by
RAYMOND GARY CARLBERG
M.Sc., University of British Columbia. 1975
B.SC., University of Saskatchevan, 1972

A thesis SuBmitted In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

in
 THE FACULTY OF GRADUATE STUDIES:

Department of Geophysics and Astronomy

We accept this thesis as conforminq to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA October, 1978
(C) Raymond Gary Carlberg, 1978

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Eeophysic + AStiononcy
The University of British Columbia
2075 Wesbrook Place Vancouver, Canada V6T lW

Date Oct 21178

ABSTRACT

This thesis investigates the guantitative nature of the variability which is present in the stellar winds of high luminosity early type stars. A program of optical observations with high time and spectral resclution was designed to provide quantitative information on the nature of the fluctuaticns. These observations found no optical variability over a time period of six hours and hence restrict the variability over this pericd to size scales of less than $5 \times 10^{11} \mathrm{~cm}$, but do confirm the variations on time scales exceeding one day. A class of X-ray sources comprised of a neutron star orbiting a star with a strong stellar wind provides another source of information on the variability of stellar winds. A theory of accretion onto a neutron star was developed which is used with X-ray intensity data to derive estimates of the density and velocity of the stellar wind. This analysis performed on Cen $X-3$ suggests that the velocity in the stellar wind increases as the wind density increases.

A theoretical analysis of the stability of a stellar wind is made to determine whether the variability may originate in the wind itself. Two types of instability are found: those that amplify pre-existing disturbances, and absolute instabilities which can grow from random motions within the qas. It is found that short wavelength disturbances (<104 cm) are always strongly damped by conduction, and long wavelength ones (>1011 cm) are damped by radiation if the gas is thermally stable, that is if the net radiative energy loss increases with temperature. Intermediate wavelengths of about $10^{8-9} \mathrm{~cm}$ are usually subject to
an amplification due to the density gradient of the wind. The radiation acceleration amplifies disturbances of scales 107 to 10^{11} cm. Absolute instabilities are present if the gas is thermally unstable, if the flow is deccelerating, or if the gas has a temperature of several million degrees.

On the basis of the information derived on stellar wind stability it is proposed that a complete theory should be based on the assumption that the wind is a nonstationary flow.
Chapter 1: Introduction 1
Chapter 2: Optical Observations 7
Chapter 3: Superscnic Accretion 21
Chapter 4: Physical Description of The Gas 31
Chapter 5: The Stability Analysis 49
Chapter 6: Ccnclusions 69
Biblioqraphy 73
Appendix 1: Radiative Effects In Superscnic Accretion 77
Appendix 2: Gas Physics 88
Appendix 3: The Dispersion Relation 119
Appendix 4: The Major Computer Programs 124

FIGURES

1. Lambda Cephei: The Effect of Fesolution 10
2. Lambda Cephei Time Series 14
3. Iambda Cephei Day To Eay 15
4. Alpha Camelopardalis Day To Day 16
5. Delta Orionis Day To Day 17
6. Supersonic Accretion Schematic 22
7. Schematic X-ray Intensity Variation of Cen X-3 27
8. The Density Velocity Variation of Cen $X-3$ 28
9. Icnization Balance 35
10. Standard Heating And Cooling Rate 36
11. CNO Abundances 10 Times Solar Heating And Cocling 38
12. Losses In An Optically Thick Medium 40
13. Radiation Force AS A Function Of Temperature 42
14. Mcmentum Balance 46
15. Roots For A Static Pseudo Iscthermal Atmosphere 55
16. With Heating And Cooling, V, dv/dz Nonzero 60
17. With The Radiation Force 62
18. No Cooling 63
19. Thermal Instability $T=5 \times 10^{5} \mathrm{~K}$ 65
20. High Temperature Instability 66
21. Decceleration Instability 67

TABLES

1. Catalogue of Observations 9
2. Scales In Supersonic Accretion 23
3. Atcmic Abundances 32
4. Maximum Velocity For An Accelerating Solution 47
5. The Dispersion Relations Plotted 68
6. Photoionization Cross Section Parameters 90
7. Gaunt Factor For Hydrogen 92
8. The Recombination Rate Constants 93
9. Ionization Potentials And Subshell populations 97
10. Gaunt Factor Constants 102
11. The Resonance Lines 103

ACKNOWLEDGEMENTS

The completion of this thesis owes a great deal to the teaching, assistance, and encouragement that I have received. My supervisor, Dr. Greg Fahlman, aluays provided an interested ear and a careful criticism of my ideas. He was also a scurce of support when needed. Drs. Gord on falker and Jason auman made a number of suggesticns which substantially improved the presentation of the thesis.

My induction into the world of observational astronomy came with three very pleasant summers spent in victoria at the Dominicn Astrophysical Observatory. The frustrations of doing spectrophotometry with photographic plates were largely eliminated by Dr. Gordon Walker's encouragement to use his Feticon detector system. The successful observations obtained with this system owe a great deal to the advice and technical support of Dr. Walker, Dr., Bruce Campbell, Dr. Chris Pritchett, Tim Lester, and Mike Creswell. The whcle data reduction process has been reduced to a straightforward and enjoyable activity by the use of Chris Pritchett's data handing package, RETICENT.

A large part of this thesis relied on the computer for its completion. The $\quad 0 B C$ Computing Centre has been a great assistance and deserves much praise for its facilities, and the provision of a large number of well documented utility frograms. Particular thanks go to A. C. Hearn, originally at the University of Utah, who wrote the program REDUCE.

Financial support was provided by the National Research Council of Canada and by a MacMillan Family Fellowship.

The optical spectra of many hot stars were noted to bave emission components on the Harvard objective prism plates (see the Henry Draper Catalogue, Cannon and Pickering 1918). Many of these stars were studied in detail, leading to Beal's (1929) proposal that the line profiles could be explained by emission from gas being ejected frcm the star. A great deal of information was accumulated on the optical spectra of emission line 0 and E stars in the following years, which is summarized in Eeals (1951) and onderhill (1960). A new observational window the was opentd by Morton (1967) using a rocket borne spectrograph. He found that 4 of the orion stars, δ, \in, ζ, and i, had absorption lines blue shifted to velocities of order $2000 \mathrm{Km} \mathrm{s}^{-1}$. These velocities exceeded the typical escape speed of $300 \mathrm{~km} \mathbf{s}^{-1} \mathrm{by}$ such a large factor that there was no question that the stars were losing mass at a large rate.

The Snow and Morton ultraviolet survey (1976) showed that all stars with an effective temperature greater than about 3×10^{4} K, and luminosities greater than a bolometric magnitude of -6 , have a detectable supersonic wind which carries away a significant amount of the star's mass during its lifetime. Reliable mass loss rates have been obtained from optical observations (see Hutchings 1976) and UV observations (Snow and Morton 1976) which now have been extended to infrared (Barlow and Cohen 1977) and radio wavelengths (Wright and Barlow 1975), all of which provide confirming and complementary data on the magnitude of the mass loss. The derived mass loss rates for ob stars lie in the range of 10^{-9} to 10^{-5} Mo/year, with terminal velocities
ranging from 1000 to $3000 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$.
The stellar wind phenomenon poses several guestions: what is the physical mechanisa driving the mass loss? how does the mass loss effect the star's evolution? and how do these hot. luminous stars affect the interstellar medium and the evolution of a galaxy? The answers to all of these questions hinge on a thorough understanding of the physics of the stellar wind. This thesis is a contribution to the understanding of the basic nature of the stellar wind. The physical protlem is to describe the dynamics of a gas moving in an intense radiation field; a situation which occurs in a number of astrophysical situations, including quasars and active galactic nuclei, Mushotzky, et al. 1972 and Kippenhahn et al. 1975).

The line profiles of stellar wind stars, especially ones with high mass loss rates have long been known to show some variability over one day (see for instance Beals 1951. Underhill 1960, Conti and Frost 1974, Leep and Conti 1978. Brucato 1971. Snow 1977, and Rosendahl 1973). For ground based otservation this time periodmakes it difficult to resolve the time evclution of the variaticn. An cbservational program was initiated to more closely define the nature of these reported variaticns, using a modern detector capable of measuring very small changes. This will be discussed in Chapter 2.

Besides optical evidence of variability, there are a number of X-ray binary stars here the X-ray source is a neutron star accreting mass from the stellar wind fconti 1978). These sources show a number of scales of variation of their intensity which can be ascribed to variations of the stellar wind. A
theoretical analysis of the accretion process and how it effects the ctserved intensity was made in order that the $x-r a y$ data could be used to derive the prevailing density and velocity of the stellar wind at the lcation of the neutron star. This analysis performed on $X-r a y$ data for the source C en $X-3$ indicates a correlation between the wind velocity and density. This will be described in Chapter 3.

The basic formulation of the theory of a stellar wind from a hot, luminous star was initially put forth by Lucy and Sclomon (1970), who proposed that the acceleration was produced by the scattering of photons with wavelengths that fell within a few resonance lines. This was a generalization of Milne's (1926) idea that momentum transfer from photons could selectively accelerate certain ions. This was later extended by Castor. Abbott. and Klein (1975, referred to as CAK) to include the force on many lines of many ions. The theory provided an encouraging agreement with the limited data available on the velocity as a function of radius and mass loss rates.

Recently the ultraviolet satellite observations have revealed that some highly ionized species, in particular 0 VI and N V, are present in the wind. These ions would not be expected to be ionized in any observable guantity by the radiation field appropriate to these stars. York, et al. (1977) have observed variations in the 0 VI line in three stars over a time periods as short as six hours. This observation suggests a "slab" moving outwards at an increasing velocity. The presence of 0 VI in the stellar wind presents a puzzle as to the source of its excitation. At the present time there are three proposals.

First, Castor (1978) has modified his radiation driven wind to an arbitrarily specified temperature higher than radiative equilibrium, which provides a suitable abundance of C VI. Second, Lamers and Snoy (1978) have an empirical "warm radiation pressure" model, in which they show that the ions can be provided if the stellar wind is at a temperature of about $2 \times 10^{5} \mathrm{~K}$. Neither of these models specify the source of the additicnal heating. Third, Hearn (1975) has proposed that stellar winds are initially accelerated in a hot corona with a temperature of several million degrees. pursuing this idea clson and Cassinelli (1978) have shown that a small corona, about 10% of a stellar radius, generates enough thermal X-rays to produce the reguired ionization ratios. To provide a heating mechanism for a corona. Hearn (1972) show d_{d} that radiation driven sound waves could be amplified while propogating outward in the atmosphere. The waves grow to a saturated amplitude sufficient to provide enough shock heating to maintain a corona (Hearn 1973). There are two difficulties with this analysis. Berthomieu et al. (1975) have pointed out that Hearn's simplifying assumptions result in a scale length for the wave amplification which is the same as the atmospheric scale length. Therefore significant amplification only occurs over lengths which invalidate the assumpticn of small variations of the zerc order guantities over the length for amplification. In additior, the unstable waves that he finds are amplifying instabilities (Castor 1977), and require some oscillator to initiate the wave motion.

Motivated by theoretical arguments and the observations of fluctuations I have performed a stability analysis on the equa-
tions governing the moving gas in the stellar radiaticn field. The complete set of equaticns governing the motion with no a prioni simplifications were used. An accurate descripticn of the gas physics was developed using an approximate treatment of radiation transfer dependent coly on local quantities. As a result the state of the gas can be completely specified by the local radiation field, the gas velocity and its gradient, and the density and temperature, as described in Chapter 4. The stability of the gas against vertical disturbances was investigated with the aid of a computer to provide the numerical solutions to the dispersion relation. Chapter 5 is comprised of this discussion.

The purpose of this thesis is to investigate the guantitative nature of instabilities in stellar winds and relate it to the cbservational and theoretical problems which have been outlined. This is not an attempt to create a unified theory of a stellar wind. Bather it is a detailed investigation of certain areas of the question in order to illuminate some of the physical mechanisms which are important in a stellar wind. This is required because not much is known about the basic physical processes which dominate the observed variability of the stellar wind.

The investigation is confined to the stellar wind itself, which is loosely defined as the region where the optical depth in the continum is less than one and the gas is moving dith greater than scnic velocities. As has been emphasized by Cannon and Thomas (1978), it is possible that some of the driving force for the the wind and hence scme of the wind instabilities may
originate within deeper layers of the star.
It is assumed that there is no magnetic field. This is done mostly because of the tremendous simplification of the problem which results. Eut there is no observational evidence for a magnetic field, although if the wind is as chaotic as this thesis suggests, a magnetic field would be difficult tc detect.

In summary this thesis is motivated by observations of stellar wind variability, and suggestions by cther authors that instabilities do exist which may be responsible for the creation of a high temperature corona. The investigations described are carried out in twc parts. observational evidence of the variability is acquired which suggests length and times scales of the fluctuations which are present, and a correlation between the wind velocity and density. The theoretical analysis provides physical sources of several instabilities which can exist in the stellar wind. From this information I suggest that the stellar wind is an extremely chaotic medium in which the instabilities not cnly provide the source for the observed variability, but also can be used to provide an ionization source for the 0 VI ion and the corona as postulated by Hearn. The presence of these instabilities means that a model for a stellar wind should be in the form of mean flow quantities and associated fluctuating guantities.

CHAPTER 2. OPTICAL CBSERVATIONS
For many years several of the lines in the optical spectrum of several early type stars have been reported as varying (see references cited in the Introduction). Particular attenticn has been paid to the star Lambda Cephei, because it is a bright $06 f$ star in the northern sky. The H (line has been reported to vary on time scales of one day (Leep and Conti 1978) and longer, with no apfarent systematic variation. The amplitude of the variation is typically 10% of the intensity. This behaviour is fairly typical of the more lumincus mass loss stars. The shortest period variations with a high confidence level are the UV observations made by the satellite copernicus of Sori a, ךori. and ζ pup (York et al. 1977), Where a small feature of width about $150 \mathrm{Km} \mathrm{s} \mathrm{s}^{-1}$ was seen to "move" in the 0 VI line between two observations spaced about 6 hours apart.

Most of the observations at optical wavelengths have been made with photcgraphic plates, which have a photcmetric accuracy barely able to reveal the presence of the variation, let alone reveal much information as to its character. In fact lacy (1977) made scanner observations of some of the lines in stars that were reported as varying and concluded on the basis cf a statistical analysis of the errors present in the equivalent width that any variability present was less than the expected randcm error. However the equivalent width of a line averages together all material emitting at that line frequency. Obseryaticns which resolve the line can provide much more information. but at the cost of longer exposure times.

The classical description of line formation in a stellar
wind was given by Beals (1951). The observed line can be considered to be made up of threє almost independent parts; an urderlying abscrpticn line formed in the photosphere of the star. a superposed emission line with its centroid at zero velocity produced by emission of photons in the stellar wind, and a blue shifted absorption line which is formed in the portion of the stellar wind which is silhouetted against the star.

The analysis of line formation ithin the wind is siaclified by the Sobolev approximation (Sobolev 1960). which says that the emission and absorpticn of photons in a given narrou wavength interval, outside of the doppler core, is deterained by the a mount of gas moving at a velocity such that the line of sight velocity of the gas falls within the wavelength interval. This apprcximation is valid if the gas speed is supersonic. The assumption is supported by the observations of Hutchings 11976 and references therein) whe has shown that the yind has a velocity exceeding the sound speed for distances greater than 10% of the stellar radius.

The observations were undertaken to confirm the reported variability and were to be made with sufficiently hiqh signal to noisf, spectral resclution and time resolution to clearly resolve the variations, as they developed. In particular it was thought that there might be evidence for the nature of the mechanism of the variation, for instance, a spot rotating with the star or a "blob" moving cut through the wind.

All observations were carried out with the 1.2 meter telescope of the Dominion Astrophysical Observatory, Victoria, E.C. The 2.4 meter camera in the coude spectrograph was used with a
red coated image slicer giving a projected slit width cf 60 aicrons. The spectrum was detected with a 1024 element array of 25.4 micron diodes (a Reticon RL1024/C17) cooled to a temperature of -800 C (Walker et al. 1976). The image slicer and detector pixel size combination were chosen to give a proferly oversampled spectrum. All observations were centred on the $H \alpha$ line in the first order resulting in a dispersion of . $125 \AA^{\circ} /$ diode. Observations were made in September and cctober of 1977, and are tabulated below and shown in the accompanying figures.

TABLE 1: CATALOGUE OF OESERVATIONS

\#	Star	$\begin{aligned} & \text { Date } \\ & 1977 \end{aligned}$	Time PST	Exposure seconds
1	Lambda Cep	Sept 11/12	22:13	2250
2	\%	"	22:55	"
3	"	"	23:41	"
4	"	"	00:23	"
5	"	"	$01: 05$	"
6	"	"	01:48	"
7	"	"	03:10	"
8	"	"	03:54	"
9	"	"	04:36	"
10	"	Oct 11/12	23:00	3000
11	"	"	01:08	3000
12	"	Oct 12/13	22:15	3000
13	"	Oct 16/17	21:05	3000
14	"	,	23:38	3000
15	*	"	04:28	3000
16	Alpha Cam	Oct 11/12	00:27	1500
17	"	Oct 12/13	01:35	2002
18	"	Oct 16/17	22:58	1800
19	Delta Ori	Oct 12/13	02:31	600
20	"	"	03:01	600
21	"	Oct $16 / 17$	23:00	2641
22	"	"	03:41	2830

The lines present in the $100 \AA$ region examined are identifiєd in Figure 1. They include the stellar H_{α} and He II 6527. the interstellar $6614 \AA$ feature, and a multitude of narrow,

Fig. 1: Lambda Cephei: The Effect of Resolution
weak, telluric water vapour lines. The telluric water lines and their relative equivalent widths are indicated above the spectra. This data was taken from Mocre et al. (1966) and may not give the exact relative intensities for these observations. All of the spectra have been filtered by a fourier transform technique to 40% of the Nyguist frequency, which is roughly the true resolution of the spectra. All spectra had considerable 10%) response changes along the array, due mostly to a light frost on the window of the detector. This was removed by dividing by the spectrum of a lamp which was taken immediately before cr after the observation. For the time series spectra the underlying shape of the spectrum did not vary within the error (0.1\%) of the lamp calibration. All spectra were rectified to a linear continuum.

Figure 1 shows the absolute necessity to resolve the telluric water lines. As the Figure 2 time series of Lamda Cep over 6 hours shows, the water lines vary significantly cver one hour. In Figure 1 the top spectrum shows the mean of the time series of high resolution spectra. Below it are two spectra recorded at KpNo in June, 1978 (courtesy of G. G. Fahlman and G. A. H. Walker) using a lower resolution spectrograph. The bottca spectrum in Figure 1, is the top spectrum but convolved with a Gaussian to give approximately the same instrumental resclution as the KFNO spectra. It is evident that the variation in an Ha profile can be entirely due to telluric water line variations, if the instrumental resolution is inadeguate to clearly separate these variations out.

The time series of Lambda Cephei (spectral type 06f) shown
in Figure 2 covers 6.5 hours. The average of this time series of observations is shown at the top of Figure 1. The lines below are the individual spectra divided by the mean, then normalized. Although there are suggestions of underlying broad (say about 10 A) changes, these are less than the noise level. In the day to day observations shown in Figure 3, there is clear evidence of a variation at the $H \alpha$ line of the enission feature at velocities near $200 \mathrm{Km} \mathrm{s} \mathrm{s}^{-1}$, and on the absorpticn side at velccities near -300 $\mathrm{Km} \mathbf{s}^{-1}$.

The time series difference spectra, number 1 to 9 of Figure 2. can be analyzed to determine the statistical significance of any variations. The report by York et al. (1977) of a feature of FHHM $150 \mathrm{Km} s^{-1}$ changing over a period of 6 hours is cnly slightly wider than scme of the telluric water features, and leads to scme difficultly in interpreting changes. The standard deviation of the spectra is in the range of 0.6 to 0.8% of the mean, other than for spectrum 9. Assuming the noise to have a normal distribution with this variance, the fluctuations must have an amplitude exceeding 2.57 standard deviations to have a less than 1% probability of chance occurence. This amplitude is indicated in Figure 2. The smoothed series of plots in Figure 2 are the same spectra as those on the left but averaged over 11 diodes. This reduces the variance by a factor of the square root of 11. The lines for a statistical significance cf 99% are again drawn on the plot. It can be seen that there are many features which do vary significantly. But the features that are varying all correspond to the wavelengths of telluric lines, except for the feature at a velocity with respect to the $H \alpha$ line
of $+200 \mathrm{Km} \mathrm{s}^{-1}$ (left dotted line). This exceeds the 99% significance level in records $1,2,3,6,7$, and 8 , going from an excess to a deficiency with respect to the mean. The variation occurs in the line (see figure 1) near the top of the emission feature. The subtraction would be very sensitive to very small shifts of the line in this region. There are two reasons to think that this feature may not be stellar in origin. First. its variation correlates very well with the water lines at a velocity with respect to H of $-700 \mathrm{Km} \mathrm{s} \mathrm{s}^{-1}$ (dotted line on right). And seccnd, the feature shows no velocity shift over this time period, which might be expected in a wind. I conclude that real variations are present in the time series, but they are most likely due to telluric features.

Alpha Cam (spectral type 09.5Ia) was chosen because of spectral type, and the presence of the emission line at $H \alpha$. Of all the stars examined it seems to have the most significant variations, see Figure 4.

Delta orionis (spectral type 09.5II) was cbserved because of the variation reported by York, et al. (1977). Observations made within one night, oct 16/17, have no real indication cf a change. There is only weak evidence for a profile change in five days, because of the confusion created by the different strength of the telluric lines. This star is a spectroscopic binary of period of 5 days, which produces velocity shifts, but probably not profile changes. This is shown in figure 5.

The Sobclev approximation allows an estimate of the size of the region producing the fhotons in a given wavelength interval. Although the thickness of the shells of equal line of sight ve-

10
Oct 11/12 23:00
11
Oct 11/12 01:08
12
Oct 12/13 22:15

13
Oct 16/17 21:05

14
Oct 16/17
23:38
15
Oct $16 / 17$
$04: 28$
15
Oct $16 / 17$
$04: 28$
15
Oct $16 / 17$
$04: 28$

Fiq. 3: Lamtda ceptei day tc day

Fig. 4: Alpha Cam day to day

19
Oct 12/13 02:31

20
Oct 12/13 03:01

21
Oct 16/17
23:00

22
Oct 16/17 03:41

Fig. 5: Delta Ori day to day
locity will vary with the velocity and distance from the star, the contribution to the profile will be weighted towards regions of higher density. To estimate the total intensity in a wavelength interval, $\Delta \lambda$, all integrals of the emissicn cuer the shell will be replaced by average quantities. If the shell has an average line of sight thickness. Δs, then the total volume emitting in the wavelength interval is approximately $4 \pi r_{*}{ }^{2} \Delta S f$. where f is a factor containing the difference between the true emitting area and the assumed disk of two stellar radii, $2 r_{*}$. The constant f will be assumed to be 1. The thickness of the constant line of sight velocity shells is approximately constant over the region of dcminant emission. These assumptions are justified by the actual calculations of line profiles as dcre by Cassinelli, et al. (1978). The error of these approximations may be as large as a factor of five, but depends on the line considered. The average shell thickness, Δs, will be estinated frcm the line cf sight velocity gradient. $d v / d s f=\cos ^{2} \phi d v / d r$ $+\sin ^{2} \phi \mathrm{v} / \mathrm{r}$, where ϕ is the angle between the line of sight and the star) as

$$
\begin{equation*}
\Delta s=\frac{\Delta \lambda}{\lambda} \frac{c}{d v / d s}=1.4 \times 10^{11}\left(\frac{\Delta \lambda}{.3 A}\right)\left(\frac{6562 A}{\lambda}\right)\left(\frac{10^{-4}}{d w / d s}\right) c \mathrm{~m} . \tag{1}
\end{equation*}
$$

A fluctuation in the wind wich changes the emission rate will be cbserved as some fractional change of the flux obtained by integrating over all regions emitting in that wavelength range. Assuming that the emission rate changes by 100%, in the following section an estimate will be made of the size of the fluctuation causing a given fractional intensity change. If the fluctuaticn is a regicn of size ℓ, cnly that part of the fluctuation
which is moving at an appropriate $v \in l o c i t y ~ t o ~ e f f e c t ~ t h e ~ i n t e n-~$ sity in the walength interval contributes to the intensity change.

If the fluctuation is moving at a uniform velocity with an internal velocity dispersion less than the thermal speed, then the fractional change in intensity in one wavelength interval would be

$$
\begin{equation*}
\frac{\Delta I_{\lambda}}{I_{\lambda}}=\frac{l^{3}}{4 \pi r_{\alpha}^{2} \Delta s}=6 \times 10^{-3} l_{11}^{3} r_{12}^{-2}\left(\frac{\Delta \lambda}{\cdot 3 A}\right)^{-1}\left(\frac{d v / d s}{10^{-4}}\right), \tag{2}
\end{equation*}
$$

where $l_{l l}$ is the size of the fluctuation moving with a common velocity, in units of $1011 \mathrm{~cm}, \mathrm{r}_{12}$ is the size of the star in units of $1012 \mathrm{~cm}, \Delta \lambda$ the spectral resolution in units of 0.3 A . which was the spectrograph resolution used. A typical velocity gradient is found by taking a terminal velocity of 1000 Km s reached over a distance of $10^{12} \mathrm{~cm}$.

For a fluctuation which has a velocity gradient which is the same as the wind, the minimum volume emitting in a given wavelength interval would be just the velocity shell thickness cubed. In this case the intensity fluctuation is

$$
\begin{equation*}
\frac{\Delta I_{\lambda}}{I_{\lambda}}=\frac{(\Delta s)^{3}}{4 \pi r_{*}^{2} \Delta s}=2 \times 10^{-5} r_{12}^{-2}\left(\frac{\Delta \lambda}{.3 A}\right)^{2}\left(\frac{10^{-4}}{d \nu / d s}\right)^{2} \tag{3}
\end{equation*}
$$

A more realistic situation might be if a fluctuation of size l has coly a thin slab of thickness Δs moving at the approprate velocity to be in the desired wavelength interval. In this case

$$
\begin{equation*}
\frac{\Delta I_{\lambda}}{I_{\lambda}}=\frac{l^{2} \Delta s}{4 \pi r_{*}^{2} \Delta s}=8 \times 10^{-4} l_{11}^{2} r_{12}^{-2} \tag{4}
\end{equation*}
$$

The λ Cep time series restricts the magnitude of an intensity fluctuation to less than 2% over the six hour span. Equation 4 then limits the size of the largest region to change in this time to $5 \times 10^{11} \mathrm{Cl}$.

These cbservations have confirmed the variability of the stellar $H \alpha$ line profile over times longer than one day, and conclusively show that the variation is due to the change in the profile, nct changing telluric lines. The amplitude of the intensity change in any one pixel is only slightly greater than what might be due to noise, but considering that groups of more than 10 pixels show the same change gives considerable confidence to the physical reality of the change. The one time series of λ cep has no convincing evidence for any short term variaticn, or evolution of the profile. The signal to noise in the tiae series spectra is cnly about 50 , which was a constraint imposed on the maximum integration time by the detector ccoling systef.

CHAPTER 3. SUPERSCNIC ACCRETION

Optical observations of variability are averages cuer the entire volume of enission at that particular wavelength. If the fluctuations in the wind contain components on a small scale compared to the scale of the wind, the detection of fluctuations by way of techniques in which the integrated light is cbserved, are limited by the signal to noise which can be acquired. The disccuery of two X-ray binaries imbedded in stellar winds. namely cen $\mathrm{X}-3$ and $301700-37$ (=HD153919) allows the possibility of using the X-ray source as a probe of the stellar wind. since the X-ray luminosity is directly related to the rate of accretion of a small fraction of the stellar wind cnto the neutron star, the intensity of the X-ray source can be used with the aid of a sufficiently detailed understanding of the accretion frocess to derive estimates of the density and velocity in the wind. This was the subject of the published paper which has been attached as Appendix 1. A summary of the principle results of the paper which support the conclusions of this thesis is given below.

A schematic drawing of the supersonic accretion process is shown in figure 5 and the regions referred to are numbered in the figure. The incoming gas, region 1 , is moving at a speed V with respect to the neutron star of mass M. The streamines are bent in by the neutron star's qravitational field. The mass and the velocity define the accretion radius, $R_{A}=2 G M / V^{2}$. which gives (apart from an efficiency factor which is close to onel the cross section for accretion of material. The incoming gas strikes a shock cone trailing the neutron star, called the

sheath, region 2. The gas is shock heated to a temperature of $3 \times 10^{6}\left(\mathrm{I} / 10^{12} \mathrm{~cm}\right)^{-1} \mathrm{~K}$. If the density is sufficiently high the gas cccls. In the sheath the gas loses its ccmponent of velocity away from the neutron star, joins the accretion column and starts falling down, region 3. Near the accreting neutron star the X-ray luminosity may be large enough to raise the temperature by compton heating. The column will then expand cut to an almost spherical inflcu, region 4. Eventually the flow encounters the magnetosphere of the neutron star, region 5, below which the dynamics of the flow are regulated by the magnetic field. The gas strikes another shock a short distance above the surface of the neutron star, region 6 . where the kinetic energy of infall is converted into thermal energy which is mostly radiated away as X-rays. The table below gives length and time scales characteristic of the different regions.
taele 2: SCALeS IN SUPERSONIC ACCRETION

region	size scale	time scale
star	$10^{12} \mathrm{~cm}$	1 day
accretion column	$10^{10-11} \mathrm{~cm}$	500 seconds
magnetosphere	$10^{8-9} \mathrm{~cm}$	1 second
neutron star	$10^{5} \mathrm{~cm}$	1 millisecond

An analysis of this model yields several guantities which are directly related to the major parameters of interest in the stellar wind, the stellar wind density, n, and velocity. The luminosity of the unobscured source is

$$
\begin{equation*}
L=4.7 \times 10^{36} n_{1 /} V_{8}{ }^{-3}\left(M / M_{0}\right)^{3}\left(R_{x} / 10^{6} \mathrm{~cm}\right)^{-1} \beta \text { erg s-1. } \tag{5}
\end{equation*}
$$

where β is a factor usually of order one giving the efficiency
of the accretion, $n_{11}=n_{0} /\left(10^{11} \mathrm{~cm}^{-3}\right)$, and $V_{8}=V / 10^{8} \mathrm{~cm} \mathrm{~s}^{-1}$.
The angle that the shock cone makes with the axis of the accreticn colurn is

$$
\begin{equation*}
\theta=2.7^{\circ} \quad\left(T_{c o l} / 10^{6} \mathrm{~K}\right) \quad \mathrm{V}_{8}-2 \text { : } \tag{6}
\end{equation*}
$$

The temperature in the column, Tcol. is not directly observable, but an upper limit can be obtained by considering the heating and cooling processes,

$$
\begin{equation*}
\left(\mathrm{I}_{\text {col }} / 10^{6} \mathrm{~K}\right)<1.9 \mathrm{n}_{11} 4 / 15 \mathrm{~V}_{8} /^{25} \tag{7}
\end{equation*}
$$

This can be used to estimate the optical depth up the centre of the accretion column, $\tau_{c o l}$. due to electron scattering

$$
\begin{equation*}
\tau_{c o l}>2.2 \mathrm{n}_{11^{-8 / 15}} V_{8} 52 / 15 . \tag{8}
\end{equation*}
$$

The electron scattering cptical depth up the sheath is less than that up the column if $n_{\|} V_{8}-2 \times 3.5$, which is independent of the estimate of the cclumn terperature. With these simple relations in hand and some $X-r a y$ data of an object that is clearly fueled by a stellar wind it is possible to confirm the model of the accretion process outlined above. More importantly the observations can be used to derive the density and velocity in the wind.

Two fairly good sets of published data exist for the scurce Cen $x-3$, which appears to be the clearest case of accretion from a spherical supersonic wind. The source $301700-37$ (=HD 15ミ919) yould appear to be a very strong stellar wind source from its optical spectrum (see Fahlman. Carlberg, and Walker 1977) although there are significant effects in the spectrum associated with the period of the neutron star orbiting the o6f primary. These effects may ${ }_{A}^{b e}$ due to a wake of disturbed gas trailing the neutron star (see Appendix 1). Or they may represent a signifi-
cant distortion of the stellar wind itself. In any case, the x ray data from 301700-37 has a lower count rate than Cen $X-3$. hence greater statistical errors. In $C \in n X-3$ the observational situation is almost the exact reverse; the X-ray source is one of the brighter scurces in the sky, but its optical companion is a 14 th magnitude $O B$ star which has been poorly studied (conti 1978).

The X-ray data for cen $X-3$ shows several scales of variability: a 4.8 second pulsation period, ascribed to the rotaticn of the neutron star and its magnetic field, a 2.1 day ortital period sometimes superposed with "anomalous dips", and an aperiodic change in the mean intensity level with a time scale of order one month.: A particularly exciting observation was made by pounds, et al. (1975), who observed regular dips occurring every orbit during a transition from X-ray low to high state. Jackson (1975) proposed that the two distinct dips were due to the reduction of the received flux by scattering in the two sides of the sheath of the accretion column. $H \in d \in d u c \in d a$ velocity of the wind with respect to the neutron star of between 375 and $620 \mathrm{~km} \mathrm{~s}^{-1}$, and a cclumn semi-angle of 200 . From equation (6) and the velocities guoted by Jackson, the implied column temperature is in the range $3.5-9.6 \times 105 \mathrm{~K}$. Schreifr et al. (1976) estimate the density in the wind as $1-5 \times 10^{11} \mathrm{~cm}^{-3}$. These two estimates are consistent with the limiting temperature of $1.5 \times 10^{6} \mathrm{~K}$ from Equation (7). Accepting Jackson's propesal that the double dips are due to scattering in the sheath, but using the theory developed in Appendix 1, more informaticr can be derived frcm the observations. Pounds, et al. (1975) note
that the relative depths of the dips decrease as the source turns on. Also, from inspection of their published data cne can see that the dips appear to become single as the source turns on. A schematic tracing of the X-ray intensity is shown in Figure 7.

From these observations and the model of the long terf variaticns proposed by Schreier, et al. A rough trajectory of the variation of the stellar wind density and velocity car be plotted, which is shown in Figure 8. At point A the source is in $t t \in x-r a y$ law state and at B the high state. Adopting the estimate of Schreier et al. for the low state density as 5×101: c䀳 ${ }^{-3}$, and high state density of $10: 1 \mathrm{~cm}$. fixes the densities at point and B, but not the velocity. The data shows that as the wind density decreases allowing the scurce to beccme visible, the velccity must be such that the optical depth up the sheath exceeds the column optical depth, and be close to one in order to provide the deep dips. This puts point a near the $\tau_{c}=1$ line. As the wind density drops the dips have a decreasing fractional depth, which means that the velocity must be dropping fast enough that the density and velocity are moving further below the $\tau_{c}=1$ line. Eventually the dips become single as the density and velocity cross the $\tau_{s}>\tau_{c}$ line. The combined density and velocity variation is such that the accretion rate, and hence the intrinsic luminosity cnly increase slightly while gring from low to high state. The source settles down at the high state, point B, with a density of $10^{11} \mathbf{c} \mathrm{~m}^{-3}$ and a wind velocity with respect to the neutron star of about $500 \mathrm{~km} \mathrm{~s}^{-\mathbf{1}}$. The cptical depth up the cclumn is so small that dips are not

Fig. 8: Density Velocity Variation of cen $x-3$
seen regularly. When the source starts to turn off the data suggests that a different density velocity trajectory is followed, such that the optical depth up the column and sheath always remains small. As the source approachs the point a again it $i s$ otscured by the increasing density of the stellar wind.

If the trajectory of the variation of the wind velocity and density is schematically correct it is possible to draw a conclusicn as to the driving force for the wind. The trajectory in Figure 8 suggests a correlation between the wind velccity and the wind density which would imply the acceleration of the gas up to the location of the neutron star increases as the density in the wind increases. In the radiatively driven wind of cak the acceleration of the wind varies as n^{-}, where is a constant slightly less than cne. This implies that the radiation acceleration should drop as the density increases, on the cther hand Hearn (1975) suggests that the wind is initially accelerated in a hot corona. The corcna would heated by shock waves which grow from instabilities within the atmosphere. As will be discussed in Chapter 5, one of the dominant instabilities present is the thermal instability which grows on a time scale which varies as n^{-2}. This instability may provide the correlation between wind velocity and density.

The cne month scale of the high low state variability is an enigra. There appears to be no natural scale in the wind to explain it, so it may be connected to the subatmosphere of the star (Canncn and Thcmas 1977 and Thomas 1973).

The observations of Schreier et al. (1976) contain evidence that there are small scale (of order 1011 cm) fluctuations
in the wind. The count rate clearly varies with an amplitude greater that the statistical error on time scales of about one hour. This time scale, which has been set by the spacecraft earth orbit and pointing mode, is much longer than the natural response time of the accretion process. which is about ten minutes, from Table 2. It would be extremely interesting to have data with a time resclution of a few minutes to see if the fluctuations in the wind become time resolved.

In summary the theory of supersonic accretion that was developed and applied to a limited amount of data on cen $x-3$ shows that there is a positive correlation between the wind density and wind velocity during a period of transition from x-ray low tc high state.

CHAPTER 4. PHYSICAL DESCRIPTION OF THE GAS

The stability of the uind will be investigated with a linearized stability analysis. The analysis requires that the prevailing physical conditions be specified. This chapter is devoted to the derivation of the required guantities. The difficult physical guantities are those describing the interaction of the gas and the stellar radiation field, which are the rate of energy gain and loss, and the radiation acceleration. Since this interaction is probably the key to the stellar wind, an accurate physical description must be used.

In crder to derive the cooling rate, heating rate, and radiation force it is $n \in c e s s a r y$ to know the distribution of atcms over the various stages of ionization, and the rate of absorption and emission of radiation by the ions. These calculaticns reguire atomic constants to describe the radiation processes, which then become functions of the local density, temperature, and radiation field.

The radiation field is influenced by the flow of the gas, so that a good approximation to the radiaticn field would require knowing the details of the flow. As an approximation I have taken the unattenuated, but geometrically diluted stellar radiation field. This offers the advantage of retaining a completely local analysis at the cost of oversimplifying the radiative transfer. The approximation of the unattenuated field will have the effect of somewhat over estimating the radiation fcrce because overlapping lines are ignored. As discussed later the effect is likely to be at most a factor of two.

The gas is assumed to be in ionization equilibrium, which
is valid for time scales longer than the recombinaticn time scale, $30\left(T / 10^{4} K\right)^{1} / /^{2} n_{n}^{-1}$ seconds. Equilibrium implies that the rate of transitions out of an ionization state is balanced by the rate in. For element i the rate out of ionization state j is determined by the rate of ionization to the next higher ion and the recombination rate to the next lower ion. The rate into the ionization state is determined by recombinations from above and icnizations from below. Algetraically,

$$
\begin{aligned}
& n_{i j}\left(n_{e} C_{i j}+\zeta_{i j}+n_{e} \alpha_{i j}\right)= \\
& n_{i, j-1}\left(n_{e} C_{i j-1}+\zeta_{i, j-1}\right)+n_{i, j+1} n_{e} \alpha_{i g j+\prime}
\end{aligned}
$$

where $C_{i j}\left(n_{e}, T\right)$ is the collisicnal ionization rate out of j $S_{i j}$ is the photoionization rate $\alpha_{i j}\left(n_{e}, T\right)$ is the recombination rate from level j to $j-1$.

These ionization balance equations were solved for as many atcus of significant stellar abundance for which gocd atcmic data was available. The elements used are shown with their assumed abundances in the accompanying table. It would have been desirable to have included Nickel and Iron with their fairly high cosmic abundance and great number of spectral lines, but no reliable and consistert set of data for a wide temperature range could be found.

TABLE 3: atomic ABUNDANCES

ELEMENT	Z	ABUNDANCE
Hydrogen	1	1.0
Helium	2	8.5×10^{-2}
Carbon	6	3.3×10^{-4}
Nitrogen	7	9.1×10^{-5}

Cxygen	8	6.6×10^{-4}
Neon	10	8.3×10^{-5}
Magnesium	12	2.6×10^{-5}
Silicon	14	3.3×10^{-5}
Sulfur	16	1.6×10^{-5}

These abundances were taken from Allen (1973).
Standard rates were used for all the photoionization cross sections, recombination rates, and collisional ionzation rates. But since the gas has a fairly high density (order 10:1 cara) and is in an intense radiation field it is necessary to make some corrections. The density effects are allowed for by ading corrections to the recombination rate for three body reccmbinaticns, and recombination to upper levels. A small correction for ionization out of upper levels is also included. The greatest difficulty is allcwing for the effect of both the radiation field and the density effects on the dielectronic recombination rate. This process depends upcn captures to levels of large guantum number, and it is possible that these levels may be reionized before they can stabilize by cascading down tc lower levels. These effects bave been crudely allowed for by calculating a multiplicative correction factor, based on fit to the guantum mechanical calculations of Summers (1974). All these rates and corrections are discussed in Appendix 2.

The Icnization Balance

The sclution to the icnization balance equations is very simple since the lowest level cnly interacts with the second level, and then the second level is linked to the first and
third, and sc on. This gives the ratio of the population in a ionization state to the population in the next lower level. A normalization completes the solution. The equations are weakly nonlinear through their dependence on the electron density, but usually twc or three iterations suffices for an accuracy of about 1 part in 106 . The results are given in terms of the ionization fraction $X_{i j}$ for ion j of atori i where $X_{i j}$ summed over j is unity. To get the number of atoms of type i,j we take the product $X_{i j} A_{i} n_{\text {, where }} A_{i}$ is the abundance of atom i. In Figure 9 the ionization balance for a gas of density $10^{21} \mathrm{~cm} \mathrm{~m}^{-3}$. in the undiluted radiation field of the star, is shown for a range of temperatures. It is found that for the range of densities of interest the reduction of the dielectronic recombination rate by the density and radiation field effects is significant and $t \in n d s$ to shift the ionization slightly to higher stages of ionization. At very high densities the distribution approaches to the distribution expected for LTE.

The heating and cooling rate for a gas of density 1011 cm in a undiluted radiation field are shown in figure 10. The plotted quantities are the ccoling and heating rates, \mathcal{L} and Γ 。 respectively. The plotted quantities are to be multiplied by the density squared to obtain the rates per cm^{-3}. The generalized cooling rate is taken as $\mathscr{L}=n^{2}(\mathcal{\Lambda}-\Gamma)$. The quantity \mathscr{L} / n^{2} is plotted.

The radiative equilibrium between the photoionization heating and radiative losses holds at temperatures of about $2 \times 10^{4} \mathrm{~K}$ for densities around $10^{12} \mathrm{~cm}^{-3}$. This is shown in Figure 10 for zero velocity of the gas with respect to the star. Of interest

Fiq. 10: Heating and Cccling Eates for Solar Abundances
to the "warl radiation acceleration" model is that near $2 \times 1 \mathrm{C}^{s} \mathrm{~K}$ the loss rate in an optically thin medium is at maximum. such a temperature would be very difficult to maintain in the gas. reguiring an immense input of energy from scme other heat source. Between 10^{6} and $10^{7} \mathrm{~K}$ the loss rate drops to a minimum where the radiative losses would be more easily balanced. The radiation losses from such a hot gas would consist largely of x rays, which would be suitable for producing the O VI ion, as has been suggested by Cassinelli and olson (1978).

The gas is thermally unstable (see Field 1965) to koth isochoric and isobaric disturbances when the temperature derivative of the generalized cooling rate at constant density is negative. The temperature gradient is not quite steep enough (loqarithmic derivative of the cooling rate less than abcut - 3) at any foint to admit isentropic instability, wherein ordinary sound waves gain energy in the rarefactions and lose it in compressions. Even if there is a slight inaccuracy in the calculations such that this isentrofic instability condition could be met. it would appear in a very narrouly defined temperature interval. Calculaticns by Raymond et al. (1978) indicate that with the inclusion of the iron group elements the slope becomes even less steef, and the gas is further away from isentropic instability. The loss rate and its derivative turns out to be critical to the stability cf an accelerating atmosphere, so it has keen plotted it for the cNo elements enhanced by a factor of 10 in Figure 11. Obviously the abundance has a strong effect on the cocling rate, since the $C N O$ elements are responsible for the cocling in the range 10^{5} to $10^{6} \mathrm{~K}$.

The stellar wind is usually optically thin at optical and longer wavelengths for continuum emission, but can become optally thick in the resonance lines, which provide the line cooling as well as most of the radiation acceleration. Using the alteration to the loss rate of Rybicki and Hummer (1978) the reduced cooling rate is shown in Figure 12 for a velocity aradient cf $d v / d z=10^{-3}$. Note that the specific cooling rate (units of erg $\mathrm{cm}^{-3} \mathrm{~s}^{-1}$) will still increase approximately linearly with density, since the losses vary with the cooling rate in erg $\mathrm{cm}+3$ \sim^{-1} times the density squared, over the optical depth. This is a very rough calculation, since nc allowance has been made for the change of the local intensity due to the optically thick lines.

Radiation Force

The radiation force is defined as

$$
\begin{equation*}
g_{\mathrm{rad}}=\sum_{i j} \frac{A_{i} x_{i j}}{\bar{m}} \quad \frac{\pi F_{\nu}}{c} \sigma_{i j}(\nu) d \nu, \tag{9}
\end{equation*}
$$

where $\mathbb{m}=\sum_{i} A_{i} m_{i}$, and l_{i} is $t h \in$ atomic weight of the various ions. If the unattenuated radiation field is used it provides an upper limit to the radiation force. A more realistic ϵ timate is supplied by the method used by Castor, Abbott, and klein (1975). Which is based on an analysis of the radiative transfer in cone spectral line originally done by Lucy (1971). With the aid cf the Sobolev approximation the problem can be solved and it is found that the force due to lines is

$$
\begin{equation*}
g_{r a d}=g_{r a d}^{0} \frac{1-e^{-\tau}}{\tau} \tag{10}
\end{equation*}
$$

Fig. 12: Cooling with optically thick lines.

Where $\quad \tau=\pi e^{2 /(m C)} f_{i j}(1) A_{i} x_{i j} n c\left[1 / 2\left(1+\mu^{2}\right)\right.$

$$
\begin{equation*}
(d v / d z-v / r)+v / r\}^{-1} \tag{11}
\end{equation*}
$$

anc
$\pi e^{2} /(m c)=.02654$
g^{0} rad is the acceleration in an optically thin gas $f_{i j}(l)$ is the oscillator strength for line 1 of atcm i icnization state j. c is the speed of light
μ is cosine of the angle subtended by the stellar radius from the point in the gas.

In addition to the force on the lines there is the force on the electrons,

$$
\begin{equation*}
g_{e}=\frac{\pi F}{c} \sigma_{e} \frac{n_{e}}{n m} \tag{112}
\end{equation*}
$$

where F is the flux integrated over all frequencies, and is the Thomscn cross secticn. The force on the electrons in the undiluted radiation field in a confletely ionized gas is 194.7
 usually guite small, with the undiluted radiation field at a density of $1011 \mathrm{~cm}^{-3}$ it is $63.48 \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-2}$.

The line acceleration is dominated by cptically thick lines, and increases almost linearly with the velocity gradient. A schematic of the acceleration as a function of $d v / d z$ is shown in Figure 11 below. In Figure 13, the acceleration is a wak function of temperature in the range $104<T<3 \times 105 \mathrm{~K}$, but for temperatures larger than 2×10^{5} the force on the lines rapidly decreases. The slight hump at $2 \times 10^{5} \mathrm{~K}$ is due to the CNO elements changing ionization state and the entry of some new strong lines. The rapid fall cff is due to the removal of ions that

Fig. 13: Radiation Force as a Function of Temperature
have rescnance lines near the maximum of the stellar radiation field. The only force left beycnd $10^{7} \mathrm{~K}$ is the force on the electrcns.

The acceleration found here can be compared with the result found by cak. The acceleration can be represented in the same fcrm as they have.

$$
\begin{equation*}
g_{\text {rad }}=g_{e} M(t) . \tag{13}
\end{equation*}
$$

Where $t=\sigma_{e} n_{e} v_{t h}(d \nabla / d z)^{-1}$, qe is the radiation force on the $\in l \in c-$ trons, and v is the thermal $v \in l o c i t y . \quad I$ find that $N(t)$ $=.067 \mathrm{t}-0.91$ for $\mathrm{n}=10^{10}$, and $\mathrm{M}(\mathrm{t})=.022 \mathrm{t}$-0.83 for $\mathrm{n}=10^{13}$ cm-3. whereas cak find . $033 \mathrm{t}^{-0.7}$. which is good agreement. There are two reasons for the density dependence of the acceleration. First, a few of the lines go from optically thick to thin as the density gces down, and secondy, the ionization balance is density dependent in this calculaticn, through the allowance for ccllisional ionization, and through the density dependence of the rate coefficients.

The deficiencies in this calculation of the radiation force are due to a somewhat limited line list, mostly due to the lack of any ircn group elements, and more seriously a very simple treatment of radiation transfer. Within the approximaticn used these two deficiencies cancel each other out to a certain extent. The radiation force has befn over estimated by not taking account of overlapping lines, which would involve formulating a model of the atmosphere intervening between the point in the gas and the star. The radiaticn force increases with the number of lines present, but the flux available decreases as the number of lines goes up. Klein and castor (1978) have reported on new
calculations made by Abbott of the radiation force. He finds that the criginal CAK law is bracketted by twc alternative transfer schemes, and probably the CAK law represents a gocd aprroximation to the force. The calculations here are in good agreement with the CAK law.

The line acceleration varies approximately as ($\left.n_{i j} / n\right)$ ($\left.(d v / d z) / n_{i j}\right)^{\alpha}$ where α is in the range 0.7 to 0.9 . As the velocity gradient increases all lines become optically thin, and the force levels off at the maximum value. This means that the force depends on the abundances roughly to a fower in the range of . 1 to. 3. which is a very weak function. Therefore, the radiation force is insensitive to the assumed abuncances for flows in radiative eguilibrium because most of the lines are optically thick.

One aspect of the radiation transfer wich is important to the analysis of the stability of the flow is the shape of the lines, which can provide an immediate source of instability, as has been reported by Nelson and Hearn (1978). The instability they find only acts in subscnic flow. This has been left out because it is dependent on the details of the radiation transfer.

Mowentum Ealance

The number of free zero order guantities can be reduced by requiring that the equations of mass and momentum conservation be satisfied. In the case of radiative equilibrium the temperature is determined by the balance of heating and cocling, otherwise the temperature is just arbitrarily specified.

To illustrate the sclutions of the mass and momentum quations the one dimensional equation of mass conservation is substituted into the momentum balance equation (see cak and in Chapter 5, below) with zero temperature derivatives,

$$
\begin{equation*}
\left(v-\frac{2 R T}{v}\right) \frac{d u}{d r}=\frac{2 R T}{r}-g+g_{\mathrm{rad}} \tag{14}
\end{equation*}
$$

where the form of the mass conservation equation for a spherically symmetric system has been used. Spherical gecmetry has been used partly because the density gradient remains negative even if the velccity gradient acquires a small negative value. The perturbations are in the form of plane waves, so all derivatives will be made with respect to the height z, instead of r.

The independent variable is chosen to be dv/dz. In Figure 14 the two sides of the momentum equation are shown as functions of $d v / d z$. For supersonic flow, $v^{2}>2 R T$, there is always one deccelerating sclution, where the radiation force is less than the gravitational field. As can be seen from Figure 11, if the velocity isn't too large there are two solutions in which the gas is accelerated outwards. For typical stellar wind conditions the two solutions have $d v / d z$ approximately equal to 10^{-4} and 1 . The two scluticns are acceptable locally, but boundary and continuity conditions may rule out the high gradient solution. By imposing continuity of velocity frem subsonic to supersonic flow CAK restrict themselves to the low gradient sclution. The solution with the large velocity gradient is accelerating so rafidy that the wind beccmes optically thin in the resonance lines. This means that if the acceleration could be maintained over a distance of 0.1% of the stellar radius, the gas would be acving

Solution to $\left(v-\frac{2 R T}{v}\right) \frac{d v}{d z}=\frac{2 R T}{r}-g+g_{\text {rad }}$. $\left(\mathrm{v}-\frac{2 \mathrm{RT}}{\mathrm{v}}\right) \frac{\mathrm{dv}}{\mathrm{d} z}$
$\frac{2 R T}{\mathrm{r}}-\mathrm{g}+\mathrm{g}_{\mathrm{rad}}$, low density $\ldots \ldots \ldots$
$\frac{2 R T}{r}-g+g_{r a d}$, high density
(1) $\mathrm{dv} / \mathrm{dz}<0$
(2) $\mathrm{dv} / \mathrm{dz}>0$
(3) $\mathrm{dv} / \mathrm{dz}>0$, high gradient solution
at the terminal velocity. Although this solution is physically acceptable, observaticnal evidence suggests that it may not be realized.

As can be seen from Figure 14, if the velocity becomes too large no accelerating solution can be fund. The maximum velocity for which accelerating solutions exist varies with the gravity and the density cf the gas. A table is given below which indicates the maximum velocity giving an outward acceleration. In Table 4 the v max cclumn gives the maximum velocity at which a positive $d v / d z$ can be found, the value of which is given in the next column. Two values for the gravity are used to show that the maximum velocity with $d v / d z>0$ is mostly effected by the gas density. The gas was chosen to $k \in$ in radiative equilibrium, which gives a temperature of $2 \times 10^{4} \mathrm{~K}$.

TABLE 4: LIMITING VELOCITY FCR ACCELERATING SOIUTICNS

$$
\mathrm{g}=10^{4} \mathrm{~cm} \mathrm{~s}^{-2}
$$

	$V \max$	$\mathrm{dv} / \mathrm{dz}$	$V \max$	$\mathrm{dv} / \mathrm{dz}$
$\mathrm{n}=10^{210}$	4.1×10^{8}	$.16 \times 10^{-3}$	4.45×10^{8}	$.84 \times 10^{-4}$
$\mathrm{n}=10^{-4}$	4.7×10^{7}	$.16 \times 10^{-2}$	5.2×10^{7}	$.16 \times 10^{-2}$
$\mathrm{n}=10^{-2} 2$	5.7×10^{6}	$.15 \times 10^{-2}$	6.0×10^{6}	$.64 \times 10^{-2}$

Table 4 shows that the maximum velocity is approximately inversely proportional to the density. The maximum velccity for acceleration decreases nearly to the sound speed at a density of $10^{12} \mathrm{c} \mathrm{m}^{-3}$. Below this velocity the Sobolev approximation used for deriving the radiation acceleration is invalid.

If a large portion of the flow, thicker than one Sokclev shell, (the sound speed divided by the velccity gradient) ac-
guires a velocity which is greater than the maximum for a positive velocity gradient in momentul balance, then the gas will deccelerate. This situation could arise if the flow is a chaotic medium in which elements of the fluid are propelled to velccitifs in excess of the maximum for acceleration, or have a density increase which makes the velccity greater than the maxiaum. The wind might consist of many, quite large patches, which are being accelerated and deccelerated with respect to one another. Where these regions collide their supersonic velocities vculd ensure shock heating which would produce temperatures appropriate to O VI and like ions.: This shock heated gas would cnly comprise a small portion of the tctal gas in the flow, and after forming would be blown away from the star.

Chapter 5. the stafility analysis

The cbservations suggest that a stellar wind is an extremely variable, inhomogenous flow. On scales of a day to years there are large general variations, which may originate within the star. The X-ray observations suggest small scale fluctuaticns cf order $10^{11} \mathrm{~cm}$. This observed variability could have two causes: the flow may start out in the lower atmosphere as smooth, and then enter a region of instability where it breaks up: or the existence of the flow may be depend upon scrie instability.

In this section the local statility of the flow will be investigated. This will be done by considering the propogation of infinitely small disturbances, i.e. a linearized analysis, with wavelengths short compared to the scale of variation uithin the stellar wind. This analysis is directed towards finding instabilities that are rapid amplifiers, i.e. the growth time scale is shorter than the time to move one scale length in the atmosphere; and absolute instabilities, which can actually generate oscillaticns or lead to "clumps" within the wind. One major limitation of this analysis is that it has only beendone for cne dimensional wave propogation, that is the waves can cnly have a velocity component which is oriented along the direction of propagation. For instance, this immediately rules out the fossibility of the Rayleigh Taylor instability \quad (Krolik 1977 . Nelson and Hearn 1978) . Similar analyses, but with more aproximations in the linearization, have been performed by Hearn (1972) and for quasars by Mestel et al. (1976).

The basic equations that apply are the conservaticn of wass

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0 . \tag{15}
\end{equation*}
$$

where ρ is the mass density and \vec{v} is the gas velocity. The conservation of momentum neglecting the viscosity is given by,

$$
\begin{equation*}
\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} v=-\frac{\nabla P}{p}-\vec{g}+\overrightarrow{g r a d}, \tag{16}
\end{equation*}
$$

where $g_{\text {rad }}$ (which will be sometimes abbreviated as g_{r}) is the acceleration due to radiation, P is the gas pressure, and 9 is the gravitational acceleration. The conservation of energy is expressed,

$$
\begin{equation*}
\frac{\partial\left(\rho\left[\frac{1}{2} v^{2}+e\right]\right)}{\partial t}=-\nabla \cdot\left(\rho \vec{v}\left[\frac{1}{2} v^{2}+h\right]-x \nabla T\right)-\mathcal{L}, \tag{17}
\end{equation*}
$$

where ϵ and h are are respectively the specific internal energy and enthalpy. \mathcal{L} is the generalized cooling rate in the frame of the gas, defined as $\mathcal{L}=L-(1-v / C) G$. where v is the velocity of the gas relative to the star and L and G are the local specific cooling and heating rates, respectively. The thermodynamic relatins required are an equation of state

$$
\begin{equation*}
p=k T\left(n+n_{e}\right) \text {, where } n_{e}=\sum_{i j}(j-1) n_{i j} \tag{18}
\end{equation*}
$$

The sum io is over the ionization states and the elements, respectively. The number density of atoms and electrons are n and ne. The internal energy is

$$
\begin{equation*}
e=3 / 2 k T(n+n)+\sum_{i j} n_{i j} x_{i, j-1} \tag{19}
\end{equation*}
$$

where $X_{i j}$ is the ionization energy of ion i, j with density $n_{i j}$. The enthalpy is defined as.

$$
\begin{equation*}
h=e+P / \rho \tag{20}
\end{equation*}
$$

For the conductivity k the standard value cf Spitzer (1962) has
been used.
The above equations are linearized in order to oktain a dispersion relation, which is a polynomial describing the propa gaticn of waves of infinitesmal amplitude. The linearized equations are obtained by imposing a perturbation on the temperature, density and velocity of the form

$$
\begin{equation*}
Q(z, t)=Q_{0}(z, t)+\delta q_{1}(\omega k) \exp [i(k z-\omega t)] . \tag{21}
\end{equation*}
$$

and substituting into the conservation equations. It has been assumed that the scale of variation of $Q_{0}(z, t)$ and the radius of the star are much larger than the wavelength of the ferturbation. Equating terms of first order in results in the system of linearized equations. This can be written as a coefficient matrix, consisting of zero order quantities, their zero order derivatives, and powers of ω and k. The determinart of the matrix gives a pelynomial of third order in $w_{\text {, whe }}$ whis the dispersion relation. Although this process could have been carried through by hand and the roots cf the cubic polynomial derived analytically, it was far easier and less prene to error to do it with the aid of a computer. Besides, this analysis is eventually to be extended to more complex motions, in which case the computer would have to be used, sc the experience obtained in this simpler case will be usefully applied there. The tethed of generating the algebraic fcrm of the dispersion relation is outlined in Appendix 4.

To define the coefficients of the polyncmial, it is necessary to $k n c w$ the density, velocity and temperature, their first derivatives, the second derivative of the temperature, the radiaticn force, cocling and heating rates, and the electron den-
sity with their temperature and density derivatives. These guantities were derived in Chapter 4.

The roots of the dispersion equation are found using a computer program which finds the roots of complex pclynomials. The roct found is improved in accuracy by substituting it back into the polynomial and doing a Newton's method iteration until the fractional change is less than 1 part in 1015. Since the rots are computed for a seguence of k, the root for the next value of k is then estimated from the root just found by extrapolation. and the same iterative improvement performed. The limits to the accuracy of the numerical solutions means that when the rots have real and imaginary parts different by 15 orders of magnitude or the different roots themselves are widely separted, the smallest quantities may not be very accurate. The retbod of soluticn chosen was designed to suppress "numerical noise", but the resulting smoothness of the plctted rocts usually overestimate the accuracy of the numbers in the cases mentioned above. The perturbations are of the form exp[i(kz-wt)], consequently if the imaginary part of the frequency is positive for a given real k, then there is an instability at that wave number. This instability can act as an amplifier of a prefxisting wave, in which case it is called a convective or amplifying instability, or it can grow away from the starting value, either in a monotonic growth or in ever increasing oscillaticns, which is called an absolute instability. A mathematical method of distinguishing between the two types of instability based on determining the behavicur of the wave as $t \rightarrow \infty$, has been developed by Dysthe (1966), Bers (1975), and Akhiezer and Polovin (1971).

They find several criteria for determining the type of stakility, the easiest of which to apply is that if the simultaneous soluticn to $D(, k)=0$ and $d D / d k=0$, where D is the dispersion relaticn polynomial, exists, and has an imaginary freguency greater than zero, then the instability is absolute. This is a necessary and sufficient condition in the approximaticn of $t \rightarrow \infty$ in an infinite atmosphere. The critericn means that in the neightourhood of the solution (ω_{0}, k_{0}) to the two equations the root varies as $\omega=\omega_{0}+A\left(k-k_{0}\right)^{2}$, where A is a constant. This implies that an absolute instability is a sadde point of the imaginary part of the frequency as a function of k. The imaginary part cf the frequency will be at a maximum with respect to real k at the solution, and this freguency will dominate the growh rate. These two nonlinear equations, $D=0$ and dD/dk=0, were solved simultaneously with the aid of a computer routine, using the local maximum of the imaginary part of the frequency for real wavenumbers as a starting foint. An attempt was made to find common roots to the two equations by constructing the discriainant of the ccefficients of the two equations. This was unsuccessful because of the impossibility of retaining sufficient ruaerical accuracy.

In order to understand the dispersion relation and the physical crigin of the rcots, analytic expressions for the roots will be derived for a number of simple limiting cases. The rocts in a complex situation can be understood as superposition of these several simple cases. These limiting solutions have been derived with the aid of numerical solutions, and unless noted the calculated roots plotted came from a dispersion rela-
tin with coefficients calculated from a gas in an undiluted radiation field, with a density of $10^{2:} \mathrm{c} \mathbb{R}^{-3}$, and a velocity of $100 \mathrm{Km} \mathrm{s}^{-1}$. The resulting equilibrium quantities are in cos units: $T=1.57 \times 10^{4} \mathrm{~K} ; \quad \mathscr{L}=0, \mathrm{~d} \mathcal{L} / \mathrm{dT}=.46 \times 10^{-4}, \mathrm{~d} \mathcal{L} / \mathrm{dn}=$ $2 . \times 10^{-13}, \mathrm{dv} / \mathrm{dz}=.2 \times 10^{-3}, \mathrm{dn} / \mathrm{dz}=-2.1 . \mathrm{grad}=1.18 \times 10^{4}, \mathrm{dg} / \mathrm{da}$ $=-0.3 \times 10^{-1}$, and $\mathrm{dgr} / \mathrm{dn}=-.15 \times 10^{-6}$. It is found that the charafter of the roots changes little with a variation of the physcal parameters around these values for typical stellar wind conditicns.

Case 1: Sound Waves In An Atmosphere
The simplest case which has a non zero growth rate is a wave propogating vertically in a static, isothermal atmosphere, With no conduction or radiation present. In this case the disperson relation as given in the Appendix 3 reduces to

$$
\begin{aligned}
& \omega^{3}\left\{-i \varphi c_{v} R\right\}+\omega\left\{i k^{2}\left[2 R \rho\left(-e+h+c_{v} R T\right)\right]\right. \\
&\left.+k\left[\frac{4 R e}{n} \frac{d x}{d z}(-e+h)\right]+i 2 R e\left(\frac{1}{x} \frac{d x}{d z}\right)^{2}\left(e-h+c_{v} R T\right)\right\},
\end{aligned}
$$

where $c_{v}=\frac{1}{R} \frac{d e}{d T}$.

Defining $H=n /(d n / d z)$, this has solutions $\omega=0$ and in the limit of large and small k the nontrivial roots become

$$
\left.\begin{array}{l}
k \rightarrow \infty \quad \omega \rightarrow \pm \sqrt{\frac{2\left(h-e+c_{v} R T\right)}{c_{\nu}}}\left[h-\frac{i}{H} \frac{h-e}{h-e+c_{v} R T}\right] \\
k \rightarrow 0 \quad \omega \rightarrow \pm \sqrt{\frac{2\left(e+c_{\nu} R T-h\right)}{c_{\nu} H^{2}}}\left[1-i \frac{h-e}{e+c_{\nu} R T-h}\right. \tag{22}
\end{array} \quad k H\right] .
$$

This is essentially the well known solution of Lamb (1945) to the problem of wave propogation in an isothermal, exponential atmosphere. But note that the value of H, the scale height of

Fig. 15: Pseud Isothermal Static Atmosphere Foots
the density gradient, used in the numerical calculations was not the iscthermal scale height, but that the scale height was determined by the velocity gradient through the mass conservation equation. In the short wavelength limit $(k \rightarrow \infty)$ the waves move at a phase and group velocity equal to the ordinary scund velccity. Outward moving waves are amplified and inward moving waves are damped at a rate such that the momentum carried in the wave is kept constant. These waves are not absolute instabilities. At long wavelengths $(k \rightarrow 0)$ the real part cf the frequency goes to a finite limit, called the acoustic cutoff frequency, and the damping goes to zero. This means that these waves have a phase velocity going to infinity, but the group velocity goes to zero and no energy is propcgated. Physically this cutoff results from the atmosphere as a whele moving with the wave motion, rather than a wave propogating away from the source. The change over between the two limiting soluticns occurs for k of order H^{-2}. The solution is illustrated in the accompanying Figure 15. In Figure 15, and all cther graphs of the roots of the dispersion relation, the logarithm (base 10) of the real and imaginary parts of the wave frequency are separately plotted against the logarithm of the wave number. On the graph of the real part a symbol $(\nabla \Delta$ or $\diamond)$ on the line means that the real part is negative. On the graph of the imaqinary part the same symbcls indicates that the wave is unstable at that wave numer, that is, the shew imaginary part is positive. Note that freguently the twc acoustic roots have an identical magnitude, but opposite sign, so that in the plot the two lines lie on tof of each other.

The plots are done for k ranging from 1^{-15} to $1 \quad \mathrm{~cm}^{-1}$. Which is an unrealistically large range for the physical situation, but is done to illustrate the asymptotic limits of the roots. The physically acceptable range of wave numbers is for wave numbers less than the avelength of a stellar radius, 10-11 $c \mathbb{T}^{-1}$, to a wavenumber corresfonding to one mean free path. about $10^{-2} \mathrm{~cm}^{-1}$.

There is a maximum frequency for which the sclutions are valio. set by the longer time scale, recombination or the electron ion thermal equilibrium. The recombination frequency is

$$
\begin{equation*}
w_{\text {rec }}=.188 \mathrm{n}_{\|}\left(\mathrm{T} / 10^{4} \mathrm{~K}\right)^{-1} / 2 \mathrm{~s}^{-1} \tag{23}
\end{equation*}
$$

and the electron ion equilibrium frequency is

$$
\begin{equation*}
\omega_{e i}=7 \times 10^{4} \mathrm{n}_{11}\left(\mathrm{~T} / 10^{4} \mathrm{~K}\right)-3 / 2 \mathrm{~s}^{-1} \tag{24}
\end{equation*}
$$

The maximum frequency for which the calculations are valid then is the minimum of Wrec and wei. The minimum freguency of interest would be determined by the time for the complete replacement of the star's stellar wind envelope. This frequency is abcut $6 \times 10^{-5} \mathrm{~s}^{-1}$.

Case 2: The Effect of Conduction
Allowing conduction affects mostly the short wavelength rocts. Taking the dominant terms in the dispersion relation gives.

$$
\begin{gathered}
\omega^{3}\left\{-i \rho c_{u} R\right\}+\omega^{2} k^{2} k+\omega\left\{i k^{2}\left[2 R \rho\left(-e+h+c_{u} R T\right)\right]\right. \\
\left.+k\left[\frac{4 R e}{H}(h-e)\right]+i \frac{2 R \rho}{H^{2}}\left(e-h+c_{u} R T\right)\right\}
\end{gathered}
$$

- $2 R T K k^{4}$ 。

For this case the dominant terms of the roots for $k \rightarrow \infty$ are,

$$
\begin{equation*}
\omega=-\frac{i k}{\rho c_{v} R} k^{2} \tag{25}
\end{equation*}
$$

which is a heavily damped non propagating disturbance. The sound waves are given as

$$
\begin{equation*}
\omega= \pm \sqrt{2 R T}-i \frac{R e}{K}(h-c) \tag{26}
\end{equation*}
$$

which are isothermal sound waves, and always damped independent of direction of propagation. The numerical solution shows that the analytic solutions coly apply for $k>10^{-3}$, and that the slow root has a small real part at short wavelengths.

Case 3: Radiation Effects
In the long wavelength limit we expect radiation effects to be dominant. The dominant terms of the dispersion relation become

$$
\begin{gathered}
\omega^{3}\left\{-i f c_{1} R\right\}+\omega^{2} \frac{d f}{d T}+\omega\left\{i 2 \frac{d v}{d z} \frac{d f}{d T}\right\}+ \\
+\frac{d n}{d z}\left\{\frac{d L}{d n}\left[\frac{2 R}{n}-\frac{d g r}{d T}\right]-\left[\frac{2 R T}{n}+\frac{d g r}{d n}\right] \frac{d f}{d T}\right\} \\
\\
-\left(\frac{d v}{d z}\right)^{2} \frac{d f}{d T} .
\end{gathered}
$$

that

$$
\begin{equation*}
\frac{d v}{d z} \frac{d K}{d T} \gg \frac{R T}{H^{2}} c_{u} R e \tag{28}
\end{equation*}
$$

The dominant term of one root is for $k \rightarrow 0$

$$
\begin{equation*}
\omega=-\frac{i}{e^{c \nu R}} \frac{d L}{d T}, \tag{29}
\end{equation*}
$$

which essentially is the thermal stability condition. A parcel of gas with $d \mathcal{L} / \mathrm{dT}<0$ would probably tend to collapse. In a general case if $d \mathscr{f}$ dT were negative, part of the gas may cocl and ccllapse, and cther parts may rise in temperature. The existerce of the hot, low density component depends on an afriopriate heat source to maintain a temperature of order 10^{6} to 10^{7} K, where the gas is stable. If this bistable mode is possible withir a stellar wind, it may lead to a two component cutflow with a cocl (T arcund $2 \times 10^{4} \mathrm{~K}$) and hot (T arcund $10^{7} \mathrm{~K}$) component. The hot component may be able to supply sufficient $O V I$ atcms that there would be no need for a corcnal region.

The dominant terms of the other two roots are sound waves.

$$
\begin{equation*}
\omega=-i \frac{d v}{d z} \pm \sqrt{\frac{2 R T}{|H|}} \tag{30}
\end{equation*}
$$

The roots are shown in Figure 16 , for a gas with a nonzero velocity and acceleration. From Equation 30 we make the discovery that deccelerating flows are unstable, and the numerical calculation finds that it is an absolute instability. An example of this instability is discussed later and illustrated in Figure 20. Lefining some basic time scales as

$$
\begin{aligned}
& \mathrm{t}(\mathrm{dynamic})=1 /|\mathrm{dv} / \mathrm{d}| \mid \\
& \mathrm{t}(\mathrm{cool})=\rho c, R /|d \mathcal{L} / d T|,
\end{aligned}
$$

Fig. 16: Isotropic Radiation Field
t (acoustic) $=H / C_{p}$ where $c_{r}=\sqrt{2 R T}$.
The condition for the instability of deccelerating flows (Eq. 28) is.

$$
t(d y n a m i c) x t(c o o l) \ll(t(a c o u s t i c))^{2}
$$

Note that the conductive damping dominates the roots for $k>$ 10^{-4}.

Allowing a radiaticn acceleration, gives the roots as plotted in Figure 17. The asymptotic limits are not changed by the radiation acceleration, but the inward propagating acorstic wave is unstable in the range of wavenumber $10^{-11<} \mathrm{k}<10^{-7}$. The resulting grouth rate is close to 1200 seconds, but the instability is cnly amplifying.

The cocling due tc collisicnally excited lines may be diminished when the gas becomes optically thick in the rescnance lines. The effect of this has been approximated by turning the loss rate off, but leaving the heating on. The roots of the dispersicn relation in this case are shown in Fiqure 18. Besides the amplifying instability from the radiaticn force there is an additicnal range of instability for bcth inward and cutward acoustic waves for $10^{-7}<k<10^{-5}$. This behaviour results frcm the term $d \mathscr{L} / \mathrm{dn}$ becoming signficant.

Figure 19 shows the effect of a thermal instability, d \mathcal{L} dt<0. The "slow" root has a rapid growth rate, which is an absclute instability. The acoustic roots are changed cnly slightly, the amplificaticn acting over a narrower range of wavenumber, and not quite as rapidly.

Figure 20 shows the pressure dominated thermal instability which is present at 107 K . In this case the flow speed is sub-

Fig. 17: Radiation Force Cn

Fig. 18: No Cooling
sonic, and the radiation force is less than 5% of gravity. The instability results when Equation 28 is violated. The acoustic waves have an absolute instability at long wavelengths. The growth rate is proportional to the element abundance through the cocling rate.

An atmosphere of density $10^{12} \mathrm{~cm}^{-3}$ and a velocity of 100 Km 5^{-1} exceeds the maximum velocity for an accelerating sclution. The roots when $d v / d z$ is negative are shown in Figure 21. This is an absolute instability at long wavelengths.

In sumary the roots of the oispersion relation can be understcod in terms cf combinations of the roots which occur in simple physical cases. For $k>10^{-4} \mathrm{~cm}^{-1}$, the conduction always provides a strcng damping, especially to the slow wave.

Thus it can be concluded that in the long wavelength liait, $k<10^{-11}$, the behaviour depends on the shortest time set by the acoustic time scale, equal to the scale height divided by the sound speed: the dynamic time scale (dv/dz)-1; ace the cocling time scale. $\varphi \mathcal{C}_{u} R / / d f / d T /$. There $i s$ always a "thermal wave", that is, a slow moving wave, compared to the scund speed, with a growth rate set by the thermal time scale. The slow wave is an atsclute instability if the derivative $d \mathscr{L} / d T$ is negative. If t(acoustic) >> t(dynamic) then the acoustic waves have growth rates given by the dynamic time scale. These acoustic waves will be absolutely unstable if the velocity gradient is negative. A hot gas, with t(acoustic) < t dynamic) will have an absclute instability arising from the acoustic waves. At $\mathrm{F}=1 \mathbf{1 0}^{7}$ the growth rate is about one hour, (one hour at 3×10^{6} k where $\mathrm{d} \mathcal{L} / \mathrm{dt}(0)$ which increases as n^{2}, until t(acoustic) exceeds

Fig. 19: Thermal Instability

Fig. 20: High Temperature Instability

Fig. 21: Decceleration Instability at $n=10^{22} \mathrm{~cm}^{-3}$.

		TABLE	5:	Persion relations plotted			
Fig.	n	T	V	$\mathrm{d} v / \mathrm{dz}$	d / dt	9	Remarks
15	1011	2×10^{4}	0	0	0	0	$p s \in u d o$ isothermal
16	1011	2×10^{4}	100	2×10^{-4}	5×10^{-5}	0	isctropic
17	10^{11}	2×10^{4}	100	2×10^{-4}	5×10^{-5}	1×104	standard case
18	1011	2×10^{4}	100	2×10^{-4}	5×10^{-5}	$1 \times 10^{\circ}$	no cooling
19	1011	5×105	100	7×10^{-4}	-3x10-6	1×10^{4}	thermal
20	$10: 1$	1×107	100	5×10^{-5}	8×10^{-8}	270	high temperature
21	1012	2×10^{4}	100	-6 $\times 10^{-4}$	-3×10^{-3}	5×10^{3}	decceleration

t(dynamic). The radiation acceleration only acts to provide an amplifying instability for inward acoustic waves. This amplification acts for an observationally interesting range of wavelengths, from 5×10^{7} to $5 \times 10^{11} \mathrm{~cm}$, with growth times of crder 1200 seccnds.

On the basis of this analysis the original CaK "cocl" atmosphere is stable cnly if no waves are sent into the accelerating wind from lower layers. Otherwise the radiation force acts tc provide an amplification of the inward moving faith respect to the qas, but outwards with respect to the star) acoustic wave. A corona with a temperature of several million degrees will always have an absolute instability, either the crdinary thermal instability of the radiation losses, or the "high temperature" instability outlined above, which has a growth time of order an hour.

The semi empirical model of the wind proposed by cassirelli et al. (1978) has the wind heated with an initial acceleration in a hot corona, and then cooling in the outer radiatively accelerated 2one. The stability analysis leaves no doubt that this situation would be expected to show fluctuations. The hot corona is subject to instabilities which may be responsible for creating the shock waves to heat it. Remnants of these fluctuations would be carried out intc the wind where the length scales of 10^{7} to $10^{11} \mathrm{~cm}$ would be amplified.

CHAPTER 6. CONCIUSIONS

The program of optical observations conclusively shows that stellar winds do vary on time scales of one day and more. These observations were taken at sufficiently high resolution that any variations of the telluric lines could be separated from variations of the stellar lines. A star which has often been reported as varying, Lambda Cefhei, was monitored with a time resolution of one hour over a period of six hours but no sigrificant variation was seen in the H Lline. This null observation puts an upper limit of about $5 \times 10^{11} \mathrm{~cm}$ on the size of any "blcts" in the wind. Day to day variability was confirmed in λ Cep and \propto Cam, but not conclusively for δ ori. These variations may not be due to fluctuations within the wind itself since this time scale is long encugh to allow complete replacement of the material in the line formation region. Causes of the lang time scale variation include rotation of the star, internal oscillations of the star, or a variation of the the emergent flux and hence the driving force for the wind.

The analysis of the $X-r a y$ observations cf $c \in n \quad x-3$ provides confirming evidence for the suggested mechanism causing the long term X-ray intensity variation reported by Schreier et al. (1976). That is, the wind density varies sufficiently that the source is occasionally smcthered by the opacity of the stellar wind. In additicn I have found that as the density in the wind changes, it must be correlated with the wind velocity in crder to explain the changing character of the ancmalous dips in the intensity at non-eclipse phases. Besides these semi-regular dips the x-ray intensity shows intensity fluctuations on a time
scale: of less than one hour, which is probably due to changes in the amount of mass being accreted by the neutron star. The natural source for the variation in the accretion rate is the variation of the density and velocity in the stellar wind with size scales of 1010 tc 1011 cm .

The theoretical analysis of the stability of a wind finds a number of scurces of instability in the flow. In the long wavelength limit the highest growth rate, of crder 10 seccnds, usually holds for the thermal instability which arises wenever the ccoling rate minus the heating rate has a negative derivative with respect to temperature. This situation arises in the terferature ranges of 3×10^{5} to 107 K . The growth rate of this instability is directly related to the cooling rate, which is proporticnal to the abundances of the elements present. If this instability operates, cne would expect significant differences between stars of different composition. That is, stars with higher cno or metal abundances would have a greater cooling rate for temperatures exceeding 105 K in an optically thin gas. As a result the thermal instability would grow on a shorter time scale. This may have scme bearing on folf-Rayet stars, which appear to have higher $C N O$ abundances than $O B$ stars, and definitely have higher mass loss rates. An amplifying instability for acocstic waves which is usually present is the simple growth of wave amplitude due to the density gradient in the atmosphere. In a moving atmosphere this occurs on a time scale of the gas spefd divided by the scale height, about 2×10^{3} seconds. The decceleration instability of acoustic waves is an absolute instability. The growth rate is (dv/dz)-1, usually of order 1000
to 10^{4} seconds. If tbe gas is very hot, greater than $10^{6} \mathrm{~K}$, there is an absolute instatility which operates cn the time scale cf an hour. The radiation force provides an amplification for wavelengths in the range $10^{-101012} \mathrm{~cm}$ on time scales of 1200 secends.

As a result of this work, a number of sugqestions can be made for further investigation. Line variability should be pursued in crder to unravel the nature of the variation. High resolution observations, with good signal to ncise must be obtained. These observaticns should either be made in spectral regions free of telluric lines, or at a sufficiently high resoluticn to \quad inimize blending with the stellar line.

A longer segment of the $x-r a y$ data should be analyzed to confirm the model given for the accretion process, and $\mathbb{C o r e}$ importantly to estimate the density and velocity as a function of time.

The theoretical analysis of instabilities can be extended to allow a vertical and horizontal wave vector, and allow the wave motion to have a horizontal as well as a vertical component and then to more general waves, such as allowing vorticity. Besides dynamical generalizations, different source spectra should be allowed, particularly X-rays. This would allow the analysis to be extended to guasars and nuclei of galaxies.

The purfose of this whole study is to acquire information on the fundamental physical nature of the mass loss in the presence of a strcng radiation field. My thesis is that the wind is observed to be variable, and that the variability on time scales of a day or less can be attributed to instabilities which
exist in the wind. It is suggested that the presence of these instabilities changes the fundamental dynamics of the solutions to the flow of the stellar wind. The length and time scales estaklished in the analysis will allow the nonlinear equations of the flow to be attacked with a knowledge of their local behavicur.

BIELICGRAPHY
2. Akhiezer, A. I. and Polovin, R. V., 1971. Sov. Phys. Dspekhi. , 14.278.
3. Aldrovandi, M. V. and Peguignot, D. 1973. Aste. Ap. . 25. 137.
4. Aldrovandi, M. V. and Pequignct, D., 1976, Astr. Ap.. 47. 321.
5. Earlow, M. J. and Cohen, M., 1977, Ap. J., 213, 737.
6. Eeals, C. S., 1929, H.N., 90, 202.
7. Eeals, C. S., 1951, Pub. EAO. IX, 1.
8. Eers, A., 1975, Plasma physics, Ed. Delitt, C. and Feyraud, J. (Gordon and Ereach: New York). p. 121.
9. Eerthcaieu, G.. Provost, J., and Rocca, A.. 1975, Astr. Ar.. 47, 413.
10. Eethe, H. A. and Salpeter, E. E. 1957. The cuantum Mechanics of one And Tuo Electron Atoms. (SpringerVerlag: New York).
11. Erucato, R. J., 1971, W. N., 153, 435.
12. Burgess, A. and Summers, H. P.. 1976, M.N.. 174. 345.
13. Burgess. A. and Summers, H. E., 1969, Ap.J.. 157, 1007.
14. Cannon, A. J. and Pickering, E. C. 1918. Ange of gbse of Harvard Colle Vcls. 91-99.
15. Cannon, C. J. and Thcmas, R.N., 1977. A․J... 211. 910.
16. Cassinelli, J. P. and Castor, J. I., 1973. Ag.J., 179. 189.
17. Cassinelli, J. P., Olson, G. I., and Stalio, R., 1978. Ap.I.. 220. 573.
18. Castor, J. I., Abbott, D. C., and Klein, R. I. . 1975, Ag. J. . 195. 157.
19. Castcr, J. I., 1977, in Collcguium Internationaux Du CNBS №. 250. Mouvements Dans Les Atmospheres Stellaires.
20. Castor, J. I. 1978, at IAU Symposium No. 83 Mass Loss And The Eyolution of o Type Stars.
21. Chapman, F. D. and Henry, R. J. W.. 1971 Ap.J.. 168. 169.
22. Chafman, R., D. and Henry, R. J. W., 1972 Ap. J., 173. 243. 23. Conti, P. S. and frost, S. A. . 1974, Ap. J. Lett. . 190. L137.
24. Conti, P. S., 1978. Astr. Ap., 63, 225.
25. Cox, D. F. and Tucker, W. H. . 1969, Ap.I., 157. 1157.
26. Dupree. A. K., 1968, Astrophys. Lett. . 1. 125.
27. Dysthe, K. B., 1966. Nuclear Fusion. 6. 215.
28. Hearn, A. G., 1973, Astr. Ap. . 23, 97.
29. Fahlman, G. G., Carlberg, R. G., and walker, G. A. H., 1977. Ap. I. Lett. . 217. L35.

31. Field, G. B., 1965, Ap. I., 142, 531.
32. Flower, D. R. 1968, in IAO Symposium Nc. 34, planetary Nebulae, ed. osterbrock. D. E. and $0^{\frac{1}{D} D e l i, C, R .}$ (REidel: Dordrecht), p. 205.
33. Hearn, A. G., 1972. Astr. Ap., 19. 417.
34. Hearn, A. G., 1975, Astr. Ap., 40. 355.,
35. Henry, B. J. W. 1970, Ap.J.. 161, 1153.
36. Hutchings. J. B., 1976, AP.J., 203, 438.
37. Jackson, J. C. . 1975. M.N., 172. 483.
38. Johnson, L. C., 1972, Ap.J., 174, 227.
39. Jordan. C.. 1969. M.N., 142. 501.
40. Kato, T., 1976, Ap.I. Supp., 30, 397.
41. Kippenhahn, F., Mestel, L., And Perry, J. J., 1975, Astr. AP. . 44. 123.
42. Klein, R. I. and Castor, J. I., 1978, Ap.I. . 220, 902.
43. Krolik, J. H. . 1977, Phys. Eluids 20. 364.
44. Iacy, C. H., 1977. Ap. ㄹ.. 212. 132.
45. Lamb, H., 1945. Hydrodynamics, (Dover: New York).
46. Lamers, H. J. G. L. M. and Mcrton, D. C., 1976, Ap.J. Supp., 32. 715.
47. Lamers, H. J. G. L. M., and Sncw, T. P., Jr., 1978. Ap. . . . 219. 504.
48. Lctz, W., 1967. Ap. J. Supp. . 14, 207.
49. Lucy, L. B. And Sclomen. P. M., 1970. Ap.J., 159, \&79.
50. Lucy, L. B., 1971, AE.J., 163. 95.
51. MCWhirtier, R. ⿴囗. P., 1975, in Atomic And Mclecular Rrocesses In Astrophysics, ed. Hubbard, M. C. E. and Nussbaumer, H (Geneva Observatory: Sauverny. Switzerland), P. 205.
52. Mestel, L., Moore. D. W., and Perry, J. J., 1976 Astr. Ap.. 52. 203.
53. Mewe. R., 1972, Astr. Ap.. 20.215.
54. Mihalas, D. 1972, Non=LTE Model Atmospheres for B and O Stars. NCAR-TN/STR-76, National Center for Atmospheric Restarch: Bculder).
55. Milne, E. A., 1926, M.N., 85, 813.
56. Moore, C. E., Minnaert. M. G. J., and Houtgast, J., 1966. The Solar Spectrum, NBS Monograph 61.
57. Moore, C. E., 1949. Atomic Energy Levels. NBS Circular No. 467.
58. Mortcn, D. C. and Smith, W. H., 1973, Ap. I. Supp., 26, 333.
59. Mortcn, D. C., 1967. Ag. J., 147. 1017.
60. Mushotzky, R. F., Sclcmon, P. M., And Strittmatter, P. A. . 1972. Ap.J.. 174. 7.
61. Nelson, G. D., and Hearn, A. G., 1978, Astr. Ap., 65, 223.
62. Founds, K. A., Cooke, E. A., Ricketts, M. J., Turner, M. J., and Elvis. M., 1975. M.N., 172. 473.
63. Raymond, J. C., Cox, D. P., and Smith, B. W., 1976, Ap. J.. 204. 290.
64. Hcsendah1. J. D. . 1973. AP.J., 182. 523.
65. Rybicki, G. B. and Hummer, D. G., 1978. Ap. J., 219. 654.
66. Schreier, E. J., Schwartz, K., Giacconi, R., Fabbianc. G., and Morin, J., 1976. Ap.J., 204. 539.
67. Seaton, M. J. 1958, Rev. Mode Phys.. 30, 979.
68. Seatcn. M. J., 1959. M.N.. 119. 81.
69. Silk, J. And Brown, B. L., 1971, Ap. J.. 163. 495.
70. Snow, T. P. Jr. and Morton, D. C., 1976, Ap. I. Supp.. 32, 429.
71. Snow, T. P. J工., 1977, Ap.J., 217. 760.
72. Sobolev, V. V., 1960, Moving Envelopes of Stars, (Harvard University Press: Cambridge).
73. Spitzer, L. Jr., 1962, Physics of Fully Ionized Gases. 2nd ed., (Interscience: New York).
74. Steigman, G., Werner, M. W., and Geldon, F. M. . 1971, Ap.J.. 168. 373.
75. Summers, H. F., 1974, M. N., 169, 663.
76. Sunyaev, R. A. and Vainstein, L. A., 1968, Astrophys. Lett .. 1. 193.
77. Thomas, R. N., 1973, Astr. Ap., 29. 297.
78. Underhill, A. B. . 1960. in Vol. VI of Stars And Stellar Systems. Stellar Atmospheres, ed. J. Greenstein, (U. of Chicago: Chicago). p. 411. Ir
79. Walker, G. A. H. Bucholz, V., Fahlman, G. G., Glaspey, J.. Lane-Wright, D., Mochnacki, S., and Condal, A., 1976. Eroc. IAU Colloguium 40, $\in \mathrm{d}$. M. Duchesne, Ireidel: Dordrecht).
80. Wiest, W. L., Smith, M. W., and Glennon, B. M. . 1966, NSRDS-NBS4.
81. Wiese, W. L., Smith, M. W., and Miles. B. M.. 1969. NSRDSNBS22.

83. Wright. A. E., and Barlow, M. J., 1975. M. N., 170. 41.
84. Ycrk, D. G., Vidal-Madjar, A., Laurent, C., Eonnet, R.. 1977, Ap.J. Lett., 213, L61.

AFEENDIX 1. SUPERSGNIC ACCRETION
This appendix is a reprint of the paper entitled "Fadiative Effects in Supersonic Accretion". which appeared in the Astrgehysical dournal Vclume 220, p. 1041. The theory developed was used in Chapter III to deduce the correlation between the wind velocity and wind density in the observed intensity transition cf Cen $X-3$.

RADIATIVE EFFECTS IN SUPERSONIC ACCRETION

R. G. Carlberg
Department of Geophysics and Astronomy, University of British Columbia
Received 1977 March 21; accepted 1977 September 22

Abstract

Supersonic gas flow onto a neutron star is investigated. There are two regimes of accretion flow, differentiated by whether the gas can cool significantly before it falls to the magnetosphere. If radiative losses are negligible, the captured gas falls inward adiabatically in a wide accretion column. If the radiative energy-loss time scale is less than the fall time, the gas will cool to some equilibrium temperature which determines the width of the wake. An accreting neutron star generates sufficient luminosity that radiation heating may determine the temperature of the accretion column, provided the accretion column is optically thin. Gas crossing the shock beyond the critical radius forms an extended turbulent wake which gradually merges into the surrounding medium. As a specific example, the flow for the range of parameters suggested for the stellar wind X-ray binaries is considered.

Subject headings: shock waves - stars: accretion - X-rays: binaries

I. INTRODUCTION

Recent observations of X-ray binaries, at both optical (Conti and Cowley 1975; Dachs 1976) and X-ray (Jones et al. 1973; Pounds et al. 1975; Eadie et al. 1975) wavelengths, show phase-dependent absorption of radiation. It has been suggested that this is caused by a wake trailing the compact object which emits the X-rays. Models of the wake based on the X-ray observations were put forward by Jackson (1975) and Eadie et al. (1975). The general problem of a gravitating body moving through a gas at a velocity much greater than the sound speed was first discussed by Hoyle and Lyttleton (1939). More recently, wakes were discussed by Davidson and Ostriker (1973), Illarionov and Sunyaev (1975), and McCray and Hatchett (1975). These models are incomplete in that they lack a description of the gravitationally perturbed gas which is unbound, i.e., the far wake. Although most of these papers emphasize the importance of radiative effects, no clear analysis has been made of the variations in the flow of gas caused by radiative gains and losses.

In this paper supersonic accretion onto a neutron star is considered. There are three basic physical parameters: the mass of the accreting body and the free stream velocity and density of the gas. The dynamics of the flow are essentially determined by the free stream velocity and the mass. The angular width of the accretion column depends on its temperature, which in turn is regulated by radiative cooling and heating and is sensitive to the gas density.

The proposed description is worked out for linear motion, which is a good approximation for an accretion radius much smaller than the system dimensions. A schematic of the model is shown in Figure 1. The important regions are labeled: (1) the incoming supersonic gas; pressure forces can be neglected and
streamlines are taken to be coincident with particle trajectories in a gravitational field; (2) the shockheated sheath where the incoming gas impinges on the accretion column; the transverse component of the velocity is rapidly halted, providing pressure to contain the accretion column; (3) the accretion column, in which gas falls inward, toward the accreting body; (4) a region of spherically symmetric flow which may exist near the accreting body; (5) the base of the accretion column; beyond this the flow is regulated by the physics of the magnetosphere around the accreting object; (6) the accreting body, where the kinetic energy of the gas is liberated at a surface shock; and (7) the far wake, several hundred times the length of the accretion column. The density contrast between the far wake and the surrounding medium gradually goes to zero.
One major qualitative aspect of this model is that there is no bow shock standing off from the front of the body which is distinct from the tail shock. Undoubtedly there will be a preceding shock, but pressure waves generated there will not propagate very far in a transverse direction because the streamlines of the flow are bent in by gravitation. Consequently, the bow shock merges into the tail shock. In general, this will be the case for any body whose size is less than the "accretion radius" $R_{A}=2 G M / V_{0}^{2}$, where V_{0} is the free stream velocity. Calculations by Hunt (Eadie et al. 1975) indicate that part of the infalling column may "miss" the accreting body and force the leading shock forward. This occurs because small nonradial velocities increase toward the body, by conservation of angular momentum. This effect will be ignored.
This model is to be applied to a neutron star orbiting a massive star with a strong stellar wind. For convenience, scaled variables will be used for the distance $r_{v}=r / R_{A}$: free stream density, $n_{11}=n_{0} / 10^{11}$ cm^{-3}; free stream velocity, $V_{\mathrm{B}}=V_{0} / 10^{3} \mathrm{~cm} \mathrm{~s}^{-1}$; and

Fig. 1.-A schematic of supersonic accretion gas flow showing: (1) the incoming supersonic gas; (2) the shock-heated sheath; (3) the accretion column; (4) the possible spherically symmetric inflow at the bottom of the column; (5) the Alfven surface at the bottom of the column; (6) the accreting body; and (7) the far wake.
mass of the accreting body, $m=M_{x} / M_{\odot}$. Similarly, in later calculations, the temperature of the column will be represented as $T_{6}=T / 10^{6} \mathrm{~K}$. This form of notation will be used throughout.

II. DYNAMICS OF THE GAS FLOW

A gravitating body is placed in a uniform stream of gas moving at some velocity V_{0}. To the point where the gas crosses the tail shock, we assume that the streamlines of the flow can be found from particle dynamics, i.e., the flow is dominated by inertial forces. The velocity can be obtained from the equations of conservation of energy and angular momentum,

$$
\frac{1}{2}\left(V_{r}^{2}+V_{\phi}^{2}\right)-\frac{G M}{r}=\frac{1}{2} V_{0}^{2}
$$

and

$$
\begin{equation*}
V_{\phi}=V_{0} \frac{s}{r}, \tag{1}
\end{equation*}
$$

where V_{r} and V_{ϕ} are, respectively, the radial and tangential components of the gas velocity relative to the accreting object. The trajectories are given by (Ruderman and Spiegel 1971),

$$
\begin{equation*}
\frac{1}{r}=\frac{R_{A}}{2 s^{2}}(1+\cos \phi)+\frac{1}{s} \sin \phi, \tag{2}
\end{equation*}
$$

where s is the impact parameter and ϕ is the angle measured from the accretion axis. From these equations, Danby and Camm (1957) obtain the density $n=n(r, \phi)$ as

$$
\begin{align*}
n= & \frac{n_{0}}{2 \sin \phi / 2}\left(\frac{R_{A}}{r}+\sin ^{2} \frac{\phi}{2}\right)^{-1 / 2} \\
& \times\left[\frac{R_{A}}{2 r}+\sin ^{2} \frac{\phi}{2}+\sin \frac{\phi}{2}\left(\frac{R_{A}}{r}+\sin ^{2} \frac{\phi}{2}\right)^{1 / 2}\right] . \tag{3}
\end{align*}
$$

As a simplifying approximation, we take the case of ϕ small and $\phi^{2} \ll R_{A} / r$, to obtain the relations,

$$
\begin{aligned}
s & \approx\left(R_{A} r\right)^{1 / 2} \\
V_{\phi} & \approx V_{0}\left(R_{A} / r\right)^{1 / 2}
\end{aligned}
$$

and

$$
\begin{equation*}
n \approx \frac{n_{0}}{2 \phi}\left(\frac{R_{A}}{r}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

a) The Sheath

The gas crossing the shock has a discontinuity in its motion described by the equations for the conservation of the total energy and of the normal components of mass flux and momentum. Assuming that a strong shock occurs (good for Mach numbers greater than ~ 3), the postshock density and temperature are (for a ratio of specific heats $\gamma=5 / 3$)

$$
\begin{equation*}
\rho_{2}=4 \rho_{1}, \quad \text { and } \quad T_{2}=\frac{3}{32} \frac{V_{n}^{2}}{R}, \tag{5}
\end{equation*}
$$

where R is the gas constant and 1 and 2 refer to the pre- and postshock conditions, respectively. $V_{n}\left(\approx V_{\phi}\right)$ is the component of velocity normal to the shock. An important point is that specific energy is conserved across a shock. If the gas is energetically unbound ahead of the shock, it will remain unbound behind the shock in the absence of cooling. On the other hand, if all the thermal energy is immediately lost, one finds that the gas is energetically bound for all radii less than R_{A}.

The sheath is bordered by the shock on the outside and the inward-flowing gas of the accretion column on the inside. The sheath is a dynamically defined region where the gas slows to a stop, changes direction, and joins the accretion column.

The semiangle to the shock cone will be approximated by the semiangle of the accretion column. To this end we demonstrate that the thickness of the sheath is small for the case of a narrow shock cone. The radial-velocity component is approximately parallel to the shock and is continuous across the shock. In the limit of $V_{r}=V_{0}$, one easily finds that gas entering the shock sheath at $r_{0}<R_{A}$ will travel to a maximum distance r given by

$$
\begin{equation*}
\frac{1}{r}=\frac{1}{r_{0}}-\frac{1}{R_{A}} \tag{6}
\end{equation*}
$$

before the radial velocity is brought to zero. The gas would then join the accretion column.

An estimate of the sheath thickness can be obtained by equating the mass influx between r_{0} and $r,\left(r \approx r_{0}\right.$, $\left.r \ll R_{A}\right) \pi n_{0} V_{0} r_{0}^{2}$, to the mass flux through a cross section at distance $r, n_{s} V_{0} 2 \pi r \phi_{s} w$, where w is the thickness of the sheath, n_{s} the postshock density at r, and ϕ_{s} the angle to the shock. This gives the semiangular width of the sheath as

$$
\begin{equation*}
\frac{w}{r_{0}}=\frac{1}{4}\left(\frac{r}{R_{A}}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Thus the maximum width of the sheath is only a function of distance from the accreting object, and for $r \ll R_{A}$ the sheath width will be negligible.

The above calculation assumed laminar flow and no premature mixing of sheath gas into the column, whereas it is quite likely that the sheath is turbulent. The Reynolds number in the sheath is $4.1 \times$ $10^{4} n_{11} r_{v}^{2} \phi^{-1} V_{8}^{-6}$, indicating the possibility of turbulence. A turbulent sheath would come into equilibrium with the column more rapidly than laminar flow through mixing. As a consequence, a turbulent sheath would be even thinner than the limit set in equation (7).

b) The Accretion Column

The mass flux in the accretion column is simply $d M / d t=\pi \rho_{0} V_{0} s_{c}^{2}$, where s_{c} is the critical impact parameter, taken as the impact parameter of the streamline which would have a total energy of zero on the accretion axis. To allow for the thermal energy, a parameter β is introduced, such that the "true accretion radius" is equal to βR_{A}. In principle, β is determined once the physical parameters, the density, velocity, and accreting mass, are specified. The parameter β will be taken as the ratio of the specific kinetic energy ($\frac{1}{2} V_{0}{ }^{2}$) to the specific enthalpy ($5 R T_{0}$) if ($\frac{1}{2} V_{0}^{2}<5 R T_{0}$), otherwise $\beta=1$, where T_{0} is the equilibrium temperature of the column at $r_{v}=1$. The accretion rate is then

$$
\begin{equation*}
d M / d t=3.65 \times 10^{16} n_{11} m^{2} V_{8}^{-3} \mathrm{~g} \mathrm{~s}^{-1} . \tag{8}
\end{equation*}
$$

For a column in equilibrium, the transverse momentum of the incoming gas must be balanced by thermal pressure in the column,

$$
\begin{equation*}
2 \rho_{c} R T_{c}=\rho_{1} V_{n}^{2} . \tag{9}
\end{equation*}
$$

From this one obtains a relation between the central temperature of the column and the opening angle,

$$
\begin{equation*}
\frac{T_{c}}{\phi_{c}}=\frac{V_{0}^{2}}{4(2)^{1 / 2} R \beta}=2.13 \times 10^{7} V_{8}^{2} \beta^{-1} \mathrm{~K} \mathrm{rad}^{-1} . \tag{10}
\end{equation*}
$$

Pressure forces are unable to support the gas, and it falls inward toward the accreting object down the accretion column at a velocity $v=(G M / r)^{1 / 2}$. Using equation (10) and mass conservation, we find that the equilibrium accretion column density is, for $\beta R_{A} \gg r$,

$$
\begin{equation*}
n_{c}=6.40 \times 10^{13} T_{6}{ }^{-2} r_{v}{ }^{-3 / 2} n_{11} V_{8}^{4} \beta^{-1} \mathrm{~cm}^{-3} \tag{11}
\end{equation*}
$$

The assumption that the width of the column is maintained by gas pressure is justified by the required default of any stronger forces, turbulence in particular. One can do a pressure confinement calculation similar to the one above by assuming a fully turbulent accretion column. The internal pressure in the column would be generated by the turbulent velocity, which can be taken to be a fraction f of the velocity of fall. Requiring that the opening angle of the column be less than, say, 1 radian, we find that f is restricted by

$$
\begin{equation*}
f^{2} \leq \frac{2 \sqrt{ } 2}{\pi} \frac{r}{\beta R_{A}} \tag{12}
\end{equation*}
$$

This implies that the turbulent velocity must become a smaller fraction of the fall velocity as it nears the neutron star; otherwise the turbulent pressure is impossible to contain. But the Reynolds number of the gas increases inward (except for adiabatic infall), and we would expect the turbulence, if present, to increase and disrupt the column. Therefore, if the column exists, it must be in laminar flow. There are several reasons to think that laminar flow can obtain in the column. The turbulence would probably originate in the "shear layer" between the sheath and the column, but the Reynolds number in the sheath decreases down the column. In addition, the gas is being strongly accelerated only in the radial direction, which does not provide a driving force for turbulence.

III. RADIATIVE EFFECTS

If the gas is unable to cool before joining the accretion column, the column gas will fall adiabatically and will resemble the accretion scenario found by Hunt (1971), i.e., a very wide accretion column trailing the accreting body. Note that Hunt's solutions were obtained with essentially zero pressure at the boundary of the accreting body, and that the accretion rate would probably be diminished by the nonzero base pressures of a magnetospheric shock above the neutron star. On the other hand, if the gas cools much faster than any time scale for movement, a cold, narrow, high-density column will be formed. In order to determine which regime prevails, we compare the time scales for radiative energy-loss mechanisms with the time scale for infall of the gas, which is the basic and only uniquely identifiable dynamic time scale of the
problem. The fall time from the accretion radius is approximately,

$$
\begin{equation*}
t_{f}=\frac{2}{3} \frac{r^{3 / 2}}{\sqrt{ }(G M)}=250 r_{v}^{3 / 2} V_{\mathrm{B}}^{-3} \mathrm{~ms} . \tag{13}
\end{equation*}
$$

a) Cooling Time Scaies

In the absence of any heating, the temperature of the gas is entirely dependent upon whether or not a significant amount of cooling can take place in the gas before it reaches the surface of the accreting body. In this section an estimate is made of the cooling time scale, which divides the density-velocity parameter space into regions of cooling and no cooling. In the following, all radiative time scales will be defined as $3 k T$ divided by the appropriate heating or cooling rate, where k is Boltzmann's constant.

When the gas crosses the shock, the ions get most of the thermal energy, since they have a much shorter mean free path than the electrons. The electron-ion equilibrium time (Spitzer 1962) in the sheath is, with $n=4 n_{0}$, a maximum of

$$
\begin{equation*}
t_{\mathrm{eq}}=50.6 r_{v}{ }^{-1} n_{11}-1 V_{8}^{3} \mathrm{~s} . \tag{14}
\end{equation*}
$$

This time is compared with the fall time and is plotted in Figure 2. For the postshock gas, the equilibrium time decreases with density at the same rate as the cooling time and is always shorter than it. Therefore the postshock gas comes into collisional equilibrium and the electron and ion temperatures are assumed equal.

The cooling from the postshock temperature can be taken from Figure 1 of Cox and Daltabuit (1971),
omitting the cooling due to forbidden and semiforbidden lines. The postshock cooling is assumed to be unaffected by any radiation present. Two assumptions are made for the density of the postshock gas in the sheath. The rightmost line is drawn for the minimum possible postshock density, $4 n_{0}$. This is an underestimate, since the density increases from its free stream value toward the accretion axis, by approximation (4). The angle to the shock decreases with the temperature by equation (10), and choosing the minimum temperature in the column as $10^{4} \mathrm{~K}$ results in the cooling line on the left.
Gas flows with densities and velocities in between these two cooling lines may be subject to an instability from the cooling to noncooling state and vice versa. If hot, uncooled gas mixes into the accretion column and expands it such that the shock moves outward, it will decrease the density of the incoming gas, by approximation (4). If the density drops sufficiently, the incoming gas may no longer cool and the column will expand to its uncooled state. Consequently we take the rightmost cooling line (labeled $4 n_{0}$) as the effective cooling line.
A point of interest is that, for gas crossing the shock at a distance of less than $3 \times 10^{10} \mathrm{~cm}$, the postshock temperature is greater than $10^{7} \mathrm{~K}$, for which bremsstrahlung is the dominant cooling mechanism, until the gas is close enough (see eq. [25]) to be Compton cooled. The time scale for bremsstrahlung losses varies with $n^{-1} T^{1 / 2}$, which remains constant with distance in the sheath, whereas the dynamic time scale is decreasing as $r^{3 / 2}$. Consequently, even though gas entering the column at large radii may cool, lower down the gas in the sheath may remain hot. As shown in the Appendix, the sum of the pressure force for the postshock gas

Fig. 2.-The cooling diagram constructed with the free stream density and velocity. Solid lines, regions of cooling for the maximum ($10^{4} \mathrm{~K}$) and minimum ($4 n_{0}$) densities. Cooling occurs to the right, i.e., higher densities, of these lines. Below the dashed lines $\left(t_{e q}<t_{f}\right)$ the electron and ion temperatures are equal. The hatched region is heated to the Compton equilibrium temperature and is certainly subsonic, whereas below the dot-dashed line $\left(M_{c}<1\right)$ the Mach number of the incoming gas based on the Compton heating rate is less than 1.
and the gravitational force is still directed downward, but eventually the excess energy must be lost if the gas is to be gravitationally bound to the neutron star. One way to do this would be through turbulent mixing at the boundary between the upward-flowing sheath gas and the downward-flowing accretion column. This would decrease the effective cooling time for the lower sheath by diluting the hot gas with the cooler, denser gas of the column. If a mixing process is required in order to capture gas entering the column at small radii, it would imply that, if gas at the top of the column is unable to cool, then the accretion may become very inefficient.

b) Heating

When the accreting body is a neutron star, the accretion luminosity may be sufficient to cause significant heating of the infalling gas. (An additional problem is that the incoming gas stream may be heated to a sufficiently high temperature that the assumption of supersonic flow is invalidated. This is considered in the Appendix.) Approximate rates for photoionization and Compton heating are derived and used to construct a heating diagram similar to the previous cooling diagram. Optical depths must also be considered, because radiative heating will be impossible if the optical depth up the column becomes too large.

The accreting object is assumed to be a neutron star of radius $10^{6} \mathrm{~cm}$. The entire kinetic energy of the infalling gas is converted into radiation at the surface shock. The resulting luminosity is
$L=4.70 \times 10^{36} n_{11} V_{8}{ }^{-3} m^{3}\left(R_{x} / 10^{6} \mathrm{~cm}\right)^{-1} \mathrm{ergs} \mathrm{s}^{-1}$.
An upper limit to the gas temperature in the column due to photoionization heating is required. The calculations of Hatchett, Buff, and McCray (1976). show that, for $\log \xi$ greater than 2 , where $\xi=L / n r^{2}$, the CNO elements are completely ionized. The heating will then be limited by the total recombination rate to the ground state, so the limiting photoionization heating rate is $n_{e} \alpha f \chi / 3$, where n_{e} will be taken to be the density in the column from equation (11), α is the recombination rate to all levels for completely ionized oxygen, $f\left(=10^{-3}\right)$ is the fractional abundance of oxygen, increased slightly to allow for some carbon and nitrogen, and $\chi / 3$ is the average energy deposited per ionization for a ν^{-1} spectrum. (The spectrum may not be v^{-1}, but all spectra deposit an average energy of order χ.) The recombination rate used is the expression given by Allen (1973) for the total recombination rate to the ground level, $\alpha=3 \times 10^{-10} Z^{2} T^{-3 / 4}$. The resulting heating time is

$$
\begin{align*}
t_{\mathrm{ph}}= & 22.9 T_{6}^{15 / 4} r_{v}^{3 / 2} n_{11}{ }^{-1} V_{8}^{-4} \beta^{1} \\
& \times\left(f / 10^{-3}\right)^{-1}(Z / 8)^{-4} \mathrm{~s} \tag{16}
\end{align*}
$$

Comparing this with the fall time, we find that the temperature is limited by

$$
\begin{align*}
T_{6}< & 1.89 n_{11}{ }^{4 / 15} V_{8}^{4 / 15}\left(f / 10^{-3}\right)^{4 / 15} \\
& \times(Z / 8)^{16 / 15} . \tag{17}
\end{align*}
$$

The expression used for photoionization heating applies only if heating in a static gas would be able to attain this temperature and the absorption and scattering optical depth up the column are less than 1. The static condition, $\log \xi>2$, is equivalent to $V_{8}<$ $1.02 T_{6}{ }^{2 / 3} r_{v}{ }^{-1 / 6}$, which is indicated in Figure 3, and is always satisfied in the cooling region. The photoionization absorption can be estimated from the equations of ionization balance and of optical depth,

$$
n_{e} n_{I} \alpha(T)=\frac{L e^{-\tau}}{h \nu 4 \pi r^{2}} \sigma n_{G}
$$

and

$$
\begin{equation*}
\frac{d \tau}{d r}=n_{G} \sigma \tag{18}
\end{equation*}
$$

where n_{e}, n_{l}, and n_{G} are the number densities of electrons, ions, and ground-state absorbers, respectively. The integrals in the exact formulae have been approximated by quantities integrated over frequency, and it is assumed that one ionic species is doing the major part of the absorbing at any given temperature. In the neighborhood of $10^{6} \mathrm{~K}$, the major absorber is O Vill. Setting f as the fraction of atoms that are absorbing X-rays, we find a solution to the above equations similar to Mestel's (1954),

$$
\begin{equation*}
1-e^{-\tau}=\frac{h \nu}{L} 4 \pi f \alpha(T) \int_{r_{0}}^{\tau} n_{e}^{2} r^{2} d r \tag{19}
\end{equation*}
$$

The bottom of the column, r_{b}, has been assumed to be the magnetosphere at a distance near $10^{8} \mathrm{~cm}$ from the center of the neutron star, and it is assumed that there is no significant opacity between the source of radiation and this lower boundary. This is consistent with the magnetospheric model of Arons and Lea (1976). Using the total recombination rate and 5 keV as an average photon energy, we find that the above integral becomes

$$
\begin{align*}
1-e^{-x}= & 0.989 T_{6}^{-19 / 4} \ln \left(r / r_{b}\right) \beta^{-3} n_{11} V_{8}^{5} \\
& \times\left(R_{x} / 10^{6} \mathrm{~cm}\right)\left(f / 10^{-3}\right)(Z / 8)^{4} \tag{20}
\end{align*}
$$

For numerical estimates, the distance dependence of the optical depth will be ignored $\left[\ln \left(r / r_{b}\right) \sim 1\right]$. This optical depth is meant to be useful only as an indication of how radiative heating is attenuated. As it turns out, this estimate of the photoionization optical depth is always less than the electron scattering optical depth for the range of parameters plotted. A more precise calculation is required to estimate the transmitted spectrum as a function of frequency.

The other major source of heating in an X-ray illuminated gas is Compton scattering. The Compton heating rate is given by Buff and McCray (1974) as

$$
\begin{equation*}
G_{c}=\frac{\epsilon-\alpha^{-1} k T}{m_{e} c^{2}} \frac{L \sigma_{T}}{4 \pi r^{2}} \tag{21}
\end{equation*}
$$

where L is the source luminosity, ϵ is a parameter which describes the effective temperature of the spectrum,

Fig. 3.-The density-velocity diagram for the photoionization heated accretion column, with a Compton heated base. The cooling line (solid) and the subsonic line ($M_{c}<1$) are repeated from Fig. 2. For $\log \xi>2$ the approximation used for the heating rate would be valid for a static gas. As the flow parameters cross the $\tau_{s}>\tau_{c}$ (dotted) line, the optical depth up the sheath exceeds that of the column.
and α describes the shape of the spectrum ($\alpha=1.04$ for a blackbody and $\frac{1}{4}$ for an exponential spectrum). In principle, α and ϵ are determined by the physical parameters n_{0}, V_{0}, M_{x}, and the radius of the accreting object. In view of the complexity of the calculation of the emitted spectrum, we chose to leave them as parameters. As typical values we chose $\alpha=\frac{1}{2}$ and $\epsilon=5 \mathrm{keV}$. This corresponds to a Compton equilibrium temperature $(k T=\alpha \epsilon)$ of $2.9 \times 10^{7} \mathrm{~K}$. With this choice of parameters, the Compton heating time scale is

$$
\begin{align*}
t_{c}= & 1.20 \times 10^{2} T_{6} n_{11}{ }^{-1} r_{v}{ }^{2} V_{8}{ }^{-1} m^{-1} \beta^{-1} \\
& \times\left(R_{x} / 10^{6} \mathrm{~cm}\right)^{-1} \mathrm{~s}, \tag{22}
\end{align*}
$$

or $t_{c}<t_{f}$ for

$$
\begin{equation*}
n_{11} V_{8}^{-2}>0.476 T_{6} r_{v}^{112} \beta^{-1} m^{-2}\left(R_{x} / 10^{6}\right)^{-1} \tag{23}
\end{equation*}
$$

If the base of the column becomes optically thick, the radiation will be thermalized, so that Compton heating becomes negligible as a result of the ϵ parameter's being reduced. As discussed by Felten and Rees (1972), spectrum alteration begins when the optical depth $\tau^{*}=\left(3 \tau_{\mathrm{ff}} \tau_{\mathrm{es}}\right)^{1 / 2}$ exceeds 1 , where τ_{ff} and τ_{es} are the free-free and electron scattering optical depths. The calculation indicates that the optical depth at a photon energy of 5 keV is always much less than 1 as long as the flow is supersonic.

As one gets closer to the source of radiation, the time scale for Compton heating decreases faster than the fall time. The bottom of the accretion column may be heated to Compton equilibrium, even though the regions higher up may be in photoionization equi-
librium, or optically thick and cold. From equation (10) we see that the column is impossible to contain for $V_{8}<0.9$, and the column will widen and may even become spherical at the bottom. For electron scattering the new effective base of the column is at a distance where the Compton heating and the fail time scales are equal,

$$
\begin{equation*}
r_{8}=1.39 n_{11}^{2} V_{8}^{-6}(\alpha / 0.5)^{-2}(\epsilon / 5 \mathrm{keV})^{-2} \beta^{2} \tag{24}
\end{equation*}
$$

The spherically infalling material below this has a negligible contribution to the optical depth, because the density is reduced by the much greater column angle.

The electron scattering optical depth along the column is

$$
\begin{equation*}
\tau_{c}=9.18 n_{11} V_{8} T_{6}{ }^{-2}\left(r_{b} / 10^{8} \mathrm{~cm}\right)^{-1 / 2} . \tag{25}
\end{equation*}
$$

The actual line plotted on Figure 3 for the electron scattering opacity assumes that the effective base of the column is at the Compton heated distance of equation (25) and that the column temperature is determined by the photoionization heating temperature of equation (17). The range of photoionization heating is thus extended by the reduction of column opacity. If one computes the Alfvén radius from $B^{2} / 8 \pi=$ $1 / 2 \rho v^{2}$, one finds that in some cases the Alfvén radius exceeds the Compton heated radius and will determine the effective base of the flow. But these cases turn out to be in the region of the density-velocity diagram above the cooling line and hence of little interest to the heating calculation.

The column is effectively optically thin to the sideways loss of radiation because the sideways optical
depth of the column is dominated by electron scattering and is always less than 1 for the range of parameters plotted.

The higher-energy X-rays will be attenuated by K shell absorption by elements with ionization potentials greater than the CNO elements. For a spectrum with a typical photon energy of 5 keV , the K shell cross sections of Daltabuit and Cox (1972) and the abundances of Allen (1973) suggest that the dominant K shell absorber will be silicon. The calculations of Hatchett et al. indicate that a typical silicon atom, for $\log \xi>2$, will have several electrons left, and therefore will have a cross section of order $10^{-19} \mathrm{~cm}^{2}$, which is relatively independent of temperature and radiation flux. Combining this with a fractional abundance of 3×10^{-5}, the effective cross section at the absorption edge is only 4.5 times the electron scattering cross section. Photons below the edge will be less affected, primarily interacting with only lower-abundance magnesium, and for those above, the cross section decreases approximately as E^{-3}, until another edge, due to low-abundance sulfur, is encountered. In general we expect that K absorption will be of the same magnitude as the electron scattering. Similarly, the K shell photoionization heating rate is different from Compton heating only by a multiplicative factor of order 1 , and will be ignored.

c) Accretion Scenarios

In Figure 3 a box has been drawn which encloses the suggested range of wind densities and velocities for stellar wind X-ray sources Cen X-3 and 3U 170037. Only a small part of this region is subsonic and beyond the description given here. For a given density and velocity, it is possible to qualitatively describe the flow.

If the density and velocity parameters of the free stream lie above the cooling line, the accretion may be less efficient as pressure forces in the hot gas of the sheath become more important. This would be reflected in a diminished luminosity. In general, flows with parameters above the cooling line would broadly resemble the scenario found by Hunt (1971). Captured gas falls inward with its temperature rising adiabatically.

Below the cooling line, the gas temperature drops to some equilibrium value and falls down the accretion column. Although the K absorption edges will alter the spectrum somewhat, the line above which the electron scattering opacity exceeds 1 is almost coincident with the cooling line, so that heating of the most distant parts of the accretion column will be possible below the cooling line. Typical maximum temperatures for $V_{8}=1$ are $T_{6}=1$ at $n_{11}=0.1$ and $T_{6}=3.5$ at $n_{11}=10$. The column semiangles are 2° and 9°, respectively. The gas will remain at the equilibrium temperature specified by the local radiation field, since all radiation time scales are more rapid than the fall time. Near the source Compton
heating dominates, the temperature rises to the Compton equilibrium value, and the column expands so that the infall becomes almost spherical. It is of particular interest to compare the electron scattering opacity up the column with that up the edge of the sheath in the postshock gas. The opacity up the sheath is

$$
\begin{equation*}
\tau_{s}=\sigma_{T} \int_{\tau_{0}}^{r_{m}} \frac{2 n_{0}}{\phi}\left(\frac{R_{A}}{r}\right)^{1 / 2} d r . \tag{26}
\end{equation*}
$$

Evaluating this integral, and choosing (somewhat arbitrarily) the maximum extent of the column to be the distance at which the density has dropped to $4 / 3 n_{0}$, i.e., $r_{m}=R_{A} /\left(2 \phi^{2}\right)$, gives

$$
\begin{equation*}
\tau_{\mathrm{s}}=2.26 n_{11} V_{8}{ }^{2} T_{6}{ }^{-2}, \tag{27}
\end{equation*}
$$

whereas the electron scattering opacity up a column with a Compton heated base is $7.79 \mathrm{~V}_{8}{ }^{4} T_{5}{ }^{-2}$. As a result we find that the opacity up the sheath is greater than up the column if $n_{11} V_{8}{ }^{-2}>3.45$, a result which is independent of the column temperature. This line has been included in Figure 3.

If the stellar wind in which the neutron star is embedded has velocity and density variations, this analysis predicts potentially observable effects. The most obvious is that, if the line-of-sight optical depth is constant, the X-ray luminosity responds to variations in $n_{0} V_{0}{ }^{-3}$ (eq. [16]) on times of variation longer than about two fall times, or $500 V_{8}^{-3} \mathrm{~s}$. This variation reflects the local structure of the wind for regions of size greater than $2 R_{A}\left(5 \times 10^{10} V_{8}{ }^{-2} \mathrm{~cm}\right)$. Another expected effect is that, as $n_{0} V_{0}{ }^{-2}$ increases, the optical depth up the sheath will exceed that up the column. Thus, if the X-ray source is occulted by the accretion column, the X-ray absorption would change from a single $\operatorname{dip}\left(\tau_{c}>\tau_{s}\right)$ to a double $\operatorname{dip}\left(\tau_{c}<\tau_{s}\right)$. In addition, Jackson's calculations (1975) indicate that, if the gas fails to cool, the absorption up the sheath always dominates.

IV. THE FAR WAKE

The Reynolds number of the gas flow is extremely high ($V_{0} R_{A} / v=10^{12} V_{8}^{-1} m^{1} T_{4}{ }^{-5 / 2} n_{11}$), and the far wake is expected to be turbulent. Turbulence in supersonic flows is not well understood, but experimental studies of supersonic wakes (Demetriades 1968) indicate that a phenomenological theory as outlined by Townsend (1976) provides a reasonable description of supersonic far wakes. Unfortunately, the dynamics of laboratory wakes are not dominated by a gravitational field, and therefore the applicability of the description to this case must be carefully considered. The subsonic theory is based on the observation that the wake remains self-similar with respect to a characteristic velocity and length scale. This is combined with the momentum equation from which all small terms have been dropped. The axisymmetric far wake is found to be self-similar with respect to the
half-width, l, and the turbulent velocity scale, u, defined by

$$
\begin{align*}
& \frac{l}{R_{A}}=\frac{1}{2}\left(\frac{6}{R_{T}}\right)^{1 / 3}\left(\frac{r}{R_{A}}\right)^{1 / 3} \\
& \frac{u}{V_{0}}=\left(\frac{R_{T}}{6}\right)^{2 / 3}\left(\frac{R_{A}}{r}\right)^{2 / 3} \tag{28}
\end{align*}
$$

where the so-called momentum radius R_{M} (the radius such that the drag force is $1 / 2 \rho V_{0}{ }^{2} \pi R_{M}{ }^{2}$) has been taken to be $R_{A} . R_{T}$ is the turbulent Reynolds number, observed by Demetriades to be 12.8 .

The width scale of the wake implies that the small angle approximations for the density and transverse velocity apply for the exterior supersonic flow. Hence the effective exterior pressure will be the transverse momentum flux, which varies with distance along the wake. But the equations of momentum used to derive the length and velocity scale assumed that there was no pressure gradient in the free stream: For the gravitational wake, an order-of-magnitude estimate of the pressure gradient term in the small angle approximation finds that it is of order $u^{2} / l\left(R_{A} / l\right)$, whereas the retained terms in the momentum equation are of order u^{2} / l. Consequently, for $R_{A} \ll l$, the pressure gradient term can again be dropped. Using the half-width of equation (28), we find that R_{A} / l is of order $\left(R_{A} / r\right)^{1 / 3}$. Thus the equations are consistent for $r \gg R_{A}$, but the crucial observation that a gravitational wake is selfsimilar is unavailable. Experiments also indicate that the flow may not be self-similar for distances of several tens of the momentum radius, but the deviation of the turbulent velocity scale from the self-similar value is a factor of 2 or less.

For sufficiently low Reynolds numbers, part of the wake may be in laminar flow. In this case the velocity defect on the axis is $u / V_{0}=3 / 2 R_{A} / r$, and the halfwidth varies as $\left(r R_{A}\right)^{1 / 2}$ (Lamb 1924). The Reynolds number grows with distance, and the flow will eventually become turbulent. With the extreme Reynolds numbers present here, the wake is expected to become turbulent within the sheath of the accretion column.

If the gas in the wake has no energy losses, i.e., $5 R T+\frac{1}{2} v^{2}$ constant, the temperature on the axis is found to be
$T-T_{\infty}=\frac{\gamma-1}{2 \gamma} \frac{u V_{0}}{R}=3.55 \times 10^{6} V_{8}^{2 / 3} m^{2 / 3} r_{12}{ }^{-2 / 3} \mathrm{~K}$,
where T_{∞} is the temperature of the gas external to the wake. This temperature implies that the turbulent velocity scale is subsonic. The temperature becomes equal to $2 T_{\infty}$ at $R_{\mathrm{B}} V_{0} / c_{\infty}$, where R_{B} is the Bondi radius, $10^{14}\left(10^{4} \mathrm{~K} / T\right) \mathrm{cm}$, and c_{∞} is the sound speed at T_{∞}.

Experimentally it is observed (McCarthy and Kubota 1964) that the pressure is approximately constant across the wake. Equating ρv^{2} at the wake boundary
to the gas pressure at the center gives the central density

$$
\begin{equation*}
n_{w}=1.06 \times 10^{11} n_{11} m^{1 / 6} V_{8}^{-1 / 3} r_{12}-1 / 8 \tag{30}
\end{equation*}
$$

Note that this density is greater than that which would be found by using the external static pressure by a factor of

$$
\begin{equation*}
\frac{\rho V_{n}^{2}}{P}=376.0 T_{4}^{-1} V_{8}^{1 / 3} r_{12}{ }^{-5 / 6} \tag{31}
\end{equation*}
$$

The temperature estimate and density estimate of equations (30) and (31) assume that the wake is isoenergetic, but at these temperatures and densities, radiation cooling can be significant. Time scales of interest are the cooling time (where Λ is the cooling coefficient)

$$
\begin{equation*}
12.4 n_{11}{ }^{-1} V_{8}^{5 / 3} r_{12}{ }^{-1 / 2}\left(10^{-22} \mathrm{ergs} \mathrm{~cm}^{3} \mathrm{~s}^{-1} / \Lambda\right) \mathrm{s} \tag{32}
\end{equation*}
$$

turbulent dissipation of kinetic energy time scale,

$$
\begin{equation*}
3 R T /\left(u^{3} / l\right)=3.04 \times 10^{4} V_{8}^{1 / 3} m^{-2 / 3} r_{12}{ }^{5 / 3} \mathrm{~s} \tag{33}
\end{equation*}
$$

and the turbulent time scale,

$$
\begin{equation*}
2.40 \times 10^{3} V_{\mathrm{B}}^{-1} r_{12} m^{2 / 3} \mathrm{~s} \tag{34}
\end{equation*}
$$

These time scales imply that, for large distances, cooling removes most of the thermal energy from the wake. If the sound speed within the wake drops below the turbulent velocity scale, the turbulence would then become supersonic, leading to shocks which rapidly heat the gas, but the shocks would occur on the basic turbulence time scale, and would not be able to reheat the bulk of the gas. One might speculate that the temperature would decline to the minimum of $10^{4} \mathrm{~K}$, but with an extremely clumpy distribution. If cooling is complete, the simple model used, which does not consider the energy budget, may break down completely. Its value lies in the fact that, as the gas cools, the Reynolds number becomes even greater, and the dynamics of the gas flow in the far wake are almost certainly dominated by turbulence.

One can combine the density and width to show a column density across the wake of sufficient size to produce optical absorption of radiation from the primary. That is $n_{e} 22 l=2 \times 10^{33} \mathrm{~cm}^{-5}$ for an optical depth in the wake of one at $\mathrm{H} \alpha$, assuming the lower level is populated by recombinations at $10^{4} \mathrm{~K}$ and depopulated by radiative transitions. This would be possible whenever the wake was silhouetted against the primary star. But these simple considerations fall well short of the ability to reproduce line profiles as seen by Conti and Cowley (1975). The wake will remain cold in the presence of an X-ray source for $L / n r^{2}<10$, or distances from the X-ray source of $r_{12}>$ $3 L_{37}{ }^{1 / 2} n_{11}{ }^{-1 / 2}$. The absorption cross section for X -rays by a cold gas of cosmic abundances is about $10^{-22}\left(E / \mathrm{keV}^{-1}\right)^{-3} \mathrm{~cm}^{2}$. Again the column densities are adequate for X-ray absorption, but the absorption would be very sensitive to the inclination of the wake
with respect to the X-ray star, since the far wake is very narrow.

V. CONCLUSIONS

The supersonic accretion of gas onto a neutron star has been described, working from the basic model as shown in Figure 1; the main features are the sheath and the accretion column. The angular width of the column, a measurable quantity in the X -ray light curve, is found to depend on the ratio of $V_{0}{ }^{2}$ to the column temperature, and therefore yields information about the local wind velocity provided the column temperature can be specified. An accurate estimate of the temperature would require a hydrodynamic calculation including radiation transfer, but upper limits to the temperature can be obtained by estimating the relevant heating and cooling rates.
The most important consideration in determining the thermal state of the gas is whether or not the gas can cool before it falls all the way down the accretion column. The cooling line of Figure 2 separates the flow into two main regimes. If the postshock gas in the sheath is unable to cool, it will fall inward adiabatically in a wide accretion column, with the accretion efficiency (the β factor) reduced by the thermal pressure. Below the cooling line of Figure 2, the gas will cool to an equilibrium value determined by the radiation field. In the region of the density and velocity parameters which apply to the stellar wind X-ray binaries, this means that the upper part of the accretion column will be photoionization heated to temperatures of order $10^{6} \mathrm{~K}$. The base of the column will be heated to the Compton equilibrium tempera-
ture, causing the pressure to rise sufficiently that the base of the column will spread to a broad inflow. It is predicted that the electron scattering will cause the X-ray light curve absorptions to change from single dips to double dips as $n_{0} V_{0}{ }^{-2}$ increases, if the parameters are in the cooling region.

The gas that is gravitationally perturbed but does not become bound to the neutron star forms the far wake. The high velocity and low viscosity indicate that the far wake is almost certainly turbulent. An extension of the similarity description of supersonic wakes experimentally studied provides the temperature and density in the wake. But the cooling time of the gas in the wake is then found to be less than the basic turbulence time scale, which may mean that whole description is invalid. In spite of this, we suggest that the far wake is composed of a hot gas entering the wake and denser clumps of cold gas, a description which is marginally consistent with the "wake" observations of Conti and Cowley (1975).

The model outlined here is intended to be useful for providing qualitative insight into the physics of supersonic accretion. The numerical quantities employed are expected to be accurate to a factor of 3 or so, and should provide basic regimes which can be further explored with a numerical model.
G. G. Fahlman provided invaluable advice and criticism, and read several rough drafts of this paper during the course of this research. General encouragement and useful discussions were provided by members of the UBC Institute of Astronomy and Space Science and the Dominion Astrophysical Observatory.

APPENDIX

In the case of a heated gas, the thermal pressure forces may become large enough to destroy the assumption that the flow is dominated by inertial forces. In this Appendix the region of validity of the supersonic description of accretion is examined.

The incoming free stream may be heated such that the Mach number, $M=V_{0} /(2 \gamma R T)^{1 / 2}$, becomes less than 1. The maximum temperature which can be produced by Compton heating is $2.9 \times 10^{7}(\alpha / 0.5) \times$ $(\epsilon / 5 \mathrm{keV})$. This temperature can be attained for $n_{11} V_{8}{ }^{-2}>13.8$, which is shown as the crosshatched area in Figure 2. This gives only the area for which subsonic flow is guaranteed in the presence of Compton heating, but what is really wanted is a line on which the Mach number is equal to 1. If only Compton heating is considered, we find that (nonequilibrium) temperatures are produced such that the Mach number is less than 1 for $n_{11} V_{8}^{-4}>17.2$. This line ($M_{c}<1$) is shown in Figure 2. If photoionization heating is included, the subsonic region is increased very slightly at low velocities. We conclude that most of the box of Figure 3 is indeed in supersonic flow.

The deviation of streamlines from particle trajectories will depend on the ratio of pressure forces to inertial forces. As a worst case we assume that the gas
is fully Compton heated. The ratio of radial pressure force to gravitational force for gas outside the shock is

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial p}{\partial r} / \frac{G M}{r^{2}}=\frac{R T_{0}}{r^{2}} / \frac{G M}{r^{2}}=\frac{r}{5 R_{T}} . \tag{A1}
\end{equation*}
$$

This implies that the net force is outward for $r>5 R_{T}$, where the thermal radius is $R_{T}=G M / 5 R T_{0}=3.19 \times$ $10^{10} T_{7}{ }^{-1} \mathrm{~cm}$. Similarly, in the transverse direction, the ratio of pressure to the momentum flux is

$$
\begin{equation*}
\frac{P}{\rho V_{\phi}{ }^{2}}=\frac{r}{5 R_{T}} . \tag{A2}
\end{equation*}
$$

In the shock-heated sheath, the ratio of radial pressure force to gravitational force is $9 / 16$, which will act only to reduce the effective mass of the gravitating object in the sheath. In the column the ratio of pressure forces to gravitation is, for a constant temperature, $3 r / 5 R_{T}$.

In general the pressure forces can be safely ignored, even in the presence of strong heating, provided that we remain in the area of validity of the supersonic flow assumption.

REFERENCES

Allen, C. W. 1973, Astrophysical Quantities (3d ed.; London: Athlone Press).
Arons, J., and Lea, S. M. 1976, Ap. J., 210, 792.
Bondi, H., and Hoyle, F. 1944, M.N.R.A.S., 104, 273.
Buff, J., and McCray, R. 1974, Ap. J., 189, 147.
Conti, P., and Cowley, A. P. 1975, Ap. J., 200, 133.
Cox, D. P., and Daltabuit, E. 1971, Ap.J., 167, 113.
Dachs, J. 1976, Astr. Ap., 47, 19.
Daltabuit, E., and Cox, D. P. 1972, Ap. J., 177, 855.
Danby, J. M. A., and Camm, G. L., 1957, M.N.R.A.S., 117, 50.

Davidson, K., and Ostriker, J. P. 1973, Ap. J., 179, 585.
Demetriades, A. 1968, ALAA J., 6, 432 .
Eadie, G., Peacock, A., Pounds, K. A., Watson, M., Jackson, J. C., and Hunt, R. 1975, M.N.R.A.S. Short Comm., 172, 35p.
Felten, J. E., and Rees, M. J. 1972, Astr. Ap., 17, 226.
Hatchett, S., Buff, J., and McCray, R. 1976, Ap. J., 206, 847.
Hoyle, F., and Lyttleton, R. A. 1939, Proc. Cambridge Phil. Soc., 35, 405.

Hunt, R. 1971, M.N.R.A.S., 154, 141.
Illarionov, A. F., and Sunyaev, R. A. 1975, Astr. Ap., 39, 185.
Jackson, J. C. 1975, M.N.R.A.S., 172, 483.
Jones, C., Forman, W., Tananbaum, H., Schreier, E., Gursky, H., Kellogg, E., and Giacconi, R. 1973, Ap. J. (Letters), 181, L43.
Lamb, H. 1924, Hydrodynamics (5th ed.; Cambridge: Cambridge University Press).
McCarthy, J. F., and Kubota, T. 1964, AlAA J., 2, 629.
McCray, R., and Hatchett, S. 1975, Ap. J., 199, 196.
Mestel, L. 1954, M.N.R.A.S., 114, 437.
Pounds, K. A., Cooke, B. A., Ricketts, M. J., Turner, M. J., and Elvis, M. 1975, M.N.R.A.S., 172, 473.
Ruderman, M. A., and Spiegel, E. A. 1971, Ap. J., 165, 1.
Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Interscience).
Townsend, A. A. 1976, The Structure of Turbulent Shear Flow (2d ed.; Cambridge: Cambridge University Press).
R. G. Carlberg: Department of Geophysics and Astronomy, University of British Columbia, Vancouver, B.C., Canada, V6T 1W5

APPENDIX 2. GAS PHYSICS

Photcionization

The simplest process to describe is the photoionization rate which is independent of the gas temperature and density, and is simply given by

$$
\rho_{i j}=\int_{\nu_{0}}^{\infty} \frac{4 \pi J_{\nu}}{h \nu} \sigma_{i j}(\nu) d \nu
$$

(AII. 1)
where $\sigma_{i j}$ is the photoicnization cross-secticn of atom i, icnizaticn level j. Fcr these calculations the mean radiation field J was taken simply as the flux euerging frcm a model atmosfhere allowing for gecmetrical dilution. The numerical computations used a model computed by Mihalas (1972), specifically the NonLTE $50,000 \mathrm{~K}, \log \mathrm{~g}=4 \mathrm{mcdel}$. Mihalas gives the radiation field in terms of the emergent flux, F, whereas the mean intensity 4 J is needed for the ionization and heating calculations. To make this change, the mean intensity was assumed to vary as the dilution, $W=1 / 2\left(1-\left(1-\left(r_{*} / r\right)^{2}\right)^{2} / 2\right)$, and the flux as $(I * / r)^{2}$. where r is the stellar radius. For the computations illustrated here, all done at a radiation field corresponding to the surface of the star, $4 \pi J \nu=2\left(\pi V_{\nu}\right)$.

Since the 0 VI icn is of particular importance the photoionization rates of all ions up to comparable ionizaticn potentials (IP of 0 is 113.9 V) were included.

The photoionization cross sections used in the calculations are given below. The cross sections used are given in belcw.

The Hydrcgen cross secticn was taken from Eethe and Salpeter (1957).

$$
\begin{equation*}
v=\frac{2^{9} \pi^{2} \alpha a_{0}^{2}}{3 z^{2}}\left(\frac{z^{2} \mathbb{R}}{h \nu}\right)^{4} \frac{\exp (-4 n \operatorname{arccot} \eta)}{1-\exp (-2 \pi n)} \tag{AII,2}
\end{equation*}
$$

Where α is the fine structure constant
as is the Bohr radius
\mathbb{R} is the Rydberg

$$
\eta=(h 2 / R-1)-1 / 2
$$

Z is the ion charge
The Helium I cross section was obtained frow brown (1971). The formula quoted by him was multiplied by 16 to agree with his numerical values, and a factor of 2 was included in the exponential factor to reduce to the Hydrogen formula. The cross section is

$$
\sigma=\frac{2^{15} \pi^{2} a_{0}^{2} \frac{h_{2}}{R}\left(\alpha \beta Z_{b}\right)^{3}\left(k^{2}+Z_{f}^{2}\right)\left[\begin{array}{c}
I_{\alpha} \\
\left(\beta+Z_{b}\right)^{3}+ \\
\left(\alpha+Z_{b}\right)^{3}
\end{array}\right]^{2}}{3\left[1-\exp \left(-\frac{2 \pi Z_{f}}{k}\right)\right]\left[1+\frac{(4 \alpha \beta)^{3}}{(\alpha+\beta)^{6}}\right]},
$$

(AII.3)
where

$$
I_{\alpha}=\frac{2 \alpha-Z_{f}}{\left(k^{2}+\alpha^{2}\right)^{3}} \exp \left(-\frac{2 Z_{f}}{k} \tan ^{-1}\left(\frac{k}{\alpha}\right)\right)
$$

and $I_{p}=I_{\alpha}$ with all $\alpha^{\prime} s$ replaced by $\beta^{\prime} s$. The constants
are

$$
\begin{aligned}
& \alpha=2.182846 \\
& \beta=1.188914 \\
& z_{f}=2 \\
& z_{b}=1 \\
& k=((h 2-24.587 e v) / 13.598 \mathrm{eV})^{1} / 2
\end{aligned}
$$

The Helium II cross section is the same as the photcicrizatic cross section of Hydrogen but with $Z=2$ everywhere.

For the remaining ions the cross sections have been calculat $\in \bar{c}$ by various authcrs using the principles of quantum mechanics, and then making a fit to a standard polynomial to represent the data as a function of incident photon energy. Two forms for the polynomial are used tere, one due tc seatcn (1958)

$$
\sigma(\nu)=\sigma_{0}\left[\alpha\left(\frac{\nu}{\nu_{0}}\right)^{-s}+(1-\alpha)\left(\frac{\nu}{\nu_{0}}\right)^{-s-1}\right],
$$

(AII. 4)
Where ν_{0} is the threshcld freguency and the other constants are fitting parameters. The other form is a slightly more general polynomial due to Chapman and Henry (1971)

$$
\sigma(\nu)=v_{0}\left[\alpha\left(\frac{\nu}{\nu}\right)^{-5}+(\beta-2 \alpha)\left(\frac{\nu}{\nu_{0}}\right)^{-5-1}+(1+\alpha-\beta)\left(\frac{\nu}{\nu_{0}}\right)^{-5-2}\right]
$$

(AII.5)

TAELE 6: PHOTOICNIZATION CROSS SECTION PARAMETERS Icr $\begin{array}{cccc} & h \nu_{0} & \sigma_{0} \\ 10^{-18} \mathrm{~cm}^{2} & \mathrm{~s} & \alpha & \beta\end{array}$

C	I	11.26	12.19	2.0	3.17	--	470
C	II	24.383	4.6	3.0	1.95	--	H70
C	III	47.887	1.84	2.6	3.0	--	SB71
C	IV	64.492	0.713	2.2	2.7	--	SE71
N	I	14.534	11.42	2.0	4.287	--	H70
N	II	29.601	6.65	3.0	2.86	--	H70
N	III	47.448	2.06	1.62	3.0	--	H70
N	IV	77.472	1.08	3.0	2.6	--	F68
N	V	97.89	0.48	2.0	1.0	--	F68
0	I	13.618	2.94	1.0	2.661	--	H70
		16.943	3.85	1. 5	4.378	--	
		18.635	2.26	1.5	4.311	--	
0	II	35.117	7.32	2.5	3.837	--	H70
0	III	54.943	3.65	3.0	2.014	--	H70
0	IV	77.413	1.27	3.0	0.831	--	H70
0	V	113.90	0.78	3.0	2.6	--	F68
0	VI	138.2	0.36	2.1	1.0	--	F68
N	e I	21.564	5. 35	1.0	3.769	--	H70
N	e II	40.962	4. 16	1.5	2.717	--	H70

* means that the cross section weighted by the statistical weights of the fine structure transitions. The abbreviation Iso means extrapolation along an isoelectronic seguence.

The references coded above are:
H70: Henry 1970
S58: Seatcn 1958
SE71: Silk and Brown 1971
CH71 Chapman and Henry 1971
CH71 Chapman and Henry 1972
F68: Flower 1968.

The Eecombination Bate
The reccmbination rate for $H y d r o g e n$ was calculated usirg an expression given by Jchnsen (1972) which has a correction factor built in allowing for finite density. The rate to level n is

$$
\begin{gathered}
S\left(c^{\prime}, n\right)=D\left(I_{n} / k T\right) 3 / 2 \exp \left(I_{n} / k T\right) \sum_{i=0}^{2} g_{i}(n) x-i \\
E_{i+1}\left(x_{0} I_{n} / k T\right)
\end{gathered}
$$

$$
(A 1 I .6)
$$

Above the level n_{0} the fofulations can be assumed to be in equilibrium with the continum, that is the populations are as in Saha equilibrium. The value of n is calculated from an exfression given by Jordan (1969)

$$
n_{0}=z \frac{14}{17} \quad n_{e}^{-\frac{2}{17}}\left[\frac{k T_{e}}{z^{2} \sqrt{R}}\right]^{\frac{1}{17}} \exp \left[\frac{4 z^{2} \mathbb{R}}{17 n_{0}^{3} k T_{e}}\right]
$$

(AII.7)
The value of x_{0} is defined to be $1-\left(n / n_{0}\right)^{2}$. The constant α is 5. $197 \times 10^{-14} \mathrm{~cm}^{2}$. The functions E care the exponential integrals, and the $g(n)$ are Gaunt factor coffficients, determined as shown in the following table.

TABLE 7: GAONT FACTORS

	$n=1$	$n=2$	$n>2$
$g_{0}(n)$	1.1330	1.0785	$0.9935+.2 \equiv 28 n^{-1}-.1296 n^{-2}$
$g_{1}(n)$	-0.4059	-0.2319	$-n^{-1}\left(.6282-.5598 n^{-1}+.5299 n^{-2}\right)$
$g_{2}(n)$.07014	.02947	$n^{-2}\left(.3887-1.181 n^{-3}+1.470 n^{-2}\right)$

The values in this table were taken from Johnson (1972).

In crder to obtain the total recombination rate, recominations to the levels $n=1$ to 9 summed together.

Ccmputaticns of the reccmbination rate for all of the other ions $c f$ interest have been made by Aldrovandi and Pequignot
(1973). with errata in Aldrovandi and Peguignot (1976). The data is provided in the form of fits to simple functicns. The radiative rate is given by

$$
\begin{equation*}
\alpha^{r}=A_{\operatorname{rad}}\left(T / 10^{*} \mathrm{~K}\right)^{-x} . \tag{AII,8}
\end{equation*}
$$

and the dielectronic reccabinaticn rate by

$$
\begin{equation*}
\alpha^{d i}=A d i T^{-3} / 2 \exp \left(-T_{0} / T\right)\left[1+B_{d i} \operatorname{Exp}\left(-T_{1} / T\right)\right] . \tag{AII.9}
\end{equation*}
$$

The varicus constants used are given in the accompanying table. The range of validity of the fits are Tmax/1000 < T < Tmax. Tcrit gives the temperature above which dielectronic reccmbination is important.

TABLE 8: RECGMBINATICN FIT CONSTANTS

A		Abad	ET A	TMAX	tcrit	ADI	to	BDI T 1
HE	I	4. 3E-13	.672	1 E5	5. OE 4	1. $9 \mathrm{E}-3$	4.7 E5	0.39 .454
C	I	4. $7 \mathrm{E}-13$. 624	5 E 4	1.2E4	6. $9 \mathrm{E}-4$	1.1E5	3.04 .954
C	11	2. 3E-12	. 645	1E5	1.2E4	7. $0 \mathrm{E}-3$	1.5E5	0.52 .3 E 5
C	III	3. 2E-12	. 770	3E5	1. 1E4	3. $8 \mathrm{E}-3$	9.1E4	2.03 .7 E 5
C	IV	7. $5 \mathrm{E}-12$. 817	1E6	4.4E5	4. $8 \mathrm{E}-2$	3.4 E6	0.25 .1 F 5
c	v	1. $7 \mathrm{E}-11$.721	3E6	7.0E5	4. $\varepsilon E-2$	4.1E6	$0.27 .6 \mathrm{E5}$
N	I	4. 1E-13	. 608	1E5	1.8E4	5. 2E-4	1.3E5	3.84 .8 E 4
N	II	2. $2 \mathrm{E}-12$. 639	1F5	1.8E4	1. 7E-3	1.4 EF	4.16 .8 EL
N	III	$5.0 \mathrm{E}-12$. 676	3E5	2.4E4	1. $2 \mathrm{E}-2$	$1.8 \mathrm{E5}$	1.43 .8 EF
N	IV	6. $5 \mathrm{E}-12$. 743	3E5	1.5E4	5. $5 \mathrm{E}-3$	1.1E5	$3.05 .9 \mathrm{E5}$
N	v	1.5E-11	. 850	3E6	6.8E5	7. $6 \mathrm{E}-2$	4.7E6	0.27 .2 E 5
N	VI	2.9E-11	. 750	1E7	1.0E6	6. $6 \mathrm{E}-2$	5.4 E 6	0.29 .8 E 5
0	I	3. 1E-13	. 678	5E4	2. 7E4	1. $4 \mathrm{E}-3$	1.7. 55	$2.51 .3 \mathrm{F5}$
0	II	2.0E-12	. 646	2E5	2. 2 E 4	1. $4 \mathrm{E}-3$	1.7E5	$3.35 .8 E 4$
0	III	5. 1E-12	. 666	5E5	2.4E4	2. $8 \mathrm{E}-3$	$1.8 \mathrm{E5}$	6.09 .1 F 4
0	IV	$9.6 \mathrm{E}-12$. 670	1E6	2. 5E 4	1. $7 \mathrm{E}-2$	2.2E5	2.0-5.9E5
0	v	1. 2E-11	. 779	6E5	1.6E4	7. 1E-3	1.3E5	$3.28 .0 \mathrm{E5}$
0	VI	2.3E-11	. 802	3E6	1.0E6	1. 1E-1	6.2E6	0.29 .5 E 5
0	VII	4. 1E-11	. 742	1E7	1.5E6	8.6E-2	7.0E6	0.2 1.3E6
NE	I	2. 2E-13	. 759	1E5	3.0E4	1. $3 \mathrm{E}-3$	3.1E5	1.9 1.5E5
NE	II	1. 5E-12	. 693	1E5	3. 3E4	3. 1E-3	2.9E5	0.61 .7 ES
NE	III	4.4E-12	. 675	2F5	3.3E4	7. $5 \mathrm{E}-3$	2.6E5	0.74 .5 EF
NE	IV	9. $1 \mathrm{E}-12$. 668	3E5	3.5E4	5. $7 \mathrm{E}-3$	2.4 E 5	4.31 .7 E 5
NE	V	1. 5E-11	. 684	6E5	3.6E4	1. OE-2	2.4 ES	4.83 .5 E 5
NE	VI	2. 3E-11	. 704	1E6	3.6E4	4.0E-2	2.9E5	1.61 .1 E 6
NE	VII	2. $8 \mathrm{E}-11$. 771	1E6	2.9E4	1. $1 \mathrm{E}-2$	1.7E5	5.01 .3 E 6
NE	VIII	5.0E-11	. 832	6E6	1.5E6	1. $8 \mathrm{E}-1$	9.8E6	0.21 .4 E 6
NE	IX	8.6E-11	. 769	3 E 7	3.8E6	1. 3E-1	1.1 E 7	0.22 .6 E 6
MG	I	1. $4 \mathrm{E}-13$. 855	3E4	4.0E3	1. $7 \mathrm{E}-3$	5.1E4	0.00 .0
MG	II	8. $8 \mathrm{E}-13$. 838	1 E5	7.4E4	3. $5 \mathrm{E}-3$	6.1E5	0.00 .0
MG	III	3. $5 \mathrm{E}-12$. 734	3E5	6.6E4	3. $9 \mathrm{E}-3$	4.4 ES	3.0:4.1E5

MG	IV	7. $7 \mathrm{E}-12$. 718	5 E 5	5.5E4	9. 3E-3	3.9 EL	3.2 8.7E5
MG	V	1.4E-11	. 716	1E6	4.4E4	1.5E-2	3.4E5	3.21 .0 E 6
MG	VI	2. 3E-11	. 695	156	4.5E4	1. $2 \mathrm{E}-2$	3.1E5	6.75 .4 E 5
MG	VII	3. 2E-11	. 691	1 E6	4.5E4	1. $4 \mathrm{E}-2$	3.1 E 5	4.43 .6 E 5
MG	VIII	4. $6 \mathrm{E}-11$. 711	2E6	5. OE4	3. $8 \mathrm{E}-2$	3.6E5	3.51 .6 E 6
MG	IX	5.8E-11	. 804	3E6	3.4E4	1.4E-2	2.1E5	10.02 .1 E 6
MG	X	9.1E-11	. 830	1 E 7	2.4E6	2.6E-1	1.4 E 7	0.22 .4 E 6
MG	XI	1. $5 \mathrm{E}-10$. 779	5E7	4.0 E 6	1.7E-1	$1.5 \mathrm{E7}$	0.23 .5 F 6
SI	I	5. 9E-13	. 601	3F4	1.1E4	6. $2 \mathrm{E}-3$	1.1E5	0.00 .0
SI	II	1.0E-12	. 786	1E5	1.1E4	1.4E-2	1.2E5	0.00 .0
SI	III	3. 7E-12	. 693	2F5	1. 1E4	1. $1 \mathrm{E}-2$	1.0 E 5	0.00 .0
SI	IV	5. $5 \mathrm{E}-12$. 821	3 E 5	1.7E5	1. $4 \mathrm{E}-2$	1.2 E 6	0.00 .0
SI	V	1. $2 \mathrm{E}-11$. 735	6E5	9.5E4	7. $8 \mathrm{E}-3$	5.5 E 5	10.0.1.0E6
SI	VI	2. 1E-11	. 716	1E6	8. OE 4	1.6E-2	4.9 ES	4.0-1.3F6
SI	VII	3.0E-11	. 702	1E6	7.4E4	2. 3E-2	4.2E5	8.01 .7 E 6
SI	VIII	4. 3E-11	. 688	2E6	6.854	1. $1 \mathrm{E}-2$	3.8E5	6.36 .0 ES
SI	IX	5.8E-11	. 703	2 E 6	6.6 E 4	1. $1 \mathrm{E}-2$	3.7E5	6.01 .1 E 6
SI	X	7.7E-11	. 714	3E6	6.5 E 4	4. $8 \mathrm{E}-2$	4.2E5	5.02 .5 F 6
SI	XI	1. $2 \mathrm{E}-10$. 855	1 E 7	4.5E4	1. $8 \mathrm{E}-2$	2.5E5	10.52 .8 E 6
SI	XII	1. $5 \mathrm{E}-10$. 831	3E7	3.7E6	3.4E-1	1.9 E 7	0.23 .1 F 6
SI	XIII	2. 1E-10	. 765	5E7	6.3 E 6	2. 1E-1	2.0 EF 7	0.24 .4 E 6
S	I	4. 1E-13	. 630	3E4	2.2E4	7. 3E-5	1.1E5	0.00 .0
S	II	1.8E-12	. 686	1E5	1.2E4	4. $9 E-3$	1.2E5	2.5 8.8E4
S	III	2.7E-12	. 745	2E5	1.4E4	9. 1E-3	1.3 ES	6.01 .5 F 5
S	IV	5.7E-12	. 755	3F5	1.5E4	4. 3E-2	1.8 E 5	0.00 .0
S	v	1. 2E-11	. 701	5E5	1.4 EL	2.5E-2	1.5 EF	0.00 .0
S	VI	1.7E-11	. 849	1E6	2.9E5	3. 1E-2	1.9 E 6	0.00 .0
S	VII	2.7E-11	. 733	1E6	1.3E5	1. 3E-2	6.7.E5	22.0 1.8E6
S	VIII	4.0E-11	. 696	2 F 6	1.1E5	2. 1E-2	5.9 E 5	6.42 .0 E 6
S	IX	5. 5E-11	. 711	2E6	9.0E4	3. 5E-2	5.5E5	13.0 2.3F6
S	X	7. 4E-11	. 716	3F6	9.0E4	3. $0 \mathrm{E}-2$	4.7 E 5	6.8 1.2EE
S	XI	9. $2 \mathrm{E}-11$.714	5E6	9.0E4	3. 1E-2	4.2E5	6.31 .3 E 6
S	XII	1. $4 \mathrm{E}-10$. 755	6 E6	8. 3 E 4	6.3E-2	5.0 E 5	4.13 .4 E 6
S	XIII	1.7E-10	. 832	1E7	6.0 E 4	2.3E-2	3.0E5	12.03 .6 E 6
S	XIV	2. $5 \mathrm{E}-10$. 852	1 E 8	5.0E6	4. $2 \mathrm{E}-1$	2.4 ET	0.24 .6 EF
S	XV	3. 3E-10	. 783	2E8	9.0E6	2. $5 E-1$	2.5E7	0.25 .5 E 6

A number of small changes have been made in the limits of the apprcximations in order to smooth the turn on transition for dielectronic recombination.

The dielectronic recombination rates computed above were based on the assumption of a low density gas with no radiaticn ficld fresent, whereas the envelope of a stellar wind star is an envircnment of moderately high density and strong radiation field which will effect the rate. Dielectronic recombination occurs when a free electron excites a bcund electron to a higher
energy level, thereby allowing the free electron to lose enough energy to become bound into a very high quantum level. The atcm then can stabilize by a series of cascades of the two electrons to the ground state. Schematically this process is

$$
\begin{gathered}
A(n)+2+e^{-} \rightleftharpoons A^{+2-1}\left(n^{\prime}, n^{\prime}\right) \\
A+2-2\left(n, n^{\prime}\right)+h 2 \longrightarrow \\
A+2-1\left(n, n^{\prime} A^{\prime}\right)+h 2,
\end{gathered}
$$

where in general $n=n+1$ and $n \cdot \gg n$, $n \cdot \cdots$. If the gas becomes sufficiently dense or if the radiation field strong enough, the electron in the high lying guantum level n* can be either collisicnally or radiatively ionized out of the atom before it has time to stabilize by photoemission. A rough empirical correction facter was devised to allow for this decrease in the dielectronic recombination rate.

The principal quantum number of the state at which half the captured electrons are stabilized by cascades to ground and half are reionized is given by.

$$
\begin{aligned}
& 1(\text { collisions })=\left(1.4 \times 10^{25} \mathrm{Z} 6 \mathrm{~T} 1 / 2 / \mathrm{ne}\right)^{2} / 7 \quad \text { Dupree (1968) } \\
& \quad 1(\text { radiative })=\mathrm{Z}(3 \operatorname{Rln}(1) /(\mathrm{dkT} \mathrm{rad}))^{1 / 2}
\end{aligned}
$$

Sunyaev and Vainstein (1968)
where is the geometrical dilution factor of the radiation field apfroximated by a blackbody of temperature Trad. These numbers can be calibrated against the depression of the recombination rate calculated by Summers (1974). It was found that data is roughly fitted by the multiplicative factor f, such that $\alpha d i=f a d i(n=0, W=0)$, where f is

$$
f=\exp [-2.303 *(.015 * a 2+.092 * a)]
$$

where

$$
a=12.55-7 * \log 10(1)
$$

That is, the adjusted recombination rate is found by multiplying the value found from the fits given by Aldrovandi and Pequignot times the f factor given above.

In addition to this correction to the dielectronic rate. the semicoronal approximation of Wilson (1962) has been used to add to the radiative rate. This allows for some recombination to upper levels.

$$
\begin{equation*}
\alpha_{i j j+1}^{\mu}=1.8 \times 10^{-14} \chi_{i j}(k T)-3 / 2 x_{i j}(l) \tag{AII.10}
\end{equation*}
$$

where $X_{i j}(1)=X_{i j} / 1^{2}(c o l l i \leq i c n s)$. In addition three body reconbination makes significant contributions at low temperatures, and is simply approximated by (Burgess and Summers 1976)

$$
\begin{equation*}
\alpha^{3, j+1}=1.16 \times 10^{-8} \mathrm{~J}^{3} \mathrm{I}^{9} /{ }^{2} \mathrm{ne}_{e} \tag{AII.11}
\end{equation*}
$$

where J is the charge of the ion.

Collisional Ionization

The rate of collisional ionization for Hydrogen was also taken frei Johnson (1972) as

$$
\begin{align*}
& S_{e}\left(n_{e}, c^{\prime}\right)=\left(\frac{8 k T}{\pi m}\right)^{1 / 2} \frac{z_{n}^{2}}{x_{0}} \pi a_{0}^{2} y_{n}^{\prime}\left\{A_{n}^{\prime}\left[\frac{E_{1}\left(y_{n}^{\prime}\right)}{y_{n}^{\prime n}}-\frac{E_{1}\left(z_{n}^{\prime}\right)}{z_{n}^{\prime}}\right]\right. \\
&\left.+\left(B_{n}^{\prime} 1-A_{n}^{\prime} \ln \frac{2 n^{2}}{x_{0}}\right)\left(\xi\left(y_{n}^{\prime}\right)-\xi\left(z_{n}^{\prime}\right)\right)\right\}, \tag{AII.12}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{n}^{\prime}=\frac{32}{3 \cdot \sqrt{3} \pi} n \sum_{i=0}^{2} \frac{g i(n)}{i+3} x_{0}^{-(i+3)} \\
& B_{n}^{\prime}=\frac{2}{3} n^{2} x_{0}^{-1}\left(3+2 x_{0}^{-1}+b_{n} x_{0}^{-2}\right) \\
& y_{n}^{\prime}=x_{0} I_{n} / k T \\
& z_{n}^{\prime}=x_{0}\left(I_{n} / k T+I_{r}\right) \\
& C(t)=E_{0}(t)-2 E_{1}(t)+E_{2}(t) .
\end{aligned}
$$

and the Gaunt factors and x are as for the recombination rate in Hydrogen. only icnization from the ground state $n=1$ will be considered, so $r_{1}=0.45$ and $b_{1}=-0.603$.

All cther icns have collisional ionization rates based ufon an affroximation investigated in detail by lotz (1967). A slight modification to the original formula has been made by McWhirtier (1975) to allow for the decrease of the ionization rate at bigh temperatures. The rate is given by

$$
\begin{aligned}
c_{i j}= & 8.35 \times 10-8 \sum_{s=1}^{2}\left[T 1 / 2 / 14.88+k T / X_{i j}(s)\right) n(s) \\
& \left.\exp \left(-X_{i j}(s) / k T\right) / X_{i j}(s)^{2}\right] .
\end{aligned}
$$

(AII.13)
where s goes from 1 to 2 in the calculations here, $n(s)$ is the number of electrons in the subshell, and $X_{i j}(1)$ is the normal ionizaticn petential as given by Allen (1973), $X_{i j}(2)$ is $X_{i j}(1)$ plus the excitation energy of the lowest excited level in the $n \in w$ icn with one of the inner shell electrons removed. For instance, the ionization of C II wich has an electronic configuration of $1 s^{\mathbf{2}} \mathbf{2 s}^{\mathbf{2}} \mathbf{2 p}$ pan procéd with the addition of 196659 cm- of energy to C III $1 s^{2} 2 s^{2} b y$ removing the one outer shell electron, or the ionization can take $196659+52315 \mathrm{~cm}^{-1}$ and icnize to CIII $1 s^{2} 2 s 2 p$, by removing one of the two shell electrons. The energy $52315 \mathrm{~cm}^{-1}$ is simply the energy to go from C III $2 s^{2}$ to C III $2 s 2 p$. Tbe attached table gives ionizaticn potentials (in ev) and the number of subshell electrons. The values were obtained from the tables of Lotz (1967) and Moore (1949).
table 9: IONIZATION POTENTIAL AND SHELL ELECTBON POFULATICNS ATCH IF1 N1 IP2 N2 H I HE I

HE	II	54.416	1		
C	I	11. 260	2	16.6	2
C	II	24.383	1	30.9	2
C	III	47.887	2	323.	2
C	IV	64.492	1	342.	2
C	V	392.08	2		
C	VI	489.98	1		
N	I	14.534	3	20.3	2
N	II	29.601	2	36.7	2
N	III	47.448	1	55.8	2
N	IV	77.472	2	469.	2
N	V	c7.89	1	492.	2
N	VI	552.06	2		
N	VII	667.03	1		
0	I	13.618	4	28.5	2
0	II	35.117	3	42.6	2
0	III	54.934	2	63.8	2
0	IV	77.413	1	87.6	2
0	V	113.90	2	642.	2
0	∇I	138.12	1	669.	2
0	VII	739.32	2		
0	VIII	871.39	1		
NE	I	21. 564	6	48.5	2
NE	II	40.962	5	66.4	2
NE	III	63.45	4	86. 2	2
NE	IV	97. 11	3	108.	2
NE	V	126. 21	2	139.	2
NE	VI	157.93	1	172.	2
NE	VII	207. 26		1072.	2
NE	VIII	239.09		1106.	2
NE	IX	1195.8	2		
NE	X	1362.2	1		
MG	I	7.646	2	60.420	6
MG	II	15.035	1	67.809	6
MG	III	80.143	6	118.768	2
MG	IV	109.31	5	144.42	2
MG	∇	141.27	4	172.01	-
MG	VI	186.51	3	201.22	2
MG	VII	224.95	2	241.14	2
MG	VIII	265.92	1	283.38	2
MG	IX	328.0		1680.4	2
MG	X	367.5		1719.8	2
MG	XI	1761.8	2		
MG	$X I I$	1963.	1		
SI	I	8.151	2	13.616	2
SI	II	16.345	1	22.870	2
SI	III	33.492	2	137.709	6
SI	IV	45.141	1	149.358	6
SI	V	166.77	6	217.170	2
SI	VI	205.08	5	250.48	2
SI	VII	246.49	4	285. 26	2
SI	VIII	30.3. 16	3	321.76	2
SI	IX	351.1	2	371.2	2
SI	X	401.4	1	422.4	2
SI	XI	476.1		2340.8	2
SI	$X I I$	523.		2388.	2

SI	XIII	2438.	2		
SI	XIV	2673.	1		
S	I	10.360	4	20.204	2
S	II	23.33	3	33.747	2
S	III	34.83	2	43.737	2
S	IV	47.30	1	57.60	2
S	v	72.68	2	243.31	6
S	VI	88.05	1	258.68	6
S	VII	280.01	6	342.45	2
S	VIII	328.33	5	352.24	2
S	IX	379.1	4	402.8	2
S	X	447.1	3	469.0	2
S	XI	504.7	2	551.2	2
S	XII	565.	1	621.	2
S	XIII	652.	2		
S	XIV	707.	1		
S	$X V$	3224.	2		
S	XVI	3494.	1		

Again, following milson (1962) we make a small additicn to the ionization rate allowing for high density effects of icaizaticns out of upper levels,
$c_{i j}^{u}=4.8 \times 10^{-6} \mathrm{I}^{-1} / 2 \exp \left(-x_{i j} / \mathrm{kT}^{n}\right) /\left(X_{i j} 12(\operatorname{collisions})\right)$.(AII. 14)

Charge Exchange

In order to increase the general usefulness of this program the charge exchange rates of

$$
\begin{aligned}
& \mathrm{H}^{+}+\mathrm{C} \rightleftharpoons \mathrm{O}^{+}+\mathrm{H} \\
& \mathrm{H}^{+}+\mathrm{N} \rightleftharpoons \mathrm{~N}^{+}+\mathrm{H}
\end{aligned}
$$

were included using expressions exactly as given by field and Steigman (1971) and Steigman, et al. (1971). Since the temperatures here are usually in excess cf $10^{4} \mathrm{~K}$, the charge exchange rate is at almost constant and at its maximum.

The Heating Rate

All heating is due to energy gain by photoicnization, which is siafly given by

$$
\begin{equation*}
\Gamma_{i j}=\int_{\nu j}^{\infty} 4 \pi J_{2} \sigma_{i j}(\nu) d \nu \tag{AII.15}
\end{equation*}
$$

The total gain is

$$
\begin{equation*}
G=\sum_{i j} n_{i j} \Gamma_{i j} \tag{AII.16}
\end{equation*}
$$

Cccling Rates

The emission of radiation is calculated under the assumption the medium is optically thin. The cooling due to bremsstrahlung is (Cox and Tucker 1969).

$$
\begin{equation*}
\Lambda^{B}=2.29 \times 10^{-27} T^{1} / 2 \mathrm{n}_{\mathrm{e}} \eta_{1} / \mathrm{n}^{2} \tag{AII.17}
\end{equation*}
$$

where n_{H} is the number density of Hydrogen. This loss rechanism dominates for temperatures in excess of $10^{7} \mathrm{~K}$.

The radiative recombination energy loss rate is

$$
\begin{aligned}
\Lambda_{i j}^{r_{i j}}= & \alpha r_{i j}\left(X_{i, j-1}+k T\right) X_{i j} A_{i} \\
& \times\left[\frac{-0.0713+\frac{1}{2} \ln U+0.64 U^{-1 / 3}}{0.4288+\frac{1}{2} \ln U+0.469 U^{-1 / 3}}\right]
\end{aligned}
$$

(AII. 18)
where $0=X_{i j} / k T$. The correction factor in brackets was derived frcm the analysis of seatcn (1959) for the recombination process in Hydrogen. It represents the correction to the radiative recombination rate required to convert it to the energy rate, accounting for the preferential capture of slow electrons.

The loss rate due to dielectronic recoubinations was esti-
mated as.

$$
\begin{equation*}
\Lambda_{i j}^{d i}=\alpha_{i j}\left(1 X_{i, j-1}+\Delta E_{i j}^{l}\right) X_{i j} A_{i} . \tag{AII.19}
\end{equation*}
$$

The recombination radiation is the dominant loss mechanism for temperatures of $2 \times 10^{4} \mathrm{~K}$ and less. The energy difference $\Delta E_{i j}$ is taken as the lowest energy peraitted transiticn to the ground state.

Between 2×10^{4} and $10^{7} \mathrm{~K}$ the dominant loss mechanisil is collisicnal excitation of lines. In frinciple a calculation of this rate requires the collisional cross section for excitation of a particular transiticn as a functicn of incident electron energy. With the aid of the Milne relation, which relates the collisicn cross section tc the inverse process of photcabscrpticn, the loss rate can be apprcximated as (Mewe 1972)

$$
\Lambda_{i}^{l}=1.7 \times 10^{-3 T-1 / 2} \sum_{i j} \sum_{l} g(1) £ i j(1) \in \operatorname{xp}\left(-\Delta E_{i j}(1) / k T\right) A_{i} X_{i j}
$$

(AII. 20) where g is a gant factor, $f_{i j}(1) i s$ the f value for the transiticn, and $\Delta E_{i j}(1)$ is the energy of the emitted photon. The g factor has been calculatec by Mewe (1972) for many transitions and given a simple extension by Katc (1976) to cover all transitions. They both use the same fitting function for the Gaunt factor,

$$
g=A+\left(B y-C y^{2}+D\right) \exp (y) E_{1}(y)+C y
$$

(AII.21)
Where $y=\Delta E i j(1) / k T$, and A, E, C, D are constants given by Mewe and Kato, which are listed in the accompanying table. E, is the first exponential integral. The constants are identified $⺊ y a$ transition number (G ID). which is matched to a transition number of all the lines used in the calculation. For the actual computation the complete line list given was reduced by taking a multiplet average over fine structure levels. In the Table 10
the A, B, C, and D correspond tc the constants for the fitting function. When a value of 99.0 is entered the constant beccmes a simple functicn as given by Meve.

0.36	0.04	0.	0.28	47
0.37	0.03	0.	0.28	48
0.38	0.03	0.	0.28	49

The following table gives the line list used in the calculaticn of the radiation acceleration and the cooling rate. The lines were taken from tables compiled by Morton and Smith
 and Mcrton 1976), Katc (1976), Wiest, et al. (1966), and fiese. Et al. (1969). In the table the line is identified by atom and icnizaticn species, usually with a remark about the multiplet of origin, the wavelength is given in Angstroms, the f value of the transition, a number identifying which set of constants are to be used to calculate the Gaunt factor, the atomic number and the ion species are given.
taEle 11: LINeS USED for the calculations

日	II	2	256. $=17$	0.7912E-01	3	2	
HE	II	1	303.786	$0.4162 \mathrm{E}+00$	1	2	2
C	I	31auto	945.191	$0.2730 \mathrm{E}+00$	42	6	1
C	I	31a0to	945.338	$0.2730 \mathrm{E}+00$	42	6	1
C	I	31AUTO	945.579	$0.2720 \mathrm{E}+00$	42	6	1
C	I	9	1260.736	$0.3790 \mathrm{E}-01$	41	6	1
C	I	9	1260.927	$0.1260 \mathrm{E}-01$	41	6	1
C	I	9	1260.956	$0.9480 \mathrm{E}-02$	41	6	1
C	I	9	1261.122	$0.1580 \mathrm{E}-01$	41	6	1
C	I	9	1261.426	$0.9480 \mathrm{E}-02$	41	6	1
C	I	9	1261.552	$0.2840 \mathrm{E}-01$	41	6	1
C	I	7	1277. 245	C.8970E-01	41	6	1
C	I	7	1277. 282	$0.6730 \mathrm{E}-01$	41	6	1
C	I	7	1277.513	$0.2240 \mathrm{E}-01$	41	6	1
C	I		1277.550	$0.7530 \mathrm{E}-01$	41	6	1
C	I	7	1277.723	$0.1350 \mathrm{E}-01$	41	6	1
C	I	7	1277.954	0. 8¢ $70 \mathrm{E}-03$	41	6	1
C	I	6	1279.229	$0.3810 \mathrm{E}-02$	41	6	1
C	I	5	1279.890	0. $8400 \mathrm{E}-02$	41	6	1
C	I	5	1280.135	$0.2020 \mathrm{E}-01$	41	6	1
C	I	5	1280.333	$0.1510 \mathrm{E}-01$	41	6	1
C	I	5	1280.404	$0.5040 \mathrm{E}-02$	41	6	1
C	I	5	1280.597	$0.6720 \mathrm{E}-02$	41	6	1
C	I	5	1280.847	C. $5040 \mathrm{E}-02$	41	6	1
C	I	4	1328.833	0. $3920 \mathrm{E}-01$	42	6	1
C	I	4	1329.086	$0.1310 \mathrm{E}-01$	42	6	1
C	I	4	1329.100	$0.1630 \mathrm{E}-01$	42	6	1
C	I	4	1329.123	c. $5800 \mathrm{E}-02$	42	6	1
C	I	4	1329.578	$0.2940 \mathrm{E}-01$	42	6	1
C	I	4	1329.600	0.9800E-02	42	6	1
C	I	3	1560. 310	C. E100E-01	42	6	1
C	I	3	1560.683	0.6080E-01	42	6	1
C	I	3	1560.708	$0.2020 \mathrm{E}-01$	42	6	1
C	I	3	1561.341	$0.1210 \mathrm{E}-01$	42	6	1
C	I	3	1561.367	$0.8100 \mathrm{E}-03$	42	6	1
C	I	3	1561.438	C.6800E-01	42	6	1
C	I	2	1656. 266	0.5660E-01	41	6	1
C	I	2	1656.928	$0.1360 \mathrm{E}+00$	41	6	1
C	I	2	1657.008	0. 1020E + 00	41	6	1
C	I	2	1657.380	$0.3400 \mathrm{E}-01$	41	6	1
C	I	2	1657.907	$0.4530 \mathrm{E}-\mathrm{C} 1$	41	6	1
C	I	2	1658.122	$0.3390 \mathrm{E}-01$	41	6	1
CII		B1	43. 200	$0.3800 \mathrm{E}+00$	42	6	2
CII		10	687.050	$0.2700 \mathrm{E}+00$	41	6	2
CII		10	687.350	$0.2300 \mathrm{E}+00$	41	6	2
CII		9	858.090	$0.4600 \mathrm{E}-01$	41	6	2
CII		9	858.550	$0.4600 \mathrm{E}-01$	41	6	2
CII		3	903.620	$0.1700 \mathrm{E}+00$	42	6	2
CII		3	903.960	$0.3400 \mathrm{E}+00$	42	6	2
CII		3	904.140	$0.4300 \mathrm{E}+00$	42	6	2
CII		3	904.480	0.8400E-01	42	6	2
C	II	2	1036.337	$0.1250 \mathrm{E}+00$	42	6	2
C	II	2	1037.018	$0.1250 \mathrm{E}+\mathrm{CO}^{0}$	42	6	2
C	II	1	1334.532	$0.1180 \mathrm{E}+00$	42	6	2
C	II	1	1335.662	0.1180E-0 1	42	6	2
C	II	1	1335.708	$0.1060 E+00$	4.2	6	2

CII		BE1	42. 510	$0.5660 \mathrm{E}+00$	42	6	3
C	III	I 3.09	270.324	0.3287E-02	41	6	3
C	III	I 3.08	274.051	0.3378E-02	41	6	3
C	III	I 3.07	280.043	$0.3527 \mathrm{E}-02$	41	6	3
C	III	I 3.03	291.326	0.3E17E-02	41	6	3
C	III	13	310.170	$0.1601 \mathrm{E}-01$	41	6	3
C	III	12.03	322.574	$0.4680 \mathrm{E}-02$	41	6	3
C	III	I 2	386.203	$0.2549 \mathrm{E}+00$	41	6	3
C	III	I 1	977.026	$0.6740 \mathrm{E}+00$	42	6	3
CIV		4	222.790	$0.2630 \mathrm{E}-01$	41	6	4
C	IV	3	244.907	0.1987E-01	22	6	4
C	IV	3	244.907	$0.3975 \mathrm{E}-01$	22	6	4
C	IV	2	312.422	0. $1335 \mathrm{E}+00$	21	6	4
C	IV	2	312.453	$0.6673 \mathrm{E}-01$	21	6	4
c	IV	1	1548.202	0.1940E+00	20	6	4
C	IV	1	1550.774	0. S700E-01	20	6	4
CV		HE1	32.800	C. $2800 \mathrm{E}-01$	13	6	5
C V		HE2	33.430	$0.5600 \mathrm{E}-01$	13	6	5
CV		HE3	34.970	$0.1460 \mathrm{E}+00$	11	6	5
CV		HE4	40.270	$0.6940 \mathrm{E}+00$	9	6	5
CVI		H5	26.000	$0.8000 \mathrm{E}-02$	48	6	6
CVI		H4	26.400	$0.1400 \mathrm{E}-01$	47	6	6
CVI		H3	27.000	$0.2900 \mathrm{E}-01$	46	6	6
CVI		H2	28.500	$0.7900 \mathrm{E}-01$	45	6	6
CVI		H1	33.700	$0.4160 \mathrm{E}+00$	43	6	6
N	I	2	1134.165	$0.1340 \mathrm{E}-01$	42	7	1
N	I	2	1134.415	$0.2680 \mathrm{E}-01$	42	7	1
N	I	2	1134.980	$0.4020 \mathrm{E}-01$	42	7	1
N	I	1	1199.549	$0.1330 \mathrm{E}+00$	41	7	1
N	I	1	1200.224	$0.8850 \mathrm{E}-01$	41	7	1
N	I	1	1200.711	$0.4420 \mathrm{E}-01$	41	7	1
NII		M 10	529.680	0.8200E-01	41	7	2
NII		9	533.500	$0.2600 \mathrm{E}+00$	41	7	2
NII		9	533.570	C.1900E+00	41	7	2
NII		9	533.640	$0.6500 \mathrm{E}-01$	41	7	2
NII		9	533.720	$0.2200 \mathrm{E}+00$	41	7	2
NII		9	533.880	$0.3900 \mathrm{E}-01$	41	7	2
NII		3	644.620	$0.2300 \mathrm{E}+00$	42	7	2
NII		3	644.820	$0.2300 \mathrm{E}+00$	42	7	2
NII		3	645.160	$0.2300 \mathrm{E}+00$	42	7	2
NII		7	671.010	0.3700E-01	41	7	2
NII		7	671.390	$0.6700 \mathrm{E}-01$	41	7	2
NII		7	671.390	0. $8900 \mathrm{E}-01$	41	7	2
NII		7	671.620	$0.2200 \mathrm{E}-01$	41	7	2
NII		7	671.770	0.3000E-01	41	7	2
NII		7	671.990	$0.2200 \mathrm{E}-01$	41	7	2
N	II	2	915.612	0.1490E+00	42	7	2
N	II	2	915.962	0.4950E-01	42	7	2
N	II	2	916.012	$0.6190 \mathrm{E}-01$	42	7	2
N	II	2	916.020	$0.3710 \mathrm{E}-01$	42	7	2
N	II	2	916.701	0. $1110 \mathrm{E}+00$	42	7	2
N	II	2	916.710	$0.3710 \mathrm{E}-01$	42	7	2
N	II	1	1083.990	0. $1010 \mathrm{E}+00$	42	7	2
N	II	1	1084.562	0.2520E-01	42	7	2
N	II	1	1084.580	$0.7550 \mathrm{E}-\mathrm{C1}$	42	7	2
N	II	1	1085.529	0.1010E-02	42	7	

N	II	1	1085.546	0.1510E-01	42	7	2
N	II	1	1085.701	0.8450E-01	42	7	2
N	III	AUTO	246.206	0.1515E-02	41	7	3
N	III	AOTO	246.249	0. $1363 \mathrm{E}-02$	41	7	3
N	III	AUTO	246. 311	0.1515E-03	41	7	3
N	III	7.25	262. 184	0. $1718 \mathrm{E}-02$	41	7	3
N	III	7.25	262.233	0.1546E-02	41	7	3
N	III	7.25	262.289	$0.1718 \mathrm{E}-03$	41	7	3
N	III	7.15	268.347	0.1801E-02	41	7	3
N	III	7.15	268.473	$0.1800 \mathrm{E}-03$	41	7	3
N	III	7. 15	268.473	0.1620E-02	41	7	3
N	III	7. 12	270.073	0.1824E-02	41	7	3
N	III	7.12	270.200	0.1823E-03	41	7	3
N	III	7. 12	270.201	0. $1641 \mathrm{E}-02$	41	7	3
N	III	7.10	272.523	0.1857E-02	41	7	3
N	III	7.10	272.653	0.1857E-03	41	7	3
N	III	7. 10	272.654	0.1671E-02	41	7	3
N	III	7.08	276.193	$0.1908 \mathrm{E}-02$	41	7	3
N	III	7.08	276. 326	$0.19 \mathrm{C} 7 \mathrm{E}-03$	41	7	3
N	III	7.08	276.326	0.1716E-02	41	7	3
N	III	7.07	278.436	0.3878E-03	41	7	3
N	III	7.07	278.572	0. $3876 \mathrm{E}-03$	41	7	3
N	III	7.06	282.070	$0.2481 \mathrm{E}-01$	41	7	3
N	III	7.06	282.209	$0.2480 \mathrm{E}-02$	41	7	3
N	III	7.06	282. 209	0.2232E-01	41	7	3
N	III	7.05	285.855	$0.4088 \mathrm{E}-03$	41	7	3
N	III	7.05	286.000	$0.4086 \mathrm{E}-03$	41	7	3
N	III	7.04	292.447	0.4666E-01	41	7	3
N	III	7.04	292. 595	$0.4149 \mathrm{E}-01$	41	7	3
N	III	7.04	292.596	$0.4655 \mathrm{E}-02$	41	7	3
N	III	7.03	299.661	$0.4492 \mathrm{E}-03$	41	7	3
N	III	7.03	299.818	$0.4490 \mathrm{E}-03$	41	7	3
N	III	7.02	305.761	$0.4677 \mathrm{E}-0.3$	41	7	3
N	III	7.02	305.920	$0.4674 \mathrm{E}-03$	41	7	3
N	III	7.01	311.550	$0.2427 \mathrm{E}-02$	41	7	3
N	III	7.01	311.636	0.2183E-02	41	7	3
N	III	7.01	311.721	$0.2426 \mathrm{E}-03$	41	7	3
N	III	7	314.877	$0.1091 \mathrm{E}-01$	41	7	3
N	III	6	323.436	0.5235E-03	41	7	3
N	III	6	323.493	0.1047E-02	41	7	3
N	III	6	323.620	0. $1308 \mathrm{E}-02$	41	7	3
N	III	6	323.675	0.2615E-03	41	7	3
N	III	5.01	332.140	0.7063E-02	41	7	3
N	III	5.01	332.333	$0.7046 \mathrm{E}-02$	41	7	3
N	III	5	374. 204	$0.2918 \mathrm{E}+00$	41	7	3
N	III	5	374.441	$0.2625 E+00$	41	7	3
N	III	5	374.449	0.2c16E-01	41	7	3
N	III	4	451.869	$0.2381 \mathrm{E}-01$	41	7	3
N	III	4	452.226	$0.2379 \mathrm{E}-01$	41	7	3
N	III	3	684.996	$0.1207 \mathrm{E}+00$	42	7	3
N	III	3	685.513	$0.2412 \mathrm{E}+00$	42	7	3
N	III	3	685.816	$0.3013 \mathrm{E}+00$	42	7	3
N	III	3	686.335	0.6022E-01	42	7	3
N	III	2	763.340	0.5664E-01	42	7	3
N	III	2	764.357	$0.5657 \mathrm{E}-01$	42	7	3
N	III	1	989.790	$0.1070 E+00$	41	7	

1	III	1	991.514	0.1060E-01	41	7	3
N	III	1	991.579	0. $5580 \mathrm{E}-01$	41	7	3
N	IV	2	247. 205	$0.5497 \mathrm{E}+00$	41	7	4
N	IV	1	765.148	$0.5451 \mathrm{E}+00$	42	7	4
NV		LI 1	148.000	0.3000E-01	22	7	5
N V		3	162.560	0.6690E-01	22	7	5
NV		LI2	162.560	c. 6700E-01	22	7	5
NV		2	209.270	$0.1570 \mathrm{E}+00$	21	7	5
NV		LI5	209. 280	$0.2360 \mathrm{E}+00$	21	7	5
N V		2	209.330	$0.7840 \mathrm{E}-01$	21	7	5
N	∇	1	1238.821	$0.1520 \mathrm{E}+00$	41	7	5
N	v	1	1242.804	$0.7570 \mathrm{E}-01$	41	7	5
NVI		HE1	23. 300	$0.2800 \mathrm{E}-01$	13	7	6
NVI		HE2	23.770	$0.5600 \mathrm{E}-01$	13	7	6
NVI		日E3	24.900	$0.1460 \mathrm{E}+00$	11	7	6
NVI		HE4	28.790	$0.6940 \mathrm{E}+00$	9	7	6
NVI		H5	19.100	0. $8000 \mathrm{E}-02$	48	7	7
NVI		H4	19.400	$0.1400 \mathrm{E}-01$	47	7	7
NVI		H3	19.800	0.2900E-01	46	7	7
NVI		H2	20.900	$0.7900 \mathrm{E}-01$	45	7	7
NVI		H1	24.800	$0.4160 \mathrm{E}+00$	43	7	7
OI		M 9	811.370	0.7700E-02	41	8	
CI		M5	878.450	0.3700E-01	41	8	
0	I	5	¢ 88.581	$0.5100 \mathrm{E}-03$	42	8	
0	I	5	988.655	$0.7640 \mathrm{E}-02$	42	8	
0	I	5	988.773	$0.4280 \mathrm{E}-01$	42	8	
0	I	5	990.127	0.1270E-01	42	8	
0	I	5	990.204	$0.3810 \mathrm{E}-01$	42	8	
0	I	5	990.801	$0.5080 \mathrm{E}-01$	42	8	
0	I	4	1025. 762	$0.6200 \mathrm{E}-01$	42	8	
0	I	4	1025.762	$0.1110 \mathrm{E}-01$	42	8	
0	I	4	1025.762	0.7380E-03	42	8	
0	I	4	1027.431	$0.5530 \mathrm{E}-01$	42	8	
0	I	4	1027.431	$0.1840 \mathrm{E}-01$	42	8	
C	I	4	1028. 157	$0.7360 \mathrm{E}-01$	42	8	
0	I	2	1302.169	$0.4860 \mathrm{E}-01$	42	8	
0	1	2	1304. 858	$0.4850 \mathrm{E}-01$	42	8	
0	I	2	1306.029	$0.4850 \mathrm{E}-01$	42	8	
CII		10	429.910	$0.5400 \mathrm{E}-01$	41	8	2
OII		10	430.040	$0.1100 \mathrm{E}+00$	41	8	2
OII		10	430.170	$0.1600 \mathrm{E}+00$	41	8	2
OII		2	539.080	$0.5600 \mathrm{E}-01$	41	8	2
CII		2	539.540	0. $3700 \mathrm{E}-01$	41	8	
OII		2	539.850	$0.1900 \mathrm{E}-01$	41	8	2
OII		1	832.750	$0.7000 \mathrm{E}-01$	42	8	2
OII		1	833.320	$0.1500 \mathrm{E}+00$	42	8	2
CII		1	834.460	$0.2100 \mathrm{E}+00$	42	8	
0	III		228.834	$0.8128 \mathrm{E}-02$	41	8	3
0	III		228.893	$0.7956 \mathrm{E}-02$	41	8	3
0	III		228.988	$0.7962 \mathrm{E}-02$	41	8	3
0	III		240.979	-0.2523E-01	41	8	3
0	III		241.000	$0.3366 \mathrm{E}-03$	41	8	3
c	III		241.000	$0.8409 \mathrm{E}-02$	41	8	3
0	III		241.000	$0.3364 \mathrm{E}-01$	41	8	3
0	III		241.037	$0.2825 \mathrm{E}-01$	41	8	3
0	III		248.468	$0.1533 \mathrm{E}-01$	41	8	

0	III	248.538	$0.6129 \mathrm{E}-01$	41	8	3
0	III	248.574	0.4596E-01	41	8	3
0	III	248.618	$0.5147 \mathrm{E}-01$	41	8	3
0	III	248.693	$0.9188 \mathrm{E}-02$	41	8	3
0	III	255.000	0. $1546 \mathrm{E}-\mathrm{C} 2$	41	8	3
0	III	255.044	0.1932E-02	41	8	3
0	III	255. 113	$0.4636 \mathrm{E}-02$	41	8	3
0	III	255.158	$0.3476 \mathrm{E}-02$	41	8	3
C	III	255. 188	$0.1159 \mathrm{E}-02$	41	8	3
0	III	255.302	0.1158E-02	41	8	3
0	III	262.000	$0.5868 \mathrm{E}-01$	41	8	3
0	III	262.700	$0.1951 \mathrm{E}-01$	41	8	3
0	III	262.700	$0.1463 \mathrm{E}-01$	41	8	3
0	III	262.729	$0.2438 \mathrm{E}-01$	41	8	3
0	III	262.882	$0.4386 \mathrm{E}-01$	41	8	3
0	III	262.900	$0.1462 \mathrm{E}-01$	41	8	3
0	III	263.692	$0.1549 \mathrm{E}+00$	41	8	3
0	III	263.728	$0.1007 \mathrm{E}+00$	41	8	3
c	III	263. 768	$0.2254 \mathrm{E}-01$	41	8	3
0	III	263.818	$0.5768 \mathrm{E}-02$	41	8	3
0	III	263.818	0.1002E+00	41	8	3
0	III	263.903	0.1384E-03	41	8	3
0	III	264.257	0.2291E-01	41	8	3
0	III	264.317	$0.7636 \mathrm{E}-02$	41	8	3
0	III	264. 329	0.5793E-02	41	8	3
0	III	264.338	$0.9613 \mathrm{E}-02$	41	8	3
0	III	264.471	$0.5768 \mathrm{E}-02$	41	8	3
0	III	264.480	$0.1742 \mathrm{E}-01$	41	8	3
0	III	266.843	$0.9355 \mathrm{E}-\mathrm{C} 2$	41	8	3
0	III	266.967	$0.6310 \mathrm{E}-01$	41	8	3
C	III	266.985	0.47 (8E-01	41	8	3
0	III	267.030	$0.5141 \mathrm{E}-01$	41	8	3
0	III	267.050	$0.1559 \mathrm{E}-01$	41	8	3
0	III	267.188	$0.6325 \mathrm{E}-03$	41	8	3
0	III	275.281	$0.3020 \mathrm{E}-01$	41	8	3
0	III	275.336	$0.2971 \mathrm{E}-01$	41	8	3
0	III	275.513	$0.2958 \mathrm{E}-01$	41	8	3
0	III	280.116	$0.5406 \mathrm{E}-02$	41	8	3
0	III	280.234	0.1318E-01	41	8	3
0	III	280.265	$0.9573 \mathrm{E}-02$	41	8	3
0	III	280. 328	$0.3257 \mathrm{E}-02$	41	8	3
0	III	280.412	$0.4394 \mathrm{E}-02$	41	8	3
0	III	280.483	$0.3244 \mathrm{E}-02$	41	8	3
0	III 6	303.411	$0.1383 \mathrm{E}+00$	41	8	3
C	III 6	303.460	$0.4611 \mathrm{E}-01$	41	8	3
0	III 6	303.515	$0.3457 \mathrm{E}-01$	41	8	3
0	III 6	303.621	0.5761E-01	41	8	3
0	III 6	303.693	$0.3455 \mathrm{E}-01$	41	8	3
C	III 5	303.769	$0.3521 E+00$	41	8	3
0	III 6	303.799	$0.1036 \mathrm{E}+00$	41	8	3
0	III 5	305.596	$0.4167 \mathrm{E}+00$	41	8	3
0	III 5	305.656	$0.3125 \mathrm{E}+00$	41	8	3
0	III 5	305.703	$0.1041 \mathrm{E}+00$	41	8	3
0	III 5	305.836	$0.6245 \mathrm{E}-01$	41	8	3
c	III 5	305.879	$0.4166 \mathrm{E}-02$	41	8	3
0	III	308.306	$0.1995 \mathrm{E}-02$	41	8	

0	III	4	373.805	$0.2573 \mathrm{E}-01$	41	8	3
0	III	4	374.005	$0.6171 \mathrm{E}-01$	41	8	3
0	III	4	374.075	$0.4627 \mathrm{E}-01$	41	8	3
0	III	4	374.165	0.1542E-01	41	8	3
0	III	4	374.331	0. $2055 \mathrm{E}-01$	41	8	3
0	III	4	374.436	$0.1541 \mathrm{E}-01$	41	8	3
0	III	3	507.391	0.1387E +00	42	8	3
0	III	3	507.683	$0.1387 \mathrm{E}+00$	42	8	3
0	III	3	508. 182	0. $1385 \mathrm{E}+00$	42	8	3
0	III	2	702. 332	$0.1444 \mathrm{E}+00$	42	8	3
0	III	2	702.822	0.4676E-01	42	8	3
0	III	2	702.891	0.3507E-01	42	8	3
0	III	2	702.899	$0.5844 \mathrm{E}-01$	42	8	3
0	III	2	703.845	$0.3502 \mathrm{E}-01$	42	8	3
0	III	2	703.850	$0.1051 \mathrm{E}+00$	42	8	3
0	III	1	832.927	0. $1049 \mathrm{E}+00$	42	8	3
0	III	1	833.701	$0.2621 \mathrm{E}-01$	42	8	3
0	III	1	833.742	$0.7863 \mathrm{E}-01$	42	8	3
0	III	1	835.055	0. $1048 \mathrm{E}-02$	42	8	3
0	III	1	835.096	0.1570E-01	42	8	3
0	III	1	835.292	$0.8791 \mathrm{E}-01$	42	8	3
OIV		B2	195.860	$0.9600 \mathrm{E}-01$	41	8	4
OIV		E3	203.000	0. $1730 \mathrm{E}+00$	41	8	4
0	IV	5	238.360	$0.4977 \mathrm{E}+01$	41	8	4
0	IV	5	238.571	$0.4476 E+01$	41	8	4
0	IV	5	238.580	$0.4973 \mathrm{E}+00$	41	8	4
0	IV	4	279.631	$0.3560 \mathrm{E}-01$	41	8	4
0	IV	4	279.933	$0.3556 \mathrm{E}-01$	41	8	4
0	IV	3	553.330	$0.9432 \mathrm{E}-01$	42	8	4
0	IV	3	554.075	$0.1884 \mathrm{E}+00$	42	8	4
0	IV	3	554.514	$0.2353 \mathrm{E}+00$	42	8	4
0	IV	3	555.261	$0.4700 \mathrm{E}-01$	42	8	4
0	IV	2	608.398	C. $7062 \mathrm{E}-01$	42	8	4
0	IV	2	609.829	$0.7046 \mathrm{E}-01$	42	8	4
c	IV	1	787.711	$0.9345 \mathrm{E}-01$	42	8	4
	IV	1	790.109	0.9317E-02	42	8	4
	IV	1	790.199	$0.8384 \mathrm{E}-01$	42	8	4
OV		2	172.160	$0.5900 \mathrm{E}+00$	42	8	5
0	v	1	629.730	$0.4405 \mathrm{E}+00$	42	8	5
OVI		LI 1	104.810	$0.3200 \mathrm{E}-01$	22	8	6
OVI		LI2	115.800	$0.7300 \mathrm{E}-01$	22	8	6
OVI		2	150.080	$0.1750 \mathrm{E}+00$	21	8	6
OVI		2	150. 120	$0.8740 \mathrm{E}-01$	21	8	6
	VI	1	1031.945	$0.1300 \mathrm{E}+00$	20	8	6
0	VI	1	1037.627	$0.6480 \mathrm{E}-01$	20	8	6
OVI		HE 1	17.420	$0.2800 \mathrm{E}-01$	13	8	7
CVI		HE2	17.770	$0.5600 \mathrm{E}-01$	13	8	7
OVI		HE3	18.630	$0.1460 \mathrm{E}+00$	11	8	7
OVI		HE4	21.600	$0.6940 \mathrm{E}+00$	c	8	7
OVI	III	H5	14.600	$0.8000 \mathrm{E}-02$	48	8	8
OVI	III	H4	14.820	$0.1400 \mathrm{E}-01$	47	8	8
OVI	III	H3	15.200	$0.2900 \mathrm{E}-01$	46	8	8
OVI	III	H2	16.000	$0.7900 \mathrm{E}-01$	45	8	8
OVI	III	H1	19.000	$0.4160 \mathrm{E}+00$	4.3	8	
NEI		2	735.890	$0.1620 \mathrm{E}+00$	35	10	
NEI		1	743.700	0.1180E-01	35	10	

NE	II	324.567	0. $1066 \mathrm{E}-02$	41	10	2
NE	II	324.570	0.1091E-01	41	10	2
NE	II	325.393	0.1256E-01	41	10	2
NE	II	326.519	$0.4988 \mathrm{E}-02$	41	10	2
NE	II	326.542	0. $3962 \mathrm{E}-01$	41	10	2
NE	II	326.787	$0.2443 \mathrm{E}-01$	41	10	2
NE	II	327. 250	0. $1018 \mathrm{E}-01$	41	10	2
NE	II	327. 262	$0.5104 \mathrm{E}-01$	41	10	2
NE	II	327.355	$0.4666 \mathrm{E}-01$	41	10	2
NE	II	327.626	$0.2393 \mathrm{E}-01$	41	10	2
NE	II	328.090	$0.4355 \mathrm{E}-\mathrm{C} 1$	41	10	2
NE	II	328.102	$0.50 \mathrm{COE}+00$	41	10	2
NE	II	329.773	$0.2177 \mathrm{E}-02$	41	10	2
NE	II	330.214	$0.2177 \mathrm{E}-02$	41	10	2
NE	II	330.626	$0.2685 \mathrm{E}-01$	41	10	2
NE	II	330.658	$0.9726 \mathrm{E}-02$	41	10	2
NE	II	330.790	0.3784E-01	41	10	2
NE	II	331.069	$0.8491 \mathrm{E}-02$	41	10	2
NE	II	331.515	0.2393E-01	41	10	2
NE	II	352.247	$0.2805 \mathrm{E}-02$	41	10	2
NE	II	352.956	$0.1374 \mathrm{E}-\mathrm{C1}$	41	10	2
NE	II	353.215	$0.1094 \mathrm{E}-01$	41	10	2
NE	II	353.935	0. 5236E-02	41	10	2
NE	II	354. 962	$0.1066 \mathrm{E}-01$	41	10	2
NE	II	355.454	0.5469E-02	41	10	2
NE	II	355.948	$0.4775 \mathrm{E}-01$	41	10	2
NE	II	356.441	$0.2084 \mathrm{E}-01$	41	10	2
NE	II	356.541	$0.7726 \mathrm{E}-02$	41	10	2
NE	II	356.800	0.30C6E-01	41	10	2
NE	II	357.5.36	$0.2685 \mathrm{E}-01$	41	10	2
NE	II	361.433	0. $1577 \mathrm{E}-01$	41	10	2
NE	II	362.455	$0.1694 \mathrm{E}-01$	41	10	2
NE	II 4	405.846	0.1251E-01	41	10	2
NE	II 4	405.854	$0.1126 \mathrm{E}+00$	41	10	2
NE	II 4	407.138	0. $1247 \mathrm{E}+00$	41	10	2
NE	II 3	445.040	$0.1723 \mathrm{E}-01$	41	10	2
NE	II 3	446.226	O.E590E-01	41	10	2
NE	II 3	446.590	$0.6867 \mathrm{E}-01$	41	10	2
NE	II 3	447.815	0. $3424 \mathrm{E}-01$	41	10	2
NE	II 1	460.728	$0.3300 \mathrm{E}+00$	42	10	2
NE	II 1	462.391	$0.3288 \mathrm{E}+00$	42	10	2
NET	IIM 13	227.400	$0.5500 \mathrm{E}-01$	41	10	3
NEI	IIM 11	227.620	0.1200E+00	41	10	3
NEI	IIM 11	229.060	$0.9600 \mathrm{E}-01$	41	10	3
NE	III 5	251. 120	$0.1858 \mathrm{E}+01$	41	10	3
NE	III 5	251.129	$0.3317 \mathrm{E}+00$	41	10	3
NE.	III 5	251.134	$0.2<13 \mathrm{E}-01$	41	10	3
NE	III 5	251.540	$0.1656 \mathrm{E}+01$	41	10	3
NE	III 5	251.549	$0.5519 \mathrm{E}+00$	41	10	3
NE	III 5	251.720	$0.2206 \mathrm{E}+01$	41	10	3
NE	III 4	267.047	$0.6576 \mathrm{E}-02$	41	10	3
NE	III 4	267.070	0.2573E-01	41	10	3
NE	III 4	267.500	0.1142E-01	41	10	3
NE	III 4	267.512	0.8561E-02	41	10	3
NE	III 4	267. 530	0.1427E-01	41	10	3
NE	III 4	267.710	$0.3422 \mathrm{E}-01$	41	10	3

NE III	3	283.125	0.5632E-03	41	10	3
NE III	3	283.150	0. $8440 \mathrm{E}-02$	41	10	3
NE III	3	283. 170	$0.4726 \mathrm{E}-01$	41	10	3
NE III	3	283.647	0.1404E-01	41	10	3
NE III	3	283.660	$0.4212 \mathrm{E}-01$	41	10	3
NE III	3	283.870	$0.5612 \mathrm{E}-01$	41	10	3
NE III	2	313.050	$0.3977 \mathrm{E}-01$	41	10	3
NE III	2	313.680	$0.3969 \mathrm{E}-01$	41	10	3
NE III	2	313.920	$0.3966 \mathrm{E}-01$	41	10	3
NE III	1	488.100	$0.4108 \mathrm{E}-01$	42	10	3
NE III	1	488.870	0.5469E-01	42	10	3
NE III	1	489.500	0.1229E400	42	10	3
NE III	1	489.640	$0.4095 \mathrm{E}-01$	42	10	3
NE III	1	490.310	$0.1636 \mathrm{E}+00$	42	10	3
NE III	1	491.050	$0.6806 \mathrm{E}-01$	42	10	3
NEIV	N7	148.800	$0.6100 \mathrm{E}+00$	41	10	4
NEIV	N1	172.600	$0.5400 \mathrm{E}+00$	41	10	4
NEIV	17	208.630	$0.9500 \mathrm{E}-01$	41	10	4
NE IV	1	541.127	0.2958E-01	42	10	4
NEIV	1	542.073	0.5905E-01	42	10	4
NE IV	1	543.891	$0.8829 \mathrm{E}-01$	42	10	4
Nev	C9	118.800	$0.2500 \mathrm{E}+00$	41	10	5
NEV	M8	142.610	0. $2000 \mathrm{E}+00$	41	10	5
NEV	17	143.320	$0.6100 \mathrm{E}+00$	41	10	5
NEV	C5	173.900	$0.8600 \mathrm{E}-01$	41	10	5
NE ${ }^{\text {d }}$	3	357. 950	$0.1795 \mathrm{E}-01$	42	10	5
NE V	3	358.480	0.1792E-01	42	10	5
NE V	3	359.390	0.1788E-01	42	10	5
NE V	2	480.410	0. 1522E*00	42	10	5
NE V	2	481.280	$0.5063 \mathrm{E}-01$	42	10	5
NE V	2	481.360	0.6327E-01	42	10	5
NE V	2	481.367	$0.3796 \mathrm{E}-01$	42	10	5
NE V	2	482.990	0. $1135 \mathrm{E}+00$	42	10	5
NE V	2	482.990	$0.3784 \mathrm{E}-01$	42	10	5
NE V	1	568.420	$0.9259 \mathrm{E}-01$	42	10	5
NE V	1	569.760	$0.2309 \mathrm{E}-01$	42	10	5
NE V	1	569.830	$0.6927 \mathrm{E}-01$	42	10	5
NE V	1	572.030	0.9994E-03	42	10	5
NE V	1	572. 110	0.1380E-01	42	10	5
NE V	1	572.340	$0.7724 \mathrm{E}-01$	42	10	5
NEVI	E1	14.100	$0.4900 \mathrm{E}+00$	41	10	6
NEVI	B2	98.000	$0.1020 \mathrm{E}+00$	41	10	6
gevi	E3	111. 100	0.1750E+C0	41	10	6
NEVI	M 9	122.620	C. $5400 \mathrm{E}+00$	41	10	6
NEVI	M8	138.550	$0.2900 \mathrm{E}-01$	41	10	6
NEVI		399.820	$0.4909 \mathrm{E}-01$	42	10	6
NE VI		403. 260	0. $2434 \mathrm{E}-01$	42	10	6
NE $\mathrm{VI}^{\text {I }}$		410.140	0. $5787 \mathrm{E}-01$	42	10	6
NE VI		410.930	$0.1194 \mathrm{E}+00$	42	10	6
NE VI		433.180	0.5273E-01	42	10	6
NE VI		435.650	0. $5243 \mathrm{E}-01$	42	10	6
NE VI		558.590	0.8388E-01	42	10	6
NEVI		562.710	0. $8328 \mathrm{E}-02$	42	10	6
NE VI		562.800	$0.7493 \mathrm{E}-01$	42	10	6
NEVII	BE1	13.920	$0.6700 \mathrm{E}+00$	41	10	7
NE VII		465.221	$0.3748 \mathrm{E}+00$	42	10	7

NEVIII	LI1	60.810	$0.3300 \mathrm{E}-01$	22	10	8
NEVIII	2	88.130	0.2980E+00	41	10	8
NEVIII	II2	98.000	$0.8000 \mathrm{E}-01$	22	10	8
NEVIII	1	770.400	$0.1020 \mathrm{E}+00$	42	10	8
NEVIII	1	780.320	$0.5020 \mathrm{E}-01$	42	10	8
NE IX	HE1	10.800	$0.2800 \mathrm{E}-01$	13	10	9
NE IX	HE2	11.000	$0.5600 \mathrm{E}-01$	13	10	9
NE IX	HE3	11.560	0.1490E+00	11	10	9
NE IX	HE4	13.440	$0.7230 \mathrm{E}+00$	9	10	9
NEX 6		9.370	$0.8000 \mathrm{E}-02$	48	10	10
NEX 5		9.490	0.1400E- 01	47	10	10
NEX 4		9.720	$0.2900 \mathrm{E}-01$	46	10	10
NE X 3		10.250	$0.7900 \mathrm{E}-01$	45	10	10
NE X 2		12.150	$0.4160 \mathrm{E}+00$	43	10	10
MG I		1827.940	0.5260E-01	41	12	1
MG I	2	2025.824	$0.1610 \mathrm{E}+00$	41	12	1
MG I	1	2852. 127	0.1900E+01	42	12	1
MG II		1025.968	0.1480E-02	41	12	2
MG II		1026. 113	$0.7400 \mathrm{E}-03$	41	12	
MG II		1239.925	0.9680E-03	41	12	2
MG II		1240.395	$0.4840 \mathrm{E}-03$	41	12	2
MG II	1	2795.528	$0.5920 \mathrm{E}+00$	42	12	2
MG II	1	2802.704	$0.2950 \mathrm{E}+00$	42	12	
MGIII	NE1	171.500	$0.1000 \mathrm{E}+00$	34	12	3
MGIII	NE2	182.500	0.8000E-02	36	12	3
MGIII	5	186.510	-0.2700E+00	33	12	3
MGIII	4	187. 190	0. $1600 \mathrm{E}+00$	33	12	3
MGIII	3	188.530	$0.4000 \mathrm{E}-02$	33	12	3
MG III		231.730	$0.2101 \mathrm{E}+00$	35	12	3
MG III	1	234.258	$0.1111 \mathrm{E}-01$	35	12	3
MGIV	F1	120.000	$0.2500 \mathrm{E}+00$	41	12	4
MGIV	F5	130.000	$0.1340 \mathrm{E}+00$	41	12	4
MGIV	F2	147.000	0.1500E+01	41	12	4
MGIV	F3	181.000	$0.3200 \mathrm{E}+00$	41	12	4
MG IV		320.994	$0.1348 \mathrm{E}+00$	42	12	4
MG IV		323.307	$0.1339 \mathrm{E}+00$	42	12	4
MGV	07	103.900	0.1200E+00	41	12	5
MGV	02	114.030	$0.1800 \mathrm{E}+00$	41	12	5
MGV	01	12.1 .600	$0.3000 \mathrm{E}+00$	41	12	5
MGV	03	132.500	$0.1340 \mathrm{E}+00$	41	12	5
MGV	05	137.800	$0.4800 \mathrm{E}-01$	41	12	5
MGV	04	146.500	$0.2900 \mathrm{E}-01$	41	12	5
MG V		351.089	$0.5643 \mathrm{E}-01$	42	12	5
MG V		352. 202	C. $7500 \mathrm{E}-01$	42	12	5
MG V		353.094	0.1683E+00	42	12	
MG V		353.300	$0.5607 \mathrm{E}-01$	42	12	5
MG V		354.223	$0.2237 \mathrm{E}+00$	42	12	5
MG V		355.326	$0.9293 \mathrm{E}-01$	42	12	5
MGVI	N7	80.100	$0.2700 \mathrm{E}+00$	41	12	6
MGVI	N1	95.500	$0.5000 \mathrm{E}+00$	41	12	6
MGVI	N3	111.600	$0.7200 \mathrm{E}-01$	41	12	6
MG VI		399.289	$0.4383 \mathrm{E}-01$	42	12	6
MG VI		400.676	$0.8735 \mathrm{E}-01$	42	12	
MG VI		403.315	$0.1302 \mathrm{E}+00$	42	12	6
MGVII	C9	68.100	$0.2400 \mathrm{E}+00$	41	12	7
MGVII	C1	77.100	$0.1000 \mathrm{E}+00$	41	12	7

MGVII C2	78.400	0.4500E-01	41	12	7
MGVII C3	83.960	$0.2100 \mathrm{E}+00$	41	12	7
MGVII C4	84.020	$0.6100 E+00$	41	12	7
MGVII C5	95.300	$0.5900 \mathrm{E}-01$	41	12	7
MG VII	276. 145	$0.1201 \mathrm{E}+00$	42	12	7
MG VII	277.007	$0.1197 \mathrm{E}+00$	42	12	7
MG VII	278.406	$0.1191 \mathrm{E}+00$	42	12	7
MG VII	363.770	$0.1115 \mathrm{E}+00$	42	12	7
MG VII	365.230	$0.4628 \mathrm{E}-01$	42	12	7
MG VII	365.267	$0.2777 \mathrm{E}-01$	42	12	7
MG VII	365.270	$0.3702 \mathrm{E}-01$	42	12	7
MG VII	367.679	$0.8276 \mathrm{E}-01$	42	12	7
MG VII	367.701	$0.2758 \mathrm{E}-01$	42	12	7
MG VII	429.134	$0.1040 \mathrm{E}+00$	42	12	7
MG VII	431.220	0.2588E-01	42	12	7
MG VII	431.318	$0.7762 \mathrm{E}-01$	42	12	7
MG VII	434.615	0. $1028 \mathrm{E}-02$	42	12	7
MG VII	434.710	$0.1540 \mathrm{E}-01$	42	12	7
MG VII	434.923	$0.8621 \mathrm{E}-01$	42	12	7
MGVIII B1	9.470	$0.5100 \mathrm{E}+00$	41	12	8
MGVIII B3	64.500	0. $1670 \mathrm{E}+00$	41	12	8
MGVIII B2	69.000	$0.1070 \mathrm{E}+00$	41	12	8
MGVIII11	74.850	$0.6100 \mathrm{E}+00$	41	12	8
MGVIII11	75.030	$0.5500 \mathrm{E}+00$	41	12	8
MGVIII11	75.040	$0.6100 \mathrm{E}-01$	41	12	8
MGVIII 10	82.590	$0.2420 \mathrm{E}-01$	41	12	8
MGVIII10	82.820	0.2400E-01	41	12	8
MGVIII 3	311.780	$0.6800 \mathrm{E}-01$	42	12	8
MGVIII 3	313.730	$0.1400 \mathrm{E}+00$	42	12	8
MGVIII 3	315.020	$0.1700 \mathrm{E}+00$	42	12	8
MGVIII 3	317.010	-0.3400E-01	42	12	8
MGVIII 2	335.250	$0.4500 \mathrm{E}-01$	42	12	8
MGVIII 2	339.010	$0.4500 \mathrm{E}-01$	42	12	8
MGVIII 1	430.470	$0.8800 \mathrm{E}-01$	42	12	8
MGVIII 1	436.680	$0.8700 \mathrm{E}-02$	42	12	8
MGVIII 1	436.730	$0.7800 \mathrm{E}-01$	42	12	8
MGIX BE1	9.380	0. $7000 \mathrm{E}+00$	42	12	9
MGIX 6	62.750	C. $5800 \mathrm{E}+00$	41	12	9
MGIX 2	368.070	0. $3140 \mathrm{E}+00$	42	12	9
MGX LI 1	41.000	$0.3500 \mathrm{E}-01$	22	12	10
MGX LI2	44.050	$0.8500 \mathrm{E}-01$	22	12	10
MGX LI5	57.890	$0.3200 \mathrm{E}+00$	21	12	10
MG XI EE4	7.310	$0.2770 \mathrm{E}-01$	13	12	11
MG XI HE3	7.470	$0.5690 \mathrm{E}-01$	13	12	11
MG XI HE2	7.850	$0.1520 \mathrm{E}+00$	13	12	11
MG XI HE1	9.160	$0.7450 \mathrm{E}+00$	13	12	11
MGXII 6	6.510	0. $8000 \mathrm{E}-02$	48	12	12
MGXII 5	6.590	$0.1400 \mathrm{E}-01$	47	12	12
MGXII 4	6.750	0.2900E-01	46	12	12
MGXII 3	7.120	C. $7900 \mathrm{E}-01$	45	12	12
MGXII 2	8.440	$0.4160 \mathrm{E}+00$	43	12	12
SI I 41.12AU	1255.276	$0.2200 \mathrm{E}+00$	41	14	1
SI I 41.12AU	1256.490	0.2200E+00	41	14	1
SI I 41.12AU	1258.795	$0.2200 \mathrm{E}+00$	41	14	1
SI I 10	1845.520	$0.1520 \mathrm{E}+00$	41	14	1
SI I 10	1847.473	0.1140E+00	41	14	1

SI	I	10	1848. 150	0. $3800 \mathrm{E}-01$	41	14	
SI	I	10	1850.672	$0.1280 \mathrm{E}+00$	41	14	1
SI	I	10	1852.472	$0.2280 \mathrm{E}-01$	41	14	1
SI	I	10	1853.152	$0.1520 \mathrm{E}-02$	41	14	1
SI	I	7	1977. 579	0. $\equiv 110 \mathrm{E}-01$	41	14	1
SI	I	7	1979.206	$0.1040 \mathrm{E}-01$	41	14	1
SI	I	7	1980.618	$0.7770 \mathrm{E}-02$	41	14	1
SI	I	7	1983.232	$0.1290 \mathrm{E}-01$	41	14	1
SI	I	7	1986.364	$0.7750 \mathrm{E}-\mathrm{C} 2$	41	14	1
SI	I	7	1988.994	$0.2320 \mathrm{E}-01$	41	14	1
SI	I	3	2207.978	$0.5890 \mathrm{E}-01$	42	14	1
SI	I	3	2210.894	0.4420E-01	42	14	1
SI	I	3	2211. 744	$0.1470 \mathrm{E}-01$	42	14	1
SI	I	3	2216.669	$0.4930 \mathrm{E}-01$	42	14	
SI	I	3	2218.057	C. $8800 \mathrm{E}-02$	42	14	1
SI	I	3	2218.915	0.5870E-0.3	42	14	1
SI	I	1	2506.897	$0.6520 \mathrm{E}-01$	41	14	1
SI	I	1	2514.316	$0.1560 \mathrm{E}+00$	41	14	1
SI	I	1	2516. 112	$0.1170 \mathrm{E}+00$	41	14	1
SI	I	1	2519.202	$0.3890 \mathrm{E}-01$	41	14	
SI	I	1	2524.108	$0.5180 \mathrm{E}-01$	41	14	1
SI	I	1	2528.509	0.3880E-01	41	14	1
SI	II	6	989.867	$0.2440 \mathrm{E}+00$	41	14	2
SI	II	6	992.675	$0.2190 \mathrm{E}+00$	41	14	2
SI	II	6	992.690	$0.2430 \mathrm{E}-01$	41	14	2
SI	II	5.01	1020.699	$0.4820 \mathrm{E}-01$	41	14	2
SI	II	5.01	1023.693	$0.4800 \mathrm{E}-01$	41	14	2
SI	II	5	1190.418	$0.6500 \mathrm{E}+00$	42	14	
SI	II	5	1193.284	$0.1300 \mathrm{E}+01$	42	14	2
SI	II	5	1194.496	$0.1620 \mathrm{E}+01$	42	14	2
SI	II	5	1197.389	$0.3230 \mathrm{E}+00$	42	14	2
SI	II	4	1260.418	0. $5590 \mathrm{E}+00$	42	14	2
SI	II	4	1264.730	$0.8600 \mathrm{E}+00$	42	14	2
SI	II	4	1265.023	$0.9560 \mathrm{E}-01$	42	14	2
SI	II	3	1304. 369	0. $1470 \mathrm{E}+00$	42	14	2
SI	II	3	1309.274	$0.1470 \mathrm{E}+00$	42	14	2
SI	II	2	1526.719	0.7640E-01	41	14	2
SI	II	2	1533.445	$0.7600 \mathrm{E}-01$	41	14	2
SI	II	1	1808.003	$0.3710 \mathrm{E}-02$	42	14	2
SI	II	1	1816.921	$0.3320 \mathrm{E}-02$	42	14	2
SI	II	1	1817.445	$0.3690 \mathrm{E}-03$	42	14	2
SI	III	11	566.610	$0.4600 \mathrm{E}-01$	41	14	3
SI	III	2	1206.510	0. $1660 \mathrm{E}+01$	42	14	3
SI	IV	2.02	327.137	$0.4886 \mathrm{E}-02$	41	14	4
SI	IV	2.02	327. 181	$0.2449 \mathrm{E}-02$	41	14	4
SI	IV	2.01	361.560	$0.9527 \mathrm{E}-02$	41	14	4
SI	IV	2.01	361.659	$0.4775 \mathrm{E}-02$	41	14	4
SI	IV	2	457.818	$0.2201 \mathrm{E}-01$	41	14	4
SI	IV	2	458.155	0.1100E-01	41	14	4
SI	IV	1	1393.755	$0.5280 \mathrm{E}+00$	42	14	4
SI	IV	1	1402.769	$0.2620 \mathrm{E}+00$	42	14	4
SI	v N	NE1	85.200	$0.2700 \mathrm{E}+00$	34	14	5
SI	v	NE2	90.500	0. $1000 \mathrm{E}-01$	36	14	5
SI	-	5	96.430	0.2000E+00	35	14	5
SI	v	4	97.140	C. $8400 \mathrm{E}+00$	35	14	5
SI	∇	3	98.200	$0.3800 \mathrm{E}-02$	35	14	

SI	V	2	117.860	0. $1900 \mathrm{E}+00$	35	14	5
SI	V	1	118.970	$0.2100 \mathrm{E}-01$	35	14	5
SI	VI	F 5	69.200	$0.2100 \mathrm{E}+00$	41	14	6
SI	VI F	F1	70.000	$0.2500 \mathrm{E}+00$	41	14	6
SI	VI F	F2	83.000	$0.1500 \mathrm{E}+01$	41	14	6
SI	VI F	F 3	99.400	$0.9000 \mathrm{E}+00$	41	14	6
SI	VI		246.001	0.1133E+00	42	14	6
SI	VI		249.125	$0.1119 \mathrm{E}+00$	42	14	6
SI	VII	C7	60.800	$0.1400 \mathrm{E}+00$	41	14	7
SI	VII	01	68.000	$0.4400 \mathrm{E}+00$	41	14	7
SI	VII	02	69.660	$0.2100 \mathrm{E}+00$	41	14	7
SI	VII	03	79.500	$0.2600 \mathrm{E}-01$	41	14	7
SI	VII	05	81.900	$0.4300 \mathrm{E}-01$	41	14	7
SI	VII	04	85.600	$0.2600 \mathrm{E}-01$	41	14	7
SI	VII		272.641	0.3448E-01	42	14	7
SI	VII		274.175	$0.4571 \mathrm{E}-01$	42	14	7
SI	VII		275.352	$0.1024 \mathrm{E}+00$	42	14	7
SI	VII		275.665	$0.3410 \mathrm{E}-01$	42	14	7
SI	VII		276.839	0. $1358 \mathrm{E}+00$	42	14	7
SI	VII		278.445	$0.5627 \mathrm{E}-01$	42	14	7
SI	VII	1	314.310	$0.3900 \mathrm{E}-01$	42	14	7
SI	VII	1	316.200	$0.7400 \mathrm{E}-01$	42	14	7
SI	VII	1	319.830	0. $1100 \mathrm{E}+00$	42	14	7
SI	VIII	I N	50.000	$0.3100 \mathrm{E}+00$	41	14	8
SI	VIII		69.600	$0.5500 \mathrm{E}-01$	41	14	8
SI	IX	C9	44.200	$0.2300 \mathrm{E}+00$	41	14	9
SI	IX	C1	52.800	$0.2000 \mathrm{E}-01$	41	14	9
SI	IX	C3	55.100	$0.2300 \mathrm{E}+00$	41	14	9
SI	IX	C4	55.300	$0.6300 \mathrm{E}+00$	41	14	9
SI	IX	C5	61.600	$0.5700 \mathrm{E}-01$	41	14	9
SI	IX	3	223.720	$0.1000 \mathrm{E}+00$	42	14	9
SI	IX	3	225.030	0.9900E-01	42	14	9
SI	IX	3	227.000	$0.9900 \mathrm{E}-01$	42	14	9
SI	IX	2	290.630	0.9200E-01	42	14	9
SI	IX	2	292.830	$0.2300 \mathrm{E}-01$	42	14	9
SI	IX	2	292.830	$0.3000 \mathrm{E}-01$	42	14	9
SI	IX	2	292.830	C. $3800 \mathrm{E}-01$	42	14	9
SI	IX	2	296.190	$0.6800 \mathrm{E}-01$	42	14	9
SI	IX	2	296. 190	$0.2300 \mathrm{E}-01$	42	14	9
SI	IX	1	341.950	$0.8500 \mathrm{E}-01$	42	14	9
SI	IX	1	345.010	0.2100E-01	42	14	9
SI	IX	1	345.100	$0.6200 \mathrm{E}-01$	42	14	9
SI	IX	1	349.670	$0.8300 \mathrm{E}-03$	42	14	9
SI	IX	1	349.770	0.1300E-01	42	14	9
SI	IX	1	439.960	$0.6900 \mathrm{E}-01$	42	14	9
SI	X	B 1	6.850	$0.5400 \mathrm{E}+00$	42	14	10
SI	X	E2	39.000	0. $1100 \mathrm{E}+00$	41	14	10
SI	X	B3	47.540	$0.1430 \mathrm{E}+00$	41	14	10
SI	X	B9	54.900	0.2400E-01	41	14	10
SI	X	4	253.810	$0.6000 \mathrm{E}-01$	42	14	10
SI	X	4	256. 580	0.1200E+00	42	14	10
SI	X	4	258.390	$0.1500 \mathrm{E}+00$	42	14	10
SI	X	4	261. 270	0.2900E-01	42	14	10
SI	X	2	272.000	0.3700E-01	42	14	10
SI	X	2	277.270	0.3600E-01	42	14	10
SI	X	1	347.430	$0.7400 \mathrm{E}-01$	42	14	10

SI	X	1	356.070	0.6600E-01	42	14	10
SI	X	1	356.070	$0.7300 \mathrm{E}-02$	42	14	10
SI	XI	BE1	6.780	$0.7200 \mathrm{E}+00$	42	14	11
SI	XI	2	303.580	$0.2640 \mathrm{E}+00$	42	14	11
SI	XII	LI 1	28.500	$0.3700 \mathrm{E}-01$	22	14	12
SI	XII	LI 2	31.000	$0.8800 \mathrm{E}-01$	22	14	12
SI	XII		499.399	$0.7294 \mathrm{E}-01$	42	14	12
SI	XII		520.684	$0.3498 \mathrm{E}-01$	42	14	12
SI	XIII	HE1	5.290	0.2800E-01	13	14	13
SI	XIII	HE2	5.410	$0.5700 \mathrm{E}-01$	13	14	13
SI	XIII	HE3	5.680	0. $1500 \mathrm{E}+00$	11	14	13
SI	XIII	HE4	6.650	$0.7500 \mathrm{E}+00$	9	14	13
SI	XIV	6	4.780	$0.8000 \mathrm{E}-02$	48	14	14
SI	XIV	5	4.840	$0.1400 \mathrm{E}-01$	47	14	14
SI	XIV	4	4.960	$0.2900 \mathrm{E}-01$	46	14	14
SI	XIV	3	5.230	$0.7900 \mathrm{E}-01$	45	14	14
SI	XIV	2	6.200	$0.4160 \mathrm{E}+00$	43	14	14
S	I	9	1295.661	$0.1080 \mathrm{E}+00$	41	16	1
S	I	9	1296. 174	$0.3610 \mathrm{E}-01$	41	16	1
S	I	9	1302.344	C.6000E-01	41	16	1
5	I	9	1302. 665	$0.3600 \mathrm{E}-01$	41	16	1
S	I	9	1303.114	$0.4790 \mathrm{E}-01$	41	16	1
S	I		1303.420	0.1630E-01	41	16	1
S	I	9	1305. 885	$0.1440 \mathrm{E}+00$	41	16	1
S	I		1310.210	0.1620E-01	41	16	1
S	I		1313.250	0.1610E-01	41	16	1
S	I	8	1316.570	$0.3450 \mathrm{E}-01$	41	16	1
S	I	8	1316.610	$0.6150 \mathrm{E}-02$	41	16	1
S	I	8	1316.620	$0.4110 \mathrm{E}-03$	41	16	1
S	I	8	1323.521	$0.3060 \mathrm{E}-01$	41	16	1
S	I	8	1323.530	$0.1020 \mathrm{E}-01$	41	16	1
S	I	8	1326.635	$0.4070 \mathrm{E}-01$	41	16	1
S	I	6	1401.541	0.1580E-01	41	16	1
S	I	6	1409.368	$0.1570 \mathrm{E}-01$	41	16	1
S	I	6	1412.899	0.1570E-01	41	16	1
S	I	5	1425.065	$0.1810 \mathrm{E}+00$	42	16	
S	I	5	1425. 229	0. $こ 220 \mathrm{E}-01$	42	16	1
S	I	5	1425.240	$0.2150 \mathrm{E}-02$	42	16	1
S	I	5	1433.328	0. $1600 \mathrm{E}+00$	42	16	1
S	I	5	1433.328	$0.5340 \mathrm{E}-01$	42	16	1
S	I	5	1437.005	$0.2130 \mathrm{E}+00$	42	16	1
S	I	3	1474.005	$0.7820 \mathrm{E}-01$	41	16	1
S	I	3	1474.390	$0.1400 \mathrm{E}-01$	41	16	1
S	I	3	1474.569	$0.9320 \mathrm{E}-03$	41	16	1
S	I	3	1483.036	$0.6940 \mathrm{E}-01$	41	16	1
S	I	3	1483.232	$0.2310 \mathrm{E}-01$	41	16	1
S	I	3	1487. 149	0. ¢ $230 \mathrm{E}-01$	41	16	1
S	I	2	1807.341	0. $11120 \mathrm{E}+00$	41	16	1
S	I	2	1820.361	$0.1110 \mathrm{E}+00$	41	16	1
S	I	2	1826.261	$0.1110 \mathrm{E}+00$	41	16	1
S	II	1	1250.586	$0.5350 \mathrm{E}-02$	42	16	2
S	II	1	1253.812	$0.1070 \mathrm{E}-01$	42	16	2
S	II	1	1259.520	0.1590E-01	42	16	2
S	III		484. 194	$0.4074 \mathrm{E}-01$	41	16	3
S	III		484.580	0.3111E-01	41	16	3
S	III		484.892	0.8568E-02	41	16	3

S	III		485.220	$0.3476 \mathrm{E}-01$	41	16	3
S	III		485. 240	$0.4179 \mathrm{E}-02$	41	16	3
S	III		486.154	$0.2296 \mathrm{E}-03$	41	16	3
S	III	7	677.750	0. $9644 \mathrm{E}+00$	41	16	3
S	III	7	678.460	$0.7225 \mathrm{E}+00$	41	16	3
S	III	7	679.110	$0.24 \mathrm{C6E}+00$	41	16	3
S	III	7	680.690	0. $8066 \mathrm{E}+00$	41	16	3
S	III	7	680.950	$0.1440 \mathrm{E}+00$	41	16	3
S	III	6	680.979	$0.5593 \mathrm{E}-01$	41	16	3
S	III	6	681.500	$0.1341 \mathrm{E}+00$	41	16	3
S	III	7	681.587	0. ¢5¢7E-02	41	16	3
S	III	6	682.883	$0.3346 \mathrm{E}-01$	41	16	3
S	III	6	683.070	$0.4460 \mathrm{E}-01$	41	16	3
S	III	6	683.470	$0.1003 \mathrm{E}+00$	41	16	3
S	III	6	685.350	$0.3334 \mathrm{E}-01$	41	16	3
S	III	5	698.730	$0.7406 \mathrm{E}-02$	41	16	3
S	III	5	700.150	0.3080E-02	41	16	3
S	III	5	700.184	0.1848E-02	41	16	3
S	III	5	700.290	$0.2463 \mathrm{E}-02$	41	16	3
S	III	5	702.780	$0.5523 \mathrm{E}-02$	41	16	3
S	III	5	702.820	0. $1841 \mathrm{E}-02$	41	16	3
S	III	4	724.290	$0.4677 \mathrm{E}+00$	41	16	3
S	III	4	725.852	0.47 C8E+00	41	16	3
S	III	1	1190.206	0.2240E-01	42	16	3
S	III	1	1194.061	$0.1670 \mathrm{E}-01$	42	16	3
5	III	1	1194.457	0.5570E-02	42	16	3
S	III	1	1200.970	0.1860E-01	42	16	3
S	III	1	1201.730	0.3320E-02	42	16	3
S	III	1	1202.132	$0.2220 \mathrm{E}-03$	42	16	3
S	IV	5	551.170	0. C5C7E-01	41	16	4
S	IV	5	554.070	0. $\mathrm{C} 457 \mathrm{E}-01$	41	16	4
S	IV	4	657.340	$0.9106 \mathrm{E}+00$	41	16	4
S	IV	4	661.420	$0.6145 \mathrm{E}+00$	41	16	4
S	IV	4	661.471	$0.9049 \mathrm{E}-01$	41	16	4
5	IV	3	744.920	0. $3155 \mathrm{E}+00$	41	16	4
S	IV	3	748.400	$0.6295 \mathrm{E}+00$	41	16	4
5	IV	3	750.230	$0.8278 \mathrm{E}+00$	41	16	4
S	IV	3	753.760	$0.1730 \mathrm{E}+00$	41	16	4
S	IV	2	809.690	0. $1514 \mathrm{E}+00$	41	16	4
S	IV	2	815.970	0.1502E+00	41	16	4
S	IV	1	933.382	$0.4260 \mathrm{E}+00$	41	16	4
S	IV	1	944.517	$0.2100 \mathrm{E}+00$	41	16	4
S	IV	1	1062.672	$0.3770 \mathrm{E}-01$	42	16	4
S	IV	1	1072.992	$0.3360 \mathrm{E}-01$	42	16	4
5	IV	1	1073.522	$0.3730 \mathrm{E}-02$	42	16	4
S	V	1	786.480	0.1263E+01	42	16	5
SV	VI	73	191. 510	0.2800E-01	41	16	6
SV	VI	2	248.980	$0.4710 \mathrm{E}-01$	41	16	6
S	VI	2	249.270	0.2506E-01	42	16	6
SV	VI	2	249.270	0.2440E-01	41	16	6
S	VII	NE1	52.000	$0.4200 \mathrm{E}+00$	34	16	7
S	VII	NE2	54.800	$0.1000 \mathrm{E}-01$	36	16	7
	VII	5	60. 160	$0.1600 E+00$	41	16	7
	VII	4	60.800	0.1400E+01	41	16	7
	VII	2	72.020	$0.1700 \mathrm{E}+00$	41	16	7
	VII	1	72.660	$0.3600 \mathrm{E}-01$	41	16	7

	VIII	F5	45. 300	0.2600E+00	41	16	8
S	VIII	F1	46.000	0.2500E+00	41	16	8
S	VIII	F2	53.000	$0.1500 \mathrm{E}+01$	41	16	8
S	VIII	F3	63.300	$0.6000 \mathrm{E}-01$	41	16	8
S	VIII	F4	199.900	0.9600E-01	41	16	8
S	IX	07	41.000	$0.2300 \mathrm{E}+00$	41	16	9
S	IX	02	47.400	$0.2300 \mathrm{E}+00$	41	16	9
S	IX	01	49.200	$0.8000 \mathrm{E}+00$	41	16	9
S	IX	05	54.100	0.40 C0E-01	41	16	9
S	IX	03	54.200	$0.2400 \mathrm{E}-01$	41	16	9
S	IX	04	56.100	$0.2300 \mathrm{E}-01$	41	16	9
5	IX	06	224.750	$0.1600 \mathrm{E}+00$	41	16	9
S	X	N7	35.500	$0.3200 \mathrm{E}+00$	41	16	10
S	X	N 1	42.500	$0.1700 \mathrm{E}+00$	41	16	10
S	X	N3	47.700	$0.4800 \mathrm{E}-01$	41	16	10
S	X	N6	257.100	$0.1900 \mathrm{E}+00$	41	16	10
S	XI	C9	31.000	$0.2100 \mathrm{E}+00$	41	16	11
S	XI	C3	39.300	$0.2100 \mathrm{E}+00$	41	16	11
S	$X I$	C4	39. 300	0.6100E+00	41	16	11
S	XI	C5	41.000	$0.3500 \mathrm{E}-01$	41	16	11
S	XI	C6	188.600	$0.8600 \mathrm{E}-01$	41	16	11
S	XI	C7	247.000	$0.8400 \mathrm{E}-01$	41	16	11
S	XII	B1	5.180	$0.5500 \mathrm{E}+00$	42	16	12
5	XII	B2	27.800	$0.1120 \mathrm{E}+00$	41	16	12
5	XII	E3	33. 300	$0.1190 \mathrm{E}+00$	41	16	12
S	XII	B10	221.000	$0.1600 \mathrm{E}+00$	41	16	12
S	XII	B11	227.200	$0.2900 \mathrm{E}-01$	41	16	12
S	XIII	BE 1	5.130	$0.7300 \mathrm{E}+00$	42	16	13
5	XIII	EE13	256.680	$0.2500 \mathrm{E}+00$	42	16	13
S	XIV	LI 1	21.000	$0.3800 \mathrm{E}-01$	22	16	14
S	XIV	LI2	23.050	$0.9000 \mathrm{E}-01$	22	16	14
s	XIV	LI5	30.430	$0.3500 \mathrm{E}+00$	21	16	14
S	VI	2	248.990	$0.4775 \mathrm{E}-01$	41	16	14
S	XIV		417.640	$0.5573 \mathrm{E}-02$	42	16	14
S	XIV		445.694	$0.2611 \mathrm{E}-02$	42	16	14
SI	XIII	HE1	4.010	$0.2800 \mathrm{E}-01$	13	16	15
SI	XIII	HE2	4. 100	$0.5700 \mathrm{E}-01$	13	16	15
SI	XIII	HE3	4.300	$0.1500 \mathrm{E}+00$	11	16	15
SI	XIII	HE4	5.040	$0.7500 \mathrm{E}+00$	9	16	15
SI	XVI	6	9.370	C. $8000 \mathrm{E}-02$	48	16	16
SI	XVI	5	9.490	0.1400E-01	47	16	16
SI	XVI	4	9.720	$0.2900 \mathrm{E}-01$	46	16	16
SI	XVI	3	10.250	C. $7900 \mathrm{E}-01$	45	16	16
SI	XVI	2	12.150	$0.4160 E+00$	43	16	16

APPENDIX 3. THE LINEARIZED EQUATIONS AND THE DISPERSION RELATION
The linearized equations and the dispersion relation used here were derived with the aid of a program called REDOCE availalle from the $u B C$ computing Centre. of particular interest here was its ability to allow the algekraic definition of functions cf the form

$$
Q(x, t)=Q_{0}+v(d Q / d z)+\delta q_{1} \exp [i(k z-\cot)] \text {. }
$$

(AIII.22)
The term $v(d Q / d z)$ appears because the analysis is done in the frame moving along at the gas speed. These definitions are made for the density, temperature, and velocity, and other quantities such as the cocling rate have perturbations expressed in terms of their density and temperature derivatives. Then the various partial derivatives with respect to z and t in the conservation equations are evaluated, and the terms of first order in δ are collected. This gives the set of linearized equations as given belcw. The results eventually must be expressed in the form of a matrix of coefficients times a vector of perturbation guantities. The determinant of this matrix will give the dispersion relation. In order to r f duce the number of multiplications involved in the evaluation of the determinant, the coefficients of and k have been combined together as much as possible. This is the motivation for the form of the equations below. The resulting linearized equations have coefficients which are labelled by their equation of origin, m, p, and e, for mass momentum and energy: the term being multiflied labelled by the coefficient, w. k, and c; and the linearized quantity being multiplied la$b \in l l \in d \quad b y n, T$, and v. The equations have been written in the form cf a series cf terms which when sumed together must be
equal to zero. The derivatives with respect to z are abbreviated as just the "numerator" cf the derivative, i.e. dv/dz goes to dv. The "*" is the multiplication sign and ** represents exfonentiation. The results are presented in the form of fortran staterints because this is essentially how they are output from BEDUCE , and it is how they are input to the program wich does the numerical computations.

The linearized eguations are:
mass conservation.
n1*(-i*w+dv)
$+t 1 * 0$
$+v 1 *(i * k * n 0+d n)=0$.
Momentum conservation,
n1*(i*k*Fkn+fCn)
$+t 1 *(i * k * p k t+p c t)$
$+v 1 *(-i * w+d v g)=0$.
And energy conservation.
n1*(-i***ewn+i*k*ekn+ecn
$+t 1 *(-i * w * e w t+i * k * e k t-k * * 2 * c o n k a p+\epsilon c t)$
+v1*(-i***ewv+i*k*ekv+ecv) $=0$.
In the following vci=1.-v0/c and rhocv is the mass density diviö́d by the nunber density. pkn=kboltz/(n0*Lhocv)*(dnedn*t0+t0)
pcn=kbcltz/(n0**2*rhocv)*(-dn*t0+n0*dnedn*dt
-ne0*dt-(dnedn*dn+dnedt*dt)*t0)-vc1*dgrdn
pkt=kboltz/(n0*rhocv) *(ne0+dnedt*t0+n0)
pct=kbcltz/(n0*rhocv)*(dn*dnedt*dt*dnedt*dt+dnedn*dn)-vc1*dgrdt $\mathrm{dvg}=\mathrm{dv}+\mathrm{grad} 0 / c$

```
ewn=(dedn*n0+e0)*Ihocv
ekn=-dkdn*dt
ecn=rhocv*(dv*h0+
dv*nc*dhdn+)-d2t*dkdn-vc1*dqdn+dldn
*rhocv*(vO*(dedn*dn+dedt*dt)+dedn*v0*dn)
ewt=d\epsilondt*nO*rhocv
\epsilonkt=-dkdt*dt+(-dkdt*dt-dkdn*dn)
ect=dldt-vci*dgdt*(dhdt*dv*n0)*rhocv-dkdt*d2t
+rhocv*dedt*v0*dn
ewv=0
\epsilonkv=60*n0*rhccv
ecv=dn*h0+n0*(dhdt*dt+dhdn*dn))
*rhocv+g0/c
+rhocv*(nO*v0*dv)
```

In order that the above set of algebraic equations have a ncntrivial solution the matrix of the coefficients must have a zero determinant, which gives the dispersion relation as follows. The dispersion relation is computed frof the constants by,

$$
\begin{equation*}
D(\omega, k)=\sum_{m=1}^{4} \sum_{n=1}^{5} \omega^{m}-1 k^{n-1}(\operatorname{crd}(n, m)+i * \operatorname{cid}(n, m)) \tag{1}
\end{equation*}
$$

where the coefficients crd and cid are:
$\operatorname{crd}(1,1)=$

$\operatorname{cid}(2,1)=$

- ϵ cn*FCt*no-ecn*pkt*dn-ekn*pct*dn
-dvg*ekt*dv+pct*ekv*dv+pkt*ecv*dv+pcn*dn*ekt
$+p c n * n 0 * e c t+p k n * d n * e c t$
$\operatorname{crd}(3,1)=$
ecn*pkt*n0

```
tekn*pct*nO*ekn*pkt*dn*dvg*(-ccnkap)*dv-pkt*ekv*dv
*pcn*dn*ccnkap
-pcn*nO*\epsilonkt-p*n*dn*ekt-pkn*nO*ect
cid(4, 1)=
-pkt*ekv+(-conkap)*dv) +
Ekn*qkt*nO-
pcn*n0*(-conkap) -pkn*dn*(-conkap)-pkn*nO*ekt
crd(5,1)=
pkn*n0*(-conkap)
cid(1,2)=
ewn*fct*dn+dvg*ect+dvg*ewt*dv-pct*ecv-pct*e*v*dv
-pcn*dn*ent+ect*dv
crd(2,2)=
-ewn*pct*nO-ewn*pkt*dn
-dvg*Ekt+fct*ekv+Ekt*ecv+pkt*ewv*dv+pcn*n0*ewt
*pkn*dn*ewt-ekt*dv
cid (3,2)=
-\epsilonwn*pkt*nO-dvg* (-ccnkap) +pkt*ekv
+pkn*n0*ewt-(-conkap)*dv
crd (1,3)=
dvg*ewt-fct*ewv+ect+ewt*dv
cid (2,3)=
-pkt*\inwv+ekt
cId(3,3)=conkap
cid(1,4)=-ewt
```

The form of these coefficients is such that if k is replaced by the neqative of its complex conjugate the rot foud will be the negative of the complex conjugate of the original
root. This behaviour is demanded in order that the same physical scluticn be recovered independent of the signs of ω and k.

APPENDIX 4. THE MAJCR CCMPUTER PRGGRAMS

This appendix describes the major computer programs for actually performing the numerical computations. They are all written in the FORTRAN language. The photoionization cross secticns and the resulting icrization and heating rates are calculated by the program photion using the takles given in the appendix 2 as input. The ionization balance and heating and cooling rates are calculated by, HCMAIN with subroutine SOBCHEAT. The zero crder physical quantities and radiaticn acceleration are worked out by, coEf. The coefficients of the dispersion relaticn are done in COCALC, and the roots of the dispersion relaticn in DISPER. The flow cf the frograms can be followed with the aid of the comments.

```
C
phOTOIONIZATICN AND HEATING RATES
C
    DIMENSICN INDEX (16,9)
    INTEGER IZED(9)
    REAL NJNU(100), DELNU (100), PHOT(76),PHEAT(76)
    INTEGER NUO (76),NUF(76)
    EEAL SIGMA(100,76), ENU (100), FLUX(100), DELE (100)
    ICGICAL VERBOS
    COMMON /A/ INDEX,IZED,DEN,T,VERBOS,NFEEC,NNCT
    COMMCN/HELIUM/ ALPHA,BETA,A2,B2,ZF,ZB,DEN1,ZF2
    & ,AE23,B2B31,AZB31
    COMMCN /FH/ PHOT,PHEAT,NJNU,DELNU,SIGMA
    EQUIVALENCE (DELNU(1),DELE(1))
    NAMELIST /PP/ VERBOS
    DO 20 IJ=1.76
    DO 20 IN=1,100
    SIGMA(IN,IJ)=0.
C
C UNIT 1 HAS STELLAR RADIATION FLOXES AND FREQUENCIES
C UNIT TWG HAS PHOTOICNIZATION EDGES AND STELLAR
C FluX frequencies
```

C
READ (1) NFREQ
REAE (1) ENU, FLUX, NJNU, DELE
READ (2,9774) (NUO(IJ), NUF (IJ), IJ=1,76)
9774 FCRMAT (214)
C
C Caiculate total flux
C
FTOT=0.
DO $22 \mathrm{IN}=2$, NFREQ
FTOT=FTCT+.5*(FLOX(IN-1) +FLUX(IN))*DELE(IN)
22 CONTINUE
VEFEOS=. TRUE.
WRITE (6.9775)
9775 FORMAT('1')
REAE(5,PP)
WRITE(6, PR)

C
C GO THROUGH ALL ATOMS (I)
C ANE ALL IONS OF ATOMS (J)
C
DO $10000 \mathrm{I}=1.9$
$I I=I 2 E D(I)$
DO $10001 \mathrm{~J}=1, \mathrm{II}$
$\operatorname{IN}=\operatorname{INDEX}(\mathrm{J}, \mathrm{I})$
NUNOT=NUO (IJ)
NOINF=NUF(IJ)
NUINF1=NOINF-1
NUNCT $1=$ NUNOT +1
PHOT (IJ) $=0.0$
FHEAT $(I J)=0.0$

```
C ERANCH TC COREECT ATOM
C
C ATCMS AFE IDENTIFIED EY ERANCH LABEL
C COREESPONDS TO Z OF ATOM
C
1 XIF=13.598
    ZADJ=1.0
    GO TC 9910
2 IF(J.EQ.2) GO TO 202
    ALPHA=2.182846
    EETA=1.188914
    A2=4.7648166
    B2=1.4135164
    LEN1=0.567759716
    ABZ 3=139.8332
    ZF=1.
    ZB=2.
    ZF2=1.
    BZEミ1=0.030&3696
    AZB31=0.01366421
    XIP=24.587
    GO TO 9920
202 ZADJ=0.25
    XIP=54.416
    GO TO 9910
C
C ALI FOLLOWING CALCULATIONS ARE IDENTIFIED BY THE
C Z CF THE ATOM AND THE J OF THE ION
C EG 601 IS CI
C EG 1204 IS MG III
C
6 GO TO (601,602,603,604,605,606),J
601 SIGNOT=12.19
    FZEEC=11.26
    A=3.317
    S=2.0
    GO TO 9930
602 SIGNOT=4.60
    EZERO=24.383
    A=1.95
    S=3.0
    GC.TC }993
603 SIGNOT=1.84
    FZERC=47.887
    A=3.0
    S=2.6
    GO TO 9930
604 SIGNCT=0.713
    FZERO=64.492
    A=2.7
    S=2.2
    GO TC 9930
605 GO TO 9980
606 GO TO 9980
7
    GO TO (701,702,703,704,705,706,707).J
```

701 SIGNOT=11.42
FZERO $=14.534$
$\mathrm{A}=4.287$
$S=2.0$
GO TO 9930
702 SIGNOT=6.65
$\mathrm{S}=3.0$
$\mathrm{A}=2.86$
FZEEO $=29.601$
GO TO 9930
SIG NOT $=2.06$
$A=3.0$
$S=1.626$
FZERO $=47.448$
GO TC 9930
704 SIGNOT=1.08
$A=2.6$
$\mathrm{S}=3.0$
FZEFC=77.472
GO TO 9930
SIGNOT=0.48
$S=2.0$
$A=1.0$
FZERO $=97.89$
GO TO 9930
CONTINUE
706 GC TC 9980
8
GO TO (801, 802,803,804,805, 806,9980,9980) .J
LC 811 IN=NUNOT, NUINF
SIGMA (IN,IJ) $=2.94 * \operatorname{SEATCN}(E N O(I N), 13.618 .2 .661 .1 .0)$
IF(ENU(IN).LT. 16.943) GO TO E11
SIGMA (IN,IJ) =SIGMA (IN,IJ) + 3. 85*SEATON (ENU(IN) .
\$. 16.943.4.378,1.5)
IF(ENU (IN).LT. 18.635) GO TO 811
SIGMA (IN,IJ) $=$ SIGMA (IN,IJ) $+2.26 * \operatorname{SEATON}(E N U(I N)$.
$\$ 18.635,4.311,1.51$
811 CONTINUE
GC TC 999
802 SIGNOT=7.32
$S=2.5$
$A=3.837$
FZEEC=35, 117
GO TO 9930
SIGNOL=3.65
$\mathrm{S}=3.0$
$A=2.014$
FZERO $=54.943$
GC TO 9930
804 SIGNOT=1.27
$\mathrm{S}=3.0$
$\mathrm{A}=0.831$
FZEFC=77.413
GO TO 9930
805
SIGNCT=0.78
$\mathrm{S}=3.0$
$A=2.6$

```
    FZERO=113.90
    GC TC 9930
806
10
STGNOT=5.35
        S=1.0
        A=3.769
        FZEFO=21.564
        GC TO 9930
1002 DO 1012 IN=NUNOT,NOINF
    SIGMA(IN,IJ)=4.16*SEATON(ENU(IN).40.962.2.717.1.5)
    IF(ENU(IN).LT.44.166) GO TO 1012
    SIGNA(IN,IJ)=SIGMA(IN,IJ) +2.71*SEATON(ENO(IN).
    $ 44.166,2.148,1.5)
        IF(ENU(IN).LT.47.874) GO IO 1012
        SIG#A(IN,IJ)=SIGMA(IN,IJ) +0.52*SEATON (ENU(IN).
    $ 47.874,2.126.1.5)
1012 CONTINUE
    GO TO 999
1003 DO 1013 IN=NUNOT,NUINF
    SIGMA(IN,IJ)=1.80*SEATON(ENU(IN),63.45.2.277.2.0)
    IF(ENU(IN).IT.68.53) GO TO 1013
    SIGMA(IN,IJ)=SIGMA (IN,IJ)*2.50*SEATON(ENU(IN),
    $ 68.53.2.346.2.5)
        IE(ENU{IN).LT.71.16) GO TO 1013
        SIGMA (IN,IJ)=SIGMA (IN,IJ) +1.48*SEATON (ENU (IN) .
    $ ,71.16.2.225.2.5)
1013 CONTINUE
    GO TO 999
1004 SIGNOT=3.11
    FZEFC=97.11
    A=1.963
    S=3.0
    GO TO 9930
1005 SIGNOT=1.40
    FZERO=126.21
    A=1.471
    S=3.0
    GO TO 9930
1006 SIGNOT=0.49
    FZEEC=157.93
    A=1.145
    S=3.0
    GO TO $930
12 GO TO (1201,1202,1203.1205).J
    GO TO 9980
1201 SIGNOT=9.92
    A=2.3
    S=1.8
    FZERO=7.646
    GC TO 9930
```

```
1202 SIGNOT=3.416
    \(\mathrm{A}=2.0\)
    \(\mathrm{S}=1.0\)
    FZFFC= 15.035
    GO TO 9930
1203 SIGNOT=5.2
    \(A=2.65\)
    \(S=2.0\)
    FZERO \(=80.143\)
    GO TO 9930
1204 SIGNOT=3.83
    \(A=1.0\)
    \(\mathrm{S}=2.0\)
    FZEFC=109. 31
    GO TO 9930
1205 SIGNOT=2.53
    \(A=1.0\)
    \(\mathrm{S}=2.3\)
    FZERO \(=141.27\)
    GO TO 9930
14 GO TO (1401,1402,1403,1404), Ј
    GO TO 9980
1401 DO 1411 IN=NUNOT, NUINF
    SIGNA (IN,IJ) \(=12.32\) *CHABEN (ENU (IN) .7.370.6.459,
    \$ 5.142.3.)
    IF(ENU(IN).LT.8.151) GO TO 1411
    SIGMA (IN,IJ) =SIGMA (IN,IJ) + 25.18*CHAHEN(ENU(IN),
    \(\$ 8.151 .4 .420\),
    \(\$ 8.934 .5\).
1411 CONTINUE
    GC TC 999
1402 SIGNOT \(=2.65\)
    \(A=0.6\)
    \(S=3.0\)
    FZEFO \(=16.345\)
    GO TO 9930
1403. SIGNCT=2.48
    \(A=2.3\)
    \(S=1.8\)
    FZERO \(=33.492\)
    GC TO 9930
1404 SIGNOT \(=0.854\)
    \(A=2.0\)
    \(s=1.0\)
    FZEFC=45.141
    GO TO 9930
16 GO TO (1601, 1602, 1603, 1604, 1605, 1606).J
    GO TO 9980
1601 LC 1611 IN=NUNOT, NUINF
    SIGMA (IN,IJ) \(=12.62\) *CHAHEN (ENO (IN) . 10.360 ,
        \(\$ \quad 21.595,3.062,3.0)\)
    IF(ENU(IN).LT. 12.206) GC To 1611
    SIGMA(IN,IJ) =SIGMA(IN,IJ) +19.08*CHAHEN(ENU(IN),
    \(\$ 12.206 .0 .135,5.635\) 。
    \$ 2.5)
    IF(ENO (IN). LT. 13. 40 E) GO TO 1611
```

```
        SIGMA(IN,IJ)=SIGMA(IN,IJ) +12.70#CHAHEN(ENU(IN).
    $ 13.408.1.159.4.743.
    $ 3.0)
1611 CONTINUE
    GO TO 999
1602 SIGNOT=8.20
        FZEEO=23.33
        A=1.695
        E=-2.236
        S=1.5
        GO TC 9940
1603 DO 1631 IN=NONOT,NUINF
    SIGMA(IN,IJ)=.350*CHAHEN(ENU (IN), 33.46,10.056.
    $ -3.27&.2.0)
        IF (ENU(IN).IT.34.83) GO TO 1631
        SIGMA(IN,IJ)=SIGMA(IN,IJ) +. 244*CHAHEN(ENO(IN).
    $ 34.83.18.427.
    $ 0.592.2.0)
1631 CONTINUE
    GO TO 999
1604 SIGNOT=0.29
    FZEEC=47.30
    A=6.837
    E=4.459
    S=2.0
    GC TC 9940
1605 SIGNOT=0.62
    A=2.3
    S=1.8
    FZEEC=72.68
    GO TO 9930
1606 SIGNOT=0.214
    A=2.0
    S=1.0
    FZERO=88.05
    GO TO 9930
C
C NOM THAT CONSTANTS ARE SET UP
C IN fHE RELEVANT PORMOLA
C CALCULATE the cross Section at tef
C INTEGFREQ FREQUENCIES (UNIT 2)
C
9910 DO g911 IN=NUNOT,NUINF
    SIGMA(IN,IJ)=ZACJ*HSIG(ENU(IN),XIP)
9911 CONTINUE
    GC TC 999
9920 DO G921 IN=NUNOT,NUINF
9921 SIGMA(IN,IJ)= HEISIG(ENO(IN).XIP)
    GO TO 999
9930 IF(NUNOT.GE.NOINF) GO TO g9&0
    LO 99ミ1 IN=NUNOT,NUINF
9931 SIGMA(IN,IJ)=SIGNOT*SEATON(ENO(IN),FZERO,A,S)
    GO TO }99
9940 DO 9941 IN=NUNOT,NOTNP
9941 SIGMA(IN,IJ)=SIGNOT*CHAHEN(ENU(IN),FZERC,SIGNOT,A,B,S)
    GC TO 999
```

```
GG80 SIGMA(NFREQ,IJ)=-1.0
        GO TO 9981
999 DO ç8 INU=NUNOT1,NOINF
        PHINT=.5* (NJNO(INU-1)*SIGMA(INU-1.IJ) +NJNU(INU)
    $ *SIGMA(INU,IJ))
        EHOT(IJ)=PHINT*EELE(INU) +PHOT(IJ)
        FHINT=.5*(FLUX(INU-1) *SIGMA(INU-1,IJ) *
    $ FLUX(INO) #SIGMA(INO,IJ))
        FHEAT(IJ)=PBINT*DELE(INU) +PEEAT(IJ)
```

C NJNU HAS UNITS \# CM-2 S-1 (EV)-1
C EHCT HAS UNITS \# S-1
C fHEAT HAS UNITS ERG S-1
PHEAT (IJ)= PBEAT (IJ)
G9\&1 WRITE(6,9771) II,J,ENU(NUNOT),ENU(NUINF)
\$.FHOT(IJ),PHFAT(IJ)
9771 FORMAT('OION',2I3,' FREQOENCIES',2F12.3,
\$ (IONIZATICN. HEATING RATES'.2E15.4)
IF(VERBOS) WRITE(6,9773) II,J
9773 FORMAT('OCRCSSECTIONS FOR ICN (Z,N)=',2I3)
IF(VEREOS) GRITE(6,9772) (SIGMA(IN,IN).
\$
IN=1,NFREQ)
9772 FOEMAT(1X, 10E12.3)
10001 CONTINUE
10000 CCNTINUE
GRITE(7) PHOT,PHEAT,SIGMA,FTOT
C
C FLUX HAS UNITS ERG CM-2 S-2 (EV)-1
C NJNU HAS ONITS \# CM-2 S-1 (EV)-1
C PHOT HAS UNITS \# S-1
C fHEET HAS ONITS ERG S-1
C
STOP
END
ELCCK DATA
COMMON /A/ INDEX,IZED,DEN,T,VERBOS,LAST,NNCT
INTEGER IZEE(9)
Lata IzED / 1,2,6,7,8,10,12,14,16/
LIMENSION INDEX (16,9)
LATA INDEX /1,15*0,2,3,14*0,4,5,6,7,8,9,10*0.
\$ 10,11, 12, 13,14, 15, 16,9*0.
\$ 17,18,19,20,21,22,23,24,8*0.
\$ 25,26,27,28,29,30,31,32,33,34,6*0.
\$ 35,36,37,38,39,40,41,42,43,44,45,46,4*0,
\$ 47,48,49,50,51,52,53,54,55,56,57,58,59,60,2*0.
\$ 61,62,63,64,65,66,67,68,69.
\$ 70,71,72,73,74,75,76/
END
GEAL FUNCTION HSIG(E,XIP)
C
C FOE CALCULATING THE HYDROGEN
C CECSS SECTION
C
IF (ABS (E-XIP).LT.0.0001) GO TO 1
ETA1=SQRT(E/XIP-1.0)

```

ETA=1. ETA 1
\(\mathrm{HSIG}=3.44204 \mathrm{E}-16 *(\mathrm{XIP} / \mathrm{E}) * * 4\) 。
\$ *EXP(-4.*ETA*ATAN(ETA1))/
\$ (1.-EXP (-6.238185*ETA))
FETURN
HSIG=6.30432E-18
RETURN
END
REAL FUNCTION HEISIG (E,XIP)
C
C HELIUM I CROSS SECTION
C
COMMON/HELIUM/ ALPHA,BETA,A2,B2,ZF,ZE, DEN1,ZF2
\$ , AEZ3, EZB31, AZE31
RK 2 \(=(\mathrm{E}-\mathrm{XIP}) / 13.598\)
IF (RK2.LE.0.0) GO TO 1
RK=SQRT (RK2)
FEXE \(=-6.283185 * \mathrm{ZF} / \mathrm{BK}\)
ALPHAI=(2.*ALPHA-ZF) *EXE (FEXP*ATAN(RK/ALPHA))
\(\$ \quad\) ( \(\mathrm{F} K 2+\mathrm{A} 2) *\) * \((-3\).
BETAI=(2.*BETA-ZF)*EXP(FEXP*ATAN(EK/BETA))
\(\$ \quad *(\mathrm{RK} 2+\mathrm{B} 2) * *(-3\).
DFE=2730.667*E*ZF*AEZ3* (RK24ZF2)*
\$ (ALPHAI*BZB31+BETAI*AZB31)**2
\(\$\) (1.-EXP(FEXP))*DEN1
HEISIG=8.067291E-18*DFE
EETURN
1 IF (XIP.GT. 24.587) GO TO 2
HEISIG=8.334E-18
EETUEN
2 IF (XIP.GT. 392.08 ) GO TO 3
HEISIG=4.7113E-19
RETURN
3 IF (XIP.GT.552.06) GO TO 4
HEISIG=3.316E-19
FETURN
IF(XIP.GT. 739.32 ) GO TO 5
HEISIG=2.46E-19
FETURN
5 WRITE 6,1000\() \mathrm{E}, \mathrm{XIP}\)
1000 FORMAT(HEISIG PROBLEMS',2F15.4)
EETUFN
END
REAL FUNCTICN SEATCN(F,EZERO,A,S)
C
C SEATCN CEOSS SECTION FOEMULA
C
\(\mathrm{FN}=\mathrm{FZEFO} / \mathrm{F}\)
\(S E A T O N=1.0 E-18 * E N * *(+S) *(A+(1 .-A) * F N)\)
EETUFN
END
REAL FUNCTICN CHABEN (F,FZERO, A,B, S)
C
C CHAEMAN AND HENRY CROSS SECTION FORMULA
C
\(F N=F Z E F C / F\)

CHAHEN=A \((B-2 . * A) * F N *(1 .+A-B) * P N * F N\)
CHAHEN=1.E-18*FN**S*CHAHEN
RETURN
END

C Pafametefs
C DEN:TOTAL DENSITY
C T: TEMPEFATURE
```

 LOGICAL VERBOS,SEMICC,ULTRA,WLINE,EQUIM,CNVG,FIRST,
 \$ CHAFGX
LOGICAL VERBO,WLIN,DIELEC,FODGE,THREEE,TERSE,NOWAST
\$ QUIT,DXDNDT
LOGICAL OUTPUT,TSERIE,DSERIE,BOTHDE,FSER
FEAL SIGMA (100,76), FHOT (76), PEEAT (76)
REAL PPHOT(76), PPHEAT(76), CEHEAT(76)
REAL RATIO(16),REL (16),X(17,9)
GEAL TOPIN (16), TOPOUT (16)
FEAL HLCOCL (9)
REAL LOWLIN (76)
INTEGER INDEX (16,9)
INTEGER IZED(9)
FEAL ABUND(9)
REAL CHIT(76)
FEAL IP1(76),IP2(76),CS(76)
INTEGER NUM1(76),NUM2(76)
FEAL ARAD(76), FTA(76),TMAX(76),TCRIT(76),ADI(76),
\$ TO(76),BDI(76).
\$ T1(76),REEC(76), EREC (76),UREC (76)
EEAL AREC(76),SLTE(76)
REAL LINLOS,LRRAD,LEREMS,PHEET
REAL AG(49), BG(49),CG(49),DG(49)
REAL LCOOL (76), ELINE (407),FI (407)
EEAL LCLX(76)
INTEGER IIND(407),JIND (407).IDENT (407)
COMMCN /A/ INDEX,IZEL,DEN,DENE,T,TK,TKI,T4,TSQRT,
\$ VERBO,LAST
COMMCN/RECC/ RREC,IREC,UREC,ARAD,ETA,TMAX,TCRIT,
\$ ADI,TO,BDI,T1
COMBON/CION/ IP2,NUM1,NUM2,CS,SLTE
COMMON /COLREC/ IP1,CHIT,RNNOT
COMMCN/LINE/ LCOOL,ELINE,FL,IDENT,IIND,JIND,NLINE
COMMON/GFACT/ AG,BG,CG,DG
COMMCN /CCNTRO/ SEMICO, DLTRA
COMMON/CFUDJ/ FUDJ,RNCT,FODGE
COMMON/THICK/ X,ABUND,DV,TAUMAX
NAMELIST/PARAM/ DEN,T,FJ,NITP,VERBOS,FABUND,FE,WF,
NLINE,SEMICO
* ,ULTRA,WLINE,TOL,EQUIM,CHARGX,NELMNT,DMAX,DIEIEC
\$ NLOCP,TRAD
\& FUDGE,THREEB,TERSE,DXDNET,DERDEL,OUTPUT,CNOAB
\$ -TSERIE, DSERIE,SEEINC, EOTHEE,SEREND,WTNE
\$,DV,TAUMAX
C SET UP DEFAULTS

```
C
C

REWIND 1
EEWIND 2
\(\operatorname{ABUND}(1)=1.0\)
\(\operatorname{ABUND}(2)=8.5 \mathrm{E}-2\)
\(A B \cup N D(3)=3.3 E-4\)
\(\operatorname{ABUND}(4)=9 \cdot 1 \mathrm{E}-5\)
\(\operatorname{ABUND}(5)=6.6 E-4\)
```

ABDNL (6) = 8. 3E-5
ABUND(7) =2,6E-5
ABUND (8)=3.3E-5
ABOND(9)=1.6E-5
NLOCE=15
SEMICO=.TRUE.
ULTRA=.FALSE.
FUDCE=.TROE.
THREEB=.TRUE.
TERSE=.FALSE.
NOWAST=,FALSE.
TRAD=50000.
FJ=1.
NITP=10
VERECS=.TRUE.
WLINE=.TRUE.
FABUND=1.
CNOAB=1.
FE=1.002
WINE=1.
WF=1.0
WEJOLD=-1.
NIINE=407
FQUIM=.FALSE.
EMAX=. 25
DIELEC=.TRUE.
NELNNT=9
CHARGX= TRUE.
TCL=1.E-03
DXDNDT=.FALSE.
DERDEL=.01
OUTPUT=.TRUE.
FSEE=.TRUE.
X (1, 1)=0.
TAUEAX=0.
DV=0.

```
C
    TSERIE=, FALSE.
CSEGIE=.FALSE.
EOTHDE=. FALSE.
SEFINC=. 1
SEREND=0.
C EEAD IN LATA
C UNIT 1 HAS PHOTOIONIZATICN DATA CALCULATED BY EHOTICN
C ASSUMED TO EE OF THE FCEM: FIRST MOMENT OF RADIATION
                    FIELD*QUANTITIES
C UNIT 2 HAS THE CONSTANTS REQUIREL FOR RECOMBINATION, I
C ONIZATION
C AND IINECOOLING (LINES AND EXCITATION G FACTOR)
C LOWLIN HAS LOWEST DELTA ENERGY LINES FCR IONS WITH D
C
                    IELECTBCNIC RECOM
C
EEAE (1) PHCT, PHEAT,SIGMA, FTOT
READ (2) ARAD, ETA, TMAX, TCRIT,ADI,TO, BDI,T1
EEAD (2) IP1, NUM1, IF2, NUM2
READ (2) ELINE, FL,IDENT,IIND, JIND
```

READ (2) AG,BG,CG,DG
BEAC(2) LOWLIN
C
C SET UP OF INITIAL CONDITICNS FOE MULTIPLE LCOPS
C
ITDER=0
10000 CCNTINUE
QUIT=,FALSE.
DIFCID=0.
DIFF=0.
CNVG=.FALSE.
ICLOOP=0
IF(ITDER.EQ.5) DEN=[EN/(1.-LERDEL)
IF(EXDNDT.AND.ITDER.LE.4) GC TO 10100
ITDEF=0
IF(TSERIE.OR.DSERIE) GO TO 3001
GEAL (5,FARAM, END=10001)
LAST=INDEX(IZED(NELMAT),NELMNT)
IF(EQUIM) DXDNDT=.FALSE.
IF(EXDNDT) EQUIM=.FALSE.
IF(.NOT. FQUIM) CNVG=.TRUE.
IF (OLTRA) VERBOS=.TEUE.
IF(TERSE)VEFEOS=.FALSE.
IF(VERBOS) WLINE=.TRDE.
IF(TERSE) RIINE=. FALSE.
IF(NITP.IT. <) NITP=2
IF(X(1,1).NE.O.) GO TO 2004
X(1,1)=0.
x (2,1)=0.
x(1,4)=0.
X(2,4)=0.
x(1,5)=0.
x (2,5)=0.
EUO=0.
EDC=0.
BUN=0.
EDN=0.
C
C tenperatuge or density Series logic
C
2004 IF(TSERIE.OR. DSERIE) SERINC=10.**SERINC
IF(.NOT. (TSERIE.OR.DSERIE)) GO TO 3004
IF(.NOT. ROTHDE) GO TC 3002
EQUIM=.FALSE.
EXDNDT=.TRUE.
CUTEUT=.TROE.
3001 IF(.NOT.BOTHDE) GO TO 3002
EQUIM=.NCT.EQUIM
EXDNDT=.NOT.DXDNDT
CUTPUT=.NOT. OUTPUT
3002 IF(DXDNDT.AND.ITDER.NE.0) GC TO 3004
IF(DSERIE) GO TO 3003
IF(.NOT.TSERIE) GO TO 3004
IF(.NOT.FSER.ANL, (.NOT.EOTHLE.OR.EQUIM)) T=T*SERINC
IF(T.GT.SEREND) GO TO 10001
GC TO 3004

```
```

3003 CONTINUE
IF(.NOT.FSER.AND. (.NCT. EOTHEF.OR. EQUIM)) DEN=DEN*
\$ SERINC
IF(DEN.GT.SEREND) GO TO 10001
3004 CONTINUE
IF(FQUIM) GO TO 10101
10100 CONTINUE
IF(.NOT. DXDNDT) GO TO 10101
C
C DEEIVATIVE CALCULATICN LOGIC
C
ITDFR=ITEER+1
IF(ITDER.EQ.1) GO TO 10101
IF(ITDEF,EQ.2) T=T*(1.+EERDEL)
IF(ITDER.EQ.3) T=T*(1.-DERDEL)/(1.+DEEDEL)
IF(ITDEF.EQ.4) GO TO 10111
IF(ITDER.EQ.5) DEN=DEN*(1.-LERDEL)/(1.+DERDEL)
GO TO 10101
10111 T=T/(1.- LERDEL)
DEN=DEN*(1.+DERDEL)
10101 CCNTINUE
IF(EQUIM) NIT=MINO(5,NITE)
IF(.NOT.EQUIM) NIT=NITP
FIRST=.TRUE.
TCLD=0.
IF (.NOT.TERSE.OR..NCT.NOWAST) NRITE (6,1008)
1008 FCFMAT('1')
IF (.NOT.TERSE.OR..NCT.NCBAST) HRITE (6,PARAM)
C
C SET UP TEMPERATURE, DENSITY, AEUNDANCES, FLUX FACTOR
C
DENE=DEN*FE
DEOID=DENE
IF(.NOT.FSER) GO TO 2005
SOM=0.
C
C CALCULATICN CF ABUNCANCES
C
DO }101\mathrm{ IEL=1,NELMNT
IF (IEL.GT.2) ABUND(IEL)=FABUND*ABUND (IEL)
IF((IEL.GE.3).AND.(IEL.LE.5)) ABUND(IEL)=CNOAB*
\$ ABUND (IEL)
SUM=SUM+ABUND(IEL)
101 CONTINUE
DO 102 IEL=1,NELMNT
ABUND(IEL) = ABUND(IEL)/SUM
CONTINUE
FABUND=1.
CNOAB=1.
IF(.NOT.TERSE.OR.,NCT.NGWAST) WRITE (6,1002) FABUND.
\$ MELMNT,ABUNE
1002 FORMAT(' RELATIVE ABUNDANCES WITH FABUND=', F6.3.
\$ 5X,'NELMNT='.I3,/1X,SE13.3)
C
C BALIATICN DILUTION APPLIED
C

```
```

 WFJ=WF*FJ
 WETRAD=WFJ*TRAD
 IF (WEJ.EQ.WFJOLD) GO TO 20001
 HFJOLD=WFJ
 MJ=WFJ*12.56637
 C
C ADJUSTMENT TO FLOX MADE INCLUDING A 4*PI MULTIPLICATION
C
EFTCT=FTOT*WF
LO 103 IJ=1.76
PEHCT (IJ)=EHOT (IJ)*⿴MJ
PPHEAT (IJ)=PHEAT(IJ)*WMJ
103 CCNTINUE
FSEE=.FALSE.
20001 ICLOOP=ICLOOP+1
IF(ICLOOP.GT.NLOOP) 60 TO 30000
2005 VERBO=VERBOS.AND. (CNVG.OR..NOT.EQUIM)
WLIN=WLINE.AND.(CNVG.OR.,NOT, EQUIM)
IK=T/11604.\varepsilon
TKI=1./TK
T4=T*1.E-4
ETHEEE=0.0
TM45=T**(-4.5)
TSQET=SQRT(T)
IF(.NOT.FIRST.AND.EQUIM) NIT=MINO (3,NITF)
122 IF(.NOT.CHARGX) GO TO 10004
CALL CHGEX(EUO,BDO,BUN,BDN,I)
C
C CHARGE EXCHANGE CALCULATICN FOR NITROGEN AND OXYGEN
C U IS UERATE FOR I TO II CF N ANIO
C D IS DOWNRATE
C
IF({X(1,1).NE.1.E-07).OR.{X(1,1).NE.0.)) GO TO 10004
X(1,1)=1.E-07
X (2,1)=1.
X(1,5)=0.5
X(2,5)=X (1,5)
X(1,4)=0.5
x (2,4)=x (1,4)
10004 DC 1 IT=1,NIT
DO 2 I=1,NELMNT
II=IZED(I)
2ED=II
FNUCLD=1.E4
IF (TFTRAD.LE.O.) GO TO 45
C
C THIS IS A CALCULATION OF LOWEST LEDEL IN EQUILIBRIUM OITH
C CCATINUU昔 DUE TO RALIATION FIELD
C
RNUCLD=2.72
NNIT=0
44
FNCTNU=ZED*SQRT (3.*ALOG (RNUOLD)*157802./NFTRAD)
NNIT=NNIT+1
DIFN=RNOTND-ENUOLD
RNUOLD=RNOTNU-DIFN/(1.-.5/ALGG (RNOTNU))
IF (ENUOLD.LE. 1.) RNUCLD=2.

```
```

 IF(NNIT.GT.4) GO TO 45
 IF(AES(DIFN/ENOTNU).GT.TOL) GO TO 44
 II1=II+1
 IZ=II
 DO 3 J=1,II
 IJ=INDEX(J,I)
 CALL LEVEL (J,I)
 RNOT=AMIN1(BNNOT,RNUCLD,2.) +.5
 IF(I.EQ.1) RNNOTH=RNOT
 CALI CCLION(J,I)
 CALL REC(J,I)
 IF(ULTRA,OR.((IT.EQ.NIT.OE.QOIT).AND.VERBO))GRITE (
 $ 6,1029) RNOT.
 & RNNOT,FNUOLI,FUDJ
 1029 FORMAT (' RNOT,RNNOT,RNUOLD,FUDGE FACTOF', 2F20.1.
\$ 2E15.3)
FNNOT= RNOT
DREC(IJ)=DREC(IJ) *FUDJ
IF(.NOT. DIELEC) DREC(IJ)=0.0
C
C THfEE ECDY RECOMBINATION FECM SUMMERS AND BORGESS
C GITH A DIFFERENT Z DEPENDENCE
C
IF(.NOT.THREEB) GO TC 46
ETHFEE=1.16E-08*(J**3)*TM45*DENE
IF (RREC(IJ).EQ.0.0) RTHREE=0.0
AREC(IJ)=RREC(IJ) +EFEC(IJ) +UREC(IJ) +RTHREE
46
C
C REC(J,I) IS RECOMBINATION RATE INTO J FROM J+1
C CCL (J,I) IS COLLISION BATE OUT OF J TO J+1
C
IF(ULTRA.OR.((IT.EQ.NIT.OR.QUIT).AND.VERBO)) WRITE(
\$ 6.1001)
\$ II,J,CS(IJ),SLTE(IJ),PPHOT(IJ)
1001 FORMAT(' COLlISICNS, UPFER LEVELS, PHCTC ICNIZATICN *
\$ 'ibate'.
\$ ' ION (Z,N)',2I3,3E15.4)
IF(OLTBA.OR.((IT.EQ.NIT.OF.QUIT).AND.VERBO)) HRITE(
\$ 6,1000)
\$ II,J,RREC(IJ),DREC (IJ),UREC (IJ)
1000 FORMAT(" RADIATIVE, EIELECTEONIC, UPPER LEVELS, REC*
\$ OMBINATION '.
\$ 'bate'. 2I3. 3E15.4)
C
C TCFCUT(J) IS RATE J TO J+1
C TOPIN(J) IS RATE J+1 TO J
C
3 CONTINUE
IJJ=INDEX (1,I)
TOPOUT(1)=PPHOT(IJJ) + (CS(IJJ) +SLTE(IJJ)) \#DENE
IF(I.EQ. 1) TOPOUT (1)=TOPOUT (1)+BDO*X (2,5)*ABUND (5)
\$ +BDN*X (2,4) *ABUND (4)
IF(I.EQ.4) TOPOUT (1)=TOPOUT (1) + BUN*X (2,1)/AEUND (4)
IF(I.EQ.5) TOPOUT (1)=TOPOUT (1) +EUO*X(2,1)/ABUND (5)
TOPIN (1)=AREC (IJJ) *DENE
IF(I.EQ. 1) TOPIN(1)=TOPIN(1) +EUO*X(1,5) *ABOND(5)

```
```

 # +BDN*X(2,4) *ABUND(4)
 IF(I.EQ.4) TOPIN(1)=TOPIN (1) +EDO*X(1, 1)/ABOND (4)
 IF(I.EQ.5) TOPIN(1)=TCPIN(1) + BDN*X(1, 1)/ABUND(5)
 IF (AREC(IJJ).EQ.O.0) GO TO 24
 RATIC(1)=TOFOUT (1)/TOPIN(1)
 GO TO 25
 RATIO(1)=1.0
 REL (1)=RATIO(1)
 IF(I.EQ. 1) GO TO 8
 DO 4 JJ=2,I2
 IJ=INDEX(JN,I)
 TOPOUT(JJ) =PPHOT(IJ) +(CS(IJ) +SLTE (IJ))*DENE
 TOFIN(JJ)=AFEC(IJ)*IENE
 IF (TOPIN (JJ).EQ.0.0) GO TO 5
 RATIO(JJ)=TOPOUT(JJ)/TOPIN(JJ)
 GO TO 4
 RATIO(JJ)=1.0
 RATNTINUE
C
C RATIC(J) IS FOPOLATION LEVEL J+1 / LEVEL J
C REL(J) IS POPULATION RELATIVE TC LEVEL 1
C FEL (1) IS EOP LEVEL 2 / POP LEVEL 1
C
LC 6 JJ=2,II
REL(JJ)=RATIO(JJ) *REL(JJ-1)
CCNTINUE
S SUM=1.0
IF (AREC (INDEX (1,I)).EQ.O.0) SUM=0.0
IE(I.EQ.1) GO TO 31
C
C IF RATE INTO LEVEL FROM TOP IS O SET POPULATION TO O.
C
DO 7 JJ=2;II
IF (AREC(INDEX(JJ,I)). EQ.0.0) REL (JJ-1) =0.0
SUM= SUM+REL (JJ-1)
7 CCNTINUE
IF(AREC(INDEX(II,I)).EQ.O.) REL (II)=0.
31 SUM=SUM+REL (II)
FNOGM=1./SOM
C
C X(J,I) IS RELATIVE POP CF ICNIZATION LEVEL J IN ATOM I.
C SUM WITH I CCNSTANT IS 1
C
LO 9 J=1,II
IF(AREC(INDEX(J,I)).GT.0.0) GC TO 16
X(J,I) =0.0
CONTINUE
16 NB=J
NB1=NB+1
X(NE,I)=FNOEM
DO 17 J=NB1.II1
X(J,I)=REL (J-1) *FNOFM
17 CONTINOE
2 CGNTINOE
C
C ELfCTRON DENSITY CALCULATION

```

C
```

 DENE=0.
 DO 21 I=1,NELMNT
 II1=IZED(I)+1
 DO 22 J=2,II1
 DENE=DENE+X(J,I)*(J-1)*ABUND(I)
 CONTINUE
 22
21
FORMAT(' NEW ELECTFON DENSITY IS',E16.7)
IF(TERSE) GO TO 113
LO 20 I=1, NELMNT
II=IZED(I)
IZ1=II+1
IF(ULTRA.OR.((IT,EQ.NIT.OR.QUIT).AND.CNVG)) WRITE (
\$ 6.1005) II
1005 FORMAT(' RELATIVE AEUNEANCES FOR ELEMENT Z=',I3)
IF(ULTRA.OR. ((IT.EQ.NIT.OR.QUIT).AND.CNVG)) GRITE(6
\$,1004)
\$ (J,X(J,I),J=1,IZ 1)
20 CONTINUE
1004 FORMAT (1X.5(I5,E15.5))
113 IF(QUIT) GO TO 111
C
C CHECKING FOR CONYERGENCE OF ELECTECN DENSITY
C CCNVEFGENCE SEEMS TO EF SLON GITH THIS METHOD
C
IF(AES(DEOLD-DENE)/DENE.LT.TOL) QUIT=.TRUE.
DEOLD=DENE
CCNTINUE
111 CONTINOE
C
C NOTE THAT THERE IS NO LINE COCLING OF BARE ICNS
C
IF (TOLD.EQ.T) GO TO 23
CALL LINCCL
C
C LIAE COCLING CALCULATED CNLY IF TEMPERATURE HAS CHANGED
C
IF(.NOT.EQUIM) TOLE=T
23 CONTINUE
C
C HYdROGEN LINE COOLING LOSSES
C DCNE aS acCurately as poSSIELE SINCE COOLING IN 1E4
C 3E4 TEMPERATURE
C EANGE IS CFUCIAL
C
ICCCL}(1)=0
RNNOT=RNNOTH
CALI HLINE(BLCOOL,1)
C
THE }1\mathrm{ REFERS TO LOWER LEVEL FCR TRANSITIONS
LC 30 N=1.9
LCOOL (1)=LCOOL (1) +HLCOOL (N)
HLCCOL (N)=HLCCOL (N)*X(1,1)*ABUND(1)*DENE/DEN

```
1011 FORMAT(' HYDROGEN LINE LCSSES ARE:'/1X.9E14.4)
    LINLCS=0.
    LRRAD=0.
    PHEET=0.
    LO 10 I=1,NELMNT
    II=IZED(I)
    DO 10 J=1,II
    IJ=INDEX(J,I)
C
C ADJUSTMENT OF RECOMBINATION RATE to ENERGY RECOMBINATION
C ON RATE
C OSING FACTOFS GIVEN BY SEATON FOR HY DROGEN
C
    UL=IE1(IJ)*TKI
    ULL2=.5*ALOG(UL)
    UL3=UL**(-. 3333333)
    ABFACT=(-0.0713+ULL2+0.640*UL3)/(0.4288+ULL2+.46G*
        # UL3)
        RRCCOL=REEC(IJ)*(IP1(IJ) +TK) #ABFACT
C
C DIELECTRONIC COOLING ASSUMES LOWEST ENERGY TRANSITION
C
C
    ECMINANT STABILIZING TRANSITION
C
    RDCCCL=DEEC(IJ)* (IP1(IJ) +LOWLIN(IJ))
    LRRAD=LRRAD+(RRCOOL + RDCOOL) * X (J+1,I) *ABUND (I)
    LCLX(IJ)=X (J,I)*LCCOL (IJ)*AEUND(I)*FE
    IINIGS=LINLCS+LCLX(IJ)
    CPHEAT(IJ)=PPHEAT(IJ)*X(J,I)*ABUND(I)
    PHEET=FHEET +CPHEAT (IJ)
10 CONTINOE
C
C ALl ENERGY RATES ARE IN ERG CM+3 S-1
C EEATING IS IN ERG S-1
C
    LBREMS=2.29E-27*SQRT (T) *ABUND(1)*FE
    LRRAD=LRRAD*FE*1.602192E-12
    COCL=LBREMS +LRRAD+LINLOS
    PGEETD=PGEET/DEN
    IF(.NOT. EQUIM) GO TO 38
    IF(.NOT.TERSE)WRITE (6,1021) PHEETD,CCOL,T
1021 FORMAT(" HEATING, COCLING RATES CM+3 S-1',2E15.5.
    $ 5X,'AT TEMPERATURE',E15.5)
    DIFCLD=DIFF
    IF(PHEETD.GT.1.0E6*CCCL) DIFCLD=0.
    IF(FHEETD.LT. 1.0E-6*COOL) DIFOLD=0.
    DIFF=COOL-PHEETD
    IF(CNVG) GO TO 20002
C
C RAEIATIVE EQUILIBRIUM TEMPERATUEE CALCULATION
C
    IF(.NOT.FIRST) GO TO 20000
    TOLD=T
    T=T*1.01
```

```
    FIRST=.FALSE.
    GO TC 20001
20000 DERIV=(DIFF-DIFOLD)/(T-TOLD)
    IF(DERIV.EQ.O.) GO TO 20002
    DELT=-DIFF/DERIV
    IF(.NOT.TERSE) HRITE(6,1022) T.DELT
1022 FORMAT(' T. DELTA T (DELT)',2E15.5)
    IF (AES(LELT/T).GT. IMAX) GO TO 20003
    IF(ABS(DELT/T).LT.TOL) CNVG=.TRUE.
    TOLD=T
    T=T+DELT
    GO TO 20001
20003 TCLD=T
    T=T + DMAX*DELT/ABS(DELT)*T
    GO TO 20001
20002 CONTINUE
38 IF (.NOT.WLIN) GO TC }1
C
C FRINTED OUTPUT OF DETAILS OF HEATING AND COOLING RATES
C
    DO }12\textrm{I}=1,\textrm{NFLMNT
    IZ=IZED(I)
    IJB=INDEX(1,I)
    IJE=IJB+IZ-1
    WRITE (6,1009) IZ
1009 FORMAT (' LINE COOLING LCSSES FOR ATOM OF Z'.I3)
    WRITE(6,1003) (LCLX(IJ),IJ=IJE,IJE)
1003 FORMAT(1X,8E15.3)
12 CONTINUE
    IF(WFJ.LE.O.O.OR..NCT.WLIN) GO TO 11
    DO 13 I=1,NELMNT
    IZ=IZED(I)
    IJB=INDEX(1,I)
    IJE=INB+IZ-1
    GRITE (6.1019)IZ
1019 FORMAT(" PHCTOIONIZATION HEATING RATES FOR ATOM Z=*
        $ .I3)
    WRITE(6,1003) (CPHEAT(IJ),IJ=IJB,IJE)
13 CONTINUE
C
C INTEENAL ENERGY aND ENTHALPY IN UNITS Of ERG PER
C CUBIC CM
C
11 EINI=0.
    EO 14 I=1,NFLMNT
    IZ=IZED(I)
    DO 14 J=1,IZ
    IJ=INDEX(J,I)
    EINT=EINT+IF1(IJ)*X(J+1,I)*ABUND(I)
14 CONTINOE
    EINT=(EINT*DEN+1.5*TK*(DEN+LENE))*1.602 192E-12/DEN
    ENTHAL=EINT+(DEN+DENE)*TK*1.602192E-12/EEN
    CEINT=EINT/(TK*1.602192E-12)
    CENTHP=FNTHAL/(TK*1.602192E-12)
C
C CUTPUT CALCOLATED QUANTITIES
```

```
C
IF(CUTPUT) MRITE(7) LEN,T,WF,FJ,PHEET,COOL,LBREMS,
    $ LRRAD,LINLOS.
    $ EINT, ENTHAL,DENE,AEUND,X,LCLX,CPHEAT, PFTOT
    IF(EQUIM) WRITE (6,1051) ICLCOP
1051 FOFAAT (' NOMBEB OF LOOPS TO CONVERGENCE',I4)
    WRITE (6,1006) DEN,T,GFJ,PHEETD,COOL,LBREMS,LRBAD,
    $ LINLCS,
    $ EINT,ENTHAL,CEINT,CENTHE,DENE
1006 FOBMAT ('- PARAMETEGS WERE: LENSIty, TEMPERATORE, '
    $, DILUTION FACTOR',3E15.5/
    & TOTAL HEATING/DENSITY AND COOLING RATE`.2E15.5/
    $ ' THE COCLING RATES FGR EGEMSSTRAHLUNG, ',
    $ RECCMBINATION RADIATICN, AND LINE LCSSES'.3E15.5/
    | 'INTERNAL ENERGY,ENTHALPY'.2E15.5.5X,'AND COEFFI'
    $ 'CIENTS'.2F15.7/
    $ ELECTRON DENSITY',E15.5)
    IF(. NCT.TERSE)WRITE(6, PARAM)
    NOWAST=.TROE.
    GC TO 10000
30C00 WRITE (6.1049) NLOOE
1049 FORMAT(' SOERY EUT MAX NUMEFB OF temPERATURE LOOPS '
    $ .'EXCEEDED',I3)
    GO TO 10000
10001 STOP
    END
```


PROGRAM SUECHEAT

SUBROUTINE CBGEX (BUC,BDO, BUN, BDN, T)

C
C CHPRGE EXCBANGE TAKEN FGCM:
C O Field and Steigman
C A Steigman, herner, and geldon
C
C EOC IS EETA FOR OI TO OII THAT IS OP
$\operatorname{FI}(X)=\operatorname{ERF}(\operatorname{SQRT}(X))-1.12838 * E X F(-X) * \operatorname{SQET}(X)$
$\mathrm{XAC}=6.034 / \mathrm{T}$
$X A D=732.8 / T$
$\mathrm{XC}=0.812336 / \mathrm{T}$
$X D=98.64 / T$
EDO $=1.97 \mathrm{E}-0$ 9* (. 3864 15*FI (XAC) +0.5 *(FI (XAD) -FI (XAC))
$\$ \quad+0.529412 *(1 .-$
$\$ \mathrm{FI}(\mathrm{XAD})))+2.11 \mathrm{E}-09 *(0.115385 * \operatorname{EXP}(-\mathrm{XC}) *$
$\$ \quad F I(X A C-X C)+$
$40.0294118 * E X P(-X D) * F I(X A D-X D))\}$
$E U O=E X P(-227.45 / T) *(1.97 E-09-B D O)$
$\mathrm{BUN}=1 . \mathrm{C} 7 \mathrm{E}-0 \mathrm{C} *(\mathrm{EXP}(-11031.5 / \mathrm{T}) * .333333+\mathrm{EXP}(-11102.3 /$
\$ T) *. 333333 +
$\$ \operatorname{EXP}(-11220.7 / \mathrm{T}) * .151515)$
$E D N=1.97 E-09-E X P(11031.5 / T) * B U N$
FETUFN
END
ELCCK DATA
COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSQRT,
\$ VEREOS,LAST
INTEGER IZED (9)
Lata IZED $/ 1,2,6,7,8,10,12,14,16 /$
DIMENSION INDEX $(16,9)$
DATA INDEX /1, 15*0, 2,3, 14*0,4,5,6,7,8,9, 10*0,
$\$ 10,11,12,13,14,15,16,9 * 0$,
$\$ 17,18,19,20,21,22,23,24,8 * 0$.
$\$ 25,26,27,28,29,30,31,32,33,34,6 * 0$,
$\$ 35,36,37,38,39,40,41,42,43,44,45,46,4 * 0$,
$\$ 47,48,49,50,51,52,53,54,55,56,57,58,59,60,2 * 0$,
$\$ 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76 /$ END
SUBROUTINE COLION (J,I)
C
C ROUTINE FOR CALCULATION CF CCLIISICNAL
C IONIZATION fates for all elements but
C HYEFOGEN
C

```
DIMENSION INDEX(16, © , IZED (9)
FEAL IP1 (76).,IP2(76)
DIMENSION NUM1 (76), NUM2 (76), CS (76), SLTE(76)
BEAL CHIT (76)
LOGICAL VERBOS ,SEMICO, ULTBA
COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSORT,
\$ VERBCS,LAST
COMMON /CION/ IP2,NUM1,NUM2,CS,SLTE
COMMCN /COLBEC/ IP1,CHIT, BNNOT
```

```
        COMMON /CONTRO/ SEMICO,DLTRA
        IJ=INDEX (J,I)
        IF(J.NE.IZED(I)) GO TO 199
3
    IF(.NOT.SEMICO) RNC=1.0FOG
101 CS(IJ)=COLH(RNNOT,IE1(IJ),1)
    SLTE(IJ)=0.
    BETORN
C
C CORRECTION FACTOR FROM P 205 MCWHIRTER,R.W.P. IN ATCM
                IC AND
C MOLECULAR PROCESSES IN ASTROPGYSICS, ED EY MCE HUBEARD
                AND H
C NDSSBAUMER, GENEVA OBSEFVATORY, SAUVERNY, SWITZERLAND,
                1975.
C
            CS(IJ)=NUM1(IJ)* EXP(-IE1(IJ)*TKI)/(IP1(IJ)*IP1(IJ))
        $ /(4.88+TK/IP1(IN))
            IF(NUM2(IJ).LE.O) GC TO 200
            CS(IJ)=CS(IJ)*NUM2(IJ)*EXP(-IP2(IJ)*TKI)/(IP2(IJ)*
    $ IP2(IJ)) /(4.88+TK/IE2(IJ))
200
    CS (IJ) = 8.35E-08*TSQET*CS (IJ)
    CHIT (IJ)=(2.8E-28*IP1(IJ)*DENE*DENE*TKI)**. 142857143
    CHIT(IJ)=IP1(IJ)/(RNNOT*RNNOT)
    SLTE(IJ)=4.8E-06*CHIT(IJ)/(IP1(IJ)*IP1(IJ)*ISQRT)*
        $ EXP(-IP1(IJ)
        $ *TKI)
            IE(.NOT.SEMICO) SLTE(IJ)=0.
            EETUFN
C
C CHIT IS ESTIMATE OF IONIZATION POTENTIAL OF LOWEST LEVEL
C IN EQ'M WITH CONTMM
C SLTE FRCM WILSON
C
    ENE
    FUNCTION COLH(RNO,XIP,N)
C
C COLLISIONAL IONIZATION RATE FOR HYDROGEN
C
    DIMENSION INDEX (16,9)
    DIMENSION IZED(9)
    LOGICAL VEREOS
    COMMCN /A/ INDEX,IZED, DEN,DENE,T,TK,TKI,T4,ISQRT,
        $ VERBOS,LAST
            XO=1.-1./(RNO*RNO)
            X02=1./( ( O * 80)
            X03= X02/X0
            RN=FLOAT (N)
            FN2=FN*FN
            EPKI=XIP*TKI/RN2
            Y=XO*EPKT
C FGR OPTICALIY THICK CALCULATICNS CAN USE N OTHER THAN 1
    IF (N.EQ.1) GO TO 2
    A=1.9602805*RN*X03*(.3595-0.05798/X0+5.894E-03*X02)
    B=.6666667*FN2/X0*(3.+2./X0*.1169*X02)
    Z=XD*(0.653*EPKT)
    GO TO 4
```

2

```
    A=1.9602805*X03*(.37767-0.1015/X0+0.014028**02)
    B=. ¢ 666667/X0*(3.+2./X0-0.603*X02)
    Z=X0*(0.45+EFKT)
    IF(Z.GE.170.) GO TO 3
    COLH=1.093055E-10*RN2/X0*TSQRT*Y*Y*
    $ (A* (EONE(Y,IY)/Y-EONE(Z,INZ)/Z) +
    $(B-A*ALOG(2.*RN2/X0))*(ZETA(Y)-ZETA(2)))
    CCLH=CCLH*(13.598/XIP)**2
    IF(IY.EQ.O.OR.INZ.EQ.O) GO TO 1
    FETURN
1 WRITE(6,1000) Y,Z,IY,INZ
1000 FORMAT(' ##***** ERROR IN EONE*,4E15.4)
    EETURN
COLH=0.
    EETURN
```

C
C JOHNSON'S COLLISIONAL ICNIZATION FORMULA
C CURRENTLY ONLY FOR IONIZATIGN FGCM LEVELS 1 AND 2
C
END
FUNCTION ZETA(T)
C
C IIttle function bequiref by cole
C
$E F=E X P(-T)$
$\mathrm{F} 0=\mathrm{EF} / \mathrm{T}$
$\mathrm{E} 1=\operatorname{EONE}(\mathrm{T}, \mathrm{IND})$
IF (IND.EQ.0) WRITE (6.100) T
100 FORMAT ('***** ZFTA EONE ERROR', E15.4)
$\mathrm{E} 2=\mathrm{EF}-\mathrm{T} * \mathrm{E} 1$
ZETA=E0-2. ${ }^{*} \mathrm{E} 1+\mathrm{E} 2$
FETURN
END
SUBROUTINE REC (J,I)
C
C Calculation of recombination hates for
C ALI ELEMENTS BUT HYDROEEN
C USES ALDROVANDI AND PEQUIGNOT TABLE
C

```
    DIMENSION INDEX (16,9)
    DIMENSICN IZED(9)
    REAL ARAD(76),ETA(76),TMAX(76),TCRIT(76),ADI(76).
    & TO(76),EDI(76).
    $ T1(76),RREC (76),DREC (76)
    REAL CHIT(76),UREC (76),IE1(76)
    LOGICAL VEREOS ,OLTBA,SFMICO,FUDGE
    COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,TL,TSQRT,
$ VERBCS,LAST
    COMMON /RECO/ RREC,DREC,UREC,ARAD,ETA,TMAX,TCRIT,AD
$ I,TO,BDI,T1
    COMMON /COLREC/ IP1,CHIT,RNNOT
    COMMCN /CONTEO/ SEMICO,ULTRA
    COMMON /CEUDJ/ FUDJ,RNCT,FUDGE
    IJ=INDEX(J,I)
    FUDJ=1.
    IF(J.NE.IZED(I)) GO TO 199
```

```
    IF(IP1(IJ)*TKI.GI.170.) GO IO 200
101 EREC(IJ)=0.
    RREC (IJ) =0.0
    Z=FLCAT (J)
    NNOT=RNOT
    NTOP=MINO(9,NNOT)
    DO 111 N=1,NTOP
C CAN CHANGE DO LOOP RANGE TO 2,G FOR OPTICALLY IHICK TO
C LYMAN ALPHA
    RREC(IJ)= RREC(IJ) +Z*RHII(IP1(IJ),N)
111 CONTINUE
    IF (NTOP.EQ.9) GO TO 112
    RREC(IJ)=RREC(IJ) * (ENOT-FLOAT(NTOE))*Z*RHII(IE1(IJ)
    $ NTOF+1)
112 CONTINUE
    UREC (IJ) =0.0
    FETURN
C
C FACTOR OF 3 IS TO MAKE UP FOR TENDENCY OF TMAX QUOTED TO
C EE MUCH TO LOW
C
199 IF(T.GT.3.*TMAX (IJ)) GO TO 200
    IE(T.LT.TMAX(IJ)/2000.) GC IC 200
    FREC(IJ) =ARAD(IJ) *T4**(-ETA(IJ))
    UREC (IJ)=1.8E-14*IP1(IJ)*TK**(-1.5)*CHIT(IJ)
    IF{.NOT.SEMICO) UREC (IJ)=0.
    GO TO 299
200 RREC(IJ)=0.0
        DREC(IJ)=0.0
        UREC (IJ) =0.0
        EETURN
299 IF(T.LT.TCRIT(IJ)/10.) GO TO 300
C
C FACTOR OF 10 AN ATTEMPT TO MAKE TEANSITION SMOOTHER
C
    DREC(IJ)=ADI(IJ)*T**(-1.5)*EXP(-TO(IJ)/T)* (1. +BDI(IJ)
    $ *EXP(-T1(IJ)/
    $ T) )
    IF(.NOT.FUDGE) RETUEN
    ARG=12.55-7.*ALOG10 (FNOT)
    IF(ARG.LE.O.) ARG=0.
    DELA=.01458333*ARG*ARG*0.09166667*ARG
    FUDJ=10.** (-DELA)
    EETORN
    DREC(IJ)=0.0
C
C ALL BUT HYDROGEN FRCM FOEMULAE OF ALDROVANI AND PEQUINO
C T IN AA
C H LIKE FROM JOHNSON
C
    FETURN
    END
    REAL FUNCTION RHII (XIR,N)
C
C RECOMBINATION TO HYDROGEN
C
```

```
DIMENSION INDEX \((16,9)\)
```

DIMENSICN IZED (9)
LOGICAL VEBBOS
REAL IP1 (76), CHIT (76)
COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSQRT,
\$ VERBGS,LAST
COMMON /COLREC/ IP1,CHIT,RNNOT
COMMON /CFUDJ/ FUDJ,FNOT,FUDEE
NNOT=RNNOT
$\mathrm{XO}=1 .-1 . /$ (RNOT*ENOT)
$X 02=1 . /(X 0 * X 0)$
FIN=1./N
FIN2=FIN*FIN
XIN=XIE*FIN2*TKI
$X T I N=X 0 * X I N$
X2=XTIN*XTIN
C
C ABFCMOXITZ AND STEGUN EXPRESSION FOR EXP (X) EONE (X)
C NOTE THAT X=XO*IPN/KT, AND NEED TO MAKE CORRECTICN TO
C EXTEEIOR EXP(IPN/KT)
C
IF(XTIN.LE, 10.0) GO TO 4
EXE $1=(\mathrm{X} 2 * 4.03640 * X T I N+1.15198) /(\mathrm{X} 2+5.03637 * X T I N+$
\$ 4.19160)/XTIN
GO TO 5
4 EXE1=EXP (XTIN)*ECNE(XTIN,INX)
IF(INX.EQ.O) RRITE $(6,1000)$ XTIN

5 EXE2=1.-XTIN*EXE1
EXE3=0.5* (1.-XTIN*EXE2)
IE(N.GT.2) GO TO 3
IF(N.EQ.2) GO TO 2
$\mathrm{GO}=1.133$
$\mathrm{G} 1=-0.4059$
G2 $2=.07014$
GO TC 1
$2 \quad \mathrm{GO}=1.0785$
G1 $=-0.2319$
$G 2=0.02947$
GO TO 1
$3 \mathrm{GO}=0.9935+0.2328 * \mathrm{FIN}-0.2196 * \mathrm{FIN} 2$
G1 $=-\operatorname{FIN} *(0.6282-0.5598 * F I N+0.5299 * F I N 2)$
G2=FIN2* (0.3887-1.181*EIN+1.470*FIN2)
$1 \mathrm{RHII}=5.197 \mathrm{E}-14 * \mathrm{XIN}^{2} * 1.5 * \mathrm{EXP}(\mathrm{XIN} /(\mathrm{RNOT}$ RNOT)) $*$
$\$(G 0 * E X E 1+G 1 * E X E 2 / X 0+G 2 * E X E 3 * X 02)$
C. MULTIPLY ANSWER BY Z OF ICN

FETUFN
END
REAL FUNCTION GEN (IL,IJ,IZ,Y)
C
C GAUNT FACTOR CALCULATION
C USES MEHE AND KATO DATA
C ANI MEHE APEEOX FOR EXP(Y)EONE(Y)
C
DIMENSION A(49), B(49),C(49),D(49)
DIMENSION INDEX $(16,5)$

```
    DIMENSICN IZED(9)
    LOGICAL UERBOS
    FEAL IP1 (76), CHIT (76)
    COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSQET,
$ VERECS,IAST
    COMMON /GFACT/ A,B,C,D
    CCMMCN /COLREC/ IP1,CHIT,RNNOT
    X=1./(IZ-3.0001)
    IF (ID.GT. 28) GO TO 1
    IF (ID.EQ.20) GO TO 100
    IF (ID.EQ.22) GO TO 10.3
    IF (ID.EQ.21) GO TO 104
    IF (ID.EQ.23) GO TO 101
    IF (ID.EQ.28) GO TO 102
1
    GFN=A(ID) +(E(ID)*Y-C(ID) *Y*Y + D(ID))* (ALOG ((Y+1.)/Y)
        $ -0.4/((Y+1.)*(Y+1.))) +C(ID)*Y
    FETURN
C
C ALI A LA MEWE
C WITH ADDITIONS DUE TO KATO
C
100 A(ID) =0.7* (1.-.5*X)
    E(ID)=1.-0.8* X
    C (ID) =-0.5* (1.-X)
    GO TO 1
101 A(ID)=0.11* (1.+3.*X)
    GO TO 1
102 A (ID) =0.35*(1.+2.7*X)
    B (ID) =-0.11*(1.45.4*X)
    GO TO 1
103 A (ID) =-0.16*(1.+2.*X)
    B(ID) =0.8*(1.0-0.7**)
    GO TO 1
104 A(ID) =-0.32*(1.-0.9* X)
    B(ID)=0.88*(1.-1.7*X)
    C(ID)=0.27*(1.-2.1*X)
    GO TO 1
    END
    SUEROUTINE LTNCOL
C
C LINE COOLING
C FITH MODIFICATICNS FOR FINITE OFACITY
C USES LINE LIST FROM MORTCN
C AND MOETON AND HAYDEN SMITH
C
    REAL LCCOL (76), ELINE(407),F(407)
    INTEGER IIND(407),JIND (407),IDENT(407)
    EIMENSICN INDEX (16,9)
    DIMENSION IZED(9)
    INTEGER IR(16) /1, 2, 3*0,3,4,5,0,6,0,7,0,8,0,9/
    REAL X(17,9),ABUND (9)
    CCMMCN /THICK/ X,ABUND,DV,TAUMAX
    COMMON/LINE/LCOOL, FLINE, F,IDENT,IIND,JIND,NLINE
    COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSQRT.
    $ vEREOS,LAST
    TAU=1.
```

IF (LV) 11.11,12

12
COLUMN = DEN / DV
CONTINUE
DO $10 \mathrm{IJ}=1, \mathrm{LAST}$
$\operatorname{LCOCL}(I J)=0$.
DO $1 \mathrm{~L}=1$, NLINE
IL=IIND (L)
IF(IR(IL). GT.LASI) GO TO 1
IF (IL,EQ. 1) GO TO 1
C NOTE THAT THIS IS THE 2 OF THE ICN
JL=JIND (L)
IV=IR(IL)
$I J=I N D E X(J L, I V)$
$Y=E L I N E(L) \not \subset T K I$
IF(TAUMAX) 5,5,4
$T A U=3.2905 E-6 * F(L) * A B U N D(I V) * X(J L, I V) * C O L O M N / E L I N E(L)$
IF(TAU-.01) 6,7,7
TAU=1.
GO TO 5
TAU $=(1 .-E X P(-T A U)) / T A U$
$G=G F N(I D E N T(L), I J, I L, Y)$
$L C O O L(I J)=L C O O L(I J)+F(L) * G * E X P(-Y) * T A U$
CONTINUE
LC $2 \mathrm{IJ}=1$, LAST
$\operatorname{LCOOL}(I J)=2.71 E-15 / T S Q R T * L C C C L(I J)$
CONTINUE
RETURN
END
SUBROUTINE HLINE (HLCCOL, NBOT)
C
C LINE COOLING FOR HYDROGEN
C
REAL IP1(76),CHIT (76), HLCCCI (9)
INTEGER INDEX $(16,9)$, IZED (9)
LOGICAL VERBOS
COMMON /COLREC/ IP1,CHIT, RNNOT
COMMON/A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSQRT,
\$ VEREOS,IAST
NNOT=RNNOT
$F B=F L O A T$ (NBOT)
FB2=FB*FB
$\mathrm{FE} 4=\mathrm{FB} 2 * \mathrm{FB} 2$
$E I N=1 . / E B$
FIN2=FIN\#FIN
IF (NBOT.GT.2) GO TO 3
IE(NEOT.EQ.2) GOTO 2
$\mathrm{GO}=1.133$
$G 1=-0.4059$
G2 $2=.07014$
GO TC 11
2
$\mathrm{GO}=1.0785$
$\mathrm{G} 1=-0.2319$
$\mathrm{G} 2=0.02947$
GO TO 11
G1 $=-\operatorname{FIN} *(0.6282-0.5598 * F I N+C .5299 * F I N 2)$
G2=FIN2*(0.3887-1.181*FIN+1.470*FIN2)
$S E=-0.603$
IF (NBOT.EQ.2) $\quad \mathrm{SB}=.1169$
$\mathrm{BN}=0.45$
IF (NBOT.GE.2) RN=1.94*FB** (-1.57)
DC $9 \mathrm{~N}=1,9$
$\operatorname{HLCOOL}(N)=0.0$
CONTINUE
NTOP=MINO(9,NNOT)
NE1 $=$ NBOT +1
DO $1 \mathrm{~N}=\mathrm{NB} 1, \mathrm{NTOP}$
$\mathrm{FN}=\mathrm{FLCAT}(\mathrm{N})$
FN2=FN*FN
FN3=FN*FN2
$X=1 .-(F B / F N) * * 2$
$A N N=3.920561 *(F E / E N) * * 3 / X * * 4 *(G 0+G 1 / X+G 2 /(X * X))$
BNN=4.*FB4 / (FN3*X*X)*(1.+1. $\operatorname{Ej} 3333 / X+S E /(X * X))$
$\mathrm{Y}=13.59 \mathrm{C} * \mathrm{TKI} / \mathrm{FB} 2 * \mathrm{X}$
ENN= $\mathrm{BN} * \mathrm{X}$
$\mathrm{Z}=\mathrm{RNN}+\mathrm{Y}$
E1Y=EONE(Y,INY)
$E 1 Z=E O N E(Z, I N Z)$
IF (INY.EQ.O.OR.INZ.EQ. O) WRITE (6.1000) Y.Z
FORMAT (' *******ECNE EREOF IN HLINE: 2E15.5)
HLCOOL (N) $=2.3814724 \mathrm{~F}-21 * T S Q B T * F B 2 * Y * Y *$ ANN* ($11 . / \mathrm{Y}+$.
\$ 5) *E1Y
\$
\$
$-(1 . / 2+.5) * E 1 Z)+(B N N-A N N * A L C G(2 . * F B 2 / X)) *$
$((E X P(-Y)-Y * F 1 Y) / Y-(E X P(-Z)-Z * E 1 Z) / Z)) * X$
C
C tee final most X IS fof tef enfrgy of the transition
C TEE CONSTANT HAS A BUILT IN $13.598 E V$ AND AN EV TO ERG
CONVERSION
continue
BETORN
END
SUBROUTINE LEVEL(J,I)
c
C LOWEST LEVEL IN EQUILIBRIUM $\begin{aligned} & \text { IT }\end{aligned}$
C
DIMENSION TP1(76),CHIT(76)
DIMENSICN INDEX $(16,9)$, IZED(9)
LOGICAL VERBOS, SEMICO, ULTRA
COMMCN/CONTFO/ SEMICO, ULTRA
COMMON /A/ INDEX,IZED,DEN,DENE,T,TK,TKI,T4,TSQRT,
$\$$ VERECS,LAST
COMMON /COLREC/ IP1,CHIT,RNMCT
C
C SEATON:S ESTIMATE OF LOGESt LEVEL IN EQUIIIERIUM WITB C
CNTINUUM
C FCLLOMS WILSON, BUT WILSON'S NUMBERS USED.
C
$\mathrm{RJ}=\mathrm{J}$
FNCE $=(1.4 \mathrm{E} 15 * \mathrm{RJ} * * 6 . * T S Q R T / D E N E) * * .1428571$
RNNOT=RNCE
IF (J.NE.IZFD(I)) RETORN

```
Y=6.337053E-C6*T/J**2
CONS=(Y/(DENE*DENE))**.05882353*RJ**.E23594
DO 2 IT=1,5
CON S2=. 235294/(RNCE**3*Y)
FNC=126.*CONS*EXP(CONS 2)
DIF=RNCE-RNC
IF (ABS (DIF).LT.0.5) GO TO 3
FNCE=RNCE-DIF/(1.+RNC*3.*CCNS2/RNCE)
2 CONTINUE
3 IF(.NOT.SEMICO) RNC=1.0E06
IF (VERBCS) 㨁ITE (6, 1000) RNC,IT
1000 FORMAT(* CONTINUUM LEVEL',F10.1,' ITEEATION #',I3)
FNNCT= RNC
RETURN
END
```

```
A
C A EFOGEAM TO GENERATE PRYSICAL PARAMETERS WHICH GO
C INTO
C THE COEFFICIENTS CALCULATED FOE THE DISPERSTON RELATION N
C WFUDGE A FUDGE FACTOR FOR ALTERING FLOX
C GRAV THE GRAVITATION IN CM S-2
C VO THE GAS VELOCITY
C DV VELOCITY DERIVATIVE WHICH MAY BE CALCULATED
        INTEFNALLY;
                BUT A STARTING VALUE IS NEEDED.
NCNEQ CALCULATION OF ENEEGY EQUILIBRIUM BY MAKING OP
        DIFEERENCE
                HITH CCNDUCTION.
DNON AN DENSITY DIEFERENT THAN USED IN BEATING AND
        CCCLING
TNON A TEMPERATURE DIFPERENT THAN USED FOR HEATING
        AND COOLING
DRHO DNON CONVERTED TO DENSITY (GM CM-3)
LT TEMFERATURE DERIVATIVE
D2T SECOND DERIVATIVE CP TEMFERATURE WITH BESPECT
    TO DISTANCE.
CCNKAP CONDDCTION CONSTANT.
NLINE NUMEER OF LINES IN FORCE CALCULATION
CEF THE INVERSE OF THE FACTOR TO CONVERT FROM ZEFO TO
    FIRST MOMENT
    OF THE RADIATION FIELD
VERBOS CONTROLS PRINTING IF ON SEE DETAILS OF X DERIV
            ATIVES,ETC.
SKIE IF CN NO NEG HEATING COCLING DATA READ, JUST C
        ALCULATES FORCE
SIAB FOR A STATIC ATMOSPHERE THIS IS THE EFFECTIVE
        COLUMN DEPTH
CCNDUC IF OFF THE CONDUCTION CUANTITIES ARE SET TO ZE
        RO
TEAD IS THE BRIGHTNESS TEMPERATURE OF THE RADIATION
        FIELD/肴
                    USED IN THE CALCULATION OF THE WADE DAMPI
        NG DUE TO RADIATION
DTCL IS THE LEVEL CF TEE LOGARITHMIC DERIVATIVE BEL
        OW 且ICH IT IS
            TO ZEFO.
```

```
        IF ON THE MOMENTUM EQUATION IS EALANCED BY ALJ
        USTING IV
DYNIT NUMBER OE ITERATIONS IN DYNEQ
DYDTCL ACCUBACY EEQUIEED OF DV IN MOMENTUM BALANCE
GLINE IF ON THE FORCE CALCULATION FOR EACH LINE IS O
        UTPOT
SLIM A CONVERGENCE AID IN DYNEQ, WHICH SHOULD BE SE
    T TC ABCUT 1.5
SPGERE IF ON IHE DERIVATIVE OF THE DENSITY IS CALCULA
        TED FOR A SPHERICAL
            COORDINATE SYSTEM, ASSUMING SYMMETFY.
SIAFMU IS THE COSINE OF THE ANGLE TO THE STAR.
RSTAR IS THE DISTANCE FRCM THE CENTRE CF THE STAR. O
        NLY USED BY THE
            DENSITY AND VELOCITY DERIVATIVE. THE GRAVI
        TY MUST BE ADJUSTED.
TEE OUTPUT QUANTITIES ARE MOSTLY SELF EXELANATCBY
    EN FNDINGS ARE DENSITY DERIVETIVES, DT ARE TEMPERATU
        RE
```

 REAL LEREMS,LRRAD,IINLOS, X (17,9), LCLX(76),CPHEAT (76)
 \$ FTOT
 INTEGER INDEX \((16,9) / 1,15 * 0,2,3,14 * 0,4,5,6,7,8,9,1\)
 \$ 0*0,
 \(\$ \quad 10,11,12,13,14,15,16,9 * 0\),
 \(\$ \quad 17,18,19,20,21,22,23,24, \varepsilon \neq 0\).
 \(\$ \quad 25,26,27,28,29,30,31,32,33,34,6 * 0\),
 \(\$ \quad 35,36,37,38,39,40,41,42,43,44,45,46,4 * 0\),
 \(\$ \quad 47,48,49,50,51,52,53,54,55,56,57,58,59,60,2 * 0\),
 \(\$ \quad 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,761\)
 REAL AD (5), AT (5), AWPJ (5), AGATN(5), ACOOL (5), AE (5), AH
 \(\$\) (5)
 \(4 \quad \operatorname{ADE}(5), A X(17,9,5)\)
 FEAI KBOLTZ/1.38062E-16/
 REAL RGAS /8.314E7/
 EEAL ABUND (9)
 REAL AMASS (9) 11.008.4.0026.12.0111.14.0067.15.9994
 \(\$ \quad .20 .179\).
 \(\$ \quad 24.305 .28 .086 .32 .06 /\)
 DIMENSICN ELINE (1000), E(1000), II (1000), JJ (1000),FLU
 \(\$ \quad \mathrm{X}(100)\) 。
 \$ FFT(100)
 INTEGER IZED (9) \(11,2,6,7,8,10,12,14,16 /\)
 ICGICAL FREEZE, NONEG, VEREOS, SKIP, CONDOC, DYNEQ, WLINE
 LOGICAL SPHERE
 FEAL* 8 SLIM
 REAL VTHERM (9)
 EEAL*8 DLOG10, DVOLD, LGREDV, ESQRT, ESIGN, DABS
 REAL* 8 NO,TO,VO,DN,DT,DV,RHOCV,SCUND.
 \$
 \(\$\)
 \$ DGEDN.
 \(\$\)
 GO,LO,DGDT, DGDN,DLDT,DLDN
    ```
    REAI PHOT (76), PHEAT(76),SIGMA(100,76),DELE(100)
    FEAL*8 GRIJ (16,9),D&DT(16,9),DXDN(16,9)
    FEAL*8 DIFF,DELV,DIFCLD,DFDEV,DP
    BEAL*8 V,T,DEN
    REAL*8 CK,FKAP,DGL,GL,TAU,DEXE
    INTEGEG NUO(76),NUE(76)
    INTEGER DYNIT
    COMMCN /F/ ELINE,F,II,JJ,FLUX,FPT,NLINE,NFLUX
    COMMON/A/ ABOND,X,VTHERM,SLAB
    COMMCN /EHORCE/ GRAD,LT,DGRDN,DXDI,DXDN,GRIJ,DGR
    $ DGRDDV
    CCMECN/CONTRO/ GLINE,SPEERE,STARMU,RSTAR
    COMMON/DER/ DNU,DNL,DTU,DTL,DEN,T
    NAMELIST/PARAM/ FEEFZE,WFUEGE,GRAV,VO,DV,NONEQ,DNO
& N,TNON DRHO.
$ DT,D2T,NLINE,CHF,VFRBOS,SKIP,SLAB,CONDUC,T
$ RAD
$,DTOL,DYNEQ,DYNIT, DYNTOL, DLINE,SLIM, SPHERE,STARM
# U,RSTAR
NAMELIST/RHYSIC/ NO,TO,VO,LN,DT,DV,RHOCV,SOUND.
$ NEO,HO,EO,DNEDT,DNEDN,DHDT,DHDN,DEET,DEDN,
$ D2T, CONKAP,DKDT,DKDN,GRAV,GRAD,GRADE,DGRDT.
$ DGRDN,
$ GO,LO,DGDT,DGDN,DLDT,DLDN
    NFLUX=97
    FREEZE=.FALSE.
    WFUDGE=1.
    GRAV=1.E4
C
C V>0 ANAY FRCM STAR, SIMILARLY Z INCREASES UPWARDS
    VO=0.
    DV=0.
    NCNEG=,TRUE.
    DTOL=.05
    DYNEQ=. FALSE.
    DYNIT=10
    EYNTOL=1.E-3
    SLIM=.5DO
    TRAD=50000.
    CONDUC=.TROE.
    DNCN=1.E11
    TNON=0.
    T=1.E5
    DRHO=0.
    DT=0.
    D2T=0.
    NLINE=874
    CHE=1.
    SLAE=0.
    VERBOS=.TRUE.
    WLINE=.FALSE.
    SKIP=.FALSE.
    SPHERE=.FALSE.
    STARMU=1.
    ESTAR=1.E12
```

REWIND 1
EEGIND 2
C
C READ IN LINE AND FLUX EATA (USUALLY FILE LFORCEDAT)
C
REAI (2) ELINE,F,II,JJ,FLUX,FPT
C
C INCOMING FLUX HAS BEEN MULTIPLIEE BY $4 * P I / C$
C
DC 49 IN $=1.96$
DELE(IN) $=\operatorname{FPT}(I N+1)-\operatorname{FPI}(I N)$
49 CONTINUE
REWIND 3
EEAL (3) EHOT, PHEAT, SIGMA, FTOT1
REVIND 4
EEAD (4,9774) (NUO(IJ), NUF(IJ), IJ=1,76)
9774 FORMAT (2I4)
C
C READS FILE CONTAINING INTEGRATICN FREQUENCIES WRICH AS USED BY PHOTION
C
C
998 READ (5, PARAM, END=999)
IF(.NOT. VERBOS) WIINE=.FALSE.
IF (. NOT. NONEQ. AND.VO.EQ.O.) VO=1.D7
WRITE $(6,1014)$
C
C READ IN SET OF 5 OUTPUT QUANTITIES FRCM HEAT COOL PROGRAM C
1014 FORMAT($\left.{ }^{\prime \prime}\right)$
WRITE (6, PARAM)
IF (SKIP) GO TO 111
LC $14 \quad I=1,5$
READ(1) D,TA, WFJ,FJ,GAIN, COCL,LBREMS,LRRAD,LINLOS,
$\$$ EINT, ENTH, DE, ABUND, X,LCLX, CPHEAT,FTOT
$A D(I)=L$
$A T(I)=T A$
$A W_{S J}(I)=W F J$
$A G A I N(I)=G A I N$
$A C O C L(I)=C C O L$
AE(I) $=E I N T$
$A H(I)=E N T H$
$\operatorname{ADE}(I)=D E$
DO $15 I Z=1,9$
IQ1=IZED(IZ)+1
LO $15 \mathrm{~J}=1$, IC1
$A X\{J, I Z, I\}=X(J, I Z)$
15 CCNTINUE
14 CONTINUE
$F A=A B U N D(3) / 3.035918 \mathrm{E}-04$
WRITE $(6,1000)$ FJ,FA,FTCT
1000
FORMAT ('OFJ,FA, FTOT*, 2F11.6.E15.7.1* DEN,TEMP. WFJ.H'
\$. ${ }^{\text {EAT,COOL, }}$
\$ 'ETNT,ENTHALPY, DENE')
DO $1 I=1,5$
$\operatorname{AGAIN}(I)=A G A I N(I) / A C(I)$
CONTINUE

```
            #RITE (6,1001) (AD(ID),AT(ID),AWFJ(ID),AGAIN(ID),
                $ ACOOL(ID),AE(ID).
                * AH(ID),ADE(ID),ID=1,5)
1001 FORMAT (1X,8E15.7)
C
C SET UF CENTBAL VALUES
C
    DEN=AD (1)
    DENE=ADE(1)
    T=AT (1)
    NO=DEN
    NEO=DENE
    IO=T
    LEINT=AE(1)
    DENTH=AH(1)
    ENTH=AH (1)
    ST4=SQRT(SNGL(T)*1.E-04)
C
C THERMAL VELOCITY ALREADY DIVIDED EY C
C
    DO 11 I=1.9
    VTHERM(I)=4.2833E-5/SQRT(AMASS(I))*ST4
11 CONIINUE
    DENE=ADE(1)
C
C
CALCULATE UPPER AND LOAER DERIVATIVES DIFFERENCES
C
    DNU=AD(4)-AC(1)
    DNL=AD(1)-AD(5)
    LTU=AT (2)-AT (1)
    DTL=AT(1)-AT(3)
C
C DERIVATIVES OF THE IONIZATION PRACTIONS
C
```

```
    DO 16 IZ=1.9
```

 DO 16 IZ=1.9
 IQ=IZED(IZ)
 IQ=IZED(IZ)
 DO 17 J=1.IQ
 DO 17 J=1.IQ
 GRIJ (J,IZ)=0.
 GRIJ (J,IZ)=0.
 DXDT(J,IZ)=0.
 DXDT(J,IZ)=0.
 LXDN(J,IZ)=0.
 LXDN(J,IZ)=0.
 IP(AX(J,IZ,1).LE.1.E-10) GO TO 17
 IP(AX(J,IZ,1).LE.1.E-10) GO TO 17
 DXDT (J,IZ) = 5* ((AX (J,IZ,2)-AX (J,IZ, 1))/DTU+
 DXDT (J,IZ) = 5* ((AX (J,IZ,2)-AX (J,IZ, 1))/DTU+
 $ (AX(J,IZ,1)-AX(J,IZ,3))/DTL)
 $ (AX(J,IZ,1)-AX(J,IZ,3))/DTL)
 IF(LABS(LXDT(J,IZ)*T/AX(J,I2,1)).IE,DTOL) DXDT(J,IZ)
 IF(LABS(LXDT(J,IZ)*T/AX(J,I2,1)).IE,DTOL) DXDT(J,IZ)
 $ = O.DO
 $ = O.DO
 DXDN(J,IZ)=.5*({AX(J.IZ,4)-AX(J,IZ,1))/DNU +
 DXDN(J,IZ)=.5*({AX(J.IZ,4)-AX(J,IZ,1))/DNU +
 $ (AX(J,IZ,1)-AX(J,IZ,5))/DNL)
 $ (AX(J,IZ,1)-AX(J,IZ,5))/DNL)
 IF(DABS(DXDN(J,IZ)*DEN/AX(J,IZ,1)).LE.DTOL) DXDN(J.
 IF(DABS(DXDN(J,IZ)*DEN/AX(J,IZ,1)).LE.DTOL) DXDN(J.
 $ IZ)=0.DO
 $ IZ)=0.DO
 17 CONITNUE
16 CONTINUE
IF(.NOT.VERBOS) GO TO 20
IF(.NOT.VERBOS) GO TO 20
LC 19 IZ=1,9
LC 19 IZ=1,9
IQ=IZED(IZ)
IQ=IZED(IZ)
WRITE(6,1029) IQ
WRITE(6,1029) IQ
FORMAT(' DXDT,DXDN FOR ATOM Z=',I2)

```
    FORMAT(' DXDT,DXDN FOR ATOM Z=',I2)
```

```
    WRITE (6,1030) (DXDT (J,IZ),J=1,IQ)
1030 FORMAT(1X,10E13.5)
    WRITE(6,1030) (DXDN(J,IZ),J=1,IQ)
19 CONTINUE
20 DO 18 IZ=1,9
    IQ=IZED(IZ)
    LO 18 J=1,IQ
    X(J,IZ)=AX(J,IZ,1)
    CONTINOE
18
C
    PHYSICAL DERIVATIVES
    LU=0.
    DL=0.
    CALL DERIV(ADE, LNELN,DNEDT,DTOL)
    WRITE (6,1003) DNEDN,DNEDT
1003 FORMAT(' DNEDN, DNECT',2E15.7)
    DN 2=AD (1)*AD(1)
    CALI DERIV (ACCOL,DLIN,DLDT,FTOL)
    DLDN=AD (1) *2.*ACOOL (1) +DLDN *DN2
    DLDT=DLDT*DN2
    BI= ACCCL (1)*DN2
    GRITE(6,1005) DLDN,DLDT,RL
1005 FOFMAT(' DLIN,DLDT,LOSSES', 3E15.7)
    CALL DERIV (AGAIN,DGDN,DGDT,DTCL)
    GAIN=AGAIN(1)*DN2
    DGAINC=GAIN/2.9979E10
    DGDN=AD(1) *2.*AGAIN(1) +DGDN*DN2
    DGDT= DGDT*DN2
    WRITE (6,1007) DGDN,DGDT,GAIN
1007 FORMAT (' DGEN,DGDT,GAINS:,4E15.7)
    CALL DERIV(AE,DEDN,DEDT,DTGI)
    C= DELT/KBOLTZ
    GRITE (6,1009) DEDN,DEDT,C
1009 FOKMAT (' DEDN, EFDT,CY',4E15.7)
    CALL DERIV (AH,DHDN,DHDT,DTCI)
    C=DHLT/KBOLTZ
C
C CCNDUCTION CALCULATION FRCM SPITZER
C
    |BITE(6,1011) DHDN,DHDT,C
1011 FORMAT(' DHDN,DHDT,CP*.4E15.7)
    IF (CONDUC) GO TO 110
    DKDT=0.
    LKDN=0.
    CCNKAP=0.
    GO TO 113
110 CONTINUE
    COULOG=9.00+3.45*ALOG10(SNGI(T))-1.15*ALOG10(DENE)
    CCNKAP=1.8E-5*T**2.5/COULOG
    DKDT=2.5*CONKAP /T+CCNKAP/ (COULOG*T) *3.45
    DKDN=CCNKAP/(COULOG*LENE)*(-1.15)
C
C the mean masS of an atcm CoEfFicIENt
C
113 FRITE(6,1013) CCNKAP,DKDT,DKDN
```

```
1013 FORMAT(' CONKAP,DKDT,DKDN'.3E15.7)
    EHOCCN=0.
    DO 10 I=1,9
    BHOCON= BHOCON+AMASS (I)*ABUND(I)
    CONTINUE
C
C THE FORCE DUE TO CONTINUUM RADIATION
C
111 CONTINUE
    GRADC=0.
    LGCDN=0.
    LGCDI=0.
    DO 51 I=1,9
    IZ=IZED(I)
    DO 52 J=1;IZ
    IJ=INDEX(J,I)
    XAC=ABUNL(I)*X(J,I)
    IF(XAC.LT.1.E-10) GO TO 52
    NUB=NUO(IJ)
    NUE=NUF(IJ)
    IF(NUE.EQ.NUB) GO TO 52
    GCL=0.
    DO 50 IN=NUB,NUE
    GCL=GCL+.5* (FLUX(IN+1)*SIGMA (IN+1,IJ) +FLUX (IN)*
        $ SIGMA(IN,IJ))*
    $ EELE(IN)
50 CONTINOE
    GRADC=GRADC+GCL*XAC
    DGCDN=DGCDN+GCL*DXDN(J,I) *ABUND (I)
    DGCDT= DGCDT +GCL*DX DT (J,I) *ABUND (I)
52 CONTINDE
51 CONTINUE
    DGCEN=DGCDN*CHF/RHOCV
    LGCIT= DGCDT*CHF/RHOCV
    GRADC=GRADC/RHOCV*CHF
    TRKAPC=0.
    RHO=DEN*RHOCV
    DDEN=0.
    IFIT=0
    DIFF=0.
C
C If DYNEQ EALANCE MOMENTU⿴ EQUATION
C
            IF(DYNEQ) WRITE(6,1062)
1062 FORMAT(6X,'DIFF',11X,.'DDEN', 11X,'DV',13X,'DELV', 11X
    $ 'LGRDCV',9X,'GRAD',11X,'DP',13X,'IFIT')
201 CONTINUE
    GRAE=0.
    GRADE=0.
    DGRDT=0.
    DGRDN=0.
    IF(FTOT.EQ.O.) GO TO 112
    LGRDDV=0.
C
C CALCULATION OF LINE FORCE
```

```
C
    CALL FORCE(VO,DV,T,DEN)
        LGRDDV=LGRDDV/RHOCV*C.HF
        GRADL=GRAD/RHOCV*CHF
        GRADE=FTOT*2.219E-35*LENE/(DEN*RHOCV)*CHF
        DGEDT=GRADE*DNEDT/DENE
        LGRET=DGRDT*CHF/RHOCV +DEEDT +LECDT
        DGRDN=DGRDN*CHF/RHOCD + DGCDN
C NOTE THAN GRIJ IS NOT MULTIPLIED BY CHF
C NUMBER IS THOMSON CROSS SECTIONOVER THE SPEED OF LIGHT
    GRAL=GRALL+GRADE+GRADC
    IF(.NOT.DYNEQ) GO TO 200
    LN=-DV*NO/VO
    IF(SPHERE) DN=DN-2.DO*NO/RSTAR
    DCER=DN
    DIFOLD=DIFP
    DP=KBOLTZ/RHO* (DT* (NO+NEO + DNEDT*TO/NO) +DN* (1. DO +
    $ DNEDN)*TO)
    DIFF=DP
    $ +GRAV-GRAD+VO#DV
    IF(IFIT.EQ.O) GO TO 202
C
C ADJUSTMENT OF DV/DZ FOF MOMENTUM EALANCE
C
    DFDCV=(DIFF-DIFOLD)/(DV-IVOLD)
    DELV=-DIFF/DFDDV
    IF(DABS (DELV).GT.DAES(DV).AND.SLIM.NE.O.DO) DELV=
    $
        IVCLD=DV
        DV=DV + DELV
        WRITE(6,1061) DIFF,DDEN, EV, DELV, DGRDDV,GRAD,DP,IFIT
1061 FORMAT(1X,7E15.5.T5)
    IFIT=IFIT+1
    IF(DABS(DELV/DV).LT.DYNTOL) GC TO 200
    IF(IFIT.LE.DYNIT) GO TO 201
    GO TO 200
202 DVOLD=DV
    DV=DV*1.1D0
    IFIT=1
    GO TO 201
200 CONTINUE
    TRKAPC=GRAD/FTOT
    GRATIO=GRAD/GRADE
    GAMMA=(GRAV-GRAD)/GRAV
    MRITE (6,1012) GRAD,GBADE,GRADL,GRADC,GRATIO,GAMMA,
    $ DGRDT,DGRDN
1012 FORMAT (" GRAD,GRADE,GRADL,GRALC,GRATIO,GAMMA,DGRDT,
    $ DGRDN'/1X.
    $ 8E16.6)
112 CONTINOE
    FO=(DEN+DENE) *T*KBOLTZ
    DP=RHO* (-VO*DV-GRAV+GRAD)
    IF(NONEQ) GC TO 46
    IF(VO.EQ.O.) GO TO 44
    DRHO=-RHO*DV/VO
```

```
    DDEA=DRHC/EHOCV
44 IF(NONEQ.AND.(VO.EQ.O.1) GO TO 45
C
C ENERGY EQUILIBRIOM FORCED
C EY USING CONDUCTIVE ENERGY TRANSPORT
C RARELY USED
C
    VC 1=1.
C IN FRAME OF STAR VC1=1
    DT=(-KBOLTZ/RHOCV* (DDEN* (1. +DNEDN))*T/DEN
    $ -VO*DV +VC1*GRAD-GRAV)/
    $ (KBOLTZ/RHOC\nabla* (T/DEN*DNEDT+1.+DENE/DEN3)
    GO T0 46
45 LDEN=((-GRAV+GRAD)*RHO-(DEN+DENE)*KBOLTZ*DT)/
    $ (KBOLTZ*T*(1.+DNEDN))
    DRHO=DDEN*RHOCV
46 DH=DHDT*DT + DHDN*DRHC/RHOCV
    DKAE=DKET*DT*DK[N*LLEN
    TN=(DEN+DENE)*T
    SOUND=SQRT (.5*(((AD(4) +ADE(4))*AT(4)-TN)/DNU*
    $ (TN-(AD(5) +ADE(5))*AT(5))/DNL)*RGAS/RHOCON)
    IF (NONEQ) GO TO 33
    D2T=(-VC1*GAIN+RL+DDEN*VO*(1.5*V0**2+ENTH)*RHOCV
    $ *DEN*RHOCV*DV*(1.5*V 0**2*ENTH)
    * *RHOCV*DEN*(DEDT*DT*DRIN*DEN))/(-CCNKAP)
33 IF(NCNEQ.AND.(TNON.GT.O.)) T=TNON
    WRITE (6,1022) PO,RHC,DRHO,DE,SOUND,NCNEQ,DT,
    $ LKAP,D2T
1022 FORMAT1: PHYSICAL PARAMETERS CALCULATED,PO, BHO,DRHO,'.
    $ DP,SOUND',5E15.7./' NONEQ,DT,DKAP,',
    $ 'D2T:,1X,L8,3E15.7)
    CELUX=CCNKAP*D2T*DKAP*DT
    GRITE (6,1024) CFLUX
1024 FORMAT(" CONDUCTION FLUX=', E15.7)
    IE(SKIE) GO TO 122
    DN=DDEN
    HO=ENTH/RHOCV
    EO=EINT/RHOCV
    DHDT= DHDT/RHOCV
    DHDN=DHDN/RHOCV
    LEDT= DEDT/RHOCV
    DEDN=DEDN/RHOCV
    GO=GAIN
    LO=RL
122 CONTINUE
C
C CUTPUT CF PHYSICAL QUANTITIES
C
    WRITE(7) NO,TO,VO,DN,DT,DV,RHOCV,SOUND,
    $ NEO,HO,EO,DNEDT,DNEDN,DHDT,DHEN,DEDT,DEDN,
    $ D2T,CONKAP,DKDT,DKDN,GRAV,GRAD,GRADE,DGRDT.
    $ DGRDN
    $ GO,LO,DGDT, LGDN,DLDT,DLDN
    WRIIE(6,PHYSIC)
C
C CALCULATION OF PHYSICAL LIMITING FREQUENCIES
```

C

```
    WRAD=5.6G97E-03*TRAD**3*TRKAPC
    WCCOI=6.28319*LO/(EO*RHO)
    GREC=1.88E-10/DSQRT (T) *DEN
    EQC=COULOG*IENE*T**(-1.5)
    WEQPE=2.5E-02*EQC
    GEQEE=4.57E01*EQC
    WCCND=6.28*ABS (SNGL (DKDT*DT + CONKAP*D2T))/(DEDT*RHO)
    GRITE (6,1025) WRAD,MCOOL,WREC,NEQFE,WEQEE,GCOND
1025 FORMAT(" WRAD,WCOOL,WREC,HECPE, WEQEE,WCOND',6E15.3)
    IF (DDEN.EQ.O.) GO TO 519
    HSCALE=DABS(DEN/DDEN)
    GAM=DHDT/DEDT
    WACS=GAM*GRAV/(2.*SCUND)
    WACH=SQRT(SNGL (GAM*GRAV/(4.*HSCALE)))
    WBVS=SQRT (GAM-1.)*GRAV/SOUND
    WEVH=SQRT (SNGL((GAM-1.)*GRAV//GAM*HSCALE)))
    WBITE (6,1033) HSCALE,GAM,WACS,GACH, WBVS,GBVH
1033 FORMAT(; HSCALE,GAM,WACS,WACH,WBVS,WBVH,*,6E14.3)
5 1 9 ~ C O N T I N U E ~
    GO TO 998
999 STOF
    END
    SUBRCUTINE FORCE(V,IW,T,DEN)
C
C ROOTINE to CALCUlate line force
C WITH SIMPLE LOCY RADIATIVE TRANSFER
C FOF CNE SCATTEfING LINE
C ALWAYS MOST BE SOPERSONIC FLOW
C No OVERLAPPING LINES ALLOWED FOG
```

C
LOGICAL VEREOS
INTEGER INV (16) $11,2,0,0,0,3,4,5,0,6,0,7,0,8,0,9 /$
LIMENSICN ELINE (1000), F(1000).II (1000), JJ (1000)
DIMENSION ABUND (9), X(17,9),VTHERM (9). FLUX(100).
$\$ \quad$ FPT(100)
FEAL*8 $8 \operatorname{DXD}(16,9), \operatorname{DXDN}(16,9), \operatorname{GRAD}, \operatorname{DGRDT,DGRDN,}$
\$ GRIJ $(16,9)$
REAL* 8 V,DV,T, DEN, LVI
REAL\#8 CK,GL,DGL,TAO,TAUC, DGRDDV,FKAP,DGLDN
REAL* 8 DABS
LOGICAL SPHERE
COMACN /PHORCE/ GRAD, DGRET, LGRDN, DXDT,DXDN,GRIJ,
$\$$
DGRDDV
CCMMCN /A/ ABUND, X, VTHEBM,SLAB
COMMON /F/ ELINE,F,II,JJ,FLUX,FPT,NLINE,NFLUX
COBMCN /CONTFO/ VEREOS,SPHERE,STARMU, RSTAR
IVI=DABS (DV)
IF (SPHERE) LVI=IABS (.5*(1. +STARMU*STARMU)*
$\$$ ($D V-\nabla /$ RSTAR) $+\nabla /$ RSTAR)
$I F=1$
FDF=1.-V/3.E10
COLUMN=DEN*SLAB
IF(DVI.NE.O.) COLUMN=2.9979E10/DVI*DEN
IF(COLUMN.EQ.O.) GO TO 100
LO $10 \mathrm{~L}=1$, NLINE

```
    J=JJ(L)
    I=II(L)
    IV=INV(I)
    IF(ELINE(L).GT, EDF*FPT(IF)) GO TO 2
    FNU=(FLUX(IF-1)+S* (ELINE(L) - FDF*FET(IF)))*FDF
    CK=1.0976E-16*E(L)*AEUND(IV)
C CONSTANT IS EI*E**2/(ME*C) / (EV TO HZ CONVERSION)
    TAU=CK/ELINE(L)*COLUMN*X(J.IV)
    IF(X(J.IV).LE.1.E-10) GO TO 10
    DGL=CK*FNU
    GI=DGL*X(J,IV)
C
C EIINE IS IN EV EUT NOTE THAN FND IS ERG CM-2 S-1 EV-1
C
    TAUC=TAD*DVI
    IF(TAU.LE. 1.E-3) GC TO 4
    IF(TAU.GT.170.) GO TO 6
    DGRDDV=DGRDDV +GL/TAUC* (1. -DEXP(-TAU)*(1.DO+TAU))
    GL=GL*(1. -DEXP(-TAU))/TAU
    DGLDN=-GL/DEN+DGL*DEXP(-TAU)*(DXDN(J,IV) + X (J,IV)/
    $ DEN)
4 CONTINUE
    DGRDDV=DGRDDV+GL/TAUC*TAU*TAU
    EGI= LGL*DEXP(-TAU)
    GO TO 5
    IF=IF+1
    IF(IF.GT.NFLUX) RETUBN
    S=(FLUX(IF)-FLUX(IF-1))/(FPT(IF)-FPT(IF-1)+1.E-50)
    GO TG 3
    CONTINUE
    LGRDDV= DGRDLV +GL/TAUC
    GL=GL/TAU
    DGIDN=-GL/DEN
    DGL=0.
5 GBAL=GRAL+GL
    GRIJ(J,IV)=GRIJ (J,IV) +GL
    DGRDT= DGEDT + DGL*DXDT (J,IV)
    DGRDN=DGRDN + DGLDN
1. IF{VERBCS) FRITE(6,1000) L,ELINE(L),J,I,IV,FNU,TAU,
    $ GL,CK,FKAP,DGL
    FOEMAT (1X,I3,F10,5,3I5,6E15,5)
1000 FOEMAT\
C
C ALSO, WHAT ABOOT THE CONTINUUM OPACITY
C
    RETURN
C
C CPTICALLY THIN CALC
C
100 DO 101 L=1,NLINE
    J=JJ(L)
    I=II(L)
    IV=INV (I)
103 IF(ELINE(L).GT.FDF*FPT(IP)) GO TO 102
    FNU=(FLUX(IF-1)+S* (ELINE(L)-FDF*FPT(IF)))*FDF
    DGL=1.0976E-16*F(L)*ABUND (IV)*FNU
```

```
    GL= DGL#X(J.IV)
    GRAD=GRAD+GL
    GRIJ (J,IV)=GRIJ (J,IV) +GL
    DGRDI=DGRDT+DGL*DXDT(J.IV)
    DGEDN= LGRDN*DGL*DXDN(J,IV)
    IF(VERBOS) WRITE(6,1000) L, EITNE(L),J,I,IV,FNU,GL,DGL
    GO TO 101
    IF=IF+1
    IF(IF.GT.NFLUX) RETURN
    S=(FLUX(IF)-FLUX(IF-1))/(FPI(IF)-FPT(IF-1) +1.E-50)
    GO TO 103
101 CONTINUE
    RETURN
    ENL
    SUBFOUTINE DERIV(Q,DCDN,DQDT,DTCL)
C
C A ROUTINE TO CALCULATE DERIVATIVES
C OF FHYSICAL QUANTITIES AND CHECK
C THAT THEIR LOG DERIVATIVES EXCEED
C SCME MINIMUM, IF NOT THE ARE SET TO ZERO.
    REAL*4 Q(5)
    REAL*8 DQDN,DQDT
    REAL*8 DEN,T
    COMMON /DER/ DNU,DNL,DTU, DTL,DEN,T
    IF(Q(1).EQ.0.) GO TO 1
    LU= (Q (4)-Q (1))/DNU
    DL=(Q(1)-Q (5))/DNL
    CQDN=.5*(DU + DL)
    DLQ=DCDN*DEN/Q (1)
    IF(ABS (DLQ).LT. DTOL) GO TO 2
4 DU= (Q(2)-Q(1))/DTU
    DL= (Q (1)-Q (3))/ETL
    DQDT=.5*(DU+DL)
    DLQ=DQDT*T/Q(1)
    IF(ABS(DLQ).LT.DTOL) GO TO 3
    EETURN
1 DQDN=0.DO
    DQDT=0.DO
    RETURN
2 WRITE(6,1001) DU, DL, EQDN, DLQ, DTOL
1001 FORMAT\*DU,DL,DQDN,DLQ,DTOL*,5E15.7)
    LQDN=O.DO
    GO TO 4
3 WRITE (6,1002) DU,DL,DQDT,DLQ,DTOL
1002 FORMAT('DU,DL,DQDT,DLQ,DTOL',5E15.7)
    CQDT=0. DO
    RETURN
    END
```


PROGRAM CCCALC

```
C
C
C THIS PRGGRAM CALCULATES THE COEEFICIENTS OF W AND K
C FOF THE DISPERSION RELATION PCIYNOMIAL
C THE EHYSICAL QUANTITIES PROLUCED BY THE PROGRAM COEF
C ARE USED AS INPUT
C TEE CUTPUT IS USFD BY TEE PROGRAM DISPER
C THIS IS A SUBROUTINE CAILED IN THE DISPER.
C
C
    SUREOUTINE COCALC(*)
    REAL*8 KBOLTZ,RMU,VC1,C,VG
    ICGICAL FREEZE
    LOGICAL MANY,RESTOR
    EEAI*8 CMASS,CMTM,CENE
    REAL*8 C,VC1,MTMKN,MTMCN,MTNKT,MTMCT,DVG,
    $ EWN,EKN,ECN,ERT,EKT,ECT,EMV,EKV,ECV
    REAL*8 NO,TO,VO,DN,DT,DV,RHOCV,SCUND,
    $ NEO,HO,EO, LNEDT, DNELN, DHDT, DHDN,DEDT,DEDN,
    $ D2T,CONKAP,DKDT,DKDN,GGAV,GRADO,GRACE,DGRDT
    $ .DGEDN.
    $ GO,LO,DGDT,DGDN,DLDT,DLDN
    REAL*8 CED (5,4),CIE (5,4)
    COMMON /COEFS/ CRD,CID
    COMMCN /CNTRO2/ MANY,RESTOR
    NAMELIST/PHYSIC/NO,TO,VO,DN,DT,DV,RHOCV,SOUND,
    $ NEO,HO,EO,DNELT,DNELN,DHDT,DHDN,DEDT,DEDN,
    $ D2T,CONKAP,DKDT,DKDN,GRAV,GRADO,GRADE,DGRDT
    $ ,DGRDN,
    $ GO,LO,DGDT,DGDN,DLDT,DLDN,FREEZE
    NAMELIST/DISCO/ BMU,VC1,MTMKN,MTMCN,MTMKT,MTMCT,DVG.
    $ EWN,EKN,ECN,EWT,EKT,ECT,EHV,EKV,ECV
    IF(.NOT.RESTOR) GO TO 4
    BACKSPACE 1
    GO TO 3
    CONTINUE
    IE(MANY) GO TO 2
    READ(1,END=999) NO,TO,VO,DN,DT,DV,RHOCV,SOUND,
$ NEO,HO,EO, ENEDT,DNELN,DHDT,DHEN,DEDT,DEDN,
$ D2T,CONKAP,DRDT,DKDN,GEAV,GRADO,GRADE,DGRDT
$ .DGEDN.
$ GO,LO,DGDT,DGDN,DLDT,DLDN
    FREEZE=.FALSE.
    C=2.9979D10
    KBCLTZ=1.380626D-16
    READ(5,PHYSIC,END=999)
    EMU=KECLTZ/EHOCV
    VC1=1.DO
C
C THE NAMES OF THESE VARIABLES COMES FROM
C
C IHE LINEARIZATION OF THE EQUATICNS OF MOTION
C
```

```
C EXCEPT NOTE THAT P THERE IS REELACED EY MTM.
C
    CMASS=DN*VO+DV*NO
    CMTM=EMU*TO/NO*(DN+(LNELN*EN+DNEDT*DT)) +DV*VO
    $ +RMU*DT*(1.DO+NEO/NO) -VC1*GRADO+GRAV
    CENE=-\nablaC1*GO+LO+CONKAP*D2T+ (DKDN*DN+DKDT*DT)*DT+DN*
    $ VO* BHOCV* (1.5DO*
    $ VO**2+HO) + NO*RHOCV*DV*(1.5DO*VO**2*HO) +
    $ RHOCV*NO*(DHDT*DT +DHDN*DN)
    WRITE (6,1001) CMASS,CMTM, CENE
1001 FORMAT(" CONSERVATICN EQUATIONS CMASS,CMTM,CENE',
    $ 3D25.12)
    VC1=1.-V0/C
C CALCULATION DONE IN FEAME MOVING WITH GAS
    VG=0. DO
    WRITE(6,PHYSIC)
    MTMKN=KBOLTZ/(NO*RHOCV)* (DNEDN*TO*TO)
    HTMCN=RECLTZ/(NO**2*EHOCV)* (-DN*TO+NO*DNEDN*DT
$
                    -NEO*DT-(DNEDN*DN*DNEDT*DT)*TO) - VC 1*DGRDN
    MTMKT=KEOLTZ/(NO*RHOCV)* (NEO+DNEDT*TO NO)
    MTMCT=KBCLTZ/(NO*RHOCV)*(DN + DNEET*DT + DNEDT*DT +DNEDN
    $
        *DN) - VC 1*DGRDT
    DVG=DV +GRADO/C
    EWN=(DEDN*NC+(VG**2/2.*EO))*RHOCV
    EKN=VG*(.5DO*VG**2 + EO + DEDN*NC)*RHOCV + f-DKDN)*DT
    ECN=RHOCV* (DN*VG*DHDN*1.5*DV*VG**2+DV*HO*
    $ DV*NO*DHDN+VG*(DHDN*DN+DHDT*DT)) +D2T* (-DKDN
    $ )-VC1*DGDN+DLDN
    $ +RHOCV*(VO*(DEDN*DN+DEDT*ET) + DEDN*VO*DN)
    EnT=DEDT*NO*RHOCV
    EKT=RHOCV*DHDT*VG*NO+(-DKDT)*DT+((-DKDT)*DT + (-DKDN)
    * *DN)
    ECT=DLDT-VC1*DGDT+(DHDT*(DN*VG+DV*NO))*EHOCV+(-DKDT
    | )*D2T
    $ +RHOCV*DEDT*VO*LN
    ENV=VG*NO*RHOCV
    EKV}=(1.5*VG**2+HO)*NO*RHOCV
    ECV=(DN* (1.5*VG**2+HO) +3.*DV*VG*NO*NO* (DHDT*DT + DHDN
    $ *DN))
    $ *RHOCV+GO/C
    $ +RHOCV*(NO*VO*DV)
C
C
C CUTEUT LINEARIZED EQUATICN QUANTITIES
C THIS IS USEFUL FOR EXAMINING THE MAGNITODES
C CF THE FHYSICAL QUANTITIES WHICE
C ARE DOMINATING THE SITUATION
C
```

 WRITE (6, DISCO)
 \(\operatorname{CRD}(1,1)=\)
 \$ - ECN*MTMCT*DN-DVG*ECT*DV*MTMCT*ECV*DV*MTMCN*DN*ECT
$\operatorname{CID}(1,1)=0$. DO
$\operatorname{CRD}(2,1)=0 . D 0$
$\operatorname{CID}(2,1)=$

```
$ VG*(-DVG*ECT+MTMCT*ECV-ECT*LV)-ECN*MTMCT*NO-ECN*
$ MTMKT*DN-EKN*
XMTMCT*DN-DVG*EKT*DV +MTMCT*ERV*DV+MTMKT*ECV*DV +MTMCN
$ *DN*EKT+MTMCN*
XNO*ECT+MTMKN*DN*ECT
    CRD (3,1)=
$ VG**2*ECT*VG*(DVG*EKT-MTMCT*EKV-MTMKT*ECV *EKT*DV)
& +ECN*MTMKT*
XNO+EKN*MTMCT*NO+ERN*MTAKT*DN+DVG*(-CONKAP)*EV-MTMKT
$ *EKV*DV
$ -MTMCN*DN*
X(-CONKAP) - MTMCN*NO*EKT-MTMKN*DN*EKT-MTMKN*NO*ECT
    CID (3,1)=0. LO
    CRD (4, 1)=0.D0
    CID (4, 1)=
$VG**2*EKT+VG*(DVG*(-CONKAF)-MTMKT*EKV +(-CONKAP)*DV
$ )+
$ EKN*肚TMKT*NO-
XMTMCN*NO*(-CONKAP) - MTMKN*DN* (-CONKAP) - MTMKN*NO*EKT
    CRD(5,1)=
$-VG**2*(-CONKAP) + MTMKN*NO* (-CONKAP)
    CID (5,1)=0.D0
    CRD (1,2)=0. DO
    CID (1,2)=
$ EWN*MTMCT*DN+DVG*ECT+DVG*EWT*DV - MTMCT*ECV-MTMCT*
$ EHV*DV - MTMCN*
XDN*EWT+ECT*DV
    CRD(2,2)=
$ VG* (-DVG*ENT+MTMCT*EWV-2*ECT-ENT*DV)-ENN*MTMCT*NO
$ -EWN#MTMKT*
XDN-DVG*EKT +MTMCT*EKV & HTMKT*FCV +MTMKT*EVV*DV+MTMCN*
$ NO*E界+MTMKN*DN
X*E#T-EKT*DV
    CID (2, 2)=0.DO
    CRD(3,2)=0. DO
    CID (3,2)=
$ -VG**2*EGT*VG*(MTMKT*EWV-2*EKT) - EWN*MTMKT*NO-DVG*
$ (-CCNKAE) +MTMKT
X*EKD*MTMKN*NO*ENT- (-CONKAP) *DV
    CRD(4,2)=
$ 2*VG* (-CONKAP)
    CID (4, 2)=0. DO
    CRD (5,2)=0.DO
    CID (5,2)=0. CO
    CRD (1,3)=
$ DVG*ENT-MTMCT*ERV + FCT*ENT*DV
    CID (1,3)=0.DO
    CBD (2,3)=0. LO
    CID (2,3)=
$ 2*VG*E日T-MTMKT*ENV + EKT
    CRD(3,3)=
# - (-CONKAP)
    CID (3,3)=0.DO
    CRD (4,3)=0.DO
    CID (4,3)=0.DO
    CRD (5,3)=0.DO
```

```
        CID (5,3)=0. DO
        CRD (1,4)=0.D0
        CID (1,4)=
        & -EWT
        CRD (2,4)=0. DO
        CID (2,4)=0.D 0
        CRD (3,4)=0. L0
        CID (3,4) =0.D0
        CRD (4,4)=0.DO
        CID (4,4)=0.D 0
        CRD (5.4)=0.D0
        CID (5,4)=0.D0
        WRITE (6,1000) ((CRD (J,I),J=1,5),(CID (J,I),J=1,5),I=
        $ 1.4)
1000 FOGMAT('0',5[25.10,/.1X,5D25.10)
    EETURN
999 RETORN1
    END
```


PFOGRAM DISPER

C
C A FEGGRAM TO FIND THE EOOTS OF THE CUBIC DISPERSION
C RELATION
C FCUND FOE THE CASE OF ONE DIMENSIONAL PLANE WAVES
C Subroutine cocalc uses the cutpot frok coef to
C ACTUAL FIND THE FOLYNOMIAL
C
C
C the parameters controlling the fecgram are:
C KLCG If T RUE A LOGARITHMIC SERIFS OF K are GENERATED
C KMIN MINIMUM K VALUE (IF KLOG THEN THIS IS A LOG)
C KBAX MAXIMUM K VALUE
C plreal plot real frequencies
C FLIMAG ELOT IMAGINAGY fequencils
C KINC INCREMENT BETGEEN K VALUES
C TGI IF TWO ROOTS LIE CLOSER THAN THIS THEY ARE
C ASSUMED TO BE IDENTICAL
C ERE ACCURACY OF NDINVT SOL'N TO $\mathrm{D}=0$, $\mathrm{DD}=0$
C MAXIT \# OF ITERATIONS IN NDINVT
C EGTOL ACCURACY OF NEWTON ITERATION 'ROOT IMPROVER
C NFILE FILE Linenumber hbere CoEffictents Start
C USUAL 1+A MOLTIPLE OF 5
C LABEL TRUE TO LABEL PLOTS
C SUEDIV \# OF SUBEIV USED EY NEXT FOOT ESTIMATOR
C PRMIN FOR DIFPEREN REAL ELOT Y AXIS MINIMUM
C PRINC SAME EUT INCREMENT FROM MIN FOR 10" PLOT
C PIMIN SAME AS PBMIN BUT FOR IMAGINARY PART
C FIINC SAME AS PEINC BUT IMAG
C NPEINT EVERY NPRINT'TH K VALUE AND ROOT OUTPUT TO PRINTER
C ER
C SEMID If TRUE OUTPUT GILI ALLOG NPBINT TO TAKE EFFECT
C

```
    REAL*8 DKR(210)
    FEAL*8 RE(11),ID(11),ROOTR(4),ROOTI(4),PKR(5),PKI(5
$ )
    FEAL*8 BDIS(12),IDIS(12)
    REAL*8 DELTAK
    REAL*8 DIST,DISTOL,RSADE,DERR
    INTEGEE*4 KEEG(3);KEND(3)
    REAL*8 X(4),F(4),ACCEST (4),ERR
    GEAL*8 RDC(4),IEC(4)
    REAL*8 DONE /1.DO/
    EEAL*8 WIM (3,210),WR(3,210)
    REAL*8 KMIN,KMAX,KINC,TOL
    FEAL*8 DSIGN,DREAL, DIMAG, DLOG10,DABS,DMIN1,DMAX1
    COMPLEX*16 DCMPLX,CECOT,CDLCG
    GEAL*8 CLABS,DLOG
    LOGICAL FREEZE,NONEQ,KLOG,PIREAL,PLIMAG,SOLVEQ,KNEG
$ MANY,RESTOR,FIRST, DUPLIC,LABEL
    LOGICAL*1 INSTAB(3,210),ALABEL(80)
    INTEGER*4 SIM(3) /12,2,5/
    REAL*8 GREL,EQTOL,CCMPAR,LDEL,DPR,DPI
    FEAI*4 VFHASE(3,210),VG(3,210),AX(210),AY(210)
```

```
    COMPLEX*16 CK,DC(4),DDC (4),WC,WC2,WC3,NDC(3),DDIS,
        $ DLDK
        COMPLEX*16 DHDK,PRED(3),SLOEE(3)
        LOGICAL VEREOS,ZERIMG,FANCY,SEMIV,LPRINT
        INTEGER*4 SUBDIV
        INTEGER*4 INSTBI (3,40),NMAXL (3)
        REAL*8 WMAXL (3),DAWIM
        COMMCN /NEVT/ DEIS,MAXIT
        COMMON /CCCALC/ DDC,IC,NDC
        COMMON /CPOL/ RDC.IDC
        COMMCN/CONTEO/ SOLVEQ
        COMMON /CNTRO2/ MANY.RESTOR
        COMECN/DIS/ RDIS,IDIS
        NAMELIST /PARAM/ KLCG,KMIN,KMAX,PIREAL,PLIMAG,KINC,
        $ TCL
        $ ,ERR,MAXIT,VERBOS,FANCY, BINC,PKMIN,MANY
    $ ,RESTOR, EQTOL,NFILE,LABFL,SUBDIV
    $ .PRMIN,PRINC,PIMIN,PIINC,NPRINT,SEMIV
        EXTEBNAL ECN
C
C SET UP DEFAULT VALUES
C
    SUEDIV=3
    NFILE=1
    TCL=1. D-6
    EQTOL=1.D-14
    ELIMAG=.TRUE.
    RLREAL=.TRUE.
    KLOG=.TEUE.
    KMIN=-12.DO
    KMAX=-2. DO
    KINC=.1D0
    VEREOS=.FALSE.
    NPRINT=5
    SEMIV=,TRUE.
    FANCY=.FALSE.
    ZERIMG=.TRUE.
    MANY=.FALSE.
    FESTOR=.FALSE.
    MAXIT=100
    ERR=1. D-15
    FIRST=.TRUE.
    IABEL=.FALSE.
9999 IF(MANY.AND..NOT.FIRST) GO TO 9990
    NEIIE=1
    READ (5,PARAM,END=9C98)
C
C READ IN PARAMETER LIST OF WHAT TO DO
C
    NFILE1=NEILE-1
    IF(NFILE1.LE.O) GO TO 5
    DO 6 ISKIP=1,NFILE1
    EEAL(1)
6. CONTINUE
5 CONTINUE
    IP(MANY.AND..NOT, EIRST) GO TO }999
```

```
    NK=(KMAX-KMIN)/KINC+1.5
C
C CalCulate array of K values
```

C
IF (KLOG) GO TO 2
DO $1 I=1, N K$
LKR $(I)=K M I N+(I-1) * K I N C$
CONTINUE
GO TO 3
$\mathrm{NKB}=1$
NKE=NK
DO $4 I=N K B, N K E$
$\operatorname{DKR}(\mathrm{I})=10 . \mathrm{DO} * *(\mathrm{KMIN}+(\mathrm{I}-\mathrm{NKB}) * \mathrm{KINC})$
CONTINUE
3 CONTINUE
9990 WRITE (6,1000)
1000 FORMAT ('1')
IF (.NOT.LABEL) GO TO 9
REAC (5, 1066, END=9998) ALABEL
VRITE $(6,1067)$ ALABEL
1067 FORMAT (1X,80A1)
1066 FCEMAT (80A1)
9 CONTINUE
C
C PLOT SCALING QUANTITIES
C
PINC=0.
EKMIN=0.
PRMIN $=0$.
PRINC=0.
PIMIN=0.
EIINC=0.
WRITE (6,PARAM)
FIBST=. FALSE.
RRMN=9.E70
C
C SEE If ROOTS ARE PROPERLY SEQUENCED
C
RRMX $=-9$. E70
EIMN=9. E70
RIM $X=-9 . E 70$
LO 222 IN=1,3
VPHASE (IN, 1) $=0$.
WMAXL (IN) $=-9.070$
NMAXL (IN) $=0$
VG(IN,NK) $=0$ 。
222 CONTINUE
CALL COCALC (E9998)
c
C CALCULATE FOIYNGMIAL COEFFICIENTS
C
GREL=0. DO
$I=1$
SOIVEQ=.FALSE.
DUPLIC=. PALSE.
C

```
C FIND FIRST ROOT OF POIYNGMIAL
C
    CALL DISPCO(DKR(I))
    CALI CFOLY1(RDC,IDC,3.ROOTR,ROOTI,8999)
    185 SOLVEQ=.TROE.
99 DC 97 IN=1.3
    CALL NEGTON(ROOTR(IN), BOOTI (IN),EQTOL)
    WR(IN,I)=FCCTR(IN)
    WIM (IN,I)=ROOTI (IN)
97 CCNTINUE
181 DO 183 IN=1.2
    IB=IN+1
184 IF(IR.GT.3) GO TO 183
    WC= DCMPLX(WR(IN,I),WIM(IN,I))
    WC2=DCMPLX(WR (IR,I),GIM(IR,I))
    COMFAR=DMAX1(CDABS (HC),CDABS (WC2))
    IF(CDABS(HC-WC2)/COMPAR.LT.TCL) GO TO 170
    IR=IR+1
    GO TO 184
183 CONTINUE
    LUPLIC=.FALSE.
    I=I+1
C
C EStIMATE tHE VALUES Of teE NEXT SET Of ROOTS
C
    IF(I.GT.NK) GO TO 98
    DELTAK=DKR(I)-DKR(I-1)
    DO 96 IN=1,3
    CALL ADVANC (ROOTR(IN),ROOTI (IN),DELTAK,DWDK,SUBDIV)
    VG(IN,I-1)=SNGL (DREAL (DWDK))
    PRED (IN)=DCMPLX(ROOTR(IN),ROOTI (IN))
96 CONTINUE
    CALL DISPCO(DKR(I))
C
C CALCULATE COEFFICIENTS FOR NEXT K
C
    GO TO 99
170 IF(DUPLIC) GO TO 188
    IF(I.EQ.1) GO TO 188
    SOLVEQ=.FALSE.
    CALL DISFCO(DKR(I))
C
C IF DUPLICATE ROCTS ARE FOUND
C GO BACK TO POLYNOMIAL RCCT FINDER
C to Sfe If anOTHER ROOT CAN bE FCUND
C IF SO TRY TO PROPERLY ORDER ROOTS
C
    WRITE(6,1099) I,IN,IB
1099 FOBMAT(' E&E&EEEE&&E&EDOPLICATE ROOTS I,IN,IR',3I5
    $ )
    CALL CPOLY 1(RDC,IDC,3, BOOTR,ROOTI,E999)
    NFIL=1
198 DISTOL=O.D70
    LERF=1. D70
    DO 174 IN=1.3
    IF(EOOTR(IN).EQ.O.DO) GO TO 173
```

```
    DERR=DMIN1(DABS (ROOTR(IN)),DERR)
173 IF(ECOTI(IN).EQ.O. DO) GO TO 174
    DERR=DMIN1(DABS(ROOTI (IN)),DERR)
    CONTINUE
    DERE=DERR*1.D-3
    IFR=DLOG(DAES (DREAL (PRED(NFIL))) +DERR)
    LPI=DLOG (DABS(DIMAG(PRED(NFII)))+DERR)
    DO 195 IN=NFIL, 3
    DIST=DABS((DREAL(PRED(NFIL))-FOOTE(IN))*
                                    (DPR-DLOG(DABS (ROOTR (IN)) +DERR)))
    $ +DABS((DIMAG(PRED(NFIL))-ROOTI (IN))*
    $ (DPI-DLOG(LABS(ROOTI(IN))+DERR)))
    IF (DIST.GT.DISTOL) GO TO 1S5
    DISTOL=DIST
    INFIL=IN
195 CONTINUE
196 NR(NFIL,I)= FOOTR(INFIL)
    WIM(NFIL,I)=ROOTI (INFIL)
    IF (INFIL.EG.NFIL) GO TO 192
    ROOTR(INFIL)=ROOTR (NFIL)
    FCOTR(NFIL)=NR(NFIL,I)
    ROOTI(INFIL)=ROOTI (NFIL)
    FOOTI (NFIL)=WIM(NFIL,I)
192 NFIL=NFIL+1
    IF(NFIL.LT.3) GO TO 198
    GO TO 185
188 DUPIIC=.FALSE.
    GO TO 189
98 SCLVEQ=.FALSE.
    DO 100 I=1,NK
    LPRINT=.FALSE.
    IF (VERBOS) LPRINT=.TRUE.
    IF ((. NOT,VERBOS.ANI,SEMIV).AND.
    $ (MOD(I-1,NPRINT).EQ.0)) LPEINT=.TROE.
    LC 100 IN=1,3
166
C
C CHECK FOR INSTAEILITIES
C
    IF(WR(IN,I).EQ.O.DO) GO TO 102
    GREL=WIM (IN,I)/WR (IN,I)
    IF(WIM(IN,I).LT.O.DO) GO TO }10
    INSTAB(IN,I)=.TRUE.
    IF(I.EQ. 1) GO TO 105
    DAWIM=WIM(IN,I)
    IF(EANIM.LT.O.DO) WMAXL(IN)=O.DO
    IF(HMAXL (IN).GT.DAWIM) GC TC 101
    IF(INSTBI(IN,NMAXL(IN)).EQ.I-1) GO TO }10
    NMAXL (IN) = NMAXL (IN) +1
    INSTBI (IN,NMAXL (IN))=I
    WMAXL (IN) = DAWIM
    GO TO 101
102 INSTAB(IN,I)=.FALSE.
101 CONTINUE
    IF(DKR(I).EQ.O.DO) GO TO 288
C
C FIND PHASE AND GROUP VELCCITIES
```

```
C CHECK FOR LOCAL MAXIMA IF UNSTAELE
C
288 IF (LPRINT) WRITE(6,1033) I,DKR(I),WR(IN,I),WIM(IN,
    $ I)
    $ ,VPHASE(IN,I),GREI,VG(IN,I)
1033 FORMAT(1X,I3,3D26.14.3D15.5)
C
C SAVE PLOT SCALING MAX AND MIN
C
    IF(KLOG) GO TO 131
    RIMX=AMAX1(EIMX,SNGL(TIM(IN,I)))
    RIMN=AMIN1(RIMN,SNGI(HIM(IN,I)))
    ERMX=AMAX1(RRMX,SNGL(KR(IN,I)))
    RRMN=AMIN 1 (RRMN,SNGL(WR(IN,I)))
    GO TO 100
131 R=SNGL(DABS(WR(IN,I)))
    IF(F.EQ.O.) GO TO 132
    RRMX=AMAX1(RRMX,R)
    RRMN=AMIN1 (ERMN, R)
132 R=SNGL(DABS(WIM(IN,I)))
    IF(F.EC.O.) GO TO 100
    RIMX=AMAX1(RIMX,R)
    RIMN=AMIN1(EIMN,R)
100 CONTINUE
    SOLVEQ=.FALSE.
    IF(.NOT.PLREAL) GO TO 300
    WRITE(6,1011) RRMX, FFMN, RIMX,RIMN
1011 FORMAT(* RRMX,RRMN,RIMX,RIMN',4E15.7)
    IF(.NOT.KLOG) GO TO 201
    RIMX=ALOG 10 (RIMX)
    RIMN=ALOG10 (RIMN)
    ERMX=ALOG10 (EBMX)
    RRMN=ALOG10(RRMN)
201 IF(.NOT.FANCY) GO TO 260
    RMM=AINT(ALOG10(ABS (ERMN)))
    IM=RRMN/10. % % RMM
    HMIN=IM*10.**RMN
    EMM=AINT(ALCG10(REMX-REMN))
    IM=(RRMX-RRMN)/10.**RMM
    WDX=IU*10.**RMM
C
C ELCTTING
C DC SCALING
C ELOT AXES
C IAEEL
C ELCT ROOT LINES
C APELY SPECIAL SYMBOLS IF
C REAL(#)<0, OF IMAG(W)>0.
C
    GO TO 261
260 HOIN=FRMN
    HDX=(RRMX-REMN)/10.
261 IF(PINC.EQ.O.) PINC=(KMAX-KMIN)/10.
    IF(PKMIN,EQ.O.) PKMIN=KMIN
    INC=(NK-1)/20
```

```
    IF(PRMIN.NE.O.) WMIN=ERMIN
    IF(FEINC.NE.O.) WDX=PRINC
    CALL AXIS(0.,0..'GAVE NUMBER',-11,10.,0.,PKMIN,FINC
    # )
```



```
        $ )
    IF(.NOT.KLOG) GO TO 262
    CALL SYMBOL(-0.3.9.C..14,'LCG-LOG'.90..7)
    IF(.NOT.LABEL) GO TO 263
    CALL SYMBOL (1.,9.75,.14,ALABEL,0.,80)
    CCNTINUE
    S=10./(NK-1.)
    LO 206 I=1,NK
    AX(I) =(I-1.)*S
    AY(I)=0.
    CONTINUE
    IF(KLOG) GO TO 250
    DO 202 IN=1.3
    LO 203 I=1,NK
    AY(I) = (SNGL (WR(IN,I))-GMIN)/WDX
    AY (I) =0.
213 CONTINOE
    CALI LINE(AX,AY,NR,1)
    IF(NIN.EQ.O) GO TO 212
    LC 248 K=1,NIN
    KB=KBEG (K)
    KE=KEND(K)
    LO 249 I=KB,KE,INC
    CALI SYMBOL (AX (I), AY(I) .. 14,SYM(IN),0.0,-1)
    CONTINOE
248 CONTINUE
212 CONTINUE
    CALI FLOT(12..0.,-3)
```

```
    IF(.NOT.PLIMAG) GO TC 399
    LO }369\textrm{I}=1.\textrm{NK
    AY(I) =0.
    CONTINOE
    IF(.NOT.FANCY) GO TC 360
    BMM=AINT (ALOG10 (ABS (EIMN)))
    IM=RIMN/10.**RMM
    WMIN=IM*10.**RMM
    RMM=AINT (ALOG10 (RIMX-RIMN))
    IM=(FIMX-RIMN)/10.**RMM
    WDX=IM*10.**FMM
    GO TO 361
    WMIN=FIMN
    GDX=(RIMX-RIMN)/10.
    IF(WDX.EC.O.) GO TO 399
    CONTINUE
    IF(EIMIN.NE.O.) WMIN=PIMIN
    IF(PIINC.NE.0.) WDX=PIINC
    CALI AXIS (0.,0.,'WAVE NOMEER',-11,10.,0..PKMIN,PINC
    $ )
    CALL AXIS(0.,0.,'IMAG ANG FREQ',13,10..90.,WMIN,HDX
    $
    IF(RIOG) GO TO 350
    DO 252 IN=1,3
    DO 251 I=1,NK
    AY(I)= (SNGL (WIM (IN,I)) -GMIN)/WDX
    CONTINUE
    CALL LINE(AX,AY,NK,1)
    CONTINUE
    GO TO 390
    CALL SYMBOL (-0.3.9.0,.14,'LOG-LOG ',90..7)
    DO 351 IN=1.3
    NIN=0
    LO 352 I= 1,NK
    IF(HIM(IN,I).EQ.O.) GO TO 353
    AY(I)=(SNGL(DLOG10(LAES(WIM (IN,I)))) -WMIN)/WDX
    IF(WIM (IN,I).LT.O.DO) GO TO 352
    IF(I.EQ. 1) GO TO 340
    IF(WIM(IN,I-1).GT.O.DO) GO TO 341
    NIN=NIN+1
    KBEG (NIN)=I
    KEND(NIN)=I
    GO TO 352
    KEND(NIN)=I
    GO TC 352
    NIN =1
    KBEG(NIN)=I
    KEND (NIN)=I
    GO TC 352
    AY(I) =0.
    CCNTINUE
    CALL LINE(AX,AY,NK,1)
    IF(NIN.EQ.O) GO TO 351
    DO 348 K=1.NIN
    KE=KBEG (K)
    KE=KEND(K)
```

```
    DO 349 I=KB,KE,INC
    CALL SYMBOL(AX(I),AY(I) .. 14,SYM(IN),0.0,-1)
349 CCNTINUE
348 CONTINUE
351 CONTINUE
390 CALL PLOT(12.,0.,-3)
399 LO 501 IN=1,3
    #RITE(6,1013) (INSTAB(IN,I),I=1,NK)
1013 FORMAT (1X,10(3X,10L1))
    NM=NMAXL (IN)
    IF(AM.EC.O) GO TO 501
    WRITE(6,1012) IN,NM,(INSTBI (IN,I),I=1,NM)
1012 FORMAT(' INSTABILITY MAXIMA FOR GROUP*.I2.I10./1X.
    $ 6(2X,5I4))
501 CONTINUE
C
C USE THE LOCAL MAXIMA AS STARTING pOINTS
C FCE SOLUTICN TO D=O, DE/DK=0
C
    DC 401 IN=1.3
    NNX=NMAXL(IN)
    IF(NNX.IT.1) GO TO 401
    DO 400 I=1,NNX
    II=INSTBI(IN,I)
    X(1)=WR(IN,II)
    X(2)=WIM(IN,II)
    X(3)=DKR(II)
    X(4)=0.DO
    F(1)=0.DO
    F(2)=0.DO
C
C DSE NEWTON PROCELORE (FFOQ UBC CCMPUTER CENTRE)
C TO SOLVE EQUATIONS
C
C MAXIT 200 OSOALLY USED
C
C
C NCTE ABCUT COEFFICIENT STRUCTURE:::::::::::::
    IF K GOES TO -K*, THEN W GCES TO -G*
    WhICH MEANS THAT THE SAME PHYSICAL ROOT RETORNS
    CAIL DISPCO(X(3))
    WC= DCMPLX(X(1),X(2))
    HC2=㚙**C
    WC 3=WC*WC2
    DDEK=DDC (1)*WC3 +DDC (2) *WC 2*DEC (3) *WC + DDC (4)
    F(3)=DREAL (DDDK)
    F(4)= DIMAG(DDDK)
    WRITE (6, 1054) I,IN;X,F
1054 FORMAT('OSTART',2I3,ED15.7)
    CALI NDINVT(4,X,F,ACCEST,MAXIT,ERR,FCN,&996)
    GRITE(6,1015) (X(IC),ACCEST (IC),IC=1,4)
1015 FORMAT(' X ACCEST',4(D18.7. D10.2))
    IF (X(2).LT.O.DO) GC TO 402
    CALL DISPCO(X(3))
    CALL CPOLY1(RDC,IDC,3,ROOTR,ROOTI,E999)
```

```
    DO 505 IIN=1,3
    CALL NEWTON(FOOTR(IIN), BOOTI(ITN), EQTOL)
    WC= DCMPLX(ROOTR (IIN),FOOTI (IIN))
    WC2=WC**C
    WC3= WC 2*WC
    DDEK=LDC (1)**C34DDC (2)*WC2*IDC (3)*日C+DDC (4)
    DDDK=-DDDK/(NDC (1)*WC2+NDC (2)** C+NDC (3))
    HRITE(6,1055) DDDK,FOOTR(IIN), ROOTI (IIN)
1055 FORMAT(######## AESOLUTE INSTABILITY, GROUP VELOC:
    $ ,ITY',2D16.8.
    $ 5X,'W=',2D15.5)
505 CONTINUE
    GO TO 402
996 WRITE(6,1056) ERR,X,ACCEST
1056 FORMAT("*******NDINVT FAILED**** ERR,X,ACCEST*/.1X.
    $ 9D13.5)
402 CONTINUE
400 CONTINUE
401 CONTINUE
    GO TO.9999
9998 CALI ELCTND
    STOP
997 NP=997
    GO TO 990
998 NP=998
    GO TO 990
999 NP=999
990 FRITE(6.1020) NP
```



```
    GO TO }999
    END
    SUBFOUTINE DISPCO(K)
C
C CALCULATES COEFFICIENTS OF DISPERSION RELATION FOR REAL
C K
C
    LOGICAL SOLVEQ
    REAL*8 DREAL,DIMAG,K,K2,K3,K4
    COMELEX*16 EDC(4), EC(4),NDC (3), DCMPLX
    REAL*8 CRD(5,4),CID (5,4),RDC (4),IDC (4)
    COMMON/CCCALC/ LDC,LC,NDC
    COMMON /CPOL/ RDC,IDC
    COUMCN/COEFS/ CRE,CID
    COMMCN/CONTRO/ SOLVEQ
    K2=K*K
    K 3=K2*K
    K4=K3*K
    IF(SOLVEQ) GO TO 1
    DO 100 I=1.4
    IB=5-I
    EDC(I)=CRD(1,IB) +CRD(2,IB)*K+CRD(3,IB)*K2
    $ +CRD(4,IB)*K3+CRD(5,IB)*K4
    IDC(I)}=CID(1,IB)+CID(2,IB)*K+CID (3,IB)*K
    $ +CIE(4,IE)*K3+CID(5,IB)*R4
    CONTINUE
1 CONTINUE
```

```
    DO 102 I=1.4
    IB=5-I
    DC(I)=DCMPLX(CRD(1,IB),CID(1,IB))
    + ECMPLX(CRD(2,IE),CID (2,IB))*K
    $ +DCMPLX(CRD(4,IE),CID (4,IB))*K3
    $ +DCMPIX(CRD (5,IB),CID{5,IB))*K4
    DDC (I) = DCMPLX{CRD (2,IB),CID (2,IB)}
    $ +DCMFLX(CRD(3,IE),CIE(3,IB))*2.DO*K
    +DCMPLX(CRD (4,IB),CID (4,IB))*3.DO*K2
    +DCMFLX (CRD (5,IE), CIE (5,IB))*4.DO*K 3
    IF(IB.EQ. 1) GO TO 102
    NDC(I)=DC(I) *DF LOAT(IB-1)
102 CONTINUE
    RETURN
    END
    SUBROUTINE NEGTON(RR,RI,TCL)
C
C LOES NE旨TON METHOD IMPROVEMENT GF ROOTS
C VALUES FROM ESTIMATE OB GOOT FINDER
C ARE SUBSTITUTED BACK INTO THE FULL EQUATICN
C
    REAL*8 RR,RI,TOL,RDC (4),IDC 44),RATIO
    REAI*8 DREAL,DIMAG
    COMPLEX*16 DDC(4),DC(4),NDC (3),DIS,DDIS,DELW,WC,WC2
    $ ,WC3
    COMPLEX*16 DCMPLX
    REGL*8 CDABS,WAES
    COMMON /NEWT/ DDIS,MAXIT
    COMMON /CCCALC/ EDC,LC,NDC
    ILOOP=0
    GC= LCMELX(RR,BI)
    WC2= WC*WC
    #C3=WC2**C
    DIS=DC (1) *WC 3*DC (2) *WC 2+DC (3)*WC+ DC (4)
    DDIS=NDC(1) *目C2+NDC(2)*的C+NDC(3)
    IF(DREAL (DDIS).EQ.O.DO.AND.DIMAG(DDIS).EQ.O.DO) GO
    $ TO 3
    DEIW=-DIS/DEIS
    WABS=CDABS(HC)
    IF(WABS.EQ.O.DO) GO TO 1
    RATIO=CDABS(DELW)/WABS
    WC=WC+DELW
    IF(RATIO.LE.TOL) GO TO 1
    ILOCE=ILOOP+1
    IF (ILOOP.LT.MAXIT) GO TO 2
    WRITE(6,1000) GC,RATIO
1000 FORMAT(' MAXIMUM NOMBER OF ITERATIONS EXCEEDED.,W R',
    $ 'OCT IS NOH',
    $ 2D25.15,' ERROR=',D15.5)
    GO TC 1
3 WRITE(6,1001) WC,DIS,RATIO
1001 FORMAT(' DERIVATIVE GOES TO 2ERO. WC,DIS,EREOR.'.
    $ 4D15.5)
CONTINUE
    FR= DREAL (WC)
```

```
    BI= DIMAG(WC)
    EETURN
    END
    SUERCUTINE ADVANC(WF,WI,DELTAK,DWDK,SUBDIV)
C
C ESTIMATES NEXT ROOT IN K SEQUENCE FROM PRESENT
C ROCT AND DERIVATIVE
C
    REAL*8 WR,WI,DREAL,DIMAG,DEITAK,DK,DFLOAT
    INTEGER*4 SUBDIV
    COMPLEX*16 DDC (4).DC (4),NDC (3).WC,DDIS, DHDK
    COMELEX*16 DCMPLX,WC2,WC3,WC4
    COMMON /NEWT/ DDIS,MAXIT
    COMMON /CCCALC/ DDC,DC,NDC
    #C= ECMELX (WR,WI)
    LK=DELTAK/DFLOAT(SUBDIV)
    DO 1 I= 1,SUEDIV
    HC 2=WC*WC
    WC3=WC2*WC
    LDIS=NDC (1)*WC2+NDC (2) * NC + NDC (3)
    LGDK=-(DDC(1)*WC3+ELC(2)*⿴C2+EDC(3)*%C+DDC (4))/DDIS
    WC=WC + DWDK*DK
1 CONTINUE
    NR=DREAL (WC)
    HI= DIMAG(HC)
    RETURN
    END
    SUBROUTINE FCN(X,F)
C
C SUBROUTINE CALLED BY NDINVT
C EVALUATES D AND DD/EK FCF COMPLEX SND K
C
    REAL*8 X(4),F(4)
    COMPLEX*16 CK,CW,CW2,CW3,DD,DDDK
    COMELEX*16 DDC(4), LC(4),NDC(3)
    COMPLEX*16 DCMPLX
    FEAL*8 DREAL, DIMAG
    COMMON /CCCALC/ DDC,DC,NDC
    CK= DCMELX (X(3),X(4))
    CALL DISCO(CK)
    CW=LCMELX(X(1) , X (2))
    C&2=CW*CW
    CW3=CW*CW2
    LD=DC(1) #C # 3+DC (2) *CN2 + DC (3) *C% + DC (4)
    F(1)=DREAL(LD)
    F(2)=DIMAG(DD)
    DDDK=DDC (1)*CW3+DDC (2)*CR2*DDC(3)*C昨*DDC (4)
    F(3)= LREAL (LDDK)
    F(4)=DIMAG (DDDK)
    EETURN
    END
    SURBOUTINE [ISCO(CK)
C
C CALCULATES DISPERSION POLYNOMIAL FOR COMPLEX K
C
```

 EEAL*8 DREAL, DIMAG
    ```
    COMPLEX*16 DDC (4),DC (4),NDC (3)
    COMELEX*16 CK,CK2,CK3,CK4
    COMPLEX*16 DCMPLX
    REAL*8 CRD (5,4),CID (5,4)
    COMMON /CCCALC/ DDC,DC,NDC
    COMMCN/COEFS/ CRD,CID
    CK2=CK*CK
    CK3=CK2*CK
    CK4=CK3*CK
    LO 100 I=1,4
    IB=5-I
    LC (I)=DCMPLX (CRD(1,IE),CID(1,IB))
$ +DCMPLX(CRD (2,IB),CID (2,IB))*CK
$ + DCMPLX(CRD(3,IB),CID (3,IB))*CK2
$ +DCMPLX(CRD (4,IB),CID (4,IB))*CK3
$ +DCMPLX(CRD (5,1B),CID (5,IB))*CK4
    DDC (I)= DCMPIX (CRD (2,IE),CID (2,IB))
$ +DCMPLX(CRD (3,IB),CID (3,IB))*2.DO*CK
$ +DCMFLX(CRD (4,IE),CIE (4,IB))*3.DO*CK2
    CCNTINUE
    RETURN
    END
```

