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ABSTRACT 

Interferometric measurements to determine the r e f r a c t i v e i n 

dices of the nematic l i q u i d c r y s t a l s EBBA and BEPC as a function of 

temperature are described u t i l i z i n g modified Rayleigh and conoscopic 

interferometers. Theory i s presented r e l a t i n g the r e f r a c t i v e indices 

and density to the o r i e n t a t i o n a l order, l o c a l f i e l d parameter and mole

cular properties. The r e s u l t s of simple thermal expansivity measure

ments are also given for EBBA. 

The Lorentz-Lorenz c o e f f i c i e n t for SF, and GeH, has been 
6 4 

determined from r e f r a c t i v e index and density measurements. The method 

u t i l i z e s a prism shaped high pressure c e l l which can be removed from 

a temperature c o n t r o l l e d holder and weighed on a p r e c i s i o n balance. 

The r e s u l t s i n d i c a t e a v a r i a t i o n of 0.5% f o r SF, and 0.8% f o r GeH, 
6 4 

over the density range covered. 
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PREFACE 

In an attempt to make this thesis more easily readable by 

maintaining continuity of thought throughout, we have derived, from 

basic principles, certain well known theoretical results. Although 

the methods of derivation are often somewhat different from those 

in the literature, we have attempted to indicate in the text when

ever the results are not original. In order to clearly define the o r i 

ginal contributions presented in this thesis, however, we wish to make 

note of the following. The results of Sec. 1.2 regarding the propaga

tion of plane waves in anisotropic media are well known; similarly, 

the results obtained from applying the Landau theory of phase transi

tions to liquid crystals, presented in Sec. 2.4, are not original. 

Finally, the topics discussed in Sees. 6.2 and 6.3 appear in liquid 

crystal literature as mentioned in the text, although our formalism 

is different. 

Our original contributions may be summarized as follows. 

We have generalized the Clausius-Mossotti relation so as to make i t 

applicable to certain anistropic molecular fluids. We have attempted 

to include the effects of an anisotropic hard-core repulsive term in 

the intermolecular interaction potential in the mean-field theory of 

nematic liquid crystals. Experimentally, we have measured directly the 

Lorentz-Lorenz coefficient of pure fluids, and, using a new and sensi

tive interferometric technique, measured the refractive indices of 

nematic liquid crystals. The theory enables the orientational order 

parameter and the local f i e l d anisotropy parameter to be calculated 

from experimental results. 
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CHAPTER 1 

REFRACTIVE INDICES IN ANISOTROPIC MEDIA 

1.1 Introduction 

Dielectric properties of materials reflect the changes in 

molecular order that occur at phase transitions. Refractive index 

measurements provide a simple and sensitive method of studying these 

changes. 

In addition to the liquid-vapor transition, certain fluids 

exhibit phase changes that correspond to loss of orientational order 

of the molecules; these liquid crystals have been the source of con

siderable interest recently. In this thesis, we wish to report a new 

and sensitive interferometric method of measuring the refractive indices 

of nematic liquid crystals, and in addition, a simple, direct method 

of measuring the refractive ..index, together with the density of pure 

fluids. In order to relate these measurements to molecular properties, 

we have derived a general relation between the dielectric permittivity 

and molecular polarizability for a broad class of ordered fluids. Using 

this relation, experimental results may be interpreted in terms of 

simple s t a t i s t i c a l mechanical models. 
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1.2 The Propagation of Plane Waves. 

Refractive indices of materials may be defined formally in terms 

of the phase velocities of plane waves propagating in them. Maxwell's 

equations, in Gaussian units, are 

and 

for a region that does not contain currents. If B = H, elimination of 

H'from Eq.'s (1.1) and (1.2) yields 

\l \ $ = -V x (V x E). (1.3) 

The dielectric permittivity tensor is defined by 

D = £ BE f l , (1.4) 

where a = x,y,z and summation is implied over repeated greek indices. 

It is well known (1) that is diagonal in a system of coordinate axes 

coincident with the principal dielectric axes of the material. A mono

chromatic plane wave of frequency v = o)/2ir propagating in the ^-direction 
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in the material w i l l have a time and space variation proportional to 

exp[i(tot-k« r) ]; then Eq. ( 1 . 3 ) becomes 

or 

- 4-D = - £ x ( £ x l ) = Ut'l)-hi2 ( 1 . 5 ) c z 

S - ^ V ( 1 . 6 ) 
to x 

where " E x denotes the component of 111 perpendicular to %. Clearly, Tj, 

E; and k a r e coplanar, and D i s perpendicular to k. The phase velocity 

Vp of the wave is given by v^ = to/k, and the refractive index n is 

defined by 

n= — = — ( 1 . 7 ) 
• V CO 
p 

Eq. ( 1 , 6 ) may be re-written in the following form: 

? „ „ 2 i i i M ( 1 . 8 ) 

or 

n2 = D 2 ( 1 . 9 ) 

(E« D ) 
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If the components of D in the principal axis system are denoted by 

D i = Ddi where i = x,y,z and the d_̂  are the components of a unit vector 

along D, then 

and 

Dd. 
E i = (1.10) 

i i 

, d 2 d 2 d 2 

xx yy z z 

It i s shown in Appendix A, that, for a given the allowed 

values of d^ are those for which n is an extremum. It follows immediately 

that for k along one of the principal axes, say the z-axis, the allowed 

directions of D are along the x-axis, with n = , and along the 

y-axis, with n = In general, for a given direction of propagation, 

two allowed perpendicular directions for D exist, with corresponding 

refractive indices. Materials in which a l l three principal dielectric 

constants have different values are termed biaxial, since two different direc

tions of propagation exist i n which the phase velocity i s independent of the 

direction of D. If two of the principal dielectric constants are equal, 

say = £ ^ = e , then the phase velocity for wave propagation along 

the z-axis is independent of the direction of D, and n = n x = ve x . 

For propagation perpendicular to the z-axis, say in the 

x-direction, extremal values of n are n = n x = ve x i f D is along the 

y-axis, and n = n)P = ~ ^ H i f u is along the z-axis. Such materials 
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are termed uniaxial; a l l liquid crystals considered in this thesis 

belong to this category. For historical reasons, n x is often called 

the ordinary index, denoted by n^, while n(| is called the extraordinary 

index, denoted by n &; the subscripts " and x denote directions per

pendicular and parallel to the optic axis. Finally, i f a l l the d i 

electric constants are equal, n = regardless of the direction of D, 

and the material is isotropic. 
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1.3 The Local Field Anisotropy Tensor 

In order to relate the dielectric tensor of fluids to molecular 

properties, i t is necessary to know the relation between an applied 

f i e l d 1" and the local electric f i e l d F~ experienced by a molecule in the 

medium. , In cubic crystals, the local f i e l d has been evaluated by 

Lorentz, and is given by F = (e+2)E"/3, where e is the isotropic dielectric 

permittivity. This result ifrass been extended to isotropic fluids by 

Hirschfelder et a l . (2). A more complicated expression for the local 

f i e l d in certain anisotropic - crystals has been derived by Ewald (3) 

and Born (4); and more recently by Neugebauer (5) and Dunmur (6). For 

anisotropic fluids, the relation between E and F is not known. For 

fluids whose pair-correlation function can be made isotropic by scaling 

in radial directions after.averaging over molecular orientations, the 

local f i e l d can be easily evaluated in terms of the scaling transformation. 

We assume that a_."f.luadpp61ar.ize'diby an applied electric f i e l d 

may be represented as an assembly.of identical dipoles u whose relative 

spatial distribution is characterized by a pair-correlation function 

g(r), normalized such that the lim g(rr) = 1 where r = rr is a position 
r-x» 

vector originating from a dipole in the fl u i d . Let r' = r/f(r) be the radial 
-> 

scaling transformation under which g(r) becomes isotropic; that i s , 

g(rr) = g(r'f(r)r) = g Q ( r ' ) . Let U be the surface given by r = cf(r) 

where c is some positive constant; evidently g(r) = gg(c), a constant 

everywhere on U. 

The electric f i e l d F^ at the origin due to a l l dipoles within 

a sphere r = R i s given in cartesian tensor notation by 
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pg(rf) ( 3 r q r 3 y g P q ) r 2 drdfi (1.12) 
r 3 

where and are the components of r and u respectively, p is the 

average number density of molecules i n the f l u i d , and dfi is the element 

of solid angle. Letting r* = r/f(r) and P = pu where P is the 

polarization, 

and 

F. = 4-rrn QP Q la a3 3 
(1.13) 

\ 6 tiff 
R/f(r) 
g 0(r')dr' (3r r Q - 6 p.dfi a 3 a3 

(1.14) 

The integration is performed over two regions; over the volume bounded-

by the sphere r' = c, and over the volume between the sphere r' = c 

and the surface r 1 = R/f(r). The regions of integration are-shown in 

Fig. 1. The constant c is chosen such that 0<c<R/f(r) for a l l r. Then 

/

c 

m

 S 0 ^ ) d r ' / ( 3 r ^ " 6 a B ) d " 

R/f(r) 
g Q ( r ' ) d r ' ( 3 r a r e - 6 a g ) d ^ . (1.15) 

c r' 
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Fig. la Regions of integration in the local f i e l d calculation, 

showing the arbitrary surface U. 
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F i g . l b The transformed surfaces. 
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The f i r s t term corresponds to the contribution of dipoles within U to 

the local f i e l d ; i t vanishes for a l l c since the integral over the 

solid angle is zero. The second term, corresponding to the contribution 

of dipoles between the surface U and the sphere r = R to the local 

f i e l d , can be integrated over r' i f c is sufficiently large that 

g 0(r') = 1 for r' > c. Then 

T1ae="47y ( l n f ( r y ^ 3 r a r B - 6 a e ) d f i ( 1 ' 1 6 ) 

independent of R, c and the detailed structure of g(r). The symmetric 

zero-trace tensor defined by Eq. (1.16), yields a measure of the 

anisotropy of f ( f ) , or equivalently of U. The off-diagonal elements 

of n can be made to vanish i f f(r) i s a quadratic form, and n ^ = 0 

i f f(r) is spherically symmetric. 

The simplest case of anisotropy occurs when the pair-correlation 

function g(r) can be made isotropic by a scaling in one direction 

only. The surface U upon which g(r) is a constant i s , . i n this case, a 

spheroid; and the scaling transformation which renders g(r) isotropic 

is given by r' = r/f(r) = r(r A _ r _ ) 2 . If the spheroid is prolate, 
a ap g 

1 0 0 
0 1 0 
0 0 1-e2 

g (1.17) 

where e is the eccentricity of the pair correlation function. The g 
diagonal elements of the anisotropy tensor n are given by 
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/*2TT /•IT ^ 
n = -r- I I (ln(l-e 2cos 26) 2)(3cos2e-l)sin6ded((.; (1.18) 
ZZ 4lT / / g 

0 0 

n =-n = - h n and n „ = 0 i f a ^ g . The integration i s carried xx yy - 2 zz ap 
out in Appendix B, with the result that 

2 1 1 n

 1 M ( 1 + e ^ " d- 1 9) \ z = 3 " ̂  " 2e~ ( 1 " ̂ ^ T i ^ O ' 
8 - 8 8 - 8 

Furthermore, i t can be shown that i f U is a general ellipsoid, 
1 N i 

n.. = - -rr + -,— where N. is the demagnetizing factor of the ellipsoid, i i 3 4ir l 
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1 . 4 The Dielectric Tensor and the Local Field 

The local electric f i e l d F , experienced by a molecule in the 

fluid, i s given by 

F = E +F-. +F. = E +4TTL 0 P D ( 1 . 2 0 ) a a 0 a l a a ap g 

4TTP 
where E is the applied f i e l d , F_ =•—— is the Lorentz cavity f i e l d , a r 0 a 3 

and L . is the Lorentz-factor tensor introduced by Dunmur (7). Substitu-
ag 

tion of Eq. ( 1 . 1 3 ) into Eq. ( 1 . 2 0 ) yields 

L = ± 8 +n . ( 1 . 2 1 ) 

ag 3 ag ag 

The dielectric permittivity. tensor is obtained from Eq. ( 1 . 4 ) by 

recalling that D = E +4irP ; then a a a 

e Q E Q = E +4TTP . ( 1 . 2 2 ) ag g a a 

The expression for the local electric f i e l d F in terms of the dielectric 
a 

permittivity is obtained by substituting Eqs. ( 1 . 2 1 ) and ( 1 . 2 2 ) into 

Eq. ( 1 . 2 0 ) ; then 

F = ( - k e Q +26 0 ) + n (e -fi Q ) ) E Q . ( 1 . 2 3 ) a 3 ag ag ay y3 YP 3 

If the assumption is made that the polarization P^ is related to the 

local f i e l d F by a 
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P = pa Q F C a ag {. (1.24) 

where is the effective molecular polarizability, substitution of 

Eqs. (1.20) and (1.24) into Eq. (1.22) yields the anisotropic Clausius-

Mossotti equation 

e -6 D = 4irp((e s-& .)L„ +6 )a 0 ag ag ao ao 6y ay Y3 (1.25) 

or, as expressed in terms of the anisotropy tensor n
ag» 

(e .-6 Q ) ( 6 D - 4 T r p n D Xa„ ) = (e „+26 Q ) a Q ag ag gy go Sy -3- ag ag gy (1.26) 

If the permittivity tensor and the local f i e l d anisotropy tensor 

are both diagonal, Eq. (1.26) becomes 

(e . .-1) 4iTpa. . 
(l - 4 i r p T i. .a. .) = 

(ei;L+2) 1 1 1 1 3 
(1.27) 

and the local f i e l d i s given by 

± (e..+2) + n..(e..-D 
3 xi xi xx 

-E, (1.28) 

These results have been published in our recent,paper (24). If the 

assumptions made in deriving ^these^relations, are valid r )at,.optical fre

quencies, then for a uniaxial f l u i d , Eq. (1.27) becomes 



1 6 

( n l _ 1 ) ATT 
(l-4TTpn„a 0) = -5-pa (1.29) 

(n2+2) £ £ 3 £ 

since = /e^ where £ = " or j-K Since is traceless, n M = ~2r\j_ . 

and i t follows from Eq. (1.29) that 

2(n 2 +2) (n2,;+2) 

+ 
(n, -1) (n,,,-l) 

1, + 2 (1.30) 

A l l refractive index measurements w i l l be interpreted on the 

basis of Eq. (1.29); in the case of isotropic fluids, e = 0, n = 0 
§ 0t p 

and Eq. (1.29) reduces to the well known Lorentz-Lorenz relation. In 

general, however, the refractive indices of a f l u i d depend on the effective 

molecular polarizability a., the pair-correlation determined anisotropy 

tensor and the number density p. whereas an exact determination is 

d i f f i c u l t , an approximate determination of the temperature dependence 

of these quantities is possible from simple s t a t i s t i c a l mechanical 

models. 
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CHAPTER 2 

NEMATIC LIQUID CRYSTALS 

2.1 Molecular Order in Liquid Crystals 

In crystalline solids, long-range order exists in the three 

positional degrees of freedom of the constituent molecules. If the 

molecules are anisotropic, long-range orientational order can also 

exist. Loss of order in one or more degrees of freedom constitutes 

a change of phase, and in an isotropic liquid no long-range order 

remains. The term "mesophase" is applied to the intermediate phases 

that occur between the phase that has long-range order i n the largest 

number of degrees of freedom and the unordered phase, the isotropic 

liquid. 

Two broad categories of mesophases exist. "Plastic crystals" 

are characterised by loss of orientational order, while positional order 

of the crystal lattice i s maintained. Commonly occuring examples are 

solid hydrogen, ammonium halides, and the ferroelectrics barium titanate 

and rochelle salts. In the strongly ordered phase, the molecules in 

the crystal lattice have a well—defined orientation, whereas in the 

less ordered "plastic crystal" mesophase, they commute between 

several equivalent orientations. In "liquid crystals" the converse 

is true, orientational order is maintained while positional order is 

diminished. It follows from the definitions that the constituent 

molecules of these mesophases must be anisotropic, since one cannot 

speak of orientation of spherically symmetric molecules, and symmetry 
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prevents the loss of positional order in fewer than three dimensions. 

In fact, plastic crystal molecules are nearly spherical in shape, 

whereas liq u i d crystal molecules are strongly elongated. 

There exists usually a parameter such that a mesophase exists 

for some range of i t s values; the end-points of the range corresponding 

to transitions to more or less ordered phases. If this parameter 

is temperature, the material is thermotropic, i f i t is composition 

(i.e. concentration in a solvent), i t is lyotropic. Three categories 

of liquid crystals are distinguished. In canonic liquid crystals, long 

range positional order is lost in one dimension, in smectics in two 

dimensions, and in cholesterics in three. Canonics are regularly 

packed long rod-like molecules, where the centers of molecules are 

randomly distributed in one dimension (i.e. one dimensional liquids). 

Smectics form uniformly separated layers of two-dimensional liquids 

with oriented molecules; while cholesterics form three-dimensional liquids 

with well-defined (but not necessarily uniform) orientation. 

Compounds capable of forming the liquid crystalline phase; 

are made up of long molecules that are f a i r l y r i g i d along their long 

axes. These can be small organic molecules, giving rise to thermo

tropic phases, long helical rods, giving rise to lyotropic phases or 

associated structures of molecules and ions, which can be thermo- and/or 

lyotropic. The general pattern of small organic molecules i s two 

nearly coplanar para-substituted aromatic rings rigidly linked by a 

double or triple bond (A-B) and short, partly flexible chains, R shown 

in Fig. 2. The composition of central link A-B and the chains R are 



Fig. 2 Structure of common nematogens. 
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TABLE I. Composition of some common nematic liquid crystals. 

A-B R R' Mol. Wt. 

PAA -N=N-
1 
0 

•CH3-0- -0-CH3 258.28 

MBBA -CH=N- CH3-0- -(CH 2) 3-CH 3 267.37 

EBBA -CH=N- C2H50- -(CH 2) 3-CH 3 281.40 

BEPC -0-C-
II 

CH3-CH2-0- -(C0 3)-(CH 2) 3- 358.39 
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given in Table I for some common materials. Examples of long h e l i c a l 

rods are DNA, tobacco mosaic virus and certain synthetic polypeptides; 

The typical lengths of these are in the hundreds of angstroms, with 

widths an order of magnitude smaller. Associated structures consist 

of long apolar aliphatic chains (10-20 CIL, groups) having an ionizable 

polar group at one end, occuring naturally in soaps and phospholipids. 
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2.2 Types of Liquid Crystalline Order 

The different types of liquid crystalline order can best be 

illustrated graphically. The position and orientation of the molecules 

i s shown by a dash. 

In canonics, long rods are hexagonally packed i n two dimensions, 

as shown in Figure 3. The long molecules can be h e l i c a l rods or groups 

of associated structures. The probability density of finding a molecule 

at point (x,y,z) is 

P(x,y,z) = P(x)S(y-dn- ̂  - a)6(z - ̂  ,'dm-g) , 

where 6 i s the Dirac delta function, d i s the repeat distance in the 

y-direction, m and n are integers and a and g are arbitrary constants. 

The average value of the orientation of the long axes of the rods i s 
— TT — 

0 = - j - and <j) = 0. Long rods can be made up of associated structures 

by the following mechanism. The ionic head dissociates in a solvent, 

making the head hydrophilic and the long t a i l hydrophobic. End views 

of the two stable concentration dependent rod-like configurations are 

shown in Figure 4. 

In sm'e"Sti'csj, long range positional order i s retained in one 

direction, giving rise to a layered liquid structure. In addition, the 

long axes of the molecules have the same average orientation. The 

variations smectic A and smectic C are shown in Figure 5. The probability 

density of finding a molecule at point (x,y,z) i s P(x,y,z) - : 

P(x,y)6(z-md-a). The average orientation is 8 = 6fi and n i s a unit 



Fig. 3 Canonic order. 
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Fig. 6 The cholesteric configuration. 
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Fig. 7 Arrangement of molecules in the nematic mesophase. 
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vector pointing i n the direction of average orientation. Smectic A i s 

a special case of smectic C, where 6=0. 

The arrangement of molecules in the cholesteric phase is shown 

in Figure 6. In moving through the liquid in the z-direction, n 

(averaged in the x-y plane) is periodic in a distance X^. Here 

n = cosfr^-z+aj, n = sin ( 7^ z+a) and n = 0 . Note that there i s no x \Xh /' y \ \ ) z 
long-range positional order, and that n and -n are equivalent i f the 

molecules are simple rods. 

Arrangement of molecules in the nematic phase is shown in 

Figure 7. This i s a special case of the cholesteric phase, obtained 

when X̂  00. The unit vector n pointing in the direction of average 

orientation i s called the nematic director. 

In the cholesteric phase, the helical deformation is caused 

by chiral ( l e f t - or right-handed) molecules. The nematic phase i s a 

special case of the cholesteric where the constituents are either 

achiral or racemic. Because of their relative simplicity, nematics 

were chosen as the subject of this study. A l l subsequent discussion i s 

therefore restricted to the nematic mesophase. 
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2.3 The Order Parameter in Nematics 

In order to quantitatively characterize order in a liquid cry

stalline mesophase, i t i s desirable to have an order parameter whose 

value reflects the amount of order present. The molecular order manifests 

i t s e l f as the anisotropy of macroscopic properties of the mesophase. 

Ideally, then, one would like to relate the anisotropy of measurable 

physical properties to the molecular order through an order parameter. 

To gain this end, we calculate the polarization P for an array 

of spheroidal molecules, carrying permanent dipole moments along 
-> 

their long axes in an electric f i e l d F. Let a and a be the 
m„ m i 

molecular polarizabilities parallel and perpendicular to the long axis 
th 

respectively, and let be a unit vector along the long axis of the i 

molecule, shown in Figure 8. The contribution of the i molecule to 

the polarization i s 

p. = u n. + T *a T F (2.1) l p i ap mRv YO o a a 

where T „ transforms F into components parallel and perpendicular to the 
ag a 

long axis of the molecule. If 6 and <j> are the usual colatitude and 

longitude, 
-sincfi^ -cos<))̂  0 

T „ = I cos9.cos(i>. -cos8 . sin* . -sin6. ag I I l i i i 
I sin0 . cosd>. -sinO . sin*. cos0.J l Y i I l i 

(2.2) 
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Fig. 8 Co-ordinate system used in the polarization calculation. 
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m a g 

m, 
0 

0 
ma 

0 

0 

0 

x 

(2.3) 

and 

sin9. cos*, l l 
sin8. sin*. I l 
cos9. 

(2.4) 

T ! = T. and multiplication yields 
ag 3a 

T Q a T ag D Y<5 mgy 

a +3Asin 20.cos 2*. mA l l 
-3Asin20 . sin*. cos*. 

l l l 
3Asin0 . cos0 . cos*. 

1 X 1 

-3Asin20 . sin*. cos*. 3Asin6 . cos0 . coscb. 
i i i i l l 

a +3 sin 26.sin 2*. -3 sin0.cos6.sin*. mx i i i i i 
-3Acos0.sin0.sin*. a +3Acos20. 

l l l m, l 

(2.5) 

where A = (a - a )/3. Letting a = (a +2a )/3, Eq. (2.5) can be m m . m mj_ 

re-written as 

T *a T = aS ,+A ap m. YO ao 3Y 
3n. n..-6 . 

la 10 ao 
(2.6) 

and 

P i a = u n. +a6 0F +A 
p i a ap g 

3n. n -6 1 
ia lg ag 

(2.7) 
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The polarization P i s given by 

P = apF + u p < n. > + ApF 2<%(3n n -<T ) a a p xa p xa xp ap (2.8) 

where p is the number density, and < > indicates averaging over a l l mole

cules. The second and third terms in the r.h.s. of Eq. (2.8) constitute 

the anisotropic part of P; they vanish i f the material i s isotropic and 

a l l molecular orientations are equiprobable. We choose, therefore, the 

vector 

as the dipolar and quadrupolar order-parameters respectively. In a uni

axial material the orientational probability density function does not 

depend on the angle 9 i f the symmetry axis of the material coincides 

with the z-axis. Then, dropping the subscript i , 

n = <n. > 
a xa 

(2.9) 

and the symmetric traceless tensor 

(2.10) 

0 

n = 0 (2.11) 

R 

where R = <cos8>, and 
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ex 6 
0 0 

(2.12) 

where S = <Jg(3cos20-l)>. If R = 0, the bulk polarizability obtained from 

Eq. (2.8) is in agreement with published results (21). The two scalars 

R and S are thus sufficient to describe order in uniaxial materials; 

they have the value of unity i f a l l the molecules are aligned, and they vanish 

in the completely disordered isotropic phase. R distinguishes between 

molecules flipped end for end, whereas S does not. Note that R and S 

are not independent, the condition S > %(3R2-1) must be satisfied, (i.e. 

S = 0 -fa R = 0) and that negative and positive values of R describe the 

same physical configuration, whereas for S they do not. In fact, negative 

values of S indicate molecules perpendicularly aligned to the symmetry 

axis, randomly distributed otherwise. 
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2.4 The Landau Theory 

In the thermotropic nematic phase, as the temperature is i n 

creased, the angular distribution of the symmetry axes of the molecules 

becomes more random, until the value of the order parameter(s) drops to 

zero catastrophically at some temperature T^. Experimentally, the 

diminishing order can be seen by measuring the anisotropy of such macro

scopic properties as the magnetic susceptibility, the dielectric constant 

and the refractive index. 

If the nature of the intermolecular interaction i s known, i t 

is possible in principle to calculate the temperature dependence of 

the order parameters. In practice, exact solutions for three-dimensional 

systems have not yet been obtained. A great deal of qualitative informa

tion can, however be obtained from the elegant Landau theory of phase-

transitions (8). We start with the partition function Q, given by 

" 8 E " r 1

 e - e « ( C > - k T i n « a ) ) d c 

-BE r -BE(c) r 
= I e 1 =J n(e)e d? =J 

where B = ^ , ? is the order parameter, and JKc) is the density of states. 

The Landau free energy density F(£,T) i s defined by 

F(C,T) = |[E(c)-kTlnfi(c)] (2.14) 

where V is the volume. 
The basic assumption of the Landau theory is that F has a minimum value 

for some t,, say £ , and that F may be expanded near t, in a power series -̂ c 
in c. Then 
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F(C,T) = F(X,T) + a 2 ( ? - C c ) 2 + (2.15) 

= 0 since 7^-

c 
Eq. (2.13) yields 

= 0. Substitution of Eq. (2.15) into Eq. (2.14) and 

-evF(c , T ) r -eva (c-o2 

Q = e / e d ? ' ( 2 < 1 6 ) 

and the average value of t, is given by 

-BVF( VT) - BVa ?(C-C r ) 2 

< c>=^ / c e
 2 C d? (2.17) 

As V o>, clearly <C> •> C , and the Helmholtz free energy density F is 

given by 

,T r -eva (c-c ) 2 

F = - ̂  In Q = F( ? c,T) - ̂  l n / e dc -> F(C C >T) 

(2.18) 

Eq. (2.15) can therefore be regarded as an expansion of the Helmholtz 

free energy about i t s equilibrium value; the expected value of the order 

parameter i s that which minimizes F(t,T). It is convenient to define a 

quantity AF = F(t,T)-F(t c,T); since Z,^ < £ < 1, we assume that AF can 

be expanded about C = 0. Then 

AF = a 2 ?
2 + a 3C 3 + a 4 ^ (2.19) 
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and a stable ordered phase w i l l occur i f AF is negative and is a minimum. 

Since for a low temperature ordered phase to exist a^ must change sign 

near the transition temperature, i t is assumed to have the form a^ = qCT-T^), 

where q and TQ are positive constants. The other a's are assumed to be 

constants. 

If the interaction i s predominantly the permanent dipole-dipole 

type, that i s , the pair interaction potential is not invariant i f one 

molecule i s turned end for end, the configurational free energy AF can 

be expanded in terms of R, and is given by 

AF = a„R 2 + a.Rh + a,R6 (2.20) 2 4 6 

where we have chosen somewhat arbi t r a r i l y to retain only the f i r s t three 

terms. There are no odd powers of R, since +R and -R describe physically 

equivalent orientations. At the phase transition, AF = 0, R = Rc 

and T = T . There are two solutions which minimize AF; i f a. > 0 c 4 
and a, < 0, then R = 0 and 6 c 

R2 = (^j (T c-T) (2.21) 

where T = T_.. The details of the calculations in this section are given c 0 • b 

in Appendix C. The free energy AF and R are shown in Figure 9. If 

and a. < 0 and a, > 0, then R = / a4 4 6 c v - — 
2 a6 

R2 = I R2 + k ' /T +-T (2.22) 1 v c 



V 
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I 
I 

a) the Landau free energy b) the order parameter R as a function 
of temperature 

Fig. 9 Free energy and order parameter R; continuous transition. 
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a 2 

where k' 2 = and T = T_ + -: . Furthermore — = 0 for 
1 3a^ c 0 ^fJEig 8R 

+ a4 T < T = T„ + ; a metastable ordered phase can therefore persist, - c 0 3qa, v r 

5 o 
-„+ = -y R . Similarly, T o e 

+ 9 
on heating, up to a temperature T = T with R Z 

9AF ~ c 

since for small R, — — = 2a0R, a metastable unordered (R = 0) phase can 

exist, on cooling, down to a temperature T = TQ with R 2 - 1 R2 T 0 2 E c 

The free energy AF and R are shown in Figure 10. 

If the interaction i s predominantly induced dipole-dipole 

type, that i s , the pair interaction potential is invariant i f one mole

cule i s turned end for end, AF can be expanded in terms of S and is 

given by 

AF = b 2 S 2 + b 3 S 3 + (2.23) 

where, as before b^ = q(T-Tg). The salient feature here is the inclusion 

of odd powers of S in the expansion; b^ cannot be zero since negative 

and positive values of S correspond to physically different configurations. 

At the transition, AF = 0, S = S and T = T . There are two 
c c 

solutions which minimize AF; i f b~ > 0 and b, < 0, then S =0 and 
3 4 c 

3b„ (T -T) (2.24) 

where T^ = T^. This solution corresponds to a local minimum only, however; 

energetically an ordered phase with S = -1 w i l l always be favorable. Be

haviour of the type given by Eq. (2.24) is therefore not expected to 

occur. Molecular symmetry thus forces the second solution, where 
" b3 b 3 2 

b Q < 0 and b. > 0, then S = r r ^ , T = T„ + -j^- and 3 4 c 2b. c 0 4qb. 



Fig. 10 Free energy and order parameter R; discontinuous transition. 
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S = T S + k! / T + - T (2.25) 
4 c 2 V c 

+ qb? 
where T = T N + ,,0 , and k i 2 = . c 0 32qb^ 2 2b^ 

As previously, a metastable ordered phase can p e r s i s t , on heating, up 

to a temperature T*, with S 3 
+ = -r S ; and a metastable unordered (S = 0) T 4 c c 

phase can e x i s t , on cooling, down to a temperature T = TQ with 
3 

S = T S . The free energy AF and S are shown i n Figure 11. 
0 

For most nematic l i q u i d c r y s t a l s , the predominant i n t e r a c t i o n 

i s assumed to be the anisotropic Van der Waals i n t e r a c t i o n , and the 

constant b^ i s known to be negative. Thus, the temperature dependence 

of the order parameter i s expected to be s i m i l a r to that of Eq. (2.25); 

i n f a c t , experimental measurements (9) i n d i c a t e extremely good agree

ment with Eq. (2.25). The presence of metastable phases near the 

c r i t i c a l point whose s t a b i l i t y i s enhanced by sample impurities (10), 

however, make accurate comparison between theory and experiment d i f f i c u l t . 

In a d d i t i o n to the nematic-isotropic t r a n s i t i o n , i t i s i n t e r e s t 

ing to consider the liquid-vapor t r a n s i t i o n i n a f l u i d . Using the 

s o - c a l l e d l a t t i c e gas model, we consider a volume V, divided into 2N 

i d e n t i c a l c e l l s , containing N molecules. If a l i q u i d and a vapor 

phase coexist i n V, then we denote the number of occupied and unoccupied 

c e l l s i n the l i q u i d by and ^ r e s p e c t i v e l y ; we assume that each c e l l 

can e i t h e r be empty, or contain only one molecule. If the law of 

r e c t i l i n e a r diameters holds, i . e . N^+N^ = N, then the number of occupied 

and unoccupied c e l l s i n the vapor phase i s given ^ and r e s p e c t i v e l y . 

The p r o b a b i l i t y of a c e l l being occupied i n the l i q u i d or a c e l l being 



Fig. 11 Free energy and order parameter S; discontinuous transition. 
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N l 
empty in the vapor is ; whereas the probability of a c e l l , any-

1 2 ± 

where in V, being either empty or f u l l i s The deviation of the 
probability in either phase from i t s average value of is 

N N -N 1 1 1 2 Y = „ ,>T - v = — ™ — • If there is only a single homogeneous phase ' Nj+N2 2 2N 
existing, then y = 0; thus y may be regarded as the order parameter. 

P L " P V 2NX 2N2 N 

In terms of densities, y = —; , where p = — ~ , p = — —and p = — . 
P J-i V v '.V *— • 

c 

Since +y and - y describe the same physical configuration, the expansion 

of the Landau free energy in even powers of y is appropriate. If the 

coefficient of the second term in the expression is positive, then 

Eq. (2.21) yields immediately 

P 2 - p v = C ] L ( T c - T ) P (2.26) 

where 3 = 2" a n c * = p ^ ("2a ) ' 1 1 1 v i e w °^ t^ i e simplicity of the 

model, Eq. (2.26) gives a remarkably accurate description of the liquid-

vapor transition. 
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CHAPTER 3 

MEAN FIELD THEORY 

3.1 One-body Pseudopotential i n the Mean F i e l d Approximation 

For a c l a s s i c a l f l u i d of N i d e n t i c a l molecules contained i n 

a volume V, the configurational p a r t i t i o n function Q^, n - p a r t i c l e d i s 

t r i b u t i o n function p^ n^ and n - p a r t i c l e c o r r e l a t i o n function can 

be written 

j y*exp (-3UM) dy,... dy„ Z. 
<N 

T T 

N! (4ir) 

'N N 
N N! (4TT) N 

(3.1) 

P ( " > ( v r . . ^ ) -
e x p ( - e U N ) d Y n + 1 ^ / Y K 

(N-n)'.Z N 
(3.2) 

i S i ' a ) < ? i > (3.3) 

where U N i s the N- p a r t i c l e conf i g u r a t i o n a l p o t e n t i a l energy, and 9,^ 

denote, r e s p e c t i v e l y , the p o s i t i o n and o r i e n t a t i o n of molecule i , 

6 = 1/kT and dy. = dr.dfi. = dr. sine ,d9 .deb. . 

If the molecules are i n t e r a c t i n g pair-wise, then 

UN = 
, N N 

z 1=1 j= 1 1 , J 1 3 

(3.4) 
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where W. .(y.»Y.) is the interaction energy of the pair i , j , and the 
1 • 3 1 J 

potential energy of say, molecule 1, e1 is given by 

Eq.(3.5)by i t s average value; a l l thermodynamic properties of the system 

can then be obtained from the resulting one-body pseudopotential E ^ ( Y ^ ) . 

— — 

Since the system is a f l u i d , e i / ^ l ^ = e
x ^ x ^ a n c^ 

N 
uAT = y E.(a.) (3.6: 

1=1 
From Eq.(3.2), 

(3.5) 

The mean-field approximation consists of replacing the sum in 

(3.7) 

where p = N/V, 

exp(-gê (n)) (3.8) 

and self-consistency requires that the average value of U N 

(3.9) 
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In most mean-field theories of the nematic state, molecular 

interactions consist exp l i c i t l y only of anisotropic long-range attrac

tive forces (13),(15),(25). Repulsive interactions are taken into account 

implicitly through assumptions made about the positional distribution.of par

ticl e s in the calculation of the one-body pseudopotential. e.(^). These 

assumptions, (the most frequent one being that of spherical symmetry), 

are usually not well j u s t i f i e d . It i s possible, however, to obtain an 

exact expression for e(fi) in the mean-field approximation, since the 

molecular distribution is consistently determined by the form of the 

interaction potential Id „. 
1 ) » 

The average value of e(fi) i s given by 

<i<*i> - T / V I P<i)flJ d T i • < 3 - 1 0 ) 

Substitution from Eqs. (3.3) and (3.7) yields 

^ i ( V = i p / * w i , j g ( 2 )(vY\)faydY. . (3.ii) 

The pair-correlation function can be evaluated by considering pairs of 

particles; the potential energy of the pair of molecules, say 1 and 2 

is given by 

£ 1 , 2 ( V - - V = W 1 , 2 + I j . W i f j
 + l J V j • ( 3 ' 1 2 ) 
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As before, the mean f i e l d approximation consists of replacing the sums 

i n (3.12) by t h e i r average value; then, as N -> °°, 

^ t f i . f y " W l,2 + 5 1 ( V + W (3.13) 

(2) . - -
g (Y-L>Y2) c a n n o w be evaluated, since UJJ = E

X 2 + E3 4 + 'N-1,N 

2 " 1 

N! exp ( -3e 1 2 ) / exp(-3e. . )dYi,dy 
N 

(N-2): y e x p ( - f - ->- ->• 
ie. JdY.,dy. 

i»3 i J_ 
pf(n 1) Pf(n 2) 

N(N-l)exp(-g e i 2) 

'-£(tt1)f(a2)J'exV(-£e1 2)dy1,dY2 
(3.14) 

In p r i n c i p l e , f o r a given i n t e r a c t i o n p o t e n t i a l W 9 , the one-body pseu-

dopotential e^(fi^) can be obtained from Eqs. (11) and (14). As the r e s u l t i n g 

i n t e g r a l equation appears i n t r a c t a b l e , the assumption i s made that 

g^CY-^Y^) may be approximated i n Eq. (11) by i t s average value g ^ ( r , r 2 ) 

where denotes averaging over molecular or i e n t a t i o n s . L e t t i n g 

r = r r r 2 , 

i < 2 ) ( ? ) -= y g ( 2 ) ( Y l 5 Y 2 ) f (n x)f (n2)dn1dn, 

^ 2 x p ( - 3 e 1 2 ) d ^ 1 d f i 2 

(3.15) 
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-(2) where K is the normalization factor such that as r + <», g ->• 1 

given by 

_ p 2/exp (-ge ?)dY,,dY9 / * _ / * _ 
K = — - ±*=- = / exp(-Be-.)dfi / exp(-Be,)dft 

N(N-l) J 1 V 

(3.16) 

as N -*- 0 0 
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3.2 Pair-Correlation in a Hard Spheroid Model 

In order to take steric repulsion of the molecules into 

consideration ex p l i c i t l y , the interaction potential W „ is assumed to 

consist of a short-range repulsive part U(Y^,Y2) a n d a l° n§ r a n § e attrac-

tive part V(Y^,Y2) # ^ E N 

N 

J=l 
D 1 . J ( ? 1 . ? J > + V 1 . J ( ? 1 ' V 

(3.17) 

and 

E1,2^ Y1' Y2' ) = U l 2^ Y1' Y2^ + e i ^ i ^ + E2^2' ) (3.18) 

where 2 ^ \ ^ 2 ^ i s a s s u m e < l t o ^ e contained in and e^. If the mole

cules are represented by cylindrically symmetric "hard" surfaces, whose 

orientation i s given by Q, a convenient form for IL. _ i s 
x, z 

U (r,n ,fl ) = lim -ln(y + - tan 1a[r-d. r)]) (3.19) x,z x z z TT l,z l j 

where r = r r i s the intermolecular vector and d „ i s the distance between 
x, z 

molecular centers when the surfaces are i n point contact e x t e r n a l l y . 
( 2 ) 

The anisotropy of the p a i r - c o r r e l a t i o n function g ~ (rr) may be 

obtained from D(r), defined to be the e f f e c t i v e hard core diameter given by 

D(r) = .,/ ( l - g ( 2 ) ( r r ) ) d r ; (3.20) 
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— ( 2 ^ * in order to simplify the notation, henceforth we shall write g (rr) 

as g(rr). 

We assume that there exists a radial scaling transformation 

r = r'f(r) which renders g(rr) isotropic; then, as in Section 1.3, 

g(rr) = g(r'f(r)r) = S Q ( r ' ) . From Eq. (3.20), i t follows that 

= / (l-g(rr))dr = f(r) / 
J 0 J Q 

D(r) = / (l-g(rr))dr = f(r) / ( l - g ( ) ( r ' ) ) d r ' (3.21) 

-1 

and f(r) = ( 2 R Q ) D(r) where R ^ , the effective hard-sphere radius, is 

assumed constant. Thus, i f D(r) is known, the average values of 

expressions involving two-particle interactions can be evaluated by 

simple scaling. 

Substitution of Eqs. (3.15), (3.18) and (3.19) into Eq. (3.20) 

yields 

d * x 

(3.22) 

D(r) = lira K / / tan a [ r - d C f i ^ n ^ r ) ] ) 

exp (-B [e 1 (S\)+e2 ( ^ > d ^ ±
d ^ 2 

and integration over r yields 

D(r) = K J d 1 2 ( ^ , ^ 2 , ^ )exp(-B[i 1(n i)+i 2(^ 2))dfi,df2 2 = d(r) 

(3.23) 
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In this model, the molecules are represented by hard spheroids, whose 

equation i s 

r 2 ( l - e 2 ( r -n)' 2) = R2 (3.24) m mm U 

A th where r = r r is a position vector originating at the center of the m m m m ° ° 
molecule, n^ is a unit vector along i t s symmetry axis and e is the eccen

t r i c i t y . Unfortunately, i t has not been possible to obtain a closed-

form expression for the distance of closest approach d^ 2
 l n spite of 

considerable effort; consequently bounds on i t must be considered. 

If d^ +(r,fi^) is the length of the normal projection of surface 1 

onto a line through i t s center in the direction r, and d^_(r,fi^) i s the 

length of the intercepted segment of the same line, as shown in Figure 12, 

then clearly 

^ ^ ( r , ^ ) + |d 2_(r,Q 2) < d < | d 1+(r,^ 1) + \ d 2 + ( r , f i 2 ) 

(3.25) 

Letting d +(r) =jf d +(r,^)f(fi)dft , 

d_(r) < D(r) < d +(r) (3.26) 

from elementary geometry, as shown in Appendix D, 

2R 2 

d (r,n) = A T-pr and d, (r,fi) = 2R (1 + ( r - n ) 2 ) 1 / 2 . 
- 2/ \2\1 £ + U 1-e^ (l-e z(r.n)^) 

(3.27) 
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Fig. 12 The geometry of closest approach. 
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Since d_(r) > d_((r«n)2) and d +(r) < d +((r-n) 2) , 

d_((r-n) 2) < D(r)<< d +((r-n) 2) (3.28) 

Eq. (3.28) can be expressed in terms of the order parameter S^g as follows: 

( r ' n ) 2 = r a ( n a n B ) r £ 
2 
"T R 

z a 
-T (3n n -6 ) 2 a g a3 rB + 3 (3.29) 

and 

(3.30) 

Substitution of Eq. (3.30) into Eq. (3.27) f i n a l l y yields 

R Q ( l - f 2 ( l + 2 r a S a 6 r g ) y i / 2 <D(r)<2R n[l + 3 T i = 5 Z 5 - ( l + 2 r o S a e r B ) 11/2 

(3.31) 

It i s worth noting that there have been no specific assumptions made 

regarding the attractive part of the pair-interaction potential in obtaining 

Eq. (3.31), and that in a condensed phase, D(r) may be thought of as the 

average repeat distance of molecules in the direction r. 



53 

The bounds d ^ r ^ S ^ r ^ ) on D(r), given in Eq. (3.31) are shown in Figurel3 

for r in the z and x (or y) directions as a function of the order para

meter S = Sz, for the case when the length to width ratio of the hard 

core is 2:1, (i.e. e 2 = — ) , and the symmetry axis of the material is in the 
4 

z-direction. As can be seen from Fig. 13, for this model of hard spheroids, 

an essential feature of the ordered phase is the anisotropy of the mole

cular distribution. In order to avoid the necessity of performing two 

sets of calculations, one for each bound, we assume 

D(r) = | ( d _ ( r a S a e r g ) + d + ( r o S r ) ) . (3.32) 

This choice of D(r) preserves the essential features of the molecular 

distribution; in fact, i t i s plausible that i t is the exact effective 

hard core diameter for some elongated hard core potential. To simplify 

the notation somewhat, in analogy with tetragonal crystals we shall 

denote D(r) by "c" i f r is in the z-direction, and by "a" i f r is in 

the x or y directions for the case when the symmetry axis of the material 

i s in the z-direction. Eq. (3.31) suggests that a more general treat

ment might be to expand D(r) in a power series in r S »r_; in order to 
a ag g 

avoid introducing additional parameters, however, we continue with the 

spheroidal model. 

The local f i e l d anisotropy tensor n „ can now be evaluated; 
ag 

the eccentricity of D(r) and hence of f g ( r ) is 

9 a 2 

eg = 1--H2 (3.33) 
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Fig. 13 Bounds on the effective hard-core diameter D(r). 
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where, from Eqs. (3.32) and (3.31) 

c = R„ e 2 1/2 ( 1 - | - (1+2S)) ± / Z + (1 + 
3(l-e 2) 

(1+2S)) -1/2 (3.34) 

and 

a = R„ (1 - y- ( 1 - S ) ) 1 / 2 + (1 + 6 

2 -1/2' (1-S)) 1 U 

3(l-e 2) 
(3.35) 

The value of n i s shown in Figure 14 as a function of S for several zz 
values of the molecular eccentricity e. Values of n obtained from 

zz 

refractive index measurements of PAA(26) are also shown; giving reasonable 

agreement with theory. The small deviation of the experimental values 

from the linear S-dependence predicted ,by the theory may in part be 

caused by a decrease in the molecular eccentricity e as a function of 

temperature due to molecular vibrations. 
Once f (r) = (2R„) 1D(r) is known, the one particle pseudopotential s u 

e^(fi^) can be evaluated from Eq. (3.11) as follows. By noting that, for 

a general hard-core repulsive potential U, 

U(Y1>Y2)g (vV d Y2 = ° (3.36) 

(2) 
where g is given by Eq. (3.14), Eq. (3.11) yields 

^1 (V = \ P J v ^ C ^ ^ g ^ ^ V Y ^ f W ^ d ^ . (3.37) 
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Fig. 14 The local f i e l d anisotropy tensor as a function of the order 

parameter. 





59 

Replacing g^Cy^Y..) by g(r), where r = 

= | v 1 ^ j ( n 1 , n j ; r ) g ( r ) f ( n j ) d n j d r . (3.38) 

Letting dr = r 2drdft^ and r = r ' f s ( r ) , 

^ ( f i )
 = | p y V l j j ( n i , n j , r ' f § ( r ) r ) g 0 ( r , ) f 0^ )^ .0 r) r' 2dr'dft dtt. 

r J 

(3.39) 

o 
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3.3 Dependence of Density on the Order Parameter 

The equation of state can be obtained from the partition 

function, which, in the mean f i e l d approximation is given by 

IN 
e x p ( - B e ( f t ) ) d y 

N! (4TT) N 
(3.39) 

The free volume seen by one particle i s V,. = / dr = V-NV , where V , 
f J m m 

the volume effectively occupied by one molecule is 

V m = — / (l-g(r 
m 23 h J ))r 2drdft. (3.40) 

where h is the packing fraction. Since, from Eq. (3.11) e(fi) is propor

tional to the number density, we may write e(ft) = -pz(£2). The pressure 

P is given by P 

Then 

and the free energy F is given by F = - — InQ. 

P = 3 V InQ 
N 2 z ( n ) e x p ( 3 ^ z ( Q ) ) d Q 

V-NV V m 
exp(B f z(fi ) ) d f i 

(3.41) 

and 

l V l - Pvm) = ^ 
\ p 2 z / p z 

(3.42) 
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Far below the liquid-vapor transition (kT << pz) in the condensed 

phase at low pressure (P << p 2z) Eq. (3.42) yields 

p = Y~ - + (3.43) 
m z 

We suppose most of the volume dependence at T ~ to reside in V^; 

although i t i s clear from Eq. (3.41) that z may change considerably across 

the transition. As a f i r s t order approximation we let p * = V , then 

making the transformation r = r ' f ( r ) , Eq. (3.40) yields 

-1 ^ J ( l - g 0 ( r ' ) ) r ' 2 d r ^ f 3 ( r ) d ^ (3.44) 

Since f (r) = D(r)/2Rn s U j D3(r) P 1 = 2^h / D i ( i ) d f i
r • ( 3 * 4 5 ) 

If D(r) is a spheroid with eccentricity e 2 = 1 r- , then D(r) = 
g 

a(l-e 2cos 2G and g r 

q I S i n D Q H o 

-1 ira 3 I r r ira^c 
/

sin6 d9 
r r 

(l-e 2cos 2G 12h / 2 2Q ^3/2 6h ' (l-e^cos^e ) g r 
(3.46) 

where a and c are given by Eqs. (3.34) and (3.35). In order to further 

simplify calculations, we replace a and c in Eq. (3.46) by a linear 

app roximat ion, 
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a = A - SS (3.47) 

and 

c - A + 26S (3.48) 

2 R 0 2 R o where A = —^— (K+2) and <5 = — ( K - 1 ) and K is the molecular length to 

width ratio K = 1 . This i s equivalent to letting 
v^e~ 2 

D(r) = 2R 0 1 + (1 + 2r S .r.) 3 a ag g (3.49) 

The exact values of a and c and the linear approximations are shown 

in Figure 15. The volume V(S) i s given by 

4TTR! H n T "l r 1 
V(S) = •^zr~ N (K+2) - (K-1)S 2 (K+2) + 2(K-1)S (3.50) 

o l n |_ 

or 

V(S) = -
V(0) (3.51) 

The thermal expansivity i s obtained from Eq. (3.51), and 
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Fig. 15 Approximations to the effective hard-core diameter. 
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3 '~+— From Eq. (2.25), near the transition S = S £ + k 2 / Tc-T , and 

1 3V = J K-lV 
V 8T \K+2/ 

,»2 
3S 

1 + 4k! ( t;- t )" (3.53) 

Arrott and Press (10) have shown that experimentally obtained values of the 

expansion coefficients of MBBA obey such a relation. Their experimental 

values were fitt e d to 

(3.54) 

- 1/2 

with the result that G = 0.56 ± .1 and Z = 0.435 x 10 3/°C .We can 

estimate Z from Eq. (3.42) where we take K = 1.6 as suggested by local 

f i e l d results, and = 0.08, then 

M 2 k-
^K+2 j k2 

3/o 1/2 „S = 1.512 x 10 3/°C 2 c 

The value of k^ was obtained from published values of Landau expansion 

coefficients for MBBA (11)• In view of the approximations made in 

obtaining Eq. (3.53), the agreement is considered satisfactory. 

The discontinuous volume change across the nematic-isotopic 

transition is given approximately by 



66 

For K = 1.6 and S c - 0.3, Eq. (3.55) yields a volume change of 0.75%. 

If a and c given by Eqs. (3.34) and (3.35) are used instead of the 

linear approximation, then the volume change is further reduced to 

0.25%. Experimental results (10) for MBBA suggest 0.13% as a minimum 

estimate, the existence of a two-phase region in the neighborhood of the 

transition makes accurate determination of the discontinuous volume 

change d i f f i c u l t . 
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3.4 Dipole-Dipole Interaction 

The interaction energy between two point dipoles un_̂  and 

un^ separated by r = rr is 

V.. = - 4f3(n. ,r)(n.'r) - n.-n.l , (3.56) iJ r 3 |_ 1 J i j j 

substitution into Eq. (3.38) yields, for a spherical sample of radius R 

i f ( 3 R R R - < 5 ft)N-R 
£ 1 ( V = " I p y 2 n l a l " 3

 3 g(r)f(fi^dfljdr . (3.57) 

Performing the transformation r = r ' f g ( r ) yields 

R / f s ( r ) g 0(r')dr' 

0 

x (3r r -6 Q)dfi . . a 3 a3 r (3.58) 

where the f i r s t integral i s just the dipolar (vector) order parameter 

n^ of Eq. (2.9), and the second integral i s the local f i e l d anisotropy 

tensor n of Eqs. (1.14) and (1.16). Then 

^1 ( V = - 2 l ^ 2 n l a V a 3 * ( 3 ' 5 9 ) 

If the symmetry axis of the f l u i d i s in the z-direction, then Eq. (3.59) 

becomes, on dropping the subscript 1, 
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e(fi) = -2Trpy 2cos0Rn (3.60) 
zz 

and the quantity 2irpyRrizz= Ĥ . may be thought of as the effective molecular 

f i e l d . The orientational probability density function £(Q) is obtained 

by substituting Eq. (3.60) into Eq. (3.8), and from Eq. (3.9), the self-

consistent equation for R is 

I r n cos6exp(gyn' cos8)sin8d9 
R= £ (3.61) 

J 0 
exp(pyrLcos6)sin6d6 

The quadrupolar order parameter S is similarly given by 

I. L 7r(3cos 26-l)exp(gyH,cos6)sined8 
S = (3.62) 

J 0 
exp(ByH„cose)sinede 

E 

The integrals are evaluated in Appendix E with the results that 

R=-L(guH E) (3.63) 

and 

S - 1 " ByfT ^ « E > 
E 

(3.64) 



69 

where L is Langevin's function, i-(x) = coth(x) - — . The sensitivity 

of the solution to the anisotropy of the molecular distribution i s 

apparent. If, as is frequently assumed, the distribution is isotropic, 

then T) = fL = 0, and R = S = 0. If, as assumed by Born (12) and later zz E • 
by Chandrasekhar (13) the distribution i s anisotropic but independent 

of the temperature, then H = uc.R where c, is a constant and the solu-
E I 1 

tion for R is identical to the magnetization in the Weiss theory of 

ferromagnetism. i-(x) may be expanded about x = 0, and letting 

(3.65) 

and, for small R, 

while 

(3.66) 

(3.67) 

We have shown, however, that the anisotropy of the distribution 

is temperature dependent; as can be seen from Figure 14, n - c^S where 

is a constant i f changes in the density are neglected. Since, for 

prolate molecules c „ < 0 , R = S = 0 ; from Eq. (3.41) i t is clear that 
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for a given R a n t i p a r a l l e l alignment i s e n e r g e t i c a l l y favorable. Oblate 

molecules may be considered by replacing the hard-core (prolate) e c c e n t r i -
- e 2 

9 0 9 
c i t y +e^ by ^_ 2 where e^ i s the e c c e n t r i c i t y of an oblate spheroid. 

6 0 y 2 c 2 

Then n > 0 hence c„ > 0, and l e t t i n g H = y„c 9RS and T = .. „ y i e l d s , 
from Eq. (3.64) 

2 ~ 2 / 1 - f (3.68) 
c 

where only + gives a p h y s i c a l l y meaningful s o l u t i o n , and 

R = L 
L T 

T "1 1/2 
12_c RS = S ' (3.69) 

where the r e s u l t R 2 - S has been obtained by numerical means. 
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3.5 London-van der Waals Interaction 

If molecule i has a dipole moment V^11^ caused by a spontaneous 

charge fluctuation, the resulting electric f i e l d of a point r = rr is 

given by 

y o r /*. s\ s\ I 
= 7J [3(n.-r)r-n.J. (3.70) 

If molecule j at r has a polarizability a„ along i t s symmetry axis and 

a x perpendicular to i t , and i f a„ >> a x, then the induced dipole is 

( ^ " n j ) a n n j • The interaction energy of the two dipoles is 

o 
Ct || u 

V. . = -a„(E-n.) 2 = - -^p- (3(n.-r)(n.rr) - n.-n.) 2 . (3.71) 

The same form of is obtained from quantum mechanical calculation of 

the dipole-dipole contribution to the dispersion energy (14). Substitution 

into Eq. (3.38) yields for the one-body pseudopotential 

± r ( 3 V g - % ) ( 3 r
Y V V 

e l ( f i ) = " 2 P Ps a" nla nl Yy n j e n j 6 r 6 

(3.72) 
;(r)f (^)dft.dr 

Performing the transformation r = r ' f g ( r ) yields 
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n / n n f (Q. lYJ jg j5 J )<K2. 

R/f (r) g . C r ^ d r ' ( 3 r r - 6 J ( 3 r r - 6 ) 
S  a  e  a? y 6 ^ 6 dft ( 3 . 7 3 ) 

0 r , l t fs ( r> 

The f i r s t i n t e g r a l can be expressed i n terms of S „, and in t e g r a t i o n 

over r' y i e l d s , f o r large R, 

P y s a " n l a n l Y 

48R3 L 3 ( 2 S B 6 + f i 3 « ) 

/ ( 9 V g V 5 - 3 r a r
g

5
Y 6 - 3 r

Y
r 6 6 a g + 6

a B 6 Y 6 ) d ^ 
f3 (;) 

( 3 . 7 4 ) 

If there exists rotational symmetry about the z-axis, then, as shown 

in Appendix F, Eq. (3.58) becomes 

e 1(^ 1) = 
*pvl f\ 2 2 / 3 c o s 2 6 -1 \ / (^3cos2e i-

5 ) 
( 3 . 7 5 ) 

(3cos 26.,-l) 
+ S „ (9cos49 -8cos29 +1) 2 r r 

sin6 d9 r r 
f3(r) 
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If a spherically symmetric molecular distribution i s supposed, 

then f Q ( r ) = 1 and the usual Maier-Saupe pseudopotential i s obtained; 

dropping the subscript 1, 

e(fi) = S(3cos 26-l) x constant . (3.76) 

If the molecular distribution i s anisotropic, then, as before 

D(r) a 2 2* N~1/2 , 2 . a1 

f ( r ) = = U-el*0*2^ w h e n e g = 1 " c 2 • 

Furthermore, the density p is given by p = ^\ , and Eq. (3.75) becomes, 
7 T 3 . C 

on omitting the terms not containing 6̂  from the integrand 

2y2a„h (3cos 26-l) . 
^ --"ife —J d-eWer)3/2 

0 

2 (3cos 26 r-l) 

+ S(9cos 1 + e r-8cos 2 e r+l) s i n e d e . (3.77) 

The dependence of e(fi) on S may be condensed into a function <j>(S), then 

e(«) = - y(3cos 20-l)*(S) (3.78) 

and S i s obtained self-consistently from Eq. (3.9) 

Jo \ ( 3 c o s 2 e- 1) e xp[f <t'(S)(3cos 2e-l)] sine 

J exp ^ | <(((S) (3cos 20-l)] sinGdO 

dO 
— . (3.79) 
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Eq.(3.79) cannot be solved a n a l y t i c a l l y ; the temperature dependence of 

S has been obtained using numerical methods. The method i s described 

i n Appendix G, and the r e s u l t s are shown i n Figure 16. The e f f e c t of 

the elongated hard core i s to make the t r a n s i t i o n more abrupt; the 

behavior of the system v a r i e s continuously from the Maier-Saupe s o l u t i o n 

(15) to Onsager's r e s u l t for hard rods (23) as the length to width 

r a t i o of the repulsive p o t e n t i a l i s increased. Since t h i s behavior i s not 

i n agreement with experimental r e s u l t s , a more r e a l i s t i c i n t e r a c t i o n 

p o t e n t i a l should be considered; a model i n which the molecular p o l a r i z -

a b i l i t y perpendicular to the symmetry axis i s not neglected may predict 

more ph y s i c a l behavior. 
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Fig. 16 The effect of the anisotropic hard-core on the order parameter 

in the mean f i e l d approximation. 
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CHAPTER 4 

PURE FLUIDS ~ EXPERIMENTAL 

4.1 The Lorentz-Lorenz Relation 

In an isotropic f l u i d , the pair-correlation function g(r) is 

spherically symmetric; the local f i e l d anisotropy tensor therefore 

vanishes.and Eq. (1.29) reduces to the well-known Lorentz-Lorenz relation 

^ = i p M • (4.1) 
n2+2 

The Lorentz-Lorenz coefficient L i s given by 

4TT M 

where a is the effective molecular polarizability, M is the gram molecular 

weight"-TandnAv ils Avogadro's -number''and p M isttfte mas S= T density. It is of interest 

to investigate:the. validity^O'fisEqt'(4 .l).qacr.osspthetliquid4-vapor_transition, since 

optical techniques are commonly used (16,17)-to measure the order para-
p. -p > £ c v meter — near the c r i t i c a l point. The Lorentz-Lorenz coefficients 

p c 

for sulfur hexafluoride and germane have been measured together with 

their c r i t i c a l constants. Refractive indices and density are both 

measured in the same experiment, yielding values of L accurate to 0.05 

per cent for densities near c r i t i c a l . The method u t i l i z e s a prism-
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shaped high-pressure c e l l which can be removed from a temperature con

t r o l l e d holder and weighed on a p r e c i s i o n balance. The c e l l i s 

equipped with a needle valve which allows the high pressure gas to be 

bled out i n steps, r e f r a c t i v e indices are thus measured as a function 

of weight and hence density. 
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4.2 Details of the Experiment 

Optical equipment used in this experiment i s schematically 

illustrated in Figure (17). A laser beam, rendered uniphase and c o l l i -

mated by a beam expanding telescope and pinhole f i l t e r , traverses a 

prism-shaped sample vessel and is reflected by a mirror into a telescope. 

The prism is oriented with i t s axis vertical; the beam is refracted 

horizontally through an angle which depends on the index of refraction 

of the flu i d in the^prism^vessel. The beam is reflected into an auto-

collimating telescope (Davison model D275) by a differential-micrometer 

driven mirror (Lansing Research Corp. Model 10.253). 

The high pressure sample vessel is shown in Figure 18. The 

body i s made of aluminum with a brass needle valve at one end. Two 

sapphire windows, clamped in place by flanges, form a prism-shaped 

region at the end of the vessel. The space between the windows is kept 

to a minimum i n order to keep the light path length small. The long 

cylindrical portion of the vessel provides a reasonably large volume 

of f l u i d . Experimental error decreases with increasing volume of the 

vessel, but the precision balance available for this experiment had 

a limit of 200 gm. Therefore, the sample vessel was designed to ob

tain a large volume of f l u i d but under the restriction that the mass 

of the vessel and contents not exceed the limit of the balance. The 

prism angle between the sapphire windows was measured to be 20.088°. 

The relationship between the refractive index, n, of the fl u i d 

and the angle of deviation, 9, through the prism vessel for a ray 

incident normally to the front face of the prism i s derived in Appendix H 

and i s 
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18 Drawing of sample c e l l . 
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n = n + (sinO-sine )[B+C(sine+sin6 )] a a a 

where n is the refractive index of air, 6 is the angle of deviation a a 
for air in the sample c e l l , and B and C depend on the c e l l geometry. 

The angle of deviation through the prism is measured by adjust

ment of the micrometer screw on the mirror mount. The mirror is ad

justed until the beam is centered on the cross hairs of the auto-

collimator, the reading of the micrometer is then recorded. The 

procedure is repeated ten times and the readings are averaged. Five 

readings are taken with ,the micrometer screw turned clockwise and 

five C.C.W. This is done in order to eliminate backlash in the screw 

and in order to eliminate the effect that would occur i f the amount 

of backlash were not a constant amount, but depended on the particular 

orientation of the screw. A reference angle is obtained when the 

c e l l is removed for weighing. This reference angle is measured on 

the micrometer screw each time the c e l l is removed in order to avoid 

any problems due to alterations in the alignment of the optical system 

during the course of the experiment. The zero angle used for calculation 

of the deviation angle is obtained with the c e l l containing air at N.T.P. 

The relationship between the angle of deviation and the read

ings of the micrometer screw is established by calibrating using a 50 

line per inch Ronchi ruling in place of the sample vessel. The micro

meter readings for sixty-five orders were measured, and a relationship 

between sine and micrometer screw reading was established. The 

relationship i s linear except for a small correction which i s nearly 
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negligible except for larger angles. (It should be noted that the 

maximum angle of deviation encountered in the experiment is only 3 

degrees.) 

The measurement of the refractive index described above yields 

two values, n^ and n^, when both liquid and vapour are present in 

the c e l l . The density and temperature of interest i s in the single 

phase region at,the coexistence curve boundary. The sample vessel 

was i n i t i a l l y f i l l e d to an average density p' such that i t was nearly 

a l l l iquid at room temperature with only a small amount of vapour 

present. The sample vessel was then placed in the thermostatic housing 

at temperature T^. If i s below T'^ both liquid and vapour are 

present, and n^(T^) and n^(T^) can both be measured (see Fig. 19). 

The temperature was then increased to resulting in an increase in 

the fraction of liquid present. The values of n^Cl^) and n C ^ ) were 

then measured. The temperature was then increased to T^ and measure

ments of n repeated. As the temperature approaches T', the meniscus 

rises i n the vessel and i t becomes impossible to measure n . For 
v 

temperatures above T', measurements of n result in obtaining n(p',T). 

n(p',T) is almost independent of T for T > T' and i t is easy to extra

polate to obtain h(p',T') which is the value sought in this work. 

Following the carrying out of the above procedure for obtaining 

n(p',T') the sample vessel was removed from the thermostatic housing 

and weighed. The density was obtained using the known volume and the 

mass of the vessel when evacuated. 
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Fig. 19 Coexistence curve on a temperature-density plot il l u s t r a t i n g 

procedure for obtaining data. 
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The density was then decreased by bleeding out a small amount 

of f l u i d with the needle valve. The procedure was then repeated to 

obtain a value corresponding to n(p",T"), etc. 

As the c r i t i c a l point is approached at the top of the co

existence curve, the large compressibility of the f l u i d results in 

large density gradients. Therefore, i t i s d i f f i c u l t to obtain n at 

the coexistence curve boundary near the c r i t i c a l point. The values 

used for calculating the Lorentz-Lorenz coefficient, L, are those 

obtained at temperatures shown in the shaded area in Figure 20\ 

The measurements on the vapour side of.the coexistence curve 

are made in a similar way. except the meniscus level decreases with 

increasing temperature and only vapour is present for temperatures 

above the coexistence curve. The values used in obtaining L are ob

tained in the shaded region. The measurements were continued for 

densities for which the coexistence curve is well below room temperature 

and L for these points correspond to n(p,T ). 
c r room 

The mass of the • evacuated vessel was obtained by weighing i t 

after, evacuating i t . The volume of the vessel was obtained by f i l l i n g 

i t with d i s t i l l e d water and weighing i t . Small corrections were made 

for the change in volume of ,tfte>cell with temperature. Small corrections 

were also made for the change in volume of the c e l l with pressure a l 

though the accuracy.of this correction is less reliable because of the 

di f f i c u l t y of estimating the change in volume with pressure for the 

oddly shaped vessel. 
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Fig. 20 Temperature and density region of which data points are 

obtained. The existence of large density gradients creates 

d i f f i c u l t i e s in obtaining data at the coexistence curve near 

the c r i t i c a l point. 
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4.3 Temperature Control 

The. temperature co n t r o l systems used both i n the pure f l u i d 

and the nematic l i q u i d c r y s t a l experiments consist of two b a s i c parts; 

an outer housing, whose temperature i s c o n t r o l l e d by a f l u i d c i r c u l a t i n g 

through i t , and an inner c e l l - h o l d e r , carrying heating c o i l s , embedded 

i n a thermally i n s u l a t i n g foam. The c i r c u l a t i n g f l u i d i n t h i s experi

ment was water pumped by a Forma S c i e n t i f i c Model 2095 whose tempera

ture was constant to within ±0.05°C. In some of the l i q u i d c r y s t a l 

experiments at- higher temperatures, a Haake Model E12 c i r c u l a t o r of 

s i m i l a r thermostatic accuracy was used with S h e l l V i t r e a O i l 21. 

Temperature sensing was.done with high-resistance Fenwal thermistors, 

whose resistance was greater than 2000 Q near the operating temperature. 

The thermistors were epoxied into 1/4" copper b o l t s , which i n ; t u r n were 

screwed into tapped holes i n the c e l l - h o l d e r Thermistor.^resistance was 

measured by means of s p e c i a l l y constructed Wheatstone bridges u t i l i z i n g 

matched r e s i s t o r s and i n d i v i d u a l l y c a l i b r a t e d to each thermistor. The 

output of each Wheatstone bridge was measured by a Hewlett-Packard 

Model 419A DC n u l l voltmeter. Temperature control was e f f e c t e d by 

feeding the proportional output of the d.c. n u l l meter into a low output 

impedance operational a m p l i f i e r , Kepco Operational Power Supply 7-2B, 

whose gain was adjustable. The operational a m p l i f i e r then supplied 

current to the non-inductive windings on the c e l l holder. The Wheat

stone bridges used i n temperature control had, i n addition to the usual 

balancing decade box, a 25-turn motor-driven h e l i - p o t , which could be 

used to sweep temperature continuously. The c i r c u i t diagram f or the 
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temperature control system is shown in Figure (21). The thermistors, 

their associated bridges and decade boxes, were calibrated using a 

Hewlett-Packard Model DY-2801A quartz thermometer. Deviations from 
8/T 

the theoretically predicted resistance R = R^eJ' where RQ and B 

are characteristic constants of each thermistor were fi t t e d by poly

nomials in T, thus reducing the uncertainty in the measured temperature 

to ±0.0001°C. The decade boxes used.in temperature monitoring were 

General Radio Type 1433, with a specified temperature coefficient of 

resistance less than ±20 ppm/°C; in addition, every attempt was made 

to regulate room temperature during the course of the experiment. The 

temperature control was accurate to ±0.0005°C over an eight hour 

period. In some of the liquid crystal experiments, the quartz thermo

meter was used in addition to thermistor resistance measurements; 

the thermistor characteristics appeared to remain constant over the 

course of the experiments. The c e l l containers showing the location 

of the heating c o i l and thermistors is shown in Figure (22f),. 



Fig. 21 Circuit diagram of the temperature control system. 



Fig. 22 The c e l l containers. 
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4.4 Results 

The experimental procedure described above was carried out 

for SF, and GH.. Figures (23) and (24) show the results for the 
O H 

O 

Lorentz-Lorenz coefficient for X = 6328 A as a function of density, 

the results for SF^ have appeared in the literature (27). The coefficient 

is essentially constant within +0.5% over the range covered, although a 

small decrease i s observed with increasing density. 

The decrease in L with increasing density is opposite to the 

prediction of Yaris and Kurtman (18) who predicted an increase with 

density. The decrease with density agrees with the conclusions of 

Chapman, Finnimore, and Smith (22) for xenon. The precision of the 

measurements presented in Figures (23) and(24) is almost an order of 

magnitude better than Smith's xenon data because density and refractive 

index are both measured in this experiment whereas analysis of the 

xenon refractive index data required use of published PVT data for 

interpretation. 

The c r i t i c a l density and temperature for GeH^ were measured 

for the f i r s t time in this experiment; the obtained values are 

p = 0.5029 gm/cm3 and T = 38.925°C. 
c c 
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Fig. 23 The Lorentz-Lorenz coefficient for SF^ as a function 

density. 
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Fig. 24 The Lorentz-Lorenz coefficient for GeH^ as a function of 

density. 
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F i g . 25 Coexistence curve of GeH 
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CHAPTER 5 

NEMATIC LIQUID CRYSTALS - EXPERIMENTAL 

5.1 The Anisotropic Lorentz-Lorenz Relation 

For nematic liquid crystals, the relation between refractive 

indices, number density, polarizability and local f i e l d anisotropy i s 

given by Eq. (1.29). In a principal axis system, for a uniaxial material, 

Eq. (1.29) yields 

(n 2-l) 

(n2+2) 
(l -4Trph l la 1 1) = — pa II (5.1) 

and 

(n 2-l) 

(n2+2) 
(l-4TTpnJ_aJ_) = — pa x . (5.2) 

The polarizabilities a for the medium are given by Eq. (2.8); since for 

a system of prolate molecules R = <cos6> = 0, 

a II 
1 2S 

= -r- (a +2a ) + — (a -a ) J mM m, j m,, m 
" j . it j _ 

(5.3) 

and 
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a, = (a +2a ) - -f- (a -a ) (5.4) 
-1- 3 m„ m 2 m„ m 

II j . II x 

where the a m denote molecular polarizability. The order parameter S may 

be eliminated from Eqs. (5.3) and (5.4) to yield 

a+2a = a +2a . (5.5) 

Since the anisotropy tensor n „ is traceless and the material is uniaxial 
a3 

n + 2n =0. (5.6) 
II X 

If the refractive indices and the number density are known, then the 

four equations Eq. (5.1), (5.2), (5.5) and (5.6) may be solved for the 

four unknowns a n , a^, TiM> 1 x at a given temperature. The order parameter 

S can then be obtained from 

a„-°<a. 
S = a — • < 5' 7> m.. m, 

In this experiment, the refractive indices n and n x are measured as a 

function of temperature using a modified Rayleigh interferometer. The 

difference between the refractive indices is separately measured by use 

of a previously reported (20) conoscopic techniques. Thermal expansivity 

measurements were obtained by f i l l i n g conventional mercury and alcohol 

thermometers with liquid crystal samples and measuring the height of the 

meniscus in the capillary as a function of temperature. The nematic 
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liquid crystals used in the measurements reported here were EBBA 

(p-Ethoxy Benzylidene-p-n-Butylaniline) and BEPC (Butyl p-(p-Ethoxy-

phenoxycarbonyl) phenyl Carbonate) obtained from Eastman Kodak Co. 
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5.2 The Modified Raylelgh Interferometer 

The liquid crystal samples were contained in rectangular 

fused quartz cells manufactured by Hellma Ltd. The inside dimensions of 

the cells are 1 cm x 5 cm x 0.2 cm; with a window thickness of 0.12 cm. 

The cells were connected to a vacuum system and pumped on for a period 

of 24 hours prior to f i l l i n g . They were then approximately one-half 

f i l l e d with the liquid crystal sample in the isotropic phase, and were 

then immediately reconnected to the vacuum system and were pumped on 

again in order to remove air dissolved in the sample and from the rest 

of the c e l l . The cells were then vacuum sealed, and kept at a s u f f i 

ciently high temperature to prevent sample recrystallization. The c e l l 

containing the sample to be measured was then placed inside the tempera

ture controlled c e l l holder. Sample alignment was effected by placing 

the c e l l holder between the poles of a conventional electromagnet. 

The pole-piece separation was 8", providing a B-field of 1.8 kG at a 

5 A supply current with 99.8% homogeneity over the volume occupied by 

the c e l l . 

The light source used was a Hughes Model 3178H 0.5 mW He-Ne 

laser. The beam was collimated and rendered uniphase by a beam expand

ing telescope and a lOu pinhole f i l t e r , i t was then passed through a 

1 cm diameter i r i s and a Spindl.er-Hqyer polarizer. The beam was 

normally incident on the c e l l in such a way that approximately one half 

of the beam passed through the liquid crystal sample in the lower 

portion of the c e l l , while the rest of the beam traversed the upper 

portion of the c e l l containing only vapor from the sample. The two 

beams were mixed using a 1.5 cm x 1.5 cm x 1.5 cm beam cube and the 
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resulting interference pattern was enlarged using a simple f/2.8 

f = 4.5 cm lens. Due to imperfections in the alignment of the two 

halves of the beam cube, the interference pattern consisted of approxi

mately 15 vertical fringes, spaced a distance apart. Using a 0.5 mm 

s l i t , a 2.5 cm x 0.5 mm horizontal portion was continuously recorded 

on film. The optical system and the interference pattern i s shown in 

Figures 26 and 27. As the temperature of the sample was varied, the 

optical path length difference of the beam through the liquid and of 

the beam through the vapor varied, resulting in horizontal movement of 

the fringes. A displacement of the fringes through a distance \^ 

corresponds to a change in the phase difference of the two beams of 2ir 

radians. Since the vapor pressure of the samples i s much less than one 

atmosphere, changes in the optical path length due to vapor density varia

tions are neglected. For light polarized parallel or perpendicular to 

the optic axis, the change in the corresponding refractive index An^ 

is thus 

An a = — (5.8) 

where £ = 2 mm is the sample thickness, A = 6328 A is the free-space 

wavelength of the laser and AN is the number of fringes that move past 

any given point within the interference pattern. 

In addition to photographing the interference pattern, the 

movement of fringes was monitored by a sili c o n photocell, whose amplified 

output was recorded on a strip-chart recorder. Sample temperature was 



-cell housing 

i 1 

He-Ne polarizer 

sample 

o 

camera 

photocell 

Fig. 26 The modified Rayleigh interferometer. 
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Fig. 27 Interference pattern obtained from the modified Rayleigh 

interferometer. 
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recorded by photographing the display of the quartz thermometer every 

5 minutes, and in addition, by manually balancing the monitor thermistor 

bridge and recording the thermistor resistance. Temperature was con

tinuously increased from approximately 20°C below the transition tempera

ture to 10°C above i t ; with sweep rates of .5°C/hr far from the transi

tion, and .002°C/hr near i t . Two separate runs were made for each sample; 

one with light polarized along the optic axis, and one with light 

polarized perpendicular to i t . The direction of motion of the fringes 

was opposite in the two cases. The refractive index in the isotropic 

phase i s known to decrease with increasing temperature due to decreasing 

density. Since the direction of fringe movement when the polarization 

was along the optic axis and the sample was in the nematic phase was 

in the same direction as that in the isotropic phase, i t was concluded 

that the extraordinary refractive index decreases with increasing tempera

ture, while the ordinary index increases. The number of fringes moving 

past the center of the interference pattern corresponding to changes 

in the refractive indices is shown in Figures (28) and (29). Since 

fringe displacements of corresponding to AN = -|" are easily detected, 

the accuracy in measuring the change in the refractive indices i s better 

than one part in three thousand; an order of magnitude better than pre

viously reported (21) refractive index measurements. 

The absolute value of the ordinary index at a given temperature 

was obtained by slowly rotating the c e l l about i t s vertical axis, and 

counting the fringes as they moved past a given point near the center 

of the pattern. The c e l l rotation was accomplished by using a 1/240 r.p.m. 
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Fig. 28 Results of fringe number measurements corresponding to 

changes in the refractive indices of EBBA. 
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Fig. 29 Results of fringe number measurements corresponding to changes 

in the refractive indices of BEPC. 
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A.C. motor manufactured by Graham Canada Ltd., Model 267777. Care was 

taken to mount the motor i n such a way as to minimize v i b r a t i o n of the 

sample. A 10-tooth spur gear on the motor output shaft was used to 

drive a 96-tooth spur gear mounted on the v e r t i c a l axis of the c y l i n 

d r i c a l c e l l holder; the angular v e l o c i t y of c e l l r o t a t i o n was 9.375°/hr. 

C e l l r o t a t i o n was i n i t i a t e d with the c e l l positioned at +30° from i t s 

normal p o s i t i o n perpendicular to the beam, and was rotated through 0° 

to a f i n a l o r i e n t a t i o n of -30°. In order to correct for errors due to 

the gear being s l i g h t l y o f f axis, the c e l l was rotated 180° and the 

above procedure was repeated. As shown i n Appendix I, the r e l a t i o n 

between n x and AN i s given by 

x 2 + s i n 2 0 = ax + b (5.9) 

where 

AMX . x = — j 1- cosG - 1 d 

a = - 2 ( ^ + n x ) 

b = n 2 - ( f ) 2 

and e i s a constant between zero and unity. 

The fringes p l o t t e d on the chart paper were symmetric about 

8 = 0 ; the angle corresponding to each i n t e n s i t y maximum was calculated 

from the known r o t a t i o n rate. The quantity x was evaluated for each 
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Fig. 30 Analysis of c e l l rotation data; x vs. x 2 + cos 20 for EBBA. 
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fringe (AM = integer) and x 2 + sin 20 was then plotted vs. x. The re

fractive index n^ was calculated from the slope and intercept of the 

resulting straight line, since 

n x = / ( f ) 2 + b . (5.10) 

A typical graph i s shown in Figure 30; the error in n^ is estimated to 

be ±0.005. 

In principle, a similar procedure could have been used to 

determine the absolute value of n . Rotation of the c e l l , however, 
II * ' 

necessitates the continuous re-alignment of the nematic director along 

the applied B-field. Although the observed time constant for this re

laxation process was less than one second, i t was f e l t that more 

reliable results could be obtained by using the conoscopic method 

described in the next section. 

The advantages of the modified Rayleigh interferometer des

cribed in this section that merit mention are i t s simplicity, i t s 

relative ease of alignment, i t s inherent insensitivity to the optical 

path length of the sample container (i.e. c e l l windows) and i t s insen

s i t i v i t y to building vibrations. Although the steel frame table support

ing the optical bench and magnet was floated on 14 automobile tire inner-

tubes, an identical experiment using a Mach-Zender interferometer could 

not be made to yield reliable results due to building vibrations. No 

such problems were encountered during the course of this experiment. 
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5.3 Conoscopic Measurements 

The difference between the principal refractive indices of 

the liquid crystal samples were measured using a conoscopic technique. 

A converging beam focussed approximately 0.5 cm below the meniscus of 

the sample was obtained by placing compound f/1.8 f = 85 mm lenses 

directly in front of and behind the sample. The beam cube of Figure 24 

was replaced by an analyzer. The polarizer and analyzer were crossed 

in such a way that the polarization of the incident light was at an 

angle of 45° to the optic axis. The resulting interference pattern is 

shown in Figure 31. As the difference between the refractive indices 

decreased due to increasing temperature, fringes were observed to move 

towards the center of the pattern in the horizontal direction and 

away from the center in the vertical direction. 

A si l i c o n photocell was used to monitor the intensity varia

tions due to fringes sweeping through the center of the pattern. The 

number of fringes AN that move past the center as the difference between 

the refractive indices changes is given by 

AN = f (n -n) - N N (5.11) 

Where NQ is a constant. Changes in the refractive index difference can 

therefore be measured with an accuracy greater than one part in six 

thousand; AN is shown in Figures 32 and 3 3 as a function of temperature, 

These results may be compared with changes in the refractive index 

difference calculated from the modified Rayleigh interferometer results 

of the previous section; the two sets of results agree to within ± 1 

fringe. 
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Fig. 31 Conoscopic diffraction pattern. 
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Fig. 32 Conoscopic fringe number measurements for EBBA. 
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Fi g . 33 Conoscopic f r i n g e number measurements for BEPC. 
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The absolute value of n,,-^ can be obtained from the density 

of fringes in the diffraction pattern shown in Figure 31 i f n is known. 

The diffraction pattern was photographed approximately ten times dur

ing the course of each run. The value of the ordinary index n^ was 

obtained from the modified Rayleigh interferometer results of the pre

vious section for temperatures corresponding to each photograph. If 
til 

9 is the angle subtended by the N fringe moving in a vertical direc

tion from the center of the pattern, then the relation between 9 , N 

and the refractive indices i s , as shown in Appendix J, 

for small angles, where 0 < 6 < 1. Eq. (5.12) may be rewritten as 

sin 2 9 = mN + c (5.13) 

2n(ln^A 
where m = —,—: N and c is a constant. The refractive index difference 

£(n„-njL) 
then becomes, in terms of m 

n 2 

n.-n » -<- ml 
2X " n a 

(5.14) 

For each conoscopic photograph, N was plotted vs. s i n 2 9 , and m was 

obtained. The refractive index difference was then obtained from 
I 
X 

Eq. (5.14). The quantity — (n„""n ) w a s then subtracted from AN of 
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Eq. (5. 1) for each temperature to yield NQ. The accuracy of the 

measurement of the absolute value of n.,-n i s determined by the scatter 

of points about N^; for EBBA i t was found to be ±0.005, whereas for 

BEPC i t was slightly worse due to existence of fewer fringes in the 

diffraction pattern. This accuracy could be improved considerably 

by photographing the pattern more frequently and by using lenses with 

smaller f-number. However, the existing thermostatic cell-holder 

necessitates the use of lenses with focal lengths of at least 85 mm. 
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5.4 Refractive Indices 

The refractive indices for each sample are calculated in a 

number of distinct steps. The absolute values of n^ in the nematic 

phase is obtained from the results of c e l l rotation. The absolute 

value of n -n^ in the nematic phase i s obtained from analysis of the 

conoscopic diffraction pattern, yielding n n since n,_ is now known. 

The temperature variation of n n , n + and n_̂  i s accurately'determined 

from measurements using the modified Rayleigh Interferometer. The 

consistency of the results i s established by the conoscopic measure

ments, since the number of fringes traversing the center of the cono

scopic diffraction pattern corresponds to variations in the difference 

between n„ and n,. The refractive indices n„, n, and n. are shown in 
ll - l - II * - L . ^ 

Figures (34) and (35) for EBBA and BEPC. The meaning of the error 

bars i s that the whole series of points can be shifted as a unit. In 

addition to the refractive indices, the quantity n = -j(nn+2n_j_) is 

also plotted. The expected behavior of n is obtained as follows. 

Eq. (5.1) may be re-written as 

n 2 - l 
Y0 (5.15) 

4TT -1 where = - j p o ^ (1-4'n-pn^a^) and I = „ , x'•: Then 

n„ = ' 1 + 2 ^ \ 1 / 2 3 3 

=1 + T Y „ +4 Y 2 + .... (5.16) I Vl-Y / 2 8 'I 
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Fig. 34 Refractive indices of EBBA. 
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Fig. 35 Refractive indices of BEPC. 
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Fig. 36 Published values for the refractive indices of EBBA. 
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~ 4 since < !• Since Y^ = "J i rP a£ » substitution for yields 

and 

n = 1 + 2iTp(a+2AS) + (5.17) 

n = 1+ 2irp(a-AS) + (5.18) 

Then, to a f i r s t order 

_ n M + 2 n 4 . 2 

n = 5 = 1 + 2 i r p a + 0 ( S ) (5.19) 

and thus n varies as the density i f the average molecular polarizability 

a i s a constant. Eq. (55.1'9)) yields for the thermal expansivity 

n-1 

From Figure.28* i t is clear that n decreases with temperature and that 

^ is very nearly constant, giving evidence of the predicted increase 

of the thermal expansivity as the transition is approached from below. 

For EBBA at 67°C the above expression yields, since n.= 1.599 and 

= -6.33 x 10"4/°C - % = -1.06 x 10~3/°C. This i s in good agree-dT p dx 

ment with measured results, as discussed in the next section. 

The theory further predicts that 
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2(n 2+2) (n2+2) 
+ 

(ni-1) ( i i 2 - l ) 
4iTp + ^ 

a a, 
= A, (5.21) 

as given by Eq. (1.30). Expanding the p o l a r i z a b i l i t i e s a i n terms of 

S y i e l d s 

and 

A = 4irpa |_" 1-26S+46
2S2-8<53S3.. . + 2 + 26S•+ 2S 2S 2 + 26 3S 3 + 

(5.22) 

A = -7—— | l +'26 2S 2-26 3S 3 

4irp a i J (5.23) 

where 5 = A/a. Le t t i n g p = N/V and using Eq. (3.51) f o r the volume V 

y i e l d s 

A = ( l - 3 k 2 S 2 + 2k 3S 3)(l+2 2<5S 2-2<5 3S 3) (5.24) 

where k = , and 

A = A(0)(^l+(26 2-3k 2)S 2-2(6 3-k 3)S 3+6k 26 2S l t+...^ . (5.25) 

For EBBA, the values of 6 and k are extremely close. From recent l i t e r a 

ture (19) a = 38.4 x 10~ 2^ cm3, A =10.5 x l O " 2 ^ cm3 and 6 = 0.27 at 

X = 5790. I f the hard core length to width r a t i o K i s assumed to be 

^2, then k = 0.25 and t h e ' c o e f f i c i e n t s of S 2 and S 3 i n Eq. (5.15) are 
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very nearly equal to zero. The quantity A i s thus expected to be 

nearly independent of temperature; values calculated from the r e f r a c t i v e 

indices i n d i c a t e that A/A(0) i s constant to within ±0.0015 throughout 

the covered 20°C temperature range. 
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Fig. 37 Photograph of apparatus used in the refractive index measure

ments . 
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5.5 Thermal Expansivity 

Experimental determination of the temperature dependence of 

the density is of interest because i t enables comparison with theory 

and makes possible the calculation of the order parameter S and the 

local f i e l d tensor n from refractive index measurements. 

The experimental method consists of f i l l i n g a conventional 

mercury or alcohol thermometer with a liquid crystal sample and mea

suring the height of the meniscus in the capillary as a function of 

temperature. The thermometers were evacuated by the following pro

cedure. The top sealed portion of the thermometer stem was broken 

off. The thermometer was then turned upside down and heated un t i l a 

portion of the substance in the bulb vaporized, forcing some of the 

liquid out through the capillary. The thermometer was allowed to cool 

so that a i r was drawn into the bulb. The bulb was again heated and 

the procedure was repeated until a l l liquid has been*expelled; a glass 

tube was then attached to the opened end. The c e l l thus formed was 

flushed with alcohol and was attached to a vacuum pump and jpumped on 

for several days. Sample material was then placed in the -glass tube • 

above the thermometer stem, and the c e l l was re-connected via valves 

to the vacuum pump and to a regulated helium bottle. After pumping 

on the sample in the isotropic phase for one hour, repeated applications 

of helium at approximately 0.5 atm. forced the. sample into the thermo

meter bulb. After further pumping the c e l l was sealed and placed in 

the temperature-controlled c e l l holder shown in Figure 38.- The results 

obtained using a c e l l made from an,alcohol thermometer (range: 40-120°F) 
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Fig. 38 Temperature-controlled c e l l holder used in thermal expansivity 

measurements. 
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are shown i n Figure 39; the points shown were obtained from three d i f 

ferent runs. An expression of the form 

= 3 0 + z ( T t - T ) - 1 / 2 (5.26) 

suggested by Eq. (3.53) was used to f i t the data with the r e s u l t that 

&0;.= 0.81 ± .01 x 10~ 3/°C and z = 0.77 ± .02 x l O " 3 / 0 ^ ^ 2 . Due to the 

existence of an apparently stable two-phase region extending over 0.15°C, 

i t was d i f f i c u l t to determine the t r a n s i t i o n temperature Tfc. In t h i s 

temperature fin.feerv.a'l; the sample in equilibrium consisted of a nematic 

phase at the bottom and an i s o t r o p i c phase on-top separated by a w e l l -

defined meniscus. This e f f e c t was observed in both the thermometer-cells 

and i n the quartz c e l l s used i n interferometry. I f , as suggested 

by conoscopic measurements, T = 77.75°C, then from Eq. (5.16) the 

thermal expansivity — at 67°C i s -lC.04xx 10 3/°C in good agreement 
p dx 

with the r e s u l t obtained i n the previous se c t i o n . The main problem 

encountered i n these measurements was the segmentation of the l i q u i d 

c r y s t a l filament i n the c a p i l l a r y ; t h i s could be overcome however by 

using a stem with l a r g e r bore. A new c e l l with increased capacity 

u t i l i z i n g an overflow trap has been made using 0.2 mm i . d . pyrex 

c a p i l l a r y ; r e s u l t s from measurements using this c e l l are not yet 

ava i l a b l e . 
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F i g . 39 Relative volume and thermal expansivity for EBBA. 



1.03 
145 

THERMAL 
EXPANSIVITY 

12x10"' 

1x10" 

-20 -10 T-Tc 0 10 
•0 



146 

5.6 The Order Parameter and the Local Field Anisotropy 

The order parameter S and the local f i e l d anisotropy tensor 

n = r i z z can be obtained as a function of temperature by simultaneously 

solving Eqs. (5.1), (5.2), (5.5) and (5.6). As shown in Appendix K, 

this results in 

a " = 2b 3(ab-l) + /9-30ab+9azbz (5.27) 

where a = (a +2a )/3 and m.. m, 

4TT 
b = - J P 

(n2+2) 2(n2+2) 
+ 

(n 2-l) (n 2-l) 
(5.28) 

S and r\ are then given by 

S = 
a +a, 
a -a (5.29) 

and 

n = 4irpa 
3 (n 2-D 

(5.30) 

In order to evaluate a , i t is necessary to know a = (a +2a„ )/3 
11' J x mn mj_' 

and the mass density p^. We have no direct way of measuring a or A, 

hence we have extrapolated published values (19) of the molecular 

polarizabilities of EBBA using Cauchy' s formula to obtain a = 37.1x10 2 4 cm3 

_ o 

and A = 9.90x10 2 3 cm3 at X = 6328 A. To obtain an expression for the 



147 

density consistent with our thermal expansivity measurements, we 

integrate Eq. (5.26) to obtain 

P M = p Q exp [B 0(T t-T) + 2 Z ( T t - T ) 1 / 2 ] ' (5.31) 

where £Q and z are as given previously. The constant p ^ was determined 

by f i t t i n g Eq. (5.31) to published data (19) with the result that 

PQ = 0.977 gm/cc; the values of p obtained from Eq. (5.31) were within 

0.1/% to the published data over the entire 40°C temperature range. 

Using these values, the order parameter S and the anisotropy tensor 

n were calculated for EBBA as a function of temperature. The results 

are shown in Figures (40) and (41). Both S and n are very sensitive 

to density variations. In view of the poor accuracy of the available 

density data, we have not attempted to f i t the calculated values of 

S to a theoretical expression. Calculated values of the local 

f i e l d anisotropy tensor n are in reasonable agreement with the pre

dictions of theory; we have no explanation for the deviations from 

linearity. 



148 

Fig. 40. The order parameter S obtained from experimental measurements 

for EBBA. 
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F i g . 41 The l o c a l f i e l d t e n s o r n o b t a i n e d f r o m e x p e r i m e n t a l m e a 

s u r e m e n t s f o r EBBA. 
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CHAPTER 6 

DISTORTIONS IN NEMATICS 

6.1 Polarization Anomaly 

The experiments described in this thesis were performed using 

Spindier-Hoyer Model 03-6320 polarizing f i l t e r s . The 80 mm diameter 

f i l t e r elements were mounted on a rotatable ring with 1° divisions. 

Since an arrow and the letter P were inscribed at 0° on the polarizer 

ring; we had assumed that the electric f i e l d vector of a transmitted 

plane wave was co-linear with the direction of the arrow. This assump

tion yielded consistent results i n a l l respects; the extraordinary 

(fast-decreasing) index was observed when P was along the applied 

B-field and hence the optic axis, the ordinary (slowly increasing) 

index was observed when P was perpendicular to B, and the conoscopic 

pattern of Figure 3fli was observed when P was inclined at an angle of 

45° to B. In addition, the conoscopic pattern was seen to disappear 

due to lack of contrast when P was either parallel or perpendicular 

to B; the polarization of the emerging wave was identical to that of 

the incident wave. It was felt then that the polarization and optic 

axis alignment were well understood. Near the completion of the 

experiments, however, while observing light reflected from a plane 

surface through a polarizer, we noticed that the electric vector E of 

the transmitted wave was not co-linear with P, but was instead per

pendicular to i t . This observation could only be reconciled with a l l 
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of the experimental results i f the polarization of a wave incident on 

the sample was rotated an angle 8 on entry, and an angle - 6 on exit, 

where 0 is the angle between the long axis of the fused quartz c e l l 

and the applied B-field. Usually the angle 0 was 90° since in i t s 

normal position the c e l l is vertical while B is horizontal, but conoscopic 

measurements were performed with the c e l l t i l t e d in order to gain a 

better understanding of this effect. We concluded that there exists a 

transition layer i n the nematic sample near the c e l l windows which i s 

responsible for the rotation of polarization. The transition layer i s 

a result of competition between field-induced alignment and strong 
* ^ n 

anchoring of the nematic director n (h. = ———) at the c e l l windows in 
|n| 

the direction of the long axis of the c e l l . The anchoring i s thought 

to be caused by striae on''the window surfaces due to polishing during 

manufacture; the alignment of nematics by rubbed glass surfaces has 

long been known. 

The effect of the twisted transition layer i s clearly seen 

if.the c e l l Is t i l t e d so that i t s long axis makes an angle 6 with the 

B-field and the conoscopic diffraction pattern is observed. The pattern 

does not rotate as 6 is changed, since the direction n in the bulk of 

the sample i s always along B. Rotation of the crossed polarizer-analyzer 

pair however causes the pattern to vanish i f the incident polarization 

is either parallel or perpendicular to the c e l l long axis; in this case 

the polarization of the emerging, wave is identical to that of the 

incident wave. The transition region may be imagined as a set of thin 

uniaxial plates cut parallel to the optic axis with each plate rotated 
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through a small angle with respect to the preceeding one. The only 

s i g n i f i c a n t e f f e c t of such a system i s to change the p o l a r i z a t i o n and 

phase of a wave transmitted through i t ; we assume therefore that a l l 

of the previously used analysis i s v a l i d i f the t r a n s i t i o n l a y e r i s 

small compared to the bulk sample. A quantitative j u s t i f i c a t i o n of 

t h i s assumption i s given i n the next two sections. 
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6.2 Nematic Alignment 

If a sample of nematic liquid crystal oriented in the direction 
- > - - > . n is placed in a uniform magnetic f i e l d H, the magnetization M is given 

by 

M = x„(H-n)n + x_jH-(H«n)n] (6.1) 

where x is t n e bulk diamagnetic susceptibility. The associated free energy per 

unit volume E„ is given by M 

E M = - / M-dH = - |( X l l-X +)(H-n) 2 - \ X j H 2 . (6.2) 

Thus, i f Y > x . » E„, is minimized i f n i s along H. Since for a l l known 

nematics the diamagnetic susceptibility is positive, the director n 

and hence the optic axis i s expected to orient parallel to an externally 

applied B-field. 

The free energy per unit volume associated with spatial varia

tions of the nematic director n is given, from (23) by 

E D = j ^ ( v n ) 2 + | K 2(n-(vxn)) 2 + | K 3(nx(vxn)) 2 (6.3) 

where K̂ , and are the elastic constants associated with the deforma

tions splay, twist and bend respectively. Clearly E^ is a minimum i f n 

is a constant everywhere. In the absence of external fields, then, i f n 

is constrained to l i e in a given direction at a sample boundary, surface 
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anchoring serves to align the bulk sample. If an external f i e l d is 

also present, then competition exists between the two effects; the ex

pected alignment corresponds to spatial variations of n which minimize 

the total free energy. Two distinct deformations w i l l be considered; 

pure twist, corresponding to the rotation of n in the plane of the 

c e l l windows from i t s anchored vertical direction at the c e l l windows 

to a direction parallel to B in the bulk of the sample, and a combina-

tion of bend and splay, corresponding to the rotation of n from i t s 

(nearly) vertical orientation of the liquid-vapor meniscus to a direc

tion parallel to B in the bulk of the sample. 

If i , j and k are unit vectors along the x, y and z axes, 
ys A. ^ 

then simple twist may be described by letting n = cosOi + sin0j where 

0 is a function of z only. Then n*(Vxn) = - -— and contribution of 
o Z 

twist to the free energy is 

The combination of bend and splay may be described by letting n = cos0coscj> i 

+ cos0sin<j)j + sin0k, where 0 is a function of z only, and <j> is a constant. 
" 30 

Then V«n = cos6 — and the contribution of splay to the free energy is 3z 

E s = Y K l « Z ! ( ! f • ( 6 - 5 ) 

* * 13 0 i Since [nx(Vxn)] 2 = sin 20l —I , the contribution of bend to the free 

energy is 
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^ - K ^ M H - i • (6-6) 

In the one-constant approximation = = = K; formally the two 

distortions become identical and 

E = f K ( f f ) 2 . (6.7) 

To obtain 0(z) which minimizes the total energy, we consider a small slab 

of sample of area A and thickness t. The total energy E associated with 
r 

the magnetization and the distortion is 

E F = 

t 

A [ - y( X l l-xjH2cos 20 + \ K ^ J d z . (6.8) 
" 0 

Proceeding somewhat differently than (23), we note that the integral 
may be minimized by using Lagrange's equation; letting 

K Y 2 = ( x _ x ) H2 ' 6 m u s t satisfy 

Y 2 |~T " sin0cos0 = 0. (6.9) 
a Z 

Eq. (6.9) may be written as 

which yields upon integration 
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2 I £2.1 = r . 2 = C 1-cos 26 . (6.11) 

Since ^- , 8 + 0 as z + <», C = 1. Then 
a Z J-

i S e = T l - t a n f + C 2 . (6.12) 

Since e = | i f z = 0, C 2 = 0 and f i n a l l y 

= 2 tan 1 exp(-z/y) (6.13) 

or 

2 (6.14) 

To determine which solution i s energetically favorable for a sample of 

length ZQ, = 0 i f 0 = I , the non-trivial solution w i l l occur i f 

< 0, and at the Frederiksz transition 

2 

E T = / " I Y Z ( ^ " cosMdz = 0. ( 6 ' 1 5 ) 

Substitution from Eq. (6.11) gives 

0 (l-2cos 26)dz = / ° (l-2tanh 2z/ Y)dz = 0 (6.16) 
U ^ 0 
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and integration yields 

z z 
^ = tanh — . (6.17) 2y Y 

The solution of Eq. (6.17) is ZQ = 1.915 y. This is in good agreement with 

published results (23) for the case when anchoring occurs at both extremities 

of the twisted region; then 2z^ = iry. Thus, a f i e l d greater than H c is 

required to overcome surface-induced alignment in a sample of width 
" -1/2 

d = 2z_ where H = 3 * ^ 0 c d 
K 

(x,rxj.) The anisotropy in the diamagnetic 

susceptibility is typically ^10 7, while the elastic constant is ̂ 3x10 7 

dyne (23). For the d = 0.2 cm c e l l used in this experiment, the c r i t i c a l 

f i e l d H c is only 33 oerstedts. 

The magnetic coherence length y for our applied 1.8 kG f i e l d 

is calculated to be 9.6u. At three coherence lengths from the c e l l walls 

the director n is only at an angle of 6° from the applied f i e l d direction, 

thus the twisted transition region is small compared to the bulk sample 

width. 
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6.3 Propagation in a Twisted Medium 

In order to determine the effect of the twisted transition 

region, we solve Maxwell's equations for light propagating along the 

twist (z) axis. (A more general derivation is given in (28)). From Eq.(1.3) 

1 82D 
"2 f # = V ^ " V ( V * 6 ) * ( 6 ' 1 8 ) 

If i , j and k are unit vectors along the x, y and z axes, then the vectors 

n = cos6i + sinBj (6.19) 

/\ /\ 

<j> = sin9i - cos6j (6.20) 

and k define the directions of the principal axes of the dielectric tensor; 

0 i s a function of z. For a wave propagating along the z-axis, we l e t 

E = E(z)exp[i(tjt-kz)]; then V(V»E) = and Eq. (6.17) yields 
->- " ~ z 2 -> D = E =0. We write E(z) = E., n + E„d>, then D = e.,E-,ri + e„E0d> since z z 1 2 1 1 2 2 

is now diagonal. Eq. (6.17) then yields 

\l ( ^ n + e2E2h = f i > ( E ^ .+ E 2 i ) . (6.21) 

For simplicity, we assume that 0 is proportional to z instead of the 
2 TT Z 

relation given by Eq. (6.18), that i s , 9 = —— where \ u is the helix 
A, u 

d e l pitch. Since from Eq. (6.11) the maximum value of — = — , a reasonable dz y 
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3 ^ A 9 ^ ^ choice of pitch i s A^ = 2-ny. Noting that — n = -ct and — <j) = n, 

Eq. (6.21) yields after some manipulation 

( e | - k , 2 - l ) E 1 = 2ikE 2 (6.22) 

and 

( e ^ - k , 3 - l ) E 2 = -2ikE 1 (6.23) 

\ 2 k A h where we have let e 1 = e( T— ) and k' = —z— where A is the free-space A 2TT 
wavelength of the wave. We obtain for the wave-vector k' 

k' 2 = 1 + e' ± /6,2+4e (6.24) 

and 

(6.25) 
VE 2/ 2 + / S ^ e ' - 6' 

where e' = (ej+e^)I'2 and 6' = (e^-ep/2. The two solutions for E cor

responding to the roots of Eq. (6.25) are 

E± = ( E n + E 1 2<j ))exp[i(a)t-k 1z)] (6.26) 

and 

E2 = ( E21 n + E 2 2 < f , ) e x p [ 1 ( t J t " k 2 z ) : i • (6.27) 

The normal modes are therefore two e l l i p t i c a l l y polarized waves, whose 

components are polarized along the principal axes of the dielectric tensor. 
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In our experiment, the magnetic coherence length y was cal

culated to be ~ lOy; then -r^- = = ^—^-^-z-~-r - 100. From our 6.3 x 10"'m 

refractive index measurements we estimate that e' = 2.5 x 10^ and 

6' = 6.2 x 10 3. Eq. (6.23) yields for 6' > 2e' 

.i2 = 1 + e' ± (<5 + 2e' (6.28) 

or k!2 = e| within an error of 0.1%, and since k. = / eT , n. x i x A 1 1 

as before. Intensity ratios are obtained from Eq. (6.25), -for 

k« 2 = el 

/FT I 

J l l 
J12 

6' = 1000 (6.29) 
I + 6' 

and for k'2 = 

'21 

l22 

1 - £ 
1 6* . 1 -6 2000 (6.30) 

In our experiment therefore the normal modes are essentially plane 

polarized waves tracking the principal axes of the dielectric tensor 

with an associated refractive Index n equal to v̂eT to within 0.1%. 
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary of Results 

We have obtained a simple relation between the refractive 

indices, density and local f i e l d anisotropy in ordered fluids whose pair-

correlation function can be made isotropic by radial scaling. Using 

mean f i e l d theory, we have shown that in a system of molecules with elon

gated hard core, the molecular distribution is anisotropic in the ordered 

phase. The corresponding local f i e l d anisotropy tensor i s shown to be 

proportional to the order parameter. We have obtained an expression 

for the specific volume as a function of the hard-core eccentricity 

and the degree of orientation order. Using the order parameter obtained 

from the Landau theory, an expression was obtained for the density as 

a function of temperature. 

Using a self-consistent formulation for the single particle 

pseudopotential, we have shown that ferroelectric order is not expected 

to occur for a fl u i d of hard rods, but may do so for a f l u i d of hard 

disks. In the latter case, the transition is expected to be of the 

f i r s t order. Using a single oscillator model, the London-van der Waals 

interaction predicts an ordered phase, but inclusion of the anisotropic 

hard core causes the order to vanish more abruptly than is experimentally 

observed. 

Experimentally, we have shown that the Lorentz-Lorenz coefficient 

i s constant to within ± 0.8% for GeH, and to within ±0.5 % for SF A along 
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the coexistence curve. We have determined the c r i t i c a l density and tem
perature of GeH. for the f i r s t time with the result that p = 0.504 ± 
^ 4 c 
.005 g/cc and T = 38.925 ± .05°C. 

c 

We have measured the refractive indices of the liquid crystals 

EBBA and BEPC using a sensitive interferometer technique. Changes in 

the refractive indices were measured with an accuracy better than 

±0.02%, whereas the absolute values were determined to within ±0.5%. 

The temperature dependence of the refractive indices was in qualitative 

agreement with the predictions of the theory. 

We have measured the thermal expansivity of EBBA across the 

nematic isotropic transition, the observed behavior i s in good agree

ment with the predictions of theory. The discontinuous volume change 

across the transition was M3.3%; the accuracy of this measurement is 

d i f f i c u l t to assess due to the existence of an apparently stable two-

phase region near the transition. Using these measurements, the order 

parameter and local f i e l d anisotropy were calculated. Results for the 

order parameter are in good agreement with existing published results, 

while the anisotropy tensor i s nearly proportional to the degree of 

order, as predicted by the theory. 
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7.2 Suggestions for Future Work 

In order to exploit the sensitive refractive index measure

ments in the order parameter and local f i e l d tensor determination, den

sity data of comparable accuracy is needed. To gain this end, we have 

constructed a special c e l l capable of holding 10 cc of sample; time, 

however, has not been available to make extensive measurements. Pre

liminary results using this c e l l indicate greatly improved accuracy. 

By the use of smaller f-number lenses and by photographing the diffrac

tion pattern more frequently, the accuracy of the conoscopic measure

ments could be further increased. An independent scheme of measuring 

the c e l l orientation would similarly increase the accuracy of the c e l l 

rotation results, while a combination of the conoscopic and Mach-Zender 

interferometry could furnish additional refractive index information. 

We have noticed during the course of the experiments that near the transi

tion in the nematic phase that increasing the applied B-field caused the 

birefringence to increase. This effect, together with the field-induced 

re-alignment of the nematic director merits further investigations. 

Exploration of the two phase region in the neighborhood of T^ may also 

yield information about the nature of the transition. It would be of interest 

to see i f a relation similar to the law of corresponding states for pure fluids 

holds for order in nematic liquid crystals scaled to molecular eccentricity; 

measurements on more samples are thus required. 

It is believed that the mean-field theory could be further 

improved i f a closed-form solution for the distance of closest approach 

between two ar b i t r a r i l y oriented elongated surfaces could be obtained. 
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A more r e a l i s t i c attractive potential consisting of coupling between 

two sets of three mutually orthogonal oscillators is currently being 

considered. Fluctuations of the nematic director have not been con

sidered in this thesis, although known to be of considerable importance. 

Recently acquired photon correlation equipment is currently being set 

up to study light scattered from nematic materials. 
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APPENDIX A 

Letting x = nd^ , y = nd^ and z = nd^ Eq. (1.11) may be 

re-written as 

2 v 2 z 2 

+ 1 — + - — = 1 (A.l) £ £ £ 
xx yy zz 

Since D i s perpendicular to k, D'k = 0 and 

xk + yk + zk =0 (A.2) x y z 

Furthermore, n 2 .= x 2 + y 2 + z 2. We wish to consider extrema of n 2 subject 

to the constraints of Eq. (A.l) and Eq. (A.2). Using the method of 

Lagrange's undertermined multipliers, we wish to find the extrema of 

2 2 2 
F = x2+y2+z2+2X, (xk +yk +zk ) + X„(-— + 1 — + 1) (A. 3) l x y z 2 e e e xx yy zz 

9F 3F 9F This demands that — = — = — = 0. Then 9x 3y 9z 

x + A,k + X0 - — = 0 (A.4) 1 x 2 e xx 

y y + X.,k + A. ̂  . 
J 1 y 2 E =0 (A.5) yy 

z + x.k + x. - — = 0 (A.6) 1 z 2 e zz 
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Combining Eq.'s (A.4), (A.5) and (A.6) with (A.l) and (A.2) obtains 

and 

n 2 + X 2 = 0 (A.7) 

k x k y k z k 2 ^ + K I — + + — 1= 0 <A-8> 
1 2 \ e e e 

xx yy zz y 

Solving for X^ and X^ 

Xn = -n 2 (A.9) 

and 

2 / k x k y k z , 
*i " ? | — + " ^ - + — <A'10> 1 k z \ e e e 

xx yy zz 

Substitution into Eq. (A.4) yields 

z 9 x n 2k /k x k y k z x 

xx 7 \ xx yy zz ' 

similarly for y and z. Letting x = nd , etc., in Eq. (A.11) and multi-

plying by D we obtain 
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D I 1- )+4k ( E k + E k + E k ) = 0 x y to 2 e
x x / w z x x y y y z z 

or 

2 _ _ _ 
^ D - k 2 E + k(E«k) = 0 

which i s Eq. (1.5). Thus the permitted d i r e c t i o n s of D are those for 

which n 2 = x 2+y 2+z 2 i s an extremum. 
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APPENDIX B 

From Eq. (1.16), integration over <f> yields 

zz - h f ( l n ( l -e 2cos 26) 2)(3cos 29-l)sined6 
g (B.l) 

If x = cos0, integration by parts yields 

|1 / * ! V 3 
n = %ln(l-e 2x 2)(x 3-x) +/ ( f - - x)dx, (B.2) 

Z Z g lo l - e 2 x 3 3 

where the f i r s t term equals zero. Since e 2 < 1, we let e x = sinE 
g " g 

Then 

^ a s i n ̂ e o 
sin20cos0d0 1 / sm H0 1 / 

Tl = I cos0d0 I 
z z e 3 J o C O S 9 %J0 

cos 2e 

(B.3) 

Furthermore, 

' U " " ~ s i n l e d0 • . e 3 
L = r s i n eq-cos 20) 2d0 _ r 

1 J 0 cos0 J n 

cos0 6 3 (B.4) 

and 
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s i n *e (l-cos 29) 
COS0 dO 

•f. 
sm 'e d9 

COS0 - e (B.5) 

I f y = In ("*"+S""?̂ ) then dy = d6/cos0, and 
COS0 

. - 1 
s i n e d0 . , 1+sine In COS0 COS0 

-1 s i n e 1+e 
= lnl £_ 

/1+e 
= In 

»Vl-ez/ v ^ e 
(B.6) 

and f i n a l l y 

zz 
2 
3 

1 1 
e z 2e 
g g g-

l n 
1+e 
1-e 

g J 

(B.7) 

I t i s i n t e r e s t i n g to consider the l i m i t s of n as e -* 0 and as e -> 1, 
zz g g 

In the f i r s t case, since 

1+e E 
1-e 

e 3 e 5 

e + ^ + + .. 
g 3 5 

(B.8) 

for small e , 
g 

zz 

2e'+ 

_2 e2 g_ 
15 g: 35 

(B.9) 

and n = 0 i f e =0. For e ~ 1, l e t t i n g x = 1-e y i e l d s zz g g g 

1 (2-x)x . f2-x" 
2 - TTTZZ\ L N 'zz 3 ( l - x ) z 2(l-x) (B.10) 

Since limxlnx = 0, n ,•=--=• i f e =1. In Figure B l , n i s shown as a 
zz 3 B & zz x+0 

function of e 
g 
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Fig. B.l The local f i e l d anisotropy tensor T i z z as function of the 

eccentricity e . 
g 
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APPENDIX C 

From Eq. (2.20) 

AF = a 2R 2 + a 4R 4 + a 6R 6 (C.l) 

and the conditions that AF be negative and a minimum, i.e. AF < 0, 
3AF 92AF . 

- 0 and ^ 0 yield, respectively 

a 2R 2 + a 4R 4 + a 6R 6 < 0 (C.2) 

2a„R + 4a,R3 + 6a^R5 = 0 (C.3) 2 4 6 

and 2a 2 + 12a4R2 + 30a6R4 > 0. (C.4) 

At the transition, AF = 0, R = Rc and T = T . Eliminating a 2 between 
-a, 

Eqs. (C.l) and (C.2) and solving for R yields R = 0 or R2 = -=— . 
C C C /SL 

6 

If R =0, then R is small near the transition, and Eq. (C.3) yields 
o ~ C _ a3 Rz = -x— . Then, i f a. > 0, 2a. 4 

r 2 • i t <V T ) • ( c- 5 ) 

4 

~a2 
Sub0*"* n^ r 2 = stitution of Rz = into Eq. (C.l) yields 

4 

—SL SL 
AF = R 2 ( a 2 + a 4 ( 2 ^ ) ) =R 2 / < 0 (C.6) 

for T < T . 
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" a2 
Substitution of R2 = -=— into Eq. (C.4) yields 

2 a4 

Isr = 2 a 2 + 1 2 a 4 ( § ) " - S > 0 ( c - 7 ) 

for T < TQ. 
-a 

9 4 
If Rz = - r — , then, solving Eq. (C.3) directly yields, i f a, < 0 c -̂ â  ^ 

and a, > 0, o 

R2 = 4 R2 + k' / T + - T (C.8) 3 c IV c 

a 2  
a4 

where k' 2 = and = Tn + 0 _ . To obtain T^, substitution of 1 3a^ c 0 3qa^ c 
-a a' 

R2 = into Eq. (C.8) yields T £ = T Q + ^ & . Straightforward 
6 6 

substitutions show that Eq. (C.4) is satisfied for T < T C , while Eq. (C.l) 

is satisfied for T < T . 
- c 

From Eq. (2.23) 

A F = b 0S 2 + b„S 3 + b.S 4 (C.9) 2 3 4 

and the conditions that A F be negative and a minimum, i.e. A F < 0, 
9AF . . , 8 2 A F ^ . . , t_. , 

- 5 ^ — = 0 and 9 > yield, respectively 

b 0S 2 + b_S 3 + b.S4 < 0 (CIO) 2 3 4 -

2b2S + 3b 3S 2 + 4b 4S 3 = 0 (C.ll) 
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and 

2b 2 + 6b3S + 12b 4S 2 > 0 (C.12) 

At the transition, AF = 0, S = S and T = T . Eliminating between 
-b 2 

Eqs. (C.9) and (C.ll) and solving for S yields S = 0 or S = . 
4 

If S =0, then S i s small near the transition, and Eq. (C.ll) yields c 
s = ~ 2 b2 . Then, i f b, > 0, 

3b 3 

S = 3 ^ ( V T ) (C.13) 

-2b3 

Substitution of S = TCT— into Eq. (C.9) yields 
3 

h + b 3 ft))' AF = S z(b 0 + b 0 1 ^ J J . Sz -f 1 0 (C-14) 

-2b 
for T < T.. Substitution of S = - T T — - into Eq. (C.12) yields - U jb„ 

= 2 b2 + 6 b 3 ( 3^) = " 2 b2 > ° ( C ' 1 5 ) 

for T < T Q. 

The absolute minimum of AF is attained however i f S = -1; then, 

near TQ 

AF = -b 3-|b 4| (C16) 

since b. < 0. 4 
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APPENDIX D 

We wish to find the length of the normal projection of the 

surface 

R2 - e 2(R-n) 2 = RQ (D.l) 

onto a line in direction I through the origin. The normal § to the sur

face i s given by 

N(R) = V[R 2-e 2(R-n) 2] = 2R-2e2(R-n)n (D.2) 

The point at which N i s colinear with I is given by NCR^) = 2uJt, where 

u is some constant. The projection d + of the surface onto the line i s 

then d, = 2R To obtain R , consider + u u 

R - e 2(R «n)n = u£ (D.3) u u 

Multiplication by n,£ and Ru yields, respectively, 

(l-e 2)($ u-n) = u(£-n), (D.4) 

R •£ - e2(Ru«n)(n-£) = u (D.5) 

and 

R2 - e 2(R «n) 2 = u(R •£) = R2 (D.6) 
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Combining Eqs. (D.4), (D.5) and (D.6) yields 

e 2R 2 \ 2 R2 (D.7) 
u (1-e2) (R •*)• ( R

U
, A> 

and f i n a l l y 

dj = 4(R 4-£) 2 = 4R2(1 + (^* u) 2)- (D-8) 

The length of the line in the I direction intercepted by the 

surface i s simply given by 

d* = 4R2(1 - e 2(£-u) 2) -1. (D.9) 

Noting that, for a random variable x, x™ > x™ for a l l positive 

even m, Eq. (D.8) gives 

d + < 2R. 
/ 2 ~ ~ \ l / 2 

Q ( l (£-n) 2 ) . (D.10) 

Expanding d_, given by Eq. (D.9), in a Taylor series in (£*n)2) and 

averaging yields 

d_ = 2R (1 + j e 2 ( i l - n ) 2 + ) > 2R 0(l-e 2(£-n) 2) (D.ll) 
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APPENDIX E 

We wish to evaluate the integrals in Eq. (3.42) 

R = L cos8exp(gyf/ cos9)sin0d0 
L) E 

f 
(E.l) 

exp(gyfL,cos0)sin0de 
E 

Letting y = 3yH and x = cos0 yields 
E 

and 

Y X , Y X X 1 
x e dx e ? 

Z_ = Y IT 
-1 (eY+e Y) - - (e Y-e Y) 

Yx , e dx 1 yx — e Y 
1 

-1 

Y _Y e-y-e 

(E,2) 

R = cothy - - = L(3yW„) Y 11 
(E.3) 

Then 

3R 1 o S is obtained by noting that, from Eq. (E.2) — = —(2S+1)-R2. dy j 

I (R2 + w) -1 = f (< 
9 2 1 coth^Y _ -cothy H 9 Y Y z sin In ln zY Y2/ 2 

(E.4) 
and 

S = 1 - -(cothy - -) Y Y 
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APPENDIX F 

Rotational symmetry about the z-axis implies that S ^ i s dia

gonal and i s given by Eq. (2.10), and consequently, from Eq. (3.31), 

D(r) and f (r) are independent of the longitude $ . Eq.;(3.74) then 

s i m p l i f i e s as follows: 

£..(ft) = A n, n. 1 l a l y 3 ( 2 S 3 6 + V (F.l) 

&2n r TT 

• I 
(9r r f l r r.-3r r J .-3r r.6 .+«iD(S .) 

sine de dd> r r T r 
"a. 3 y 6 a 3 Y<$ Y 6 ag yS f 3 , 2fl 

'0 " 0 r S t ' c o s H r ; 

where A = -
p y S a n 
48R03 

Upon multiplying through, the f i r s t term I, in 

the integrand becomes 

I. = 3n. n r r . r r_(2S 0.+6 Q.) = 3n_ n r r (2r.r.S.,+l) 1 l a l y a 3 y 6 36 36 l a 1Y a Y 3 6 36 

(F.2) 

and since S . i s diagonal and S = S zz 2 xx - 7 s 

2 yy 

I, = 3n n n., r r (l+S(3cos 2e-l)). 1 l a l y a y (F.3) 

Since integration over <j> eliminates a l l the off-diagonal elements of 

r r to obtain a Y 

I, = 3n 2 r 2 ( l + S ( 3 c o s 2 6 - l ) ) . 1 l a a (F.4) 
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Proceeding as above, the following terms i n the integrand are 

I. = -n. n. r r_6 . (2S..+6-.J = -n 2 r 2 ( 2 S +1) (F.5) 2 l a l y a 6 y6 36 86 l a a aa 

I„ = -n. n. r r.fi Q ( 2 S Q . + 6 Q J =.-n2 r 2 ( 2 S +1) (F. 6) 3 l a l y y 6 a3 36 36 l a a aa 

I = ^ n. n. 6 .6 .(2Sfl.+60_) = \ n 2 S + ^ (F.7) 
4 3 l a l y a3 y6 36 36 3 l a aa 3 

Expressing the components of n^ and r i n terms of polar angles and 

i n t e g r a t i n g over <|>r y i e l d s 

I (3cos 26 -1) r n (3cos 2G -1) 
_ i = s h c o s ^ e -6cos 2 e +1 +2S 
2TT „ I r r J 

( 3 c o s 2 6 1 - l ) (3cos 26 -1) 
+ 2 — + 1 (F. 8) 

I 2 + I 3 ( 3 c o s 2 9 1 - l ) 4S ( 3 c o s 2 9 r - l ) 
_ _ _ . _ s (2cos 29 r- 3) - 3 

. ( 3 c o s 2 6 1 - l ) (3cos 26 -1) 4_._ 1 r 
3 3 J 2 2 J 

2 (F.9) 

and 
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Summing a l l the terms f i n a l l y y i e l d s 

e 1(n) = 2TT A 
(3cos 26 -1) / (3cos 20 -1) 

1*1 . (S + ~ 

(3cos 20 -1) 
+ S — Ocosfo -8cos 20 +1) sin0d0 

J f|(r) 
( F . l l ) 
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APPENDIX G 

The self-consistent equation for S given by Eq. (3.79) 

becomes, on letting x = cos0 
1 

-(3x 2 - l H(S ) B 
fp f ( 3 * 2 - l ) e 2 < dx 

S = " : \ (G.l) 
-(3x2-i)<|)(s)e 

dx 
0 

Letting a Q = —<k(S)8, and noting that 2?= (l+2S)/3 

2 
2 0 r - a. 

X 2 

/"I a Qx 2 ^ - o l l • J 
/ e dx 

where 

(G.2) 

/* ̂  a_x2 0 0 n 
1 = / e U dx = I. a0 . (G.3) 

Jn n=0 (2n+l)n'. 

It is worth noting that the series converges rapidly; since n! >.nne n , 

the remainder after N terms is bounded by 

= J . w • 
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Since i s the order of unity, only about 10 terms are needed to get 

seven place accuracy, thus eliminating the need to use tabulated values 

of Dawson's integral. Eq. (G.2) is solved as follows. The constant 

a^ may be written as 

a Q=|<|) 1(S) (G.5) 

where <t>-̂(S) i s a polynomial in S whose coefficients are known for a 

given eccentricity e from Eq. (3.77). The constant A incorporates 

the oscillator strengths, hard sphere radius, packing fraction, etc.; 

T' = T/A is regarded as a normalized temperature. An arbitrary value 

of ag is chosen to begin with, the corresponding value of S is obtained 

from Eq. (G;2). Once S is known, a, c and e can be calculated for 

a given molecular eccentricity e, and <f>̂ (S) can be evaluated. The 

normlized temperature corresponding to this value of S is simply 
^(S) 

T' = . Thus S vs. T' is obtained simply without resorting to 
ao 

root-finding techniques. S decreases monotonically with a^; T' however 

f i r s t increases to T̂ ,, then decreases. Only those values of S are of 

interest which decrease with increasing T' . Having determined T̂ _, the 
I T.' 

reduced temperature is obtained from the relation 1 - — =1 - — , . 
c c 
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APPENDIX H 

The windows of the c e l l have surfaces which are nearly p a r a l l e l ; 

the f i r s t window has a wedge angle of less than 0.01° and the exit win

dow has a wedge angle of 0.080°. If the windows'had perfectly parallel 

surfaces, then the deviation angle for a i r in the c e l l would be zero 

and would be identical to the reference angle measured with the c e l l 

removed. The effect of the window wedges can be calculated and i f 

the deviation angle measured with air in the c e l l is used as a zero 

deviationaigle, the effect of the window wedge angles can be neglected. 

The wedge angle.of the f i r s t window is only 0.01° and is 

neglected in the following calculation. The geometry of the c e l l i s 

shown in Figure H-3l. Let the prism angle between the windows be denoted 

by a and the wedge angle of the second window by <|>. The angle <j) is of 

opposite sense to the prism angle a for the c e l l used in this experiment. 

Consider a ray entering the c e l l perpendicular to the f i r s t window. 

Application of Snell's law at the surfaces leads to the following 

equations: 

nsina = n sin(\JH-(j>) (H.l) 

n sinijj = n sin (a-<frt-8) (H.2) 
o 3. 

where n, n and n are the refractive indices of the sample f l u i d , 
o 3-

sapphire window and air. Elimination of ty yields 



186 

F i g . H.l Prism c e l l geometry. 
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nsina = n sin(a-(b+6)cosq)+sin<&(n 2-n 2sin 2 (a-(j>+e)) 
SL o cL 

1/2- (H.3) 

Expanding i n sinG and r e t a i n i n g the f i r s t three terms gives 

nsin = a + bsin8 + c s i n 2 f (H.4) 

Since the c o e f f i c i e n t s a, b and c are derivatives of nsina with respect 

to sin8 evaluated at 0 = 0, d i f f e r e n t i a t i o n of Eq. (H.3) with respect 

to sin(a-(|>+0) and!application of the chain r u l e y i e l d s 

a = sina 
1/2 n sin(a-<f>)coscb + sina) (n2-n2sin2'(a-<}))0 * 

SL o cL 

3=0 (HV5) 

, _ 3 (nsina) _ 
3sin0 

1 
2 

n sinctsin(a-d)) 
2 A A n̂ cos<j> . 

(n|-n 2 s i n 2 (a-cb) ) 
cos (a-<J>) 

and 

(H.6) 

_ 1, 3 2 (nsina) ,J, 
2 3 ( s i n G ) 2 

0=0 

n 2n 2sincbcos 2 (a-cb) 
SL o 

( n 2 - n 2 s i n 2 (a-cb)) 
o 3. 

2/2* + n^coscbsin (a-cb) 

n 2sin<bsin 2 (a-cb) 
SL  

( n 2 - n 2 s i n 2 (a-cb) ) 1 / 2 

O 3. 

(H.7) 
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If the c e l l i s f i l l e d with a i r at normal density and the deviation 

angle 0 i s measured, Eq. (H.6) y i e l d s 

n = r~ |n + (sin0-sin0 ) [b + c(sin0+sin0 ) ] | . (H.8) sxna [ a a a JJ 

The use of 0 rather than the angle measured with the c e l l removed 
a. 

eliminates most of the ef f e c t due to the window wedges. If the f i r s t 

window were also wedged, the above expression could be appropriately 

modified. 
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APPENDIX I 

The geometry of the c e l l rotated through an angle 8 is shown 

in Figure L l . and £^ are the path lengths of rays through the 

evacuated position of the c e l l , and through that portion which i s f i l l e d 

with the liquid crystal sample, respectively. For incident light 

polarized perpendicular to the optic axis, Snell's law is obeyed, and 

sin9 = n sin0 1 (1.1) 

where n = n /n. and n. = 1.00029 is the refractive index of a i r . Since 
- i - A A 

JLTcos6 = I (1.2) N 

X,1cos81 = I (1.3) 

and 

Z2 = t sine = (Jl Nsine-Jc. 1sine i)sine , (1.4) 

The optical path length difference L between the two rays is 

1 2 N 

nZ . Jtsin26 Jlsin 2 e I 
+ cos6^ cos6 ncosB^ cost 
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Fi g . 1.1 Geometry of rotated c e l l . 
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The change in the optical path length difference L i f the c e l l i s 

rotated from zero angle to an angle 0 is 

AL = I p n 2 - s i n z 0 - cos0 - n+1 . (1.6) 

Letting AL = (AN+e)A, Eq. (1.6) yields 

ANA 
% + cos0-l 1 + + n = /n z-sin z0 (1.7) 

Letting 

ANA ^ Q 1 

x = — — + COS0-1 

a = -2|f^-+ n 

b = n 2 - ( f ) 2 

and squaring Eq. (1.7) yields 

c2 + sin 20 = ax + b (1.8) 
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APPENDIX J 

If a plane wave of angular frequency o> and wave vector 

is incident on a plane dielectric boundary and k g is the wave vector 

of the transmitted wave, then continuity of the tangential component 

of the E-field across the boundary demands that 

cot-It. »r = cot-It «r (J.l) 
X L5 

everywhere on the boundary. If r is in the plane of the boundary, 

then 

k.cos(f-e.) = k scos(f-e s) (J.2) 

where 6. and 0 are the angles between k. and £ and the normal to the i S i o 
boundary. Since k = ̂  , 

A 

n.sin0. = n„sin0„, l l S S 

where n. and n are the refractive indices in the two media. Thus 

Snell's law i s valid for wave-normals in anisotropic media. 

The refractive indices corresponding to the two allowed polari

zations for a wave propagating in the k direction i s obtained from 

Eq. (A.l). If n 2 = n 2 = n 2 and n 2 =.n2, then, letting e 2 = 1 -
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r 2(l-e 2cos 26) = n 2 (J.4) 

where 0 is the colatitude and r 2 = n 2. If k makes an angle a with the 

z-(optic) axis, then the extremal values of r 2 or n 2) are 

n 2 = n 2 (J.5) 

i f 0 = TT/2, and 

n 2 

n 2 = (J.6) 
^ -i 2 • 2 1-e sm^a 

i f 0 = Tv/2-a. 

The geometry for a plane wave incident on a plane slab of 

sample is shown in Figure J . l . From Snell's law, n^sin© = n^sin©^ 

and n^sinG = ^ 3 1 ^ 2 . The difference in the optical path lengths of 

the two waves is 

In £n„ 
- d = -NX (J.7) cos0^ cost<2 

where we have let n. =1. Furthermore, 
A 

d = sin0(£tan61-£tan02) (J.8) 

and simple algebra yields 
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Fig. J . l Geometry of a plane wave incident on a f l a t slab of sample 

material. 
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n^cosG^ - n2Cos92 
NX 

SL 
(J.9) 

If the wave vector k is perpendicular to the optic axis, cor

responding to the vertical fringes in the conoscopic pattern, then 

a = TT/2 and n„ = n . Then 2 II 

h + ( ! - ̂  3in2e) 1 / 2 - „„(l - i j .ln*») 1/2 = _ NX (J.10) 

and expanding in sin 20 yields 

(n„-n ) 1 + 2n n„ sin 20 NX 

I 
(J..11) 

If the optic axis is in the plane of incidence and is parallel 
n' 

to the front surface, then sina = cos02> and n£ = i _ e 2 c o s 2 

Solving for cos 20„ yields 

cos20„ = 
sin 20-n 2 

2 9 9 9 
e^sin^G-nf 

(J.12) 

and 

n 2cos0 2 = n ^ l - s i n 2 0 ^ 1 / 2 . (J.13) 

Eq. (J.9) gives 
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and expanding in sin z0 as before yields 

(n„-nx) [ l - 2̂ 2- s i n 2 e ] = ̂  . (J.15) 

Eqs. ( J . l l ) and (J.15) predict the experimentally observed motion of the 

fringes in the conoscopic pattern; as n -n x decreases (with increasing 

temperature) the horizontal fringes more towards the center, while the 

vertical fringes move away from i t . 

A commonly occuring mistake in optics text books (see 'Optics' 

by Rossi for example) i s the statement that the extraordinary wave sur

face in uniaxial crystals i s an ellipsoid. From Eq. (J.6) i t follows 

that the wave surface i s given by 

r 2 = -i- ( l - e 2 s i n 2 a ) , (J.16) 

a fourth degree ovaloid. If the wave surface is assumed to be an e l l i p 

soid, the angle of refraction of the extraordinary ray can be easily 

obtained. If the optical path length difference for the ordinary and 

the extraordinary wave is then calculated, using this result, the re

sulting equation resembles Eq. (J.15), except the sign of sin 20 i s 

reversed. The fact that such an equation is incorrect could easily 

be overlooked in situations where n -n A cannot be varied continuously. 



197 

and 

APPENDIX K 

We wish to solve the following equations 

(n 2-l) " 4IT — (1 - 4T7pa l l n l l ) = -r- pa 
(n2+2) J 

to*-1* 4. 
(1 - 4irpaJ_nJ_) = ~~rT P a j 

(n2+2) ; J 

n„ + 2n =0 

a.. + 2a, = 3a 

Letting 

(n2-D 
z = 

(n2+2) 

and 
(ni-1) 

x = 
(n2+2) 

elimination of n from Eqs. (K.l) and (K.2) yields 
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Elimination of a from Eqs. (K.5) and (K.6) gives 

ba 2 + a„(3-3ab) + 3a = 0 (K.6) 

Solution of Eq. (K.6) is 

a„ = [3(ab-l) + /9-30ab+9azbz, (K.7) 

and then a_,_ = (3a-a,()/2. Since a„ = a+2AS and a_,_ = a-AS, the order para

meter S is given by 

S = - 3 ^ — . (K.8) 

The anisotropy tensor n is obtained from Eq. (K.l); 

n = T2" (K-9> 
11 4irpa 3z 

and n, = - \ n • (K.10) 
11 
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