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Abstract ii 

A b s t r a c t 

This thesis examines the interaction of both bosonic- and superstrings with 

various backgrounds with a view to understanding the interplay between 

tachyon condensation and world-sheet conformal invariance, and to under­

standing the d-branes that overlap with closed string modes. We briefly 

review the development of both background independent string field the­

ory and cubic string field theory, as these provide insight into the problem of 

tachyon condensation. We then develop the boundary state and show that in 

backgrounds of interest to tachyon condensation the conformal invariance of 

the string world-sheet is broken, which suggests a generalized boundary state 

obtained by integrating over the conformal group of the disk. We find that 

this prescription reproduces particle emission amplitudes calculated from the 

string sigma model for both on- and off-shell boundary interactions. The 

boundary state appears as a coherent superposition of closed string states, 

and using this a method for calculating amplitudes beyond tree level is de­

veloped. The interaction of closed strings with other backgrounds is also 

discussed. An extension of the boundary state to encode fields other than 

a gauge or tachyon field is described. A modification of the boundary state 

which encodes the time dependence of tachyon condensation is reviewed, and 

an examination of spherically symmetric tachyon condensation in the 1/D 

expansion is presented. 
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Preface viii 

P r e f a c e 

This work investigates a number of aspects.of the interplay between the 

conformal invariance in string theory and interaction terms confined to the 

boundaries of the string world-sheet. A brief synopsis of some of the theoret­

ical basis for the work is presented in chapter 2, while chapters 3 and 4 have 

sections of extensive overlap with, respectively, [4, 69, 70] and [54], works on 

which the author collaborated. 
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Chapter 1. Introduction 1 

C h a p t e r 1 

I n t r o d u c t i o n 

Max Born was attributed, in 1928, with the statement that 'Physics, as we 

know it, will be over in six months'. [59] This confidence was reportedly based 

on the recent discovery of the Dirac equation describing the electron, and the 

assumption that a similar equation could be found for the proton. Indeed, 

the spectacular success in the development of quantum theory to describe 

the emission spectrum of hydrogen, the work functions of metals, and the 

radiation of black bodies, as well as previous triumphs such as Maxwell's 

theory of electricity and magnetism can be seen as justifying that optimism. 

It may, without much exaggeration, be asserted that most of the progress in 

the discipline over the past century has been related to the quantum effects 

that govern exactly those particles of which Born was speaking, and that 

quantum mechanics forms the cornerstone of our current understanding of 

the physics of the small. Few physicists today would be willing to suggest 

that their discipline will be solved in short order, and many of the more 

pessimistic will suggest that the best we can ever hope to do is achieve 

some effective field theory description of the world. They would point to 

the difficulty quantizing gravity, and the success of the Standard Model in 

predicting and describing the results of most particle scattering experiments, 

and might perhaps suggest that the vein of fundamental discoveries accessible 

to us is played out, nearly exhausted. We take a more optimistic attitude, 

and so we ask the indulgence of the reader as we briefly touch on some of the 

major developments in the field of physics over the past hundred years and 

allude to the current state of knowledge. It is bur hope that this will serve 
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to put the work contained within this thesis into perspective, both as to its 

interest and its applicability to future developments within the field. 

The early years of the century were marked by two developments that 

forced radical changes in the way the world was perceived. The first was 

the exposition of the theory of relativity which, for the first time, put the 

concepts of time and space on an equal footing and predicted apparently 

counterintuitive effects such as length contraction and time dilation for ob­

jects moving close to the speed of light. It was vindicated in many tests such 

as the precession of the perihelion of Mercury and the aberration of stars' 

light by the sun. The second was the discovery of the quantum nature of 

atoms, which facilitated an explanation of the spectra of the elements and 

compounds. 

Coming close upon the heels of the initial understanding of the quantum 

nature of atoms was the discovery of the constituents of the nuclei, protons 

and neutrons, and the tantalizing hint of more particles through clues such as 

/3-decay and the observation in cosmic ray experiments of particles interme­

diate in weight between the nucleons and the electron. The promise of more 

'fundamental' particles was realized in a number of accelerator and reactor 

experiments in the early 1950s, with the discovery of strange particles and 

neutrinos, and the identification of the muon as a lepton with similar proper­

ties to the electron (see [53] for a review). As the number of particles known 

to physicists increased, so did the ability of physicists to make sense of their 

interactions. Between experiments which revealed the internal structure of 

the hadrons and mesons and others which sought to understand weak decay 

processes, a picture emerged of three families of particles, interacting with 

a spontaneously broken 5(7(3) x SU(2) x U(l) gauge group. This picture 

which was greatly strengthened by the discovery in the early 1980s of the W 

and Z bosons [12-14], and the t quark in the 1990s [1]. 

Simultaneously, the understanding of the large scale structure of the uni-
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verse has undergone a revolution in the past hundred years. It was originally 

observed in the 1920s that distant galaxies recede from us faster than the 

nearby galaxies. This observation admits the interpretation that we live in 

an expanding universe. The discovery of the cosmic microwave background 

in the 1960s was a window into an epoch when the universe was both hotter 

and denser than it is now. The powerful modern telescopes give a window 

into the past by allowing us to understand the formation of galaxies and 

the evolution of the universe. The history and evolution of this universe is 

also explored by calculations like big bang nucleosynthesis, which predicts 

the abundances of the light elements to great accuracy. In addition, recent 

precision measurements of the cosmic microwave background [23, 63] give 

insight into the small fluctuations in density that were the seeds for the large 

scale structure of the universe. 

It appears that there exists a consistent and complete understanding of 

the world we live in. Many of the masses, couplings, and mixings of the 

Standard Model are known or measured, and the observed scattering pro­

cesses are by and large calculated to better that 1% accuracy. We have a 

model of the early universe that makes use of our knowledge of nuclear pro­

cesses, predicts the abundances of elements, and offers an explanation of the 

observed spectrum and describes the fluctuations in the cosmic microwave 

background. The dynamics of large objects are described very well by classi­

cal general relativity which has also been tested in an astrophysical setting by 

watching the decay of rotation time for binary pulsars. In short, a large va­

riety of physical processes on many scales are well known and well described 

by current understanding. 

However, there are, just as there were one hundred years ago, a num­

ber of gaps in our understanding that may well provide windows into new 

and exciting regimes and effects. One particle not yet observed to complete 

the description of the Standard Model is the Higgs boson, and its absence 
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raises a question, is it truly a fundamental particle, distinguished as the only 

such scalar in nature, or does its mass-generating effect come from a more 

complicated mechanism such as technicolor? Recent observations have dis­

covered masses and mixings between the species of neutrinos, which are not 

predicted in the Standard Model [2, 3, 42]. Recent cosmological observations 

have shown two facts that are very interesting, that the matter content of the 

universe accounts for roughly 30% of its observed energy density, with the 

other 70% coming from so-called vacuum energy [87], and further that the 

familiar particles from the Standard Model represent only a small fraction 

of the matter content of the universe, a fact previously suggested by data on 

galactic rotation curves [37]. In addition to this there are serious suggestions 

that gravity might be testably modified, both at the sub-millimeter level, 

and at length scales much greater than the size of our galaxy [35]. 

While this list is far from a comprehensive exposition of all the current 

areas of research, it suffices to give the impression that there are a number 

of very interesting and currently unresolved issues in the field. In a very real 

sense the discipline of Physics is currently at an exciting crossroads where it 

is possible to get precision experimental information about the parameters 

in a number of theories spanning orders of magnitude in size and energy. 

However, as many of the fundamental questions about the nature of the 

universe are laid open to inspection and resolution by diligent work, other 

questions arise to which the answers are not currently known. 

A concrete question that is often asked is whether the current known 

particles exhaust the spectrum ofthe theory describing the world, and there 

are many currently popular suggestions. It may be that the world exhibits 

broken supersymmetry, in which case for each known particle there will ex­

ist a superpartner with identical charges and couplings, and many theorists 

expect that the lightest of these superpartners is a viable candidate for the 

dark matter that affects galaxy rotation curves [39]. Another possibility is 
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that there may exist a larger gauge group which unifies the existing particles 

and couplings, but is broken at some higher scale. The simplest forms of such 

a grand unification which sees-57/(5) break to-57/(3) x SU(2) x U(l) have 

been experimentally ruled out, and the related supersymmetric models have 

been strongly constrained [8, 38], but larger groups have not. The breaking 

of a large enough group could result in matter in a 'hidden sector', which is 

to say light matter that is uncharged with respect to the matter we are made 

of, but which may couple at higher energies through interactions mediated 

by massive particles much like the leptoquarks in standard GUTs. 

Other intriguing scenarios have been proposed as well [10, 18, 83]. A 

prominent recent theme being the existence of extra dimensions in addition 

to the three spatial and one time dimension so familiar from everyday expe­

rience. This idea has a number of interesting consequences, the first being 

that for extra dimensions with a very small spatial extent, wrapped up on 

themselves (compactified), there could very well be an infinite number of 

new particles which are massive partners of the known particles coming from 

the Fourier modes of the known particles around these compact dimensions. 

Equally well, larger, but still small, compact extra dimensions have been 

proposed [9] which give a natural way to interpret the relative weakness of 

gravitational interactions as compared with the other forces of nature. These 

and similar ideas have given rise to a number of scenarios in which large, or 

even non-compact extra dimensions are invoked with the assertion that our 

universe resides on some topological feature which describes a subspace of 

the extended space. In addition to all of these things, a large body of work 

describes the attempts to quantize gravity (for example, [11, 16, 30, 47, 82]), 

which is currently a classical theory. 

There are thus a large number of directions in which physical research can 

progress, adding more particles to the theory of the universe with interactions 

described by larger groups, adding extra dimensions to space and observing 
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their effect, examining dynamics on a topological defect in this larger space, 

quantizing gravity. To try to do any one of these is a non-trivial task, and 

it would appear that to attempt to do many simultaneously would be much 

more difficult, but there has emerged over the past decades a physical the­

ory that can apparently address all of these called 'String Theory'. String 

theory can naturally accommodate many of these directions, it can describe 

gravitons, it can have particles with complicated gauge interactions, it must 

describe a world with more dimensions than our familiar space and time. For 

all this, there is a challenge, that many of the descriptions of string theory 

have a tachyon, a particle that travels faster than light. We neither see nor 

expect such a particle, and to explain why it is not present is a challenge that 

many have undertaken. In this thesis, we discuss a possible mechanism that 

explains the absence of the tachyon, and also can explain why we observe 

less dimensions than the number one might expect from string theory. This 

mechanism is tachyon condensation, and the details presented later show how 

it can force particles to inhabit a small subspace within a higher dimensional 

volume. 

We will now present a brief overview of string theory, both with a view 

to narrative exposition, and with a view to fixing some conventions (for the 

most part following [51, 52, 78, 79]) that will be used later in this work. 

Field theories are naturally concerned with point-like quanta and so a 

natural generalization is to ask how to quantize extended objects. These 

would have a generalization of a world-line with more than one dimension. 

For a point-like object the action is the proper length of the world-line swept 

out by the propagation in space and time, and for a one dimensional extended 

object the natural action is the surface area swept out by its propagation in 

time. This area can be calculated as an integral over the world sheet of 

the positions of each point along the sheet in space and time, which will be 
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Figure 1.1: A representation of world-sheet interactions between open 

strings. On the left two open strings, tpi and fo, a r e propagating. 

(The previous positions of the two strings are indicated by the 

regions diagonally above and below fo and fo respectively.) In 

the center they interact by connecting at one end, and on the 

right they propagate as a single string, fo * fo which encodes 

the particle information in both of the original strings. This can 

also be thought of as a series of incomplete pictures of the string 

world sheet, the first showing only the portion with t < t0 — e, 

the second showing the portion t < t0, and the third t < to + e, 

where io is some measure of the time coordinate where they ap­

pear to merge, and e is some small constant, and target space , 

time increasing on the horizontal axis. 
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regarded as fields in what follows. The action is given as 

(1.1) 

where X^ is the position of some point of the world-sheet in space and time, 

the string world-sheet has a metric ha^ and h is defined as the determinant 

of hal3. The pair of coordinates denoted a parameterize the world-sheet, arid 

g^v is the space-time metric, which is generically a function of the position. 

This action has both Weyl and reparameterization invariance and these can 

be used to eliminate the world-sheet metric from this equation [51]. It is also 

possible to add a term proportional to the two dimensional Ricci scalar R, 

but this is purely a total derivative and, while not important in determin­

ing the spectrum of this theory, and it is possible to see that this term is 

responsible for the coupling constant that governs the string loop expansion, 

because up to a constant this term evaluates nothing but the Euler number 

of the string world-sheet. As mentioned the reparameterization can elimi­

nate the metric and this gives a sigma model action for the Xs, which is free 

when expanding around Minkowskian space. It can also be shown that not 

specializing to g^v —> n^ will give the spacetime gravity action and stringy 

corrections that vanish in the limit of large string tension [51]. 

In the free case, which is of interest for perturbative calculations, it is 

possible to make a Laurent expansion of the modes of X^, observing that 

the right and left movers decouple in the bulk of the string world sheet. 

The conformal invariance of the string world sheet can be used to fix a flat 

metric and then it is possible to Wick rotate from a Minkowskian signature 

to a Euclidean signature through the transformation a° —)• ia2 [51]. The 

left and right movers can be expressed in terms of the holomorphic and 

antiholomorphic coordinates (z and z) on the Euclideanized world sheet using 

(1.2) 
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the expansion [78] 

-l^ + ^n). (1.3) 
m \ zm zm J K J 

In the following the terms holomorphic and antiholomorphic will be used 

interchangeably with left and right mover. When quantized the commutation 

relation between the Fourier modes of X is 

[< ,<] = a ^ a + M [a* a£] ;= iTtfa+6,0 (1.4) 

In the same way the Fourier coefficients of the two-dimensional energy mo­

mentum tensor can be written in terms of these as, and for the holomorphic 

part we find 

n oo 

where : { } : denotes the normal ordering of any expression within { }, 

which is moving the creation (negatively moded) operators to the right, and 

the dot represents contraction with respect to the Lorentz indices and cto is 

proportional to the momentum. An identical expression for the antiholomor­

phic Ls can also be written. Since the energy momentum tensor is traceless 

it appears that all the Lms should annihilate the physical states, however this 

strong condition would eliminate the spectrum of the theory, so the condi­

tion is relaxed to be that positively moded Ls will annihilate physical states. 

This coincides with the choice of positively moded as as the annihilation 

operators, and also imposes that physical states are eigenstates of Lo with 

eigenvalue a. Further, the Ls obey the Virasoro algebra 

[ L m , L n ] = (m - n) Lm+n + 8m+nfiA(m) .' (1.6) 

where the A(m) is the central charge which turns out to be proportional to 

the dimension of space-time, which is the number of world-sheet fields Xs. 
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Furthermore, it was briefly discussed above that the spacetime metric 

is expanded around the Minkowskian metric, which gives rise to a particu­

lar difficulty due to its negative signature, namely that there may be some 

excitations in the spectrum which have a negative norm. It is not difficult 

to show, demonstrated in [51, 78] that the condition for eliminating these 

negative norm states is equivalent to a condition on the number of Xs and 

on the value of a. It turns out that the number of dimensions for the bosonic 

string must be either 2 or 26, and the value of a in units of the string ten­

sion a' is fixed to —1 when the dimension is 26 [51]. The consequences of 

this are interesting to investigate. First the spectrum of this theory is built 

from a Fock space vacuum with the as and as, and it must satisfy level 

matching conditions,'-as well as conditions on the polarization tensors for the 

various states which are obtained by requiring that the positively moded Ls 

do annihilate the state. The ground state of this theory is tachyonic, as it 

has negative mass squared, and the massless state consists of a symmetric 

traceless tensor, an antisymmetric tensor, and a trace term. These may be 

identified as a graviton, some gauge field, and a dilaton. This appears to 

be both good and bad, because while a particle exists with the appropriate 

quantum numbers for a graviton, the tachyon mode intimates an instability 

in the vacuum, which will be explored more later in this work. 

Secondly, there are a number of extraneous degrees of freedom in the 

bosonic string, as witnessed by the restrictions on possible polarization ten­

sors for the various excited states. One way to accommodate this is to work 

in so called light cone gauge where two directions are singled out as distinct 

and only oscillations transverse to those are permitted to propagate [49]. 

While very effective at reducing the number of degrees of freedom and en­

forcing the no-ghost conditions, this has the price of eliminating the manifest 

Lorentz invariance of the theory. There is a more elegant way to compensate 

for these extra degrees of freedom, and that is to introduce ghost fields in the 
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manner of Fadeev and Popov to the string action, as exemplified in [80, 81]. 

These will be a pair of anticommuting fields, b and c with conformal weights 

2 and —1 respectively whose action term 

Sb<c = Jd2abdc (1.7) 

These can also be broken into holomorphic and antiholomorphic degrees of 

freedom, and satisfy anticommutation relations 

{cn, bm} — O~m+n,0 

{bm,bn} = {cm,cn}. = 0. (1.8) 

Their fermionic nature gives a contribution to the determinant of the path 

integral which cancels the contributions of two of the X fields. Naively 

these ghosts appear to add to the number of possible Fock space excitations, 

but there, is now an additional constraint, that the physical states must be 

annihilated by an operator composed of these ghosts, namely the BRST 

operator Q [22] 

Q = E :
 (L-m + lL"-m ~ «*m) Cm '. (1.9) 

with 

Lb£ = YJ,™ ~ n)bm+nc-n (1.10) 
n 

The constraint is then that Q + Q must annihilate a physical state. This can 

be thought of as analogous to a gauge condition, that just as in the case of 

an Abelian gauge theory the transformation —>• A^ + d^X for some scalar 

function A leaves the field strength F invariant, the BRST transformation 

|0) —> \4>) + (Q + Q)\tp) will result in a state that'is still annihilated by the 

BRST operator even if \ip) is not, because Q is nilpotent. 
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This is an attractive picture so far, but to mimic nature there is still a 

need for fermions charged under gauge groups and the corresponding gauge 

bosons in the spectrum. The simplest way to add fermions to the action is 

to generalize to a supersymmetric theory on the world-sheet [51]. The result 

of this is that the action changes 

S -* Sbosonic + J d2ai^padafo (1.11) 

where p is the world-sheet 7 matrix, and ip is a two dimensional Majorana 

spinor which can be decomposed into holomorphic and antiholomorphic parts 

which decouple. The convention which will be used for the Laurent expansion 

of the tp field into modes (following [79] ) is 

^ = E~S .(1-12) 
n 

where n is either an integer or a rational number of the form n = 2 m + 1 for 

integer m. This condition occurs the boundary conditions on the fermions 

impose that fermion bilinears are single valued. The anticommutation rela­

tions which arise are 

{ < , « = » r W n , 0 '(1.13) 

The choice between integral and half integral modes for the fermions arises in 

the following way in the case of open strings. We require that the boundary 

variation vanishes which in. turn implies the equality of certain holomorphic 

and antiholomorphic fermion bilinears, and this means that on the boundary 

the fermions are equal up to a sign, and the relative sign between the bound­

aries determines whether the fermions can admit a zero mode. In the case 

.of closed strings the same considerations apply, only the choice.of periodic 

and antiperiodic is independent for tp and -0, with the periodic sector known 

as the Ramond (R) sector and the antiperiodic as the Neveu-Schwarz (NS) 
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sector [79]. These periodicities have the consequence of producing space-time 

fermions because the zero modes in the Ramond sector carry a representa­

tion of a Clifford algebra. This can be seen by examining equation 1.13 and 

noting that acting on any state in the Fock space will not change the 

eigenvalue of that state under action by LQ. 

The addition of the new fermionic term to the string world sheet action 

has the following consequence, that there are additional parts in the two 

dimensional energy momentum tensor, coming from the fermions, and also-

a sort of superpartner for this, the Noether current for non-constant super-

symmetry transformations over the world-sheet. In terms of modes these are 

[51]. 

LM - » 7_C + X- (r + y ) : for • V w : (1.14) 
. r 

Gm = ^ Ci-r • 4>m+r. (!-15) 
r 

where the sum is implicitly over integers or half integers as appropriate for 

the sector of the theory. The Virasoro algebra remains unchanged, but there 

are additional terms that must be calculated 

[LM,GN] = ( ^ - n ) G m + n • . • (1.16) 

{Ga, Gb} = 2La+b + B(a)Sa+bfi (1.17) 

where as in (1.6) B(a) is a central charge. The physical states are annihilated 

by the positive modes of these currents (and in the R sector, the zero mode 

of G). 

Again, it is possible to reduce constraints such as the imposition of the 

light cone gauge by the introduction of commuting ghost fields with conformal 

weights | and — | , 0 and 7. These will be integrally or half integrally moded 

as appropriate from the fermionic sector, and contribute to the operators L, 

G, and Q in a well known way. 
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A similar exercise to that performed in the case of purely bosonic string 

reveals that the critical dimension is 10, and that depending upon whether 

the string is in the NS or R sector (for left and right movers) there is a 

different ground state energy. Between this and level matching it is possi­

ble to determine the spectrum in each of the sectors: for the case of both 

left and right moving NS sectors, there is a tachyon, massless modes with 

quantum numbers matching those of the graviton, Kalb-Ramond field, and 

the dilaton, in addition to the spectrum of massive modes [51]. When both 

left and right movers are in the R sector there is no tachyon but a massless 

field that transforms with two spinorial indices under Lorentz transforma­

tion. In the sectors where the left and right moving fermions obey different 

boundary conditions level matching makes the lowest state massless and it 

has both vector and spinor indices, making it a combination of spin | and 

spin | . The number of fields described here is apparently too many to fill a 

supergravity multiplet, but more sophisticated analysis reveals that there is a 

condition which reduces the spectrum, the GSO projection [48], which gives 

supersymmetry by projecting out particles of a given chirality. At the level 

of interacting theories it is necessary to have a number of different combi­

nations of left and right moving boundary conditions and GSO projections. 

This construction reveals essentially two types of spacetime supersymmet-

ric theories, those that are chiral and non-chiral (respectively IIA and IIB 

theories). 

Any orientation in string theory would be incomplete without mention of 

another class of theories, the heterotic string theories. The fact that the left 

and right movers decouple makes it possible to write different theories for 

the left and right movers. In the heterotic theories the left moving degrees 

of freedom are written as fermions which obey some internal symmetry [55, 

56]. Consistency requires that there be 32 such fermions, and further that 

they either all obey the same boundary conditions (in that case there is an 
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Figure 1.2: The modulus space of string theory, which consists of the five 

known perturbative string theories, and M theory. The edges on 

the figure represent duality transformations which will map one 

theory, usually at strong coupling to another at weak coupling, al­

lowing perturbative calculations in one to probe non-perturbative 

effects in the other. 
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SO(32) symmetry), or half obey one set of conditions and half obey the 

other, and when properly projected this theory has gauge group E% x E8. 

For these theories, the index from a left moving fermion is a gauge index, 

and the theories both have a symmetry group large enough to be broken to 

the Standard Model. 

There remains one small difficulty: the world neither exhibits ten dimen­

sions nor supersymmetry, nor these large gauge groups, and it is another 

matter to further constrain the theories to give a good simulation of the 

particles seen now. This is obtained in many ways, all essentially similar in 

that.they force several dimensions to have another topology to that of the 

real axis, they are either periodically identified, or identified under reflection, 

or both, and this has the effect of breaking the large number of symmetries 

of the system. It is these techniques that allow the various string theories 

outlined to be related to one another. There is a famous 'web' of dualities 

that allow one theory compactified in a certain way at strong coupling to be 

related to another at weak coupling with a different compactification. 

From this overarching framework, in this thesis we concentrate on the 

problem of tachyon condensation. In a number of the string theories de­

scribed there is a tachyon in the spectrum: The state which is annihilated by 

all positively moded oscillators. Since tachyons are not observed in nature 

this indicates that the naive Fock space vacuum we have chosen to expand 

around is not the true ground state of the theory. The naive Fock space 

vacuum is the one, identified above, which is annihilated by all positively 

moded Virasoro generators L, and by all positively moded as and 4>s. By 

contrast, the operational definition we choose for the 'true ground state' is 

one where all the excitations have positive semi-definite mass squared, elim­

inating tachyonic modes. We must therefore attempt to describe the ground 

state of the theory. This problem is commonly addressed in string field the­

ory, of which there are two principal types. Theiirst is the open string field 
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theory [97, 98, 104, 106] which concerns itself solely with interactions at the 

string's boundaries. The second is the cubic, Chern-Simons like, string field 

theory [103] which consists solely of a kinetic term for the string field and 

a cubic interaction vertex. For each of these, the problem is the same, to 

describe what happens to the open string degrees of freedom as the tachyon 

condenses. From the world-sheet point of view it is possible to consider the 

following picture of what is happening: The volume in which open strings 

can end describes a d-brane. As the tachyon condenses the number of di­

mensions of this brane decreases, and the final stage of the condensation is 

a state in which the brane has been reduced to a point and the two ends of 

the open string coincide. This gives rise to closed strings, so at the endpoint 

of tachyon condensation only closed string degrees of freedom remain, and 

there are also predictions for the height of the tachyon potential [91]. 

As noted in [68] it is difficult to reproduce the properties of tachyon 

condensation in the cubic string theory because the calculations involve in­

teractions of an infinite number of fields whose mass can be arbitrarily high. 

It is possible in some cases to investigate the structure of cubic string theory 

using techniques such as level truncation [77, 100]. This method yields re­

sults which tend to agree with those expected for some quantities, such as the 

vacuum energy of the condensate, but it remains unclear why the procedure 

works and whether level truncation is generally applicable, considering that 

there is no natural small parameter being expanded in. 

In this thesis we study tachyon condensation within the framework of the 

open string field theory better known as 'boundary string field theory'. The 

idea is to consider backgrounds that interact with the boundary of the string, 

and analysis suggests that there is a set of coordinates on 'the space of all 

string .fields' [68] that is better suited to the study of tachyon condensation. 

Further from the point of view of the world-sheet the tachyon condensation 

is described by a renormalization group flow from the UV, where the open 
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strings end on d-branes, to the IR where only closed string degrees of freedom 

persist. 

Here we formulate a boundary state in order to reproduce string sigma 

model amplitudes. This is constructed by modifying the definition of the 

boundary state [26] to include an integral over conformal reparameteriza-

tions. This boundary state then encodes the effect of these conformal repa-

rameterizations, and is useful for many circumstances such as computing d-

brane tensions, cylinder amplitudes, and looking for the gravity, counterparts 

of d-branes [32, 34]. In the operator approach to string perturbation the­

ory the boundary state contains the couplings of closed strings to a d-brane. 

This method gives an algebraic approach for calculations, and it suggests a 

method to generalize to higher loops, which reproduces the known results for 

the annulus. 

The plan of the thesis is as follows. In Chapter 2 we introduce both 

boundary string field theory and cubic string theory, and we also describe in 

the language of boundary string field theory how to obtain actions for the 

fields which parameterize the boundary interactions. The discussion of cubic 

string field theory is intended to illustrate another approach to the prob­

lem of tachyon condensation which has offered some concrete evidence of the 

dynamics and end point of this process, and to stand in contrast with the 

methods used in subsequent chapters. In Chapter 3 we develop the 'bound­

ary state' describing the boundary interactions that parameterize tachyon 

condensation. This state is a generalization of that discussed in [26], and 

it correctly reproduces the sigma model amplitudes for emission of closed 

string states. It is also a description of a state which is at neither fixed 

point of renormalization group flow and so interpolates between Neumann 

and Dirichlet boundary conditions. We also show that this boundary state 

can be used to reproduce known partition functions for boundary fields at 

the closed string tree level in the case of conformal invariance, compare with 
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recent work on the definition of boundary string field theory at open string 

one.loop level, and speculate on the applicability to more complicated sur­

faces. We also briefly develop boundary states for the world-sheet fermions 

ofthe superstring and the (super)conformal ghosts. In Chapter 4 we present 

some other calculations related to the question of tachyon condensation. We 

write a boundary state describing non-local boundary interactions [74]. We 

also summarize some recent work on time dependent tachyon condensation 

to show the general applicability of the boundary state method, and inves­

tigate the issue of spherically symmetric tachyon condensation. Chapter 5 

we conclude and mention some ideas for future directions of research, and 

certain calculational details have been relegated to Appendices A and B. 
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C h a p t e r 2 

S t r i n g F i e l d T h e o r y 

A classic problem in string theory is to understand how the background 

space-time on which the string propagates arises in a self-consistent way. 

For open strings, there are two main approaches to this problem, discussed 

below, cubic string field theory [103] and background independent string field 

theory [97, 104]. 

The latter approach is defined as a problem in boundary conformal field 

theory, and the analysis begins with the partition function of open-string 

theory where the world-sheet is a disc. The strings in the bulk are consid­

ered to be On-shell and a boundary interaction with arbitrary operators is 

added. The configuration space of open string field theory is then taken to 

be the space of all possible boundary operators modulo gauge symmetries 

and the possibility of field redefinition. Renormalization fixed points, which 

correspond to conformal field theories, are solutions of classical equations of 

motion and should be viewed as the solutions of classical string field theory. 

Despite many problems which are both technical and matters of principle, 

background independent string field theory has been useful for finding the 

classical tachyon potential energy functional and the leading derivative terms 

in the tachyon effective action [44, 68, 101]. Boundary field theories which 

can be used to study tachyons are the subject of the a large portion of the 

presented work. 

The existence of a tachyon in the bosonic string theory indicates that 

the 26-dimensional Minkowski space background about which the string is 

quantized is unstable. An unstable state is likely to decay and the nature of 
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Figure 2.1: Tachyon Condensation: This schematic representation shows the 

idea behind tachyon condensation, that the tachyon is indicative 

of an instability in the perturbative vacuum. The perturbative 

(Fock space) vacuum is defined at the maximum of V(T), and 

as the (open string) tachyon T rolls toward the minimum of its 

potential V(T) it represents a decay of the space filling brane. At 

the minimum of the tachyon potential only closed string degrees 

of freedom survive. 
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both the decay process and the endpoint of the decay are interesting questions 

[77]. Recently, some understanding of this process has been achieved for the 

open bosonic string. The picture is that elaborated by Sen [91, 92], that the 

open bosonic string tachyon reflects the instability of the d-25 brane. This 

unstable d-brane should decay by condensation of the open string tachyon 

field. The energy per unit volume released in the decay should be the d-25 

brane tension and the end-point of the decay is the closed string vacuum 

[36, 57, 68, 91]. There are also intermediate unstable states which are the 

d-branes of all dimensions between zero and 25. 

These considerations are generally stated in the following way, that the 

tachyon field has a potential of the form 

where f(T) is a function of the tachyon field which is both universal and 

independent of the field theory describing the d-brane, and M is the mass of 

the d-brane for vanishing tachyon field. Further, the potential is defined with 

an additive constant such that at its minimum, T 0 , it cancels the mass of the 

d-brane [92]. With these conventions the tachyon potential can be written 

The conjectures about the dynamics of tachyon condensation also contend 

that at the minimum of the tachyon potential the corresponding brane system 

is indistinguishable from that where there is no d-brane [90, 92]. This is to 

say that the open string degrees of freedom have condensed to leave only 

closed string modes. 1 

V(T) = Mf(T) (2.1) 

V(T) = M{l + f(T)) with 1 + / (T 0 ) = 0. (2.2) 
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2.1 Background Independent String Field 
Theory 

In this section we review the basic formalism of background independent off-

shell string theory because they will be of some use in the motivation of the 

subsequent work on the boundary state. This review follows very closely the 

work presented in [97, 104-106] and, for concreteness, focuses on the tachyon 

field, although the results are much more general. It was first demonstrated 

in [104] that in an attempt to define a Lagrangian in the 'space of all open-

string world-sheet theories' we discover that the boundary interaction on the 

string world-sheet is constrained in a certain interesting way. In particular 

we find that the classical equations of motion which are derived from S, the 

Lagrangian on the space of possible interactions, are equivalent to BRST 

invariance of the theory on the string world-sheet. Further we find that if it 

is possible to decouple the matter and the ghosts in the world-sheet theory by 

a gauge condition on the boundary interaction, then the equations of motion 

in that particular gauge are equivalent to conformal invariance, and that the 

infinitesimal generators of a gauge transformation are the BRST operators. 

The result from all of this is that if matter and ghosts are decoupled then 

the on shell action S for the particular interaction is equal to the partition 

function of the world-sheet matter. [106] 

2.1.1 Bosonic String Case 

The starting point for this analysis is the string action with both bulk and 

boundary terms 

In this equation SQ is the standard action on a closed string world sheet 

(2.3) 

(2.4) 
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and we have already specialized to the case of flat metrics on both the world 

sheet and a Minkowskian (or Euclidean) metric on space-time. The terms 

b and c are the standard anticommuting ghosts from the quantization of 

bosonic string theory: Similarly Sbdy is a local boundary term made up of 

both the bosonic fields and ghost terms on the string world sheet and so can 

be written 

= f V. (2.5) 
JdM 

In particular the boundary operator V satisfies 

Sbdy 
'dM 

V = b_10 (2.6) 

where b is a ghost field and O is some combination of fields of ghost number 

one [104]. The reason for this choice stems particularly from the Batalin-

Vilkovisky formalism [20, 21], and can be summarized in the following way. 

In this treatment we consider the string world-sheet as a super-manifold with 

a U(l) symmetry, referred to as a ghost number symmetry in the literature 

[104]. For this kind of manifold the defining characteristic is a structure OJ 
which is a non-degenerate fermionic two-form that is closed; u> can be thought 

of, and has been motivated in the literature as a fermionic symplectic form. 

With this symplectic form it is possible to define a Poisson bracket on the 

space 

and in terms of this bracket the Master equation for the action is {S, S} = 0. 

In this definition of the Poisson bracket the us are local super-coordinates. 

It is also possible to define a vector field V (notice that it is distinct from 

V the boundary interaction term) which is a contraction on the symplectic 

form satisfying 

V K u K L = ~ S (2.8) 
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and in this case S need not satisfy the Master equation. This condition is 

equivalent to (with indices suppressed) 

Vu = dS. (2.9) 

Now, under a diffeomorphism such as 

u L ^ u L + eVL (2.10) 

the two-form u> transforms as 

UKL -> OJKL + e [VMdKojML + dKVMujML) (2.11) 

but since cu is closed we have dui = 0 and then V generates a symmetry of u> 

if d(VMujML) — 0. This also implies that for a given vector V it is possible 

to construct an S that will give the required V according to the definition 

above. It is also possible to write the two-form as 

UJ = <j> delde2{o{e1)o{e2)) (2.12) 

for some basis of operators O of appropriate ghost number, and with (...)• 

denoting an expectation value calculated through the usual path integral 

weighted by the string action. It is possible to decompose a particular vector 

in terms of these bases and we find that 

dS = ^9^62^0(6^0(62)). (2.13) 

Thus for the special case of choosing the vector V as the BRST operator 

dS = j d81d82(dO(61){QBRST,0(92)}). (2.14) 

Now we can specialize to a particular theory that contains the germs of 

generality. In particular we note that the matter part of V can be Taylor 

expanded in the bosonic field X as 

V = T ( I ) + ^ ( I H I " + V W + - (2.15) 
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and we now restrict our attention to the tachyon field, term, T(X). We also 

note in passing that later in this work the All(X)dgXii term, which gives rise 

to a background gauge field, will also be important. A particularly simple 

solvable model is that of the quadratic tachyon 

= ( 2 ' 1 6 ) 

i 

This model was originally considered [106] because it was a simple quadratic 

model, and therefore exactly solvable. The addition of non-zero U;S corre­

sponds to a breaking of translational invariance, and because the term adds 

a potential energy to the zero mode of the string the strings oscillations are 

limited to a finite volume, and in the limit of a particular u —> oo the string 

end is fixed to a particular point in the space in which it is embedded, and we 

will argue later that this provides an interesting model to describe a d-brane. 

(This model can easily be generalized to the more general quadratic term 

JJilvXilXv and this is often desirable if additional background fields are also 

being considered.) For this interaction term we note that the ghost fields 

decouple, and so the world sheet action can be, written as 

s=L**x'Bx-+L»{^&)- (217) 

After some manipulation [106] (presented explicitly in section 3.2.4) we can 

find the partition function for this world sheet models 

z = e-a[Jv^r(«i). (2.18) 
i 

Note that this differs from the result found in [66] by a factor relating to 

the normalization of the zero modes. It is also possible to note in passing 

that there are several good features of this function that are suggestive of 

it playing a role similar to the action for a space-time theory. First note. 

that for any individual u the function goes as 4= for u —> e > 0. This 
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arises because u plays the role of localizing the function near X — 0, iri 

fact it is remarked elsewhere in the literature that u interpolates between 

Neumann and Dirichlet boundary conditions. (A convenient way to see this is 

in the bosonic component of the boundary state written in (3.10) and (3.11) 

go between the the boundary states for Neumann and Dirichlet boundary 

conditions [26, 34] as U goes from 0 to co.) This implies that the divergence 

near u = 0 can be interpreted as associated with the derealization of the 

string over the volume of spacetime. Also, the expression for the world sheet 

partition function has divergences when u < 0, reflecting the fact that in 

that case the world-sheet action is not bounded below. 

Now, following the previous derivation in (2.14) and explicitly writing the 

dependence of the fields X on the boundary coordinate 9, we find that 

Now, use the fact that (as in [104, 106]) the derivative with index i refers to 

the parameters within the tachyon field, and we have 

Including the ghost contribution, and using both the explicit form of the X 

two point function, and the relationships 

dS = & d91d92(T{X)(91) (1 + e%) T{X)(92)). (2.19) 

(2.20) 

(2.21) 

(2.22) 

it is easy to obtain 

dS = di ^UiZ 
H^dU-j

z+il+a)z 

i 

(2.23) 
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This is equivalent to obtaining the action for the boundary fields 

Z (2.24) 

where $ is the /3-function for the ith coupling A1, which is a parameter of the 

boundary interaction terms. This way of looking at the effect of terms on 

the string world sheet boundary will be particularly useful while considering 

the boundary state in subsequent sections. 

2.1.2 Superstring Case 

There have been several attempts to generalize the method given above to 

the superstring [67, 68, 76], and we give an account of one of them here [76], 

which has the consequence of proposing a modification to the boundary field 

action (2.24). The proposal for the action is 

where S0 is the usual bulk action of the RNS superstring, including both the 

bosonic and fermionic ghosts, 

with b, c and (3, 7 anticommuting and commuting ghosts respectively. The 

second and third terms of (2.25) can be thought of as the perturbation due 

to the addition of the field on the boundary. Explicitly they are given as 

(2.25) 

S = 

(2.27) 

with the defining relation for F, 

F = n + 9F (2.28) 
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where n is a fermionic component of the boundary action, and F is a bosonic 

component, and 6 is a supercoordinate on the string world sheet. Finally, 

the derivative operator D is defined as 

D = de + 6d\\ (2.29) 

on the boundary of the string world sheet. The subscript || refers to the 

tangential orientation with respect to the boundary while de is a Grassmanian 

derivative. O is also identified as the lowest component of a world-sheet 

superfield, \I> satisfying 

= 0 + 6G-1/20. (2.30) 

The proposal for the string field action, in analogy with the development 

leading up to (2.14) is to write the two form OJ as 

1 C drdr' 
OJ(0^ Oe) = -<j> — ( O M O ^ ) ) (2.31) 

where the contribution from the conformal ghosts has been suppressed for 

clarity (as in (2.21) and (2.22)) as well as the factors appropriate to the 

inclusion of bosonized fermions e~^ which are appropriate for the (-1). picture. 

Similarly we can write 

1 f drdr' 
dS=lf ^~(Mr) {QBRST, V(T')}> (2.32) 

which completes the analogy with equation (2.14). 

As discussed in [58, 67] the superfield which describes a tachyon profile is 

tf = TT(X), (2.33) 

so following their argument.we get 

O = iiT(X) (2.34) 

so it is easy to show that 

G- i /20 = FT(X) + 1>afidaT(X). (2.35) 
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Inserting these expressions and integrating we obtain 

Sr+ [ G_l/20 = -!- fdTd6(p + 8F) (de + 8dl{) {u + 9F) 
JdM 2"1J J 

+ ~ f dr(FT(X) + rpdAT(X)) 

/

dr 
— {F2 + nd^u + FT(X) + r»daT(X)). 

(2.36) 

It is immediately apparent that integrating out the auxiliary field F will give 

a term like e~T2 in the partition function. This is appropriate because the 

tachyon profile T used in the superstring case is analogous to the square root 

of that used in the previous section. 

Two cases are of special note in the literature, the first is the case of the 

constant tachyon, in which, again up to ghost contributions we find that 

{QBRST,PT(X)}<XT(X) (2.37) 

and upon integration of the various rnodes we have 

dS = - - T d T e - ^ 2 

2 

- d(e~-<T2) ' (2.38) 

and since Z oc e~^T2 we find upon integration S = Z. For the case of a linear 

tachyon 

T(X) = u^X* (2.39) 

the calculation is somewhat more involved, but the result is known [76], 

and can be summarized in the following way. The world sheet action (2.36) 

includes a term linear in p now and with a field redefinition to account for 

this 

\-jrVdvT (2.40) 
2d,, 
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the integral becomes simpler in terms of the redefined field, but there is now 

a term of the form ib-k-ib in the action. It is well known how to show that 

the expression for dS becomes [76] 

dS = ~{X2 + iP±-^)Z(y)dy (2.41) 

where y = v?. However, since 

^ = > 2 + ̂ > ( 2 ' 4 2 ) 

we have that the world-sheet partition function is equal to the action for the 

boundary field. 

2.2 Cubic String Field Theory 

In addition to the discussion of background independent string field theory 

above, another important motivation for the discussion of tachyons and other 

string fields comes from understanding cubic string field theory, and the 

recent conjectures of Sen [24, 91, 96] about the condensation of open string 

tachyons. This brief review draws heavily on lectures on cubic string field 

theory delivered at TASI-2001 by Taylor and Zwiebach [99, 100, 107]. This 

method is interesting in the context of this thesis for two reasons. The 

first reason is that it provides a distinct and independent check on the ideas 

describing the condensation of tachyons, and the final state of this decay. The 

second is that the coherent states that can be used to describe the product 

of string states resemble those which we will detail in constructing boundary 

states, and that similar manipulations can be performed on both. 

Cubic string theory is an attempt to treat string theory as a field theory, 

with a. kinetic term and a cubic, Chern-Simons like, interaction term. The 

string fields are constructed by operating creation operators on a vacuum, 

and since there are an infinite number of such possible interactions it is 
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possible to think of string field theory as an interacting field theory with an 

infinite number of massive particles in its spectrum. The recent interest in 

cubic string field theory can, in large part, be traced to work [85] on the 

conjectures recently raised by Sen [89, 90], which address the question ofthe 

bosonic open string tachyon in the following way. 

• In analogy with the Higgs mechanism familiar from the study of the 

Standard Model, the bosonic open string tachyon can be thought of as 

an instability of a space filling D-brane. 

• There exists a locally stable minimum of the. tachyon potential, and 

around that minimum there exist no open string excitations. 

• That the height of this potential is given by = ^r> where g is the 

string coupling constant, and V is the volume of space time. 

These conjectures appeal to our physical intuition and are under active in­

vestigation. 

We start with the proposal by Witten [103] for a cubic string field theory 

action, particularly. 

where ip is an open string field, g is the string coupling Constant, * is a 

product on the space of string fields, and Q is an operator which is roughly 

A number of properties that are important in the realization of the theory. 

First, with respect to ghost number, the * product is additive, which is to 

say that if 

where G$ is the ghost number of the string field ip. In a similar way to this, 

the operator Q adds one to the ghost number of the field: 

(2.43) 

analogous to a derivative operator (in fact it will be the BRST operator). 

fo * fo = fo -+ - G^i + (2.44) 

Qi/> = fo -> GV = 1 + (2.45) 
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and the integration picks out the components of the integrand which have 

ghost number 3, 

Jip = 0 V V : G V ^ 3 . (2.46) 

To avoid difficulty with boundary terms, it is desirable for the integration to 

vanish for total derivatives 

j Qxp = 0 V V- (2-47) 

There are further properties motivated by thinking of Q as an exterior deriva­

tive. The first is that Q is nilpotent (satisfied for the BRST operator in the 

critical dimension), secondly a Leibnitz rule for the Q operator 

Q(il>i*ih) = ( W * ^ 2 + (-i) G*^i*Q^2, (2.48) 

and also a commutativity condition 

J ipi*ip2 = ( - l ) G * i + G * a J ^ 2 * V i . (2.49) 

It is also interesting to note that under the analog of a non-Abelian gauge 

transformation tp —>• ip + 5tp subject to 

Sip = QA + g (ip * A - A * ip) (2.50) 

and GA = 0, the cubic string field theory action is invariant. 

The Fock space which the bosonic string fields inhabit is defined by the 

general state 

Jl«^m . . .c_ n . . .6_ f c . . . |0) (2.51) 

where the . . . refer to any arbitrary insertion of oscillators similar to the 

preceding a, c, or b. The a oscillators come from the quantizing of the 

bosonic X field and the b, c are the ghost fields. These have the property 

that on the Fock space vacuum [51] 

. &n|0) = 0, n > -1 

cn|0) = 0, n > 2 

an|0) = 0, n > 1 (2.52) 
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and «o is the momentum operator. It is well known that it is possible to 

write both the BRST operator and the Virasoro generators in terms of the 

raising and lowering operators a, b, and c, 

QB = ^2°nL-n + ̂ 2 m

 2

 n '• cmCnb-m-n • - C o (2.53) 
n mn 

where the matter part of the Virasoro generator is given by 

Lk=\Y,:ak-n^n-+a5k0 (2.54) 

n 

with a a normal ordering constant associated with the mass-shell condition 

for the strings as in (1.5) and (1.9) Given this information it is relatively easy 

to explicitly construct Fock space states which have inner products with the 

string fields which satisfy all the enumerated requirements for the integral. 

For the 'kinetic' term of the string field theory action we need to construct a 

state which is the tensor product of two such Fock spaces because the string 

fields each carry a raising operator Fock space. In particular it can be shown 

that the state 

<J2| = ydp ( (p ,p | i®(0 ,p | 2 )exp 
n=l 

- E 
....1 

(2.55) 
n=0 

is a representation of the integral. In the above, note that the operators 

numbered 1 and 2 operate on their respective ground states only. We note 

in passing that this is tantalizingly similar to the boundary states to be 

discussed in chapter 3, in that it is a coherent superposition of independent 

Fock spaces. In a similar manner it is possible to construct a state which 

is a tensor product of three Fock spaces to represent the integral for the 

interaction term, schematically given by 

(I 3| = jdp{$Mi ® <0,p|2 <8» (0,p|3)exp [-a®NijaW - c^Xi3b^] (2.56) 
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Level # Fields V/T25 

(P,o) 1 -0.685 

(2,4) 3 -0.949 

(4,8) 10 -0.986 

(6,12) 31 -0.995 

(8,16) 91 , -0.998 

(10,20) 252 -0.999 

Table 2.1: Level truncation in string field theory. The term V/T25 would be 

— 1 to confirm Sen's conjectures. [100] 

where the oscillator indices have been suppressed, and the terms Njj and 

Xij are known [100] and of similar form to the terms in (I2\. At this point, 

in principle it is now possible to calculate all terms and contributions to 

the cubic string field theory action. This approach has not been applied for 

arbitrary excitations because there are an infinite number of terms in the 

expansion of the string field and the number of terms at each level increase 

very quickly. 

This problem has been approached with some success [77] using level 

truncation. The general idea of this method is to include only states up to 

some finite level in both oscillators and the sum of the level numbers for 

those oscillators. A complete exposition of this interesting field of study 

is well beyond the scope of this discussion, however we pause to note that 

this line of research has yielded some compelling 'experimental' evidence in 

favor of the famous conjectures about the minimum energy of the open string 

tachyon. 

To illustrate the method of level truncation we perform explicitly the 



Chapter 2. String Field Theory 36 

calculation at the lowest level. The potential can be written as 

V = dijW + 9*^2 W W (2-57) 

where dij and Ujk can be calculated, g is the string coupling constant of 

equation 2.43, and K is chosen to be K — V&/26 so that t m = 1. [99] With 

this convention we find that for the ansatz 

<^=-|0) (2.58) 
9 

we obtain 
112 t3 

V = -;-2- + K9-3 (2-59) 2g2 g3 

and inserting the value for K we get the equation that must be satisfied for 

t to find an extremum of the string field theory action is 

o9/2 

- * + ̂ r* 2 = 0 (2-6°) 

and solving for t and substituting into (2.59) we obtain 

3 1 0 g 

and since the tension of the d-25 brane is -̂4-2 their ratio is —0.685 as 

mentioned in Table 2.2. 

There is another way to examine the cubic string field theory, which is 

equivalent to that described above, but offers a more geometric picture of 

the construction. It is to represent the star product as a functional integral 

over the fields of the string world sheet. Explicitly, because of the decoupling 

between the matter and ghost sectors of the string, it can be written for an 

open string world sheet with width 7r as 

(V>i * ^2) [z(o-)) = / IJ dy(T)dx(n - T) 
^ Irs 

x 

0<T<TT /2 

n 5 [x(f) - y(n - f)] Vi [X(T)] V2 [y(r)} (2.62) 
7r/2<f <7T 
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Figure 2.2: Cubic String Field theory integration: this schematic diagram 

outlines the three string field interaction. The string world-sheets 

are conformally mapped onto the unit disk, with the boundaries 

forming triangular wedges as indicated, with identification along 

the boundaries. The arrows indicate the two steps involved in 

the process, first identifying boundaries of the open string using 

the * product, and then mapping the resulting world sheet to a 

disk using residual conformal invariance. 

subject to the identification that 

x(a) = z(a), 0 < a < ^ 

.V{°) = \ < ° < (2-63) 

This can be thought of as joining the right half of one string to the left half 

of another to make a single string. A similar expression to (2.62) can be 

found for the integral over string fields, and again because of the decoupling 

the matter integral is 

/ V>= / II dx )̂ II &[x{a)-x(TT-a)\rl)[x(a)}. (2.64) 
J J 0<cr<n 0<cr<7r/2 

Similar to (2.62) being thought of as gluing the left and right halves of their 

respective strings together the integral (2.64) can be thought of as gluing 
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the left and right halves of the same string together with this S function 

interaction. This is illustrated for the cubic interaction term in Figure 2.2, 

and the residual conformal invariance of the string world sheet is used to map 

the semi-infinite string world sheets to a disk, with vertex operator insertions 

containing the asymptotic description of the open strings. 
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C h a p t e r 3 

B o u n d a r y S t a t e s 

In this chapter we use the boundary state formalism for both the bosonic 

string and the superstring to calculate the emission amplitude for closed 

string states from particular d-branes and show that the amplitudes are ex­

actly those obtained from world-sheet sigma model calculations. We find 

that the construction of the boundary state automatically enforces the re­

quirement for integrated vertex operators, even in the case of an off-shell 

boundary state. Using the boundary state and a similar expansion for the 

cross-cap, we produce higher order terms in the string loop expansion for the 

partition function of the backgrounds considered. 

3.1 Introduction 

The study of off-shell string theory has been addressed many times in the 

literature within the context of background independent string field theory 

[97, 98, 104-106] which has been the subject of a considerable amount of 

interest in that it can provide useful information about the properties of un­

stable d-branes [44, 46, 68]. Despite this there are several subtleties that have 

been examined, and in particular a great deal of effort has been expended 

in determining an action for a tachyon field coupled to a bosonic string [5-

7, 15, 28, 29, 44-46, 66, 68, 84, 102], and while great progress had been made 

the understanding of higher loop effects is incomplete at best. 

The boundary state for the superstring was first examined in [26] and the 

overarching idea of the system is to produce a state that vanishes when the 
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boundary conditions, acting as operators, act on it. This state is then sup­

posed to reproduce the overlap with closed string states, and if the surface 

upon which the strings end and have their boundary conditions is regarded 

as a dynamical object with fields upon it, the amplitudes for the emission of 

various closed string states determine the stringy self-interactions, the brane 

coupling to bulk fields, and the brane-brane interaction by string exchange. 

A source for a great deal of the formalism is [32, 34] and this idea has been 

generalized to non-quadratic interactions in, among other places, [86, 93-

95]. The principal focus of this chapter is to first develop the boundary 

state for the case of a background tachyon field and a background constant 

Abelian gauge field strength, then examine the effect of world sheet coordi­

nate reparameterization invariance upon these states, and finally to examine 

and explore a way in which the boundary state could be used to generate 

amplitudes more complicated than simply tree level closed string exchange. 

The general form of the boundary state is particularly simple for the case of 

quadratic boundary interactions, precisely because they are an exactly solv­

able model, and while more general interactions are discussed in Chapter 4 

and in [85, 95], in this section the emphasis is on conformal properties, and 

for the moment we restrict attention to the quadratic case. 

Since the bosonic and fermionic world-sheet oscillators, as well as the 

conformal ghosts, do not have non-trivial (anti)commutation relationships 

it is possible to decompose the boundary state into the direct product of 

boundary states \B) for the bosons and fermions respectively, 

where M is a normalization constant which generically depends upon the 

various background fields which appear as coupling constants in the string a 

model. In addition to this property, the (b, c) and (/?, 7) ghosts do not interact 

with any of the fields on the world-sheet boundary and so in a sense these 

(3.1) 
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contributions are trivial, and do not contribute to the amplitudes other than 

as a multiplicative factor which reproduces the known, conformally invariant, 

free case. There are a number of constraints that the boundary state must 

satisfy in order to encode physical degrees of freedom [26, 34], specifically 

which is to say that it is BRST invariant. The strategy espoused here to 

determine the boundary state will be to examine in detail, in the next few 

sections, the bosonic string in particular backgrounds, and then look at the 

fermions and ghosts in a similar manner. 

A tractable problem within this genre is the study of the off-shell theory in 

the background of a quadratic tachyon profile, a problem that is similar in 

spirit and detail to the examination of string theory in the background of a 

constant electromagnetic field [40]. In the following we combine these natu­

rally compatible studies using the boundary state formalism [4, 19, 25, 31-

33, 41, 70, 72, 73]. It allows us to calculate the probability for a topological 

defect which supports these quadratic fields to emit any number of closed 

string states into its bulk space-time. The loss of conformal invariance in­

troduced by the background tachyon field is naturally accommodated by a 

conformal transformation which induces a calculable change in the boundary 

state. This new boundary state can be shown to reproduce the sigma model 

expectation values for the insertion of a vertex operator at an arbitrary point 

on the string world-sheet. 

Using the correspondence between the sigma model calculation and that 

in the operator formalism the question of higher genus surfaces with some 

number of boundaries interacting with the background fields is considered. 

0 (3-2). 

3.2 The Bosonic Boundary State 
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The insertion of both loops and boundaries is included naturally in this 

method, and the results obtained are compared with known results. 

Throughout this work the bosonic action under consideration is 

S(g,F,T0,U) = ^ Jdpd<t> gltv&tX»daXll 

+ f d<j> (\F^Xvd^ + ^-T0 + ^-U^X'X" 
JdY. \2 27T 87T 

(3.3) 

where a' is the inverse string tension, £ is the string world-sheet, dH is the 

boundary of the string world-sheet, dpdcj) is the integration measure of the 

string bulk, d<j> is the integration measure of the string world-sheet boundary, 

and 3,$, is the derivative tangential to that boundary. This action is motivated 

in [66, 106]. The field content in this are a constant U(l) gauge field strength 

F^ and the tachyon profile, 

T(X) = ±-TQ + ±-Uv,X»X", (3.4) 
Z 7 T . OTT 

is characterized by a constant, T 0 , and a constant symmetric matrix U^u. 

This provides a simple generalization for the discussion given in [28, 106] 

and (2.16), and similarly to avoid divergences we impose that it is positive 

semi-definite. 

The virtue of the boundary state as a tool in the analysis of the action 

above is that it allows calculations that previously took careful integration 

to be reduced to algebraic manipulations. We wish to carefully construct 

the boundary state and to show that it reproduces with ease the particle 

emission amplitudes that would be obtained from the string sigma model. 

The starting point for this analysis is the action (3.3). By varying it, we 

obtain the equation 

{ ^ 9 ^ + F^d* + X" = 0 (3.5) 
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as the boundary condition for the string world-sheet. Recalling the conven­
tions from the action, dc is the derivative normal to the boundary and is 
the derivative tangential to the boundary. We now create a state \B) that 
obeys the above condition as an operator equation. To do this we use repa-
rameterize the string world sheet in terms of holomorphic and antiholomor­
phic variables z = pe^ and z = pe~%^ and use the standard mode expansion 
for X as a function of z 1.3 

Xfi(z,z) = xfi +pfi\n\z2\ + Y - 1 ^ + ^ (3.6) 

we find that in terms of the mode operators the boundary conditions read 

(3.7) oTU_ 
2 n 

(g + 2irdF + ^ - ] <+(<?- 2ixa'F 

The condition for the boundary state to obey (3.5) can then be restated in 
terms of (3.7) to be 

a'U 
Oi. g + 2na'F+-—\ < + , 

2 n V V 2 " />„ 

a'U 

.a \B) = 0. 

\B) = 0, (3.8) 

(3.9) 

To satisfy this it is clear that \B) must be a coherent state, and it is given 
by [4] 

, -•—i- , , g-2ua'F 
\B) = AfJJexp - ' 2 n 

n>l 
g + 2ixa'F + 9<LU. 

2 n 

a" cY 
n 

a exp [--x»U»vxv ) |0> 

A ^ n e x P ( - A > - n « - „ ) e x p - ^ [ / ^ |0) (3.10) 
n>l 
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where jV is a normalization constant which must be determined, and we 

define 
1 ( n — 9 ™ ' J? — 

2 n 

I 
for future convenience. 

3.2.1 Conformal Transformation of Bosonic 

Boundary State 

Clearly this boundary state is not conformally invariant due to the addition 

of the interaction with the tachyon field. The two cases where we expect 

conformal invariance are at the two fixed points of renormalization group 

flow, namely (7 = 0 and U = oo, which correspond respectively to the case 

of Neumann or Dirichlet boundary conditions on the boundary of the string 

world sheet [68]. Note that in the case of Dirichlet boundary conditions 

the interaction with the background electromagnetic field is eliminated, as 

would be expected from the sigma model point of view. Because of this 

it is interesting to examine how the boundary state transforms under the 

PSL(2,R) symmetry that is broken by the presence of the U term in the 

boundary state. In the two conformally invariant cases this leaves the action 

invariant. The action of PSL(2,R) on the complex coordinates of the disk is 

to perform the mapping 

z ^ w { z ) = ^ ± ± • (3.12) 
bz + a 

where a and b satisfy the relation 

|a 2 | - |62| = 1. • (3.13) 

This transformation maps the interior of the unit disk to itself, the exterior 

to the exterior and the boundary to the boundary. Moreover, this transfor­

mation of,the coordinates induces a mapping which intermixes the oscillator 
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a 

modes. To see this consider the definition of the oscillator modes 

< = \HfZZmdXti{z) (3'14) 

where the contour is the boundary of the unit disk, and the mode expansion 

of X is 

m 

Now, using the fact that X is a scalar, or equivalently the fact that dX is a 

(1,0) tensor, we see that 

t = (3.16) 

Now, using the fact that a mode expansion for X exists in terms of w with 

coefficients a'm in exactly the same way as (3.15), we see that 

< = Mtb)rt (3-17) 

where 

/ 2m {az + b)n+1 K ' 
The properties of the matrix M are interesting and facilitate further 

study. Some of the properties of MmrP are examined in Appendix A . l . The 

matrix has a block diagonal form so that creation and annihilation opera­

tors are not mixed by the conformal transformation, and with appropriate 

normalization of the oscillator modes it can be seen to be Hermitian, or equiv­

alently that it preserves the inner product on the space of operators. The 

exact form M as a function of its indices can be easily obtained, but for the 

purposes of this discussion it is easier to to simply note that with the rescal-

ing Mmp = y^Mmp for either m,p > 0 or m,p < 0 then M^p = M^. 

(The purpose of the rescaling is to normalize the creation and annihilation 

operators to have the standard simple harmonic oscillator commutation re­

lations.) 
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Using this information we obtain that the modification of the boundary-

state associated with a particular conformal transformation is 

In this equation and all following equations we drop the ' associated with the 

transformed oscillators for notational simplicity. Due to the intuition gained 

from the conformally invariant cases we propose a boundary state 

which we will show is the state that reproduces the sigma model amplitudes. 

This is just the boundary state (3-19) integrated over the Haar measure of 

3.2.2 Boundary State Single Particle Emission 

Since we wish to show that the boundary state is an algebraic version of the 

action (3.3) we must calculate the emission probability for various particles 

from the boundary state above. This has been done in more detail in [70], 

(see also [31, 33]) but we recapitulate the results here for completeness. 

The case of the tachyon is straightforward. To calculate the emission 

probability for this or any particle from the d-brane described by the bound­

ary state we must evaluate the overlap of the Fock space ground state with 

the transformed boundary state (3.19). Here, and in subsequent formulae 

we omit the momentum conserving 5-functions, and the integration over the 

transformation parameters for the boundary state. For a tachyon with mo­

mentum pf we find that the probability for emission from the boundary state 

(3.19) 

(3.20) 

PSL(2,R). 
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Figure 3.1: A schematic of the disk tadpole (a) and the emission of one par­

ticle by the boundary state (b). 

is 

<0,p"|2W. = Mexp -pyv^Y.M-nO^M-io 
n=l 

oo 

= jVexp -p t̂E-I ( 9 - 2 ^ F - H \ \b |2n 

|2n 

1̂/ 
(3.21) 

In the above expression we have used the previously defined form for A™ ,̂ the 

fact that = , and the conventional normalization a£ = \j^P^• 
Similarly, for an arbitrary massless state with polarization tensor and 

momentum p'1 

the overlap to be calculated is ( ' 

(3.22) 



Chapter 3. Boundary States 48 

piiv 

L n=l 

m = l 

= A^exp - P V ^ - E 
1 / g - Ina'F 2 n 

2n 

n = l n g + 2TTa>F-ri% a 2n 

n = l 9 + 2 * 0 ^ + ^ 7 ^ 1 0 2 (n - l ) | a 2 | 2 

| 6 | 2 ( n - l ) _ ~ b 

2 ^ \ g + 27ra'F + a ^ 
n = l 2 n 

X 
^ \ g + 2ira'F + ^ 

| 6 | 2 ( m - l ) 

a | 2 ( n - l ) | a 2 | g 

6 

m = l 
| 2 (m- l ) | a 2 | a 

(3.23) 

where again the explicit form of the matrices M has been used in the last 

equality. 

This kind of argument can be repeated indefinitely on a state by state 

basis to determine the emission probability for that particular state, but 

we present here another more general calculation which will prove useful to 

consider. In particular the state A with momentum pP defined by 

\A^S) = V*a-«"-&«-c|0,p''>, 

has its overlap with the boundary state is given by 

(3.24) 

n = l 

A»vS\l — 

+p° Y acM[tlaA;sM[a*lc J2 bM{_tlK„M^ b) 
m—b 
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—m—b 
<a,b) 

n m 

X (3.25) 

The summation looks formidable, but we note that the contractions of the 

various matrices look suspiciously like those of Green's functions, which it 

will transpire that they are, but to see this requires a simple calculation. A 

special case of a more general formula proven in the next section shows that 

Note that since the transformation from z to y is one-to-one the above equa­

tion makes sense and is appropriate for the mapping of a point to the origin. 

This completes the analysis for the emission of one particle from the boundary 

state \Ba>b), however the question becomes more interesting for the emission 

of more than one particle. 

3.2.3 Boundary State Multiple Particle Emission 

As in the case of emission of one particle by the boundary state it is perhaps 

the most instructive to consider the case of the emission of two tachyons first, 

and then specialize to more complicated correlators. Ordering the operators 

appropriately for radial (as opposed to anti-radial) quantization and noting 

that the PSL(2,R) transformation is not sufficient to fix the location of both 

closed string vertex operators. Therefore it is necessary to integrate over the 

position of the second vertex operator. The quantity that we will wish to 

compare with in the sigma model is the integration over insertion points of 

an arbitrary number of vertex operators, and in this language one, the 'bra' 

or 'kef appearing in the overlap equations is singled out as being moved to 

for y — subject to \a\2 — \b\2 = 1 we have that 

1— dkzd(y)\y=0 = kM^%. (3.26) 
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the origin. We proceed to calculate, using the previous definitions and mode 

expansion 

(Ba,b\ : e<*^> : \u\0,p») = jV(0\exp"(- £ < M < f ^ A f j f ^ ) 

Just as mentioned following (3.25), this result is reminiscent of a pair of 

exponentiated Green's functions. 

The next natural quantity to calculate is the emission of a more general 

state in place of either, or both tachyons in the previous calculation. It is 

of course possible to demonstrate the overlap of an arbitrary string state 

explicitly, but the combinatorial nature of the result quickly renders the 

resulting expressions obscure. With this in mind we examine the slightly 

more general state that corresponds to the calculation done in the case of 

(3.27) 
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one particle emission (3.25). 

(BaJb\ : e^x^ : ̂ A^atftLcftW) = AT2 x P Q 
-3 

+ ( - £ F^fW^ - ^ ~ E " ^ > A ^ ' « 
(-E»«Wf)i/f + (p <̂  g, i / < f ) . (3.28) 

In the above AT2 is the result for the boundary state to emit two tachyons, 

which appears as a multiplicative factor and is calculated explicitly above 

(3.27). 

Similarly it is possible to calculate the analogous expression for the vertex 

which emits the complicated state at the point OJ on the disk, and using the 

standard commutation relationships as outlined previously we find 

r)n 8p 8q 

- (y* - 1 m ! ojm-nM^K- M{ab) j l Qi-A 
\^(n-l)\{p-l)\(m-n)\ r m p> (j - p)\ ) 

2 V ̂  (n - 1)'! (ro - n)! ™ "T r j 

_ _ — <v> m _ nM ( a 6 )A r M ( " 6 ) n 7 + v (-l)noj'n 1 
( n _ 1)1 ( m _ nyU

 rm \ry rO P +P»{ L) U> J 

- E k V M ^ ] ^Mf J ^ T J ^ ^ + p , ( - i ) ' 0 - p ) •}] 
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x ( _ S ^ - . ^ - ) _ i _ _ A _ 0 < - , 

-J2kVM^K,sMlf(q _* x ) , ( . f + P > ( - l ) « 0 - « ) 

+ •(-> g, 1/ <->• (3.29) 

The above expression can be seen to be the same as that of the emission with 

the complicated vertex at the center, as the case of two tachyon emission 

would suggest. 

3.2.4 Bosonic Sigma Model 

Having performed an the calculations from the point of view of the raising 

and lowering operators it is now instructive to compare with what should 

be analogous results from sigma model calculations. We fix our convention 

that the functional integral is in all cases the average over the action given 

in (3.3), 

(O(X)) = J VXe-s{x)0{X). (3.30) 

In addition, the Green's function on the unit disk with Neumann boundary 

conditions is determined to be [60] 

G»v{z,z') = -a'g^(-la\z-z'\ - In |1 - zf'|), (3.31) 

and it will be useful also to know the bulk to boundary propagator which is 

oo m 

G^ipe*,?*) = 2a'gv J ] — c o s [ m ( < £ -<//)]. (3.32) 
1 m 

The boundary to boundary propagator can be read off from (3.32) as the limit 

in which p —> 1. We use z = pe1^ as a parameterization of the points within 

the unit disk, so 0 < p < 1 and 0 < 4> < 2n. Using the bulk to boundary 
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propagator it is possible to integrate out the quadratic interactions on the 

boundary [40] and to obtain an exact propagator, which is given by 

G^{z,z') = - a y i n p r - z ' l 

+ n 

2Tra'F + ^ Y ' (zz')n - [zz')n 

. xg + 2ira'F + f £ / in 
n = l \ ^ 2 n / 

= - a y i n l z - z ' l 

^ - / g - 2 W F - f gV̂  (zz'T + (**T 
2 ^ \ g + 2na'F+^) 

ct_ / H r ^ \ [ H (^)" ~ ( ^ T 
+ 2 ^ L + 27ra'F + f^ j tn 

Note that this expression is appropriately symmetric because the antisymme­

try of Lorentz indices in the final term is compensated by the antisymmetry 

of the coordinate term. 

The first calculation that must be done to determine the normalization of 

the sigma model amplitudes is the partition function. In this approach the 

oscillator modes of X must be integrated out with the contributions from F 

and U treated as perturbations. Since both perturbations are quadratic, all 

the Feynman graphs that contribute to the free energy can be written and 

evaluated, and explicitly the free energy is given by 

oo / 1 TT \ 

T= - ]T Tr In U + 2 W F + y - J . . (3.34) 
m = l ^ ' 

See [40, 71] for further calculations done in this spirit. From (3.34) we im­

mediately obtain the partition function 

Z = e-T° TT _ - ^ / d z o e - 2 ^ 
i i det (g + 2TTa'F+^%)J 
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1 1 
= ^Tf)e"r°Sdet(j+2TO'F+f£)- (3'35) 

This expression is divergent, but using ^-function regularization [66] it can 

be reduced to 

' - W d - ( ^ ) d - r ( i + ^ ) - ^ 
where T(g) is the T function and the dependence of all transcendental func­

tions on the matrices U and F is defined through a Taylor expansion. 

3.2.5 Conformal Transformation in the Sigma Model 

We now wish to calculate the expectation, value for vertex operators that 

correspond to different closed string states, however this is a process that 

must be done with some care. To calculate the emission of a closed string 

in the world-sheet picture one generally considers a disk emitting an asymp­

totic closed string state. This is really a closed string cylinder diagram. The 

standard method is to use conformal invariance to map the closed string 

state to a point on the disk, namely the origin, where a corresponding vertex 

operator is inserted. On the other hand it has been cogently argued that 

it is necessary to have an integrated vertex operator for closed string states 

to properly couple [28], in particular that the graviton must be produced 

by an integrated vertex operator to couple correctly to the energy momen­

tum tensor. There is no distinction between a fixed vertex operator and an 

integrated vertex operator in the conformally invariant case because the in­

tegration will only produce a trivial volume factor, however in the case we 

consider more care must be taken. We wish to consider arbitrary locations 

of the vertex operators on the string world sheet, and the natural measure 

to impose is that of the conformal transformations which map the origin to 

a point within the unit disk on the complex plane. 
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In other words we propose to allow the vertex operator corresponding to 
the closed string state to be moved from the origin by a conformal transfor­
mation that preserves the area of the unit disk, namely a PSL(2,R) transfor­
mation. The method to accomplish this is to go to a new coordinate system 

V = ¥ ^ , k 2 |-1^1 = 1, (3-37) bz + a 
where a vertex operator at the origin y — 0 would correspond to an insertion 
of a vertex operator at the point z — It is worth noting that in the case 
of conformal invariance, that is when U —¥ 0 or U —¥ oo the Green's function 
remains unchanged in form, the y dependence coming from the replacement 
z —> z(y). Even in the case of finite U the only change to the Green's 
function is the addition of a term that is harmonic within the unit disk. The 
parameter of the integration over the position of the vertex operator would 
be to the measure on PSL(2,R), giving an infinite factor in the conformally 
invariant case [28, 75, 97]. From this argument we have a definite prescription 
for the calculation of vertex operator expectation values, which is to use 
the conformal transformation to modify the Green's function, and calculate 
the expectation values of operators at the origin with this modified Green's 
function. 

3.2.6 Sigma Mode l Single Particle Emission 

Now we will use this prescription to calculate the sigma model expectation 
values of some operators, and we will start with the simplest, that of the 
closed string tachyon. The vertex operator for the tachyon is : eip^Xf,^y^ :, 
and it is inserted at the point y = 0. The normal ordering prescription for 
all such operators is that any divergent pieces will be subtracted, but finite 
pieces will remain and by inspection we see that the appropriate subtraction 
from the Green's function is 

: 0""(;z, z') : = G^(z,z')- g^a'In \z- z'\ (3.38) 
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Using (3.38) we see that 

(3.39) 

We recall that our procedure will necessitate an integration over the the pa­

rameters of the PSL(2,R) transformation, but comparison with (3.21) reveals 

that the normalization is fixed by 

N=Z. (3.40) 

Having obtained this result fixing the normalization it is natural to check 

the expectation value for other vertex operators to see if the relation persists. 

We perform a similar analysis for the massless closed string excitations. In 

particular the graviton insertion at y = 0 is given by 

(Vh) = . (: -—hlu,dX'idXv^x^v=Q) :) (3.41) 
ct 

where h is a symmetric traceless tensor and the normalization follows the 

conventions of [78]. This can be analyzed by the same techniques as for the 

tachyon, noting that there will be cross contractions between the exponential 

and the X-field prefactors. Explicitly we obtain 

(V,) = - far (d& : (z(y), z'(y)) : +d : (z(y), z'(y)) : 

xd : (z(y),z'(y)) : (ipa)(ipp)) e-*w»n*(v).*(v)>:|̂ 0 

a - O-rr^'F - °LU \ Ifc2(n-l)| 
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m=l \ 2m/ 1 I I I 

/ a' ™fg-27ra'F-T^Yl'l\b2n\\ , , e x p ( - - W E ( : + 2TO,F+^j -n^)- ( 3 - « ) 

and by comparing (3.23) and (3.42) we see that the relation M — Z holds 

and that the form of the two expectation values is identical in detail. 

Final ly, we can perform the same kind of calculation for a more general 

closed string state, like the one considered in (3.25). We consider a state 

which may be off shell in the sense that it not annihilated by the positive 

modes of the cr-model energy momentum tensor (the Virasoro generators), 

may not satisfy the mass shell condition, and may not be level matched. Our 

explicit choice is to consider the operator 

(3.43) 

which is an arbitrary state involving three creation operators. We find that 

d° :GSa(z,z'):pa 

_ ( c - l ) ! 

9 0 :G^(z,z'):--^-:G^(z,z'): 
( a - 1 ) ! •• v ' ( 6 - 1 ) 

• G^{Z, z') : PaPpPy 
( c - 1 ) ! 

(3.44) 
y=o 

Comparing (3.44) with (3.25) and (3.26) we observe that the two coincide. 
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3.2.7 Sigma Model Multiple Particle Emission 

In the previous section we demonstrated that the sigma model calculation 
of the particle emission coincides with that calculated using the boundary 
state, so we how look at the emission of two particles. We expect that the 

. two particle emission amplitude will depend upon the relative position of the 
two vertex operators since, even in the conformally invariant case, there are 
not enough free parameters to fix two closed string vertex operators on the 
disk world sheet. We first calculate the expectation value of the emission of 
two tachyons, with momenta p and k. 

I. Jk„X» 
: e ) = Z exp 

k^ky 

x e x p ( - ^ ( z ( 0 ) , « ( 0 ) ) ) 

kjtPv 
x exp -G^(z(u;),z(0)) 

(3.45) 

This is the necessary first step in determining a more arbitrary amplitude. 
To make contact with the more complicate amplitudes calculated in (3.28) 
and (3.29) we consider the expression 

(A 
dn dp d9 

(n-l)!" ( p - l ) ! " (q-l)\ 
: e 

iPnX" 
) 

— A.T2aAfj,i/S 

X 

X 

ik 
-BpG^{z{u\z'{u)) + 

( p - 1 ) ! 
^ ( z ( w ) , z ' ( 0 ) ) 

(p -1 ) ! 

^-^B^(Z(UJ), z'(u;)) + ^ L _ 5 » G * 7 ( z ( w ) ) z > { 0 ) ) 

l 

x ^ C ( » M , A « ) ) + ^_a«G^(z(o , ) ,z ' (o))) 
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G^(Z(OJ),Z'(OJ)) 

X 

( n - l ) ! ( g - l ) ! 

J^8*>G^(Z(OJ), Z'\OJ)) + A j ^ ^ M , z'(0)) 

(3.46) 

Also note that if we consider 

dn „ „ a p „ „ a« 
^ • ( n - i y A ( p - i y A ( g - i ) \ e ) 

we see that it gives the above expression (3.46) with OJ • H - 0. 

To demonstrate the general equivalence of the boundary state approach 

with that of the sigma model the sums that appear in the general expressions 

of boundary state matrix elements must be shown to coincide with the ex­

pressions that appear above. To this end consider first the sum that appears 

in (3.27), 

r A? d z ..myn(bz + a) Z 
ra—1 

/

dz n 1 / aoj — b \ 1 

2-ni (bz + a)(a — ojb) \ —boj + aj 
~aU-bY (3.47) 

-boj + a / 

This derivation uses the normalization condition on a and b, and can be seen 

to be equal to zn(y) which is the inverse transform of (3.12). 

The other sum that appears generally in this analysis is 

^Am-n)\ 
m! 

m=0 

as seen in (3.29). In the case n > ra we have used the shorthand 

ra! 
/ \i = — 1). . . (m — n + .1). 
(ra — n)\ 
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Now consider 

E 
m=0 

m! 
(m — n)l 

oo „ 

= 
m=0 1 7 

d z m l , ,m-n yr(^ + a ) 
z 

ro— 1 

27n (m — n)! (az + 6 ) m + 1 

. (bz + a)" - 1 / au-b 
:Z =^-r — Z 2ni (a-bu)n+1 \~ -bu + a 

= dnzr(bz + a)n-l{a-bco)-{n+1) 

az — b 

- n - l 

-6w-f-a 

-6z + a 
(3.48) 

The last equality in this can be shown by induction, the case for n = 1 

is trivial, and so we demonstrate the induction. First note that use of the 

Leibnitz rule gives 

dkzn(bz + a)k~l(a - bu)~{k+1) 

- btu + a 

(au — b) n—k 

E ni 
(-bco + a )»+* (n-{k- (k - j - 1)1 

^ 1 ) 1 V(au-b)i. 

(3.49) 

Now consider for k = k0 + 1 the expression can be manipulated 

az — b 

-bz + a 

az — b 

—bz 4- a, 

{az-b)n-k° ^fk0 

d i 5*° 

d V 
\n+ko £—1 {-bz + a)"+ fe« \ j J (n-(k0- j))\ 

( * o - J - l ) ! 
V(az-b)i 

(az - 6)"-( f co+i) j V * * n! 
( - 6 z + a)"+( f eo+D ^ \ j j ( n - ( f c o - j))! 

x ((n + j - fc0) + (2k0 - j)b(az - b)) 
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(az - &)"-(<=o+D k ^ f k 0 + l 

7 7 7 ^ - r r , , ~bj(dz-by (3.50) 

as desired. This demonstrates the induction step, and the validity of (3.48). 

Note that similar results-can be obtained for expressions with negative indices 

on M^ff1 and negative powers of OJ. These are obtained from considering 

the boundary state on the right of the matrix elements. This have to be 

interpreted as a dual description of the boundary states presented. This 

is because radial quantization and the operator state correspondence imply 

that in this case the domain of interest is the complex plane with the unit 

disk excluded. This is equally a fundamental region of the plane, and the 

conformal transformation between the two is OJ —> 4, a fact which is intimated 
(A<B) _ I M - K 6 ) at by the fact that (for n, k > 0) MK**lk = M , nk 

Now we have demonstrated that the results obtained from the boundary 

state calculations exactly match those of the sigma model after the propa­

gator including the boundary perturbations has been obtained, and the re­

sulting expression has been transformed into a new coordinate system. This 

shows that the boundary state renders all matrix elements that would other­

wise be calculated in the sigma model obtainable by algebraic manipulations. 

This observation will be important as we generalize these results to higher 

genus surfaces. We also remark that the result explicitly presented for the 

emission of two closed string states clearly generalizes to the emission of an 

arbitrary number of such particles. Mechanically this can be seen because 

the commutation of two such vertex operators to produce a normal-ordered 

expression produces the familiar logarithmic term, and the boundary state 

gives the F and U dependence within the inner product. 
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3.2.8 Bosonic Boundary State Summary 

In the preceding sections we have developed the bosonic boundary state. It 

is a coherent state involving the holomorphic and antiholomorphic creation 

operators which satisfies the boundary conditions associated with the bound­

ary conditions (3.8) and (3.9), and is given by (3.20), the content of which 

we repeat for convenience. 

We have shown that this state gives the overlap with an arbitrary number 

of closed string states in the sense that it reproduces the string sigma model 

calculation of those same amplitudes. The reason for the integration over the 

PSL(2,R) group is that in.the operator state correspondence (a pedagogical 

overview of which is given in [78]) the external state (a\ at the end of the 

overlap (a\B) is defined by a limiting process which takes it to infinite world-

sheet time, thereby fixing it at the origin. Since the object to which this 

must be compared is an amplitude with integration over the positions of the 

inserted vertex operators it is necessary to mimic this with an integration 

It is also useful to note that the construction parallels that of [61], which 

has as a boundary condition that the two dimensional conformal symmetry 

is not broken, and this can be stated as 

with 

over PSL(2,R). 

(3.51) 
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where the Ls are the Virasoro generators. For oscillator number n = 0 this 

is nothing but the level matching condition. Our results show that the level 

matching condition is not satisfied without the integration over the conformal 

group. This can be seen in (3.25) because there was no condition on the 

indices a, 6, c. The properties of the conformal transformation matrices Mmn1 

are such that upon integration over PSL(2,R) the level matching condition 

is enforced. This is because the matrices depend upon the phases of b and 

a, and if the numbers 6s and 6s are not matched in a particular overlap 

an integral of the form J d(j>ein^ results and vanishes. Upon integration at 

each level (3.51) is satisfied, as can be seen using the properties derived in 

Appendix A for the matrices Mmn^• 

3.3 Bosonic Amplitudes in the Euler 
Number Expansion 

Since the overlap of the boundary state with either single or multiple particle 

states has been shown to coincide with that calculated in the sigma model, we 

have the tools that are needed to proceed and determine higher order contri­

butions in the string loop sense to the vacuum energy of the object described 

by the boundary state. We will proceed by utilizing a sewing construction to 

relate higher order amplitudes to products of lower order amplitudes. The 

procedure outlined is envisioned to produce an arbitrary number of interac­

tions with the boundary state at the oriented tree level, and an arbitrary 

number of handles and interactions with the boundary state in the unori-

ented sector. As is well known, the description of higher genus orientable 

surfaces is a more difficult subject and the construction will produce results 

that are implicit rather than explicit. The final result, excluding terms with-
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Figure 3.2: The sphere presented schematically. The sphere's contribution to 

the partition function is not included because it has no boundary. 

out boundary, will be several terms in the Euler. number expansion so that 

-2 = Zdisk + Zann + ZMS + • • • (3.52) 

where Z a n n refers to the annulus partition function, Z M S refers to that of 

the Mobius strip, and each term carries the appropriate power of the open 

string coupling constant. The results in this section will be organized by 

Euler number, and where appropriate compared with other similar results in 

the literature. 

3.3.1 x= l 
There are two surfaces with x — 1; the disk and RP2. The non-orientable 

surface RP2, see [62] for details in a similar context, has no interaction with 

the fields F and U and so is not of interest for this analysis. The disk by 

contrast has been analyzed previously in this work and the contribution to 

the partition function for the boundary state is given by its overlap with the 
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Figure 3.4: The two orientable surfaces with x — 0: the annulus (a) and the 

annulus (b). The annulus is shown in a manner that reminds its 

role as a closed string propagator. 

unit operator (equivalently the tachyon with zero momentum), as given in 

(3.35). Both the disk and RP2 are illustrated in figure 3.3. 

3.3.2 x = 0 

There are several surfaces that have an Euler number of 0. The easiest to 

discuss in this is the torus, which is immaterial for the same reason that RP2 

was among the surfaces with x — 1, namely that it has no interactions with 

F o r U. Similarly the Klein bottle, the unoriented equivalent of the torus, 
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Figure 3.5: The two non-orientable surfaces with x = 0. The Klein bottle (a) 

has no boundary, while the Mobius strip '(b) has both a cross-cap 

and a boundary. 

will not contribute to the partition function. We are left with the annulus 

and with the Mobius strip as the nontrivial contributions at this level. The 

annulus can be thought of as the tree level closed string exchange channel. 

The Mobius strip is the non-orientable analogue of the disk. 

We consider first the annulus that was analyzed in detail in [70], we reca­

pitulate some of the salient results. Suppressing for brevity the integrations 

over the parameters of the conformal transformations we have that 

Zann = (B<i,b\^\Ba',b') • (3.53) 

Using the integral representation of the closed string propagator 

A 4TT y \ Z \ 2 

and suppressing the z integrals we obtain 

Zann = Z2

disk{0\ exp ( - a ? M < f >A^J&#%*) Z^«-«»fE*-n*n 

exp ( - a ^ M ™ ^ 

exp ( - ^ a ^ M ^ A ^ M ^ l a t , ^ ) |0> 

= ZlskHp) exp YI k r 5 r S { [^n^KaMnfj^g^ 
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lvl-m-j1K&lvl-m-sz (3.54) 

Verifying the first equality requires the use of the Baker-Hausdorff formula 

for commutators of exponentials, and the second equality is an application of 

Wick's theorem. The term in the last exponential is understood to have its 

powers defined with contraction of both the Lorentz and oscillator indices. 

The number F(p) is a Gaussian factor dependent on the (otherwise implicit) 

momentum of each boundary state, which can be read off from the boundary 

conditions (3.9). Explicitly the form of F(p) is given by 

In addition this is multiplied by terms coming from the zero mode part of 

the propagator. In the preceding equations the oscillator index has been 

chosen as positive or zero to make the negative signs meaningful. In all 

cases, repeated indices indicate summation. 

Equation 3.54 is a concrete realization of the proposal of [28] for the 

calculation of loop corrections to the tachyon action. This proposal calculates 

the tree level couplings to closed strings for off-shell boundary interactions 

and shows that the correct procedure is to use integrated vertex operators to 

calculate these couplings. It further argues that otherwise the vertex operator 

does not couple correctly to the background fields, for instance in the case of 

the graviton a non-integrated vertex operator does not couple to the standard 

energy momentum tensor. By demanding closed string factorization of the 

one loop amplitudes [28] determine that the partition function for the string 

F(p) = exp 

\5jkgSl - j ^ ; ^ 

(<W7, - kzkM%^KyM%'b,)) - g,v] } . (3.55) 
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amplitude with two boundaries is 

Z{Sbdy) = Y / dpZ(Vj(p),Sbdy)JyP

2l 2

/ ; ZiVji-p),Sbdy). (3.56) 

In (3.56) Vj(p) is a vertex operator for particle I with momentum p and 

/ (p 2 + m 2) is a function which goes to 1 when the exchanged particle is on 

mass-shell, producing the expected poles in the particle exchange, and 

Z(VI(p),Sbdy) = JdXe-SV^p). (3.57) 

For the quadratic tachyon background we have shown that (Vj\B) gives 

Z(Vi(p), Sbdy) so the result (3.54) completes the summation over I in (3.56). 

Considering (3.54) we note that the cases of U —> 0 and U —> oo give a 

particularly simple form for the matrices MAM. We have 

- M(»>*)}.(9-2na'F\ 
_ M k m k {g + 2na>Fj^Mkn 

9-2ira'F\ 1 
-Z —°mn, (3.58) 

g + 2-Kd'F ) 
and similarly 

— 9uv b~mn- (3.59) 
U-HX> m 

These results can be obtained by explicit contour integration using the defi­

nition of M and are derived in Appendix A. We can see that the U = 0 case 

gives the boundary state of a background gauge field [73] and when U = oo 

a localized object appears. In fact this parameter U interpolates between 

Neumann and Dirichlet boundary conditions [66]. 

It is worthwhile to check the result obtained in (3.54) in the known case 

where only the field F is present. Then the boundary conditions enforce that 

p = 0, and with the above simplification we find 
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i 
\1V . 

j + 2™'FjSl/~ 

= exp ^ - T r

 l n (tf - ^ j ^ 4 W F + 4 T T V 2 F 2 ) 

oo 

• -YTr\n(g(l-\zn) 
r=0 

-\Tr ln (<? + W F + 4 7 r V 2 F 2 ) ) Z 2
S F C 

.= - \z\2TDUdet [d-^^Y^oc'F + ^ ^ F A 
f — 1 r — 1 >• / 

r = l r = l 

(3.60) 

This result agrees upon the inclusion of the ghost contribution with that 

obtained in [40]. Note that the partition function for the disk is cancelled by 

the term constant in r which is then summed using £ function regularization, 

mimicking the calculation of [40] that produced the Born-Infeld action at disk 

level. 

Now, considering the fact that, as mentioned, the field U governs the 

interpolation between Neumann and Dirichlet boundary conditions and that 

we expect the space filling branes to be unstable, it is also interesting to 

examine how these expressions for Zann vary with U around the two fixed 

points. In particular, ignoring the linear terms in U in the normalization, 

which can be seen (3.36) to be divergent, the expression for Zann near U = 0 

is 

Zann = Zann{U = 0)+Tr(u-^jZann{U = 0^j+... (3.61) 

Immediately upon differentiation we see that the linear term will be given 

by 

Tr (u^jZann(U = 0 ) ) = Jd2ad2bS(\a2\- \b2\ - l)VPSL{2iR)jV2e2t 
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/ (g-2na'F)/(g + 2^a'F) „ 

V(9 + 27ra'F)2 - (# - 2na'F)2 

x ^ M ^ < i . . . (3.62) 

The factor of - 2 6 comes from the fact that all the other A terms become 

trivial because we have evaluated them at U = 0 which was noted to be 

conformally invariant, and from summing the terms e~b which stand between 

these. Likewise note that the factor 1/n2 instead of 1/n between M and M 

comes from the fact that U enters always as U/n. Also, one ofthe integrals 

over the PSL(2,R) groups becomes trivial, and relabeling gives the factor 

Vp5L(2,i?) and only one integral. Now, we evaluate 

E - 1 v-^ I dz dz 1 1 

M _ „ _ 6 - M _ n _ 6 - ^ 
n > l n > l J 

(az + 6)6-1 {az + b)b~l 

(bz + a)^ 1 (bz + a ) 6 + 1 

n\2 2 2 (bz + a)b+1(bz + d)b+l 
(3.63) 

2,2=0 

and we find that when we include the integration over PSL(2,R) the expres­

sion becomes 

/ d2ad2b6(\a2\ - \b2\- 1) x YM-n-b\M-n.b 

I 
min(n—1,6—1) 

d W M ( | a 2 | - | 6 2 | - D E E (Sji 
n > l g=0 V ' 

b + h - q r l \ \ 2 / | f c 2 | y + n - 2 g - 2 x 

q\n-q-V.b-q-l\) \\a2\) \a2\2 

(3.64) 
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and we have used the fact that upon integration over the phase of a and b 

we will have orthogonality in the sum. We find that the contribution is 

Tr (u~Zann{U = 0)) = jd2ad2b5(\a2\ - \b2\ - l)VPSL(2,R)jV2e2t 

x • 
det 1 - e-2tb ( g-2na'F\2\ 

\g+2TTa'Fj J 

(g-2na'F)/(g + 27ra'F) 
(g + 27ra'F)2 - (g-2na'F)2 

o.™ min(n—l,m—l) 
-4me" 2 m / 1 1 E -Ame ^ ( 

Anm)2 | a 2 | 2 

n,m>l 9=0 X / I I 

/ ( m + n _ g _ i ) i \ 2 nb2\y+n-2?-2 

\q\(n - q - i)\(m - q - 1)\) \\a2\) )' 
(3.65) 

A similar calculation can be done around the condensate (U —> oo with 

1/U the natural expansion parameter) and it is found that 

T r ( r J a 0 ^ ^ " ( l 7 = 0 )) = Jd2ad2b5(\a2\-\b2\-l) • 

jV2e2t 

V p S L ( 2 , R ) d e t { l _ e _ 2 t b ) 

n,m>l 

(3.66) 

Because the natural coefficient for JJ is n the n dependence between the ma­

trices M is suppressed. Evaluations show that M _ n _ a M _ n _ 6 has zero entries 

on diagonal, so this variation vanishes about the condensate. This compar­

ison between (3.65) and (3.66) shows that the case of Neumann boundary 

conditions, (corresponding to U = 0) is unstable with respect to variations 

of the tachyon condensate since the linear variation does not vanish, but 
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that Dirichlet boundary conditions, obtained as U. —>• oo are stable. This 

illustrates the well known phenomenon of tachyon condensation and gives a 

mechanism to see explicitly how the open string tachyon has been removed 

from the excitations of the condensed state. 

In a similar method we can obtain the partition function for the Mobius 

strip in this background as well. We use the crosscap state elaborated on in 

[62] . 

/ °° (-Dn Y 

\C) = exp l-JE^—a-not-nJ |0). (3.67) 

Using this in analogy with the development of (3.54) we find that the 

'ZMobius = (Ba,b\-^\C) 

( ° ° 1 

= ZdiskZRP> exp ( Y -g»»8rs { [rM^ A ^ M # 6 ) 

(3.68) 
nv) 

As in the case of the annulus, we find that the contributions Z^,sk cancel 

explicitly when we go to the. U = 0 limit, where conformal invariance is 

restored. In that limit we find 

ZMouus{F) = ndetU + F ^ _ 1 ' ' . (3.69) 
m=l ^ • V / I I / 

Finally it is amusing to check and make sure that an analogous calculation 

will go through and reproduce the known partition function for the Klein 

bottle. Instead of the two copies of the boundary state two crosscaps are 

inserted, and the resulting expression 

Z K 2 = ^ 8 e x p ^ - ^ ^ l n ( ^ ( l - | z | . * . ) ) j (3.70) 

which can be seen to reduce to Dedekind ^-functions [51], in agreement with 

the known result [78]. 
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3.3.3 x = - l 
To extend it beyond x = 0 t n e boundary state formalism requires careful 

contemplation. We propose the following method which allows the construc­

tion of states of arbitrary Euler number, and for the non-orientable sector in 

principle a complete description of the dynamics.. The procedure proposed 

is as follows; using the sewing construction for higher genus amplitudes (de­

scribed in [78] among others) and armed with the result proved earlier in 

this paper that the emission of any particle from the bosonic boundary state 

corresponds -with the expectation of a vertex operator inserted at a definite 

position on the disk, we propose to add any number of interactions with the 

brane described by the boundary state and any number of cross caps. 

To recapitulate, the idea motivating the sewing construction is to create 

a higher genus amplitude by joining two lower genus amplitudes by inserting 

a vertex operator on each of the lower genus amplitudes and summing over 

the vertex operator. Explicitly the construction is 

(: A1 : . . . : An :)M = f A1 : ... : V :)Ml(: V : . .. : An :>M2 

Jw y 
(3.71) 

with M = M'i#M2 and . . . represents arbitrary vertex insertions. This con­

struction is tantamount to adding a closed string propagator between the 

two manifolds with vertex operators on them. Since we have shown that the 

emission of one particle from the disk with F and U on its boundary matches 

the overlap obtained from the boundary state 

{V\BaJb) = {:V:)TotU,F (3.72) 

we can then use this to obtain the contribution of a boundary with the fields 

U and F at it. This sort of construction was considered in [26]. 

The novel feature presented here is the generalization of the boundary 

state and cross-cap operators through the state operator correspondence. 
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Figure 3.6: The two orientable surfaces with x = ~ 1- They are a one-loop 

correction to the disk amplitude (a) and a surface with three 

interactions (b), topologically equivalent to a pair of pants. 

The fact that sphere amplitude for three string scattering is conformally 

invariant is used, in combination with the fact that both \C) and \Ba^) both 

have a well defined overlap with any closed string state allows us to take the 

expression 

dzdz, 
A 

and its equivalent using \C) to (suppressing prefactors) 

e X P ^ Z (k-l)\ 1 V 1 - m - k 1 \ s M - m - l ^ _ l y 
S=l XdZ 

(3.73) 

(3.74) 

by use of the operator state correspondence. These states are inserted within 

expectation values to give higher genus contributions. 

There are several different states with ^ = — 1. The most obvious are the 

four possible insertions of boundary states and cross caps, and the addition 

of a handle to either a boundary state or cross cap (thereby going from x = 1 

to x = — 1 because increasing the genus by 1 decreases the Euler number by 

2). Note that the state with three cross caps and the state with a cross cap 

and a handle are topologically equivalent. 
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Figure 3.7: The three non-orientable surfaces with x — ~\-

To obtain the amplitude for three boundaries we calculate 

Z'pants' (Ba,b\-£ '• Baitb' '• — |-Ba",6") (3.75) 

where : Ba',b' '• is as given in (3.74). Noting that the coefficient of am in 

7^1)1* is 

( n - 1 ) ! 

jj—jyX = E D«*a» 
K ' a=—oo 

D m = ( _ i r l ( a + l ) . . . ( n + « - l ) 

we proceed to calculate 

^"pants' = zLkFo (p)'exp ^ n a . ( « C n m ( l ) m C a m ( 3 ) ) f e 

exp ^5 n a {nCnm(\)mDnl_aCn<mi(2)Dm>Tm)k 

(3.76) 

(3.77) 



Chapter 3. Boundary States 76 

(3.78) 

Where as in (3.54) F0 (p) is a complicated function which is Gaussian in 

the momentum of the boundary state, the integrals are implicit, and the 

expression Cnm(i) is an abbreviation 

with i an index indicating the integration from which the closed string prop­

agator Zi came from. 

From this we see immediately that the contributions for the genus ex­

pansion become increasingly complicated as x increases. In the particularly 

simple case of a vanishing tachyon we obtain a product of exponentials of 

hypergeometric functions. In particular for the case of the constant F field 

we obtain 

(3.79) 

Z'Pants'{F) disk e x P J ^ T r In l - l * ! ^ 
n 

2n g - 2-KOL'F 

g + 2-Ka'F ) 

2 

F ( - n + l , - a + l;.2;|22|2) [g-2™>F\\\ 
\g + 2ira'FJ )J 

F(n + l,a+l;2;|22|2) fg-2-Ka'F\\ 
\g + 27Ta'Fj ) 
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exp I — YjTrIn (l — 

\ nma 

| 2 " | z 2 | 2 F ( - n + l , m + l i2; |z 2 | 2 ) 

(3.80) 

In the above F(a, 6; c; x) is the hypergeometric function defined by its series 

expansion 

w , x ^ (a + n - l)\(b + n - l)l(c - 1)\ „ . „. 
Fa,6;c;:r = > ^ 7 - ^ 7 7 — — ; V xn, 3.81 

. ^ n!(a - 1)!(6-l)!(c + n - 1 ) ! 

and the logarithm is interpreted as its series expansion, and both Lorentz and 

oscillator indices are summed over. Note that this expression has many of the 

properties that we expect for the partition function on a twice punctured disk. 

In particular this depends on three parameters (the Zi terms arising from the 

integration over the propagators to the various boundary states) which can be 

identified as the Teichmuller parameters for this surface [88]. In the limit of 

any of these parameters going to zero the dominant contribution is from/the 

annulus amplitude. The analogous amplitude with any number of cross-caps 

gives a similar expression with the following modifications, for each cross-

cap the argument in the hypergeometric expression acquires a negative sign, 

and the corresponding matrix of Lorentz indices undergoes the substitution 

g+2-KOt'F y- • -

The other two diagrams that must be calculated are the corrections to 

the disk and to RP2 which come from the addition of a handle. This addition 

is achieved by taking the trace, weighted by a factor exponentiated to the 

level number (coming from the propagator within the handle), which is an 

identical operation to taking the expectation value of this operator on the 

torus. For this calculation it is necessary to take the trace of an operator 



Chapter 3. Boundary States 78 

that generically has the normal ordered form 

: exp {-ctnMnmam) : 

where the indices on M. can be either positive or negative, with M- defined 

by 

A 4 m n

 = DnimCnimi Dm'n. (3.82) 

After a considerable amount of algebra we find by summing over all states 

in the Fock space that 

oo ^ 

Tr (ujh£uh : exp {-anMnm&m) :) = TT — — - 2 x 

n = l 

°° 1 1 

(3.83) 

This expression uses the convention that the sums within the denominator 

run over positive and negative indices. This suppresses the contribution from 

the momentum of the loop which is given by a Gaussian, 

F(p) = exp < pp 

^ - ^ I ^ ) - l ] } . (3.84) 

The specialization to the case of only interactions with a background F field 

is given by,substituting |z | 2 F(a + 1, b + 1; 2; \z\2) for A4ab-

It is interesting at this point to compare the results for this procedure 

with those obtained by the standard method of constructing the Green's 

function on an arbitrary surface [88], and then integrating out the boundary 

interaction as described previously (3.33). The Green's function of a unit disk 
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with Neumann boundary conditions with a puncture of radius e at z == 0 and 

a puncture of radius 8 at z = re1^ is given by 

G'{z,z') = G{z,z') + (In e) _ 1G(z,0)G(z',0) 

-.Re f4J 2 f - + 
1 

+ z' - re _ i ^ 1 - z're~^ 

-Re (4e2 (z"1 + z) (z'-1 + z')) + 0(e2) + 0{e282) + 0{52). 

(3.85) 

In the above the explicit form of the Green's function for the disk (3.31) 

has been substituted into the last two lines. Integrating out the background 

field F can be done by recasting this as a one dimensional 3 x 3 matrix 

model. When this is done the interaction with a field on the boundary 

can be integrated out, much as was done for the 2 x 2 case in [40], and 

the resulting expression contains the lowest order terms (in the Teichmuller 

parameter) of the hypergeometric functions obtained previously. Similarly 

there is a procedure for obtaining the Green's function for the disk with a 

handle added between balls of radius e centered at z = 0 and z = re1^. This 

gives 

G'(z, z') = G(z, z') + (In e)"1 (G(z, 0) - G(z, re**)) (G(z', 0) - G(z', re'*)) 

-Re 4e2 (z-1 + z)(  1 — 7 + ^-—r 
v 1 \z' - re^ 1 - z're^ 

+ (z'-1 + z') ( + i *• ..) 
v . \z- re1^ 1 - zre1^ J 

+ 0(e2). (3.86) 

As in the case.of the disk with holes removed, this Green's function can be 

then used to integrate out the quadratic perturbation, obtaining results that 

are consistent with those presented in (3.83). 
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(b,h) Z 

(3,0) / e x p [ - E „ r r l n ( l - | ^ 3 | 2 " ( ? - S f ) 2 ) 

- E ™ , Tr In ( l - n\Zl\2n\z2\2F{-n + 1, -o + 1; 2; |22|2) (j= 
- E „ „ ^ In ( l - n\z3Hz2\*F(n + 1, a + 1; 2; |. 2 | 2) 

- E „ m a ^ In (1 - n\Zl\2n\z2\2F(-n + 1, m + 1; 2; |z2_ 

m | z 3 | 2 m k 2 | 2 F ( m + 1, - a + 1; 2; |,2|2) (̂ g£f )') 

2 7 r a ' . F \ 2 \ 
2 T T Q ' F J J 

2) 

(1,1) / n „ = i ^ ^ i 2 

n°° 1 

(1,1) 

exp \pp [(S0j - \z\2F(l, j + 1; 2; |,|2) ^ ) 

r \ 

(1,1) 

^ w - | . |^(*+lj+l i 2 i | ;P)(gg2^) I l^- |«pP(t+l ,I+l i 2^|=) 

( j „ , ^ I M U + i ; 2 ; W 2 ) ( ^ ) JS)-i] 

Table 3.1: The partition functions for the orientable surfaces with x = ~ 1 m 

the case of U = 0. The number of boundaries and handles (b,h) 

is listed. 
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) 

(b,c) z 

(2,1) 

(1,2) 

/ exp [ - E B T r l n (l - | ^ 3 | 2 " )') 

- E™Tr ln ( l + n\z^\z2\*F(-n + 1, -a + 1; 2; - | . 2 | 2 ) ( ^ g f ) ) 

- E™ ̂  ln ( l - n | . 3 | 2 " | . 2 | 2 F ( n + 1, a + 1; 2; - | , 2 | 2 ) ( g g f ) ) 

- Enma T r
 l n (1 ~ | 2 " | z 2 | 2 F ( - n + 1, ro + 1; 2; - | z 2

 2 ) 

ro|,3H*2|2F(ro + 1, - a + 1; 2; - | z 2 | 2 ) ) ' ) ] 

/ exp [ - £ n T r l n ( l - (-l)»\zlZi|2" (j=g£?)) 
" E „ a T r In ( l + n\Zinz2\*F(-n + 1, -a + 1; 2; - |* 2 | 2) ( g g f ) ) 

- E „ a T r ln (1 - n(-ir\zznz2\2F(n + 1, a + 1; 2; - | z 2 | 2 ) ) 

- Enma TrIn (1 - n\Zl\2n\z2\2 F(-n + 1, m + 1; 2; - |* 2 | 2) 

m ( - i n , 3 | 2 - | * 2 | 2 F ( m + 1, - a + 1; 2; - | , 2 | 2 ) ( j = g £ f ) ) j 

Table 3.2: The partition functions for the-non-orientable surfaces with x = 

—1 in the case of U = 0. The number of boundaries and crosscaps 

(b,c) is listed. 
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c) 

Figure 3.8: The three orientable surfaces with x — ~2- The double torus 

(a) has no boundary, the surface with two boundaries (c) can 

be thought of as a one loop correction to the annulus, and the 

surface with four boundaries (b) is topologically a shirt (in the 

same spirit that 3.6b is a pair of pants) 

3.3.4 x = - 2 

As the surfaces increase in complexity there are an increasing. number of 

orientable and non-orientable surfaces with boundary at each Euler number, 

and consequently a larger number of amplitudes to calculate. The surfaces in 

question are illustrated in Figures 3.8 and 3.9 and can be described as follows. 

Among orientable surfaces there are three, one with two loops and no bound­

aries, one with one loop and two boundaries, corresponding to a 'one-loop' 

modification of a string propagator, and a surface with four boundaries and 

no loops, which by analogy with the exposition in previous sections can be 

thought of as a tree level interaction between 4 separate D-branes. Similarly 

in the non-orientable sector there are a number of different possibilities, and 
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Figure 3.9: The four non-orientable surfaces with x — — 2-

they are most simply classified keeping in mind the fact that the insertion 

of two cross-caps can be exchanged for a loop on a non-orientable surface. 

There is a surface with four cross-caps, the non-orientable analog of the two 

loop orientable graph, a surface with1 three cross-caps and one boundary, 

which will be the higher loop generalization of the interaction with the Mo­

bius strip, the surface with two boundaries and two cross-caps which is the 

non-orientable contribution to the one-loop modification of the closed string 

propagator, and a surface with three boundaries and one cross-cap. We will 

examine each of these surfaces in turn, as in the previous sections. 

Once again the contributions of first listed surfaces, both in the orientable 

and nonorientable sectors can be ignored in our investigation of the partition 

function for the tachyon field. As before this is because these surfaces do not 

interact with this because they have no boundaries. 

Next we consider the surfaces with no handles and at least one boundary. 

(This is actually all of the surfaces except for Figure 3.8c because surfaces 

with two crosscaps are equivalent to a non-orientable surface with a handle.) 
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In analogy with (3.75) we calculate for Figure 3.8b with the partition function 

given by 

f 1 1 1 
Z'shirt = / (#01,611^ : #02,62 : ^ : #a3,63

 : ^•|#o4,64)- (3.87) 

Using the convention from the x = — 1 case we implicitly assume that the 

internal Bs have a propagator inside of them, and can be then written using 

3.74 which gives 

: #oi,6i := exp (-apDnpCnm(i)Dmqa.q), (3.88) 

with 

CUi) = z-Mt^A^Mt'-hr (3.89) 

as in (3.79), and D is as described in (3.76). Using this input, and noting 

that there is one factor of ^ that is not accounted for and whose parameter 

z we give the subscript 5 to, we can recast the expression for this amplitude 

as • '> 

Zshirt' = (#(1)| : #(2) :: exp {-akz^kD_nkCnm{Z)D^mjz^a,) : | £ ( 5 x 4)) 

(3.90) 

where the term B denotes the inclusion of the propagator, and 5 x 4 in this 

case denotes the multiplication of z$ and Z4 which only appear in the last term 

in the combination z5z4, so we rescale, absorbing z 4 into the normalization 

of z5. Upon performing the calculations we find 

Z<Shiri< = ZiskFo(p)exp I (nCnm(l)mCam(5))k 

V k , 

exp I Y5na (nCnm(l)mDnl_aCn>m>(3)Dm>-m)k 

\ k , 

exp (YSna
 {nCnm(l)mDnl_aCnlm>{2)Dml_m)k 
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exp | ^ ( 5 n a (nDn»nCnm(2)Dm>>mmDni-aCn'm'(3)Dmi-m)k 

V k 

exp I YSna
 {nDn"nCnm{2)DmnmrnCam{5))k 

\ k / 

exp I ^ 5 „ a (nDnl,nCnm(S)DmllmmCam(5))k 

\ k J 

exp ( Y2 T.$na (nDqnCqp{2)DpmmD n'jCn'm'(3)Dmi—m 

k 

jCjk{^)kDnn_aCniimn{2>)Dmiik) j 

exp {^2i^na
 {nCnm(l)rnDn>jCn>m>(2)Dm,.-m 

k 

jDjijCjik'(3)Dk<kkDn>i-aCniimii (2) Z) m » f c ) ^ 

eXP ( E jĴ na
 {nCnm(l)m 

k 

(DnijCnimi(2)Dmi-m +' DnijCnimi(3)Dmi-m )jCjk{A)k 

(Dnii_aCniimn(2)Dmnk + Z) n »_ a C„» m »(3)-D m »A;) ^ j 

exp ^ ̂  - 5 n a ( n C n m ( l ) m D 
k 

jCjk(4)kDnn_aCn''m'i(3)DmnkDnn_aCnnm''(2)Dmiik) j (3.91) 

This is clearly a lot more complicated than the corresponding result for the 

three boundary case. This can be generalized to the case of any number of 

crosscaps by substituting into the expression for C the term 5^ in 

There remains only one general type of diagram to be concerned with, and 

that is the torus amplitude with two boundaries. This can be also constructed 

in the following manner, which we choose to emphasize the factorization 

properties [26, 28], because the torus can be thought of as the exchange of 
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two closed string propagators. With this, in mind we propose the following 

construction, each of the two arms ofthe torus is thought of as a closed string 

propagator occupying its own Fock space, and the operators that make up 

the two boundary states that form the two ends of this surface are allowed 

to be in either of the Fock spaces, and we average over all possible choices. 

This can be thought of as allowing the excitations from the boundary state 

to propagate along either of the two closed string propagators, and averaging 

over all possible choices in in analogy with the general spirit of path integrals. 

Then the partition function will be 

Z = [z2

DISK(0,p\ n exp ( - ^ . r X ^ A ^ M ^ ^ T ' ^ ) 
J i,j=l,2 

Ta1 a 1 V Q 1 a 1 V a 2 a 2 T a 2 a 2 

II exp ( - a ^ M ^ i A - s M ^ y ^ l ) |0, p) (3.92) 
i ' j ' = l , 2 

where the superscript on the a operators in addition to the Lorentz index 

indicates the Fock space to which it belongs. Now, (3.92) can be evaluated 

giving 

Z = fz2

DISK(0M exp {-^'M^A^M^zT'a^ 
J V=l ,2 

J] ^ { - ^ 4 M [ t ^ s M ^ (3.93) 
J',J'=1,2 

3.3.5 x = - 3 

As for x = —2 there are a number of different surfaces of this genus that 

can be obtained with the insertion of handles, cross-caps, and boundaries. 

The method presented above provides a concrete proposal for the construc­

tion of these higher genus amplitudes for all x < — 1- The construction is 

particularly appropriate for what can be interpreted as tree level scattering 
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amplitudes for an arbitrary number of closed strings emitted from the brane 

3.3.6 Beyond the Born-Infeld Action 

In the preceding we have further explored the bosonic boundary state formal­

ism [26] and discussed its extension to the off-shell case including interaction 

with a tachyon field of quadratic profile. The boundary state has been shown 

to reproduce the a model calculations for emission of any number of closed 

string states, as detailed in the correspondence 

This can be restated as the fact that the boundary state encodes the bosonic 

string propagator in an algebraic manner. 

It has been shown that the inner product of two of the boundary states 

also reproduces the a model calculations for a world-sheet of the appropriate 

genus. We also present a generalization of this to higher genus, the results 

of which become progressively more complicated. In the case of vanishing 

tachyon field we obtain the following expansion in the open string coupling 

constant g0 

described by the boundary state. 

(V1\:V2:...\Batb) (: Vi :: V2 : . . .)T0,U,F- (3.94) 

ZF = E ^ x 
x 

£-Vd.et (g + 2ira'F) 

l + \z2\T 

1 - \z2\r 

+/lK 1 -(- 1 ) r i - 2 i r )^Il d e t (9 
l + ( - l ) r | z 2 | r 

1 - l-l)r\z2\r 

-1 

2na'F 
r r 

(3.95) 
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where Zxij is the partition function given in Table 3.3.3 or 3.3.3 for orientable 

x = o and non-orientable x = n surfaces with i, j boundaries and handles 

(or boundaries and cross-caps if appropriate). This is a generalization of 

the Born Infeld action taking into account higher loop stringy corrections, 

specifically including contributions from Euler number x = ~ 1 m addition 

to the x = 1 a n d X = 0 terms previously in the literature, and including 

the contributions from non-orientable surfaces such as the Mobius strip. The 

construction presented can be generalized to higher genus with particular 

success in the case of the sphere with a number of boundaries and cross-

caps added. It quickly becomes apparent that the simplifications obtained 

by the method of encoding the Green's function in the boundary state are 

overwhelmed by the increase in the parameters associated with the various 

boundary states. 

3.4 Fermionic Boundary State 

Despite the details shown in the previous sections the fermionic contribution 

to the boundary states is in fact more involved than that for the X fields. 

This stems in part from the fact that the fermions have a more involved 

world-sheet action, involving the Ramond and Neveu-Schwarz sectors cor­

responding to different boundary conditions for the fermions [79]. Another 

complication that will appear briefly is that there are branch cuts in the in­

tegrals that define the matrices relating the the oscillators before and after 

a conformal transformation; and this introduces some subtlety of treatment, 

however, that is for the Ramond sector fermions, whose zero modes make 

them inappropriate for the study of tachyon condensation [67], especially 

considering that the lowest lying states in that sector are bosonic. 

We start as in the bosonic case with the consideration of the world-sheet 



Chapter 3. Boundary States 89 

action [6, 15, 68] 

Sfer.m=.f {r+d-r++r-d+fo) +1' 
JM JdM 

u,v(^r+^r+-r_^r}j (3.96) 

where as in the case of the X fields there is a boundary interaction with a 

constant gauge field, and the term involving the tachyon profile U is a simple 

generalization of the result in [76], and is appropriate to the NS sector since 

that is the sector with the tachyon, as well as that the fermions not having 

zero modes renders the inverse integral well defined 

^(4>) = l j dMcj> - <t>')^\ . (3.97) 

where e is a step function: e{x) = 1 for x > 0 and e(x) = — 1 for x < 0. 

Combining the previously mentioned expansion for ip+ and tp_ with and 

expanding as in [32, 34] we obtain the boundary conditions which must be 

satisfied 

+ + — j rn+.ir}^g_27ra'F-jlpj fo_n = 0 (3,98) 

where the factor of i comes from the conformal rotation of the world-sheet 

coordinates, and n = ± 1 will accomplish the GSO projection with the selec­

tions [32, 34] 

2 | ^ ) = \B+) - \B.).- (3.99) 

where \B±) are.the coherent states that satisfy the boundary conditions with 

the corresponding positive or negative value for 77, explicitly 

\B±) = J\ff exp [±i Y ^-nXluV-n] |0> • (3.100) 

with 

,n / £> 2 n 
^ = \ 9 + 2«a'F + i « \ (3-100 
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Note that in the case of the Ramond sector the above difference becomes a 

sum and there is no contribution from the tachyon profile U, and also that x 

is closely related to the bosonic term A. We specialize this discussion to the 

Neveu-Schwarz sector, as that is the case which can draw the parallel with 

the discussion in the bosonic sector. 

Now we examine how the conformal transformation which redefines world-

sheet coordinates (3.12) acts on the (|,0) degrees of freedom. Using the 

standard mode expansion [51, 79] the relationship between modes before 

and after transformation is 

The expression for A'" also contains an arbitrary phase that comes from the 

choice of branch for the square root of the Jacobean for the transformation, 

which can be ignored because in all cases we deal with bilinears in this, and 

also a relative sign can be absorbed in the definition of rj. An examination 

of the properties of N, as well as its bosonic partner are found in Appendix 

3.4.1 Particle Emission from Fermionic Boundary 

State 

Now, in analogy with the development we can calculate the emission ampli­

tude for a state in the NS-NS sector by- taking the overlap with the appro­

priate element of the Fock space. As the development here is very similar 

to that in the bosonic case we only present a representative sample of the 

possible overlaps. First the massless state, corresponding to among other 

things the graviton, which is given by 

Ipm = NmnlPn 

mn (3.102) 

A. 
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within the Fock space. The overlap of this with the boundary state given 

above is then 

• (P^B) = f d2ad2b5{\a2\-\b2\-l)iUfP^ 

. = y - d » a d 2 M ( | a 2 | - | i r ' | ^ l ) i V / P ^ ^ ^ (3-103) 

with the bosonic part implicit and calculated previously (3.21). By contrast 

the overlap with a state with higher number of excitations is somewhat longer. 

An example is to consider the state 

l ^ > = ^ « / » ^ - l / 2 ^ - l / 2 ^ - l / 2 f c / 2 | 0 > • 

where there are the obvious symmetry and antisymmetry relations between 

the indices. The overlap is then 

< 7 W | £ ) = ~ J d2ad2bS{\a2\-\b2\-l)V^ 

( 7V"(°'6) 7\j(a>6) Ar( a > 6 ), ,n j\r(o>6) 
^ - / V m l / 2 ^ M " - / V m l / 2 - ' V n l / 2 X ^ - ' V

n l / 2 

The expressions for the matrices A 7 ^ ^ can be found in Appendix A.2. 

3.4.2 Particle Emission in the Superstring Sigma 

Model 

Now, we pursue the analogy with the bosonic case further by calculating 

the disk amplitude for emission of the corresponding particle. We start by 

mentioning the two point functions for the NS fermions on the disk in the free 

case, which are respectively (with G1p(z,w) = (ib(z)ib(w)) and the obvious 

notation for the conjugate fields 
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a' I Vzw Vzw 
G+(z, w) = -[ + ) (3.106) 

l \ z — w 1 — zw J 
Note in passing that these reproduce the well known expression [67] for the 

correlators of fermions on the boundary of the world-sheet, and when we 

parameterize z = e1^ and w = e1 '̂ we obtain as the sum of the holomorphic 

and antiholomorphic propagators 

mmn + $(4>)M)) = — ( 3 . i o 7 ) 
S i n V 2 ) 

in agreement with [67]. Just as in the case of the bosonic fields it is possible to 

integrate out the boundary interactions and obtain the modified propagator 

which satisfies the boundary conditions, obtaining, now including the Lorentz , 

indices, 

-tG^wYv = 
a' z — w 

g- 2na'F- ^ 
2 r 

g + 2ira'F + ^ 

g-2ixa'F-^ 
g + 2na'F + ^ 

Im (zw)T 

[H 

Re (zw)r(3.108) 

and the corresponding expression for the conjugate fields 

^G4z,wr = - ^ V 
a z — w 

g + 2-ira'F+^ 

g-2ira'F- ^ 
£ 2 r 
g + 2ira'F + 

Im (zw)r 

Re (zw)r(3.109) 

which reproduce the results from [15, 102]. In a similar way the partition 

function from the fermions can be evaluated to obtain 

Zi> = YI det(g + 2na'F+jj\ (3.110) 
rGS+l/2>0 
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We note that in the case of vanishing tachyon profile U the disk level partition 

functions of the bosons and the fermions on the world-sheet the two partition 

functions cancel each other in agreement with [17]. 

Preliminaries aside we may now calculate the expectation value of the 

vertex operator corresponding to the state discussed previously. From the 

point of view of a purely sigma model calculation, the vertex operator from 

the (—1,-1) picture 

K„) P^VreikX : (3.111) 

will vanish under path integral averaging. In contrast to this however, the 

fact that this system is annihilated by the BRST charge operator Q suggests 

that the (0, 0) picture is more appropriate in any case, and the corresponding 

vertex operator is 

\P»u) Pfu, [dX* + ikaW) (BXV + ik^fo^j eikX : (3.112) 

and so averaging we find 

(: (dX* + ikaW) (dXu + ikpftj?) eikX :) = 

P„„ (ddG% - kakpdGfG0x + ikadG^ikpG^u + ik^dG^ikaG%u 

-kp&fKG'f) exp ( - ^ K G ^ (3.113) 

where the Green's functions can be evaluated from expressions (3.108) and 

(3.109). For the bosonic parts of this expression it has already been shown 

that the boundary state encodes the interaction content of the sigma model, 

and for the fermionic degrees of freedom there are relevant calculations that 

can be found in Appendix B. The coincidence of this with the calculation 

from the boundary state is another independent check of the boundary state 

giving the correct overlap with closed string states, which is now for the 

perturbative superstring. 



Chapter 3. Boundary States 94 

3.4.3 Euler Number Expansion for Fermions 

To follow the same analysis for the fermions in Euler number expansion as for 

the bosons, the same steps are necessary. First the observation is repeated 

that the sphere and RP2 do not have any interactions with these boundary 

fields and so are not of interest in constructing a stringy action for these 

fields on the brane, and as before the disk case has been calculated explicitly. 

Paralleling the development before we can interpret the annulus amplitude 

as either a tree level self interaction diagram for the brane fields, or in the 

case of distinct branes as a single particle exchange. 

So, for the case x = 0 we take the fermion boundary state for the NS 

sector and the overlap given by 

(B ±\B,) = expf.X;{rr([^' 6 )x2a^y ir 

(3.114) 
fiuj . 

which in the case of vanishing tachyon gives the opposite contribution to 

(3.60) as seen explicitly in the calculations [17]. 

3.5 Ghosts and Antighosts 

For completeness, we now mention the ghost and antighost systems, but since 

they do not couple to the boundary interactions, the discussion will be brief, 

(see [32, 34] for a more detailed discussion) It has been mentioned before 

that the boundary state is annihilated by the operator QBRST + QBRST-

Expanding Q in terms of ghosts b and c, this condition together with the 

known form of the boundary state for the bosonic coordinates leads to the 

conditions 

(c„ + c_n) )Bbc) = 0 , (3.115) 
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(&„ - 6_„) IS*) = 0. (3.116) 

Due to the anticommutation relationships between b and c, 

{bn,Cm} = <Wn,0 (3.117) 

{bn,bm} = {c n,cm} = 0 (3.118) 

it is immediately possible to see that this coherent state is given by 

\Bbc) = exp ̂ c _ n L n + c _ „ 6 _ n j ^ ( c 0 + cb)|0) (3.119) 

where |0) is a state which is annihilated by cn for n > 1 and by bn for n > 0. 

Similarly the antighosts arise for the case of the superstring, and we men­

tion here those appropriate for the NS sector, as that was where the tachyon 

field caused interest. The superghosts contribute to the energy momentum 

tensor of the string as do all the other fields, and by decomposing the QBRST 

into its components and defining ry as in the fermionic case the /?7 modes 

relate according to 

( 7 N + M 7 7 _ N - ) \Bfr) = 0 (3.120) 

(j3n + ir/)9_n) \BPl) = 0 (3.121) 

and this gives a superghost boundary state as 

\Bfr±) = exp l±i Y ~ P-nl-n) (3.122) 
\ nGZ+l/2>0 / 

because the commutators for the /?7 system are 

[Pn,7m] = Sm+n>0 (3.123) 

R , /3m] = [7n, 7m] = 0. (3.1.24) 
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3.6 Summary 

While the boundary states for the ghosts and antighosts are well known [31, 

32], we have developed in this chapter the boundary states for both bosons 

and fermions corresponding to the boundary string field theory actions 

s(g,F,T0,u) = ^^dax»dax„+r+d-r++r-d+r-

+ I (\F^Xvd^ +~TQ + ^-U^X") , 
JdM \2 27T 87T J 

+ <f F,u(r+r+-r-V-) + u»Jr+^r+-r-^r2) 
JdM \ a<t> / 

(3.125) 

which is given by 

\B) = Z\Bx)\B^)\Bbc)\BM) (3.126) 

with the normalization determined by the comparison of the overlap with 

closed string states to the analogous calculation in the world-sheet sigma 

model, and the integration over PSL(2,R) implicit. \BX), \B^), \Bbc), and 

\Bpy) are given respectively by equations 3.19, 3.99, 3.119, and 3.122. This 

boundary state correctly reproduces the emission of particles by the brane 

described by the boundary interaction, and can be thought of as a state 

interpolating between the renormalization group fixed points of tachyon con­

densation. 
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C h a p t e r 4 

G e n e r a l i z e d B o u n d a r y 
I n t e r a c t i o n s 

In the previous chapter we considered exclusively the states in which the 

background consisted of a tachyon field with a quadratic boundary interac­

tion, and also a constant antisymmetric gauge field. While these are interest­

ing and have generated a great deal of investigation and study [4, 17, 68, 101] 

they clearly cannot be the whole story, because they do not exhaust the pos­

sible interactions on the boundary of the string world-sheet, including the 

possibility of interactions higher than quadratic. The programme in string 

theory is to regard these as coupling constants that generate higher order 

interactions on the string world-sheet and on the boundary; a famous ex­

ample of which is the spacetime metric tensor which appears in the string 

action, when it is expanded around Minkowski spacetime it gives a massless 

two dimensional theory plus interaction terms, 

J dX'dX'G^ (Xa) -+ J dX^dX" + faG^ (Xo 3 ) ) xa + ...) . 

A general theory which has such arbitrary interactions is difficult to solve 

analytically without a great deal of symmetry [51]. While the study of general 

world-sheet actions is beyond the scope of this thesis, a much more general 

class of boundary interactions is available for investigation. 

There are two directions, not mutually exclusive, that this can take, the 

first is to investigate additional constant fields and couplings in the context 

of the boundary state. These will add to the spectrum of possible fields and 

charges on the hyper-surface that spans the edge of the string world sheet. 

The second is to have non-quadratic interactions on the boundary, which 
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will, in general, make it difficult to write out a nice and compact expression 

for the boundary state, but none the less, it is possible to recover some kind 

of dynamics for the strings from this. In all of this consideration there are 

still two general principles that govern the analysis, that the boundary states 

algebrize .the world-sheet action, and that the effect of conformal transfor­

mations is accounted for. 

4.1 Additional Boundary State Fields 

We wish to demonstrate that the boundary state is not applicable only to 

the case of a tachyon field and gauge field, but also to fields of different 

world-sheet dimension. We will first examine the addition of different fields 

into the boundary state, which amounts to, in the bosonic case adding fields 

and interactions in the form 

S= f dXBX+[ T(X») + Atl(X)dX>* + Btl(X)d2Xfi + Cli(X)d3X» + ... 
JM JdM 

(4.1) 

For the purely quadratic case, each of those fields is expanded to linear order 

with the exception of the tachyon discussed before. The partition function 

and world-sheet two point functions are straightforward generalizations of 

the case examined in (3.33). In particular we find that the disk propagator 

becomes 

-aY" In | * - * ' 

+ T E — 
n=l 

+ (zz')n 

n 

(y - f n - W F - a ' n B - a ' n 2 c + 

K9 + f n + 2 7 r a ' F + a ' n B + a ' n 2 C 

, oo ' 
a — 

it*"} 

a' ^ (zz')n - {zz')n 

+ in 
n=l 

+ • 
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g-^U-- 2na'F - a'nB - a'n2C + .. . \ W , » 
g+^^ + 27ra'F + a'nB + a'n2C + ...J K ' ' 

Here we have used the expansion (3.4) for the tachyon T(X), assumed a 

prefactor of for all the additional fields, and used the convention that B, 

C, and the higher terms in this expansion are the field strength associated 

with the corresponding field in (4.1), so 

= d„Av{x) - dvA„{X) 

B^ = d„Bv{X) + dvB„(X) 

= d„Cv(X)-dvC„{X) 

In this background the disk partition function becomes 

1 -To T T 1 

(4.3) 

-e n det( | ) J ^ d e t ^ + f % +2ira'F + a'nB+ a'n2C+ ...)' 
(4.4) 

Additional fields such as those described above were discussed in [74], 

with boundary interaction 

Sbdy = a+^jd6dffX>i{9)ullv{0-&)Xv{&) (4.5) 

where 6 parameterizes the boundary. The boundary coupling u in (4.5) 

preserves locality in the sense that the Taylor expansion consists of derivatives 

of a ^-function 

{6-6') = Y,ir%5(e-n (4.6) 
°9 

The boundary coupling u can also be Fourier analyzed as 

j d6u^{6)e-ike. • (4.7) av vu. 
Uk = U-k 
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In the language of (4.1) this corresponds to having the couplings 

«£" = U"" + kF^ + k2B»u + tfC^ + . . . (4.8) 

and the partition function is determined to be [74] 

Z = -r^e-a JT det f 1 + —) (4.9) 

in agreement with (4.4) with the identifications a = T0, u0 — U and (4.8). It 

is also shown in [74] that using a point splitting regularization it is possible 

to introduce a short distance cut-off and truncate the expansion (4.1) and 

then renormalize with respect to this cut-off. For our purposes it is sufficient 

to note, using the formal relationship 

X(9)X(e + e) = f2^X(9)^X(9) (4.10) 
n=0 u 

it is possible to use a boundary state to describe a non-local boundary inter­

action. The boundary state corresponding to the action (4.1) is, just as in 

(3.19) 

\Ba,b) = Zexp( c£kM™k^M™^ 
\n=l,j,k=—oo / 

exp ( - ^ U ^ |0). (4.11) 

with 

„ n ± | a - y g - 2na'F - a'nB - a'n2C + .. 
~ n U + + 2™'F + oc'nB + a'n2C + ... 

(4.12) 

This will reproduce all the a model amplitudes [70, 74]. We can also con­

sider the case of interaction terms that are explicitly non-local. Due to the 

(anti)symmetry requirement (4.7) still holds and so using equation 4.8 the 
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non-local can be recast into a set of local boundary interactions, potentially 

infinite in number. 

This generalization has the following interesting property, it was noted 

that the transition from U = 0 to U = oo was characterizing the transition 

between Neumann and Dirichlet boundary conditions. This could be seen in 

the boundary state expression because for large values of U the coefficient 

in the exponential simplified to the well known expression for the boundary 

state for a D brane. Now, restricting attention to the case of the additional 

field B which appeared as §QM B^X11 or equivalently the first term in the 

Taylor expansion §dMBllvdXlldX'/ where B^ = d^B^ + dvB^ as detailed 

in equation 4.3 we see that the statement is still the same. In the case that 

B —> oo the strings will satisfy the regular Dirichlet boundary conditions, 

but they will not have a condition upon their zero mode. We can contrast 

the effects of the tachyon's U with this B, World-sheet excitations with 

large enough mode number will overcome the effect of U, since it appears as 

U/n —>• 0 as n —¥ oo, but by contrast B appears as nB which grows with 

increasing n and makes the system 'more' Dirichlet in the UV. Of course, this 

is just another way of saying that the coupling U is irrelevant in world-sheet 

power counting, and that B is relevant. To speculate what the effects of this 

kind of background field are, consider the case of a region of space where B 

is non-zero. An end of a string in that region will not leave for the same 

reason that it would not leave a brane's surface. A large region like that 

could model an extended object which traps strings near its boundaries. 

Another similar point is that if there are large U and B couplings on 

the string boundary, there will be a finite number of modes which dominate 

the partition function, equivalently the action for these background fields, 

eliminating the need to regularize the expression. We now examine this 

thought somewhat more systematically. 
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SS 

4.2 Time Dependent Tachyons 

It is also possible to study tachyons of a more general profile, as discussed in 

[43, 85, 86, 93, 94]. The motivation for this kind of study is to examine the 

time dependence of the tachyons described by a boundary state as opposed to 

simply the static solutions that describe, either the tachyon vacuum or static 

D-branes of lower dimension. This allows a more sophisticated analysis of the 

dynamics that describe the decay of a space-filling brane into one of smaller 

dimension. 

A model for the study of this process is the boundary interaction term , 

= coshX 0 (4.13) 

JdM 

where the bulk action is the standard bosonic string action and the term A 

is written to conform with the conventions of [86, 95]. It has been previously 

shown [85] that this type of deformation is amenable to study. In fact, a 

compact expression for the boundary state for this type of perturbation is 

known to be 

\B)=jVYT,D3m,-m(R)\J,m,m)) (4.14) 

j m 

where j runs over non-negative integer and half integers and can be inter­

preted as a spin, ro stands in the roll of projection of spin j, R is a rota-
f a b\ 

tion matrix in 577(2) which can be parameterized as R = _ _ , and 
\-b aj 

\j, ro, ro)} is a Virasoro Ishibashi state [61] associated with the primary state 

\j, ro, ro) with momentum 2m and conformal weight (j2,j2). The matrix el­

ements of D are defined, for the parameterization of R given, by the formula 

[43] 

jy ( R ) =

 m i n ( ™ + n ) v / a + m)!Q--ro)!(i + n)!0--n)! 
k ^ n - m ) 0- " - - W + WW™ - " + W 

aj+n-k-j+n-kbk^m-n+k ^ ^ 



Chapter 4. Generalized Boundary Interactions 103 

and also the primary state can be expressed, up to a phase as 

\j, m, m) - kOjim exp (2imX) |0) (4 .16) 

where OjtTn are a combination of oscillators with left- and right-moving level 

of j2 — m2. Since the potential has been specialized to be in the X° direction 

it is possible to pick out the coefficient of the part of the boundary state 

that has no dependence on the a0 or &° oscillators. Note that the other 

25 bosonic directions are given by a boundary state like (3 .10) but with all 

external fields vanishing giving 

/ 2 5 i i \ 
| £ W = e x p (4.17) 

i=l n>l 

as in [34]. Now, fixing the phases by comparison with known configurations 

[93, 95] we are able to find that for the hyperbolic cosine perturbation (4 .13) 

it is 

\B0)=M 1 + 2 Y ( - sin(ATr))" cosh (nX°) 
n>l 

|0> (4 .18) 

which can be explicitly summed to give a time dependent constant in front 

of the X° mode independent part of \Bo), and obtain \BQ) = Aff(x°)\Q) with 

. F(x°) = 1 + J _ _ _ i . (4 .19) 

l + ex sin (A7r) 1 + e~x sin I ATT) 

In all of this, sin is a parameter from the SU(2) transformation neces­

sary to put the boundary state in this form. 

Similarly, it is interesting to find the coefficient of the term associated 

with the purely time (00) component of the graviton, that is the coefficient 

of the state 

a - i a - i | f c ) G. \B) 
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which is found to be 

g(x°) = cos (2AV) + 1 - f(x°) (4.20) 

The sum of g and / is conserved, independent of x°, and can be interpreted 

as the conserved energy density on an unstable d-brane by observing that 

the sum goes, in the small A regime as 

f(x°) + g(x°) -> 2 ( l - A V ) (4.21) 

but on the other hand the d-brane tension is given as 2 n \ g 2 with g the open 

string coupling constant, and from the point of view of string field theory the 

potential energy for the tachyon field deformed by A is — ̂  and summing 

the two, one obtains the total energy [86, 93, 95] 

hi1-**2) 2TTV 

which is proportional to (4.21), and this then shows that it is correct to 

interpret the sum f(x°) + g(x°) as the total energy density of the system of 

branes. This kind of construction will give the evolution of the normalization 

of the boundary states which describe the spatial d-brane. The explicit form 

of f{x°) is such that for boundary perturbations where sin (A?T) > 0 we have 

f(x°) -> 0 as x° -> oo . (4.22) 

which can be interpreted as a decay of the states with Neumann boundary 

conditions in all spatial directions. 

Following [86, 95] it is possible to generalize this sort of construction 

to something that has spatial inhomogeneities rather than just some time 

dependence. A natural candidate in the spirit of (4.13) is the boundary 

interaction 

f X° X^ 
5S — A ® cosh —=. cos —=. (4.23) 

JdM v2 v2 
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As is apparent from the form of the interaction, this will be solvable in the 

same sense that (4.13) was, and further it can be seen to decompose into 

boundary states that are purely functions of X° ± iX1, and so the analysis 

above can be repeated. The boundary state describing this decouples as 

\B) = \BxotXi) <g> |#x,,^o,i) ® \BbtC) (4.24) 

where 

\Bx0<xi) = \B+) ® \B_) (4.25) 

and following [86] it is possible to find that 

\B±) = / ^ i t x ^ O ) 

+\g{x° ± ix1) (a?.! ± ial_x) (<5° x ± ia\) |0) 

+^h1{x° ± ix1) (a° 2 ± ia\2) (a°_2 ± ia\2) |0) 

+ ^ 2 ( a ; 0 ± ix1) (a 0^ ± i a ^ ) 2 ( a ° x ± i&lj2 |0) 

+ ^/i3(ar° ± ix1) (a° ! ± z a ^ ) 2 ( a ° 2 ± i a l 2 ) |0) 

+ ^ 3 ( z ° ± ix1) (a°_2 ± i a^) (a° x ± idii) 2 |0> + . . . (4.26) 

and similarly the implicit coefficient functions are determined to be 

Kx^ix1) = -r—^ — + 
l + exp (2^iJ-sin(A7r/2) 

7 ^ 1 (4-27) 
l + e x p ( - 2 ^ J s i n ( A 7 r / 2 ) 

g(x°±ix1) = l + cos(A?r) - f(x° ±ixx) (4.28) 

hl{x[i±ix1) = ( l + COS(AY)) ( l - sin(A7r/2)) cosh ( ^ 7 = ^ 

-f(x°±ix1) . (4.29) 
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h2(x°±ix1) = 2 ( l + cos(A7r)j sin(A7r/2) cosh 

+ f(x° ± ix1) (4.30) 

hix^ix1) = - ( l + COS(ATT)) sin(A7r/2) sinh ^ ° ^ ^ (4.31) 

Now, using these expressions it is possible to expand the boundary states 

for arbitrary oscillators, and we see that, for instance, the coefficient of the 

tachyon mode (that is to say the Fock space vacuum |0)) is the same as 

the coefficient of some of the purely spatial components of the graviton (for 

instance (a i 1 o; i 1 + ai^L-JIO)), with similar relationships occurring among 

all oscillator combinations with the same holomorphic and antiholomorphic 

levels in X° ±iXx. This can be briefly compared to the case of the quadratic 

tachyon profile considered in section 3.2. The similarity to the current con­

sideration is that the states appearing in the boundary state expansion do 

not necessarily have equal numbers of creation operators at the same level 

as they would in the case of pure Neumann or Dirichlet boundary conditions 

(compare a_ia_id_2|0) with a_ iQ;_ iQ;_ iQ;_ i | 0 ) ) 

The interesting point that arises from this analysis is that, as in the purely 

time dependent case there is time evolution of the coefficient functions. This 

evolution is analyzed in detail in [86] and it is found that the energy density 

evolves off a brane and becomes localized, showing the decay of a space filling 

brane into something smaller. 

4.3 Spherically Symmetric Tachyon 

Condensation 

Another possible generalization within the study of tachyon condensation 

is to consider, as in [54], a more symmetric case in which the symmetry 

renders the analysis more tractable. The problem considered was that of the 

x ± ix 
~7T~ 
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condensation of open string tachyon fields which have an 0(D) symmetric 

profile. In the context of the quadratic tachyon profile studied in 3.2 this is 

simply the problem of condensation from a space-filling brane to a spherical 

symmetric state by decay of the radial direction. 

This problem is investigated by using the observation of [27] that the bulk 

excitations can be integrated out of the partition function to get an effective 

non-local field theory which lives on the boundary. The problem is then 

reduced to a boundary conformal field theory with D scalar fields on a disc 

perturbed by relevant boundary operators with 0(D) symmetry. The model 

is exactly solvable in the large D limit and admits a tractable 1/D expansion, 

which only is consistent for tachyon fields that are polynomials. In the case 

of tachyon fields that are polynomial the theory is renormalizable by normal 

ordering, but in the case of non-polynomial tachyon potentials it is possible 

to have large anomalous dimensions for the operators and that these may 

require non-perturbative renormalization which could make the /3-function 

nonlinear. This nonlinearity combined with the vanishing of the ^-function 

as a field equation for the tachyon profile gives terms that describe tachyon 

scattering [64, 65]. However when the tachyon profile, and the other fields 

are adjusted so that the sigma model that they define is at an infrared fixed 

point of the renormalization group, these background fields are a solution 

of the classical equation of motion of string theory. Witten and Shatashvili 

[97, 104] have argued that these equations of motion can be derived from an 

action which is derived from the disc partition function. 

We start with the world-sheet action 

and breaking the field X into classical and quantum parts in the standard 

way 

X — Xc + Xq 
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and Xc satisfies the wave equation on the entire surface and Xq —> 0 on 

the boundary. Integrating out one obtains the action decouples between the 

classical and quantum parts as 

S = ( dXqBXq+ [ (\xc\d\Xc + T(Xc)\ (4.32) 
J M JdM \ ^ J 

where the term \d\ gives a non-local contribution to the kinetic term, defined 

by its Fourier transform 

\d\5{4> -<t>') = T " - cos n(</> -(f)') (4.33) 
Z.—/ Tj-
n>0 

The quantum term is nothing but the partition function of the string with 

Dirichlet boundary conditions, and in the absence of the tachyon field the 

integration over the classical fields on the boundary will give the terms to 

convert from the Dirichlet to Neumann boundary conditions on the partition 

function. 

Investigating the large D limit of this Q(D) invariant model we reparam-

eterize 

T(X) DT (X2/D) . (4.34) 

We introduce auxiliary fields and a source to the partition function of the 

boundary field theory, as 

Z = Z0J dXdxdXexp(-S) (4.35) 

with 

S = f^(^xi\d
 + 2iMxi + DT(x)-Di\X-JiXi>J (4.36) 

where A is a scalar that enforces the condition x — and J1 is a source 

term. As was apparent from the initial form of the action the zero modes 
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of X are special in that they naively contribute a constant term in the two 

dimensional partition function (4.35) and also since in the above action all the 

X terms appear quadratically it is convenient to integrate out the non-zero 

modes (X0) which then gives the effective action 

se(f = |Tri„(|a| + 2a) + D | g ( T W - a ( x - ^ ) - ^ 

where both the trace and the boundary greens function for X are only defined 

on non-zero modes as those were the ones integrated out. In the large D limit 

the integrals over x and A can be done using a saddle point method obtaining 

the equations 

T'(X) = i\ (4.38) 

and 

X = ^ (X + x(<f>)Y (X + x(<f>)Y + Gx(<l>, <f>, 2 T ' ( X ) ) . (4.39) 

In this x(<fi) is the induced classical field 

<j>) = f ^ G X ( ^ 0 ' , 2 T ' ( X ) ) ( J ( 0 ' ) - 2 T W ) ) ^ o ) , . ' (4.40).' 

and the saddle point relation for A has already been used to simplify the 

expressions. Thus to leading order in the large D limit, the partition function 

is given by 

Z = Z0 J dX0 exp -5eff[xo, A0, X0] (4.41) 

where xo and A0 are solutions of (4.39) and (4.38) respectively. This analysis 

can be extended to higher orders in as well. 

When considering the effective action (4.37) we note that there are di­

vergences that must be renormalized. It was argued in [54] that while the 
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logarithm of the mode number contributes a divergence that can be regular­

ized by ( function regularization there remains a truly divergent term which 

multiplies the tachyon, and which can be subtracted by the renormalization 

transformation 

T ( x ) - > : T ( X - 2 C ( l ) - 2 c ) : (4.42) 

where c is an arbitrary constant that should be fixed by a renormalization 

prescription. With the substitution of this into the effective action above, 

one can obtain an expression for an effective action that is finite, up to an 

arbitrary parameter that was discussed in [101]. 

Interpreting the ( function as being involved with the cutoff of the the­

ory at large world-sheet momentum we can see that taking the logarithmic 

derivative of : T : will give a linear /^-function for the tachyon field at this 

order [64, 65] 

/?(: T :) = - : T : -2 : T' : (4.43) 

which is the large D limit of the tachyon wave operator. 

A transparent way to understand the content of the classical partition 

function is to consider the limit where T(X) is a smooth function and to 

expand in derivatives of T. To do this, we set the source J to zero. Then, 

we expect that the condensate x is a constant, independent of <j). Then, 

the Green function can easily be evaluated. It is most useful to consider an 

expansion of (4.39) (after renormalization) 

X 2 °° 
X = — - 2 c 1 + 2^C(p+l ) ( -2T ' ( x ) ) P (4.44) 

p=i 

and sums of this type appear in the analysis in [54] Substituting into (4.37) 

we find 

" Z =• ZQJ dX0e-DT^xo^ 
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X2 

1 - 2 C l D T ' ( - ^ ) + 2£>C(2) 
Y"2 

+ • 

(4.45) 

and the omitted terms are of higher orders in derivatives of T by its argument. 

Now calculating the action, as discussed in [54] and around (2.24) given by 

S = 1 + 

Z0 J dX0e~DT^) j l + DT X^+2DT' 
D D 

1 - cxDT xi 
D (4.46) 

Which exactly coincides with the result of [101]. 
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C h a p t e r 5 

C o n c l u s i o n s a n d F u t u r e 
D i r e c t i o n s 

In this thesis we investigated the interplay between interactions on the string 

world-sheet boundary, conformal invariance, and tachyon condensation. We 

have reviewed some of the background and developments which motivate 

the study of tachyon condensation. We developed a boundary state appro­

priate for non-conformally invariant boundary interactions [4, 70], used this 

boundary state to calculate higher genus string diagrams [69]. Where pos­

sible we verified that the amplitudes we obtained coincide with the known 

results calculated with other methods. We have commented on the applica­

bility of our boundary state to other boundary interactions, including ones 

that violate world-sheet locality, and explored other ways to analyze tachyon 

condensation in Chapter 4 [54]. 

The boundary state 

\B) = jd2ad2b8{\a2\ - \b2\ - l)\Ba,b) 

with 

E ^ M ^ l M - ^ 
n=l,j,k=—oo 

exp ( - ^ U ^ |0>. 

has been shown to correctly reproduce sigma model particle emission am­

plitudes, and thus describes a brane in the process of tachyon condensation. 

As the parameter U runs under RG flow from 0 to oo the string world-sheet 
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undergoes a change from Neumann to Dirichlet boundary conditions, and 

this boundary state gives a smooth interpolation between the two. The nor­

malization coefficient Z has been shown elsewhere [68] to correctly reproduce 

the expected [91] ratios between brane tensions during tachyon condensation, 

and this strengthens the interpretation of \B) as a brane. A similar boundary 

state was found in the superstring case as well, with the same properties. 

We also use the boundary state to calculate higher genus amplitudes. For 

the case of a conformally invariant boundary we exactly reproduce the known 

results at x = 0 for a constant background gauge field. We also provide a 

concrete realization of the proposal [28] for the string loop corrections to 

tachyon condensation, manifestly reproducing the closed string factorization 

properties in the off-shell case considered. 

Chapter 4 examines other boundary interactions, and details several dif­

ferent methods of probing their structure. We review the construction of 

boundary state for time dependent backgrounds. It exhibits many simi­

larities to the conformally integrated boundary state defined above which 

suggests that these boundary states are also appropriate for the examination 

of the time dependent structure of tachyon decay. Also, we examined the 

1/D expansion as an additional way of probing the properties of tachyon 

condensation. 

This work highlights several opportunities for future research and inves­

tigation. The boundary state constructed in Chapter 3 is well understood 

in the context of boundary string field theory. As this state represents a 

tachyon in the process of condensing, it would be very interesting to study 

its representation in cubic string field theory. It would similarly be interest­

ing to extend the analysis in section 3.3 to higher genus, and also to attempt 

cross-checks on the quantities calculated there. Also, as alluded to in Chap­

ter 4 there is a natural connection between the Ishibashi states [61] used to 

describe the time dependent tachyon condensation and the boundary state 
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\B), and it is possible to include time dependent coefficients for the spatial 

directions in analogy with [86, 93]. 
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Appendix A 

Properties of the Conformal 
Transformation Matrices 

In this appendix we examine some of the properties of the matrices that 

perform the conformal transformation which maps 

az + b 
oo = = bz + a 

on the degrees of freedom in the bosonic and fermionic sectors respectively. 

A . l Bosonic Matrix M^n 

As discussed in chapter 3 the matrix that maps the bosonic degrees of freedom 

to one another under the conformal transformation above is 

rd^(bz + ar-i 
f 2m* (az + b)"+i [ A - 1 } 

with the contour for the integral around the.unit circle, as seen in (3.18). 

This matrix has a simple block structure, and the elements in each block can 

be evaluated and are enumerated below. There are a total of nine cases. 

First, m > 0, n > 0 has a pole of order n +1 at — a n d can be evaluated 

as 

nl an+1 
(A.2) 

-b/a 

and some of the elements of this are given explicitly as 

M[a>b) = 
1 b"-1 

n an+1 

\ n - l 

= (A3) 
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The case m > 0, n = 0 is immediately evaluated as 

ro 
= ( - ) (A.4) 

a 

Examining m > 0, n < 0 there are no poles within the contour so the 

matrix vanishes. 

The case m = 0, n > 0 can be obtained from the residue theorem as 

n\ 
= 0 (A.5) 

-b/a 

Similarly we determine = 1, and in the case of m — 0, n < 0 there 

are again no poles within the integration contour so the matrix elements 

vanish. 

Now, for the case of m < 0, n > 0 we have poles at both zero and — b/a. 

= / ^ H H ( » ' + « ) " - ; ' ( A . 6 ) 
m n J 2m (az + b)n+1 . v ; 

but with the transformation z ^ w = l / z w e can rewrite the integral as 

M m " ~ J 2mW (a + M n + 1 ( 1 

and the negative sign from the differential is compensated for by the switch 

of integration directions. This new expression can be seen, as for the m > 0, 

n < 0 case to have no poles within the contour and thus to vanish. 

For the case m < 0, n — 0 there are again two poles, a pole of order 

m at 0 and a simple pole at z = —b/a. This can be evaluated by either 

performing the redefinition above z -> cu = 1/z in which case it is obvious 

that the expression is just the complex conjugate of the m > .0, n = 6 case, 

or it can be evaluated directly which we do for illustrative purposes here in 

the case m = —2. 

M(a,b) = f dz ^ _ 2 1 

• 20 J 2m (bz + a){az + b) 
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— 
a J (bz + a)(az + b) 

b2 b2a ba2 

a2 a2 — aa — bb b2 

b2a2 a2 
(A.8) 

exactly as expected from the previous considerations. 

F ina l ly for the case m < 0,. n < 0 the redefinition z —> OJ = 1/z gives the 

equality immediately 

i W | m | | n | _ - H - | n | V A - y J 

This analysis confirms a kind of block diagonal structure, and ensures 

that, as advertised, there is no mixing between creation and annihilation 

operators. There is however a flow to the zero mode which reflects a natural 

redefinition of the momentum after a conformal transformation. This was 

important in the work on the bosonic degrees of freedom to ensure that the 

overlap between the boundary state \B) and a particle matched the sigma 

model expectation value for the corresponding vertex operator. 

Whi le perhaps obvious, we now check that the expected composition laws 

hold for these matrices. So, calculating we find 

M(a,6)M(a',6<) _ V " I d z ** ,m & + g)""1 n ffl" + ^'f'1

 f A ± Q ) 

Since we know that the positive and negative elements of this matr ix are 

complex conjugates of each other, and further the structure on Mm0 and 

M0n we can restrict the sum to be from 1 to oo and concentrate only on the 

annihilation operators, knowing that the sum wi l l also work for the creation 

operators, so -

M(a,6)M(a',6') = L _!± 1 (Vu + a')"-1 

m n n k J 2m 2m {az + b) (a - boj)z + (b - aou) (a'oj + b')k+l 
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T S ' U - l du (b'cu + a!) 
2m (a'u + b')k+l 

duo m(b'(au.+ b)+ a'(bu+ a)) 

— I + 
a 

-(b — au) 
(a — bu) , 

7i\\k-l 

-OJ 
j 2m (a'(au + b) + V(bu + a))k+l 

mk (A.11) 

and in the second to last line the redefinition u —> § = ± 6 . was used. It can 
bw+a 

immediately be seen that \a'a + b'b\2 — \ba! + b'd\2 = 1 so this is another 

conformal transformation of the same type, as expected. This also shows 

that the expected inverse matrix transformation iorMmn \ which would be 

Mmn~b'1 is in fact the inverse. ; 

Finally, we check the claimed property that renders these matrices moot 

in the conformally invariant case, explicitly that, 
(a,b) 
km (A.12) 

As before the stated property that M0m = 0 helps, and we restrict to positive 

k, finding 

1 dz duo k (bz + a)m-1 1 k (boj + a)n-1 

UJ 
2m 2m (az + b)m+1 k (au + b)n+l 

dz du , ^ . . (bz + a)m-1 (bu + a)"-1' 
- l n ( l — u/z) • 

2m 2m (az + b)m+1 (au + b)n+1 

(A.13) 

where we have transformed z —> 1/z. Integrating along the branch cut which 

runs from z = 0 to z = u, and redefining again z —>• _ a ^ f

6 - we obtain 

—S„ m 

du 1 (bu + a) n-l 

2m m (au + b)n+1 

au + b 
bu + a 

(A.H) 

We have now verified the salient points claimed within the text, and 

shown that these transformations in fact act as a group, and become trivial 

in the cases where A(n) is independent of n. 
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A.2 Fermionic Matrix 

We have also described previously the matrix in the fermion NS sector, N r m ^ 

that describes the mappings between the various fermion creation and anni­

hilation operators. This matrix was derived 3.102 to be 

K m ~ f 2m' {az + b)«+V* [ } 

where r € Z + | Since there are no zero modes for this, the number of 

possible options is significantly less, but as in the case of the bosonic matrix 

we enumerate them. 

In the case r > 0, m > 0 we have poles of order m + 1/2 at —| . This can 

be evaluated to give 

jV(° i 6 > - - - -d m- 1 / 2z r~ 1/ 2(bz + n) m- 1/ 2  

"rm ~ a m + l / 2 ( m _ 1/2)1 ^ ^ + ^ 

and some of the cases that are short to write are 

(A.16) 
-b/a 

N: (a,b) _ 0 ' 
1/2 m a m + l / 2 

, % i.m-3/2 

N { a , ' b ) = - f l - l&R 
i V 3 / 2 m a m + 3 / 2 V1 l°l / 

For the case r > 0, m < 0 there are no poles within the integration 

contour, and so these elements vanish. Similarly, for the case r < 0, m > 0 

there are apparently poles at both 0 and — b/a but just as in the bosonic 

case it is possible to make the transformation z —> \ which results in a new 

function to be integrated with the poles outside of the contour, and hence 

vanishes. The same trick can be used for the case r < 0, m < 0 and we 

explicitly exhibit it for completeness 

N(a,b) = f d z m ( b z + a r ^ 2 

r m J 2m {az + b)™^/2 
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withz —¥ — 
00 

doj\ 1 (b + aoo)™-1'2 

2^io~jojr~ll2 (a + boj)m+V2 

doj H _ 1 / 2 ( a + M H - 1 / 2 

Which shows that 

^ 3 V * H H - M • ' (AAS) 
as desired. This analysis shows as in the bosonic case that the creation and 

annihilation operators do not mix under these transformations. 

To complete the parallel with the bosonic case it is necessary to show 

the composition law, and that in the case that the matrices are contracted 

through a PSL(2, R) invariant exponent in the boundary state that they 

contract to a unit matrix. The first problem is to calculate 

^ ( - , 6 ) ^ ) = spldz doj 1/2(bz + ay-V2

 /2(b'oj + a'r^ 
rp Pq Z^J 2ni 2m (az + b)P+V2 (a'oo + 6') 9 + 1 / 2 

„r-i/2 1 (b'oj + ay-1/2 

-z 2m 2m z(a - bu) - (-b + aoo) (a'oo + 6') 9 + 1 / 2 

du (-6 + aoj)r-^2 (b'oo + a')q-ll2 

2m (a-buo)r+1/2 (a'oo + b')i+1l2 

aoo + b 
witha; —» 

oo + a 
du r_l/2(b"u + a"y-ll2 

2mW (a"u + b")i+1/2 ' { } 

with b" — ab' + a'b and a" = a'a + b'b just as in the bosonic case. 

Now we calculate in analogy to A . H the quantity 

rp r q ~ ^ I 2m 2m (az + b)?+V2 (aoo + b)^1/2 

• . (A.20) 
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and by transforming z —)• ~z and summing we find 

N(a,b)N{a,b) = fdzdu 1 (b + azy-^ /2{buj + a)^'2 

r p r q J 2ni 2ni z - UJ (a + bz)P+V2 (auj + b)i+1/2 

These relations show that the matrix df transformations for the fermions 

in the NS sector has the analogous nice properties as that of the bosonic 

transformation. 
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Appendix B 

Green's Functions 

Here we present in some detail the calculations of the bosonic and fermionic 

Green's functions for the quadratic tachyon background under consideration. 

The construction presented below will make the generalization to the case 

of different (quadratic) boundary interactions that are mentioned in section 

4.1 and the case of more complicated interactions, that is to say higher order 

than quadratic, while not presented explicitly because they are not amenable 

to exact expression in a compact manner can be dealt with through standard 

techniques of field theory. 

B . l Bosonic Tree level 

The starting point for this calculation is the action (3.3) which is rewritten 

here for convenience 

S(g,F,T0,U) = Jdvd(f> grVdaX'1daXp 

+ { d<f> (IF^X^X" + ^ - T 0 + l.U^X" 

(B.l) 

Now, for a disk world-sheet the greens function satisfying Neumann boundary 

conditions is determined in [60] and we wrote it as (3.31) 

G^(z,z') = -a'g^ {-\n\z- z'\ -\n\l-zz'\). < (B.2) 

Clearly it is possible to either calculate exactly from the boundary condi­

tions this greens function in the background of (3.3), or we can treat the 

file://{-/n/z-
file://-/n/l-
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boundary terms as perturbations and perform an explicit sum (an equivalent 

procedure). 

For illustrative purposes we choose the second method, and since the 

interaction terms are quadratic there is one term at each order in perturbation 

theory. The final bulk to bulk propagator will be the sum of the propagator 

with no boundary terms and the increasing number of boundary interactions. 

For the parameterization of the world-sheet z = pe1^ we have the bulk to 

boundary propagator (3.32) which is 

G^(pe^ , ei4>') = 2a'J2 ~ cos[m(0 - </>')] (B.3) 
m = l 

and also the boundary to boundary propagator 

G ^ ( P ^ , e ^ ' ) ^ 2 a y - f ; C O s W ~ 0 / ) ] (B.4) 
m 

m=l 

using the identities from [50]. 

Now, to first order in the perturbing terms the contribution to the prop­

agator is 

GT(pe^,p 'e^ ') = jdeG^ipJ4',?9) (^Fde + ^U^j G"'"{eie,p'j*') 

/

nm Jm! deY^— c o s m U - 0 ) , 
mm' v ' 

m,m' 

x ( F d e + ' h u ) cosm'(e 

r,m Jm 

m2 

( —U cos m((f) - (j)') - mF sin m(<p -</>') 1 

~(B-5) 
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Similarly the second order contribution can be read off from the concatena­

tion of (B.5) with (B.3) to give 

with the obvious generalization to higher orders. 

Now, in the above we note that all terms in this sum will naturally sep­

arate into terms with cos m((f> — (j)') and s'mm(4> — cf)') and by inspection the 

dependence on F and U is such that the coefficient of sinm(0 — <fi') is nat­

urally combinations of F and U that are antisymmetric in Lorentz indices, 

just as those for cos m((f> — <j>') are symmetric in F and U. Using the facts 

m 

sin m{4> — 4>) ei{<!>-4>') _ e-i(4>-<fi') 

cos m{4> — (j)') 2 

and the identification z = pe1^, the sum 

+ Gf + + ... 

can then be calculated as 

G^{z,z') = -aY" \n\z-z' 

file:///n/z-z'


Appendix B. Green's Functions 136 

2 ^ { g + 2na>F+^ 

a'-(g-2na'F-^ 
2 h \ 9 + ̂ F + ^ 

as noted in (3.33). This includes the ln 11 — zz'\ term in the two F and U 

dependent terms as can be seen by the limit that as F, U —> 0 we recover 

the known expression (B.2), and in the case of U —>• oo, Dirichlet boundary 

conditions, we obtain 

G^iz, z') = -a'g^ ( - ln \z - z'\ + ln |1 - zz'\), (B.8) 

which is the Dirichlet propagator on the disk. 

B.2 Fermionic Tree level 

As in the bosonic case we start with the fermionic action (3.96) which is 

Sferm = [ ( V ^ - V ^ + + I F^ ~ + 
J M JdM 

" r~cT/-)- ( R 9 ) 

The appropriate Green's functions for the free case have been determined to 

be [15, 102] 

_ , \ a' ( Jz~w \fzw~ \ _ 
G^Z,W) = - p B.10 

l \z — w 1 — zw J 

G^Z, w) = — [ - ^ - ^ + . B . l l 
I \ z — w 1 — zw J 

As in the bosonic case we specialize to the bulk to boundary propagator, 

which upon imposition of the antisymmetry requirement on it becomes 

G7(VV*') = 2a'g^ Y Pr^r(4>-4>'). (B.12) 
reZ+l/2>0 

(zz')n + {zz'Y 
n 

1H 
{zz')n ~ (zz')n 

in 
(B.7) 

file:///fzw~
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Upon insertion of the interaction term associated with the gauge field, 

the first order modification to the bulk to bulk propagator is 

G%(pe»,fie») = {2a'fF^fd<t> Y ? f 
r , r ' 6 Z + l / 2 > 0 

x sin r(9 — <j>) sin r'((f) — 9') 

= (2a')27vF^ Y (pp'Ycosr(e-e'). (B.13) 
r e Z + l / 2 > 0 

Similarly we can determine the order F2 modification as 

G%,(pe»tpre") = (2a')\(F2r f d<J> Y ^'r' 
r , r ' e Z + l / 2 > 0 

x cos r(6 — 4>) sin r'(<f> - &') 

= , ( 2 a ' ) V ( F 2 r Y {PP'Y smr{6 - d') 
r £ Z + l / 2 > 0 

(B.14) 

with higher order terms determined similarly. 

For the insertion of the U interaction term associated with the tachyon 

field, it is important to remember the definition of 

^m = \ J d^e^-cP')^') (B.15) ' 

where e is a step function: e(x) = 1 for x > 0 and e(x) = — 1 for x < 0. 

Using this the lowest order correction to the fermionic Green's function due 

to is 

G% (pe»tf/e«) = {2a')2U^ / V ' £ P V J1" «'r 

r , r ' £ Z + l / 2 > 0 

x sinr(0 - <j>)^-- sin /(</>'- 9') 
d<h 

= {2a')27rUfil/ fd<f>- Y PTp'r' 
r , r ' € Z + l / 2 > 0 ' 
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(2a')\U^ J2 (^) 

x sin7-(# - 4>) 

(B.16) 
r r£Z+l/2>0 

The steps in (B.16) can evidently be repeated indefinitely and so for the nth 

insertion of U into the bulk to bulk propagator we obtain 

It is also clear that for interactions with combinations of F and U the resul­

tant will depend on sinr(# — 0') in the case of an even number of Fs, and on. 

cosr(# — 6') for an odd number. Summing the contributions of interactions 

with both U and F allows the verification of (3.108). The Green's func­

tion for the antiholomorphic coordinates ip can be obtained by an identical 

argument. 

r£Z+l/2>0 

(B.17) 


