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ABSTRACT

A method of computing the effects of - a
magnetic field cn the structure cf a stai is
discussed. The field is restricted so. that
the magnetic fcrce. is derivable from a
potential, which allows the development.of a
simple' . expression for the . field and
diétortionvto the star. .The :J'2 technique .is
used. to derive the perturbed equations of
stellar 'structure, the only difference frcn
the 'unperturbed . equations. Dbeing an
-alteration to. the effettive"gravity. as ‘a
function o¢f radius. This method is applied
to the computation ofvthé. structure . of - an
upper . main ..sequence . star ccontaining a
dipolar magﬁetic“field;, The.. cases. of the
flux  penetrating the convective core, and
the flux: excluded from = the.  _core. -are
-considered., . The changes in the _structure of
the star, the distortion of the surface and
the expected .changes in .the observable.

quantities are calculated. ,
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1.. INTRODUCTION AND REVIEW

Stellar magnetic fields were first observed in sunspots by
Hale in 1908, and general high intensity stellar fields were
discovered by Babcock in 1946. Since then a 1large .amount of
observational data has been accumulated on magnetic stars. . The
measured quantity is the effective longitudinal magnetic fielg,
ji.e., the component of the field in the observer's line of sight,
averaged over the visible surface.. The effective field is in-
ferrad from the Zeeman shift between right and 1left circularly
polarized éomponenté of . .a spectral 1line (4). 6 The extremely
small displacements produced by the Zeeman effect are . cnly nmea-
suiable because the magnetic stars have very sharp lines, which
is taken to mean that they.are slow. rotators (29). The . quocted
fields have to be viewed with some caution., Edrfa (10,11) has
shown that there may be significant errors in the measurement of
ehe effective field if one only measures the centroid. of .the
line, while .disregarding the shape of the line.. .In addition,
the fields are found from.an average over several spectral lines
which feflect significant intrinsic variation in . the. field
strenth, The magnetic fields found in this way vary between the
limit of observation, about 100 Gauss, and 34kG (4,5,50) which
is the largest field measured for a main sequence star.

Magnetic stars are confined to the narrow range cf spectral



| types from B8 to.A0. Due to their anomolous abundances relative
to other stars in this temperature range, they are classifed as

Ap stars(29,50).
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Fig. 6. The color-absolute-macnitude-spactral type dia- ~
gram in the region of the peculiar A stars {491 and me-
tallic-line stars (ML), [Adapted tmm U. EcCEX:
- Astronzm. J. 62, 43 (1937).] See text.

Depending on the surface temperature different elements are
over or underabundant (44) sometimes as much as one thousagd
times with respect to a normal star., Ap stars were 1lcng known
" to exhibit photometric variations in their brightness and co-
lour, usually with an extremely regular period. In addition
they exhibit spectral variations, particulary of the peculiar
2lements. .

The discovery cf a magnetic field which in most Ap stars
varied regularly with essentially the same pericd és the sgec-
tral and photometric variations was hailed as the unifying.
characteristic., Of course there are many excepticns, some A§
-stars.show no magnetic field, and some magnetic stars show no
reqgularity of field variation. A numbef of excellent ;evieus of

the magnetic stars can be found in the references

4,5,21,29,37,49).



1.2 Epperical Models of Magnetic Stars

The empirical model which has .been best elucidated, and
which pfovides an extremely neat and efficient framewcrk for the
observations .is the oblique rotator modell, It . was first pro-
posed by Stibbs (102) and la;er elaborated by Deutsch (29).. One
of the best. recent uses of. the model is Pyper's analysis of «2
Canum Venaticorum, which includes detailed maps cf the magnetic
field and element distribution over the the surface of the star. .

A simple dipole. field in the 6blique rotatér_ mecdel  gives
only sinusoidal variations of the field and hence.cénnot.explain
the assymmétrical shapes. of the magnetic field variaticn, Con-
sequently Landstreet (48) proposed a decentred dipole (decentred
as much as 2/3 of .the stellar radius for 53 Cam). which provides
a much nicer fit to. the observations. However this may be
mostly due to the introduction of an additional free patameter.,
Chiam and Monaghan (16) provided an equally close fit by mixing

a quadropole component with the dipole.

1.3 The Theoretical Problen

The theoretical problem posed by magnetic stars is more or
less separated into two areas;.the explanation of the observed
characteristics of the spectrum, which means consideration. of

surface effects of the magnetic field; and the investigation of



the unobservable interior field structure.

1.3.1 The Surface Efects |

Preston (84) has written an excellenf summpary of fhe sur-
face effects of magnetic fields. Only the major points wiil be
discussed here, .

Michaud (60) proposed that the magnetic field would stabi-
lize patches. against any small tendencies to mix the.atmosphere,
thus allowing the radiation pressure to drive a diffusion pro-
cess, . There is also the posssiblity of surface. nuclear reac-
tions (35).»_Particles,accelerated to very higﬁ energies by the
magnetic field.surrounding,the star would come craShing. in at
the poles to react with the surface eleménté. It is interesting
to note that Aller and Cowley (h) tentatiﬁely idehtified.Pm‘inAa
mégnetic star, the . most stable iédtope.of.?m having a half life
of about 18 years. Other current theories invoiQe‘binary Super-
novae and accretion. |

The photometric characterisitics are now generally believed
to be a consequence of the non-uniform distribution of elements,
which redistributes the flux through backwarming and line. blan-
keting.,. Specific computations were made by Peterson. (81) for a
tahge of Si abundances and Wolff and Wolff (114) for the dif-
ferent ionization states of the rare earth elements. Both of
these were able to produce variations. of the proper .magnitude,

although there are problems with respect to specific types of Ap



stars. Trasco (107) has magnetic flux tubes emerging over the
surface, and the magnetic ©pressure creates local hct spots..
Also the distortion of the star by.the>magnetic field would pro-

duce light and colour fluctuations,

Strittmatter .and Norris (103) have tried to unify the Sur-
face effects of maénetic fields to presant-a plausible outline
of the evolutionary history of a magnetic Ap star. They consi-
der how £he magnetic.field interacts with rotafion, circulatioﬁ;
convection,.accfetion, mass loss, and diffusion., .In brief, they
find that if the.magnetic field exceeds an .initial crifical
value the _external field will not vanish beneath the surface;
thus allowing magnetic braking to slow the.star..A.As the . star
slows the drivihg.force,for“circulation.lessens4untilwthe magne-
tic field is‘ablemto entirely suppress it, and a diffﬁsion Fro-

cess can establish the abundance inhomogeneities, .

1.3.2 The Interior.Field Structure

The interior fields of.magnetic_starslare speculative.quan;~
tites since there is no direct observational evidence. to guide
one through an extremely complex and intractable problem, There
are severalﬁimmediate,questions;.hou.ihe field gotuthére in the
first place, what the .detailed strﬁcture of the field 1is, and
how the internal field is related to the observable surface
field.

The only general theorectical equation which covers real



stars with magnetic fields is the virial theorem. Invoking the
global stability condition.that the total energy must ©be nega-
tive Chandrasekhar, and Fermi (22) showed that the maximum RMS
magnetic field is limited by:

JHY < ax 10° M/[Mo .,

(R[Re)"

What is.the origin of the field wifhih the . staf? For
strong magnetic .fields the fossil theory seems to be the most
likely answer. During the collapse of the protostar. from the
interstellar cloudsVAthe gas becomes ionized and"tbe.magnetic
field lines are "frozen" into the collapsing cloud, The inter-
stellar magnetic field of 10-6 G is more than sufficient tc pro--
vide +the maximum. fieid .allowed by the virial theorem. With
simpie aréuments.for.a poloidai field Cowling (21) ..shcwed that
the decay time .is of the érder‘of 1010 years.,Asince.a fossil
field would,proéide magnetic braking, this theory .prcvides é
mechanism for the explanafion of the generally slcw rctation of
the magnetic stars.f It is possible that fossil fields .may be
present in many stars, but the interior and extericr fields have
been separated and. the exterior field later lost.

The dynamo theory provides a. magnetic field by transforming
the kinetic .energy of 1large scale mass motions.into magnetic
energy, but the dynamo requires a "seed" field for  its  initial
operation. This . mechanism is not particularly simple, since
Cowling's celebrated anti-dynamo. theorem precludes the main-
tenence of an.axisymmetric field by symmetric mass.motions. .

The battery effect (91) converfs thermal energy into._magne-

tic energy, through the gravitational and rotational forces pro-



" ducing a slight. charge separation between the electrons and
jons, This.is the only.mechanism enﬁisioned so far  which re-
Quires no initial. field for its operation. Unfcrtunately the
mechanism will not work.at all if any poloidal magnetic field
component  is . .present, . and in any case it is only carapable of

generating very weak fields.

1.3.3 The Dynamics

The discussion of the origin of the magnetic field =serves
to introduce the crucial interaction between the magnetic field
and the mass motions within the star. The problenm is essentia1¥
ly dynamic and static solutions méy.impose too great‘a_.restric-
tion on the field. . to be representative of the true,field., In
spite of A desire. to provide truiy general solutions the proklenm
rapidly becomes so hopelessly complex'thét little can be dcne. .

‘The stability. of a star qith’a.magﬁetic.field has_been dis-
cussed in a number of recent papers., HWright (119) and Markey
and Tayler . (53) _both used Bernstein's energy principle (6) io
find that a purely poloidal field is unstable tc . "kink" and
"sausage" type . instabilities., A purely toroidal field with a
non-zero current density on the axis of the star'is.fcund to be
unstable - to .interchanges of +the. flux tubes (105,109). . This
would occur near the centre of the star where cdnvective“motions
are important, the:'interaction being unclear. These pure fields

are unstable, but if a poloidal and toroidal field c¢f <rcughly



squal_ magnitudes are.mixed, the resulting field is 1ikly to be
stable., It may be ncted that their analyses made .a number of
simplifying. assumptions which may lessen the impact of these
instabilities. The equations were incapable of saying anything
about the. size of the oscillations, merely whether or .not the
state was stable, . .Consequently the 6scillations, althcugh §re—
sent, may be guitelsmall.z In addition the geometry was simpli-
fied so that any .significant departure from equilibrium. wéuld
severely strain the assumed field structure;v.lt,is interesting
to note that the predicted-period'of_oscillation isvcf the order
of the size of the region, divided by the Alfven.wave velocity. .
This period ié of . the order of an hour, which is .rcughly the
period of thé_high.frequency oscillations observed in the . light
variations (49).. Only the most rapidly.occuring,llargest scale
instabilities were investigated. . In additi6n there. are resis-
tive instabilities.and.micro-instabilities whiéh“may,havevan,an
important role, These instabilities put added restrictions on
the interior. field. .structure on.a real étar, and require.moie
complex nodels té_fhlfil_the étability criterion.,.Ih»particuiar
they suggest that probably a toroidal and poloidal field cocex-
ist,

The most common. tﬁeoretical nodels of the magnetic stars
follow fron the oblique rotator . model, i.e. a magnetic field
fixed in a rotating star. Mestel and Takhaf (59) have investi-
gated the internal dynamics of,the:obliqﬁe rotator.. By ~consi-
dering energy dissipation. it is>foﬁnd that the angle between,tﬁe
magnetic axis and the rotation.axis decreases for an oblate sﬁar

and increases for a prolate star. The time scale cf the process


http://dissipation.it

is easily dapable of changing the angle of obliquity within the
time scale of a star.. The internal motions Also lead tc mixing
of material between the evolutionary core and the surface
layers, | |
o Rotating stars . are well known to exhibif meridian . circula-
tion, ahd in general one. would expect that even a non-rotating
magnetic star would have some circulation. It is possible . that
the magnetic field is sufficienily,well frozen iﬁtc the material
that no circulation.across field lines is allowed.  .For a rota-
ting magnetic star the .two fields maf‘interact‘in such.a way thé
circuiation,is‘entirely suppressed, in which case Ferraro'é law
of isorotation.requiréé that the angular veldcity ﬁe ccnstant . on
stream lines (34) .. Maheswaran.(57) has.calculated the evolution
of a prescribed magnetic field in a prescribed circulationAfield
and finds thét the flux is expelied from the the middlé_of the
éirculation zone, .leading to a concentration of_fhe flux towards
the poles of the star.. |
The specific.effects of rotation have different .quélitita?
tive features dependent:on.the rétio of the rotéfional to magne-
tic energies, and.on.the geometry of the field. . O0f particular
interest ‘is Mestel's-remarkﬁ(57)‘that a weak. magnetic field,
which constrainé-a"star tc uniformvrotation, sets up a circula-
tion which destroys the initially conservative, i.e. curl free,

centrifugal force.
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1.3.4 Convection..

The problem of stellar convection iquﬁite difficult, even
without the complicating effects of a magnetic field, rotation,
or a combination of the two, If. initially there is.a magnetic
field in é zoﬁé,which.is unstable to convection then;the.work of
Weiss (111).suggests that the eddying motions of the .ccnvection
would expel the field. This process results in the destruction
of some flux at the centre of the eddy through resistive. dissi-
pation, and a concentraticn of the expelled flux at the borders
of the eddy. This process occurs on a time scale of a.few:times
the eddy turnover _time, which for a. convective core. would be
considerably shorter than the main sequence lifetime cf the
star;_ ‘A : | . . e

Tayler, his co-workers. (74,75,105), and KovetzA,(16) have
discussed <criteria. for cconvective stability. Gough_and Tayler
obtained a relation . for stability in an infinitely ccnductive
plane parallel compressible fluid. The simplified stability

aquation is:

q
B Vertycal > V - vao(. .
¥YP + By '

It is readily seen that. the field has a stabilizing influence on
convection, .but for typical central stellar pressures of 1017

dynes/cm2, very large magnetic fields are required tc supress



1

convection in the core., This criterion may be useful in the
core where the gradient can be set equal to be adiabatic gra-
dient to very high accuracy, but provides no equation fcr. stel-:
lar. structure . in the envelope, where some dynamical theory,
2.9, mixing length theory is required,

Stothers and Chin (104) and Moss and Tayler (75) have com~-
puted models of upper main sequence stars with convection com-:
pletely suppressed in the cores, although it 1is possible  that-
the mwmagnetic field may intefere with the convection cnly to the
extent of making. it a less efficient energy transport mechanism, .
The models found have evolutionary histories incompatible with
observations of clusters. Hence radiative cores do not seem to

be viable.

1.3.5 Static Field Structure Models

To make any progress in the construction of models of mag-
netic stars a great number of simplifying approximations must be:
made., The earliest models were very simple indeed, but served
to outline many of the qualitative features of more complex ao-
dels, - and also provided a path of analysis which could be ex-
tended to more realistic cases., Several excellent reviews are
-available (21,55).

Briefly the first models assumed that the star was barytro-
pic., This implies that the magnetic force/unit mass must be

derivable from a potential,i.e..
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» (VxH)xH]) B
YV X (~ = O.

Ferraro applied this condition to_ a liquid star. .mcdel (34).
Later Wentzel added a torocidal field component (112) to a liquid
star with a poloidal field. These two components.cf'the.fieid
in concert with the barytrcpic condition greatly restrict the
possible field structures, Wen£2e1 was confronted by the.prob-
" lem of surface boundary.conditions for thé field. .Either force
free fields give rise to.large surface stresses, which must be
balanced by an external field; or the surface field .must. vanish.
An exact solution with the surface field vanishing was foundi by
Prendergast . (87), . which has the interesting pfoperty of being
spherical. Woltjer (115,116,117) and Wentzel (113) extended
these results .to include more,realistic_density distributions.
Attempts were made to . establish the stability of .the field
structure, but since .thermal .equilibrium is entirely igncred
these analyses have.little applicability to realistic . stars..

Any hon-spherical,perturbing force is éapable” cf driving
circulation, .which in turn is capable of distorting the original
perturbing force.  Roxburgh .looked. for sdlutions_uhere the cir-
culation and magnetic.field had come into equilibrium.  Solu-
tions wefe _obtained . only. for two cases: a dominant.rctaticnal
force with a weak magnetic field maintaining the. star iﬁ nearly
uniform rotation,.and a dominant toroidal field.. .

Roxburgh (90) .presents fields for realistic, non-polytropic
stars which are made.selffconsistent by restricting the pertur-

bing magnetic field to be independent of the circulation which
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it drives. This is done for a weak.toroidal field déminantéd by
rotation and. for a toroidal field which dominates the rotatioﬁ
and the poloidal field. | |
Roxburgh also. examines a mixed toroidalland poloidal field
in a polytrope. (92).. This results in an eigenvalue equation for
the magnetic stream function. The field is forced to vanish at
the surface-to;meet,the.condition of being derivable frém a
stream .function..,nVan4 der Borght has exténded Roxburgh's re-
sults, in éarticularmcalculating,the shape of the star,. |
Mohaghahnhas.extensively_investigated of polytropes with
large dipole magnetic fields. He sets out the perturbation. te-
chnique forNthe calculation.of the change in the' star's struc-

ture (61). Any variable Q(r,0) is expanded as

Rr,8)= 6ulc) + 2 [ Q) 3 9, (r) Pulcose)],
where Qo(f) is the unperturbed zero order valﬁe, }pa‘paraméter
of order of the ratio of the magnetid field enrgy. to the gravi-
tational energy, Qho.is the first order spherical perturbation,
and Q y, the nonspherical term.

The resulting polytropes a;e‘ ‘aistorted intc. cbl&te
spheroids, .contracted with respect to the originalfnon-mégnetic
model;' later Monaghan (64) repeated the analysis. with .poly;
tropes with a simplified. aﬁd improved perturba£ion,éxpansion
,qwhich:incorporates.some of the magnetic effecfs in the spherical
model (not fhe.zero.order.model).

| The basic type of perturbation expansion has been. extended

by Monaghan to .more.realistic stellar models (63), i.e. they

include thermal equilibrium. In turn this has ©been extended
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agéin to rotating.magﬁetic stars by Davies (28),.ﬁright X118);
and Monaghan and Robson (70). None.of these models include cir-
culation, The first ordér‘terms.comprise a coupled set of non-
lineér differential equations, involving the.non;spherical per-
turbations to .the pressure, density,:temperature,..and ,éravita-
tional field. . The .magnetic field stream function is found by
using an iterative technique on the set of non-linear. equaticns.
The so-called pseudo-polytropic magnetic field obtained from
é:b B 2*3. /é , :
dr‘ —F‘ ‘f

is used as a starting approx1matlon._ Note that Y% 1mp11es that
the field 1is only dependent on the spherical model.. . The f1na1
field found exhibits a.quantitative change of about 25% from the
starting'approximation, but retains the basic gqualitative fea--
tures. . . _ o S

Fof the . case of rotating star, if the surface pclar field
strength is held constant as the rotation velocxty is increaseg,
then the ratlo of central field to polar fleld strenth increases
from about 30 for a.non-rotating star, to about 1200 for a star
with a ratio of rotational to magnetic force of about 106, Sim-
ilérly if the interior magnetic flux is held conétant as the
rotation velocity increases, the emergent flux decreases to zero
at some finite limit .less than the break up velccitf. The se
results are dependent only on the ratio of rotatlonal to magne-
tic force and not on their absolute. valnes relative tc. the total
energy of the star. (for weak fields anyway). The shape of the
star as determined by Monaghan and Robson is dependent on what

one takes the surface to be, a surface of constant pressure or
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constantvtemperature,.which are not coincident surfaces in these
models, In fact the constant pressure surfaces are considerably
more oblate. |

This 'type of._model has been extended to more .complex field
structures. . Monaghan.(67). has placed the dipolar field at. an
angle to the rotation axis and found that for a . given surfaceA
field the maximum _central field occurs when the.ahgleﬂ_cf cbli-
gquity 1is zero. .Unfortunately these results aré.not very com-
plete because of. a problem of cénvergencé. Chiam and Mcnaghan
'(16) incorporated:,a nultipole  magnetic field in a .polytrope,
using the same basic analysis as Monaghan’s earlier wecrk, but
with a stream. function extended to,higher,mulfipoles., |

These types of calculations were further extended to simple
realistic stars by Monaghan (68) and Moss (72).,.The set of e-
quations thch result from the perturbation expansicns are. an
extensive set. of. nonlinear differential egquations, which aré
solved by recourse to the pseudo-poiytropic approximaticn for a
starting solution. The resulting field structure"ié similar to
the rotating dipolar magnetic stars; the interior .concentration
of the field increases. with rotatiop, for a given flux there is
a maximum rqtation.rate for the existence of- a sclution, and
there is a minimum value that the ratio of magnetic .field energy
to rotational. energy..can. have asvthe.rotation increases, . In
contrast; themsurface.fieid need nét vanish above a certain. ro--
tation velbéity,_sihce.thé quadropole component dcés(nct vanish
with the dipole component. | |

Recently attempts have been'madé td move o©n. frcm,.these

static models to more realistic dynamic models., Monaghan (69)
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has calculated the decay of the field and Moss (73) tried to
include some circulation. |

A different type of model. has been put ferth by Trasco
(106) . He assumes that the stai coﬁtains a random magnetic
field which introduces an .isoéropic magnetic préssuie. The
field is obtained from a flux freezing consideratioﬁ, where deéﬁ
Trasco's model is spherical .and therefore amenable  tc standard
stellar model 'computer programs modified only by including a
magnetic pressure .term to the gas préssure. There>are no "first

order" or "non-spherical" terms to be explicitly calculated.

1.4 The Purpose of This Investigation

This thesis calculates the magnetic field and . the .. stellar
structure by. a method in the spirit of Trasco, and.similar to
the one used for rotating stars.,.  .That 1is, .a. realistic pre-
scribed‘ dipole field, based upon the star!'s spherical. structure
is used to provide. a magnetic force.which incorporates.the basic
structural changes in the spherical model, thereby:avciding the
problém of explicitly calculating the non-spherical .terms. The
Henye technique for.calculating stellar models is nearly tri-
vially adapted to this,. In.addition it can be easily . expanded
to include dynamical .and evolutionary changes., All.these possi-
bilities are of great practical value for a model of a magnetic

star.,
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The full set. of. egquations which must be satisfied for a
complete dynamical.description of a magnetic star are. described
in Roxburgh .. (90). .and elsewhere, . .Only the equationé which are
left after making the varicus simplifying assumptions will tLe
repeated here. , | |

First, . ﬁhe .greatest. simplification.. This. model. has no
dynamical features, .which immediately. means all guantities are
independent .of time,..and hence all time derivatives are .zero. .
Next,>there are no.large scale, ordered fluid moticns.within the
star, such_ as circulation . currents. This asssumption of .a
static model greatly.alleviates the computational.burden by al-
lowing us to ignore .such diverse effects as viscous energy . dis-
sipation, energy.transport by .circulation, balancé of the toroi-
dal forces,4.ahgu1ar"ﬂmcmentum transfer, and différehtiél'rota—
tion. These effects .although important in. tﬁemselves,.,can bé
investigated _separately. andfaré not necessarily.crucial.té ﬁn-
derstanding how the magnetic field would effect the .star.. .To
sihplifyA.the. electrostatic equétions weAassumevthemétar is a
perfect conductor, which considering.ﬁhe high. densities and temn-
peratures is not. unreasonable., These assumptions leave us with
the following.equations,. .

Hydrostatic equilibrium,
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VP .9} +nta T,

(2. 1)

P is the.pressure,ae is the densitiy, £+ is the rate cf anqgular

rotation, @ is. the distance from the axis of rotation, J is the
current density, ﬁ is.the magnetic. field vector, .and @.iﬁ the
potential field acting on the star, which is usually only self
gravitation. ... |

The gravitation potential is given by Poisson's equation,

BAVARIE Hn C ¢ .

(2. 2)
For energy transport by radiation the flux is
ﬁ? o ~Haee 73 VT
- -T 1 [
t 23
The energy can be transfered by convection if,
44T _ 3-8
Ve e 7 VA T : -
32- 248 - 387
(2. 4)

The ratio of gas pressure .to total pressure is given by/3 .

The a2quation of state for a perfect gas gives the gas pressure
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{(2.5)
The radiation pressure is

a
P. = ;TV.

r
(2.6)

Energy conservation, with the above assumptiocns is simply

—

V-F =<0

(2. 7)

where € is the local energy generatiion rate per gram of ma-

terial. . .
.b »
Perfect conductivity implies E=0 everywhere in the star so

Maxwell's equations reduce to

) -2
vxH = =

g (2.8)

(2.9)
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The Lorentz force produced by the magnetic field,

-—
-—

. — —_—
= T x M
F. , | | |
[ .
. (2.10)

zan be decomposed. by using (2.8) and splitting the field into

toroidal (Hy) and pcloidal (HP) components, then

- - - pr s - -

(2.11)

The last term. in (2.11) is the only toroidal force and can only
be balanced by the convection of angular momentum by circula-
tion.  Since circulation has been explicitly assumed not to

exist, the toroidal force must vanish., Therefore,

—

(X7X.;j4. ) X #I° = CL

(2.12)
which implies
Hy = Llr0) Vx He

(2.13)

'with (2.9) this means that the field is derivable from a

stream function,

Now (2.8) when decomposed says
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\7 X He = 47 \7:: .

[4

(2.14)

We require that J p goes to zero at the surface. Cchnsequen-
tly (2.13) combined. with (2,14) implies that for a mixed
polidal-toroidal .field, the ©poloidal field must go to zero. at
the surface, Hence it cannot match onto an .external. field,
This condition on the polcidal component of the current can also

be statisfied if H4 or H_ are zero throughout the star.

P
This boundary condition causes the magnetic fields to ke
partitioned into three distinct sets;
1) a purely toroidal field,
2) a mixed toroidal-poloidal field which is ccnfined to
.the star, .. ... .

3) a purely poloidal field which matches cntc an exter-

nal field.

To obtain an observable field, the third choice was taken,
At the outset . it should be pointed out that Wright and Markey
and Tayler have shown that a purely poloidal field is. . unstable
to MHD instabilities .in the stér._ The instabilitiesﬁdccur.at
the © type_netralﬂpoiﬂt,.which is located at about.1/3 the stel-
lar radius from the centre. Thus the oscillations may be greaﬁ-
ly damped in the overriding.layers of tﬁe star.. ..

In spite.of these instabilities it .  was felf that purely
poloidal fields vweré ~a realistic .épproximaticn wcrth doing.

Ot her research has been done on magnetic fields of this type so
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that at least the method of computing the changes to the stellar
structure could be-éompared.. Additionally the technique can te
sasily extended to toroidal and mixed poloidal and toroidal

fields,

2.3 The Magnetic Field Fcrce Potential

For .simplicity of.  calculation of the stellar structure,
where methods exist .to handle .perturbations due tc rctaticnal
forces derivable from potential functions, we restrict the . field
to tﬁat subset for which the force per unit mass is derivable

from a potential function, that is
‘7)f(f;L) = 0.
¢
(2. 15)
Then the equation of hydrostatic equlibrium reduces to

\VA L
VI | _y |
f £ o (2. 16)

where f.can, be .decompcsed 1into a gravitational pctential,

)ﬁ plus a potential for the perturbing field, f} :

(2.17)
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Consequently all physical structure quantities P,T,and ¢
are constant on surfaces of constaxnuﬁ, and hence the opacities
and energy generation rates are constant also, This consider--
ably simplifies the calculation of stellar structure,,

How realistic can a magnetic field this restricted be?
This field is not intended tc give a representation of the de-
tailed internal structure of the field, rather it is prcposed as
a simple and computationally quick way to calculate the. gross
effects of a magnetic field on a star, and the gtoss features of
that field., This restriction of potential derivable disallowus
only non-conservative magnetic force fields, and still leaves a
vast selection which shculd adequately perform the functions we
require of then, .

How as noted from (2.13) the magnetic field is derivable

from a stream function, ¥, such that

LjP = (Y'r,é) V7‘Y? X 93 .

(2.18) -

Taken with (2.9) this specifies f£(r,®8) and therefore in

spherical co-ordinates,

i} . -1 2 ¥ i EL:? c;)
P'(#’égei’é’ rse6 ) )

(2.19)
The major contribution to the observed fields is assumed to
be a dipole field. Therefcre we choose ¥ to represent a field

which will match onto an external dipole. A dipole has a strean

function'i;ﬁr—lsinze so for the internal field‘ue chose
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= B b(r) w28,

(2.20)
where B is chosen .so that b(By)=1.
Substituting (2.20) into (2.19) gives
Fo. @ L(b”-2%)
—_— D e— r* rt _ 291)’ - Jmée&.?b 0].
f “17 T ) - F J

Noting that. the vector term in brackets in (2.21) is the
gradient of b(r)sinz (8), all we require for the potential is
that

b~ 2b

V(“\:; \_(-—f‘)xv(bog?ﬁ) = 0.

(2.22)

We reguite a general b(r) which satisfies this nonlinear
equation (and.note.that *f is coupled to b in a first order
correction). . Monaghan's work with polytropes shcwed that an
exact solution . for b(r) from the first order perturbation expan-

sion, is given by ‘
| w_ 2ab
(b7 %)

f ooty trope

= Coh\+%to

(2.23)

This has been succesfully used as a starting pcint for the
solution of the nonlinear equations resulting from the same ex-

pansion made to first order for real stars, These =solutions
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were found to differ little from the initial apprcximation to

b(r), the so called pseudo-polytropic stream function, given by
1 b - 2b
Y rr
fo (r)

= C?ovxsfiﬂwf.

(2.24)

This is what is used herein to obtain the ragnetic field,‘
with the added. distinction. that f%(r) is no longer the zero
order density distribution, ratheinit is the spherical part of
the density, now perturbed by the magnetic field.. . .

Substituting . (2.24) into (2.21) and integrating we obtain

for the magnetic force fotential,

Y

1}
O—.
)
N—
N
)
@

(2. 25)

1t should'be noted that. (2.24) ‘does not give a completely
consisteﬁt equation for the field, since the fcrcing functicn
(rz and the boundary conditions. are evaluated.on the <spherical
part of the model, not on the oblate spheroid which the magnetic
field causes.the star to assunme, .. '

The . boundary. conditions for the magnetic field are quite

simple. The field must match onto an external dipcle, =0 at the

surface we have

b(Ry¢) + Ry bl (Ry)=0.
(2. 26)

At the centre we require that the magnetic force vanish, so



26

}3(0)’;0) b/(O): 0.

(2. 27)

Equation (2.24) is linear and the solution can be expressed
as a particular solution plus a constant times. the scluticn to
the homogenous equation. The solution of the homogenous equa-

tion is

(2.28)'

Consequently if the field extends to the centre cf the star
the boundary condition.(2.28). .requires that él=0.. On the other
hand the field may not extend to the centre and ancther field
structure arises., . Although the influence of convection on the
magnetic field is not. well understood, there are.several egquili-
brium possibilities. . .The field. may suppress convection, the
field may be expelled. by the convective motions, or._there. may be
some sort of coexistence, As.mentioned above»it .seems . that a
star with totally suppressed convection in the ccre is . not very
plausibie (104) . Weiss (111) conducted investigations.into .the
expulsibn of flux by eddies, which“indiéated that _the field may
be expelled from the core., To represent a magnetic field which

has been expelled we set

b(r)=0 /A\ O ¢ rtr

(2.29)
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where r. is the radius of the convective core. For.the solution
of. the homogenous. equation. we match (2.28) onto (2.29) which

2liminates one of the constants, and

- 2 o~ 3
bk = Q. (Y~ C ).
-
(2.30)
Unfortunately (2.30) implies that at the boundary,
! 3
(2.31)

which results in a discontinuity in. .radial force. across the
boundary of the. convective core. But as the results.of Weiss
shod there is an extremely high concentration of flux at . the
2dge =of»the eddies., . Thus while there are no disccntinuities we
might ekpect an extremely rapid rise in b'(r) across. .the _.boun-
dary.. A discontinuity is not .very palatable, but.it was felt.
that the alternative of fitting a.polynémial to smooth it out,
or any other. artificial device would be even less acceptable,
Also the discontinuity in total force, magnetic plusigravitation
is relatively small, so.as.long as fhe stellar.structurewprdgrém

was able to converge, the approximation was deemed adequate.
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3. THE EQUATIONS OF STELLAR STRUCTURE

3.1 Expansion .Of Potential and Variables
The magnetic force.potential of (2.25) combined with the

gravitational potential can now be written as,

| a2 (B*
$- 40+ 3 8 b [|-R(e0)].
(3.1)

To specify this. potential completely, we need.tc know ﬁ
which is comphted,from.Poisson!s“equation. Note the .perturba-
tion is composed .of a spherically symmetric term plus a Pa (W
term,'where/u=cose.” Any variable Q can be expanded in a

Legendre series,

§ = Qs(r) » 2 Qu(r) B (co®).

~= )

(3. 2)

‘We would expect that the dominant perturbation to be that
one forced by the Ptj}),term of the magnetic potential., We will

explicitly make this assumption. P,T, andg( will be expanded as

R = Q) +Q,0) P (u).

(3. 3)

If Qo is of order 1 then Ql_is of order
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@2
4 K
)\ﬂ = G My

—
R

i

(3. 4)

With the expansion for as above .the Poisson's equation

for the gravitational potential becomes

vz

~n=d

¢\ P\ (u) = I/ITC (f° ff1 pl/u/),

(3.5)

Oonly the f,and q& terms are left with ¢ expanded as abcve.

The pérturbation .is handled in a manner similar to that
used by Faulkner, Roxburgh and Strittmatter (32). and thek Jz2
method of Papaloizou and Whelan (77).. The spherical terms are
found by evaluating. the equations at the point P;(A):O,. on .a
surface of cénstant. potential., This is an exact treatment of
the perturbation, except for approximations later made when eva-
luating the integrals over .the nonspherical surface. . The full
developmen£ of the. equations is given in Appendix I. The resul-

ting equations are, to first order,

L db _ - C'Mr(“l),
€ dep B Yo ’

(3.6)
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(3.7)
AT . -3xp ke
— - ,.._____—————"’_';/ ' ad jve
dr, It mae fo? T ) (rediohive)
(3.8)
L (eonveedine)
A L P 32 -24p 3R ,
(3.9)
. R LT
P wp ! )
(3. 10)
. Ry sl
(3 T = P/
(3.11)
: 80 %
- 4 : ]
e Me /e
(3.12)

The essence .o0f this method. of calculation of the stellar
structure is simplicity. By taking the distance tc a. potential
surface along. the 1line P ( )=0 as the radial coordinate, the

stellar structure equations retain their orginal fcrm. The cnly
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change. is a first order ccrrecticn tc the mass.  Similarly the
various perturbations to the stars structure are easily calcu-
lated, The details of the calculation are outlined in Apperdix
II.

The energy dgeneration rate was taken from Larscr and
Demarque (47).. The opacities ﬁeie fcund £rcm the .analytic fit
to the:Keller—meyerott.opacityTtables used by Sacxmanﬁ-and Arand
- (96) . . The equations'were-integiated vusing the relaxation tech--
nique ‘outlined by Larson and Cemarque -although. the . €quaticns
were changed tc neglect degeneracy pressure .and to include ra-
diation pressure. . The,composition;chosen was X=,80 -apé 2Z=.02,
corresponding tc a pcpulaticn I star.., The spherical,:non-magne-:
tic starting models calculated aéree well with.the'resulfs"of

other calculaticns,

Table I: Comparison of Initial Models.

| § = T = - —p————— » T " - ; -
1 M/t 1 log(L/Lg) | 1log(Te) | log(R/Re) |
3 o : + ‘ L ~ v 4
| .
| 1Iben's Models X=,708 Z=,02 .|
s i 1 k . ¥ |
T L] X X T . R
| 9 | 3.65 1 4.41 ] ¢ .84 .
i 3 | 1.97 ] 4.1 1 <24 |
'l = N 1 i _J’
| |
| Unperturbed Mcdels Used Here X=.80 2=.02 A
1 I I i 1 3
) L s } § B - L | * T AR
| 10 1 3.61. | 4.36 1 .61 A
| 5 | 2.26 | 4.19 RERRY Y |
| 3 I 1.69 | 4.05 ] .28 |
L i - | - 4 . J
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3.3 Th

to
[[=]

istortion

Substituting the expanded physical variables intc the stel-
lar structure equaticns and eguatiné the nonspherical texrns,
i.e. those with a ccefficient cf P#(ﬂ), cr.its.deriﬁative;xgives
a set of equations in {%,fﬁ.11 ,‘9{,-and 9{.? We point cut that
the nonspherical part cf the magnetic perturbing potential is
determined from the spherical model alone. ., Since all ‘quantities
-are constant on surfaces .cof constant;f ,'we,onlj%need to use
these :quantities to determine the shape of the surface o¢f ccn-
stant:P‘.,,_These surfaces are easily fcund.by making a simple
Taylor?'s expansion about .a spherical :surface.,, The racial - dis--

tance from the centre to any pcint is given, tc first order, by

r= s [ | ¥ en) Pz(/,()].
(3.13)
The expansicn. is  made cn the potential, the only part of -
which needs to be specially determined is the ncnspherical part:
of the gravitaticnal potential.
The effective tempgrtaiure of - the star is easily determined

frem

2y
Yn Ry oL = Lx .

To find the variation of the temperature over the surface of the
star we use Von Zeipel's theorem which states that the radiated
flux is directly prcporticnal tc the effective gravity at : that

pocint., Hence
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-Eéi (P,Q‘) - 3 (ﬁfe) |
T (R, B20) 7Cb, G-0 (3.15)

Using this temperature distribution a simple plane parallel
grey atmosphere was fittted to the surface, from which the V and

B indices could be. obtained., The U index was-nct attempted

since the grey apprcximaticn is nct valid for stars of Te> 10 * 6K, |

The calculation is outlined in Appendix III, .
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4, RESULTS AND DISCUSSION

4,1 The Field Structure ..

The stream function for the magnetic field was. calculated
from the. pseudo-pclytrcopic approximation (2.24).. The.density
was taken from the spherical part of +the model,.. This streanm
function was then used in the magnetic force potential to obtain
a new spherical,model,.from,which a newv b(r) was célculated, and
so on until the magnetic. field. converged. For a reascnable step
size from the previcus,field,‘fields of order 107 G converged to
0.1% in about .5 iterations.

Equation. . {(2.25) .obvicusly .implies that the accuracy of :the
stream function ismdepehdent,on theﬂaccuracy of the run. of the
density from the spherical model, which . in turn is deéendent on
the reality of the,mode14used. .The judgement of the ._mcdel .can
be Separated into,tﬁo“parts; first, the.méihod of calculation .of
the perturbed structure; and second, the input physics for the
quantities required by the structure calculation. .. The physics
for the opacity was a. curve fit to detailed tables.. The enérgy
éeneration fate.was”foundmfrom_formulas.based upon step.by. step
reaétions, using experimentally.determined.croSs-secticns. .

It interesting. .to compare. the stream function, b(r) found
here to the. stream. function found.by Honaghan: and Rcbson (MR
ref.?O) and Davies. (28).for a dipolar.field. These authors used

a nonlinear calculation and b(r) was not restricted tc be a po-



Figure 2 : Streamlines of the Magnetic Field
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Figure 8 : Central Radial field vs. Polar Field
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tential function.. MR used the pseudo-polytropic strean fﬁnction
as an intial approximation.. This is given . in. the cclumn la-
belled PP in Table II. HNote fhere is considerable . difference
between the stream functions of this paper and ﬁR, the ¢cnly dif-
ferencé in calculation . being the spherical model used. . Both. MR
- and Da9ies used .a .very Simple, energy _generation..fcrmulé
( cheTn) and electron scatteringuopacifies._ Since . the .change
to the noniinear‘solution is only a small fracticn. ( 25%) from
the initial pseudo-pclytropic.solution, iiycan be .seen that one
does not need to.go to nonlinear calculations fér a valid mcdel

of a non~rotating magnetic star.. .. . . .. . . ...

Table II: Comparison of Magnetic Stream Functicns

~ T LB i T 3
| | This Paper | MR (70) | Davies (28)]
F A + } - 3
| | . < | non- | ncn- |
| x=r/R | ib(r) | | PP 1 linear | 1linear |
F S 4 + +- )
I O i 0 1 0 -1 0 1 0 I
{ 0.1 - «537 | 206 i +258 - | .22 |
| 0.2 | 1.51 | 706 | .864 I .78 . |
i 0.4 | 2,07 I 1.57 1 1.78 | 1.66 |
| 0.5 | 1. 87. | 1.65. | 1.77 I 1.69 |
| 0.6 | 1..63 I 1.56 I 1.61 |  1.56 i
| 0.7 | 1.42 | 1.40 i 1.42 | 1.38 |
| 0.8 | 1.23 | 1.25 | 1.25 | 1.22 |
| 1.0 | 1.0 { 1.0 I 1.0 | 1.0 |
L. AL i ; X A4 J

The solutions. are remarkably different in the central re-
gions, where A, the ratio of magnetic to gravitational force, is
the highest, and therefore the region where magnetic fcrces are
especially important. (see.fig., 7). .The stream functions found
here .in .this. region are:at least twice the value fcund by the

others. This difference is attributed to the greater central
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density concentration of the more detailed models used. HNote
the location of the O type neutral point is slightly closer to
the origin in the models found here, which may be of importance
when considering the magnitude of the instability cf the poloi--
dal field. .

Figure B8 shows that as the surface magnetic field grows in
strength, the <central concentration of the field, i.e.,
B eadiad(E=0)/H raaig( (r=pole), is reduced. Also the neutral peint
moves outward slightly with respect to the radius of the star, -
with increasing field.,

These results can be understood on an intuitive physical
basis. As the surface field increases, the star contracts and
the surface is then slightly closer to the major current source, .
Near the surface the magnetic field varies with r—=3 so for a
given increase in surface field, only part of the increase need
come from a directly propcrtional increase in the internal cur-
rent, the rest coming from the contraction of the star. Thus
the central field, which varies directly with the interior cur-
rent,  rises 1less rapidly than the surface field and therefore
the ratio of the two falls., 'Similarly the outward move of the
neutral point can be viewed as a result of the increased density
of field 1lines in the core, The field lines repel each other
and try to expand away in order to minimize the field energy;

consequently the neutral point moves cut slightly. .



4,2 The Flux Free Convective Core

b4y

Figure 2 shows the. stream function for the case c¢f the mag-

netic field excluded from the_cbnvective”core
the streamlines .of _the field. For r21/2.R
converges to . the core.penetrating field. For
of the surface field .the total flux. contained

and the neutral point in the equatorial plane

rof b
Ft: = j ™er Np 2rr a{r,
0

and figure 4 shows
the field rapidly
.identical. values
between the centre

is given by

.
b 2

_ B L J

AT N,

2

= /JF ﬁ,p¥1 //Dway,‘

L (4.1)

This flux is _about 10% lower for the flux excluded case.,

The magnetic field energy is taken as

E, ./rk d Mot | e |
- 7~ 2 ) - .
L p /.: ?/; [ 4" co '8 4 AP /"‘"‘2@]’2’”‘24""0/ﬁd")

:BfLJr [:2/3 Ur *% Lot ] ol
7 b |

where the magnetic field is given by

= W (h b, hpato, 0),

(4.2)
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b"l‘b"a— = - a&‘-z
L|~ — L)(p) R

T
“6: E—i 6/ ().
r

(4.3)

The ratio of the magnetic field energy to the gravitaticnal
enerdy is always lower for the flux excluded field, given equal

surface field.

4.3 The Rotating Magnetic-Star

Fields were calculated for a rotating star with a. poloidal
field which penetrates the core, with the axis of rotation
parallel to the magnetic axis.,  The technique .¢f calculation
used requires only.that the pertqﬁing potential .be expressible
in terms of a spherically symmetric term plus a term with. angu-
lar dependence Bz}cosG). If/g'is the angle of obliquity, then

the perturbing potential is

f=farraP+r) + B oy
4m K !
(4.4)

which reduces to sin20 and cos20 terms only f0t'pk0- and ﬁ’=7?2.=
Only the =0 case was done at this tinpe. ,

Rotation was not added to the flux excluded from the core
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case because it was felt that this treatment of the. interaction
of rotation with the discontinuity in b'(r) at the ccre boundary
would be completely .lacking in. any physical meaning. .

A very significant difference between this calculaticn cf a
rotating. magnetic.  .star .and otheism(MR,.Wright,,andunavies) is
that ﬁhe only_coupling between the .rotation and the. magnetic.
field is through the spherical model, Cdnseguently this coup-
ling is always.fairly. small. On the other hand,. MR's and
Davies!' models are.coupled._through the nonspherical, distortion
terms, These terms are. of order. .of. the. strongest. fperturbing
force acting,. so. .if .rotation is dominant,,thedmagnetic field
will be grossly altered from the field of a non-rotating nmodel.
As a result of their method MR find that.their .star .is.cooler. at
the poles, whereas.the star found here is hotter at the poles,
as are most oblate stars.. The models found here do .not exhibit
the vast . increase.in interjor field concentration, ncr _the vani-
shing of the surface flux at . some_finite rotational velocity. ..

The central-field.concentrationris,expected,tc rise, due to
the same. effect. of the change.in radius as before with a non-
rotating star, except that. here there will be an _expansicn due
to rotation, .rather than a_contraétion, which will cause the
ratio to rise rather than.fall, For. a fairly weak field of 10S
G it is.found.thét.ﬂr(r=0)/ﬂr(r=3*) approximately doukles as
goes from zero to a.value such that the ratio of the._.rctaticnal
force to gravitational. fcrce at the equator is abcut 75%.,. Mcna-
ghan and Robson, .and Wright find that this ratio increases atout

20 times for a similar change in.f.
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4.4 Effects of the Field om the Star.

A1l the. well. known.results for a pcloidal field are con-
firmed for both the magnetic field structures, magnétic..flux
permeating the .core .and.flux excluded from the core. The dif-
ferences are largely quantitative. . The changes in the spherical
model as a function of field strength are shown 1in the .accon-
panying figuresu,(9,10;]1); The luminosity of the star is re--
duéed with increasing magnetic field, The»addedAmaénetic :force_
in the radial _direction at the. centre allows the equilibrium to
exist with aﬂlower.Pru+P,‘4, so the central .temperature. drops,
with a consequent drop. in. the thermonuclear reacticn rate., From
the neutral .point. outwards. the field”reinforces.thé.gravita—
tional force, . which brings about a net comfression.of the star,
and a rise in the central density. Since CdeTﬁzAthe\slith_rise
in etis insufficient to offset the fall in. T. .For the .effective
tempefature,4 Teka%J?i.the .éhange in _the 1luminosity. must te
offset against the change. in radius., . For .the flux.excluded mag-
netic field, the high forces at the,coreﬁboundary.are»propogated
through thé“structure,sufficiently that the lumincsity .is re-
duced to a greater..extent. than the fof the flux penetrating
case. . On the.other.hand,Asince,the two.field b .functicns con-
verge strongly beyond. the neutral point, the net inward. force
wvhen averaged over the star is greaier for the flux . .penetrating
case, than.the flux excluded case., . Conéequently, the _star con-
tracts less for theiflux exclﬁded_ field., _The ccntraction in
both cases is more.than encugh to offset the fall in the lumino-
sity, so T rises, the effect being less for.the flﬁx“excludéa

case. These changes in the luminosity and effective temperatute
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mean that the star moves .tc. the left and down in the HR diagram,
i.e. beiow the hain sequence., This is in contrast. to Trasco's
models. His stars have a.randpm field which adds an.everywhere
positive magnetié.pressure,-which.caﬁses the . stars. to .. expand. .
Trasco's stars _have.a reduced luminosity, but.an increased ra-
dius, so that they move to the right and down, which is ébove
the main sequence. | |

For a comparison.of results,. Monaghan and Robson's pertur-
bations against. those found hereware.presented.below..‘

Table III: Comparison of Changes to.Structure

L g R i T T 3
| Heole | AloglL | Alogr | AdlcgTe i
t- doemme e e , = 4
| : |
| Monaghan and Robkson |
b~ . + : t : i
| 6x106 | =-.029 | -.042 |  .008 |
I 11x10e | =-.082 I -.110 | - .0u45 |
| 14x106 | =-. 127 | -.162 | .068 |
'l7 A i . A {
| : |
| This Paper |
H - u ; + t 1
| 5x106 1 =.013 | =-.049 | .0053 |
| 10x10e I -.037 I -.121 | .04 |
| 15x10e i -.061 | -.185. | 022 i
L. _1 . | 4 . J

MR*s results indicate larger changes to the spherical model than
those presented here., This.is perhaps due to the use. of simpler

input physics for the opacity and energy generaticn rate.

4.5 The Perturbations to the Structure
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Figure 16 : Changes in B and V indices
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Both poloidal magnetic fields produce forces which perturk
the star into an oblate épheroid. The éifferences between the
equatorial and polar radii is. plotted in Figure 13. For weaker
fields the. difference is considerably greater fcr the flux ex-
cluded field. With larger fields, the field is sufficiently
strong to produce perturbations.in the spherical structure which
reaét back. .on the field structure. This produces sufficient
"spreading" of the field,i.e.,boﬁﬂyis reduced, aﬁd the ©position
of bﬂuy-moves outward somewhat, such that. the difference bhetween
the equatorial . and polar radii ‘and the temperature change con-
verge towards.a common .value for the two field structufes..

The graph .of Te_between“thé polé and the eguatcr. ciearly.
indicates that the,observed"ﬁagnetic fields (maximum H of alout
10% G) does not produce sufficient pérturbation to the: structure
to be the explaining factor for the light.variation of magnetic
stars., For a.5 Mp star with the flux éenetrating'the. core . the
difference in temperature is‘abouf 0.05 0K, whereas the required
temperature difference..is.of the order of 103m9K"4j07)., It is
possible that. very large.internal. fields. do. .exist, . but that
thera 1is some .surface  mechanism which traps most cf the~f1ux
within the star. A1l of these stars have radiative envelépes,
and the observations indicate 1oﬁg period stability cf the non--
homogenous ditribution of elements over the surface so .any . flux
containing mechanism must . be.a . relatively quiet process. It is
possible.that,msignicant circulation..might _develop. somewhere
below the surface which would tend.to shear the field lines and
suppress the.fldx,through”the.surface, or .the influence of rota-

tion itself may operate to suppress the flux as shcwn by MR,
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Wright and Davies. . .. .

The changes in . the radius, and the effective temperature
over the surface of the star produce differences in the UBV in-
dices as the:magnetic axis. is tilted with respect .tc. the obser-
ver, Because of the oblate figure. 6f- the . starwbthe surface
"gravity" is.higher"at,at.the,poles.which gives_tise.tc a ‘higher
Te at the poles, in.additionwthe»su;face.visibleAto.the observer
has a 1arger.crOSSvseétiona1 area when viewed ééle cn, Conse-
quently theseAfwo _effects. combine. to make. the. .star appear
brighter and hotter when viewed pole on than when.viewed eguator
on. .For a field of .15x108 G the difference between Vpde-‘%ﬁuaﬁv
is about .15 magnitude, and.the pole minus.equatci_(B-V) changé
is about .008 magnitude, .In the AV}A(B;V).diagram the line rep-
resénting the . change . in the.indices for Qariéﬁs,angles“of inc-
lination is virtually a.staight line, as opposed to the case .of
rotation (95), 1where.wa4shallowAcurve is deséribéd hetweenvfhe
pole 6n an equator.cn values., Similarly for an inferred maximum
observed poloidal field. of .A]OS. G the. . variaticns.  are
AV, . =0.67x10-5 .mag. and A(B-V)=-0,.,75x%x10—-¢ mag., hardly suffi-
cient to account for the observed variations, which are of order

0.1 magnitude,
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4.6 The Validity of The Approximation

The expansion .of the variables was only made..to first
order, and. all second order terms were neglected.. In order to
satisfy the approximation conditions, calculations of the .field
strucfure were only carried toﬂaﬁmaximum ratio of the magnefic
field energy to the gravitational.energy of 10%, hoping that';at
this point .the second order effects would be abcut (.1)2 or 1%
and hence still:easily.discardable.. For the field of 10x106 G
in a 5 Mpstar thé highest force. encountered was at the centre
where ).=Fu/5. 5—.10 for flux penetrating énd.-.js for .the . flux
excluded field, . The.  second order correctioﬁ terms in all the
equations involved. terms in ¢ 2(r) .or '§}ry,.which are,of .order
e?.. Figure. .15 .shows. that for.a.field.with an. energy.ratic of
6.9%, the maximum.value.cf. ,isuénly .113 and hence €2 is ,012,

Since all physical variable. are <constant on . surfaces. of
constant potential,.no explicit4probiem of . the pérturbation.eXr
pansion arose at the surface where. the pressure'and..temperature
go to zero. = But.it was necessary to make an expansion of the
potential into spherical and “&ﬁa)terms in. order tc¢ calculate
the distortion, . € (r)....The other vériables can be left aside

once the potential surfaces are known.
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5. CONRCLUSIONS

A dipole magnetic field in an upper main sequence star was
calculated by a quick and simple method. The .force prcduced by
the magnetic field was constrained to be curl free. The field
was chosen to match onto. an external dipole, so that the streanm
function was. made. up.of.only spherical and P,(cos®) .terms. . This
allowed great simplifications.of the equations of stellar struc-
ture, in fact the only.change.is an alteration of the effective
mass as a. function of radius. .The field itself is calculated
from a "pseudo-polytropic".equation, dependent. only upon the
spﬁerical part . of . the model. .Two types of fields were calcu-
lated, one where the flux penetrates the . convective .core, .the
other where the flux is excluded. from the core. The resulting
perturbation of the . star, and_the:changes of the field with .in-
creasing strength are explainable on an intuitive physical
basis. | |

When rotation was added to a star with a magnetic field, it
was found that the effects. were almost’strictly'adaitive, since
the only coupling was through the spherical model.

In the _future . this technique. will ﬁe_extended to cover
fields with toroidal and mixed,poloidal-toroidél fields., Being
a very quick way to calculate the“field,.it,will also te an'ef-
ficient way to follow the evolution of a star 'wifh a magnetic

fieldo
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APPENDIX I: SIELLAR STRUCTURE EQUATIONS

By assumption the potential can be decomposed as

[ -
,¢D" 7/0 + (¢z* %\—//3246()/
whone gy > A, 4 et B,

W

1

(RI. 1)

And all quantities can be expanded like
Q(r,e)c QO(PO)4—QK(r°) Pz(/a)'.

(A1.2)
where Q,(r,) is the quantity evaluated on the line P, (cos6)=0,
where r 5 is the distance from the centre to that pcint cn the
surface;, Note all quantities Q,(rp) are constant on the equipo-
tential surface §=constant. ~.Substituting the expanded variables

into Poisson's equation we obtain,

Vi(got hPtan= 426 (f +fr Rl@).

(A1.3)
Expressing this in spherical polar coordinates and integrating
over 0 on the shell r=r,, the P, terms drop out and,
‘ 0(( d ¢
2
- - /‘ ° :L{WC" .
r* dr dr ) (0
(AL. 4)

Integrating this over r gives,
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¢ — C—:Mr
o:
o} !
(AI.5)
-
f ~ R
wlens M, = Ha jd £o olr,
(RI.6)

To determine the shape of the surfaces of constant poten-
tial we make a second order Taylor's expansion of the tctal po-

tential about the pcint (r ,P, (cos8)=0),

§lr0)- Pl R-0) +§D§;l(,-ro) *z;%, (r-6)*

=ry =0,

+bi ' 2 («),

. TP’_ pL_-,v . 2 (A Io 7)

We want a surface of constant potential so that

@(P,Q)—; i(r, ;PL:O)'

(AI. 8)

Putting this all together with the expanded potential we have

»h 2 DE
»ré ( °) ,——)T-;)("r’) t_zz Pk = 0.

(A1.9)
which is a quadratic egquation in (r-rg). Using the binomial

axpansion with the quadratic equation we obtain (d%))_iﬁ,
28 ,
Y-y, = @Zzpz, . 3r §1_ V. |
B@ —_— .
| 7’: | ’§°>3 (A1.10)
57

Which can be written as




n

r=to [ 1+E(es) P, () + § (=) P2 ()],

(A1.11)
— 72@; iy
way €= -1 8, S - > P
LY o TS Bay3
or . (\9 ~ ) (A1.12)

To first order this is simply

-, l—l + ¢ (ro) FL-])
wlee € (ey= —L %1 a . (A1.13)

o é;"~ﬂ/i\

The volume inside an equipotential surface, vy is easily

obtalned _
“u-~ rl
vg = / / ‘o/rd d/
/gll =0 /Jre

Evaluating this with the radius given to second order by (AI.11)

(AI.14)

gives,

vg = ‘Vlrrp [,_,,?S/ g 6—2]~

v\oo

(A1.15)

Note that to first crder V =4 /3 r,3, and that

% o yrer [10582e] 42 >[4 44.5].
Vs

(31.16)

The area of the surface 2{=constant is alsc easily deter-


http://il.11

12

mined

41 ,
Ag = sz gu, 1 ‘% ap/u3

re
y7¥ 3y
(A1.17)

+/ _ - " . ]
"‘/Ffo‘/ [re &R 2SR 4R ?ﬁl//w ’)6374/4/
U=
(A1.18)

- —
-

— a 2 - k]
47 rp [/f37 S o+ i{ e .
(A1.19)

The lLarson-Demarque scheme for the solution cf the stellar
structure equatiions requires as the independent ﬁariable the
mass fraction inside the volume with radius;r, here given by the
mass inside the equipotential surface with radius r along the

line P =0, This mass Miis,

| v
M@:J'/I g Vg

(AI.20)

\J

{
e Qi) et

<o

(AI.21)
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Mg - M.ra ¢+ O (e )/
(AI.22)

WLUI; Mf.l Y & JO Fpr‘o(r.

(AI.23)

To develop the .perturbed equations of stellar structure, we
follow the formalism of the J2 method. The dependent variable
will be r,.

First the radiative transfer equation,

g . ~1e 7397,
37«((
(A1.24)
This is easily integrated over a surface of constant E: + Since

all quantites except the gradient are constant on §=ccnstant._

~ 2 . _dac 34T ,
S F - F{S. 7;& / %Ea Iﬂ V7{b . Gfﬁi .
$ ¢ )

(RI.25)

L § is defined as the total energy released inside the

volume Vf,

hg o= j‘/; e AV
(A1, 26)

Although the models discussed here do not have circulation, the

J2 method easily deals with it, in fact it drops out of the



4

structure equations. To show this, the above expression is re-

written using the energy balance equation of FRS (11)

L= [ (TP wpd 9T #74) diy
- (AI.27)

Then with Gauss' Theorem and the simplifying expression of FRS

\LQT,: SI ([:’ 4 \05 (CPTJ:f))'C/é .

(AI. 28)

But since cPT+§' is constant on constant jﬁ‘surface -and

the mass 1n51de an equipotential surface must be constant , this

simplifies to

(A1.29)

Now the equation of radiative equilibrium, with a 1little
rearranging beconmes

[ve ds a1 | 3xp g

/ d;.’ — e

‘/ﬂ’f‘o b rae o 73
(A1.30)

The other eguations are recast into the J2 fcrmat analo-
gously, with greater ease. The equation of hydrostatic equili-~
brium,

Vp

L = -Vg,

{

is integrated over a surface of constant potential, and

+SA

(1. 31)
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Poisson's equation with Gauss* Theorem is used to transform the

integral over the gravitational potential to one over the densi-

ty.

§ s l 4%
»é";f- VeV d2 _yncfedt  (vedE

4o~ 4iro’ 7™
(AI.32)
The equation of mass conservation is simply,
A M,
/12—— = Aary {’ //,4rfrv .
r
z . (AI. 33)
And similarly energy conservation is,
tis 4
= Mt e /} ///,Tro".
r

4" : (AI. 34)

To evaluate the modifying factors, the f's, we simply need
to evaluate a few integrals. The first is
f Vr, d &
[ Il
Y17 1,7
(A1, 35)

Since d< is a vector perpendicular to the constant fpotential

-
surface, WVr and 42 are parallel . Hence d= can be written

1\7»0 er “ro* (3)37,( G

On surfaces of constant potential, the distortion factor

oA 2

(AI. 36)

@(ro) is constant, so that the gradient<7q,is,

A Y
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vdii 0 3¢ (80 o © , 0 )
ke b ) |+ ¢ P .
(AI1.37)
To first order
l‘7'o. = ——L‘ -
‘ |+ e P
(AI.38)
Now f' is
+1
o (" e AT
£', et iy =) / , 1 48 /L{
(A1.39)

Substituting the various quantities and integrating gives

'[t‘/—%,e’.

(21.40)
The factor for the perturbing potential is
o vede
-LL = _ig‘ ?ﬁ .
4nrs (AI.U1)

Using the expressions developed above, we have

—_ "/ a._,yfa 7"% 3‘ = o
ﬁb'/ qmep or Ir ]2) TrJQ%9a~Q,0)

-( l, 3¢ co-Bu @, ) fa‘(/fzepl)@.
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‘ﬂu; “;:? f‘dy(éz)
I

0
(AL.42)
With this the equaticn of hydrostatic equilibrium is

Y L B Y SV
4 . - r;,

( —_— ———

2 « ’
fo Fo (AI.43)
We define
): dwfo
EMf vy
"/”’ (AI. 44)
So the hydrostatic equation is now,
L L < VPR N
d , - .
( fo N A (AI.45)

This use of ) restricts us to potentials that give a

bounded )xat the origin, The condition for the validity of all

these expansions is then

l/\/ << -?AM’AJWLN

(AI. 46)

This ). factor is the only effect, to first crder, that we

see of the perturbing force, so that the modification to a cal-

culation of stellar stricture involves only computing an effec-

tive nmass



Meee = M/ ( L+2)

Putting this all together we have, in the J2 format

(l LdP _ @M, (14 )
' T - )
adm,
Lo - 7FPDBFF3 )
G{ng

. = 1 petas

T _31e L@
L d =~ 9
' aﬁ? /6 rac T3’

/lck.v'(l.a_{ \“-\L

78

(AI.47)

(AI. u48)

(AI.49)

(AI.50)

(RI.51)

(AX.52)
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cl &
LML = - jvfo & =
v L 4 i {‘01 g %/4 &_JL’ /) :
(AI.53)
[ AV [ _
= C(;'o /{/rro’ ; t (Lvd o~dlen /J
(A1.54)

r)\ = ‘p%’/d'o

~ ]
——1;3WT;7Y0 (A1.55)



80

APPENDIX II: THE DISTORTION TERMS

The variables expanded as (AI.2) are substituted in to
stellar structure equations, and the first order terms are equa-

ted. From the equation of state we obtain

fe TS Po (AII.1)

The radial component of the equation of hydrostatic equili-

brium gives

Y

Ldh L dre  -d g

f% d ro ;; A ro d ro dro =
(A11.,2)
And the tangential component
P
e —_— - —
= = -4-%.
L (AII,3)
Equating P, terms in Poisson's equation
—.'- ‘L 2 d.¢z_ — 6%- — /,l G-
r* dr d r r 2
(ATII. 4)

We use this set cf equations to obtain an equation in ¢L

alone,

=
»~

dr r?

2 d,,_ __6 d" - bdo
—%-_..‘.r ¢ 2% 4 Yn 6o Z—E ¢ :4n6p a{,’ﬂ 5&1

=
N

(A1IX.5)

No attempt was made to solve for T; o fz, or P,, since all
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the information about the distribution of T,f, and P is given

once the equipotential surfaces are known, These are determined

by € ; a function of 9& and ¢L which are now known. . |
Since we want the potential to match an externmal soclution

of Laplace!'s equaticn

V ¢-o0,

(AII.6)
which has a general soclution
-
g-7 LLG.
“w:zo rln-‘-‘
(AII.7)
this gives the boundary condition on F= Ry -
34 e R Lo
" (AII.8)

at the centre all forces vanish, so lau3r=0, and ﬂ{'(0)=0.,
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ST o=
° (A111.1)
[+ &
g mE(1 %)
Ly
* Lo (AIII.2)
jo3 P
P = T-15 ,
(A111. 3)
t- L
10"
(AIII. )

The density is eliminated from all equations by using the

aquation of state,

1p = ‘%ifi ,C>7.§'/? f"t ls

/

(AIII.S)

with
jD'L‘ s
P

l -

w|o

w
J

(AIII. 6)
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The mass function, defined as,

Lo - ,P:];i
M

(AIII.7)

for upper main sequence stars with radative surface, reduces

from LD's general expressicn to

faa)= [ 1= (1-0°] .

(RIII. 8)
The opacity was calgculated from
where Ke = _qu (’-fX),
G -
v—x) < t°B
=4S [ —==2
1(t 2 1-2 -r )
< b6,
F: 32“’.
(A111.9)

Quantities used in the calculation are

T\’E M:K

_)1014(.{— - _ 3
3 Loy ¢ f %=

o . 4+ xty

A+ <

’

©
W

(A111.10)



The energy generaticn rate is given by

84

(AI11.11)
where EPI’ = et + Eﬁ + ED.T-,
€. =&’ (- ),
&£ = & ’ 1.9 ¢¥
o * 1+ M)
/
tm - ® /}:/‘wv’ - Iy
’ .t“93 _s 63t ¥
Ex = .94 X105 f,,j ,,)( { y )
+- %
71( ’
X t""

= B2 x 00" L5 §11 Tix
I+ 0079 p' 1734
= |+ .03/¢ .f'/t.‘t'z/‘)

w

£,

£,

Jr e )027 F 033,
J

fen = "7//X/0—” 1C/4,i7"’,/ A Xy ft
fw,: = +.o_5'53>4,'/z t”/‘s)

gro,r = .99 -.00¢t,
.S ¥S < tz2 )¢

\

Xy
.1 8¢ 2 € < /&

The mean molecular weight/ﬁl is defined as

4 _70.¢97¢ AR
ée 697¢

)

(ATIT.12)
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o
Loz ax + 2y +L=20
A 7 (AI11.13)

With these substitutions, the spherical part cf the equa-

tions of stellar structure beccme

/
Do -4 - My £ £(x)
ax v7le o 10TF ﬂ?t 1 |
(AIII. 14)
(ot g = Lemee 1T AT RO (1VC TR
) d'
’ ZLF LO 3 ":7( ?
(AIII.15)
i), = 4 - BB
9-3p3 )
(AIII.16)
(h"') = ‘mo-x ( ('n-i/),“”l) '(M-{-’)QN ))
(AIII.17)
0T = AF - &M 1o ") (140 £'(w)
N Y
o oun k' e pttt

(A111.18)
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= “P = P tif' -
oP= 35 =L & [((w)-%1T,
AIIT.19)
- My a /(.
Dvu o5 (l+xz)¢(x)£,
(ATIXII.20)
[)\/ = __jlg_i. ,
¥3 4+ &%
(ATXII.21)
DR = DU -Dy.

(A111.22)

The various partial derivatives .are taken and the dif-
ference coefficients are formed in the. same manner as LD.
The boundary.conditions at the centre are as in LL, with a

few minor modifications. TFor small x

“F’(X)i 30"37(1.

(RI111,23)

Since 1lim s=0, and 1lim g=0, at the centre,

Y -6 ¥
Ds, = [__Mﬁ- o 32 ] '
y 3 5. s ‘
7R H 10 Y
9 6 M ﬁ'b—[ (AIITI.24)
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surface)
shown by

The

problens.

Lx Lp
I)(D‘ = ‘% Dy,

bV, = 2 D,
E)TW =0
PP =0

a radiative surface the radiative

boundary

Zero

conditions are used boundary ccnditions,
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(A111.25)

(AI1I.26)

(A111.27)

(AITI. 28)

(AIII.29)

(T*0, ©B=20 at

As

Schwarzschild (98), these are appropriate . .

inclusion of radiation pressure introduces

The effective polytropic index is

scme minor



(m+1) =

T dP
P dT
= TR 4 (‘33)
T 4G
P o
(A11I1.30)
In the . surface layers of a star in radiative equilibriunm
P’ « T, sSubstituting this into the aboﬁe expression gives for
the surface value of (n+1)
)t = o+ 4 01-p).
(ARIII.31)
The ﬁwﬂ used

in this expression was set equal to the (3. of the
previous layer,

The outer boundary conditions then are

ps = ' Roe & enst DI
- )
CMy MH N R
(A111.32)
( 2 |
-3~ SLM’U (1+>) =
DT = 40 R
4 CME 1
(142) 71—1#2;‘ ( 1+e) 2
U (wa) | —
; > Yy )?[ BuHiods] % 10*7”7'%*’ (AI1I.33)
L ] -

88



DP =0,
Du =0,
Dv-

P9 -

— DV

89

(AIII.3H4)

(ATII.35)

(AI1IT.36)

(AI11.37)
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APPENDIX IV: THE GREY ATMOSPHERE
There are two basic equations for a grey atmosphere, Ra-
diative transfer
Q
-ty
(0,.)- | Bl e du
y
/(,( Ij) //'( P
(Iv. 1)
where: /u (s tle cosine o€ the a-y\j-,g between the line
of sij‘\f am~ol the =orweal to the $ur'(’ac.°,

w3

R, (1) s the Plawck {ovnetion,
A~
exr -/

-—4 L 2] ( 2
= + =
! e () (= +3).
The absolute flux detected by the observer is,

F, (i) = jz,a I, 0. 0)ds

(Iv. 2)

where i is the angle between the line of sight and the axis of
symmetry of the star, and the integral is done over the obser-
vable surface.

The diagram below explains the geometry
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A2
B Y Cosx s U
ebserver 3 -
% _7M
<
e
£ Figure 17 : The Star's Geometry

The temperature distribution Te (®) is found from Von

Zeipel's Theorem, whch states

Fo< |3,

(Iv.3)

where g is the local effective acceleration. Since F= Te*, and

| \§'='V§§, where the total potential is given by,

ii‘-;—_—'\l\ {-Kbp1’(¢\'k’=) pl(cose)-
r ) (IV.4)

In spherical coordinates we have
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a2 | (& R A B, BIER P )

q) - . 35
(IV.5)
The surface of the star is given by
r= r, ( | + e (rs) P—: (case)).
(IV.6)
Consequently the gravity to first order is
e M , .
g(0) = 2 Rbeato HAR (W),
(Iv.7)
The effective temperature average is defined as
y _ L %
6. e - 2 °
I R, (1V.8)
So we have for the temperature distribution,
i
JLB) 14
6) = T, (6,)
-‘/Q( e ’ j(eo) .
(IV.9)

To determine//l , the angle between the observer's line of
sight and the normal to the surface, we note that the surface is

given to first order by,
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. r
° +e P, (IV. 10)

The normal to the surface is given by

A Yr
12 s S —_—
1Vr, )
(Iv.11)
Calculating this out we find
a)
- —L S'we g -}-__E_ (’4-2?1)})&
e, 1+e R [ GQ%V I 1+ ER
posmoong [ 1o & (1678)]§
) _ 'PE‘DL
s 10 Lo},
. HER (IV.12)
and
\
,‘V'B , = ol
|te ¥,
(Iv.13)

Therefore the normal is

m = [{ |+ Cosze)/.u;-e cos¢, ( |+ 3e CDS‘B)GI"‘ 9;(7\?,(”355“"9)0056],

(Iv.14)

Now‘/x can be determined simply from the dct prcduct be-
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tween the vector to the line of sight and the normal vector..

The vector to the observer is

( qa‘;) D) cosi))

o)

(IV.15)

so we have

S\ (,4- 3e cos’? e)c,;me cm}i sent + /I—-3£ f»in’a) coed coge .

(IV.16)

X
W
3

Note that‘/u is an even function in /1.

Now to integrate this intensity over the visible part of

the stars surface. The flux is then given by

Fj/ (“) _ f r,/u(é y)I(ﬂa[ 0)(’-’€P) Qch6d3d¢

(IV. 17)

The numerical scluticns are based on a number cf quadrature

formulas for doing the integrations. Over 6. legendre-Gauss is

used, over ¢ Chebyshev-Gauss, and over T Laguerre-Gauss, The

above formula for the flux becomes
-\

F,V(i) = %ﬁ—?‘: (I— [P( )] Z /“(U., J)—Lﬁ-«//o)(HéP)mu(.’Tu.).

(Iv, 18)

of P the legend.. polyxon'.a( ot

»
2ero’s ,

l L
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7erdbs of 'n,tile C‘\ebyﬁ‘\ev'fb'y-nom\.‘al o b

Vi
o\ejree m,
. - ‘%Vi_ )
q'
¢, = £V
Similarly the intensity is given by
¥ i . ,
- ', 3 J .
/"‘(U"'"J')I(""ID)’ kv z'./« _/'11——’“)—’ X&[L:_v(&)]
“rlroby+t)

(IV.19)

are the zeros of Lp) the l'jue"e P”]”"’ miel of
de_’ rec N.
It is necessary to make a simple transformaticn between the

where YtE@Q

coordinates in the observer's system to one in the stars system.

These are (primed gquatities are in star's systenm)

c_os@': coc ® &« + w0 CO€¢ cos < )

(IV.20)

et @ aim
fend's / |

St"\\e ¢°‘¢ s(jh‘: - CDS@ Cosi

(1v.21)

Magnitudes are computed from

™ - — 25 ,107 F,

(Iv.22)
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These magnitudes were taken at roughly the centres c¢f the V and
B bands (V=553OR and B=u350§ about). The V and . (BE-V) indices
were then calculated to see what the observaticnal effects of

the magnetic field might be.
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The first program listed is the calculation of stellar
structufe. As input it _requires an initial model on unit 3 and
the specification. of certain NAMELIST variables: -

M0 the mass of the mcdel,

X1, 21 the _abundances of hydrogen and metals resrectively,

ERCP, etc, . The maximum allowed relative change in P,T,S
and Q from one model to the next, |

HO the magnetic field in gauss. .

There are also a variety of parameters. to ccntrcl the
amount of output, .the calculation of certain quantities, and a
few variable parameters in the stellar model, A1l of these have
default values,

The . magnetic .field .is - found by calling the subrcutine
BFIELD. The main program also requires:

STEMP to .calculate effective surface temperatures,

ENGEN calculates the energy generation rate,

SMAX finds the maximum of a ratio, -

LAGINS is a. Lagrangian interpolation, supplied by Dr..
A.J. . Barnard,

FLUXPO calculates the flux for a poloidal field,

TANB calculates. the tangehtial component of the magnetic
field at.any point in the equatorial plane,

KAPPA is an optional opacity table lcok up (nct used), .

ENPOLE calculates the field energy for a poloidal magnetic
field, .

FH calculates the.magnetic energy in a.massishell,

FG calculates the gravitational energy in a mass shell,
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Next the subroutine COLOUR calculates the grey atmosphere, .
It is called from STEMP and requires input from the initial
NAMELIST statement cf the number of inclination  angles to tLe
avaluated and the .initial B . and V indices, All integrals are
approximated by sixteenth order polymnoﬁials.‘ |

There are three versions of the subroutine BFIELD, The
first  calculates. the field for the flux penetrating. the core,
the second for the flux .excluded from the core, .and the .last. the
flux penetrates the core.and the model is in uniform rotation.
All of these use  a. Runge¥Kutté .routine provided by the UBC
Computing Centre to find a particular solution. to .the pseudo-
polytropic equation .for the .magnetic field. This rcutine DRK
requires an auxiliary routine,AUXRk to specify the differential
2quation, The .BFIELD.. for the .rotating magnetic.star calls

EROTAT and FROT to calculate the energy of rotation.



99

$C STAR(1,767) TO ®SINK*@NOCC
C THIS IS A MODEL OF A MAGNETIC STAR
C. NANG=NUMBER OF INCLINATION ANGLES COLOUR IS TO EVALUATE
C COL(182) ARE THE B AND V INDICES OF INITIAL STAR
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AX (100) ,AS(100),AQ(100),AP(100),AT(100) ,ABETR (100) ,ARHO (
1100) ,AN1(100) ,AFX (100) ,ALAM(100)
REAL*8. MAG (100) , DMAG (100), POT2 (100)
DIMENSION SOLY (9)
REAL*8 KAPPA (100)
DIMENSION A (8,4,100),B(4,100), Aux(suOO) BAUX (400) ,IP (400)
DIMENSION IPASS(5) PASS(S) COL (2)
REAL*4 OP (30, 10)
INTEGER TITLE (20)
REAL*8 KAPS,KAPT,KAP,L1,40,LOGLO,LOGTO
REAL*U4 TME,SCLOCK
C OUTPUT=T FOR FINAL MODEL OF ITERATION SEQUENCE ON UNIT 7
C OLDMOD=T IF REREAD INITIAL MODEL FOR NEW SERIES OF ITERATIONS
C INTER=TRUE FOR DUMP OF DETAILED MODEL PARAMETERS ONTO UNIT O
C -DUMP=T TO OUTPUT A MODEL WHICH DID NOT CONVERGE
LOGICAL CONVG,MAGON,QUIT,OUTPUT,OLDMOD, INTER,SHORT,DUMP,PREY
LOGICAL SECOND,MAGOUT,CURFIT
COMMON /DAT/ SECOND _
COMMON /MAINB/ MAG,DMAG,ALAM,SOLY,HO,MO,OMEGA, ICVCT
1,NMASS,PASS, IPASS,SHORT, MAGOUT, ICONUM, ICVG
2,MCVCT,CURFIT
COMMON /MAINRK/ AN1,ABETR,AT
COMMON ,/ALL/ AS,ARHO,NP
COMMON /MASS/ AFX.
COMMON /CMAIN/ COL,SINI,NANG
COMMON /ETC/. WT,QUIT .
C MASS FUCTIONS
FM(Y)=(1.D0-(1.D0~-Y) **SIG) #*3
FP(Y)=3.D0%*SIG* ((1.D0~ (1.D0- Y)**SIG)**Z)*(1 DO -Y) ** (SIG-1. DO)
NAMELIST/PARAM/M0O,L1,AL,X1,21,8P,ERCP,ERCT,ERCS,ERCQ,ICMAX
1,ALPHA,BETA,HO,MAGON,PCOH,SURFC,OUTPUT,CONVG,NHASS,
2PASS,ICONUM,IPASS,OLDMOD, INTER, SHORT,DUMP,MAGOUT
3,NANG,OMEGA ,COL,MCVCT,SINI,CURFIT,LOGLO,LOGTO
C OPACITY TABLE . ON UNIT 1

c REWIND 1.
c READ (1,5001) NOP
C5001 FORMAT (I2)
c READ (1,5000) ((OP(I,J)J=1,10),I=1,NOP)
€5000 FORMAT(E8.3,F8.0,8E8.3)
REWIND 7

OLDMOD=,FALSE.

SECOND=, FALSE.
10017 CONTINUE

REWIND 3

Do .67 1=1,5

PASS (I)=0. DO

67 IPASS{I) =

C INPUT PARAHETERS AND COMPUTE CONSTANTS
AL=1.D-2
NP=81

ERCQ=5.D-3



ERCT=0. D0 |
ERCP=0.DO 100
ERCS=0. DO
PCON=10.D0

PREV=. FALSE.
DUMP=,FALSE.
SHORT=. FALSE.
CONVG=.TRUE.
MAGOUT=, FALSE.
HO=1.D5

NMASS=0

SINI=0.D0
OMEGA=1.1111111D-4
LOGLO0=0.D0 -
LOGT0=0. DO

MCVCT=0

NANG=5
CURFIT=.FALSE.
INTER=. FALSE.
ICHAX=5

OUT PUT=. FALSE.
CON VG=,FALSE.
MAGON=, TRUE,
SURFC=1.D-5

C ICONOM=# OF TIMES BFIELD CALLED FOR CALCULATING STRUCTURE.
c NOTE THAT BFIELD CALLED ONCE MORE FOR FINAL OUTPUT
ICONUM=1 .
READ (3,PARAM)
READ (3,3000) (AX(I),AS(I),AQ(I),AP(I),AT(I),I=1,NP)
WRITE (6,PARAM)
IF (OLDMOD) GO TO 1002
c
C INITIALIZATION
c

1000 CONTINUE
READ (5,2305,END=999) TITLE
2305 FORMAT (20A4)
QUIT=,FALSE.
NT=1
READ (5,PARAM)
IF (OLDMOD) GO TO 1001
1002 OLDMOD=,FALSE.
NP1=NP-1
ML=5
NO=5 .
LCM=2%ML+NU
LC=LCN+1
LK=ML+NU+1-LC
LT=4%NP1%*LC
IF (ERCT.EQ.0.D0) ERCT=ERCQ
IF (ERCP.EQ.0.D0) ERCP=ERCQ
IF (ERCS.EQ.0.D0) ERCS=ERCQ
ETA=ALPHA
THETA=BETA-1.5D0*%ALPHA
C FROM SACKMANN-ANAND .
RKO=,245D0* ((1.D0+X1) /(2.D0~21) ) **,67D0
KAPS=.195D0* (1. D0 +X1) .
SIG=(4.DO+ALPHA+BETA) /(1.DO+ALPHA)
IF(SHORT) GO TO 71
WRITE (6,2200)



WRITE (6,2203) . Lol
WRITE (6,2204).. (AX (I),AS(I),AQ(I),AP(I),AT(I),I=1,NP)
2203 TFORMAT('1',12X,'X',20%,'S",20%X,'Q",20X,'P',20X,'T"/)
2204 FORMAT (1X,5F21.8)
71 PALT=PCON/10.DO
CONA=,01225392567D0*MO*PALT
CONB=,02828907204D0%*N0*MO*PALT
CONU=41,50255393D0%M0/L1*PALT
CONRP=7.974157461D-4*PALT
CONE=,5179687500%M0 /L1
¥1=1.D0- (X1+Z1)
WT=1.D0/ (2. DO*X 1+.75D0*Y 1+, 5D0%2 1)
CONRHO=38.31089742 /PALT*WT
C INITIAL LOGIC
ICVG=0
IF (CONVG) ICVG=1
IF (PREV,AND.MAGON) GO TO 900
ICVCT=101
DO 66 I=1,100
ALAM (I)=0.DO
ARHO (I)=0.DO
ABETR (I)=1.D0
66 AN1(I)=0.DO
ITOT=0

"1 CONTINUE

ITOT=ITOT+1
ICOUNT=1

sQPT SQPT SQPT

(N NoNoNo NN NONS!

CONTINUE
DO 10 I=1,NP
DO 10 J=1,4
DO 10 K=1,8

0 A(K,J,I)=0.D0

CENTRAL BOUNDARY CONDITIONS ASSUMING CONVECTION

QOO =

1=1

$3=SIG*SIG*SIG

X=AX (I)

S=4S (I)

0=A0Q (I)

P=aP (I)

T=AT (I) |

T3=T*+%,3333333333333333

T32=T*DSORT (T)

KAPPA (1) =0. D0

BETR=1,D0-CONRP*T32/P

ABETR (1) =BETR

RHO=CONRHO*BETR*P*T32

ARHO (1) =RHO

AN1(I)=4.D0-1,5DO*BETR*BETR/ (4.D0-3.DO*BETR)
AFX (I)=0.D0

DS= (CONA*3,D0/ (WI*BETR*P*T32) ) *%,3333333333333333
DS=SIG*DS



CALL ENGEWN (P,T,EP,EC,X1,21,WT,RHO,T3,T32) 102
E=EP+EC
DUK=CONE*AL*S3
DUP=3.,DO*EP *DUK
DUC=3, DO*EC**DUK
DQ=DUK*E
DV=2.D0*DQ
DC=0.D0
DR=0.D0
DU=DUP +DUC
DT=0.D0
DP=0.D0
IF (SHORT) GO TO 72
WRITE . (6,4001)
WRITE (6,4002)

4001 FORMAT('1',10X,'ENERGY GENERATION CHECK'//)

4002 FORMAT (5%, *EP'Y, 10X, 'EC', 10X, *DS*,8X,'DQ"',8X, 'DP',8X, 'DT',7X, "ENR"
1,7X,'ENC',7X,'KAP',6X, 'BETR®,5X, 'ALPHA',6X, *BETA"')
WRITE (6,4003) EP, EC, DS, DQ, DP, DT ,

72 A(3,1,I)=.5D0%*DS/ (P*BETR)

: A(4,1,I)=.75D0%DS/T* ((2. DO*BETR-1.D0) /BETR)
A(3,2,I)=-.5D0%DU/ (P*BETR)
BTF=1.5D0* (1. DO-BETR) /BETR
TRM 1=.8333333333333333+5,.231D0/T3-BTF
TRM2=,8333333333333333+23.566D00/T3-BTF
A(4,2,I)=-.5D0% (DUP*TRNM1+DUC*TRM2) /T
DX=1.D0/ (AX (I+1) -AX (I))

A(3,3,I)=-DX
A(4,4,I)=-DX
SL=S

QL=Q

PL=P

TL=T

DXL=DX
DSL=DS
DOL=DQ
DPL=DP
DTL=DT

C SHELLS BETWEEN CENTRE AND SURFACE

NP 1=NP-1

DO 100 I=2,NP1

X=AX (I)

X2=X*X

S=A S (I)

S2=5%5S

S4=52%S2

Q=aQ (1)

P=AP (I)

T=AT (1)
T3=T%%,3333333333333333D0
T32=T*DSQRT (T) . B
BETR=1.D0-CONRP*T32/P
ABETR (I) =BETR
RHO=CONRHO*BETR*P*T32
ARHO (I) =RHO

AFX (I) =FHM (X)

FPE=FP (X)
AMASS=(1.DO+ALAM(I))*AFX(I)



DS=CONA*FPE/ (WT %5 2%P*T32%BETR)
EC=0.D0 103
EP=0.DO0
IF(T.LE..5D0) ‘GO TO 19
CALL ENGEN (P,T,EP,EC,X1,Z1,WT,RHO,T3,T32)
19 CONTINUE
E=EP+EC
DUE=CONE*FPE* (1.D0+AL/X2)
DUP=DUE*EP .
DUC=DUE*EC -
DU=DUP+DUC
DY=2. DO*AL*Q/((X2+AL)*X)
DQ=DU-DV
C OPACITY USING KRAMERS FORMULA
KAPT=RKO* (RHO** AL PHA/T**BETA)
KAP=KAPS+KAPT
KAPPA (I)=KAP
OPACITY USING TABLE LOOK UP
IF(T.LE.2.D-3)GO TO 68
CALL KAPPA (OP,RHO,T,KAP,KAPO,ALPHA,BETA, NT)
ETA=ALPHA
THETA=BETA-1.5D0*ALPHA
KAPT=KAP-.2004DO% (1.D0+X 1)
SIG=(4.DO+ALPHA+BETA) / (1.DO+ALPHA)
RKO=KAPO
68 CONTINUE
ENR CONU*AMASS*T3 2% (1. DO+AL/X2) / (KAP*Q*P)
=4,D0-1.5D0*BETR*BETR/ (4 . DO-3, DO #BETR)
DTB=—C0NB*AnAss*FpE/(su*p*Tazy
IF (ENC.GT.ENR) GO TO 18
DT=DTB/ENR
DR=DT
EN1=ENR
IF(ICVCT.GT.I) ICVCT=I
GO TO 17
18 DT=DTB /ENC
DC=DT
EN1=ENC
17 AN1 (I)=EN1
DP=P /T*DT#* (EN1-2.5D0)
IF (SHORT) GO TO 73
WRITE (6,4003) EP,EC,DS,DQ, DP,DT ,ENR,ENC, KAP, BETR, ALPHA, BETA
4003 FORMAT (1X,2D11.3, 4D10. 3 6F10.14)

acaaoaaoaoaoaaaoan

C
c
C THE DIFFERENCE EQUATION COEFFICIENTS
73 DX=1.D0/ (AX (I+1) - AX(I))
IN=I-1
K=4
1 CONTINUE

A(K+1,1,IM)=DXL+DS/S

A(K+2,1,IM)=0.DO

A(K+3 1,IM)=,5D0%DS/ (P*BETR)
A(K+4,1,IM)=,75D0%DS/T* (2. DO*BETR-1. D0) /BETR

A(K+1,2,IM)=0.D0 .

A(K+2,2,IN) =DXL+.5D0*DV/Q

A(K+3,2,IM)=-.5D0%DU/ (P*BETR)

BTF=1,5D0%* (1.D0-BETR) /BETR

TRM1=.8333333333333333D0+5.231D0/T3-BTF

TRM 2=, 8333333333333333D0+23.566D0/T3-BTF



A(K+4,2,IM)=-.5D0* (DUP*TRM 14DUC*TRH2) /T
A(K+1,3,IM)=2.DO*DP/S 104
IF (ENR-ENC) 20,20,21.
20 A(K+2,3,IM)=0,D0
DBR=2. DO* (EN1-4.DO0) * (EN1-4, DO-BETR) * (1.D0O-BETR) / (BETR*BETR*EN1)
A(K+3,3,IM)=DXL+1.25D0%DT*DBR/T
A(K+Y4,3,IM)=1.25D0%DP/T- 1. 875D0O*P*DT*DBR/ (T*T)
GO TO 22
21 A(K+2,3,IM)=1.25D0%*P*DR/ (T#Q)
TKAP 1=ETA*KAPT/KAP/BETR
A(K+3,3,INM)=DXL+1,25D0*DR* (1.DO+TKAP1) /T
TKAP 2=KAPT/KAP* (THETA+ETA*BTF)
A(K+4,3,IN)=1.25D0*DP/T~1.25D0%DR*P* (1., 5+TKAPZ)/(T*T)
22 CON TINUE
A(K+1,4,IM)=2.D0*DT/S
IF (ENR-ENC) 30,30,31
30 A(K+2,4,IM)=0,D0 .
A (K+3,4,IM)=.5D0%DC/P* (1.D0-DBR)
A(K+Y4,4,IM) =DXL+.75D0%DC/T* (1.D0+DBR)
G0 TO 32 |
31 A(K+2,4,IM) =- .5DO*DR/Q
A(K+3,4,IM)=-.5D0*DR*TKAP1/P
A(K+4,4,IM) =DXL+.5DO*DR* (3. DO+TKAP2) /T
32 CONTINUE
IF(IN.EQ.I) GO TO 40
=1
K=0
DXP=DXL
DXL =-DX
GO TO 11
40 CONTINUE
IM=1-1
C RIGHT HAND SIDES
B(1,IM)=-DKD* (S-SL) +.5D0%* (DS +DSL)
B (2, IM)=-DXP* (Q-QL)+.5D0* (DQ+DQL)
B(3,IM)=-DXP* (P-PL) +.5D0* (DP+DPL)
B (4, IM)=-DXP* (T-TL) +.5D0% (DT+DTL)
SL=S
QL=Q
PL=P
TL=T
DXL=DX
DSL=DS
DOL=DQ
DPL=DP
DTL=DT
100  CONTINUE
c
C BOUNDARY CONDITIONS FOR A RADIATIVE SURFACE
c
I=NP
X=AX (I)
S=AS (I)
S2=S5%S
S4=52%52
Q=40 (1)
P=AP (I)
T=KT (I)
KAPPA (NP) =0, DO
ABETR (I) =BETR



T4

c
Cc

150

200

2300

250

ARHO (I)=0.D0

AFX (I)=1.D0
EN1=BETR*SIG+4. DO*(1 DO-BETR)
ENR=EN 1

AN1 (I)=EN1
AMASS=1.DO+ALAM (I)
CONK=RKO* (HT* BETR*CONRHO) **ALPHA
CQ=CONU* (1.DO+AL) /CONK
POW=1.D0/ (1. D0 +ALPHA)
P2=1.D0/SIG

DT=- (3. DO*SIG*CONB*ANASS/ (EN 1% (AHASS*CQ/ (EN1%Q) ) *%POWSY) ) ¥%P2
DS--.u331681737/H0*EN1*S2*DT/(WT*AHASS*BETR)

DP=0.DO

DUP=0.D0

pUC=0, DO

DU=0.DO

DV=2.D0%AL*Q/ (1.DO+AL)

DQ=-DV

IF (SHORT) GO TO 74

WRITE(6,4003) EP,EC,DS,DQ,DP,DT,ENR,ENC,KAPT,BETR
A(5,1, NP1)=DXL4+DS /S

A(6,1,NP1)=0.D0.

A(5,2,NP1)=0.D0

4(6,2,NP1) =DXL+.5D0%*DV/Q

A(5,3,NP1)=2, DO*DP/S

A(6,3,NP1)=0.DO

A(5,4,NP1)=2. DO*DT/S

A(6,4,NP1)=-.5D0%*DT/Q
B(1,NP1)==-DXL* (S-SL) +. 5D0% (DS+DSL)

B(2,NP1) =-DXL* (Q-QL) +.5D0%* (DQ+DQL)

B(3,NP1) =-DXL* (P-PL) +.5D0* (DP+DPL)

B(4,NP1) =-DXL% (T-TL) +,5D0%* (DT+DTL)

105

C SOLVE DIFFERENCE EQUATIONS FOR CORRECTIONS

po 150 L=1,LT

AUX (L)=0.DO

DO 200 I=1,NP1

DO 200 J=1,4 .

NR=UXT+J-U

BAUX (NR)=B (J, I)

KS=1

KF=8

IF(I.EQ.1) KS=3

IF(I.EQ.NP1) KF=6

DO 200 K=KS,KF

NC=U4*I+K-6

KK=NC*LC+NR-NC+LK

AUX (KK)=A(K,J,I)

CONTINUE

NEQ=U*NP1

TME=SCLOCK (0. 0) .
CALL DGBAND (AUX,BAUX,NEQ,ML,NU,1,IP,DET,NCN)

-TME=SCLOCK (TME)

IF (DET. NE.0.D0) GO TO 250

WRITE (6,2300)

FORMAT (*1', 10X, 'DETERMINANT IS ZERO')
GO TO 1000 .

CONTINUE

DO 340 I=1,NP1



AS (I+1)=AS (I+1) +BAUX (4*I-1) , . 106
AQ(I+1)=AQ (I+1)+BAUX (4*I)

AP (I)=AP (I) +BAUX (4*I-3)

AT(I)=AT (I) +BAUX (4%I-2)

340 CONTINUE

c

c

C OUTPUT OUTPUT  OUTPUT
IF (SHORT) GO TO 82

83 WRITE (6,2306) TITLE

2306 FORMAT (*'1',9X,20A4/))
WRITE (6,2000) MO
2000 FORMAT (10X,'THIS IS A *',F7.2,' SOLAR MASS MODEL'//)
RLUM=L1%AQ (NP) /(1.DO+AL)
WRITE (6,2001) RLUM
2001 FORMAT(10X,*THE LUMINOSITY OF THIS MODEL IS*',F10.4,*' SOLAR UNITS'/
1/) A
WRITE (6, 2010) ALPHA,BETA,SIG )
2010 FORMAT(10X,'KRAMERS OPACITY: ALPHA=',F8.4,', BETA=',F8.4,', SIGHM
1A=',F8.4//) ,
TCNT=AT(1) *1.D7
PCNT=AP (1) * (TCNT) **2,5D0/PCON
WRITE(6,2008) AS(NP) ,TCNT,PCNT,ARHO (1)
2008 FORMAT (10X, 'R=',F10.8, 10X, 'T CENTRE=',F10.0,10X,'P CENTRE=',D13.6,
110X, 'RHO CENTRE=',F10.7//)
c WRITE (6,2004) TWME
2004 FORMAT(10X,'EXECUTION TIHE FOR SOLUTION OF MATRIX IS',F10.4//)
T0= (RLUM*1,71146D+15/ (AS (NP) *AS (NP)) ) **,25D0
WRITE (6,3500) TO
3500 FORMAT (10X,'THE EFFECTIVE 'SURFACE TEMPERATURE IS',F9.2,' DEGREES'
1//7) .
HRT=DLOG10 (T0)
HLOGL=DLOG10 (RLUM)
HRL=4.734D0-2.,5DO*HLOGL
WRITE (6,2206) HRL,HRT, HLOGL
2206 FORMAT(10X,*'M BOL 0=',F10.6,5X,'LOG(T EFF)=',F10.6,
$ 10X,'LOG(L)=',F10.7///) .
IF (LOGLO.EQ.0.D0) GO TO 2408
DLOGL=HLOGL-LOGLO
DLOGT=HRT-LOGTO -
WRITE (6,2409) DLOGL, DLOGT
2409 TFORMAT(10X,*CHANGE IN LOG(L)',D12.5,10X,'CHANGE IN LOG(T EFF)',D12.5//
2408 CBY=COL(1)-COL (2)
WRITE(6,2207) COL (2), CBYV
2207 FORMAT (10X, 'THE COLOURS OF THE INITIAL MODEL ARE: V=',F10.6,10X,
# YB-V=',F10.6///)
WRITE (6,2205) . ITOT
2205 FORMAT(10X,'THIS IS THE',I3,' ITERATION')
IF (MAGON) WRITE(6,2211) HO
2211 TFORMAT(10X,'HO0=',F9.0)
IF (OMEGA.NE.1.1111111D-4) WRITE (6,2212) OMEGA
2212 FORMAT('-*,9X,'OMEGA=',D12.5)
WRITE (6,2200)
2200 - FORMAT('1',10X,'THE NEW STARTING MODEL FOLLOWS'//)
WRITE (6,PARAM)
WRITE (6,2201) :
2201 FORMAT(6X,'FX*',11X,'S',11X,'0',11X,*'P',11X,'T*, 12X, 'RHO',9X,
1'N+17,10X,*LAMBDA ', 10X, *KAPPA'//)
WRITE (6,2202) (AFX(I),AS(I),AQ(I),AP(I),AT (I),ARHO(I),AN1(I),ALAM
1(I),KAPPA(I),I=1,NP)



2202 FORMAT(1X,5F12.6,D13.5,F12.6,F20.16,F12.6)

IF(QUIT.AND.SHORT) GO TO 84 ' 107
c .
C INTERMEDIATE OUTPUT  INTERMEDIATE OUTPUT INTERMEDIATE OUTPUT
82 IF((.NOT.INTER) .OR. (ITOT.GT.2)) GO TO 860

WRITE (0,2401) HO,MO,WT,ICVCT,NMASS,NP,QUIT
WRITE (0,2400) (AFX (I) ,MAG (I),DMAG (I) ,ALAM (I),AN1(I), ABELR (I), AT (I),
1 AS (I),ARHO(I),I=1,NP)
2400 - FORMAT(9D25.16)
2401 FORMAT (6D25.16,3I3,L1)
WRITE (0,2402) PASS,IPASS

2402 FORMAT (5D25. 16,51 10)

860  CONTINUE

c _

C CONVERGENCE TESTS CONVERGENCE TESTS
CALL SMAX (BAUX,400,0,AQ,NP,1,RMAXCQ, IXQ)
IF (RMAXCQ.GT.ERCQ) GO TO 310
CALL SMAX (BAUX,400,-1,AS,NP,1,RMAXCS, IXS)
IF (RHAXCS.GT.ERCS) GO TO 310
CALL SMAX (BAUX,400,-3,AP,NP,0,RMAXCP, IXP)
IF (RMAXCP.LE.ERCP) GO TO 308
BXP=DABS (BAUX (4*IXP-3))

IF(BXP.LT.SURFC) GO TO 308
GO TO 310 . .

308 CALL SMAX(BAUX,400,-2,AT,NP,0,RMAXCT,IXT)
IF (RMAXCT.LE. ERCT) GO TO 320
BXT=DABS (BAUX (4*I XT~2))

IF (BXT.LT.SURFC) GO TO 320

FINAL LOGIC  LOGIC. LOGIC LOGIC

waoaon

10 CONVG=, FALSE.
ITOT=ITOT+1
ICOUNT=ICOUNT +1 .
IF(ICOUNT.LE.ICMAX) GO TO 2
WRITE(6,2301)
2301 FORMAT(*'1',10X,'CONVERGENCE TOO SLOW, NO NEW OUTPUT MODEL PRODUCED
1) '
IF(.NOT.DUMP) GO TO 999.
WRITE (7,PARANM) ,
WRITE (7,3000) (AX(I),AS(I),AQ(I),AP(I),AT(I),I=1,NP)
999 STOP . ‘
320 CONVG=,TRUE.
ICVG=ICVG+1
IF(ICVG.LE.ICONUM) GO TO 850
QUIT=, TRUE. .
IF(SHORT) GO TO 83
84 - IF (. ¥OT.OUTPUT) GO TO 870
WRITE (7,PARAMN)
WRITE (7,3000) (AX(I),AS(I),AQ(I),AP(I),AT(I),I=1,NP)
3000 - FORMAT(5D25.16) _
870  CONTINUE ,
IF (MAGON) GO.TO 900
GO TO 1000
50 IF (.NOT.MAGON) GO TO 1

THE CALCULATION OF THE MAGNETIC FIELD STRUCTURE

cQaaQao



900

an

CONVG=.FALSE.
CALL BFIELD
IF (.NOT.QUIT) GO TO 1

108

C EFFECTIVE SURFACE TEMPERATOURES

3125

3120

200

100

300

400

20
10
500

CALL STEWMP (RLUM,TO,AS (NP))

WRITE (6,3125) -

FORMAT(*1")

PREV=.TRUE.

SECOND=.TRUE.

GO TO 1000

END

SUBROUTINE STEMP(RLUM, TO,S)

IMPLICIT REAL*8 (A-H,0-2Z)

DIMENSION PASS(5),COL(2),B(20),V (20)

DIMENSION ANG (20)

COMMON /CMAIN/ COL,SINI,NANG

COMMON /CTEMP/ DPOT2,HLAM,ROT,E

S2=5%S

DEN=1.DO+HLAM~- ROT

CP= (1.D0/ (1. DO+E) **2+DPOT2) /DEN
CE=(1.D0/(1.D0-.5DO*E) *%2+1,5D0*% (HLAM-ROT* (1~,5D0*E) ) -. 5D0*DPOT 2)
$ /DEN .

TPOL=TO*CP **, 25D0

TEQU=TO*CE**, 25D0

WRITE (6,3120) TO,TPOL,TEQU

FORMAT ('0','THE SURFACE TEMPERATURE IS',F19.12,' DEGREES ON P2=0"
1/28%,F18.12," DEGREES AT THE POLE'/28X,F18,12,' DEGREES AT THE EQU
2ATOR"') .

RD=1.5D+2%E

TDIFF=TPOL-TEQU

WRITE (6,200) TDIFF,RD

FORMAT (1X, 'TEMPERATURE DIFFERENCE—',F12 5,10X, 'RADIUS DIFFERENCE P
10LE-EQUATOR=',F12.8,'%")

WRITE(6,100) DPOT2

FORMAT (1X,* (DPOT2 /DR) / (GH/R*R)=DPOT2=",D15.7)
WRITE(6,300)  DPOT2, HLAM, ROT, E S
FORMAT(1X,4D25.15)

IF (NANG. EQ.0) RETURN

IF(SINI.GE.O0.DO) ANG (1)=SINI

WRITE(6,400) .

FORMAT('-',9X,'THE UBV COLOURS ARE'/'-','I DEGREES',7X,'V', 20X,
# YB-V'//) : .

CALL COLOUR (S,TO,B,V,ANG)

DO 20 K=1,NANG

B (K) =B (K) - V (K) _

WRITE(6,500) (ANG(K),V(K),B(K),K=1,NANG)
FORMAT(1X,F6.2,2D20. 10)

RETURN

END

SUBROUTINE ENGEN(P,T,EP,EC,X,Z,WT,RHO,T3,T32)

IMPLICIT REAL%*8 (A-H,0-2Z)

0=DSQRT (RHO) /T32

RHOH=RHO / (T3%*T3)

Y=1.D0- (X+Z)

AL=39,.336631D0-46 .416D0/T3+2.D0* (DLOG (Y)~DLOG (X))
DA=DEXP (AL)

DG=DA* (DSQRT(1.D0+2.D0/DA)-1.D0)

EF11=1.D0+,79D-2%Q



10

10
20

50
60

EF71=1,D0+3.16D-2%Q
G11=1.037D0+, 33D~ 1%T
G71=1.D0
EPr=13.003580D0-15.693D0/T3
EPH=DEXP (EPT)
EPS=EPH*RHOH*EF11%G11%X*X
WTH=36.656236D0-47.623D0/T3
WTH=WTH+DLOG (EF71) +DLOG(G71)
WTH=WTH- (.1666666666666667*DLOG (T)) !
WTH=WTH+DLOG (X) ~DLOG (1.D0+X)
DW=DEXP (WTH)

DG1=1.D0-DG
DGW1=DG/(1.DO+DW)
G¥1=1.96D0*DGW 1
GW2=1,46D0*DGW1*DW
EP1=EPS*DG1

EP2=EPS*GW1

EP3=EPS*GW2

EP=EP1+EP2+EP3
EF141=1,D0+5.33D-2%Q
G141=,995D0-8.D-3*T
ECT=62.706876D0-70.697D0/T3
ECH=DEXP (ECT) .

X14=,585D0%2Z

IF (T.LT.1.6D0) X14=.188D0*Z
EC=ECH*EF14 1%G 14 1*X*X 14*RHOH
RETURN

END

SUBROUTINE SMAX(XN NN,KN,XD,ND,KD,Q,IX)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION XN (NN),XD (ND)
0=0.D0

NF=ND-1

po 10.I=1,NF

QD=DABS (XN (4*I+KN) /XD (I+KD))
IF(QQ.LE.Q) GO TO 10

0=00

IX=1

CONTINUE

RETURN

END

SUBROUTINE LAGINS(XV FV,X,F,N,NL,NMIN,NMAX,ND)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION XV (ND), FV (ND)
DIMENSION CV(10)

DO 10 K=NMIN, NMAX

M=K

IF(X.LT.XV(K)) GO TO 20
CONTINUE

"NMIN=HM

N=M-NL/2-1

ENTRY LAGINC(XV,FV,X,F,N,NL,ND)

DO 60 I=1,NL

CV(I)=1.DO

DO 50 J=1,NL

IF(J.EQ.I) GO TO 50

CV(I)=CV (I)*(X-XV (J+N))/ (XV (I+N)-XV (J+N))
CONTINUE ,

CONTINUE

ENTRY LAGINT (XV,FV,F,N,NL,ND)
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20

80

F=0.

po 80 I=1,NL

F=F+CV(I) *FV (L+N)

RETURN

END

SUBROUTINE FLUXPO (NP,HO,RC,RO,FLUX)

IMPLICIT REAL*8 (A-H,R)

COMMON /LAG/ NL,NMIN,NMAX

EXTERNAL TANB

NL=4 .
NMIN=NL/2+1

NMAX=NP- (NL-1)/2

SRC=SNGL (RC)

SRO=SNGL (RD) .
FLUX=HO%*3,04367D+22%DBLE (SQUANK (TANB,SRC,SR0,.001,TOL,TF))
RETURN

END

FUNCTION TANB (R)

REAL*8 AS(100) ,ARHO(100) ,WT,HT (100) ,DTANB, DR
REAL*8 HR (100)

LOGICAL QUIT

COMMON /ALL/ AS,ARHO,NP

COMMON /HFLUX/ HT,HR

COMMON /LAG/ NL,NMIN,NMAX

DR=DBLE (R)

CALL LAGINS (AS,HT,DR,DTANB,N,NL,NMIN,NMAX,NP)
TANB= SNGL(DTANB)*R

RETURN

END .

SUBROUTINE KAPPA(OP,RHO,T,KAP,KAPO,ALPHA,BETA,NT)
IMPLICIT REAL*8 (A-H,0-2)

REAL*Y4 OP (30, 10) -

REAL*4 TL,RLOG

TL=T*10.,

RLIG=SNGL (DLOG10 (RHO))

DO10 I=NT,30

IF(TL.LT.OP(I,1)) GO TO 20

CONTINUE

NT=I

NR=IFIX (RLOG-OP (NT,2)) +3
ALPHA=DLOG10 (DBLE (OP (NT, NR+1) /OP (NT,NR)))
NR1=IFIX (RLOG-OP (NT-1,2)) +3
BETA=DLOG10 (DBLE (OP (NT-1,NR1) /OP (NT,NR)))

BET A=-BETA/DLOG10 (DBLE (OP(NT-1, 1) /OP(NT, 1)))

KAP O=0P (NT,NR) * (. 1*0P (NT,1) ) **BETA/ (OP (NT,2) **ALPHA)
KAP=KAPO* (RHO**ALPHA) / (T**BETA)

RETURN

END

SUBROUTINE ENPOLE (B,DB,HO,M0,ER,EG)

IMPLICIT REAL*8 (A-H,0-3Z)

REAL*%8 MO

DIMENSION B(100), 05(100) HR (100) ,HT (100), RATIO(100) AS (100)
1 ,AFX(100) ,ARHO (100)

REAL*Y SQUANK,TOL,FIF,FG,FH,SO»

COMMON /ENERG/ RATIO

COMMON /LAG/ NL,NMIN,NMAX

COMMON /HFLUX/ HT,HR

COMMON /ALL/ AS,ARHO,NP

COMMON /MASS/ AFX

EXTERNAL FH,FG
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RATIO(1)=0.DO : 111
SS0=AS (NP)
(oF CONSTANT = R/ (24 *PI%*G*MNSUN)
C=.6960136U4D-17%*H0*HO /M0
$2=550%SS0
$22=52/2.D0
NP i1=KP-1
RATIO(1)=3. DO*HR(1)*HR(1)
po 10 I=2,NP1
HR}I)‘-SZ*B(I)/(AS(I)*AS(I))
HT (1) =S22*DB (I) /AS(I)
RATIO(I)= (HR(I)*HR(I) +2, DO%*HT (I) *HT (I))
10 CONTINUE
HR(NP)=1.D0
HT (NP) =.5D0
RATIO(NP)=1.5D0
NL=U
NMIN=NL/2+1
NMA X=NP~ (NL-1) /2
S0=SNGL (S50)
EH=DBLE (SQUANK (FH, 0.,50,.00001 TOL,FIF))
NMIN=NL/2+1
50=SHGL (SS0)
EG=DBLE (SQUANK (FG,0.,50, 1. E-7,TOL,FIF))
ER=C*EH/EG ‘
RATIO(1)=0,D0 .
RATIO (NP)=0.DO
DO 20 I=2,NP1
20 RATIO(I)=C*RATIO(I)*AS(I)/ (AFX(I)*ARHO(I))
RETURN
END
FUNCTION FH(S)
REAL*8 RATIO(100) ,AS(100) ,ARHO(100) ,RAT,SS
COMMON /ALL/AS,ARHO,NP
COMMON /ENERG/ RATIO
COMMON /LAG/ NL,NMIN,NMAX
SS=DBLE (5)
CALL LAGINS (AS,RATIO,SS,RAT,N,NL,NMIN,NMAX,NP)
FH=SNGL (RAT*SS*S5S)
RETORN
END
FUNCTION FG(S)
REAL*8 AS(100) ,ARHO(100) ,AFX(100),55, MR, RHO
COMMON /ALL/ AS,ARHO,NP
COMMON /MASS/ AFX
COMMON /LAG/ NL,NMIN,NMAX
SS=DBLE (S).
CALL LAGINS (AS,AFX,SS,NMR,N,NL,NMIN,NMAX,NP)
CALL LAGINT(AS,ARHO,RHO,N,NL,NP)
FG=SNGL (MR*RHO*S5S)
RETURN
END

$C *SKIP
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$C STAR(768) TO *SINK*®NOCC
SUBROUTINE COLOUR (SO,TEO0,B,V,ANG)
SINI IS SIN(ANG OF MAGNETIC AXIS. WRT LINE OF SIGHT; I.E. O=POLE ON)
INTEGRATION DONE WITH Z AXIS DEFINED AS LINE OF SIGHT
THETA=ANGLE BETWEEN POINT ON SURFACE OF STAR AND LINE OF SIGHT
PHI=ANGLE AROUND Z AXIS
BY SYMMETRIES. O<=THETA<=PI AND 0<=PHIK=PI/2; I.E. HALF OF VISIBLE SURFA
THETA PRIME IS ANGLE WRT TO SYMMETRY AXIS (MAGNETIC AXIS) OF STAR
I.E. IF SINI=0,. THEN. THETA=THETA PRIME,
IMPLICIT REAL*8 (A-H,0-7)
DIMENSION COSPHI(8),SINT (8),SINPHI(8)
INTEGER*U4 THETA ,PHI,THETA2 _
DIMENSION HLGNDR(8), HLAGUE(8)
DIMENSION ALGND (8) ,ALAG (8)
DIMENSION B (20), V(20) COL(2) ANG (20)
LOGICAL. SECOND .
COMMON /DAT/ SECOND
COMMON /CTEMP/ DPOT2,HLAM,ROT,E
COMMON /CMAIN/ COL,SINI,NANG
DATA ALGND /.095012509837637D0,.2816035507792580D0,
2 .458016777657227D0,.617876244402643D0, . 755404408355003D0,
$# .865631202387831D0,.944575023073232D0,.989400934391649D0/
DATA HLGNDR /. 189450610455068D0,.182603415044923D0,
# .169156519395002D0,.149595988316576D0,. 124628971255533D0,
# .295158511682492D0,.062253523938647D0, .027152459411754D0/
DATA ALAG /.170279632305D0,.9037017767990D0,
$# 2.251086629866D0, 4..266700170288D0,7.045905402393D0,
# 10.758516010181D0,15.740678641278D0,22.863131736889D0/
DATA HLAGUE /3.69188589342p-1,4,18786780814D-1,
# 1.75794986637D-1,3.33434922612D-2,2.79453623523D-3,
# 9,07650877336D-5,8, 48574671627D-7, 1.04800117487D-9/
PI2=3,141592653589793D0/2.D0
POSNEG=-1. DO
TEREDU=.75D0*TEO%**4/ (1.DO+HLAM~ROT)
52=50%S0
NLAGUE=8
NLGNDR=8
IF (SECOND) GO TO 2
c ALGND=COS (THETA) AND PI2*ALGND=PHI
DO 1 K=1,NLGNDR
SINT (K) = DSQRT(1 DO- ALGND(K)*ALGND(K))
COSPHI (K) =DCOS (PI2*ALGND (K))
SINPHI (K)= DSIN(PIZ*ALGND(K))
CONTINUE
2 DO 5 K=1,NANG
IF(NANG.EQ.1) GO TO 100
FR= (K-1) /DFLOAT (NANG-1)
SINI=DSIN (PI2*FR)
ANG (K)=90. DO*FR
100 COSI=DSQRT (1. DO—SINI*SINI)
FLUXB=0.D0 .
FLUXV=0.DO
DO 10 THETA=1,NLGNDR
DO 20 THETA2=1,2
POS NEG=~POSNEG
DO 30 PHI=1,NLGNDR

aoOoaoaaan
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TPHI=SINT (THETA) *SINPHI(PHI) / (SINT (THETA)*COSPHI (PHI) *COSI
$ -POSNEG*ALGND (THETA). *SINI) -
CPHIP=1,D0/DSQRT (1.DO+TPHI*TPHI)
IF(TPHI.LT.0.D0) CPHIP=-CPHIP ,
CIHEP‘+POSNEG*ALGND(TH?TA)*COSI+SINT(THETA)*COSPHI(PHI)*SINI
C02=CTHEP*CTHEP
P2=(3.D0%C02-1.D0)*.5D0
SI2=1.D0-CO02
STH=DSQRT (SI2)
AMU=- (1. D0+3, DO*E*C02) *STH*CPHIP*SINI+(1.D0-3,D0O*E*SI2) *CTHEP*COSI
AMU=DABS (ANU)
TET=TEREDU4* (1. D0/ (1. DO +E*P2) ¥%*2+1,5D0% (HLAM-ROT* (1. DO+E*P2))*STH
# +DPOT2%P2)
HNKTB-.11968112760*19/TET
E3=(1. DO+E*P2)**3 .
FIUB=0. DO
FIUV=0.DO
DO 50 ILAG=1,NLAGUE
TEMP=ALAG (ILAG) *AMU+.6666666666666666 DD -
ARGU= (HNKTB/T EMP) %%, 25D0
DENB=DEXP (ARG4)-1.D0
DENV=DEXP (ARG4*,78661844484D0) - 1.D0
FIUB=FIUB+HLAGUE (ILAG) /DENB
50 FIOV=FIUV+HLAGUE (ILAG) /DENV
FIUB=FIUB*AMU .
FIUV=FIUV*AMD
C  BIS CALCULATED AT 4350A AND V AT 5530A
FLUXB=FLUXB+HLGNDR (THETA) *HLGNDR (PHI) *FIUB*E3
FLUXV=FLUXV+HLGNDR (THETA) *HLGNDR (PHI) *FIUV*E3
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30 CONTINUE
20 CONTINUE
10 CONTINUE

C COL FINDS DIFFERENCE PROM INITIAL BV COLOURS
B(K)=-2.5D0%DLOG10 (S2%FLUXB) -COL (1)
C CONSTANT=-2.5%LOG10( (4350/5530) %%3)
V (K)=-2.5D0*DLOG10 (S2*FLUXV) -COL (2) +.7817690578D0
5 CONTINUE
RETURN
END

$C *SKIP



$C NORM TO *SINK*aNOCC
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SUBROUTINE BFIELD
IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 AS(100) ,ARHO (100) ,AN1 (100) ,MAG (100), DMAG (100)
1,EPS (100) ,ALAM (100) ,POT2 (100), PP (100) ,PH (100) ,AFX (100)
2,HR {100) ,HT (100) ,RATIO (100)

REAL*8 MO

LOGICAL QULT,MAGOUT,SHORT,CURFLIT
DIMENSION IPASS (5), PASS(S)
DIMENSION SOLY(Q);SOLF(Q),SOLQ(Q)
DIMENSION CONPAT (25)

COMMON . /MAINB/ MAG,DMAG,ALAM,SOLY,HO,M0,OMEGA,ICVCT
1,NMASS,PASS,IPASS,SHORT, MAGOUT, ICONUM, ICVG
2,MCVCT,CURFIT

COMMON /ALL/ AS,ARHO,NP

COMMON. /JRKB/ CON1,CON2 ,RHOAV,SC
COMMON /HFLUX/ HT,HR

COMMON /MASS/ AFX. . .
COMMON /ETC/ WT,QUIT

COMMON /LAG/NL,NMIN,NMAX
COMMON /ENERG/ RATIO

COMMON /CTEMP/ DPOT2,HLAHN,ROT,E
SURF=AS (NP)

$2=SURF*SURF

S3=SURF*S2

RHOAV=1. u08376669*M0/s3

Do 910 I=1,9

SOLY (I) =0.D0

SOLY (1) =AS (2) ~AS (1),

MAG (1) =0.DO0

DMAG (1)=0. DO

POT2(1)=0.D0

PP (1) =0. DO

PH(1)=0.DO

SOLY (2) =SOLY (1) *SOLY (1)

SOLY (4) =SOLY.(2)

SOLY (6) =SOLY (2)

SOLY (8) =SOLY (2)

SOLY (3)=2. DO*SOLY (1)

SOLY (5) =SOLY (3)

SOLY (7) =SOLY (3)

SOLY'(9) =SOLY (3)

MAG (2) =SOLY (8)

DMA G (2) =SOLY (9)

POT 2 (2) =SOLY (8)

PP (2) =SOLY (8)

PH (2) =SOLY (8)

CON 1=4.917521412D0 '
CLAM=.69603164D-17* (SURF**4%*H0*H0/ (RHOAV*MO) )
CON2=CON1%*CLAM

NP1=NP-1

NL=U

NMIN=NL/2+1

NMA X=NP- (NL-1) /2

DO 920 J=2,NP1

I=J+1
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H=AS (J+1)-AS (J) ‘
CALL DRK (SOLY,SOLF,SOLQ,H,9,1)
MAG (I) =SOLY (2)
DMAG (I) =SOLY (3)
IF (., NOT.QUIT) . GO TO 920
PH(I)=SOLY (4)
PP (I)=SOLY (6)
POT2 (I)=SOLY(8)
920  CONTINUE
BCB=- (MAG (NP) + SURF*DMAG (NP) ) / (3. DO*SURF*SURF)
CNORM=DABS (MAG (NP) +BCB*AS (NP) *AS (NP))
DO 930 I=1,NP .
MAG (I)= (BCB*AS (I) *AS (I) +MAG (I)) /CNORN
. DMAG(I)=(2.DO*BCB*AS (I)+DMAG (I)),/CNORM
930  CONTINUE
CLAM=CLAM/CNORM
CONPAT (ICVG)=CLAN
ALAM (1) =2.D0*S3*RHOAVXCLAM* (BCB+1.D0)/ (CNORM*ARHO (1))
DO 940 I=2,NP
940  ALAM(I)= CLAH*DMAG(I)*AS(I)*AS(I)/AFX(I)
IF ( (. NOT,QUIT).AND.SHORT) RETOURN
HR(1) == (BCB+1.D0) /CNORM*SURF*SURF
HT (1) =-HR (1)
CALL ENPOLE (MAG,DMAG,HO,H0,ER,EG)
SC=0.D0
CALL FLUXPO (NP,HO,SC,SURF,FLUX)
WRITE (6,3200) _
3200 - FORMAT('1',10X,'THE STREAM PUNCTION FOR THE MAGNETIC FIELD'//)
WRITE (6,3250) . CLAM,CNORM, FLUX
3250 FORMAT(1X,'CLAM=',D10.3 1ox,'cuoam- ,D10.3,10X, *FLUX=", D10. 3)
WRITE (6,3208) ER, HO
3208 FORMAT(1X,'ENERGY RATIO=',D10.3,10X,'HO=*,F9.0, *GAUSS'//)
WRITE (6,3210). -
3210 FORMAT(12X,'S',19X,'B*,19X,'DB/DS",15X,'H RAD',15X,'H TAN', 15X,
1 YENERGY RATIO'//)
WRITE (6,3220) (AS(I),MAG(I),DMAG(I),HR(I),HT (I),RATIO(I),I=1,NP)
3220 - FORMAT (1X,5F20.6, D20.6)
IF (.NOT.QUIT) RETURN
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THE P2 TERM OF THE GRAVITATION POTENTIAL
BCPOT=~ (3, DO* (PP (NP) +BCB*PH (NP) ) +SURF* (SOLY (7) +BCB*SOLY (5)))
C2=CNORM*CNORM
BCPOT=BCPOT/ (3. DO *POT2 (NP) +SURF*SOLY {9) ) /C2
EPS (1) == (BCPOT+ (1.D0+BCB) /C2~CLAM) *RHOAV*S3 /ARHO (1)
DO 950 I=2,NP
POT2 (I)= BCPOT*POT 2 (I) + (PP (L) +BCB*PH (I)) /C2
950  EPS(I)=-AS(I)*(POT2 (I)~-CLAM®MAG (I))/AFX (I)
WRITE (6,4000)
5000 - FORMAT('-','THE PATH OF CLAN WAS:')
WRITE (6,3999) (I, CONPAT(I),I=1,ICONUM)
3999 FORMAT(1X,I5,D20.5) ‘
WRITE (6,3110)
3110 FORMAT('1',9X,'I',10X,"EPS*,17X, 'LAMBDA?,18X,'S",15X, 'POT2'//)
WRITE (6,3100) (I,EPS(I),ALAM(I),AS(I),POT2(I),I=1,NP)
3100 FORMAT(1X,I110,2D20.5,F20.5,D20.5)
E=EPS (NP)
DPOT2= SZ*(BCPOT*SOLY(B)+(SOLY(7)+BCB*SOLY(5))/C2)
HLAM=ALAM (NP)



ROT=0.D0 ‘
IF(MAGOUT) -WRITE(7,1999) HO,MO

1999 TFORMAT (10X, 'NORMAL MAGNETIC FIELD: HO=',F9.0,10X,°'FOR MO=

IF(MAGOUT) WRITE (7,2000) (AS(I),MAG(I),DMAG(I),I=1,NP)
2000 FORMAT (3D25. 16)

RETURN

END

SUBROUTINE AUXRK(Y F)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION ABETR (100)

DIMENSION Y (9),F(9),ARHO (100),4S(100),AN1(100) ,AT(100)

LOGICAL QUIT

COMMON /RKB/ CON1,CON2,RHOAV,SC

COMMON /MAINRK/ AN1,ABETR,AT

COMMON /ALL/ AS,ARHO,NP

COMMON /LAG,/ NL,NMIN,NMAX

COMMON /ETC/ WT,QUIT

X=Y (1)

X2=X*X

F(2) =Y (3)

CALL LAGINS (AS,ARHO,X,DEN,N,NL,NMIN,NMAX,NP)

F(3) =2.D0*Y (2) /X2 +DEN/RHOAV%X2

IF (QUIT) GO TO 10

DO 'S5 .I=4,9
5 F(I)=0.D0
RETURN
10 CONTINUE

C NOTE THAT POT2 IS A DIMENSIONLESS POTENTIAL
CALL LAGINT (AS,ABETR,BET,N,NL,NP)
CALL LAGINT(AS,AN1,EN1,N,NL,NP)
CALL LAGINT (AS,AT,T,N,NL,NP)
F(4) =Y (5)
F(6)=Y(7)
F(8) =Y (9) .
IF (T.LE..0D0) GO TO 50
CALC=DEN#*WT/T* ({3 .DO*BET-4.D0) /EN1+1.D0)

GO TO 60
50 CALC=0.DO
60 - CPOT=CON1%CALC

CB=CON2%CALC

F(5)=-2.D0%Y (5) /X +6.D0O*Y (4) /X2-CPOT*Y (4) +CB*X2

F(7) =-2.D0%*Y (7) /X+6.DO*Y (6) /X2-CPOT*Y (6) +CB*Y (2)
F(9)=-2.D0*Y (9) /K +6. DO*Y (8) /X2-CPOT*Y (8)

RETURN ' '

END

$C *SKIP
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$C CON TO *SINK*@NOCC
SUBROUTINE BFIELD
IMPLICIT REAL%*8 (A-H,0-Z)

REAL*8 AS (100) ,ARHO (100) ,AN1(100) ,4AG (100),DMAG (100)
1,EPS(100) ,ALAM (100) ,POT2 (100) ,PP (100),PH (100), AFX (100)
REAL*8 MO

LOGICAL QUIT,MAGOUT,SHORT,CURFIT

DIMENSION HR(100),HT(100),RATIO (100)

DIMENSION SOLY (9) ;SOLF (9),SOLQ (9)

DIMENSION COEF (3, 3),RHS (3)

DIMENSION IPASS(5) ,PASS (5)

DIMENSION CONPAT (25)

COMMON /MAINB/ MAG,DMAG,ALAM,SOLY,HO,M0,OMEGA,ICVCT
1,NMASS,PASS,IPASS,SHORT, MAGOUT, ICONUMN, ICVG
2 MCVCT,CURFIT.

COMMON /ALL/ AS,ARHO, NP

COMMON /RKB/ CON1,CON2,RHOAV,SC3

COMMON /HFLUX/ HT, HR

COMMON /MASS/ AFX

COMMON /ETC/ .WT,QUIT

COMMON /LAG/ NL,NMIN,NMAX

COMMON /ENERG/ RATIO

COMMON /CTEMP/ DPOT2 ,HLAM,ROT,E

C MCVCT MOVES THE FITTING POINT INTO THE INTERIOR
NXT=ICVCT+ (NMASS+1) /2-NCVCT
NB=ICVCT-NMASS/2~HCVCT
CW=AS(NXT) -AS (NB)

SC=AS (ICVCT)
SC3=SC*SC*SC

SURF=AS (NP)

S3=SURF**3
RHOAV=1,408376663*M0/S3
DO 910 I=1,9

910  SOLY (I)=0.DO
ICVCT1=ICVCT+1
DO 10 I=1,ICVCT1
PP (I)=0.DO0
PH(I)=0.D0
MAG (I) =0.DO
DMAG (I)=0. D0
POT2(I)=0.DO
ALAM (I)=0.DO

10 EPS (I) =0.DO
SOLY (1) =AS (ICVCT)

SOLY (3) =3.D0*SC
DMAG (ICVCT)=SOLY (3)

C WHEN POT2,B ARE SMALL POT2 GOES AS S*%2-SC*¥5/S%%3
SOLY (5)=5. DO*SC
SOLY (7) =SOLY (5)

SOLY (9) =SOLY (5)

C CON1=U#PI*GXH*R*R/ (K*1D7) -

C CLAM CONSTANT=2/(3%16*PI)*R/ (G*M) MASS OF STAR
CON1=4.917521412
CLAM=.69603164D-17%* (SURF**U4 *HO*H0 / (RHOAV*MO0 ) )

C  HO IS THE RADIAL MAGNETIC FIELD AT THE POLE
CON 2=CON1*CLAM



920

930

NP1=NP-1 .
HL=0 118
NMIN=NL/2+1
NMA X=NP- (NL-1) /2
DO 920 -J=ICVCT, NP1
I=J+1
H= (AS (I)-AS (J))/2.D0
CALL DRK (SOLY,SOLF,SOLQ,H, 9,2)
MAG (I)=SOLY (2)
DMAG (I) =SOLY (3)
IF (. NOT.QUIT) GO TO 920
PH(I)=SOLY (4)
PP (I)=SOLY (6)
POT2(I)=SOLY(8)
CONTINUE
BCB=- (MAG (NP) +SURF*DMAG (NP) )/ (3. DO*SURF*SURF)
CNORM= DABS(MAG(NP)+BCB*(AS(NP)*AS(NP) SC3/AS (NP)))
DO 930 I=ICVCT,NP
S2=AS (I)*AS (I)
MAG (I) =(BCB*(S2-SC3/AS (I))+MAG (I))/CNORM
DMAG (I)= (BCB* (AS (I)*2.D0+SC3/S2) +DMAG (1)) /CNORM
CONTINUE

C CURVE FITTING TO CONVECTIVE CORE

12
50

940

3200

IF(.NOT.CURFIT) GO TO 50

W2=CH®CW

W3=W2%CH

Wi=W3%CH

WS5=WLU*CH

COEF (1,1) =43

COEF (2,1)=3.D0*W2

COEF (3,1)=6.DO%CH

COEF (1,2) =

COEF (2,2)=4.D0*W3

COEF(3,2)=12.D0*W2

COEF (1,3) =45

COEF (2,3) =5.DO0* Wl

COEF (3,3)=20.D0%*W3

RHS (1) =MAG (NXT)

RHS (2) =DMAG (NXT)

RHS (3) =2.DO*MAG (NXT) / (AS (NXT) *AS (NXT) ) + ARHO (NXT) *AS (NXT) *AS (NXT)
1/ (RHOAV*CNORM)

CALL DSOLTN (COEF,RHS,3,3,DET)

DO 12 I=NB, NXT

X=A S (I)-AS(NB)

X3=X*X*X

MAG (I) =RHS (1) *X3+RHS (2) *X3* X+ RHS (3) *X3*X*X

DMAG (I)=3.DO*RHS (1) *X*X+4, DO*RHS (2) *X3+5.DO*RHS (3) ¥X3*X
CLAM=CLAM/CNORM

CONPAT (ICVG) =CLAN

DO 940 I=NB,NP

ALAM (I)= = CLAN%DMAG (I) *AS (I) *AS (I) /AFX (I)

IF((.NOT.QUIT) .AND.SHORT) RETURN

HR(1) =~ (BCB+1. DO) /CNORM

HT (1) ==HR (1)

CALL ENPOLE (MAG,DMAG, HO, MO, ER, EG)

CALL FLUXPO (NP,HO,SC,SURF,FLUX)

WRITE (6,3200)

FORMAT('1',10X,'THE STREAM FUNCTION FOR THE MAGNETIC FIELD WITH CO
1NVECTION'//)

WRITE (6,3250) CLAM,CHORM,NMASS,NB

\



119
3250 FORMAT (1X, *CLAM=',D10.3, 10X, *CNORM=",D10.3, 10X, *NUMBER OF MASS SHE

1LLS IN CURRENT ZONE=',I3,10X,'BEGINNING AT #',1I3)

WRITE (6,3211) FLUX,ER,HO :
3211 FORMAT(1X,'FLUX=',D10.3,10X,'ENERGY RATIO=',D10.3,10X,"'H0O=",F9.0,"

1GAUSS'//) . N :

WRITE (6,3210)
3210 FORMAT (12X,'S*, 19%X,*B', 19X, *'DB/DS", 15X, 'H RAD', 15X, *H TAN', 15X,

1 *ENERGY RATIO'//)

WRITE (6,3220) (AS(I),MAG(I),DMAG (I),HR (I),HT(I),RATIO(I),I=NB,NP)
3220 FORMAT(1X,5F20.6,D20.6) i

IF(.NOT.QUIT) RETURN

C

C THE P2 TERM OF THE GRAVITATION POTENTIAL
C BC IS 3*%POT2+SURF*POT2=0
Cc

BCPOT=- (3. DO*(PP(NP)*BCB*PH(NP))+SURF*(SOLY(7)+BCB*SOLY(5)))
C2=CNORM*CNORM
BCPOT=BCPOT/(3.DO%POT2 {NP) +SURF*SOLY (9) )
DO 950 I=NB,NP
POT2(1)¢(BCPOT*POT2(I)*PP(I)+BCB*PH(I))/C2
950 : EPS (I)=-AS (I) *(POT2(I) -CLAN*MAG (I) ) /AFX (I)
EPS (NB)=0.DO0 .
E=EPS (NP)
DPOT2=52#% (BCPOT*SOLY(9) +SOLY (7) +BCB*SOLY (5) ) /C2
ROT=0.DO
HLAM=ALAM (NP)
WRITE (6,4000)
4000 - FORMAT (*-*,'THE PATH OF CLAM WAS:?)
WRITE(6,3999) (I,CONPAT(I),I=1,ICONUNM)
3999 FORMAT (1X,I5,D20.5)
WRITE (6,3110) _
3110 FORMAT (*1',9%,'I', 10K, "EPS*, 17X, '"LAMBDA', 18X, *S",15X, 'POT2'//)
WRITE (6,3100) (I,EPS(I),ALAM(I),AS(I),POT2(I),I=1,NP)
3100 FORMAT (1X,I10,2D20.5,F20.5,D20. 5)
IF (AAGOUT) WRITE (7, 1999) HO, MO
1999 FORMAT (1X, "CONVECTIVE CORE MAGNETIC FIELD: HO=',F9.0,10X,'FOR MO0=
$ ,Fu4.1) ‘
IF (MAGOUT) WRITE(7,2000) (AS(I),MAG(I),DMAG(I),I=1,NP)
2000 - FORMAT (3D25. 16)
RETURN
END ‘
SUBROUTINE AUXRK(Y,F)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION ABETR (100)
DIMENSION Y (9),F(9), ARHO(100) AS (100) ,AN1(100), AT(100)
LOGICAL QUIT
COMMON /RKB/ CON1,CON2,RHOAV,SC3
COMMON /MAINRK/ AN1,ABETR,AT
COMMON /ALL/ AS,ARHO,NP
COMMON /LAG/ NL,NMIN,NMAX
COMMON /ETC/ WT,QUIT
X=Y (1)
2= X*X
F(2) =Y (3).
CALL LAGINS (AS,ARHO,X,DEN,N,NL,NMIN,NMAX,NP)
F(3) =2.D0*Y (2) /X2+DEN/RHOAV*X2
IF(QUIT) GO TO 10
DO 5 I=4,9
5 F(I)=0.D0
RETURN



10 -

50

60 -

$C

/

CONTINUE

CALL LAGINT(AS,ABETR,BET,N,NL,NP)

CALL LAGINT (AS,AN1,EN1,N,NL,NP)

CALL LAGINT(AS,AT,T,N,NL,NP)

F(4)=Y (5)

F(6) =Y (7)

F(8)=Y (9) ,

IF (T.LE..0DO) GO TO 50

CALC=DEN*WT/T* ((3.DO*BET-4.D0) /EN1+1.D0)

GO TO 60

CALC=0.D0

CPO T=CON1%CALC

CB=CON2%CALC _

F(5) =-2.D0%*Y (5) /X+6.D0%*Y (4) /X2-CPOT*Y (4) +CB* (X2-SC3/X)
F(7)=-2.D0*Y (7) /X +6. DO *Y (6) /X2-CPOT*Y (6) +CB*Y (2)
F(9) =-2.D0*Y (9) /X+6.D0*Y (8) /X2-CPOT*Y (8)

RETURN

END

*SKIP
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$C ROT TO *SINK*@®NOCC

c

910

SUBROUTINE BFIELD

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 AS(100) ,ARHO(100) ,AN1 (100) ,MAG (100), DMAG (100)
1,EPS (100), ALAM (100) , POT2(100),PP (100) ,PH (100) ,AFX(100)
2,HR (100) ,HT (100) ,RATIO (100)

REAL*8 MO

LOGICAL QUIT,MAGOUT,SHORT,CURFIT

DIMENSION IPASS (5),PASS (5)

DIMENSION SOLY(Q);SOLF(Q) SOLQ (9)

DIMENSION CONPAT (25) _

COMMON sMAINB/ MAG,DMAG,ALAM,SOLY,HO,HNO, OMEGA, ICVCT
1,NMASS,PASS, IPASS, SHORT, MAGOUT, ICONUM, ICY6
2.MCVCT,CURFIT

COMMON /ALL/ AS,ARHO,NP

COMMON /RKB/ CON1,CON2,RHOAV,SC

COMMON /HFLUX/ HT,HR

COMMON /MASS/.AFX

COMMON /ETC/ WT,QUIT

COMMON /LAG/NL,NMIN,NMAX

COMMON /CTEMP/ DPOT2, HLAM,ROT,E

COMMON /ENERG/ RATIO

SURF=AS (NP)

S2=SURF*SURF

$3=SURF*S2

02=0MEGA*OMEGA

RHOAV=1,408376669%M0/S3

CROT CONSTANT= 2/3*RSUN%**3/ (G*MSUN)

CROT=1.694751728D6*02/M0
CROT2=CROT/2.D0
CoN1=4,917521412D0
CLAM=,69603164D~ 17*(SURF**Q*HO*HO/(RHOAV*MO))
CON2=CON1*CLAM

NP 1=NP-1

NL=4

NMIN=NL/2+1

NMAX=NP- (NL-1)/2

D0 910 I=1,9

SOLY (I)=0. DO

SOLY (1) =AS (2) -AS(1)

MAG (1) =0. DO
DMAG (1) =0.D0

POT2 (1)=0.D0

PP (1) =0.D0

PH(1)=0.D0

SOLY (2) =SOLY (1) *SOLY (1)
SOLY (4) =CLAM¥*SOLY (2)
SOLY (6) =CLAM*SOLY (2)
SOLY (8) =CLANM*SOLY (2)
SOLY (3) =2.D0*SOLY (1)
SOLY (5) =CLAM%SOLY (3)
SOLY (7) =CLAM*SOLY (3)
SOLY (9)=CLAM%SOLY (3)
MAG (2) =SOLY (2)

DMAG (2) =SOLY (3)

POT2 (2) =SOLY (8)



PP (2)=SOLY (8) : 122
PH{2) =SOLY (8)
DO 920 J=2,NP1
I=J+1
H=AS (J+1) -AS (J)
CALL DRK(SOLY,SOLF SOLQ #,9,1)
MAG (I)=SOLY (2)
DMAG (I) =SOLY (3)
IF (. NOT.QUIT) GO TO 920
PH({I)=SOLY (4) .
PP (I)=SOLY (6)
POT2 (I)=SOLY (8)
920 CONTINUE
BCB=- (MAG (NP) + SURF*DMAG (NP) )/ (3. DD*SURF*SURF)
CNORM=DABS (MAG (NP) +BCB*AS (NP) *AS (NP))
DO 930 I=1,NP
MAG (I)= (BCB*AS (I) *AS (I) +MAG(I)) /CNORH
DMAG(I)=(2.DO*BCB*AS (I)+DMAG (I) ) /CNORHN
930 CONTINUE
CLAM=CLAM/CNORNM
CONPAT (ICVG)=CLAM
CROTC=CROT*S3*RHOAV/ARHO (1)
ALAM (1)=2.D0*S3*RHOAV*CLAM* (BCB+1.D0) /(CNORM*ARHO (1) ) -CROTC
DO 940 I=2,NP
340 ALAM (I)= (CLAM*DMAG(X) ~-CROT*AS (I)) *AS(X) *AS(I)/AFX(I)
IF((.NOT.QUIT) .AND.SHORT) RETURN
HR(1)=- (BCB+1. D0) /CNORM*SURF*SORF
HT (1) =-HR (1)
CALL ENPOLE (MAG, DMAG 0O, 10, ERM, EG)
CALL EROTAT (MO,OMEGA,EG,ERR)
- ER=ERM+ERR
SC=0.D0
CALL FLUXPO(NP,HO,SC,SURF,FLUX)
WRITE (6,3200)
3200 - FORMAT ('1*,10X,'THE STREAM FUNCTION FOR THE MAGNETIC FIELD'//)
WRITE (6,3250) CLAM,CNORH,FLUX
3250 : FORMAT (1X, *CLAM=',D10,. 3, 10X, *CNORM="',D10.3, 10X, *FLUX="?,D10.3)
WRITE(6,3208) ERM,ERR,HO
3208 FORMAT (1X, 'MAG ENERGY RATIO=',D10,.3,10X,'ROT E RATIO',D10,3,10X,
' $ *HO=',F9.0,'GAUSS'//) '
RLAM=CLAM/CROT
WRITE(6,3209) . CROT,RLAN,OMEGA
3209 FORMAT (1X,*CROT=',D12.5, 10X, "LAM MAG/LAM ROT=',D12.5,
3 10X, *OMEGA="',D12.5//)
WRITE (6 3210)
3210 FORMAT(12X,'S',19X, 'B' ,19X,'DB/DS,15X,'H RAD',15X,'H TAN', 15X,
1 'MAG ENERGY RATIO'//)
WRITE (6,3220) (AS(I),MAG(I) ,DMAG(I),HR(I),HT (I),RATIO(I),I=1,NP)
3220 FORMAT (1X,5F20.6,D20.6)
IF(.NOT.QUIT) RETURN

C
c
C
C THE P2 TERM OF THE GRAVITATION POTENTIAL

C2=CNORM*CNORM

CB2=BCB/C2-CROT2/CLANCNORMN

BCPOT=~ (3. DO* (PP (NP) /C2+CB2*PH (NP) ) +SURF* (SOLY (7) /C2+CB2*SOLY (5)))

BCPOT=BCPOT/(3.D0O*POT2 (NP) +SURF*SOLY (9))

EPS (1) == ( (BCPOT+1.D0/C2~ 1. DO/CNORM +CB2) *CLAN#CNORN+CROT2)
$ *RHOAV*S3/ARHO(1)



DO 950 I=2,NP
POT 2 (I)=BCPOT*POT 2(I) +PP (I) /C2+4CB2*PH(I)
950 EPS (I) =-AS (I) * (POT2 (I)-CLAM*MAG (I) +CROT2*AS (I) *AS (I))/AFX (I)
RATEQU=1,5DO*CROT *S3*% (1-,5D0*EPS (NP) ) **3
WRITE (6,3111) RATEQU
3111 PORMAT('-', 'ROTATIONAL FORCE/GRAV FORCE AT EQUATOR IS:',D12.5)
WRITE (6,4000)
4000 - FORMAT('-','THE PATH OF CLAM WAS: ')
WRITE(6,3999) (I, CONPAT(I),I=1,ICONUHM)
3999 FORMAT(1X,15,D20.5)
WRITE (6,3110).
3110 FORMAT('1*,9X,'I',10X,'EPS',17X,*LAMBDA',18X,*S",15X,'POT2'//)
WRITE (6,3100) (I,EPS(I),ALAM(I),AS(I),POT2(I),I=1,NP)
3100 - FORMAT(1X,110,2D20.5,F20.5,D20.5)
E=EPS (NP)
DPOT2= S2*(BCPOT*SOLY(9)+SOLY(7)/C2+CBZ*SOLY(5))
HLAM=CLAM*DMAG (NP) *S2
ROT=CROT*S3 4
IF(MAGOUT) WRITE(7,1999) HO,MO,OMEGA
1999 FORMAT (1X, 'ROTATION',27X,F9.0,10X,'FOR M0=',F4.1,10X,
$ YOMEGA=',D12.5)
IF(MAGOUT) WRITE(7,2000) (AS (I),MAG (I),DMAG (I),I=1,NP)
2000 - FORMAT (3D25.16)
RETURN
END
SUBROUTINE AUXRK(Y,F)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION ABETR (100)
DIMENSION Y (9),F(9),ARHO (100),AS(100) ,AN1(100) ,AT(100)
LOGICAL QUIT
COMMON /RKB/ CON1, conz RHOAV,SC
COMMON /MAINRK/ AN1,ABETR AT
COMMON /ALL/ AS,ARHO,NP
COMMON /LAG/ NL,NMIN,NMAX
COMMON /ETC/ WT,QUIT
X=Y (1)
X2=X*X
F(2)=Y(3) .
CALL LAGINS (AS,ARHO,X,DEN,N,NL,NMIN,NMAX,NP)
F(3) =2.D0%*Y (2) /X2+DEN/RHOAV*X2
IF(QUIT) GO TO 10

123

DO 5 I=4,9

5 F(I)=0.D0
RETURN

10 CONTINUE

C POT2 IS A DIMENSIONLESS POTENTIAL
CALL LAGINT (AS, ABETR, BET,N, NL,NP)
CALL LAGINT(AS,AN1,EN1,N,NL,NP)
CALL LAGINT (AS,AT,T,N,NL,NP)
F(4) =Y (5)
F(6)=Y (7)
F(8) =Y (9)
IF (T.LE..0D0) GO TO 50
CALC=DEN*WT,/T* ( (3.DO*BET-4.D0)/EN1+1.D0)

GO TO 60
50 CALC=0.DO
60 CPOT=CON1%*CALC

CB=CON2*CALC
F(5)=-2.D0%*Y (5) /X +6. DO*Y (4) /X2-CPOT*Y (4) +CB*X2
F(7)=-2.D0%Y(7) /X+6.DO*Y (6) /X2-CPOT*Y (6) +CB*Y (2)



'F(I) =-2.D0*Y (9) /K +6. DO*Y(B)/XZ CPOT*Y(B)
RETURN
END
SUBROUTINE EROTAT (MO ,OMEGA,EG,ERR)
IMPLICIT REAL*8 (A-H,0-Z)
REAL%*8 MO
REAL*4 SQUANK,TOL,FIF,FROT,S0
DIMENSION AS(100) ,ARHO (100)
COMMON /ALL/ AS,ARHO,NP
COMMON /LAG/ NL,NMIN,NHMAX
EXTERNAL FROT . .
C CONSTANT=1/3*RSUN%%3 / (GXMSUN)
C=8.473758642D+5%OMEGA*OMEGA/MO
NL=U ,
NMIN=NL/2+1
NMA X=NP- (NL-1) /2
50=SNGL (AS (NP))
ERD T=DBLE (SQUA NK (FROT,0.,S0,0.0,TOL,FIF))
ERR=C*EROT/ EG ‘
RETURN
END
FUNCTION FROT (S)
REAL*8 AS (100),ARHO(100),SS, DF
COMMON /ALL/ AS,ARHO,NP
COMMON /LAG/ NL,NMIN,NMAX
SS=DBLE (S)
CALL LAGINS (AS,ARHO,SS,DF,N,NL, NMIN,NMAX,NP)
FROT=SNGL (DF) *S**4
RETURN .
END
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