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A B S T R A C T 

The study of physics at the atomic scale led to the development of quantum 
mechanics in the early twentieth century. Since then, quantum mechanics 
has developed into one of the most successfully tested of all physical theories. 

Central to quantum mechanics is the concept of coherence. Keeping quan-
tal coherence over large time scales or macroscopic length scales has proven 
to be a difficult, but fruitful endeavour both theoretically and experimentally. 
Two manifestations of this so-called macroscopic quantum coherence will be 
investigated in this thesis; the century-old field of superconductivity and the 
decade-old field of cold atomic gases. 

Yt t r ium barium copper oxide is a layered superconductor whose transi­
tion temperature can be changed by controlling the amount of oxygen found 
between the copper oxide planes. Motivated by recent experiments where' 
the penetration depth along the direction perpendicular to the copper oxy­
gen planes was measured on extremely underdoped samples, a theoretical 
model is constructed which phenomenologically explains the observed elec-
trodynamic properties. 

The field of atomic physics underwent a revolution in 1994 when dilute 
atomic gases were cooled to nanokelvin temperatures, which resulted in the 
much sought after Bose-Einstein condensate. In the past decade, ultra-cold 
atomic experiments have been used to study fundamental quantum mechan­
ics and more recently, with the application of optical lattices, many-body 
physics. 

The second project contained in this thesis investigates a method to engi­
neer the emergence of Dirac Fermions in an ultra-cold Fermionic gas with the 
application of an optical lattice. The Hamiltonian governing the low energy 
properties of this system is well known, and is shown to undergo a quan­
tum phase transition where the low energy Fermionic quasiparticles acquire 
a mass, due to the appearance of "antiferromagnetic" ordering. 
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C H A P T E R 1 

INTRODUCTION 

At the end of the nineteenth century James Clerk Maxwell wrote down the 
equations that unified the physics of electricity and magnetism. In so doing, 
the edifice of classical physics was complete, but not without its mysteries. 
The application of classical ideas to the physics at atomic length scales proved 
inadequate. 

This introductory chapter wil l succinctly describe classical mechanics, fol­
lowed by P. A . M . Dirac's prescription to quantize simple mechanical systems. 
Subsequently, classical electrodynamics - the simplest of all field theories -
wil l be described and quantized. Finally, the concept of coherence in quan­
tum mechanics will be introduced. 

Lagrange's formulation of classical mechanics concisely states that the time 
integral of the Lagrangian, defined as the difference of the kinetic and poten­
tial energies 

1.1 CLASSICAL MECHANICS 

L(x,x) = T{x) - U{x,x) (1 .1) 

achieves a minimum at the classical trajectory of the particle 

(1 .2) 

This gives an expedient way of deriving the equations of motion 

dL(x,x) d dL(x,x) 
= 0 (1 .3) 

dx dt dx 

at the expense of physical intuition. 
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Hamilton derived an equivalent formulation by first defining the canonical 
momentum 

and then considering the Legendre transformation of the Lagrangian, 

H(p,x) = px - L(p,x), (1.5) 

now known as the Hamiltonian. The equations of motion are given by deriva­
tives of the Hamiltonian 

(1.6) 

and 

Under most circumstances, the Hamiltonian is the total energy of the system. 
However, the Hamiltonian also plays another, more fundamental role. The 
time dependence of any quantity 

nfc,) = « & 2 i + « 2 & ^ (i.8) 

can be written in terms of the Hamiltonian 

Q( x) = dQ(p> x"> d H ( p ' x ) d f l ( p , x) dH(p, x) 
dx dp dp dx 

by using the equations of motion 1.6 and 1.7. The above combination of 
partial derivatives occurs often enough in classical physics to warrant the 
notation 

ff2 - . _ c ^ c k dQ, 8K (110) 
' dx dp dp dx 

and the name "Poisson bracket". Therefore, the time dependence of any 
quantity in classical physics is governed by the Hamiltonian via the Poisson 
bracket 

Cl(p,x) = {tt(p,x),H(p,x)}. (1.11) 
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Consequently, the classical conservation laws are obtained by finding quan­
tities that have a vanishing Poisson bracket with the Hamiltonian. 

The Poisson bracket plays a central role in Hamilton's formulation of 
classical mechanics by defining the concept of "canonical conjugation". Two 
variables are said to be "canonically conjugate" if their Poisson bracket is 
equal to one. For example, momentum, p, as defined in equation 1.4 is 
canonically conjugate to position, x, since 

{x,p} = l. .(1.12) 

Furthermore, a "canonical transformation" is a transformation from one set 
of variables to another that preserve the Poisson brackets. Any set of vari­
ables that preserve the fundamental Poisson brackets can be used to solve 
the system. This usually allows for a great simplification of the Hamiltonian, 
but more importantly, it reveals that position and momentum are only a sub­
set of possible "generalized coordinates" that can equally describe a given 
physical system. 

1.2 Q U A N T I Z A T I O N OF C L A S S I C A L M E C H A N I C S 

The first task in quantizing a physical system is to augment the observables, 
such as .position and momentum, to mathematical operators: 

x ^ x , (1.13) 

p-*p. (1.14) 

Secondly, the Poisson brackets are augmented to "canonical commutation 
relations" divided by the imaginary unit and a new fundamental constant of 
nature with dimensions of action, h~: 

This prescription to find the "quantum conditions" is due to Dirac. For 
example, the position momentum quantum condition is 

4 l"^>* in L 

— (Clk — kCl^j 

(1.15) 

(1.16) 

[x,p] = ih. (1.17) 
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The quantum operators must now act on something, and that something 
is a fundamentally new object that does not appear in classical physics. 
"The states and dynamical variables have to be represented by mathematical 
quantities of different natures from those ordinarily used in physics." [4] The 
new object, called a 'state vector' is mathematically described by a 
vector in Hilbert space, and contains all of the physical information about 
the system. 

Observables in classical mechanics correspond to Hermitian operators 
in quantum mechanics, whose observable information is now obtained by 
a quantum 'averaging' over the state vector; 

n 0 h B = (ip\fl\ilj). (1.18) 

Quantum averaged Hermitian operators become the classical dynamical vari­
ables in the so-called "classical limit" of h~ —> 0. 

The time evolution of any observable is obtained from the quantum pre­
scription applied to equation 1.11: 

= ^\[Cl,H]\iP). (1.19) 

Assuming that there is no explicit time dependence of the operator ft, and 
ascribing all of the time dependence to the state vector 1, leads to the equation 
that governs the time evolution of the state vector 

ih-\il>) = Hty), (1.20) 

known as the Schrodinger equation. 
A general state vector can be constructed from any complete set of basis 

states \i) as 

\ij)) = Y^ai\i), (1.21) 
i 

or, if the basis states form a continuum, 

W) = J dnF(n)\n). (1.22) 

1 This corresponds to the Schrodinger picture, as it was with this assumption that he 
first derived the wave mechanics. 
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The most useful bases are those that are formed from the eigenstates of 
physical operators. The 'position' basis is defined by the eigenvalues of the 
position operator 

x\x) = x\x). (1-23) 

A general state in the position basis is written 

|V) = j dx^(x)\x), (1.24) 

where the function ip(x), known as the 'wavefunction', gives the resolution 
of the state into each eigenstate of the position operator. The action of the 
position operator in the position basis is given trivially by equation 1.23, a 
simple multiplication by the coordinate: 

xip(x) = xi(;{x). (1-25) 

The action of the momentum operator needs to be chosen to satisfy the 
canonical commutation relations 1.17 

\x,p]tb{x) = ihi/j(x), (1.26) 

= xfnp{x) — px ip{x). (1'27) 

This simpler condition compels the identification of the momentum operator 
with differentiation with respect to position 

in the position basis. Conversely, the position operator in the momentum 
basis is identified with differentiation with respect to momentum. 

Knowledge of the wavefunction in one basis is sufficient to determine its 
form in any basis. A l l that is needed to transform between bases is the 
overlap between the basis vectors. For instance, to transform between the 
momentum and position representation, one needs the overlap (p\x), and the 
transformation is accomplished via 

HP) = W > = j dx^{x){p\x). (1.29) 
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This is calculated by acting the momentum operator to the left and the right 
of the overlap 

(p\p\x) = .p(p\x), (1.30) 

m x ) = i i L ^ - ( L 3 1 ) 

Equating the two results in a differential equation with solution 2 

. (p\x) = - ^ e i P X - (1-36) 

Therefore, the position and momentum wavefunctions are related by Fourier 
transformation. This result holds generally for any canonically conjugate 
variables. 

One consequence of the non-commutativity of operators is the Heisenberg 
uncertainty principle of quantum mechanics. There exists a fundamental 
limit to the precision that can be obtained when measuring the observables 
that correspond to two non-commuting quantum operators: 

( A f i A « ) 2 > i([fU]) 2, (1.37) 

where AQ, = y (Q2) — (Q)2. This principle reflects the fact that quantum 
mechanics reveals a physical distinction between large and small. A small 
system obeys quantum mechanics where the act of observation affects, and 

2 That the magnitude of the overlap is m o n e s P a ^ a ^ dimension is shown by first 
noting that 

and therefore 

Jdx\x)(x\ = l (1.32) 

<p'|p) = Jdx{p'\x)(x\p) (1.33) 

= N2 J dxexp(j^(p-p')x^ (1.34) 

= (M22Trh)5{p-p'). (1.35) 
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cannot be disentangled from, the system under study. For example, position 
and momentum obey the uncertainty relation 

AxAp > | , (1.38) 

revealing that the order of observation is important, since the quantum op­
erators do not commute. 

Measurements in quantum mechanics affect the system by "collapsing" 
the system into an eigenstate of the corresponding Hermitian operator. For 
example, after a measurement of position, the quantum state wil l be in an 
eigenstate of the position operator, which corresponds to a completely uni­
form momentum state. Therefore a subsequent measurement of the momen­
tum wil l reveal any value with equal likelihood. 

1.3 C L A S S I C A L E L E C T R O D Y N A M I C S 

The Maxwell equations, alluded to earlier, 

V-E = P, (1.39) 

VxE = 
dB 

~~dt' 
(1.40) 

V-B = o, (1.41) 

V x B = 
dE -
~ d t + h 

(1.42) 

contain the physics of classical electrodynamics 3. 
Since the magnetic field is divergenceless by equation 1.41, it can be 

written as the curl of another vector 

B = V x A (1.43) 

the "vector potential". A rearrangement of 1.40 

V x IE+ = 0 (1.44) 

3 The units chosen are "Heaviside-Lorentz rationalized units". For a discussion on the 
units used throughout this thesis, please consult Appendix B. 
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similarly admits a definition of the "scalar potential"' 

_E=-V<f>--A, (1.45) 

resulting in the potential form of Maxwell's equations 

v ( v . J 4 ) - V 2 I + ^ V ^ + ^ i ' = j , (1.46) 

- V V - J L v - A = p. (1.47) 

B y writing these equations in a symmetric form 

^ - v 2 ) i + ^ ( l * + ^ ' i ) " 1 ( L 4 8 ) 

d2 \ d (d - A 

w - ^ r - s U * 4 " ™ ) = p ( L 4 9 ) 

suggests the introduction of relativistic four vector notation 4 

^ = ( | , - V ) , (1.50) 

= (^(f>, Aj , (1.51) 

^={p,Tj, (1-52) 

as all of Maxwell's equations can be written in the concise form 5 

d2Av--dv{d^)=jv. (1.53) 

1.4 QUANTIZATION OF ELECTRODYNAMICS 
To quantize the theory of electrodynamics according to Dirac's prescription, 
a Lagrangian needs to be constructed. Since electrodynamics is a field theory 

4 Changing between covariant and contravariant vectors simply changes the sign of the 
spatial part of the four vector - the simple flat spacetime metric grM„ = diag(l, —1,-1,-1) 
will be used throughout this thesis. 

5 l t is no surprise that Maxwell's equations have such an elegant form when written 
in relativistic notation; the theory of special relativity was originally derived from the 
assertion that the equations of electrodynamics are valid in all frames of reference. 
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with continuous variables, a Lagrangian density C is introduced, where 

L = / d3xC. ' (1.54) 

This necessitates the augmentation of the Euler-Lagrange equation 1.3 to 

d C 3- d C _ Q . (155) 
dn d(d^n) 

What Lagrangian density gives rise to Maxwell's equations? The source 
term can be easily handled by the Lagrangian 

£ ' = - V 4 " (1.56) 

leading to the requirement 

which requirement can be satisfied by setting 

C = d»Av{dllAv-dl/Ati) (1.58) 

however this is not quite right. The reason is that there is a redundancy in 
the definitions of the potentials. Looking back to equations 1.43 and equation 
1.45, the potentials can be changed by and arbitrary function 

A'll = A„- d^x (1-59) 

without affecting the physical electromagnetic fields. This transformation 
1.59 is known as a gauge transformation, and Maxwell's equations writ­
ten in potential form are gauge invariant. Therefore, the Lagrangian must 
also be gauge invariant. To retain gauge invariance, the Lagrangian 1.58 
is symmetrized with respect to p <-> u, giving the correct electrodynamic 
Lagrangian 

C = ~F^F^-j^A\ (1.60)-

where the electromagnetic field strength tensor 

= d„Av - dvAv (1.61) 
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has been introduced. This tensor is the generalization of the curl operator 
to four dimensions and is manifestly gauge invariant. Furthermore, the el­
ements —F0i give the ith components electric field and — e ^ F ^ give the kth 

components of the magnetic field. The Lagrangian, which is the trace of the 
square of the field tensor, written in terms of the electric and magnetic fields 
is given by the expression 

C=-l-(E2-B2)+pcj)-'j.A. (1.62) 

The next step in quantizing electrodynamics is to construct the canonical 
momentum density 

dC 
TT^ = — R = doAp - d^Ao, (1.63) 

oA^ 

and the Hamiltonian 6 

H = ^2PiXi-L+ / d 3 x { v r ^ - £ } . (1.64) 

The spatial components of the canonical electromagnetic momentum density 
are the components of the electric field. The temporal component, however, 
vanishes. This is the first indication that Dirac's canonical quantization 
wil l not be sufficient to quantize relativistic electrodynamics. A t the heart 
of its failure is the symmetry of spatial and temporal coordinates dictated 
by relativistic invariance. Hamiltonian dynamics, and therefore canonical 
quantization, treats the temporal direction differently from spatial directions. 

There are two ways "to proceed. The method that preserves the full rela­
tivistic invariance of the theory treats the condition 7r 0 = 0 as a constraint, 
augment the Poisson brackets to "Dirac" brackets and quantize from there[4]. 
However, for the purposes of this thesis, it is not necessary to keep the full 
relativistic invariance of electrodynamics. A specific gauge is adopted, where 7 

V - A = 0, (1.65) 

Specifically, this is the free particle Hamiltonian coupled to electrodynamics. 
7 This gauge is known by a number of names, such as "radiation" gauge, "physical" 

gauge and most commonly "Coulomb" gauge. 
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and the two Maxwell equations become 

d*A + jVct> = j, ( L 6 6 ) 

-V 2 </> = p. (1 .67) 

A t this point, the two Maxwell equations look to be dependent. How­
ever, recalling the Helmholtz decomposition of a vector into transverse and 
longitudinal components 

X = XT + XL, . ( 1 . 6 8 ) 

where 

V - X R = 0 , ( 1 . 6 9 ) 

V x XL = 0. ( 1 . 7 0 ) 

reveals that, in the Coulomb gauge, the vector potential is completely trans­
verse. Therefore analyzing the longitudinal part of equation 1.66 reveals 

^ V 2 0 = V - J L ( 1 .71 ) 

and in conjunction with the other Maxwell equation can be rewritten 

d„3L = 0 , (1-72) 

which is nothing other than the conservation of local electrical charge, and 
connects the longitudinal part of the current with moving physical charges. 

The transverse part of 1.66 gives the wave equation 

d2A = jT ( 1 .73) 

whose source-free solutions are plane waves with characteristic velocity c, 
and- dispersion ui = ck. 

The classical Hamiltonian that governs electrodynamics in the Coulomb 
gauge can be constructed 

(p-eA) 1 

H = K

 2 m

/ +~2 / d 3 x ( E 2
 + B 2 ) , (1 .74) 
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and is the starting point for the non-relativistic quantization of electrody­
namics, in accordance with Dirac's prescription. 

The canonical commutation relation 

[Ai(x,t),irj(y,t)] = ih5ij5(x - y), (1.75) 

can be satisfied by the solution of the source-free Maxwell equation 1.66 

A(x, t) = ^2 ekX {AkXe^hx'^ + ^ e ^ 1 - ^ ) (1.76) 
fcA 

with the introduction of the operators 

GfcA = ^ (1.77) 

4,A = (1.78) 

subject to the conditions 

[OfcA.Ofc'A'] = [4A>4'A'] = ° . (1-79) 

and 

[akx,al,x,] = Skk'Sw- (1.80) 

Expanding the electromagnetic part of the Hamiltonian 1.74 in terms of 
the potentials 8 

H E M = \j d3x (I2 + ( V x A)*) + j d 3 z d 3 y ^ M (1.81) 

The Hamiltonian is quadratic in terms of the operators 1.77 and 1.78 

HEM = ^2 hukalxakx + EQ. (1-82) 
fcA 

8 The cross term proportional to \7<j> • A vanishes in the Coulomb gauge after an in­
tegration by parts, and the second cross term proportional to (V</i)2 is rewritten as the 
Coulombic term in equation 1.81 after an integration by parts, and invoking the general 
solution to Laplace's equation 1.67. 
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The problem of quantization of electrodynamics in the Coulomb gauge is 
now reduced to finding the spectrum of the operator a)a for each mode in 
the electromagnetic cavity. 

Given the eigenvalue equation 

(Ja\il)n) = en\ipn) (1.83) 

the eigenvalues of the states a\ipn) and a^\ipn) are found using the commuta­
tion relation [a, a*] = 1 to be 

a!a(a\il)n)) = (en-l)a\rl>n) (1.84) 
a}a(a)\ijjn)) = {tn + l)a'\^n) (1.85) 

The eigenstates of a)a are strictly positive, since 

<jl)n\a<a\il>n) = | a | ^ n ) | 2 > 0. (1.86) 

Therefore, there exists a state with zero eigenvalue. These two pieces of 
information together give the whole spectrum of a)a, which consists of states 
labeled by the natural numbers 

l ^ n ) = { | n ) ; n e Z } , (1.87) 

with integer eigenvalues 

o)a\n) = n\n). (1.88) 

Therefore, the spectrum of the quantized electromagnetic Hamiltonian 9 

HEM = 4A ° * A (1.89) 

can be labeled by the number of excitations in each mode of the electromag­
netic cavity \riki\,nk2\ • • •) with energy 

E=h^2knkX. (1.90) 
k\ • 

9 The constant (infinite) energy EQ is omitted, since for condensed matter and atomic 
physics applications, it will not affect the outcome of experiments. 
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1.5 C O H E R E N C E IN Q U A N T U M MECHANICS 

Just as the momentum and position operators have eigenstates 

x\x) = x\x), (1-91) 

p\p)=p\p), > (1-92)' 

so too does the lowering operator a. The action of this operator on a general 
state written in the number basis 

O O 

a\z) = H^gna\n) (1.93) 

oo 

= ATY,9n+iVn~\n) (1.94) 
71=0 

gives a recursion relation 

gn+i = —j=gn (1-95) 

whose solution gives the normalized eigenstate 
oo n 

k > = e - ^ | 2 X ^ | 0 > - (1.96) 
n=0 

The eigenstates of the lowering operator a form an over-complete set 
labeled by the complex parameter z. Writing z in polar form, the state 1.96 
becomes 

oo I i „ 

I X - ± ' l z l 2 Z 

\z) = e 2 | z | 

£ e " ^ | n ) . (1.97) 
n=o Vn! 

The operation of differentiation with respect to 6 has the same effect as the 
number operator on the state 1.97. This suggests the conjugate relationship 
between phase and particle number 

[n,6] = i, (1.98) 

which can be strictly proven 1 0 . 
1 0 I n fact, this equation is not completely correct. The true relation is 

[n,fl] = i ( l -2n527T(9)), (1.99) 
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This relationship, according to equation 1.37, immediately implies that 
there is an uncertainty relation between particle number and quantal phase. 
States with a definite number of particles, so-called Fock states, therefore 
have a.completely uncertain phase. Conversely, states with a definite quan­
tal phase have a completely uncertain number of particles, such as the eigen-
states 1.96 which are known as "coherent states". 

Coherent states were first introduced in 1963 by R. J.. Glauber 1 1 [6] who 
showed that the coherent states of the electomagnetic field best approximate 
classical solutions to MaxwelPs equations. A laser generates a single coher­
ent state, while incoherent sources are described by a statistical mixture of 
coherent states. 

The complex macroscopic wavefunction, 

is a quantum mechanical wavefunction that describes a macroscopic collec­
tion of particles. The complex phase associated with this wavefunction when 
written in polar coordinates 

is identified with the quantal phase. Is it reasonable to ascribe a physical 
significance to quantal phase? 

Since particle number is generally a conserved quantity, it may seem rea­
sonable that quantal phase may not be a measurable (and therefore physical) 
quantity. However, a calculation of the particle number fluctuations in the 
state 1.96 reveals 

(1.101) 

(1.102) 

A n 
(n) 

(1.103) 

1 1 
(1.104) 

where 

oo 
(1.100) 

p= — oo 

the Dirac delta function restricted to the range {0, 2TT}. For an excellent introduction and 
review of this intricate subject, see [5]. 

1 1Glauber was one of the three recipients of the Nobel prize in 2005. 
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implying that a state with a macroscopic occupation (n) 3> 1 can have 
a definite quantal phase, while still preserving particle number to a good 
approximation. It is therefore reasonable that this quantal phase can be 
physically measured 1 2. 

The remainder of this thesis is based on two different physical systems 
that manifest a macroscopic wavefunction. The first system studied is high 
temperature superconductors, where the macroscopic wavefunction describes 
paired electrons and therefore admits resistanceless electronic flow - perfect 
conductivity. Motivated by recent experiments on so-called "c-axis" elec­
tronic transport, a model is developed and successfully fit to the experimental 
data, constraining the ultimate theory of high Tc superconductors. 

~> Secondly, the phenomenon of Bose-Einstein condensation is described, 
and a method of engineering an interesting quantum field theory is pre­
sented. Dirac Fermions arise in many condensed matter systems, as well as 
in particle physics. It is shown that they can be created in a suitably chosen 
optical lattice symmetry, whose perfect periodicity and tunable interaction 
parameters make this an ideal experiment to map out the phase diagram of 
interacting Dirac Fermions. A phase transition from a massless to a mas­
sive phase is predicted at a critical interaction parameter whose signature 
should be observable in the correlations of the density images obtained from 
different experimental images. 

1 2 O f course, the quantal phase cannot be measured in an absolute sense. It is only 
phase differences between two systems with macroscopic occupation, such as a Josephson 
junctions or the interference of two Bose condensates. The problem lies in the inability 
to create a universal phase standard to serve as the basis to measure all quantal phases. 
This point is discussed nicely in [7], 
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C H A P T E R 2 

SUPERCONDUCTIVITY AS A 
M A C R O S C O P I C Q U A N T A L E F F E C T 

The appearance of quantum coherence is a result of the macroscopic occu­
pation of a single quantum state. A remarkable effect occurs when these 
particles are charged. 

2.1 IN T R O D U C T I O N TO S U P E R C O N D U C T I V I T Y 

The first term in the Hamiltonian 

(p-eAf ^ f AZ,zp{x)p(y) 
H = 

2m 
fcA 

+ J W t n t t + / d ^ » , (2.1) 

derived in the last chapter, describes the interaction between a charged parti­
cle and the electromagnetic field. The effect of the electromagnetic field on a 
quantum wavefunction can be found from the resulting Schrodinger equation 

i—ip(x) = H(-iV-eA,x)^{x). (2.2) 

A density current, which, for a charged system, is an electrical current, 
can be derived from equation 2.2 by finding the time derivative of the particle 
density 

which, by continuity (a manifestation of local particle number conservation), 
must be equal to the divergence of a current 
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The resulting current 

written in polar form 

J = ^ ( W - e i ) h / f 

admits a nonzero current, even when the particle density is constant in time; 
given that the quantal phase satisfies Laplace's equation and the particle 
density is constant in space. 

In a typical geometry under these conditions, equation 2.6 becomes 

j = --M2A 
m 

known as "London's equation" [8]. 
The consequences of London's equation are remarkable. First, by the 

strict definition of conductivity 

aii = J r (2.8) 

London's equation implies infinite conductivity, as there can be finite current 
with no electric field. 

Secondly, by applying Maxwell's equation 1.40 to London's equation, the 
resulting equation 

V 2 5 = - A 2 / 3 , (2.9) 

where A 2 = implies that no magnetic field can be present inside a region 
containing a charged macroscopic quantal system 1. 

: The original justification of London's equation stemmed from classical considerations 
of electrons flowing in a material with no collisional resistance. This method arrives 
at a somewhat different version of London's equation, one for a 'perfect' conductor - a 
conductor that resists all change to the magnetic field in its interior. If a magnetic field 
is penetrating a material that becomes a perfect conductor, that magnetic field will be 
trapped in the material indefinitely. A superconductor, on the other hand, obeys London's 
equation 2.7 and will therefore expel all magnetic fields from its interior, regardless of 
history. 

(2.6) 

(2.7) 
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In 1911, exactly such a system was discovered by H . Kammerlingh Onnes, 
the first person to liquefy helium in his laboratory in Leiden, Netherlands. 
He noticed that elemental mercury lost all of its electrical resistance when 
cooled below 4.2K. He labeled this new state of matter a 'superconductor', 
and his initial discovery would result in the first of five Nobel prizes awarded 
for the study of superconductivity 2. 

Could this amazing new discovery be a manifestation of macroscopic 
quantum behaviour? Could this newly found superconductivity be a macro­
scopic occupation of electrons into one single state? While a tantalizing and 
promising possibility, the laws of quantum mechanics explicitly forbid this. 
The Pauli exclusion principle, together with the spin-statistics connection, 
indicates that the wavefunction describing particles with integer spin, known 
as "Bosons", must be symmetric under the interchange of any two particle: 

| ^ B ( 1 ; 2 ) ) = + | ^ B ( 2 ; 1 ) ) (2.10) 

and the wavefunction describing particles with half-integer spins, known as 
"Fermions", must be anti-symmetric under the interchange of any two of the 
particles: 

| ^ ( 1 ; 2 ) ) = - | ^ ( 2 ; 1 ) ) . . (2.11) 

Since electrons are Fermions, the exclusion principle forbids two electrons 
from occupying the same quantum state, as the two-body wavefunction wil l 
vanish by symmetry. Therefore, superconductivity cannot be simply de­
scribed by a macroscopic occupation of electrons in a single quantum state. 
The ingenious mechanism that overcame this mystery led to the theoretical 
description of superconductivity, and the second Nobel prize awarded in the 
field. 

2.2 C O N V E N T I O N A L S U P E R C O N D U C T I V I T Y 

In 1957 three physicists - Bardeen, Cooper and Schreiffer - published the 
monumental paper describing the mechanism of superconductivity[9]. The 
genesis of the theory was a variational calculation performed by Leon Cooper 

21913 - H. K . Onnes, 1972 - J. Bardeen, L. Cooper and R. Schreiffer, 1973 - L. Esaki, 
I. Gaiever and B. D. Josephson, 1987 - J . G. Bednorz and K . A . Mueller, and 2003 -
A. A . Abrikosov, V . L. Ginzburg and A . J . Legget 
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proving that when two electrons with a net mutual attraction are added to 
the Fermi sea, the overall free energy is minimized when the two electrons 
form a correlated pair. John Bardeen showed that the overscreened interac­
tion between quantized crystal vibrations, phonons, and electrons could, at 
low enough temperatures, overcome the Coulomb repulsion between the elec­
trons to produce the required attractive interaction. The overall macroscopic 
many-body wavefunction, the B C S wavefunction, proposed by Bob Schreif­
fer, has a macroscopic number of electrons near the Fermi surface paired, 
with the exclusion principle overcome by the fact that the composite pairs 
have integer spin. 

The reduced B C S Hamiltonian 3 

is a deceptively simple Hamiltonian that contains enough physics to de­
scribe superconductivity. Bardeen, Cooper and Schreiffer used a well known 
technique known as mean-field theory to solve this Hamiltonian. The basic 
premise is to decouple the four Fermi term into a series of two Fermi terms 
interacting with a field representing the average (or 'mean') of the other two 
terms. Schematically: 

c | 4 c 3 c 4 —> (c\c4)clc3 - (c\c3)clc4 + {c\c3)c\c4 - (c\cA)c\cz 

The first four terms simply renormalize the energy and chemical potential 
terms in the Hamiltonian and the last two give rise to terms with two cre­
ation or destruction operators, which, in a normal system, are identically 
zero. However, in a system with a macroscopic occupation, and therefore an 
uncertain number of particles, these 'anomalous' pairings give rise to bona 
fide terms in the Hamiltonian. 

According to the B C S theory, the electron-phonon coupling produces an 
interaction that is isotropic in momentum space and attractive when the 
electron energies are sufficiently close to the Fermi energy. W i t h these re-

3 For the remainder of this thesis, the second quantized formalism will be used. For an 
excellent reference, see [10]. 

(2.12) 

+ {c\c\)c3ci + (c 3c 4)c{4. (2.13) 
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strictions, the mean-field reduced B C S Hamiltonian is 

\e\<uD 

H = E e(pH*CP° + | E {(C-P1 <V»T>CJ'TC-P '1 + .<4TC-Pl)C-P'T cP't} , 
pc pp' 

(2.14) 

where the energy is understood to be relative to the Fermi surface. Two 
improvements in notation greatly simplify this Hamiltonian. Introducing the 
mean field 

\e(p)\<uD 

A = f E < c - ^ T > ( 2 - 1 5 ) 

and the Nambu spinor 

2 
p 

V V = ( ? ) , (2.16) 
C-PI 

the Hamiltonian can be written in a very simple and compact form 4 

# = X > ; [ e ( j O a 3 + A a 1 ] V ' P l . (2.18) 
v 

from which the matrix valued Green's function can be read directly 

5 ( P ' W ) = ^ ( F ^ " ' ( 2 ' 1 9 ) 

The parameter A in equation 2.15 can now be calculated from the defi­
nition of the Green's function 

A = f E J ^ ^ ' " f a * . <2-20) • 

4 The conventional form of the Pauli matrices is adopted 
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which leads to the self consistent equation 

i r ° 1 
— — — = / d e - — (2.21) 

known as the B C S gap equation. The solution of this equation 

A = ^ s i n h — ^ — (2.22) 
D{eF)g 

gives the numerical value of the mean field defined by equation 2.15, where 
D(ep) is the normal state density of states at the Fermi surface. This mean 
field has a number of interpretations: a thermodynamical order parameter 
whose non-zero value signals the breaking of local gauge invariance; an energy 
gap, since the modified energy spectrum 

E(p) = v^M+ A ^ (2.23) 

possesses a lower bound; and finally the macroscopic wavefunction that de­
termines the behaviour of a macroscopic number of electrons near the Fermi 
surface. 

At finite temperatures, the value of the gap is reduced. At the transition 
temperature Tc, the value of the gap reaches zero and superconductivity is 
destroyed. 

To calculate temperature dependent quantities, the Matsubara formalism 
is used, which uses a correspondence between imaginary time and temper­
ature to perform both quantum and thermodynamical averaging simulta­
neously [11]. Upon analytic continuation the imaginary time r becomes a 
periodic variable with period /3, the inverse temperature. Consequently, the 
Fourier transform is found in terms of discrete frequencies, the so-called Mat­
subara frequencies iujn. The main calculational advantage in this formalism 
is that quantum and thermal averaging are easily performed by summation 
over the Matsubara frequencies. For a thorough introduction, consult [10]. 

The Matsubara Green's function for superconductivity is 

ru i,, \ H(^n) + e(p)cT3 + A(7i , . 
G { p > = u, 2

 + e2(p) + A 2 ( 2 - 2 4 ) 

and the temperature dependent self consistent gap equation becomes 

WV)\<O>D . 

A ( T ) = f E pY^T&(p,i»n)<ri, (2-25) 
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whose solution when A —> 0 is1 ,5 

(2.26) 

When compared to the weak coupling solution of equation 2.22, the B C S 
ratio 

is found. This value is seen in many elemental superconductors, establishing 
the B C S theory as the correct description of simple, weakly coupled super­
conductors. 

2.3 HIGH TEMPERATURE SUPERCONDUCTIVITY 

A major goal of the superconductivity community was to produce materials 
with the highest transition temperature possible. It was thought that T c ' s 
could not exceed 30K until 1986, when Bednorz and Mueller found a ma­
terial with a Tc of 35K. A year later, the liquid nitrogen barrier had been 
broken with a compound whose Tc was 90K. These "high temperature" su­
perconductors all have one feature in common: the existence of copper and 
oxygen forming two dimensional layered planes. Sti l l considered to be the 
'seat' of superconductivity, these copper oxygen planes have been central 
to most theories attempting to describe high Tc materials. The family of 
the high temperature superconductors containing lanthanum strontium cop­
per oxide, yttr ium barium copper oxide and calcium cobalt copper oxide, 
are amongst the family known as the cuprates. It is still the major goal of 
the superconductivity community to solve the mystery that surrounds the 
superconducting properties of the cuprates. 

It was suspected by many very early that the description of the cuprates 
was to be found outside of the standard B C S theory. The symmetry of the 
pairing interaction was shown to be anisotropic[12, 13], and underdoped 6 

cuprates were found to have a gap to transition temperature ratio much 
higher than the predicted B C S value of 1.76 (equation 2.27). 

5Where 7 = l im„_ > 0 0 (Y^k=i \ ~ m n ) = 0.577215... is the Euler-Mascheroni constant. 
6 The transition temperature Tc of the cuprates can be continuously changed by chemi­

cally altering the amount of oxygen residing between the copper oxygen planes in a process 
known as doping. 

A _ 7T 1.76 (2.27) 
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Even though the underlying theory of the cuprates has yet to be deter­
mined, a phenomenologically successful Hamiltonian is found by imbuing a 
momentum dependence on the gap function 

# = X>;[e(p)a3 + A(p)a1]V'p) (2.28) 
p 

which has been found to have d-wave7 symmetry 

A(p) = A0a2{pl-pl) (2.29) 

= A o c o s ( 2 0 ) (2.30) 

in the cuprates (where a is some characteristic length within the system; 
the lattice parameter for example). This symmetry was deduced from a 
number of experiments, including careful penetration depths on pure crystals 
of Y B C O , Josephson measurements that are sensitive to the phase of the 
order parameter and most conclusively the spontaneous generation of a flux 
quantum in a three-fold symmetric arrangement of crystals [13]. 

Beyond the symmetry of the order parameter, not much more is agreed 
upon in the cuprates. The central mystery is the so-called "mechanism" -
the underlying physical process that mediates the electron-electron attraction 
akin to phonons in conventional superconductivity. 

The cuprates are generally composed of insulating perovskites 8 whose 
transition temperature can be controlled by chemical substitution. This pro­
cess, known as doping, removes a number of electrons on each copper oxygen 
plane. The undoped, or parent, compounds are insulators, which have exactly 
one conduction electron per copper atom, arranged antiferromagnetically and 
strong electron-electron repulsion forbids electron transport. 

. The magnetic order present in the parent compound quickly vanishes 
in Y B C O with a small amount of oxygen doping. As doping is increased, 
the sample becomes superconducting. The transition temperature initially 
increases with further doping before attaining a maximum at "optimal dop­
ing", whereupon further doping decreases the transition temperature. This 

7 This nomenclature is borrowed from spectroscopy and the quantum orbitals of the 
hydrogen atom. Mathematically, it represents the symmetry of the dominant spherical 
harmonic in the expansion of g(p — p') in the Hamiltonian 2.12. 

8 A perovskite is a technical name for the mineral titanium calcium oxide CaTi0 3 , and 
is named after the Russian minearologist L .A. Perovski. It is now used for all compounds 
with the same general structure ABO3. 
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information is usually summarized in a doping-temperature phase diagram, 
with doping increasing to the right. Compounds to the right of optimal 
doping are called "overdoped" and compounds to the left are called "under-
doped". This information is typically displayed in a phase diagram, figure 
2.1, where chemical doping is the abscissa and temperature the ordinate. 
However, the low temperature behaviour near the underdoped edge of the 
superconducting dome is the subject of recent debate and controyersy, and 
the next chapter wil l endevour to shed light on this particular area of the 
phase diagram. 
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T 

x 

Figure 2.1: Canonical phase diagram for the cuprate superconductors. Chem­
ical doping is the abscissa and temperature the ordinate. A t zero doping the 
parent compounds are Mott insulators, where electron transport is forbid­
den due to strong electronic interactions, with antiferromagnetic Neel order. 
Upon chemical doping, this magnetic order is quickly destroyed and even­
tually superconductivity results. The next chapter of this thesis wil l focus 
on the extremely underdoped superconducting compounds, in order to shed 
light on a poorly understood region of the phase diagram. 
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C H A P T E R 3 

SUPERFLUID DENSITY 

The electrodynamic response of a superconductor is governed by the electrons 
in the macroscopically occupied quantum state. This quantity, known as the 
superfluid density, has been the subject of intense study - both theoretically 
and experimentally. 

In conventional s-wave superconductors, the low temperature superfluid 
density displays exponentially activated behaviour, as thermal excitations 
in a gapped system will display a Boltzmann distribution, with a strong 
insensitivity to material disorder. The early measurements on the cuprate 
superfluid density, on the other hand, displayed a non-exponential behaviour, 
implying a non-uniform gap function. The exact nature of this gap was the 
subject of a long debate. The experimental pursuit that eventually ended 
this debate rapidly drove the field of crystal growing resulting in the creation 
of extremely pure cuprate samples. Penetration depth measurements on 
these samples revealed the extrinsic effects of disorder were to mask the true, 
linear temperature dependence of the superfluid density - a clear hallmark 
of a d-wave order parameter. 

Subsequently, a 'plethora of data was generated confirming the d-wave 
symmetry of the cuprate order parameter. This specific symmetry dictates 
a sign change in the order parameter upon a rotation of 7 r / 2 , which was 
exploited in a number of phase sensitive experiments[13]. 

It became generally accepted that the B C S theory was the correct descrip­
tion of the overdoped cuprate superconductors. F lux quantization showed 
that Cooper pairs exist with charge 2e and the B C S gap ratio was the cor­
rect order of magnitude. However, below optimal doping, the B C S picture 
started to fail. Most notably, the magnitude of the gap maximum continued 
to increase1, while Tc plummeted, in stark violation of the B C S gap ratio. 
Furthermore, the "normal" state is far from normal, displaying a non-Fermi 

1 This statement assumes that the depression in the density of states above Tc in 
the cuprates is due to incipient superconductivity, and therefore this "pseudogap" is the 
relevant parameter to use when calculating the BCS gap ratio. This is still controversial. 
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liquid resistivity curve, and a suppression in the density of states above Tc. 
The difficult theoretical problem posed by the cuprates is thought to 

be related to the open theoretical question of doping a Mott insulator[14]. 
Therefore, experiments performed at the lowest superconducting doping lev­
els wil l provide crucial information towards the resolution of this fundamental 
challenge. 

Historically, experiments revealing the temperature dependent superfluid 
density gave some of the most compelling evidence for the unconventional 
nature of the cuprate superconductors. It was empirically determined that 

p?(T) ax - bT. (3.1) 

The linear temperature dependence arises simply within the B C S theory 
with an unconventional d-wave symmetry of the order parameter. The dop­
ing dependence, however, is mysterious, and difficult to reconcile within the 
B C S framework. Much of the theoretical effort has been devoted to replac­
ing the B C S paradigm, and some (such as the resonance valence bond [15] 
and Gutzwiller projection techniques[16]) have even successfully predicted 
the linear doping dependence. However, these methods generally predict a 
strong doping dependence of the coefficient in front of the temperature (b 
in equation 3.1), in contradiction with experiment 2. Physically, the linear 
temperature dependence arises from the thermal depletion of the condensate 
near the nodes of the order parameter, and the doping dependence arises 
from counting the total number of electrons available to the superfluid den­
sity. The central theoretical problem appears to lie in constructing a model 
that would make only a small fraction ~ x of all the electrons participate in 
the superconducting condensate while at the same time preserve the simple 
B C S character of the nodal quasiparticles. 

Recently, very difficult experimental challenges have been overcome, and 
data at the lowest superconducting doping levels are finally available[2, 3]. 
Careful studies of the c-axis penetration depth at a number of doping val­
ues were performed, all on the same experimental sample. This incredible 
sample preparation technique involves changing the transition temperature 
of a single crystal of Y B C O by room temperature annealing[18], and beauti­
fully overcomes any extrinsic chemical effects that could arise when studying 
independently prepared samples. 

2 This trend has been contradicted in recent experiments [17]. How this affects this 
research is discussed at the end of this chapter. 
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In this chapter we 3 calculate the superfluid density in two scenarios. To 
introduce our notation and techniques, we first calculate the response of d-
wave superconductors to electomagnetic fields applied perpendicular to the 
copper oxygen planes, using the Hamiltonian 2.28. The resulting "in-plane" 
superfluid density gives good agreement with experimental data, and histor­
ically gave some of the first evidence of the unconventional nature of cuprate 
sup erconductivity. 

We then calculate the response of an electromagnetic field applied along 
the copper-oxygen planes, by postulating a Hamiltonian governing the inter-
planar tunneling of electrons. This results in a theoretical prediction to be 
compared with the aforementioned c-axis penetration depth measurements. 
The agreement between the theory and experiment is striking, and we con­
clude this chapter with a discussion of what can be gleaned from these fits, 
and what clues this research provides towards the final theory of high tem­
perature superconductivity. 

3.1 I N - P L A N E S U P E R F L U I D D E N S I T Y 

The starting point for the calculation is the phenomenological cuprate Hamil­
tonian 2.28 written in second quantized form 

Ho -X>ne( fc )*3 + A(fc)<7i]^fc. (3.2) 
k . 

In order to calculate the current we apply the minimal coupling prescription 
to the bare Hamiltonian 4 

HA = H0(e(k)-+e(k-eA(r,t)), (3.3) 

which is then expanded to second order HA — H0 + Hi + H2, after taking the 
Fourier transform of the vector potential A(q,t) = J d2rA(r, t). The terms 
in the expansion are given by 5 

HX = - e J 2 M Q , t ) ^ 4 + q W k , (3-4) 

3 The active voice will be used in this thesis whenever novel material is being discussed. 
4 For complete details in extending the minimal coupling prescription to second quan­

tized Hamiltonians, please see appendix A. 
5 The Einstein summation convention is used, where summation is implied over any 

repeated indices. For example aidibj represents 2^JOJ9J6J . 
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and 

h * = T E k ^ ) ^ ' 1 ^ ) ^ * ( 3 - 5 ) 

kq 1 ^ 
The current can now be found by taking a functional derivative with respect 
the the vector potential' 

' UX^^JA^JY ' ' (3-6) 

which naturally separates into two components; a paramagnetic current, com­
ing from the Hamiltonian 3.4, and a diamagnetic current, coming from the 
Hamiltonian 3.5. 

The current must be averaged quantum mechanically and thermodynam-
ically, both of which can be performed simultaneously in the Matsubara 
formalism, as described in the last chapter. 

The diamagnetic current, already proportional to the vector potential, 
requires only the bare Hamiltonian 3.2 in performing the quantum-thermal 
average 

{£(k',r)) = e 2 X : A ( g , r ) A ^ e ( f c ) ^ t + ( ? + f c / ( T ) ( r 3 V , f c ( T ) ) ) ( 3 J ) 

kq 
resulting in the expression 

(jD(k',in)) = e2Mk',zn.)J2 ^ ^ e ( A 0 ± J > S ( A : > W f > 3 . (3.8) 
k 

The paramagnetic current, on the other hand, 

W,r)) = -e^^WUvWMr)) (3.9) 

requires the Hamiltonian 3.4 in order for the average to be proportional to 
the vector potential: 

= - e E ^ ^ ; ^ 1 ( r ' ) d T > U ' ( - ) ^ w ) > (3-io) 

i J2 ^(k, iun)g(k + k', iun - in). (3 . i i ) 
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Combining the two expressions results in the total current 

(ji(k', itt)) = [Dij + TUjik', in)} Aj(k', i^, 

where the two functions 

-e(k)-Y2Trg(k,iLun)cT3 Dl3 EE e 2]T 
•^dkidkj v 'B*-~ 
k J n 

(3.12) 

(3.13) 

and 

U^k',lci) = e * Y J ^ ^ - Y J ™n)9(k + k',iun - ifi) 
k 1 -1 n 

are related to the superfluid density 

oij(T) oc -Dy - Km & {IL^fe = 0, Q)} . 

(3.14) 

(3.15) 

It is important to note that, analogous to the conductivity, the superfluid 
density is a tensor. We only need the diagonal terms, however, when making 
a comparison with experiment. 

Performing the Matsubara sums results in an expression for the superfluid 
density 

p.m « E-»r(> 
(3.16) 

A n equivalent expression 

Ps(T) oc £ 
(de(k)\2 A2(k) _ de(k) 0A(k) A{k)e{k) 
V dkx ) E2(k) dkx 8kx E2(k) 

x 
d 

[E(k) dkx 

t a n h - / ? £ ( & ) . (3.17) 

can be derived by an integration of ,3.16 by parts. The expression 3.17 is 
more natural, in the sense that it explicitly vanishes in the A —> 0 limit. 



Chapter 3. Superfluid Density 32 

B y the very nature of superconductivity, the gap always forms exactly at 
the Fermi surface. The unconventional d-wave symmetry of the cuprate gap 
2.30 necessitates the appearance of "nodes" - points on the Fermi surface 
where the energy gap vanishes. Quasiparticle excitations of arbitrarily low 
energy exist near these nodes, and it is these quasiparticles that dominate 
the low energy properties of cuprate superconductors. Therefore, when cal­
culating the low energy behaviour of the cuprates, the quasiparticle energy 
(measured relative to the Fermi energy) can be written 

E- (k = k F + P ) = l ^ P i P ° J L E \ k = kF) (3.18) 

= qWp + qlvl, (3.19) 

where we have defined the nodal momentum variables 

qi,2 = ^(px±py), (3.20) 

the Fermi velocity 

and the gap velocity 

de 
V F = d k 

<9A 

kp 
(3.21) 

(3.22) 
kF 

The final form of the energy contour is an anisotropic Dirac cone. 
Determining the temperature dependence of 3.17 in the nodal approxi­

mation yields the following integral 

P ? ( 0 ) - P f ( r ) c ^ r ^ f s e c h * f , (3.23) 
^ A JO 47T 2 2 

which converges over the entire Brillouin zone, and therefore we can take the 
upper limit to infinity without introducing any significant error. The integral 
is now elementary, resulting in the temperature dependence of the superfluid 
density seen in experiments on extremely clean cuprate superconductors [12] 

pf (0) - pf(T) oc —AT In 2, (3.24) 
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Figure 3.1: Comparison between the temperature dependence of the experi­
mental superfluid density and theoretical calculation assuming a d-wave order 
parameter. The data set represents the penetration depth in the ab-plane of 
an optimally doped sample of Y B C O with a Tc = 60K, taken from [1]. 
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the low temperature agreement can be vividly seen in figure 3.1. 
The zero temperature value, however, does not agree with experimental 

phenomenology. Analysis of the zero temperature limit of equation 3.17 
reveals that Pgb(0) should scale as the total number of electrons, or (1 — x) 
in terms of the doping parameter. Experimentally the opposite behaviour is 
seen. Experiments carried out using muon spin rotation over a large range 
of doping reveal that p° b (0) is directly proportional to the doping parameter 
x [19]. 

However, we do not expect the pure B C S d-wave Hamiltonian to apply 
across the entire phase diagram. As doping is decreased to the edge of the 
superconducting phase, the highly correlated Mott insulating state will cer­
tainly cast its shadow on the superconducting properties. To mimic these 
effects, a new term is added to the B C S Hamiltonian 

H = HQCS + #int, (3.25) 

where H\nt is left completely uncertain. However, all is not lost. The overall 
effect of H\nt wil l be deduced from experimental phenomenology, which wil l 
put constraints on the underlying theory of high Tc cuprates. 

A parsimonious way to continue is to simplify the effect of the interactions 
into a "charge renormalization", inspired by the work of Ioffe and Mil l is 
[20]. Contrary to a Fermi liquid, where the electric charge is a conserved 
quantity, the quasiparticles that diagonalise the B C S Hamiltonian (so called 
'Bogolons') do not have a definite charge and consequently are not protected 
against charge renormalization. The entire effect of Hint wil l be modeled by 
the replacement 

J 2 e ^ ^ 2 z k e (3.26) 
k ' k 

where the momentum dependent charge renormalization factor takes the form 

1 E(k) < Ec 

0 E(k) > Ec. (3-27) 

where Ec is a doping dependent parameter that wil l be extracted from the 
data. Incorporation of the charge renormalization leads to the low-T super-
fluid density 

pf(T) ^EC-4T In 2, (3.28) 
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where we can now infer the doping dependence Ec oc x from experiment 
[12, 19]. A t this point, the seemingly ad hoc introduction of the momentum 
dependent charge renormalization is far from satisfying. In the next section, 
we wil l see that the same replacement also accurately describes the physics 
of the electronic current along the c-axis arising from interlayer tunneling. 

3.2 G - A x i s SUPERFLUID DENSITY 

In order to calculate the c-axis superfluid.density, the interplanar coupling 
Hamiltonian 

Hc = ^2 dr (trclmrjcrm+Xry + t*rclm+lacrma^ , (3.29) 

is introduced, where the electron creation operators have been augmented 
with a planar index m. Without specifying the hopping matrix elements tr, 
this Hamiltonian is quite general. However, by using empirical observations, 
a number of properties can be discerned. First, by the absence of a linear 
term in the c-axis superfluid density, it is known that there is no coherent 
tunneling between the planes [21]. This translates into the condition 

tr = 0, (3.30) 

where the bar now corresponds to averaging over all realizations of disor­
der. Were this not the case, the Hamiltonian 3.29 would correspond to an 
anisotropic three dimensional superconductor. 

Secondly, the empirical data obtained in 2002 on extremely pure, ex­
tremely underdoped samples were best fit[2, 3] by 

pc

3(T) « Axa - BTa, (3.31) 

where mysteriously, a « 2.4. While there are many theoretical proposals 
that predict integer power laws in the superfluid density[22], a non-integer 
power law is difficult to justify. The main thesis proposed here is that this 
is not a pure power law behaviour, but a crossover of two different regimes. 
The details of the crossover are dictated by the anisotropy of the energy 
dispersion inherent in high temperature superconductors. 
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The calculation begins with the usual definition of Nambu spinors, again 
augmented by a planar index 

Ik™ = ( V ( 3 - 3 2 ) 
V C r m | / 

where now the tunneling Hamiltonian 3.29 becomes6 

rm 
m J 

(3.33) 

In a tunneling Hamiltonian, the usual minimal substitution is imple­
mented by the Peierls substitution [23], which augments the hopping ma­
trix element by an imaginary phase equal to the line integral of the vector 
potential along the path of the electron 

tr • - > tTe^fl^A{zym,t) (3 34) 

= treiaeA*(r>m-t). (3.35) 

The Hamiltonian, expanded to second order in the vector potential, be­
comes : 

Hc = ^2 J drtr {iplma3iprm+1 + ieAz(r,m,t)rplm1Lil)rm+1 

a2A2

z(r, m, t)^rma^rm+1 + h.c. j . (3.36) 
e 2 

2 

The c-axis current 

J ^ m ' t ] " dAj?,m,ty ( 3 - 3 ? ) 

= ieatr ( ^ m I l V V m + l - ^rm+l^-Am) 

-e2a2Az(r, m, t)tr (^lma3iprm+1 + ^ L + i ^ V V m ) (3.38) 

can be broken into diamagnetic and paramagnetic parts, 

£(r,m,t) = ieatr ( v L a V w i - VL+i^VVm) , (3.39) 

(r, m, t) = -e2a2Az(r, m, t)tT (^lma3iprm+l + V'L+i^rm) ,(3.40) 

' 6 The combinations CTT = \ (1 + 03) and ax = \ (II - cr3) are employed. 
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in analogy with the in-plane calculation. 
The evolution of the diamaghetic current is given by the bare tunneling 

Hamiltonian 3.33 with result 

( j f ( Q , i f t ) ) = 2e2a2Y/A(K)ZkZptQ_K+p_qt: p-q 
Kpq 

-j- ^2 Tr^fa . iun)tT3g(p, iun - ifl)a3, (3.41) 

and the evolution of the paramagnetic current is given by the first order 
Hamiltonian 3.36 with result 

(JP(Q,ity) = -2e2a2}2A(K)ZkZptQ+p_qt;_q+K 

Kpq 

\^T±g{p,wn)Q(k,-kjn-Xl), (3.42) 
I3  

where the charge renormalization factor 3.27 has been implemented. Equa­
tions 3.41 and 3.42 both result from a perturbative expansion in the vec­
tor potential, which is equivalent to expanding in the number of tunneling 
events. The propagators g(p,ujn) are therefore the Green's function of the 
planar Hamiltonian 3.2. 

The specific form of the interplane hopping matrix element tr depends 
sensitively on the local chemical environment. Statistically, however, the 
variation of this quantity from location to location is not important, due to 
the self-averaging nature of experiments - an average over all realizations 
of disorder naturally occurs over the macroscopic size of the experimental 
sample. Therefore, only the disorder-averaged quantity wil l be of interest 
when making experimental comparisons, which is chosen to be 

tptU = ^Ufc)eV/A2
 (3.43) 

where A is an inverse correlation length, specifying a length inside which 
coherence is maintained between successive interplanar hops 7. 

7 The salient feature of this choice is that it reduces to a delta function in the limit A » 
p. Any other form that obeys this property will not qualitatively change our conclusions. 

) 
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The superfluid density can now be read directly from the disorder-averaged 
current 

(jz(Q,in)) = 2e2a2A{Q)YJZkZpt^kt;_ 
pk 

^ ^2 TrQ(k, iujn)G(p, iun - ity 
0 

(3.44) 

with result 

pc

s(T) = Aa2^2zkZptp_kt. p—k 
pk 

•A(p)A(fc) 
E{p)E{k) 

x | E(k) tanh\BE{p) - E(p) tanh \BE(k) \ 
E2(p) - E2(k) S 

(3.45) 

The superfluid density 3.45 must be integrated numerically to compare 
against the experimental data [2, 3]. The dependence of the superfluid den­
sity on temperature and doping must be calculated independently. The tem­
perature dependence can be found by subtracting off the zero temperature 
value, which amounts to replacing the hyperbolic tangent functions with 
(1 — tanh)., To proceed further, we linearize the spectrum, switch to rela­
tive q = (k — p)/2 and centre-of-mass Q = (p + k)/2 coordinates, and scale 
the momentum coordinates Q\ —> vpQi, Q2 —> v&Q-z (similarly for q). In 
dimensionless form, the superfluid density becomes 

PCM-PCS{T) = l & r V x •MT>v), 

I ^ n ) = 4 r 3 J ^ q e - ^ ^ - ^ i q ) , 

(3.46) 

(3.47) 

where 

1 
\Q - q\ 1 - tanh' \Q + q\ 

\Q + q\[l- tanh \Q-q\ (3.48) 
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Figure 3.2: Schematic of the constant energy contours in momentum space in 
the vicinity of a node. On the left, contours at energy E(k) satisfy E2(k) = 
vpk\ + v\k\ . The tunneling matrix element conserves momentum within 
a range A represented by the dashed circle. B y rescaling the plot so that 
the axes are vpk\ and I>A&2, the constant energy contours are circles, but 
the circle representing the degree of momentum conservation has become 
distorted, indicating that the k\ component of the quasiparticle momentum 
is effectively conserved to a lesser degree than k2. 

and the integrals have been written in terms of a dimensionless temperature 
variable r = Tjy/vpv&A and anisotropy parameter n = VF/VA- The domain 
of integration in 3.47 can be safely taken to be infinite, as the temperature 
plays the role of a cutoff in this calculation. 

The rescaling of the momentum coordinates plays a crucial role in un­
derstanding the mysterious non-integer power law behaviour of the data. 
Recalling that the chemical disorder mediates electron hops between copper-
oxygen planes, the in-plane momentum is conserved in a momentum region 
of order A , as seen in equation 3.43. Rescaling the momentum coordinates 
produces an isotropic energy spectrum, but renders the hopping matrix ele­
ment anisotropic, in such a way that the qi component of the quasiparticle 
momentum is conserved to a lesser degree than q2, as seen in figure 3.2. The 
temperature must be compared to the two new energy scales in the problem 
vpA and I > A A . 

A t high temperature VAA <C vpA <C T, the hopping matrix element 3.43 
becomes coherent, the momentum is completely conserved while hopping be­
tween planes. This leads to a linear behaviour in the superfluid density (as 
this calculation wil l follow exactly as the in-plane calculation). In the inter­
mediate region VAA <^ T <C VpA, the hopping matrix element can be viewed 
as conserving only the q2 component of the momentum, while q\ is completely 
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unrestricted. Power counting in 3.47 results in a quadratic temperature de­
pendence. Finally, in the low-temperature limit T <C vAA <C VpA, the 
momentum is completely non-conserved, naively giving a flat temperature 
dependence. However, a careful asymptotic analysis of the integral I\(T,rf) 
reveals a cubic temperature dependence [24]. Summarizing 

pc

s(0) - pc

s(T) « I T2 vAA < T < vFA . (3.49) 

{ T t ) 4 A < « M « T 
The doping dependence can be calculated in a similar fashion, with result 

A / 2 

pc

s(0) = 16^e2a2—±=h(ec,v), (3.50) 
y/VFVA 

J2(ec,v) = 4 / d 2 f c d 2 p ^ - ^ - e - 4 [ ^ - P 1 ) 2 / . - ( ^ - P 2 ) M ) (3.5i) 
Ji . kp k + p 

where the subscript on the integration measure indicates that the integra­
tion range is the unit disk, corresponding to the choice of Zk, and ec = 
Ec/^/VFVAA. In practice, for numerical convenience we shall replace this 
hard cutoff with a Gaussian soft cutoff when performing numerical integrals 8. 

In the zero-temperature superfluid density, the cutoff energy plays the 
analogous role as temperature above. The only change is that the asymptotic 
expansion of h^c^rf) produces a quintic low-ec behaviour. Therefore 

( Eh

c Ec<^vAA<^vFA 
pc

s(0) « 1 E2 vAA < Ec < vFA , (3.52) 
[ Ec vAA < vpA <C Ec 

and the apparent non-integer power law seen experimentally is a result of a 
crossover between different integer power laws, based solely on the natural 
anisotropy inherent in cuprate superconductors. 

3.3 C O M P A R I S O N W I T H E X P E R I M E N T 

In order to compare the results to experimental data, we break the data into 
two sets: the temperature dependent superfluid density 

6pc

s(T) = pc

s(0)-pc

s(T) (3.53) 
8 This corresponds to Zk = exp{—El/E%} which will not qualitatively alter the previ­

ously calculated ab-plane superfluid density. 



Chapter 3. Superfluid Density 41 

and the zero temperature value pc

s{0). This procedure renders 5pc

s(T) inde­
pendent of the cutoff energy Ec, as required by the universal behaviour of 
the experimental data - all the data lie on one curve after performing this 
subtraction. 

The temperature dependent c-axis superfluid density was numerically in­
tegrated as a function of dimensionless temperature for a number of values 
of the anisotropy parameter n. The results, summarized in figure 3.3, clearly 
show a linear behaviour for large r , a plateau of quadratic behaviour for 
intermediate r whose persistence increases with increasing anisotropy, and 
a cubic low temperature regime. Therefore, the behaviour across the entire 
temperature range is as expected from the naive power counting arguments 
previously presented. 

The temperature dependent data fits reveal the two parameters t± and A 
that both characterize the way in which tunneling occurs in the c-direction. 
Since all of the data sets were acquired from one single sample, they are taken 
to be global fitting parameters. We take the usual values vp = 1.8evA and 
d = 5.85A, although it is not known if VF changes for strongly underdoped 
samples. 

In figure 3.4 we show our best fits to the low-temperature values of 5pc

s(T) 
in the experiments of [2, 3]. The diamonds represent the data curves for a 
particular doping value. Each doping value is characterized by a particular 
Tc that we take to be proportional to doping x. For clarity, we have only 
included the highest doping values Tc = {20.2,19.5,18.2,17.8,16.4,15.IK}; 
the fits are equally good for lower doping values. The solid line is our best 
fit with the parameter fi.A_1 = 120A and t± = 26meV. The fits work well at 
low T (despite the fact that the data is not a simple power law) but begins 
to deviate at high temperature. We ascribe this discrepancy to fluctuation 
effects near Tc in a given sample as well as the fact that we have neglected 
the effect of Zk on the finite temperature corrections to 5pc

s(T) above. This 
restricts the validity of our calculations to low temperature. 

Having fit the temperature dependent correction, the only remaining pa­
rameters are the values of Ec corresponding to a particular doping. We 
extract these using equation 3.51. In the last section, we noted that to ac­
count for the ab-plane phenomenology, we must take Ec oc x, in figure 3.6 we 
plot (diamonds) the extracted best-fit values of Ec for a given experimental 
Tc from the data. The solid curve is a linear fit to these values, with the 
form Ec = 0.49T C /K. This linear "Uemura" [19] relation is an important 
constraint on this theory and depicts the destruction of the Fermi surface as 
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Figure 3.3: Plot of J i ( r , 77) for n = 4,16, 50. To emphasize the crossover be­
haviour in the power law of I\(T, n), the inset plots the associated logarithmic 
derivative OL(T) = dlnli/dr. 
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Figure 3.4: Plot of fits to experimental data of Refs. [2, 3]. The diamonds 
are Spc

s(T) for various dopings having experimental Tc values (top to bottom) 
Tc = {20.2,19.5,18.2,17.8,16.4,15.1K}. The solid curve is our best fit using 
the parameters T l A - 1 = 120A and t± = 26meV. The inset is the same plot 
on a logarithmic scale, showing the changing power law of the experimental 
data and of our theoretical curve. 



Figure 3.5: Plot of h^crf) for r\ = 4,16,50. To emphasize the crossover 
behaviour in the power law of I2(ec,v)> the inset plots the associated loga­
rithmic derivative a(ec) = dln^/dec-
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Figure 3.6: Plot of extracted values of the charge renormalization parameter 
Ec (diamonds) as a function of the experimental Tc, showing a linear be­
haviour as a function of doping level. The solid curve is a linear fit to these 
values, and has the form Ec = 0 .49T c /K(meV). 

the Mott insulating phase is approached at low doping values. 
Finally, to illustrate the overall agreement of our model with the data, 

in figure 3.7 we plot the data for several representative doping values along 
with our curve fits. The agreement is strikingly good at low temperatures 
for all doping levels. We emphasize that all data sets are fit with a single set 
of parameters; the only parameter that varies is the cutoff energy according 
to Ec = 0 .49T C /K with Tc being the actual measured critical value. 

Recently, the zero temperature superfluid density has been carefully mea­
sured in extremely clean underdoped cuprates [17; 25]. The results are that 
p"6(0) scales sub-linearly with x for low doping. This experimental fact con­
tradicts one of the assumptions that underlies this model. The main conclu­
sion, however, that d-wave nodal quasiparticles qualitatively and quantita­
tively explain the empirically determined c-axis superfluid density of Y B C O 
survives this modification. 
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Figure 3.7: F i t to data of [2, 3] (diamonds) using parameters extracted in 
text. The T c values are Tc = {20.2,18.2,16.4,12.1,7AK} (top to bottom) 
representing decreasing effective doping. The parameters used are HA-1 = 
120A, t± = 26meV, n = vF/vA = 6.8 and Ec = 0 .49T c meV/K. 
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On the other hand, the c-axis tunneling could act as a scattering mech­
anism and modify the in-plane superfluid behaviour. In fact, the relatively 
large value of A implies that the leading order behaviour should be quadratic 
for much of the temperature range up to Tc- Although the samples investi­
gated in [17] do not show this behaviour, our model of c-axis tunneling may 
still be valid in these samples, but with a much smaller value of the inverse 
scattering length A. 

• 

3.4 C O N C L U S I O N 

In this chapter we have examined the superfluid density in high Tc supercon­
ductors. Defined as the fraction of electrons in the sample that participate in 
superconductivity, the superfluid density reveals important clues concerning 
the nature of cuprate superconductivity. We have presented a calculation 
describing the electromagnetic response of cuprate superconductors to field 
applied perpendicular to the copper-oxygen planes. The resulting linear de­
pletion of the superfluid density with increasing temperature gives conclusive 
evidence of the d-wave symmetry of the superconducting order parameter. 
The behaviour of the zero temperature superfluid density, however, remained 
mysterious. We have shown that this behaviour can be parsimoniously ex­
plained by postulating that the number of electrons that can participate in 
superconductivty decreases linearly with doping, and furthermore that these 
electrons all exist in the region of the Brillouin zone surrounding the node of 
the d-wave order parameter. 

This mysterious conclusion is further supported by experimental data first 
presented in the Ph .D. thesis of Ahmed Hosseini in 2000 at the University of 
British Columbia. Measurements were performed on extremely underdoped 
samples with the novel feature that the transition temperature of a single 
sample could be tuned continuously. The electromagnetic response to fields 
applied along the direction of the copper-oxygen planes was measured at 
various, extremely low transition temperatures. 

The data collected had two remarkable properties: the data was uni­
versal, it all collapsed onto one universal curve after subtracting the zero 
temperature superfluid density, and that the same power law governed both 
the temperature dependence and the doping dependence. 

A number of theoretical proposals have predicted integer power law be­
haviour in the temperature dependence of the c-axis superfluid response. 
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x=0.05 x=0.10 x=0.15 x=0.20 

Figure 3.8: Schematic plot of the assumed form of Zk, showing the "nodal 
protectorate" region (shading) of the Brillouin zone where states contribute 
to the formation of the condensate for a cuprate at a particular doping x. 
The black lines are the constant energy contours in the Bril louin zone (which 
do not vary with doping). Near optimal doping (x = 20), electrons in a large 
region around the node contribute to the Meissner response. As the doping 
is reduced this region is progressively reduced ; leaving a small "patch" near 
the nodes where the superconductivity remains robust. We remark that the 
c-axis penetration depth measurements of Refs. [2, 3] were performed on ex­
tremely underdoped samples with effective dopings x that are approximately 
represented by the leftmost panel. 

Careful consideration of the copper and oxygen atomic orbitals that mediate 
interplanar tunneling predict a quintic power law [22]. This behaviour can­
not be ruled out by the experimental data, but, if present, it is overwhelmed 
by the nearly quadratic power law at low temperature. 

A similar model containing disorder mediated incoherent tunneling pre­
dicts a quadratic power law [26]. However, this model assumes that the 
interplanar tunneling matrix element depends only on the component of the 
momentum parallel to the Fermi surface, implying that the momentum per­
pendicular to the Fermi surface is not conserved. It is not easy to imagine 
an interlayer scattering mechanism that would produce tunneling that is 
perfectly conserving for the momentum parallel to the Fermi surface while 
totally nonconserving in the perpendicular direction. However, any model 
that predicts a pure integer power law has been ruled out by the experimental 
data. 

B y introducing a momentum scale A, our model naturally accounts for all 
of these properties. The non-integer power law arises as a crossover between 
different integer regimes, depending on the temperature, and the cutoff en­
ergy. The momentum conservation along the direction of the Fermi surface is 
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naturally explained by the rescaling of the anisotropic interplanar tunneling 
matrix element into the nodal coordinates. 

Taken together, the above results lead to the notion of a "nodal pro­
tectorate" in which coherent B C S quasiparticles persist even as the system 
approaches the Mott insulating state near half filling. The nodal protec­
torate is schematically illustrated in figure 3.8. The existence of the nodal 
protectorate imposes a number of stringent constraints on any microscopic 
theory describing the underdoped regime. In particular, any such theory 
must explain what protects the low-energy nodal excitations from the strong 
interactions that otherwise drive the electrons in the remainder of the B r i l ­
louin zone inert to applied electromagnetic fields. 
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C H A P T E R 4 

M A C R O S C O P I C Q U A N T U M 
B E H A V I O U R IN C O L D A T O M I C 
G A S E S 

The implications that equation 2.10 

|VB (1 ;2 ) )=+ |VB (2 ;1 )> (4.1) 

have on the statistical behaviour of a many-body system were not fully re­
alized until Einstein extended the revolutionary ideas of the great Indian 
physicist Satyendra Bose. Einstein proposed that the new statistics Bose 
discovered to expalain light quanta, may also be applied to particles of in­
teger spin. This implied that a thermodynamic phase transition takes place 
at an extremely low temperature, where all of the particles fall into a single 
quantum mechanical state of matter. The resulting "Bose-Einstein Conden­
sate" ( B E C ) has the remarkable property that all iV 10 5 particles can 
be described by a single macroscopic quantum wavefunction (or order pa­
rameter). It took seventy years for this prediction to be borne out in the 
laboratory: in 1995 two groups, American physicists Eric Cornell and Carl 
Wieman at the University of Colorado, Boulder, and a German physicist 
Wolfgang Ketterle at the Massachusetts Institute of Technology, realized the 
Bose-Einstein condensate with cold atomic gases. 

4.1 INTRODUCTION TO BOSE-EINSTEIN 
CONDENSATION 

The key principle in statistical mechanics is that the probability of a system 
to be in a particular microstate is given by the expression 

v = —e-pEi 

Z ' 
(4.2) 
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where the partition function 

Z = Y,e-pEi (4-3) 
i 

is defined as the sum of all the thermal Boltzmann factors of the correspond­
ing microstates of the system. However, if the system contains a large number 
of particles whose total is fixed, the resulting partition function 

Z = ^ 2 e - p ^ n i E i , (4.4) 
{ r i i } 

where is the number of particles in a given microstate, becomes extremely 
difficult to sum, due to the constraint on the number of particles N — 2~2i ^ i -

This difficulty is removed by considering the grand partition function, 
where the total number of particles N is no longer held fixed, but allowed 
to fluctuate. A Lagrange multiplier is consequently added to the system, 
whose value can be tuned to keep the average number of particles fixed at N. 
Physically, this can be thought of as allowing the system to be connected with 
a particle reservoir, that can freely exchange particles with the system. The 
Lagrange multiplier p is in principle controllable, for example by a voltage 
difference applied across the reservoir/system, and is known as the "chemical 
potential". 

In the presence of the chemical potential, the partition function becomes 

- 2 = n s e " ^ ( ^ " " ) t 4 - 5 ) 
l TLi 

and can be easily summed 

2 = II ( i _ e - U - J ( 4 - 6 ) 

i ^ ' 
for Bosonic particles. Various thermodynamic quantities can be found by 
taking logarithmic derivatives of the partition function. For example the 
particle number is given by 

(4.7) 
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and the energy 

W-»(N) = - ~ (4-8). 

The salient features of Bose-Einstein condensation can be seen in the 
ideal gas, with the free energy dispersion E{k) = in arbitrary dimension 
d. The particle density 

i 
r p - / 3 ( £ - / * ) 

= J d E ^ ^ B - ^ E ) , (4.9) 

where the density of states 

D ( E ) = (s)1 f M E ( ¥ ~ 1 ] ( 4 1 0 ) 

has been introduced, can be written in the closed form 

by defining the fugacity z = e0>i and introducing the generalized Riemann 
zeta function (a(z) = T^n 

A similar calculation produces the average energy (measured relative to 
the chemical potential) 

= (E) - p(N) 
V 

(m \ i d^d,, . . , 

which can be written in terms of the density 

d C|+iW 
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In the high temperature limit in three dimensions, this expression reduces 
to the well known classical expression 

(4.14) 

In the opposite limit, however, things start to become interesting. The series 
that defines the Riemann zeta function ceases to converge as z —• 1. A t a 
low enough temperature (or equivalently a high enough particle density), the 
discrete nature of the ground state energy level becomes crucial, and replacing 
the summation over discrete states by an integral is no longer valid. 

The number of particles in the ground state is found to be (measuring 
energies relative to the ground state) 

W>> = Y Z ^ , (4-15) 

which can be inverted to find the chemical potential in the limit of small 
temperature or large ground state filling 

" " - W < L ( 4 1 6 ) 

The integration is still valid for states above the ground state, and the chem­
ical potential can be neglected, giving an "excited" occupation 

(N)-(N0) = ^(£)'r*c-(i) 

or more suggestively, 

(No) 
(N) 

= 1 

(TV) 

which defines the transition temperature 1 

2TT 

777. 

(4.17) 

(4.18) 

(4.19) 

Convergence of the integral that leads to equation 4.17 puts limits on the dimension­
ality of systems that can display this phase transition. Bose condensation cannot occur 
in one dimension, and in two-dimensions only when the trapping potential is sufficiently 
confining, i.e. grows with a power greater than two. 
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The ground state occupation can be used as a thermodynamic order param­
eter whose macroscopic occupation signals a phase transition into the Bose 
condensed state. 

It is very tempting to identify the superfluid transition in Helium 4 with 
Bose-Einstein condensation, since the transition temperature found by insert­
ing the relevant parameters into 4.19 is extremely close to the experimental 
lambda-point transition. However, it is quite clear that the Helium 4 system 
is far from a non-interacting Bose gas. Particle interactions, while relatively 
weak, cannot be neglected. In fact, superfluidity wil l not even occur in a 
non-interacting Bose gas. 

Interest in the non-interacting Bose gas was rekindled when atomic physi­
cists developed the technique of using magnetic fields to selectively confine 
hyperfine states of alkali gases. Combined with the discovery of laser cool­
ing, cold atomic gases seemed like the perfect system to realize Bose-Einstein 
condensation. 

The magnetic traps can be approximated by a harmonic confining po­
tential. In this case, the number of excited particles in the grand canonical 
ensemble becomes 

When the particle number is great enough, the summation can be safely 
approximated as an integral. This amounts to a semi-classical treatment of 
the excited states of the harmonic oscillator. The resulting expression 

(N)-(N0)= ]T 
1 

(4.20) gf3(uixnx+uiyny+u>znz)—fj.) ^' 

dxida^da^ 
1 

(4.21) 

where U>Q = (o^o^u^) 1/ 3 , has solution 

(4.22) 

with transition temperature 

(4.23) 

To find further details of the preceeding calculation, it is performed in [27]. 
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To achieve Bose-Einstein condensation of cold atoms, the atoms must 
be kept in the metastable gaseous state as the system is cooled. This ne­
cessitates a low density, since three body collisions will seed a solid state 2. 
However, lowering the particle density drives down the transition tempera­
ture according to equation 4.23. Therefore the atoms must be lowered to, and 
maintained at, nanoKelvin temperatures. After decades of experimentation, 
this feat was finally achieved in 1995, when two experimental groups inde­
pendently realized the Bose-Einstein condensate in cold atomic gases. The 
Nobel prize in 2001 was awarded for this feat to Eric Cornell, Car l Wieman 
and Wolfgang Ketterle. 

Although the above predictions give the correct qualitative description of 
Bose condensation, a more sophisticated, interacting theory must be inves­
tigated in order to compare quantitatively with experiments, The starting 
point is the general many-body Hamiltonian 

H = Jdr^(r) (f- + VBXt{r)^-tP{r) 

+ i J drdr'ip\r)^(r')V(r - r')^(r')^(r). (4.24) 

In a dilute Bosonic gas, the interaction potential can be approximated by 

V(r-r') = —5(r-r'), (4.25) 
m 

(where a is the two-body s-wave scattering length) a result that can be rig­
orously justified by a T-matrix calculation (see chapter 5 in [28] for a deriva­
tion). B y using the Heisenberg picture 3 to derive the equations of motion for 
the operator ip(r), we arrive at the equation 

d - / V 2 \ -
1 - ^ , 1 ) = \ -—- + Vext(r) + g\i;(r,t)\2)iP(r,t), (4.27) 

2 Two body collisions cannot form a bound state since they are necessarily elastic. A 
third body must be present to carry away excess kinetic energy from forming a bound 
state. 

3 The Heisenberg equations of motion can be derived by ascribing the quantal time 
dependence to the operators after applying Dirac's quantization procedure to 1.11. The 
resulting operator equations of motion are 

i ^ f i = [ f f . f i ] . (4.26) 

http://ff.fi
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where we have defined the interaction parameter g = 4ira/m. This operator 
equation of motion can be turned into a partial differential equation by a 
mean-field theory ansatz 

= $(r,t) + ft(r,t) (4.28) 

where the operator has been split into its mean value $(r, t) and an opera­
tor representing fluctuations about its mean value. This separation is quite 
general, however it is only useful when the <l>(r, t) is large. Physically this is 
true when the operator ip(r,t) represents a macroscopically filled quantum 
state, as is the case for the ground state in a Bose condensed system where 
fluctuations out of the condensate are small; <€. 1. 

If we therefore consider the equation that determines the structure and 
dynamics of the macroscopically occupied ground state, we arrive at the 
Gross-Pitaevskii (GP) equation 

.6 
*(r, t) = ( ~ ^ - V 2 + Kxt(r) + g$2(r, t)^ $(r, t), (4.29) 

which is simply the Schrodinger equation augmented by a non-linear term 
due to many-body interactions, whose eigenfunctions $(r, t) describe vari­
ous states of the many body wavefunction; the ground state, excited states 
including vortices and solitons, for example. 

The wavefunction <E>(r, t) is given by the expectation value of a single 
annihilation operator, which can only be nonzero when connecting two states 
whose occupation number differs 

$(r,t) = {N\4>(r,t)\N - 1) . (4.30) 

If we ascribe the whole time dependence to that of the Fock states J TV) then 
the time evolution of the condensate wavefunction is given by 

$(r ,£) = (N\e-iENtj>(r)eiEN-lt\N - 1) 
= $ ( r ) e - ^ - ^ - i ) * _ ( 4 3 1 ) 

In the limit of large particle number (which must be the case for Bose con­
densation to appear in the first place) the argument of the exponential ap­
proaches the chemical potential; 

dE 
EN - EN-! « = p. (4.32) 
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Therefore the eigenvalue of the G P equation gives the chemical potential, 
and the time-independent G P equation reads 

( - ^ V 2 + Kxt(r) + ^ 2 ( r ) ^ $ ( r ) = p$( r ) . (4.33) 

The Gross-Pitaevskii equations 4.29 and 4.33 give an extremely accurate 
description of the condensate wavefunction and its low-temperature dynam­
ics. A t temperatures close to the transition temperature, it is necessary to 
go beyond mean-field theory and include interaction effects between atoms 
in the condensate with those not in the condensate [29]. These topics are 
studied by keeping the second operator in equation 4.28 representing the 
fluctuations of particles out of the condensate. While this is an interest­
ing and richly studied field, we wil l not consider this avenue further, and 
interested readers are directed to [29]. 

4.2 COOLING AND TRAPPING OF ATOMS 

If the time-dependent Gross-Pitaevskii equation, and the weak interactions 
between the condensed and non-condensed particles, encompassed the full 
study of cold atomic gases, the field would not have garnered the widespread 
attention of so many disciplines. The interest stems from a surprising result 
that arose from the techniques of cooling and trapping atomic gases. 

The fact that the pressure of photons can be used to change the aver­
age velocity of atomic beams has been known for decades [30]. This was 
predicated upon the fact that an individual atom can make a transition to 
an excited state by an absorption of a photon. When the atom undergoes 
spontaneous emission the photon is emitted in a random direction. There­
fore, there is, a net average change in momentum after a large number of 
absorption-emission events. However, in order to change the temperature of 
an atomic gas, you need to not only change the average velocity, but narrow 
the velocity distribution of the ensemble. In order to accomplish this feat, 
the probability of photon absorption must be enhanced for atoms with a large 
velocity compared to those with a small velocity. This situation can be re­
alized by shining six counter propagating lasers on the sample, each with an 
energy slightly detuned from the atomic energy splitting. In the frame of the 
moving atom, the laser energies are Doppler shifted. Since the probability of 
an atomic transition is proportional to the detuning parameter (at least for 
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a small range of velocities), the atom wil l favourably absorb a photon from 
the laser source it is traveling towards. Furthermore, the faster the atom is 
traveling (up to a critical velocity that wil l depend on the experimental de­
tails) the more likely it is to absorb a photon. The net result is the required 
reduction in the width of the velocity distribution. 

While this "Doppler cooling" technique works very well, it has two dis­
tinct drawbacks. First, it only changes the momentum distribution of the 
atoms, without affecting their position. Therefore it creates what is known 
as "optical molasses", a region where the atoms wil l slow and become cool, 
but it provides no trapping mechanism. The second drawback is that the 
lowest temperature achievable using Doppler cooling is relatively large, and 
much higher than a typical Bose condensation temperature. 

Trapping of the atomic gas was achieved by tuning the atomic energy 
levels in an inhomogeneous magnetic field via the Zeeman interaction. B y 
tailoring the magnetic field lines to produce a minimum at the same location 
as the optical molasses, the atoms could be confined as they are being cooled. 
This system of using magnetically tuned energy levels in the presence of an 
optical molasses is known as a Magneto-Optical trap ( M O T ) and is currently 
used as the standard cooling technique used in experiments. 

This heuristic description describes the cooling and trapping of a hypo­
thetical two-level atom. In reality, atoms possess ground and excited state 
manifolds, containing many different energy levels that depend on internal 
quantum numbers. Furthermore, the strength of the electromagnetic cou­
pling between two states wil l depend on the polarization of the laser via the 
well-known Clebsch-Gordan coefficients resulting from angular momentum 
conservation. 

Consider two counter-propagating laser beams along the z-axis with per­
pendicular polarization vectors: 

E(z, t) = xcos (ut - kz) + y sin (cot + kz). (4.34) 

A t distances that are multiples of a quarter wavelength kz = nn/2, the 
resulting electromagnetic field is linearly polarized 

E(z = n^,t) = V2E0 

x ± y 
—•=- cos cot 

V2 
(4.35) 

In between these points, where kz = (2m + l ) 7 r / 4 , the resulting electromag-



Chapter 4. Macroscopic Quantum Behaviour in Cold Atomic Gases 59 

netic field 

x + y 

v 2 
cos cut ± x - y 

v 2 
sin ujt (4.36) 

displays circular polarization, whose handedness depends on the position 
z. This strong polarization gradient is the key to sub-Doppler cooling of 
multilevel atomic gases. 

The regions of circular polarity are the most interesting and relevant to 
sub-Doppler cooling schemes. In these regions, the A C Stark effect shifts the 
energy levels of the ground state, where the magnitude of this shift is propor­
tional to the electromagnetic coupling to the excited states, which is different 
for each sub-level in the ground-state manifold. Populations of atoms near 
these locations of circular polarization will be optically pumped into the low­
est lying ground state. Atoms possessing a kinetic energy greater than the 
local ground state energy splitting can move non-adiabatically by a quarter 
wavelength into a region of opposite circular polarization. In traveling to 
this new region of higher potential energy, some of the atom's kinetic energy 
must have been lost. This excess potential energy escapes as a photon during 
the process of optical pumping, resulting in the atom's transfer to the local 
ground state. This effect was first described by Dalibard and Cohen-Tandouji 
[31], who named the process "Sisyphus cooling" from the Greek mythological 
figure whose punishment was to push a boulder up a hi l l , but whenever he 
completed his task, he would once again find himself at the bottom of the 

The theoretical lower temperature limit of Sisyphus cooling is set by the 
atomic recoil after a spontaneous emission, and is an order of magnitude 
lower than the lowest temperature achievable by Doppler cooling. In fact, 
this temperature is low enough that the atoms can be cooled to tempera­
tures comparable to the ground state energy splitting! Atoms reaching this 
temperature wil l experience positional quantum effect's due to the discrete 
energy levels in the periodic optical potential. 

The experimental realization of quantum potential with perfect spatial 
periodicity substantially broadened the scope of the research into cold atomic 
gases. Many condensed matter theories were developed under the assumption 
of perfect periodicity, where the potential is supplied by the crystal lattice of 
atoms in a solid. The discrete translational symmetry plays a central role in 
many of the theoretical proposals,but extrinsic effects, such as dislocations, 
chemical impurities and surface effects, can break the translational symmetry 

hil l . 
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resulting in significant difficulty comparing theory with experiment. Cold 
atomic gases in optical lattices do not suffer from any of these extrinsic 
effects, and are a perfect candidate to study a diverse range of theoretical 
models. 

4.3 E X P L O R I N G Q U A N T U M C O H E R E N C E A N D 
CORRELATIONS IN C O L D A T O M I C GASES 

Coherence and correlations are reciprocal properties of quantum systems. 
Correlations occur when interparticle interactions are strong: Two widely 
separated parts of the system behave differently, but their behaviours are 
dependent upon one another 4. Conversely, two widely separated parts of a 
coherent system, while independent, behave identically. 

The main tool used in cold atom experiments is optical imaging of the 
gas after free expansion. This technique is particularly well suited to study 
quantum coherence, although it has been recently demonstrated that the 
images also contain information revealing the quantum correlations present 
in the system. We will therefore investigate this technique by examining two 
important experiments. 

The seminal experiment that magnificently displayed coherence was that 
of Andrews et. al. [32]. They split a single sodium condensate into two by 
focusing a blue detuned laser onto the centre of the trap, using the dipole 
force to create a double well potential. Upon release, and subsequent imag­
ing, high contrast matter-wave interference fringes were clearly seen. The 
theoretical explanation for these fringes, while naively clear, is actually quite 
subtle. There are a large number of papers which address this issue from 
the point of view that the quantum measurement process projects the many-
body wavefunction into a state with a well defined relative phase after the 
condensates have been released from the trapping potential. We present here 
a novel calculation that takes a slightly different point of view. We inves­
tigate the resulting entangled state that results after a number of particles 
have leaked out of the trap, but prior to releasing the condensates from the 
trapping potential. 

4 The interparticle interaction does not have to be strong at the moment the correlations 
are detected. A Bell state, for instance, displays correlations even when the particles are 
widely separated. The correlations result from the initial state preparation, where the 
particles were strongly interacting. 
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To begin our investigation, we consider two isolated systems, both in Fock 
states 

(*!)"' («4)* 
| I V - I V 2 > = M I |0>- <4'37) 

We define the state 

\k) = 'ak\NuN2) (4.38) 

= 2 - f e / 2 ( a 1 - f - e I % ) / c | i V 1 , i V 2 ) , (4.39) 

which corresponds to the state of the system 4.37 after k particles have 
been removed. We imagine that this removal of particles happens because 
the isolated Fock states "leak", and the environment observes the resulting 
particles, but it does not know from which subsystem each particle came. 
The state \k) is a huge superposition of all the ways k particles can be taken 
away from either of the two subsystems 

(4.40) 

Since we are investigating Fock states being driven into a state of definite 
relative phase, we project the state \k) onto the set of "phase states" 

\9m) = -±=J2eine-\n), (4.41) 

which are almost the Fourier conjugate to the number states. In the full infi­
nite dimensional Hilbert space, these states are not orthonormal - a result of 
the negative number states being unphysical and therefore not present in the 
Hilbert space. However, it is shown in [5] that restricting the Hilbert space 
to contain only s particles circumvents these issues. As a result, however, 
the phase states are discretized: 

2-7rm 

ft. = (4-42) 

where m runs from 0 to s. In the truncated Hilbert space, the phase states 
are orthonormal, and have a resolution of the identity operator. A t the end 
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Figure 4.1: Schematic representation leading to the state \k) 4.39. The en­
vironment, which observes the particles coming from either B E C , is encom­
passed by a single detector at an arbitrary location. The phase difference 
cf) is wholly due to the path difference in the free motion between the two 
condensates. 

of the calculation, one can usually take s —> oo and recover the continuous 
phase variable. 

Multiplication of the state \k) by the resolution of the identity 

1 = E I W ( W (4-43) 
pp'=0 

leads to the state 

\k) = ?-vvfM N i m 

x e - 4 C J V i - i ) - i V W - H i ) e ^ ( f = - i ) | ^ p ^ ( 4 44) 

The state 4.44 is a completely general form for any value of the particle 
numbers TVi, N2 and number of anihilations k. What we are seeking, however, 
is a limiting form of 4.44 when the particle numbers are large, N-y,N2 3> 1. 
We therefore define the function 
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a n d per form an expansion about its m a x i m u m value. It turns out to be easier 

to e x p a n d the l o g a r i t h m of 4.45, w h i c h is permissible since the l o g a r i t h m is 

a m o n o t o n i c a l l y increasing funct ion. T h i s procedure results i n the series 

l n / ( j ) ^ l n / ( J ) - ^ ( j - j ) 2 (4.46) 

where j is the so lut ion of the equat ion 

f (TV2 _ K + J ) = ( A ; _ ~jf <Nl _ -j) , (4.47) 

a n d 

— = 1 _ + = + =- + — — (4 48) 
a 2 k - j j 2(N2-k + j) 2(N1-j)' 

Insert ing this expansion into the state 4.44 gives 

9—fc/2 roo 2 _ 
|fc) = / djAfe-^(j-j) e ^ ' ^ - V - ^ e - ^ i - ^ ^ - ^ i ^ ^ ^ g ) 

5 + 1 J—oo 

PP 
w h i c h , after integrat ion over j a n d n o r m a l i z a t i o n , gives the exact ly the 

sought-after state 

) f c ) = ^ 1 / 2 ( J ^ e - K ^ - V - ^ ) 2 e - ^ ( ^ - ? ) e - ^ ( ^ - ^ ) | g p g p , ) . (4.50) 
s + 1 

PP' 
V 

T h i s represents the major result of this section, the m a n y - b o d y state for two 

separated condensates after m a n y leaks becomes a state of t o t a l l y uncerta in 

average phase, but one whose relative phase is certa in. 

In the special case where iVi = -/V2 = N, we can go even further. T h e 

i m p l i c i t equat ion that solves for j admits the so lut ion j' — | , a n d the w i d t h 

of the G a u s s i a n spread can be calculated exact ly 

1 -(4N-k) 

T h i s p h y s i c a l l y demonstrates that as more particles leak out of the F o c k state 

a n d get observed by the environment, the spread i n relat ive phase decreases. 
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In the limit where the particle numbers are almost equivalent N\ = iV+A, 
and A/TV <C 1 the average particle number j takes on the modified value 

7=3( 1 + ( « f b j ) < « 3 > 

and the spread becomes 

*-H*-&)<^-&)k+o$Y (454) 

In summary, coherence is a natural consequence of experimental imper­
fections of the trap. Furthermore, it has been shown that the measurement 
process itself forces two Fock states into a state of definite relative phase 
[33]. This calculation proceeds in a similar fashion to the one presented here, 
where the measurement process collapses the wavefunction into an eigenstate 
of the measurement operator. When probing atomic density, the measure­
ment operator is a large product of anihilation operators, whose eigenstates 
are states of definite phase. However, each experiment wil l see only "one-
shot" of the wavefunction 4.50 - from experiment to experiment the actual 
relative phase wil l be unpredictable, and furthermore, averaging over many 
experimental runs will destroy this coherence. 

It is important to clarify that we do not believe the calculation presented 
here represents the true physical mechanism that produces the sharp inter­
ference fringes seen in experiments. In fact, it has been shown that two pure 
Fock states wil l exhibit these fringes, and they arise solely due to the physical 
measurement process [33]. The main conclusion of this calculation is that a 
sharply defined phase difference between two initially isolated condensates is 
an inevitability, whether it arises from interaction with the environment, as 
suggested here, of a natural result of the act of measurement. 

However, this calculation does give rise to the interesting possibility of 
engineering coherences by simply observing the particles that have leaked out 
of the traps. Measurement induced coherences have been hypothesized as a 
possible route to quantum computing [34]. While an intriguing possibility, 
this line of research will not be considered further in this thesis. 

While coherence is both an interesting and intriguing property, it does 
not reveal physical information about the underlying system. In the previous 
example, it is not the interference fringes themselves, but the wavelength of 
these fringes that gives the physical information - in the form of a de Broglie 
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wavelength. Furthermore, coherence is not a robust property of the system 
- the same relative phase does not persist from experiment to experiment. 

In order to develop a methodical process to extract physical information, 
the auto-correlation function 

_ Jdx(n(x)n(x + y)) 
C [ V ) ~ Jdx(n(x))(n(x + y)) ( 4 ' 5 5 j 

is introduced, where the angular brackets denote averaging over all experi­
ments 

M^HIZSO*)- (4-56) 
The function 4.55 is constructed to draw out the information that persists 

between experiments. To illustrate this method, we have constructed data 
sets corresponding to 200 realizations of the function 

2 

= e " T o s i n 2 ( x + 0 i ) (4.57) 

in figure 4.2 (where the phases fa are chosen randomly in the range [0,2-7r])5. 
The preceding example demonstrates the principle of extracting physical 

information by investigating persistent features from many experimental im­
ages. In order to demonstrate the true power of this technique, however, we 
wil l briefly discuss an early optical lattice experiment. 

Bosonic atoms confined in an optical lattice are well described by the 
Hubbard model [35] 

H = -tJ2 {o-laj + h.c.} + | J2 - (4-58) 

This model displays a phase transition between superfluid behaviour and a 
strongly correlated insulating state as the ratio of the energy scales U/t is 
changed. The kinetic term in the Hamiltonian is dominant below the critical 
value U/t < Uc = z • 5.83 (where z is the number of nearest neighbour lattice 
sites), resulting in superfluid behaviour where all particles are delocalized 

5 This functional form was chosen to mimic the particle density resulting from a free 
expansion of two isolated Bose-Einstein condensates with a definite relative phase, and a 
four collinear BEC' s respectively. 

1 
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X 

Figure 4.2: Illustrative example of auto-correlation function, equation 4.55. 
The broken black lines display a subset of 20 of 200 realizations of the function 
4.57 with randomly chosen phases (one specific realization is highlighted 
with a solid blue line for clarity). The solid red line is the average over all 
realizations given by equation 4.56. The inset displays the auto-correlation of 
the data set, equation 4.55. If the data is perfectly coherent, the numerator 
in equation 4.55 factors, and C(y) = 1 for all values of y. When this function 
differs from one, correlations are present. The sinusoidal variation of the 
auto-correlation function clearly demonstrates the correlations present in this 
artificial data set. 
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throughout the lattice [36]. In the other limit U/t > Uc double occupancy 
of any one lattice site becomes energetically unfavourable, and hopping is 
therefore suppressed. This leads to Mott insulating behaviour, an insulator 
whose properties stem from the strong correlations and not band structure 
considerations. 

This transition was tested experimentally by loading Bosonic atoms into 
a three dimensional cubic lattice and changing the lattice depth by control­
ling the intensity of the laser light used to create the optical lattice [37]. 
Releasing the gas from the trapping potential and imaging it after a time of 
free expansion reveals striking images of the two phases. 

To understand the images, we look at the particle density after a time of 
flight6 

<*(*.*)> - T ^ E e i Q ( x H x , " X i ) ( * i G ^ i * ) - ( 4 - 5 9 ) 

In the superfluid state, the system is described by the wavefunction 

/ M \ N 

l * > = (X>!) 1°)' ( 4 6 ° ) 

where each of the N particles are,in the ground state (k = 0 momentum 
state) of the Brillouin zone. In this state, the bilinear operator 

<*|aja,-|\l>> = | * | 2 (4.61) 

is a constant and the particle density 4.59 vanishes unless Q(x) is a reciprocal 
lattice vector. This result is quite remarkable; the resulting particle density 
directly images the reciprocal lattice! 

The Mott insulating state is described by the wavefunction 

M 

i * > = n a ! i ° > ( 4 - 6 2 ) 
i = l 

6 This expression is derived by projecting the wavefunctions onto the lowest eigenstate 
of the optical potential and choosing a Gaussian basis for the Wannier orbitals. In the long 
time limit (analogous to the far-field approximation in optics), we can approximate the 
Gaussian by a width W. The momentum Q(y) = ^ defines a relationship between the 
momentum in the trap before expansion, and the location of the particle after expansion. 
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where an integer number of particles are placed on each lattice site. Since 
double occupancy is prohibited, the bilinear operator acts as a Kronecker 
delta 

Inserting this result into the particle density 4.59 results in a "featureless" 
particle density after expansion. Both of these scenarios are borne out in the 
actual experiment [37]. 

It is unsatisfying that the interesting highly correlated many-body state 
displays no signatures of its correlations. However, inserting the Mott wave-
function 4.62 into the experimentally averaged self-correlator 4.55 reveals 
something interesting [38]: 

The fluctuations in the experimental signal have a signature that persists 
between experimental runs! The quantum correlations present in the Mott 
insulating state show up as reciprocal lattice peaks in the self-correlation 
function. Therefore, this data processing technique can reveal interesting 
physical information hidden in the experimental data, information that can 
be used to probe quantum correlations in physical systems: 

The 1924 prediction of Bose-Einstein condensation resulted in a 70 year 
experimental search, whose culmination occurred in 1995 with the realization 
of a B E C composed of ultracold alkali atoms. The research into B E C ' s in 
the years following this discovery has had significant applications to a wide 
range of physical disciplines.. W i t h the creation of optical lattices, and a 
method to probe correlation physics, the future applications of B E C ' s in the 
next decade promises to be just as revolutionary. 

{*\a\aj\V)=5IJ. (4.63) 

(4.64) 
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C H A P T E R 5 

E N G I N E E R I N G D I R A C F E R M I O N S 
IN O P T I C A L L A T T I C E S Y S T E M S 

The periodic potentials available with the application of coherent laser light 
on cold atomic gas systems, with perfect periodicity, allows for the testing of 
many condensed matter paradigms. In this way, the field of atomic physics 
can engineer systems to behave as "analogue quantum computers", in the 
sense that Richard Feynman originally intended when he considered the con­
cept of computation with quantum systems in 1982 [39]. 

The purpose of this chapter is to propose a method of engineering cold 
Fermionic gases in the presence of an optical lattice into a state whose low 
energy excitations are Dirac Fermions described by the equation 

Dirac Fermions arise in many condensed matter systems [40-42], and are 
of simultaneous interest to high energy theory [43] where chiral symmetry 
breaking has been studied as an avenue to dynamical mass generation. 

The advantage of studying Dirac Fermions in optical lattice systems is 
the high amount of control afforded by the experimental setup. Specifically, 
the Fermionic interaction parameters are controllable by simply changing the 
intensity of laser light. Therefore, a complete quantum phase diagram for 
interacting massless Dirac Fermions can be mapped by simply controlling 
the intensity of the laser light. 

Cold Fermionic gases in the presence of an optical lattice are well de­
scribed by the Fermionic tJU model [44, 45] 

( 7 / A - m)il> = 0. (5.1) 

H=-t c\Gcja + h.c^j +UJ2 n^riii + J ̂  Si • Sj 
(ij) 

(5.2) 

where the two degenerate states in the ground state manifold (the two lowest 
lying hyperfme states of Li thium 6, for example) have been denoted as {|, [}• 
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The three parameters of the model t, J and U all depend sensitively on the 
height of the optical lattice, which is continuously controllable by changing 
the intensity of laser light. 

The emergence of Dirac Fermions requires both a bipartite lattice, which 
is a lattice that can be naturally divided into two interpenetrating sublat-
tices, and exact particle-hole symmetry. The bipartite lattice gives rise to 
the spinor structure of the equations, and the permutation symmetry that 
exists when particles and holes can be interchanged gives rise to the sym­
metric nature of spatial and temporal derivatives. The combination of these 
two symmetries is responsible for the emergent relativistic structure of the 
effective Lagrangian: This can be constructed on a square lattice by thread­
ing each unit cell with exactly one half of a quantum of flux. The magnetic 
field changes the hopping matrix element t by the usual Peierls substitution 
[23], which introduces an alternating sign on every other bond. Half filling is 
achieved by tuning the chemical potential so there is exactly one Fermion per 
lattice site. This method requires the realization of an "effective magnetic 
field" that acts on neutral particles, which has been proposed [46, 47], but 
has yet to be realized experimentally. 

Alternatively, the bipartite lattice can be achieved by creating a triangu­
lar lattice with a two atom basis, i.e. a honeycomb lattice. The honeycomb 
lattice can be experimentally achieved by six lasers with a red detuning, or 
by three lasers with a blue detuning. The difference lies since red detuning 
corresponds to trapping in the minima of the potential, so-called "low-field 
seeking", implying that the full honeycomb lattice would need to be imple­
mented via six lasers. On the other hand, blue detuning corresponds to 
high-field seekers, and the maxima of a triangular optical lattice is a honey­
comb lattice. Therefore only three lasers are required. This setup is possible 
in principle, and experimentally straightforward, so we concentrate on the 
honeycomb lattice at half filling. 

The honeycomb lattice can be described by a triangular Bravais lattice 
with primitive vectors a\ = ^ax + | a y and a 2 = \/3ax with a two-site 

basis described by the vector b = ay. We denote the two sub-lattices by the 
subscripts A and B. 

To find the spectrum of the free Hamiltonian, we introduce a spinor op­
erator whose elements are Fermionic operators that act on the two different 
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sub-lattices 

where cAa{nm) = ca (^Rnm^, cBa(nm) = ca ( R n m + bj, and Rnm = nai + 

m a 2 is the generalized triangular lattice vector. In momentum space, 

Ho = - i $ > a ( * ) ( ^ k f ) da(k), (5.4) 
ka \ ' 

the energy spectrum is easily found to be 

e = ±\h(k)\ = ±£y 3 + 2cos/c • a i + 2cosfc • a 2 + 2cosfc • (ai — a 2 ), (5.5) 

where /i(fc) = e - * 5 ^1 + e " * S l + e * ( « i - s 2 ) ^ . 

There has been renewed interest in this system, whose energy contour 
diagram is plotted in figure 5.1, because of a remarkable new technique of 
obtaining perfect two dimensional crystals [48]. Due to the low dimensional­
ity, single layers of graphene sheets are predicted to display an unconventional 
integer quantum hall effect [49], which has recently been seen experimentally 
[50]. The realization of this system with an optical lattice has the advantage 
that the interaction is necessarily short ranged, since the atoms are neutral, 
and the magnitude of the interaction can be tuned continuously and a whole 
phase diagram is accessible in a single system. 

A t exactly half filling, the Fermi surface becomes a set of two points 

- ± ^ « , (5.6) 

with the upper sign corresponding to the label 1 and the lower sign to 2. We 
wil l refer to these Fermi points as "nodes". There are four other apparent 
nodes in the Bril louin zone that are equivalent to kp'2^ up to a reciprocal 
lattice translation Kab = a« i + 6/?2, where = and K 2 = + -^x. 

Our goal is to write an effective theory that describes the low energy 
Fermionic excitations, so we restrict our focus to momentum vectors in the 
nodal regions. Near q = kF' , the off diagonal elements of the Hamiltonian 
density become 

h{1\q) = h{q + k{p) = Z-a(-qx + iqy) (5.7) 
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Figure 5.1: Positive solution of equation 5.5, depicting the band structure, of 
a honeycomb lattice. 

and 

h{2\q) = h (q + $ > ) = Z-a (-qx - iqy), (5.8) 

respectively. This allows us to write the free Hamiltonian in terms of 2 x 2 
Pauli matrices 1 

H° = -\t^{d^\q^[-aiqx-a2qy}d^\q)-
qa 

+d^\q) \-aiqx + a2qy] d%\q)} . (5.9) 

To simplify our Hamiltonian, we introduce the velocity c = | t a and the 
4-spinor 

1 We use the standard basis introduced in chapter 2. In this chapter, matrices defined 
by r? and f will also represent the 2 x 2 Pauli matrices in the standard basis. 
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whose elements create an excitation at opposite nodes. The multiplication 
by the o\ matrix serves to rotate the coordinates of the first node, so that 
the form of the two nodal Hamiltonians wil l be identical. After these trans­
formations, the Hamiltonian becomes 

#o - -c^2?pt ® a i q x + 1L ® a2qy]ipa(q). (5.11) 

Further simplification results from defining the 4 x 4 Dirac gamma matrices 
7M = "3 ® {o"3,o-2,Ci} (where p = 0,1,2), 73 = n2 ® 1, and 75 = 771 <g> 1 
which satisfy the Clifford algebra { 7 ^ , 7 , , } = 25^, as well as the "relativistic" 
adjoint ipa(q) = iipa(q)jo- The resulting Hamiltonian 

H0 = c^2^a(q)jiqi^a{q) (5.12) 
aq 

represents free massless Dirac Fermions. 
The general program to follow in order to investigate the interactions 

in this model is to convert the interacting part of the original Hamiltonian 
into 4-spinor notation, and to decouple the four-Fermion interactions into 
two-Fermion interactions by introducing an auxiliary field via the Hubbard-
Stratonovich transformation 2. 

We begin by investigating the Fermionic Hubbard term 

Hu = U^n^nn, (5.14) 
i 

we can write this Hamiltonian up to a renormalization of the chemical po­
tential, in the form 

Hu = -\uY,Sl (5.15) 
i 

2 The Hubbard-Stratonovich transformation makes use of the identity 

J dxe-ax2+bx (5.13) 

to transform a Hamiltonian quartic in an operator (for example, b = at a) into a Hamil­
tonian that is quadratic in that operator, at the price of introducing an auxiliary field (in 
this example, a;). The transformation is exact when the auxiliary field is integrated over 
completely. It forms the basis of mean-field theory when the saddle point solution is used. 
For a more rigorous definition, please consult [51]. 
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by invoking the Fierz identity Tap • r 7 < 5 = Sas5^ — |5a/3<57<5 resulting in the 
two-Fermion effective Hamiltonian 

•Hf = -9i + E 3 • MiW> (5-16) 
i i 

where 91 = ^ -
In order to write the Hamiltonian 5.16 in terms of our 4-spinors, we first 

transform to momentum space and focus near the nodes. This gives rise 
to only two important values of Mi(q), near q « 0, representing intranodal 
scattering, and q « — kF \ representing internodal scattering. B y defining 

m1(g) = M 1

z ( g « 0 ) , (5.17) 

and 

m2(q) = M[ (q + - kf) . (5.18) 

gives rise to the final Hamiltonian 3 

Hv = - f c £ { M f l | a + |m2($)| a } 

+ E ^<*$ + {lom2{q} + 7i75"ii(g) - 7i73"ii(g)} Tz

apipp(q). 

kq 
(5.19) 

We have here chosen the z-axis upon which magnetization will spontaneously 
appear. Neglecting the other terms in the Hamiltonian wil l not affect the 
criticality of the theory, which is all that we investigate here. They wil l give 
rise to Goldstone modes that could produce interesting dynamics, but they 
wil l not qualitatively affect the spontaneous mass generation. 

Turning to the nearest neighbour spin interaction 

HJ = jJ2Si-Sj (5.20) 
(ij) 

3 The prime and double prime denote the real and imaginary components of the field 
respectively. For example, we can write the complex number z as z = z' + iz". This 
notation is used in much of the condensed matter literature. 
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we first recast in terms of our 2-spinors in momentum space with result 

Hj = 3- J2 M<7)4(P + q)o-+dp{p)d\(k - q)a-d5(k)ra0 • f 7 5, (5.21) 
kpq 

where we have defined = | (II ± az). Again, there are two important mo­
mentum regions to consider. However, in the low energy limit, the associate 
phase factors imply that intranodal scattering dominates, since 

h(q^O) « 3 + C(g 2 ) , (5.22) 

and 

Therefore, only intranodal scattering is considered, resulting in the 4-spinor 
form of the spin Hamiltonian 

kpq 

-^aiP + ql^piPl^^k-qlM^Tap-T^s- . (5.24) 

B y performing the same Hubbard-Stratonovich transformation to 5.24, we 
arrive at the effective spin Hamiltonian 

q pq 

+ ^a(q)7or^MQ)M^q)} (5.25) 

Schematically, we can write the final form of the Hamiltonian 

HeS = c ^ M ^ M q ^ + Y.9i\Mtm2 

qa i,q 

+ jya(p+m<M^Mi(q)^ (5-26) 
i,pq 

where the g^s and IYs are taken from the interaction Hamiltonians 5.16 and 
5.25. 
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In the massless phase, we can determine how the interactions renormalize 
the couplings by calculating the one-loop contribution to the auxiliary field 
propagator 

V^{q)^vf{q) + vf{q)ll^\q)V^{q), (5.27) 

where 11(g) is the "polarization" bubble 

U^(q) = J2r^[Go(k + q,uj + qo)TiGo(k,Lu)ri}. (5.28) 

A closed form for the polarization can be found using the free propagator 
Go(q) = ^ 

1 1 % ) = Tr [ 1 ^ 7 , ] ^ - ^ T r [ r i 7 , r i 7 , ] (s,,, + ^ ) . (5.29) 

The net result is a reduction of the original coupling constant at low momen­
tum 

9i = 9i,o ~ ( T r [ r i 7 / x r i 7 / 1 ] + 0(q) (5.30) 

where A is an ultraviolet cutoff that corresponds to the size of the Bril louin 
zone. Therefore, all of the couplings in the original Hamiltonian are irrelevant 
when the system is in the sub-critical, massless phase. 

The next logical step would be to calculate the critical coupling strength 
for all of the different possible interactions. However, we only need consider 
the interaction whose critical coupling g\ is the lowest, since this phase wil l 
be the first reached when the experimental coupling is increased from zero. 
Furthermore, we know that the coupling with this property is given by the 
Hamiltonian 

tfmt = JJ E l M ^ | 2 + YJ°&+ ?)r^MQ)Mz{q). (5.31) 
9 kq 

\ 

This fact stems from a result due to M . Reenders [52], which states that 
interactions with "relativistic" symmetry have lower critical couplings than 
non-relativistic interactions. It is shown in [52] that 

g & R " 9 ° R « 2, (5.32) 
9R 
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indicating that the difference is quite large. We therefore find that the entire 
Hamiltonian we need investigate is much simpler 

qoc 

kq 

(5.33) 

The critical coupling can be calculated by determining the point at which 
the auxiliary field 

9 7 
(5.34) 

' u n ­

acquires a non-zero vacuum expectation value 

mtf, = ( M * ( g - 0 ) ) = y / ^ ^ T r G ^ u K 
k 

When this occurs, m can be grouped into the free Hamiltonian 

(5.35) 

(5.36) 

indicating that the Dirac Fermions in the critical phase acquire a mass. 
The critical coupling is found by solving 5.35 with the massive propagator 

(7 0 w + CTi fc j ) + m c 2 ^ 

u2 + c2\k\2 + m2c4 ' 

with result' 

2 3 • 
mc = —Aat 

IT 
1 - 2TT2 

JAa 

(5.37) 

(5.38) 

Therefore, below a critical value of the nearest neighbour spin interaction 
parameter 

t 
Aa 

.(5.39) 
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equation 5.35 has no solution, and the low lying Fermionic excitations re­
main gapless. Above J c , however, the excitations acquire a mass. In order to 
determine what this mass corresponds to physically, it is necessary to recast 
the mass in terms of the original physical creation and annihilation opera­
tors acting on the two sublattices. In terms of these original operators, the 
relevant term in the Hamiltonian 

Hm = mc2J2^a(q)<pMQ) (5-40) 
q 

becomes 

cA<l(nm)cA'\(nm) - cA^(nm)cAi(nm) 
nvn 

—c^(nm)cB-\(nm) + c^(nm)cBj.(ram)| , (5-41) 

which corresponds to preferentially populating the sub-lattices with a differ­
ent species of Fermion, i.e. antiferromagnetic order. 

Can this antiferromagnetic order be probed experimentally? It is shown 
in [53] that the experimentally averaged self-correlation function 4.55 can be 
written as 

67(d) = 1 + jpYleiQmXi~Xj) ~ 2 53 e < J ^ ' ( l i _ 3 5 i ) ( * l ^ • ^ l * > ( 5 - 4 2 ) 
ij ij 

when there is spin order present in the optical lattice system. Therefore, the 
Dirac Fermions acquiring a mass is heralded by a new peak appearing in the 
density-density fluctuations. 

Dirac Fermions appear in many physical theories in many branches of 
physics. In condensed matter physics, for example, they play a central role 
in high Tc superconductivity as well as the newly realized single graphene 
sheets. Both of these systems show interesting and remarkable properties, 
and both have low dimensionality in common. 

In this chapter, we have studied a method of engineering the appearance 
of 2d Dirac quasiparticles in a system of ultracold Fermions with the appli­
cation of an optical lattice. The strength of the effective interaction can be 
experimentally tuned in these systems by simply adjusting the intensity of 
the laser light used to create the optical lattice.. This allows for the mapping 
of entire phase diagrams, and has been successfully utilized in the past to 
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observe quantum phase transitions [37]. We predict that, at low values of 
the interaction parameter, the system is completely described by massless, 
non-interacting Fermions with a conical spectrum. As the interaction param­
eter is increased, a critical point is reached where the excitation spectrum 
acquires a gap, corresponding to the two triangular sub-lattices being popu­
lated by different spin states. This "antiferromagnetic" gap could be easily 
seen by state selective optical imaging, or by the appearance of a new peak 
in the density fluctuation correlation function. 
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C H A P T E R 6 

CONCLUSIONS 

Over the past century, quantum mechanics has proven to be the most ac­
curate and fruitful pursuit in all of the physical sciences. The tenets of 
quantum mechanics form the basis of particle physics, atomic physics, con­
densed matter physics and chemistry. Originally developed to study physics 
at microscopic length scales, much effort has been devoted to extending the 
theory to macroscopic length scales. Two physical systems that exhibit this 
macroscopic quantum behaviour are studied in this thesis. 

The first such system was discovered in 1911, when the Dutch physicist 
H . K . Onnes found that liquid mercury loses all D C electrical resistance when 
cooled below A.2K. Dubbed "superconductivity", the theoretical explanation 
of this effect would not be known for another 40 years - partly due to the fact 
that quantum mechanics was still in its infancy. In 1957, Bardeen, Cooper 
and Schreiffer published a paper titled "The Theory of Superconductivity" [9], 
where they showed that a single, macroscopic quantum order parameter was 
responsible for the remarkable properties of superconductivity. 

The second physical system studied in this thesis evolved from an ex­
perimental search to fulfill a theoretical prediction lasting over 70 years. 
In 1925, Albert Einstein predicted that a collection of Bosons, sufficiently 
cooled, would exhibit properties whose explanation lay completely outside 
of anything possible in classical physics. They showed that a Bose gas wil l 
undergo a transition into a new form of matter where all of the constituent 
particles collapse into the same quantum ground state, and essentially act as 
one macroscopic quantum object. The reason this so-called "Bose-Einstein" 
condensate resisted an experimental verification for so long was the extraor­
dinarily low transition temperatures predicted for the dilute gases. Two 
experimental groups achieved Bose-Einstein condensation independently in 
1995 by cooling alkali gases to within nanoKelvin of absolute zero. 

Once this feat was achieved, it was quickly realized that the lasers used to 
cool and trap the atomic gases could be used to manipulate the atoms into 
perfectly periodic arrays, whose periodicity and depth could be continuously 
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tuned by simply adjusting the laser parameters. This technique culminated 
in a magnificent realization of the "Mott-Hubbard" transition, a transition 
between superfluid and insulating behaviour [37]. 

Recently, by a technique known as sympathetic cooling, Fermionic species 
of alkali gases have been able to be cooled to 'degenerate'1 temperatures. 
Suddenly, the field of atomic physics became extremely interesting for con­
densed matter theorists, since delocalized degenerate Fermions in a perfectly 
periodic lattice is precisely what they have been studying for a century. In 
true condensed matter systems, however, successful models have to be robust 
in the presence of disorder. True systems will contain dislocations, chemical 
substitutions, grain boundaries and other defects that could mask and over­
whelm the intrinsic beauty of these models. Optical lattices do not suffer 
from any of these defects, and are therefore an ideal playground to test these 
beautiful ideas. 

Many of the new, exciting and exotic models were developed to attack the 
most difficult problem facing contemporary condensed matter physics: highly 
correlated electron system - the most famous one being high temperature 
superconductors. 

High temperature superconductors differ from their conventional low tem­
perature counterparts in many ways. In the thirty years following the publi­
cation of the B C S paper, much was learned about the class of conventional su­
perconductors, including elemental superconductors and simple compounds 
such as NbSe 2 and M g B 2 . These superconductors fit the paradigm of the 
B C S theory and its natural extension, the Migdal-Eliashberg theory, where 
the normal, non-superconducting state is well described by the Fermi liquid 
theory, and superconductivity results from an effective attractive electron-
electron interaction mediated by quantized lattice vibrations - phonons. 

In the early 1980's, two physical chemists G . Bednorz and K . Mueller 
found a perovskite compound that became superconducting at a temperature 
quite above the range believed possible within the B C S paradigm. Further­
more, the normal state of these high temperature superconductors did not 
conform to the Fermi liquid picture, and the symmetry of the macroscopic 
quantum order parameter was different than from conventional supercon-

1 This refers to the temperature below which the Maxwell-Boltzmann temperature dis­
tribution ceases to be a good approximation, that is when quantum effects become impor­
tant. Degenerate Bose systems do undergo a transition into a Bose-Einstein condensate, 
and degenerate Fermi systems are characterized by a "Fermi sea", a sharp transition in 
momentum space between occupied and unoccupied energy levels. 
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ductors. The theoretical understanding of the mysterious high temperature 
superconductors still remains an unsolved problem today, some 20 years after 
their discovery. Perhaps one reason they have eluded a theoretical explana­
tion is the extremely strong interparticle interactions that occur in the normal 
state - they fall into the class of strongly correlated electron systems. 

In 2000, beautiful new data emerged from the U B C laboratory of Dr. 
Doug Bonn and Dr. Walter Hardy. The new data revealed electronic trans­
port in a direction perpendicular to the direction previously studied. Two 
remarkable and striking features were present in the data. The first was 
its universal behaviour - all of the data sets fell exactly onto one universal 
curve when the first data point was subtracted. This strongly suggests that 
all of the data sets can be understood within the same framework, all gov­
erned by the same Hamiltonian 2 . The second striking feature was the similar 
behaviour for the two control parameters: the same non :integer power law 
describes both the temperature dependence and the behaviour as a function 
of chemical doping. 

Earlier work emerging from the same U B C laboratory showed a linear 
depletion of the quasiparticles participating in the superconductivity as a 
function of both temperature and chemical doping by in-plane electronic 
transport measurements. The explanation of the behaviour, that normal 
quasiparticle excitations occur within high-Tc materials with arbitrarily low 
excitation energy, gave some of the first indications of the unconventional 
symmetry of the macroscopic order parameter. The calculation that demon­
strates that an order parameter with "d-wave" symmetry perfectly accounts 
for this behaviour is reproduced in this thesis, using modern notation. This 
symmetry implies the existence of nodes (regions in momentum space with 
a vanishing order parameter), and it is the normal-state quasiparticles that 
exist in this region - the so-called "nodal quasiparticles" - that are responsi­
ble for all of the low-energy transport and thermodynamic properties of high 
Tc materials. 

The fact that the new out-of-plane transport data shows similar behaviour 
as a function of both temperature and chemical doping strongly suggests that 
nodal quasiparticles are a central ingredient of the underlying model. Also, 
the new data were taken with the smallest doping values yet seen. 

In this thesis, we have proposed that the quasiparticles are robust, they 
survive in a region surrounding the node whose area shrinks as the doping 

2 In contemporary parlance, this rules out "competing orders". 
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parameter is lowered. This idea, coupled with a reasonably chosen interpla-
nar tunneling matrix element successfully explains all of the features present 
in the data both qualitatively and quantitatively. 

Although the "mechanism" that gives rise to the superconducting prop­
erties of high Tc materials (analogous to the electron-phonon coupling in 
conventional superconductors) is yet unknown, it is believed to be a result of 
the strong interactions present in the undoped "parent" compounds. These 
compounds are "Mott-Hubbard" insulators, whose insulating properties stem 
from interelectron interactions, as opposed to the traditional band structure 
arguments. In is not theoretically agreed upon what state results from re­
moving electrons from a half-filled Mott-Hubbard insulator, but it is believed 
that solving this question is tantamount to solving the high Tc puzzle. In this 
light, the main result of this thesis is to establish the nodal quasiparticles as 
a crucial ingredient of superconductivity in the entire superconducting dome 
of the high Tc phase diagram. 

Superconductivity is one example of a macroscopic quantum system dis­
playing coherence; widely separated parts of the system behave identically, 
but independently of each other. Furthermore, when two superconductors are 
brought into contact with each other, interference effects result - a hallmark 
of coherence. The highly correlated nature of the parent high Tc compounds 
give rise to this macroscopic quantum coherence. 

Bose-Einstein condensates have famously displayed coherence since their 
observation in 1995. A heuristic calculation showing how two initially isolated 
condensates evolve into a state of definite relative phase through interaction 
with the environment is presented in this thesis. Each experimental obser­
vation of the particle density after a certain time of free expansion produces 
an interference pattern with a random value of the phase difference. Aver­
aging over a large number of experimental runs results in a uniform particle 
density, displaying no coherence - coherence is not a robust property that 
survives from experiment to experiment. 

However, a procedure for extracting the behaviour that does persist be­
tween experiments is explained. Investigating the experimentally averaged 
self-correlation function wil l reveal important physical information that ex­
ists in the data sets. In the case of two expanding phase-locked condensates 
discussed above, this procedure extracts the de Broglie wavelength of the 
combined system. 

The usefulness of this technique is demonstrated in the Mott insulating 
state of a B E C in a deep optical lattice. When the particle density is imaged 
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after a certain time of free expansion, a noisy, but seemingly "featureless" 
Gaussian profile is seen. However, it turns out that there are features in 
the experimental noise that persist between subsequent experiments, coming 
from the quantum correlations that exist in the highly correlated Mott state. 
These quantum correlations are strikingly revealed by investigating the ex­
perimentally averaged self-correlation function [38]. This proven technique 
for investigating quantum correlations in optical lattice systems now makes 
it possible to imagine engineering optical lattice systems to act as analogue 
quantum computers, simulating a large class of physical theories. 

One such possibility is studied in this thesis - the possibility of engineering 
interacting Dirac Fermions in order to investigate the exciting possibility of 
spontaneous mass generation by the breaking of chiral symmetry. 

Dirac Fermions are interesting physical objects that arise in many phys­
ical systems, across a wide range of disciplines. Most notably, they are the 
quasiparticle excitations responsible for all of the low-energy transport and 
thermodynamic properties of high Tc superconductors. We have proposed a 
method to create the Dirac Fermions in an optical lattice and subsequently 
shown that the theory has a massless phase which becomes critical as the 
nearest-neighbour "spin" interaction is increased. In the critical phase, a 
mass gap exists that corresponds to "antiferromagnetic" order, the Fermions 
on nearest neighbour lattice sites have differing values for their "spin" in­
dex. Signatures of the correlations present in the massive phase should be 
observable in the experimentally averaged self-correlation function described 
earlier. 

The genesis of quantum mechanics was the contradiction between the 
tenets of classical physics and the behaviour of objects at atomic length 
scales. The resolution, while at odds with "common sense", beautifully and 
accurately explained, and predicted, the microscopic behaviour. Today, the 
principles of quantum physics pervade and lay the foundation for the edifice 
of physical science. 

There are a number of exotic systems where quantum mechanics governs 
the behaviour of macroscopically sized objects, a situation where quantum 
mechanics was not originally intended to apply. It is by studying these 
systems that or knowledge of quantum mechanics, and of physics in general 
wil l be broadened. The investigation of macroscopic quantum behaviour, and 
exploring correlations and coherences found in these systems, has led to the 
investigation of two complementary physical disciplines in this thesis. The 
continuing research into the overlap between condensed matter and ultracold 
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atomic physics promises to deepen our understanding of both disciplines. 



86 

B I B L I O G R A P H Y 

[1] D. A . Bonn. Surface impedance studies of YBCO". Czech. J. Phys., 
46:3195, 1996. 

[2] A . R. Hosseini-Gheinani. The Anisotropic Microwave Electrodynamics 
of YBCO. P h D thesis, University of British Columbia, 2000. 

[3] A . Hosseini, D. M . Broun, D. E . Sheehy, T. P. Davis, M . Franz, W . N . 
Hardy, Ruixing Liang, and D. A . Bonn. Survival of the d-wave supercon­
ducting state near the edge of antiferromagnetism in the cuprate phase 
diagram. Physical Review Letters, 93:107003, 2004. 

[4] P. A . M . Dirac. The Principles of Quantum Mechanics. Oxford Univer­
sity Press, 1958. 

[5] David T. Pegg and Stephen M . Barnett. Tutorial review quantum optical 
phase. Journal of Modern Optics, 44:225-264, 1997. 

[6] Roy J . Glauber. Coherent and incoherent states of the radiation field. 
Physical Review, 131:2766, 1963. 

[7] A . J . Leggett. Bose-Einstein Condensation, chapter 19: Broken Gauge 
Symmetry in a Bose Condensate, page 452. Cambridge University Press, 
1995. 

[8] F . London and H . London. The electromagnetic equations of the supra-
conductor. Proceedings of the Royal Society of London. Series A, Math­
ematical and Physical Sciences, 149:71-88, 1935. 

[9] J . Bardeen, L . N . Cooper, and J . R. Schrieffer. Theory of superconduc­
tivity. Physical Review, 108:1175-1204, 1957. 

[10] A . L . Fetter and J . D. Walecka. Quantum Theory of Many-Paricle 
Systems. McGraw-Hi l l , 1971. 



Bibliography 87 

[11] G. D. Marian. Many Particle Physics. Plenum Press, 1990. 

[12] W. N . Hardy, D. A. Bonn, D. C. Morgan, Riuxing Liang, and Kuan 
Zhang. Precision measurements of the temperature dependence of A in 
yba2CU306.95: Strong evidence for nodes in the gap function. Physical 
Review Letters, 70:3999, 1993. 

[13] C. C. Tsuei and J. R. Kirtley. Pairing symmetry in cuprate supercon­
ductors. Review of Modern Physics, 72:969-1016, 2000. 

[14] P. Anderson. The Theory of Superconductivity in the High-Tc Cuprate 
Superconductors. Princeton University Press, 1997. 

[15] P. W. Anderson. The resonating valence bond state in La-2 CuO-4 and 
superconductivity. Science, 235:1196-1198, 1987. 

[16] A. Paramekanti, M . Randeria, and N. Trivedi. Projected wave func­
tions and high temperature superconductivity. Physical Review Letters, 
87:217002, 2001. 

[17] Ruixing Liang, D. A. Bonn, W. N. Hardy, and David Broun. Lower 
critical field and superfluid density of highly underdoped YBa2Cu306+2: 
single crystals. Physical Review Letters, 94:117001, 2005. 

[18] Ruixing Liang, D. A. Bonn, and W. N. Hardy. Growth of high quality 
Y B C O single crystals using BaZr0 3 crucibles. Physica C, 304:105, 1998. 

[19] Y . J. Uemura et al. Universal correlations between Tc and ns/m* (carrier 
density over effective mass) in high-Tc cuprate superconductors. Physical 
Review Letters, 62:2317, 1989. 

[20] L. B. Ioffe and A. J. Millis. d-wave superconductivity in doped Mott 
insulators. Journal of Physics and Chemistry of Solids, 63:2259-2268, 
2002. 

[21] B. D. Josephson. Possible new effects in superconductive tunneling. 
Physics Letters, 1:251-253, 1962. 

[22] T. Xiang and J. M . Wheatley. c axis superfluid response of copper oxide 
superconductors. Physical Review Letters, 77:4632-4635, 1996. 



Bibliography 88 

[23] R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. 
Z. Phys., 80:763, 1933. 

[24] Daniel E . Sheeny, T. P. Davis, and M . Franz. Unified theory of the ab-
plane and c-axis penetration depths of underdoped cuprates. Physical 
Review B, 70:054510, 2004. 

[25] T. Pereg-Barnea, P. J . Turner, et al. Absolute values of the London 
penetration depth in YBa 2Cus06+j / measured by zero field E S R spec­
troscopy on G d doped single crystals. Physical Review B, 69:184513, 
2004. 

[26] R. J . Radtke, V . N . Kostur, and K . Levin. Theory of the c-axis pene­
tration depth in the cuprates. Physical Review B, 53:R522, 1996. 

[27] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro 
Stringari. Theory of Bose-Einstein condensation in trapped gases. Rev. 
Mod. Phys., 71(3):463-512, Apr 1999. 

[28] C. J . Pethick and H . Smith. Bose-Einstein Condesnation in Dilute 
Gases. Cambridge University Press, 2002. 

[29] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro 
Stringari. Theory of Bose-Einstein condensation in trapped gases. Re­
views of Modern Physics, 71:463-512, 1999. 

[30] O. R. Frisch. Experimenteller nachweis des einsteininschen 
strahlungsruckstosses. Z. Phys., 86:42, 1933. 

[31] J . Dalibard and C. Cohen-Tannoudji. Laser cooling below the doppler 
limit by polarization gradients: simple theoretical models. Journal of 
the Optical Society of America B, 6:2023, 1989." 

[32] M . R. Andrews, C. G . Townsend, H . J . Meisner, D. S. Durfee, D. M . 
Kurn , and W . Ketterle. Observation of interference between two Bose 
condensates. Science, 275:637, 1997. 

[33] Juha Javanainen and Sung M i Yoo. Quantum phase of a Bose-Einstein 
condensate with arbitrary number of atoms. Physical Review Letters, 
76:161, 1996. 



Bibliography 89 

[34] Micheal A . Neilson and Isaac I. Chaung. Quantum Computation and 
Quantum Information. Cambridge University Press, 2000. 

[35] D. Jaksch, C. Bruder, J . I. Cirac, C. W . Gardiner, and P. Zoller. Cold 
bosonic atoms in optical lattices. Physical Review Letters, 81:3108, 1998. 

[36] K . Sheshadri, H . R. Krishnamurthy, R. Pandit, and T. V . Ramakrish-
nan. Superfluid and insulating phases in an interacting-Boson model: 
Meant-field theory and the R P A . Europhysics Letters, 22:257, 1993. 

[37] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W . Hansen, 
and Immanuel Bloch. Quantum phase transition from a superfluid to a 
Mott insulator in a gas of ultracold atoms. Nature, 415:39, 2002. 

[38] Simon Foiling, Fabrice Gerbier, Artur Widera, Olaf Mandel, Tatjana 
Gericke, and Immanuel Bloch. Spatial quantum noise interferometry in 
expanding ultracold atom clouds. Nature, 434:481, 2005. 

[39] R. P. Feynman. Simulating physics with computers. International Jour­
nal of Theoretical Physics, 21:467, 1982. 

[40] M . Franz and Z. Tesanovic. Quasiparticles in the vortex lattice of un­
conventional superconductors: Bloch waves or Landau levels? Physical 
Review Letters, 84:554-557, 2000. 

[41] A . Tsvelik. Field-theory treatment of the heisenberg spin-1 chain. Phys­
ical Review B, 42:10499-10504, 1990. 

[42] K . Farakos and N . E . Mavromatos. Hidden non-abelian gauge symme­
tries in doped planar antiferromagnets. Phys. Rev. B, 57(5):3017-3030, 
Feb 1998. 

[43] R. Jackiw and R. Rahamaran. Vector-meson mass generation by chiral 
anomalies. Physical Review Letters, 54:1219-1221, 1985. 

[44] Alexander Klein and Dieter Jaksch. Simulating the t—J—U Hamiltonian 
with atoms in optical lattices. arXiv.org/quant-ph/0601083, 2006. 

[45] L . M . Duan. Effective Hamiltonian for fermions in an optical lattice 
across Feshbach resonance. Physical Review Letters, 95:243202, 2005. 

http://arXiv.org/quant-ph/0601083


Bibliography 90 

[46] D. Jaksch and P. Zoller. Creation of effective magnetic fields in optical 
lattices: the Hofstadter butterfly for cold neutral atoms. New Journal 
of Physics, 5:56, 2003. 

[47] E . Mueller. Artificial electromagnetism for neutral atoms: Escher stair­
case and Laughlin liquids. Physical Review A, 70:041603, 2004. 

[48] K . S. Novoselov, D. Jiang, T. Booth, V . V . Khotkevich, S. M . Morozov, 
and A . K . Geim. Two dimensional atomic crystals. Proceedings of the 
National Academy of the Sciences, 102:10451, 2005. 

[49] V . P. Gusynin and S. G . Sharapov. Unconventional integer quantum 
hall effect in graphene. Physical Review Letters, 95:146801, 2005. 

[50] K . S. Novoselov, A . K . Geim, S. V . Morozov, D. Jiang, M . I. Katsnelson, 
I. V . Grigorieva, S. V . Dubonos, and A . A . Firsov. Two-dimensional gas 
of massless dirac fermions in graphene. Nature, 438:197, 2005. 

[51] P. M . Chaikin and T. C. Lubensky. Principles of Condensed Matter 
Physics. Cambridge University Press, 1995. 

[52] M . Reenders. Neel transition, spin fluctuations, and pseudogap in un-
derdoped cuprates by a lorentz invariant four-fermion model in 2+1 
dimensions. Physical Review B, 66:024501, 2002. 

[53] E . Altman, E . Demler, and M . Lukin . Probing many-body states of 
ultracold atoms via noise correlations. Physical Review A, 70:013603, 
2004. 



91 

A P P E N D I X A 

M I N I M A L SUBSTITUTION IN 
S E C O N D QUANTIZATION 

The purpose of this appendix is to find the prescription one must follow to 
introduce the vector potential into a Hamiltonian in second quantized form 
by minimal substitution. A somewhat general Hamiltonian has the form 

H(p,f) = e(p) + V(f), ( A . l ) 

which we wil l now use to find the second quantized form 1 

/
c\kdk' 
~^\k)(k\H(p,f)\k')(k'\. (A.2) 

(k\H(p,r)\k') = (k\e(p)\k') + (k\V(f)\k') • • (A.3) 

= e(k)2ir5(k — k') 

= e(k)2n5(k - k') 

= e{k)2ir5(k - k') 

= e(k)27r5{k - k') 

which implies 

/

c\k 
-e{k)\k)(k\ + 

as usual. M i n i m a l substitution is the replacement of the momentum by the 
canonical momentum, which generally includes the vector potential. There-

1 While the derivation in this appendix is one-dimensional, the result holds in arbitrary 
dimensions by changing the integration measure from | £ to • 

+ J drdr'(k\r)(r\V(f)\r')(r'\k')(AA) 

+ J drdr'e-ikrV(r)5(r - r')eik'r(A.5) 

+ Jdreir^-k,)V{r) (A.6) 

+ V{k - k!) (A.7) 

V(k — k')\k)(k'\ (A.8) 
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fore 

HA = e(p-eA(r)) + V(f) (A.9) 

= e(p)-e^A(r) + e^A*(r) + V(r) (A.10) 

The second quantized form of the Hamiltonian after the minimal substitution 
wil l have two new non-diagonal terms. The term to first order in A(r) is 

/

c\kr\k' C (\hc\h' 

— \k)(k\A(f)\k')(k'\ = J ^drdr'\k)(k\r)(r\A(f)\r')(r'\k')(k'\ 

( A . l l ) 

that we can transform by first noting that a function of one variable 

(r\A(r)\r') = 6(r - r')A(r) (A.12) 
and the fact that (k\r) = - ^e l k r turns the integral into a Fourier transform 
in the variable (k — k') 

I (27T); 

dkdk'\k)(k\A(r)\k')(k'\ = J^\k)(k'\jdre^k-kU(rlAA3) 

MM\k)(k>\A{k-h>) (A.14) 
(2TT)2 

dkdq<k + q)(k\A(k + q). (A.15) 

The second term can be dealt with in a similar manner, and the result is 
another integration over momentum 

d k d k ' i , . \ / i A 2 , » /, /1 f dkdqdp. 
(27T) 

\k)(k\A2(r)\k')(k'\ = J d j ^ \ k + p + q)(k\A(p)A(q). (A.16) 

We can now read off the second quantized Hamiltonian obtained with the 
minimal substitition 

f dkdq t . . . 
"e / 7K^ck+q

ckA{q) 
(2TT) 2 

4 / ̂ ^M(v)A(q), (A.17) 

which represents the result of this Appendix. 

file:///hc/h'
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S Y S T E M OF UNITS 
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B.0.1 C G S - G A U S S I A N U N I T S 

The international standard of units is the M K S system, where length is mea­
sured in metres, mass in kilograms and time in seconds. Wi th in this system, 
constants of proportionality must perpetually be created and empirically 
determined. For example, a new unit was created for electric charge, the 
Coulomb. Therefore a new constant of proportionality, known as the per­
mittivity of free space, was needed to convert Coulombs to Newtons in the 
force equation 

1 e 2 

F = --?——?. (B . l ) 
47re0 r 

In a seemingly different field of physics, the Biot-Savart law relates currents 
to magnetic fields, with another constant of proportionality, the permeability 
of free space 

dJ3 = ^f^. (B.2) 4 7 r r 2 

In a great synthesis of physics, James Clerk Maxwell completed the set of 
equations that unified the electric and magnetic fields. In this set of equa­
tions, one can show that the mutual interactions between the electric field 
and the magnetic field give rise to the wave equation, whose characteristic 
velocity is given by 

v = —L=. (B.3) 
\AoPo 

Two incredible facts emerged. First, the speed derived by Maxwell's equa­
tions is not Galilean invariant, it does not depend on the speed of the ob­
server. A n d secondly, the empirically determined speed was the speed of 
light c = 2.99792458 x 10 1 0 cm • s"1! This inspired. Einstein to develop the 

file:///AoPo
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special theory of relativity, in which the electric and magnetic fields are seen 
to be manifestations of the same phenomena. Light is an electromagnetic 
wave, whose speed is constant in every frame of reference. 

This fact tells us that there are not really two degrees of freedom as­
sociated with electrical phenomena and magnetic phenomena. We should 
therefore measure the electric field and the magnetic field in the same units. 
This is done in the CGS-Gaussian units. The three fundamental dimensions 
are still length, mass and time, but they are now measured in centimetres, 
grams and seconds. The conceptual difference between the M K S and C G S 
system of units is the fact that every other unit is a derived unit. For exam­
ple, Coulombs law is written 

F = ~f, (B.4) 

which defines the dimensions of charge to be 

[e] = [F]i[r] (B.5) 

= m s - f f - r 1 . (B.6) 

The unit is "stat-coulomb", or "esu", defined as the amount of charge that 
generates one dyne of force (10 - 5 Newtons) at a distance of one centimetre. 
The dimensions of the electric field are deduced from 

F = qE (B.7) 

to be 

[E] = [Fj[e] _ 1 (B.8) 

= m J - H - r 1 . (B.9) 

The Lorentz force law tells us the force generated by a magnetic field 

FocqvxB. (B.10) 

The constant of proportionality is set by the criteria that we measure electric 
and magnetic fields in the same units. To make the equality then, we must 
divide by c. The force due to an electromagnetic field becomes 

F = q!^E+^x B\ . ( B . l l ) 
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B . 0 . 2 N A T U R A L U N I T S 

The special theory of relativity tells us that space and time are related by a 
set of transformations, the Lorentz transformations, that essentially "rotate" 
space into time and vice versa. Since space and time are not measured in 
the same units, there needs to be a conversion factpr to relate the two. As 
discussed in section B.0.1 c, the speed of light, is a natural candidate for the 
necessary conversion. 

Classical mechanics also teaches us that systems are described by a set 
of generalized coordinates, whose description are equivalent as long as the 
canonical Poisson brackets are obeyed. This means that momenta and posi­
tion can be essentially "rotated" into each other by "canonical transforma­
tions" , which are transformations that preserve the canonical Poisson brack­
ets. We therefore seek a constant of proportionality that relates any two 
canonically conjugate coordinates. This constant must have the dimensions 
of action. 

The next twentieth century revolution in physics introduced such a fun­
damental constant. Max Planck introduced a constant in order to fix the 
"ultraviolet" catastrophe that plagued classical physics. This constant was 
empirically found to have the value h = 1.05457266 x 10~ 2 7 g • cm 2 • s _ 1 . 

We see that twentieth century physics has given us the basis for a "nat­
ural" system of units that uses the three fundamental units of speed, action 
and energy as the basis, compared with mass, length and time. Action is 
measured in multiples of h~, speeds in fractions of c and energy in electron 
Volts (eV). The unit of energy is arbitrary, but once chosen, we can measure 
every other quantity in the units of energy. 

Given a quantity in C G S X with some dimensions 

[X] = m

a - l b - t c (B 12) 

can be converted to natural units 

[X] Ea-hP • c1 (B 13) 

via 

a 

7 = b -2a 

= a — b — c 

= b + c 
(B 

(B 

(B 

14) 

15) 

16) 
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and some dimensionful conversion factors 

eV = 1.60217733 x 10~ 1 2 g • cm 2 • s" 2 (B.17) 

c 2.99792458 x 10 1 0 cm • s" 1 (B.18) 

• 4.80287 x 10" 1 0g5 • c m i • s'1 (B.19) 
h = 1.05457266 x 10" 2 7 g • c m - 2 - . s - 1 (B.20) 

— 6.582122 x 10~ 1 6 eV • s (B.21) 

he — 1.97327053 x 10" 7 eV • cm (B.22) 

For example 

[mass] = e V - c - 2 (B.23) 

[length] - e V " 1 -h-c (B.24) 

[time] = e V _ 1 / i (B.25) 

[charge] = TP . C2 (B.26) 

[momentum] = e V - c - 1 . (B.27) 

2 
In natural units, the quantity ^ is dimensionless, and takes the value 

t. ~ ( 4 - 8 0 3 ) 2

 x l 0 - 3 f B 2 g ) 

he ~ 1.05457 x 2.9979 X i U 

~ 0.00729 (B.29) 

- w- ( B 3 0 ) 

Other dimensionful quantities can be readily derived just from these natural 
2 s 

scales of nature. For example, the combination jr has the dimensions of 
speed. It is the characteristic speed of a non-relativistic electron in a hy­
drogen atom and can be conveniently written ve = ac. The combination of 
constants that has the dimensions of energy (besides the rest mass of the 
electron) is Eo = mev\ = mec2a2. The binding energy of the electron inside 
a hydrogen atom is calculated to be Eb = —\EQ. The length scale is given 
k y ^ = | r = ^ 2 which is equal to the Bohr radius of the electron, denoted 
a0. Another length scale can be found by dividing this number by a, and 
its name is the "Compton" wavelength A c = ^ = This is the minimal 
De Broglie wavelength the electron can achieve, and it is that natural unit 
of length that arises in the Compton scattering of electrons. Finally, one 
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can construct a number with the dimensions of magnetic field times length 
squared, which is known as magnetic flux. From dimensional analysis, one 
sees that the C G S unit of electric charge already has this unit, however one 
does not expect quantization of magnetic field in terms of the electric charge 
alone, since the electromagnetic effects due to particle motion wil l scale with 
^ and Planck's constant does not appear in this formula. Therefore we take 
the combination <J> = ^ = ^p. It turns out that the quantum of flux is 
$o = 27r$ = —, arid has the magnitude 

$o = 4.13375685 x l (T 7 Gauss • cm 2 . (B.31) 


