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Abstract 

It is widely believed that one of the best way to proceed when analysing data is to generate 

estimates which fit the data. However, when the relationship between the unknown model 

and data is linear for highly underdetermined systems, is it common practice to find 

estimates with good linear resolution with no regard for fitting the data. For example, 

windowed Fourier transforms produces estimates that have good linear resolution but do 

not fit the data. Surprisingly, many researchers do not seem to be explicitly aware of this 

fact. This thesis presents a theoretical basis for the linear resolution which demonstrates 

that, for a wide range of problems, algorithms which produce estimates with good linear 

resolution can be a more powerful and convenient way of presenting the information in 

the data, than models that fit the data. 

Linear resolution was also applied to two outstanding problems in linear inverse 

theory. The first was the problem of truncation artifacts in magnetic resonance imaging 

(MRI). Truncation artifacts were heavily suppressed or eliminated by the choice of one 

of two novel Fourier transform windows. Complete elimination of truncation artifacts 

generally led to unexpectedly blurry images. Heavy suppression seemed to be the best 

compromise between truncation artifacts and blurriness. 

The second problem was estimating the relaxation distribution of a multiexponential 

system from its decay curve. This is an example where hundreds of papers have been 

written on the subject, yet almost no one has made a substantial effort to apply linear 

resolution. I found the application to be very successful. As an example, the algorithm 

was applied to the decay of MRI data from multiple sclerosis patients in an attempt to 

differentiate between various pathologies. 
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Chapter 1 

Int roduct ion 

"The Master said, Yu, shall I tell you what knowledge is? When you know 

a thing, to know that you know it, and when you do not know a thing, to 

recognize that you do not know it. That is knowledge." 

Analects of Confucius (Waley's translation) (Jeffreys 1973) 

Summary 

When trying to estimate a model from data, it is generally believed that finding a 

model which fits the data is the method of choice. However, for linear forward problems 

which are highly underdetermined, a very common practice is to find an estimate with 

good linear resolution, akin to optical resolution, with no regard to fitting the data. A 

prominent example is the windowed discrete Fourier transform. It is demonstrated that 

if the linear algorithm, which generates an estimate of the unknown model from the data, 

is invertible then the estimate, along with it noise statistics and linear resolution, is a 

complete summary of all the models that fit the data. The confusion between models 

that fit the data and linear resolution, which stretches back at least 50 years, seems to 

be due to the success of some algorithms being attributed to models that fit the data 

but where the good linear resolution is the important property. Wiener deconvolution is 

a prime example. 

1 



Chapter 1. Introduction 2 

1.1 Int roduct ion 

Applications of the inversion of linear forward problems include the medical imaging 

modalities of MRI, computed tomography (CT), single photon spectroscopy (SPECT) 

and position emission tomography (PET) (Farquhar T H et al 1998). Other applications 

include (1) the measurement of frequency components of oscillating systems such as 

digital filter design using the discrete Fourier transform (DFT), and (2) multiexponential 

relaxation components of a decaying system found in MRI and downhole magnetic 

resonance used in the oil and gas industry. In each of these applications, the interest is 

often in estimating the unknown model, mu(y), over the full range of the variable y of 

equation 1.1. I will pursue the same goal. 

If the inversion problem were purely a mathematical one, it would be simple to 

solve. The solution is just the subset of the model space which contains all models 

that fit the data. Listing the data, a measure of the noise and the corresponding data 

functions completely defines this set. However, the real problem is communicating an 

understanding of the contents of this subset to an interpreter - especially because the 

subspace contains an infinite number of models. Dealing with an infinite number of 

models which fit the data causes conceptual problems as well as computational ones. 

The conceptual problems may be complicated by the fact that, in some cases, finding 

even one model which fits the data is a major accomplishment. Generating one, or even 

many estimates which fit the data, is generally a straight forward, if tedious, task in 

the inversion of a linear forward problem. Conceptually, linear and nonlinear forward 

problems are often considered together, again directing a researcher away from the option 

of linear resolution, since it generally does not exist for nonlinear forward problems. 

In the inversion of a linear forward problem, we are trying to learn what we can 

about an unknown model from measured data linearly related to the unknown model. 



Chapter 1. Introduction 3 

The linear transform from the unknown model, mu(y), to the data is called the linear 

forward problem. The unknown model is a member of the set of all possible models called 

model space. For the forward linear problem of interest, the model space is a linear vector 

space as defined by Parker (1994 p 3). For practical purposes, you can think of model 

space as containing every possible model. 

The unknown model yields the N measured data, dk, through the linear equation 

rb 

dk= mu\y) gk(y) dy + ek (1.1) 
Ja 

where the functions gh(y) are called the data functions and relate the unknown model to 

the data. The random variables, ek, are the additive noise and are usually assumed to 

be independent of each other and stationary (Parker 1994 p 280). The constants a and 

b are the suitable limits on the integration. While equation 1.1 is only presented in one 

dimension, it can easily be generalized to higher order dimensions. 

Common problems with linear forward problems are the ID Fourier transform 

dk= [bmu(f)e-27rift*df + ek, (1.2) 
Ja 

convolution 

dk= fb mu{t)b(t-tk)dt + ek, (1.3) 
Ja 

and a relative of the Laplace transform, the multiexponential transform 

dk = / mu(T)e-tk/TdT + ek. (1.4) 
Jo 

The measured data, dk, is often thought of as list of numbers. However, for the list 

of numbers to have meaning it must have a context. The context is provided by the 

associated data function and noise statistics. Therefore, when I refer to the information 

provided by the data, I am assuming it is being interpreted in the context of the data 

functions and noise statistics. 
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Information other than that provided by the data about the unknown model is usually 

referred to as a priori information. In some problems, the available a priori information 

can be very helpful and should be taken advantage of. For example, if the unknown model 

is known to within two parameters, fitting to the two parameters is the best way to go. 

But often a priori information is nonexistent, suspect, or of a form which is difficult to 

integrate into an algorithm estimating the unknown model. In these cases, producing an 

estimate which does not rely on any a priori information can still be valuable and is the 

subject of this investigation. 

At this point it is worth noting the subtle difference in the use of the terms model and 

estimate. The model always refers to an element of the model space and is a theoretical 

concept. Estimate refers to the output of an estimation algorithm. There is some overlap 

in the use of these terms. 

There is a major dichotomy in the current application of linear inverse theory to many 

common problems. The commonly used algorithms for estimating unknown models fall 

roughly into two mutually exclusive classes, but there is some overlap. In the first type, 

the algorithms generate models that fit the data to within the noise. The second type 

contains estimates with good linear resolution. The first type is seen by many to be the 

"obvious" way to design an algorithm. The second type is widely used in applications 

including windowed Fourier transforms and most medical imaging modalities. Yet rarely 

in the literature is the dichotomy discussed in detail. 

When most people hear the term resolution they think of how large an object can be 

seen with a microscope, a telescope or some other optical imaging modality. Figure 1.1 

shows three images of the rings of a tree. Figure 1.1(a) has the highest image quality with 

1.1(b) being blurrier and figure 1.1(c) being noisier. The relative resolution and noise 

of the three figures can easily be confirmed by inspection, but quantitative methods are 

also available. The resolution at various locations in an image can be measured by using 
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Figure 1.1: Three images of the same tree rings. The first (a) is the best quality image, 
(b) is blurrier and (c) is noisier. 

the same imaging system to observe a variety of point sources. The noise can measured 

by imaging the tree rings repeatedly and comparing the images. 

The term linear resolution, rather than just resolution, is used because, while optical 

systems are generally linear, some are nonlinear and the mathematical properties of the 

resolution of linear optics are quite different than those of nonlinear optics. The same is 

true for linear and nonlinear inversion algorithms as will be described below. 

I believe the root cause of the dichotomy is that, at its heart, inversion of a linear 

forward problem is not just a mathematical problem but also a problem of communicating 

to an interpreter what is known and not known about a unknown model. An interpreter 

could be a radiologist reading the images produced by a magnetic resonance imaging 

(MRI) scanner, a geophysicist reviewing the results of seismic processing or an engineer 

studying the resonance modes of a bridge, just to name a few. 

The goal of this paper is to resolve the dichotomy by providing a theoretical basis for 
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linear resolution in the context of linear inverse theory. In addition, I will demonstrate 

that linear resolution provides a much more powerful and efficient way to deal with the 

ambiguity due to the many models that fit the data in a linear inverse problem. I will 

also present a brief history of the dichotomy. 

1.2 Mode l s that fit the data 

The most commonly recommended techniques to find estimates of the unknown model 

are based on the principle of "models that fit the data". (Menke 1984, Oldenburg 1984, 

Parker 1994, Sabatier 2000, Tarantola 1987, Twomey 1977). The basic principle of models 

that fit the data is to find a estimate that reproduces the data to within the noise. The 

most commonly used criterion to assess how well an model, mM(y), fits the data is the 

X2 criterion 

X2 = E ( 4 ~ 5 ) 2 (1-5) 
where ok is the standard deviation ofthe noise, ek, in equation 1.1, and are the data 

values predicted by a particular model, mM(y), 

fi= fmM(y)gk{y)dy. (1.6) 

The value of x2 must be sufficiently small for the estimate to be considered to fit the 

data. It common practice to require x2 to be approximately equal to the number of data 

points since it is the most probable value for x2 assuming Gaussian noise (Menke, 1984). 

In equation 1.5 the noise of each data point is assumed to be uncorrelated from all the 

others. If the noise is correlated with a correlation matrix, Ĉ , the equation for x2 is 

X2 = E E K - d^)(Ck

D

l)-\dl - df). (1.7) 
fc i 

Equation 1.7 reduces to equation 1.5 when 

CS = cr2

kSkl. (1.8) 
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where 5M is equal to one when k = I and zero otherwise. For more details on x 2 see 

Parker (1994 p 127) or any other of the above references. 

Techniques which find models that fit the data have to choose among the infinite 

number of models that fit the data. A great many mathematical algorithms have been 

introduced in various attempts to deal with this nonuniqueness. However, as Twomey 

(1977 p vi) points out, while there have been many advances in mathematical techniques 

for solving the problem of estimating the unknown model, none of these techniques 

removes the fundamental ambiguity due to the infinitely many models that fit the data. 

He continues on to say that, in some instances, these procedures can effectively hide the 

ambiguity. In other words, models that fit the data are good at telling us what we do 

know - that the generated models could be the unknown model - but they are not very 

good at telling us what we don't know - all the models that also fit the data which we 

haven't generated. 

There are a variety of views on how to use models that fit the data. I will attempt 

to summarize those views, but it is best to refer to the original references for a detailed 

explanation of these techniques. 

There are two main schools of thought in inverse theory on how to deal with the 

nonuniqueness with models that fit the data, although these schools overlap. The first 

advocates presenting an interpreter with a wide selection of models that fit the data 

for each data set (Tarantola 1987 p 167, Oldenburg 1984 p 666). This solution is not 

practical for many problems. For example, in MRI, many sets of scans would have to be 

generated for each MRI scan of a patient. Each of these sets of scans would have to be 

examined by a radiologist and stored. Currently, the resources required to examine and 

store the standard one set of scans per patient is high. It would be totally impractical 

to considerably increase the resources allocated. The additional time it would take a 

radiologist to consider many scans for each patient would also be a major burden. 
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The second school of thought is to devise an algorithm which selects the "best" 

estimate which fits the data. This is usually done by introducing an ordering, from best 

to worst, of the set of possible estimates with a norm or other ordering criteria. The best 

estimate that fits the data to within the noise is then selected. A common method for 

ordering the estimates is the L2 norm which is calculated by the equation 

The estimate which fits the data to within the noise and has the smallest L2 is considered 

the best estimate. As we shall see below, the smallest L2 estimate, also has the property 

of linear resolution. 

Other ordering criteria are maximum entropy (Tarantola 1987 p 151), maximin 

(Tarantola 1987 p351), smallest L\ norm (Menke 1984 p 37), and nonnegative least 

squares (NNLS) (Lawson and Hanson 1974 p 160, Parker 1994 p 359), to name just a 

few. The question is which ordering to choose. Commonly, an interpreter will try a variety 

of these orderings on a few data sets and then select one of the criteria to use routinely. 

One of the risks in this approach is that, as Twomey suggested, the nonuniqueness of the 

solution may be hidden because only one solution is presented. 

On occasion, a hybrid of the two schools of thought has been used where a variety of 

best estimates are presented to the interpreter. 

An example of the prevalence of fitting the data is the attempts made to apply 

deconvolution to correct the blurry images originally produced by the Hubble Space 

Telescope (HST). A spherical aberration in the HST's main mirror caused a linear 

distortion in the images acquired during its first 4 years of operation. Since HST was 

carefully designed to be a highly linear device with good linear resolution, the forward 

problem was linear, although the actual linear resolution was less than optimum because 

of the flawed optics. A wide variety of deconvolution algorithms were applied to the 

(1.9) 
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Figure 1.2: The forward problem illustrated as an optics problem. The data function, 
gic(y), corresponding to the data point, dk, illustrates the poor linear resolution. 

images to try to correct the distortions. While it turned out the blurriness was too 

unpredictable to be corrected, it is interesting to note that every algorithm presented at 

the major conference on the subject (Hanisch and White 1993, Adorf H 1995) assumed 

the estimate must fit the data. Although a few of the algorithms were linear, most were 

nonlinear . 

Another example is an extensive review paper on estimating an unknown model when 

the forward problem is a Laplace transform (Istratov and Vyvenko 1999). Again, only 

algorithms which fit the data were considered. 

1.3 Linear resolution 

Linear resolution in inversion is mathematically equivalent to linear resolution in optics. 

This equivalence was appreciated at least as far back as 1952 and probably much earlier. 

Fellgett and Schmeidler (1952) applied Wiener deconvolution (1949) to sharpening the 

focus of the limb of the sun during a partial eclipse. Wiener's work involved trading off 

between resolution and noise in the deconvolution problem. 
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Figure 1.2 is an optical representation of equation 1.1 for a particular data function. 

The object plane represents the unknown model, mu(y), with the continuous variable y 

varying over the object plane. The data plane represents the measured data, dk, and the 

discrete index of the data, k, varies over the data plane. The data function, gh{y), gives 

the weighting of the various locations on the image plane that sum to give the intensity at 

the data point. The data function in figure 1.2 clearly has poor linear resolution because 

the light arriving at the data point on the data plane is summed from a large part of the 

object plane. In optics, a second lens could be added to the right of the data plane to 

focus the image onto an image plane and improve the optical resolution. Likewise, in an 

inversion problem, an estimate would achieve better resolution than the forward problem 

by applying a linear operator to the data. 

For an estimation algorithm to have linear resolution it must be linear. A detailed 

definition of linear is given by Parker (1990 p 44), but for the problems considered herein, 

any inversion algorithm which can be represented as a matrix is linear. This matrix, a ,̂ 

will be called the estimation matrix. Therefore, an estimate of the unknown model can 

be generated by the equation 

mf = £ > j f c 4 (1-10) 
fc=i 

and its covariance matrix, C^, is 

V Q 

To precisely define linear resolution, Backus and Gilbert (1967, 1968, 1970) substituted 

equation 1.1 into 1.10 to get 

mf = famu{y) 
N 

k=l 

dy (1.12) 

and defined a new function, called the averaging or resolution function, to be 
N 

Rj(y) = Eai»9k(y). (1-13) 
k=l 
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Figure 1.3: The estimation matrix when combined with the forward problem gives good 
linear resolution. 

Proper choice of the estimation matrix, Ojk, can often lead to resolution functions which 

are well localized, or in other words well focused, about a point of interest in the object 

plane. The resolution function can be thought of as a synthetic data function. Likewise, 

the values of the estimate mf can be though of as synthetic data. Equation 1.13 is a 

generalization of Wiener deconvolution. 

Figure 1.3 shows the optics representation of the forward problem combined with the 

estimation matrix. The continuous variable y from equation 1.1 varies over the image 

plane. Although the image plane is a function of a continuous variable, we only calculate 

the image at a finite number of points which is usually sufficient to characterize the 

image plane. The resolution function on the object plane and its corresponding point in 

the image plane are also displayed. The resolution function replaces the data function of 

figure 1.2 which highlights the idea of the resolution function as a synthetic data function. 

A common way of characterizing the performance of a lens set is to place a point source 

at a variety of locations in the object plane and measure the corresponding projections 

in the image plane. The projections are referred to as point spread functions (PSF's) 
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(Hecht and Zajac 1976). Since the optics are linear, any intensity distribution in the 

object plane can be decomposed into a series of point sources and each corresponding 

PSF in the image plane calculated. The PSF's can be added together to get the same 

image as a projection of the object would produce. Figure 1.3 shows a PSF point source 

in the object plane and the corresponding PSF in the image plane. 

Once you have the complete set of PSF's, it is easy to calculate the resolution 

functions. The reverse is also true. Therefore, the set of the PSF's contains the same 

information as the set of the resolution functions. It can be easily shown that if all the 

resolution functions or all the PSF's are spatially invariant then the PSF's must equal 

the resolution functions. 

As mentioned above, an important requirement for linear resolution is that the 

estimation algorithm is linear. This simple point seems to be over looked too often. 

Nonlinear estimation algorithms, which apply the data from linear forward problems of 

point sources, may give estimates with very narrow peaks. However, since linearity does 

not apply, the width of the peak has very little meaning when compared to the width 

of a peak from a linear estimation algorithm. Some estimation algorithms claiming 

"superresolution" are examples of this oversight. 

1.4 Conservat ion of information 

The great power of linear resolution, as will be shown below, is that an estimate, along 

with its noise statistics and resolution functions, can present all the information about the 

unknown model in the data - no more, no less. Thus, only one estimate presented to an 

interpreter gives the interpreter complete information about all of the models that fit the 

data, provided the interpreter has an understanding of the estimate resolution and noise. 

This is in contrast to estimates which generate models that fit the data which would have 
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to generate a great many estimates to supply the interpreter with the same information. 

In medical imaging for example, radiologists become familiar with the linear resolution 

and noise of various modalities during their basic training. Thus, examining one image 

with good linear resolution will provide the radiologists with all the information provided 

by the data. I believe this is why the common modalities in medical imaging including 

MRI, CT and SPECT, use linear resolution often with no regard to whether the estimates 

fit the data or not. 

When presenting the information in the data about an unknown model to an 

interpreter, it is often desirable that the information be presented faithfully and not 

altered in any way. To assess whether an estimation algorithm accomplishes this goal, 

we need a mathematical formalism for presenting the information about the unknown 

model. For this purpose Backus and Gilbert used model space and Tarantola used model 

space with an additional probability density. 

One can use equation 1.7 to assign a x 2 to every model in the model space. This 

assignment is in line with Tarantola's (1987 p 1) approach of assigning a probability 

density to every model since the x 2 c a n be converted directly to a probability density 

function on the model space. If we think about an estimate as synthetic data, the 

resolution functions as synthetic data functions, and the covariance matrix of the estimate 

as synthetic noise statistics, an estimate which conserves the information about the 

unknown model will assign exactly the same x 2 t o the model space as the data, as 

the following steps will show. 

The x 2 assigned to a model, mM(y), by a particular estimate, mf, its noise and 

resolution functions, is given by 

X 2 = E E K - < ) C ^ \ m f - mf)- (1-14) 
k I 
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where 

m f = fbmM(y)Rk(y)dy. (1.15) 
Ja 

Substituting equation 1.13 into 1.15 and 1.10 and then substituting the results, along 

with equation 1.11, into equation 1.14 yields 

x 2 = E E ( E ^ ) ( E ^ T i E E ^ P % ) 1 (i-ie) 
k I r s \ p q / 

where 

1k = dk - [bmM(y)gk(y)dy. (1.17) 
Ja 

Rearranging the indices in equation 1.16 yields 

x2 = E E T r 7 S E E ( E « ^ - 1 ) c ^ - 1 ( E « ^ r 1 ) (i-is) 
r s P q k I 

If the estimation matrix is invertible, then this equation reduces to 

X2 = E E ^ r T s C r T 1 (1-19) 
r s 

and it follows that this equation is equal to 1.7. Therefore, if the estimation matrix is 

invertible, the estimate conveys exactly the same information about the unknown model 

as the data. 

This result is not completely surprising, but I am not aware of it being previously 

published. Conservation of information can be a very desirable characteristic of an 

estimation matrix since it means all future calculations can be done with just the 

estimate, its resolution functions and covariance matrix. The measured data are no 

longer necessary. 

In some cases perfect conservation of information may not be necessary and a small 

amount of loss may be acceptable. However, to determine how much information has 

been lost, we need a way to quantify the information. Shannon's measure of entropy offers 
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one way to accomplish this goal (Shannon 1948, Guiasu 1977). It should be possible to 

calculate the entropy due to the data, its data functions and noise statistics. The same 

measure could be applied to the estimate. If the values of entropy are different, then 

information has not been conserved. However, the values of entropy may be close enough 

that, for practical purposes, sufficient information can been conserved. 

1.5 T h e D i s c r e t e F o u r i e r T r a n s f o r m 

The discrete Fourier transform (DFT) is perhaps the most common inversion of a 

linear forward problem. A vast number of algorithms are available in the literature 

for generating estimates of an unknown frequency spectrum. Thus the DFT provides an 

excellent case study of the possible and preferred approaches. The forward problem for 

the DFT is given in equation 1.2. 

The most popular way to estimate the frequency spectrum is the discrete Fourier 

transform (DFT), 

mE(f)= i^wkdke2^ (1.20) 
k=0 

where 

f = n/N n = -N/2,...,N/2 (1.21) 

and where wk is a window, N is the number of data points and dk are the data points 

to be transformed. The DFT is often implemented as a fast Fourier transform (FFT) 

because the FFT is much faster and less prone to round off error. 

A wide variety of estimation algorithms are available which provide estimates which 

fit the data (Kay 1988), including the well known maximum entropy method. Many 

of these algorithms are nonlinear and thus, an interpreter must be very careful not to 

imbue the PSF's of a nonlinear algorithm with the properties of a linear algorithm. As 

mentioned earlier, it should also be kept in mind that each one of these estimates, when 
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interpreted as an estimate that fits the data, supplies information about only one of the 

infinitely many models that fit the data. 

All linear estimation algorithms for the Fourier transform can be implemented by a 

windowed DFT because of the convolution theorem. Many papers have been written on 

various windows (Harris 1978). Their purpose is to adjust the linear resolution of the 

DFT. The variety of windows comes from the different preferences of what is optimal 

linear resolution. 

A special property of the DFT inversion is that the resolution function is spatially 

invariant and thus is equal to the PSF at all points in the estimate. Another special 

property of the DFT inversion is that if wk — 1 (no window is applied), then the estimate 

will fit the data and have linear resolution. However, when a window is applied, the 

estimate will no longer fit the data, but it will still have linear resolution. It is interesting 

to note that, to date, I have not located a reference which mentions this point. Also, 

from personal discussions with physicists and other people who work with data analysis 

and results, few people seem to be aware of this point and many are surprised when they 

realize it. 

Figure 1.4 gives an example of the application ofthe Fourier transform. Figure 1.4(a) 

presents 128 complex data points from the model in figure 1.4(b). The model consists 

of purely real data with Dirac delta functions at / = —0.3562 and / = 0.0375 with 

amplitudes of 8.0 and -4.0 respectively. The box car has a height of 3 and ranges between 

/ = 0.0136 and / = 0.1975. Gaussian noise with standard deviation of 0.001 has been 

added to the data. Dimensionless units are used for the frequency and amplitude to keep 

the example general. 

Figure 1.4(c) is an estimate of the unknown model generated using equation 1.20. 

Figure 1.4(d) was generating using the Hamming window (Harris 1978, Lowe and 
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Figure 1.4: Example of discrete Fourier transforms. The exact fit has x 2 = 0.0 while the 
windowed data has x 2 = 201118.9. 
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Sorenson 1997) shown in figure 1.4(a). 

H(v) = 0.54 + 0A6cos(2irv/vmax) (1.22) 

From the isolated peak at / = —0.3562 you can determine the the PSF. Since, for the 

Fourier transform, the PSF is spatially invariant, it is equal to the resolution function. 

The fit, as measured by %2, is given in figures 1.4(c) and 1.4(d). 

Figure 1.4(c) is an exact fit while figure 1.4(d) has such a large x 2 that it would not 

be considered a fit by any standards, but both have linear resolution. Both estimates 

are interpretable. Therefore, this suggests linear resolution is the important property in 

interpretation. 

When first viewing figures 1.4(c) and (d), I suspect most interpreters use the isolated 

peak to the left of each spectrum to gauge the PSF and then examine the rest of the 

spectrum with the PSF in mind. This again suggests linear resolution is being used to 

interpret the estimate and not models that fit the data. 

There is a test which I believe confirms linear resolution as the property of the estimate 

of which interpreters are taking advantage. Cover either the left or right, half of the 

frequency spectrum in figures 1.4 with a piece of paper or your hand. The visible parts 

of the spectra are still easily interpretable. If the estimates were being interpreted as 

models that fit the data, the estimates would no longer be interpretable because we do 

not have an estimate that fits the data with just one half of the spectrum. But linear 

resolution only requires a section of a spectrum which is bigger than the PSF to yield 

useful information about that section of the spectrum. 

The windowed Fourier transform is a good example of a linear estimation algorithm 

which conserves the information about the unknown. Provided the applied window is 

everywhere non zero then the equivalent estimation matrix in invertible. This is the case 

for the Hamming window. Since the DFT without a window is invertible, the windowed 
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form is also invertible. That is why no information is lost when further processing is 

performed in the frequency spectrum with no reference to the original data. For example, 

you can fit individual peaks of a spectrum without having to fit the whole data set. 

The medical modality of MRI is a good example of an application which uses 

windowed Fourier transforms, but in 2D rather than one (Lowe and Sorenson 1997). 

MRI is reconstructed using a windowed 2D DFT. The purpose of windowing the data is 

to reduce the ringing in the resulting image, also known as truncation artifacts. This is 

akin to improving the focus of the image with no regard as to whether the model fits the 

data or not. Normally, the windows used in the MRI 2D DFT conserve information. Two 

images are produced for each data set, the real and imaginary. It is common practice 

to combine the two images into a magnitude image with the magnitude image being 

displayed to the interpreter. The phase information is only provided to the interpreter in 

special circumstances and for many clinical uses, the additional information it provides 

in not useful. 

Examination of CT, SPECT and PET literature shows a similar situation to MRI. 

Filtering has been added to original algorithms to improve the linear resolution of the 

resulting images with no regard for the model fitting the data (King et al 1984, Gilland 

et at 1988, Farquhar 1998). 

1.6 Est imates that fit the data and have linear resolut ion 

How did the dichotomy between models that fit the data and linear resolution come 

about? It is impossible to say for sure, but careful examination of the literature yields 

some valuable clues which suggest good linear resolution was a fortunate byproduct of 

models that fit the data. 

The earliest reference with the dichotomy that I have been able to find is Wiener's 
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deconvolution (1949). This publication is considered by many to be a central publication 

of deconvolution. In this paper, Wiener used the least squares fit to the data to derive 

deconvolution digital filters which had linear resolution. In this classic work, he gave 

no indication that he considered that linear resolution and fitting the data were two 

independent concepts. The DFT is another widely used early example. As mentioned 

above, without a window, it produces an estimate which both fits the data and has linear 

resolution. 

There is also a method by Backus and Gilbert (1967) based on the Dirichlet criterion 

which produces estimation matrices which often have good resolution for the linear 

forward problem. Menke (1984 p 95) showed that several other methods for fitting the 

data will produce the same estimation matrices to within the noise handling properties. 

These fitting methods include the smallest L2 model, the least squares fit to the data 

and the maximum likelihood fit. Wiener's deconvolution and the DFT are examples of 

these types of algorithms. I suspect that these algorithms which produced estimates that 

fit the data and, inadvertently, also had good linear resolution, encouraged researchers 

to confuse the two independent concepts. 

Only rarely in publications describing the application of linear inverse theory are 

estimates considered which have linear resolution but do not fit the data and the 

publication acknowledges that fact. Two such examples are the Fourier transform and 

deconvolution (Oldenburg 1976, 1981) in addition to others (Menke 1984). 

Any mention of the dichotomy in the literature, as opposed to discussions of the two 

parts independently, is an uncommon occurrence. The issues are discussed by Tarantola 

(1987 p 461) and Menke (1984). Tarantola advocates models that fit the data using the 

method of generating many models that fit the data for each data set. He talks about 

Backus and Gilbert giving a "blurry" view of the unknown model. Tarantola states that 

if the estimate with linear resolution is too blurry, you should use models that fit the 
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data. This seems to be missing the point about linear resolution. A blurry estimate with 

good signal to noise means that the data do not tell us as much about the unknown 

model as we would like. The only way to get around this problem is to get more data 

with better signal to noise. 

1.7 Conclusions 

The dichotomy in estimating the unknown model for a linear forward problem has been 

around for at least the last fifty years. Careful analysis of the dichotomy in the context 

of linear inverse theory has shown that a single estimate, which was generated from the 

data by a transform which is representable by an invertible estimation matrix and has 

good linear resolution, has the very powerful ability to communicate to an interpreter 

a complete summary of all the models that fit the data. This is provided that the 

interpreter has an understanding of the noise and linear resolution of the estimate. Such 

an estimate is much more effective at communicating to an interpreter what is known or 

not known about an unknown model than one or many models that fit the data. 

One important problem which has not yielded to optimal linear resolution is the 

inverse Laplace transform. Chapter 3 of this thesis discusses this problem in more detail 

and shows how to modify the forward problem so good optimal linear resolution can be 

achieved with an estimation matrix. 
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Chapter 2 

M R I Truncat ion Art i fac ts as a Linear Reso lu t ion P r o b l e m 

Summary 

A Fourier transform window was designed which heavily suppressed truncation 

artifacts in MR images, improved the signal to noise by 20 to 75% and substantially 

improved the interpretability of the resulting MR images compared to the commonly 

used Fermi window. This window should be particularly effective on large pixel images, 

such as the 32x32 pixel images used in chemical shift imaging (CSI) and functional MRI 

(fMRI). Much effort has gone into trying to reduce truncation artifacts in MR images as 

they can interfere with interpretation. By considering truncation artifacts as a problem 

in linear resolution two Fourier transform windows were designed - one which heavily 

suppressed them and a second which completely eliminated them. The complete removal 

of truncation artifacts did not result in the desired improvement in the interpretability 

of MR images. It appears that a minimal level of truncation artifacts have the benefit of 

making edges appear sharper analogous to an edge enhancement technique. The sharper 

edges allowed structures to be picked out more easily. 

2.1 Int roduct ion 

The Fourier transform of a segment of a sinusoidal wave does not transform to a Dirac 

delta function but rather to a sine function which includes sidelobes. These sidelobes are 

referred to, among other names, as truncation artifacts. Truncation artifacts typically are 

noticed on an MR image as ringing adjacent to sharp edges although they can have less 

24 
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obvious manifestations. In most clinical applications of MRI the truncation artifacts are 

not a serious problem but in specific parts of the body, in particular the spine, truncation 

artifacts can easily be mistaken for pathology. In addition, small features anywhere in 

the body, which approach the resolution of a MR image, can be obscured by truncation 

artifacts. The linear nature of an MRI scan makes the truncation artifact problem an 

excellent example of a linear resolution problem. 

Applications which would benefit from improved truncation artifact suppression 

include 2D chemical shift imaging (CSI) and functional magnetic resonance imaging 

(fMRI). 

2D CSI is a method of proton spectroscopy for obtaining relative concentrations of 

brain metabolites including N-acetylaspartate (NAA), choline, creatine and mobile lipids 

in vivo. Typical measurements collect 32x32 voxels at 1cm2 in 20 minutes. The imaging 

resolution is necessarily poor due to restrictions in time and signal to noise. Improvement 

of the images' resolution and noise by modifying the image reconstruction algorithm 

would be valuable. 

The area of fMRI is only a few years old but is already responsible for perhaps 30% 

of MR research. fMRI monitors the function of the brain in real time. A scan of the 

whole brain is acquired in a few seconds and constantly repeated. Poor signal to noise 

mandates that a small matrix size, typical 64x64, must be used. However, high resolution 

and better signal to noise will produce substantial improvements to the location of active 

brain centers or to the time resolution of brain events. 

By far the most commonly used MRI algorithm for estimating the unknown model 

which produced the data is the 2D Fourier transform (2DFT) (Edelstein et al 1980, Chen 

and Hoult 1989). The 2DFT gives good results when applied to time domain (k-space) 

data although the resulting image has truncation artifacts. The windowed 2DFT used 
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for MRI is 

m n i n 2 = jr-fT E E wk1k2exp{ ) exp{ ) d f c l f c a (2.1) 

where <4ifc2 is the k-space data with indices k\ and ^ and m%lTl2 is the image of the 

object being scanned with indices n i and n2. Z i and Z2 are zero filling factors used to 

interpolate the resulting image and are usually integers between 1 and 8. Equation 2.1 

is only correct to within a scaling factor as an estimate of the unknown model. Since 

the pixel to pixel contrast rather than the absolute intensity of a pixel is the primary 

means of interpreting the resulting images, accuracy to within a scaling factor is all that 

is usually necessary. 

The coefficients Wk1k2 are, strictly speaking, not part of the standard 2DFT. The 

standard 2DFT assumes are equal to unity. The coefficients Wk1k2 are equivalent 

to a Fourier Transform window (FTW) (Harris 1978). They can be considered to be the 

Fourier transform coefficients of a deconvolution operator applied to the image resulting 

from the standard 2DFT. In addition, they can be thought of as a digital contact lens 

which, if properly shaped, sharpens the focus of the images generated by the 2DFT. 

This chapter will be concerned with finding the values of wklk2 which give the best 

quality image by sharpening the linear resolution and reducing the truncation artifacts 

2.2 M R imaging algorithms 

Many attempts have been made to reduce truncation artifacts (Haacke et al 1989, 

Smith and Nichols 1990, Constable and Henkelman 1991A, 1991B, Liang et al 1992) 

but windowed 2DFT is still the algorithm which is almost universally used. Reducing 

truncation artifacts is a valuable goal because it may allow more accurate interpretation 

of the MR images. Furthermore, the improved resolution and signal to noise could be 

used to shorten scanning time. 
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2.3 Linear resolution 

The object of FTW's is to reduce the leakage of signal from undesirable frequencies into 

frequencies of interest (Harris 1978). The effectiveness of a F T W is assessed by Fourier 

transforming it and then determining how localized the resulting point spread function 

(PSF) is about the main peak. This is analogous to assessing the focus of a glass lens by 

testing how well it focuses a beam of light. 

The property that light focused by a glass lens has in common with the windowed 

2DFT is linear resolution. For a system to have linear resolution, it must, of course, be 

linear. The defining property of a linear system is superposition. Superposition states 

that if individual functions Ai pass through a system and give corresponding functions 

Bi then if the function J2i aiM is passed through the same linear system the resulting 

function will be J2i Q-iBi where aj are arbitrary constants. 

To probe the performance of a linear system, it is common practice to make Ai a 

series of Dirac delta functions. In imaging, the corresponding functions Bi are referred 

to as the PSF. The shape of the PSF defines the linear resolution at the location of the 

Dirac delta function in Ai. The shape of the PSF gives us a good indication about how 

much the data can tell us about that particular region of the image, thus dealing with 

the inherent ambiguity of MRI data. In deconvolution the shape of the PSF's are all the 

same, only their location changes. Therefore, only one PSF needs to be calculated. 

To generate an estimate with linear resolution, the relationship from the unknown 

model to the image must be linear. The forward problem for M R I is 

d k i k 2 = I I mu(x, y)exp{2irik2y) exp(2nikix) dxdy (2.2) 
7-1/2 7-1/2 

where mu(x, y) is the unknown model. When the equation 2.2 is substituted into equation 

2.1 the result is a linear relationship between the unknown model and the image. It 
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therefore follows that linear resolution is obtained from MRI scanner data imaged using 

the 2DFT. 

It is a common practice to use Dirac delta functions to try to define some concept 

of resolution for nonlinear systems. The resulting PSF's may have a spiky shape but 

since superposition does not apply to nonlinear systems, the shape of the PSF tells us 

very little about how functions other than Dirac delta functions will be handled by the 

system. Maximum entropy is a good example of a nonlinear algorithm which is considered 

to give "high resolution" results because it images Dirac delta functions very accurately. 

However, it is very difficult to predict how it will handle any other function shapes since 

it is a nonlinear algorithm. This may be another reason why maximum entropy does such 

a poor job of estimating the unknown model in MRI (Constable and Henkelman 1990). 

It is unfortunate that many authors who use nonlinear imaging algorithms do not clearly 

state that the PSF's are far less informative about the resolution of nonlinear algorithms 

than for linear algorithms. 

2.4 Interpreter requirements 

The images produced by an MRI scanner are interpreted by radiologists with the aim of 

discovering pathology. Providing the radiologists with images which are "interpretable" 

is the primary goal of MR imaging. But what exactly makes an image interpretable? 

It has long been known that MRI k-space data do not give sufficient information 

to completely determine the unknown model because the data are finite in number and 

contaminated by noise. It is important that the ambiguity is clearly expressed in the 

MR images so radiologists can incorporate this information into their interpretation. 

Everyday, in thousands of hospitals around the world, radiologists interpret MR images 

produced by the windowed 2DFT. These images must have some property that makes 
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them interpretable. If this property is discoverable, it may be possible to improve upon 

it. 

One property of the MR images produced by the standard 2DFT is that they fit the 

data. However, it is unlikely that this property is the important one to the radiologist for 

two reasons. The first reason is that many models that fit the data need to be produced 

for each data set to get a good handle on all the possible models that fit a particular data 

set. Since radiologists make a reliable interpretation from just one image, they must be 

getting a feel for the ambiguity of the results from the one image. The second, and more 

important reason, is demonstrated if you black out part of an MR image. You can still 

interpret the remaining areas. This is important because blacking out part of the image 

is equivalent to setting the values all to zero. Therefore, the resulting partially blacked 

out image no longer fits the data, but it is still interpretable. 

Equation 2.1 generates a real and imaginary image for each data set. If all the 

coefficients of the windows are non zero, then equation 2.1 is invertible since the 2DFT is 

invertible. Thus, from the first chapter, the real and imaginary images, along with their 

PSF and noise statistics, completely express what is known and not known about the 

unknown model. This is a very powerful property since radiologists interpreting scans 

will have all available information in front of them when they are interpreting the scans. 

In practice the radiologists usually prefer to work with the magnitude image, which is 

a combination of the real and imaginary images. While this results in a loss of the 

information, it seems to be outweighed by the removal of the sometimes confusing phase 

information and halving the number of images. 

Estimates of the unknown model which do not have linear resolution cannot express 

all that is known and not known about the unknown model even if they fit the data. This 

is probably the main reason why nonlinear algorithms such as maximum entropy have 

been unsuccessful in supplanting equation 2.1 and the standard inversion algorithm; 
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Based on the assumption that the characteristics of the MR images which matter to 

radiologists are linear resolution and noise, I will spend the rest of this chapter trying to 

improve the linear resolution of the 2DFT by a better choice of the FTW coefficients. 

2.5 Ca lcu la t ing the F T W ' s 

The improvement of linear resolution by deconvolution can be traced back to a paper 

by Wiener (1949). However, the formalism used here will be that of Backus and 

Gilbert (1970) who generalized Wiener's method to a variety of resolution criteria. The 

formalism will be presented in the one dimensional form for simplicity, but it can be 

easily generalized to two or more dimensions. The 2DFT can be factored into ID DFT's 

applied along the rows and then the columns. It is common practice to apply the ID 

DFT in the same manner to generate the 2DFT's. The same practice will be followed 

here. 

In the Backus and Gilbert formalism, the forward problem is presented in the form 

where, as before, mu(x) is the unknown model we are trying to estimate. The function 

gic(x) is referred to as the data function and is the mathematical representation of the 

relationship between the unknown model and the data. Since our algorithm to estimate 

the unknown model must be linear to have linear resolution, the algorithm must be 

expressible in the form 

(2.3) 

k 
where the image, mf, is approximated by a discrete function for calculation purposes. 

Backus and Gilbert substituted equation 2.3 into equation 2.4 to get 

(2.5) 
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where Rj(x), the resolution function, is defined to be 

Rj(x) = YlaJk 9k{x) (2.6) 
k 

They also added the additional requirement, called the unimodular constraint, that the 

area of the resolution function must be unity. 

It should be noted that Backus and Gilbert, when they devised their formalism and 

introduced the resolution function, were not trying to come up with a better way to 

generate an estimate with linear resolution. Rather, they were attempting to formulate a 

concept of resolution for models that fit the data. The forward problem they considered 

was nonlinear, so when combined with their linear estimation algorithm, it yielded 

estimates with nonlinear resolution. Later researchers applied the Backus and Gilbert 

approach to linear forward problems although it is not clear they all appreciated the 

importance of linear resolution to the interpretation of the estimate. See Backus and 

Gilbert (1970) and Parker (1994) for more details. 

The resolution function is equal to the PSF for the linear deconvolution problem. This 

can be shown by substituting the Dirac delta function into equation 2.5 while keeping in 

mind that the data functions are all equal except they are translated from each other. 

This property is referred to as spatial invariance. Since we are dealing with a linear 

deconvolution problem, only one Rj(x) needs to be calculated. Therefore I will drop the 

subscript and assume the peak of R(x) is located at x = 0. 

2.5.1 Linear Resolu t ion C r i t e r i a 

What is the desired shape for a resolution function? The ideal shape would be 

nonnegative with no side lobes and a narrow center lobe with its peak at the point 

of interest. Unfortunately, we usually have to compromise between these desired goals. 

Sometimes, a narrow center lobe is more important than no side lobes or nonnegativeness. 
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In other cases the reverse may be true. 

Several criteria have been presented in the literature for selecting ak to give a 

resolution function with the desired shape. The Dirichlet criterion, which I will refer 

to as the 2 D F T criterion, is given by minimizing the objective function 

Q{FD) = fb[R(x) - d(x)]2 dx (2.7) 
Ja 

where 5(x) is the Dirac delta function. The criterion is applied by substituting equation 

2.6 into equation 2.7 and then using any of a variety of minimization methods. Oldenburg 

(1976) has shown that the Dirichlet criterion yields the ID version of the standard 2DFT 

to within a term. 

A commonly used FTW in MR image reconstruction is the Fermi FTW with a width, 

Wf, of 10 and a radius, r/, of half the number of pixels (Harris 1978, Lowe and Sorenson 

1997). 

H(u) = rr~^ (2-8) 
1 + exp[(u - rf)/wf\ 

It is a good example of current practices in dealing with truncation artifacts and is the 

default FTW for the General Electric MRI scanners. 

For comparison purposes I also applied the Hamming FTW which is recommended 

by Lowe and Sorenson for MR image reconstruction. 

H(u) = 0.54 + 0.46cos(2W*w) (2.9) 

In an attempt to improve the interpretability of the MR images, I devised two 

additional resolution criteria. The first, referred to as the least enclosed criterion or 

monotonic criterion, eliminated the truncation artifacts. 

The least enclosed criterion accomplished its goal in a round about way. Even though 

the final area of the resolution function must be unity, it started out by minimizing the 

area subject to certain constraints. These constraints, described below, ensured the area 
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was not minimized to zero and the resolution function was localized about the point 

of interest, x. After the area was minimized, the coefficients were multiplied by the 

appropriate factor so the area was normalized to unity. 

The criterion minimized 

QMono = jb

 R i y X ) d x (2.10) 
Ja 

with the constraints that 

R(x) > 0, (2.11) 

referred to as the nonnegative constraint, 

R(0) > 1, (2.12) 

referred to as the peak constraint and 

< 0 x > 0 
d x ~ ~ (2.13) 

« > 0 x < 0 

referred to as the monotonic constraint. The monotonic constraint demands that the 

resolution function monotonically approaches the lower bound from the peak. Since 

the lower bound is zero, then the monotonic constraint prevents the formation of side 

lobes. While nonnegativeness and no side lobes have been often mentioned as desirable 

characteristics in the literature, I am not aware of them being required in this way 

previously in a resolution criterion. 

An additional constraint which may be applied is the noise gain constraint. It 

limits the amount the noise may be increased by the FTW. The criterion expressed 

mathematically is 

NG > 
\ * i 4 ( 2 - i 4 ) 

where NG is the limit on the noise gain. Decreasing the noise gain cannot improve the 

linear resolution and almost always makes it worse. The noise of typical MRI scans and 
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the noise gain the FTW generated by the described resolution criteria are low enough 

that the noise constraint does not have to be applied. Therefore I will not use it in this 

chapter. 

The second criterion I devised was the L I criterion. It uses the peak and noise gain 

constraints of the monotonic constraint but minimizes the LI norm of the resolution 

function 

Since there is no nonnegative constraint, some sidelobes will occur. As with the 

monotonic constraint, after equation 2.15 is minimized, the coefficients must be multiplied 

by the appropriate coefficient so the area of the resolution function is one. 

2.6 M e t h o d 

The four FTW's as well as the standard 2DFT and a nonlinear algorithm, the Constable 

Henkelman method, were compared in several ways. The ID PSF's for 128 points was 

calculated for each and plotted for the FTW's. The 2D PSF's for 128x256 and 32x32 

pixels were also calculated by zero-filling the raw data by a factor of 8 after applying 

the windows. Then several measures of each 2D PSF were calculated and tabulated or 

plotted. 

For additional comparison, a phantom and two MR images of the human brain were 

acquired and reconstructed using the various methods. The phantom and one image of 

the human brain were acquired at 128x256 pixels. A second image of the human brain 

was acquired at 32x32 pixels. 

A comment is necessary on how the coefficients at the edges of the FTW's are handled. 

As Harris (1978) points out, the periodic nature of the Fourier Transform means the edge 

points of a FTW must be treated carefully. Fortunately, in the MRI problem, the data 

(2.15) 
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measured near the edge of the FTW are usually near zero. Therefore, there is little need 

to be concerned about coefficients of the edges of a FTW. 

The monotonic window was calculated using the AMPL optimization program (Fourer 

et al 1993) with the LOQO solver. The LI window was calculated using the AMPL 

program with the DONLP2 solver. 

All the FTW algorithms mentioned herein are based on the 2DFT and are thus linear. 

A nonlinear algorithm is the reconstruction algorithm of Constable and Henkelman ( C H ) 

(Constable and Henkelman 1991). In zero filling it is common practice to fill the high 

frequencies with zeros. Constable and Henkelman replaced these zeroes with information 

gleamed from the lower frequencies. 

Several variations of the Constable and Henkelman algorithm have been published 

(Amartur and Haacke 1991A, Amartur et al 1991B, Liang ZP 1992). The variation 

presented by Liang is implemented here and consists of several steps. (1) Fourier 

transforming the zero filled raw data to spatial domain. Any truncation artifacts are thus 

clearly evident. (2) A two dimensional modified sigma filter is applied to the magnitude 

of the image to suppress truncation artifacts. (3) An edge enhancing filter is then applied 

to the magnitude image. (4) The data is then inverse Fourier transformed back to the 

frequency domain using the phase information from step (1). (5) Use the new frequency 

data to extrapolate the original frequency data to high high frequencies. A linear merging 

filter is applied to the edges of the original data to avoid discontinuities. Steps (1) through 

(5) are repeated three times. 

It should be kept in mind that the Constable Henkelman algorithm does not produce 

a result with linear resolution nor does it produce a model that fits the data. While part 

way through the algorithm the original data is reintroduced, it is then filtered before 

being Fourier transformed to the final image. This filtering prevents the final result from 

fitting the data. 
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Figure 2.1: ID PSF 

The ID form of the ID PSF's for each of the FTW's is plotted in figure 2.1. 

What constitutes the best linear resolution is somewhat dependent on the type of 

image you are examining. Therefore, I have provided in tables 2.1 and 2.2 a variety of 

measures by which to compare the PSF's resulting from the various resolution criteria for 

a 128x256 and 32x32 k-space data set. The measures include gains and signal to noise 

ratios. The PSF gain is the height of the peak of the PSF when the unknown model is a 
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Code PSF Noise Positive FWHM 50% 90% 
Gain Gain Fraction (Pixels) (Pixels) 

2DFT 1.000 1.000 0.566 1.203 7.688 50.625 
Fermi 0.845 0.851 0.610 1.260 3.250 37.500 
Hamming 0.292 0.398 0.923 1.817 0.938 9.250 
Monotonic 0.159 0.274 1.000 2.302 1.188 2.500 
L l 0.486 0.569 0.811 1.558 0.813 4.750 

Table 2.1 : Measures of the PSF's for 128x256 

Code PSF Noise Positive FWHM 50% 90% 
Gain Gain Fraction (Pixels) (Pixels) 

2DFT 1.000 1.000 0.615 1.202 2.438 10.187 
Fermi 0.671 0.685 0.698 1.298 1.500 8.750 
Hamming 0.292 0.397 0.967 1.817 0.813 1.625 
Monotonic 0.182 0.293 1.000 2.138 1.063 2.437 
L l 0.496 0.570 0.829 1.523 0.750 3.688 

Table 2.2: Measures of the PSF's for 32x32 

Dirac delta function with unit area. The noise gain is defined by the right hand side of 

equation 2.14. The positive fraction is the fraction of the PSF which is positive. The 

F W H M is the full width at half maximum height of the center lobe of the PSF. The 

units of the FWHM are the size of a pixel if the image data were applied to the k-space 

data. 

Another important measure of the linear resolution, as expressed by the PSF, is the 

localization of the signal. This can be measured by calculating the fraction of the signal 

within a circle of a specified radius. The absolute value of the signal is used because both 

positive and negative parts of the PSF contribute to the signal. The radii of the circles, 

which includes 50% and 90% of the PSF, are also included in tables 2.1 and 2.2. Figures 

2.2 and 2.3 show the complete signal-encircled curves for each of the FTW's considered. 
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Figure 2.2: Signal-encircled in the PSF's for 128x256 pixel images. 

Figure 2.3: Signal-encircled in the PSF's for 32x32 pixel images. 
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Parameters for the PSF's for the Constable Henkelman algorithm were not represented 

because they are not defined. While the PSF's are normally calculated by applying the 

algorithm to a point source, it can be calculated by adding the point source to any other 

model, imaging the sum of the two and then subtracting off the image of the model. 

The same PSF will always result no matter what model is chosen provided the algorithm 

is linear. A nonlinear algorithm will yield many different answers therefore the PSF is 

undefined. 

Each of the six reconstruction methods was applied to three MRI k-space data sets. 

A subjective assessment of the apparent blurriness of the grey-white matter boundary 

and well defined structures in the MR images show that the apparent blurriness increases 

with the FWHM. However, one must be cautious of subjective assessments of resolution. 

As Pratt mentions (1991 p 303), psychophysical experiments indicate that a photograph 

or visual signal with accentuated or "crispened" edges is often more subjectively pleasing 

than an exact photometric reproduction. The truncation artifacts for the 2DFT have the 

effect of accentuating edges, thus giving the illusion of better linear resolution. 

A better and more reliable way to assess the practical linear resolution of the images 

would be to assess their diagnostic ability. Images acquired from a wide variety of 

pathologies, with particular emphasis on those which are demanding of resolution, should 

be processed using the various FTW's and the results compared for diagnostic ability. 

Unfortunately, such an extensive comparison of diagnostic images is outside the scope of 

this document. 

An examination of the MR images from the FTW algorthims, figures 2.4 to 2.8 

and 2.10 to 2.14, by a trained eye also shows that the truncation artifacts in the MR 

images decreases with the decreasing of the 50% and 90% encircled signals. As expected, 

the monotonic FTW produces an image with no truncation artifacts. The L l FTW 

has surprisingly small truncation artifacts for its FWHM. The image produced by the 



Figure 2.4: 2DFT FTW phantom image 



Figure 2.5: Fermi FTW phantom image 



Figure 2.6: Hamming FTW phantom image 



Figure 2.7: Monotonic FTW phantom image 



Figure 2.8: L l FTW phantom image 



Figure 2.9: Constable Henkelman algorithm phantom image 



Figure 2.10: 2DFT FTW brain Image 



Figure 2.11: Fermi FTW brain image 



Figure 2.12: Hamming FTW brain image 



Figure 2.13: Monotonic FTW brain image 



Figure 2.14: L l FTW brain image 



Figure 2.15: Constable Henkelman algorithm brain image 
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Figure 2.16: Images resulting from applying rectangular, Fermi, L l , Hamming and 
monotonic Fourier transform windows as well as the Constable Henkelman algorithm 
to 32x32 matrix raw data. 
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Hamming FTW also has very small truncation artifacts. For most practical purposes, 

there is little difference between the performance ofthe monotonic and Hamming FTW's. 

The results for the Constable Henkelman (CH) algorithm are presented in figures 2.9, 

2.15 and 2.16. As expected the CH algorithm does much better that the 2DFT or the 

benchmark Fermi filter for the 128x256 pixel images. Large regions of the phantom and 

the center part of the 128x256 brain image have almost all the the truncation artifacts 

suppressed. The CH algorithm performs poorly for the 32x32. This is not surprising 

considering the algorithms was designed with with a much larger number of pixels in 

mind. Comparison of CH with the L l FTW shows the L l FTW suppresses the truncation 

artifacts in a more consistent manner. 

The L l FTW seems to be the best compromise between truncation artifacts and 

blurriness. It has far less truncation artifacts than the Fermi FTW but is only slightly 

more blurry. 

2.8 Conclusions 

The results from the monotonic FTW conclusively demonstrate that it is possible to 

generate MR images with no truncation artifacts. Judging by the area enclosed plot, it 

should also have the best resolution. However, as evident from the images, the practical 

resolution is nowhere near as good as the L l FTW images. Why the discrepancy? 

It seems that the side lobes of the PSF's tend to average over areas of uniform intensity 

or smoothly varying structures. Only very particular types of structures cause the side 

lobes to reinforce each other and form truncation artifacts. Fortunately, these types of 

structures are not that common in human anatomy, but they are common enough to be 

cause for concern. In addition, the sidelobes have the effect of enhancing edges making 

structures stand out more clearly. 
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The improvements in signal to noise using the L l FTW over the standard Fermi are 

also valuable. Ranging from 20% for the 32x32 image to 50% for 128x256 images, this 

increase in signal to noise costs nothing in terms of acquisition time or effort. 

It should be kept in mind that the images generated by any of the FTW's do not 

reproduce the data but do provide good linear resolution. The real and imaginary images, 

along with their PSF and noise statistics, completely specify all that is known and not 

known about the unknown model. However, usually the real and imaginary images are 

combined, with some loss of information, into a magnitude image which is then presented 

to an interpreter. 

It should also be kept in mind that removal of the truncation artifacts is just a 

standard linear resolution problem and the techniques demonstrated in this paper, in 

particular the L l resolution criterion, can be applied to any other linear inversion problem 

in ID, 2D or more dimensions. This class of problems includes a host of standard imaging 

modalities which can be found in any number of books and other publications on imaging 

and linear inverse theory (Menke 1984, Twomey 1977, King 1984, Parker 1994, Parker 

1990). 
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Chapter 3 

Mul t i exponen t i a l decay analysis using op t ima l l inear resolution 

Summary 

A novel algorithm is presented for estimating the relaxation distribution from 

multiexponential decay curves. The resulting estimates have the very useful property of 

optimal linear resolution when plotted against the logarithm of the time constant. Each 

estimate is shown to be a complete summary of all the models that fit its data. The 

novel multiexponential forward problem used is closely related to the Laplace transform. 

The almost universally practiced method for estimating a relaxation distribution of 

a multiexponential decay is to calculate one or more of the infinitely many estimates 

which fit the data to within the noise. Whenever possible, a priori information is used to 

choose which of the estimates to calculate. However, sufficient a priori information may 

be suspect or not available. In these cases, a valuable option is to generate an estimate 

by linearly resolving each point of the unknown relaxation distribution as well as possible 

to within the limits of the noise. In general, these estimates do not fit the data and are 

best interpreted in a similar fashion to images produced by light focused with a glass 

lens. A novel criterion is introduced for optimizing the linear resolution. 

3.1 In t roduct ion 

A decaying signal generally has a point, usually defined at t = 0 (where t is time), at 

which the system begins decaying. The signal decays to a constant value, often zero, as 

t approaches infinity. In magnetic resonance imaging (MRI), the t = 0 point is when the 

57 
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excitation pulse energizes the sample. Particular MRI samples, such as pure water with 

small amounts of impurities added, have a monoexponential decay. Other MRI systems, 

such as parts of the human brain, are known not to have pure monoexponential decays. 

However, for both of these systems, and many others, valuable insight may be obtained 

by examining an estimate of the relaxation distributions generating the decay curves. 

Estimating a relaxation distribution from a decay curve falls into a class of problems 

referred to as linear inversion. The linear inverse problem is one of communicating to an 

interpreter what is known and, equally important, what is not known about a unknown 

model, mu(y). In the linear inverse problem, we are provided with N data points, dk, 

and the corresponding data functionals, 

The unknown model, mu(y), is the function we are interested in estimating as well as 

possible. The relationship between the unknown model and the data, as expressed in 

equation 3.1, is referred to as the forward problem. 

Each data function, gk(y), is one of the N functions which compose the data kernel 

of the linear transform (Tarantola 1987 p 223, Parker 1994). The data function is the 

mathematical representation of how the unknown model is mapped to a particular data 

point. It incorporates instrumental performance as well as the theoretical model. It 

can often be measured directly by measuring a series of mu(y) which are Dirac delta 

functions. 

A wide variety of inversion algorithms exists for generating estimates which fit the 

data to within the noise. For the multiexponential transform, and its close relative, 

the Laplace transform, references for inversion algorithms include Bellman et al (1966), 

Smith and Nichols (1983), Essah and Delves (1988), Whittall and MacKay (1989), 

Whittall et al (1991) and Stepanek (1993) with Istratov and Vyvenko (1999) giving 

(3.1) 
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a particularly extensive survey. For a single data set, each algorithm will generate its 

own estimate which fits the data. Reliable a priori information may assist in the choice 

of the inversion algorithm or algorithms. For example, if you happen to know that 

the unknown model is a single Dirac delta function then simply fitting the data to a 

two parameter monoexponential is the way to go. Unfortunately, often the a priori 

information is unreliable or insufficient to reduce the ambiguity of the unknown model 

to a single model. 

The concept of estimates with linear resolution is dealt with to a limited extent by 

some of the above publications, but always for models that fit the data. It is not always 

appreciated that estimates that have optimum linear resolution but do not fit the data 

are widely used in data analysis. A common example is the windowed discrete Fourier 

transform (DFT) which is often implemented as the fast Fourier transform (FFT) (Harris 

1978). A DFT without a window produces the smallest L2 model that fits the data. 

Applying a window before the applying an DFT results in a estimate which fits the data 

times the window, not the original data. The goal of applying a window is usually to 

improve the shape of the point spread function (PSF), which is a measure of the linear 

resolution of the transform. As demonstrated in chapter one, for a Fourier transform, 

the resulting complex frequency distribution along with the PSF and a measure of the 

noise, completely quantifies our knowledge of the unknown frequency distribution and is 

also easily presented to an interpreter. 

Haario and Somersalo (1987) applied the Backus and Gilbert (1967, 1968, 1970) 

spread criterion to estimating the relaxation distribution of the Laplace transform. The 

linear resolution of the resulting relaxation distribution decreased by a factor of 10 for 

each factor of 10 increase in the time constant which, for practical purposes, is of little 

use. 

Whittall et al start with the data functions given in equation 3.2 and use a novel 
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resolution criterion to achieve resolution functions with useful characteristics but did not 

suggest they would be useful for estimating relaxation distributions. Considering the 

same paper contained several estimates of relaxation distributions which fit the data, 

this seems to be another example of the predominant belief that only models that fit the 

data are useful estimates. 

3.2 T h e m u l t i e x p o n e n t i a l f o r w a r d p r o b l e m 

Before proceeding farther we must first convert the data functions for the forward problem 

of the multiexponential problem from being a function of r to a function of Zn(r). The 

change of variable must take place in the context of equation 3.1 to ensure the form of 

the equation is preserved. The multiexponential forward problem commonly used in data 

analysis and inverse theory has the form 

dk = £ m i e - ^ (3.2) 
i 

Equation 3.2 can be expressed in the continuous form 

4 = / £ r M ( T - T i ) d T e~^T (3.3) 
Jo Y 

where 8() is the Dirac delta function. 

Applying the change of variables 

y = Hr) (3-4) 

to equation 3.3, without simplification, yields 

/

-4-00 _ 
E ^ ( e s - e*)e - '* c ~Vdl / ) (3-5) 

-oo i 

Applying the Dirac delta function identity 

<*(/(*)) = £ ~fiJx~)^X ~ ^ f ° r B a C h = 0 ( 3 " 6 ) 
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(Cohen-Tannoudji et al 1977 p 1470) to equation 3.5 along with standard simplifications 

yields 

/
+oo 

E^iHy-yi)e-tke~Vdy (3.7) 
•°° i 

Substituting 

mu(y) = j2^5(y-yi) (3-8) 
i 

into equation 3.7 gives 

/

+oo _ 
mu(y)e-t-e-vdy. (3.9) 

-oo 

I will use the form of the multiexponential transform in equation 3.9 as the forward 

problem. The data functions taken from equation 3.9 are 

9k(y) = e-1*6"*. (3.10) 

It should be noted that all data functions approach 1 as y approaches infinity. 

I am not aware of the data function in equation 3.10 being derived previously either 

rigorously, using change of variable, or otherwise. Many different changes variable have 

been used in the literature to formulate various multiexponential transforms. A changes 

of variables very similar to y = ln(r) was applied in by Smith and Nichols (1983) but to 

the analytical inverse of the the Laplace transform. Provencher (1976) applied z = ln(tk) 

to the forward Laplace transform. Gardner et al (1959) applied the pair of change of 

variables, one of which was similar to y — ln(r), to the Laplace transform but again the 

result was quite different from equation 3.9. After an extensive review of the literature, 

I have not found the forward problem reformulated in the form of equation 3.9. 

The MRI decay curve of interest had 48 data points with the first 32 separated by 

10ms and the last 16 separated by 300ms. Since the last 16 points were spaced at 30 

times the first 32, for convenience, all intervals were divided by 10ms. The 10ms factor 

will be referred to as the dwell time. Data functions are shown in figure 3.1. Note that 
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while the data functions are plotted as a function of logarithmic variable y, the axis is 

labeled in units of time constants r for convenience. 

In specific problems it may be desirable to increase the sensitivity selectively to specific 

time constants and reduce it at other time constants. This can be dealt with by dividing 

the unknown model by a balancing function, B(y), in equation 3.9. This gives 

While many balancing functions are possible, a useful balancing function is B(y) = 

e~wy which increases the relaxation at late time constants by, in effect, multiplying the 

relaxation distribution by T w . A value of w = 1 is often useful. The applications covered 

in the rest of this document do not use balancing functions. 

In some instruments, data may be acquired by averaging over a window rather than 

at a particular point in time. To calculate the data function for a window all one needs 

to do is convolve the point data function with the weighting function of the window. 

If the data has 100's, 1000's, or 10,000's of points in the decay curve, it is much 

more efficient computationally, for both calculating the estimation matrix and applying 

it to data, to average adjacent data points together to create a new group data point. 

The corresponding data functions must also be averaged together to get the composite 

data function corresponding to the new averaged data point. The size of the groups is 

important. Groups which are too large will cost resolution in the resolution functions. 

Groups which are too small are inefficient. I have found logarithmic group size to be a 

good choice for evenly spaced points. The equation 

The new data function then becomes 

9k(y) = B(y)e (3.12) 

Gi = max(l,int(A 10l/N) (3.13) 
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Time constant (dwell time) 

Figure 3.1: Data functions for the modified forward problem. 

yields good group sizes for A=0.1 and N=10 where I = 1,2,3,... and Gi is the group size. 

As an example, for 10,000 points the grouping would be 

1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 5 6 7 10 12 15 19 25 31 39 50 63 79 
(3.14) 

100 125 158 199 251 316 398 501 630 794 1000 1258 1584 1995 309. 

According to this list, the first 13 data points would be treated individually. The next 

two data points would be averaged together followed by the next 3. The total sum of 

this list of numbers is 10,000, as would be expected. 

3.3 Designing an est imation ma t r ix 

Backus and Gilbert introduced the resolution function as a way of characterizing the 

linear resolution of a linear inversion. A linear inversion can always be implemented as 

a matrix multiplication but is not always implemented that way. Therefore any linear 

inversion can calculated by 
N 

mf = ajkdk (3-15) 
k=l 

where mf is the estimate of the unknown model at points XJJ after multiplying the data 

by estimation matrix ajk-
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Backus and Gilbert substituted equation 3.1 into equation 3.15 to get 

(3.16) 

and defined the resolution function to be 
N 

Rj(y) = J2aJk9k(y)- (3.17) 
k=l 

The resolution function gives a concise mathematical description of the linear resolution 

at each point of the estimate. It should be noted that equation 3.17 is completely 

independent of the unknown model and the data. Thus the linear resolution is 

independent of the unknown model and data. 

One restriction on the value of the coefficients is that the area of the resolution 

function must be unity, 

This requirement ensures each point in the estimate is a local average of the unknown 

model. 

The criterion for selecting the coefficients, which correspond to a row of the estimation 

matrix, that yield the optimal linear resolution is referred to as the resolution criterion. 

Together, the resolution function and its noise gain, which is defined below, give a concise 

formulation of the ambiguity of the estimate of the unknown model from information 

given by the data and corresponding data functions. Previous linear algorithms for 

estimating relaxation distributions have had poor resolution. By achieving the maximum 

resolution for a given noise gain much improved linear resolution is achieved. 

Several criteria for finding resolution functions have been published. The most 

familiar one is the Dirichlet criterion (Tarantola 1987 p 461) and is achieved by finding 

the coefficients which minimize lfs where 

(3.18) 

(3.19) 



Chapter 3. Multiexponential decay analysis using optimal linear resolution 65 

It is also referred to as the least squares resolution criterion. This resolution criterion 

will generate an estimate of the unknown model which is equal to, the least squares fit 

estimate of Wiener (1949) for the deconvolution problem (Menke 1984 p 67, Twomey 

1977). The result is also equal to the smallest L2 model that fits the data, to within the 

noise. 

Backus and Gilbert (1968) introduced the spread criterion 

Other resolution criteria have been published (Oldenburg 1976 and Huestus 1987) but the 

most popular methods seem to be the Dirichlet and the Backus-Gilbert spread criterion. 

3.4 Designing a est imation matrices 

When focusing an image with a lens, the goal is to make each point in the image resolve 

the smallest possible region of the object being imaged. The focusing is accomplished by 

first grinding a lens to the optimum shape and then positioning it properly between the 

object and the imaging plane. The goal for generating a estimation matrix is similar. 

The goal is to calculate linear combinations of the data functions which yield a resolution 

function that resolves as small a region of the unknown model as possible. 

3.4.1 Noise gain and resolution functions 

In addition to linear resolution, the other important characteristic at each and every 

point in an estimate is the standard deviation due to the noise in the data. 

If the noise in the data is uncorrelated, has a mean of zero, and has the same standard 

deviation for all data points, it can be characterized by a single standard deviation. The 

noise gain for each point in an estimate is defined to be the standard deviation of the 

(3.20) 
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point in the estimate divided by the standard deviation of the noise in the data and can 

be calculated directly from the coefficients 

NGj = 
N 

M £ ( 3 - 2 1 ) 
\ jt=i 

Often, the resolution functions resulting from the spread criterion have several 

undesirable properties. These include peaks, which do not lie exactly at the corresponding 

point in the estimate, and positive and negative side lobes on the wings of the main 

lobe. Huestis (1987) proposed a method for calculating resolution functions which do not 

have negative side lobes. However, these resolution functions still have peak alignment 

problems and the possibility of positive side lobes. In addition, it is computationally very 

expensive. 

3.4.2 Least enclosed criterion 

A novel resolution criterion is described below and is referred to as the least enclosed 

criterion. It produces resolution functions which are nonnegative, have no side lobes and 

are relatively narrow in width. In addition, the criterion can incorporate a predefined 

noise gain. 

The least enclosed criterion accomplishes its goal in a round about way. Even though 

the final area of the resolution function must be unity, it starts out by minimizing the area 

subject to certain constraints. These constraints, described below, ensured the area was 

not minimized to zero, and the resolution function is localized about the point of interest, 

yPeak After the area is minimized, the coefficients are multiplied by the appropriate factor 

so the area is normalized to unity. Therefore we first minimize a temporary resolution 

function, Rtemp(y), and then normalize its area to give the final resolution function R(y). 

To satisfy the least enclosed resolution criterion the resolution function, Rfmp(y), 

must be the minimum of 
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/ °°wj(y)Rfmp(y)dy 
J—00 

(3.22) 

subject to (1) the nonnegative constraint 

Rfmp(y) > 0, (3.23) 

(2) the monotonicity constraint 

dR^mp(y) 
dy 

dRfmp(y) 
dy 

(3.24) 

where yfak is the location of the resolution function peak, and (3) the peak constraint 

R)emp{yfak) > 1. (3.25) 

The peak is located at the point of the relaxation distribution we are interested in 

estimating with this resolution function. 

The constraints demand that Rj(y) is nonnegative, is monotonically decreasing from 

the peak and that the peak is located at yj. Rj{y) is localized by requiring the peak 

to have a value greater than unity and then by minimizing the area subject to the • 

monotonicity constraints. The function Wj(y) is an optional weighting function which 

can be used to force the resolution function to shift area between the wings and the 

central region. Values of 1, \y - ^ e a f c | , and (y - ypeah)2 for Wj(y) are good ones to try. I 

will use uij(y) = 1. 

The effectiveness of the minimization can be checked by how close the value of the 

peak of the resolution function is to unity since the minimum area should yield a peak 

value of exactly unity. In addition to these constraints Rj(y) should have unit area to 

better approximate a delta function. This is accomplished by dividing the coefficients 

a,jk resulting from the minimization of the area of Rj(y) by the appropriate factor. 
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An upper limit on the noise gain, NGj, of a particular point in an estimate can be 

applied by the additional constraint 

~ " A T f+oo 
x £ %fc2 < NGj E ajk / 9k(y)dy. (3.26) 
N*=i *=i J - ° ° 

where the area of the resolution function is included because the area of the resolution 

function must be normalized before the noise gain is calculated. The constraints on 

the resolution function will not always be satisfied for every yvfak • Therefore, no 

corresponding Rj(y) will exist for such cases. This nonexistence indicates that there 

is not enough information in the data functions to resolve the unknown model to the 

desired accuracy at the point of interest within the given noise constraint. 

When calculating the coefficients which give the resolution function, the area of an 

integral in equation 3.22 needs to be calculated. The upper bound of the integral is 

infinity. This will cause stability problems for the optimization of the integral because 

many of the non optimum solutions will have infinity area. The optimization can be 

stabilized by setting the upper bound to a large but a finite value. One hundred times 

the logarithm of the largest time at which the decay was measured seems to be a good 

choice for the upper bound. This approximation of infinity by a large value works because 

all the data functions approach a constant value as r approaches infinity. 

3.4.3 Calculating the estimation matrices 

To apply the constraints of the least enclosed resolution criterion, the data functions were 

discretized into 625 points with a spacing of 20 logarithmically spaced points per decade 

starting at t = 0.01. The simple penalty method given in Fletcher (1987) was used to 

perform the constrained minimization. 

Figure 3.2 shows all the resolution functions for the five estimation matrices. For 

convenience, the noise gain is constant for each estimation matrix but this is not a 
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necessary requirement. Initially, the graphs may appear crowded, but, if you keep in 

mind that the peak of each resolution function is at the point of interest in the relaxation 

distribution estimate and that every resolution function decreases monotonically from its 

peak, you should have little difficulty picking out individual resolution functions. Since 

the area of each resolution function is unity on the logarithmic scale, the height of each 

peak is inversely proportional to the width of the resolution function. Therefore, the 

higher the peak, the better the resolution. 

As the noise gain of the estimation matrices increases from figure 3.2, the resolution 

also increases. This is consistent with the trade-off between noise and resolution 

introduced by Wiener(1949) for the deconvolution problem and generalized for linear 

forward problems by Backus and Gilbert (1968). 

3.5 Est imates of the unknown model 

Several different unknown models, mt/(y)'s, were chosen to demonstrate the use of the 

estimation matrices. Figure 3.3 shows the estimates of single exponential functions with 

no noise for the same estimation matrices as used for figure 3.2. In optics, these images 

are commonly referred to as point spread functions (PSF's). 

While some may argue that the resolution of the estimation matrices is poor because 

the PSF's are not particularly narrow, this limited resolution is an expression of the 

ambiguity of the estimation. It tells the interpreter that many different unknown models 

could have produced the same data to within the noise. To resolve the relaxation 

distribution better, the interpreter needs to improve the signal to noise of the data or 

sample more data points. 
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Figure 3.2: Resolution functions for the five estimation matrices. Five resolution 
functions per decade are highlighted to aid interpretation of the plots. 
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Figure 3.3: PSF's for the five estimation matrices. The point sources are located at 0.5, 
1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000 dwell times respectively. 
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Figure 3.4: Relaxation distributions for pure noise decay curves. The noise was 
uncorrelated Gaussian with a standard deviation of one. The dashed lines shows 
calculated standard deviation for each estimation matrix. 
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Figure 3.5: Single pixel decay curves from a magnetic resonance measurement. Tissue 
types examples are white matter, edema and lesion core from a multiple sclerosis patient. 

3.5.1 Noise 

Figure 3.4 shows the relaxation distributions for five realizations of decay curves 

consisting only of uncorrelated Gaussian noise with a standard deviation of 1. The first 

thing to notice is that the noise in the relaxation distribution increases as predicted by 

the noise gain. It is also important to keep in mind that, while the noise was uncorrelated 

in the decay curve, it is correlated to adjacent points in the relaxation distribution. 

3.5.2 Magne t ic Resonance D a t a 

Figure 3.5 shows several decay curves of pixels taken from a series of 48 echoes of a MRI 

of a multiple sclerosis patient's brain (MacKay et al 1994). The T2 relaxation data were 

acquired with a 10ms dwell time out to 320ms followed by 16 echoes at 300ms spacing. 

The strength and decay of the signal contain valuable information about the tissue. The 

units of the signal are the units used internally by the scanner. 

Some of the major tissue types of interest in multiple sclerosis are white matter, white 

matter with edema and lesion tissue. White matter is present in a healthy brain, while 

edema and lesions are signs of disease. 

Figure 3.6 shows relaxation distributions yielded by applying the estimation matrices 
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to the decay curves. Each dot of the distribution corresponds to a row of the estimation 

matrix. The larger the noise gain of the estimate the wider the range of relaxation 

estimates available. This is a characteristic which shows up in the resolution functions 

and is due to the fact that the larger the noise gain the more likely there is a feasible 

resolution function available. 

Estimating the noise in the estimates in figure 3.6 can be accomplished in several 

ways. The first is to estimate the noise in the data and multiply by the noise gain for 

each estimation matrix. The ideal way to measure the noise in the data is to repeat 

the measurements a large number of times and calculate mean, standard deviation and 

covariance. These statistics can then be propagated through the linear matrix of a 

estimation matrix using standard statistical procedures. Unfortunately, the measurement 

of the decay curves takes about 30 minutes to complete on a patient, so large numbers 

of repetitions are impractical. 

Another way to measure the noise in the data is to estimate the standard deviation 

from previous measurements using the same instrument. This is not always reliable 

because the noise can vary from sample to sample. For example, the noise from a patient 

is usually at least twice what it is from a test sample. The motion of the patient, 

including blood flow and breathing, is probably the source of the noise. Unfortunately, 

these sources of noise may behave more like signal than thermal noise, which can make 

interpretation of the relaxation distribution more complicated. 

Figure 3.5 shows that the signal has decayed to well below the noise before 2s. 

Therefore, the last few points of the decay curve are pure noise and offer another way 

to measure the noise. The average standard deviation of the last 6 points of the decay 

curves is 112 scanner units. However, the measured decay curve is the magnitude of a 

complex decay. Thus the noise of the last 6 points is Rayleigh distributed. A random 

variable with a Rayleigh distribution results from squaring a random variable with a 
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Figure 3.6: Relaxation distributions of the magnetic resonance decays. The estimation 
matrices used are the same as those used in figures showing the resolutions functions and 
the PSF's. 
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Gaussian distribution. At earlier times, when the signal is much larger than the noise, 

the distribution is, to a very good approximation, Gaussian. The ratio of the standard 

deviations of the Rayleigh noise to the Gaussian noise is 0.655. Therefore the standard 

deviation of the noise at early times is 171 (Gudbjartsson and Patz 1995). 

3.6 C o n s e r v a t i o n o f I n f o r m a t i o n 

As explained in chapter 1, it is a desirable property of an estimation matrix to 

be invertible. If it is, then the resulting estimate of the relaxation distribution, in 

combination with the resolution functions and noise of the estimate, conveys all the 

information about the unknown models that is given by the data and associated data 

functions and noise statistics. In other words, an estimate is a complete summary of 

all the models that fit the data. The five estimation matrices used in this paper were 

decomposed using singular value decomposition (Press et al 1992). All five matrices were 

invertible with a ratio of the largest to smallest eigenvalues ranging from 108 to 1010. 

3.7 O t h e r A p p l i c a t i o n s 

Decaying sinusoids are a common problem in inverse theory. A decaying sinusoid can be 

handled if it is band pass filtered at the particular bandwidth of interest and then the 

magnitude of the decay curve taken. The relaxation distribution of the magnitude decay 

curve can then be calculated. The MR decay curves are generated in this way. 

Any row of a estimation matrix, since it corresponds to a resolution function, can 

be applied to a time series in the same way as digital filters. The "relaxation" digital 

filter would be useful for applications such as ultrasound and radar. Using quadrature 

detection, it would be possible to measure the magnitude of a reflection off an interface. If 

the signal from an interface of interest oscillated for a while after the initial sound wave 
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had passed, the decay time of the oscillation could tell us more about the interface. 

Applying various relaxation digital filters to the ultrasound time series would allow 

characterization of the interfaces. 

In addition to estimating the relaxation distribution of a magnetic resonance decay 

curve, there are other applications where estimating relaxation distributions of decay 

curves may be useful. These include photoluminescence of biological and other types 

of samples, electrical signals radiating from ore bodies in geophysical exploration, and 

acoustic, electrical and electromagnetic decay processes. While the case considered 

handled data acquired at evenly spaced discrete points in time, it is possible to design 

an estimation matrix which handles data integrated over a window or which is unevenly 

spaced in time by modifying the data functions. 

3.8 C o n c l u s i o n s 

Using the windowed DFT as a guide, I have demonstrated a practical stable algorithm for 

estimating the relaxation distribution of a decay curve. The algorithm has optimal linear 

resolution and handles noise in a robust manner, which are both desirable properties of 

the DFT. When an estimated relaxation distribution is combined with a knowledge of 

the linear resolution of the relaxation distribution, via the resolution functions or PSF's, 

and a measure of the noise, it gives a complete description of what is known and not 

known about the unknown model from the data. 

The technique introduced for estimating the relaxation distribution is heavily 

dependent on the data function of equation 3.10. If equation 3.10 could be calculated so 

easily, if not rigorously, from equation 3.2, given the strong interest in finding a robust way 

of estimating relaxation distribution from multiexponential decays, why was it not used 

previously? Part of the problem may have been due to the conceptual and calculation 
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difficulties arising from a data function with infinite area. However, I suspect the main 

reason was the wide spread belief that, for an estimate to be useful, it must fit the data. If 

you are not interested in linear resolution equation 3.10 offers little benefit over equation 

3.2. 
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Chapter 4 

M R I Peak T i m e Constant Imaging i n M u l t i p l e Sclerosis 

Summary 

The objective of this study was to measure the relaxation of in vivo brain tissue 

for normal volunteers and multiple sclerosis (MS) patients using new techniques. Small 

voxels, with pixels of 0.86mm by 1.7mm and slice thickness of 3mm, were used to reduce 

the effects of partial volume. A 48 echo single slice sequence which had echoes from 10ms 

to 5120ms increased the range of T2 time measurable. And a novel technique was used 

to analyse the multiexponential decay curves which reliably measured the dominant time 

constant. 

A phantom was scanned to characterize the performance of the extended MRI 

sequence and novel analysis techniques. Two normal volunteers and four MS patients 

were scanned once each. One of the MS patients was scanned serially 15 times over a 24 

week period after a new lesion was detected. 

The phantom's monoexponential T2 relaxation times, when near 100ms, were 

measurable to 1% accuracy. When estimating the relaxation distribution from the MRI 

decay curves, the novel technique was very robust in the presence of noise allowing the 

use of small voxels. However, the technique lost sensitivity below time constants of 50ms 

and had little sensitivity to time constants below 20ms. With this technique most of the 

tissues in the normal volunteer and the MS patient showed a monoexponential decay to 

a very good approximation including the new MS lesion. Exceptions to this rule included 

"dirty white matter" and the internal capsule. Some lesion voxels had T2 time constants 

81 
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exceeding 400ms but none exceeded 500ms. The weekly scans of the MS patient showed 

changes in T l and T2 parameters over time reflecting changes in lesion pathology. 

The technique described proved to be particularly useful in estimating the T2 time 

constant of nearly monoexponential decay curves for each voxel. Images of T2 time 

constants in brain had good signal to noise providing what appeared to be pathologically 

meaningful information. This technique will be useful in providing new insight not 

only into MS pathology but also in the assessment of other pathologies including brain 

tumours. 

4.1 In t roduct ion 

Magnetic resonance has become a major tool in the diagnosis, treatment and monitoring 

of many diseases including multiple sclerosis (MS). (Filippi M et al 1998; Paty and 

Ebers 1998, MacKay et al 1994). Its ability to detect and monitor MS lesions over time 

with little risk to the patient has become a great asset. While they are able to detect 

lesions reliably, conventional MR techniques have limited ability to differentiate between 

various types of pathology within a lesion and various types of lesions. The diagnosis 

and treatment of a host of other pathologies, such as brain tumors, would also benefit 

from a better ability to discriminate between pathologies in vivo using MRI. 

Several studies have used magnetic resonance relaxation (MRR) to study MS lesions 

in vivo (Larsson, Barker et al 1998) with some success. They have reported numerous 

cases of both monoexponential and biexponential decay curves to lesions. However, as 

the studies mention, the biexponential nature could be due to partial volume effects. The 

volume over which the decay was averaged in this study was at least 50 times smaller 

than previously referred studies, minimizing partial volume effects. 

There were two purposes to this study. The first was to measure the MRR 
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characteristics of MS lesions for much smaller voxel sizes than previously used. The 

second was to provide an initial assessment of two new tools for MRR of MS lesions. 

The first tool was a modified MRR sequence. The sequence acquired 48 echoes for a 

single slice using a Carr-Purcell-Meiboomm-Gill (CPMG) pulse sequence (Mackay et al 

1994). The echo times ranged from 10ms to 5.12s so a wide range of T2 time constants 

could be measured. 

The second tool was a new way to estimate the relaxation distribution of a voxel 

from its decay curve. The method was very robust under noise and thus allowed for the 

use of small voxel volumes. It was implemented with an estimation matrix where the 

coefficients of the matrix have been specially chosen to maximize the linear resolution for 

a given level of noise. The new method used for estimating the relaxation distribution 

is particularly good at estimating the time constant of the monoexponential associated 

with the peak of the distribution. Images composed of the value of the peak T2 time 

constant for each voxel appear to be particularly useful. 

Much effort has gone into MR spectroscopy (MRS) as a means to study the natural 

history of MS lesions in vivo (Arnold et al 1998). Although MRR and MRS measure 

very different parameters of tissue, one major advantage of MRR over MRS is that the 

smallest voxel sizes that provide reasonable signal to noise in MRS are about 800mm3. 

This is about 180 times larger than a 4.3mm3 voxel, the smallest used in the MRR study 

described herein. In MS applications, this small sample size means that the variation of 

the relaxation within many lesions can be measured. The reason relaxation can handle 

much smaller voxels than spectroscopy is that relaxation measures the main water signal 

while spectroscopy measures the much weaker signal from metabolites. 
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4.2 M e t h o d 

For the MRR sequence the first 32 echoes were spaced 10ms apart with the next 16 

spaced 300ms apart. The last echo was at 5.12s and the TR was 7.0s. The combination 

of many early echoes with several late ones allowed a large range of relaxation times to 

be examined. As a phantom study showed, the change in echo time from 10ms to 300ms 

during the sequence did not effect the decay curves in most circumstances. 

Images were acquired at a range of voxel sizes and shapes. In this study, the smallest 

voxel size which gave good signal to noise was 4.3mm3. The ideal shape for the voxel 

requires a trade off between small pixel dimensions on an image and a homogeneous 

sampling of tissue in a voxel. In standard imaging sequences, to achieve small pixel 

dimensions and reasonable voxel volumes, slice thicknesses many times larger than 

the pixel dimensions are commonly used. But these pencil shape voxels were more 

likely to have heterogeneous tissues than a cubic voxel of the same volume unless the 

long dimension of the pencil shaped voxel happened to lie along elongated anatomical 

structures or pathology. For this study we acquired images at a variety of voxel shapes 

and sizes. Pixels of the dimensions 0.86 x 1.7mm with a 3mm thick slice seemed to be 

a good compromise for this study but future applications may benefit from more cubic 

voxels. 

A wide variety of methods are used to estimate the relaxation distribution from 

a decay curve (Istratov and Vyveno 1999, Whittall et al 1991). However, all these 

methods differ in two crucial but related ways from the standard method of estimating the 

frequency distribution in MRS. In MRS, the discrete Fourier transform (DFT), usually 

windowed, is the most common way of estimating a frequency spectrum. The DFT is 

usually implemented as the fast Fourier transform (FFT) because of the FFT's speed. 

The purpose of adding the window to the DFT transform is to improve the line shape 
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in the resulting estimates and no regard is given to whether the resulting estimate fits 

the data or not. Since the DFT is a linear transform, the method of using a window to 

improve the line shape is equivalent to improving the linear resolution of the transform. 

Non windowed DFT's also have linear resolution in addition to fitting the data. 

Since the process of interpreting windowed and non windowed DFT's seem to be the 

same, I strongly suspect that interpreters are relying solely on the linear resolution for 

interpretation. 

For this study, the method selected to estimate the relaxation distribution was the 

estimation matrix described in chapter 3. As with the windowed DFT, its goal is 

good linear resolution with no requirement that the estimate reproduce the data. The 

estimation matrix was applied with a matrix multiplication of the form 

3 

where dj are the 48 data points from the decay curve and m\ is the estimate of the 

relaxation distribution. Because the estimation matrix was linear, the sum of several 

decay curves was also the sum of the relaxation distributions of each curve transformed 

individually. 

Figure 4.1a shows the estimates of the relaxation distributions of a range of 

monoexponential decay curves. Since all the monoexponential decays had a value of 

one at t = 0 the resulting estimates can be referred to as point spread functions (PSF's). 

As can be seen from the PSF's, for the data acquired, the linear resolution is best for 

monoexponentials with time constants between 50 and 1000ms. Above and below these 

time constants, the resolution is poorer and the location of the peaks is shifted in toward 

the intermediate time constants. The wide PSF's are an unavoidable consequence of how 

little information the data provides about the relaxation distribution. 

Another characteristic of the chosen estimation matrix that is in common with the 
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Time Constant 

Figure 4.1: (a) Point Spread Functions: Estimates of the relaxation distributions for 
monoexponential decays with time constants equal to 10, 20, 50, 100, 200, 500 and 1000, 
2000, 5000, 10000ms for relaxation distribution transformation (b) Estimates, generated 
by the transform matrix, of the relaxation distribution of five decay curves consisting 
purely of uncorrelated Gaussian noise with a standard deviation of one. The solid lines 
indicate the predicted standard deviation of the noise. 
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windowed DFT, is that, provided that all data points have noise with the same standard 

deviation, the points in the estimate all have noise of the same standard deviation. 

Figure 4.1b shows five realizations of decays with no signal but only uncorrelated 

Gaussian noise with a standard deviation of one. 

The ratio of the standard deviation of the data to the standard deviation of the noise 

at a point in the relaxation distribution is defined as the noise gain. It can be predicted 

by calculating the square root of the sum of the squares of the coefficients in the row 

of the estimation matrix corresponding to the desired time constant. The noise gain for 

each row of the estimation matrix is plotted as two solid lines in Figure 4.1b. It has the 

desirable property of being the same for every time constant and has a value of 0.316. As 

with the windowed DFT estimation, having the same standard deviation of noise across 

the relaxation distribution makes the distribution easier to interpret. 

While an estimation matrix which produced noise with a lower standard deviation 

could have been chosen, it would have reduced the resolution of the PSF's. Conversely, 

an estimation matrix which produced noise with a higher standard deviation would have 

produced PSF's with higher resolution. The estimation matrix chosen had what was felt 

to be the best tradeoff between the linear resolution and noise for the data acquired. 

The estimates of the frequency distributions generated by the windowed DFT are used 

to determine the frequency of various metabolites as well as identifying the metabolites. 

Similarly, the location of the peaks in an estimate of a relaxation distribution can be 

instructive about the tissue which generated the corresponding decay curves. While the 

location of a peak can be read off a plot of an estimate, a more accurate way to determine 

it is to fit the relaxation distribution of a monoexponential to points near the peak of 

the relaxation distribution. As an example, Figure 4.4 shows the calculated relaxation 

distributions as a dotted line with one dot per row of the estimation matrix. Fitted 

monoexponentials are shown as a smooth line. 
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By testing various fitting algorithms I found only three points near the peak of the 

relaxation distribution, the peak point and the two points immediately adjacent, need to 

be fitted to get a good estimate of the monoexponential's amplitude and time constant. 

By only fitting to the points at the peak, effects of other exponentials are minimized. 

The estimation matrix used had a time constant spacing of 16 points per decade so the 

three points fitted would only span a factor of 0.125 in time constant as can be seen from 

Figure 4.4. Since only peak information is used in calculating the monoexponential, it 

is referred to as the peak monoexponential. The peak monoexponentials parameters are 

referred to as the peak amplitude and peak T2 time constant. 

How well a relaxation distribution is approximated by a monoexponential fit to its 

peak can be measured by calculating the area between original distribution and the fitted 

monoexponential distribution. It should be kept in mind when calculating the areas of 

relaxation distributions that the metric of the horizontal is the natural logarithm of the 

time constant. 

4.3 Resul ts 

A phantom, a normal volunteer and an MS patient were scanned with the 48 echo 

sequence to assess the information provided by the decay curves and relaxation 

distributions. The peak of each distribution was fitted with a monoexponential and the 

logarithm of the corresponding time constants displayed as an image. In additional, the 

relaxation distribution for selected pixels were plotted, along with their monoexponential 

peak fits. 
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4.3.1 P h a n t o m Study 

The phantom used was a 0.51 water bottle filled with tap water. It contained a cylindrical 

glass tube with 1% agarose doped with 2mM NCI giving a predicted T2 of 100ms and a 

TI of 600ms (Christofferson et al 1991). Figure 4.2 shows a peak amplitude image of a 

cross section through the phantom. Figure 4.3 shows a peak time constant image of a 

cross section through the same phantom. The intensity of the image corresponds to the 

logarithm of the time constant. The outer ring contains the tap water and the inner the 

agarose. The uniform intensity in the agarose and the mostly uniform intensity in the 

tap water are an indication of the precision of the methods used to determine the peak 

time constant. 

There is an artifact at the top of the tap water in the image. This artifact shows 

up in the decay curves of the corresponding voxels. The artifact is characterized by low 

time constant during the echoes spaced at 10ms and abruptly increasing to a new value 

when the echo spacing increasing to 300ms. The artifact seems to be due to 180 degree 

pulses in the MRR sequence which are not exactly 180 degrees at all regions of the slice. 

It is likely due to a B0 or Bx inhomogeneity at the water/air interface found at the edge 

of the bottle. Similar artifacts may occur in regions of the human brain where there are 

air/tissue interfaces and need to be watched for. The decay curves of the human subjects 

described herein were examined for indications of similar problems but none were found. 

Figure 4.4(a) shows the decays curves for the 4.3mm3 voxel indicated in figure 4.3. The 

dots show the measured value and the continuous lines show the monoexponentials fitted 

to the peaks of the relaxation distributions. The relaxation distribution in figure 4.4 (b) 

shows the estimates of the relaxation distributions as dots. The continuous line through 

the dots shows the relaxation distribution of the peak monoexponentials. As is clearly 

evident, the monoexponential parameters, as determined by the peak time constant, 
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Tap Water 
Profile Profile 

Figure 4.2: Peak amplitude constant image of the tap water-agarose phantom. The water 
has less signal because of T l effects. 
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Figure 4.3: Peak time constant image of the tap water-agarose phantom. The outer 
diameter of the phantom is 55mm. The time constant for the tap water and agarose, 
as measured from the peak time constant, are 1875ms and 99.5ms respectively. The 
contrast of the image is between 10ms and 2500ms with the intensity, as with all peak 
time images, proportional to the logarithm of the time constant. 
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Figure 4.4: Decay curves and relaxation distributions for agarose and water phantom 
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Figure 4.5: Repeated profiles (3 times) through the center of the tap water-agarose 
phantom along with the peak amplitude and time constant images. 

model the decay curves and relaxation distributions extremely well. 

This example also clearly demonstrates the robustness of the peak monoexponential in 

approximating a relaxation distribution. The noise after 500ms in the time domain is all 

positive because the decay curve is a magnitude measurement. This can be confusing to 

methods which fit the data with a monoexponential decay because the positive noise may 

be mistaken for a second monoexponential decay curve with a very large time constant. 

The MRR sequence also performed very well. This is indicated by measured points 

lying on the solid line. If the sequence had poor 180 degree pulses the points might lie 

alternately above and below the line. This problem is common in CPMG sequences. 

Figure 4.5 shows three repeats of a profile between the profile lines indicated on figures 

4.2 and 4.3. The scan was repeated three times to get a measure of the repeatability of 

the peak time constants. As clearly evident from the profile, the measured peak time 

constant of the agarose was very repeatable while the measurement of the tap water 

peak time constant was not quite as good. The agarose had a peak time constant of 
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99.5ms with a standard deviation of 0.4%. The tap water had a peak time constant of 

1875ms with a standard deviation of 1.9%. The agarose had a peak time constant within 

the range of brain tissue while the tap water has a peak time constant which was much 

longer but not far from cerebrospinal fluid (CSF). The peak amplitude profile is also 

highly reproducible. 

The time constant of the tap water is only a factor of 0.37 of the last echo. This 

put it above the ideal range of peak time constants to be measured with the MRR echo 

sequence used. From examination of figure 4.5 it can be seen that the variation in tap 

water peak time constant is correlated between adjacent pixels. This could be due to 

some combination of truncation artifact and small motions of the agarose tube in the tap 

water due to gradient vibrations in the scanner. 

4.3.2 N o r m a l Volunteers 

The 48 echo sequence was performed on two normal volunteers. Both volunteers gave 

similar results. 

Figure 4.6 show a 30ms conventional spin echo image from the 48 echo sequence from 

one of the normal volunteers. This image is similar of those acquired in a standard 

clinical scan. Figure 4.7 shows the amplitude of the monoexponential fit to the peak of 

the relaxation distribution for each voxel of the normal volunteer. Figure 4.8 is a peak 

time constant image calculated from the same data set as figure 4.6. Figure 4.9 is a profile 

through figures 4.7 and 4.8. From the profile, peak time constants for white matter range 

between 70 and 100ms. 

The profile more clearly displays the variation over the brain. The peak time constant 

image and the profile clearly show the noise to be quite low. 

The area between the relaxation distribution for each voxel and the peak 

monoexponential is presented as an image in figure 4.10. The dark area represents a very 
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Figure 4.6: Conventional spin echo image at 30ms from the 48 echo sequence for the 
normal volunteer. 
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Figure 4.7: Peak amplitude image of the normal volunteer. 



Figure 4.8: Peak time constant image of the normal volunteer with contrast between 
50ms and 125ms. 
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Figure 4.9: Profile of peak amplitude and time constant for the normal volunteer. 

good approximation of measured distribution by the peak monoexponential. Surprisingly, 

most of the voxels in the brain have distributions which are very well approximated by 

peak monoexponentials. The main exceptions being the CSF, internal capsule and, to a 

lesser extent, the splenium. The CSF's non-monoexponential nature is easily explained 

by flow artifacts. The characteristic is also evident in the MS patient considered below. 

Figure 4.11 shows the relaxation distribution and peak monoexponential fit for 

the caudate nucleus which figure 4.10 indicated was well approximated by a peak 

monoexponential. Examination of the relaxation distribution clearly shows how well 

the peak monoexponential approximates the measured relaxation distribution. 

Figure 4.10 shows that the internal capsule is the structure which is least well 

approximated by a peak monoexponential. Figure 4.13 shows the measured decay 

curves and relaxation distribution along with the peak monoexponential. Since the 

peak monoexponential did not do a good job of approximating the measured relaxation 

distribution, a biexponential was manually fitted to the relaxation distribution. This is 



Chapter 4. MRI Peak Time Constant Imaging in Multiple Sclerosis 99 

Figure 4.10: Image of how well the relaxation distribution each pixel is approximated by 
a monoexponential for the normal volunteer. The lower the pixel value, the better the 
approximation. The parameter imaged is the area between the relaxation distributions 
for the pixel and its monoexponential peak fit. 
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Figure 4.11: Relaxation distributions of the caudate nucleus for the normal volunteer 
including peak monoexponential. 
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Figure 4.12: Relaxation distribution of the splenium for the normal volunteer including 
peak monoexponential. 
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Figure 4.13: Decay curves and relaxation distributions of posterior internal capsule for the 
normal volunteer including peak time constant and biexponential fit. The biexponential 
fit has amplitudes of 4439 and 3217 and time constants of 148.9 and 39.3ms respectively 
while the monoexponential fit has amplitude of 6295 and a time constant of 95.5ms. 
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only one example of several biexponentials which could do a reasonable job of reproducing 

the internal capsule's relaxation distribution. 

It should be noted that comparing the relaxation distribution to a peak 

monoexponential fit is not very sensitive to large or small time constants. The PSF's 

in figure 4.1a shows the sensitivity drops off below 50ms and above 2000ms. The only 

way to improve this sensitivity while preserving linear resolution is to sample earlier that 

10ms for smaller time constants and later than 5.12s for longer time constants. For the 

MRR scans considered herein, the smaller time constants seem to be the main problem. 

4.3.3 M S patients 

The 48 echo sequence was also performed on four MS patients. One MS patient had a 

new lesion and was followed serially. The results presented here are for the MS patient 

that was followed serially but the range of TI and T2 time constants was similar in the 

single scans of each of the other three patients. Figure 4.14 show a 30ms conventional 

spin echo image from the 48 echo sequence for one of the MS patients. 

The prominent feature in Figure 4.14 is the lesion to the right side of the brain. 

The lesion consists of a core, a thin ring and a thick "doughnut" like structure which is 

possibly edema. But it impossible to determine if the "doughnut" is indeed edema from 

the conventional spin echo MRI scans. 

Figure 4.15 shows the peak amplitude image for the MS patient. The lesion core 

clearly has a lower signal than the adjacent white matter, most likely due to TI saturation 

since the time between the last 180 degree pulse and the next excitation pulse is 2.03s. 

Also visible in this image is so called "dirty white matter". It is white matter which 

appears altered from normal but does not appear as intense as a focal lesion. It is visible 

on both sides of the ventricle although only one side is labeled. 

Figures 4.16 and 4.17 show the peak time constant image at two different contrasts 
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Figure 4.14: Spin echo image at 30ms from the 48 echo sequence for the MS patient. 
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Figure 4.15: Peak amplitude image of the MS patient. 
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in order to show the structure of the lesion as well as the rest of the brain. The diameter 

of the lesion shown on this scan is about 20mm. It is interesting to note the "doughnut" 

surrounding the lesion core is barely visible on the peak amplitude image. 

Figure 4.18 shows a profile from figures 4.15 and 4.17. The core of the lesion has peak 

time constants ranging from 400ms to 430ms. The "doughnut" has a time constant of 

about 170ms. 

Figure 4.19 shows an image of the area between the measured relaxation distribution 

and the peak monoexponential for each pixel. As for the normal volunteer, most of the 

voxels in the brain have a near monoexponential relaxation distribution. Surprisingly 

this is also true within the lesion. An exception is the non-monoexponential nature of 

the dirty white matter. 

Figure 4.20 shows the relaxation distributions for four voxels from a variety of 

pathologies. All have relaxation distributions which are well approximated by a 

monoexponential. 

Figure 4.21 shows the relaxation distributions for grey, white and dirty white matter 

on the opposite side of the head from the lesion. The relaxation distributions of grey and 

white are almost identical. The dirty white has a clear non-monoexponential distribution 

with excess signal at long time constants. 

The MRI scans presented for the MS patient were completed as part of a serial study. 

In addition to the MRR sequence, the weekly scans consisted of a dual echo conventional 

spin echo with T E of 30ms and 90ms and TR of 2500ms and a Fast spoiled phase gradient 

recall (Fast SPGR) for acquiring a proton density image. The fast SPGR sequence used a 

gradient echo and had a flip angle of 20 degrees with a T E of 2ms and a TR of 20,000ms. 

The dual echo was acquired with 1 average and the Fast SPGR with 3 averages. The 

slice thickness of the dual echo and Fast SPGR was 5mm as compared to the 3mm for 

the MRR sequence but all slices had the same center. 
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Figure 4.16: Peak time constant images of the M S patient with contrast between 50ms 
and 125ms. 



Figure 4.17: 
and 2500ms 

Peak time constant image of the MS patient with contrast between 10ms 
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Figure 4.18: Profile of peak time constant for the MS patient. 
A MS lesion is centered at the pixel location of 120 pixels. CSF is located at 80 and 95 
pixels. 

A selection of the scans from the study is shown in figure 4.22. The new lesion was 

first observed in the week 0 scan. The week -5 scan was the most most recent prior scan 

of the site of the new lesion and only a dual echo was performed. 

The main trends over time are the disappearing of the "doughnut" surrounding the 

lesion core, the brightening of the lesion core on the peak amplitude images, and the 

darkening of the lesion core on the peak time constant images. 

The darkening of the peak time constant image is clear indication of the decrease of 

the heightened T2 value of the lesion with time. The proton density image of the lesion 

core stayed constant in intensity over time, although the bright area shrunk over time. 

The peak amplitude images show the lesion core getting brighter over time. This trend, 

combined with the constant intensity of the proton density, indicates the heightened T l 

of the lesion core is decreasing over time. 



Figure 4.19: Image of how well the relaxation distribution of each pixel is approximated 
by a monoexponential for the M S patient. 
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Figure 4.20: Relaxation distributions for voxels adjacent to the lesion in the MS patient. 
The "doughnut" relaxation distribution is slightly above and to the right of the relaxation 
distribution of the lesion ring. 
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Figure 4.21: Relaxation distributions for voxels on the opposite side of the brain from 
the MS patient. 
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Figure 4.22: Sample of weekly scans from the MS patient. 
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4.4 Conclus ion 

The new tools of the 48 echo sequence and the new way to calculate the relaxation 

distribution provided new information on the pathology in MRI scans. The peak 

amplitude and time constant are particularly promising but further work is needed to 

assess their usefulness. 

A surprising result of this study was that most voxels in an image had a relaxation 

distribution much closer to monoexponential than expected. This is in contrast to the 

published results that indicate a non-monoexponential of decay of some lesions measured 

as a whole. (Larsson, Barker et al 1998). However, as suggested in the literature, this 

non-monoexponential behaviour was probably due to the variation of the pathology of 

the lesion. The small voxel volume, 4.3mm3, used in the 48 sequence probably made the 

decay curves more monoexponential because, the larger the voxel, the more likely it is 

to contain a variety of pathologies. The small voxel size was in part possible because of 

the robust ability of the new way to calculate the relaxation distribution when noise is 

present. 

One of the major problems in assessing the effectiveness of any method for monitoring 

MS pathology in vivo is the general lack of direct knowledge of the state of the pathology 

at the time of the MR scan. If in even a few cases we knew the exact in vivo pathology 

at the time of the MR scan, it would provide a valuable way to calibrate both MRR and 

MRS measurements. 

The 48 echo sequence, because of its large number of echoes and TR of 7 seconds, 

takes about 30 minutes to run and only acquires a single slice. With more knowledge of 

the time constants of common pathologies it should be possible to reduce the time of the 

last echo and repeat time, thus speeding up the sequence. In addition, multi slice MRR 

sequences may also be possible. 
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In summary, MRR with a large number of echoes and the new method of calculating 

the relaxation distribution looks very promising as a way to obtain additional information 

about in vivo pathology non-invasively. 
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Chapter 5 

The M y e l i n Peak 

5.1 In t roduct ion 

The detection of a MR relaxation signal, believed to be due to the water 

compartmentalized in the myelin surrounding the axons in the human brain, has been 

reported in the literature (MacKay et al 1991, MacKay et al 1994, Whittall 1997). The 

algorithm used to calculate the relaxation distribution from the magnetic resonance decay 

curves was a regularized nonnegative least squares technique (NNLS) which produced a 

model which fit the data. The NNLS algorithm takes advantage of a priori information, 

information beyond that supplied by the data, to select one of the many models that fit 

the data. But there are many other models which fit the data for a given data set. The 

question is whether all the models that fit the data are consistent with the myelin peak 

or whether the algorithm used happened to pick a model which was consistent with the 

myelin peak hypothesis when other models were not. 

The function of the myelin in the brain is to increase nerve signal propagation 

velocities by ten to a hundred times. Demyelination in multiple sclerosis is responsible 

for conduction blocks or delays leading to disabilities. A robust technique for measuring 

myelin by MR would be a valuable tool in the understanding of multiple sclerosis. 

From anatomical studies the literature predicts a time constant for the myelin signal 

with in the range of 10 to 50ms but most likely around 15ms. Additional signal is 

predicted to come from the tissue in the 80 to 100ms and above range, based on in vitro 

115 
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NMR relaxation measurements. In vivo MR investigations of the myelin peak have been 

unable to localize its T2 time beyond limiting it to the 10 to 50ms window. Important 

questions to answer are (1) whether MR relaxation measurements can independently 

confirm the exisitance of the myelin peak, (2) what additional information we can learn 

about the peak and (3) how much a priori information can and should be invoked as 

part of the analysis. 

5.2 M e t h o d 

MR decay curves from a slice of human brain were measured in vivo. The CPMG sequence 

used to measure the decays had 48 echoes acquired on a 32x32 acquisition matrix with a 

220mm field of view and a 5mm slice thickness. The large voxel size was used to achieve 

high signal to noise ratio with the smallest possible volume. The first 32 echoes were 

spaced 10ms apart followed by 16 echoes at 100ms spacing. The sequence had a TR 

of 4s. The L l Fourier transform window described previously was applied to suppress 

truncation artifacts before zero filling to 128x128 and Fourier transforming. 

To calculate a relaxation distribution with sufficient linear resolution, an estimation 

matrix with a noise gain of at least 10 would be needed. The PSF, noise response 

and resolution function for the selected estimation matrix are shown in figure 5.1. 

The estimation matrix is invertible; thus, the relaxation distribution conserves all the 

information in the data. Therefore, once the estimate, its noise statistics and resolution 

functions are calculated the original data, data functions and noise statistics can be safely 

ignored and fits performed to regions of the estimate. 

The resolution functions for the estimation matrix clearly demonstrate that any signal 

in the 15ms region of the relaxation distribution will have little sensitivity to signals in 

the 80 to 100ms region. The resolution functions also have the desirable property of 
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Figure 5.1: PSF, noise response and resolution functions for an estimation matrix with 
32 echoes at 10ms spacing and 16 echoes at 100ms spacing. The noise gain had a value 
of 10. 

having nearly uniform logarithmic resolution in the 10 to 200ms range. The superior 

resolution of a higher noise gain estimation matrix would have been preferred but the 

signal to noise ratio of the decay curves was too low to implement such a matrix. 

To compare several methods that generate models that the fit the data in the literature 

to the estimation matrix results, the relaxation distribution of the decay curve for the 

posterior internal capsule (PIC) was calculated using several fitting methods. 

MacKay et al (1994) used a regularized form of the nonnegative least squares 
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algorithm (NNLS) to calculate a model that fit the data which, they believed based on 

prior experience, was similar in nature to the true model. The full details are described 

in Whittall and MacKay (1989) and Vavasour et al (1998). NNLS finds the nonnegative 

model which fits the data which has the smallest x2- The equation for x2 1S given in 

equation 1.5. For calculation purposes the model as composed a set of monoexponentials 

spaced at approximately 50 points per decade from 15ms to 10,000 ms and only the 

amplitudes of the monoexponentials were allowed to vary. 

The regularized from of NNLS (RNNLS) caps the x2 at a few percentage larger than 

the values given by NNLS for the same data set (Vavasour et al, 1998). Within this x2 

constraint the smallest L2 model is found by minimizing 

where the bounds a and b are the upper and lower time constants. The RNNLS model 

useful because it less sensitive to noise than the NNLS. Again the model was composed 

of a set of monoexponentials spaced at approximately 50 points per decade from 15ms 

to 10,000 ms and only the amplitudes of the monoexponentials were allowed to vary. 

Another common modelling method used in the literature is to sum a few 

monoexponentials. The x 2 is minimized while the amplitude and time constant of each 

monoexponential is allowed to vary. For the PIC decay curve 3 monoexponentials were 

found to yield a good fit. 

The fourth method, NNL4, found the smallest model in the L4 norm sense that fits 

the data within a reasonable x2- The goal of this model was to find a solution that was 

fairly flat. From the literature, a reasonable x 2 is defined to be the number of data points 

(Menke 1984). The PIC decay curve has 48 data points, therefore x 2 was capped at 48. 

Then the L4 norm, defined as 

(5.1) 

(5.2) 
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was minimized. Again, for calculation purposes, the model was composed of a set of 

monoexponentials spaced at approximately 50 points per decade from 15ms to 10,000 ms 

and only the amplitudes of the monoexponentials were allowed to vary. 

In related work, Vavasour et al (2000) added to the NNLS method the additional a 

priori information that the time constants of the decay rates may only be 20, 80, 120 

or 2000ms. While Vavasour et al made it clear that, although this additional four peak 

a priori information was imperfect, they felt the fitted amplitudes of the time constants 

were still informative. The additional a priori information was required because the 

decay curves they were analysing were too noisy for RNNLS. 

As an additional comparison of the performance of the linear resolution algorithm 

with RNNLS, six simulations were performed. The simulations were divided into two 

groups, one group per model, and three different signal to noise ratios, 50:1, 200:1 and 

1000:1 within each group. The first model was an idealized form of the signal from white 

matter. It was composed of two peaks at 20 and 80ms. The peaks had amplitudes of 

2000 and 18000 respectively in arbitrary units. The 20ms peak is intended to represent 

the signal from water in myelin while the main peak represented the signal from the rest 

of the tissue. 

The second model effectively had uniform intensity from 1ms to 10s on the logarithmic 

scale and is referred to as the flat model. It was generated by summing together 201 

monoexponentials uniformly spaced at 50 points per decade. The sum of the amplitudes 

of the monoexponentials was 20000, the same as for the white matter model. 

The decay curves were initially sampled at the same 48 time points as for the PIC. 

But results of RNNLS prompted the simulations to be repeated for only the first 32 time 

points. Estimation matrices with noise gains of 1.0, 3.2 and 10.0 were used to estimated 

the relaxation distributions from the decay curves signal to noise ratios of 50:1, 200:1 and 

1000:1 respectively. The resolution functions of the estimation matrices used are shown 
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100000 

Time Constant (ms) 

Figure 5.2: PSF, noise response and resolution functions for an estimation matrix with 
32 echoes at 10ms spacing and 16 echoes at 100ms spacing. The noise gain had a value 
of 3.2. 

in figures 5.1, 5.3 and 5.2. 

5.3 Resul ts 

Figure 5.4 shows the slice from which the decay curves were acquired but in higher 

resolution. Figure 5.5 shows the same slice acquired by the CPMG sequence with a 

32 x 32 acquisition matrix at the 30ms echo. The raw data was multiplied by the L l 

windows and zero filled to 128 x 128 before image reconstruction for display purposes. 
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Figure 5.3: PSF, noise response and resolution functions for an estimation matrix with 
32 echoes at 10ms spacing and 16 echoes at 100ms spacing. The noise gain had a value 
of 1.0. 
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Figure 5.4: Fast Spin Echo Image of selected slice with TE=34ms, TR=2200ms and 
256x256 acquisition matrix. 
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Figure 5.5: TE=30ms image from the 32x32 acquisition matrix CPMG sequence. Before 
reconstruction the raw data was multiplied by the L l window and zero filled to 128x128. 
The sampled pixels are located in the Minor Forceps (MIF), Head of the Caudate Nucleus 
(HCN), Putamen, Posterior Internal Capsule (PIC), and Major Forceps (MAF). The 
square in the lower left corner indicates the size of a pixel in the acquisition matrix. 
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Five decay curves were sampled from the 32x32 image shown in figure 5.5. Figure 

5.6 shows the decay curves and relaxation distributions for the putamen and the PIC. 

The relaxation distributions have a monoexponential fitted to their peaks as described 

previously. The PIC clearly has excess signal in the 15ms region as compared to the 

putamen. 

To accomplish proper analysis of the PIC decay curve in figure 5.6, a measure of the 

noise was required. This was accomplished by taking the standard deviation of the last 

10 points of the PIC decay curve yielding a value of 14.49. Since the decay curve contains 

the magnitude data, the noise in the last part of the decay curve was Raleigh in nature. 

Therefore the standard deviation must be divided by 0.655 to get the standard deviation 

of the corresponding Gaussian noise. This process yielded a standard deviation for the 

noise of 22.12. It should be kept in mind that the character of the noise is unlikely to 

be simply Gaussian since motion artifacts due to blood flow, among other sources, will 

produce partially time correlated noise. 

Application of the x 2 statistical test to the different between the putamen and the 

PIC at the peak point (p=0.02) and the 5 points near and at the peak, allowing for 

correlated noise, (p=0.0002) yielded a significant difference. From pathology studies it 

is known that PIC has a relatively high concentration of myelin whereas the putamen 

has very little. Figure 5.7 shows three more relaxation distributions. The major forceps 

and minor forceps have excess signal in the 15ms region while the head of the caudate 

nucleus has little signal. Again, the signals are consistent with their respective myelin 

concentrations. 

A similar statistical test applied to the negative signal region around Is in the 

relaxation distribution of the PIC in figure 5.8 showed the signal to be indistinguishable 

for zero. 

Since all the information in the original data is preserved in the estimate, we can fit 
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monoexponentials to part of the relaxation distributions to predict the signals that may 

compose them. The PIC relaxation distribution for figure 5.6 has a monoexponential fit to 

the peak of the distribution. It has an amplitude of 12952 and a time constant of 73.8ms. 

This monoexponential was subtracted from the PIC measured data leaving two peaks. 

The left peak, corresponding to the myelin, was fitted with a monoexponential with an 

amplitude of 1580 and a time constant of 12.1ms. The sum of the two monoexponentials 

are plotted on top of the original PIC distribution in figure 5.8. There is clearly a good 

fit to the data up to 100ms giving a good indication that the myelin peak is well modeled 

by a single exponential. 

Figure 5.9 shows an image of the signal at 14ms. This image was calculated by 

calculating the signal intensity at 14ms in the relaxation distributions for each of the 

pixels in figure 5.4. Again, the high intensity signal correlates with the myelin location in 

the brain, with a few exceptions. The bright regions on the outside of the brain correspond 

to fat. Three bright regions along the mid-line of the brain include regions with cerebral 

spinal fluid (CSF). The CSF may have been contaminated with flow artifacts and thus 

were not analysed. Note that the CSF is much easier to recognize on the high resolution 

images. 

Figure 5.10 shows five models that fit the data for the PIC decay curve. The x2 f ° r 

each of the five models indicate a good fit with the exception of the 4 peak NNLS model. 

The values of 157.12 indicates a poor fit. This is probably due to some inconsistency 

between the four peak a priori information and the data. 

All five model show signal in the 15ms peak region as predicted by the estimate with 

linear resolution. The sum of the in these regions are 1167 (NNLS), 1649 (RNNLS), 1220 

(L4) and 1692 (3 Monoexponential) and 2788 (4 peaks). The values for the the 4 peaks 

should be treated with caution because of the high x2-

Figures 5.11 through 5.16 show the results for the six simulations. The first three plots 
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Figure 5.6: Decay curves and relaxation distributions of two sample pixels from the 32x32 
acquisition matrix image. 
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Figure 5.7: Three additional relaxation distributions for three sample pixels for the 32x32 
acquisition matrix image. 
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Figure 5.8: Relaxation distribution for PIC (dotted line) with biexponential fit with 
amplitudes of 12952 and 1580 and time constants 73.8ms and 12.1ms respectively (solid 
line). Note that the distribution above 100ms is deliberately left unfit. 

Model Myelin Main 
or Peak Peak x2 

Estimate Amplitude Amplitude 
NNLS 1,667 16,568 36.90 
RNNLS 1,649 16,564 37.12 
3 Monoexp 1,220 16,729 45.06 
NNL4 1,692 16,434 48.00 
4 Peak NNLS 2,788 16,628 157.12 
Linear Res 1,580 14,532 undefined 

Table 5.1: Synopsis of estimate and models of the unknown data. The myelin peak and 
main peak for the linear estimate are from the monoexponential fits. 

of each figure show the first three realizations of the RNNLS analysis. The fourth plot 

shows the average of RNNLS results for the 1024 realization for each simulation. The fifth 

plot shows the linear resolution results for first realization of each simulation along with 

the 95% confidence interval due to the noise. The confidence interval was calculated from 

multiplying twice the standard deviation of the noise in the decay curve by the noise gain 

of the estimation matrix. Only one realization of the relaxation distribution is presented 

for linear resolution as opposed to three for RNNLS because linear resolution also has 

the associated resolution functions to convey information on the nonuniqueness of the 
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Figure 5.9: Image with time constant at 14ms from the same C P M G data set presented 
in figure 5.3. The image was calculated by using the 14ms signal for the relaxation 
distribution of each pixel. 
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Figure 5.10: Five fits to the PIC decay curve. The x2 are 36.90, 37.12, 45.06, 48.00 
and 157.12 respectively. Several peaks extend beyond the top of the plots. The largest 
peak for the NNLS solution has an amplitude of 11,116. The largest peak of the 3 
monoexponentials is 12258. The peaks at 80 and 120ms for the 4 peak NNLS solution 
have heights of 9,342 and 4,386 respectively. 
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results. 

Table 5.2 shows the results from the 1024 simulations for the myelin peak from the 

RNNLS and linear resolution for the three simulations with the white matter model. 

The standard method for calculating the amplitude of the myelin peak from the RNNLS 

is to integrate between 10ms and 40ms. This was done for all the realizations for each 

simulation. The 2.5, 50 and 97.5 percentiles from myelin amplitudes for each simulation 

were extracted and presented, with some simple arithmetic, as the average myelin peak 

and 95% confidence intervals. The time constant of the myelin peak in the RNNLS is 

not normally calculated because it is primarily determined by the lower bound of the 

RNNLS algorithm used. In the simulations the lower bound was set at the standard 

value of 15ms. 

Table 5.3 shows the results from the 1024 simulations of RNNLS for just 32 echoes. 

These additional measurements allowed the comparison of the effects of Rayleigh noise 

on RNNLS. Two myelin windows were applied to examine the effect of the different sizes 

on the myelin peak amplitude. 

The linear resolution myelin peak amplitude and time constant were calculated for 

each realization by first fitting a monoexponential to the main peak as explained in 

chapter 4. The fitted monoexponential was then subtracted off to leave the myelin peak. 

The myelin peak was then fitted with a monoexponential to yield its amplitude and time 

constant. The same method as for the RNNLS myelin peak was used to calculate the 

average and confidence intervals for the amplitude and time constant of the myelin peak. 

5.4 Discussion 

A major advantage of estimates with linear resolution over models that fit the data is 

demonstrated for the PIC decay curve in figures 5.6 and 5.10. Many estimates of models 
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Figure 5.11: White matter model simulation with 50:1 signal to noise ratio. An estimation 
matrix with noise gain of 1 was used for the linear resolution estimate. 
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Figure 5.12: White matter model simulation with 200:1 signal to noise ratio. An 
estimation matrix with noise gain of 3.2 was used for the linear resolution estimate. 
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Figure 5.13: White matter model simulation with 1000:1 signal to noise ratio. An 
estimation matrix with noise gain of 10.0 was used for the linear resolution estimate. 
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Figure 5.14: Flat model simulation with 50:1 signal to noise ratio. An estimation matrix 
with noise gain of 1.0 was used for the linear resolution estimate. 



Chapter 5. The Myelin Peak 135 

c 
o 
ca x 
J2 13 
oi 

c 

ca x _ca 
13 
Pi 

c 

ca x 
JS 
13 
OS 

c 

ca x 
et 
13 
Pi 

c o 
X 

JS 13 
Pi 

3000-

1500-

0-

3000-

1500-1 

0' 

3000 

1500 

0 

3000 

RNNLS 

llliii.. i .iilllllll 
Realization 1 

i , , ( 

RNNLS 

..illlllH.. -'lllllI 

Realization 2 

1 r i i 

RNNLS 

llllin ni ..iillllll 
! Realization 3 

1500-̂  

0-

5000-

2500-1 

0 

Jin 

195% confidence 

~i 
10 

RNNLS Average of 1024 Realizations 

I f i l l l l l i i i i i . ^ i l i 

Linear resolutions with noise gain = 3.2 

100 
Time Constant (ms) 

1000 10000 

Figure 5.15: Flat model simulation with 200:1 signal to noise ratio. An estimation matrix 
with noise gain of 3.2 was used for the linear resolution estimate. 
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Figure 5.16: Flat model simulation with 100:1 signal to noise ratio. An estimation matrix 
with noise gain of 10.0 was used for the linear resolution estimate. 
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Signal 
to 

Noise 

RNNLS 
Myelin 

Amplitude 

LR 
Myelin 

Amplitude 

LR 
Myelin 

Time Constant 
50:1 
200:1 
1000:1 

undefined 
1124±391±1144 

1766±84±237 

undefined 
2518±600±2222 
2233±241±747 

undefined 
18.5±5.5±90ms 
20.6±4.2±9.9ms 

Table 5.2: Myelin peak amplitudes for RNNLS and linear resolution as well as the time 
constant for linear resolution (LR) based on 1024 realizations of the noise for 48 echo 
sequence. The myelin window on NNLS was from 15ms to 40.4ms. The confidence 
intervals are for the 50% and 95% percentiles. The undefined entries indicate the results 
was not reproducible enough to determine a meaningful median or confidence interval. 

Signal 
to 

Noise 

15 - 40.4ms 
window 

15 - 51.8ms 
window 

200:1 
1000:1 

1448±519±1390 
1834±135±377 

1732±480±1410 
1834±135±377 

Table 5.3: Comparison of various myelin peak window sizes on RNLLS. Myelin peak 
amplitudes for RNNLS based on 1024 realizations of the noise. The confidence intervals 
are for the 50% and 95% percentiles. 

that fit the data for each decay curve are required to communicate to an interpreter 

what the data tells us and does not tell us about the unknown model. The five models 

presented are only a small sample of the range that could be generated and it should 

be kept in mind that one of the five has a large x2- While evidence of a signal in the 

15ms region is present in all five models, there could be other estimates which fit the 

data and do not have a signal in the 15ms region. We would need to calculate many 

more estimates that fit the data before we could be sure the data demanded a signal in 

the 15ms region. 

In contrast, the estimate generated by the invertible estimation matrix, combined 
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with the resolution functions and noise statistics, confirms the existence of the signal in 

the 15ms region with a single estimate and some statistical analysis. 

Why are there no errors bars on the models that fit the data plots? Error bars are an 

excellent way to present the nonuniqueness of a single random variable with a Gaussian 

distribution. They also works well for other single variable distributions that can be 

summarizes by a mean and a standard deviation. But if the distribution is multi peaked 

error bars will be much less effective, and perhaps misleading, in communicating in the 

information. 

The x2 fit to the four peak model is several times larger than ideal. This indicates 

there is some inconsistency between the four peak assumption and the data. Vavasour 

et al report good success with this a priori information. That is probably because they 

were dealing with much noisier data. This an example which demonstrates a priori 

information is not always helpful. 

For the relaxation distribution the non negative a priori information has strong 

experimental evidence to back it up. Both in NMR relaxation and spectroscopy, a 

wide range of systems produce positive only distributions. But I think it is telling 

that in spectroscopy, the standard procedure for estimating spectra is the windowed 

Fourier transform which preserves linear resolution and does not invoke any non negative 

assumptions. Any a priori information is usually then invoked to analyze the spectrum. 

An example of this is Provencher's LCModel method (1993). Using an invertible 

estimation matrix to estimate a relaxation distribution provides a similar option to 

multiexponential analysis - an option that was previously unavailable. 

The simulation of the white matter model and the flat model provide insight into 

the comparison of the RNNLS and linear resolutions algorithms. While the white matter 

model is highly simplified it is somewhat indicative of the respective sensitivity of the two 

algorithms to the ideal myelin peak. The RNNLS algorithm performed slightly better. 
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But both algorithms took advantage of the knowledge that the model being composed 

of two peaks to come up with a better estimate of the myelin peak parameters. 

One interesting characteristic of the performance of RNNLS is the effect of the change 

in the number of echoes and the myelin window. From comparing tables 5.2 and 5.3 fewer 

echoes gave a myelin peak amplitude closer to the correct value of 2000. This is counter 

intuitive since the less information should not improve the quality of the results. But the 

later echoes have virtually zero signal and are thus dominated by Rayleigh noise. This 

Rayleigh noise is apparently confusing the RNNLS algorithms degrading the estimate of 

the myelin peak amplitude. 

The effect of increasing the myelin window upper limit from a value of 40ms to 52ms 

was examined. Not surprisingly, as table 5.3 shows, the value of the RNNLS myelin peak 

amplitude increased for a signal to noise ratio of 200:1. But it did not increase for the 

1000:1 signal to noise ratio. This is probably due to the 20ms and 80ms peaks being well 

separated at high signal to noise. 

While the white matter model gave an indication of sensitivity of the respective 

algorithms, the flat model gave an indication of their specificity. The RNNLS algorithm 

consistently produced a false "myelin peak" at approximately 15ms even through the 

true model was completely flat. In contrast, the linear resolution estimate was flat with 

the signal dropping off at each end as would be expected from the resolution functions 

associated with the respective estimation matrices. This result is consistent with the 

hypothesis that linear resolution is less likely to give misleading results. 

5.5 Conclusions 

The relaxation distributions in figures 5.6, 5.7 and 5.9 show a signal in the region of 

15ms which corresponds to the regions in the brain with high myelin signal. This is 
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strong evidence that the signal in the 15ms region is associated with myelin because the 

relaxation distributions were generated by an invertible estimation matrix with sufficient 

linear resolution to resolve a signal in the 15ms region from the other signals present. A 

monoexponential fitted to the myelin signal had an amplitude 12% of the main peak and 

was located at 12.1ms. This is similar in value to the myelin peaks in the four models 

that fit the data with good x2 fit-

The myelin peak also demonstrated the advantages of estimates which have linear 

resolution and conserve the information in the data over models the fit the data, in 

particular. The linear resolution algorithm only required one relaxation distribution to 

summarize all the models that fit the data. Monoexponentials could then be fitted to 

the regions of the relaxation distribution of interest and the other areas could be ignored 

because independence of the information at difference time constants due to the linear 

resolution. In addition, the simulations demonstrated the the linear resolution method is 

less likely to see peaks, such as the "myelin peak" detected by RNNLS in the flat model, 

that are not there. 
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A p p e n d i x A 

Lens G r i n d i n g Software 

During my thesis a great deal of time and effort went into writing software to implement 

several resolution criteria for various applications. This appendix details several of the 

procedures I used and developed to aid in the implementation. 

All the resolution criteria in this thesis was expressed as a constrained objective 

function to be optimized. I chose the simple penalty method as the optimization 

algorithm because it was simple, straight forward and could handle linear and nonlinear 

constraints. When combined with the conjugate gradient method (Press et al, 1992), 

the simple penalty method was computationally fast and was also efficient it in its use of 

memory. Memory requirements go as 0(N)-{-0(M) where N is the number of coefficients 

in a digital lens, which corresponds to the number of data points, and M is the number 

of points the model space has been discretized into. 

A . l Termina t ion conditions 

Termination conditions for optimization code is a difficult problem. Terminating too 

early will results in the resolution criterion not being properly satisfied. Terminating 

too late wastes computer time. I leaned toward terminating later rather than earlier 

because the quality of the digital lenses generated was more important than computer 

time because the main purpose of this thesis was to assess the usefulness of digital lenses. 

There were 3 nested converging sequences that required termination criteria; (1) the 

simple penalty method, (2) the conjugate gradient method (Press et al 1992), and (3) 

142 
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the I D optimization (Press et al 1992). The normal criterion for terminating the I D 

optimization was if the functional value did not decrease by a certain fraction each step. 

The fraction was usually set to 1 0 - 8 . There was also a step limit of 1000 on each I D 

optimization to prevent infinite or unproductive near infinite loops. 

Both the conjugate gradient and simple penalty methods used a slightly more 

complicated termination criterion than the I D optimization. They terminated when 

the function value failed to improve by a certain factor for a specified number of 

consecutive steps. Requiring a consecutive number of failures-to-converge should make 

the convergence more robust under roundoff error. The conjugate gradient method used 

a factor of 10~ 7 and a limit on consecutive failures of 25. The total number of iterations 

was also limited but this limit was application dependent. The simple penalty method 

had a factor of 1 0 - 6 and a limit on consecutive failures of 4. 

A . 2 Object ive Functions 

The most general form of the resolution criterion objective function, as given in Chapter 

2, is 

where W(x) is the weighting function and R(x) is the resolution criteria. Some resolution 

criteria may drop the absolute value sign around the resolution function. When the 

resolution function is discretized it can be expressed as 

The above equation was used to calculate the objective function for most of the 

applications in this thesis. 

If r = 1 and the resolution function is constrained to be nonnegative or does not 

require the absolute value of the resolution function, then the objective function can be 

( A . l ) 

Q = Y,W(xk)\R(xk)\r. 
(A.2) 

k 
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calculated directly from the coefficients of the digital lens, a,-, 

Q = TtWjOjaj. 
j 

where Wj is calculated by 

Wj = j:gjkW(xk) 
k 

and Oj is calculated by 

Oj = Yl9jk5kk-
k 

The matrix gjk is the discretized form of the data functions. 

A . 3 Smoothing the Objective Functions 

Finding the minimum of equation A . l can be problematic if 0 < r < 2. This problem is 

because the the first derivative of 

z = \y\r (A.6) 

is discontinuous at y=0 in such a way as to form a notch for 0 < r < 2. The conjugate 

gradient method, when applied to the sum of a series of functions with this notch, such 

as equation A.2, easily gets caught in one or more of the notches. The discontinuity can 

be confirmed by differentiating equation A.6 for y < 0 and y > 0. 

This problem was remedied for 0 < r < 2 by replacing the notch for small value of y 

with the function 

z = P*y2 (A.7) 

where P is the penalty amount from the simple penalty method. This replacement 

function rounds out the bottom of the notch so the conjugate gradient method does 

not get caught in it. The transition point between equation A.6 and A.7 can easily be 

calculated by substituting one equation into the other. As the simple penalty method's 

via the equation 

(A.3) 

(A.4) 

(A.S) 
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penalty, P increases, the range of value of y for which the equation A.7 replaces equation 

A.6 automatically reduces. 

At the transition point between the two functions, the replacement function is steeper 

than the original function. This insures the conjugate gradient method does not get 

caught at the transition. The replacement function should always be steeper than the 

original function at the transition point. If r > 2 then the replacement function should 

use a power which is positive integer multiple of 2 which is large enough to insure the 

replacement function is always steeper than the original function at the transition point. 

This procedure dramatically improved the speed and stability of the convergence 

of the objective function. For example, the truncation artifacts problem considered in 

chapter 2 has only linear constraints and a linear objective for some of the resolution 

criteria. Therefore, the digital lens could have been solved using the simplex method, 

the standard algorithm for solving linear programming problems (Press et al 1992). I 

considered that possibility and found it to be grossly inefficient. For example, the memory 

requirements for the simplex method would be O(NM). In contrast, the simple penalty 

implemented in this thesis required O(N) + O(M) as mentioned earlier in this chapter. 

A . 4 A l g o r i t h m i c Efficiencies 

Several special properties common to all the resolution criteria were exploited to speed 

up the code. 

The linear transform for the trial digital lens to the trial resolution function must be 

computed a large number of times during an optimization which is an computer intensive 

process. The relationship between the digital lens and the resolution function is always 

linear. This linearity can be used to greatly reduce the number of times the resolution 

function has to be directly calculated from the digital lens. 
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The conjugate gradient method reduced the multidimensional optimization problem 

down finding the lowest value of the objective function along a series of lines in parameter 

space. The scalar parameter c was varied along a line with direction Therefore, for 

the trial digital lens a n, the line was 

O n = < + c<. (A.8) 

Because of the linearity, a similar equation could be written for the corresponding trial 

resolution function Rm, 

Rm = R°m + cd^ (A.9) 

where 

R°m = <9nm (A. 10) 

and 

C = da

ngnm. (A.ll) 

Therefore, along each line of optimization, the linear transform from the trial digital lens 

to the trial resolution function only needs to be calculated twice, instead of once for every 

value of c considered. This can result in a many fold reduction in the conjugate gradient 

calculation time. 
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