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ABSTRACT

A new variational principle in fluid ﬁechanics is presented,
based on a generalized version of the conservation of particle label
constraint. The variational principle represents an extension of the
work of Clebsch (1859) and C.C. Lin (1959) and for the one-component
case it describes a perfect fluid with a finite density of vortices;
for the two-component fluid it yields the Khalatnikov equations for
rapidly rotating superfluid “He. In the lattér case two particle
label constraints are needed, which express the possibility of
labelling both an element of normal fluid and a superfluid vortex,
averaged over many vortices. In addition a negative result for a
variationai formulation of viscous fluids based on a generalized

particle label constraint is given.
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INTRODUCTION

The modern form of variational calculus is attributed to Euler
(1701 - 1783) and Lagrange (1736-1783) although the very first results
date back to Hero of Alexandria circa 140 A.D. One of the problems of
variational calculus is to find a functional L[{y(x,t),x,t], called the
Lagrangian density, such that the Euler-Lagrange equations SL/SY =0
are equivalent to the equations of motion. It is straightforward to
prove that the vanishing of the variational derivative of L is
equivalent to the requirement that the action A = JJ L dxdt be an
extremum for all variations of Y(x,t) with fixed boundary values. The
basic mathematical framework was completed by Noether (1918) who showed
explicitly how symmetry transformations of the Euler-Lagrange equations
are connected with conservation laws.

The chief difficulty in variational calculus is that a Lagrangian
may not exist when the equations of motion are expressed in terms of a
given set of variables; in such a case the equations of motion must be
rewritten in a transformed set of variables. For the electromagﬁetic
field the decomposition of E and E in terms of the potentials K and ¢
is well known; however in general there is no way of knowing in advance
which transformation, if any, will bring the equations of motion into
the form of the Euler-Lagrange equations.

The advantages in constructing a Lagrangian formalism are
three-fold: .(l) Noether's theorem provides a convenient connection
between symmetries and conservation laws; (2) symmetry arguments
applied to the Lagrangian give a systematic way of extending the

equations of motion; and (3) the variational equations may be easier



to solve directly than the usual form of the equations of motion. 1In
fluid mechanics (3) is especially true. For instance the variational
equation associated with the mass density p is the most general form of
the Bernoulli equatién, which can be used to discuss prOperties of
fluid flow without finding exact solutions. In summary, a variational
formulation of hydrodynamic systems is extremely useful.

More than one hundred years elapsed between the simultaneous
development of variational calculus and fluid mechanics and the
discovery by Clebsch (1859) of a Lagrangian for isentropic, incompress-
ible fluids. Clebsch's representation of the velocity field in terms
of the Monge potentials, introduced by Monge (1787), succeeded in
overcoming the two difficulties in formulating a variational principle
for fluids, namely the occurrence in the equations of motion of
non-linearities and first order derivatives of the velocity field.
Because of the symmetry properties of the variational derivative, it is
impossible‘to obtain odd order derivatives of the velocity field 3(x,t)
as a result of variations with respect to V(x,t). Clebsch's
incorporation of both non-linear and first order derivative terms in a
variational principle is absolutely unique in classical field theory.

Bateman (1929) and Lamb (1932) extended the Lagrangian to include
compressible, isentropic flows. The adiabatic case was solved by
C.C. Lin (1959) who recognized that the conservation of particle label
constraint (Lin's constraint), an expression of the possibility of
labelling an element of fluid, must be explicitly incorporated in the
variational principle. The physical consequence of including Lin's
constraint is the appearance of non-zero vorticity in the absence of

entropy gradients.



Because of the difficulties with first order derivatives and non-
" linearities mentioned previously, extensions of Clebsch's variational
principle are extremely difficult to find. The purpose of this thesis
is to present such an extension based on a generalized version of Lin's
constraint. The physical interpretation of the resulting theory is
that of a fluid with a large number of vortices present, where all the
hydrodynamic variables have been averaged over regions containing many
vortices. In its two-fluid version the variational principle yields
the Khalatnikov equations for rapidly rotating superfluid “He.

After reviewing the adiabatic Lagrangian in Chapter 1, the
consequences of relaxing Lin's constraint for a classical one-component
fluid without changing the conservation of mass equation are examined
in Chapter 2. It is found that such theories represent a macroscopic
(compared to the mean vortex separation) description of a fluid with a
large number of vortices present.

As necessary background material Chapter 3 reviews Herivel's
variational principle for the Landau two-fluid equations. Chapter 4
presents a new variational principle for the Khalatnikov equations of
rapidly rotating superfluid “He. It is found necessary to use two
constraint equations, the usual Lin's constraint associated with the
normal velocity field and the other constraint expressing the .
possibility of labelling a superfluid vortex, averaged over many
vortices. Chapter 5 concludes with an extension of the variational
principle to higher order derivatives and with a negative result for
viscous fluids, namely that a generalized Lin's constraint by itself
is not sufficient to generate the additional viscous terms which occur

in the Navier-Stokes momentum equations.
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To summarize, the new variational principles presented in this
thesis are given by Egqs. (2-6), (2-40) and {(5-1) which describe one-
component fluids with a density of vortices, and by Eq. (4-7) which

yields the Khalatnikov equations for rotating superfluid “He.



CHAPTER 1

A REVIEW OF THE VARIATIONAL PRINCIPLE FOR A PERFECT FLUID

IN ADIABATIC FLOW
1-1 An Historical Outline

The equations of motion of a perfect fluid were first developed
by Euler1(1751) and Lagrange2(1781). More than one hundred years
later Clebsch3(1859), using a representation for the velocity field
introduced by Mongeq(1787), succeeded in finding a Lagrangian for the
incompressible, isentropic (constant entropy) flow of a perfect fluid.

Clebsch proved that the isentropic, incompressible equations

-—)
dv _ J___ > —>.—> - _
a&- "5 P , VeV=0 (1-1)

where V is the fluid velocity, d/dt = 3/3t + %-3, P(x,t) is the
pressure and p is the mass density, can be solved in terms of three
scalar functions ¢(x,t), m(x,t) and Y(x,t) (the Monge potentials)

which satisfy

->

= v 3. P, 3¢ ay 1 y2 = dm _ dy _
V=Vo+mVy , =+gitmgitEV=0

> dt ~de -0 1-2)
Furthermore Clebsch showed that the equations VeV = 0 and dm/dt =

dy/dt = 0 are the variational equations of the Lagrangian density

= 3¢ L) T Ty 2 _
L at+mat+%(v¢+mvlp) (1_3)

which arise from variations in ¢, ¥ and m respectively. This result

5 6
was extended by Bateman (1929) and Lamb (1932) to compressible,



isentropic‘flows. Taub7(l949) and Herive18(1955) attempted with only
partial success to generalize the variational principle to the adia-
batic case ds/dt =0, where s is the entropy density.

It was C.C. Lin9(1959) who pointed out that Herivel's variational
principle yielded only a subset of the solutions of the Euler equations,
those for which $x$ = 0 when s = constant, and who supplied the necess-
ary additional constraint. Lin observed that even if the Lagrangian
coordinates ;(x,t) do not appear in the Euler equatioms, only those
velocity fields for which the Lagrangian cpordinates could be found
should be used in the variational principle. Lin incorporated this
constraint into the variational principle in the form of the conserva-
tion of identity of particles equation d;(x,t)/dt = 0, where ;(x,t)
is the initial poéition of a fluid particle located at X at time t.
By'using Weber's transformation10 it follows that Herivel's variation-
al principle supplemented with Lin's constraint for the identity of
particles includes all solutioms of the Euler equations.

.Following Lin's crucial step a number of papers appeared extend-
ing the variational principle. These include Serfin10(1959) and
Eckart11(1960) on adiabatic flow, a special relativistic formulation
of adiabatic flow by Penfield12(1966), Seliger and Whitham13(1967) on
variational principles in continuum mechanics, general relativistic
treatments of adiabatic flow by Schutzlu(1970) and Schutz ana Sorkin15
(1977) and a variety of rigorous mathematical results by Rund16(1976).
Other generalizations include variational principles for magneto-

1 1

7 19
hydrodynamics by Calkin (1961), Katz

8
(1961) and Penfield and Haus
(1966) and for a number of two-fluid systems (see Chapter 3 for

details and references). Worth noting are several negative results



for variational principles yielding the Navier-Stokes equations :

2

20 21 2 23
Millikan (1929), Bateman (1931), Gerber (1950) and Bailyn (1980).

1-2 The Equations of Motion

The equations of motion of a perfect fluid in adiabatic flow are

10 >
well known and are given in terms of the Eulerian variables (x,t)

i . . . .
(the x~ are just the spatial coordinates, t is the time) by

30 4 V-(pV) = 0 (1-4)
at .
ds _

Frl 0 (1-5)
+

av_ 1 _
dt—-_pVP (1-6)

which represent the conservation of mass, entropy and momentum of the
fluid respectively. The variables V, p and s and the material deriva-
tive d/dt'have been defined previously while the pressure P(p,s) and
the temperature T(p,s) are defined in terms of the internal energy

density e(p,s) by the Gibbs relation
de = Tds + (P/p?)dp (1-7)

In the Eulerian variables (§,t) the velocity %(x,t) is simply
regarded as a vector field which obeys Eqs. (1-4)-(1-6). 1In the
Lagrangian variables (Z,t) the fluid flow is described in terms of
particle paths X = z(z,t). If z is fixed while t varies then ;(z,t)
maps out the path of a fluid particle initially at Z. For fixed t,

;(z,t) gives a mapping of the region initially occupied by the fluid



into its position at time t.
Assuming that initially distinct points remain distinct implies
> . > _ = . .
that x(z,t) possesses an inverse z = z(x,t) which is the initial posi-
. r e 3 ao+ 3 + +
tion of a fluid particle with position x at time t (x and z denote the
> >
values of the functions x(z,t) and z(x,t) respectively). This implies

Z(x(z,t),t) and hence use of the chain

that ; = ;(z(x,t),t) and Z

rule yields the identities

i 3 i k .
9x~ 3z~ _ 9x° 3z ik (1-8)

Tk 1.3 ¢
9z~ 3x 9z~ 9x

where ;(z,t) and ;(x,t) are assumed to possess continuous derivatives
up to third order in all derivatives; i, j,... = 1,2,3; repeated in-
dices are summed and unnecessary indices are omitted.

In the Lagrangian picture of fluid flow the velocity of a fluid

-
particle V(z,t) is defined as

i i
i_ 9x(z,t) dx _
Vo= T5 T dt (1-9)

Multiplying Eq. (1-9) by 9z3/9x" and summing i yields the equivalent

form

dzi(x,t) -0 (1-10)
t .

which just states that the identity of the fluid particles is conser-
ved during the motion. Note that Eq. (1-9) and use of the chain rule

imply

df (x,t) _ 3af(x(z,t),t)
at 3t (-11)



and hence d/dt and 8/3; commute. Egs. (1-4)-(1-6) and the Lin's con-
straint Eq. (1-10) will henceforth be referred to as the hydrodynamic
equations which will be shown to be equivalent to a variational prin-

ciple in the following section.

1-3 The Lagrangian

10
The following discussion is due to Serrin in the Handbuch arti-

cle. The Lagrangian density for the hydrodynamic equations is given

by

. 3. J
= 2 _ - {22 4 B (¥ ds j dz= _
L = % oV? - pe(p,s) a{at +v (oV)} + pB i Sl TS (1-12)

where the dependent variables are p,s,v,; and the Monge potentials
a,B,? while the independent variables are (;,t). The variational
equations are obtained by setting the variational derivatives 6L/6wa
= 3L/90® - V- (aL/3 (™))~ 8(3L/3(3¥%/3t)) /5t = 0 where the y* are
the dependént variables; for a review of variatienal principles in
mathematical physics see H1112“(1951). Variations of the Monge poten-
tials G,B,? Just give Egs. (1-4),(1-5) and (1-10) respectively while

the other variations give

§V: V= -7Va - gVs - vz (1-13)
da P
8p: d—t+5§V2—_e—B-=0 (1-14)
. 48 _ _
6s: it T (1-15)
> d+ N
8z: L =0 (1-16)
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Eqs. (1-4),(1-5),(1-10),(1-13)-(1-16) will be collectively referred to
as the variational equations of L.

When use is made of Clebsch's lemma

= da dg = > ds d 3 > i jv
= = V(&2 + 2 y2y - &2 - as _4ay 3,3 _ JJg 4z -
V(G +E V) -3, Vs - BV — vz IV (1-17)

-
av
dt

which follows as an identity from the definitions d/dt = 3/3t + Vv

> > > J—>J A i

and V = - Vo - BVs -~ y'Vz" (see Appendix A for a proof) then substi-

tution of Eqs. (1-14)-(1-16),(1-5),(1-10) into Eq. (1-17) gives

= -Te+D + s = - %VP (1-18)

which is just Eq. (1-6). Hence all solutions of the variational
equations are also solutions of the hydrodynamic equations.
The converse statement can be proven using Weber's transforma-

tion. Eq. (1-9) or equivalently Eq. (1-10) implies the identity

4 imdy _avd ad | ja ) _aviad 8, o,
VvV P itV it a1t 1V (1-19)
oz 9z o0z 2z 29z
Substituting Eq. (1-6) into Eq. (1-19) gives
C o] :
i(vJﬁx—.)=—a—.—(%v2-e-3)+T——a‘3 (1-20)
dt i i v . p i ‘
o9z 9z oz

t t ’
By defining a = [ [e +-§-- % v2)dt and B = f Tdt (the integration is
0 : 0
carrried out by constant ;) then it immediately follows that Eq.(1-20)

can be written as

i . .
(3"—i (v + via + gvls]) = 0 (1-21)

4
dt 52
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Since a(z,0) = 0, B(z,0) = 0 and ;(z,o) =z Eq. (1-21) can be inter-

grated as

<V

= - Va - BVs - ngzj : (1-22)

where YJ = - VJ(z,o). Eq. (1-22) is just Eq. (1-13) and it is easy

>
to verify that o,B and y as defined above satisfy Eqs. (1-14)-(1-16)
respectively. Hence the variational equations of L are equivalent to

the hydrodynamic equations.
1-4 Symmetry Transformations and Conservation Laws

Before considering the transformation properties of the specific
Lagrangian given by Eq. (1-12) a more general treatment is needed.
The following discussion can be found in greater detail in Hillzu.
If the variational equations of a Lagrangian L[y] = L{y,Vy,39/dt,x,t)
maintain the same functional form under the infinitesimal transforma-
tions LIY] > L'['] = Ly] + 6LIvl, ¢& » v'% = v* + &4, X > 3" =
X + 6;, t>t' =t + 6t and L'[y"]d3x"'dt' = L{y]d3xdt (the latter con-

dition just maintains the numerical invariance of the action) then

they are said to be form invariant. This implies

SL'lv'] _ SLIy] (1-23)

sp'® sy *

Hence if wa is a solution of the equations of motion then so is w'a
and the transformation is said to be a symmetry transformation. A
necessary and sufficient condition that Eq. (lf23) hold for arbitrary
wa(x,t) or equivalently for wa and their derivatives considered as

independent variables (not just for those wa which satisfy the
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equations of motion) is that the old and new Lagrangians be related

by a total divergence

L'[p'] = LIy'] + V-of + 3 80 /ot O (-24)

Eq. (1f24) just says that L is invariant under the transformation, if
58 = 690 = 0 then L is said to be form invariant.

If Eq. (1-24) holds for wa and their deriyatives considered as
independent variables (hence the equations of motion may not.be used
in verifying Eq. (1-24)) then Noetherfs theorem gives a conservation

law in the form

X3 =0 (1-25)

>
where the infinitesimal forms of ¢ and s are given by

o = (L - ——%ﬁ%r— %ﬁ )st —-——%%a—-5§-€w“ — L a® + s (1-26)
8( ) 3( ) “12") '
JCU ) A "hP N SR ) k- A1 UL ) SR Y (1-27)
> o odt > 0 > 0 .
5% 50 5%y

Hence to test for a possible symmetry transformation which generates
a conservation law via Noether's theorem either Eqs. (1-23) or (1-24)
may be used, with wa and their derivatives considered as independent

variables.
1-5 The Infinitesimal "Gauge" Transformations

The discussion in Sec. 1-3 shows that the essential step in
finding a variational principle for the hydrodynamic equations is the

representation of the velocity field given by Eq. (1-13). However a
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definite value of 3 does not uniquely determine the values of the
variables which appear on the R.H.S. of Eq. (1-13). 1In fact a,B,?

and z maylbe subjected to "gauge" transformations which do not change
the value of V and which keep‘L invariant énd hence the variational
equations of L form invariant (transformations of s are not allowed
since this destroys the form invariance of Eqs. (1-14) and (1-15)). The

form invariance of Eq. (1-13) implies that the infinitesimal gauge

transformations o > a' = o + 8o, B + B' = B + 6B, ? -+ ?' = ? + 5;,
-> - -+ - -> > -+
z+z" =2+ 8z and V> V' =V satisfy
. . > .
?' = —%a' - B'ﬁs' - Y'J§Z'J = V = —%a - RVs - YngJ (1-28)

or equivalently
Vsa + yiozd) + 88Ts + 6yIW2d - 623 =0 . (1-29)

The form invariance of the other variational equations implies

that

d _i _ 4 > _ d -> - _
36 (00 =55 OB) = 57 (6) = gz (62) =0 (1-30)

which have the solutions

o GQ(S,Y,Z), 8B GB(S,Y’Z)’

&Y = 6¥(s,Y,2), bz = 8z(s,y,2). O (1-3D)

Substitution of these results into Eq. (1-29) yields

§93-+ Gyj)$zj + (e QEE - Szj)VYj =0 (1-32)

(e _gg + 8B)Vs + (e
S
3z Y

where for convenience 6o + YJGZJ = €G(s,Y,z) and € is an infinitesimal

constant.
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- ->
Since s, Y and z are independent variables Eq. (1-32) implies

that the infinitesimal gauge transformations are given by

o =ec - eyd 28 g = e 28 oyd o ¢ & | 5,

BYJ 9s sz

]
[&]
~
-
w
L%
~—

The conservation law associated with the gauge transformations is
3 > o
3¢ (PG(s,Y,2)) + V= (pVG(s,y,2)) = 0 (1-34)

which is easily verified from Eq. (1-25). Note that if 6; = 0 then the

gauge transformations take the form
G = G(s,z2) (1-35)
and the conservation law becomes

2 (06(s,2)) + Ve (o¥a(s,2)) = 0 (1-36)

1-6 The Galilean Transformations

In this thesis all equations are invariant under the Galilean trans-
formations: spatial translation, time translation, rotation of
coordinates and Galilean boosts. The transformation properties of
> -> . .

V,p0,s and z are well known but the transformation properties of the
-
Monge potentials o,B and Yy are not known a priori and must be deduced
by requiring that the Lagrangian be invariant under the Galilean group
: PR -3 S . . . ++| > >
(i) Under the infinitesimal spatial displacement x -+ x' = x + 0x where
> . . > > > >
8% is an infinitesimal constant, z = z' = z + 6x. The results of
>

Sec. 1-5 show that the Monge potentials o, B and Y remain fixed apart
from a gauge transformation of the type G = G(s,z). From Eq. (1-25) it

is easy to verify that the conservation law associated with this
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symmetry transformation is the conservation of momentum equation

i . . s ‘.
—R—aa‘é + v vivd + psidy = 0 (1-37)
(ii) Under the time translation t + t' = t + 6t where 8t is an infin-

-> -> > > -+
itesimal constant, z -+ z' = z - V(z,0)8t (since z was defined as the
initial position of a fluid particle, a shift in the time origin shifts
- > >
z as well). The form invariance of Eq. (1-13) gives y > y' =

- yJ(aVJ(z,o)/az)Gt apart from a gauge tranformation of the type

=¥

[}

= G(s,z). From Eq. (1-25) follows the conservation of energy equation

88_t (e + 13 pv2) + VI ([pe + % pv2 + PIVY) = 0 (1-38)

. A TR . Vs 2
(iii) Under the rotation of axes x *> x' = x + 80 X x, where 80 is an

infinitesimal constant vector in the direction of the axis of rotation

> - -> > >
with a magnitude equal to the angle of rotation, V> V' =V + 606 X V
- - -> -
and z + z' = z + ég x z. The form invariance of Eq. (1-13) gives
-> -> - ->
Yy>y'=vy+ 68 x Y, apart from a gauge transformation of the type

G = G(s,z). From Eq. (1-25) the conservation of angular momentum

equation is

> -> 3 3> > > >
2V D VI -Fx T =0 (1-39)
> -> > -> -
(iv) Under the Galilean boost x » x' = x + 6V0t, where 6VO is an
-> > > ->
infinitesimal constant vector, V= V' =V + GVO. The form invariance of
> >

Eq. (1-13) gives o > a' =a - x°6VO apart from a gauge transformation
G = G(s,z). From Eq. (1-25) the conservation of center of mass equation
is

d

= (vt - px') + vievivie - pxtvd + Pes?d) = 0 (1-40)
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1-7 An Alternative Lagrangian

The variational principle given by Eq. (1-12) requires that the
Lagrangian picture of fluid flow be adjoined to the hydrodynamic
equations in the form d;/dt = 0. Seliger and Whitham!3 have shown that

this is not necessary. Consider the Lagrangian
1 2 ap T (o ds dz
L =% V2 -pe(p,s) ~algy + V- (pV)} +pB 3= + oy g + pH(y,z,t)  (1-41)

where a,B,Y and z are to be interpreted as Monge potentials and H is
an arbitrary function of Y, z and t. Variations of o and B give

Eqs. (1-4) and (1-5). The other variations give

§V: V= - Vo - BVs - Yz (1-42)
R U _F dz = -
Sp: it +Lv e 5 + v it + H 0 (1-43)
. 4B _ _ -
8§s: 5o T (1-44)
sy: Sx 9B (1-45)

odt 0z
dz _ dH .
8z & - T3y (1-46)

The Clebsch lemma gives

av _ _gdo ooy _ 98 T ds _
3(dt+2v) 5 Vs fﬁdt

= XYz -y EE 147

while substituting Eqs. (1-43)-(1-46), (1-5) into Eq. (1-47) gives

& _ Fee s LN
P V(e+p H+yaY)+Tvs

3H 2 >0 13 _
Sg vz W g = - (1-48)

which is just the conservation of momentum equation (1-6). Hence all

solutions of the variational equations of L are also solutions of
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Egqs. (1-4)-(1-6).
The converse statement can be proven using Pfaff's theorem which

-> -+
states that an arbitrary 3-vector V + BVs can be written in the form

-> > -> ->
V+BVs = - Vo - yVz . (1-49)

Since B is arbitrary it can be chosen such that dR/dt = -T. Clebsch's

lemma and Eq. (1-6) then give

+
_lg, _dv_ Fdo Ly yoy _ 4B T _Y_ _ U dz -
VR = G-Vt V) - s gv &2 dt Vz - yV & (1-50)

which can be rewritten using Eq. (1-5) and dB/dt = -T as
'\?(d—o‘+%v2-e-—+ —d£)+—Y-Vz——vY (1-51)
dt dt

ASelf—consistency conditions imply that a, y and z must

satisfy Eqs. (1-43), (1-45) and (1-46) respectively. Hence the
variational principle given by Eq. (1-41) is completely equivalent to
Egqs. (1-4)-(1-6) and no reference to the Lagrangian picture of fluid
flow is needed. Note that the addition of the term H(Y,z,t) means
that the Lagrangian is invariant under the smaller group of gauge
transformations G = G(s). This completes the review of the variational

principle for adiabatic flow.
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CHAPTER 2
CONSEQUENCES OF RELAXING THE CONSERVATION OF PARTICLE LABEL
2-1 The "Gauge'" Invariance Problem

As shown in Chapter 1 (see Eq. (1-12)) the Lagrangian for the
perfect fluid in adiabatic flow is just the kinetic energy minus
the internal energy plus a sum of Lagrange multipliers times the
constraints 3p/dt +V- (p?f) =0, ds/dt=0 and d;/dt=0. Variation of Lwith
respect to v gave the representation for V, then use of Clebsch's
lemma and the variational equations for p,s,;,d,e and ; yielded the
conservation of momentum equation. In fact the precise form of the
constraint equations for p,s and z given above is crucial to the
success of the variational principle.

For instance consider the Navier-Stokes entropy production
equation pds/dt = KT 1v2T + T---IViVjTij where Tij= k$-§61j+ u(ViVj+VjVi),
k,\X and y=constant. If this constraint is incorporated in the varia-
tional principle simply by using a Lagrange multiplier 8 then the

Lagrangian is
L' = ¥ pV2 - pe(p,s) - a{%Ft’- + Ve(pWM)) + B{p%% - x17lv2r - 1 lviiridy
yige
Y e (2-1)

-
Variations of a,? and z are unchanged while variations of ¢,s,B and V give

en. 4o 2 _e-L p 3Ty ds _, 8T.o B
Spr g tEVE - e o T8 A+ 759 a& k3 @ =0 (2-2)
. a8 _ p 3T s ds _ . 3T 2.8
§s: - p at pT + T 35 B at k s v (T) =0 (2-3)
58: o $2 = kr7lv2r + 1 lvivIrH | (2-4)
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svi: vi= _vly - gvls - ydvizd - % v (2pr"1ridy (2-5)

A straightforward calculation yields an equation for Vi

™
Q
=
¥
0]

oT

VLP+ Wrld o ol s

9T g2,.8 BT ds
Twde fEH U@ T T At

dt

k. 9T

2 1, _ds VeV §,28 1] 28 kl
ke v2yvts -2 vig - DV oI oty - 1ot fMhyely

dt P T

_.]; Vl(gl%. TiJ)VJV]'_— %

= L o3 ( 28 3T ds

N - Iy T2 3s dt

2k 9T v2cB ij 3. iJ _

which is not the Navier-Stokes momentum equation unless the RHS of
Eq. (2-6) vanishes. This constraint would have to be added to the
Lagrangian with no guarantee of a solution to the resulting closure
problem.

In addition the Monge potential B which was introduced as a
Lagrange multiplier and has no unique physical interpretation, cannot
" be eliminated from the R.H.S. of Eq. (2-6) by using the variational
equations of L'. The conclusion is that the form of the constraint
equations for p,s and z determines whether the Monge potentials a,B
and 7 (which have no unique physical interpretation) can be eliminated
from the equation for dV/dt. The latter case will be summarized by
saying that the equetion for dV/dt is "'gauge" invariant i.e. the Monge
potentials a,B and ; can be eliminated in terms of V,p,s,; and their
derivatives.

Sec. 2-2 will explore an extension of.the variational principle

discovered by the author in which the equation for dv/dt is "gauge"
invariant while the conservation of particle label an& entropy equa-
tions are modified and the conservation of mass equation remains
unchanged. In Sec. 2-3 the equations of motion are interpreted as

describing a fluid with a finite density of vortices where the
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hydrodynamic variables V,p,s and Z have been averaged over a region
containing many vortices. A variational principle for which d%/dt
is "gauge'" invariant and only the conservation of particle label
equation is changed is given in Sec. 2-4, it is found that because
of the requirements of Galilean invariance such a theory must be

-5
non-linear in the gradient of the Monge potential ¥y.

2-2 A Theory of Hydrodynamics with dz/dt # 0, ds/dt # 0 and

3p/3t + V+(pV) = O.

Consider the Lagrangian

: q,d
3 > > d d
L =% oV2 - pe(p,s) - pg(w) —afz2 + Ve (o)} + pB 5= + oyd & (2-7)
» : ot dt dt .
> -> > > > >
where the dependent variables are V,p,s,z,a,B and y, w = - VBxVs =
23,23 . . . >
Vy'xVz” and g(w) is an arbitrary function of w = |w|. After the
e s . > 2> > .
variation of V is carried out w = VxV and .the - pg(w) term in L may

be interpreted as adding a vorticity dependent contribution to the
internal energy e(p,s) of the fluid. This is similar to an assumption
made by Khalatnikov and Bekarevitchzs(KB) in deriving the equations
of superfluid helium with a finite density of superfluid vortices
where the internal energy of the fluid is allowed to depend on the
superfluid vorticity.

The following identities will prove helpful in finding the

variational equations of L

) (2-8)

eled
eEley

i__ _ 2.3 og E__ - g
sg (- pe(w)) = VseVx(p 52 =) , <= (-08) VB-Vx(p

ow

with analogous expressions for ? and z. By using Eqs. (2-8) the
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variational equations are easily shown to be

> > > > J—>J
8V: V== Va - BVs - y'Vz (2-9)
Sa: %%-+ %-(p§) =0 V (2-10)
So: d_(l+8d_s+ jd_zj_+;/V2__ __3_ (w)=0 (2_]_1)
P: at dt * Y dt 2 et 68 :
d > > 3z
. as _ _ Ja. 98 W, -
88: o 3¢ - Vs+Vx(p ™ w) (2-12
ds > 9
. av . _ . °g Wy _ -
8§s: p pre VB+Ux(p ™ m) pT (2-13)
. j . > .
3, dz” _ _ 2,3.3.(, 08 W -14
8y’: p It Vz2 eVx(p o & (2_1 )
5. pdyY L _2d. 2mw
8§z~ vt Vv~ «Vx(p ™ E) (2__15)

>
Since the representation for V remains unchanged Clebsch's lemma

Eq. (1-17) is unchanged. Substitution of Eq. (2-11) into Eq. (1-17)

yields
o V- +vip = - ovig - p(@Bamyvis 4, 98 ¢l o, ST ! vizd
at pY &8 7 Pgt P at " Pt
+ P dzd gl (2-16)
at
By using Egs. (2—12)—(2f15), Eq. (2-16) can be rewritten as
avt i i 2 > dg e i 2 = 3w i
p &1 = - . 98 W, - Uge 98 W
T vip pV7g + VB+Ux(p 3B HyUTs - VseUx(p 2 D)V'B
+ Ty eux( é’:’Li)vizj - ¥23.9x( ggi)vi 3 (2-17)
Y P w w . P ow w Y

The vector identity (X-E)E - (K-E)E = KX(ﬁxa) and the representation
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for V mean that the Monge potentials B and ? can be eliminated from

Eq. (2-17) in the form

> -
AV L 3 = - Vs + Ix(o 28 Y D -
i + VP - pVg + vx(p " w)x w A (2,18)
or equivalently
vl | 3 petd 4 8 28 (2gtd | 5]
=y i 2 - = -
r + V7 (P$ +waw[w6 - ww']) =0 (2-19)

Hence the effect of the - pg(w) term in the Lagrangian is to add a

(13) _ - B-Eg-[wzéij—wiij

symmetric contribution to the stress tensor T = S

As in Chapter 1, Egs. (2—10);(2f12), (2f14) and (2-18) will be
collectively referred to as the hydrodynamic equations. Note that
the representation for v implies that $ = UxV and hence the hydro-
dynamic equations are "gauge" invariant,

By using a suitable generalization of Weber's transformation
it can be shown that all solutions of the hydrodynamic equations are
also solutions of the variational equations (Zf%-(2f15). 1f
Z(x,t) is assumed to be invertible and differentiable then Eqs. (1—8)
are unchanged. Multiplication of Eq. (2-14) by Bxi/azj gives the

equivalent form

. i > i
1_3x(z,8) 1 3, 88 w," -
Vo=t Gl (2-20)

>
Hence it is CANE v + %-gx(p gﬁ-g) = %%LELEl- which is the tangent to
-+ -> >
the particle paths x = x(z,t), not V as in Eq. (1-9). If d'/dt =
3/9t + V'+V then use of the chain rule implies that the analogue of

Eq. (1-11) is
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4’ 3

—dT f(xat) = 5t f(X(Z,t),t) (2-21)
-> -

and hence d'/dt and 3/93z commute, not d/dt and 3/3z as in the Lagran-

gian picture of fluid flow.

From Eq. (2-21) follows the identity

' . ond vyl ey d < ad J oaJ
g__(VJ Bx' y = d'v Bx. + v 8x' - 4dv Bx'
dt a1 dt i i dt i
z 9z 3z oz
— ]
+ Vodvrtiw oty vt 3L1 (2-22)
9z '

Substitution of Eq. (2-18) into Eq. (2-22) gives

' . onJ . i
oI By J8  (en Bl nv2 4 @) + ol (2-23)
dt i i ) i
o9z oz 2z
L. t . t P AT .
By defining B = -'J.T d't and o = - J [-e- E—— g + % Ve4ve(v'-V)]d't
-0

>
(the integration is carried out at constant z) and since d's/dt = 0

from Eqs. (2-12), (2-21) then Eq. (2-23) can be rewritten as

1 k| . . .
4@ v 4 vda +evds) = 0 (2-24)
dt i
oz
The latter equation can be integrated by defining YJ = —VJ(z,o) as
o= - vy - BVJS - YQVJZ2 (2-25)

which is just Eq. (2-9). From the definition of «,B and ? given

above
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. .
_ggt -e- % —g+ 5 V2 4+ V(U = 0 (2-26)
d's _
ac - T (2—,27)
dl.Yj _
at =0 (2-28)

> 1 > ®
By using the definition V' = V B—V (p —g-—ﬁ and Eq (2-25) it

immediately follows that Eqs. (2f26)—(2-28) are identical with Eqs.
(Zfll), (2fi3) and (2f14) respectively. Hence the hydrodynamic
equations are completely equivalent to the variational equations.

Note that since the representation for V is unchanged, the "gauge"
transformations of a,B,;'and z have the same form as given by Eq.(l—SSL

_>
Furthermore since w = VX[— a - BVs - YJ

Vzd ] is clearly invariant
under these transformations the Lagrangian given by Eq. (2f7) is
also invariant. As the reader may easily verify from Eq. (1-25) the
conservation law which arises from the gauge invariance of L is

%;'(PG(8,Y,Z)) + 3’(03'G(x,y,2)) =0 (2-30)

which follows from Eqs. (2-10),(2-12), (2-14) and (2-15). Since w
is also a Galilean invariant the Lagrangian given by Eq. (2-7) is
invariant under the Galilean group. The conservation laws which

arise from Galilean invariance can be derived from Eq. (1-25) as

= (ovh +Vj(pViVJ+P61J+%—g-‘% (w2st-wiudyy = o (2-31)
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-g—t (5 pV2+petpg) +V= ([¥ pV24petpg+P]V+ %%% ox [TVs+V 'xw]) = 0 (2-32)

%E(ElJkprVk)+V2(eijkprVkV£+eiJka{p6k2+ %-%%[wzékg—wkmz]})=0 (2-33)

%? oV it—px )43 (ovivd t—pxtvispes i+ %%ﬁ (w2670 wdlt) = 0 - (2-34)

which represent the conservation of momentum, energy, angular momentum

and center-of-mass respectively (eiJk is the permutation symbol).
2-3 Interpretation of the Equations of Motion

The Lagrangian given by Eq. (2-7) differs from that of Eq. (1-12)
by the addition of a vorticity dependent contribution to the internal
energy. This is anaiogous to the theory of (KB) which describes the
motionof superfluid helium with a finite density of superfluid vortices
in which thé hydrodynamic variables are averaged over a macroscopic
region containing a large number of vortices. In fact, in Chapter 4
a modification of the Lagrangian given by Eq. (2-7) will be used to
derive the equations of (KB). This suggests that a similar inter-
pretation can be made for the hydrodynamic equations given in Sec.

2-2, that they describe a fluid with a finite density of vortices

where the hydrodynamic variables v,p,s and ; have been averaged over
many vortices. Once the form of the total energy of the fluid is
specified, then the equations of motion follow from the standard
technique in hydrodynamies. Conservation laws for mass,momentum,

entropy and eﬁergy are assumed which give six equations in five
variables.The resulting se;f—consistency conditions fix the hydrodynamic

equations;see Appendix B for details.
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Since the turbulent flow of a fluid is characterized by a distri-
bution of vorticity it is worthwhile to examine the equations of
mocion for turbulent solutions. By adopting Kolmogoroff's assump-
tion26 that only the energy dissipation e, (a constant with dimen-
sions 22t73) be used in the inertial subrange of turbulent flow then
by dimensional analysis g(w) = K'aow—l, K' = dimensionless constant.

Provided a closure relation is assumed for the two-point vorticity

correlation function of the form
" - L
<o (x+1) 0 (%) (0(x)) 3> = K"<@(x+r) s0(x)>"2 (2-35)

(K" = dimensionless constant) then the hydrodynamic equations of
Sec. 2-2 provide a closed equation for the two-point velocity correla-

tion function, which can be solved as
) 273 273 2/3
<@ - T2 = 9/2a0kx/9) e e (2-36)

Eq. (2f36) agrees with Kolmogoroff's prediction for the inertial
subrange, provided Kolmogoroff's constant K(K=.5) is given by
K = 9/8(10K'K"/9)2/{ Hence it is possible to model the inertial sub-
range of turbulent flow with the hydrodynamic equations of Sec. 2j2
provided the form of g(w) is given by dimensional analysis as

! and the closure relation Eq. (2—35).is assumed. Since

g = K'So(ﬂ-
this subject is peripheral to the main topic of this thesis the.
details of the foregoing discussion are relegated to Appendix C.

The Beltrami diffusion equation
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4 wy _w i 13
at = = > vV O+ > (V x

5 ) (2f37)

which follows as an identity from the definition of d/dt, when com-
bined with Eq. (2-18) in the barotropic case P = P(p) yields an

equation for the vorticity

a' w- _ W) el
7S (p ) = . vy (2-38)
Eq. (2-38) can be integrated using Eq. (2-21) as
i 3 i
W' _w(z,0) Bx. (2-39)
P 0(z,0) o ] :

which states that %— is transported with velocity V' not V as in. the
> > ' >
Lagrangian picture of the fluid flow. Note that since V-(pV') = 3-(pV)
- .
then d'p/dt = - pV-V' which can be integrated as p/p(z,0) = J

= det —i » just as in the Lagrangian picture of fluid flow.

2-4 A Theory of Hydrodynamics with dz/dt # 0, ds/dt = 0 and

3p/3t + Ve (pV) = O.

To simplify the search for a Lagrangian such that only the con-
servation of particle label constraint is altered, assume that the
representation for v remains unchanged and that the new Lagrangian
maintains the invariance under the gauge transformations given by
Eq. (1-35). The only expressions which involve the Monge potentials
o, B and ? and are invariant under the gauge transformations are

da/3t + RaIs/at + YJBZJ/St and - Vo - B%s - ngzJ (see Ref. 16 for
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a proof). To keep the conservation of mass and entropy equations
. unchanged, additional terms involving o and B cannot appear in the
Lagrangian (since variation of these Monge potentials just yield the
conservation of mass and entropy equations). This means that the
Monge potentials can appear in any additional terms in the Lagrangian
> > > > J 2> 3
only in the form w+<Vs = - Vs'(VnyVzJ).
. -+. .+ 2
The representation for V is unchanged, thus V may not appear in
any addition to the Lagrangian. Furthermore since 3/3t is not invar-
iant under Galilean boosts (see Sec. 1-6) no time derivatives may
>

appear (d/dt cannot be used since this would involve V). Since
> >, -> > . X .
z~>2' =2 - V(z,0)8t under time translation (see Sec. 1-6) the varia-

> > > >
ble z can appear only in the term w*Vs. It is easy to see that w'$s
is invariant under spatial translation, time translation, Galilean

] I 3 . _> +
boosts, rotations and inversion of coordinates (w + -w) however under
. . s -> > > > > > . .
time inversion w »> -w and thus w+Vs > - w*Vs. Hence to maintain the
Galilean invariance of the Lagrangian, any additional terms in the
> > >

Lagrangian must have the form h(p,s,gp,Vs,(m-Vs)z), where h is a
differentiable scalar function of its arguments, and therefore are
non-linear in VlyJ.

In view of the preceeding discussion consider the Lagrangian

.
>
L" =;§sz—pg(p,S)—h(D,s,(g-gs)z)—a{g—i+_v)'(ov) bog LS4y S (240)

. where for simplicity gp and Vs have been eliminated from h apart from

> >
(w*Vs)2 terms. The variational equations of L" are

i j

6%: 3 = —gd—Bgs—YJVz (2f4l)
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a: 224 F.(o%) =0 (2-42)
3t
do ds . j dz3 P 5h
P 8s 2z L y2__ L _ ¢ =
8p: it + B qt It + X Vé-e 5 50 0 (2-43)
ds _
§8: o =0 (2-44)
§s: 9—% o e L L0 [ L (2-45)
P98 P 5-Vs) P 3(w-Vs)
i dzd 1 .3h > 2 i
Sy Fraiiliee [—_—;—_—;——]XVS'_Vrz (2-46)
P 3(w*Vs)
. j .
6ZJ: % = - l _V>[—ah—+]X-V>S'—V*'YJ (2—47)
e 3(weVs)

Substitution of Eqs. (2-43)-(2-47) into Eq.(1-17), which is
unchanged, and use of the vector identity Kx(ExE) = (K'E)g - (K-E)E

yields the conservation of momentum equation
= ovh + P eviviarstirty - o (2-48)

. ij | .
where the symmetric stress tensor T I s given by

oh
B(J'Vs)

3 = (hep 'g—g)alj + [(@-Ts)s3T - (wivistwivie)] (2-49)

Multiplying Eq. (2-46) by Bxl/BzJ yields the equivalent form

>
vezt Lgdh .3 (2-50)
t P d(w-Vs)

which states that V + p_l[ah/8($°$s)]xgs = V' is the tangent to the

particle paths, not V as in the Lagrangian picture of fluid flow.
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Using the techniques developed in Sec. 2-2 it is straightforward to
show that all solutions of the hydrodynamic equations (2-42), (2-44),
(2-46) and (2-48) are also solutions of the variational equations of
L", |

The conservation law associated with the gauge invariance of
L" is unchanged from Eq. (2-30). The conservation laws for the

energy, angular momentum and center-of-mass are given respectively

by
\
T (& oV2rperh)+¥I (W % oV24perhipl vt @Ts) ) = 0 (2-51)
d(w=Vs)
%E (eleprVk)+V2(eleprVkV2+elexJ{Pdkx—TkQ}) =0 (2-52)
g—t oV t-px )+ (v VI t—px VI4pts -ty = 0 (2-53)

which follow from Eq. (1-25).

Just as in Sec. 2-3, the hydrodynamic equations of L" may be
interpreted as describing a fluid with a finite density of vortices
(see Appendix C for details). Note that both Egs. (2T48) and (2-18)
have stress tensors which depend on the vorticity and thus describe
non-Stokesian fluids. 1In conclusion, the relaxation of the conserva-
tion of particle label constraint in a one-component fluid is equiv-
alent to vorticity dependent contributions to'fhe stress tensor and
the energy of the fluid. The role of the relaxation of the conserva-
tion of particle label constraint for superfluid helium will be con-
sidered in Chapter 4, as a prelude to this work Chapter 3 will review

27 ‘
Zilsel's variational principle for the Landau two-fluid equations.
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CHAPTER 3
THE VARIATIONAL PRINCIPLE FOR THE LANDAU TWO-FLUID EQUATIONS

3-1 1Introduction

28
The superfluidity of He" was first observed by Kapitza in

1938 who found that liquid helium below TA = 2.17°K could flow
through thin capilliary tubes with zero resistance. On the other
hand experiments with rotating liquid helium showed that the super-
fluid could not be interpreted as. a classical one-component fluid
with zero viscosity. These two observations led Landau29 to develop
the two-fluid model of superfluidity as consisting of the flow of
two interpenetrating fluids, the entropy carrying normal fluid
with velocity Gn and the zero-entropy superfluid with velocity %s'

The Landau twoffluid equations which Landau postulated to
describe this model consist of conservation laws for the mass,
entropy and total momentum of the fluid and an equation of motion
for the superfluid velocity for a total of eight equations. The
eight independent variables may be taken as p,s,vn and ﬁs where p
and s are the total mass and entropy of the fluid per unit volume.
It has long been suggested that superfluidity is a quantum phenomenon
which occurs when an appreciable fraction of the He" atoms enter
the groundstate in a Bose condensation giving rise to 1ongjrange
order in the phase of the wavefunction of the Bose condensate?0

In fact, oncé the independent variables p,s,flrn and $S and their

Galilean transformation properties are specified then the Landau

two-fluid equations follow without further recourse to the quantum
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theory from Galilean invariance arguments and by requiring that the
conservation of energy equation be redundant (otherwise when combined
with the conservation laws for the mass, entropy and momentum and the
equation for the superfluid this would yield nine equations in eight
. 31
unknowns, see Putterman for a detailed derivation).
A variational principle for the Landau two-fluid equations was
. 27
first given by Zilsel in 1950. Although all solutions of Zilsel's
variational equations satisfy the Landau two-fluid equations the
converse result does not hold. Zilsel's representation for the
] _). - ) 9 -> ’ .
normal velocity Vn~1mp11es VXV, = 0 for ps/pn = constant which
is too restrictive (pn is the mass density of the normal fluid).
15
Schultz and Sorkin have pointed out that this difficulty may be
>
eliminated by postulating a Lin's constraint for V, in analogy with
the variational principle for the adiabatic flow of a classical one-
component fluid (see Chapter 1). 1In addition Zilsel's variational
. 32533
principle has been criticized on the grounds that x = p_/p is
treated as an independent variable in contradiction with the Landau
model. 1In spite of this it can be shown that Zilsel's variational
+
principle supplemented with Lin's constraint for Vn is completely
equivalent to the Landau two-fluid equations. The absence of a
+
Lin's constraint for VS ensures that the superfluid remains irrota-
> <> A
tional i.e. V x VS = 0. For a review of these points see the
34
article by Jackson.
Sec. 3-2 reviews the Landau two-fluid equations ; the notation
35
will follow London. The equivalence of Zilsel's variational prin-

ciple supplemented with Lin's constraint for $n and the Landau two-

fluid equations is proven in Sec. 3-3 while the symmetries and



-33-

conservation laws associated with Zilsel's Lagrangian are discussed

in Sec. 3-4.

3-2 The Landau Two-Fluid Equations

35
From London the Landau two-fluid equations for superfluid

He* are given by

_Q_g —->. > > _ _
5t + Vv (ann + 0o V) 0 (3_1)

3p8) 4 F.(psV) = 0 (3-2)

SS4yV¥u=0 |, VxV =0 (3-3)

a(pnv; + psv;) 3 .l ; y
5t + Vv (pSVs -t pnvnvn +P§-) =0 (3-4)

where ;%-E %E-+ vy-$. Egs. (3-1), (3-2) and (3f4) represent the

conservation of mass, entropy and total momentum of the fluid respec-

tively while Eq. (3T3) gives an equation of motion for the superfluid.
The variables p,s,%ﬁ and %s have been defined previously while

Pn and p, are the densities of the normal and superfluid components

respectively and the total mass density is given by p = oL + S The

internal energy differential has the form
{

de = Tds + (P/p2)dp + % (Vn-$s)2dx (3-5)

where e(p,s,x) is the specific internal energy, T is the temperature,

the pressure P = p(-e + Ts + % ($n—$s)2x + p) and y is the chemical
>

potential. Note that Eq. (3-5) implies (3e/dx)p,s = %'(3;-VS)2 and

hence there exist functional relationships of the form I pn(p,s,
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> > > >
(Vn—Vs)z) and P = ps(p,s,(Vn—Vs)z). The independent variables of the

Landau two-fluid equations may therefore be taken as the eight varia-
> -
bles p,s,Vn and Vs'
Following Zilsel the factor I' is defined as

ap dp

_n -). + —3 —-— ——S +. = - '
Yl v (ann) [at + v (DSVS)] T (3-1)

Using Eq. (3-1)' it follows that Egqs. (3-2) and (3-4) can be rewritten

in the convenient equivalent forms

d_(s/x)

dt oxZ T (3-2)
dn§n +1% 4+ s VT + i T V2 + @)L =0 3-4)"
dt o o ° 20 V- s V- s) oX (3-4)

Assume that there exists a Lin's constraint for the normal

velocity field of the form

dnzj(x,t)
dt =0 (3-6)

‘Multiplication of Eq. (3-6) by ax /927 yields the equivalent form

i
i _ x (z,t) -
v, = 5?7——4——- (3-7)

where the function X = ;(z,t) is the inverse of ; = Z(x,t) and the
identities given by Egs. (1-8) still hold. Eq. (3-7) just states
-> > ->
that Vn is the tangent to the particle paths x = x(z,t). For the
. > ->
classical one-component fluid the particle paths x = x(z,t) were
associated with the movement of small fluid elements. The Landau

two-fluid model consists of two interpenetrating fluids and it is
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no longer clear what physical interpretation the particle paths have;
34 .

see Jackson for a discussion of this point. In the absence of

any further progress on this matter, Eq. (3-6) should be viewed simply

as an integrability condition on the normal velocity field.

Use of the chain rule and Eq. (3-7) yields

d
I

L £(x,t) = g—t £(x (z,£),t) (3-8)

which implies that dn/dt and B/BZ commute. Egqs. (3-1), (3-2), (3-3),
(3-4)'" and (3-6) will be collectively referred to the hydrodynamic
equations, which are shown in the following section to be equivalent

to a variational principle.
3-3 Zilsel's Variational Principle

Zilsel's Lagrangian supplemented with a Lin's constraint for

V_ is given by

n .

= % (1-v)V2 + % vU2] - _ o830 4 3T, Y
L=op[%QQ x)Vs+szn] pe(p,s,X) a{at+V(p(l x)VS

. 3 j > 1
+ pxil*n)} - e{giﬂ + 3-(psvn)} + pxyj{% + il’n-vZJ} (3-9)

where the dependent variables of L are p,s,ﬁn;ﬁs;x,g,a,e and ? and

the independent variables are (Z,t). The internal energy density
e(p,s,x) is defined by Eq. (3-5). Actually in Zilsel's procedure

Eq. (3-5) is not assumed; instead the variation of ¥ gives the equa-
tion (Be/ax)p’s = % (%n-gs)z; when Eq. (3-5) is assumed initially then
the variation of x gives an identity.

The variational equations of L are given by
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. %0 L 3, Y Ty =
R Y + Ve(p(1 X)Vs +poxV) =0 (3-10)
. 9(ps) > AN :
8B Y + Vv (psVn) =0 (3-11)
&V: V. = - Vg (3-12)
S S
. > - _ -> _ _s_ _ j—> j _
GVn. Vn Va x _V>B Y- Vz (3-13)
§p: & (L-)V2 + & yV2-e- 2 + 22 401-)T + 3V ) Vo + dnB—0(314
p: 2 X Vg 2 X n_e- p ot X n X s @ S dt -14)
S: dt _ -
s~ L oV2 + & oV2 + & o(V -V )2 T T Y)e(Tg) = _
Syt % pV2 + 5 V2 + 5 o(V_ VS) +p(U_V )+ (Va) = 0 (3-16)
->
d z
> n
Svy: e 0 (3-17)
->
d_y
-> n : r =
§z: — = - — 3-18
. ox ¥ ( )

Egs. (3-1), (3-2) and (3-6) are recovered as the variational
equations of a,B and ; respectively. When Clebsch's lemma

is used Eq. (3-12) implies

ds [ =1 > >
——— — — 'Y 2 -
It V(at +V Vo + % VS) (3-19)

s
Substitution of Egs. (3-12), (3-15) into Eq. (3-14) yields

: > >
24§ T+ % V: = e +-§-— T - %(V -V

2, = -
ST < . DX = u (3-20)

which when combined with Eq. (3-19) gives the equation of motion of
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the superfluid Eq. (3-3). The irrotational condition $X$S =0
follows from Eq. (3-12).

Clebsch's lemma applied to Eq. (3-13) yields

dniz’n d_a L. @ L, a8 dyl P a_z
do T @ D g @ g T - e g e
Eq. (3-14) can be rewritten using Egqs. (3-12), (3-15) as

dna P > >,

— 4+ V2 = = - L (1- - -

Substitution of Egqs. (3-22), (3-15), (3-17), (3-18) and (3-2)'

(which follows from Eqs. (3-10) and (3-11)) into Eq. (3-21) gives

ol Ve+Z-1s + % Q0@ -T)2) - £77
ac  C e Ty T s T UV SV X
53 g, 3y I _
+ (X VB + y7Vz-) ox (3-23)
gs. (3-12) and (3-13) and the identity
L3 =TFe+2-Ts) +s9T - % (T -T)T (3-24)
5 = e p—s S - % n-SX

shows that Eq. (3-23) is just Eq. (3-4)'. Hence all solutions of
the variational equations are also solutions of the hydrodynamic
equations.
> > . . >
The irrotational condition VXVS = 0 implies that VS can be

written as a gradient

V = - Va (3-25)
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Clebsch's lemma and Eq. (3-3) give

dsgs dsa R dsa
(dt + 3 Vs) (dt + % VS ’ 11) 0

it T

or equivalently

(3-26)

(a function of time can be absorbed into o) which is identical with

t
Eq. (3-14) provided B E({ Tdt (the integration is carried out at

-
constant z).

From Eq. (3-6) follows the identity

. J j . .
d .. j Y d Vv j . . 3
n j_ g3y 8"y _ . nn _ _S 8y 3% k_okooigk okody 9%
dt ((Vn Vs) azi) (dt dt ) azi + (Vn Vs)(v Vn v s) azi

Substitution of Eqs. (3-3) and (3-4)"' into Eq. (3-27) gives

d . 3 . h| .. h|

o (vl-vl) Sy L Sglp B (piydy L3

t n s i X i s 1n p¥x i
9z dz oz

From the definition of B given above and using Eq. (3-2)' then

Eq. (3-28) can be rewritten as

3

dt (s (Vn Vs + X vTe) i) 0
oz
which can be integrated as
->'+___S_+_j-*j
Vn VS X VB Y- Vz

s

where YJ = - (sx(z,o)/s(z,o)x)(Vi(z,o)-Vi(z,o)). Eqs. (3-25) and

(3-27)

(3-28)

(3-29)

(3-30)
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(3.30) are identical with Eqs. (3-12) and (3-13) respectively,
furthermore it is easy to show that o, B and ; defined above satisfy
Eqs. (3-14), (3-15) and (3-18) respectively. Thus the variational

equations are completely equivalent to the hydrodynamic equations.
3-4 Symmetries and Conservation Laws

As pointed out in Sec. 1-5 the Monge potentials o, B, ? and z may
be subjected to "gauge" transformations which do not change the value |
of % and which keep the variational equations form invariant, leading
to a éonservation law via Noether's theorem. For the Landau two-fluid
equations the requirement that 33 be unchanged and that Eq. (3-12) be
form invariant gives Véa = 0 or equivalently a + o' = o + Sa(t). If

Vn is unchanged and Eq. (3-13) is form invariant then the infinitesimal

transformations B - B' = B8 + 88, YJ +’Y'J = YJ + GYJ and

zd » 23 = 23 + 527 must satisfy

TE 68 + yIozd) = 687 2 - syIV2? + 627%7 = 0 (3-31)

> |

5
X
The form invariance of Eqs. (3-14)-(3-18) gives

d d >
2 (s0) = 2 (68) = 22 (D) = 3 (6D = 0 (3-32)

which have the solutions

6o = ea , 6B = 88(s,v,2), 8y = 8Y(s,Y,2), §z = 6z(s,Y,2) (3-33)

Substitution of Egqs. (3-33) into Eqs. (3-31) implies that the

infinitesimal gauge transformations have the form

§z9 = ¢ 3G—J (3-34)

.36 o3 _ 28
aCsl) O NN >y

58 =
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where ao = constant, ¢ is an infinitesimal constant and G is a

> > >
function of s/x, Y and z homogeneous of degree one in s/x and y i.e.

s 3G j 3G

TXaG T (373

oY
From Eq. (1-25) the conservation law associated with this symmetry

transformation is
g%'(oao + pxG) + 3°(pa07 + va G) =0 (3-36)

By choosing G = 0 the conservation of mass equation is recovered
while the choice a = 0, G = s/x gives the conservation of entropy
equation.
. . . -> > ->
The Galilean transformation properties of p, s, Vn’ VS and z are
>
known ;however the transformation properties of a, B8 and y must be
deduced by requiring that the Lagrangian be invariant.
-> - > > > > - >
(i) Under the translation of axes x » x' = x + 6x, z > 2' = z + 8z
> > ., -
(p,s,x,Vn and VS are unchanged). The Monge potentials a, B and vy

transform as
6a=€a,58=em, §y* = ¢ — (3-37)

where G = G(i , 2) is homogeneous of degree one in s/x. Eqs. (3-37)
completely specify the Galilean tranformation properties of o, B and ?.
From Eq. (1-25)the conservation law associated with this symmetry is

just the conservation of momentum equation (3-4).
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(ii) Under the time translation t - t' = t + 8t the initial position
vector z > z' = z - V(z,o)ét. Using the arguments developed in (i),
the invariance of L implies ? > ?'j = ?j - yj(BVj(z,o)/ag)Gt apart from
a gauge transformation given by Eqs. (3-37). The conservation of

energy equation associated with this symmetry follows from Eq. (1-25)

as
jL 1 2 41 2 3.0 23 1L 23 g
g G2 e Vot 0o VS +pe) + VeCsp VOV 4% p VIV + (pe+P)V
I T L T Ty 3
+ psT(Vn V) + % Dn(Vn VS) (Vn v))
=0 (3-38)
> -> - > > > > >
(iii) Under the rotation of axes x »+ x' = x + §6 x X, Vn -+ V; + 86 XVn,
vV - V; = VS + 66><VS and z > 2' =z + 66 xz. The invariance of L
. - > -> - . .
gives vy > y' = v + 63><y apart from a gauge transformation given by

Eqs. (3-37). The conservation of angular momentum equation associated

with this symmetry is

9, ijk_] k g, ijk_j k 2 k
ot (e X [pnvi + psvs]) G X [psvsvs + pnvnvn

+ ™)) = 0 (3-39)
(iv) Under the Galilean boost ; > x' = ; + Gvot, Vn > 3; + 6§ and

> >, > > . A . ' >
VS > VS = Vs + GVO. The invariance of L gives a > a' = a ~x°$§

(o}

>

\Y
o}

apart from a gauge transformation given by Eqs. (3-37). The

conservation of center-of-mass associated with this symmetry is
d i i i 3 i j i3 ij
= + - + +
5t (t[ann pSVs] px) + V (t[annVn pSVSVS] Pts§

i j i1y = _
- x [ann + oSVs]) =0 (3-40)
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This completes the review of Herivel's variational principle for
the Landau two-fluid equations. Chapter 4 will extend this variational
principle to the two-fluid equations of rotating superfluid helium

as formulated by Khalatnikov and Bekarevitch.
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CHAPTER 4
A VARIATIONAL PRINCIPLE FOR SUPERFLUID HELIUM WITH VORTICITY
4-1 Introduction

It has been known for some time that superfluid vortices with

circulation quantized in units of (h/m) can exist in superfluid
36537
helium. The quantization of circulation is connected with the
multiple-valuedness of the phase of the wavefunction of the Bose
condensate. The superfluid vorticity V x VS still vanishes
everywhere on a microscopic scale except in the cores of vortices;
+
however when VS is averaged over a macroscopic region which contains
3 . . I3 + + s .
a finite density of vortices then V x VS # 0. If the averaging is
done over a region large compared to the separation between vortices
) > >
then the normal velocity Vn and the superfluid velocity VS will be
smoothly varying functions throughout the fluid.
25

Khalatnikov and Bekarevitch (KB) have derived the equations
of motion for the latter case with a phenomenological approach by
allowing the internal energy of the fluid to depend on the absolute
value of the superfluid vorticity. The hydrodynamic equations are

31
then derived by the standard method from Galilean invariance
requirements and by manipulating the redundant conservation of
energy equation. In this procedure a number of phenomenological
coefficients appear which can be derived from a detailed vortex
40

model. Hall has examined the same problem by using a microscopic

model of excitations interacting with vortices ; the two-fluid

equations he derives agree with KB. For a short review of this
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subject see the article by Chester.

Ling' and more recently Lhuillier, Francois and Karatchentzeffuz
(LFK) have given variational principles incorporating a generalized
Lin's constraint to describe the Landau two-fluid equations with
microscopic superfluid vorticity, in distinction from the two-fluid
equations of KB where only the macroscopic superfluid vorticity is
non-vanishing. The purpose of Chapter 4 is to find an extension of
Zilsel's variational principle which is equivalent to the two-fluid
equations of KB with zero entropy production. The hydrodynamic
equations are summarized in Sec. 4-2 and a Lagrangian for these
equations is given in Sec. 4-3. It is found necessary to use two
constraint equations, one constraint for ?n and as shown in Sec. 4-4,
the other constraint giving the superfluid vortex equations of motion.

A discussion of the symmetries and conservation laws is given in

Sec. 4-5,
4-2 The Hydrodynamic Equations

Following KB the fundamental assumption is that the internal

energy differential has the form
de = Tds + (P/p?)dp + % (§n—vs)2dx + (A/p)dw (4-1)

where e is the specific internal energy, T is the temperature, s is
.. > -> 2
the specific entropy, the pressure P = p(-e + Ts + % (Vn—VS) X+,

X = (pn/p) where p_ is the normal fluid denmsity, u is the chemical

9
potential, X is a phenomenological coefficent and w = lwl where
w = V x 63' To make the notation agree with Zilsel the specific

internal energy e differs from that of KB (denoted (e/p)) by (e/p)-e
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> = . .
=% (Vn—Vs)x. The meaning of P and p is unchanged. From Eq. (4-1)

and the definition of P follows the useful identity

—).=-:-l-'- _+_L—>—>_+ 2 l_) - L
Vi = = vp - SVT - 4 VW V)2 + 5T , (4-1)

From KB the hydrodynamic equations with zero entropy production

are

3 V4o V) = -

ot + V(ps‘s+ann) 0‘ (4-2)

alps) , 3 >

—————— * = l‘,—

Y + Vv (psVn) 0 (4-3)
>

%" L 3 - (B'- 298 x @x0)) - 80w xF V) (4-4)

dt w= (8- Py v v - 8 psw n s

2o Voto V) 3¢y yiyd i i3 ij . 13

e + Vv (psVs <t annVn + PSS + Aws Y - Aw w’/w) =0 (4-5)

' N A > -> dy _ 3 > _V)
where i,j, = 1,2,3 (sum repeated indices), v = w/w, It = 5E-+ VY'

and the superfluid density Py =P~ P Following Zilsel the factor

I' ' is defined as
B Ve V) = - (=24 Ve (pV)) =T (4-2)"

Using Eq. (4-2)' if follows that Egs. (4-3) and (4-5) can be

rewritten respectively as

d_(s/x)
I _ S _ 1
It =- 27 (4-3)
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>
av P
nn L1y, St SR 2+ @ ) L=
dt p n ] pPX
A B'ps—> - 1 > >
- L9+ o x (V-V - =V x(av)) (4-5)"
p n n s pS

The phenomenological coefficients A,8' have been computed by KB from a

vortex model as

)
B pn h
m

- R -
Zoo, , A= e n (a) (4-6)

B' =
: . R . .
where B' = constant, m is the mass of a He" atom and 3 1s the ratio
of the distance between vortices to the effective radius of a vortex.

4-3 The Lagrangian

Consider the Lagrangian L = L[p,s,x,%n,Gs,a,B,yJ,zJ,§J,EJ] given
by
>ag > 3 > > ->
L = 0[50 V2+ 5 xV2]-pe(p, s,X, V7 xVa) )l + V- (0 (10 V sox¥)
2008 L3 (o7 322 3 3,
- By +V (psV ) +pxy {z—+V vz}
g 57 > > 9]
+ py {'ét— + [(l—)()VS + Xvn] Vz (4-7)

where the representation for e is given by

de = Tds + (2/oDdp + 5(V_V )2y + (\/0)d[F7)<037 | (4-8)

From Eq. (4-8) it is easy to derive the following useful variational

derivatives
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8oe) - _[Feuuy i 37505 1 3 (4-9)
8z :
s(pe) _

3 IVx(AvY .73 /IVY xVZ |)].vz (4-10)
. Oy

The variational equations of L are

3 >
Sa: 3% + ?7-(p(1-x)iis +oxV) =0 - (4-11)
682 g—ép—s-)— + -V)-(ps—V)n) =0 (4-12)
&V :V =-7q - ;jVEj (4-13)
S S -
V2V = -Ta - 29 - 33920 - (31 (4-14)
d B
Sp: 9(1—X)V2+ XV2—e— ;+8 + ((l-—x)ﬁ + xv ) <Vats F
. ~j .
~3.3 ~
+ YJ{S{-—+ [0V _+ xV_1-v2 1= 0 (4-15)
nf 4-16
§s: (—i_t— =T (4-16)
sx:  ~%oV24kpV2ihp (V) 24p (V¥ BE Faty3959) = 0 (4-17)
3 dnzj
8yt 7y— =0 (4-18)
d 3
j,_nl__ _I_ 3 -
8§z7: at % Y (4-19)

553 22- 4 a0 T 143 = - % Fx (O 1-52 (4-20)
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. . o
827 -g—ltf— + 1AV + XV 197 = % [Tx(A0) ] 953 (4-21)

Eqs. (4-2) and (4-3) are recovered as Eqs. (4-11) and (4-12)
while Eqs. (4-13) and (4-8) give Eq. (4-1). When use is made of

Clebsch's lemma

> a o
dw _ _ 4y , 2 _dn_ g.a o di -
. VGt + v2/2) - Ve - 0% = (4-22)
where %E-= %E-+ weV and w = -Vy - n“ﬁg“ (a=1,...,m) and the vector
identity Ax(BxG) = (A-6)B - (A-B)C then Eqs. (4-11) - (4-21) imply

_>
dVv
s s > l > > -> > > >
It + Vy = - 5 wx(Vx(Av)) - xwX(Vn—VS) (4-23)
av
o P
nn 19y SRT+-SFF Ty L=
dt p Py 2p n s’ px
+ % Vo - -i— Bx (Fx () +A=ax (T ) (4-24)

which are Egs. (4-4) and (4-5)' with B'=2. Note that due to the
(A/p)dw terms in de the exact form of Eq. (4-20) is crucial to the
gauge invariance of Eqs. (4-23) and (4-24) (i.e. that the potentials
a and ?i can be eliminated from Egqs. (4-23) and (4-24)). Hence the
variational principle is confined to the case B'=2.

The preceeding arguments have shown that all solutions of Egs.
(4-8) - (4-21) are solutions of Egs. (4-1) - (4-6) with B'=2. The

converse statement can be proven using a generalization of Weber's
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transformation of a classical one component fluid provided Egs.

(4-18) and (4-20) are adopted at the outset and it is assumed that

Ei = Zl(x,t) and z= - zi(x,t) (z* and 2" denote the values of the

functions Ei(x,t) and zl(x,t) respectively) possess differentiable

~1,~ i .
inverses x (z,t) and x (z,t) respectively (indices are omitted

i

. i “i-
unless necessary). This means that xl(z,(x,t),t) = x, x (z(x,t),t)

i i i S R i i
=x", z(x(z,t),t) =z~ and z (x(z,t),t) = 2~ (the x~ are the
i i ~1, ~ . .
coordinates, x (z,t) and x (z,t) are functions). The chain rule

implies the relations

ox® azd _ ax® 22" _ axd az* _ aztoazd _ 51k (4-25)
220 ax™ ozt axd  azlaxd el ax®

where the partial derivatives have the meaning 8x /327 = Bxl(z,t)/azJ,

923 /3" = 323 (x, £) /0%, oxd/ast = 353 (z,0)/05%, 925/0xd = a3K(x, ) /0%,

Def ine
> > > 1 >
V= -0V, + XV + E-?x(xv) (4-26)
dL dn
then by using the chain rule the derivatives EE-and az—have the
meaning
dL 3 ~,~ dn 3
az'f(x,t) = Ez-f(x(z,t),t), Ez'g(x,t) = Sz'g(x(z,t),t) (4-27)
db 3 b a
Eqs. (4-27) implies that — and — commute as do —=— and — . By
dt azl_ dt azl

setting £f' = x* and gl X" Eqs. (4-27) imply

del

vi - aii(é,t) _

L 3t dt (4-28)
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i
i 9x (z t) _ d n-

Vn T oAt dt

(4-29)

which states that VE and Vi are the tangents to the particle paths
ii(i,t) and xl(z,t) respectively.

Eq. (4-28) implies the identity

va

= (v 25 By (S (1Y) B

>
T = = (v52/2+v -(VLES)) (4-30)
oz 3z 9z

~1

Substituting Eq. (4-23) into Eq. (4-30) yields

ft_{ Bx

J J . -> _-—) -~ - _
I (v + VY f (u-v, 2/2-v v, Vs))dt])} 0 (4-31)

: . . _ ~1
where the integration is carried out at constant z~. Eq. (4-31) can

be integrated as

. . t - 3 . -~. . ~. .~-
vl = v 5oy 272X (¥, -V )de] +vEG,0)vdzt = vda-y Izt (4-32)

s 0 s s L s s

t ~ ~1 i~
where a = f (p-V 2/2-.% -(3 = ))dt and yl = —Vl(z,o). It is easy to
0 s s L s s
verify that vs,a and ?1 satisfy Eqs. (4-13), (4-15) and (4-21)
respectively.
Eq. (4-29) implies the identity

avli av
n

3 Ik ki i, ax
B ((viavdy By o (R8s By Rk @lykglyd) B

9z 3z 9z

Substituting Eq. (4-25) into Eq. (4-33) gives

d . |
L= o) =il AAOVEN (4-34)
82
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t »
where B = f Tdt (the integration is carried out at constant zl).
0

(4-34) can be integrated as

J_vi__ 8 oj SX(ZO) i gl Ji__ s oip igi i _
Vo V= - x Ve Aoy (V(2,0)0-V (2,0))77z =V B~y Viz'  (4-35)
where yi = -(sx(z,o)/xs(z,o))(Vi(z,o)—Vi(z,o)). It is easy to verify

that vn,B and ; satisfy Eqs. (4-14), (4-16) and (4-19) respectively.
This proves that Eqs.'(4-1) - (4-6) with B'=2 and Eqs. (4-18)
and (4-20) are completely equivalént to the variational equations
of L. Since Egs. (4-18) and (4-20) are added to the hydrodynamic
equations suitable physical interpretations must be given these
equations.. Just as in classical one-component hydrodynamics Eq.
(4-18) may be viewed as an integrability constraint on the normal
velocity field. 1In Sec. 4-3 Eq. (4-20) is interpreted as the state-
ment that the superfluid vortices, averaged over many vortices,
move with velocity gL'
By following Lin or LFK and using only Eq. (4-20) as a con-
straint an'interesting problem develops. The Lagrangian and varia-
tional equations for this case'are obtained just by dropping the

. . N
terms involving YJ and zJ. The equation for VS remains unchanged

-
but the equation for Vn becomes-

VX =-2% (4-36)

Multiplying Eqs. (35) and (36) by and taking the curl gives

respectively

[§7"><{§ &nﬁs)}]i c1iky3 mok p 3 p{’i‘%z% (Vm(z o)—Vm(Z o))} (4-37)
a b



~52—

rd X /3 i
V& @ -9t =0 (4-38)
where ele is the Levi-Civita symbol. A necessary condition that
Eq. (4-37) agree with Eq. (4-28) for all values of z" is
et 2 (2.0 (yBe; o) - vP(z,0))} = 0 (4-39)
52P s(z o) s

or (x(z,O)/s(Z,O))(V’;(z,o) - VI:(z,o)) = 3y(z)/3z"™. But the 8 which
appears in Eq. (35) may be subjected to a gauge transformation

B > B' =8 + y(2) (which does not alter Eq. (4-16)) which just cancels
the Yiiji terms. Hence Eq. (4-39) is a necessary and sufficient
condition that Eq. (4-35) reduce to Eq. (4-36). Note.that the
preceeding arguments did not depend on the presence of the A terms.
Thus a necessary and sufficient condition that the variational
principle given by Eq. (4-7) be equivalent to the hydrodynamic.
equations is that either constraint Eqs. (4-18) and (4-20) are used
with ¥V x {(Vﬁ - Vs)x/s} arbitrary or only Eq. (4-20) is used with the
initial constraint V x {(Vﬁ -'Vs)x/s} = 0. Note that this is the proof

of a claim made by LFK for pure Vs vortices. Since KB do not assume

-2 > ng
v x{(Vn - Vs)x/s} = 0 both Egs. (4-18) and (4-20) are needed.
4-4 Interpretation of ;(x,t), VL and the restriction B' = 2

Taking the curl of Eq. (4-23) yields an equation for the

superfluid vorticity

T & = =iy | (4-40)
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which can be integrated using Eq. (4-28) as

1 wj(z 0) axi
—_— (4-41)

P

W
p

Eq. (4-41) just states that z/p is fixed relative to a set of
coordinate axes composed of the same particles ;(z,t) for all t or
equivalently that ;/p is transported with velocity $L' Since the
macroscopic vorticity g was assumed to arise as a result of averaging
over many superfluid vortices in some small volume this means it is
consistent to interpret ;(z,t) as a mean vortex path. Hence ;(x,t)
would be the initial position of a mean vortex with position ; at
time t. Eq. (4-28) then states that the mean superfluid vortices
move with velocity VL' Apart from the XA terms this corresponds to
the pure Vs vortices of LFK. |

Note that the variational principle given by Eq. (4-7) is

confined to the case B' = 2. If B' is arbitrary then taking the curl

of Eq. (4-4) implies that the velocity of the vortices is given by

P o
> 1 1 > > n 1 > n ' >
- = 2 - -2 -2)V_+
L P (psvs + ann) T (3 2)Vn 2p (8 2) s
B'p
E -y T x Y (4-42)
pg  2ep

Since the A terms arise solely as a result of the averaging procedure

the usual Landau two-fluid equations must be regained in the limit

A - 0. Hence the condition B' = 2 is necessary and sufficient for the

superfluid vortices to travel with the mass flux velocity V= %-(psvs+psVé).
On the other hand the work of LFK shows that the latter condition

is equivalent to the requirement that superfluid vortices be regarded

as singularities in the superfluid velocity ﬁg.Thus the physical

interpretation of the mathematically necessary restriction B' = 2 is

‘



=54~

that the superfiuid vortices (before the averaging 1s carried out )
be regarded as singularities in the superfluid velocity VS. Note that
this view of superfluid vortices is consistent with Eq. (B-6).

A direct measurement of B' has been made by Snyde;“11963) and
Snyder and Lineki:q(1966) by observing the mode splitting in a
rotating second-sound resonator.They found that B' was approximately
zero and slightly temperature dependent. Lin9(1963) has critized
this experiment on the grounds that secondary motion along the axis
of rotation may occur. From Eq. (4-42),B' = 0 implies that superfluid
vortices travel with velocity ?g (apart from the A terms ). LFK show
that this corresponds to superfluid vortices being regarded as
combinations of singularities in ;; and K'= (x/s) (3;-3;), which is
not consistent with Eq. (B-6). Hence there appears to be a contradiction
between the experimental results of Snyder and Linekin and Eq. (4-1)
of the KB equations. For further discussion of the experimental results

and the case B' = 0 see Appendix D.
4-5 Symmetries and Conservation Laws

Just as in Sec. 3-3 there are certain gauge transformations of
the Monge potentials a, B, Yi, zi, Yi and zi which do not change the
values of Gn or 65 and which keep the variational equations form
invariant. The requirement that Vn and Vs be unchanged and that
Eqs. (4-13) and (4-14) be form invariant under the infinitesimal

gauge transformations gives

s

V(sa + 73629) = -679929 + 6237¢ (4-43)

V(88 %+'yjazj) - 587 ) - sy3vzd + 52333 (4-44)
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The form invariance of Eqs. (4-15)-(4-21) gives

4 G = E o9h) < & eady - o (4-45)
D om) = P = 2 @D - o0 (4-46)

which have the solutions
sa = 8a(¥,3), & = 673(3,5), 3 = 633(3,5) (4-47)

88(s/x,Yz), 6? = 6$(S/X,Y,Z), §z = Gz(s/x,y,z) (4-48)

S8

Substitution of Eqs. (4-47) and (4-48) into Eqs. (4-43) and (4-44)

give
(e L&t 67h)¥23 4+ (¢ 2 _ 52dyP - o
237 BYJ
) SRS oH 3y, 3 M__ 5,3)3,d - -
(e 3(s/) §B)Vs + (e 3 + Sy7)vzT + (e 3 8§27 )Vy 0 (4-49)

o0z Iy

where €G(Y,2) = 8a + 7627 and eH(s/X,Y,z) = (s/x)88 + yI&z9. Egs.
(4-49) imply that the infinitesimal gauge transformations have the

form

Sa = G + eyd == | 8y = - ¢ —, 68z = g —/— (4-50)
3y 3z 3y

88 = ¢ ag R 6YJ = - g EET', §z3 = € églr (4-51)
3 (Y) 927 BYJ

where G = G(;,E) is an arbitrary function of ;J and zJ and H = H(§3y,z)
is homogeneous of degree one in %-and ?J. From Eq. (1-25) the

conservation laws which arise from these symmetries are

) > > _
SE'(DG)_+ V-(pGVL) =0 (4-52)
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9 > ->
3 (pxH) + V- (pxH Vn) =0 (4-53)

Under the Galilean transformations the transformation properties
> > i A A .
of p, 5, X, Vn’ Vs’ z- and %~ are known while the ‘transformation
] ~i i .o
properties of a, B, Y and y are deduced by requiring that the

Lagrangian remain invariant.

] L > > - - i i
(i) Under the translation of axes x - x' = x + éx and 2z~ > z'

=z 4+ 68y, 2 > 2'" =3 + 6x'. 1In this case the gauge transformation
is given by G = G(z) and H = H(i—,z). The conservation of momentum

equation (4-5) follows from Eq. (1-25).

(ii) Under the time translation t >~ t' = t + §t and zt > z't = gt
- V;(z,o)dt, R S AR Vi(i,o)At. The Monge potentials 71 and

i
v~ transform as

= ¥5 + y2(avI(z,0) /3zM) 5t

+
<
|

and

vi 4+ yIovI(z,0) /527) 6t

<
+
<
1}

apart from a guage transformation of the type G = G(Z) and H = H(i-,z),

From Eq. (1-25) the conservation of energy equation is

9 1 2 T.(L 23 1 2y v
TS & ann+f§ psVS+pe) + V(% annVn+/z pSVSVS + (pe+P)V

-y
- _-—> > _—> 2,3 _-> w > -
+psT(vn V) + % pn(Vn vs) (Vn V) + A " (Vwa))

L > >, - > > > 2,
(iii) Under the rotation of axes x > X' = x + 86 x x and V_ ~» Vn =
> >
z z

> > > > > > -> >
V +60 xV ,V »>V' =V +66 xV_,
n n S S S S
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> + -

>3 =3%+68 x%. The Monge potentials transform as y > ; = ;' +
> > > > >

§8 x yand ¥ >~ ¥' = ¢ + 88 x Y apart from a gauge transformation of

the type G = G(Z) and H = H(i—,z). From Eq. (1-25) the conservation

of angular momentum equation is

5 , ijk _j.k L, ik j. k. & % ke
= +
ot (e px"V ) + V(e X [annVn + pSVIS(VS PS
+ Aws™* - Awkwl/w]) =0 (4-55)
(iv) TUnder the Galilean boost X>x =3+ Gvot and ﬁﬁ -+ V; = 3&-&660,
%s -+ gé = VS + 630. The Monge potential a » a' = o - ;-630 apart from

s

a gauge transformation of the type G = G(zZ) and H = H(X ,2). From

(1-25) the conservation of center-of-mass equation is
9 i i j ij i_j ij ij _, 1]
v (pVt-px) + V ([pnvnvn+psvsvs+1><s + A80 Aw w /wlt
-pxv) =0 (4-56)

In conclusion, the relaxation of the conservation of particle
label constraint in two-fluid hydrodynamics gives rise to superfluid
vorticity dependent contributions to the jnternal energy. The hydro-
dynamic equations describe superfluid helium with a finite density
of superfluid vortices where all hydrodynamic variables are averaged

over many superfluid vortices.
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CHAPTER 5
LIN'S CONSTRAINT GENERALIZED TO INCLUDE HIGHER ORDER DERIVATIVES
5-1 An Extension of the Results of Chapter 2

The variational principle given in Chapter 2, which depends on
derivatives no higher than first order, can easily be extended to
arbitrary order derivatives. The fundamental assumption is that the
internal energy of the fluid contains an additional contribution

i jijke.. d , - .
pglw V7w,V @~ ) which depends on the vorticity and gradients of the
vorticity. Just as in Chapter 2, this theory may be interpreted as
describing a fluid with a finite density of vortices where the hydro-

3 + + I3
dynamic variables V, p, s, and z have been averaged over a region
containing many vortices. The additional V') terms arise from

considering interactions between neighboring vortices.

The Lagrangian for this case is given by

L= ov2 - pe(p,s) - pg(w’,Vat,v3% 4ty - a{%f+ Ve (oW}

. h
ds dz
+p8 T+ oy T (5-1)

The dependent variables are {$,p,s,;,a,8§] and 3 = —$B X %s - ﬁyj X $zj
(only after the variation of V is carried out can the identification
3 = $ x 3 be made). The variational derivatives of pg with respect to
B, s, ? and z are straightforward to compute:

5 (00 = ool x [ (o)1, & () =T8T x 13 (0] (5-2)

-> -
with similar expressions for y and z.

The variational equations of L are given by
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§V: V= -Va - BVs - yIvzd (5-3)
So.: %f—+ 6-(pV) =0 (5-4)
N
, 4 gds  Jdzl o0 _P_ __ _
Sp: dt+8dt+y dat + L%V e 5 g=0 (5-5)
ds _ .3 6
88: 0 gp = sV x [= (08)] (5-6)
d > 8
ss: o L = Fg¥ x [ (pg)] - oT (5-7)
Sw
. i .
d 8
sv's o Fm=V2d ¥ x [ ()] (5-8)
Sw
. j .
d 8
s27: p g = WV x [ ()] (5-9)
Sw
Clebsch's lemma yields the identity
d_v=_§7*(£ig_+l/v2)_i@_ﬁs_B%_di__d_Yivzj_ jvgéfj_ (5-10)
at ac T 2 dt AR T

dt dt
Substitution of Eqs. (5—3)—(5—9) into Eq. (5-10) gives

i
dv i
o) ac + VP

- 6 .
—oV'g + VBV x = (pg) 1IV's
w

VseT x [6% (o) 1738 + V¥ x [ (og) vz
® Sw

V237 x % (pg) 1y (5-11)

becomes

d > - > 1) -
oG+ Ve = Vg + 7V~ i (o)) * @ (5-12)
or equivalently
dVi . i3 i3
oGt vest + 1) =0 (5-13)
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. ij . .
The symmetric stress tensor T J is given by

i kK § 3
= 6M0" = (op) - o) =25 (o) + TR —=— (op)
Gm 6w BVJm
+ vk 8 op) - Vvl —2 — (o)1 + ... (5-14)
T k 7 k
v w v .

Multiplication of Eq. (5-8) by 9z3/3x" yields the equivalent form
y

=& 1y [— (o)1 (5-15)

which states that 6' V + —-3 [é%-(pg)] is the tangent to the
particle paths ; = ;(z,t). The equivalence of the hydrodynamic
equations (5-4), (5-6) and (5-12) with the variational equations
(5-3)-(5-9) follows from a straightforward extension of Weber's
transformation as developed in Sec. 2-2. 1In addition the conservation

law associated with the gauge invariance of L is unchanged from

Eq. (2-30).
5-2 A Negative Result for Viscous Fluids

The variational principle given in Chapter 2 adds terms to the

momentum equation which depend on second derivatives of the velocity.
. . . _1§ 6 s .
A natural question arises: Can the velocity terms p X X V which
occur in the momentum equation for incompressible, viscous fluids be
derived solely from a generalized Lin's constraint of the type given in
Chapter 2? Note that there is no chance of obtaining the compressible
15,22 . . .

terms p~*V(V+V) since these terms involve o which would alter the
conservation of mass equation.

The variational principle of Chapter 2 uses the fact that the Lin's

constraint may be generalized from dzl/dt = 0 to dzl/dt = p_1($XA)-$zJ
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without affecting the conservation of mass equation and without

destroying the gauge invariance of the momentum equation. Consider the

Lagrangian
L =% 0V - pe(p,s) - a {0 + V- (oN)} + 0B {j—j+%¢xl-’V’s}
. | ;
+pYJ{%Z£——+%_V>><K-_V*zJ} (5-16)

-> ->
where A = A(Vz). The variational equations are -

6?: V= -Va - B%s - YJ$ZJ (5-17)
Sauz %1;—+ Ve(oV) = 0 (5-18)
N
] ds , jdz | _P_
Sp: it + B 7Y 3@ e 5 = 0 (5-19)
§B: p %%—= —63*% X K (5-20)
ds: p g%-= —%B-% X Z - pT (5-21)
3 dzJ > 3> s
§y”: p P -Vz- eV x A (5-22)
: N
sz3: o :—Y— SV X N LIy O AV (5-23)
t 62:1

Clebsch's lemma combined with the vector identity K X (E x E) =

> > > > > >
(A*C)B - (A*B)C yields the momentum equation

19329 s

> > >
- —- (A*V x V) (5-24)
P ax® 827

—+—V.P=%[($XZ)X ($XV)]1+

By expanding the variational derivative for z° Eq. (5-24) can be

written as
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. k .37
o + l_vlp __1 Ekmn Bﬁ : Bzi mGvn
P P 9V z3 ax

k 3
VR JA dz

21
P BVRZJ Ox

i L %-[(GxZ) x (Vxv) 1L (5-25)

A necessary condition to obtain (u/p)§ X % X 3 on the R.H.S. of

Bq. (5-25) is ([u] = 1D

k i ,
Ekn(m Bﬁ) . Bzi - E1P(m€2)Pn (5-26)
v’ 21 ox
Multiplying Eq. (5-26) by 8x1/'c)zr and summing over m and 2 gives
k n -
gkmn Li-. = o X (5-27)
V™23 323
Differentiating Eq. (5-27) by B/B(Van) gives
n j n n
0=2U'B—(Mn_)5"2ll'§£‘§'x_.3‘0 (5-28)
3(3z7 /3x™) 9z7 327

where the derivatives of 9x"/3z7 are computed from Eqs. (1-8). Eq.
>
(5-28) shows that no solution for A exists, hence the following theorem:
. _1$ > > _1+ v > . .
The velocity terms p (V+V) and p~!'V x V X V which occur in the
momentum equation for viscous fluids cannot be derived solely from a
p'1(§ X K)-%ZJ.

>
A(p,s,Vz). 1t is

generalized Lin's constraint of the form dzJ/dt

. ->
The theorem can easily be extended to include A
possible that a different modification of the Lin's constraint could

. R —1§ 3 3 . .

generate the incompressible terms p x X V, but this would give no
L . . “13 @3 .
insight into the compressible terms p (VeV) or the entropy production
equation. This suggests that a generalized Lin's constraint plays no
role in describing viscous fluids,whose variational formulation remains

an unsolved problem.
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5-3 Conclusion

This thesis has presented a new extension of Clebsch's variational
pririciple for perfect fluids, based on a generalized version of the
conservation of particle label constraint. For the one-component case
the variational principle gave a macroscopic description of a fluid
with a finite density of vortices, for the two-fluid case it yielded
the Khalatnikov equations for rapidly rotating superfluid *He. To the
author's knowledge this variational principle has not been described in
the literature and represents original research.

The considerable difficulties in finding a variational principle
for fluids are connected with the presence of first order derivatives
and non-linearities in the equations of motion. Clebsch's solution of
this problem sharply restricts the form of the constraint equations for
the mass density, the entropy and the particle label. The author has
shown that the conservation of particle label constraint may be
generalized to sz/at + (V + p“1$ X K)-%zj = 0 without destroying the
"gauge" invariance of the conservation of momentum equation.

A review of C.C. Lin's Lagrangian for the adiabatic case was given
in Chapter 1. The consequences of relaxing Lin's constraint for a
one-component fluid were éxamined in Chapter 2 and yielded vorticity
dependent contributions to the internal energy and the stress tensor of
the fluid. In Appendix B, the hydrodynamic equations were interpreted
as describing a fluid with a finite density of vortices, where all
hydrodynamic variables have been averaged over regions containing many
vortices.

As background material, Chapter 3 reviewed Herivel's variational
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principle for the Landau two-fluid equations. 1In Chapter 4 a new
variational principle for the Khalatnikov equations of rapidly
rotating superfluid “He was presented. It was found necessary to use
two Lin's constraints, one constraint for the normal velocity field and
the other constraint expressing the possibility of labelling a super-
fluid vortex, averaged over many vortices.

Chapter 5 concluded with an extension of the variational principle
to arbitrary orders of derivatives in the vorticity. In addition it was
shown that a generalized Lin's constraint cannot be used to describe

viscous fluids.
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APPENDIX A

PROOF OF CLEBSCH'S LEMMA

Define
V(x,t) = VA(x,t) + BY(x,£)vc*(x,t) (A-1)

where o = 1,...,m. Straightforward differentiation yields the

results

<¥

8V _ = 8A, , 8B* =2 a , _a>,3C”
r = VG s Vet + BN G (a-2)

while a lengthy algebraic manipulation gives the identity

V)V + V(s V2) = V(V-VA) + (V-vBHVC® + B (V-vc%) (A-3)

Addition of Eqs. (A-2) and (A-3) gives Clebsch's lemma

o o
L oFE yv2) 4 % v + B“'v’(g%) (A-4)

where d/dt = 3/3t + (V-V).
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APPENDIX B

INTERPRETATION OF THE EQUATIONS OF MOTION

First consider the case of the rotating superfluid as discussed
in Chapter 4. To maintain the irrotational condition v x Gs = 0 in a
rotating superfluid, superfluid vortices are formed (possibly at the
boundary) which rétate rigidly with the container, i.e.

Figure 1. Rotating Superfluid “He

Integrating around a closed path enclosing all the vortices gives
a relation between the angular rotation w and the total number of

vortices N. JIf the vortices each have a strength h/2mm then
->
2uA = J VxV_edk = § V +d2 = Nh/m (B-1)

or N/A=2um/h. Hence for a rapidly rotating superfluid many superfluid
vortices are formed to maintain the irrotational condition.
Consider an array of such vortices each with core size a and

some mean separation b. Since the velocity field of each vortex is
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V= (b/2mor) (B-2)
then the energy per unit length of a vortex is
b
E' = f G psvg)an dr = (psh2/4nm2)1n(b/a) (B-3)
a

>

Now define an average velocity field <VS> by averaging over a region
containing many superfluid vortices in such a way that the circula-
tion is due to the enclosed vortices. If <VS> does not vary appreciably

over the area enclosed then
[ x Gpla= [ ¥ x Gpedk = [ Goeal = wom (3-4)
Hence the number of vortices per unit area'is
§.= |$ x %slm/h (B-5)

(dropping the average symbol < >) and the energy per unit volume due

to the vortices is

AV x V| (B-6)

€ = (Dsh/4ﬂm)1n(b/a)|$ X 63[

The total internal energy is given by the generalized Gibbs relation
2 LS 3 \2

de(D,S,X,w) =T dS + (P/p )dp + 6(Vn - VS) dX + (A/p)dw (B—7)

where x = pn/p and © = V x %S. The Khalatnikov equations follow
from Eq. (B-7) by the standard technique in hydrodynamics, namely
manipulating the redundancy of the conservation of total energy
equation,

The conservation of mass equation remains unchanged
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I
=2+ Vel =0 (B-8)

->

> >
where J=p V. +p V, p=p + p . The conservation of momentum and
nn s s n s

total energy equations become

N
St via™ + M) =0 (8-9)

3E -> ->
3¢t V-(Q + q)

|
o

(B-10)
where
1t = o vivd 4+ o viv) o+ pe™d
nnan S s s

- _ 1/-> _—)2
P=op(-e + T, + 2(Vn VS) X +uw o,

E= +1 2+1 2
pe + % onVn 5 osVs s

ol
0

-> <> > -> >
L anEVn + % psvgvs + (pe + P)J/p + pT (V- V)

1 +_—) 2+_—)
+ % p(Vn VS) (Vn J/o)

ij - . .
and 7 J, q remain to be determined. The entropy equation remains

unchanged.

9 > >
SE'(QS) + V°(pSVn) =0 (B-11)
while the superfluid equations become.
-
AY
s > > > > 2 _
T (VS V)VS + Vu =1 (B-12)

where £ is to be determined.

Eqs. (B-8)-(B-12) give nine equations in eight unknowns gn’ v s S,

]

. s . ij = 1
p; the self-consistency conditions determine T J, q and f. From the

definition of E and using Egs. (B-7), (B-9) and (B-12) it follows that
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E_E__ —>.—r 11]3 i —>. >
5t VeQ - V (m vn) + T[at (ps) + V (psVn)
29_ i i 1JJJ -> > > > —>_+
+ A T + Avnv w+ T Y Vn + (J an) (f+wx (Vn Vs))

Taking the curl of Eq. (B-12) gives

dw _ > > > > > >
A t A e Vx[f + w x (Vn - VS)] - AveVx(w % Vn)
where 3 = Z/w. Substitution of Eqs. (B-11l) and (B-14) into Eq.
gives
OE . i i, ij._j N R T S |
_._+ -
ot vVTIQ 4+ Vn + a{v x (f +w x (Vn VS)}

= (nij - Awéij + Awiwjﬁn)VjVi
+E+ox @ -V)I[T-pv +7Vx O]
n s n
Comparison of Eqs. (B-10) and (B-15) shows that
¢ = nijvg Ao x F+ 0 x v_ - VS)}i
o Y S Awiwj/w

(£ + o x (?zn-?zs)]-[ﬁ - p?zn +7 x (A)] =0

(B-13)

(B-14)

(B-13)

(B-15)

(B-16)

(B-17)

(B-18)

The lowest order solution of Eq. (B-18) which holds for all values of

V and V_ i
p, V and V_ is

F=-px (’Gn - ?75) + om x (7 - p?/n + Vx(AY))

In order that the Landau equations be regained in the limit

(B-19)

A = 0, the parameter a = pgl. Substitution of Eqs. (B-17) and (B-19)

into Eqs. (B-9) and (B-12) give the Khalatnikov equations as presented

in Chapter 4, justifying their interpretation as a macroscopic theory of
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superfluid helium. Requiring that there be many vortices per unit area and
that the superfluid velocity be less than the critical velocity limits
the applicability of the Khalatnikov equations to the region
(h/mL?) <w < (h/mLz)ln(%) where a is the core radius and L is some
length characteristic of the flow.

A similar interpretation can be given the one-component fluids
discussed in Chapter 2. Consider a perfect fluid with an array of
vortices present, each vortex separated by a mean distance b, with a

velocity field
V= (/08 (B-20)
and a core size a. The energy of each vortex per unit length is

b
E' = I (s oV2)2nr dr = mpy2 1n(b/a) (B-21)
a

>
Now define an average velocity field <V> by requiring that the circula-
+
tion of <V> around some closed path be equal to the circulation due to
=
the enclosed vortices. If <V> does not vary appreciably over the

enclosed area then
[V x <V>|A = f V x <U>dA = § <Y>ede = 2mNy (B-22)
Thus the number of vortices/unit area is
= — (B-23)

> > >
where w = V x V (the average symbol is omitted). The energy/unit

volume due to the vortices is

e =% py 1In(b/a)w (B-24)
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If the vortex strength y is allowed to depend on the number of
vortices/unit area then Eq. (B-23) defines an implicit function for

N/A = g'(w) and hence Eq. (B-24) can be written as
e = pg(w) (B-25)

The total internal energy of the fluid is just pe(p,s,w) = pe(p,s)
+ pg(w) where e(p,s) is the usual expression for the internal energy

i.e.,
de(p,s) =T ds + (P/pz)dp (B-26)

The hydrodynamic equations follow from the redundancy of the
total energy equation. The conservation of mass equation remains

unchanged.

g—i +TeoW) = 0 (B-27)

while the conservation of momentum, energy and entropy equations take

the form

= vh + Patd + M) -0 (B-28)
Z+V @+ =0 (B-29)
53? (ps) + V+(psV) + R = 0 (B-30)

where T3 = pv'vd + P67, E = % oV2 + pe + pg, Q = [% oV2 +pe+pglV

i = . .
and J, q and R remain to be determined.

From the definition of E and Eqs. (B-27), (B-29) it follows that

BE L uiigly = 1L (o) +3- (osy) —wivietI 4y 28 B0 4 3.3 ]
5t + vV (Q) T(at (ps) +Ve(psV)) = V-V 1 7 +p ™ (at + VeVw) (B-31)
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Taking the curl of Eq. (B-28) gives

L k&

fw _ ik IVJ[ (o x V) + ks - A (B-32)

ot
> >
where v = w/w. Egs. (B-31), (B-32) yield

3E vl + 5 %5 HEI@D « DK + 1086 - o718

T _Ba_ (0s) + Te(pst) + VsV x (o 2B 73))
t oW
+ [-o7tode M o @ x vt + 7 x (p v) 1 (8-33)
Comparison of Eqs. (B-29), (B-30) and (B-33) shows that
R = Vsev x (p 2BY) (B-34)
oW
[o~1v3nid - @xHP1pvt + ¥ (o 5= v) S (B-35)

The lowest order solution of Eq. (B-35) is

Vl'n'lJ = a le J[V + p-].Vx (p \)) ] - p_l (w X V) (B-36)

The requirement that the usual equations be regained in the limit

g > 0 fixes o = p~l. Eq. (B-36) becomes

vitd = vt & pu2etd - wJ]) (B-37)
and hence Eqs. (B-27)-(B-30) reduce to the hydrodynamic equations of

Sec. 2-2, justifying their interpretation as a macroscopic description

of a perfect fluid with a density of vortices present.
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APPENDIX C

TURBULENT SOLUTIONS OF THE EQUATIONS OF MOTION

The irregular and disordered flow of a fluid known as turbulence
is characterized by vorticity in three dimensions and by energy
transfer from the large scales of motion to the small scales, ending
in dissipation. It is usually assumed that turbulent fluid flow is
described by the Navier-Stokes equations and experimentally it is
found that turbulence occurs when the Reynolds number R > 20,000.
Since the hydrodynamic equations of Sec. 2-2 describe a fluid with a
distribution of vorticity, it is worthwhile to check whether they can
provide a model for turbulence.

A useful concept in the statistical description of turbulence is

the two-point velocity correlation function defined as the time average

<Vi(X,t)Vj(x',t )> = LIM %—JT Vi(x,t-+t')vj(x',t4—t')dt' (Cc-1)
T 0
which relates adjacent fluctuations in Vi(x,t) and Vj(x,t). Turbulence
is usually assumed to be an incompressible flow, where the
statistical properties are homogeneous, isotropic and time-independent.

Since space and time derivatives are assumed to commute with the

averaging process, homogeneity implies the relations

i . .
AV gk - 2 iR = 2 P@vRE F > (e-2)
axJ axJ BrJ
where x' = x+7T. Isotropy implies that
<V (x + 1)P(x)> = 0 (C-3)

for any scalar function P(x).
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The following relations involving two-point correlations of the

vorticity will prove useful

. . . . 2
wr@ul(x')> = —eiktIm —f(—_m (VP (x + 1)> (C-4)
dr or

Contraction over i and j gives

2
Dx) e o(x + 1)> = - ——-3——1 V(x)-V(x + 1)>
dr 3r
32 > > 2
=k —— <[V(x) - V(x + r)]*> (c-5)
1 1
or or

In Kolmogoroff's theory of turbulence the fluid flow is pictured
as a superposition of eddies of various sizes with energy being
transferred from larger to smaller eddies at a constant rate
eo[LzT'3]. The energy is ultimately dissipated by viscous effects in
the smallest eddies of length scales (eo v'3)—% (v is the kinematic
viscosity). It is assumed that in the time-independent regime the
statistics are completely determined by €, and v. Furthermore for
those eddies smaller than the largest scales but larger than viscous
scales, the inertial subrange, the statistics are completely
determined by 4"

By dimensional analysis Kolmogoroff's theory then predicts the
form of the two-point correlation function in the inertial subrange

as

2/3 2/3

<) - Fx + 112> = 4K e

(C-6)

where K = .5 is Kolmogoroff's constant. Eq. (C-6) has been well-
verified by experiment and any successful model of turbulence must

reproduce this result.
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Adopting Kolmogoroff's assumption that only € be used in the
inertial subrange implies by dimensional analysis that g(w) = —K'eow‘l
where K' is a dimensionless constant. In the incompressible,

isentropic case the hydrodynamic equations of Sec. 2-2 reduce to

VeV =0 (c-7)
3_\7 > > > > P > > ->
et WDV =V (->-pg)-0xVx (K'eowm"3) (C-8)

-V x (K'eb_tr)w'3) (C-9)

Now assume that 8;/8t is identified with the mean flow <V> and that
-V x (K'eoaw'3) is the turbulent part of the velocity field. If
<V> = 0 then Eq. (C-7) reduces to an identity and Egqs. (C-8) and (C-9)

become

<¥

3

= V(-

'Oll'd

- g (C-10)

(o3
ct

Vo= -0 x (R'e oY) (c-11)
Multiplying Eq. (C-10) by Vl(x + r) and averaging gives the time
independent condition

2 i+ = - 2 <t +nE gz o (C-12)
ot 31‘1 p

Taking the curl of Eq. (C-11) gives

wi = —Vi(K'aog-(aw-3)) + VZ(K'EOwiw—3) (C-13)

Multiplying Eq. (C-13) by w (x + r) and averaging gives

22 _ 2 [ -3
—3 7 e+ 0o (C-14)

or or

<u(x) b(x+1)> = K'e
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To close Eq. (C-14) it is sufficient to assume the closure

relation

<bx+ 1)@ wx)73> = K"<$(x-+r)-z(x)>-% : (C-15)

Note that Eq. (C~15) does not follow from the Lagrangian.Eq.(C-14) gives

2 -
<@(x) B(x+1)> = K'K"e_ - <b(x+1) Bx)>T? (C-16)
dr or
which has the solution
D B(x + > = 10 K'R"e_/9)2/* /3 (c-17)
The identity Eq. (C-5) implies that the two-point velocity
correlation function is given by
<@ - v + D12 = 9/2(10 k'K /9)°* 2/ (C-18)
which agrees with Eq. (C-6) provided Kolmogoroff's constant is
identified as
2/3
K = 9/8(10 K'K"/9)°/ : (c-19)

Hence the hydrodynamic equations of Sec. 2-2 provide a model of
turbulence which is consistent with Kolmogoroff's theory in the
inertial subrange. From Eqs. (B-23)-(B-25) it follows that this model
of turbulence consists of a fluid with a density of vortices, whose
individual vortex strengths depend inversely on the vortex density to

the two thirds power, i.e.

v a(n/a) 2% (C-20)
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APPENDIX D

MEASUREMENT OF B' FROM SECOND SOUND IN ROTATING “He

43 Ly
The parameter B' has been measured by Snyder , Snyder and Linekin

and-LucasqS. The experiment of Snyder and Linekin is described briefly
as follows: a standing wave of second sound with frequency ¢ was
excited in a second sound resonator, rotating with angular velocity
Q%z; the Coriolis force and the B' term removed the degeneracy of the
two 16west second sound normal modes{ the frequency of these normal
modes was determined by ebserving the resonant frequencies of the
temperature fluctuation on the resonator wall. Using a cylindrical
resonator Lucas found B' = .08 * ,08 at 1.603 K and B' = .2 * .25

at 1.426 K,the results of Snyder and Linekin using a square resonator

are given in Figure 2.

Figure 2. B' versus T
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Both these experiments suggest that B' is much less than 2 and

temperature dependent.
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46 )
Donnelly has given a detailed derivation of the frequency

splitting of the degenerate second sound modes; a brief summary of
this derivation is given as follows. Linearization of Eqs. (4-2)-

(4-5) yields

> 1 - = ps > B'ps—>—>
Vo= = = VP - — sVT + —— wXxq (p-1)
P p 2p
n

. B‘p
> 1 > > : n > -

= ~-=V VT - —/— wX -
Vs 5 P + sVT T (D-2)
b+ p VUV +p VeV =0 (D-3)
P DS S pn n N -
s + sp + ps3-vn =0 (D-4)

where a = 35 - ?S and it is assumed that & = 203. Subtracting Eq. (D-2)

from Eq. (D-1) and transforming to the rotating frame gives

4+ (2-B)xq = - B2 ¥

VT (D-5)
pn

Using s = Cf'and combining Eqs. (D-3) and (D-4) yields

psS >

. -
T=-g— Ve (D-6)

where C is the specific heat. Differentiation of Eq. (D-5) combined with

Eq. (D-6) gives a wave equation for 3

.. V . +
q + (2-BNUxq = wV(F Q) (D-7)
ps?
where u, = 2;75 is the speed of second sound.
n

Comparison with the case of first sound propagation in a classical

rotating fluid then gives the second sound normal mode frequencies as

L
+ o+ 4(2-B')Q
om

g
om

(D-8)

iR}

m2n2



—81-

where m is an odd interger and %om is the degenerate normal mode
frequency in the non-rotating case corresponding to the intergers

+m. Hence the Coriolis force and the B' term cause a split in the

8(2-B")Q
rvny S

normal mode frequencies Ag_ =
m mem

. Note that gradients in

L and Py would'coﬁtribute a term Ei E to the LHS of Eq. (D-7),
which causes attenuation but does not alter the splitting of the
normal modes. If B' = 2 then no splitting occurs, in contradiction
with the results of Snyder and Linekin. Lin9 hasbsuggested that
some sort of macroscopic secondary motion may occur,supported by
the rotation, in contradiction to the assumptions leading to
Eq. (D-8). ,

If B' = 0 then Eq. (4-42) states that the superfluid vortices
travel with velocity vs (apart from the )X terms). According to
LFK this corresponds to the superfluid vortices being regarded
as combined X and 33 singularities. This suggests that normal
fluid vortices may be formed in the experiment of Snyder and
Linekin. If this is the case then both Vxﬁs and 3*7# must be
treated as thermodynamic variables and Eq. (4-1) will have an
extra contribution due to §X$h. This poses an interesting question
for future consideration:Can the contributions of Vx?s and %XV#
to Eq.(4-1) be appropriately adjusted such that a variational
principle can be found and such that the temperature dependence
B' agrees with the results of Snyder and Linekin ? This remains
an open question at present.Note that for the experiment of Snyder
and Linekin the Reynolds number of the normal fluid at 1.8 % is
given by R = rzﬂpn/qnzz(z em)2( 21 rad /sec) (.05 g/cm3) (1075 g cm /sec) !

~13,000° which suggests that normal fluid vortices may have an important

effect on the measurement of B'.



