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ABSTRACT

A separable potential model is constructed to describe
the coupled IN-AN systems. From this the I single particle
potential is developed including Pauli effects. The
momentum space Schroedinger equation 1is then solved
self-consistently for the complex eigenvalues of 1s and 1p

state I° hypernuclei.

Arising from two quite distinct mechanisms these states
are all found to be long lived. In s-states, Pauli
suppression of the IN—>AN conversion reduces the widths by
as much as 50% from classical estimates in heavy nuclei, and
in light nuclei produces yidths as small as 1.8 MeV innge.
In p-states, Pauli effects are relatively unimportant and
the strong absorption of the potential creates extremely

narrow guasi-bound states in the I continuum,
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AN INTRODUCTION FOR THE NON-SPECIALIST

This short section 1is intended to introduce the
non-specialist to the concepts and terminology used in this
work. First, a 'hypernucleus' refers 1in general to any
nucleus in which a nucleon has been replaced by one of the
strange baryons A,L,Z, orfl. As the lightest of these the A
is unique, in that it is stable in the nucleus. The heavier
£,=Z, and {1l hyperons, on the other hand, can decay to a A
upon interacting with a nucleon, releasing a large amount of
energy in the process. This energy release makes the
conversion so favourable that the hyperons are expected to
be very short-lived in a nucleus, simply because of the
large number of nucleons present. Naively, .the lifetime
wouldn't be expected to be much different from about 10-23
seconds, which is roughly the length of time required for
the particle to cross the nucleus. More careful analyses
which estimate the mean free path of the particle in the
nuclear 'gas' do not change this figure appreciably. It has
been quite a surprise recently then to find that I lives

nearly 10 times longer than this figure in the nucleus.

The aim of this work has been to understand this large

discrepancy. Some guidance 1is available from standard



nuclear experience where we know that the interaction of
nucleons in a nucleus is not like the interaction of free
particles. In particular, the Pauli exclusion principle
ensures that no two nucleons can occupy the same quantum
state. The result is that no interaction can occur if it
will leave a nucleon in a state which is already occupied.

This is an important result of early nuclear theory and the
main reason why a nucleus can be cohsidered a gas of
nucleons which, to a good first approximation, are
non-interacting. In fact, one of the earliest triumphs of
the Pauli principle was reducing the calculated widths of
excited nuclear. states from 30-40 MeV to the keV range, in
line with experiment. For the I one doesn't expect the
effects to be as dramatic because the exclusion does not
apply to the I itself. Nonetheless, the restrictioﬁs on the
final state N in the IN—>AN reaction can suppress the

conversion significantly.

The basic outline of the study has then been to ,
first, understand and describe the IN interaction 1in free
space. We then modify this interaction with the Pauli
principle to describe the IN interaction in the presence of
other nucleons 1in the nucleus. By summing the interaction
of the £ with each separate nucleon we arrive at an overall

description of the I-nucleus interaction. It is found by
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this procedure that, for a £ bound in the ground state,
Pauli suppresion of the conversion is sufficient to produce

a lifetime consistent with the experimental value.



CHAPTER 1 INTRODUCTION AND SUMMARY

Although the field of hypernuciear physics is now
relatively old, interest has been renewed in recent years by
the observation of long-lived [ states in the nucleus.
Unlike the A hyperon, which is stable in nuclear matter, the
I decays via the strong interaction to a A, releasing
roughly -80 MeV in the pfocess. For this reason it had long
been expected that I states would be very broad, e.g. r~25
MeVv [1,2], on the basis of semi-classical arguments. Such
short-lived states would be extremely difficult to observe

even under ideal conditions.

Thus, it was very exciting when in 1979 the
Heidelberg-Saclay group reported finding structure in z;Be
with widths less than 8 MeV [3,4], apparently corresponding
to unbound p-states. Since this discovery a variety of
light I hypernuclei have been studied [5,6), and at
Brookhaven it has been found that inzﬁLi the level may be as
narrow as 3 MeV [5]. Unfortunately the picture is not as
clear for s-state hypernucléi, with the only suggestion of
narrow states to date being in the ;gc [3], and poésiblyZ;Be

[6] systems.

Historically though it is A hypernuclei which have

attracted attention. As the lightest of the hyperons the A



decays only through the weak interaction and therefore has a
relatively long lifetime in the nucleus. In addition, the
similarity of the A and N masses, and the fact that the AN
potential is only slightly weaker than that of NN, suggested
that in the nucleus the A would behave much like a neutron.

With strangeness -1 though, the A would be distinguishable
and therefore make a nearly ideél nuclear probe. The
advances in this area and interesting future prospects, such
as the study of doubly strange AA and Z- hypernuclei formed
in (K- ,K*) reactions, will not be discussed further here but

recent reviews are given in, for example, refs.[7,8].

It should be clear though that if one hopes to
successfully compare the Y-nucleus (where ¥ is [ or A) with
the N- nucleus interaction it 1is essential to produce
hypernuclear states which have sufficiently simple
configurations to allow a unigue theoretical interpretation.
Ideally one would like the hyperon to simply replace one of
the target nucleons, assuming the same state quantum numbers

and without disturbing the nuclear core.

Conceptually at least, this is not a difficult problem.
A nuclear target is exposed to a beam of 1low energy kaons
and, through thé strangeness-exchange reaction KN->uY, one
of the target nucleons is transformed into a hyperon. In a

rough approximation the amplitude for this process occurring



in the nucleus 1is proportional to the proauct of the
elementary two-body amplitude, with a form factor F(g) which
depends on the 1initial state N, and final state Y

wavefunctions as
* ig-£
F(g)«:/dg o5 (£)ei%Te (r) (1)

with g the momentum transferred to the hyperon, i,f label
the state quantum numbers, and the distortion of the K and n
wavefunctions has been ignored. For very small values of g
the exponential is of order unity across the nuclear volume

and the overlap integral is therefore maximized for i=f.

In addition F(é) decreases rapidly with the momentum
transferred and, for example, F(g)~ exp(-a?g?) for harmonic
oscillator wavefunctions. Experimentally then, for
'recoilless' production (g=0) one would detect the pions
scattered in the forward direction and adjust the incident
kaon momentum to minimize the momentum transferred to the
hyperon. The 'magic' momentum which leaves the A at rest in
the nucleus is about 500 MeV/c, whereas for I it 1is lower,

at 300 MeV/c.

In practice, of course, the situation is not nearly as
clean as that outlined above. First of all, the optimum K
momentum is not easy to achieve. The kaons decay in flight

by the weak interaction ‘with a mean lifetime of ~10-%

P



seconds. Consequently the intensity of the beam reaching
the target decreases sharply with decreasing momentum.

Present experiments typically use a momentum of ~700 MeV/c

to partially overcome this intensity problem, but even so

20% of the kaons decay with every meter of flight.

Secondly, this higher momentum creates its own
difficulties. For recoilless A production, 700 MeV/c is not
radically different from the optimum value and the momentum
transfer is still fairly low,~40 MeV/c. For I production
however the corresponding momentum transfer is 130 MeV/c
and, with a value this large, quasifree production competes
with the recoilless process. In this case the I is kickea
into another state and, since there is no Pauli restriction
for the I in the nucleus, the number of available states is
large. The result 1is that the experimental spectrum
degenerates from a sharp recoilless peak into a small bump

embedded in a large guasifree background.

Despite these, and many other, complications it is
possible to determine the binding energy and width of the I
states by measuring the momentum of the final state pions.
The difference between the » and K energies gives directly
the transformation energy (MHY-MA), wvhere M, is the mass of
the hypernuclear system and M, is the target mass. The

hyperon binding energy is then simply BY=BN—(MH;MA)+(mY;mN),



with B the binding energy of the nucleon that was replaced,

and m,,Mm, are the obvious masses.

In fig.1 the experimental » energy spectrum of ref.
[3] is shown for 720 MeV/c kaons incident on °Be. The
energy scale 1is given both as a function of the
transformation energy and also the A,I binding energies.
Because of the 1large momentum acceptance of the n
spectrometer (600—>850 MeV/c) they were able to measure the
A and T hypernuclear spectra simultaneously. In ;Be the
peak at B,=-6 MeV is attributed to recoilless productioh on
the loosely bound 1pyy Neutron, whereas the peak at -17 MeV
is a mixture of recoilless strength from the 1p3m.and 18,9

neutrons. One can also see the A ground state at B,=7 MeV

A
(3],

Just separated from the A spectrum by the I“A mass
difference is structure which is very similar to that 1in
;Be, and so it is natural to assign these peaks to thez;Be
hypernucleus. After correcting for the I>A mass difference
they are found to 1lie systematically ~3 MeV higher in
excitation than the A peaks, indicating that the I-nucleus
interaction is slightly weaker than that of A-nucleus. More
important 1is that, in p-state at least, the level is

surprisingly narrow. In fact the upper limit of 8 MeV for

thez;Be level was assesed because the experimental width was



no greater than that of the corresponding peak in ABe [3].
Conceivably then the I state is much longer 1lived than is

implied by the 8 MeV figure.

These findings have sparked a flurry of theoretical
activity and a number of mechanisms have now been proposed
for suppressing IN—>AN conversion in the nucleus. Gal and
Dover [9,10] have emphasized that the conversion proceeds
only through the isospin I=1/2 channel, with thé implication
being that in special cases where the I=3/2 interaction
dominates, long-lived states can result. For example, 1in
'ZC(K',n')%ZBe the tota} isospin (T,T3) of the initial state
is (1/2,-1/2). Conservation of isospin then requires that
the I~ hypernucleus be a pure (3/2,-3/2) state, and some
suppression of the conversion width from nuclear matter

estimates is expected.

In very light nuclei this quenching can be substantial,

but the drawback to this explanation is that it is operative

mainly for the (K-,r*) reaction and, therefore, not
applicable to either of the originalnge or Egc results.
The.éﬁc hypernucleus is a mixture of isospin 3/2 and 1/2

states and no suppression is expected. Worse, innge, which
is pure 1isospin=1, Gal's calculations [2] predict that the
p-staté should be 20-25% broader than the nuclear matter

estimate.
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A particularly intriguing explanation has been proposed
by Gal, Toker, and Alexander [11]. Rather than seeking a
mechanism to suppress conversion, they have pointed out that
in special circumstances strong absorption can produce very
narrow bound states embedded in the continuum. Using a
phenomenological potential consistent with I- atomic data
[12], they demonstrated that the strong absorption could
cause an S-matrix pole 1in the unphysical, third momentum
qguadrant to cross into the physical, second gquadrant and
thereby become indistinguishable from an wunstable bound

state pole.

However, it has been pointed out by Stepien-Rudzka and
Wycech [13], that the I~ atomic data are sensitive primarily
to interactions at the nuclear surface, 1leaving the
interactions in the high density central region almost
completely wunconstrained. As a result, predictions for
hypernuclei based on phenomenoclogical analyses of I~ atoms
are inconclusive. For the moment then, no more will be said
of these unusual states, but they will be discussed again in
detail 1in chapter 4 where they are found to arise in a

coupled channels calculation.

All of the above models are mainly applicable to
p-levels though. For s-state hypernuclei they generally

predict very broad widths in agreement with the classical



estimates [1,2]. One calculation which does predict fairly
narrow s-states (and is closest in philosophy to our
approach) is the recent work of Stepien-Rudzka and Wycech
[13]. Stressing the importance of Pauli blocking in
reducing the IN->AN conversion width, they constructed a
simple, local I-nucleus potential that was consistent with
£~ atomic data but which also incorporated exclusion effects

for high densities.

Their model indeed produced r<i10 MeV s-states in light
nuclei but some rather severe approximations used to
eliminate the energy dependence and non-localities in the
potential made it unclear whether the resulting potential
remained consistent with two-body IN interactions. In
addition, there was no attempt to calculate the lifetime of
p-states, 'where one yould expect that Pauli suppression
would not be as significant because of the smaller overlap
of the I wavefunction with the nucleus. It is impossible to
decide then if this model can also reproduce the observed

p-state widths.

All of the above proposals have some validity for the
narrow range of examples they consider. Nonetheless, no
attempt has been made to decide whether I states are
expected to be narrow in géneral or only in special isolated

cases. Our aim 1is to answer this qQuestion by calculating

o
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the I single particle potential as accurately as possible,

using the elementary IN scattering information as input.

A separable potential model 1is developed in the
following'chapter to describe the coupled IN-AN systems. It
is argued that a convincing reproduction of the 1low energy
data requires the inclusion of tensor and P-wave
interactions. Perhaps more importantly, it is found that
the conversion amplitude 1is strongly energy dependent,
suggesting that great care must be exercised in defining the

I-nucleus potential.

With this reliable description of IN scattering as the
foundation, the I single particle potential is developed in
chapter 3. A fairly detailed derivation of the coupled
channel G-matrix is presented, with special attention given
to the energy variation arising from nucleon binding and
centre of mass -motion. Pauli exclusion effects are also
explicitly introduced since, in s-states at least, this |is
expected to produce a sizeable suppression of the conversion
width. Finally, following from these purely formal
developments, a minimum number of physically reasonable
approximations are made to reduce the potential to a

calculable form.

This careful treatment of the energy dependence of the

potential <creates 1its own complications. Chapter 4 is



1"

devoted to a consideration of these technical details, which
include the self—consiétent solution of the Schroedinger
eqguation, and the interpretation of the complex eigenvalues
as poles in the multi-sheet domain of the S-matrix. This
latter discussion then leads to the necessity of
analytically continuing the Pauli exclusion operator to

complex momenta.

With these difficulties resolved, the self-consistent
(complex) eigenvalues for the L=0,1 states in 1light I°
hypernuclei are presented in chapter 5. Remarkably, we find
that arising from two quite distinct mechanisms both the s
and p states are long lived. 1In s-state Pauli effects are
found to suppress conversion by as much as 50% from the
semi-classical estimates. By contrast, in p-state where the
exclusion ﬁrinciple is relatively unimporfant, the resulting
strong absorption can create extremely narrow gquasi-bound

states embedded in the continuum.

Finally, chapter 6 is quite brief and the findings of
the study are simply highlighted. Some possible
improvements of the calculation and directions for

experiments are also suggested.
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CHAPTER 2 TWO-BODY IN-AN SCATTERING

The foundation of our aim to calculate I-hypernuclear
states is the description of the underlying IN interactions.
This description is complicated considerably by the coupling
of the IN and AN channels. In addition, despite the
scarcity of IN data, there are clear indications that
contributions from L>0 partial waves are important. Even at
energies as low as 5 MeV the I"p—>I-p and L p—>An cross
sections show marked forward/backward asymmetries [14,15],
indicating the presence of P-waves. It can also be expected
that, because of the large AN momentum, the

' p(3s,)—=>An(°D,) transition is significant.

We remark that the low energies of the IN scattering
are consistent with non-relativistic kinematics. Clearly 5
MeV of kinetic energy is negligible relative to the IN mass
of 2135 MeV. Even the IN-AN mass difference of 80 MeV is
small compared to the AN mass. So all discussions to follow
are in the Schrodinger picture with the energy scale chosen

to be zero at the IN threshold.

Our program 1is to fit all of the 19w—energy IN
scattering data within a separable potential model and which
accounts explicitly for the multi-channel and
multifpartial-wave features of the interactions. For

spin-zero particles a single-channel potential which is
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separable in each partial wave can be defined as

[ o) A A
V(k',k) =3 (2L+D)V, (k' , k)P, (k" k) (2)
Ezo % §
with Vz(k k) = l(k )xvz(k)
and X is -1(+1) for attractive (repulsive) interactions. A

more convenient notation is to write the potential
(operator) V, in bra-ket form as Vp=|vy>x<vy|, with |vp>
defined by vz(k) in momentum space. The more complicated
case with coupled channels and particles with spin is
discussed later, but for now we mention that there are
several advantages to using separable models. It will be
shown that in each partial wave the scattering amplitude can
be solved algebraically. 1In addition, separable models can
reproduce NN phase shifts over several hundred MeV [16].

The relative simplicity of the model will also allow wus to
perform sophisticated nuclear calculations with a minimum of

purely technical complications.

2.1. The Physical Basis for Separable Interactions

The more important consideration, of course, is whether
there is any physical motivation for the separable form. It
will be shown that it may be a good approxiﬁation to the
"true' potential if the scattering amplitude is dominated by
a bound state or resonance. First, we decompose the

t-matrix into its spectral representation as
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t(E) = V+Z v|¢g><¢n|v /dE' va(E )><w(E ) |V (3)
T+ £

with V the potential operator (not necessarily separable),
|¥(E')> is the scattering wavefunction, and where the
summation extends over all the (assumed) bound states | ¢, >
with the B,(>0) the corresponding binding energies. Clearly
for energies E 'near' to -B,, this pole term will dominate

in t(E), and the residue is separable.'

Conversely, it is straightforward to show that the
separable form factor is simply related to the bound state
wavefunction (when it exists) [16]. The wavefunction |é>

obeys the homogeneous Lipmann-Schwinger equation
|¢> = -(B+K) 'V|e> (4)

where B (>0)- is the binding energy, and K is the kinetic
energy operator. If it 1is assumed that the underlying
potential is separable, as in eq.(2), then it follows that
|#> = (B+K) ™ '|v><v|é>
(5)
or vi(k)= (B+k*/2m)é(k) [<v]#>]"
which defines a potential which will reproduce the

wavefunction exactly.

For degenerate bound states, the residue is modified to
become a sum of separable terms [17]. -
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For the case in which t 1is dominated by resonance
poles, rather than bound states, the demonstration is a
little more involved but the results will not be surprising.
. A simple derivation of Lovelace's result [17] 1is presented

here.

Let us define a new potential v, related to the V in

eq.(3) above by the relation
vip,q)=e'8v(etp, ettq) (6)

with &6 an arbitrary phase parameter. Similarly, a modified
t-matrix (r) is introduced as the solution of the

Lipmann-Schwinger eguation

r(p',q";E)=v(p',q"')+ [ &k k?v(p',K)v(k,g ;E) (7)
_ (E*-k*/2m)
where p' 1is related to p by p‘=pe‘15, and similarly

g'=ge-it.

The integration path can be distorted through the
substitution-k-éke’ib (|6]<n/2), which rotates the contour
0<k<® about the origin into the fourth guadrant. Of course
the distorted contour must not now enclose the pole at
k2=2mE. The integrand dies quickly enough for. k—=> o ~ that
when the rotated contour is joined to the real axis at

infinity, the integral along the infinite connecting-arc
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~gives zero contribution. Eguation (6) has then become

r(p',q'iE)=v(p',q )+e-18 dk k2 v(p',E8k)r(e¥®k,q";E) (8)
(e?*® E-k?/2m)

If eq.(8) 1is multiplied to the left by e-id it is found,

using eq.(6), that this 1is Jjust the Lipmann-Schwinger

equation for t at the new energy eZisE, and therefore
t(p,q;e’isE)=e’15r(e'ibp,e‘iﬁq;E) (9)

Equation (9) defines the analytic continuation of t to
the unphysical energy sheet and clearly, if t has a
resonance pole at e?3®E then r has a pole at an energy E.
Further, the phase 6 can be chosen such that E is a bound
state pole of v so that the contribution of this pole to r

will be separable, in analogy with eq.(3).

'Bound state' is used here in the sense that the poles
lie in the second quadrant of the momentum plane and the
wavefunction therefore decays exponentially at large
distances. However, the pole is not on the imaginary axis
~and so is unstable and decays exponentially in time'as well,
This kind of pole will be encountered throughout our
discussion of hypernuclei as being the correct bound state

description.

It has been shown that if the scattering amplitude is
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dominated by bound states and/or resonance poles it is
reasonable to expect the separagle model to be a good
approximation to the t-matrix. This obéervation will be
reassuring later when it is found that the IN amplitude is

strongly influenced by a pole near the IN threshold.

2.11. OBE Predictions of the IN-AN interactions

As mentioned earlier, the <IN cross sections are not
well-determined and, therefore,' as in all model
calculations, we  need some reasonable premise for
constraining the parameters. The most extensive treatments
of IN to date are the one-boson-exchange calculations of
Nagels et al [18-20] and their results should provide solid
guidance for our fit. Their philosophy is that NN data can
be describéd well in an OBE picture and that, with the
assistance of SU(3) and SU(6) to fix the relative strengths
of coupling constants, the model can be extended

consistently to the YN interactions.

All of their calculations 1include the exchange of
nonets of pseudoscalar and vector mesons, and uncorrelated
two-pion exchange., Recent works also éonsider the
contributions from a nonet of heavy, scalar mesons. The
onlj phenomenology entering their models 1is hard-core

repulsion, and one of the main differences between models is
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the assumptions made regarding the core radii in different
channels. These radii, plus F/(F+D) ratios for meson
couplings are treated as free parameters for fitting all the

IN and AN data.

The resulting fits are impressive; with a x?/data-point
less than one for ¥N in all models. Although in details the
model predictions differ, in general conclusions they do
not. The conclusions of their best YN fit (model D [19]),
which are relevant to our present purposes are summarized
below.

(i) isospin 3/2: (a) !'S,: attractive.

(b) 3%s,: weak and repulsive.

(ii) isospin 1/2: (a) 'Sy: repulsive.

(b) 3S,: attractive, with the elastic
z-p cross section dominated by 3S,—>3S, transitions,
and the I"p—>An conversion dominated by 3S,—>3S, and
3g,—>3D, transitions.

(c) ®P,: attractive, with the forward/
backward asymmetry in the cross section due mainly

to 3S,-3P, interference.

In fact, this model also suggests that the 1=3/2 'P,
interaction is important to the <I*'p description, but to
include this term in our model would require at least one

extra parameter and, since our primary concern is the
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coupled IN-AN systems, such an additional freedom does not

' seem warranted.

These results will be revisited shortly, after
specifying our potential model, but for the moment we only
remark that our initial ~ suspicion that L>0  IN-AN

interactions are significant is supported by Nagels et al.

2.111, T;Matrix Normalization and IN Cross-Sections

Before proceeding to the specific form of the two-body
potentials used in this work it is worthwhile to describe

the normalizations and resulting IN-YN cross-sections.

For two spin-1/2 particles t can be expanded in the
basis of the spin spherical harmonics |LSJM> [21], which are
the eigenfﬁnctions of the sbin, orbital, and total angular
momenta (s,L, and J, respectively), and also of the
z-compdnent of total J (M). The normalization of the basis

states is chosen such that

t= Z |L'S"JM><L'S"JM|t |LS'IM><LS' IM| (10)

IMLY

stsn
1t has been assumed implicitly of course that the total
angular momentum J is a good gquantum number in the

interaction. The spin and orbital angular momenta need not

be conserved separately however. This means that, in
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addition to the expected tensor interaction 2S,-°D,, there
are also spin-changing transitions such as 'p,-3P,, 'D,-°D,,
et cetera. In this work these latter interactions are
ignored. P-wave is the lowest angular momentum state in
which they occur but, according to the OBE calculations, the
‘P, ampiitude is expected to be small in the I=1/2 channel,
and the *P, small in I=3/2., 1t is reasonable to conclude

that the 'P,«—>3%P, transitions are unimportant relative to

the elastic I1=1/2 P, and I=3/2 'P, amplitudes.

To be more specific, let us project out the t-matrix
element for scattering from an initial state of momentum
|k>, and spin |Sv> (with v the z-projection of S§), to a

final state |k'> and |Sv'>. Then it follows from eq.(10)

that
] ' ] 1 ] * JSI 1] 1]
<k';Sv'|t|k;Sv>=3 <a.;Sv'|L'S JM>tuL(k ;k)<LS'JM|Sv; Q. >
JIML (11)
us’

This result becomes a little more familiar 1if the spin
spherical harmonics are expanded in the basis functions
|Lm>|Sv> as, for example
<QgiSv'|L'S'IM>= - <oy;Sv'[L'm'S'v"><L'm'S'v"|IM> ‘
m'vY SR

Ml
2. <L'm'Sy' |IM>Y (0,)6
s L s

(12)

s vy
where <LmSv|JM> is a Clebsch-Gordan coefficient and Yr is a

spherical harmonic. The t-matrix element of eg.(11) in this
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representation is

<k';Sv'|t|k;Sv>= 2 <LmSv|JM><L m'Sv' |IM> (13)
JMLL M’
mm’ v.(a')Y (n)t (k'-k)

Independent of the angular momentum decomposition, t
may also be expressed in an isospin basis, assuming total
I-spin to be conserved. In analogy with the above
derivation, for scattering from an initial state of 1I-spins
|1,i,>|1,i,> to a final state |Ijig>|I7i’%>

<IISITfig |t T i Tgig>= 2, <T1ifIgis |1i><I i, I,i0j1i>

Ii (14)
<Ii|t}ri>

The isospin wavefunctions of the relevant I,A, N pairs are

|T-p>=|1-1>]1/2 1/2>=4]2/3 |1/2>w[1/3 |3/2>
|zon>=}1 0>|1/2-1/2>=~J1/3 |1/2>+w[2/3" |3/2>

(15)
[T p>=|1+1>|1/2+1/2>= |3/2>

|A n>=|0 0>]1/2-1/2>= l1/2>
With these states, the t-matrix decomposes as

<T-p|t|-p>= 2/3 t(1/2)+ 1/3 £(3/2)
<A n|t|z-p>=4[2/3 t(1/2)
<t°n|t]r-p>=x[2" /3t(1/2)K[2" /3t(3/2)
<t*p|t|r*p>= t(3/2) . '

(16)
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We are in a position‘now to derive the differential
cross-sections for the processes described in egs.(14).
With our 6-function normalization of momentum states, the
t-matrix has the same definition as that used by Goldberger
and Watson [22]. Their result for the cross-section
describing scattering from an initial state |e¢> of spin S
and z-projection v, to a final state |g> of spin S and

z-projection v' 1is

dﬂx(Sv';Sv)=(21)“6°(E5-E“)63(55+E§)|t“(Sv';Sv)|sz$dge (17)

p Ve
where v, is the incident flux =|ky|/my, and kg,pp are the
final state momenta. The 6 functions allow us to integfate

immediately over pg and the magnitude of kg, with the result

daup(Sv' ;Sv)=(2w)“%gm‘xm6|toe(5v' ;Sv) | 2dng (18)

Experimentally, only the unpolarized cross-sections
have been measured . Since the incident beam comprises a
random mixture of spins, and orientations, eq.(18) should be
summed over all S and averaged over v - that is, we sum over
v and divide by the total possible spin ' projections
(28p+1) (25 *1). We should also sum over v' since in the

final state all orientations are detected. The unpolarized

cross-section is then
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do o= (2n) *kgmymg (1/4) 2 |td¢(£¢,sv' ko Sv) [2d0g  (19)
4 kx Sy’

If the scattering amplitude f“© is defined in terms of the

fd€’=—4n2/%zm“mb tu¢ (20)

then the familiar relation d¢d¢=|f¢¢|259 results.

t-matrix by

The summation over v,v' can be performed to simplify
eqg.(19). For the moment we concentrate on just the [t]?

term, which.is

|[t(k',Sv';k,Sv)|?%= _s_ <LmSv |IM><L'm'Sy' |IM><L"m"Sv |J'M'>

I y "

e~ <LT'mTUSyt [3TMSTM (R Tt (21)
MY M¥ TS g'sk* .,
Yu,(n)YL(n)tL,L(k HI )tu,,l:(k sk )

@

Specializing to the case where the z-axis 1is the incident
direction, m=m"=0, M=M'=y, and m'=m"'s=v-v', eq. (21)

simplifies considerably since the spherical harmonics become

MI MIII* /
¥ (0" ) Tu(0) = (-)¥ ¥ T<L'OL" " 0[10><L'v=v'L"'v' ~v|10>
AN A
L'E"' Py(k-k') (22)
. .
with  ¥0(myo(m)= TL/an ,  ana  L=(2n+1)'/2,

It can be shown that the summation in eg.(21) plus the

sum over wv,v' Jjust gives 'a product of Wigner 6J symbols
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(appeddix 1), and the cross section takes the convenient

form
- w'A APRA v o
do = ? (kg /ky Mg “)(1/4) Z LL L L"'125252 P, (k*k) (23)
L L" 1 L' L"'l {L"'J' S}{J' L s} tJ,s S,,S,*
l L' J l J L
In our case, where no spin transitions are allowed the above

separates into singlet, and triplet cross-sections.

2.IV. The Coupled-Channel, Separable IN-AN Potentials

We assume that the channel-coupling potentials are all
rank-one separable. " That is, the potential operator
coupling any two channels (6,8) Vupg can be written as
|v“>fp<vp|, in our earlier notation. For- N coupled
channels, the transition operator describing scattering from
the channel | o> éo the channel |[g> (where o,g refer to the
set of all quantum numbers for the state,.i.e. L,s,J,1, plus
a channel label), is in general

N

tgy = IVB>ABG<VQI + IVB>Z )\BY<VY|Gg tya o (24)
y=1

where AP*=-1(+1) for attractive (repulsive) interactions,

and Gf is the y-channel Green's function, defined by
Gg(E) = (E+}.‘.my - (m2+"N) -K2/2uY+ i€>-1 . (25)

with zbr-the sum of the masses of the particles in that
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channel, and u, their reduced mass. Following the procedure
of Londergan et al. [23], we impose the restriction that all
constants )\ are the same sign within any set of coupled
channels. In this case the solution has the particularly

simple form (appendix II)

|vg > 38% <v | (26)
N
-2
‘Y=

tsu =

YY Y
1A <vy|6glvy>

where the summation extends over the diagonal elements of

all coupled channels.

The form factors are chosen to have the behaviour?

<p|vY> C}(sﬁ + pz)-1 for 2 =0,

vyp81l(83+p%) 1 for 2

"
—
-

(27)

"
N
-

v,p2 (85 +p7)72  for 2

where the az‘are the inverse ranges, and Vv, the strengths of
the 1interactions. With the normalization of the t-matrix
given by eq.{(10), the overlap integrals <v|Go|v> in eqg.(28)

are found to be

® dree2v2(k2) T
b = Y'Yy 2.2 . =
[E.‘.Am-KZ/ZuY.'.iE (62'."(.3)2 []/28(6 KY) + IK-Y] , . L=0,

2 Phis choice of momentum dependence ensures that the phase
shift glaapZL" for p—0.
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- =2 A
= 557§§§§%;; [8/2(82-+3K$) + ing] ,e=1, (28)
Y

-7y v2

= 6 L 2 2 4_c.6\4:.5 -
= (62+K$)u [1/168(6 +58*k +158%ky SKY)+..<Y] , =2,

2.V. Coulomb Modifications to the Two-Body T-Matrix

So far no mention has been made of the Coulomb
interaction and yet its inclusion is clearly important to a
complete description of ttp scattering. It will soon become
apparent that another calculational advantage of separable
potentials 1is that it 1is still possible to solve for the
strong interaction amplitude in closed form even in the

presence of the Coulomb potential [24,25].

In analogy with eq.(13), the partial-wave expansion of

the scattering amplitude is

£(k',Sv';k,Sv)=4rn)_ <LmSv|IM><L'm'Sv'|JIM>
) TMLLS M Is

M
YU(QK)YL(QQ fuL(k;k ) (29)
. Js U .
with £ (kK ) = [exp(2iay/) 6, 1/2ik (30)
where Agi is the phase shift in that channel. If the

underlying potential 1is the sum of the Coulomb and a
short-range interaction then it is profitable to write & as

the sum of the pure Coulomb phase ‘shift oL and a
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¢ . J5

Coulomb-modified strong phase shift S - The partial

amplitude can then be rearranged to read

JS

. . C J"'s
£ (k' ik)=6, (eM0u-1)/21k+e? 0 (e? Bl -6 ) /2ik (31)

The first term is just the 1l-th partial-wave Coulomb
amplitude ft(k;k') (apart from the Kronecker delta), and the
second term 1is the perturbed strong amplitudecfii(k';k).
The summation over all angular momenta variables for the
Coulomb amplitude can be calculated in eq.(29) ﬁsing the
orthogonality of the Clebsch-Gordan coefficients with the
result [22]

00
c C ' A A'
£ (e)=§(21+1)f1(k;k )Py (k-k') (32)

exp[2ieo-inln(sin?(e/2))]

n
2ksin?(8/2)

1
and n=am/k ’ o’o=r(1+in) R ¢1=co+£tan"(n/s)
r(i-in) s

Two remarks can be made about this result. First, it
should be realized that when forming |[f|? to calculate the
cross-section, an overall factor of exp(2ie¢,) disappears

. c . : c . .
since it is common to both fi and fgiln all partial waves.

IS

Second, the phasecbuL is not the same as it would be without

the - Coulomb interaction present. In this work we assume
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that the two are the same, and it is the error introduced by

this approximation we now wish to investigate.

At this point we consider the example in which there
are two strongly coupled channels with the Coulomb potential
present in only one of these, as in I“p-An (I=1/2) for
example. The results can be easily generalized to the
multi-channel situation, or specialized to a single-channel
case. The derivation which we follow is an extension of the

single-channel result of Haeringen and Wageningen [24].

The total t-matrix T for Coulomb plus short-range

potentials is the solution of the Lipmann-Schwinger eguation
T(E)=(V +Vg)+(V.+Vg)G® (E)T(E) - (33)
where V,T, -and G° are the matrices
Vg= (Vi1 Vg y Ve=[ve O
(V11 Vaa ) s (0 °>

tiy tae , G°= (G,, O

(34)

-3
n

toqr tao ' 0 Ggg

with v ijr Ve the strong, and Coulomb potentials, and Gij3y the
free two-body propagator (Eij; -Ho)™'. A pure Coulomb

t-matrix to can be defined as the solution of

tez (t$, 0 =Ve+v.G° [t¥, 0 C
0 0 0 o) (35)
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and the total t-matrix written as the sum of te. and a
Coulomb-modified strong amplitude tg. After a little

algebra it follows that tg is expressable as?
S (B)=[ 1+t (E)GO (E) TS (E) [ 146 (E) t¢(E) ] (36)
where'?g(E) is the solution of
TE(B)=Vg+vgG6 Y (E)T S(E) | (37)
and G® is a Coulomb propagator matrix, defined as

6¢ =Go+Got Go= (G?, o>

0 G (38)

With G1c1=(ET1"Ho—VG)-1

The only difference between '?g(E) and the purel§ strong
t-matrix [eqg.(24)] is the replacement of the free propagator
G° by oné appropriate for interactions in the presence of
the Coulomb potential. If the Vij are all rank-one
separable IVi>Ej<Vj| with all éj equal to )\, then ?g(E) can
be obtained algebraically:

TS(E)= ___[v>a<v] = |v>D®(E)<v] (39)
- (1-x<V|G€(E) |V>)

where |V> is the column matrix of |[vi>. From eq.(36),

Coulomb modified form factors may also be defined as

The angular momentum projections of the operators in
egs.(36) and (37) obey the same equations.
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|Ve(E)>= (1+t (E)G°(E))|V>
= (1+t11(E)G11(E))|V1> (40)

[ve>
In the notation of eqg.(39) the t-matrix becomes

tg(E)= |V (E)>DE(E)<V(E) | (41)

To compare the phase shift predictions of eg.(41) with
the corresponding results where the Coulomb potential has
been turned off we specialize considerably to the case of
single-channel scatfering with rank-one Yamaguchi form

factors (pg%+p?)-"'.

The solution of ﬁiE) in eg.(39) involves some
non-trivial integration, leadfng to the hypergeometric
functions. ~ However, to lowest order in the fine-structure
constant o, Haeringen [25) has shown that the Coulomb

modified scattering length and effective range are

Y _2sv(r+1ln(4v))+0(v?)

W)

=E'

s 3

s=rse - "+2y/p(1+2/(3pag ) )+0(v?) (42)
2

[ S 11a)

where wv=om/g, » is Euler's constant (0.5772...), and ag,rg

are the corresponding values with no Coulomb interaction.

1 =-g(g3/(xrmvi)+1/2)
ag
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s =(4/pag+3) /28 (43)
2

and v is the strength of the interaction.

At low energies the phase shifts are related to the

effective range expansions by

kcotég =1/ag+rg k?/2+0(k*®) : No Coulomb (44)
2nn_ kcotsS +2knh(n)=1/a§+rSk?/2+0(k%) : Coulomb (45)
e?.ﬂ'n -1
with h(n)='7+lnn+n2;%[1(12+n2)]"

\

and since all the IN data exists for energies less than 8
MeV and v=.0185, this approximation should be adequate for

our purposes.

Anticipating the results of this comparison of the
phase shiffs, the I*p scattering parameters of section
2.VI. will be wused. These values are §=1.053 fm-', and in

'S, as=é.338 fm, rg=3.681 fm, (a$=3.380 fm, r$=3.493 fm),
and in %S, ag=-.358 fm, rg=-7.232 fm, (a%=-.399 fm,
r$=-6.766 fm).

The phase shifts in I=3/2 'S,, and 3S, corresponding to
the two expansions eqgs.(42) and (43) are given in table I
for energies less than 10 MeV. 1In the energy region of the

IN data (~3<E<~7 MeV), the Coulomb modifications to the
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E 'So 38,
(MeV) ° O o cO
65 6 6 6

1.0 30.4 22.2 -3.26 -2.44
2.0 35. 1 29.8 -4.45 -3.75
3.0 36.8 34,1 -5.27 -4.85
4.0 37.4 35. 1 ~5.90 -5.54
5.0 37.5 35.5 -6.40 -5.98
6.0 37.2 35.8 -6.80 -6.33
7.0 36.9 35.7 ~7.13 -6.68
8.0 36.5 35.6 -7.41 -6.97
9.0 36.0 35.3 -7.65 -7.23
10.0 35.5 35.0 -7.85 -7.46

Table I. Comparison of the Coulomb-corrected phase-shifts &
with the purely strong phase § in :'p scattering
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strong phases may be neglected, to the extent that the
correction 1is less than 5% of 65 and yet the errors in the
data typically exceed 20%. In I°p interactions the
influence 1is expected to be even smaller since the Coulomb
potential is not present in the coupled AN channel and the

propagator is unmodified.

2.VI, Results of the Fit to the IN Data

With the t-matrix completely defined for IN scattering
our problem now is to minimize the number of parameters in
the model without sacrificing any of its essential features.
The difficulty is especially clear since, regardless of the
chronic shortage of IN data, it was decided earlier that the
description of the I=1/2 channel required P and D waves to

be included.

Consequently we are obliged to make some rather severe
assumptions about the interactions to arrive at a unigue
fit. First, the range g-' is arbitrarily chosen to be the
same in all channels. Clearly, in a more realistic
calculation the AN. potential is expected to be of shorter
range than the IN interaction. For example, -the longest
range contribution to the IN potential 1is generated by
one-pion exchange, whereas in the elastic AN interaction two

pions must be exchanged. On the other hénd, each r in
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AN—>AN scattering 1is emitted with roughly 80 MeV of energy
corresponding to the I-A mass difference. To some extent

this compensates for the shorter range of the two n process.

Second, in S state the 'S, strengths are related to 23S,

in each 1isospin channel by the weighting |g with the

g Syl
signs the same as (gz-lN)(gz-gN), in agreement with the OBE
calculation. We also include the I=1/2 3Py waves assuming
the potential strengths to be attractive, and equal in all
total J states. Finally, an attractive ?D, interaction is

included in the AN channel, but is ignored in IN because of

the large kinematic suppression of D-waves at low energies.

Assuming the I=1/2 strengths to be the same in both IN
and AN channels, this gives a total of five free parameters;
a single range g-', and one strength parameter in each of

the 1=1/2 3s,, 3Py, 3D,, and 1=3/2 3S, channels.

The five parameters of the model were adjusted to fit
all the existing IN data, which comprises:
(i) elastic I-p,I'p differential, and total <cross
sections [15],
(ii) conversion I“p—>An differential, and: - total cross
sections [14], and the |

(iii) charge-exchange I p—>I°n total cross section [14].
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Because of the small angular region explored by the
experiments, the total cross sections‘quoted in those works
are.the differential cross sections integrated over the
small angular interval and then multiplied by a factor

appropriate for an isotropic distribution. That is,

_ . COSBMAX 45 (o)
OzN = cosOay - cosGMlN./ T dcos® . (46)

COSBMIN

Since with this definition the total cross sections contain
Coulomb amplitudes, and neglect possible P-wave

contributions in extrapolatihg to all angles, we have
decided to follow the experimental procedure in comparing

calculated cross sections with the data.

" The results of our fit are shown in figs. 2 and 3 and
it is found that, despite the heavy constraints placed on
the parameters, the fit |is over—-determined, with a
x?/data-point of 0.75 for the 45 points, indicating that the
errors in the data have been over-estimated. The best-fit
coupling strengths are listed in table II, and in table III
the scattering lengths and effective ranges in the elastic
I-p channel are given. Also, the phase shifts (6), and
absorption coefficients (n) for elastic I p scattering in

the separate LSJI channels are shown in figs. 4.
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Fig. 3. The low energy IN total cross sections. a) Elastic
I*‘p reaction, b) I"p —> An conversion, <c¢) elastic
I"p reaction, and d) I"p—>I°n charge-exchange.
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1=1/2 1=23/2
1s, 35 3p, 3p, 1s, 35,
ls, 164 .46 0 0 0 -38.314 0
3s, 0 -54.822 0 -37.581 0 12.771
3p, 0 0 -14.357 0
3p,; 0 -37.581 0 -25.762
Table II. Best-fit coupling strengths VBAB“VG (Mev/fm). Strengths
are identical for IN and AN channels, except for 3D,
which is ignored for IN. B=1.0563 fm™! in all channels.
1=1/2 1=3/2
a fm r a o T
s, -1.448 + {0.374 0.515 - §0.595 4,338  3.682
35, 1.027 + ik.757 3.010 - i0.717 -0.358 -7.232
3, 1.045 + 10.461
TableIll. Scattering lengths a and effective ranges r in the

elastic I"p channel.
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Fig. 4 . Phase shift & and absorption coefficients n
for IN—>IN scattering. a) 'S, 1=1/2, b) ?3s,
I1=1/2, c) 321 1=1/2, and d) 'S,, %S, 1=3/2.
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Considering the poor quality of IN data it 1is clear
that the fits obtained will not be sensitive to even large
changes in the parameters. However, there is an accurately
known datum, free of P-wave contributions, that is sensitive
to the ratio of 3S, to 'S, amplitudes. This is the capture

ratio at rest,

R=§: (2s2+1) _ (_°zs+1(’5-9‘*2°")_ __, (47)

& 2s+1(Z7p*An) + 036541 (Z7p>LI%n)
where 2S+1=1,3 for singlet, triplet respectively. The
calculated value of R is 0.485, in excellent agreement with
the measured value of 0.47+0.01 [ref. 18, and references
given therein]. With some <confidence we can look at the

predictions of the model in more detail.

Most importantly it is found that the inclusion of the
I1=1/2 P and D-wave terms is essential to the description of
IN—>AN conversion. The P-waves comprise less than 2% of the
elastic fp cfoss section at 160 MeV/c 1lab momentum, but
yield nearly 16% of the conversion cross section. The I=1/2
5s,—>3?D, transition is even more important, contributing 25%
of the conversion cross section. 1In agreement with Nagels
et al., we find that the I=1/2 ?S,—>3S, amplitude dominates

the I-p reactions and is responsible for 75% of the elastic

cross section and over 50% of the conversion reaction.

The 1=1/2 %S, amplitude is of particular interest. In
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the reaction K@—=>nr"Ap a strong enhancement of the Ap
invariant mass distribution has been established near the
I*‘n threshold [26]. It has often been suggested that this
enhancement cannot be explained by threshold effects alone
and that the cusp arises from either a nearby resonance pole

or an unstable IN bound state in the ®S, channel [27].'

The status of this pole has been addressed in several
model calculations. The OBE calculations of Nagels et
al. do not support a bound state, but their results are
fairly sensitive to the parameters in this respect. In some
of their models no resonances are found [18,20] while others
predict a resonance above the I*n threshold on the
unphysical energy sheet [19]. Toker et al [28] have studied
the K-d—=>n " Ap reaction in a Faddeev calculation. Using only
S-wave separable interactions,? they found that the data
could be reproduced with or without a IN bound state but
that the best reproduction of the shoulder in the Ap
distribution favoured a resonance pole rather than a bound

state. This model (A) placed the pole on the second Riemann

This state occurs in the SU(3) {10} representation of the
dibaryon system, another member of which is the deuteron.
At least according to exact SU(3) symmetry, one therefore
expects a pole in this IN amplitude.

Toker et al reproduced the IN total cross sections using
only the I=1/2 3S, interaction which probably results in an
over-sensitivity to the pole position.
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sheet at a momentum of k=0.162-i0.163 fm~'.

The results of our work support model A of Toker et al,
producing a pole above the I'p threshold at
k=0.163-10.082 fm- ', The close proximity of this pole to
the physical sheet creates very strong energy dependence in
the scattering amplitude near threshold. This 1is
demonstrated in fig. 5 where, with zero coupling to the 3D,
AN channel, the variation of the off-shell amplitude
-amt (k'=k=0;E) near threshold is shown for different wvalues

of the %S, coupling strength.

This strong energy dependence of the (dominant) 3§,
amplitude will be of particular importance to our study of
hypernuclear states. Clearly the large enhancement of the
I p—>An convgrsion near threshold will tend to decrease ;he

lifetime of the I-hyperon in the nuclear medium.
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CHAPTER 3 THE I-NUCLEUS POTENTIAL

Very little is known about the nature of the I-nucleus
interaction, and one of the few indications we do have comes
from Batty's analysis of I- atoms [12]. 1In that work the
atomic energy shifts were reproduced with a phenomenological

potential of the factored (tp) form

4n

v = -

(1 +-'-1m-N§>A 380 (r) (48)

with the medium-corrected IN scattering length 3 treated as
a (complex) parameter. As pointed out by many authors
though [1,9], the value of a@p consistent with the atomic
data leads to predictions for the widths of hypernuclear
levels which are very broad. (For example, in s-state Egc,
calculations using eq.(48) give Tr~22 Mev [9]). Further,
this effective scattering length bears little resemblance to
the free wvalue, differing by as much as an order of

magnitude from some IN analyses. (e.g. 0.19i fm as compared

with the 1.22i fm of the present work ).

3.1. The Need for Many-Body Effects .

It is clear from the above results that nuclear
many-body effects must play a critical role in the
connection between free IN, atomic IN, and nuclear IN

interaction descriptions. Amongst these effects, Pauli



51

blocking of the final state nucleon in IN-AN conversion and
the binding of the nucleons are expected to be most

significant.

In the atomic situation, the I is bound with
essentially zero energy in a Coulomb orbital of high angular
momentum and, therefore, absorption occurs primarily on the
loosely bound valence nucleons at the nuclear surface. This
is a region of low density and correspondingly 1low Fermi
momentum (within a local density approximation). For
example, in 32S the 4f orbital is the lowest level reached
by the £- [12], and absorption occurs mainly in a region of
~1/5 the central density [29]. The local Fermi momentum is
therefore ~60% of the central value, or ~150 MeV/c. Since
the momentum of the final state N in IN—>AN decay is rougﬁly
twice this value Pauli exclusion should not have too large
an effect on the absorptive strength of the potential in

this circumstance.

A I bound in the ground state of a ‘hypernucleus, on the
other hand, is confined almost exclusively to the nuclear
interior and absorption occurs mainly on the deeply bound
s-state nucleons. In this high density central region both
nucleon binding and Pauli effects make important

modifications to I absorption.

To appreciate the size of correction that nucleon
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binding may introduce, consider a I bound with (say) 5 MeV
which is absorbed on an s-state nucleon bound with 35 MeV.

The total energy of the pair is -40 MeV and upon decay the
AN pair emerges with +40 MeV, Phase space considerations
alone require that the amplitude for this conversion be
reduced by ~30% relative to the atomic case where the IN

pair have roughly zero energy.

In addition, for the IN decaying at rest the final
state nucleon emerges with 285 MeV/c momentum which is
comparable to the Fermi momentum at the central density.
This implies that a large proportion of decays are forbidden
because the final state nucleon 1is produced with sub-sea
momentum, (i.e. The naive picture presented above predicts

~50% suppression for xg=285 MeV/c).

These simple estimates have been essentially confirmed
by Dabrowski and Rozynek [30]. Using an OBE potential of
the Nijmegan group [19] in Brueckner reaction matrix theory,
they demonstrated that in nuclear matter Pauli e#élusion

suppressed IN decay by 50% from classical estimates.

On the basis of. these arguments Pauli blocking and
nucleon binding are essential features in understanding the
lifetimes of I states and a complete microscopic description

of the hypernucleus must take them into account.
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3.11. The § Single-Particle Potential

We turn to the problem of constructing the I-nucleus
potential with special attention to many-body effects. The
coupled equations describing the I + A-nucleon system

(assuming only pair-wise interactions) are

(KA“ZK +ZVAA+;— ; ujj- (E+AmzA)>|‘i’(l...A;A)> (29)
1#] .
= 'ZV}\2|W(I...A;Z)>,

(Kz EK +ZVZZ x ; Uij'E)l‘P(l...A;Z)> - ’ZV£AI‘¥(|...A;A)>,
1#]

The Kj are single-particle kinetic energy operators, vyy'and
ujj are two-body YN and NN potentials, the ¥ are the Y + A

-nucleon wavefunctions, and Amg, is the I-A mass difference.

The diverse schemes for approximating solutions to
many-body eguations like (49) form the foundation of the
whole field of nuclear structure physics. These techniques
stem from the observation that, as a good first
approximation, the nucleus comprises particles which move
independently - each bound in an . average potential generated
by all the other particles., The  success of the
independent-particle model in predicting many features of
nuc;ei.suggests that the most important corrections are due

to two-body correlations.
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Specifically, we need to extract the interaction of a
single ¥N pair from each of the (A+1)-body equations (49).
The sum over YN potentials in each channel can be written in
terms of the I + nucleon pair, A + nucleon pair, single

particle, and residual interactions as

: . (50)
D (viglv(z)> + vial¥(a)>) = VB [¥()> + VB ¥(n)> + Vg |¥(2)>
i

+ [z(vgﬂw(z)uv;“w(/\p)- vz|\y(z)>],
| i #A
Z(v}mlw(A)>+.v}\Z|w(z)>) = VAL [(n)> + VAo () > + vy ¥ (n)>
I .
+ [2(v}m|w(/\)>+ v}\zlw(z)>) - vAlw(A)>] .

i£A

The Vy are the hyperon single-particle potentials and the
aim 1is ﬁo define them such that the contribption from the
residual interactions (the terms in sgquare brackets) is
minimized. In other words, we wish to find the Vg that
gives the best possible estimate of the [ energy in an

effective one-body Hamiltonian.

Similarly for nucleon A we may write

% Zuij =-;— Zuij + Uy +<ZUAJ-UA>'

i i j#A iz (51)

and U, is the nucleon single-particle potential. Neglecting
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the residual interactions, the hyperon single-particle

potential operators are defined formally using eq.(49) as

1

Vo lw(z)> = Y (vig+ v x
I Izt VA ~Ky-ZK: -Up- ij=Va-

x Zvjz)lw(zb ,

J
. . ]

Y I‘P(A)> - Z(vl + v X (52)
A AT AL (E-Ky-ZKi-Up-1/2 T uj:-Vg-

i7h PV T

x zv%A)l‘i’(Ab ,
J

and where, for economy of space, in the equations (50)-(52)
the (A+1)-body - wavefunctions [#(1...A;Y)> have been
abbreviated to |#(Y)>. Because residual interactions have
been dropped in the propagators of eqgs.(52), matrix elements
of Vy taken between independent-particle states will-

restrict the sum over j to the one term j=i.

The (A+1)-body equations themselves now become

(KZ+KA+KA_i+v§Z+VZ+UA+% 2 uij-s)f\y();)> = 'VéAI‘V(Ab , (53)
i#j#A

1
(KA+KA+KA_]+VﬁA+VA+UA+E E Uij'(E"‘AmzA))i\y(A)) = -Vﬁzl\y():)> .
A FA :

The IKj has been divided explicitly into the nucleon-A and
(A-1)-core kinetic energy operators to emphasize the

three-body nature of the interaction. That the equations
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(53) are indeed three-body equations, and that the recoil of
the core is necessary in guaranteeing elastic unitarity has

been stressed by many authors [31,32].

The IA pair can now be isolated from eq.(53). Defining
the YA pair wavefunctions |¥454(IA)>, and |¥,x(AA)> as the
overlap integrals <&(A-1)|#(f)> and <&(A-1)|#(A)>, with
<¢(a-1)| the (A-1)-core wavefunction, eqs. (53) are

multiplied to the 1left by <¢(A-1)

. Further, separating
Ka-q4 into centre-of-mass and internal components, it is
found that, since only the average of K:ﬂ;1/2£uij is needed,
this internal Hamiltonian can be replaced by E-Egx, where
Esx is the IA pair energy. Finally, writing the Y and
nucleon kinetic energy operators in relative, and
centre-of-mass terms they can be combined with the core

kinetic energy to give

KY+KA+KXT, = Kyp + P2/2uy ,
with (54)
vy = ma.y (my+my)/ (mp+my)

and where P is the YA pair total momentum as measured in the

Y-nucleus rest frame.

Assembling all of the above results we arrive at the

coupled YA pair equations in relative co-ordinates



57

(Kza+P2/2up+vss+Vs +Up-Eoq ) [Woa (ZA) > = =vga[vaa (AA)> (55)

(KAA+P2/2uA+VAA+VA+UA“(an+AmzA)) waa(AA)> = -VAE!wga(zA)> .

As pointed out earlier, Pauli exclusion is expected to
play an important role in the [ lifetime. These effects can
be included explicitly by modifying the two-body potentials
Vyy/to the form QuVyy» Wwhere Q. is a projection operator for

hyperon and nucleon states defined as

QW =1y ® (|G><a|+ Z |Y><Y|) . (56)
Y>Kg ,
Here the |[x> are independent-particle states for the
nucleons, .and the second term in eq.(56) projects only onto
those states unoccupied in the nuclear ground state. The
presence of the operator 1 for projection on hyperon states
just reflects the fact that no Pauli restrictions apply to

the hyperon in the nucleus.

If the potential Vg has been chosen by a variational
procedure to yield the best single-particle energies e, then
the difference between Eg) ¥y, >~ <oo|vgy| ¥y >|00>-<aa|vs,| ¥, >
lce> and (es+ex) |¥g> is a second order correction, and

therefore eq.(55) becomes
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(KZA+P2/2“Z+QVZZ+VZ+UA'(€0+Ea))lwca(ZA)> = ~Quzplung (MA)>
(57)

(KAA+P2/2uA+QVAA+VA+UA'(eo+8a+AmzA))lwAa(AA)> = =Qvaz [¥ga (ZA)>

where Q projects only onto unfilled levels in the ground
state. In this form it is convenient to eliminate the AA

wavefunction from eq.(57) to give the IA pair equation
(Kza+P2/2ug+Quzp +Vi+Up) [4q (ZA)> = (eg*eq) [Woq (ZA)> (58)

with the effective IA complex potential vya defined as

]
s vpy + . (59)
VIA IL ¥ VIA Tegteqtimop-Kaa-P2/23n-Ua-VA-Quin) Qv

Asymptotically | ¥goc > must reduce to the model
wavefunctions |e6> as vy,—>0. Therefore, |[¥;4> 1is the

solution of the integral relation

1

TA)> = + IZA)>.
|¥oa(TA) |o0> (e + €4 = Kgp = P2/2up- V5 = Up) Wza Voa(2A)> (60)

If we now introduce the Brueckner reaction matrix r, which
has the property that Tx|66> = vg,a|¥5x> then, using eg.(60),

Ta 1S

Ta = via*+vialeg +eq = Kpp =P2/2up- Vp-Up)~1 Q1q . (61)

Here vy, is the effective IN interaction, in the sense that

T acting on the model wavefunctions is eguivalent to Vea
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acting on the pair wavefunction.

At this point we are in a position to define the I
single-particle potential. Since vgp is independent of
particle labels the I-nucleus Schroedinger equation can be

written as
(Rpa*tHy*Avsp) [#(2)> = E |¥(D)> , (62)

where Kga 1is the I-nucleus kinetic energy operator in
relative co-ordinates and Hy is the internal nuclear
Hamiltonian. Provided only the ground state expectation
value of eq.(62) is needed, E-Hy can be replaced by 4.

Multiplying eq.(62) to the left by the ground state nuclear

wavefunction <0| produces the I single particle equation

elq) = K2A|¢> + A£<G|VZA|*Ua> (63)

=(K2A+A£<a|nx|a>)|¢>
Therefore, the single~particle potential is clearly

Vele> = A£<cln‘|ad> (64)

Specifically, introducing the I states '|k>,|k'> the

total I potential is

Izl =30 [ap oiip-adek’s prglralu) [iip> talp) . (65)
s ] -
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where q is the three-momentum transfer, ¢, is the nucleon
single-particle wavefunction, and o« 1is the complicated

energy variable defined by eq.(61).

Until now the development of Vy has been purely formal
and so it is worthwhile to consider what Vs means at the
microscopic level. First of all, let us expand the integral

equation (61) for v in the Born series

<6a|T|60>= <¢a|v8A|¢a>+§:<¢a|valqu 0 <¢aJva|¢a> (66)
€ tey €5 €

+Z<ac|vZA|aa> Q <ac|va|fcf'> Q <c”a'|v2A|ao> +.
gﬂz’” €t ex € €ct) (egteu— €5 € )

where, as usual, the Q operators restrict the summations
over |e¢'>, |e"> to nucleon states above the Fermi sea. In
addition to this infinite series, the definition of vpa in
eqg.(59) shows that each term <oo|vgp|oo> implicitly
comprises all possible AN intermediate states and so can
also be expanded in a infinite series. If we simplify the

notation of the propagator G of eqg.(59) to the form

then G = G°+G°QVaaG , ~and G° = (egz*tampeerHo) ™!
with Ho= KAa+PZ/2m+Up+Vp .

The effective potential VEA is equivalent to the series

<oa|v2A|oa> = <oa|v2z|oa>+§:<aa|v2A£ca14;Q <ao;v ar | @8> (68)
€gteq—€r" €
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+Y <co|vgp [Xé> © <Xd|vpp [Xd> Q@ <XNd|vpp|co> +...

Xy (egteq—€r-€x) (egtex—eX—ex)

This series for «r is shown graphically below. As is
standard in Goldstone diagrams, arrows pointing into a
vertex are states occupied before the interaction, and

arrows pointing away are states occupied afterwards.

<¢a"r|¢a> = O’QVV’V’OOL‘!’G‘O( +o'.oc+...(69)

and each wiggly line of the form “}vvwmd“!represents the
each c o

infinite series <dd|vgy|oa>:

(o} o«
. s -3 . VAE"“
5 " s o . .-.VAS-..- i} i[/ “I'ﬂ
e == SIUR ¥ g + by ol + e AfA ATSse + voe(70
s’ ZA £ & ZL ol < AN ot (70)
. , ....Vz'\..... , .
6 ot , ..w’\nun /
(o3 ol

A sum over all intermediate states is to be understood in

these diagrams.

So we find that using this definition of the potential
Vy to calculate the [ binding energy is equivalent to
summing the contributions fromm all possible diagrams which

involve only two particles. 1In other words, higher order
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1

corrections to the [ energy must involve at least three body

clusters .

In practice Vy is difficult to evaluate, particularly
since o also depends on Vjg. The best approach is the
Brueckner-Hartree iterative ﬁethod in which r is calculated
initially wusing a reasonable spectrum of single-particle
energies and the single-particle potentials in o are set
equal to =zero. Vg is then determined by eq.(65) and a new
value for the I energy 1is fixed by the I-nucleus
Schroedinger equation. This cycle 1is repeated until a

self-consistent solution is achieved.

A remark worth making at this point is that a complete,
self—congistent solution would also include optimization of
the nucleon‘sinéle particle states since the contribution of
the IN potential. to U, perturbs the nuclear density.
Fortunately, this influence can be safely ignored since
first, it 1is an O(1/A) correction and, seéond, it is known
experimentally that the I is only weakly bound (if at all)
so that the IN potential must be weak relative to NN

interactions.

3.111., Approximations in the Single-Particle Potential

In the present work we shall not demand a fully

self-consistent solution. We wish is to approximate eq.(65)
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to a more manageable form while retaining its most important
features. Essentially our aim is to apply the
Brueckner-Hartree method only to first order. That is, the
single-particle potentials entering r will be set equal to
zero and then the momentum-space Schrodinger eguation solved
self-consistently for the ¢ binding energy. Higher-order
corrections to Vg would involve the I and N potentials but
in this work the primary interest is the 1lifetime of the
hypernuclear levels and, therefore, with _the energy
available in asymptotic states. The energy dependence

defined above should be appropriate for this purpose.

In partial compensation for this ambiguity 1in the
energy dependence we invoke closure approximation to replace
the nucleon energies e, by an average value -~B which 1is
treated as a parameter in  practice. Our final
simplification 1is to replace 1+, by its spin-, and
isospin-averaged value 7T, which is exact to O(1/A). The

expression for the [° single-particle potential is then
vkt ki) = fdp Tl oki) 3 65(p-a)alp) (71)
a

where k,k' are the initial and final state I-nucleus
relative momenta; «, x' are the initial and final state IN

momenta in the IN rest frame, and ¢ is the three-body energy

w:eE-B-(E.,.E)Z/Zuz . (72)
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Despite our simplifications, the many-body effects
embedded in r still make the integrand of eq.(71) a very
complicated function., It can be seen from the integral
relation (61) that r resembles the free IN t-matrix except
that the free propagator has been replaced by one
appropriate for a I interacting with a bound nucleon. This
analogy can be pushed farther. 1If partial-waye mixing in
}s ignored (which is equivalent to using the angle-averaged
Pauli operator [33,34]) it can be shown that to describe

scattering from the state |e¢> to |g>, r satisfies

-1
]VB>AB°<1 - :E: AYY<VY|Q°GY(w)|VY>> <vgl s
Y

TSQ(M)

(73)
I VB>DBa(w) <VG| ,

where Q° 1is the angle-averaged Pauli operator (to be
discussed fully in sect. 3.1V.), the |v,> are the form
factors of the separable potentials of chapter 2, and the

summation over y includes all coupled channels.

The main difficulty presented in integrating eq.(71) is
the angular dependence of the energy variable o, since all
other facfors normally have a closed, analytic form. A
number of approximation schemes have been. devised to
circumvent this difficulty. In the simplest, fully factored

form + 1is removed from the integrand and evaluated at some



65

'‘average' value of the nucleon momentum.. A much better.
approach is to leave r within the integral but replace all
angles in r by their average value [32]. Although the
latter is much better than the former, the angular
dependence is still treated only approximately. The obvious
successes of such models in describing scattering situations
may be attributable to incident energies which are large in
comparison with nucleon energies, and a r which is a slowly

varying function of energy.

A priori, neither of the above features can be expected
to hold true in I hypernuclei. The £ and N energies are
comparable in the hypernucleus. Perhaps more importantly,
all separable potential predictions of IN scattering lead to
strong energy dependence in the (dominant) 3S, I=1/2 channel

near threshold [c.f. section 2.VI.,and also ref. 28].

Conseguently, we make no further approximations in
evaluating eq.(71). That 1is, we evaluate the full,

three-dimensional integral exactly.

The potential (71) can be put in a more convenient form
for angular integration by changing variablgs from the
nucleon momentum p to the IN total momentum P=k+p. In this
way o becomes a scalar function of P and all angular
dependence resides in the simpler r form facEqrs and nuclear

wavefunction. With this substitution Vy becomes
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VoK' kiEp) = fap Tk -ep k-ePsu(P2)) F(B-k3P-k)
(74)

and € = my/(mp+my), and F(P-k';P-k) = D ¢a(P-k')o,(Pk) .
Q

With harmonic oscillator single-particle nucleon

wavefunctions F may be expanded in partial waves as

-=2({p2
PRk s8mk) = Fo (14a2u(P2op () 4 ok ) o2 (PP ORI 2 )

= f e-az(P2+5(k2+k'2)):E: (zzfl)(22'+l)(o
28’

(o] + 1 ‘.A'>
gartPggrkek

P (PP, (Pek") ,

. 2 (75)
with fo=4a?/w3/2, y=(A-4)/6, and a? chosen to fit the
r.m.s. matter radius [35]. This result follows by'expanding
the exponentials separately in partial waves and using the
recursion relations for Legendre polynomials. The functions

Pgl.and Pjg are given by

02y r = (1-v(+27)+a20P2) 1 (x) 10 (x") = v (xi gy () ipo (") +x" 1y (X iy (x),

pil, = azvkk'il(x)iz,(x') , (76)

with x=a?Pk, x'=a?Pk', and the iz are modified spherical

bessel functions.

Similarly, the two-body r can be expanded as a function
of the three angles i~§',§-i, and P-k'. The normalization
of r is chosen to be the same as was used for the two-body

t-matrix. The spin-, and isospin-averaged r is then
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(77)
T(e! ciw) = (24+1) (2141 ..
Tl iese) = 1/4n ;é ) TBEJ(K"K;M)PL(K'K') ,
ILSJ
1 by , '
with Trsy (k7o) = v (x)DLc (w)v ()ebe'L

In our case the v _ are the Yamaguchi form factors in

both S and P waves.

Note that eq.(77) defines the expansion of ¥ in the IN
centre-of-mass whereas the integral (74) requires T in the
I-nucleus frame. Using x =k-¢P, and x' =k'-¢P it has been
shown [36,37] that the general relation connecting spherical

harmonics in the two frames is

L' 22t = (b 2L+1\/2L+1) - ] Y -a,,L-
LP (Rek") = (4m)2 ) << o )( o ) (2a+l)(2b+l)> (-cp)@*byL-asL-b

% "
(78)
al-aLVybL-bl a iy B Ay mea, ~y o meBE, A
(anra-m Bm-B-m>Ya(P)Yb (P)YL-a(k)YL-b (k') .
The two-body form factors expand as
= 24 (L~ 2\-1 _ _1 B2+k24¢2p2 A
V) (B (k-ep)?)™ = o ; (2."”)%(#) Pr(P-k),
= D0 valkiP)Po (k) | (79)

n

wvhere the Q, are Legendre polynomials of the second kind.

With equations (75)-(79) inserted into eg.(74) the
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angular integrals can be performed. This is a fairly

straightforward, but lengthy, exercise producing the generai

result (appendix III)

Vz-(l.u’lf;Ez) = /g Z (22+])vz(kr’k;Ez)Pz(Q,ﬁr) ,

where 1
Va(kisEg) = hrfoea?/206342) fupp2e=a®p? 30 B2 (227+1) (2277 41)
2'-0 l"z"!
02"2", 2 (2J+]) (ZI+') D J( )Z ( Ep)a"'b kL a k'L b
ILSJ
. r (2L)! (2L)! 1/2
;ﬂ:"n(""’)"m(k 'P)<(2a)!(2(L-a))! (2b)!(2(L—b))!> (2L+1)

. 2 2
(ZL""]) (2L"+])(2L'"+]) (ZL'V+])<£ [ L'> <n L L">

L'L"L"'Liv 00O 000

nvﬁmL")z(L' U’L-a)(L'L"'L-b bL"LIV)/a L LIV
(60 0) (oo )G oo )o ' 0 )(o 0 0 )

(L-a L' L”
L L-b b .
a L™ Liv

(80)

This is not a very convenient-looking expression, but
with only § and P waves included in ‘v it simplifies
considerably. Then at least two of the entries in the 9J

symbol are always zero, thereby reducing it to a 3J.

The advantage of the above form is that we have found
it possible to reduce the Brueckner potential to an exact

one-dimensional integral without relying on untested
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approximations affecting the energy dependence.

3.IV. The Pauli Exclusion Principle

So far the Pauli principle has only been introduced
formally into the IN interactions via the operator equation
(61). It has been repeatedly stressed though that Pauli
effects will be a major factor influencing the lifetime of [
states, and so in this section a closer look will be taken

at the Q operator.

As defined by eg.(56), Q projects onlyvonto unoccupied
nucleon levels invthé nuclear ground state, and thereby
excludes the propagation of the intermediate state nucleon
through filled states. The formal similarity of the
Lipmann-Schwinger equations for r(w) and the free t-matrix

t(e) can be exploited to write the exact relation
r(0)=t(6)-t(0)0Gs () r (o) (81)

where the matrices in eq.(81) couple the IN and AN channels
(but have not been expanded in partial waves). Ggy(w) is the
propagator in the nuclear medium, with the energy dependence
« defined by eq.(72). The operator Q=1-Q projects onto

occupied levels in the ground state.

Since r is embedded in the three-body space of the I,N,

and (A-1) spectator core, matrix elements are taken between
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states |k,P> and |k',P>,with k the IN pair relative
momentum, and P the core momentum relative to the pair.

That P must be the same in initial and final states is
simply a reflection of the fact that the core is
non-interacting. Similarly, the other operators have the

matrix elements
<k',P|t(e)|k,P> = 6(P-P")<k'|t[e,P?]]k> (82)
<k',P|QGo (o) |k,P>=6(P-P")6(k-k')3(k,P)Go[w,P?]

The notation used above is intended to emphasize that t and
G, depend on P only through the magnitude P? , whereas
Q(k,P) depends on the angle k-P as well. For example, in

nuclear matter the operator Q is

¥(k,p)

1 for |k-nP| < Kggrmi - (83)

0 otherwise

with ﬁ=mN/(mN+mz), and nP-k is the momentum of the

intermediate state nucleon.

The difficulties of incorporating the Pauli principle

exactly become apparent in the integral relation

<k',P|r|k,B>=<k' Itl£>-fd2 <k'|t|p>Go()Q(p,P) (84)
 <p,P|r|k,B>

If Q was angle-independent then eq.(84) could be expanded in
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A

partial waves with k-ﬁ' the only angle., However with 6
given by eq.(82), r(w) clearly depends not only on k-k' but
also on the orientation of the relative momenta with respect
to P. It 1is then impossible to expand eq.(83) in partial

waves of definite angular momentum.

It has already been seen in the partial wave expansion
of the I single-particle potential that partial wave mixing
of the IN interaction arises just from the three-body
kinematics. Now it is apparent that mixing also arises from
the complete description of the Pauli exclusion process. 1In
practice this latter complication can be overcome by using
the angle-averaged value ofla. That is, Q is expanded 1in
partial waves and only the 1=0 term is retained. For the

nuclear matter Q of eq.(82) this expansion is

S(k,p) = £ O, k;p)p, (k-B) (85)
='= f=o L7’ £
with the coefficients
Q (k;P)= 6oy  for k+nP < kg (86)
=0 - for |k=nP| > kg

%[P2_1(x0)-P£+1(xo)] otherwise

and xo=(k?+92P%-kZ)/27Pk. The Py are Legendre polynomials.

Replacing 675,2) by Oo(k;P) certainly simplifies r

cohsiderably, but it must still be decided whether the
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approximation is likely to be a good one. It can be seen
immediately that for |x,]|>1, O, is the entire operator 0.

In the region |x,|<1 the 52 on the average are all smaller
than 50 with the maximum values attained by the 1=0—>3
coefficients being 1,.75,.48,and .35. Of course for 1>0 the
magnitude of Pz(ﬁ-ﬁ) is less than one everywhere except at
the end points. In addition, the oscillatory nature of the
Legendre polynomials causes some cancellation 1in higher

partial waves.

" These considerations are encohraging but we éan be more
precise. The operator O can be split into the sum of the
angle-independent term 60, and the angle-dependent terms,
denoted by az(i,g)zfgz(k;P)PL(ﬁ.ﬁ). 1t then followé that r

is the solution of the integral egquation

(o) = TO(O)-TO(D)aiGO(H)T(O) (87)
where tv°(v) is the solution that 1is independent of k-,
satisfying

v%(a) = t(u)-t(o)60G0(0)7°(u) ’ (88)

It is sufficient for our purposes here to assume that
the particles are spinless so that r°(k',k) can be expanded

in partial waves of the orbital angular momentum as
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£9(k" k)P, (kek") (89)
gk ik)Py

We estimate the most important correction to the

approximation r=1° by iterating eq.(86) once to form

T(k',kiP) wr 7O(k', k)= 3 (28+1) (20"+1) dpp?rg (k' ;p) (90)
200" (an)?

6g(p;P)Go(u)rEAp;k)J[dQ:EL(ﬂlB)
pz,(ﬁop)rzgﬁ-k)

Considering only the 1'=1 term, it is found that

r(k',k;P) v v°(k',k)- 1;/épp’8,(p;P)Go(o) (91)
v ‘ 4n

N
[+2(k ;p)r%(p, k) k-P+r%(k",p)rS(p,k)KLB]

This is an important result. For small momenta k,k'
the s-wave interactions dominate, and yet the lowest order
correction to r° involves the p-wave r{ terms (in addition
to the p-wave 6, term of course). It islreasonable then to
expect that this correction is suppressed at low momenta and

therefore to a good approximation

r(k',k;P) =~ v°(k',k) | (92)

The angle-averaged Pauli operator Q, (=1-6;) will be
discussed again in section 4.II where we extend its

definition to encompass complex momenta.

L
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CHAPTER 4 TECHNICAL DETAILS AND NUMERICAL METHODS

With the development in the last chapter of a reliable
description of the I single-particle potential we can

consider the search for I° bound states and resonances.

These states appear as poles 1in the elastic S- or
T-matrix and it is worthwhile to consider their movements in
the IN channel as the inelastic AN coupling is introduced.
First we will briefly describe the structure of the Riemann

surface.

4.1. Bound States and Resonance Poles

For two coupled channels there are two square-root
branch cuts along the positive energy axis starting at the
IN and AN thresholds. On crossing one of these cuts the
imaginary component of the corresponding channel momentum
changes sign, and another crossing returns it to its
original value. As a result there are four sheets to the

surface and it is convenient to label them by

sheet 1 : Imp,>0 ; Imp2>0
sheet 2 : 1Imp,<0 ; Imp_.>0

A 2 (93)
sheet 3 : Imp\<0 ; Impg<0

sheet 4 : ImpA>0 ; Impy<0
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Crossing the energy axis above the I threshold changes
the sign of both’ImpZ and Imp, and, therefore, sheets 1t and
3 are connected. Similarly, for energies between the two
thresholds just Imp, changes sign and so sheets 2 and 4 are

connected.

In a simple, one-channel interaction bound state poles
are located on the positive, imaginary momentum axis, and
the reflection property S(k)=S*(-k*) ensures that resonance
poles are symmetric about this axis [on the unphysical
(Imk<0) sheet]. In addition, because of the unitarity
condition S(k)S(-k)=1, a pole of S at k oﬁ the unphysical
sheet 1is accompanied by a zero of S at -k on the physical

sheet.

In the elastic scattering situation the third gquadrant
pole 1is too far from the physical region to influence the
cross section. The fourth quadrant pole on thg other hand
can lie very close to the physical momentum axis and is then
responsible for the characteristic resonant bump in the

scattering amplitude.

With the introduction of coupling to an inelastic

channel the wunitarity conditions in each partial wave are
in _jn
s =

.. . )
modified to [21] SZJ(pA7p2)=SEJ(-pR,-p;), and ﬁs TN

Cde

with the superscripts 1i,j referring to. either [ or A
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channels and the summation 1includes both channels. The
solution of these equations can be written Quite generally

as
S,(E) =,1+21P£’”‘[A£(E)-1P2£"]"P“"’ (94)

with P;j=pgéij. AI(E) is a real, symmetric matrix which

depends on the channel energies Ej, but not the momenta pj.
The poles of S, occur as zeros of the determinant
|A,(E)-iP28+ 1| =0=(agp-ip3? ') (apn-ip2%* 1) -(agp)?  (95)

Specializing to an S-wave interacticn, the solution for the
pole in the IN channel is
pz = -iazz+ aj'\z_ (iaM-pA) (96)
(ain*+PR)

Assuming that the coupling is small, we find that the effect
of the open channel is to shift a bound state pole (azy<0)
into the second quadrant of the Py plane (on sheet 2). The
small real component of Py, produces the absorptive width of
the state. Similarly, a virtual state pole (agy>0) is also

shifted to the left in the momentum plane with the pole on

sheet 4.

Following the same arguments as above for P-wave
interactions, with ayy>0 and no inelastic coupling, it is

simple to show that resonance poles occur at pz=a£&?e"ﬁ/‘,
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and aié’e“““‘ on the wunphysical sheet. As the channel
coupling is gradually increased from =zero the fourth
guadrant pole moves away from the real axis causing the
resonant vhidth to increase with increasing absorption, as
expected. The third quadrant pole however, shifts closer to
the negative real axis. This pole still does not affect the
cross-section but, as indicated earlier, it 1is accompanied
by a zero of the S-matrix approaching the positive real axis
from the physical sheet. The presence of the nearby zero is
manifested by a large reduction in the magnitude of the
S-matrix at this energy. In other words, for |S|~0 all the
incoming waves are in the I channel and all outgoing waves
are in the A channel. The positions and movements of all

these singularities are shown in fig. 6.,

There 1is a particularly interesting limit of the above
cases. If the channel coupling is sufficiently strong, it
is possible for the third gquadrant pole (either resonant or
virtual state) to cross from sheet 4 into the physical
region of sheet 2. We then have the unique situation that
the strong absorption of the potential 1is responsible for
creating a guasi-bound state. ‘In fact, it can be seen from
eq.(96) that if the coupling is so strong that the diagonal
elements may be neglected by comparison, there is always a
éqlution with both p; and p, purely imagip;ry. In this
(rather wunrealistic) limit a bound state appears below both

thresholds.
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In the present study these extremely deep bound states
do not occur. What 1is of particular importance to us is
that, for moderate strength coupling, in principle the pole
can lie arbitrarily close to the real axis. It is possible
then for the state to have a vanishingly small width,
despite the fact that the effective I-nucleus potential is

strongly absorptive.

We have labelled this situation a bound state although
it 1is recognized to be an unusual one. The I wavefunction
for this enérgy (on -the physical sheet) decays exponentially
at large distances and the scattering phase shift has the
characteristic bound state signature 6(0)-6(®)=n,
Conversely, the real component of the 'binding' energy is
positive; embedded in the I continuum states. We also
stress again that the pole responsible for this state is ﬁot
the usual bound state one, but rather has moved from a

normally inaccessible region of the unphysical energy sheet.

The observation that a strongly absorptive potential
can lead to narrow states is not new. Their existence was
first realized by Fonda and Newton [38,21], and recently Gal
et al [11] have considered this as the possible explanation
in £ hypernuclei. They found that with their opefchannel

phenomenological model narrow p-states arose naturally from

this mechanism. It should be noted though that their

A
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potential predicts very broad s-states (e.g. I~23 MeV in

12

2°C) because of the strong absorption.

4.11. Analytic Continuation of the Pauli Operator

In the 1last section it was noted that at a I bound
state the corresponding AN channel energy was perturbed into
the lower half of the momentum plane. Because we search for
the self-consistent eigenvalues E =¢-ir/2 of the
Schroedinger eqguation, r(e) [eg. (73)] must be evaluated at
complex energies. This leads to difficulties in evaluating

the overlap integrals <v|Q%G|v> appearing in r(a).

The problem is best clarified by an example. Consider
the case in which the AN energy k3/2m is real and positive.

The overlap integrals then have the general form

dkk?v2(k?)Q°%°(k,P) = PJdk k?v?(k2?)Q°(k,P) (97)
k2-k2+i KZ-
v € Y

—in‘/‘dkkzé(kf‘;-kz)vz(k"’)Q°(k,P)

where 'P' denotes principal value integration, and the

second (pole) term is simply
-inky? (k3)Q° (ky,P) - (98)
Provided k., is chosen to be real and positive then Q°(ky,P)

is well-defined. 1If, however, ky 1is taken to be on the

unphysical (negative) momentum axis, then Q° has no clear
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interpretation with the definition used in sect. 3.IV.

It is realized then that the correct evaluation of the
r overlap integrals requires the analytic continuation of
the Pauli operator Q° to the second sheet. This 1is not a
trivial problem since in the usual Fermi gas approximation
Q° is only a piece-wise continuous function of nucleon
momentum. This point was not considered in the model of
Stepien-Rudzka and Wycech [13] because they made no attempt

to compute the I-nucleus potential self-consistently.

In nuclear matter approximation Q is defined by the

zero temperature limit of the Fermi-Dirac distribution:

) _ ., _ lim -1
Q=1 - [o><0f =1 9+m<'*ex"[9("§"‘%)]> ' (99)

where kN,kF are the nucleon, and Fermi momenta. Eventually
the 1limit of an infinite © will be taken but for now a

finite value allows Q to be defined for complex momenta.

I1f partial-wave mixing in r via Q is ignored then only
the angle-averaged value of Q is required. With k,,P the

relative, and total AN momenta this means

Qo(xY;P:KF) E.l/2fd(§°EY?Q(lfy'nf') ’ (100)

, : 2 o2
=1 - JIm 1 knpeye an exp[e(‘; (ky np)z) 1t
1+ exp[&(nq:- (KY+nP) )]
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with n=my/(my+m,). In the limit that ®—> it is found that

for complex momentum k.,=k+ir Q° behaves as

L]
o

QO(KY;P:KF) for (x+nP)2,(x-nP)2 < K%+Y2 . (101)

=] for (x+nP)2,(x-nP)2 > K%+Y2 ’

2

KF = (K]‘HP)Z
knPKY ,

(Ky"'np)z “KF
thKY

for (c+nP)2 <xE+y2 < (k=nP)2,

for (x+nP)2 >K%'+y2 > (k-nP)2.

In the limit that ¥y =0 the above result of course reduces to
the previous definition of the angle-averaged Pauli

operator.

With this simple description of Q° for complex momentum
it is straightforward to evaluate the overlap integrals.
The contour of integration is distorted from the real axis
to enclose the pole in the lower half-plane at ky so that in

the AN channel, for complex kZ the required integral is

dkk2v2(k2?2)Q°(k,P) = [dkk2v2(k2)Q°(k,P) (102)
(k2-k?) A - (kZ-k?) .

-inkTvz(ké)Q°(kT,P)

With this technical detail clarified we can consider

solving for the I states.
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4,1I1. The I-Nucleus T-Matrix

The I° single-particle potential has been completely
defined now and it remains to determine the (complex)
eigenvalues ¢,. By this point it has probably become
apparent that the intention 1is to find these values by

searching for poles in the I-nucleus S-, or T-matrix.

In the extreme single-particle model there 1is no
difficulty 1in defining the transition amplitude. The I

obeys the effective one-body Schroedinger equation
(K+Vg) [6> = eg5|o> (103)

where Vy is the operator <0|A¥|0>, and |[0> is the nuclear
ground state wavefunction. By definition of the single
particle model, the nucleus remains in the ground state

throughout the interaction, and the T-matrix is simply

T = A<0|7T|0>+A<0|T|0>(e~K)~'T (104)

While this result éeems almost obvious, it can not
possibly be correct. For example, in the limit that there
is only one nucleon Vs reduces to the free £IN t-matrik t,
and T of course should reduce to the identity T=t.

According to eq.(104) though we are left with the series

T =1t + t E(Got)"  for A=1 (105)
n>»o
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The difficulty is apparent. Since t is, by definition,
the sum of all IN potential ladder graphs, the terms with
n>0 describe processes already included in t. The problem
can be corrected 1if it 1is pictured that for the first
scattering event the I can interact with any of the A
nucleoné. The second event must be with a different nucleon
théugh so that there are only A-1 choices, and similarly,
~only A-1 choices in all higher order terms. Replacing AT by
(A-1)T in the second term of eqg.(104) ensures the correct

counting to all orders in the Born series.

To put this another way, let us use Goldstone diagrams
again for simplicity. The reaction matrix T is represented
by a solid 1line b———, and the potential vza by a wiggly
line fh~A~~A. 'We are saying that, while it is quite correct
to include the diagram in eq.(106) below [or eq.(69)] in the
theory, second order (or higher) diagrams such as eqg.(107)
should not be included since they .represent processes

already included in ¥. That is, we should count

o0 0w (D - () o
C0-09- ()

c
c
'ng
o
o]
o

**+(107)
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This should emphasize that T is to be considered the
effective interaction only in the sense given by the

discussion following equation (61).

Although replacing A by (A-1) produces the right
result, it 1is not very satisfactory to include physical
behaviour in such an ad hoc manner. Within the extreme
single-particle model this 1is the best we can do, .and to
have correct counting inherent in the theory requires a more
careful treatment of the (A+1)-body equation. The I-nucleus

Schroedinger eguation again 1s
(K+Hn+Vg) |#(2)> = E|#(1)> (108)

where Vy is now the operator Avy, [c.f. eg.(103)], and Hy is

the nuclear Hamiltonian. It follows that the T-matrix is
T = Avgp +Avga (E-HN"K)"'T (109)

with Avsn = A[1+T(E-Hy=K) " '] 1'% (110)

Substituting eq.(110) into (109), we find that T satisfies

the many-body equation

T = A?+(A—1)?KE—HN-K)-WT | (111)

The double-counting problem in higher order terms has
been eliminated, but not without exacting its price. Since

we have elected to work in the (A+1)-body Hilbert space the
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intermediate scattering states in eqg.(111) must include
nuclear excitations. The contribution of these states to T
~can be isolated by writing eq.(111) as the pair of coupled

equations

T'=s7'+7'|0>_ 1 <0|T' (112)
€K
and T'=(A-1)) 7+ 7|n> 1 <n|?' (113)
€g-€q"K

where |n> 1s an excited state, and €n the corresponding
excitation energy. T' is related to the physical amplitude
T by T=AT'/(A-1). (Of course if we are only interested in
polés of T, the normalization constant A/(a-1) 1is

irrelevant?).

The contribution from excited states in eqg.(113) is
expected to be O(1/A) relative to the first term. This is
because ground state transitions <0|I7¥|0> involve all the
nucleons, whereas in <n|IT|0> only the one nucleon that is
excited contributes. In the spirit of the single-particle
model these transitions are neglected and T' reduces to our
earlier result

<0|T'|0>=(A-1)<0|3 7+7|0> 1 <0|T' § 0> (114)
_ e K
or, with explicit ¢ plane-wave initial and final states

T'(k',k,€) = V' (k',k,e)+ [ dp VU pae)T (oK, o) (115)
_ _e-pz72m
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where V'=(A-1)<0|7|0>=(A~1)Vy /A, and the ground state label

has been suppressed.

With the same normalization for T' as used elsewhere in

this work, eq.(115) decomposes into partial waves as

Té(k‘;k:e) = V}(k‘;k:e)+ dp p2Vé(k';p:e)TkLg;k:e) (116)
(e-p?/2m)

4,1V, Numerical Solution of the T-Matrix

Before searching for poles of the T-matrix we need to
be able to solve the integral eguation (116) for any (in
general, complex) value of e. Unlike the true scattering
situation, the energies will usually be located off the real
axis in the complex k-plane and therefore there 1is no
singularity in the propagator along the contour of

integration,

We use the standard technique of approximating the
integral equation by a system of linear equations. That is,
the continuous variable of integration p is replaced by a
set of N (Gauss) quadrature points p,, and corresponding
weights wp. In matrix form eqg.(116) is

N
T(pi,pj;e)=V(pi.pj;e)+Z K(pi,pm:e)'r(pm.pj;e) (117)
- . msq
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with K(pi,pm;e)=w“pgy(pi,pm;e)/(e-p%/Zm) (118)

The subscript 1 and superscript ' have been dropped but this

should not cause confusion. The solution for Tij is

N
T(pi,pyiel= 1 L, ContV (P Py €) (119)

|K" |

where C,s is the mith co-factor of |K']|, and |K'|] has

elements

K§-=6ij—K(pi,pj;e) (120)

While this method of solution is perfectly adequate for
bound states where the real component of € 1is less than
zero, for resonance poles it becomes inaccurate. If there
is a pole'at an energy e=e+iry with >0, then for small o«
this pole approaches the real axis, causing strong energy
dependénce in the integrand of eqg.(116). Either a large
number of points 1is required to achieve accuracy, or the

integration technique must be modified.

One such modification is based on the well-known result

that in the limit a—0

(e+in-Hy) '= P -ins(e-Hy) (121)
° (€"Ho> °

with P denoting principal value integration. If the energy
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e is allowed to become complex the two integrals above .

behave as

P dp = 0 for »=0 (122)
(e+iy-p%/2m)

=-ism .otherwise, and k%/2m=u+iy

. ke .
—iu;/hp6(0+ir—p2/2m) =-imm for »=0, and k%/2m=o
Ko
= 0 otherwise

Returning to the integral equation, it is found to be

equivalent to

T(k',k)=V(k',k)+ Pfdp [p2V(k',p)T(p,k)-k&V(K', ko) T(ke, k)]
(o+iy-p%/2m)

~inkZmV(k',ko)T (Ko, k) | (123)
Ke

With - o<0 we set ko=0 and this reduces to our earlier
result. For >0 and r=0 the second term in the integrand
exactly cancels the contribution from the 6 function. With
r=0 the principal value integration of the second term is
zero, and eqg.(123) then represents a true scattering
situation. The advantage of this now technique is that the
integrand is a smooth function of energy near the pole, and

the principal value 'P' can be removed.
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If we are only interested in the energy dependence of
the T-matrix then a little algebra shows that with a new

potential defined as

U33=Vya-V;0V,: I (124)
] L ](1+VOOI) :
N
with Vi, = V(p3,koe;e), and I = 2mk2[ [ Wm +im ]

™ (kZ-pd) 2k

the solution for T(pi,pj;e) is still given by

egs.(118)-(120) but with usj substituted everywhere for Vij-

Once the values Tij have been determined, the on-shell,

and half off-shell values T,,, and Toj are calculated to be

N
T°'=Uo.+ b Wm 2U T 2 -7 T.°=To. (125)
] ] "‘(u+17—p352m5] ] )
’ ) N
and T00=u00+ L w zu T
m (o+iy-p£;2m)

The solution Tiy as given by eq.(119) shows clearly
that a pole in T at an energy e-is equivalent to a zero of
the Fredholm determinant |K'| at . 1In principle these
zeros are simple to find via a Newton Raphson algorithm.
With an 1initial value ¢,, the first iteration produces a

value ¢,

exne1=eo— |K'(eo)|/0,]K"(ep)] - (126)
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Of course in general the derivative of |K'| will need to be

calculated numerically as well.

Usually the initial value of ¢ is not a crucial factor
in the iteration since it is found that any value of ¢, Qith
the correct ;ign and of the same order of magnitude as the
root ¢ will lead to convefgence. However with a complicated
expression for V(e), as is the case here, the time required
to calculate [K' (e) | also  becomes an important

consideration.

To evaluate |K'(e)|, V(k',k;e) must be calculated at
N(N+1)/2 momentum points for each value of . The first
derivative of the determinant therefore requires V to be
recalculated at (at least) an additional N(N+1)/2 points.
With a poor initial value of e, the number of iterations

required for convergence may be large.

In the event that the potential is energy independent
or only a slowly-varying function of energy, this does not
pose any difficulty. To calculate the derivative of |K'(e)]
one can assume that all energy dependence arises from the
propagators, which certainly will reduce the cqmputing time.
However it has been found that the potential‘used in this
work is too strongly energy dependent for this technique to

converge.
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It is possible to improve.on the starting value ¢, by
using the Born series for T [21]. In the immediate region
of the pole the Born expansion is divergent, but this fact
can be used to advantage. Writing the T-matrix as the

series
T = I V(GoV)" | (127)

then in the regions where the series converges, the

convergence test claims that

lim |V(GoV)"*2| < 1 (128)

n— e V(Gov)n

with the equality holding only at the pole itself. The

simplest approximation to this result is obviously

‘lvcgvl ~ 1 (129)

and while this may seem to be a very crude approximation, it

is exact for a coupled-channel separable model.

To calculate T(0,0;e¢) to second Born approximation
requires V at (N+1) points. (There 1is no point in
calculating T to third Born approximation because V will be
needed at another N(N+1)/2 points). Again using a Newton-
Raphson algorithm, N/2 iterations to the root ¢, of eq.(129)
can be performed in the time required to calculate |K'(e)]|

and its derivative once. With this value of ¢, as the
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starting point we enter the exact iterative solution to the
root e¢. For the potential used in this work it has been

found that e, was always within 50% of the true value,.

So far we have assumed implicitly that the pole is on
the physical energy sheet. The Newton Raphson algorithm
will fail 1if the root is located on the lower half of the
k-plane because |K'(e¢)| is invariant under a sign change of
the momentum. One approach that would normally overcome
this problem is to analytically continue T by rotating or
distorting the contour of integration to enclose the pole on
the second sheet. This is not possible with our potential
because the harmonic oscillator wavefunctions behave

pathologically away from the real axis.

A different approach is needed and we can now use the
symmetries of the S-matrix to our advantage. ' As discussed
in sect. 4.1., a pole of S at -k on the.second sheet is
accompanied by a zero of S at k on the physical sheet.
Finding the position of a zero is then equivalent to finding
a pole. Also as discussed earlier, the only resonant pole
in S which may be of interest is the normally inaccessible
one in the third quadrant. The S-matrix can not be solved
at complex momenta for the same reason that the integration
contour can not be rotated, so instead an approximation

method is needed for continuing S off the real axis.
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The S-matrix is related to the phase shifts by
S = 152‘2*1:Qt5 +]']s2£~1 130
£ k? “cotéﬁ-ik2 +1 ( )

and the condition S(k)S(-k)=1 restricts k’f“cotéf to being
an even function of k. Therefore it can be approximated at

low energies by the Taylor series
k2€+1cots, = 1/a +rk?/2+0(k*) (131)
which of course is just the effective range expansion.

There are several choices as to how to  proceed. The
obvious approach is to determine the first few coefficients
in the expansion by calculating 6, at several energies and
substituting this series directly into eqg.(130). Our aim
though is to extrapolate S, reliably to "complex energies
which would require a fairly 1large number of terms for
accuracy. On the other hand, high-order polynomial

approximations are infamous for their instability.

A better method 1is to construct an [L/M] Pade
approximant of the effective range . expansion. This 1is
defined as the ratio of two polynomials of orders L,M that
exactly reproduces the first L+M+1  terms in the Taylor
series. The greatest advantage of the Pade approximant is

that, since ‘it contains poles, it 1is well suited for
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L

reproducing the analytic structure of the function.

This latter approach 1is the wusual Pade technique.
However the step of determining the coefficients of the
effectivé‘range expansion seems redundant. Instead an [L,M]
approximant can be constructed that reproduces kzz“cotqe

exactly, and not just the Taylor series, at L+M+1 points.

Precisely this problem has been examined at length by
Hartt [39] and he has found that the best reproduction of

the singularities in S is given by the choice L=M+1.'

The Pade approximant is defined as

L
P ra,. kzm apg=1
L s2m ’ [o)
= Lii 2m ( 132 )
QL“ °a2m0}(

and the (complex) coefficients are determined by solving the

set of linear equations

P_(k})=kif-'cotslq (kE) , i =1,2,...2L (133)

The convergence and analytic continuation properties of
Pade approximants have been discussed by many authours (for

example, ref.40), but the only convincing argument for their

This would not be true in special cases, such as the
separable potential, for which the expansion to k® is exact.
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use is if they work. Although this infringes on the topic
of chapter 5, the bound state predictions for a few s-state
hypernuclei are reported in table IV, The exact results
listed are those calculated using the Newton-Raphson method

discussed earlier. .

The agreement between the two methods is very good and
the Pade solution converges quickly to the root. As
expected, the best result is obtained for the pole nearest
to the real energy axis. In p-state, where this method will
be used, the zeros are close to the physical axis, and so we

have reason for confidence.

raBe ;gc 380
EXACT  -.202 + .255i -.300 + .450i -.306 + .576i
[2/1] -.208 + .251i  -.286 + .470i -.352 + .623i
[3/2]  -.204 + .253i ~.296 + .460i -.338 + .602i
[4/3] -.202 + .255i -.299 + .451i -.313 + .582i

Table IV. Positions of the bound s-state pole in the momentum
plane predicted by [L/M] Pade approximants compared
with the exact (Newton-Raphson) solution. Units are
in fm- ',



87

CHAPTER 5 RESULTS IN LIGHT E° HYPERNUCLEI

A great deal of care has been taken to construct the f°
single-particle potential consistently with the two-body IN
interactions. Before proceeding to the calculation of bound
states we should also check the consistency of the model

with the I~ atomic data.

5.I. T- Atoms

Although no attempt is made to fit the model to the
data, a comparison with Batty's phenomenologiéal result can
be made in some appropriate limit. In T- atoms the [ is
bound with essentially zero energy .and consequently the
potentials. should be comparable for very small momenta. At
zero momentum transfer the volume integral of the model
potential is proportional to Batty's value 58' with the

theoretical value given by the expression

Y LI D Ml TR
ILSJ

and (134)

I =-(E“P)2L_. I “R_-D2
"Ly (o) (82+c2p2)2 PLsy (-B-P?/2u) ..
Notice that even at zero incident momentum (in the I-nucleus

frame)- Eth receives contributions from L=1 and higher IN

partial waves.
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For J3C 3y, has been examined in some detail. With the
nucleon binding parameter B chosen (rather arbitrarily) to
be 10 MeV and.a Fermi momentum of 260 MeV/c it is found that
By, =-346+i.197 fm in comparison with Eg=(.35.04)+i(,19£.03)
fm. The agreement of these results 1is relatively
insensitive to the choice. of parameters, as shown in detail
in fig. 7, where the elliptical region defines the values
allowed from Batty's analysis. With a Fermi momentum of 260
MeV/c and any value of 0<B<20 MeV gth is consistent with 35.
Conversely, with B=10 MeV any kg in the range 250<kg<275
MeV/c is consistent (i.e. an average nuclear density of

~75-100% of nuclear matter).

In addition, with the central values of B=10 MeV, and
kg=260 MeV/c the £°-'2C scattering lengths are similar in
the two models. Batty's potential gives -2.94+i1,20 fm, as

compared with the -3.41+i1.44 fm of our model.

Although these agreements are suggestive, they require
further investigation for definite interpretation. It is
not clear that either the volume integral or the scattering
length is the relevant quantity for comparison. This 1is
particularly ambiguous since Batty's potential is local,
whereas ours is highly non-local. In addition, the Fermi
momenta used above are probébly larger than are appropriate

for L>3 atoms.
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Fig. 7. Variation of the potential volume integral a, with
Fermi momentum (kg in MeV/c) and nucleon binding
~energy (B in MeV) in 'AC. The elliptical region is

the range allowed by the analysis of I- atoms [12]
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However, it is worth noting that a decrease in kg would
lead to a larger value of ImEth. If the single particle
potential was then scaled in some fashion to once again
reproduce Batty's value of Im’éB smaller widths for s, and
p-states than those reported here would result. In
addition, with kg reduced to 150 MeV/c and B increased to 0
MeV, which are probably more realistic in the atomic
situation, ay, does not change dramatically, becoming
0.291+10.252 fm. This is still comparable to the

phenomenological value.

5.I1. S-State Hypernucilei

In spite of the ambiguities outlined above we have been
encouraged to proceed with the <calculation of I nuclear
states. For all the light hypernuclei considered in this
work we have fixed the nucleon binding B at 10 MeV for
simplicity. Because in s-state the I is largely confined to
the nuclear volume, fairly high Fermi momenta have been
chosen, ranging from 245 MeV/c inZEHe to 260 MeV/c in i%o
(or, average densities from 70-80% of nuclear matter). The

self-consistent eigenvalues ¢-ir/2 for s-state hypernuclei

are presented in table V.

Several <conclusions can be drawn from these results.

Most importantly it is found that fairly narrow bound states
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result when Pauli exclusion and nucleon binding are
incorporated in a microscopic calculation. We also notice
that for A<9 the model predicts that ¢>0. These are bound
states though and not resonances. That is, they arise from

an S-matrix pole in the second quadrant of the momentum

plane.
Nucleus Kf B e-iT/2 r
(Mev/c) (MeV) (MeV) (Mev)
poHe 245 10 +2.49 - i0.88 1.75
sILi 250 10 +0.81 - i0.99 1.98
soBe 260 10 -0.46 - i1.95 3.89
;gc 260 10 -2.06 - iL.91 9.81
7aC 260 10 =2.59 - i5.3) 10.62
380 - 260 10 -4.22 - i6.26 12.52

Table V. 1s binding in light I° hypernuclei.

Although the earlier prediction of @ was encouraging we
also wish to test the sensitivity of these bound states (and
the widths in particular) to small changes in the
parameters. Again for EiC, the variation has. been examined
in detail. With values of B and kg which approximately
reproduce the extreme values permitted for ap the binding

has been calculated and these results are presented in



102

table VI. The real binding |e| varies between 2 and §& MeV,

but T seem fairly insensitive, changing only from 9-11 MeV.

KF B 3th e-il/2 r
(MeV/c) (MeV) fm (MeV) (MeV)
250 22.5 0.39 + i0.19  -4.78 - i4.95 9.90
250 12.5 0.35 + i0.22  -2.22 - i5.63 11.26
260 10.0 0.35 + i0.19  -2,59 - {5.3] 10.62
275 7.5  -0.35+ i0.16  -3.00 - iL.65 9.30
275 -7.5 0.31 + i0.19  -2.00 - i4.B4 9.68

TableVI. Variation of 1s binding in %gc with xp and B.

Since Pauli exclusion and nucleon binding effects are
major influences in producing these narrow states we have
tried to isolate their contributions as much as possible.
The binding has been calculated with, first, B fixed and kg
varied between 225-300 MeV/c and, second, kg fixed and B
varied from 0-30 MeV. These results are displayed in
fig. 8. It can be seen that the inclusion of Pauli effects
is essential to the correct description of the bound state,

but, ‘any reasonable choice of kg leads to a small width.
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Fig. &. Dependence of the s-state position ¢ and width T
on Fermi momentum (kg in MeV/c) and nucleon binding
(B in MeVv) in '2C.
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The variation of I with large values of B is dramatic. The
width 1is almost 1insensitive to changes in B from 0-20 MeV

but decreases sharply for B>20 MeV.

This strong dependence of I on nucleon binding for
large B should not be surprising. To take an extreme
example, if the I and nucleon binding energies were ,gfeater
than the I-A mass difference then the IN-AN conversion would
never be energetically allowed and the decay width of the
state would necessarily be zero. For more realistic cases
it 1is expected, from phase space considerations alone, that
the width must decrease rapidly for large reductions in the

AN channel energy.

We have also examined the sensitivity of the ;ic state
to the number of terms 1in the two-body form factor
expansion. A priori one anticipates that the series will
converge slowly. For example, consider the simple Taylor

series expansion of the Yamaguchi form factor v(k?)

(v o)
vi(k-eP)2?] = v(k2+ezP2)E e£[-2v(k2+¢2p2) g-5]£ (135)
£=0

which 1is valid for all k,P. An indicator of the importance
of the 1>0 terms is given by the coefficient e; For a light
particle ¢£ diminishes rapidly with 1. For instance, for
the pion ¢ is ~1/8 so that neglecting the angular dependence

may be an excellent approximation in many cases. By
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contrast, for the sigma ¢>1/2 so that higher order terms are

probably significant.

In table Vi, we report the variation of the E;C binding
energy. Although the width may not be as sensitive as
anticipated, three-, and four-figure accuracy requires
three, and four terms respectively 1in the expansion.

Certainly it is unjustified to ignore the angular dependence

entirely.
No. of E+ir/2 r % change

Terms (MeV) (MeV) inr

1 -2.264 - 14.625 9.250
' 11.96

2 . -2.585 - 15,253 10.506
0.96

3 -2.589 - i5.304 10.608
0.09

4 -2.587 - 15.309 10.618

Table Vil. Convergence of the 1s binding energy in égc with the
number of terms in the two-body form-factor partial
wave expansion.

The predictions for s-state seem fairly insensitive to
moderate changes in the parameters of the model. However it
is of interest to determine the sensitivity to the

ﬁnderlying model of the IN potentials. We have recalculated
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the s-states using the model A parameters of Toker t

-

[28]. This model, although separable, differs gualitatively
from ours. In their work they fit the L p total
cross-sections assuming them to be determined completely by:
the 23S, 1I=1/2 interaction, with no coupling to the AN 3D,

channel.

The differences are clearly reflected in the results of
the calculation, listed in table VIII. The real binding
energies are similar in the two models, but wiﬁh Toker's
parameters the states are very narrow relative tc ours.
Although their two-body model is rather less absorptive than
ours in the 3*S; channel alone, the major source of this
difference in widths is our inclusion of the AN °D, and 3PJ
channels. These higher angular momentum states are not
affected by Pauli suppression to the same degree as the
S-waves, ‘and in éic for example the P and D couplings'are
responsible for roughly 15 and 25% of the width

respectively.

As mentioned earlier, our determination of ¢ is
expected to be less reliable than of I, mainly because of
the neglect of single-particle potentials in fhe energy
variable of r(w). Furthermore there is no statistically

significant observation of an s-state hypernucleus.
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Nevertheless the position and width calculated for the LAicC

state coincides with a small bump in the spectrum of Bertini

t al [3)]. Also the weakly bound state in seBe  is

consistent with a shoulder in the data. Clearly much better

experimental data are needed in these cases.

Nucleus KF B e-ir/z r
(Mev/c)  (MeV) (MeV) (MeV)
SHe 245 10 +0.97 - i1.54  3.08
JaLi 250 10 -0.03 - i0.87 1.74
(38e 260 10 -0.67 - i0.65 1.30
12 260 10 -3.31 - i1.42 2.85
%go 260 10 -4.96 - i1.53 3.96

Table VIl S-state binding energies in light I° hypernuclei as
cal?ul?ted with the model A parameters of Toker et
al [28].

5.111, Separable Approximation of the I-Nucleus Potential

It is an interesting feature of the single-particle
potential (80) that, despite the complexity of the
expression, in practice it is separable. To see this, let

us rewrite V_ as

' = p Yoo . LY Lnm
v (k ,k)—/dPE &2}; ,k.P)fg‘vn(k.P)vm(k 'p)CLZ'.Z"(P) (136)
L8 ‘
where C(P) 1is a coefficient that depends on P but not on k
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or k', and contains all the angular momenta summations as
well. The density term e can be simplified in notation as

well to

1 .
‘e ] [ f#m vﬂn\l : 2 : 2 []
ﬂg,zf,k ,k.P)—E c[[,(P)k k +1£*m(a kP)lL'*m(a k'P) (137)
m,m=o
with c(P) another P-dependent coefficient (which can be

zero). In this form we notice that k and k' appear in

separate functions in all terms of the integrand of eq.(i3b).

Strictly speaking, V_ is not separable because of the P
integration but, 1in practice, the integral is always
replaced by a finite sum over N discrete points P;. The
result is that V_ is approximated by a finite rank separable
potential, and in this case the Lipmann-Schwinger equation.

can be solved algebraically.

In most instances it would simply not be practical té
solve for T in this way since it would involve inverting a
matrix of size 102x102, (or larger, depending on the number
of quadrature points and terms in the expansions of the
integrand). For the speciél case of a “He core though a
number of simplifications become possiblg. All four
nucleons are in s-state so that the eﬂ term in eq.(136) is
restricted to 1=0. For the same reason we can expect that
the twb:body p-wave interactions are not as significant in

éHe as in heavier nuclei. Finally, 1if the gvn can be



109

approximated by v, (and this will be tested), then the

s-state potential becomes

N v
Vol(k';k) = > <k'|g;>\ <gj|k> (138)
i=1
with <k|gy> = e'ékyzio(azpzk)vo(kzpi)
and \'' = 4nf°w-.Pfe‘&R:Z(ZSH)(ZIH)Dgss[u(Pz)]
ST 4 6

The T-matrix is solved, as in the two-body case, to bef
T(e) = [g>[x""(0)-<g|Go(w)]|g>]"'<g| (139)

with [g> the row matrix of |g;>, and x(w) the diagonal,
energy dependent matrix of ', This equation can be
- reasonably solved by matrix inversion since the dimension of

A~ '-<g|G|g> is the same as the number of guadrature points.

We have solved thez?,He T-matrix by this method and
found that the binding energy 1is +2.72-0.76i MeV, as
compared with the result with both S and P-wave LN
interactions of +2.51-0.80i MeV, and the exact result with
three form-factor terms as well of +2.49-0.88i MeV. The
effect of including P-waves is mainly to increase the real
binding of the state, whereas the width is more sensitive to

the number of terms in the form-factor expansion. This is

The term <g|G|g> must be multiplied by 3/4 because of the
double-counting problem.
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simply a reflection of the strong energy dependence in the

IN t-matrix.

The approximation works reasonably well, and the
simplicity of separable potentials for calculations suggests
that this approach may be wuseful 1in systems where the
interactions are smoother functions of energy than in the EIN

case.

5.1V, P-State Hypernuclei

Experimentally, the <clearest evidence of narrow
hypernuclear states comes, not from the ground states so far
discussed, but rather from the recoillessly-produced 1p
levels. To date, the positions and widths of these levels
have not been fixed accurately but some indications are
available; By comparing the I missing-mass spectrum with
the corresponding well-known A spectrum, Brueckner et
al.[ 4] have concluded that inZ;Be the state is unbound by
roughly 9 MeV and have placed an upper limit on the width of
8 Mev, They have also fopnd a narrow p-level in éﬁc at 5
MeV excitation [ 3], and it has been suggested recently that
inzﬁLi the width may be as small as 3 MeV [ 5]. It must be
emphasized though that these are only indications. The data

are not yet precise enough to pinpoint the positions to

better than a few MeV accuracy.



Pauli exclusion and nucleon binding effects are not
expected to influence the P-wave as much as in the ground
state calculations. The centrifugal barrier obliges the L
to interact primarily in the low density region of the
valence nucleons so that, for consistency, both the Fermi
momentum kg and nucleon binding B should be reduced from
their s-wave values. 1In all the light nuclei we consider,
the nucleon binding has been raised to zero MeV and the
Fermi momenta have been reduced substantially, ranging from

75 MeV/c in ziHe to 175 MeV/c in ‘Zﬁo.

The method of solution is fairly straightforward. We
have discussed af length the difficulties in calculating the
S-matrix at complex momenta, and so use the Pade technique
described in sect.4.IV. We search for poles in S by finding
the conjuéate zeros on the physical sheet. Anticipating the
results somewhat, our attention is limited to the pole in
the third momentum guadrant. The corresponding zero lies
close to the physical axis aﬁd, as we have seen, the Pade

method should then give reliable results.

The position of these poles are listed in table IX.
The results are rich in information and several important
observations can be made. First, it is noticed that for A>9
the model predicts the 1p level to be bound, which is

evident from the position of the pole in the second
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quadrant. That these states do in fact correspond to the
resonance pole rather than the usual bound state pole is
confirmed by following their motion for an increase in the

Fermi momentum.

Increasing the Fermi momentum effectively decreases
absorption by decreasing the coupling to the AN channel.
Absorption depletes the I wavefunction at short distances,
thereby acting as a short-range repulsion. By increasing ke
a bound state pole should then move towards the positive
imaginary momentum axis, which 1is exactly the behaviour
encountered already in s-state. A resonance pole, in light
of our earlier discussion, will move in the opposite
direction, crossing the negative real axis into the

unphysical third quadrant.

Choosingz;Be'as representative, we increase kg from 125
to 200 MeV/c. It is found that the state becomes unbound,
with the pole moving away to the third momentum guadrant at
E =5.23+12.19 MeV, clearly demonstrating these poles to be

of the resonant variety.

‘The second feature we notice are the remarkably long
lifetimes of these states, with I~4 for éio ana as small as
0.5 forz;Be. This is tfuly paradoxical: }t is the very fact
that the potential is so strongly absorptive that the levels

are narrow,
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Nucleus <F B Ep = €-il/2 E}/2 = ctiy r
(MeV/c)  (MeV) (MeV) (Mev)1/2
Zgue 75 0 17.48 + j0.94  -4.18 - i0.112  -1.88
goLi 100 0 11.13 + i0.26  =3.34 - §0.039  -0.52
coBe 125 0 6.16 - 10.27  -2.48 + 10.054 0.54
13¢ 150 0 k.58 - i1.75  -2.18 + i0.402 3.50
180 175 -o 3.82 - §2.02  -2.02 + i0.501 L .ok

TableIX. 1p binding energies in light I° hypernuclei. States
with »>0 are guasi-bound

The case of _Li deserves special attention because,

s°
although the pole is very near to the real axis, the state
is not quite bound. However, since the original choice of
kg and B was to some extent arbitrary, the Qquestion
naturally arises whether for any reasonable choice of
parameters the pole does cross the real axis to become a
bound state. We find in fact that it does not. By reducing
the Fermi momentum to zero and increasing thé‘pucleon energy
to +20 Mev (i.e B=-20 MeV) it is possible to decrease the
width of the level to 0.06 MeV from 0.52 MeV, but the pole

remains in the third guadrant.
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Larger changes in kg and B than the above would not be
warranted on any physical grounds, but the results of the
model calculation should not be construed of course as
meaning that the ZiLi p-state 1is necessarily unbound.
Clearly a very small change in the overall strength of the
coupling to the AN channel would.be sufficient to produce

binding in Li, without qualitatively affecting the p-state

results for the other nuclei.

The elastic phase shifts 6, and absorption coefficients
n, are also shown in fig. 9. For the A>9 nuclei we notice
the n phase change‘ between k=0 and ., confirming our
interpretation of these as bound states. The deep minimum
in the absorption coefficient 1is also clear near  the
position of the =zero (or binding energy). By contrast, &
and n for(the s-states are shown in fig. 10. For the
heavier (A>9)nuclei the curves are seen to be nearly devoid
of interesting structure, as expected for bound state poles
at negative energies. The 1lighter He and Li curves,
however, show dip near the (positive) bound state energies.
Since in these cases the poles lie closer to the negative,
-real momentum axis than the 1imaginary axis, we know an

S-matrix zero is very close to the positive, real axis.
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Fig. 9. P-wave phases 6 and absorption coefficients n for
low energy elastic I-nucleus scattering. For the
light nuclei shown in a), and b) no bound states
exist, as seen by the zero-degree phase shifts at
Zeéro energy. The 180° phase shifts for the nuclei
with A>8, shown in c)->e), are evidence of bound
States. These states are in the continuum, about
where n is a minimum.
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Fig. 10. S-wave phases & and absorption coefficients n for
low energy elastic I-nucleus scattering. For the
light nuclei shown in a) and b) »n has a dip near
the bound state energies. For the heavier nuclei
there is no interesting structure, as expected
for negative binding energies. '
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Again, these states have been recalculated using the
parameters of Toker et al, and these results are given in
table X. The predictions are similar to those of our model
but again there ére some significant differences. First of
all we remark that this model also predicts a 330 bound
state. In lighter nuclei the real component of.the resonant
energies are fairly close to our values, but it is important
to appreciate that the bound states and narrower widths of

our model arise from greater absorption, rather than greater

attraction.

Nucleus <F B Ep = €-iT/2 E}/2 = w4iy r
(MeV/c)  (Mev) (MeV) (Mev)1/2

(SHe .75 0  9.01 + i18.7 -3.85 - i2.42 -37.4

gobi 100 0 5.43 + i8.81 -2.81 - 11.57 -17.6

yoBe 125 0 3.14 + i3.70 -2.00 - i0.93 -7.40

izc 150 0 2.94 + i1.40 -1.76 - i0.40 -2.80

180 175 0 1.20 - i0.34 -1.11 + i0.15 .68

Table X. Position of the 1p poles calculated with the model
A parameters of Toker et al [ 28]. States with y>0
are guasi-bound. )
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To complete this Study, 6 and n have been calculated:
for D-wave TI-nucleus interactions. As can be seen in
fig. 11, a dip 1is beginning to develop near 12 MeV
excitation in égo, but in general there is no indication of
structure. These findings are in agreement with the
phenomenological result of Gal et al [11] where, although
their'potential was more absorptive than ours, they found no

bound D-states for nuclei lighter than silicon.

In brief summary then, we find that when nucleon
binding and Pauli exclusion effects are included in a
microscopic calculation narrow I s-states result. On the
other hand we find that in p-wave, where these effects are
small, the conseguent strong nuclear absorption produces
remarkably long-lived states 1in the continuum, in close

agreement with experimental energies.
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CHAPTER 6 DISCUSSION AND CONCLUSIONS

Our aim in this work has been to calculate the widths
of 1light I° hypernuclear states as accurately as possible.
To this end we constructed a separable potential model - to
‘describe the IN scattering where it was found that, in
addition the usual S-wave interactions, the 3S,(IN)—>3D, (AN)
transition was essential to the description of the

conversion reaction.

With these interactions as fundamental input, the I
nucleus single partiéle potential was developed with careful
attention to corrections arising from Pauli exclusion and
nucleon binding effects. After making a minimum number of
approximations we were able to evaluate analytically the
angular integrals in the defining relation for this
potential, and to show that 1in the appropriate 1limit it
reduced to the phenomenological result obtained from the

analysis of I~ atoms.

Most importantly, the self-consistent solutions of the
momentum-space Schroedinger equation predicted narrow I
states in both S and P waves, although the mechanisms
responsible were guite different. In s-state, Pauli
exclusion and nucleon binding effects producéd long 1lived

states -with widths ranging from 1.8 MeV inZ;He to 12.5 MeV
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in {20. In p-state by contrast, the Pauli principle had
little influence on the potential and the resulting strong
absorption produced narrow states in the I continuum with

widths from 0.5 MeV inz;Be to 4.0 MeV in 5;0.

The mechanisms responsible for suppressing IN—>AN
conversion in s-states are ‘well understood. In p-states
though, the physical interpretation of strong absorption
producing narrow widths is not at all clear. There 1is no
denying that this runs contrary to one's prejudice that,
with strong coupling to an open channel, a bound state will
"leak out' to the scattering state of equal energy and hence

can not exist for any great length of time.

It is important that a picture of these states be
developed = and so let us first summarize their
characteristics. Without a weak coupling hypothesis,
long-lived states degenerate with the continuum can exist in
the presence of an open channel. Such a state is wunrelated
to a bound state in the isolated channels and, indeed, would
not exist as a normalizeable state in the absence of the

strong coupling.

Gal, Toker, and Alexander [11] have tried to interpret
this phenomena in a similar framework to resonances in (for
example) e-He® scattering. In the latter system it is well

known that a stable state of He with both electrons in the
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n=2 level exists above the 1ionization energy for one
electron., Consequenfly, in e-He* scattering a sharp
resonance results for the incident energy (~27 eV) at which
this state can be excited. Gal et al have pictured the
narrow hypernuclear states as resonances in A-nucleus
scattering. It 1is imagined that at some particular energy
the A converts on a nucleén with the final state N kicked
into an excited state and the I bound with negative binding

energy.

The explanation is tempting because of its familiarity,
and such states may well exist, but the model is quite wrong
for the levels we are considering. First of all, their
potential which produced these states was energy
independent. It is not reasonable, therefore, to suggest
that these states depend on the microscopic nucleon energy
spectrum for their interpretation. Secondly, a resonance in
the elastic cross section 1s expected with this picture. As
we have seen though, in I-nucleus scattering an S-matrix
zero, rather than a pole, ?s exhibited and the cross-section

is completely smooth.

So the question remains as 'to the meaning of these
states. To answer this we will consider the simplified
example of the I and A channels coupled by a square-well

potential matrix with elements Vyy’ and range R. In the
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scattering formalism the outgoing waves are related to the

incoming ones via the S-matrix as

2\ = [s S e
b3 £z Sga s
N (140)
our
¥ SA. SAA ¥

in an obvious notation. A I bound state (of strictly
infinite 1lifetime) corresponds to SZAEO' In other words,
the two channels are completely decoupled so that no net
flux is lost from the I to A channels. It 1is
straightforward to show [21] that this condition is

satisfied for
KycotKyR = K COtK,R (141)

where the KZ/2m are the channel eigenvalues. So we find
that these states exist because of an interference effect,
arising from a fine balance between the channel potentials.

- More generally, the above is related to Gal's result [11]
that, for resonant or bound states above threshold, the

width T (up to a normalization factor) is
I = Re(kg) [¥5(R)|? + Re(kp)|¥A(R)|?2 (142)

where, again, R 1is the range of the potential, and ki/Zm,
ki/Zm are the channel eigenvalues. In this case the
influence: of the potentials is disguised in the

wavefunctions, but it should be clear that with a pole on
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sheet 2 (in the notation of Chapter 4) the real components
of kg,kp, are opposite in sign and cancellation occurs
between the two terms of eg.(142), becoming complete as the

pole moves across the real axis from sheet 4 to sheet 2.

In view of the two distinct causes of narrow widths in
s and p-states it seems important that measurements of
p-state I hypernuclei levels should first be extended to
very light nuclei where they are predicted to be
- exceptionally long-lived. Secondly one would like reliable

data for the s-states.
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APPENDIX I ANGULAR MOMENTUM GRAPHICS

The technique outlined below is a graphical method for
calculating sums of 3J coefficients, adapted from the work
of Massot, El-Baz, and LaFoucriere [41]. Only those results
which are needed in the present work are given, and none of

these are proven.

First, a Wigner 3J is defined by the picture

L. J B
Jv Ja s
—_— +
(ml m’_.m) (AI.1)
Ja
The rules fof‘constructing the picture'are:

(1) The sign of the vertex is positive if the j's are
read in an anti-clockwise direction, and negative if
read clockwise.

(2) The arrows point outward from the vertex 'for
positive m , and inward for negative m .,

(3) Changing either the sign of the vertex or the arrow
direction of all three lines gives a phase change of
(=)di+daas, (The direction of one ggég line alone
must not be changed.)

(4) The 3J represented by the diagram is invariant under

rotations and geometric deformations.
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To sum graphically over one m which is common to two
3J coefficients the corresponding free Jj 1line in each
diagram are joined so that the arrows peint in the same
direction. For example,

) (j: ja js) (jt ju Js (A1.2)
m; My Mg my, Iy Mg

m,

= (- )Iuds -myrms Z(-)j""“l(h Ja ja) (ji Iy js)
m, =1 4

m, My My

and the sum is represented by

- jn\ L Ju
3i- 3 ds
}E:QQJ ™ + 3‘4’ x - =
m, ’///
Js Js

The rules for summing over the projection m of j are

that:

(5) A factor of (-)J -™ must be present.

(6) Whenever two vertices are joined by a 1line j, the
direction of that line may be reversed but this is
accompanied by a phase change of (-)2).

(7) 1f there are three free lines, their loose ends may
may be pinched together with the arrow§ pointing in
the same direction. A 3J multiplies the diagram,
represented by the three lines, with their arrows

pointing in the original direction, and the opposite
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sign at the vertex.

This last rule is demonstrated much more clearly by a

picture
. j'
-»> .
Ji 3
CLOSED . . .
DIAGRAM [€¢——; =mp | C.D. -+ Ja (AI.4)
. Js

This last rule also allows a large, closed diagram to be

broken into smaller components as

E »>-
L
| 3 J jl (A1.5)
——l 3 .+-<EEEE>+— ..2 '
ds I Js

)
[
ot
o
"

m, My My “my <My ~Ma

> (=)FGi-m) (j. ja ja) ( Ji . da :ia) (AI.6)
ml

1 if j,,jg,J3 obey the triangle inequality,and

0 otherwise.

For the purposes of this work, the only other results

needed are the diagrams for 6J and 9J symbols. These are

given by
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i Ja j,‘ - (A1.7)
M
jl jz js

and L, L2 Lg = + (A1.8)
k| ’Kz K3

As an example of the wusefulness of this technique,

eguation (23) for the differential cross section will be

derived. Concentrating on just the piece which involves 2:
yy'
we have
<LOSv |Jv><L"0Sv|J'v><L'v=v'L"'v'-v|10><L'v-v'Sy"' |Jv>

vy’ .
<L"'v=v'Sy' |J'wv>(-)¥"Y (a1.9)

First, this is converted to 3J's as
§23201 (-yret-voy’ s 3 L) (s 3" )(VL L™ L
v ~v -v'=v+y'0

(AI.10)
L' S J) L"'S J')
vv' v'-v \v-v'v'-v

This expression will be modified somewhat so that it

resembles the 3J's of (AI. 2) more closely for summation in
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diagramatic form. We can introduce the dummy variables
My, My, M M, M" M"' and m. There will be no summation over
M,M",and m, and eventually their values will be set equal to
zero, but for now non-zero values will allow us to assign
directions and magnitudes to the arrows in the summation in
a meaningful way. The (formal) summation over the other M's
will not alter 'the result because their values are actually
fixed by M,M", and m. Also S,v' will be relabelled as S',v'

for the moment to distinguish it from S,

The summation (AI. 9) can be expressed as

3232'32 (=)TT(=)T -y = )T M =)8 -» (=) 8- ) C-M( - "
J s L)(S J' L")(L"'L' 1)
MJ’ v v =Mj-M"/\M"'M' m (AT.11)

(-t (')

We have all the phases (-)Y "M necessary to do this in
diagrammatic form. In the following, the steps in
manipulating the graphs will bg shown with the overall phase
of the sum indicated. 1Ignoring the 52327 term for now, the

sum is represented by

(i)

SR COT A o (A1.12)




(ii)

o+ ha * L
.
- L £ 5
_ S
. nl Y L
+  ° +
(iii)
+ J +
/
L , L L
Z//‘Ts
- L -+ 4&,
4 s "
U J-' L u'
+ +
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(=) F+3-LL"L (A1.13)

Rule 3: sign change of
vertex

(=) T T g (AI.14)

Rule 7: separation-of a 3J
and pinching the lines.

(-)3 34 (AI.15)

Rule B8: breaking of a larger
diagram. ,

(—)2 (AI.16)
Rule 4: change of the arrow
directions . :
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1t is found by comparison with the picture of a 6J

symbol that the whole expression has reduced to

AN

L"'J’ J' L" L L"1 , (A1.17)
1 L' 1 J L 0o 0 0

Inserting this expression into eq.(2!) gives eq.(23)

for the differential cross-section.
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APPENDIX II SOLUTION OF THE COUPLED-CHANNEL EQUATIONS

Following the procedure of Londergan et al. [23], we
will outline the steps involved in solving for the
coupled-channels t-matrix with rank-one separable

potentials.

In general, for any potential operator v, and N coupled
channels, the transition operator describing scattering from

- channel |«> to the channel |p> is

N
tax =Vaa :};1 Ve Gy ty, (AII.1)

where Gg is fhe r-channel Green's function defined by
eqg.(25). 1If the potentials are all rank-one separable, then
Vex can be .written as |vg >§u2v“ | in Dirac notation. Here,
x==1(+1) for attractive (repulsive) interactions, and the
strength of the potential has been absorbed into the form
factors |v>. In this case (AII. 1) can be solved

algebraically.

Separating the |d>—>|N> transition from (AII.1) gives

-1
Nat NY v |
taa = VNN <Va| + |Va> D X <V |Go t
na™ ¥ " T ™ (arn.2)
+]v>X"<vy |67 tua

o]
' No N Y
t -(|WN>X <v“| + |y >§: Yy <V¢|Go t,u)
N =X <V [GD [V > (A11.3)




142

The result (AII.3) is then inserted into (AII.1) to
eliminate the |e¢>—>|N> term from the summation. It is found
that tgx becomes
X -1
tow = | Ve >N R (E)<vy | + |v¢>"{)*_‘,_‘ B <vy |GY toy (AII.4)
so that the t-matrix is now expressed in the form of N-1
coupled channels, with the rescaled coupling constants Q%E)

energy-dependent and defined as

&)
E(E) = \id 148NN BNY <y 16D v >] (AI1.5)
1=y |G | vy > 4

By placing some rather weak restrictions on the
coupling constants X\ the second term in parentheses can be

made to vanish.

(i) Rk - (AII.6)

and (ii) W =

The effect of these restrictions is to insist that the
are identical for all interactions within a given set of

coupled channels.

The N-1 channel can be removed from (AIl.4) in an
identical manner to the N-channel. This will result in

redefined coupling constants again.

Y, 14 i N- NN N -
W) =X [Ny 160y - My (¥ 3 >0t (A11.7)
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The remaining channels can all be removed 1in this way to

leave the effective one-channel process:

tou= |ve > XM (E)<vy| g lve>¥*(E) <v |Gg°t9d (A11.8)

N-f :
vith W$UE) = °“[1-§x"<v,|c’£|v,.>]-'

which has the solution

twg 'Ve >).°a<va|

1= 3 WTevy|6Y vy
=1

(AI1.9)

(AI1.10)

The summation over » includes only the diagonal elements of

all the coupled channels.
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APPENDIX II1 PARTIAL WAVE EXPANSION OF Vg(k',k)

In this section we will briefly outline the steps
involved in solving for the single particle potential in the
lth partial wave. The partial wave expansions of the
nuclear wavefunction and the IN form factors follow simply
enough from the recursion relations for the Legendre

polynomials and so their forms will just be assumed here.

The single particle potential was defined in terms of

the nuclear wavefunctions and reaction matrix r as [eqg.(74)]

—~
F
=
—
]

./.dg F(P-k';P-k)r(k',P~k';k,P-k:e) (AIII.1)

[« o]
1 (21+1) V,(k':k) Po(k k')
4?§ £ L

With the expansions of F and r given by egs.(75) and (77)

the potential Vp is

L
Vy(k' 1K) = / Z %?waDLSJ‘“’ZV"“‘ tP)vp(k': p)?ww

ll /]

[(2L+1) }'m (AI11.2)
{r(2a+2)r(2b+2)r[2(L+1-b)]r[2(L+1-a)]

E (-ep)orbkb-ak'L-beagL~aM-g|LM><bpL-bM-p |LM>
dQM
~ h'l\

A

: pn(?c-‘f:)pm(i:'ﬁ)Y:(’ﬁ)yt‘?ﬁ)y “e" %)
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Using the addition theorem for spherical harmonics the

Legendre polynomials become

Pz"z"’z"’z""npm‘z :|<101'0\L0>Pl<n01"0|L"0>|3|<m01"'0|L"'0>|3
U ~ A

A A L
Py (kek )L (k- BrPu(k P) (AT11.3)

' ' "
and pupt.pL..Ji.'-2£"-2'£"'-=(4u)’z kv (k) Yu®)  (a111.4)
M'MM™ “*

u(ﬁ)Yl-_u %)Yc-( k')

With the well-known result for the integral of three

spherical harmonics that

| ~ A (AIII.5)
(4u)'I=/dnY:(n)Y,:’(n)y'§:(n) =111 (1. 1o 15 (1. 1, 1-,)
‘ ' 0 0 O m, m, Mg

the angular integrals of eg.(AllI. 2 ) become

(AI11.6)
4w 2 Tr2fmefn 2t w 248 (T78) (T-D) ( 1' L‘) 2
0 0 .

L e
n 1" L")’ m 1" L" ' 1" L-a\ (L' L"'L-b
0 0 O 0 0 O 0 0 O 0o 0 0
b L" L' a L"' L' ' L" L-a\ /L' L"'L-b
0 0 O 0 0 O ' M" M-g] \M' M"'M-p
] b L! LW! L'
» ’ Mv M"l MI _
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When this result is combined with the rest of the
expression in curly brackets of the last page, the sum over
'm' gives a term proportional to a 9J coefficient. 1In fact
this is a particularly simple sum to do using the graphical
technique described in appendix 1. The columns can be
interchanged with impunity inside any 3J without affecting
the overall phase because the ILj's are restricted to even

values. Diagrammatically, the summation is represented by

(A111.7)

which, with the notation of appendix I, is Jjust the 9J

Symool:

L-a L' g (AI11.8)
L L-b b
a v

Combining this result with the rest of the 3J symbols gives



the final result, eqg.(80), for

partial wave.

With only S and P wave

the

potential
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the 1th

IN contributions the 9J is

almost trivial because at least two of a,b,L-a,and L-b are

always zero.

The 93 then has the value:

(i) S-wave; a,b,L,L-b,L-a = 0

0
0
0

(ii) P-wWave;
1
1

0

L' L"
R (2L]+1) frece
L"' L
(a) a,b=0;L,L-a,L-b=1
L' L"
ele!
1 0 ) = (-! UN R
e+ -t
L"' L
(b) a,b=1;L-a,L-b=0
L' L"
0 1 ‘ = (—)“c‘ﬂ';vé N
(L +1)  -tb
L"' L
(c) a,L-b=0;b,L-a=1
L' L"
) = ’ 1
0 1 3(2L}+1) 6\.\:"\_“
L"' L

(AII1.9)

(AIII1.10)

(AII1.11)

(AI111.12)
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(d) b,L-a=0;a,L-b=}
L' L"

1
3(2L"+1)

by

v
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(AIII.13)



