 I=ID,MA

DUM=DABS (A (IP(I),JD)/S(IP(I)))

IF(DUM.LE.BIG) GOTO 30

BIG=DUM

IMAX=T

CONTINUE

IF(BIG.EQ.0.D0O) GOTO 80

IDUM=IP (ID)

IP(ID)=IP(IMAX)

IP(IMAX)=IDUM

DUM=A (IP(ID),JD)

IF(DUM.EQ.1.D0) GOTO 45

DO 40 J=JD,NA

A(IP(ID),J)=A(IP(ID),J)/DUM

DO 60 I=1,MA

IF((I.EQ.IP(ID)).OR.(A(I,JD).EQ.0.D0)) GOTO 60

DUM=A(I,JD) :

DO 50 J=JD,NA

A(I,J)=A(I,J)-DUM*A(IP(ID),J)

CONTINUE

CONTINUE

GOTO 100

WRITE (*,90)

FORMAT (' Matrix singular in GJPP, program terminated!')

STOP

CONTINUE

RETURN

END

SUBROUTINE REDUCE(A,B,NE,NC1,IPT,NPTS)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION A(4,9),B(4,2,510)

NS=NE-NC1

IF(IPT.GT.NPTS) GOTO 10

MA=NE



10

20

30

40
50

10

20
30

40

NA=2*NE+1

GOTO 20

MA=NS

NA=NE+1

IDO=NS

IF(IPT.EQ.2) ID0=0

DO 50 J=1,NC1

ID=IDO0+J

DO 40 I=1,MA

IF(A(I,J).EQ.0.D0) GOTO 40

DO 30 K=1,NS
A(I,NC1+K)=A(I,NC1+K)-A(I,J)*B(ID,K,IPT-1)
A(I,NA)=A(I,NA)-A(I,J)*B(ID,NS+1,IPT-1)
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE UPTRI (B,NE,NC1,NPTS)
IMPLICIT REAL*8 (A~H,0-2)
DIMENSION A(4,9),B(4,2,510),IPIV(4)
DIMENSION S0(510),R0(510),R(510),Z(510)
NS=NE-NC1

NS1=NS+1

10=0

NA=2*NE+1

NABC=NE+1

CALL BC1(A,NE,NC1)

CALL GJPP(A,NC1,NABC,IO,IPIV)

DO 10 I=1,NC1

DO 10 J=1,NS1
B(I,J,1)=A(IPIV(I),NC1+J)

DO 30 IPT=2,NPTS

CALL FDE(A,NE)

CALL REDUCE(A,B,NE,NC1,IPT,NPTS)
CALL GJPP(A,NE,NA,NC1,IPIV)

DO 20 I=1,NE

DO 20 J=1,NS1
B(I,J,IPT)=A(IPIV(I),NC1+NE+J)
CONTINUE

IPT=NPTS+1

CALL BC2(A,NE,NC1)

CALL REDUCE(A,B,NE,NC1,IPT,NPTS)
CALL GJPP(A,NS,NABC,NC1,IPIV)

DO 40 I=1,NS
B(I+NC1,1,1)=A(IPIV(I),NABC)
RETURN

END

SUBROUTINE BKSUB(B,NE,NC1,NPTS)

Solution X(I) at the J- th grid point is stored in B(I,1,J)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION B(4,2,510),X(2)
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NS=NE-NC1

NS1=NS+1

DO 10 I=1,NS
X(I)=B(I+NC1,1,1)

DO 50 IPTDUM=2,NPTS
IPT=NPTS+2~-IPTDUM

DO 30 IDUM=1,NE
I=NE+1-IDUM

DUM=0.

DO 20 J=1,NS
DUM=DUM+X (J) *B(I,J, IPT)
B(I,NS1,IPT)=B(I,NS1,IPT)-DUM
DO 40 I=1,NS
X(I)=B(I,NS1,IPT)

CONTINUE

DO 70 IDUM=1,NC1
I=NC1+1-IDUM

DUM=0.

DO 60 J=1,NS
DUM=DUM+X (J) *B(I,J, 1)
B(I,NS1,1)=B(I,NS1,1)-DUM
DO 80 I=1,NS
B(I+NC1,1,NPTS)=B(I+NC1,1,1)
DO 90 I=1,NC1
B(I,1,1)=B(I,NS1,1)

DO 120 IPT=2,NPTS

DO 100 I=1,NS
B(I+NC1,1,IPT-1)=B(I,NS1,IPT)
DO 110 I=1,NC1l
B(I,1,IPT)=B(I+NS,NS1,IPT)
CONTINUE

RETURN

END

78



79

LIST OF REFERENCES

Amato Philip A., Unanue Emil R., Taylor D. Lansing., 1983
Distribution of Actin in Spreading Macrophages: A Comparative .
- Study on Living and Fixed Cells

The Journal of Cell Biology,96:750-761

Bessis M., 1973

Living Blood Cells and their Ultrastructure
Springer, Berlin

Chein Shu, Sung Kuo-Li Paul, 1984
Effect of Colchicine on Viscoelastic Properties of Neutrophils
Biophysical Journal 46:383-386

Evans Evan A., 1973
A New Material Concept for the Red Cell Membrane
Biophysical Journal 13:926-940

Evans Evan A., Hochmuth R. M., 1977
A Solid-Liquid Composite Model of the Red Cell Membrane
Journal of Membrane Biology 30:351

Evans Evan A., Skalak Richard, 1980

Mechanics and Thermodynamics of Biomembranes
CRC Press, Roca Raton, Florida

Evans Evan A., Kukan B., 1984

Large Deformation, Recovery after Deformation, and
Activation of Granulocytes

~Blood 64:1028-1035

Evans Evan A., Needham D., 1986

Physical Properties of Lipid Bilayer Membranes:
Cohesion, Elasticity, and Colloidal Interactions
Journal of Physical Chemistry (submitted)

Fung Y. C., 1965
Foundations of Solid Mechanics
Prentice-Hall, Englewood Cliffs, New Jersey

Happel John, Brenner Howard, 1973
Low Reynolds Number Hydrodynamics
Prentice-Hall, Englewood Cliffs, New Jersey

Kwok R., Evans Evan A., 1981
Thermoelasticity of Large Lecithin Bilayer Vesicles
Biophysical Journal 35:637-652

Landau L. D., Lifshitz E. M., 1982
Fluid Mechanics
Pergamon Press, Oxford



80

Mitchison J. M., Swann M. M., 1954

The Mechanical Properties of the Cell Surface. I. The Cell
Elastimeter

Journal of Experimental Biology 31:443

Press W. H., Flannery B. P., Teukolsky S. A.,
Vetterling W. T., 1986

Numerical Recipes
Cambridge University Press, Cambridge

Rand R. P., Burton A. C., 1964
Mechanical Properties of the Red Cell Membrane.
Biophysical Journal 4:115

Schmid-Schonbein G. W., Shih Y. Y., Chein S., 1980
Morphometry of Human Leukocytes
Blood 56:866-875

Schmid-Schonbein G. W., Sung K. L. P., Tozeren H.,
Skalak R., 1981

Passive Mechanical Properties of Human Leukocytes
Biophysical Journal 36:243-256

Skalak R., Tozeren A., Zarda R. P., Chien S., 1973
Strain Energy Function of Red Blood Cell Membranes
Biophysical Journal 13:245

Southwick F. S., Stossel T. P., 1983
Contractile Proteins in Leukocyte Function
Seminars in Hematology 20:(4)305-321

Tozeren H., Chein S., Tozeren A., 1984

Estimation of Viscous Dissipation inside an Erythrocyte during
Aspirational Entry into a Micropipette

Biophysical Journal 45:1179-1184



