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ABSTRACT 

A new v a r i a t i o n a l p r i n c i p l e i n f l u i d mechanics i s presented, 

based on a generalized version of the conservation of p a r t i c l e l a b e l 

constraint. The v a r i a t i o n a l p r i n c i p l e represents an extension of the 

work of Clebsch (1859) and C.C. L i n (1959) and for the one-component 

case i t describes a perfect f l u i d with a f i n i t e density of vortices ; 

for the two-component f l u i d i t yields the Khalatnikov equations for 

rapidly rotating superfluid ^He. In the l a t t e r case two p a r t i c l e 

l a b e l constraints are needed, which express the p o s s i b i l i t y of 

l a b e l l i n g both an element of normal f l u i d and a superfluid vortex, 

averaged over many vortices. In addition a negative result for a 

v a r i a t i o n a l formulation of viscous f l u i d s based on a generalized 

p a r t i c l e l a b e l constraint i s given. 
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INTRODUCTION 

The modern form of v a r i a t i o n a l calculus i s attributed to Euler 

(1701 - 1783) and Lagrange (1736-1783) although the very f i r s t results 

date back to Hero of Alexandria c i r c a 140 A.D. One of the problems of 

v a r i a t i o n a l calculus i s to fi n d a functional L [ ^ ( x , t ) , x , t ] , c a l l e d the 

Lagrangian density, such that the Euler-Lagrange equations SL/Sip = 0 

are equivalent to the equations of motion. I t i s straightforward to 

prove that the vanishing of the v a r i a t i o n a l derivative of L i s 

equivalent to the requirement that the action A = JJ L dxdt be an 

extremum for a l l variations of U)(x,t) with fixed boundary values. The 

basic mathematical framework was completed by Noether (1918) who showed 

e x p l i c i t l y how symmetry transformations of the Euler-Lagrange equations 

are connected with conservation laws. 

The chief d i f f i c u l t y i n v a r i a t i o n a l calculus i s that a Lagrangian 

may not exist when the equations of motion are expressed i n terms of a 

given set of variables; i n such a case the equations of motion must be 

rewritten i n a transformed set of variables. For the electromagnetic 

f i e l d the decomposition of E and B i n terms of the potentials A and q> 

i s w e l l known; however i n general there i s no way of knowing i n advance 

which transformation, i f any, w i l l bring the equations of motion into 

the form of the Euler-Lagrange equations. 

The advantages i n constructing a Lagrangian formalism are 

three-fold: (1) Noether's theorem provides a convenient connection 

between symmetries and conservation laws; (2) symmetry arguments 

applied to the Lagrangian give a systematic way of extending the 

equations of motion; and (3) the v a r i a t i o n a l equations may be easier 
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to solve d i r e c t l y than the usual form of the equations of motion. In 

f l u i d mechanics (3) i s e s p e c i a l l y true. For instance the v a r i a t i o n a l 

equation associated with the mass density p i s the most general form of 

the B e r n o u l l i equation, which can be used to discuss properties of 

f l u i d flow without f i n d i n g exact s o l u t i o n s . In summary, a v a r i a t i o n a l 

formulation of hydrodynamic systems i s extremely u s e f u l . 

More than one hundred years elapsed between the simultaneous 

development of v a r i a t i o n a l calculus and f l u i d mechanics and the 

discovery by Clebsch (1859) of a Lagrangian f o r i s e n t r o p i c , incompress

i b l e f l u i d s . Clebsch's representation of the v e l o c i t y f i e l d i n terms 

of the Monge p o t e n t i a l s , introduced by Monge (1787), succeeded i n 

overcoming the two d i f f i c u l t i e s i n formulating a v a r i a t i o n a l p r i n c i p l e 

for f l u i d s , namely the occurrence i n the equations of motion of 

n o n - l i n e a r i t i e s and f i r s t order d e r i v a t i v e s of the v e l o c i t y f i e l d . 

Because of the symmetry properties of the v a r i a t i o n a l d e r i v a t i v e , i t i s 

impossible to obtain odd order d e r i v a t i v e s of the v e l o c i t y f i e l d V(x,t) 

as a r e s u l t of v a r i a t i o n s with respect to V(x, t ) . Clebsch's 

incorporation of both non-linear and f i r s t order d e r i v a t i v e terms i n a 

v a r i a t i o n a l p r i n c i p l e i s absolutely unique i n c l a s s i c a l f i e l d theory. 

Bateman (1929) and Lamb (1932) extended the Lagrangian to include 

compressible, i s e n t r o p i c flows. The adiabatic case was solved by 

C.C. L i n (1959) who recognized that the conservation of p a r t i c l e l a b e l 

constraint (Lin's c o n s t r a i n t ) , an expression of the p o s s i b i l i t y of 

l a b e l l i n g an element of f l u i d , must be e x p l i c i t l y incorporated i n the 

v a r i a t i o n a l p r i n c i p l e . The p h y s i c a l consequence of in c l u d i n g Lin's 

constraint i s the appearance of non-zero v o r t i c i t y i n the absence of 

entropy gradients. 
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Because of the d i f f i c u l t i e s with f i r s t order derivatives and non-

l i n e a r i t i e s mentioned previously, extensions of Clebsch's v a r i a t i o n a l 

p r i n c i p l e are extremely d i f f i c u l t to f i n d . The purpose of th i s thesis 

i s to present such an extension based on a generalized version of Lin's 

constraint. The physical interpretation of the resu l t i n g theory i s 

that of a f l u i d with a large number of vortices present, where a l l the 

hydrodynamic variables have been averaged over regions containing many 

vortices. In i t s two-fluid version the v a r i a t i o n a l p r i n c i p l e yields 

the Khalatnikov equations for rapidly rotating superfluid ^He. 

After reviewing the adiabatic Lagrangian i n Chapter 1 , the 

consequences of relaxing Lin's constraint for a c l a s s i c a l one-component 

f l u i d without changing the conservation of mass equation are examined 

i n Chapter 2 . I t i s found that such theories represent a macroscopic 

(compared to the mean vortex separation) description of a f l u i d with a 

large number of vortices present. 

As necessary background material Chapter 3 reviews Herivel's 

v a r i a t i o n a l p r i n c i p l e f o r the Landau two-fluid equations. Chapter 4 

presents a new v a r i a t i o n a l p r i n c i p l e for the Khalatnikov equations of 

rapidly rotating superfluid ^He. I t i s found necessary to use two 

constraint equations, the usual Lin's constraint associated with the 

normal ve l o c i t y f i e l d and the other constraint expressing the 

p o s s i b i l i t y of l a b e l l i n g a superfluid vortex, averaged over many 

vortices. Chapter 5 concludes with an extension of the v a r i a t i o n a l 

p r i n c i p l e to higher order derivatives and with a negative res u l t for 

viscous f l u i d s , namely that a generalized Lin's constraint by i t s e l f 

i s not s u f f i c i e n t to generate the additional viscous terms which occur 

i n the Navier-Stokes momentum equations. 
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To summarize, the new v a r i a t i o n a l p r i n c i p l e s presented i n t h i s 

thesis are given by Eqs. (2-6), (2-40) and ;(5-l) which describe one-

component f l u i d s with a density of v o r t i c e s , and by Eq. (4-7) which 

yields the Khalatnikov equations for rotating superfluid ^He. 
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CHAPTER 1 

A REVIEW OF THE VARIATIONAL PRINCIPLE FOR A PERFECT FLUID 

IN ADIABATIC FLOW 

1-1 An Historical Outline 

The equations of motion of a perfect f l u i d were f i r s t developed 
1 2 

by Euler (1751) and Lagrange (1781) . More than one hundred years 
3 

later Clebsch (1859), using a representation for the velocity f i e l d 
k 

introduced by Monge (1787), succeeded in finding a Lagrangian for the 

incompressible, isentropic (constant entropy) flow of a perfect f l u i d . 

Clebsch proved that the isentropic, incompressible equations 
ijf = - I VP , U = 0 (1-1) dt p 

where V i s the f l u i d velocity, d/dt = 3/3t + V-V, P(x,t) is the 

pressure and p is the mass density, can be solved in terms of three 

scalar functions tJ)(x,t), m(x,t) and i|)(x,t) (the Monge potentials) 

which satisfy 

* - f c + ^ , £ + | i + . { i + * V * - 0 . £ - f -0 (1-2) 

Furthermore Clebsch showed that the equations v"«V = 0 and dm/dt = 

di|;/dt = 0 are the variational equations of the Lagrangian density 

L = | | + m|^ + % (V^-rmV^)2 (1-3) 

which arise from variations in if) and m respectively. This result 
5 6 

was extended by Bateman (1929) and Lamb (1932) to compressible, 
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7 8 
i s e n t r o p i c flows. Taub (1949) and H e r i v e l (1955) attempted with only 

p a r t i a l success to generalize the v a r i a t i o n a l p r i n c i p l e to the a d i a -

batic case ds/dt = 0, where s i s the entropy density. 
9 

I t was C.C. L i n (1959) who pointed out that Herivel's v a r i a t i o n a l 

p r i n c i p l e yielded only a subset of the solutions of the Euler equations, 

those for which VxV = 0 when s = constant, and who supplied the necess

ary a d d i t i o n a l c o n s t r a i n t . L i n observed that even i f the Lagrangian 

coordinates z:(x,t) do not appear i n the Euler equations, only those 

v e l o c i t y f i e l d s for which the Lagrangian coordinates could be found 

should be used i n the v a r i a t i o n a l p r i n c i p l e . L i n incorporated t h i s 

constraint into the v a r i a t i o n a l p r i n c i p l e i n the form of the conserva-

t i o n of i d e n t i t y of p a r t i c l e s equation dz(x,t)/dt = 0, where z(x,t) 

i s the i n i t i a l p o s i t i o n of a f l u i d p a r t i c l e located at x at time t . 
10 

By using Weber's transformation i t follows that Herivel's v a r i a t i o n 

a l p r i n c i p l e supplemented with Lin's constraint for the i d e n t i t y of 

p a r t i c l e s includes a l l solutions of the Euler equations. 

Following Lin's c r u c i a l step a number of papers appeared extend-
10 

ing the v a r i a t i o n a l p r i n c i p l e . These include S e r r i n (1959) and 
11 

Eckart (1960) on adiabatic flow, a s p e c i a l r e l a t i v i s t i c formulation 
12 13 

of adiabatic flow by Penfield (1966), Seliger and Whitham (1967) on 
v a r i a t i o n a l p r i n c i p l e s i n continuum mechanics, general r e l a t i v i s t i c 

Ik 15 
treatments of adiabatic flow by Schutz (1970) and Schutz and Sorkin 

16 
(1977) and a v a r i e t y of rigorous mathematical r e s u l t s by Rund (1976) . 

Other generalizations include v a r i a t i o n a l p r i n c i p l e s f o r magneto-
17 18 19 

hydrodynamics by Calkin (1961), Katz (1961) and P e n f i e l d and Haus 

(1966) and f o r a number of two-fluid systems (see Chapter 3 for 

d e t a i l s and references). Worth noting are several negative r e s u l t s 
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for variational principles yielding the Navier-Stokes equations : 
20 21 22 23 

Millikan (1929), Bateman (1931), Gerber (1950) and Bailyn (1980) 

1-2 The Equations of Motion 

The equations of motion of a perfect f l u i d in adiabatic flow are 
10 + 

well known and are given in terms of the Eulerian variables (x,t) 

(the are just the spatial coordinates, t i s the time) by 

|£ + V-(pV) - 0 (1-4) 

3F " ° d - » 

which represent the conservation of mass, entropy and momentum of the 

fl u i d respectively. The variables V, p and s and the material deriva

tive d/dt have been defined previously while the pressure P (p,s) and 

the temperature T (p,s) are defined in terms of the internal energy 

density e (p,s) by the Gibbs relation 

de = Tds + ( P / p 2 ) d p (1-7) 

In the Eulerian variables (x,t) the velocity V(x,t) i s simply 

regarded as a vector f i e l d which obeys Eqs. (l-4)-(l-6). In the 

Lagrangian variables (z,t) the f l u i d flow i s described in terms of 

particle paths x = x(z,t). If z is fixed while t varies then x(z,t) 

maps out the path of a f l u i d particle i n i t i a l l y at z. For fixed t, 

x(z,t) gives a mapping of the region i n i t i a l l y occupied by the fl u i d 



-8-

into i t s p o s i t i o n at time t . 

Assuming that i n i t i a l l y d i s t i n c t points remain d i s t i n c t implies 

that x(z,t) possesses an inverse z = z(x,t) which i s the i n i t i a l p o s i -
- » - - » • 

t i o n of a f l u i d p a r t i c l e with p o s i t i o n x at time t (x and z denote the 

values of the functions x(z,t) and z(x,t) r e s p e c t i v e l y ) . This implies 

that x = x ( z ( x , t ) , t ) and z = z ( x ( z , t ) , t ) and hence use of the chain 

r u l e y i e l d s the i d e n t i t i e s 

Sx 1 8z^ 9x^ 9 z k
 r i k Q N : r — : r = 6 v i - o ; 

9z J 9x 9 Z 1 9x J 

where x(z,t) and jj(x,t) are assumed to possess continuous d e r i v a t i v e s 

up to t h i r d order i n a l l d e r i v a t i v e s ; i , j , ... = 1,2,3; repeated i n 

dices are summed and unnecessary indices are omitted. 

In the Lagrangian p i c t u r e of f l u i d flow the v e l o c i t y of a f l u i d 

p a r t i c l e V(z,t) i s defined as 

i = 9x X(z,t) _ dx^ n _ _ . 
9t ~ dt K ' 

M u l t i p l y i n g Eq. (1-9) by 9z J/9x X and summing i y i e l d s the equivalent 

form 

d z ^ ( x ' t } = 0 (1-10) dt 

which j u s t states that the i d e n t i t y of the f l u i d p a r t i c l e s i s conser

ved during the motion. Note that Eq. (1-9) and use of the chain r u l e 

imply 

df(x,t) = 9 f ( x ( z , t ) , t ) (1-11) 
dt 9t 
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and hence d/dt and 3/3z commute. Eqs. (1-4)-(1-6) and the Lin's con

st r a i n t Eq. (1-10) w i l l henceforth be referred to as the hydrodynamic 

equations which w i l l be shown to be equivalent to a v a r i a t i o n a l p r i n 

c i p l e i n the following section. 

1-3 The Lagrangian 

10 

The following discussion i s due to Serrin i n the Handbuch a r t i 

c l e . The Lagrangian density for the hydrodynamic equations i s given 

by 

L = % pV2 - pe(p,s) - a{|£ + v"-(pV)} + PB ^ + p Y
j (1-12) 

where the dependent variables are p.s.V^z and the Monge potentials 

a,6,Y while the independent variables are ( x , t ) . The v a r i a t i o n a l 

equations are obtained by setting the v a r i a t i o n a l derivatives 6X/6i^a 

= 3L/3*" - V-(9L/8(v"4;a))- 3(3L/3(3*°7 3t))/3t = 0 where the i | / a are 

the dependent variables; for a review of v a r i a t i o n a l p r i n c i p l e s i n 

mathematical physics see H i l l (1951). Variations of the Monge poten

t i a l s <*,B,Y j u s t give Eqs. (1-4) , (1-5) and (1-10) respectively while 

the other variations give 

6V: V = - Va - RVs - Y J ^ Z ^ (1-13) 

6p: || + % V 2 - e - j = 0 (1-14) 

6s: |f = - T (1-15) 

6z: |j = 0 (1-16) 
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Eqs. (1-4),(1-5),(1-10),(1-13)-(1-16) w i l l be col lec t ively referred to 

as the variational equations of L . 

When use is made of Clebsch's lemma 

which follows as an identity from the definit ions d/dt = 9/9t + V«V 

and V = - Vex - £Vs - y^Vz"' (see Appendix A for a proof) then substi

tution of Eqs. (1-14)-(1-16),(1-5),(1-10) into Eq. (1-17) gives 

= _ v"(e + -) + TVs = - - V P (1-18) dt p p 

which is just Eq. (1-6). Hence a l l solutions of the variational 

equations are also solutions of the hydrodynamic equations. 

The converse statement can be proven using Weber's transforma

t i o n . Eq. (1-9) or equivalently Eq. (1-10) implies the identity 

dT<v jJ4) • # 4 + v 3 ^ 1 7 - # 4 + i i ^ v 2 ) ( 1 " 1 9 ) 

dt l dt l dt l dt l . l 9z 9z 9z 9z 9z 

Substituting Eq. (1-6) into Eq. (1-19) gives 

A ( VJ *d) = - L - <* V2 - e - % + T (1-20) 
d t 9Z 1 9Z 1 P 9Z 1 

By defining a = / [e + — - % V 2 ]dt and 6 = / Tdt (the integration is 
O P 0 

carrried out by constant z) then i t immediately follows that Eq.(l-20) 

can be written as 

4z (^4 tV j + V j a + gV js]) = 0 (1-21) 
d t 9Z 1 
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Since a(z,o) = 0, 3(z,o) = 0 and x(z,o) = z Eq. (1-21) can be inter-

grated as 

V = - Va - &Vs - y^Vz^ (1-22) 

where Y J = - V J(z,o). Eq. (1-22) is just Eq. (1-13) and i t i s easy 

to verify that a,3 and y as defined above satisfy Eqs. (1-14)-(1-16) 

respectively. Hence the variational equations of L are equivalent to 

the hydrodynamic equations. 

1-4 Symmetry Transformations and Conservation Laws 

Before considering the transformation properties of the specific 

Lagrangian given by Eq. (1-12) a more general treatment is needed. 
2k 

The following discussion can be found in greater detail in H i l l 

If the variational equations of a Lagrangian ~L[ty] 5 L(ty,Vty, 3ii)/3t,x, t) 

maintain the same functional form under the infinitesimal transforma
tions L|>] -»• L ' [ i | ) ' ] = L[ty] + SL[ty], if/* •+ ty,a = tya + &tya, x -' x = 

x + fix, t t' = t + fit and L' [ty' ]d 3x 'dt' = L[^]d 3xdt (the latter con

dition just maintains the numerical invariance of the action) then 

they are said to be form invariant. This implies 

S L ' ^ ' J = 6 L . V ] ( 1 2 3 ) 

ct ct Hence xff is a solution of the equations of motion then so i s ty' 

and the transformation is said to be a symmetry transformation. A 

necessary and sufficient condition that Eq. (1-23) hold for arbitrary 
Ct ct 
ty (x,t) or equivalently for ty and their derivatives considered as 

Ct 
independent variables (not just for those ty which satisfy the 



-12-

equations of motion) i s that the old and new Lagrangians be related 

by a t o t a l divergence 

L'[*'] = M*'] + V«6ft + 9 6fi /9t (1-24) 
o 

Eq. (1-24) just says that L i s invariant under the transformation, i f 

60, = <5fi =0 then L i s said to be form invariant. o 
I f Eq. (1-24) holds for ̂ a and their derivatives considered as 

independent variables (hence the equations of motion may not be used 

in v e r i f y i n g Eq. (1-24)) then Noether's theorem gives a conservation 

law i n the form 

|^ + V-s = 0 d-25) ot 

•+ 
where the i n f i n i t e s i m a l forms of o and s are given by 

6° = (L " ^ " +Jr«* a
 + fino ( 1 " 2 6 ) 

3 ( " 9 T } ^ T F 0 9 ( 3 t } 

8t = - *£. 6 t + ( L f i - - 6 x\y> a) + — «*° + (1-27) 
9V\J; 3Vi(/ 3 Vi^ 

Hence to test for a possible symmetry transformation which generates 

a conservation law v i a Noether's theorem either Eqs. (1-23) or (1-24) 

may be used, with tj; and their derivatives considered as independent 

variables. 

1-5 The In f i n i t e s i m a l "Gauge" Transformations 

The discussion i n Sec. 1-3 shows that the essential step i n 

finding a v a r i a t i o n a l p r i n c i p l e for the hydrodynamic equations i s the 

representation of the v e l o c i t y f i e l d given by Eq. (1-13). However a 
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d e f i n i t e value of V does not uniquely determine the values of the 

variables which appear on the R.H.S. of Eq. (1-13). In fact a ,3,Y 

and ~z may be subjected to "gauge" transformations which do not change 

the value of V and which keep L invariant and hence the v a r i a t i o n a l 

equations of L form invariant (transformations of s are not allowed 

since this destroys the form invariance of Eqs. (1-14) and (1-15)). The 

form invariance of Eq. (1-13) implies that the i n f i n i t e s i m a l gauge 

transformations a + a' = a + 6a, g + 3' = 3 + 63, y Y ' = Y + 

z + z' = z + 6z and V -»• V = V s a t i s f y 

V' = -Va' - 3*Vs» - y'tfz'i = v = -Va - 3Vs - y^vV (1-28) 

or equivalently 

V(6a + yhzh + 63Vs + 6Y JVZ J - 6z jVy j = 0 . (1-29) 

The form invariance of the other v a r i a t i o n a l equations implies 

that 

£ (6a) = £ (63) = £ (6y) = (6z) = 0 (1-30) 

which have the solutions 

6a = 6a(s,y,z), 63 = 63(S,Y,Z), 

6Y = 6 Y ( S , Y , Z ) , 5Z = 6z(s,y,z). (1-31) 

Substitution of these results into Eq. (1-29) yields 

(e ~ + 63)Vs + (e ̂ — + 6y j)Vz : i + (e ̂  - 6Z j)VY : ' = o (1-32) 
d s 8z 3 9y J 

where for convenience 6a + y^Sz 3 = eG(s,y,z) and e i s an i n f i n i t e s i m a l 

constant. 
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Since s, y and z are independent variables Eq. (1-32) implies 

that the i n f i n i t e s i m a l gauge transformations are given by 

6a - E G - E Y
J ^ , 6B = -e |£ , 6yi = -e , 6z j = e (1-33) 

9Y3 9 8 9z J 9 YJ 

The conservation law associated with the gauge transformations i s 

(pG(s,Y,z)) + V-(pVG(s,Y,z)) = 0 (1-34) 

which i s e a s i l y v e r i f i e d from Eq. (1-25). Note that i f 6z = 0 then the 

gauge transformations take the form 

G = G(s,z) (1-35) 

and the conservation law becomes 

(pG(s.z)) + V-(pVG(s,z)) = 0 (1-36) 

1-6 The Galilean Transformations 

In t h i s thesis a l l equations are invariant under the Galilean trans

formations: s p a t i a l t r a n s l a t i o n , time t r a n s l a t i o n , rotation of 

coordinates and Galilean boosts. The transformation properties of 
-»- ->• 
V,p,s and z are w e l l known but the transformation properties of the 

Monge potentials a,3 and y are not known a p r i o r i and must be deduced 

by requiring that the Lagrangian be invariant under the Galilean group 

(i ) Under the i n f i n i t e s i m a l s p a t i a l displacement x -*• x' = x + 6x where 

6x i s an i n f i n i t e s i m a l constant, z -*• z' = z + 6x. The results of 

Sec. 1-5 show that the Monge potentials a, 3 and y remain fixed apart 

from a gauge transformation of the type G = G(s,z). From Eq. (1-25) i t 

i s easy to v e r i f y that the conservation law associated with t h i s 



-15-

symmetry transfomation i s the conservation of momentum equation 

• ^ § 7 - + V j (pvV + P6 i j) = 0 (1-37) 
o t 

( i i ) Under the time translation t •+ t ' = t + St where 6t i s an i n f i n 

i t e s i m a l constant, z -»- z* = z - V(z,o)6t (since z was defined as the 

i n i t i a l position of a f l u i d p a r t i c l e , a s h i f t i n the time o r i g i n s h i f t s 

^ as w e l l ) . The form invariance of Eq. (1-13) gives y -*- y' = 

y - y J(9V J(z,o)/9z)6t apart from a gauge tranformation of the type 

G = G(s,z). From Eq. (1-25) follows the conservation of energy equation 

-£r (pe + h pV 2) + V j([pe + h pV 2 + P]V j) = 0 (1-38) d t 

( i i i ) Under the rotation of axes x - > x l = x + 6 0 x x , where 68 i s an 

i n f i n i t e s i m a l constant vector i n the d i r e c t i o n of the axis of rotation 

with a magnitude equal to the angle of rotation, V V = V + c6 x V 

and z - ^ z ' = z + 6 6 x z . The form invariance of Eq. (1-13) gives 

y y' = y + 5 Q x y } apart from a gauge transformation of the type 

G = G(s,z). From Eq. (1-25) the conservation of angular momentum 

equation i s 

4~ (PV x x) + V j(pV jV x x) - x x VP = 0 (1-39) d t 

(iv) Under the Galilean boost x x = x + 6 V t , where 6V i s an 
o o 

->-

i n f i n i t e s i m a l constant vector, V ->• V = V + 6V . The form invariance of 
' o 

Eq. (1-13) gives a -*• a' = a - X*6Vq apart from a gauge transformation 

G = G(s,z). From Eq. (1-25) the conservation of center of mass equation 
is 

4- (pVAt - p x 1 ) + V j ( P v V t - p x V + P t 6 ± j ) = 0 (1-40) a t 
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/ 

1-7 An Alternative Lagrangian 

The v a r i a t i o n a l p r i n c i p l e given by Eq. (1-12) requires that the 

Lagrangian picture of f l u i d flow be adjoined to the hydrodynamic 

equations i n the form dz/dt = 0. Seliger and Whitham 1 3 have shown that 

t h i s i s not necessary. Consider the Lagrangian 

L = h PV 2-pe(p,s) - a { | | - + v".( PV)}+p3 + PY ff" + pH(Y,z,t) (1-41) 

where a , $ , Y and z are to be interpreted as Monge potentials and H i s 

an arbitrary function of y, z and t. Variations of a and (3 give 

Eqs. (1-4) and (1-5). The other variations give 

6V: V = - va - 3^s - yVz (1-42) 

6p: ^ + isV 2-e - -+Y47-+H=0 (1-43) dt p dt 

6 s : 4f = " T t 1 " 4 4 ) at 

The Clebsch lemma gives 

while substituting Eqs. (l - 4 3 ) - ( l - 4 6 ) , (1-5) into Eq. (1-47) gives 

£ = _y-(e + I _ H + y M) + TVs - |= Vz + Yv" f» « - I VP (1-48) dt p ' 9y 9z ' 9y p 

which i s just the conservation of momentum equation (1-6). Hence a l l 

solutions of the v a r i a t i o n a l equations of L are also solutions of 
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Eqs. ( l - 4 ) - ( l - 6 ) . 

The converse statement can be proven using Pfaff's theorem which 
-> ->-

states that an arb i t r a r y 3-vector V + BVs can be written i n the form 

V + 3Vs = - Va - yVz . (1-49) 

Since 3 i s arb i t r a r y i t can be chosen such that d3/dt = -T. Clebsch's 

lemma and Eq. (1-6) then give 

which can be rewritten using Eq. (1-5) and d3/dt = -T as 

* £ + * " - « - f + £ ) + £ y 2 - i | ? Y . „ ( 1 - 5 1 , 

Self-consistency conditions imply that a, y and z must 

s a t i s f y Eqs. (1-43), (1-45) and (1-46) respectively. Hence the 

v a r i a t i o n a l p r i n c i p l e given by Eq. (1-41) i s completely equivalent to 

Eqs. (1-4)-(1-6) and no reference to the Lagrangian picture of f l u i d 

flow i s needed. Note that the addition of the term H(Y,z,t) means 

that the Lagrangian i s invariant under the smaller group of gauge 

transformations G = G(s). This completes the review of the v a r i a t i o n a l 

p r i n c i p l e for adiabatic flow. 
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CHAPTER 2 

CONSEQUENCES OF RELAXING THE CONSERVATION OF PARTICLE LABEL 

2-1 The "Gauge" Invariance Problem 

As shown i n Chapter 1 (see Eq. (1-12)) the Lagrangian for the 

perfect f l u i d i n adiabatic flow i s j u s t the k i n e t i c energy minus 

the in t e r n a l energy plus a sum of Lagrange m u l t i p l i e r s times the 

constraints 3p/3t + V* (pV)=0, ds/dt=0 and dz/dt=0. Variation of L with 

respect to V gave the representation for V, then use of Clebsch's 

lemma and the v a r i a t i o n a l equations for p,sfz,a,& and y yielded the 

conservation of momentum equation. In fact the precise form of the 

constraint equations for p,s and z given above i s c r u c i a l to the 

success of the v a r i a t i o n a l p r i n c i p l e . 

For instance consider the Navier-Stokes entropy production 

equation pds/dt = kT _ 1 V 2T + T ^ V ^ T ^ where T±J'= Xv'-vV^-l- p ( V ^ + V ^ V 1 ) , 

k,X and u=constant. If t h i s constraint i s incorporated i n the v a r i a 

t i o n a l p r i n c i p l e simply by using a Lagrange m u l t i p l i e r B then the 

Lagrangian i s 

Variations of a , y and z are unchanged while variations of P,s ,B and V give 

L' = % pV2 - pe(p,s) - a{|£ + V-(pV)} + B{ ds dt - kT _ 1V 2T - T W V T 1 3 } 

+ P Y d F (2-1) 

(2-3) 

(2-2) 

66: p 4r = kT _ 1 V 2T + T _ 1 V V T 1 J (2-4) 
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( 2 

A straightforward c a l c u l a t i o n y i e l d s an equation for V 

( 2 

which i s not the Navier-Stokes momentum equation unless the RHS of 

Eq. ( 2 - 6 ) vanishes. This constraint would have to be added to the 

Lagrangian with no guarantee of a solution to the resulting closure 

problem. 

In addition the Monge potential 3 which was introduced as a 

Lagrange m u l t i p l i e r and has no unique physical interpretation, cannot 

be eliminated from the R.H.S. of Eq. ( 2 - 6 ) by using the v a r i a t i o n a l 

equations of L'. The conclusion i s that the form of the constraint 

equations for p,s and z determines whether the Monge potentials a,3 

and y (which have no unique physical interpretation) can be eliminated 

from the equation for dV/dt. The l a t t e r case w i l l be summarized by 

saying that the equation for dV/dt i s "gauge" invariant i . e . the Monge 

potentials a,3 and Y c a n be eliminated i n terms of V,p,s,z and th e i r 

derivatives. 

Sec. 2-2 w i l l explore an extension of the v a r i a t i o n a l p r i n c i p l e 

discovered by the author i n which the equation for dV/dt i s "gauge" 

invariant while the conservation of p a r t i c l e label and entropy equa

tions are modified and the conservation of mass equation remains 

unchanged. In Sec. 2-3 the equations of motion are interpreted as 

describing a f l u i d with a f i n i t e density of vortices where the 
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hydrodynamic v a r i a b l e s V,p,s and z have been averaged over a region 

containing many v o r t i c e s . A v a r i a t i o n a l p r i n c i p l e f o r which dV/dt 

i s "gauge" invariant and only the conservation of p a r t i c l e l a b e l 

equation i s changed i s given i n Sec. 2-4, i t i s found that because 

of the requirements of G a l i l e a n invariance such a theory must be 

non-linear i n the gradient of the Monge p o t e n t i a l y. 

2-2 A Theory of Hydrodynamics with dz/dt ^ 0, ds/dt ^ 0 and 

3p/3t + V'(pV) = 0. 

Consider the Lagrangian 

L = % pV 2 - pe(p,s) - pg(u) - a { | ^ + V-( PV) } + pB jj| + p Y
j (2 -7) 

where the dependent v a r i a b l e s are V,p,s,z,a,8 and y> ^ E - VgxVs -

Vy^xVz^ and g(w) i s an a r b i t r a r y function of ID = [to| . After the 

v a r i a t i o n of V* i s c a r r i e d out to = V*V and the - pg(w) term i n L may 

be interpreted as adding a v o r t i c i t y dependent cont r i b u t i o n to the 

i n t e r n a l energy e(p,s) of the f l u i d . This i s s i m i l a r to an assumption 
25 

made by Khalatnikov and Bekarevitch (KB) i n deriving the equations 

of su p e r f l u i d helium with a f i n i t e density of sup e r f l u i d v o r t i c e s 

where the i n t e r n a l energy of the f l u i d i s allowed to depend on the 

supe r f l u i d v o r t i c i t y . 

The following i d e n t i t i e s w i l l prove h e l p f u l i n f i n d i n g the 

v a r i a t i o n a l equations of L 

|r- (- p g ( U ) ) = Vs.vx(p ! £ § ) , ! - (~Pg) = " VB.vx( p (2-8) 
O p dOl (0 O S dO) 0) 

with analogous expressions for y and z. By using Eqs. (2-8) the 
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v a r i a t i o n a l equations are e a s i l y shown to be 

<5V: V = - Va - BVs - y J V z J (2-9) 

6a: |£- + V-(pV) = 0 (2-10) 

6 p : a t + B o f + y J f r + h v 2 " e ' \ ~ g ( u ) = ° ( 2 ~ 1 3 ) 

63: p £ - - * . . * x < p | j £ > (2-12) 

6 s : p | i . . ^ . V K ( p | j | ) _ p T (2-13) 

^ p d s l . _ ^ x ( p | j 5 ) (2-14)-

6 z i : P | l i = . V - V X ( p | j | ) (2-15) 

Since the representation f o r V remains unchanged Clebsch's lemma 

Eq. (1-17) i s unchanged. Substi t u t i o n of Eq. (2-11) into Eq. (1-17) 

y i e l d s 

P |V± + v i p = _ p V l g _ p ( M + T ) v i s + p ds_ v i 3 _ p d y i v i z j 

+ pd£V YJ C 2 ' 1 6 ) 

dt Y 

By using Eqs. (2-12)-(2-15) , Eq. (2-16) can be rewritten as 

P i X l + v 1 ? = - pvS + V 3 - v x ( P |&S)yis _ ^ s . ^ ( p ! * H ) v i B 

dt 9u) w dui OJ 

+ V'Vx(p |^5 ) V V - Vz j.Vx(p | & H ) 7 V (2-17) 
' 9co OJ 9a) 0) 

The vector i d e n t i t y (1«C)B - (A«B)£ = Ax(BxC") and the representation 
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for V mean that the Monge potentials 8 and y c a n b e eliminated from 

Eq. (2-17) i n the form 

p ̂ | + VP - - pVg + V-*(p |& S)x Z (2-18) 
a t o(ji) a) 

or equivalently 

dvJ 
k + v j(P6 i : i + [a) 26 i : i - wV]) = 0 (2-19) dt a) da) 

Hence the effect of the - pg(ai) term i n the Lagrangian i s to add a 

symmetric contribution to the stress tensor = —- T^- [u)26^-o)*'ur'1. 
ID 3D 

As i n Chapter 1, Eqs. (2-10) ,(2-12), (2-l4) and (2-18) w i l l be 

c o l l e c t i v e l y referred to as the hydrodynamic equations. Note that 

the representation for V implies that oi = VxV and hence the hydro-

dynamic equations are "gauge" invariant. 

By using a suitable generalization of Weber's transformation 

i t can be shown that a l l solutions of the hydrodynamic equations are 

also solutions of the v a r i a t i o n a l equations (2-9)-(2-15) . If 

z(x,t) i s assumed to be i n v e r t i b l e and d i f f e r e n t i a b l e then Eqs. (1-8) 

are unchanged. M u l t i p l i c a t i o n of Eq. (2-14) by 3x^/3z"' gives the 

equivalent form 
v i = | x i z i t i _ i [ ^ ( p ^ | ] ^ 

d t P dO) (0 

Hence i t i s V' = V + — Vx(p —) = 3x(z>t) which i s the tangent to 
p 9u> u> 9t 

the p a r t i c l e paths x = x ( z , t ) , not V as i n Eq. (1-9). I f d'/dt = 

9/9t + V'«V then use of the chain r u l e implies that the analogue of 

Eq. (1-11) i s 
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^ f ( x , t ) = |^ f ( x ( z , t ) , t ) (2-21) 

->-

and hence d'/dt and 3/3z commute, not d/dt and 3/3z as in the Lagran
gian picture of f l u i d flow. 

From Eq. (2-21) follows the identity 

± 1 fvJ Sxf. A = d'V3 3xJ j 3x̂ _ = dyJ_ 3x^ 
d t a 1 d t a 1 . 1 d t a *• 3z 3z 3z 3z 

+ [ v V v , £+(V , £ - vS7V] (2-22) 
3 Z 1 

Substitution of Eq. (2-18) into Eq. (2-2 2) gives 

( V J = .L_ (_e- - g + % V 2 + V-(V'-V)) + TV js (2-23) 
d t Sz 1 3Z 1 P 3Z 1 

By defining B = - /. T d't and a = - / [-e- - - g + % V2+V«(V'-V)]d't 
0 O P 

(the integration i s carried out at constant z) and since d's/dt = 0 

from Eqs. (2-12), (2-2l) then Eq. (2-23) can be rewritten as 

^- 0^4 [V j + V ja + BV js]) = 0 (2-24) 
d t Sz 1 

The l a t t e r equation can be integrated by defining y^ = -V J(z,o) as 

V j = - V ja - BV js - Y
£ V j z £ (2-25) 

which i s just Eq. (2-9). From the d e f i n i t i o n of a,B and y given 

above 
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d t
a ~ e - - - g + h V 2 + V(V'-V) = 0 (2-26) 

d'B 
dt = - T (2-27) 

= 0 (2-28) 

By using the d e f i n i t i o n V' = V + — Vx(p |& —) and Eq. (2-25) i t 
p 9(0 (0 

immediately follows that Eqs. (2-26)-(2-28) are i d e n t i c a l with Eqs. 

(2-11), (2-13) and (2-14) r e s p e c t i v e l y . Hence the hydrodynamic 

equations are completely equivalent to the v a r i a t i o n a l equations. 

Note that since the representation f o r V i s unchanged, the "gauge" 
-y -y 

transformations of a,B,Y and z have the same form as given by Eq.(l-35). 
-y -y -y -y i-y n Furthermore since (o = Vx[- Va - BVs - y Vz ] i s c l e a r l y invariant 

under these transformations the Lagrangian given by Eq. (2-7) i s 

also i n v a r i a n t . As the reader may e a s i l y v e r i f y from Eq. (1-25) the 

conservation law which a r i s e s from the gauge invariance of L i s 

-|z- (pG(s,y,z)) + V.(pV'G(x,Y,z)) = 0 (2-30) 

which follows from Eqs. (2-10) ,(2-12), (2-14) and (2-15). Since (o 

i s also a Ga l i l e a n invariant the Lagrangian given by Eq. (2-7) i s 

invariant under the G a l i l e a n group. The conservation laws which 

a r i s e from G a l i l e a n invariance can be derived from Eq. (1-25) as 

|r- (pvS+V^pvV+Pe^+^- l^- [<o 2 <S i j -u )V]) = 0 (2-31) 

dt (0 0(0 
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4 - (% pV 2+pe+pg)+V-([% pV2+pe+pg+P]V+ £- |& ux[TVs+V'xu]) = 0 (2-32) 
d t 0) dO) 

f f E ^ V v ^ + V ^ e ^ V v V + e ^ V C p f i ^ ^ l & t ^ f i ^ V ] } ) ^ (2-33) 
d t (i) od) 

| - ( p v V p x ^ + V ^ p v V t - p x V + P t S 1 ^ -2- | & [ w ^ - w V l t ) = 0 (2-34) 
d t 0) oli) 

which represent the conservation of momentum, energy, angular momentum 
ii k 

and center-of-mass r e s p e c t i v e l y (e i s the permutation symbol). 

2-3 I n t e r p r e t a t i o n of the Equations of Motion 

The Lagrangian given by Eq. (2-7) d i f f e r s from that of Eq. (1-12) 

by the ad d i t i o n of a v o r t i c i t y dependent cont r i b u t i o n to the i n t e r n a l 

energy. This i s analogous to the theory of (KB) which describes the 

motion of s u p e r f l u i d helium with a f i n i t e density of su p e r f l u i d v o r t i c e s 

i n which the hydrodynamic v a r i a b l e s are averaged over a macroscopic 

region containing a large number of v o r t i c e s . In f a c t , i n Chapter 4 

a modification of the Lagrangian given by Eq. (2-7) w i l l be used to 

derive the equations of (KB). This suggests that a s i m i l a r i n t e r 

p r e t a t i o n can be made for the hydrodynamic equations given i n Sec. 

2-2, that they describe a f l u i d with a f i n i t e density of v o r t i c e s 
-v -»-

where the hydrodynamic v a r i a b l e s V ,p,s and z have been averaged over 

many v o r t i c e s . Once the form of the t o t a l energy of the f l u i d i s 

s p e c i f i e d , then the equations of motion follow from the standard 

technique i n hydrodynamics. Conservation laws for mass,momenturn, 

entropy and energy are assumed which give s i x equations i n f i v e 

variables.The r e s u l t i n g self-consistency conditions f i x the hydrodynamic 

equations;see Appendix B f o r d e t a i l s . 
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Since the turbulent flow of a f l u i d i s characterized by a d i s t r i 

bution of v o r t i c i t y i t i s worthwhile to examine the equations of 

mocion for turbulent solutions. By adopting Kolmogoroff's assump-
2 6 

t i o n that only the energy d i s s i p a t i o n e 0 (a constant with dimen

sions £ 2 t - 3 ) be used i n the i n e r t i a l subrange of turbulent flow then 

by dimensional analysis g(u>) = K'e 0ai K' = dimensionless constant. 

Provided a closure r e l a t i o n i s assumed for the two-point v o r t i c i t y 

c o r r e l a t i o n function of the form 

<ui(x+r) «u(x) (u>(x))~3> = K"<w(x+r) •w(x)>~^ (2-35) 

(K" = dimensionless constant) then the hydrodynamic equations of 

Sec. 2-2 provide a closed equation for the two-point v e l o c i t y c o r r e l a 

t i o n function, which can be solved as 

-v -s- 2/3 2 /3 2 /3 
<(V(x+r) - V(x)) 2> = 9/2(10K'K"/9) 1 z ' r ' (2-36) 

o 

Eq. (2-36) agrees with Kolmogoroffs p r e d i c t i o n f o r the i n e r t i a l 

subrange, provided Kolmogoroff's constant K(K-.5) i s given by 

K = 9/8(10K'K"/9)2/'3. Hence i t i s possible to model the i n e r t i a l sub

range of turbulent flow with the hydrodynamic equations of Sec. 2-2 

provided the form of g(w) i s given by dimensional a n a l y s i s as 

g = K'£ 0a> - 1 and the closure r e l a t i o n Eq. (2-35) i s assumed. Since 

t h i s subject i s p e r i p h e r a l to the main topic of t h i s thesis the. 

d e t a i l s of the foregoing discussion are relegated to Appendix C. 

The Beltrami d i f f u s i o n equation 
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d (»!) . i s i ^ + i ( ^x f l ) 1 (2-37) at p p p at 

which follows as an identity from the d e f i n i t i o n of d/dt, when com

bined with Eq. (2-18) i n the barotropic case P = P(p) yields an 

equation for the v o r t i c i t y 

c o i V J V,i ( 2._ 3 8 ) 

dt p p 

Eq. (2-38) can be integrated using Eq. (2-21) as 

o>l = «o 3(z,o) 8x1 ( 2 _ 3 9 ) 

P p ( z , o ) 8 z J 

i _̂  _̂  
which states that — i s transported with v e l o c i t y V not V as i n the 

Lagrangian picture of the f l u i d flow. Note that since V«(pV) = v*(pV) 

then d'p/dt = - pV»V' which can be integrated as p/p(z,o) = J 

= det *r , just as i n the Lagrangian picture of f l u i d flow. 
O A 

2-4 A Theory of Hydrodynamics with dz/dt 0, ds/dt = 0 and 

3p/3t + V*(pV) = 0. 

To simplify the search for a Lagrangian such that only the con

servation of p a r t i c l e l a b e l constraint i s altered, assume that the 

representation for V remains unchanged and that the new Lagrangian 

maintains the invariance under the gauge transformations given by 

Eq. (1-35). The only expressions which involve the Monge potentials 

a,3 and y and are invariant under the gauge transformations are 

3a/3t + B3s/3t + Y J3z J/9t and - Vex - BVs - Y
J V z J (see Ref. 16 for 
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a proof). To keep the conservation of mass and entropy equations 

unchanged, a d d i t i o n a l terms involving a and 8 cannot appear in the 

Lagrangian (since v a r i a t i o n of these Monge pot e n t i a l s j u s t y i e l d the 

conservation of mass and entropy equations). This means that the 

Monge po t e n t i a l s can appear i n any a d d i t i o n a l terms i n the Lagrangian 

only in the form u>*Vs = - Vs*(Vy x V z J ) . 

The representation for V i s unchanged, thus V may not appear i n 

any add i t i o n to the Lagrangian. Furthermore since 3/3t i s not invar

iant under G a l i l e a n boosts (see Sec. 1-6) no time d e r i v a t i v e s may 

appear (d/dt cannot be used since t h i s would involve V). Since 

z z = z - V(z,o)6t under time t r a n s l a t i o n (see Sec. 1-6) the v a r i a 

b l e z can appear only i n the term w*Vs. I t i s easy to see that Z'^s 

i s i nvariant under s p a t i a l t r a n s l a t i o n , time t r a n s l a t i o n , G a l i l e a n 

boosts, r o t a t i o n s and inversion of coordinates (w -»• -co) however under 

time inversion co -»• -co and thus co»Vs -*• - co*Vs. Hence to maintain the 

Ga l i l e a n invariance of the Lagrangian, any a d d i t i o n a l terms in the 

Lagrangian must have the form h(p,s,V*p,Vs, (co*Vs)2) , where h i s a 

d i f f e r e n t i a b l e scalar function of i t s arguments, and therefore are 

non-linear i n . 

In view of the preceeding disc u s s i o n consider the Lagrangian 

L" =%pV 2-pe(p,s)-h(p,s , (at-Vs) 2)-a{|f+^.(pV)}+pB ^ + p Y
j ^ (2-40) 

dt dt dt 

where for s i m p l i c i t y Vp and Vs have been eliminated from h apart from 

(<o*Vs)2 terms. The v a r i a t i o n a l equations of L" are 

6V: V = -Va-gVs-y-'vV (2-41) 
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<5a: •§£• + V.(pV) = 0 (2-42) a t 

. da ds , j dz J . i TTo P 3h n . o N 

6 p : dt P dt Y d t " * V " e " p " 9p" - ° t * " 4 2 0 

66: ff = 0 (2-44) 

6 s : M . _ T _ l | h _ 1 ^ 3 h j ^ . ^ l ^ j - ( 2_ 4 5 ) 

d t P 9(^-Vs) 

6zj : £*£ . _ 1 ]x^ 8.V (2-47) 
d t P 3(5-Vs) 

S u b s t i t u t i o n of Eqs. (2-43)-(2-47) into Eq.(l-17), which i s 

unchanged, and use of the vector i d e n t i t y ^x(BxC) = (A*C)B - (A«B)C* 

y i e l d s the conservation of momentum equation 

4 - (pV 1) + V ^ p v V + P e ^ - T 4 ) = 0 (2-48) d t 

where the symmetric stress tensor i s given by 

= ( h - p ^ ^ J f(w.Vs)6 i j - ( n V r t V s ) ] (2-49) 
3 p 8(w-Vs) 

Mu l t i p l y i n g Eq. (2-46) by 9x1/3z-' y i e l d s the equivalent form 

+ m 9x(z,t) _ 1 ^ 3h ] x ^ s ( 2 _ 5 Q ) 

8 t p stf-Vs) 

which states that v" + p"1 [ dh/8 (OJ*VS) ] xVs = V 1 i s the tangent to the 

p a r t i c l e paths, not V as i n the Lagrangian p i c t u r e of f l u i d flow. 
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Using the techniques developed i n Sec. 2-2 i t i s straightforward to 

show that a l l solutions of the hydrodynamic equations (2-42), (2-44), 

(2-46) and (2-48) are also solutions of the v a r i a t i o n a l equations of 

L". 

The conservation law associated with the gauge invariance of 

L" i s unchanged from Eq. (2-30). The conservation laws for the 

energy, angular momentum and center-of-mass are given r e s p e c t i v e l y 

by 
\ 

\ - (% pV2+pe+h)+Vj (V j [% pV 2+ Pe+h+P]+v , j(^Vs) ^ — ) = 0 (2-51) 
9 t 3(J.7s) 

| r ( e i j % x j v V A e i J V J v V + e l j V { P 6 M - T k £ } ) = 0 (2-52) 

| - ( p v H - p x ^ + V ^ p v V t - p x V + P t e ^ - T ^ t ) = 0 (2-53) 

which follow from Eq. (1-25). 

Just as i n Sec. 2-3, the hydrodynamic equations of L" may be 

interpreted as describing a f l u i d with a f i n i t e density of v o r t i c e s 

(see Appendix C for d e t a i l s ) . Note that both Eqs. (2-48) and (2-18) 

have stress tensors which depend on the v o r t i c i t y and thus describe 

non-Stokesian f l u i d s . In conclusion, the re l a x a t i o n of the conserva

t i o n of p a r t i c l e l a b e l c o n s t r a i n t i n a one-component f l u i d i s equiv

alent to v o r t i c i t y dependent contributions to the stress tensor and 

the energy of the f l u i d . The r o l e of the r e l a x a t i o n of the conserva

t i o n of p a r t i c l e l a b e l constraint for su p e r f l u i d helium w i l l be con

sidered i n Chapter 4, as a prelude to t h i s work Chapter 3 w i l l review 

27 
Z i l s e l ' s v a r i a t i o n a l p r i n c i p l e for the Landau two-fluid equations. 
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CHAPTER 3 

THE VARIATIONAL PRINCIPLE FOR THE LANDAU TWO-FLUID EQUATIONS 

3-1 Introduction 

The su p e r f l u i d i t y of He was f i r s t observed by Kapitza i n 

1938 who found that l i q u i d helium below T = 2.17°K could flow 
A 

through t h i n c a p i l l i a r y tubes with zero resistance. On the other 

hand experiments with rotating l i q u i d helium showed that the super-

f l u i d could not be interpreted as,a c l a s s i c a l one-component f l u i d 
2 9 

with zero v i s c o s i t y . These two observations led Landau to develop 

the two-fluid model of su p e r f l u i d i t y as consisting of the flow of 

two interpenetrating f l u i d s , the entropy carrying normal f l u i d 

with v e l o c i t y V n and the zero-entropy superfluid with v e l o c i t y V . 

The Landau two-fluid equations which Landau postulated to 

describe t h i s model consist of conservation laws for the mass, 

entropy and t o t a l momentum of the f l u i d and an equation of motion 

for the superfluid v e l o c i t y for a t o t a l of eight equations. The 

eight independent variables may be taken as p,s,V n and V^ where p 

and s are the t o t a l mass and entropy of the f l u i d per unit volume. 

I t has long been suggested that superfluidity i s a quantum phenomenon 

which occurs when an appreciable f r a c t i o n of the He1* atoms enter 

the groundstate i n a Bose condensation giving r i s e to long-range 
30 

order i n the phase of the wavefunction of the Bose condensate. 
->• 

In f a c t , once the independent variables p,s,Vn and V g and their 

Galilean transformation properties are specified then the Landau 

two-fluid equations follow without further recourse to the quantum 
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theory from Galilean invariance arguments and by requiring that the 

conservation of energy equation be redundant (otherwise when combined 

with the conservation laws for the mass, entropy and momentum and the 

equation for the superfluid t h i s would y i e l d nine equations i n eight 
31 

unknowns, see Putterman for a detailed derivation). 
A v a r i a t i o n a l p r i n c i p l e for the Landau two-fluid equations was 

27 

f i r s t given by Z i l s e l i n 1950. Although a l l solutions of Z i l s e l ' s 

v a r i a t i o n a l equations s a t i s f y the Landau two-fluid equations the 

converse result does not hold. Z i l s e l ' s representation for the 
-y -y -y normal v e l o c i t y V implies V x V =0 for ps / p = constant which J n r n ^n 

i s too r e s t r i c t i v e ( p i s the mass density of the normal f l u i d ) . 
n 

15 

Schultz and Sorkin have pointed out that t h i s d i f f i c u l t y may be 

eliminated by postulating a Lin's constraint for V n i n analogy with 

the v a r i a t i o n a l p r i n c i p l e for the adiabatic flow of a c l a s s i c a l one-

component f l u i d (see Chapter 1). In addition Z i l s e l ' s v a r i a t i o n a l 
32,33 

p r i n c i p l e has been c r i t i c i z e d on the grounds that x = P n / P ^ s 

treated as an independent variable i n contradiction with the Landau 

model. In spite of th i s i t can be shown that Z i l s e l ' s v a r i a t i o n a l 

p r i n c i p l e supplemented with Lin's constraint for V"n i s completely 

equivalent to the Landau two-fluid equations. The absence of a 

Lin's constraint for V g ensures that the superfluid remains i r r o t a -t i o n a l i . e . V x v =0. For a review of these points see the s 
a r t i c l e by Jackson. 

Sec. 3-2 reviews the Landau two-fluid equations ; the notation 
35 

w i l l follow London. The equivalence of Z i l s e l ' s v a r i a t i o n a l p r i n 

c i p l e supplemented with Lin's constraint for 1 and the Landau two-

f l u i d equations i s proven i n Sec. 3-3 while the symmetries and 
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conservation laws associated with Z i l s e l ' s Lagrangian are discussed 

i n Sec. 3-4. 

3-2 The Landau Two-Fluid Equations 

35 

From London the Landau two-fluid equations for sup e r f l u i d 

He 4 are given by 

| ^ + V - ( p V + p V ) = 0 (3-1) 3t n n s s 

d ( p s ) + V.( PsV ) = 0 (3-2) 
o t " 

d V s s + Vy = 0 , V x V = 0 (3-3) 

+ V j ( p v V + p v V + PS 1 3) = 0 (3-4) 

dt 

3(p V 1 + p V 1) K n n s s 

3t ' ' V K s ' s ' s ' K n ' n ' n 

d 
where = — + V « V . Eqs. (3-1), (3-2) and (3-4) represent the dt 9t Y 

conservation of mass, entropy and t o t a l momentum of the f l u i d respec

t i v e l y while Eq. (3-3) gives an equation of motion for the s u p e r f l u i d . 

The v a r i a b l e s p,s,V and V have been defined previously while 
n s 

P n and p g are the d e n s i t i e s of the normal and s u p e r f l u i d components 

r e s p e c t i v e l y and the t o t a l mass density i s given by p = p n + p g . The 

i n t e r n a l energy d i f f e r e n t i a l has the form 
de = Tds + ( P / p 2 ) d p + % (V -V ) 2 d X (3-5) 

n s 

where e ( p , s , x ) i s the s p e c i f i c i n t e r n a l energy, T i s the temperature, 

the pressure P = p(-e + Ts + % ( n̂

-

ŝ̂

 2X + and u i s the chemical 

po t e n t i a l . Note that Eq. (3-5) implies (3e/3x)p,s = % ( V - V J 2 and 

hence there e x i s t f u n c t i o n a l r e l a t i o n s h i p s of the form p n = P n(p,s, 
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(V -V ) 2 ) and p = p (p,s,(V -V ) 2 ) . The independent v a r i a b l e s of the 
XI S S S XI s 

Landau two-fluid equations may therefore be taken as the eight v a r i a -
->- ->• bles p,s,V and V . 
n s 

Following Z i l s e l the factor T i s defined as 

9p 3p 
^ + V . ( P T V ) = + v-(p v )] = r (3-1)' 
dt n n 3t s s 

Using Eq. (3-1)' i t follows that Eqs. (3-2) and (3-4) can be rewritten 

i n the convenient equivalent forms 

d ( s / x ) 
77 '--^-Z-r (3-2)' 
dt P X ^ 

d V p P 
- r 2 - 2 + - VP H sVT + V(V -V ) 2 + (V -V ) — =0 (3-4) ' 
dt p p 2p n s' n s' px 

Assume that there e x i s t s a Lin's constraint for the normal 

v e l o c i t y f i e l d of the form 

d z j ( x , t ) 
n =0 dt " " (3-6) 

M u l t i p l i c a t i o n of Eq. (3-6) by 3x 1/3z' ] y i e l d s the equivalent form 

v i = 3 x X ( z ? t ) ( 3 _ 7 ) 

n 9t 

where the function x = x(z,t) i s the inverse of z = z(x,t) and the 

i d e n t i t i e s given by Eqs. (1-8) s t i l l hold. Eq. (3-7) j u s t states 

that V n i s the tangent to the p a r t i c l e paths x = x ( z , t ) . For the 

c l a s s i c a l one-component f l u i d the p a r t i c l e paths x = x(z,t) were 

associated with the movement of small f l u i d elements. The Landau 

two-fluid model c o n s i s t s of two interpenetrating f l u i d s and i t i s 
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no longer c l e a r what phys i c a l i n t e r p r e t a t i o n the p a r t i c l e paths have; 

see Jackson f o r a discussion of t h i s point. In the absence of 

any further progress on t h i s matter, Eq. (3-6) should be viewed simply 

as an i n t e g r a b i l i t y condition on the normal v e l o c i t y f i e l d . 

Use of the chain r u l e and Eq. (3-7) y i e l d s 

^ f ( x , t ) = | ^ f ( x ( z , t ) , t ) (3-8) 

which implies that d ^ d t and 3/3z commute. Eqs. (3-1), (3-2), (3-3), 

(3-4)' and (3-6) w i l l be c o l l e c t i v e l y r e f e r r e d to the hydrodynamic 

equations, which are shown i n the following section to be equivalent 

to a v a r i a t i o n a l p r i n c i p l e . 

3-3 Z i l s e l ' s V a r i a t i o n a l P r i n c i p l e 

Z i l s e l ' s Lagrangian supplemented with a Lin's c o n s t r a i n t for 

v" i s given by 

L = p [ % (l-x)V 2. + % X V 2 ] - pe(p,s, X) - a{f£- + ^ . ( p ( l - x ) V s 

+ PXV )) - e { | ^ ^ - + v".(psV )} + p x Y J { f f ^ + V -VzJ} (3-9) n dt n dt n 

where the dependent v a r i a b l e s of L are p,s,V n,V s,x,z,a,3 and y a n d 

the independent v a r i a b l e s are ( x , t ) . The i n t e r n a l energy density 

e(p,s,x) i s defined by Eq. (3-5). A c t u a l l y i n Z i l s e l ' s procedure 

Eq. (3-5) i s not assumed; instead the v a r i a t i o n of x gives the equa

t i o n (8e/8x) = % (V -V ) 2 ; when Eq. (3-5) i s assumed i n i t i a l l y then 

p, s n s 
the v a r i a t i o n of x gives an i d e n t i t y . 

The v a r i a t i o n a l equations of L are given by 
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6a: ||+ V . ( p ( l - x ) V s + p XV n) = 0 (3-10) 

6g: + V.(psV n) = 0 (3-11) 

« V V g = - Va (3-12) 

6V n: V n = - Va - ̂  V~3 - y '̂vV (3-13) 

6p: % ( 1 - X ) V 2 + % xV 2-e- - + | f +((1- X)V + XV )-Va + s = 0 (3-14) s n p o c n s at 

6 s : dTT = T < 3- 1 5> 

6 X: - % pV 2 + % pV 2 + % p(V -V" ) 2 + p(V -V )-(Va) = 0 (3-16) S Tl Tl s n s 

dt 

6y: j t - = 0 (3-17) 

d Y 
6 z : i r = - p 7 Y ( 3 - 1 8 ) 

Eqs. (3-1), (3-2) and (3-6) are recovered as the v a r i a t i o n a l 

equations of a,3 and y r e s p e c t i v e l y . When Clebsch's lemma 

i s used Eq. (3-12) implies 

^ = - V ( | ^ + V Q 4a + % V 2 ) (3-19) dt dt s s 

Substitution of Eqs. (3-12), (3-15) into Eq. (3-14) y i e l d s 

If + + % V s " 6 + f ~ T s " *<V*s)2X 5 * ( 3" 2 0> 

which when combined with Eq. (3-19) gives the equation of motion of 
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the s u p e r f l u i d Eq. (3-3). The i r r o t a t i o n a l condition VxV g = 0 

follows from Eq. (3-12). 

Clebsch's lemma applied to Eq. (3-13) y i e l d s 

d V d a d d 6 d y j • d„z j 

dP " " '<3T + * V - dt - P < t - £ - ^ df" <3-21> 
Eq. (3-14) can be rewritten using Eqs. (3-12), (3-15) as 

d a 
J _ + % V 2 = e + - - T s + % (1- X)(V -V ) 2 (3-22) dt n p n s 

Substitution of Eqs. (3-22), (3-15), (3-17), (3-18) and (3-2)' 

(which follows from Eqs. (3-10) and (3-11)) into Eq. (3-21) gives 

d V 
n n _ . P _ . , x ,± ± . o . s 

d : _ V ( e + i - Ts + h ( l - x ) ( V n - V g ) 2 ) - | VT 

+ (f VB + y^z^) ^ - (3-23) 

Eqs. (3-12) and (3-13) and the i d e n t i t y 

I VP = V(e + - - Ts) + sVT - % (V -V )V X (3-24) P p n s 

shows that Eq. (3-23) i s j u s t Eq. (3-4)'. Hence a l l solutions of 

the v a r i a t i o n a l equations are also solutions of the hydrodynamic 

equations. 
-»-->- -*-The i r r o t a t i o n a l condition VxV = 0 implies that V can be s r s 

written as a gradient 

V g = - Va (3-25) 



Clebsch's lemma and Eq. (3-3) give 

d V d a d a 
T T ^ + ( 7 f - + ^ v i ) = (T|- + % V 2 - y) = 0 (3-26) dt dt s dt s 

or equivalently 

d a 
+ % V 2 - y = 0 dt ' '* 's 

(a function of time can be absorbed into a) which i s identical with 

Eq. (3-14) provided 3 = / Tdt (the integration is carried out at 
0 

constant z). 

From Eq. (3-6) follows the identity 

^ ((V j-V j) ^d) = ( ^ - ̂ L2) ̂ 4 + (V
k-Vk)(vJvk-vV) ̂ 4 (3-27) dt n s „ l dt dt „_i n s n s „_i 

Substitution of Eqs. (3-3) and (3-4)' into Eq. (3-27) gives 

i i ( ( V
j-V j) 4̂) = - f- V jT 4̂ + (V j-V j) -̂̂ 4 (3-28) 

d t n s 3 Z 1 X 3 Z 1 s n P X 3z X 

From the defin-ition of 3 given above and using Eq. (3-2)' then 

Eq. (3-28) can be rewritten as 

d . . j 
_E (* ( V 1 _ V J •+ JL V J S ) «L_) = o (3-29) dt s n s X . x 

3z 

which can be integrated as 

V" -V = - - V g - Y
J V z j (3-30) n s X 

where y = - (sx(z,o)/s(z,o)x)(V j(z,o)-V^(z,o)). Eqs. (3-25) and 
XI s 
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(3.30) are i d e n t i c a l with Eqs. (3-12) and (3-13) r e s p e c t i v e l y , 

furthermore i t i s easy to show that a, g and y defined above s a t i s f y 

Eqs. (3-14), (3-15) and (3-18) r e s p e c t i v e l y . Thus the v a r i a t i o n a l 

equations are completely equivalent to the hydrodynamic equations. 

3-4 Symmetries and Conservation Laws 

As pointed out i n Sec. 1-5 the Monge p o t e n t i a l s a, 8, y and z may 

be subjected to "gauge" transformations which do not change the value 

of V and which keep the v a r i a t i o n a l equations form i n v a r i a n t , leading 

to a conservation law v i a Noether's theorem. For the Landau two-fluid 

equations the requirement that V G be unchanged and that Eq. (3-12) be 

form i n v a r i a n t gives V6a = 0 or equivalently a a' = a + 6 a ( t ) . I f 

V N i s unchanged and Eq. (3-13) i s form i n v a r i a n t then the i n f i n i t e s i m a l 

transformations B -*- B ' =8 + 63, y3 -* Y ' J = Y J + 6y J and 

z-1 z'-1 = z J + 6z J must s a t i s f y 

V ( - 68 + y j 6 z j ) = 68V - - 6y jVz j + 6z jVy d = 0 (3-31) 

The form invariance of Eqs. (3-14)-(3-18) gives 

inr < 6 a ) = Sr ^ - d f ( 6 l ) - d f ( 6 ? > - 0 

(3-32) 

which have the solutions 

6a = ea , 68 = 68(s,y,z), 6y = 6y(s,Y,z), 6z = 6z(s,y,z) (3-33) 

Substitu t i o n of Eqs. (3-33) into Eqs. (3-31) implies that the 

i n f i n i t e s i m a l gauge transformations have the form 

68 = e 3(s/ X) 
3G 6y J = - e 9G (3-34) 
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where a = constant, e i s an i n f i n i t e s i m a l constant and G i s a 
o 

function of s /x , Y and z homogeneous of degree one i n s/x and y i . e . 

From Eq. (1-25) the conservation law associated with t h i s symmetry 

transformation i s 

(pa + pXG) + v".(pa V + pXV G) = 0 (3-36) 

By choosing G = 0 the conservation of mass equation i s recovered 

while the choice aQ = 0, G = s/x gives the conservation of entropy 

equation. 

The G a l i l e a n transformation properties of p, s, V , V and z are 

known ;however the transformation properties of a, 3 and y must be 

deduced by re q u i r i n g that the Lagrangian be i n v a r i a n t . 

(i ) Under the t r a n s l a t i o n of axes x -»• x = x + ox, z -> z = z + 6z 
-> -»• (p,s,x»V and V are unchanged). The Monge po t e n t i a l s a, 3 and y n s 

transform as 

6 a = e a o '
 6 e " e I(s7xT ' 6 r > = £ f l ( 3 _ 3 7 ) 

oZ 

where G = G(— , z) i s homogeneous of degree one i n s/x- Eqs. (3-37) 
X 

completely s p e c i f y the G a l i l e a n tranformation properties of a, 3 and y, 

From Eq. (1-25)the conservation law associated with t h i s symmetry i s 

j u s t the conservation of momentum equation (3-4). 
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( i i ) Under the time t r a n s l a t i o n t - » - t ' = t + 6t the i n i t i a l p o s i t i o n 

vector z z' = z - V(z,o)6t. Using the arguments developed i n ( i ) , 

the invariance of L implies y y'~* = y^ - y^ (SV 3 (z,o)/9z)6t apart from 

a gauge transformation given by Eqs. (3-37). The conservation of 

energy equation associated with t h i s symmetry follows from Eq. (1-25) 

as 

~ (% P V 2 + h p V 2 + pe) + V« (h p V 2V + h P V 2V + (pe + P)V dt n n s s n n n s s s 

+ psT(V -V) + % p (V -V ) 2 ( V -V)) n n n s n 

= 0 (3-38) 

( i i i ) Under the r o t a t i o n of axes x x' = x + 6Q x x, V -> V' + 66 x v , 
n n n ' 

V -> V' = V + 58 xV and z -> z' = z + 6 ^ x 1 . The invariance of L s s s s 
•> ->• 

gives y Y = Y + 68 x y apart from a gauge transformation given by 

Eqs. (3-37). The conservation of angular momentum equation associated 

with t h i s symmetry i s 

^ - ( e i j k x j t p + p V k ] ) + V £ ( e
i j k x j [ p V V k + p v V 3t n n s s s s s K n n n 

+ P6 ]) = 0 (3-39) 

(iv) Under the Gal i l e a n boost x •+ x' = x + 6V t , V -»• V' + 6V and 
o n n o 

-*• -»• -> . ->-V -»• V = V + 6V . The invariance of L gives a -> a = a-x*6V s s s o o 

apart from a gauge transformation given by Eqs. (3-37). The 

conservation of center-of-mass associated with t h i s symmetry i s 

( t [ p V * + p V*] - px 1) + V j ( t [ p V V + p V V ] + P t 6 i j 

dt n n s s n n n s s s 

- x-[p V j + p V j]) = 0 (3-40) n n s s 
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This completes the review of Herivel's v a r i a t i o n a l p r i n c i p l e for 

the Landau two-fluid equations. Chapter 4 w i l l extend t h i s v a r i a t i o n a l 

p r i n c i p l e to the two-fluid equations of rotating superfluid helium 

as formulated by Khalatnikov and Bekarevitch. 
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CHAPTER 4 

A VARIATIONAL PRINCIPLE FOR SUPERFLUID HELIUM WITH VORTICITY 

4-1 Introduction 

I t has been known for some time that su p e r f l u i d v o r t i c e s with 

c i r c u l a t i o n quantized i n u n i t s of (h/m) can e x i s t i n sup e r f l u i d 
3 6 » 3 7 

helium. The quantization of c i r c u l a t i o n i s connected with the 

multiple-valuedness of the phase of the wavefunction of the Bose 
38»39 + + 

condensate. The superfluid v o r t i c i t y V x V g s t i l l vanishes 

everywhere on a microscopic scale except i n the cores of v o r t i c e s ; 

however when V g i s averaged over a macroscopic region which contains 

a f i n i t e density of v o r t i c e s then V x V g ^ 0. If the averaging i s 

done over a region large compared to the separation between v o r t i c e s 

then the normal v e l o c i t y V^ and the superfluid v e l o c i t y V g w i l l be 

smoothly varying functions throughout the f l u i d . 
2 5 

Khalatnikov and Bekarevitch (KB) have derived the equations 

of motion for the l a t t e r case with a phenomenological approach by 

allowing the i n t e r n a l energy of the f l u i d to depend on the absolute 

value of the s i i p e r f l u i d v o r t i c i t y . The hydrodynamic equations are 
31 

then derived by the standard method from G a l i l e a n invariance 

requirements and by manipulating the redundant conservation of 

energy equation. In t h i s procedure a number of phenomenological 

c o e f f i c i e n t s appear which can be derived from a d e t a i l e d vortex 

model. H a l l has examined the same problem by using a microscopic 

model of e x c i t a t i o n s i n t e r a c t i n g with v o r t i c e s ; the two-fluid 

equations he derives agree with KB. For a short review of t h i s 
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subject see the a r t i c l e by Chester. 
9 hi 

L i n and more re c e n t l y L h u i l l i e r , Francois and Karatchentzeff 

(LFK) have given v a r i a t i o n a l p r i n c i p l e s incorporating a generalized 

Lin's constraint to describe the Landau two-fluid equations with 

microscopic superfluid v o r t i c i t y , i n d i s t i n c t i o n from the two-fluid 

equations of KB where only the macroscopic superfluid v o r t i c i t y i s 

non-vanishing. The purpose of Chapter 4 i s to f i n d an extension of 

Z i l s e l ' s v a r i a t i o n a l p r i n c i p l e which i s equivalent to the two-fluid 

equations of KB with zero entropy production. The hydrodynamic 

equations are summarized i n Sec. 4-2 and a Lagrangian for these 

equations i s given in Sec. 4-3. I t i s found necessary to use two 

constraint equations, one constraint f o r V and as shown i n Sec. 4-4, 

the other c o n s t r a i n t giving the superfluid vortex equations of motion. 

A d i s c u s s i o n of the symmetries and conservation laws i s given i n 

Sec. 4-5. 

4-2 The Hydrodynamic Equations 

Following KB the fundamental assumption i s that the i n t e r n a l 

energy d i f f e r e n t i a l has the form 

de = Tds + ( P / p 2 ) d p + % (V -V ) 2 d x + ( A / p ) d c o (4-1) 
n s 

where e i s the s p e c i f i c i n t e r n a l energy, T i s the temperature, s i s 

the s p e c i f i c entropy, the pressure P = p(-e + Ts + % (V -V ) 2
x + u), 

Tl S 
X = (p / p ) where p i s the normal f l u i d density, u i s the chemical n n 

p o t e n t i a l , X i s a phenomenological c o e f f i c e n t and u> = |eo| where 

to = v x v . To make the notation agree with Z i l s e l the s p e c i f i c 

i n t e r n a l energy e d i f f e r s from that of KB (denoted ( e / p ) ) by (z/p)-e 
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= % (V -V )x» The meaning of P and y i s unchanged. From Eq. (4-1) 
XI s 

and the d e f i n i t i o n of P follows the useful i d e n t i t y 

% = I VP - sVT - 4 V(V -V ) 2 + - Vto (4-1)' p 2 n s p 

From KB the hydrodynamic equations with zero entropy production 

are 

+ V(p V +p V ) = 0 (4-2) 9t s s n n 

| ^ - + V.(psV ) = 0 (4-3) 91 n 

d V 
~r———• + Vy = (6 *- — ) w x (Vx(Xv)) - B'p a x(V -V ) (4-4) dt p s n s s 

9(p V ^ p V 1) . . . . . .. . . , . 
- — 5 S n n + V J(p v V + p v V + P S 1 3 + Xo)61J -Xu)V/u>) = 0 (4-5) 
9t s s s n n n 

where = 1,2,3 (sum repeated i n d i c e s ) , v = (D/U, ^ = — + V^*V 

and the su p e r f l u i d density p g = p - P r . Following Z i l s e l the factor 

T i s defined as 

— ^ + ^ . ( p n v ) = - ( ^ + V-(p V ) ) = r (4-2)' dt n n dt s s 

Using Eq. (4-2)* i f follows that Eqs. (4-3) and (4-5) can be 

rewritten r e s p e c t i v e l y as 

d (s/x) 
n (4-3)' dt PX' 
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iZlL + I fa + -2. SV"T + ̂  V(V -V ) 2 + (V -V ) ̂ -dt p P n 2p n s n s px 

8' p 
- v"o» + w x (V -V - — V x(Xv)) (4-5) ' p p n s p n 

The phenomenological c o e f f i c i e n t s A,8' have been computed by KB from a 

vortex model as 

B' p 
8' = T - ^ , A = J p i n (J) (4-6) zpp m s a s 

where B' = constant, m i s the mass of a He1* atom and — i s the r a t i o 
a 

of the distance between v o r t i c e s to the e f f e c t i v e radius of a vortex. 

4-3 The Lagrangian 
Consider the Lagrangian L = L[p,s,x,V ,V ,a,8 ,y 3 > z ^»Y 3> z^1 given 

XI s 

by 

L = p[%(l-x)v2+%XV2
i]-pe(p,s,x,v9JxVi:i)-a{|£- + v"-(p(l- X)V +PxV n) 

- p { | i P S l + v . ( p s ^ ) + P X y J { | f + V d t n d t n 

+ P Y J { f r " + I(1-X)V + X V „ ] ' V £ j (4-7) 
o L s n 

where the representation for e i s given by 

de = Tds + (P/p 2)dp + %(V -V ) 2 d X + (A/p)d|Vyjxv'z:i | (4-8) 
n s 

From Eq. (4-8) i t i s easy to derive the following u s e f u l v a r i a t i o n a l 

d e r i v a t i v e s 
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6(pe) -*-~i.,->~k -v^k,., 
1 — = -[V*(XVy XVZ / IVy xVz j )]-Vy J ( 4 - 9 ) 

6z J 

— ^ = [Vx(AVy xVz /|Vy xVz |)]«VzJ ( 4 - 1 0 ) 
6y3 

The v a r i a t i o n a l equations of L are 

6a: |£ + v " . ( p ( l - x ) ^ s + P X ^ ) = 0 ( 4 - 1 1 ) 

6 3 : + v".(ps^n) = 0 ( 4 - 1 2 ) 

6 ^ s : ^ s = " Va - 9JVzj
 ( 4 - 1 3 ) 

6^n: V~n = - Va - f Vg - y JVz j - y % j ( 4 - 1 4 ) 

6p: % ( l - X ) V | + % xV2-e- ^ + |^+ ( ( l - x ) ^ + X \ ) -Va+s ^ 

+ Y j { | r - + I(l-x)^ + X^]- V z j >= 0 ( 4 - 1 5 ) 

6s: ^ - = T ( 4 - 1 6 ) 

6 x : -%pV2+%pV2-%p (̂  )2+ p(^ J . ^ + ^ V z ^ ) = 0 ( 4 - 1 7 ) 

. d z j 

6y J: ^ — = 0 ( 4 - 1 8 ) 

d J 

i n 1 r i 
6 z : d t p ^ <4-19) 

6y J: + t(l - X ) v " + XV~ 1-v"^ = - - IV~x(Av) ] .Vz j ( 4 - 2 0 ) 

o L s n - . p 
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<5zj: | l i + I ( l - X ) V s + x \ ] ' V Y J = ̂  [v"x (Xv) ]-V^ (4-21) 

Eqs. (4-2) and (4-3) are recovered as Eqs. (4-11) and (4-12) 

while Eqs. (4-13) and (4-8) give Eq. (4-1). When use i s made of 

Clebsch's lemma 

| | = _ $(dt + w 2 / 2 ) - |f vV* - ^ |f (4-22) 

where — = h w*V and w = -Vii - n v£ (a=l,...,m) and the vector 
dt 9 1 

i d e n t i t y Ax(BxC) = (A-C)B - (A'B)C then Eqs. (4-11) - (4-21) imply 

a f t e r a lengthy but straightforward c a l c u l a t i o n 

d V 
+ $ = _ 1 ^x(Vx(Xv)) - Xwx(V -V ) (4-23) dt p n s 

dt p p 2p n s px n 

+ - - wx(Vx(Xv))+(l-x)wx(V -v" ) (4-24) p p n s 

which are Eqs. (4-4) and (4-5)' with B'=2. Note that due to the 

(X/ P)dw terms i n de the exact form of Eq. (4-20) i s c r u c i a l to the 

gauge invariance of Eqs. (4-23) and (4-24) ( i . e . that the po t e n t i a l s 

a and c a n be eliminated from Eqs. (4-23) and (4-24)). Hence the 

v a r i a t i o n a l p r i n c i p l e i s confined to the case B'=2. 

The preceeding arguments have shown that a l l solutions of Eqs. 

(4-8) - (4-21) are solutions of Eqs. (4-1) - (4-6) with B'=2. The 

converse statement can be proven using a ge n e r a l i z a t i o n of Weber's 
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transformation of a c l a s s i c a l one component f l u i d provided Eqs. 

(4-18) and (4-20) are adopted at the outset and i t i s assumed that 

z 1 = z ^ x . t ) and z 1 - z i(x,t) ( z 1 and z 1 denote the values of the 

functions z^(x,t) and z 1(x,t) respectively) possess d i f f e r e n t i a b l e 

inverses x 1 ( z , t ) and x 1 ( z , t ) r e s p e c t i v e l y (indices are omitted 

unless necessary). This means that x 1 ( z , (x, t) , t) = x 1, x ^ z t e , t) ,t) 

= x 1, z 1 ( x ( z , t ) , t ) = z 1 and z 1 ( x ( z , t ) , t ) = z 1 (the x 1 are the 

coordinates, x 1 ( z , t ) and x 1 ( z , t ) are f u n c t i o n s ) . The chain r u l e 

implies the r e l a t i o n s 

9x X 9 z l = 9x1 $SL- i s l i i ^ - <>2!L- l i l - * i k 

9z j 9x k 9Z 1 9xj 9Z 1 9xj 9z j 9x k 
= & (4-25) 

where the p a r t i a l d e r i v a t i v e s have the meaning 9x 1/9z : ] = 9x X(z, t ) / 9 z J , 

9z j/9x k = 9 z j ( x , t ) / 9 x k , d^/dz1 = 9x j (z, t ) / 9 z \ 9z k/9x j = 9z k(x, t)/9x j. 

Def ine 

V L = (1-x)V g + X V n + j vx(Xv) (4-26) 

d L d n 
then by using the chain r u l e the d e r i v a t i v e s -r— and — have the 

at dt 
meaning 

d L 9 d n 3 
dt f ( x > t ) = JE f ( x ( z , t ) , t ) , g(x,t) = g ( x ( z , t ) , t ) (4-27) 

d L 9 d n 9 Eqs. (4-27) implies that — and r commute as do — and r . By dt l dt l 
i i i i 3 z 8 z 

s e t t i n g f = x and g = x Eqs. (4-27) imply 

\ d T x 1 

i = 9x (z,t) = _L_ 
L 9t dt K ' 
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i , . d x 1 

v ± _ 3x (z,t) _ _n 
n 3t dt 

(4-29) 

which states that V.f and are the tangents to the particle paths 
J_J n 

x"*"(z,t) and x^(z,t) respectively. 

Eq. (4-28) implies the identity 

^ ( V J i £ ) = (^|Is + IJ x ( t 4 ) ] j ) + (V 2/2+V -(V -V )) (4-30) 
dt s ~j dt L s ~J ~ i s s L s 

3z J " 3z J 3z 

Substituting Eq. (4-23) into Eq. (4-30) yields 

^ { ^ - (V j + V j [ / (y-V 2/2-V . ( V - V ))dt])} = 0 (4-31) d t „ ~ i s 0 s s L s 

d Z 

where the integration is carried out at constant z 1 . Eq. (4-31) can 

be integrated as 

V J = -yJ[ / ( y - V 2/2-V - (V T -V ) ) d ^ ] + V 1 ( z , o ) V j z 1 = - V ^ a - y V z 1 (4-32) 
s 0 S S L s s 

where a = / (y-V 2 / 2 - V ' ( V - V ))dt and y 1 = - V ± ( z , o ) . It i s easy to 0 s s L s s 

verify that V s , a and y 1 satisfy Eqs. (4-13), (4-15) and (4-21) 

respectively. 

Eq. (4-29) implies the identity 

v j _ v j ) 2*1) = ( V
k - V k ) ( V j V k-vV) 4̂ (4-33) 

d t v v n s' „ r v dt dt „_ i n s n s' „ _ i 
3z 3z 3z 

Substituting Eq. (4-25) into Eq. (4-33) gives 

^ • { ^ ^ 4 ( V j - V j + - V j B ) } = 0 (4-34) 
dt s i n s x 

d Z 
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t i 
where B = / Tdt (the integ r a t i o n i s c a r r i e d out at constant z ). 

0 
Eq. (4-34) can be integrated as 

V n ~ V l = - 7 v 3 g 4 l Ifcnl ( v \ z , o ) - V ^ ( z , o ) ) V j z 1 = - f- V j B-y V z 1 (4-35) n s A X s(.z,o) n s X 

where y 1 = -(s X(z,o)/xs(z,o))(V^(z,o)-V^(z,o)). I t i s easy to v e r i f y 

that V n,6 and y s a t i s f y Eqs. (4-14), (4-16) and (4-19) r e s p e c t i v e l y . 

This proves that Eqs. (4-1) - (4-6) with B'=2 and Eqs. (4-18) 

and (4-20) are completely equivalent to the v a r i a t i o n a l equations 

of L. Since Eqs. (4-18) and (4-20) are added to the hydrodynamic 

equations s u i t a b l e physical i n t e r p r e t a t i o n s must be given these 

equations. Just as i n c l a s s i c a l one-component hydrodynamics Eq. 

(4-18) may be viewed as an i n t e g r a b i l i t y constraint on the normal 

v e l o c i t y f i e l d . In Sec. 4-3 Eq. (4-20) i s interpreted as the st a t e 

ment that the superfluid v o r t i c e s , averaged over many v o r t i c e s , 
->-

move with v e l o c i t y V . 

By following L i n or LFK and using only Eq. (4-20) as a con

s t r a i n t an i n t e r e s t i n g problem develops. The Lagrangian and v a r i a 

t i o n a l equations f o r t h i s case are obtained j u s t by dropping the 

terms involving y and z . The equation for V o remains unchanged 

but the equation f o r V becomes 
n 

V ^ s - " f ^ ( 4 " 3 6 > 

M u l t i p l y i n g Eqs. (35) and (36) by — and taking the c u r l gives 

r e s p e c t i v e l y 

[Ui (V - V^J^^VzVV 3 d—-{^r (v"(z,o)-Vm(z,o))} (4-37) n s 3 z p s(z,o) n 
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[V x (V n - V ^ } ] 1 = 0 (4-38) 

i i k 

where e i s the Levi-Civita symbol. A necessary condition that 

Eq. (4-37) agree with Eq. (4-28) for a l l values of z m is 
£Jlmp {U^2l ( vm ( z > o ) _ ^(z.o))} = 0 (4-39) 

3 zP s(z,o; n s 

or (x(z,o)/s(z,o)) (V^z.o) - V^z.o)) = 3 ^ ( z ) / 8 z m . But the 3 which 
n s 

appears in Eq. (35) may be subjected to a gauge transformation 

3 -*• 3 ' = 3 + ^(z) (which does not alter Eq. (4-16)) which just cancels 

the Y^V^Z 1 terms. Hence Eq. (4-39) i s a necessary and sufficient 

condition that Eq. (4-35) reduce to Eq. (4-36). Note that the 

preceeding arguments did not depend on the presence of the X terms. 

Thus a necessary and sufficient condition that the variational 

principle given by Eq. (4-7) be equivalent to the hydrodynamic 

equations i s that either constraint Eqs. (4-18) and (4-20) are used 

with V x {(v - V )x/s> arbitrary or only Eq. (4-20) is used with the 
XX s 

i n i t i a l constraint V x {(V - V )x/s) = 0. Note that this i s the proof 
n s 

of a claim made by LFK for pure V g vortices. Since KB do not assume 
7 x{(v - V* )x/s} = 0 both Eqs. (4-18) and (4-20) are needed. 

n s 

4-4 Interpretation of z(x,t), V and the restriction B' = 2 

Taking the curl of Eq. (4-23) yields an equation for the 

superfluid vort i c i t y 
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which can be integrated using Eq. (4-28) as 

" I = ̂ j( z>°) *2L. (4_ 4 1) p p(z,o) 3 z J 

Eq. (4-41) j u s t states that w/p i s fixed r e l a t i v e to a set of 

coordinate axes composed of the same p a r t i c l e s x(z,t) for a l l t or 

equivalently that to/p i s transported with v e l o c i t y V T. Since the 

macroscopic v o r t i c i t y to was assumed to arise as a result of averaging 

over many superfluid vortices i n some small volume t h i s means i t i s 

consistent to interpret x(z,t) as a mean vortex path. Hence z(x,t) 

would be the i n i t i a l position of a mean vortex with position x at 

time t. Eq. (4-28) then states that the mean superfluid vortices 

move with v e l o c i t y V T. Apart from the A terms t h i s corresponds to 
±4 

the pure V g vortices of LFK. 

Note that the v a r i a t i o n a l p r i n c i p l e given by Eq. (4-7) i s 

confined to the case B' = 2. I f B' Is ar b i t r a r y then taking the c u r l 

of Eq. (4-4) implies that the ve l o c i t y of the vortices i s given by 
V , ' - 7 ( P V + P V ) + (B' - 2)V - (B' - 2)V + 
L p s s n n 2 p n 2 p s 

B'p 
( 7 - - - ~ ) ^ x ^ < 4 " 4 2 > 

P s 2 p P s 

Since the A terms arise solely as a result of the averaging procedure 

the usual Landau two-fluid equations must be regained i n the l i m i t 

A 0. Hence the condition B' = 2 i s necessary and s u f f i c i e n t for the 

superfluid vortices to t r a v e l with the mass f l u x v e l o c i t y f = - (p f +p V ) 
p s s s s 

On the other hand the work of LFK shows that the l a t t e r condition 

Is equivalent to the requirement that superfluid vortices be regarded 

as s i n g u l a r i t i e s i n the superfluid v e l o c i t y V^.Thus the physical 

interpretation of the mathematically necessary r e s t r i c t i o n B' = 2 i s 
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that the superfluid vortices (before the averaging i s carried out ) 

be regarded as s i n g u l a r i t i e s i n the superfluid v e l o c i t y V . Note that 

t h i s view of superfluid vortices i s consistent with Eq. (B-6). 
k3 

A direct measurement of B' has been made by Snyder (1963) and 
tk 

Snyder and Linekin (1966) by observing the mode s p l i t t i n g i n a 
rotating second-sound resonator.They found that B' was approximately 

9 

zero and s l i g h t l y temperature dependent. L i n (1963) has c r i t i z e d 

t h i s experiment on the grounds that secondary motion along the axis 

of rotation may occur. From Eq. (4-42),B' = 0 implies that superfluid 

vortices t r a v e l with v e l o c i t y V (apart from the X terms ). LFK show 
s 

that t h i s corresponds to superfluid vortices being regarded as 
- > - - » • -»•-»• combinations of s i n g u l a r i t i e s i n V"s and A = ( x/s) ( v

n
-^ s)» which i s 

not consistent with Eq. (B-6). Hence there appears to be a contradiction 

between the experimental results of Snyder and Linekin and Eq. (4-1) 

of the KB equations. For further discussion of the experimental results 

and the case B' = 0 see Appendix D. 

4-5 Symmetries and Conservation Laws 

Just as i n Sec. 3-3 there are certain gauge transformations of 

the Monge potentials a, 6, z*, Y * and z^ which do not change the 

values of V q or V G and which keep the v a r i a t i o n a l equations form 
->- -> 

invariant. The requirement that V N and V G be unchanged and that 

Eqs. (4-13) and (4-14) be form invariant under the i n f i n i t e s i m a l 

gauge transformations gives 
V(6a + Y ^ Z J ) = -Syiyz-i + 6z Jv" Y

J (4-43) 

V(63 - + ' Y
j6z j) = 63V (-) - 6 Y

jVz j + 6 z j V Y
j (4-44) 

X X 
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The form invariance of Eqs. (4-15)-(4-21) gives 

£ (6a) = £ (6Y J) = £ (62 3) = 0 (4-45) 

dn d n ->- d n -> 

(66) = (6 Y) = (6z) = 0 (4-46) 

which have the solutions 

6a = 6a(y,z), 6y 3 = 6Y 3(Y,Z), 6z 3 = 6£3(y,z) (4-47) 

66 = 66(s /x,Yz), 6y = 6Y(S/X,Y» z), 6Z = 6Z(S/ X,Y,Z) (4-48) 

Substitution of Eqs. (4-47) and (4-48) into Eqs. (4-43) and (4-44) 
give 

(e ^-r + 6 f j ) v z j + - 6Z3)V"Y3 = 0 
9z 3 99 J 

(e T T T T - 66)Vs + ( e + 6 Y
3 ) V z 3 + (E - 6Z 3)VY 3 = 0 (4-49) 

9 ( S / X ) 9z 3 9 Y
3 

where EG(Y,Z) = 5a + y2&z2 and EH(S/X,Y,Z) E (S/X)66 + Y 36Z 3. Eqs. 

(4-49) imply that the i n f i n i t e s i m a l gauge transformations have the 

form 

6a = EG + EY 3 , 6 y
j = - e , 6z 3 = E (4-50) 

9y 3 9Z 1 9y 3 

66 = E , 6y 3 = — E ~ ~ r > 6z 3 = e % (4-51) 
3(f) 9z 3 9YJ 

A 

where G = G(y.z) i s an arbitrary function of y2 and z 3 and H = H(—,y,z) 
X 

s - i 
i s homogeneous of degree one i n — and y . From Eq. (1-25) the 

X 
conservation laws which arise from these symmetries are 

(pG) + V-(pGVL) = 0 (4-52) 
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~ (p XH) + V-(p XH V n) = 0 (4-53) 

Under the Gal i l e a n transformations the transformation properties 
-> -> i i of p, s, Xi V , V , z and z are known while the transformation n s 

properties of a, 3, y 1 and yX are deduced by re q u i r i n g that the 

Lagrangian remain i n v a r i a n t . 

( i ) Under the t r a n s l a t i o n of axes x ->• x' = x + 6x and z 1 -»• z' 1 

= z 1 + Sx1* z 1 -> z' 1 = z 1 + fix1. In t h i s case the gauge transformation 
— s 

i s given by G = G(z) and H = H(— , z ) . The conservation of momentum 
X 

equation (4-5) follows from Eq. (1-25). 

( i i ) Under the time t r a n s l a t i o n t t' = t + 6t and z 1 -* z' 1 = z1 

- V 1 ( z , o ) 6 t , z 1 z' 1 = z 1 - V 1(z,o)At. The Monge po t e n t i a l s y1 and n L 
y 1 transform as 

^ + y = Y + Y J(8V J(z,o)/3z )St 

and 

Y 1 Y ' 1 = Y 1 + Y J O V j ( z , o ) / 9 z 1 ) 6 t 

g 
apart from a guage transformation of the type G = G(z) and H = H(— , z ) . 

X 

From Eq. (1-25) the conservation of energy equation i s 

-r- P v +h P V 2 + pe) + V-(h P V 2V +h P V 2V + (pe + P)V 9t n n s s K n n n s s s 

+ psT(V -V) + h P (V -V ) 2 ( V - V) + X - x (V_ x to)) n n n s n co L 

= 0 (4-54) 

• + - y - y - y - y - y - y ( i i i ) Under the r o t a t i o n of axes x ->• x = x + 66 x x and V -»• V = ^ ' n n 
V + 66 x V , V -»- V = V + 66 x V , z -v z' = z + 66 x z, n n s s s s' 
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f + z' = z + 6$ x ?. The Monge potentials transform as y Y = Y' + 

6^ x y and y y' = y + <5̂  x y apart from a gauge transformation of 

the type G = G(z) and H = H(—, z ) . From Eq. (1-25) the conservation 
X 

of angular momentum equation i s 

£ ( e i j k
P x J V k ) + V ^ e 1 ^ * 3 [p V V + p v V + P 6 U 

3t n n n s s s 

+ X a ) 6 k £ - AwVVu)]) = 0 (4-55) 

(iv) Under the Galilean boost x -»• x' = x + 6 V t and V -> V' = V" + 6V , 
o n n n o 

V -> V' = V + 6 V . The Monge potential a a ' = a - x*6V apart from 
s s S 0 0 

g a gauge transformation of the type G = G(z) and H = H(— , z ) . From 
X 

(1-25) the conservation of center-of-mass equation i s 

(pvS-px1) + Vd([p vV+p v V + A6o 1 J - AuV/aiJt 
du n n n s s s 

- p x V ) = 0 (4-56) 

In conclusion, the relaxation of the conservation of p a r t i c l e 

l a b e l constraint i n two-fluid hydrodynamics gives r i s e to superfluid 

v o r t i c i t y dependent contributions to the in t e r n a l energy. The hydro-

dynamic equations describe superfluid helium with a f i n i t e density 

of superfluid vortices where a l l hydrodynamic variables are averaged 

over many superfluid vortices. 
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CHAPTER 5 

LIN'S CONSTRAINT GENERALIZED TO INCLUDE HIGHER ORDER DERIVATIVES 

5-1 An Extension of the Results of Chapter 2 

The v a r i a t i o n a l p r i n c i p l e given i n Chapter 2, which depends on 

derivatives no higher than f i r s t order, can ea s i l y be extended to 

arbitrary order derivatives. The fundamental assumption i s that the 

i n t e r n a l energy of the f l u i d contains an additional contribution 

pgCco^V^co^jV^k* " "a)*) which depends on the v o r t i c i t y and gradients of the 

v o r t i c i t y . Just as i n Chapter 2, this theory may be interpreted as 

describing a f l u i d with a f i n i t e density of vortices where the hydro-
-y -y 

dynamic variables V, p , s, and z have been averaged over a region 

containing many vortices. The additional V ' V terms arise from 

considering interactions between neighboring vortices. 

The Lagrangian for this case i s given by 
L = h PV2 - pe(p,s) - p g C c / . v V . V ^ ' - ' c o 1 ) - »{|^+ V-(pV)} 

+ <* f + ^ # «"» 
The dependent variables are {V,p,s,z,a,3,y} and co = -V$ x Vs - Vy 3 x v"zJ 

-y 

(only after the v a r i a t i o n of V i s carried out can the i d e n t i f i c a t i o n 
-y -y -y 

OJ = V x v be made). The v a r i a t i o n a l derivatives of pg with respect to 
-y -y 

3, s, y and z are straightforward to compute: 
(-pg) = vs-V x [± ( p g ) ] , A (_pg) = 43.^ x [5 ( p g ) ] ( 5_2) 

O P oo) o s 6o) 
->-

with si m i l a r expressions for Y a n d z. 
The v a r i a t i o n a l equations of L are given by 
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6V: V = -Va - 3Vs - y JVz J (5-3) 

6a: I 6 - + V-(pV) = 0 (5-4) 

„ da , 0 ds , j dz-1 . i „? P n /-c o 6p: — + 3 — + Y J — + Js V 2 - e - - - g = 0 (5-5) 

63: p | = -^s-V x [A (pg)] (5-6) 

6s: - -V3-^ x [A (pg)] - PT (5-7) dt Soa 

6 Y
j: p ̂ ^vV-v" x [A (pg)] (5-8) 

d t 6a> 

6 z j : p = - V * ^ * [4: (P8) ] (5"9> a c 6a) 

Clebsch's lemma yields the identity 

| - - * (f + '̂2> - f *• " ft - ^ " A £ (5-10) 

Substitution of Eqs. (5-3)-(5-9) into Eq. (5-10) gives 

p • — + V 1? = -pvS + V3-V x [A ( p g ) ] V i s 
d t 5oo 

- vs-̂  x [A (pg)]vi3 + vVv x [A ( P g)]vV 
6co 6o) 

- vV-V x [A (pg)]V iy j (5-11) 
00) 

By using the vector identity A x (B x C) = (A»C)B - (A«B)C Eq. (5-11) 

becomes 

P + VP = -Vg + V x [A (pg) ] x w (5-12) 
a t 6a) 

or equivalently 

p — - + V j(P6 i j + T l j) = 0 (5-13) 
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Th e symmetric stress tensor i s given by 

T i j = 6 ( p g ) _ J « ( p g ) + V V 3 ( p g ) 

6o> 6o> 3VJo) 

+ 2V 1 V (pg) - V* [ V 1 ^ — i — (pg)] + ... (5-14) 

Multiplication of Eq. (5-8) by 9z-,/3x'L yields the equivalent form 

v = l*£tl_^x f 6 ( p g ) ] ( 5 _ 1 5 ) 

which states that V' = V + ^- v" x [ — ( p g ) ] ±s the tangent to the 
P So) 

particle paths x = x(z,t). The equivalence of the hydrodynamic 

equations (5-4), (5-6) and (5-12) with the variational equations 

(5-3)-(5-9) follows from a straightforward extension of Weber's 

transformation as developed in Sec. 2-2. In addition the conservation 

law associated with the gauge invariance of L is unchanged from 

Eq. (2-30). 

5-2 A Negative Result for Viscous Fluids 

The variational principle given in Chapter 2 adds terms to the 

momentum equation which depend on second derivatives of the velocity. 

A natural question arises: Can the velocity terms p - 1 v " x v" x v which 

occur in the momentum equation for incompressible, viscous fluids be 

derived solely from a generalized Lin's constraint of the type given in 

Chapter 2? Note that there is no chance of obtaining the compressible 

terms p _ IV(V*V) since these terms involve a which would alter the 

conservation of mass equation. 

The variational principle of Chapter 2 uses the fact that the Lin's 

constraint may be generalized from dz-'/dt = 0 to dz J/dt = p - 1 (VXA) • V^z3 
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without a f f e c t i n g the conservation of mass equation and without 

destroying the gauge invariance of the momentum equation. Consider the 

Lagrangian 

L = h PV 2 - pe(p.s) - a {||- + V-(pV)} + p3 { % + ^ x l 4 } 
ot dt p 

+ py j {^r~ + - v" x A • Vz 3} ( 5 - 1 6 ) ' dt p 

->• -+ ->-
where A = A ( V z ) . The v a r i a t i o n a l equations are 

( 5 - 1 7 ) 

( 5 - 1 8 ) 

6V: V = -Va - 3Vs - y j ; 

6a: ^ ( p V ) = 0 

5 p : dz 3 

dt 

63: p £ . jBj x 
at 

->-
A 

6s: p £ = jfe-S x -»• 

A -

6y 3: dz 3 $ i ± p d t = -Vz 3-V 
'-»• 

x A 

6z 3: dy 3 A i A 
p dir = ~V y v 

->-
x A 

e - J = 0 ( 5 - 1 9 ) P 

( 5 - 2 0 ) 

( 5 - 2 1 ) 

( 5 - 2 2 ) 

( 5 - 2 3 ) 
6z 3 

Clebsch's lemma combined with the vector i d e n t i t y A x (B x C) = 

(A*C)B - (A*B)C y i e l d s the momentum equation 

d t ~ + ^" v ± p = T t (^ x A ) x (V x ft]* + (t-V" x ( 5 - 2 4 ) 

dx oz 

By expanding the v a r i a t i o n a l d e r i v a t i v e f o r z 3 Eq. ( 5 - 2 4 ) can be 

written as 
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iz l + 1 vS - - 1 
dt p p 

,kmn 3A dz 3 

3vV Sx 1 

3A* 

3vV 
3z J 

Bx 1 

r V V + - [(VxA) x ( V x v ) ] 1 (5-25) 
P 

A necessary condition to obtain (y/p)v" x v" x v on the R.H.S. of 
M . Eq. (5-25) i s ([y] LT ) 

kn(m 9A 3z J _ iP(m &)Pn 
„ s . . ye e 

S V ^ V 3 X 1 

(5-26) 

i r 
Mu l t i p l y i n g Eq. (5-26) by 3x /3z and summing over m and H gives 

kmn 3A k „ 3x n 

£ r = 2y r 
3 V V 

(5-27) 
3z-

D i f f e r e n t i a t i n g Eq. (5-27) by 3/3(V nz J) gives 

0 = 2 y 9 ( 9 x n / 8 z J ) E _2y 4̂ t 0 
3(3z J/3x n) 3z J 3 Z 3 

(5-28) 

where the de r i v a t i v e s of 3x n/3z J are computed from Eqs. (1-8). Eq. 

(5-28) shows that no s o l u t i o n f o r A e x i s t s , hence the following theorem: 

The v e l o c i t y terms p-1 v"(V«V) and p-1V x v" x v which occur i n the 

momentum equation f o r viscous f l u i d s cannot be derived s o l e l y from a 

generalized Lin's constraint of the form dz^/dt = p-1 (V~ x A) • v"z J . 

->-

The theorem can e a s i l y be extended to include A = A(p,s,Vz). I t i s 

possible that a d i f f e r e n t modification of the Lin's constraint could 

generate the incompressible terms p-1V" x v~ x v, but t h i s would give no 

in s i g h t i n t o the compressible terms p-1v"(V«V) or the entropy production 

equation. This suggests that a generalized Lin's constraint plays no 

ro l e i n describing viscous fluids,whose v a r i a t i o n a l formulation remains 

an unsolved problem. 
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5-3 Conclusion 

This thesis has presented a new extension of Clebsch's v a r i a t i o n a l 

p r i n c i p l e for perfect f l u i d s , based on a generalized version of the 

conservation of p a r t i c l e l a b e l constraint. For the one-component case 

the v a r i a t i o n a l , p r i n c i p l e gave a macroscopic description of a f l u i d 

with a f i n i t e density of v o r t i c e s , for the two-fluid case i t yielded 

the Khalatnikov equations for rapidly rotating superfluid ^He. To the 

author's knowledge th i s v a r i a t i o n a l p r i n c i p l e has not been described i n 

the l i t e r a t u r e and represents o r i g i n a l research. 

The considerable d i f f i c u l t i e s i n finding a v a r i a t i o n a l p r i n c i p l e 

for f l u i d s are connected with the presence of f i r s t order derivatives 

and n o n - l i n e a r i t i e s i n the equations of motion. Clebsch's solution of 

this problem sharply r e s t r i c t s the form of the constraint equations for 

the mass density, the entropy and the p a r t i c l e l a b e l . The author has 

shown that the conservation of p a r t i c l e l a b e l constraint may be 

generalized to Bz^/St + (V + p - 1 ^ x A) • v"zJ = 0 without destroying the 

"gauge" invariance of the conservation of momentum equation. 

A review of C.C. Lin's Lagrangian for the adiabatic case was given 

i n Chapter 1. The consequences of relaxing Lin's constraint for a 

one-component f l u i d were examined i n Chapter 2 and yielded v o r t i c i t y 

dependent contributions to the i n t e r n a l energy and the stress tensor of 

the f l u i d . In Appendix B, the hydrodynamic equations were interpreted 

as describing a f l u i d with a f i n i t e density of vor t i c e s , where a l l 

hydrodynamic variables have been averaged over regions containing many 

vortices. 

As background material, Chapter 3 reviewed Herivel's v a r i a t i o n a l 
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p r i n c i p l e for the Landau two-fluid equations. In Chapter 4 a new 

v a r i a t i o n a l p r i n c i p l e for the Khalatnikov equations of rapidly 

rotating superfluid ^He was presented. I t was found necessary to use 

two Lin's constraints, one constraint for the normal v e l o c i t y f i e l d and 

the other constraint expressing the p o s s i b i l i t y of l a b e l l i n g a super-

f l u i d vortex, averaged over many vortices. 

Chapter 5 concluded with an extension of the v a r i a t i o n a l p r i n c i p l e 

to arbitrary orders of derivatives i n the v o r t i c i t y . In addition i t was 

shown that a generalized Lin's constraint cannot be used to describe 

viscous f l u i d s . 
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APPENDIX A 

PROOF OF CLEBSCH'S LEMMA 

Define 

V(x,t) = VA(x,t) + B a ( x , t ) V C a ( x , t ) (A-l) 

where a = l,...,m. Straightforward d i f f e r e n t i a t i o n y i e l d s the 

r e s u l t s 

|| . S(|A> + | £ ^ + ^ ( A . 2 ) 

while a lengthy algebraic manipulation gives the i d e n t i t y 

(V-V)V + V(h V 2) = V(V-VA) + (V-VB a)VC a + B aV(V-v"c a) (A-3) 

Addition of Eqs. (A-2) and (A-3) gives Clebsch's lemma 

where d/dt E 3/8t + (V«V). 
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APPENDIX B 

INTERPRETATION OF THE EQUATIONS OF MOTION 

F i r s t consider the case of the rotating superfluid as discussed 
-»• -»• 

i n Chapter 4. To maintain the i r r o t a t i o n a l condition 7 * V = 0 i n a 
s 

rotating superfluid, superfluid vortices are formed (possibly at the 

boundary) which rotate r i g i d l y with the container, i . e . 

Figure 1. Rotating Superfluid Ĥe 

Integrating around a closed path enclosing a l l the vortices gives 

a r e l a t i o n between the angular rotation m and the t o t a l number of 

vortices N. If the vortices each have a strength h/2nm then 

or N/A = 2a)m/h. Hence for a rapidly rotating superfluid many superfluid 

vortices are formed to maintain the i r r o t a t i o n a l condition. 

Consider an array of such vortices each with core size a and 

some mean separation b. Since the v e l o c i t y f i e l d of each vortex i s 

2iuA = 7* x V «dA = <& V -dZ = Nh/m (B-l) s I s 
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V g = (h/2Timr)e (B-2) 

then the energy per un i t length of a vortex i s 

E' = (% p V 2)2Trr dr = (p h 2/4irm 2)ln(b/a) (B-3) s s s a 

Now define an average v e l o c i t y f i e l d <V g> by averaging over a region 

containing many su p e r f l u i d v o r t i c e s i n such a way that the c i r c u l a 

t i o n i s due to the enclosed v o r t i c e s . I f <Vs> does not vary appreciably 

over the area enclosed then 

|V x <v >|A = V x <v >«dA = <V >'dl = Nh/m (B-4) 
S J S I S 

Hence the number of v o r t i c e s per un i t area i s 

Y = |V x V |m/h (B-5) 
A S 

(dropping the average symbol < >) and the energy per unit volume due 

to the v o r t i c e s i s 

e = (p gh/4irm)ln(b/a) |V x | j = A|v x V | (B-6) 

The t o t a l i n t e r n a l energy i s given by the generalized Gibbs r e l a t i o n 

de(p,s,x,oj) = T ds + (P/p 2)dp + %(V - V ) 2 d X + (A/p)du> (B-7) 
XI s 

- > • - » • - » -where X = p /P and to = V x V . The Khalatnikov equations follow n s 

from Eq. (B-7) by the standard technique i n hydrodynamics, namely 

manipulating the redundancy of the conservation of t o t a l energy 

equation. 

The conservation of mass equation remains unchanged 
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|f i . + v". j = 0 (B-8) 
d C 

- > - - » - ->• 
where J = p V + p V , p = p + p . The conservation of momentum and n n s s n s 
t o t a l energy equations become 

| i l + V
j ( n i : i + T T I J ) = 0 (B-9) 

ot 

If + V-(Q + q) = 0 (B-10) 

where 

= p v V + p v V + P6 i : i , n n n s s s 

P = p(-e + T + %(v - V ) 2
X + y) , 

t> n s 

E = pe + h P V 2 + h P V 2 , n n s s 

5 = H pnVl\ + h p s V f s + ( p e + P ) ^ / p + p T s ( ^ n " V 
+ h P(vn - v s) 2(vn - J/p) 

and TT , q remain to be determined. The entropy equation remains 

unchanged. 

A ( p s ) + v.(psV n) = 0 ( B - l l ) 

while the sup e r f l u i d equations become 

oV 
+ (V -V)V + Vy = f (B-12) dt S S 

where f i s to be determined. 

Eqs. (B-8)-(B-12) give nine equations i n eight unknowns V n, V g, s, 
ii •*• -»• 

p; the self-consistency conditions determine TT , q and f. From the 

d e f i n i t i o n of E and using Eqs. (B-7), (B-9) and (B-12) i t follows that 
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| i . _v".Q - V 1 ( T T i j v i ) + T [ ^ r (ps) + V.(psV ) dt n d t n 

+ X | ^ + X v V c o + i r i j v j V j + ( J - p V ) . ( l + ux (V -V ) ) (B-13) 9t n n n n s 

Taking the c u r l of Eq. (B-12) gives 

X | ^ = Xv • Vx[f + co x (V - V )] - Xv-Vx(<o" x V ) (B-14) 3t n s n 

where v = <o/<o. Substitution of Eqs. ( B - l l ) and (B-14) in t o Eq. (B-13) 

gives 

| ^ + V ^ Q 1 + / V + X{v x (f + t x (V - V ) } ± 

91 n n s 

= ( T T I J - Xco61:i + X c o V / c o ) V : i V 1 

n 

+ [f + co x (V - V ) ] • [J - pV + V x ( X v ) ] (B-15) 
H' s n. 

Comparison of Eqs. (B-10) and (B-15) shows that 

q 1 = 7 r
i J V

j + X{v x (f + t x (V - V ) } 1 (B-16) 
n n. s 

T T 1 j = XcofS1^ - XcoVVco (B-17) 

[f + t x (V - V ) ] • [ J - pV + V x ( X v ) ] = 0 (B-18) n s n 

The lowest order s o l u t i o n of Eq. (B-18) which holds f or a l l values of 
->- •+ p, V and V i s ' n s 

f = - w x (V - V ) + aco x ( J - pV + Vx (Xv ) ) (B-19) n s n 

In order that the Landau equations be regained i n the l i m i t 

X -*- 0, the parameter a = p - 1 . Substitution of Eqs. (B-17) and (B-19) 
s 

int o Eqs. (B-9) and (B-12) give the Khalatnikov equations as presented 

i n Chapter 4, j u s t i f y i n g t h e i r i n t e r p r e t a t i o n as a macroscopic theory of 
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s u p e r f l u i d helium. Requiring that there be many v o r t i c e s per unit area and 

that the s u p e r f l u i d v e l o c i t y be less than the c r i t i c a l v e l o c i t y l i m i t s 

the a p p l i c a b i l i t y of the Khalatnikov equations to the region 

(h/mL2) < OJ < (h/mL 2)ln( — ) where a i s the core radius and L i s some - - a 
length c h a r a c t e r i s t i c of the flow. 

A s i m i l a r i n t e r p r e t a t i o n can be given the one-component f l u i d s 

discussed i n Chapter 2. Consider a perfect f l u i d with an array of 

v o r t i c e s present, each vortex separated by a mean distance b, with a 

v e l o c i t y f i e l d 

V = ( Y/r)6 (B-20) 

and a core s i z e a. The energy of each vortex per unit length i s 

rb 
E' = Qi pV 2)27rr dr = irpy 2 ln(b/a) (B-21) 

Now define an average v e l o c i t y f i e l d <V> by r e q u i r i n g that the c i r c u l a 

t i o n of <V> around some closed path be equal to the c i r c u l a t i o n due to 

the enclosed v o r t i c e s . I f <V> does not vary appreciably over the 

enclosed area then 

V x <V> A = x <V>'dA = (b <V>«d£. = 2TTNY (B-22) 

Thus the number of v o r t i c e s / u n i t area i s 

0) N =  

A 2TTY 
(B-23) 

where u> •= V x v (the average symbol i s omitted). The energy/unit 

volume due to the v o r t i c e s i s 

e = h py ln(b/a)ai (B-24) 
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I f the vortex strength y i s allowed to depend on the number of 

v o r t i c e s / u n i t area then Eq. (B-23) defines an i m p l i c i t function f o r 

N/A = g'(oi) and hence Eq. (B-24) can be written as 

e = Pg(o>) (B-25) 

The t o t a l i n t e r n a l energy of the f l u i d i s j u s t pe(p,s,o>) = pe(p,s) 

+ pg(oi) where e(p,s) i s the usual expression f or the i n t e r n a l energy 

i . e . , 

de(p,s) = T ds + (P/p2)dp (B-26) 

The hydrodynamic equations follow from the redundancy of the 

t o t a l energy equation. The conservation of mass equation remains 

unchanged. 

|£- + V- ( PV) = 0 (B-27) d t 

while the conservation of momentum, energy and entropy equations take 

the form 

~ (pV 1) + V j ( n i j + T r i j ) = 0 (B-28) 

| | + V.(Q + q) = 0 (B-29) 

^ - (ps) + V-(psV) + R = 0 (B-30) 

where n l j = p v V + P 6 l j , E = h pV 2 + pe + pg, Q = [h pV 2+pe + pg]V 

and I T 1 " ' , q and R remain to be determined. 

From the d e f i n i t i o n of E and Eqs. (B-27), (B-29) i t follows that 

|f + V^Q 1) - T < £ (ps ) + V.(psv))-V j v V J + p | A V-Vo)) (B-31) 
d t d t dOO d t 
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Taking the c u r l of Eq. (B-28) gives 

9oi i j k i _ i r -£Nk , m „ k k2., .„ . o s — = e J v V J[-(ai x v ) + TV s - p V TT ] (B-32) 
O t 

where v = u/u. Eqs. (B-31), (B-32) y i e l d 

— + V (Q + P T ^ E J V j [-(u) x V) + TV s — p V TT ] ) 

O t OO) 

= T ̂ - (ps) + V.(psV) + vs-V x ( p | £ v)) 
d t oO) 

+ [ - p ^ V ^ - (u x V ) 1 ] ^ 1 + V x ( p f - v ) 1 ] (B-33) 
00) 

Comparison of Eqs. (B-29), (B-30) and (B-33) shows that 

R = Vs«V x ( p |& v) (B-34) 
00) 

[ - p - ^ ^ T r 1 ^ - ( u x V l I p V 1 + V x ( p A ^ ) 1 ] = o (B-35) 
00) 

The lowest order s o l u t i o n of Eq. (B-35) i s 

y V j = a e i j kw j [V k + p-!v x ( p |& v~) k] - p " l x V ) 1 (B-36) 
00) 

The requirement that the usual equations be regained i n the l i m i t 

g -*• 0 f i x e s a = p _ 1 . Eq. (B-36) becomes 

V \ i j = V 1 ( p | - [a) 26 i j - o i V ] ) (B-37) 
00) 

and hence Eqs. (B-27)-(B-30) reduce to the hydrodynamic equations of 

Sec. 2-2, j u s t i f y i n g t h e i r i n t e r p r e t a t i o n as a macroscopic d e s c r i p t i o n 

of a perfect f l u i d with a density of v o r t i c e s present. 
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APPENDIX C 

TURBULENT SOLUTIONS OF THE EQUATIONS OF MOTION 

The i r r e g u l a r and disordered flow of a f l u i d known as turbulence 

i s characterized by v o r t i c i t y i n three dimensions and by energy 

transfer from the large scales of motion to the small scales, ending 

i n d i s s i p a t i o n . I t i s usually assumed that turbulent f l u i d flow i s 

described by the Navier-Stokes equations and experimentally i t i s 

found that turbulence occurs when the Reynolds number R > 20,000. 

Since the hydrodynamic equations of Sec. 2-2 describe a f l u i d with a 

d i s t r i b u t i o n of v o r t i c i t y , i t i s worthwhile to check whether they can 

provide a model f o r turbulence. 

A u s e f u l concept i n the s t a t i s t i c a l d e s c r i p t i o n of turbulence i s 

the two-point v e l o c i t y c o r r e l a t i o n function defined as the time average 

<V 1(x,t)V J(x',t )> = LIM ^ V 1 ( x , t + t ' ) V J ( x ' , t + t , ) d t ' (C-l) 

T + 0 0 •'0 

which r e l a t e s adjacent f l u c t u a t i o n s i n V 1(x,t) and V J ( x , t ) . Turbulence 

i s u s u a l l y assumed to be an incompressible flow, where the 

s t a t i s t i c a l properties are homogeneous, i s o t r o p i c and time-independent. 

Since space and time d e r i v a t i v e s are assumed to commute with the 

averaging process, homogeneity implies the r e l a t i o n s 

<lY_ix)_ v
k

( x . ) > = _JL_ < v 1( x)V k(x*)> = ~ - <V ±(x)V k(x + r)> (C-2) 
9x J 3x J 3r J 

where x = x + r. Isotropy implies that 

^ ( x + r)P(x)> = 0 (C-3) 

fo r any s c a l a r function P(x). 
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The following r e l a t i o n s i n v o l v i n g two-point c o r r e l a t i o n s of the 

v o r t i c i t y w i l l prove u s e f u l 

<oi i(x)a) ; i(x ,)> = - E ^ E 3 " f <V A(x)V n(ac + r)> (C-4) 
3 r k 3 r m 

Contraction over i and j gives 

<w(x)«o)(x + r)> = ¥—r <V(x)»V(x + r)> 
S r ^ r 1 

= h —\ r <[V(x) - V(x + r ) ] 2 > (C-5) 

3r 3 r x 

In Kolmogoroffs theory of turbulence the f l u i d flow i s pictured 

as a superposition of eddies of various s i z e s with energy being 

transferred from l a r g e r to smaller eddies at a constant rate 

e o [ L 2 T - 3 ] . The energy i s ult i m a t e l y d i s s i p a t e d by viscous e f f e c t s i n 

the smallest eddies of length scales (e v - 3 ) - " 2 * (v i s the kinematic 

v i s c o s i t y ) . I t i s assumed that i n the time-independent regime the 

s t a t i s t i c s are completely determined by e Q and v. Furthermore f o r 

those eddies smaller than the larges t scales but larger than viscous 

sca l e s , the i n e r t i a l subrange, the s t a t i s t i c s are completely 

determined by e . 
J o 

By dimensional analysis Kolmogoroff's theory then predicts the 

form of the two-point c o r r e l a t i o n function i n the i n e r t i a l subrange 

as 
<[V(x) - V(x + r ) ] 2 > - 4K e 2 / 3 r 2 / 3 (C-6) 

where K - .5 i s Kolmogoroff's constant. Eq. (C-6) has been w e l l -

v e r i f i e d by experiment and any successful model of turbulence must 

reproduce t h i s r e s u l t . 



Adopting Kolmogoroff's assumption that only e Q be used i n the 

i n e r t i a l subrange implies by dimensional analysis that g(w) = - K ' e ^ - 1 

where K' i s a dimensionless constant. In the incompressible, 

i s e n t r o p i c case the hydrodynamic equations of Sec. 2-2 reduce to 

V-V = 0 (C-7) 

•+ 
?r- + (V«V)V = V (- - - g) - w x V x (K'e wuT3) (C-8) 3t p o 

v = 3x(z,t) _ + x ( K , e ^ - 3 ) . (C-9) 

Now assume that 3x/3t i s i d e n t i f i e d with the mean flow <V> and that 

-V x (K'e uiuT 3) i s the turbulent part of the v e l o c i t y f i e l d . I f 

<V> = 0 then Eq. (C-7) reduces to an i d e n t i t y and Eqs. (C-8) and (C-9) 

become 

# = V"(- 1 - g) (C-10) 3t p & 

V = -V x (K'e wo)"3) ( C - l l ) o 

M u l t i p l y i n g Eq. (C-10) by V 1 ( x + r) and averaging gives the time 

independent condition 

A <V i(x)V ±(x + r)> = - - \ <V i(x + r ) ( - + g)> 5 0 (C-12) 
9 t 3 r X P 

Taking the c u r l of Eq. ( C - l l ) gives 

a)1 = -V^K'e v".(wuT3)) + V 2(K'e (A ) - 3 ) (C-13) 
0 o 

M u l t i p l y i n g Eq. (C-13) by w 1(x + r) and averaging gives 

<w(x)'"5(x+r)> = K'e — 9 r <u>(x + r) • U( X)ID(x)~ 3> (C-14) 
° S r ^ r 1 
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To close Eq. (C-14) i t i s s u f f i c i e n t to assume the closure 

r e l a t i o n 

<u(x + r ) - o j ( x ) o j ( x ) _ 3 > = K"<w(x + r)4(x)>~1'5 (C-15) 

Note that Eq. (C-15) does not follow from the Lagrangian.Eq,(C-14) gives 

<w(x)-u>(x + r)> = K'K"e — ¥ — r <w(x + r) 4(x)> _ l £ (C-16) 
3r 8r 

which has the s o l u t i o n 

<u(x)«u(x + r)> = (10 K'K " e o / 9 ) 2 / 3 r~k/3 (C-17) 

The i d e n t i t y Eq. (C-5) implies that the two-point v e l o c i t y 

c o r r e l a t i o n function i s given by 

<[V(x) - V(x + r ) ] 2 > = 9/2(10 K'K"e o/9) 2 / 3 r 2 / 3 (C-18) 

which agrees with Eq. (C-6) provided Kolmogoroff 1s constant i s 

i d e n t i f i e d as 

K = 9/8(10 K'K"/9) 2 / 3 (C-19) 

Hence the hydrodynamic equations of Sec. 2-2 provide a model of 

turbulence which i s consistent with Kolmogoroff's theory i n the 

i n e r t i a l subrange. From Eqs. (B-23)-(B-25) i t follows that t h i s model 

of turbulence consists of a f l u i d with a density of v o r t i c e s , whose 

i n d i v i d u a l vortex strengths depend in v e r s e l y on the vortex density to 

the two th i r d s power, i . e . 

Y a ( N / A ) " 2 / 3 (C-20) 



-79-

APPENDIX D 

MEASUREMENT OF B' FROM SECOND SOUND IN ROTATING ^He 

The parameter B' has been measured by Snyder , Snyder and Linekin 
4 5 

and Lucas . The experiment of Snyder and Li n e k i n i s described b r i e f l y 

as follows: a standing wave of second sound with frequency a was 

excited i n a second sound resonator, r o t a t i n g with angular v e l o c i t y 

fiz; the C o r i o l i s force and the B' term removed the degeneracy of the 

two lowest second sound normal modes', the frequency of these normal 

modes was determined by observing the resonant frequencies of the 

temperature f l u c t u a t i o n on the resonator w a l l . Using a c y l i n d r i c a l 

resonator Lucas found B' = .08 ± .08 at 1.603 K and B' = .2 ± .25 

at 1.426 K,the r e s u l t s of Snyder and Linekin using a square resonator 

are given i n Figure 2. 

Figure 2. B' versus T 
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Both these experiments suggest that B' i s much less than 2 and 

temperature dependent. 
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46 
Donnelly has given a d e t a i l e d d e r i v a t i o n of the frequency 

s p l i t t i n g of the degenerate second sound modes; a b r i e f summary of 

t h i s d e r i v a t i o n i s given as follows. L i n e a r i z a t i o n of Eqs. ( 4 - 2 ) -

( 4 - 5 ) y i e l d s 

-*- 1 P B ' p 
> s -> s ->• -> (D-l) V - = n P 

VP sVT + r 0 )x q 

P n 2 P 

(D-l) 

• 
-»• 1 B ' p 

-»• n (D -2 ) V = s P 
VP + sVT - - r — wxq 

2p 
(D -2 ) 

p + p V-V + p V-V = 0 (D -3) s s n n 

ps + sp + psV-V = 0 (D -4) n 

where q = V n - V g and i t i s assumed that OJ = 2ttz. Subtracting Eq. (D -2) 

from Eq. (D-l) and transforming to the r o t a t i n g frame gives 

q + ( 2 - B ' ) f i x q = _ VT (D -5) 

n 

Using s = CT and combining Eqs. (D -3) and (D -4) y i e l d s 

P s 

T = - cp~ V-q (D -6) 

where C i s the s p e c i f i c heat. D i f f e r e n t i a t i o n of Eq. (D -5) combined with 

Eq. (D -6) gives a wave equation f o r q 

q + ( 2 - B T ) Q x q = U 2 ^ . ^ ) ( D _ ? ) 

2 
3 

P r " 

Comparison with the case of f i r s t sound propagation i n a c l a s s i c a l 

r o t a t i n g f l u i d then gives the second sound normal mode frequencies as 

a ± . a ± M2zBji£ ( D _ 8 ) 

•'.•m - om o r> m T\ 

P s S 

where u = — — i s the speed of second sound £. P Li n 
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where m Is an odd interger and a i s the degenerate normal mode 
om 

frequency i n the non-rotating case corresponding to the intergers 

±m. Hence the C o r i o l i s force and the B 1 term cause a s p l i t i n the 
8 (2— B') Q normal mode frequencies Ao = — 7 — 7 . Note that gradients i n ^ m m u 

p and p would contribute a term — q to the LHS of Eq. (D-7), 
n s p 

n 
which causes attenuation but does not a l t e r the s p l i t t i n g of the 

normal modes. I f B* = 2 then no s p l i t t i n g occurs, i n co n t r a d i c t i o n 
9 

with the r e s u l t s of Snyder and L i n e k i n . L i n has suggested that 

some sort of macroscopic secondary motion may occur.supported by 

the r o t a t i o n , i n c o n t r a d i c t i o n to the assumptions leading to 

Eq. (D-8). 
I f B' = 0 then Eq. (4-42) states that the su p e r f l u i d v o r t i c e s 

t r a v e l with v e l o c i t y V* (apart from the A terms). According to 
s 

LFK t h i s corresponds to the su p e r f l u i d v o r t i c e s being regarded 

as combined A and V g s i n g u l a r i t i e s . This suggests that normal 

f l u i d v o r t i c e s may be formed i n the experiment of Snyder and 
-y -y -y -y 

L i n e k i n . I f t h i s i s the case then both VxV and VxV must be 
s n 

treated as thermodynamic v a r i a b l e s and Eq. (4-1) w i l l have an 
-y -y 

extra c o n t r i b u t i o n due to v"xV • This poses an i n t e r e s t i n g question 
dt -y -y -y 

for future consideration:Can the contributions of VxV and VxV 
s n 

to Eq.(4-1) be appropriately adjusted such that a v a r i a t i o n a l 

p r i n c i p l e can be found and such that the temperature dependence 

B' agrees with the r e s u l t s of Snyder and Linekin ? This remains 

an open question at present. Note that f or the experiment of Snyder 

and Linekin the Reynolds number of the normal f l u i d at 1.8 \ i s 

given by R = r 2 ^ / ^ * * (2 cm ) 2 ( 2 7r rad /sec)(.05 g/cta 3)(10~ 5 g cm / s e c ) " 1 

-13,000 which suggests that normal f l u i d v o r t i c e s may have an important 

e f f e c t on the measurement of B'. 


