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Abstract ii 

Abstract 

The Meissner effect in superconductors is characterized by an exponential decay of 
externally applied magnetic fields into the sample with a length scale A, that is called 
the magnetic penetration depth. A is directly related to the superfluid density of 
the superconductor and is therefore one of the most important probes of the in­
trinsic properties of superconductors. This work describes the development of a new 
technique for measuring the penetration depth at microwave frequencies and low tem­
peratures. The surprising combination of two seemingly unrelated experiments has 
led to a direct method of measuring the magnetic penetration depth in the London 
limit of high Tc superconductors. Samples of high Tc Y B C O with uniform doping of 
magnetic ions (GdxYi-xBa2Cu307-6 where x w 1.28%) were prepared. The magnetic 
ions embedded in the superconductor serve as magnetic field probes through a zero 
field Electron Spin Resonance (ESR) experiment. Measurement of the imaginary 
part of the magnetic susceptibility, x"(o;), through the sample's microwave surface 
resistance, reveals relatively sharp E S R transitions with integrated intensity that is 
proportional to the number of ions that are exposed to the field. With a uniform 
ion distribution, the number of ions that are exposed to the field is proportional to 
the penetration depth A. The spectrum of is obtained from surface resistance 
measurement in a bolometric apparatus. Our new method was successfully applied to 
overdoped and optimally doped Y B C O samples and absolute values of the a-b plane 
penetration depth at T = 1.2 are given. 
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1: Introduction and Motivation 

Since 1986, when Bednorz and Miiller first discovered high temperature superconduc­

tivity in Lcii.gsBao.isCuO^, the topic of high Tc superconductivity has remained one 

the most interesting open questions of condensed matter physics. High Tc supercon­

ductors are not only superconducting at temperatures much higher than the boiling 

temperature of nitrogen, which opens up the possibility of many new applications, 

but they are also very different from the well known "conventional" superconduc­

tors. While previously existing superconductors were well understood by the B C S 

theory which is based on a phonon mediated s-wave pairing mechanism [1], the high 

Tc superconductors show many deviations from this behavior. 

The London penetration depth, XL, provides also colloquial useful information about 

the nature of the superconductor. It will be shown in chapter 3 that 1/A^ oc ns/m* 

where ns is the density of the supercurrent carriers (the supercarriers) and m* is their 

effective mass. This result motivates the study of the penetration depth, since XL and 

its temperature dependence provides access to two of the superconductor's intrinsic 

properties, the supercarrier density and the energy spectrum of the quasiparticle 

excitations. 

It is well established that except in special cases, superconductors have an energy 

gap, A , in their density of states spectrum. This can be seen, for example, in S T M 

experiments. In the language of the B C S theory, superconductivity is the result 

of pairing between electrons (Cooper pairs). The gap energy is a measure of the 

energy required to break a pair. At low temperatures, the system is condensed in its 

paired ground state (also called the condensate) and excitation cannot be created by 

collisions. This leads to frictionless motion of the condensate. However, the shape 

of the gap in k-space, A ( f c ) , may vary from one material to another. One of the 

main differences between the high Tc and the conventional superconductors is the 

symmetry of the superconduction gap. A conventional superconductor has an s-wave 

gap symmetry, meaning that A is the same in every direction: A ( & ) — A n . More 

generally, an s-wave gap is often taken to be any dependence A (A;) that has the full 

symmetry of the lattice. The high Tc superconductors were found to have a d-wave gap 

symmetry: A oc k% — ky. This fact is reflected in many of their temperature dependent 

properties. Some of the first evidence for the d-wave pairing symmetry was observed 
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by Hardy et al. at U B C [?], where measurements of A(T) at microwave frequencies 

showed a linear temperature dependence. The linear temperature dependence of A 

indicated a node in the gap function, a direction in which the gap is zero. Although 

nodes can exist in a gap with anisotropic s-wave symmetry, it is rather unlikely. In 

addition, measurements sensitive to the phase of the gap confirm that indeed the gap 

has predominantly d-wave symmetry. 

Another interesting feature of the high T c superconductors is their quasi two di­

mensional structure where most of the conduction takes place in the copper-oxygen 

(CuC>2) planes. The carriers in the planes are believed to be holes rather than elec­

trons and the number of holes per unit cell, x, is controlled by the structure of the 

material outside the C u - 0 planes. For example, in Y B C O , where the O3 sites form 

chains in the b direction, the overall oxygen content determines the average chain 

length which in turn affects the number of supercarriers in the planes. In 1989, Ue-

mura et al. demonstrated a universal relation between the superfluid density, ns, and 

Tc. It was found, in several high T c superconductors and for a range of doping levels, 

that Tc varies linearly with ns up to a certain optimal density at which Tc saturates 

and then is suppressed [3]. These results were obtained through muon spin rotation 

(/xSR) experiments, where the muon spin relaxation rate, a, which is proportional 

to 1 /A 2 , was measured. Its limit at zero temperature, a(T —> 0), is proportional to 

the carrier density at zero temperature and a sharp drop in <r(T) indicates Tc. This 

universal doping dependence of Tc reflects certain intrinsic properties of the C u - 0 

planes. 

In the last decade a considerable amount of effort has gone towards measuring 

microwave properties of the H i T c superconductors. A wide variety of microwave 

data is available on both the real part of the conductivity and the London penetration 

depth at different frequencies and temperatures (see for example [4, 5, 6]). However, 

the limit as T —> 0 is still not well tested. In particular, an absolute measure of Xi(T) 

is challenging to measure. Any volume exclusion technique that aims to measure Ax, 

to within 10% would require an accurate measurement of the sample thickness to 

better than 1/1000 and very precise control of demagnetization effects (see [7] for 

more details). 

In our lab, A Ax, C O of high purity YBaiCu^O-j-i, ( Y B C O ) is measured through a 

cavity perturbation method that is described in appendix A . The difficulty of mea­

suring the sample thickness restricts the penetration depth to be measured only up 

to an additive constant, i.e the temperature dependence AAx,(T) = Ax, C O — Ax,(T& a s e) 

is resolved, but an absolute value of Ax(7], a s e) cannot be obtained. Therefore some 
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other method is required. Moreover, one cannot extract the complex conductivity 

a(u, T) from the surface impedance without knowing A ^ T ^ e ) . In order to complete 

the data, a value of A(T = 0) is inferred either from fxSR experiments [8, 9] or from 

infrared reflection [10]. Values obtained from far infrared spectroscopy, for example, 

are A a = 1600A and A b = 1000A for YBa^Cu^OQ.^. However, the infrared spec­

troscopy method is extremely demanding and cannot practically be used for a variety 

of samples. 

It should be mentioned that pSR experiments determine A in the vortex state as 

the length scale over which the magnetic field decays from the normal core to the 

superconducting bulk. It is now known that the effective A is field dependent, which 

is interesting in itself, but this means that the fiSR values do not correspond directly 

to the Meissner state A. In addition pSR measurements are limited to a geometrical 

average between A a and A&. O n the other hand, extracting A from infrared reflection 

involves performing a type of Kramers Kronig integral of the data from zero to infinity 

frequency. In practice, the measurements exist only over a finite range of frequencies 

and some extrapolation is required. This extrapolation reduces the accuracy and 

sometimes underestimates the importance of low frequency spectral weight. 

The purpose of the new technique described here is to provide an absolute mea­

surement of XhiTbase) at a l ° w base temperature. This method involves preparing 

a superconducting sample ( Y B C O ) that is doped with magnetic ions (Gadolinium) 

and therefore cannot be applied to existing samples. However, we assume that the 

doped samples have the same penetration depth as undoped Y B C O crystals with the 

same oxygen concentration. This assumption is based on the low concentration of 

G d ions in the sample and on the detailed chemistry of G d substitution in Y B C O . 

In particular the Gadolinium substitutes only for Yttr ium, has the same charge and 

is located at a symmetric position between the CuO% planes and not on the planes. 

Finally, because the lattice parameters and Tc for GdBa2Cus07s are known and not 

very different from Y B C O {a = 3.92A, b = 3.85A, c = 11.75A and Tc = 94K [?]), it 

is clear that G d is a rather weak perturbation on Y B C O . 

This thesis contains some introductory material on superconductivity, microwave 

spectroscopy and E S R experiments (chapters 2 - 4 ) , description of the new method 

and its application to Y B C O (chapters 5 and 6), and finally the results are given and 

discussed in chapters 7 and 8. 
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2: Conductivity and Surface Impedance 

The theory of high Tc superconductors is yet to be established. Nevertheless, some 
simple phenomenological descriptions of superconductivity are available and can be 
applied to high Tc materials. 

2.1 The Two Fluid Model 

The two fluid model of F. and H . London provides a basic picture of superconductivity 
without assuming a specific mechanism that leads to superconductivity. Any theory 
of the mechanism (such as the BCS theory) can be combined with this model to 
complete the picture. The two fluid model divides the charge carriers (originally 
thought of as electrons) into two groups. One group contains the normal carriers 
which do not take part in the superconductivity. The other component, called the 
superfluid, contains the supercarriers, gapped excitations (cooper pairs in the BCS 
language) that condense below Tc and exhibit frictionless motion. The supercarriers, 
also referred to as the condensate, are responsible for the superconductivity while the 
normal carriers exhibit scattering processes. The two groups may exchange particles 
as long as the total spectral weight ne2/m* (where n is the carrier density and m* is 
the effective mass) is conserved. 

We shall follow the description of this model by Tinkham [11]. Let us denote the 
fraction of carriers that are normal by x and the fractional number of supercarriers 
by (1 — x), so that the total number of carriers is conserved. The normal fraction 
varies with temperature with x —> 1 above Tc and x —t 0 at T —> 0. 

2.2 Conductivity in the Two Fluid Model 

Within the framework of the two fluid model, let us use the simplest transport picture, 
the classical Drude model. In the Drude model under the influence of an applied 
electric field E, the charge carriers travel uninterrupted for an average time r. The 
free motion ends when a collision of an unspecified nature occurs and the carrier is 
scatted. The equation of motion of a charge carrier with effective mass m* and charge 
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—e is: 
771* r 

m*r + = -eE. (2.1) 
Assuming an A C field with angular frequency u and time dependence of eiw* leads to 
a complex conductivity a that is defined as J = aE and is given by: 

, N . ne2r/m* ne2r/m* . . „ 
<T(UJ) = ax - %a2 = — 1 = 2 1 - IUJT) 2.2 

1 + IUJT 1 + U>2T2 

where n is the total number of carriers. In a normal metal at microwave frequencies 
and below, OJT <C 1 and o is effectively real: a « cri = A simple picture of a 
superconductor is obtained by taking the limit r —>• oo. In this case, the conductivity 
away from u — 0 is primarily imaginary and the real part <TI shrinks to a delta 
function at zero frequency. 

a > ) = ^ W ) - i ^ (2.3) 
TO* TO*CJ 

where n becomes n s , the number of supercarriers. In the presence of both super and 
normal fluids the conductivity is the following sum: 

o = o~s -\- o~n = o~\ ia2 (2.4) 

a.iu) = ^5{u) + T— (2.5) 
m* TO* 1 + UJ2T2 

, . n s e 2 n n e 2 o;r2 

aao; = - £ - + " 2.6 
TO*O; TO* 1 + w 2 r 2 

Using (for example) the phenomenological Gorter/Casimir T dependence of x: x = 
(^ ) 4 , leads to negligible contribution of normal carriers to the conductivity at T « 
0.2TC. Therefore at any finite low frequency, o w — ia2. Figure 2.1 shows o\ and cr2, 
schematically, at different temperatures. 

2.3 Surface Impedance 

Microwave properties of superconductors such as the surface impedance can shed 
useful light on the intrinsic properties of a superconducting sample. Given that 
the shielding currents are confined to a very thin surface region, it is convenient to 
introduce the surface impedance, Zs. It is defined by the ratio between tangential 
magnetic and electric fields at the sample's surface and can be measured in microwave 
cavities (see for example [4, 5, 6, 12]). When the magnetic field is applied in the x 
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T > T C 

Figure 2.1: A schematic picture of the complex conductivity of a superconductor as 
described by the two fluid model in different temperature regimes. The upper figure 

2 / 2 / 

shows the normal limit where the lifetime r is finite and a = " e , T / m = ? e y^il — iur). 
The middle figure shows the T —¥ 0 limit where the real part shrinks to a ^-function 
around u = 0 and the imaginary part is proportional to K The small peak in o\ at 
high frequency corresponds to excitations above the gap. The bottom figure shows 
an intermediate temperature, in the superconducting state. 
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direction, the electric field is induced in the y direction. The surface impedance is 

defined as: 

ZS = ^ = RS + iXs (2.7) 

where Rs is called the surface resistance and Xs is the surface reactance. The relation 

between Zs and the conductivity o can be found through the following classical skin 

effect calculation ([13]). 

Consider a semi-infinite conductor (or superconductor) in the Z > 0 space with uni­

form complex conductivity cr. A n oscillatory external magnetic field that is uniform 

in the x-y plane and varies in time is applied in the x direction: H(f, t) = Hx(z)e~luJt 

where taking the real part to obtain the physical field is implicit. The electromagnetic 

fields will obey Maxwell's equations and Ohm's law: 

BR 
VxH = J, V-B = 0, V x £ + - = 0, J = aE. (2.8) 

at 

Since H is applied in the x direction its solution for the equations above varies only 

in the z direction. Expressing the above equations in terms of the magnetic field, H, 

and taking 

V x V x H = - V ^ and = -iuHx (2.9) 
dz2 dt v ' 

yields: 
d2 

{-^ + iHo<rw)Hx{z) = 0 (2.10) 

with general solution Hx(z) = HXQelkz where k2 = ipoau. In a normal metal, at 

microwave frequencies, a is effectively real so that k = (1 + and 

Hx(z) = H^e'l-i. (2.11) 

where 8 is the classical skin depth: S = A / — 2 — . However, this is not the case in 

a superconductor where a is primarily imaginary for low frequencies. If we assume 

a = —io~2 then k2 = fiQO2C0 and the field decays as Hxoexp(—|) with the penetration 

depth: 

A = J — J — . (2.12) 

The electric field E obeys the same equation as H in the y direction and therefore 

has the same spatial decay. Eliminating the exponents, the equation for V x E is 
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dEy dHT. 
reduced to: 

~d~z = ~^Q~dT ^ i k E y = ~i^°ujHx (2-13) 

and the surface impedance follows: 

Zs = — ] I - - = - ] — = ]/-—. (2.14) 

In general the conductivity is complex: a — a\ — ia2 and we obtain 

* = V 2 R T ^ I ) X s = i 2 K T ^ I ) ( 2 - 1 5 ) 

In the normal state o\ >• o"2 and therefore i? s = Xs = \J^-- In the superconducting 

state at low frequency <r2 becomes much larger than o\ as soon as T drops below T c 

and the surface resistance and reactance reduce to: 

* = ^ . ( , .7) 

Combining this result with our definition of the penetration depth cr2 = l/\2u/i0 

gives the relation between the surface impedance and A and o\: 

1 lp0ujal _ 1 _2 2 x 3 _ v _ fJJ^J 

0-2 
Rs = = 5 ^ A V Xs = = „0uX. (2.18) 

Microwave techniques that measure surface reactance give direct access to the pen­

etration depth and therefore to the superfluid density, as we shall see later on. Mea­

surements of the surface resistance (combined with A) can give the real part of the 

conductivity Oi. 
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3: Penetration depth 

The magnetic penetration depth has been introduced in the previous chapter as the 
skin depth of a superconductor in a time varying magnetic field. In this chapter we 
show that the exponential decay of magnetic fields (constant or time dependent) is 
closely related to superconductivity. In particular, the decay constant, A is closely 
related to the superfluid density. 

3.1 Meissner effect and the London theory 

The Meissner effect in conventional superconductors was first observed experimen­
tally by Meissner and Ochsenfeld, in 1933. In 1935 F. & H. London showed that the 
phenomena of superconductivity is closely related to near-perfect diamagnetism and 
explained the Meissner effect theoretically. In the Meissner effect, the superconductor 
expels any applied magnetic field from its volume through a shielding supercurrent 
traversing its surface. Type I superconductors (such as many elemental superconduc­
tors) are materials that have only two phases separated by a critical field Hc. The 
normal state, above Hc, in which the magnetic field fully penetrates the sample and 
the Meissner state where effectively no field penetrates the sample. Type II super­
conductors (for example many conventional alloy superconductors and the high Tc 

materials) are materials in which a so called vortex state exists. In these materials, 
below the critical field Hci the sample is in the Meissner state and above a higher 
critical field HC2 the material is normal. In the region between i f c l and HC2 there 
is a vortex state in which the field penetrates the sample in the form of vortices. 
In this state the bulk superconductivity isn't destroyed and the vortices can form a 
two dimensional lattice. The London theory describes type I superconductors in a 
magnetic field below Hc or a type II superconductors in magnetic fields smaller than 
Hci-

The theory begins with minimizing the free energy of a superconducting sample in 
an applied magnetic field. We assume that the thermodynamic state that minimizes 
the free energy includes a steady surface current. The free energy is: 

•F ~ j Fsdr + E)~iri ~t~ ^magnetic (3-1) 
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where Fs is the free energy of the charge carriers in the superconducting condensate 
[14], Ekin is their kinetic energy associated with the constant current and Emagnetic 

depends on the magnetic field configuration. Let us define v(f) to be the velocity of 
the charge carriers and js the resulting supercurrent as: js(r) = nsev(r) where ns is 
the density of the carriers in the condensate and v(r) is their velocity. The constant 
flow of currents results in a kinetic energy of: 

Etm = / \mJn,ir (3.2) 

and the vector r spans the sample volume. The magnetic energy is given by: 

^magnetic =kl&if- (3-3) 

The relation between the current js and the magnetic field H is given by Maxwells 
equation: 

V x # = — VxB = Js. (3.4) 
Mo 

The total free energy is then: 

T = / Fsdf + f[B2 + A | | V x B\2}df (3.5) 
J 2fi0 J 

where the constant A^ is defined by 

A L = [ - ^ - ] 1 / 2 . (3.6) 

Minimizing the free energy with respect to the magnetic field B will determine the 
field configuration inside the sample. To minimize T we vary B —> B + SB. The first 
order variation in T is: 

6F=— f df\B-SB + X2

Ly xB-V x8B}. (3.7) 
Mo J 

Using integration by parts we can replace the term V x B- V x SB by — V x V xB-SB — 
V2B • SB to obtain: 

ST = — fdf\B + V2B] SB. (3.8) 
Mo J L J 
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Taking 5T = 0 gives the London equation: 

B + \]y2B = 0. (3.9) 

In the above calculation we have shown that the existence of steady currents without 

driving electric fields leads to the London equation. The London equation describes 

perfect diamagnetism as will be shown in a simple example in the next section. 

3.2 London Penetration Depth 

The London equation shows that the magnetic field in the sample decays exponen­

tially into the sample with decay constant XL- The detailed form of B depends on 

the geometry of the sample and the applied field. Let us consider a simple example: 

an infinite superconductor is placed in the z > 0 half space, so that its surface is the 

x-y plane at z = 0. The magnetic field is applied in the x direction. The magnetic 

field is uniform on the superconductor's surface and varies only in the z direction. In 

this case the London equation reduces to: 

^ ) + A i ^ ^ = 0. (3.10) 

The solution is an exponential decay: Bx(z) = Bx(0)e~z^L. Note that the above 

calculation assumes the bulk superconductivity is not destroyed by the magnetic field 

and therefore the theory is valid for weak fields. This simple example can easily be 

generalized to other sample shapes since A is often small compared to the macroscopic 

sample dimensions. 

Except for the Meissner effect itself, another important prediction is the value of 

XL. We have previously shown that XL = f ^ * ^ ] 1 ^ 2 ; in other words XL gives the 

ratio of number of carriers per unit volume to their effective mass: nse2/m*, also 

called the oscillator strength since it is the pre factor of the delta function of o\ in 

zero frequency. In the limit of low temperatures we expect all charge carriers to be 

part of the superconducting condensate. In the context of the B S C theory [1] the 

carriers are pairs of electrons (known as Cooper pairs) and therefore we would expect 

ns = \ne, the pair's effective mass should be close to 2me and their charge is 2e. In 

metals like aluminum one would find A ~ 500A. In the high Tc cuprates the carriers 

are believed to be holes and their concentration depends on oxygen content. In an 

optimally doped single crystal Y B C O A was measured to be between 800A and 2000A 

by pSR [8, 9] and far infrared [10]. 
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3.3 Magnetic Penetration Depth 

It is important to mention that the above calculation is only valid in the local limit, 
also referred to as the London limit. A n assumption has been made here that both 
the magnetic field B{r) and the current Js(f) vary slowly in space. In order to define 
what is meant by "slowly" another parameter, £, the coherence length, has to be 
introduced. 

So far we have considered a supercurrent that is carried by a condensate without 
introducing any mechanism for the superconductivity. However, the mechanism is 
important for determining the relevant length scales in the problem. In 1957 J. 
Bardeen, L. N. Cooper and J.R. Schriffer laid the fundamentals of the theory of 
superconductivity known as the BCS theory [1]. The details of the theory will not be 
given here and can be found in reference [14]. The theory describes superconductivity 
as the result of pairing between electrons with equal and opposite momentum, the 
Cooper pairs. The ground state of the system (also called the condensate) is separated 
from the excited states (quasiparticles) by the energy gap, A . The Hamiltonian of 
the system contains the pairing potential and the energy of the quasiparticles (above 
the condensate) is given by: 

Ek = y e 2 ( £ 0 + |A(£;)P (3.11) 

where c(k) = —ep is the energy of a free electron with respect to the Fermi energy 
and A(fc) is the energy gap. At low temperatures the system contains a condensate 
of paired electrons which exhibit frictionless motion. Excitation of quasiparticles 
involves pair breaking and therefore requires energy that is larger than the energy 
gap. This reduces substantially the probability of collisions since at low temperatures 
such energetic particles are not available. The gap A may vary in space and the 
coherence length, £, is defined as the length scale in which the gap can vary. A n 
estimation of the coherence length can be made in the following way. The relevant 
kinetic energy range of our system is of the order 2A around the Fermi surface: 

EF - A 0 < < EF + A 0 (3.12) 

where Ao is the maximal gap in case of non uniform gap function. In this range 
of energies we can approximate k « hp + 5k and E Ep + Vph5k and therefore 
the relevant momentum range is 8k = This momentum span corresponds to a 
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spatial span of Sx ~ ^ and the coherence length is approximately: 

hvF 

The London limit holds when A >> £. In this limit the correlation between electrons 

has a short length scale and their response to electromagnetic fields is local. In high 

Tc superconductors such as Y B C O , £ is of the order of several lattice constants and A 

is a few thousand A so that the London limit is valid. In other cases (elemental metals 

for examples) £ may be considerably larger. In this case the free energy calculation 

should be modified to introduce a non-linear relation between J and A. 
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4: Electron Spin Resonance 

Our measurements of A are obtained by applying an rf field to magnetically doped 

Y B C O and observing Electron Spin Resonance (ESR) transitions in a dilute array of 

magnetic moments. This chapter will describe briefly the basic theory of magnetic 

resonance in general and electron spin resonance in particular. 

4.1 Magnetic Resonance 

Any physical system with quantized magnetic moments can exhibit magnetic res­

onance. Our interest is in the spin magnetic moment of the electrons in the ion. 

However, the following description of the magnetic resonance effect is general, where 

the magnetic moment gu-sS can be replaced by g/^sJ where J is the total angular 

momentum in the system, J — L + S +1 where L is the angular momentum, S is the 

electron spin and I is the nuclei spin. 

Consider a system of free spins with magnetic moment PBQS- Without any external 

magnetic field all energy levels are degenerate. Applying a uniform magnetic field 

in the z direction lifts the degeneracy completely. The system's new eigenstates 

correspond to the Zeeman levels with energy —fj,BgmH where m = —S...S is the 

projection of the spin on the z axis. The new eigenstates of the system, labeled 

|m) are the eigenstates of Sz, where Sz\m) = m\m). A n y magnetic interaction, 

such as the crystal field, may lift the degeneracy in some way that would change 

the eigenstates of the system (for example, the crystal field lift the degeneracy of 

different spin orientations but does not split the Kramers doublets). In general, the 

new eigenstates can be described as linear combinations of the \m) states. 

For simplicity we will assume that the energy levels \xbn) are very close to the \m) 

states, and will use the \m) states instead. This assumption is valid for the G d ions in 

Y B C O but is not at all necessary for the following discussion and the generalization 

is straightforward. In any case, the system has quantized energy levels with lower 

degeneracy than without any external field. A t zero temperature only the lowest en­

s' 

(4.1) 

771= :=-S 
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Figure 4.1: E S R transitions in a spin system. The degeneracy between the different 
spin orientation was lifted due to an applied magnetic field 

ergy states are populated and at finite temperature each state is populated according 
to the Boltzmann distribution: 

N . =

 l_e-E3/kBT z = Y^<rEilkBT
 (4.2) 

i 

where Nj is the probability of finding an ion in the j th state with energy Ej and z is the 
canonical partition function. Magnetic Resonance occurs when the system absorbs or 
emits an energy quantum (a photon) that is equal to the spacing between two energy 
levels, provided the transition is allowed by quantum mechanics. A photon can be 
fed into the system by an alternating magnetic field of the form Hrf = Hocos(ujt). 

This field is described by an additional perturbative term in the Hamiltonian: 

r i = r i o + iiB9S-Hrf (4.3) 

where T-LQ describes the Hamiltonian of the system without applying external A C 
fields and HsgS is the magnetic moment). When the field is perpendicular to the 
principal spin axis, this term can be written as a linear combination of spin ladder 
operators. For example when H is applied in the x direction and the principal spin 
axis is z we can write: 

S-Hrf = Hx0^Re(S+eiut + S - e ^ ) (4.4) 

where S ± = Sx ± iSy. The new eigenstates of the system can be found from time 
dependent perturbation theory and can be written as a linear combination of the 
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eigenstates of UQ with time dependent coefficients: 

m)) = ^2om(t)e-iEHkt\m) (4.5) 
m 

where Em are the eigen energies of the unperturbed Hamiltonian, 'Holm) = Em\m). 
Perturbation theory shows that each state \<f>) would oscillate between two or more 

\m) states. The transition rate (number of transitions per second) is given by Fermi's 

golden rule: 
irH2 

where f{u) is a shape function normalized to unity and concentrated around u = 

~(Ei — Ej). The shape function is a result of spin relaxation processes (spin-spin 

interactions and/or spin-lattice interactions) and is usually a Lorentzian. fiij is defined 

as pij = gfJ,B(mj\SXty\mi) (x or y depend on the direction of the applied rf field) and 

provides the selection rules for allowed transitions. 

4.2 Magnetic Ions in a Crystal: Fine Structure 

A magnetic ion in a crystal experiences magnetic interactions via two mechanisms: the 

motion of charged particles around it (mainly electrons) and the magnetic moments 

(associated with the spin degree of freedom) of electrons and nuclei in the crystal. 

The first interaction is the fine structure of the crystal and the second one is the 

hyperfine interaction. Our subject of interest is a magnetic ion substitution in an 

otherwise non-magnetic crystal, therefore we will only consider the fine structure. A 

general Hamiltonian for describing this magnetic system is: 

u = E t ^ - T ~ + i { r k ) l k ' § k + v { n ) } + ( 4 7 ) 

fc=l k k<j j k 

where n is the number of electrons associated with the ion, Pk is the fcth electron's 

momentum, describes the strength of the spin-orbit coupling of the fcth electron 

and V(rfc) is the potential energy of the fcth electron in the electrostatic field of the 

environment. The second sum is the Coulomb interaction between electrons. Notice 

that in this picture the electrons are divided into two groups. The first contains the 

electrons that belong to the ion, which will be treated quantum mechanically, and the 

second contains environment electrons, that are expressed in V(rk) and are treated 

classically. Further justification and details of this picture can be found in Griffith 
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1961 [15]. 

4.3 Effective Spin Hamiltonian 

The above description is a good approximation for the magnetic ion in the crystal but 
the form of the potential V(rk) is unknown and may have a very complicated spatial 
dependence. The symmetry of this Hamiltonian is very useful for further analysis. 
V(rk) and hence Ho commutes with all the elements of the point group of the ion's 
site in the crystal. 

The effective spin Hamiltonian expresses the energy levels of the system in terms 
of spin operators. It is equivalent to the full Hamiltonian of the system within the 
subspace of a given electronic shell (constant radial wave function Rn(r) and total 
angular momentum). It has the compact form: 

% = ( 4- 8) 
PA 

where Ov

q is a Stevens operator of order q. The Stevens operators are functions of 
S2,SZ,S+ and 5 _ and are the operator equivalents of the spherical harmonic func­
tions. The Bv

q are numeric coefficients that are called crystal field (CF) parameters. 
This sum is an expansion of the crystal field in the ion's environment in terms of a 
complete set of functions. We shall see that the number of elements in the sum is 
finite and depends on the symmetry of the crystal and the magnetic moment of the 
ion. 

The first step in building an effective Hamiltonian is to prove that the system can 
be described by a finite number of parameters. One can then choose an appropri­
ate method for calculating them theoretically, but typically the C F parameters are 
measured through ESR experiments. The theoretical effective spin Hamiltonian with 
measured C F parameters can predict the magnetic field and frequency dependence 
of the ESR transitions as well as their intensities and show very good agreement to 
the experiments. 

The full proof for the C F theory is given in [15] and will not be repeated here. The 
basic scheme is to describe the different ionic states as Slater determinants of one-
electron states and impose the site symmetry on the Hamiltonian matrix elements. 
The C F Hamiltonian can then be expanded in terms of spherical harmonics. Its 
matrix elements between ionic states are then written in terms of matrix elements 
of spherical harmonics between the one-electron functions, that are also described 
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by spherical harmonic functions. Group theory arguments show that the number of 
non-zero matrix elements is limited by 

j 

where j is summed over all irreducible representations of the site point group and 
rij is the number of times this representation occurs in the relevant representation 
(according to the magnetic moment). The number n is also the number of free 
parameters in our problem and therefore the number of C F parameters in the effective 
spin Hamiltonian. 

4-3.1 Semi-Classical Approach for Deriving the Effective Spin Hamiltonian 

Let us assume that the crystal environment of the magnetic crystal is represented by 
a static charge distribution p. The potential energy V(r) is given by: 

n o = - / n r ^ < * « . (4-io) 
J I it — f] 

where r is the position of the electron and R is a general point in the environment. 
We define the environment as the space outside the magnetic ion and therefore if both 
r and R are measured from the nuclei then |f| < \R\. We can expand the potential 
in Legendre polynomials: 

\R 

J 0 0 k 
- ^ = E^+r p *( C 0 S («)) (4.ii) 

where Q is the angle between R and f. We proceed by expanding each Pk further in 
terms of spherical harmonics. It is convenient however to use a different basis set, 
Zim, instead of the regular spherical harmonics Ylm: 

Zio — Yio, 

Z[m = y2(Yl_m + Ylm), (4.12) 
^Im ~ f \ / 2 ( V i _ m — Yim) 

The above functions are all real, with Zc and Zs being functions of cos(ra0) and 

sin(ra</>) respectively. The vector space spanned is the same as for the usual spherical 
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harmonics. The expansion of the Legendre polynomials in terms of Zim is: 

Pk(cos(Q)) = Zka(l)Zka(2) (4.13) 
a 

where (1) refers to the coordinates (9,4>) of the general point R and (2) refers to (9, 4>) 
of the electron position r. The sum over a is over all the Z\m functions of the same 
I including Zio and Z\m

s for m ^ 0. Inserting this expansion into our expression for 
V(r) (by performing the integration over R) we obtain the potential V in terms of 
the electron coordinates, (r, #,</>): 

oo 

k=0 a 

where ^ k o i are characteristic numbers of the environment and are defined by: 

J k a ~ 2k + lJ R^ d K ^4-15) 

Since the ionic wave functions are Slater determinants of one-electron wave functions 
(the spherical harmonics \l,m) times a radial function) all matrix elements of V{r) 
are of the form: M = (Z, m\Zka\l, m) times the average radius (f). The average 
radius is only a numerical constant since the effective Hamiltonian is defined within 
the subspace of the same radial dependence. Different I functions are not included 
since we consider only electrons outside of the core, within one unfilled shell. The 
4> dependence of the spherical harmonics shows that the matrix element M is non­
zero only when k < 21. The parity operator is a member any site symmetry group 
and represents time reversal symmetry. This imposes an additional condition, that k 
must be even. This reduction of the number of C F parameters can be applied to every 
crystal. More symmetry in the system reduces the number of C F parameters even 
further. Any Zka function that violates the one or more symmetries of the system do 
not appear in the expansion. The above matrix elements depend only on the angular 
momentum degrees of freedom and can be described as equivalent operators (the 
Stevens operators) whose derivation can be found in [16]. A full list of the Stevens 
operators up to the sixth order can be found in [17]. 

It is important to mention that even if the semi-classical picture that is given here is 
not accurate, the expansion of V(r) in Stevens operators is still justified since it is an 
expansion in an orthonormal basis that spans the chosen subspace. The cancelation 
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of many terms due to symmetry and orthogonality remains valid since the symmetry 
of the site can be imposed on the elements in the sum. However, the coefficient of 
each operator in the expansion may very well be different from what is calculated in 
this simple picture. The C F parameters can be corrected in several theoretical ways 
[18] and through experimental measurements (such as the work described here). 

4.4 Zero Held ESR and the ESR Spectrum 

This section will discus the principle of ESR experiments in general with emphasis 
on zero field ESR. Most ESR experiments are performed with Hrf at a constant 
frequency so that ESR transitions can only occur at the relevant energy hu. In other 
words, the perturbation to the Hamiltonian is proportional to Re(S+eluJt + S-e~llJt), 
where ui is constant. At this frequency transitions will occur only if 

AE = Ej -Ei = hw. (4.16) 

To observe the various transitions between different pairs of states the energy levels 
must be shifted so that the difference AE matches the applied frequency. This is 
done by applying a D C magnetic field, usually parallel to the principal axis of the 
ion's spin. In this way each energy level Em, that corresponds to a state \m) (an 
eigenstate of the Sz operator or a mixture of states that is dominated by \m)) will 
gain an additional energy of — PBQ^H. This field would also lift the degeneracy 
associated with time reversal symmetry (the Kramers doublets of| ± TO)). The full 
Hamiltonian is then: 

H = H 0 + g/jLBH^ReiS+e™ + S_e~^) + gpBH'zSz. (4.17) 

The magnitude of the field H'Z can be changed so that each transition will occur at 

the frequency u but at different H'Z field as shown in figure 4.2 for a spin | system. 

Another way to observe the transitions is to take the zero field ESR approach. 

In this situation the experiment is performed without any applied parallel field H ' Z . 
In order to see all the possible transitions, it is necessary to scan a wide range of 

frequencies. The observable quantity is the absorbed power in the ESR transitions 

or the imaginary part of the magnetic susceptibility, x" • These quantities can be 

inferred from the energy change rate (from Fermi's golden rule). 

^ = WijiNi - Ni)hw = ^ M V M A M l - e~^)hw (4.18) 
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H ' 

Figure 4.2: ESR transitions at a constant frequency and varying D C magnetic field 
for a spin | system. The splitting in H'z = 0 is the fine structure (where |±) states are 
degenerate. When H'z is varied, the levels evolve according to their magnetic moment 
g(j,Bm. 



Chapter 4. Electron Spin Resonance 22 

2 4 6 
Frequency (B ° ) 

Figure 4.3: Theoretical x"iu) f ° r a system with spin | and fine structure Hamiltonian 
Ho = B§0g = B%(3S2

Z - S2). The allowed transitions, ±± ± § , ± | -> ± | and 
± | —>• ± | , occur at 2B2, 4B2 and 6 5 ° respectively. A Lorentzian shape function of 
width 0.06B2 has been assumed 

where Wij was defined in equation 4.6. From the relation ^p- = \H2

QOJX" we get the 

susceptibility: 
= ^ k l V ( ^ ( l - e " ^ ) (4.19) 

where the average number of spins in the i th level, iVj, is given by the Maxwell-

Boltzmann distribution: 
Ni = N-e-Ei/kBT (4.20) 

z 

where N is the total number of spins per unit volume and z = e~Ej/k£lTis the 

partition function. The total x" 1S a s u m of shape functions, centered around the 

frequencies of allowed ESR transitions with an integrated intensities of | ( / / j j | 2 A 7

i ( l — 

e kBT). Figure 4.3 shows a typical susceptibility spectrum for a Hamiltonian "H 0 = 

B202 = 3S2 — S2 and spin | . In a \ spin system the energy levels are Em = 
B2(m2 — | • | ) and the ESR transitions appear at hh) = Em+i — Em = B2(2m + 1) 

i.e at 2B%, 4B% and 6B°. 
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5: The Bolometric Experiment 

Performing zero field ESR on magnetic ions embedded in a superconducting sample 
involves measuring )d'(cu) at a low temperature over a wide range of frequencies. In 
the next chapter it will be shown that the susceptibility and the surface resistance 
are related through: 

X » = T ^ T - (5-1) 

where RfSR is the contribution of the magnetic impurities to the sample's surface 
resistance and AL is the London penetration depth. This relation was used to extract 
the susceptibility from surface resistance measurements. The experimental part of 
this project was performed by Patrick J. Turner in an existing bolometric apparatus 
[19] which has been developed in the U B C superconductivity lab as a sensitive probe of 
the microwave surface resistance of high Tc samples. Measurements can be carried out 
over a range of temperatures (1.3-10K)and over a broad band of microwave frequencies 
(0.1-21GHz). 

The choice of performing zero field ESR through a broadband measurement of sur­
face resistance was made for several reasons. The first, practical, reason was the 
existing surface impedance measurement facilities in our lab. A n early idea was to 
measure the real part of the susceptibility, x!{T), through surface reactance measure­
ment at very low frequency (10kHz) where the imaginary part, x", is negligible. This 
would be essentially a measurement of the D C susceptibility of the spins that are 
exposed to the magnetic field and therefore the magnitude should be proportional 
to the penetration depth. The effect of magnetic impurities on RS(T) is an upturn 
at low temperatures since Xs oc y/\ + x' • This upturn is a result of the 1/T para­
magnetic temperature dependence of x'(T). However, the first order contribution to 
the DC response comes only from the —\—*+\ transition between the spin levels of 
the ion, while the higher spin transitions only contribute in the second order to the 
susceptibility. DC measurement of x' would show the expected upturn, but the Gd 
contribution to this effect is actually quite small and might not be easily distinguished 
from other magnetic contributions (such as BaCuO flux on the sample's surface). A n 
alternative approach was therefore taken. 

It was a fortunate coincidence that an apparatus existed in the lab which is capable 
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of measuring the frequency dependence of Rs over the range where the zero field ESR 
peaks exist. The A C response of the sample, x"{UJ)i involves first order spin transitions 
at certain frequencies (the ESR transitions). The frequency of the transitions together 
with their intensity provides the information needed to determine the number of ions 
exposed to the field (see chapter 6). The bolometric experiment was found to have 
both sufficient sensitivity and appropriate range of frequencies to reveal the ESR lines 
for this particular system. Our knowledge of the relevant frequency range was based 
on the crystal field parameters as measured in conventional ESR [20, 21, 22, 23, 24]. 

Furthermore, zero field ESR (rather than conventional ESR) is done in the same 
field configuration as other microwave measurements at U B C . The samples are usually 
very thin in the c direction compared with the dimensions of the a-b plane. The field 
is applied along the a (b) direction with the currents running mainly in the a-b plane. 
In this configuration the magnetic field is hardly distorted by the sample. On the 
other hand, conventional ESR must be done with external magnetic field along the 
c direction. In this configuration the field is distorted by the relatively large area of 
the a-b plane and the resulting demagnetization effects are much larger. 

A n additional advantage of the chosen method is the ability to isolate the ESR 
lines from other features in our data. The susceptibility x"(u) is extracted from 
the measured surface resistance as explained in section 6.3. The first step in this 
extraction is to separate the Gd contribution to the surface resistance, RfSR(u>), 
from the superconductor surface resistance, i?fc(u>). For Y B C O , RgC(u>) is known 
to be a smooth monotonic function of frequency, that can be fitted by a low order 
polynomial function. A n example for this functional form is shown in figure 5.2. On 
the other hand, RfSR is a sum of sharp Lorentzians with widths of about 250MHz. 
The total surface resistance, as measured by the bolometric experiment is the sum 
of the two, but the two components can be easily separated thanks to their different 
shape. 

5.1 The Measurement Principle 

Microwave measurement of the surface resistance of Y B C O samples have been per­
formed in the U B C superconductivity lab since 1989. The typical measurement tech­
nique is cavity perturbation (this method is described in A) . A resonator is designed 
to have a resonance frequency with high quality factor (Q). The sample's surface 
impedance, Zs, is measured at this particular frequency over a wide range of temper­
atures. Different resonators in different frequencies were designed, and Rs of various 
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side view end view 

Figure 5.1: The electromagnetic fields configuration in the bolometric apparatus. The 
sample and reference are the black rectangles 

Y B C O samples were obtained [7, 4]. The bolometric technique was developed to 
complete the resonator data over a broad band of microwave frequencies in order to 
show the detailed frequency dependence of the surface resistance. 

The basic idea behind the bolometric technique is to measure the sample's surface 
resistance through its power absorption in a microwave magnetic field. This is done 
using a reference sample (in our case a high purity Ag:Au alloy) of known surface 
resistance. The sample and the reference are inserted into a shorted transmission 
line in two positions that have nominally the same magnetic field configuration. The 
thermal response of the reference and the sample due to their rf absorption are mea­
sured as a function of microwave frequency. As shown in appendix C, since the two 
samples experience the same tangential magnetic field on their surface, it follows that 
the ratio of power absorption is also the ratio between their surface resistances: 

psample psample 
_ =

 s (5.2) 
preference RTeference' ' 

Using the power ratio, the sample's Rs is inferred from the known Rs of the reference. 
Implementing this measurement requires a setup with a microwave magnetic field 

that is uniform over the dimensions of both samples, is equal in the positions of 
the sample and the reference, and whose frequency can be varied continuously . 
The experiment is designed as a rectangular termination of a coaxial transmission 
line. The field configuration near the end of the line is shown in figure 5.1. At the 
termination, the center conductor is a broad flat rectangle. This provides a symmetric 
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Figure 5.2: A typical surface resistance spectrum of a Y B C O sample at different 
temperatures as measured in the bolometric apparatus 

magnetic field that is reasonably uniform in the regions of the sample and reference. 

This design supports a non-resonant T E M mode with a magnetic antinode and an 

electric node near the sample and the reference. 

The sample holder is designed as a cold finger, a technique that was first described 

by Sridhar and Kennedy [25]. This technique provides an isothermal connection 

(sapphire plate) between the sample and the thermometer and a weak link to a 

pumped helium bath. This permits temperature oscillations of the sample, while 

ensuring that the time constant for the stage to cool, following power input, is not 

too long [19]. 
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6: A Extraction Technique 

Having introduced the bolometric measurement technique and the concept of ESR 
we are now ready to combine these two types of experiments into a new direct method 
of measuring the London penetration depth of superconductors. The main idea here 
is to dope the superconductor with magnetic ions that serve as magnetic indicators. 
Ions that reside close to the sample's surface, within the penetration depth, are 
exposed to the magnetic field. Only these ions participate in the ESR process and 
therefore contribute to the line intensity of the various transitions. Ions deep inside 
the superconductor experience no magnetic field and therefore will not participate in 
the ESR process. The resulting frequency-integrated intensity of each ESR transition 
is proportional to the effective number of spins that are exposed to the field which 
can then be related to the penetration depth A. The following sections describe how 
this principle was applied to Y B C O with Gd impurities. 

6.1 The Samples 

The material of interest is YBa2CuzOrs- The magnetic dopant chosen for this study 
was gadolinium (Gd) in the yttrium site, so that the doped crystal is GdxYi^xBa2Cu^07 

This substitution is ideal for several reasons. First, the yttrium site lies halfway be­
tween the copper-oxygen bilayer (see the unit cell of Y B C O in figure 6.1). As indicated 
by the relatively low conductivity along the c direction [26], transport is primarily in 
the copper-oxygen planes. Choosing a dopant site outside of the planes reduces the 
effect of the substitution on the scattering mechanism in the d and b directions. We 
expect the extracted A to be similar to that of an undoped superconductor. 

Gadolinium is a rare-earth ion with an oxidation number of +3 (the same as yttrium) 
and substitutes only on the yttrium site. Another advantage of the Gd ion is its ESR 
spectrum. The Gd+3 ion has an exactly half filled f-shell: the / orbital has angular 
momentum L = 3 and therefore 2 x (2 x 3 + 1) = 14 states. The shell is half filled by 
the seven remaining electrons (after 3 electrons have left the atom). Such a half-filled 
shell has total orbital angular momentum of zero. As a result, the ion's magnetic 
moment comes solely from the spin of the seven electrons and the system is a nearly 
free spin | system. Thus, the total angular momentum is S — \ and there is only one 
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angular momentum multiplet, instead of the usual J = L + S.. .\L — S\ multiplets. 
This simplifies the ESR spectrum which has only three main lines, corresponding to 
the transitions: ± | —> ± | , ± | -» ± | and ± | —V ± | . Moreover, the splitting of the 
levels (resulting from the fine structure in the Y / G d site) are of order 1-15 GHz so that 
all of the transitions fall within the frequency range of our bolometric apparatus. Our 
present study has benefitted considerably from previous work on Gd doped Y B C O 
by A . Janossy et al. [21, 22, 23], S.Pekker et al. [27] and A . Rockenbauerei al. [24]. 
Their work was conventional ESR in applied fields of aligned GdxY^xBa2Cuz,Oi-s 
powder samples. These experiments measured the C F parameters of the G d site for 
several oxygen contents in a variety of underdoped samples. In this work, we use the 
conventional ESR measured C F parameters as first guesses for our spin Hamiltonian. 

6.1.1 Sample Preparation 

The gadolinium doped samples were prepared by Dr. Ruixing Liang of the U B C 
Superconductivity Lab. The procedure is very similar to the one used for making 
high purity Y B C O crystals [28, 29]. 

Growth of Y B C O crystals typically begins with powders of I2O3, BaCOs, and CuO. 
In the case of gadolinium substitution, a gadolinium-oxide powder is added (Gd^Oz). 
The ratio of gadolinium-oxide to yttrium-oxide sets the nominal Gd concentration. 
However, the precise concentration in the crystal has to be determined by other 
means. 

The rest of the process is identical to Y B C O single crystal preparation. A ceramic 
crucible (BaZrOz) filled with a mixture of the above powders is placed in a furnace 
and then heated up to 1000°C for 12-24 hours until the powders melt completely. 
The heating is done near the edge of the furnace and next to a quartz rod that serves 
as a cold finger to create a horizontal temperature gradient towards the center of the 
furnace. The temperature gradient, of 2 — 5°C/cm, improves the growth stability 
and enhances the growth rate. Once a uniform melt is obtained, the temperature is 
lowered slowly and at about 985°C crystals start to form near the coldest spot on the 
crucible. 

Post annealing is done slightly below growth temperature in pure oxygen flow to 
release residual strain and defects. A lower temperature anneal is used to set the 
oxygen content, which is a function of the annealing temperature and oxygen partial 
pressure [30]. 

The crystals grow naturally twinned so that the a and b directions are mixed (the 
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Figure 6.1: The Y B C O unit cell. Gadolinium substitutes into the yttrium site. The 
left picture shows one unit cell and the right picture focuses on the Cu-0 chains along 
the b axis. 
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so-called twins). The twins are removed by heating the sample to 200 — 400°C and 
carefully applying pressure along one direction in the a-b plane. This procedure is 
called detwinning. 

Another important issue is the crucible material. The BaO-CuO melt is highly 
corrosive and reacts with most materials typically used for crucibles. Extensive study 
has led to the currently used BaZrOs crucibles. These crucibles replaced the widely 
used Y S Z (Y2O3 stabilized Zr02) to create the high purity new generation crystals 
of 99.995% atomic purity [?, ?]. 

6.1.2 Gadolinium Concentration Determination 

The Gd concentration in the crystal is not necessarily equal to the concentration in 
the starting oxide powders and has been found that the actual G d concentration can 
be substantially higher than in the starting powders. This difference in concentration 
is a result of growing the crystal from a liquid melt. The Gd ions migrate preferably 
into the crystal rather than the melt, and as a result the Gd concentrations in the 
crystal is higher than initially expected. 

One way to determine the Gd concentration of the samples is by the Curie-Weiss 
susceptibility in the normal state using a SQUID magnetometer. The samples were 
measured in a field of 2T applied parallel to the a (b) direction and the magnetization 
was measured for temperatures between 100 and 300K, above the critical tempera­
ture of the superconductor, Tc. In this field direction and temperature range, the 
susceptibility of Y B C O is constant. The resulting magnetization is mainly due to 
the Gd paramagnetic contribution to the DC susceptibility and therefore obeys the 
Curie-Weiss law [31]: 

•x{T)= 0 +e (6.1) 
J- Weiss 

where C is the Curie constant and is given by: 

C = NS(S+i)gyB 

3kB 

and 9 is the constant Y B C O susceptibility. The data is fitted to equation 6.1 and the 
constant C is determined. A ceramic powder sample of GdxY\-xBa2Cuz07-s with 
known x = 0.01 was used as a concentration standard. The concentration of Gd in the 
powder is known since its growth procedure does not include separating the crystal 
from the melt in any stage (thus all of the input materials end up in the sample and 
nothing in wasted). It was found that Tweiss = —0.5 ± 2K and g = 2.03 ± 0.01. 



Chapter 6. A Extraction Technique 31 

6.2 Rs and x" 

In a superconducting sample with magnetic doping the observed surface resistance has 
two components: one comes from the lossy part of the diamagnetic shielding current 
that is assumed to be independent of the magnetic doping (for small doping) and is 
a monotonic smooth function of frequency (as shown for a typical Y B C O sample in 
figure 5.2 in chapter 5). The other contribution comes from the transitions between 
the Gd spin levels (the so-called ESR transitions). The magnetic susceptibility x" 
and the ESR component of the surface resistance RfSR are related in the following 
way: 

Dtotal TDSC r>ESR 

x" = th = fh (6.3) 
\HQUJA \PQUIX 

where Rl°tal is the measured surface resistance and Rs

s

c is the superconductor's surface 
resistance. This can be derived from the expression for surface impedance Zs = 
Rs + iXs, as is now shown. At low temperature (in the superconducting state) 
Rs <§C Xs and we can make the following approximation: 

Z2

S =R2

S- X2 + 2iXsRs « -X2 + 2iXsRs. (6.4) 

On the other hand we can modify equation 2.14 to include the magnetic response of 
the Gd ions: 

Z, = { %iUj). )* with p. = /xo(l + X' ~ ix") (6.5) 

where the permeability p replaces po to account for the magnetic moments in the 
sample. In the superconducting state o% ^> o~\ at any low frequency, and therefore 
Z2 reduces to 

Z] = ^ [ - ( 1 + X>2 + i ( ( l + X>i + x V 2 ) ] . (6.6) 
a2 

Comparing equations 6.4 and 6.5 we obtain: 

A j ^ a + X - ) and R, = f ^ ± . [ i l + X > 1 + X „ a 2 l (6.7) 

For a dilute array of paramagnetic moments we can assume x ' < l - In our system, a 
rough estimation of x' was done in the following way. The real and imaginary parts 
of the susceptibility are related through Kramers-Kronig relation. Since the x " ( w ) 
depend on frequency only in the shape function, x'(u;) for each transition would be the 
integrated intensity of x" times the Kramers-Kronig transform of the shape function. 
For a Lorentzian shape function with width n, the maximum of the transformed 

file:///hqujA
file:///pquiX


Chapter 6. A Extraction Technique 32 

function is l/2r). Therefore, the maximal value of x' 1 S : 

xV )maz = (6.8) 

where A is the integrated intensity of the largest ESR transition. In our system this 

gives x' ~ 10~7 and therefore we can approximate 1 + x' ~ 1 in the above expressions. 
Finally, with a2 — M O ^ 2 w e obtain: 

R, = + (6.9) 

and result 6.3 follows. 

6.3 Background. Subtraction 

The extraction of x" from our measured R„ involves subtracting the superconductor's 

surface resistance (Rs

s

c) from the total measured surface resistance. This is done by 

fitting a polynomial function to the surface resistance data between the ESR peaks (at 

places that are far enough from any Lorentzian tail) and subtracting this fit from the 

total surface resistance. This fitting procedure was found to be the best solution for 

separating the two contributions. The functional form of Rs

s° is unknown but it has 

been seen in various samples to be a smooth function of frequency. Another approach 

would have been to subtract Rs data from a different sample ( Y B C O without Gd 

doping) but so far this approach has failed since for the samples tried the background 

level is sample dependent, not surprising since it is very sensitive to surface quality. 

The next chapter discusses the results and the data is presented in figures 7.2 and 7.5 

as the measured surface resistance with a polynomial curve fitted to the background 

between the ESR peaks. 

6.4 Spectrum Fitting and Extraction of A 

Once the background is subtracted, the ESR spectrum is ready to be analyzed. We 

have obtained RfSR = i?* o t a ' — R^c. Dividing this data by frequency gives x" U P to 

a factor of irp0A. In order to extract A one must first calculate x" from the Hamil­

tonian of the system. Our strategy was to use C F parameters that were measured 

in conventional ESR experiments [24, 27, 21, 22, 23] as a first guess and make some 

adjustments to fit our own data. To do this a Mathematica notebook was written by 
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Richard Harris (see appendix B). The algorithm receives the crystal field parameters 
and returns the susceptibility function. The procedure is the following: 

• Build a matrix presentation of the Hamiltonian given parameters, Tio = ^ p q BgO^, 
in the subspace of spin | . 

• Diagonalize %Q to find the eigenvalues which are the system's energy levels. 
• Calculate all matrix elements of Sx or Sy, according to the polarization of the rf 

field. Every matrix element that is non zero is an allowed transition and would be 
observed as a peak in the spectrum at fko = AE 

• For every allowed transition, the transition energy is calculated by Eij = Ei — Ej 
and the intensity of the transition is calculated from equation 4.19 using the eigen 
values of T-L0. 

• Build the x"^) spectrum as a sum of shape functions (Lorentzians) centered 
around the calculated transition energies. The width of the peaks is taken from the 
experiment, but the total intensity was calculated before. 

• After the spectrum is calculated it can be compared with the experimental spec­
trum. If the calculated resonances are not exactly at the same frequencies as the 
experimental ones, the C F parameters are adjusted to fit the data and the procedure 
is repeated with the new parameters. 

• The unknown parameter A is chosen to give the best agreement between the 
calculated and experimental spectrum. This is done by fitting the experimental data 
with a sum of Lorentzians and obtaining the area of the largest transition, A , where 
the background subtraction error is lowest. A is extracted by comparing this area, A, 
with the theoretical one: A = | /xoA| | /%|( iVi — Nj) where the relevant matrix element, 
partition function and energies were calculated by the program discussed above. 
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7: Results and Analysis 

Before performing any experiment, a prediction of the ESR spectrum was generated. 
The crystal structure has a nearly tetragonal symmetry (with about 1% difference 
between the d and b dimensions) and very high anisotropy in the c direction as com­
pared to the a-b plane. Considering all the Stevens operators from 0 ° and higher, 
the following reductions should apply. The system has spin | with no orbital an­
gular momentum and therefore the highest order Stevens operator that should be 
considered is 6 (since k < 2S where k is the order of the operator and S is the total 
angular momentum, k is also even). In addition, since the a-b plane has approxi­
mately | rotational symmetry, all of the operators that violate this symmetry (the 
O2.) should have negligible C F coefficients. The operators that survive this selection 
are: O®, 0 ° , 0\, 0$, 0\ and 0%. Given the dimensions of the unit cell, we expect that 
the diagonal terms, 0%, be larger than the off-diagonal terms. Combining this with 
the fact that this sum is an expansion, the dominant term in the Hamiltonian is 0 ° . 
The expected spectrum would contain three main transitions, since the eigenstates of 
the system are the Kramers doublets, | ± m >. The spacing between the ESR lines 
of a system with Ho oc 0% is constant since 0% = 3S2 — S2 (as was shown in figure 
4.3). However, in our system the spacing between lines may not be constant due to 
additional C F parameters (mainly 0 ° ) . 

7.1 Twinned Optimally Doped Crystal 

The first measurement was performed on a twinned 1.28% Gd doped YBa,2CuzO§m 
crystal. The surface resistance results are shown in figure 7.1 along with a polynomial 
fit to the background. A spectrum proportional to x" w a s obtained by subtracting 
the background fit and dividing by frequency as shown in figure 7.2. Note that the 
spectrum contains six sharp ESR peaks. This is in contradiction to the predicted 
spectrum. Any reasonable combination of the above operators could not yield such 
a spectrum and the solution to the problem was eventually found elsewhere. 
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Figure 7.1: The surface resistance of a twinned optimally doped sample with 1.28% 
Gadolinium - Gdo.01yb.99-Sa2Ou3O6.g2- The graph shows the full surface resistance 
(points) with a polynomial fit to the background between the ESR peaks (line). 

http://Gdo.01yb.99-Sa2Ou3O6.g2-
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Figure 7.2: The magnetic susceptibility x" of Gdn.oi^o.99Ba2Cu30G.92 up to a fac­
tor of npoX obtained from the surface resistance measurement by subtracting the 
background (-Rf c) and dividing by the frequency. 
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F Band G Band 

Figure 7.3: Two different C F environments. The G d ion may have four (G-band) or 
three (F-band) nearest neighbour chains. The stars represent a chain, open circles 
are holes in the C u - 0 plane and the black circle represents a missing hole (electron) 

7.1.1 Oxygen Ordering 

Research by Rockenbauer et al. [24, 27] has shown that such a spectrum should be 

fitted by two sets of C F parameters. At an oxygen doping of 6.92 the C u - 0 chains 

along the b axis are not completely full. As a consequence, some G d sites have four 

nearest neighbour chains and some have less. At this oxygen content, 8% of the 

chain oxygens are missing and approximately 32% of the G d sites have only three 

nearest neighbour chains (neglecting the sites with two and less chains). The other 

68% of G d sites have four nearest neighbour chains. This results in two different C F 

environments for the two different G d sites as shown in figure 7.3. We will denote 

the spectrum of the ions with four nearest neighbour chains as the G-band and the 

spectrum of the ions with three nearest chains as the F-band. The spectrum of 

the optimally doped sample (shown in figure 7.2) was fitted with two sets of C F 

parameters. The first guesses were taken from the work of Rockenbauer et al. on 

yo.999Gdo.001 Ba2Cu^Oe,7'7 [24], and some adjustments were made to fit our data (see 

the fitting procedure in chapter 6). The two sets are presented in table 7.1 with the 

C F parameters of ref. [24]. The transitions were identified as summarized in table 

7.2 and the fitted data is shown in figure 7.4. In this case, the function x"{u) 1 8 a 

http://yo.999Gdo.001
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sum of the two bands: 

(7.1) 

where r is the weight of the F band, relative to the G band. In the spectrum, r can be 
extracted from the relative intensities of two peaks that represent the same transition 
in the different bands. The Hamiltonian of spins with four nearest neighbour chains 
is described by the G-band C F parameters and therefore, these spins will contribute 
to the intensity of the Gi transitions. In the same way, the intensities of the Fi 
transitions are proportional to the number of spins in the F band: 

A F Nf - Nf 
Nf - Nf 

r(e (7.2) 

where Afj is the integrated intensity of the i —> j transition in the F-band and Ef is 
the ith energy level in the F band and (3 = 1/ksT. This ratio is directly related to 
the oxygen content of the crystal: 

4 + 3r 
4(1+ r ) ' 

(7.3) 

Using the integrated intensities of the two largest transitions in the optimally doped 
sample's spectrum (which correspond to the ± | —>• ± | in the G and F bands) gives 
an oxygen content of 6.94, in reasonably good agreement with the expected content 
of 6.92, from the knowledge of the annealing temperature and pressure. 

B'i s4° Bf Bi 
G-band -590 (-598) 0(0) -3.1 (-3.1) 12.7 (13.2) 0.167 (0.167) 
F-band -533 (-541) 0(0) -3.1 (-3.1) 12.5 (17.2) 0.167 (0.158) 

r, F :G Ratio 0.34 

Table 7.1: Crystal field parameters for the two ESR bands in an optimally doped 
Y B C O , given in GHz. In brackets - the C F parameters as measured by Rockenbauer 
et al. in conventional ESR on a powder sample of 10.9990^0.001-6020^306.77 [24]. 

The extracted penetration depth from this fitting is 1270A and since the crystal is 
twinned, this is a weighted average between A a and Another contribution to this 
extracted penetration depth comes from A c . The correction is discussed in section 
7.3. 
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Figure 7.4: The fitted ESR spectrum of an optimally doped Y B C O sample with 
1.28% Gd. The spectrum is a superposition of two bands. Figure (a) shows The 
G-band fitting, figure (b) shows the F-band fitting and figure (c) shows the sum. The 
dots are experimental data points and the line is the theoretical spectrum generated 
by the Mathematical program. 
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Label Frequency (GHz) Transition 
G i 14.04 ± 5 / 2 -»• ± 7 / 2 
G2 5.86 ± 3 / 2 -> ± 5 / 2 
G>2 6.90 ± 1 / 2 ->• ± 5 / 2 
G3 1.05 ± 1 / 2 ± 3 / 2 
Fi 13.02 ± 5 / 2 -> ± 7 / 2 
F2 5.20 ± 3 / 2 ->• ± 5 / 2 

Table 7.2: ESR Transitions in a twinned optimally doped Y B C O sample. Transitions 
of the G-band are labeled G\ and F-band transitions are labeled Fi 

7.2 Detwinned Overdoped Crystal 

In order to verify the two band theory another measurement was performed on a 
Gdo,oi2sYo,g72Ba2Cus06^Q sample. To further simplify matters, this sample was de­
twinned. This oxygen content was chosen in order to achieve a spectrum containing 
predominantly one band, the G-band. At this doping, the chains along the b axis are 
almost completely full, we expect a ratio of 1:0.04 between the two peaks observed 
earlier. Figure 7.5 shows that our expectations were verified and the spectrum con­
tains only three main peaks with only a small contribution of the Fi transition, while 
the other F-band transitions are not visible. 

Another interesting feature of the data is the difference in spectra between the two 
directions. This crystal was detwinned and therefore we can use this data to separate 
the measurements of A a and At. The spectra show a difference in the intensity as a 
result of the different penetration depths in the a and b directions. In addition, the 
shape of the spectrum in the two directions is different. The a direction spectrum 
has three main peaks and in the b direction we see four main lines. The additional 
line (marked as G'2) is the result of an off diagonal transition, ± | —>• ± | . Such 
a direction sensitive feature can only result from an operator that violates the | 
rotational symmetry in the x-y (a-b) plane. Operators of this type are the result of 
the crystal's orthorhombicity and the relevant operators are: 0\,0\ and 0\. The 
dominant contribution is of course the first orthorhombic term in the expansion: 
0\ = \(S%_ + S2) = \{Sl — Sy). The coefficient B\ of this operator was adjusted 
(using a Mathematica simulation) to simultaneously fit the data in both directions. 
This transition was also visible in the optimally doped crystal but since the sample 
was twinned, the orthorhombic nature was not resolved. The determination of the 
C F parameter B\ can therefore only be done on detwinned samples. The crystal field 
parameters are given in table 7.3 and the identified transitions are given in table 7.4. 
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Figure 7.5: Surface resistance of an over doped Y B C O sample with 1.28% Gd. Figure 
(a) shows the spectrum of the a direction and figure (b) shows the b direction. In 
both figures the measured surface resistance is shown (dots) along with a polynomial 
fit to the background (line) 
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The data with the theoretical fit for the d and b directions are shown in figure 7.6. 

B\ B\ B\ 
G-band -583 (-598) 26.7 (0) -3.1 (-3.1) 12.7 (13.2) 0.167 (0.167) 
F-band -530 (-541) 0(0) -3.1 (-3.1). 12.8 (17.2) 0.159 (0.158) 

r, F :G Ratio 0.04 

Table 7.3: Crystal field parameters for the ESR spectrum in an overdoped Y B C O 
crystal, given in GHz. In brackets - the C F parameters as measured by Rockenbauer 
et al. in conventional ESR on a powder sample of yo.999Gdo.ooijBa2Cu3O6.77 [24]. 

Label Frequency (GHz) Transition 
G1 14.04 ± 5 / 2 -» ± 7 / 2 
G2 5.86 ± 3 / 2 -> ± 5 / 2 
G'2 6.90 ± 1 / 2 -»• ± 5 / 2 
Gz 1.05 ± 1 / 2 -> ± 3 / 2 
Fi 13.02 ± 5 / 2 ± 7 / 2 
F2 5.20 ± 3 / 2 -> ± 5 / 2 

Table 7.4: ESR Transitions in a detwinned overdoped Y B C O sample. Both the a and 
b spectra show the same transitions except for the G2 transition that is only visible 
in the b direction 

7.3 Corrections for c Axis Currents 

Corrections to the above figures should be made because of c-axis contributions to 
the effective penetration depth. In our experiment the magnetic field is applied along 
the b (d) direction and the currents flow mainly in the a-b plane. However, a small 
portion of the current flows in the b-c plane, along the c direction. As a result the 
measured penetration depth, A e / / , is a mixture of the in plane penetration depth, A a 

(A/,), and A c . A method used for separating the two contributions was employed at the 
U B C superconductivity lab [26, 32] in overdoped Y B C O crystals (x = 0.95 - 0.99). 
This technique involves a cavity perturbation measurement of Rs. The sample is then 
cleaved into 2 or 3 long platelets along the b (a) direction and Rs is measured again. 
The increase in the observed surface resistance can be attributed to the additional 
b-c planes in the platelets and therefore to the c axis transport. 

In the case of Gd doped crystals, this measurement has not been done yet and the 
corrections given here are based on previous measurements of the c penetration depth. 

http://yo.999Gdo.ooijBa2Cu3O6.77
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Figure 7.6: The fitted ESR spectrum of an over doped Y B C O sample with 1.28% Gd. 
The spectrum has essentially only one ESR band, the G-band. Figure (a) shows the 
spectrum of the a direction, where the currents are running in the a direction and the 
magnetic field is applied along the b direction. Figure (b) shows the b direction, where 
the middle main line is split into two peaks by the 0\ crystal field operator. The 
dots are experimental data points and the line is the theoretical spectrum generated 
by our Mathematica simulation. 
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We used the value of A c = 11,000±400A that was measured in YBazCuzOs.w at 1.2K 
[32]. The first, twinned sample had dimensions of x = 820//m and c = 19/im where 
x is the length of the sample along the measured direction. The second, detwinned 
sample has dimensions of a = 770/xra, b = 910/xm and c = 23pm. 

A simple, straightforward correction assumes that the Gd ions that are exposed to 
the field near the b-c plane are in a volume of 2 x a x b x A c : 

A e / / = 
aXa + c A c (7.4) 

A more accurate calculation([33]) of a field profile in a sample of rectangular cross 
section uses the anisotropic screening equation: 

A; 

The solution to this equation is: 

ac 4 

,82H 
A; 

d2H 
dz2 a dx2 

= H. (7.5) 

A e / / -
a + c it2 T -

odd n>0 

with an 

1 J tanh(an) tanh{(3n) 
\ Ctn Pn 

2Aa 

P n ~ 2Xr 

1 + 

1 + 

V a 

/ rvnXaf 2 

V c 

(7.6) 

(7.7) 

(7.8) 

Table 7.5 summarize the results for Xpiane of the twinned crystal and A a and A^ for 
the detwinned crystal and their corrections in the two methods. 

extracted A(A) simple c correction full calculation 
Xpiane, twinned sample 1270 ± 130 1019 ± 140 1025 ± 140 
A a , detwinned sample 1684 ± 175 1355 ± 187 1410 ± 187 
Xb, detwinned sample 1347 ± 140 1069 ± 150 1100 ± 150 

Table 7.5: The ESR-extracted penetration depth A of an optimally doped twinned 
sample and an overdoped detwinned sample, at T = IK. Both samples have 1.28% 
Gd concentration. 
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7.4 Error analysis 

Errors in the extracted A come from both experimental errors and the function fitting 
procedure. The experimental errors in the bolometric apparatus are estimated as 5-
10% in the raw Rs data [19]. Another source of error is the Gadolinium concentration 
in the crystal that is estimated to be 1.28 ± 0.02%. In the fitting procedure there 
are two sources of error, the first is the background subtraction in which we fit a 
polynomial function to the data between ESR peaks. This fitting is quite accurate 
away from the peaks and only affects the tail of the Lorentzians. After the background 
RgC is subtracted, the data is divided by the frequency to give a quantity proportional 
to x" • F ° r the small peak the background fitting inaccuracy is enhanced by a large 
factor of order ^ since the frequency is low and the actual line intensity may be 
changed by up to 50%. However, for the largest peak the background subtraction 
error is small compared to the intensity of the line and is divided by a large factor 
since the frequency is high. The best fit parameter A is chosen to fit the largest 
transition and therefore we neglected the background subtraction error. The second 
fitting error is the actual curve fitting of the theoretical data (a sum of Lorentzians) 
to the experimental data. A n estimation of this error is given by Origin (the data 
analysis program) as the errors of the fitted Lorentzian area. This error is estimated 
to be less then 2%. The errors mentioned above are uncorrelated and therefore add 
in the following way: 

where Ned is the gadolinium concentration, Rs is the surface resistance and A is the 
intensity of the largest ESR transition that is used to fit A . This leads to the following 
relative error in A L (before c axis correction): 

(^^j = v/(10%)2 + (2%)2 + (2%)2 = 10.4% (7.10) 

Another error comes from the A C value that is used for the c axis correction. We 
can calculate the error of the corrected A A (or A^) using the simple formula for the c 
axis correction: 

A „ = A E / / - - A C (7.11) 

where the error in A E / / was calculated in the previous paragraph and A C = 11, 000 ± 



Chapter 7. Results and Analysis 46 

400A. The total error in A is then given by: 

S\ = S\eff + -5\c. (7.12) 
a 

The errors for each value of A are given in table 7.5. 
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8: Conclusions 

The main goal of this work was to develop a reliable method for measuring the 

absolute value of the low temperature limit of the magnetic penetration depth, 

\L(T —>• 0). This goal was convincingly achieved through a surprising and unconven­

tional combination of two experimental methods, E S R and broad band microwave 

surface resistance measurements. The new technique was applied to Y B C O crystals 

and the results that were obtained are in reasonable agreement with uSR [8, 9] and 

infrared [10] measurements. 

However, there are still some open issues regarding the reliability and the errors of 

the figures given. Most concerning is the difference between our measured A a , Xb of 

the overdoped detwinned sample and Xpiane of the optimally doped twinned crystal. 

We expected A p ; a n e to be intermediate to the values of A a and A& (when measured in 

the same sample) since it is a weighted average of the two directions. In practice, 

Xpiane was found to be smaller then both A a and A&. This may indicate a change in 

penetration depth due to the different superfluid density but may also be the result 

of a difference in G d concentration between the two samples. The later possibility is 

currently being checked out. 

Several directions of study are possible for further work. Performing a series of 

measurements on Y B C O with different oxygen contents will provide information on 

the dependence of the superfluid density and the crystal field parameters on doping. 

The results can then be combined with TC measurements of the same samples and 

presented as a Uemura plot [3] (when we plot TC vs. 1/A 2 ) to verify the dependence of 

TC on superfluid density. Another product of this series of measurements would be the 

C F parameters for each doping. This would complement the work of Rockenbauer et 

al. [24] in single crystals (rather than aligned powder) and extend it to higher doping 

levels. 

Another useful measurement that can be done with the existing samples is the c-

axis penetration depth A c . This can be done by cleaving the sample as described 

in reference [26]. This measurement will provide, in addition to the value of A c , the 

appropriate c-axis correction to our Xa/b-

However, by far the most significant result of the success of this method is that it 

allows us to measure A absolutely, on crystals that are essentially identical to the 
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crystals used in the lab's surface resistance measurements. In turns this allows us 
to extract the microwave conductivity o~\ from the surface resistance values. In the 
past all of our conductivity values have had relatively large uncertainties because of 
uncertainties in A . 

It may also be possible to use the same measurement principle in other superconduc­
tors. The feasibility of the technique depends on finding the right atomic substitution 
and knowing the fine structure of the ion at the relevant crystal site, at least to first 
order. Knowing the C F parameters, one can then calculate the frequencies of the 
various transitions and design an experiment to cover the relevant range. 

As described in chapter 5, the experiments were done in a bolometric apparatus 
[19]. Further development of the bolometric experiment is under way. The frequency 
range will be extended to higher frequencies (up to 50GHz) and to lower temperatures 
(down to lOOmK). With these experimental improvements we will be able to measure 
A L closer to the limit of zero temperature, and the broader band of frequencies may 
become useful in measurements of other materials. 
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A: Cavity Perturbation Technique 

Cavity perturbation is a particularly useful tool for measuring the microwave electro­
dynamics of small single crystals of high Tc superconductors. This appendix explains 
the basic idea of cavity perturbation technique. 

In general a resonance cavity has a complex eigen frequency that is composed of the 
frequency u (the real part) and the inverse quality factor Q (the imaginary part). 

* = +55) ( A . l ) 

In an empty cavity the resonance frequency is a function of the cavity's geometry 
and the quality factor is a function of the losses in the cavity walls. When a sample 
(metal or superconductor) is inserted into the cavity the resonance frequency changes. 
The change is due to the new boundary conditions for the electromagnetic fields and 
resulting new field configuration as well as the loss on the sample's surface (the 
sample's surface resistance). 

In order to measure the temperature dependence of the sample's surface impedance 
the following steps are taken. The losses in the cavity walls are kept constant through­
out the experiment, so that any change in Q is caused by a change in the sample's 
surface resistance. This is done by keeping the cavity at a constant base temperature 
and heating only the sample above this temperature. The field configuration in the 
cavity should be constant so that the changes in the resonance frequency would only 
be due to the change in the sample's penetration depth. This is done by keeping 
the sample at one place and working at a resonance frequency that is well separated 
from other resonances. When the above steps are taken, the changes in u are only 
a function of the changes in the sample's surface impedance. The extraction of the 
sample's surface impedance is based on the relation: 

Auoci j AZSJ2. (A.2) 
J sample 

The integrated surface current is assumed to be unchanged and therefore the change 
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in surface impedance can be resolved: 

Aw = Au + iA^- = %KAZa = %KARS - KAXS. (A.3) 

The proportionality constant K is a function of the cavity and sample geometry and 
can be calculated for simple geometries or measured using a reference sample with 
known properties and similar dimensions. 

Achieving the absolute surface impedance of the sample in this way is not trivial. 
The relevant origin of the complex frequency, (Do, is of the cavity with a sample of no 
surface resistance and zero penetration depth. This limit is of course not accessible 
by experiment. The measured Q of the cavity without the sample can be taken as 
a good zero point for the surface resistance Rs since then the sample's contribution 
to the loss is zero. For the surface reactance, this does not work since the origin of 
Xs is a sample with zero penetration depth ( acavity with no sample is the opposite 
situation). In this approach (taken by our group) one can only measure AXS. 

Another approach is to use the fact that at the normal state Rs = Xs [?]. The 
frequency origin is set in the normal state and the ^ origin is set well in the super­
conducting state where the loss is orders of magnitude smaller. This method yields 
an absolute measurement of Zs but has large uncertainties. 
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B: Surface Current in a Uniform magnetic Field 

This appendix explains equation 5.2 of chapter 5: 

psample psample 
_ Ls /g j \ 

preference R r e ference \ ' ' 

where the reference and sample experience the same magnetic field H. 
As discussed in chapter 3, the classical skin effect leads to an exponential decay of 

A C magnetic fields into the sample. In a normal metal this decay is proportional to 

ei{i+i)r/s w h e r e j s the skin depth and in a superconductor the decay is proportional 
to e~rlx where A is the magnetic penetration depth. In both cases the magnetic field 
deep inside the sample is essentially zero and the currents flow on the surface within 
the small penetration depth or skin depth. This results in a surface current, Js, (the 
current density integrated over the thickness A or 8) that is equal to the applied 
magnetic field. 

To obtain this consider the geometry described in figure B . l where the magnetic 
field, H, is applied parallel to the crystal's a axis and the currents are flowing in the 
a-b and a-c planes perpendicular to the d direction. Now let us integrate Ampere's 
law, V x H = J, over the rectangular surface S that is parallel the a-c plane and has 
an edge I (see figure B . l ) . The upper edge of S lays on the upper a-b plane, where 
the supercurrent is flowing, and the lower edge is well inside the sample where both 
the magnetic field and the current are zero. The integration gives: 

j"(V x H)-dS = J J-dS'= Js-l (B.2) 

where the last equality is consistent with our definition of the surface current per unit 
width (in this case the current is flowing mainly in the b direction and the width is 
along the d direction). Using Stokes theorem we can simplify the left hand side of 
the equation: 

f(VxH)-dS=(f H-dl (B.3) 
J JdS 

where dl runs over the contour of the surface S. Since H is applied in the d direction 

and is zero in the middle of the sample, the only contribution to this integral is from 
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is Figure B . l : A typical high Tc sample in a magnetic field. The magnetic rf field i 
applied along the a direction the current is flowing mainly in the a - b plane along 
the b direction. The field and current deep inside the sample are zero. 

the part of the contour along the sample's surface (in the d direction) and therefore: 

Ha • I — Js • I =$> Ha = Js (B.4) 

W i t h this result we can now calculate the ratio of absorbed power in the sample 

and reference. The power absorption of a sample per unit area in an rf magnetic field 

is given by 

•Psample — ^RsJg — — RSH2 (B-5) 

where Rs is the surface resistance and Js is the current density. Since the two sampl 

experience the same magnetic field, result B . l follows. 
es 


