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Abstract 

This thesis is organized in two independent parts, in which I study two different aspects 

of high Tc superconductivity. 

The first part begins with an introduction aimed to briefly introduce some relevant 

experimental and theoretical works performed in recent years, that have helped us to 

think about cuprates the way we do now. Afterwards, I introduce Landau Fermi liquid 

theory in a standard text book way. The question of validity of Fermi liquid theory in 2-d 

is then raised and investigated by searching for singularities in Landau's /-function. I 

show that the interaction function between two quasiparticles whose momenta approach 

each other near a curved point of the Fermi surface, contains a 1-d singularity not strong 

enough to change the Fermi liquid behavior. On the other hand, inflection points provide 

2-d singularities that have to be taken seriously in Fermi liquid considerations. I then 

introduce nearly antiferromagnetic Fermi liquid theory (NAFL) , which is a phenomeno

logical theory proposed to describe high T c systems. I mainly focus on the self-consistency 

of the theory in calculations. I criticize the theory on the basis of overlooking the ver

tex corrections in the strong coupling calculations of the transition temperature Tc. I 

calculate the first vertex correction for an optimally doped system and show that it is 

of the same order of magnitude as the bare vertex. Migdal's theorem is therefore not 

valid and Eliashberg formalism is not applicable to this situation. The same conclusion is 

obtained even after inclusion of the quasiparticle residue Z to the calculation. The sign 

of the vertex correction is then considered. I show that the positive sign of the vertex 

correction for the optimally doped system requires a phase transition of some sort as the 

doping is decreased. 
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Part II of the thesis is devoted to the vortex lattice properties of high Tc superconduc

tors. I establish a method to study vortex lattice properties of d-wave superconductors 

based on a generalization of the London model. The method has the advantage of simplic

ity as well as having very few free parameters (one at most) compared to other methods. 

The generalized London free energy is obtained from an s-d mixing Ginsburg-Landau free 

energy and also from the microscopic theory of Gorkov. The generalized London equation 

is found to be analytic at high temperatures. At very low temperatures however non-

analyticities arise as a result of the nodes on the superconducting gap. I then present the 

results of our calculations of some measurable quantities, such as the vortex lattice geom

etry and the effective penetration depth (as denned in fiSR experiments). Comparison 

between our results and different experimental data is then performed. Especially our 

prediction for the magnetic field dependence of the effective penetration depth at T = 0, 

which is recently observed in //SR experiments with excellent agreement, is discussed. 
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Chapter 1 

Introduction 

It has been more than a decade since the discovery of the first high temperature super

conductor [1], and still no consensus about the microscopic theory relevant to cuprates 

exists. New theories have been emerging one after another and disputes about the older 

theories are still unsettled. A general feature of all cuprates is their strong anisotropy 

which makes them effectively 2-d electronic systems. Fig. 1.1 shows the crystal structure 

of the Y B C O compound which is one of important high Tc materials. At the center there 

are two Cu02 planes separated with Y atoms in between. Between these two planes 

and another two planes above or below them, there are oxygen chains (that play crucial 

role in the doping of the system) and also Ba atoms. It is generally agreed that the 

C u 0 2 planes play an important role in determining the characteristics of cuprates at all 

dopings. Fig. 1.1 shows the crystal structure of Y B C O material In the early days of high 

Tc's, Anderson [2] proposed an effective Hamiltonian which describes a single band 2D 

Hubbard model with an infinite on site repulsion U. Soon after, Zhang and Rice [3] tried 

to justify the Anderson's suggested model (known as the t-J model) for cuprates. They 

proposed that the holes which primarily reside on oxygen sites would delocalize onto four 

O sites around C u + 2 ions. The combination of a delocalized 0 hole and a Cu+ 2 ion forms 

a singlet which would hop between C u + 2 sites in the same way as a hole does in a simple 

C u + 2 square lattice. 

In the absence of doping, C u 0 2 planes are half filled and form a quasi-2D antiferro-

magnet with an insulating Neel ground state. Numerical simulations, experiments, and 
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Chapter 1. Introduction 2 

Figure 1.1: Crystal structure of Y B C O 

scaling theory, all suggest that above the Neel temperature, the antiferromagnetic spin 

correlations are well described by the isotropic 2D Heisenberg model [4] with exchange 

coupling J ~ 1550K between nearest neighbors. However, according to the Hohenberg-

Mermin-Wagner theorem [5], classical fluctuations destroy Neel ordering at an arbitrarily 

small nonzero temperature. The small (~ 10 _ 5 J ) , but finite correlations between the 

planes are believed to be responsible for the observed long-range order [4]. Chakravarty, 

Halperin, and Nelson [6] on the other hand, have employed quantum non-linear a model 

for the long-wavelength action of the 2D, s = 1/2 Heisenberg model. A scaling analysis 

of this model describes correctly both experimental and numerical data [4]. 

Introducing a small amount of holes into the C u 0 2 planes, the Neel temperature falls 

off rapidly from its undoped value. Increasing the doping level even further, the system 

moves into a state with a metallic normal state and a transition to a superconducting 

ground state at low temperatures (cf. Fig. 1.2). The superconducting transition temper

ature increases initially as doping is increased. After reaching its maximum at optimal 
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X 
Figure 1.2: Phase diagram of high temperature superconductors, x represents doping, 
A F antiferromagnetically ordered phase and SC superconducting phase. Upper line is 
the crossover to pseudogap state. [12] 

doping, it starts to decrease and the superconductor enters a so called overdoped regime 

(Fig. 1.2). A l l over the metallic phase, the antiferromagnetic correlation is short ranged 

with £ between one and (up to) fifteen lattice spacings, depending on the material, doping 

and temperature. 

Experiments evidently indicate that the electronic properties of the underdoped and 

overdoped materials are different [7, 8, 9, 10, 11]; especially the pseudogap phase which 

exits only for underdoped compounds [12] (Fig. 1.2). Among experiments, inelastic 

neutron scattering (INS) and nuclear magnetic resonance (NMR) experiments provide 

important information about the magnetic properties of the system. INS directly probes 

the spin response function, x"(<f, In Lai. 8 5Sr 0.i5CuO4 the INS experiments [8] display 

four sharp magnetic peaks located at 5q ~ 7r/4 away from the antiferromagnetic wave 

vector. These incommensurate peaks were also observed recently in YBa2Cu 306.6- [13] 

Like many experiments, INS has some inherent problems. For example it is difficult to 

determine experimentally the absolute value of intensity. It is also not easy to separate 

the phonon spectrum from the magnetic excitations. 

N M R experiments [14, 15] on the other hand, are much more exact, and can detect 
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much lower intensities. However, N M R is an indirect probe and its data analysis involves 

using a theoretical Hamiltonian connecting nuclear and electron spins, the hyperfme 

Hamiltonian. Moreover, since N M R experiments are done at very low frequencies (~ 

nuclear spin Zeeman splitting), no information about w-dependence of x(v,T) can be 

obtained. Early measurements of the Magnetic Hyperfme Shift (Knight shift) at the 

oxygen sites showed that most of the total spin polarization was carried by the copper 

sites [16, 17]. Alloul et al. [18] reported that in Y B a 2 C u 3 0 6 + i , the knight shift of Yttr ium 

scales linearly with the macroscopic susceptibility. This was interpreted as a proof of the 

existence of a single spin fluid in agreement with the t-J model, because yttrium is coupled 

to the magnetic susceptibility of the Cu02 planes mainly through the polarization of the 

oxygen orbitals. Further measurements of knight shift showed the same T-dependence 

on all nuclear sites [14]. Similar result was obtained for all other cuprates indicating 

that the single spin fluid nature is a common feature of all these materials. Assuming a 

single fluid picture, Shastry [19] and also Mila and Rice [20] (SMR) proposed a hyperfme 

Hamiltonian in which the only source of coupling is the localized electronic spins at the 

copper sites. 

While the magnetic hyperfme shift (Knight shift) gives a measure of the uniform 

magnetic susceptibility, the Nuclear Spin Lattice Relaxation Rate (1/Ti) provides infor

mation about the imaginary part of the dynamic spin susceptibility x{q, U)- A n important 

experiment by Takigawa [16] on Y B a 2 C u 3 0 7 , in the early days, displayed a significant 

difference between the temperature dependence of 1/Ti for the C u 0 2 plane copper and 

oxygen sites. The relaxation rate for oxygen sites (and also 8 9 Y sites) obeys Korringa 

relation 1 7 T i T « Const, while the relaxation rate for copper sites is much shorter than 

for 1 7 0 and 8 9 Y sites and shows non-Korringa behavior. Using SMR Hamiltonian, Moriya 
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[21] showed that 

m ^ o c l i m E ^ ^ ^ (1-1) 
Q 

where x"(<f, w) is the imaginary part of the magnetic susceptibility and F(q) is a form 

factor which depends on the site and the direction of the magnetic field. For 1 7 0 sites, 

F(q) is peaked at q = 0 and vanishes at the antiferromagnetic (AF) wave vector Q = 

(7r/a, 7r/a). For 6 3 C u sites on the other hand, it is peaked at q = Q. Thus different nuclei 

probe different regions of the momentum space of x"((f>0). The significant difference 

between the 6 3 C u and 1 7 0 relaxation rates could then be understood as a result of an 

enhanced susceptibility at q = Q. 

Another important quantity measured by N M R experiments is the nuclear spin-spin 

relaxation rate ( 1 / T 2 G ) which is the rate of relaxation of the nuclear spins among them

selves and is usually much larger than 1/Ti. In most solids T2G is temperature in

dependent and is related to spin-spin dipolar coupling and therefore doesn't give any 

information about electron susceptibility. In cuprates however, because of the antiferro

magnetic enhancement of the spin susceptibility, indirect coupling of spins via nonlocal 

spin susceptibility dominates the nuclear spin-spin coupling. Thus T2Q can provide im

portant information about the antiferromagnetic exchange between electron spins as was 

pointed out first by Pennington et al. [22]. Measurements of 1/T 2 G in different materials 

with different dopings have found 1 / T 2 G to increase with decreasing temperature, with 

sometimes a flattening or small decrease close to Tc [14]. This is considered as a proof 

for the existence of A F correlations in all cuprates. 

To have a quantitative description, Millis, Monien and Pines (MMP) [23] proposed a 

phenomenological form for the magnetic susceptibility x(<l, w ) which has a peak near the 

Antiferromagnetic (AF) wave vector Q = [IT/a, ir/a) 

x & w ) = i i ti(-* %2—~i— + 1—^T7r~ ( L 2 ) i + £ (q - Q) - iu/u)Sf l - i w / i o 
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where xo is the measured bulk spin susceptibility which in general is temperature depen

dent, XQ is the staggered susceptibility which is some orders of magnitude greater than 

the bulk susceptibility and To is an energy scale of order of quasiparticle bandwidth or 

Fermi energy. The first term in Eq.(1.2) produces a peak at A F wave vector Q and the 

second term is the ordinary Fermi liquid susceptibility. For the 1 7 0 sites, the effect of 

the first term is suppressed by the form factor F(q) (cf. Eq. (1.1)) and the second term 

(the Fermi liquid term) is the only term that remains. To the lowest order, Eq.(1.2) 

gives ( 1 7 T i T ) _ 1 oc Xo(T) which is consistent with the Korringa relation. For copper sites 

however, the contribution of the first term is dominant near Q and one can safely neglect 

the second term. Assuming large correlation length £, the form factor can be treated as 

a constant and the integration can be simply carried out to get 

( ^ T ) " 1 cx = — (1.3) 

where a is defined by XQ — A £ 2 a n d assumed to be temperature independent. Thus the 

spin lattice relaxation rate provides information about the temperature dependence of 

usf in the M M P model 

^TtTxUsf/a (1.4) 

This is completely different from the 1 7 0 case and has non-Korringa behavior. 

In the early days of high T c 's, there existed some speculations that antiferromagnetic 

correlation was responsible for Cooper pairing in high T c materials [24, 25, 26, 27, 28] (the 

idea of d-wave pairing already existed in the context of heavy fermions [29, 30]). Inspired 

by paramagnon theory, Pines and collaborators [31, 32] proposed a (phenomenological) 

nearly antiferromagnetic Fermi liquid (NAFL) theory to describe pairing process as well 

as normal state properties of high Tc superconductors. The theory assumes that the low 

lying excitations of a high Tc system in its normal state, are Fermi liquid quasiparticles 

interacting with each other via antiferromagnetic spin-fluctuations. The susceptibility 
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(1.2) can be thought of as the propagator of bosonic particles that describe spin fluctu

ations. One of the first predictions of N A F L theory was dX2_^2-wave pairing which was 

then confirmed by various experiments [33, 34]. Transition temperature was calculated 

in weak [31] and strong [35, 36] coupling limits and a Tc as high as 90K was obtained 

using several fitting parameters. 

N A F L theory, as we mentioned above, is constructed based on the assumption that 

the excitations of the system are Fermi liquid quasiparticles. Almost none of the normal 

state properties of cuprates agree with Fermi liquid theory (at least in low to moder

ate doping regimes). The proximity to Mott-insulating antiferromagnetic phase might 

suggest that non-Fermi liquid properties are actually signatures of non-Fermi liquid exci

tations. N A F L theory on the other hand believes that the anomalous behavior is a result 

of strong interaction between the Fermi liquid quasiparticles due to antiferromagnetic 

spin fluctuations. 

Orthogonal to the above philosophy was Anderson's proposal in 1990 [37, 38] that 2-

dimensional Fermi liquids are unstable to the formation of a 2-d Luttinger liquid. Since 

Anderson, theorists have been trying to understand if and when "non-Fermi liquid" 

(NFL) can appear in itinerant Fermi systems. There is strong evidence [39] for N F L 

behavior in the v = 1/2 quantum Hall liquid; theoretical understanding of this assumes 

a singular gauge interaction between the quasiparticles [40]. The high T c problem is 

more complex because the lattice introduces an on-site constraint for strong Hubbard 

repulsion- which means the lattice problem is fundamentally different from a continuum 

model. Perturbative investigations of the nature and existence of singular interactions 

in the low-density regime [41, 42, 43] have not shown N F L behavior, even in a finite box 

[43] (although they do reveal weak singular structure in the quasiparticle interactions 

[42, 43]). However, these results do not rule out non-perturbative singular behavior in 

the higher density lattice problem- no consensus yet exists on whether these exist in 2 
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dimensions. We stress that this question is quite different from that of the existence of 

instabilities to ordered phases (e.g., Superconducting or SDW instabilities), which can 

be understood using standard methods [44]. 

As discussed by various authors [37, 38, 43], N F L behavior is typically expected if the 

interaction between quasiparticles with momenta p and p* is singular when Q = p—p' —> 0. 

It is nevertheless essential to satisfy all relevant Ward identities and crossing symmetry 

in any calculation, given the way singular behavior in one channel can influence that 

in the others. A n approach which reveals the structure in the irreducible interactions 

as a function of Q and which satisfies the above requirements, involves calculating the 

irreducible 4-point vertex ffff perturbatively [45], and then using this to determine the 

full scattering function and quasiparticle dispersion. If f^j,' is not singular, then it is 

nothing but Landau's /-function. 

In the next chapter, after an overview on Landau Fermi liquid theory, we perform a 

calculation of along the line mentioned above for a regular Fermi surface and also 

near inflection points of the Fermi surface. Our calculation for a curved Fermi surface 

reproduces the previous results [43] existing in the literature. Near inflection points 

however, we find that f£g is singular in Q already at 2nd order in a short-ranged repulsive 

interaction. We stress that the N F L behavior found previously for Fermi surfaces having 

finite curvature everywhere appeared only at infinite order, and was too weak to destroy 

Fermi liquid behavior [42, 43]. Calculating the imaginary part of the self energy to 

second order in the singular interaction, we find a frequency dependence different from 

the expected Fermi liquid form. 

Besides the controversy about the Fermi liquid starting point, the validity of Eliash-

berg formalism used in N A F L theory to calculate Tc is under question. Migdal's theorem 

is an essential ingredient of Eliashberg formalism which states that the vertex corrections 

to the bare coupling between electrons and the bosonic medium (here spin fluctuations) 
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are small. In the case of phonons, the small ratio of Debye frequency and Fermi energy 

(ujr)/EF) makes the vertex corrections small [46]; despite the large bare coupling. In the 

case of spin-fermion coupling on the other hand, the only relevant energy scales are EF 

and the antiferromagnetic exchange coupling J. The ratio J/EF however, is of order 

one [47]. Thus it is not clear why vertex corrections should be small in the spin fermion 

interaction. 

Calculations of the vertex corrections close to the antiferromagnetic ordered state 

[47, 48, 49] showed that the vertex corrections are actually the same order as the bare 

vertex and therefore are not small. Schrieffer [47] showed that in the ordered state, the 

dressed vertex should vanish at the antiferromagnetic wave vector. The vertex corrections 

therefore should be equal to the bare vertex but with opposite sign. The magnitude of 

the vertex correction at higher dopings is more important because the superconducting 

transition is suppressed at low doping. 

In chapter 3, we first give a brief introduction to paramagnon theory, which is a 

theory for Fermi liquid systems near a ferromagnetic instability. We then turn to the 

nearly antiferromagnetic Fermi liquid theory pointing, out the similarities and differences 

between N A F L and paramagnon theory. The self-consistency of N A F L theory is then 

discussed. We calculate the first correction to the bare spin-fermion vertex. We find 

that the vertex correction is actually big and of the same order as the bare vertex. The 

self-consistency of the calculation including quasiparticle renormalization is discussed 

afterwards. 

The sign of the vertex corrections is another subject of dispute. As we mentioned 

above, the sign of the vertex corrections is negative near the ordered state. At optimal 

doping the sign of our vertex correction is also negative in disagreement with some other 

results [50]. We talk about the sign of the vertex corrections at the end of the 3rd chapter. 

Our discussion is based on the flow of the renormalized vertex versus change in doping. 
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We argue that the positive sign of the vertex corrections at the optimal doping requires 

a phase transition at some intermediate doping. In fact, for other reasons, this phase 

transition has been suggested by Chubukov to be a Lifshitz transition in the topology of 

the Fermi surface [51]. However, there is no experimental evidence for this or any other 

phase transitions at intermediate doping at the time of writing [52]. 



Chapter 2 

Fermi Liquid Theory 

2.1 Landau Theory of Fermi Liquids 

Systems of strongly interacting electrons are very difficult, if not impossible, to solve. 

Perturbative methods fail to work as a result of the strong coupling between particles. 

Non-perturbative methods, also, are not quite well developed for systems of more than 

one dimension. It was Landau's ingenuity that realized the low energy excitations of a 

strongly interacting fermion system could still be fermionic quasiparticles similar to non-

interacting electrons. Proposed in 1957 [53, 54], Landau's Fermi liquid theory has been 

extremely successful in describing low temperature properties of liquid 3 He [55, 56] as well 

as interacting electrons in metals [57]. It especially explains the success of non-interacting 

electron theory for low temperature properties of metals. 

In his theory, Landau assumes that if one adiabatically turns on the interaction be

tween electrons, the non-interacting ground state evolves into an interacting ground state 

with a one to one correspondence between the bare particle states and the quasiparticles 

in the interacting state. A necessary condition for this to happen is that no bound states 

should form during this process. A system that possesses this property is called "Normal 

Fermi Liquid". Superconductors therefore do not belong to this category. In Landau's 

picture, the number of quasiparticles, N , is the same as the number of bare electrons. 

They carry the same charge as electrons and obey Fermi statistics. One has to be careful 

not to go too far with this picture. For example, the ground state energy is not the same 

11 
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as the sum of the quasiparticles energies. As we will see later, the quasiparticle states 

are meaningful only near the Fermi surface. A better way, is to define the quasiparticles 

as excitations of the system above its ground state and also quasiholes as absence of 

particles in the ground state. More precisely, a quasiparticle state with momentum p 

(> pF, Fermi momentum) is defined by adiabatic evolution of a non-interacting Fermi 

sea with an extra electron at momentum p (and likewise a quasihole state). 

Yet another assumption is necessary to establish the Landau Fermi liquid theory. The 

assumption is that the quasiparticles interact with each other via an interaction function 

ff$m ("^or s m i P l i c i t y from now on we suppress the spin indices and denote the /-function 

by fPP'- We put them back when necessary later.) The scattering of quasiparticles due 

to this interaction causes the quasiparticles to decay. If the decay rate is large, then 

the quasiparticle lifetime, rp may be too short. The quasiparticle states therefore will 

be ill-defined. In other words, the quasiparticle states are not exact eigenstates of the 

interacting Hamiltonian, i.e. the energy levels have finite width (~ 1 / T P ) . In order to 

have distinguished energy levels, the width should be smaller than the energies, or 

The key point here is that the scattering of these quasiparticles occurs at a vanishingly 

small rate as the quasiparticles get close to the Fermi surface. The reason behind this lies 

in the Pauli exclusion principle which restricts the phase space available for quasiparticles 

to scatter to. At T = 0 this phase space is proportional to (p — pF)2 where p is the 

momentum of the scattered particle [58]. The scattering therefore, is very small when 

p « pF. At higher temperatures, the scattering rate increases like T 2 . As a result, the 

quasiparticle picture is meaningful only at low temperatures and for quasiparticles with 

momenta close to the Fermi surface. Thus Landau's picture, with N quasiparticles filling 

up the states up to the Fermi surface, should be considered only as a formal assumption. 

(2.5) 
v 
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Still this picture is useful especially in the context of Luttinger's theorem that allows to 

state that for a spherical Fermi surface, the value of Kp is the same in the interacting 

and non-interacting system. 

Let us apply a weak perturbation to the system to take it away from its ground state. 

The effect of this perturbation is to change the occupation number by 8np. Landau 

postulated that the change in the energy of the system is given by the expansion 

6E = Y, + - L £ fpp,5n°6n}, (2.6) 

where is the quasiparticle energy and V is the volume of the system. In general, one 

can expand to higher powers of 5np. However, expansion to the second order is enough 

for most practical purposes. The quasiparticle energy affected by other quasiparticles is 

given by 

*=£>=4+TrY,f*>ty (2-7) 
p p 

Landau's /-function is therefore the second derivative of the energy with respect to 5np 

and <5np-, 

^^MSnJ, ( 2 - 8 ) 

p p 

Since there is a one to one correspondence between quasiparticle states and non-interacting 

electron states, the quasiparticles should obey Fermi statistics (a more rigorous proof in

volves maximization of the entropy. [57]) 

NP =

 e/J(e?-/0 + i ( 2- 9) 

where / i is the chemical potential; which can be shown to be equal to the Fermi energy 

EF at T=0 [59]. For a SU(2) symmetric system, one can write (putting back spin indices 

again) 
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These functions are usually expressed in terms of spherical harmonics 

A = ( ^ ) / « f i ( « » ) f e . ] I W N P 

/; and 4>i are known as Landau parameters. In terms of these parameters, the quasipar-

ticle's effective mass is given by (for all derivations and proofs see Ref. [60]) 

- = A + ft/i (2-12) m m* 37r 

Observable quantities are usually given in terms of dimensionless Landau parameters 

Fi = N(0)fi and Zi = TV (0)0/, with the density of states at the Fermi surface 

^(0) = ^ E ^ - / ^ ) = ^ (2-13) 

In terms of F;'s and Z/ 's , we have [60] 

Effective Mass : — = (1 + F L 

Specific Heat : cy = \m*pFk2

BT 

m V 3 
1 

3 
1 Tip2 

Compressibility : - = — ^ ( 1 4- FQ) 
K 3m* 

v2 

Sound Velocity : c? = — ^ — ( 1 + F 0 ) 
3mm* 

y2p m* 
Magnetic Susceptibility : \ M — F 4TT2(1 + Z 0 ) 

where n = N/V is the density of electrons and 7 = eh/mc is the electron's gyromagnetic 

ratio. 

2.2 Microscop ic Foundat ion of Fermi L i q u i d Theory 

As emphasized in the previous section, the basic ingredient of Landau's Fermi liquid 

theory is the function f v p i ; which describes the interaction of low energy quasiparticles. 
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The simple form of the interaction term in (2.6), essential in Fermi liquid calculations, 

is far from obvious. Renormalization group theory [44] provides a plausible derivation 

for a low energy effective Hamiltonian in agreement with Fermi liquid theory. As we will 

see later however, renormalization group might miss some essential singularities in the 

quasiparticle interaction by putting all the momenta on the Fermi surface. Moreover, 

although renormalization group is a conserving approximation [61, 62], it does not satisfy 

the Pauli principle [63, 64, 65]. Another way, is to find a relation between fppi and the 

dressed two-particle interaction or 4-point vertex function in many-particle theory. What 

we do in this section is to first derive fppi for a low density electron gas by variation of 

the ground state energy using second order perturbation theory. We then discuss the 

connection between many-particle theory and Fermi liquid theory. In particular, we find 

a relation between Landau's /-function and 4-point vertex function in many-particle 

theory. 

2.2.1 Calculation of fpp' for a Dilute Fermi Gas 

In a dilute Fermi gas, one can calculate / p p / using Abrikosov-Khalatnikov's formalism 

[45] (for more detailed derivation, see also Ref. [66], or Ref. [43, 67] for derivation in 

2-d). In the dilute limit one can assume short range interaction between electrons. The 

interaction Hamiltonian therefore can be approximated by 

where U is the coupling constant and V is the volume of the system. We do our expansion 

in powers of the s-wave scattering amplitude, a, which is given to the first order in U by 

cp>lcpt (2.14) 

U = (2.15) 
m 
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Applying perturbation theory to Hint, the first order correction to the ground state energy 

is given by 

Here the index (1) represents both momentum and spin, is the occupation number 

and Qij requires spins to be antiparallel 

Qii = ^ ( l - d W i ) (2.17). 

where CT'S are the Pauli matrices. To second order in perturbation theory we have 

„(2) _ V - l(#int)mo|2 _ ^ V - r Tl^jl - W 3)(l - n 4 )Qi 2 Q 3 4 (t) - v 

Eq. (2.18) is divergent at large momenta. To get away from this divergence we have to 

expand everything in terms of a instead of U. First notice that (2.15) is not exact. To 

second order in U, (2.15) can be written as 

4 ™ T-T TT , U2
 „ r Q, 

m = U = U+yE *Pi+P2,P3+P4 e + " 3 4

e e (2-19) V 1,2,3,4 4 ei + e2 — e3 — e4 

Here, U is the renormalized coupling. Inverting (2.19), U can be written in terms of a 

4 ™ ( 4 7 r a ) 2 ^ Q 3 4 r g 9 m 

" W ^ ^ ^ . - e i - e , ( 2 - 2 0 ) 

substituting this into (2.16), we get a term second order in a which should be combined 

with (2.18) to get the second order correction to the ground state energy. Combining all, 

after some manipulations, we get 

( 2 ) _ 327r2a2 ^ nin2n3QL2Q34 ( 2 ^ 
m 2 y 2 i , w P l + P 2 ' P 3 + P 4 e i + e 2 - e 3 - e 4

 l ' ' 

This now converges at large momenta, since all momenta are limited because of the raj's. 

Taking the derivatives with respect to npa and n p v , we get 

fac> _ f ™ r ( 4 7 r a ) 2
 v 2^ ,_^ 

• V " m ^ m2V \ U % + V - es -

+ — — — J — + * _ f ] ; (2.22) 
eP V Ck+p-p' ep' eP~i~€k €k+p'-p 
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The first term in the bracket is the "Cooper" channel and the last two terms belong to 

the "crossed" channels. The denominators of the last two terms vanish when p = p'. The 

singularities however get canceled between the two terms except for special cases (we will 

return to this point later). 

2.2.2 F e r m i L i q u i d Theory and M a n y - P a r t i c l e Theory 

In many-particle theory [58, 60, 66, 68], the excitations of the system above its ground 

state are given by the poles of the single particle Green's function G(uj,k) [58]. In 

the absence of any phase transition, G(oo, k) has a form very similar to non-interacting 

Green's function. One can write [58] 

G(u, k) = — r r + $(w, k) (2.23) 

u - ek 4- %rk 

where Zk and rk are quasiparticle residue and quasiparticle lifetime respectively. The first 

term in the right hand side of (2.23) is similar to the non-interacting electron Green's 

function 

G<°>M) = (2-24) 

where 8k = S sgn(efe - p) with 0 < <5 •< 1. The second term, $(u,k), represents the 

incoherent part of the Green's function. For most calculations, the first term in (2.23) is 

sufficient to give correct physical behavior up to the desired accuracy. This explains why 

Fermi liquid theory, which is very similar to non-interacting electron theory, works so 

well for complex systems like metals. In any calculation however, one has to make sure 

that the incoherent part of the Green's function does not make significant contribution. 

In terms of quasiparticle self-energy T,%(u), Zk and rk are give by [68] 

TK~L = -Zk ImEfc-(efc) (2.25) 

du 
d 

Zk=[l- —Re^k(uj) (2.26) 
u=ek 
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We can see from (2.24) that the quasiparticle lifetime in non-interacting systems is infinite 

(Tfc —> oo). In interacting systems however, rk is finite. In fact, one can show that [58] for 

a 3-d Fermi liquid rk
x oc (ê  ~ A*)2, and therefore the lifetime diverges as the particle gets 

close the Fermi surface. The closer to the Fermi surface, the more stable the quasiparticle 

state is. For states with momenta far away from the Fermi surface, the quasiparticle 

concept is not meaningful as emphasized before. 

For small u, the self energy behaves like 

ImZPF (u) ~ OJ2 and R e £ P F ( o ; ) ~ u ; (2.27) 

Substituting into (2.26) we find Z (= Z^=PF)) a nonzero positive constant (always < 1). 

Z measures the amount of the spectral weight accumulated in the quasiparticle peak 

[68]. It has other meanings as well. It can be shown [69, 59] that the occupation number 

rik is always discontinuous at the Fermi surface with a jump exactly equal to Z. Thus 

the Fermi surface concept survives even after turning on the interaction. The existence 

of the Fermi surface, in fact, is equivalent to the validity of Fermi liquid theory. When 

Z = 0, as it is in 1-d Luttinger liquids, the occupation number doesn't have a jump at pF. 

Consequently, there is no well defined Fermi surface; although higher order derivatives 

of n/t still are singular right at the position of the Fermi surface. Fermi liquid theory 

therefore breaks down in such cases. 

The dressed interaction between two quasiparticles is given by 4-point vertex function 

T^(Pi, P 2 ; P 3 , Pi) which is related to the 2-particle Green's function G ( 2 ) by 

G<2>(Pi, P 2 ; P 3 , PA) = (2n)8G(Pl)G(P2) [6(Pi - P3)5(P2 - P 4 ) - 5(P1 - P 4 )5(P 2 - P 3)] 

+ i(27r)4

c7(P1 + P 2 - P 3 - P 4 ) ^ (2.28) 

with P = (v,p). Since in Fermi liquid theory, interaction between two quasiparticles is 

described by fppi, it is natural to expect connection between /pp< and T ^ . To see the 
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connection, let us define T(P, P'; K) by 

T(P, P'; K) = r<2> (P, P'; P + X , P ' - K) (2.29) 

where i f = (u,k). It has been shown that the following integral equation holds under 

certain assumptions [60] 

Z2r? r h -k 
T(P,P';K) = r^)(p,p') + — % / dnrM(p,Q)—±—^F(Q,P'-K) (2.30) 

(27r)d J co- q- k 

where Z is the quasiparticle residue, Q = (^,PFq), with /z being the chemical potential, 

and the function is defined by 

The order of the limits plays important role here (we will see this shortly). The integration 

in (2.30) is over all directions of q. The function is closely related to the Landau's 

/-function [66]. More precisely, at low energies putting all the momenta on the Fermi 

surface we have 

fa = Z2T^\p,p') . (2.32) 

The notation means that P = (p,pFp) and P' = (p,pFp'). fpp' does not have direct 

physical meaning by itself [66]. However, one can change the order of limits in (2.31) to 

define 

r(*)( P ) p/) = l i m l i m p ( P j P ' ) K } (2.33) 

Z2T^ is actually the physical forward scattering interaction between two quasiparticles 

[66]. Taking the limit k —>• 0 and co/k —> 0 in (2.30), one can find the relation between 

Z2TW and fpp/ 

Z2rW (p, #) = fpp, --^fdSl f„ Z2F^ p>) (2.34) 
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The quantity Z2T^ is usually called scattering amplitude or T-matrix [56, 43]. More 

precisely the T-matrix tppi (q, ui) is defined by 

tppl(q, u) = ZPZP>T(P, P'; Q) (2.35) 

A modified version of (2.30) gives tpp'(q,uj) in terms of fppi [56] 

—* —* 

v (£ w) = fw' + 2 — 4 0 ) v ( 9 . • (2-3 6) 
- q • vk — UJ -j- %o 

This equation is usually known as Bethe-Salpeter equation. One can again write 

t°< = tU + 4a • a't% (2.37) PP pp pp v ' 

In the limit q —> 0, uj/q —> 0, and for p and p' on the Fermi surface, Eq. (2.36) gives 

Fi ts — 
1 + Ft/(21 4-1) 

Z 

t t = l + Zt/(2l + 1) ( 2 " 3 8 ) 

where and are spherical harmonics. 

2.3 Fermi Liquid Theory in 2-d 

In the last section, we introduced Landau's Fermi liquid theory as a powerful tool to 

describe fermionic systems in 3-d. It is well known, on the other hand, that 1-d electron 

systems are not Fermi liquids but Luttinger liquids [70]. The question for 2-d systems 

is more subtle and has been a subject of controversy for almost a decade. Anderson in 

1990 [37, 38] suggested that 2-d interacting electron systems are also Luttinger liquids 

and not Fermi liquids. He conjectured that Landau's quasiparticle interaction function 

would become singular in 2-d. The singularity he suggested had the form 

A ^ - T ^ (2-39) 
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P P P P 

P' P P' 

Figure 2.3: Crossed channel diagrams contributing in Ipp>. 

This singular interaction will result in vanishing quasiparticle residue and break down of 

Fermi liquid theory [43]. One immediately notices that the numerator of (2.39) vanishes 

(as p —>• p') when both particles are located on the Fermi surface. Thus the singularity 

can be detected only when the particles are away from the Fermi surface. Methods such 

as Renormalization Group, which put their initial momenta on the Fermi surface, are 

unable to detect this singularity. Since Anderson, there have been several attempts to 

prove or disprove Fermi liquid theory in 2-d [43, 41, 71, 42, 72]; all of them in agreement 

with Fermi liquid theory (at least for systems with isotropic Fermi surface). On the other 

hand, it is well known that Van Hove singularities [73] or nested Fermi surfaces [74, 44] 

do not preserve Fermi liquid theory. Therefore the geometry of the Fermi surface plays 

an important role in the Fermi liquid behavior of the system. In this section, we shall 

study the effect of local geometry of the Fermi surface on the interaction function fppi. 

We especially find a singularity at points where the Fermi surface has zero curvature. 

This singularity is shown, in the next section, to change the Fermi liquid behavior of the 

quasiparticles near the inflection points. 
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2.3.1 Calculation of fpp' for a Curved Fermi Surface 

Let us start with a 2-d Hubbard Hamiltonian 

H = E  e A * c f r + ^ E 4+Q-t cp-gi cp'i cPt ( 2- 4°) 
P' a <f,p,p' 

where €p~ defines the "bare" band structure and Q, is the area of the sample. We wish 

to find fpp,' up to second order in small coupling U, or more precisely, the renormalized 

coupling U, the same way as we did in Sec. (2.2.1). Note that by small coupling we mean 

U/t <C 1 (this is not necessarily a low-density limit, but it is a weak-interaction limit). 

Following the method we described in Sec. (2.2.1), we find 

f a
Pp' = (h29PP>/m)5a>-a, - (h2gppl/m)2(Ippl + C$) (2.41) 

where the dimensionless coupling gpp> is given by [45, 43] 

mil m 
9PP> = ~ff=tf 

U2 

2 q  6P +  EP> 6

P'+q 
(2.42) 

we also identify the "Cooper" channel and "crossed" channel by (cf. Fig. 2.3) 

- \tp-!-tp, tk t~+pl_kJ 

Ipp, = E f , Z _f (2-44) 
k W V k efe+Q / 

The Cooper term, , is singular when p — (p+p')/2 —> 0, but regular near Q = p—p1 = 

0 (as is gpp>). We thus drop C ^ ' and approximate gpp> « g0. Ippi, on the other hand, may 

become singular when Q —> 0. This can be seen by the fact that the denominators in 

(2.44) vanish at Q = 0. We therefore have to examine Ippi more carefully. Let us define 
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- A A 

- A 2 ^ 

- A 

k, 
_L 

A 

- A 3 

Figure 2.4: The two situations considered in the text. In (a) we assume the Fermi surface has 
finite curvature at k = ko; in (b) the curvature is zero when k = ko (inflection point). Hatched 
lines show the integration regions discussed in the text. 

Expanding the denominators to second order in Q, we have 

IPP' 
r d2k (_ nr. nk 

-vk)-Q-\Q-Mf-Q (vp -vk)-Q + \Q • Ml1 • Qj 

(27T) [(vP - vn) • QY Al 
k,Q 

oc h(Q) 

where 

The "gap" A ^ is defined by 

Ak,Q 

d2k-. 
[(vp - vk) • Q]2 - A f Q 

2\Q\ 

(2.46) 

(2.47) 

(2.48) 

and Q = Q/\Q\. For a quadratic dispersion relation = k2/2m, M^1 (— l/m) is 
—* —* 

independent of k. In more general cases however, it has ^-dependence but this does not 

affect our calculation (we will consider the ^-dependence of M^1 when appropriate later). 

Thus for the moment, we can safely neglect the ^-dependence and write A ^ = A ^ . 

Our goal is now to understand the behavior of Ip-(Q) as Q —>• 0. Infrared singularity 

occurs when (vp — Vk) • Q = 0. This condition is-usually satisfied on a line in /c-space 
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inside the Fermi surface (corresponding to a straight line in v-space). Let's confine our 

integration to a region within a cutoff A around this line, where \Q\ <C A <C pF, and pF 

is the Fermi momentum. The integration inside the Fermi surface then has the form 

r 
J-A 

du 1 , J A - A 3 I 1 2 A Q N 2 
_ ^ l n ( ^ _ ^1) „ = (2.49) 

A U 2 - A | A Q

 K \ A + A $ \ J AQ A A v ; 

Thus the integration inside the Fermi surface contains no singularity as AQ —> 0. Singu-

larity, if any, should therefore come from the integration near the Fermi surface. Let k0 

be a point on the Fermi surface, satisfying (vp — Vk0) • Q = 0. We first consider points 

where Fermi surface has finite curvature (Fig. 2.4 (a)). Writing k = ko + k±e± + k\\e\\, 

where ey (e±) are unit vectors parallel (perpendicular) to the Fermi surface at ko, we 

then define by the expansion 

e£ = EF +vkok± + ak2

± + bk2 + ck±kl{ (2.50) 

—* 

Near ko therefore, vk can be written as 

Vk = vkoe± + 7j|fc|| + ;y±k± . (2.51) 

where 

71 = 2ae± + ci\\ , 7 | | = cej. + 2be\\. (2.52) 

Fermi surface also is defined by 

Vk0k± + ak\ + bk2 + ck±k\\ = 0 (2.53) 
—# 

Since the Fermi surface has finite curvature at ko, j\\ and b are non-zero. Rescaling the 

integral in (2.46) so that vko = b = 1, we have a Fermi surface near A;0 obeying A:2 pa.—k± 
—* —* 

(cf. (2.53)). It is not difficult to see that singularities in Ipp>, for p,p' close to ko, arise 

only when 
7|| -Q^O (2.54) 
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In that case: 

/
o rV—kZ dkw 7T 

-W - ^ i ^ ik~ ioF ( 2'5 5 ) 

To get (2.55) we have made use of the following integral 

y/u 1 , 1 , \y/u-VA\ Fu 
d - ^ = ^ G > ^ 7 ^ + « a n - \ x ) . (2-56) 

u 

This singularity is just that found already for a circular Fermi surface [42, 43]. It only 
—* 

occurs if p and p' approach each other along the direction orthogonal to 7||. For a circular 

Fermi surface, this direction is orthogonal to the Fermi surface. For non-circular Fermi 

surfaces (with no inflection point) on the other hand, 7|| • Q = 0 for directions which 

are not necessarily normal to the Fermi surface; but the singularity is still along lines. 

This case was also studied away from the Fermi surface by Fukuyama and Ogata [72]. 

A closer look at the singular region in fc-space for the case of a circular Fermi surface 

shows that it is bounded by circular arcs of opposite curvature which touch at the Fermi 

surface [43]. 

This singularity does not change the Fermi liquid behavior [43]. A simple way to see 

this, is to look at the quasiparticle energy 

^=4+Hfpp , S np (2-57) 
f 

Singularity in fpp> is summed over in this equation. In our case here, the \Q\1^2 singularity 

is always along a line. Integration over this term removes the singularity and gives Fermi 

liquid behavior as one approaches the Fermi surface [42, 43]. 

2.3.2 Calculation of fpp' near an Inflection Point 

At points where the Fermi surface has zero curvature, -fy —¥ 0 and consequently, condition 

(2.54) is always satisfied. It is therefore natural to expect a singularity in any direction 
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of Q; which may now cause break down of Fermi liquid theory. We wish to study this 

singularity near an inflection point. We must therefore extend (2.53) to higher order, 

and also include the /c-dependence of Ai^1 (which now vanishes in certain directions). 

Expanding about an inflection point at k = ko, we write 

e£ = vkok± + ak]_ + gk\ 

(cf. Fig.l(b)). Substituting directly into (2.44) we get 

<-9kfi/vko I dk± 

(2.58) 

Ip(Q) qQw J-A. J-, 
+ [Q -> -Q) (2.59) 

3gQ{lJ-A ""J-gA*/vkQ \ct.k± + kfl+Qfy+T(K,Q)i 

We have defined K = p — k0 (i.e., the center of mass momentum relative to k0), cQ = 

2aQ±/3gQ\\ and 

T(K,Q) = 4-^- + CQ(K± + ^) (2.60) 

Integration over K±_ is straightforward. One finds 

dk\\ In 
fcjj + Qfy - (cQg/vko)kf{ + T(K, Q) 

k2 + Qfy-(cQg/vko)A* + T(K,Q) 
+ (Q -> -Q) (2.61) 

The fty term in the numerator is small compared to the other terms unless if Q\\ —> 0 (or 

cQ —> co). We therefore neglect this term except when Q\\ <C Qx (we will come back to 

this case later). To calculate the above integrals we should use 

J du In\u2 + (3u + 7| = [u + (3/2) In\u2 + (3u + 7| - 2u 

+ d{W) tan 9(-W)-\n. . , 
2 \u + p/2-J\¥\) 

(2.62) 

where W = 7 — f32/4. However , it turns out that all the terms in the above integral are 

regular as Q —»• 0 except for the " tan - 1 " term. Keeping only the singular terms we find 

W)~°(w^)l^f ^ f A + J £ 2 ^ + t a n _ j A ^ 2 
+ (Q -> -Q) 

(2.63) 
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I: f , o c ^ 

Figure 2.5: Three different regions in fc-space around the inflection points with different singular 
behavior. We have put p = k0 therefore the regions shown are actually the regions where p' can 
be. Between I and II, there is a crossover whereas between II and III there is a sharp edge. 

where 

WRA = T(K, Q) + ^ = -K\ - CQ(K± + QJ2) (2.64) 

In the limit where K, Q <C A we approximately get 

ip(Q) = J^-l\w+\1?2e(w+) - \w-\^9(w-)} +.. (2.65) 

where (...) represents non-singular terms and W± = W-±Q. 

This behavior of Ipp> is rather complicated. We can get some feeling for it if we first 

take the case where p = k0, i.e., where one quasiparticle is at the inflection point (see 

Fig. 2.5). Then for most regions in fc-space, (2.65) gives 

0(4cQi - Q j j M Q i i ) 
h0,ko+Q 

(2.66) 
I Q | | I 1 / 2 

This is the same inverse square root as found for the circular Fermi surface (cf. (2.55)), 

but now extending over large "butterfly wing" regions in ft-space.) Fig. 2.5 shows 

different regions in fc-space with different singular behavior. The singularity in the left 

wing of the butterfly region comes from switching p and p1, i.e. putting;?' at the inflection 

point. 
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When Q\\ —> 0, the above approximation does not hold anymore. In that case (2.59) 

becomes 

r(vk0A/g)^3  

1 rK /•(«*<, A / j 

Ip(Q) = 7TFT dk± 
2aQ± J-A J-(vkQk± 

dk\\ 

= C ( ^ V 3 [(K± + QJ2)^ - (K± - QJ2)^} + ... (2.67) 

where C ~ f™oo dz/(z3 — 1) = — ir/y/3. If we again put p — hQ, we get 

Ip(Q)~QlV3 (Q\\<Q±) (2-68) 

The singularity here is stronger than what we found before (~ O^ 1 ^ 2 ) . There is a crossover 

between these two different behaviors (cf. Fig. 2.5). 

It is very important to note also the non-singular region (region III in Fig. 2.5) which 

lies close to the Fermi surface as Q approaches the origin. There is no singularity in the 

interaction between 2 quasiparticles if they are both on the Fermi surface. Thus any cal

culation (perturbative or renormalization group) of the scattering between quasiparticles 

confined to the Fermi surface will miss all the singular behavior in (2.66). 

In the more general case where neither particle is at A;0, the behavior of Ipp> is not so 

easily displayed. As the quasiparticles approach each other one finds the simple behavior 

6{ — K\\ — CnK±) 

W^pT^-tp { Q < K ) (2'69) 

2.4 Calculation of Self Energy 

Fermi or non-Fermi liquid nature of the system can be checked by calculating the self 

energy T,p(uj). We already have seen how the quasiparticle lifetime and quasiparticle 

residue are related to the real and imaginery parts of the self energy (cf. (2.25) and 

(2.26)). The imaginary part of is specially important because it can be calculated 
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easily using the Fermi golden rule. We saw that in a 3-d Fermi liquid, at low energies, 

we have 

ImEp F (LO) ~ LO 2 (2.70) 

In this section we first see how this relation is different for a 2-d Fermi liquid with non-

singular interaction. We then find the effect of our singularities on ImE P f , (LO) and show 

the deviation from Fermi liquid behavior. 

2.4.1 Non-Singular Interaction 

Let us first consider the non-singular case. Landau's /-function is therefore regular and 

given by the cylindrical harmonics // the same way as before. For the present calculation, 

it is enough to consider the isotropic harmonic and write 

UP' = fo (2-71) 

Having Landau's /-function, we can calculate the quasiparticle T-matrix using the Bethe-

Salpeter equation (2.36). In the isotropic channel, which we consider here, the T-matrix 

is simply given by [56] 

V ( ^ ) = 4 W = 1 + / ^ f a > ) (2.72) 

where x0^00)  1 S the 2-dimensional Lindhard function [43] 

X ° ( ? » = iV(0) (2.73) 

r) = Lo/qvF and density of states at the Fermi surface iV(0) = pF/2nvF. A l l the physical 

quantities can then be found from the T-matrix. What we wish to do here however, is to 

calculate the quasiparticle self energy and compare it with the 3-d case discussed before 

(calculation we present here is based on Ref. [43]). 
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It is always easier to calculate the imaginary part of the self energy which is equivalent 

to the scattering rate and is given by Fermi golden rule [56] 

I m E p M = T T £ | V ( 9 > ) | V - , ( 1 - 4_f)(l - n°^)5(u + ep - ep^-ep+?) (2.74) 

We calculate the energy on shell (i.e. co = ep). Assuming q <C p F we have 

£p-_? =ep- vFqp = co - vFqp (2.75) 

where p = p • q. The 5-function in (2.74) can be written as 

/

oo 
du5{u -co + ep^)S(u - ep - ep-,+-)) 

- O O 

/

oo 
dv8(v — qvFp)5(v — qvFp!) (2.76) 

-oo 

with p! = p' • q = cos 9'. On the other hand (at T = 0) 

(1 - n°p+9) = 9(pF- p')9(p' + qp! - pF) (2.77) 

Eq. (2.77) requires p' < pF and p' > 0. Therefore 

vl& P
 P  9 J-«/2 2n JPF-W> 2TT (27r) 2y-./2 P 

Substituting all back into (2.74) we find 

I m £ » = ir£-T,f 1^0 J * (g . ^ 2 0 ( w - < ^ ) % ^ " " W " " (2-79) 

One can write 

Because of the ^-function, the ^-integral will require p = v/qvF =rj. As a result 

ImE p ( W ) = / / z , ^ ^ % 0 ( a , _ u)0(qvF - (2.81) 
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In the isotropic case, t(q,u) is only a function of rj (cf. (2.72)). For rj < 1, which is 

actually the case here, we have 

< ( 7 ? ) = 1 + / 0(1 - iJ/Vl - ^)/V(0) = N(0) 1 + iAov/Vl ~ V2 ^ 

where A0 = F0/(l + F0) with F0 = iV(0)/o dimensionless Landau parameter. In this case 

(2.81) becomes 

./0 J W w c 7? 1 — 77^ (27rwF)3 7o y^/wc rj 1 - n2  

where LOc — AvF is the energy cutoff. Substituting t(rj) from (2.82) we get 

ImEpfw) = AT ^ - * ^ , « A" y 1 ^ (2.84) 
p Jo Ji>/uc r) 1 + (A0 - l)rj2 Jo Jv/uc n 

where K . = ^0/2^1;^^. In the last step we have dropped the ry2 term in the denominator. 

We therefore simply get 

'lmZJw)~ ("dvv\n\ — | ~ u ; 2 ( l + 21n| — |) (2.85) 
Jo V UJ 

The leading u> dependence is therefore 

ImEp(w) ~ w 2 lnw (2.86) 

Although this is different from the 3-d case (2.70), it does not change Fermi liquid 

behavior [43]. Now let us see how our singular interaction will change this result. 

2.4.2 Singular Interaction 

We now calculate the self energy for the singular interaction we found near inflection 

points. As in some previous studies of various kinds of singular interaction [43, 42, 40, 
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x(q) 

Figure 2.6: Self energy to second order in XPtP-q. 

75, 76], it is convenient to begin with that part of T,p(u) which is 2nd-order in the singular 

interaction. Let us write 

fpp' = fpp^T + KP' (2.87) 

where fpp^T is the non-singular part of fpp> and Xpp> is the singular part. We calculate 

£p-(u;) to second order in Xpp>, but to all orders in fpp^T. Since we are not particularly 

interested in the angular dependence of the regular Fermi liquid contribution, we will 

simply let fpp^T —>• / 0 , a constant as before. We do our calculation for p — k0, i.e. at 

the inflection point. The singular term Xpp> therefore is given by (2.66) and (2.68). Since 

(2.68) is only valid in a region very close to the normal axis, we take Xpp> everywere to 

be 

V ~7S (2'88) 

We again use (2.74) as our starting point (note that (2.74) is valid for cu > 0, as can 

be immidiately seen by the form of the occupation numbers. A full version is given in 

Ref. [56]). In order to calculate to 2nd order in Xpp>, \tpp>\2 in (2.74) should be replaced 

by [43] 

.. ^ ( ^ ) | 2 ^ 1 1 + A>)|2

 (2'89) 
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where X°{QIU) i s the generalization of (2.73) for a non-circular Fermi surface. This is 

equivalent to calculating the diagram presented in Fig. 2.6 [43], where x(<f, u) is the usual 

fluctuation propagator 

Since we are going to calculate everything near the inflection point, we can assume that 

X°(q,u) behaves regularly at the inflection point and treat it as a constant. At T = 0 we 

have 

I m £ f c » ~ £ ±e(-ep)9(ep^e(ep,+,)5(u + ep, - e ^ - - ep,+-) (2.91) 

—* 

We expand near the inflection point k0 by 

efc = «*o«J- + P « i ( 2 - 9 2 ) 

—* —# 

where K = k — ho- From now on, for simplisity, we take Vk0 ~ g — l.Thus 

9 = -Q± - Ql 

tp-q = -QL — Q\\ 

epi+q- = q±-Q±. + (q\\-Q\\)3 (2.93) 

The self energy now becomes 

ImS f c 0 (w) ~ / ^ / DQ\\ fQ3

 dQ± /7" ~ Q ± " Q 5 + q ± + * 

x 5 ( a ; - 3 Q f ^ + 3Q|| 9 |

2) (2.94) 

Performing the q± integral, we get 

I m E f e » ~ / ^ fdq\\ fk dQ±(u - Q± - Qp(uj - Q± - Qjj) 
y 7 ./-Qj} 

x % - 3 Q 2 ^ | | + 3 Q | | 9 |

2 ) (2,95) 
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Integrating over Q± is also trivial 

I m £ f e » ~ | * dq\\6(u - 3Qj 9 | | + 3Qlig

2) (2.96) 

We now change the variables to Q\\ —>• a; 1/ 3^ and q\\ —» ui^y. Integration limits also 

change to i A / u ; 1 / 3 . For small a; (<§C A 3 , or more precisely <C #A3), the integration limits 

can be replaced by ±oo. However, one has to make sure that the integral does not diverge 

as the limits go to infinity. We finally get 

roo WT- roo 
Im£* 0(u;) - w 4 / 3 / — / dy5(l - 3x2y + 3xy2) (2.97) 

J—oo X J—oo 

The integral is regular at integration limits and also at x = 0. Therefore we can confi

dently write 

I m S J t o ( o ; ) ~ w 4 / 3 (2.98) 

This is clearly different from the Fermi liquid form (2.70) or the 2-d version of it (2.86). 

This is also different from the result obtianed by Fukuyama and Ogata [72] which they 

find the power to be (5/3) instead of (4/3) for inflection points. The reason for this 

descripency is that they miss the singular interaction in their calculation. Notice that if 

we drop the l/Q\\ factor (which comes from the singular interaction) in the integrand of 

(2.96), we get ImE ~ w 5 / 3 in agreement with Ref. [72]. 

We can repeat this calculation for a curved Fermi surface using 

ek = K± + /cjj (2.99) 

instead of (2.92). Eq. (2.96) then becomes 

/

A rA 
dQ\\ / dq\\5(u + 2Q\\q\\ - 2q\) 

A | Q | | | 

uj2\nuo (2.100) 
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which agrees with (2.86). Although (2.98) is different from (2.100), the difference is 

not enough to break down Fermi liquid theory (in the sense that Z ^ 0 and Fermi 

surface exists) [72]. On the other hand, higher order calculations can change this result 

significantly. For example simple estimate indicates that the 4th order calculation gives 

marginal Fermi liquid behavior ImS ~ to. Systematic higher order calculation therefore 

is necessary to acheive the final conclusion [77]. 

2.5 Summary 

Our calculation of /pp< for a 2-d electron system reveals a 1-d singularity near curved 

points of the Fermi surface as p —> p 1. This is in agreement with previous results and is 

shown to preserve Fermi liquid behavior [43]. Near inflection points of the Fermi surface, 

on the other hand, we find a 2-d singularity again with \p — p ' | - 1 / 2 behavior. To second 

order in the singular term, the imaginary part of the self energy shows an a>4/3-dependence 

in disagreement with the ordinary Fermi liquid result (i.e. ui2\nu>). This however does 

not invalidate Fermi liquid theory [72]. Inclusion of Higher order diagrams is necessary 

for any rigorous conclusion. 

We should point out that our result is different from Ref. [72] in a sense that they 

do not incorporate singular interaction at the inflection points in their calculation of 

the self energy. They report a;5'/3-dependence for the imaginary self energy near an 

inflection point, different from what we find (a;4/3). Ref. [78] has also investigated 

the effect of the inflection points. They however consider the scattering between two 

quasiparticles located on two inflection points opposite to each other with respect to the 

center of the Brillouin zone. This is clearly different from our calculation. Employing 

renormalization group technique they find that inflection points would increase the lower 

critical dimension for instability from Fermi liquid fixed point from d = l to d=3/2. Thus 
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2-d systems will still be stable under such an effect. 



Chapter 3 

Nearly Antiferromagnetic Fermi Liquid Theory 

At zero doping, all cuprates are Mott insulators with antiferromagnetically ordered spins. 

On the other hand, the physical behavior of overdoped samples is well described by Fermi 

liquid theory. However, the most interesting region in the phase space of high T c 's is 

none of the above phases, but the intermediate doping regime. One can think about 

the intermediate doping as a continuation of the metallic phase or the extension of the 

insulating phase. Depending on which way to choose, one may end up with two different 

schools of thought based on Fermi liquid or non-Fermi liquid theories. At this time not 

only no consensus about the older theories of high Tc has been achieved, but also different 

new theories such as, SO(5) theory [79], theory of stripes [80], and more recently theory 

of nodal liquids [81], etc. have emerged. In this chapter we shall focus on one of the older 

theories which is based on the Fermi liquid assumption, and because of its simplicity in 

calculations, has attracted considerable attention especially among experimentalists. 

Nearly antiferromagnetic Fermi liquid theory (NAFL) is a phenomenological theory 

motivated by nearly ferromagnetic spin fluctuation theory or paramagnon theory, pro

posed in 1960's to describe metals near their ferromagnetic instability as well as liquid 
3 He. Both theories are based on the assumption that the excitations of the electronic 

system are Fermi liquid quasiparticles, interacting among each other via the damped 

spin waves. Besides the similarities, there are fundamental differences between these two 

theories which have made N A F L not as widely accepted as paramagnon theory. In this 

chapter, after a brief review of paramagnon theory, we introduce N A F L emphasising on 

37 
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the similarities and differences between the two theories. 

3.1 Paramagnon Theory 

Fermi liquid theory is primarily constructed to describe properties of low energy electron-

hole excitations [68]. There also exist other excitations in a Fermi liquid, which are in

herently different from electron-hole excitations (although they can be views as collective 

resonances of them [68]), such as density oscillations and damped spin waves. These 

excitations are usually known as plasmons and paramagnons respectively. On the other 

hand, although thermodynamic and static measurements such as specific heat and spin 

susceptibility can be expressed in terms of the Fermi liquid parameters, the information 

contained in Landau parameters is not enough to describe some other measurements, 

e.g. transport properties and superconductivity (or superfluidity in 3 He). In particular, 

the interaction between the quasiparticles plays important role for these properties. We 

saw in the last chapter that the effective interaction between quasiparticles can be ob

tained from the Landau interaction function via Bethe-Salpeter equation (2.36). This 

is however, not always the easiest route to take. The other way is to assume a model 

Hamiltonian for interaction between quasiparticles and apply field theory techniques to 

calculate the physical properties. The reliability of these calculations should then be 

judged by experiments. One of the theories that follow this path is paramagnon theory 

which we describe briefly here. 

Magnetic susceptibility of a Fermi liquid is given by [60] 

*» = 5 $ £ w (3'101) 

If the Landau parameter Z 0 —> —1, the denominator of (3.101) vanishes and therefore 

magnetic susceptibility diverges. The system in that case undergoes a phase transition 

to a ferromagnetically ordered state. When the denominator in (3.101) is not zero but 
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very small, the magnetic susceptibility is still large and the neighboring spins still have 

the tendency to align, although the long range order no longer exists. On the other hand, 

the interaction between the quasiparticles is given by the T-matrix which can be found 

by Bethe-Salpeter equation (2.36). In particular (2.38) gives 

tg = V ( l + Z0) (3.102) 

which also diverges as Z0 —> —1. Thus strong magnetic susceptibility results in strong 

interaction between quasiparticles; which tends to align the neighboring spins. The 

dynamic susceptibility of a Fermi liquid was suggested by Leggett [55] to be 

(~ \ X ( 0 ) ( g » ^ Q i n o \ 
x M = TTz^K^yW) ( 3 ' 1 0 3 ) 

where x ^ is the susceptibility of the non-interacting electron system (particle-hole bub

ble). In 3-d isotropic systems, x ^ is given by Lindhard function [68]. 

Eq. (3.103) was proposed by Leggett using deductive reasoning. An attempt to 

derive it was first made by paramagnon theory [82]. The theory assumes that the (effec

tive) interaction occurs only between quasiparticles with the opposite spins. The model 

Hamiltonian for this interaction was first proposed by Berk and Schrieffer [83] as 

Hint = ljd3r nt(r)ni(r) = L £ 4+^_^ (3.104) 
k,k',q 

where ct (c^) is an operator that creates (annihilates) a quasiparticle with momentum k 

and / > 0 is the coupling constant. Performing Eliashberg type calculations, Berk and 

Schrieffer showed that in nearly ferromagnetic metals, such as Pd, superconductivity is 

suppressed as a result of ferromagnetically enhenced coupling between the quasiparticles. 

This model was then adopted by Doniach and Engelsberg [82] and Rice [84] for liquid 

3 He. 
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Spin susceptibility can be calculated from (3.104) using Kubo formula [68] and R P A 

approximation [82] 

=i-iXl) (3-i05) 

Comparing (3.103) and (3.105) we find 
Z0 = -N(0)I (3.106) 

Thus the interaction / is closely related to Fermi liquid interaction function fppi. In low 

energy and momentum, one can expand (3.105) to get 

*(<f' U J ) = 1 - I + (1/12)?- i(,/A)Ioo/q ( 3 - 1 0 7 ) 

where I = IN(0) and q = q/pF. The susceptibility X(QIU) m (3.107) is peaked at q = 0, 

reflecting the proximity to ferromagnetism. Near the antiferromagnetic instability, one 

expects the susceptibility to be peaked near q = ( ± 7 r / a , ±7r/a, ± 7 r / a ) where a is the 

lattice spacing. 

x(q, to) can be viewed as the propagator of a bosonic field that mediates the interaction 

between the fermionic quasiparticles. The corresponding bosons are called paramagnons 

which are critically damped spin waves. Eq. (3.107) can be written as 

W) = 2° • , (3-108) • 1 + £ V - tUj/oJq 

where Xo — SN(0) is the enhanced static susceptibility, £ = ^JsI/12pF is the ferro

magnetic correlation length and toq = Aq/itlpp is an energy scale that characterizes the 

damping of the bosonic particles. Here, S = 1/(1 — /) is the Stoner enhancement factor 

which measures the proximity to the ferromagnetic instability. 

Although paramagnon theory gives the right form for the spin susceptibility, it has 

some internal inconsistencies [63]. For example if we calculate the density-density corre

lation, instead of (3.106) we get [68] 

F0 = N(0)I (3.109) 
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(3.106) and (3.109) can be satisfied simultaneously only if FQ = —Z0. This is obviously 

not always the case. For example for liquid 3 He [68], Fo = 10 but Z0 = —0.67. Thus 

paramagnon theory cannot be the right quantitative theory for the bare quasiparticles in 

liquid 3 He. Even without comparison with experiments the theory has internal inconsis

tencies. For example RPA approximation does not satisfy Pauli principle [64]. Another 

problem is the absence of Migdal's theorem in the electron-spin fluctuation interaction, 

first raised by Hertz et al. [85]. Vertex corrections was shown to be of the same order as 

the bare interaction. This invalidates the Migdals theorem and therefore any Eliashberg 

type calculation. We will study this point in the context of N A F L theory later. Besides 

quantitative inconsistency, paramagnon theory gives some qualitatively right results. We 

will not discuss the applications of paramagnon theory in this thesis. Instead, we proceed 

to the antiferromagnetic version of the theory which is relevant to high Tc superconduc

tivity. Interested reader should refer to Ref. [63] for more information about paramagnon 

theory. 

3.2 Antiferromagnetic Spin Fluctuations 

It is more or less well established that high Tc materials are effectively 2-dimensional 

electron systems close to the antiferromagnetic instability. As we showed in the last 

chapter, a two-dimensional electron system with a smoothly curved Fermi surface can be 

a Fermi liquid (at least in weak interaction regime). On the other hand, N M R experiments 

[14] and inelastic neutron scattering (INS) [86] indicate enhanced staggered susceptibility, 

even at optimal doping. One therefore might be tempted to generalize paramagnon theory 

to antiferromagnetic systems to describe high T c superconductors. It is well known that 

for a nested Fermi surface, the RPA susceptibility (3.105) diverges at the wave vector 

q = Q = (±7r/2a, ±7r/2a) resulting in spin density wave instability [44]. For a general 
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Fermi surface however, microscopic derivation of the spin susceptibility fails to succeed 

because the incoherent parts of the quasiparticle spectral function play important role 

in the calculation of the real part of the particle-hole bubble [87]. The low frequency 

part of the imaginary part of the particle-hole bubble, on the other hand, is given merely 

by the coherent parts and can be easily calculated. We will discuss this issue when we 

talk about vertex corrections later. Based on N M R and NIS results, a phenomenological 

susceptibility analogous to (3.108) was suggested by Millis, Monien and Pines [23] for 

high Tc systems 

x(M = ^ (3-110) 

where XQ ^ Xo is n o w the static staggered susceptibility, £ is the antiferromagnetic 

correlation length and u>sf specifies low frequency relaxation behavior. As in param

agnon theory, quasiparticles are again assumed to interact with each other via the spin 

fluctuations. The Hamiltonian that describes this interaction was written as [31] 

ft = £ + | E A/5 • ( 3 - M ) 

where g is spin-fermion coupling constant and 

—2t[cos(pxa) + cos^a)] — At' cos(pxa) cos(pya) — p, (3.112) 

is the quasiparticle dispersion relation [35, 88], with t = 0.25eV and t' = — 0.451 S(f) is 

the spin fluctuation density operator with a bosonic propagator given by (3.110). 

The presence of t' allows "hot spots" [89] on the Fermi surface (Fig. 3.7) which are 

points that can be connected by Q; this leads to singular behavior when £ in (3.110) di

verges [49, 89]. Quasiparticles near the hot spots are highly scattered and play important 

role in N A F L calculations. Full analysis of the scattering rate [89, 90] indicates linear T 

dependence at the hot spots, while T or T 2 dependence at other points, depending on 

the temperature and the distance from the hot spots. This is used to explain the linear T 
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Figure 3.7: Fermi surface in the first Brillouin zone, with the value for t and t' given in the 
text; and we assume n=0.75. Calculations are presented here for the wave vectors k± and fc^. 

dependence of the normal state resistivity of cuprates and the crossover between linear T 

behavior to T 2 behavior [89, 90]. Some other properties of the cuprates such as supercon

ducting Tc [31, 35, 36], Hall conductivity [90], magnetic and scaling properties [91, 92], 

evolution of Fermi surface [93, 51], Raman scattering [94], etc., have been calculated 

using N A F L theory. It is not our intention in this thesis to describe these calculations 

in detail. Instead, we would like to study the self-consistency of the theory. We proceed 

by briefly discussing how d-wave superconductivity naturally arises from N A F L theory. 

We then discuss the self-consistency of N A F L and calculations made by this theory. 

3.3 d-wave Superconduct iv i ty 

In N A F L theory, antiferromagnetic spin fluctuations play the same role in the pairing 

process as phonons do in conventional superconductors. One can therefore apply BCS 

theory, replacing phonons with magnons. There is however a principle difference here, 
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that is the effective interaction potential 

Ve«=92x(q) (3.113) 

is always positive (repulsive). Here g = y/3/4<? (the factor comes from the consideration 

of the Pauli matrices). BCS gap equation for this interaction is 

A t = V / d ^ - A t , x ( t - f c O t a n h ^ , / 2 T ) (3.114) 

Since x is positive, for an s-wave gap Ak, both sides of (3.114) appear with different 

signs and therefore s-wave paring is not possible. However, since x(o) is peaked at 

q = Q, dx2_y2 pairing is possible because in that case A k + Q = — Ak and this changes the 

negative sign in (3.114) to positive. Therefore dX2_Y2 pairing is a natural consequence of 

N A F L theory. Experimental observation of d-wave pairing is considered as one of the 

triumphs of N A F L theory. 

In order to get high T c , spin fermion coupling should be strong. At the beginning it 

was thought that short quasiparticle lifetime due to the strong scattering would reduce 

Tc dramatically [32]. Weak coupling [31] and also strong coupling (Eliashberg) [35, 36] 

calculations of Urbana group however, have found a Tc as high as 90K, even including 

the lifetime effect [36]. Weak coupling calculation in Ref. [31] gives a T c which is well 

approximated by 

T c = A Q E ~ 1 / A ( 3 - 1 1 5 ) 

where T 0.04eV is an energy scale, 

A = ng2xoN(0) (3.116) 

is the dimensionless coupling constant, and a and n are dimensionless constants of 0(1). 

Strong coupling calculation of Tc was also done by Monthoux and Pines (MP) [35, 36] 
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using Eliashberg formalism. For t' = 0, a relation similar to (3.115) was again obtained 

is the tunneling density of state calculated from one particle retarded Green's function at 

T c [35]. It is interesting that Tc is only sensitive to g and not other parameters. Fitting 

to the measured value for T c , one can determine g. For Tc = 90K, one gets g « 0.8 [35]. 

3.4 Self -Consistency of N A F L 

Besides the similarities, there is one fundamental difference between N A F L theory and 

paramagnon theory: charge properties of ferromagnets are still metallic while antiferro-

magnets are insulators. The reason behind this difference as pointed out by Anderson 

[95, 96] is that ferromagnetism is a natural consequence of Hund's rule: exchange inter

action favors spins to be parallel in order to keep electrons as far as possible and make 

the repulsion energy minimum. Antiferromagnetism on the other hand, is a result of 

superexchange interaction which is inherently a non-perturbative effect and is a prop

erty of Mott insulators. Going out of the antiferromagnetically ordered state involves 

a metal-insulator transition which does not have a counterpart in ferromagnetic case 

(there is a slight difference between strong coupling and weak coupling here. In weak 

coupling the Neel ordering and metal-insulator transition - which is not of the Mott type 

- happen at the same time whereas in strong coupling the system is already an insulator 

above the Neel temperature). It therefore completely makes sense to talk about a nearly 

ferromagnetic Fermi liquid but one should be very careful to talk about a nearly anti

ferromagnetic Fermi liquid. On the other hand, almost none of the properties of high 

(3.117) 

where 

N(0) = -WlmGR(p,0) (3.118) 
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Tc superconductors resembles of a Fermi liquid, even outside the antiferromagnetically 

ordered (insulating) region of the phase diagram (except for very high dopings). Thus it 

is hard to believe that the electron system turns into a Fermi liquid state from a highly 

non-Fermi liquid insulating state by slightly adding doping. 

Another problem, which is more computational than fundamental, is consideration of 

the vertex corrections (note that in pseudogap problem the strong frequency dependence 

of the vertex correction may make a difference between having or not having a pseudogap 

[64]. I that sense vertex correction is a fundamental problem). In order to calculate Tc in 

strong coupling limit, Eliashberg formalism [68] is commonly used. A necessary condition 

for the applicability of Eliashberg formalism is Migdal's theorem [46]; which states that 

the corrections to the bare spin-fermion vertex are negligible compared to the bare vertex. 

In case of electron-phonon interaction, the vertex corrections are of order of (LOD/EF) ~ 

yJm/M <C 1, where m and M are the masses of electron and nucleus respectively. Spin 

fluctuations however are different from phonons in three aspects. First, phonons are 

external excitations while spin fluctuations are excitations of the electronic system itself. 

Secondly, unlike phonons, spin fluctuations are not propagating modes. Thirdly, the ratio 

J/EF, with J being the exchange coupling responsible for antiferromagnetism, is of order 

of one, so there is no small parameter like (COD/EF) in spin-fluctuation interaction [47]. 

Early estimates reported small vertex corrections [97]. Calculations of Ref. [48] and 

[49] on the other hand, indicated that close to the antiferromagnetic instability point, 

the first vertex correction contains a logarithmically divergent term. However, sum of 

a series of divergent diagrams results in a power law behavior for the dressed coupling 

where 0 is a small positive number (we should mention that in the original publication 

[49, 50] 

tftot ~ # ( - ) 
QJ 

(3.1.19) 
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[49], (3 was reported to be negative but in later publications (3 was claimed to be positive 

[50]). Thus near the antiferromagnetic instability (f —>• co), gtot become very large. In 

other words, vertex corrections tend to increase the spin-fermion coupling. 

On the other hand, a work by Schrieffer [47] showed that right outside the antiferro-

magnetically ordered phase, the dressed spin-fermion vertex is given by 

^K[tf-3)2 + r 2] 1 / a
 (3.120) 

Thus very close to the antiferromagnetic instability (£ —> co), the full vertex vanishes as 

q —> Q. The vanishing of the dressed vertex is a consequence of Adler principle: in the 

ordered state, magnons are Goldstone modes and their interaction with other degrees 

of freedom should vanish at the ordering momentum to preserve the Goldstone modes 

to all orders in perturbation theory [93]. The above statement means that the vertex 

corrections should be equal and opposite sign to the bare vertex to make the dressed 

vertex vanish. Consequently, Migdal's theorem can not exist near the antiferromagnetic 

instability. However, superconductivity does not happen at very low dopings either. The 

relevant question therefore is the validity of Migdal's theorem at higher dopings, outside 

the ordered state where superconducting transition occurs at high temperatures. 

The first attempt to calculate vertex corrections at optimal doping was made by us 

[98]. Using the same parameters as used in N A F L theory, we showed that the first correc

tion to the bare vertex is actually the same order as the bare vertex [98]. The sign of the 

correction is also controversial because it determines whether vertex corrections increase 

or suppress the effect of the spin fluctuation coupling. Our finding had a sign opposite 

to the bare vertex. The effect of the correction is therefore to reduce the spin-fermion 

coupling, in agreement with Schrieffer's result (3.120). In the next section we describe 

our calculation in detail. We then discuss the effect of inclusion of the quasiparticle 

renormalization in our calculation. 
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To conclude this section we mention one experimental consideration. The susceptibil

ity (3.110) is adopted by N A F L theory only on phenomenological basis and by fitting to 

experiments. Consequently, N A F L theory is incapable of explaining the incommensurate 

peaks observed in inelastic neutron scattering (INS) experiments on La 2 _ x Sr x Cu04 [99] 

and recently on YBa 2 Cu 3 06+ x [13]. The peaks are observed in the magnetic response 

x"(q,w) at Qi = (1±5, l)u and Qi = (1,1±<J)7T. It should be pointed out that some other 

theories such as the theory of stripes have natural explanations for the incommensurate 

peaks [80, 100]. 

3.5 Ca lcu la t ion of Ver tex Cor rect ion 

Let us first assume that the quasiparticle residue is Z « 1. We will discuss the effect of 

the quasiparticle renormalization later. The first vertex correction is shown in Fig. 3.8 

and can be written as 

*A(3) = £ / n ( l - 2 ) C ( l - 3 ) G ( 3 - 2 ) (3.121) 

where numbers are representing the coordinates and II is defined by 

n = <s{si>=%J2(2Pj-M)** <s(s3

2> 
1 3=1 1 j=l 

= 9-G{ [2 <S\Si>-J2< S{Si > j = - A o x ( l - 2) (3.122) 

where A 0 = (g/2)al is the bare vertex. In the last step we assumed three equivalent modes 

of spin fluctuation, reflecting the rotational symmetry of the system. In momentum 

representation the first vertex correction can be calculated for general external momenta. 

Here we concentrate on the interaction between a Fermi surface electron and a spin 
—* 

fluctuation with q — Q. We have 

5^ = ~^V^f-0^^x(Q' + q^)G(k+ (3.123) 
Q' 
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Figure 3.8: First correction SA^ to the bare vertex, for an incoming fermion with momentum 
k and energy 0 (relative to the Fermi energy), interacting with a fluctuation of wave-vector Q 
and zero energy. 

where 8A^ = 5A(k, e = 0; q = Q, Q, = 0) and Q" = Q + Q'; the sum over Q' takes care 

of Umklapp processes. In the reduced Brillouin zone Q" — (0,0). Note that the overall 

sign of the graph in Fig. 3.8 is negative, i.e., Eq. (3.123) is negative. 
—t 

We concentrate on SA^, with k being a point on the Fermi surface, since it gives 
—* 

an indication of the size of vertex corrections. This is because in general \5A(k, e; q, Q)\ 

exceeds \SAA (in fact it diverges along a surface in k-space, for given values of q, Q and 

e); thus one cannot argue, even after integrating over one or more of its arguments, that 

\SA(k,e;q,Q)\ will lead to corrections smaller than one would get from just using 5A^ 

(our argument here parallels Migdal's [46]). More generally one finds that if Q <C qv F , A 

, where A is the spin gap, then 5A^ is a good approximation to 5A(k,e;q,Q,). Writing 

(3.123) as 

<% = 9 2

v y [ d 2 i ̂  x"(Q' + q,u) 
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x ( fk+Q'+q _j_ 1 /k+Q'+q _ fk+Q"+q _ 1 fk+Q'+q\ 

\ek+Q'+q~U €k+Q'+q + UJ e f e+Q"+9 _ A ; ek+Q'+q+UJ 

= - 9 2 7 ^ T - ( — ) 2 l k (3-124) 127r3a;s/ u 

where g2 = | g 2 and is dimensionless; we define g to correspond directly with the 

coupling constant g used in Monthoux and Pines [35, 36]. At zero temperature one has 

/

27T r2ir i ^ ^ 

dqx / dg„- —[Sgn(ei)Gi(|, ei) - Sgn(e 2)Gi(f, e2) - G 2 ( | , ex) + G 2 ( f , e2)] 
-2TT y-27r t l — e2 

(3.125) 
where qx = qxa, etc., e\ and e2 are 

e1 = ^ ± £ , e2 = = f*±Z (3.126) 
A* A* A* 

and G i and G 2 are defined by 

^ = • G » ( M = !?TP (3'127) 

with X = [1 + ( f ) ' (g + 

Z% can be investigated both analytically and numerically. Here we calculate it for two 

different points in k-space, both on the Fermi surface (see Fig. 3.7); k\ makes a 45° angle 

with kx, and kh is & "hot spot" wave vector. 

In order to obtain a value for 5A^, we need values for the spin fluctuation energy usf, 

the correlation length £, the susceptibility X Q , the coupling constant g, and the chemical 

potential // (which is determined by the electron filling factor n). There are different 

values reported in the references [23, 31, 32]. We have evaluated SA^ for k = ki, kh, in two 

ways, viz. (a) by assuming various published values for the different parameters, and (b) 

by making the simple assumption that one is very close to an A F M instability, and then, 

in the spirit of RPA, imposing the condition \(g/2)x^(Q, 0)| « 1 where x ^ ( Q i u ) is the 

electron-hole bubble. Numerical calculation gives |x^(Q>0)l = 2 .6(eV) - 1 and thereby 
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0(eV) Losf (meV) % / A o 5AL/A0 

M P I 1.36 7.7 78.6 -1.81 105.6 -2.43 
MPII 0.64 14 49.6 -0.46 73.4 -0.68 

"RPA" 0.67 7.7 78.6 -0.44 105.6 -0.59 "RPA" 0.67 
14 49.6 -0.50 73.4 -0.74 

Table 3.1: Calculated values of the vertex correction 5A^ for two different wave-vectors ki and 
kh on the Fermi surface (columns 4 and 6 in the table). Ref. [35] and [36] give different values 
for g, and different values for LJSJ. From the values for these two models one calculates 1^ in 
equation (3.125), and thence 6A^/A0. The third model is the naive "RPA" model described in 
the text, for which g is determined; we have calculated 1^ and SA^/A0 for two values of ujsf 
given in MPI and MPII respectively. 

g = 0.67 eV, assuming n=0.75 and the band structure in (3.112). Since u)sf/\u\ <C 1, this 

value of g should be a very good guess, within a naive R P A scheme. 

The results are summarized in Table 3.1. We use two different values for tosf ; these 

are the two different values quoted by Monthoux and Pines et al. [35, 36]. We also use 

two different values for the coupling constant g, quoted from Ref. [35] and [36]. We use 

values of £ = 2.5a, XQ — 80 states/eV (from [35, 36]) and n — 0.75 , appropriate to 

Y B a 2 C u 3 0 7 (again quoted from [35, 36]). This value of n corresponds, with the band 

structure in (3.111), to a value of \p\ ~ 1.46t = 0.365 eV. 

We see that even the values for the vertex correction calculated from the simple 

R P A model (b) are not small; as in the standard discussion of Migdal's theorem, the 

importance of vertex corrections appears in the ratio \8A%\/A0. If one takes values of 

g from the literature [35, 36], this ratio is quite unreasonably large (as large as 2.43 

for the hot spots in the model used by Ref. [35]). Thus vertex corrections are clearly 

very important. The values we quote for |<5A^|/A0 are considerably larger than previous 

estimates [23, 97, 101]. The reason for this difference with previous work can be tracked 

back to the factor X^, which is impossible to guess from purely dimensional arguments. 
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In fact if we drop the factor from 6Ak, we get an order of magnitude estimate for ^A^ 

given by 

^ - ^ i ? ^ 1 ( 3 - 1 2 8 ) 

which is broadly in agreement with previous estimates (see e.g. Millis [97]) ; XQ> WSJ and 

g must be redefined to conform with the parametrizations in this paper). 

In fact however Z^ is surprisingly large, and also shows a significant variation around 

the Fermi surface, with a maximum at the hot spots, and a minimum at intermediate 

wave-vector like k\. We should emphasize here that analytic calculations of 8A^ have 

to be approximated rather carefully in order to give reasonable agreement with the nu

merical results in Table 3.1. Approximations such as those of Hertz et al. [85] (see also 

[101]), which try to separate off a rapidly-varying (in (f-space) contribution from x"(<f, cu), 

give quantitatively incorrect results (including a completely unphysical ln[(k — kh)a] di

vergence as one approaches the hot spot). 

One might suppose that Tk is large simply because of the band structure (i.e., because 

of van Hove singularities, or the hot spots). If this were true one could argue that the 

quasiparticle weight ought to be renormalized down near these singular points in the 

Brillouin zone, and that this would considerably reduce the vertex correction. In fact 

however we find this is not the case; this can be checked analytically by suppressing the 

regions immediately around the hot spots in the integral for Z^, or by simply redoing the 

numerical calculation for a slightly different band structure. We find that suppressing 

the hot spots entirely, reduces the vertex correction by a factor which is everywhere less 

than 2 (and which differs very little from unity when k is far from a hot spot). 
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3.5.1 The Effect of Quasipart ic le Renormal i zat ion Z 

Our calculation of the vertex correction was criticized by Chubukov, Monthoux and 

Morr (CMM) [50] on the basis of inappropriate quasiparticle renormalization factor Z. 

As we mentioned earlier the value we used 1 which is the value used in N A F L 

calculations of Tc [31, 35, 36]. C M M ' s criticism was based on the fact that self consistent 

consideration of spin fluctuation damping gives spin fluctuation frequency cosf in terms 

of other parameters. More precisely, one can write [93] u>sf = c2

w/2^2^y, where csw is the 

spin wave velocity, £ is the correlation rate and 7 is the spin damping rate. In fact two 

points of views can be taken here. One can assume the spin environment as independent 

degrees of freedom. In that case u>s/ will be an independent parameter. On the other 

hand if one considers a one band model then assuming that the damping of the spin 

excitations is dominantly due to the spin-fermion interaction (and not other sources such 

as spin-spin exchange, impurity, etc.), the damping rate 7 can be obtained from the 

imaginary part of the particle-hole bubble at transfer momentum Q. The result of the 

calculation given in [50] is 

where v is the Fermi velocity at the hot spots and <j>o is the angle between normals to 

the Fermi surface at the hot spots. C M M claim that if one uses the parameters reported 

in [36] and at the same time requires Z = 1, one finds ojsf « l.OGmeV which is one 

order of magnitude smaller than u>sf = limeV used in Ref. [36] and our calculations. 

C M M then conclude that this is a sign of inconsistency in our calculations. Using the 

same parameters and solving (3.129) for Z , with uisf = l4meV one finds Z = 0.28. 

Substituting this value of Z in the calculations, the vertex correction will be reduced by 

a factor of Z2 = 0.08. This way the magnitude of the correction will be one order of 

magnitude smaller than what we obtained, and therefore the vertex corrections will be 

— I sin(j)o\-
4 g 

(3.129) 
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small. 

We do not dispute the fact that all the calculations should be self-consistent. What we 

argue actually is that the self-consistency should be considered everywhere throughout 

the calculation. We also agree that the Hamiltonian (3.111) is valid for renormalized 

quasiparticles and therefore it is necessary to include the renormalization factor Z in all 

calculations. A l l the parameters we used in our calculation (including Z) were based 

on the reported values by Monthoux and Pines [35, 36]. We emphasize again that the 

coupling constant g in Ref. [35, 36] is obtained by fitting the calculated T c to the measured 

value (~ 90K). If Z, as claimed in Ref. [50] is much smaller than one, then this value 

should be also considered in Tc calculations and would affect the magnitude of g which 

gives a reasonable Tc. 

In a strong coupling calculation, this means that all the fermionic lines have to be 

replaced by renormalized Green's functions. This multiplies the coupling constant g by 

a factor Z which exactly compensates the reduction of the vertex correction discussed 

in [50]. This is more clear by looking at (3.118). One realizes that a renormalized GR 

is going to reduce iV(0) by a factor of Z. This factor multiplies g in the exponent in 

(3.117). Keeping all the other parameters fixed the coupling constant should be increased 

to preserve the value of Tc. The new coupling constant is now given by 

fc = § ( 3 - 1 3 ° ) 

where g is the (old) coupling obtained using Z = 1 (i.e. the values reported in Ref. 

[35] and [36]). The same statement holds for weak coupling calculation (3.115) keeping 

in mind that A oc g2N(0)2. Substituting Z and gz into the calculation of the vertex 

correction we get 
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The factor 1/Z in (3.130) therefore exactly cancels the effect of Z2 in vertex correction 

calculations and our calculated value remains unchanged. Looking back at (3.129) but 

now remembering that gZ is actually what one obtains from fitting to Tc, we find tosf = 

1.06raeV even after the inclusion of the renormalization factor Z. The mismatch of this 

value with the reported value of Ref. [36] reflects the inconsistency of the theory rather 

than a mistake in our calculations. 

3.5.2 Sign of the Vertex Corrections 

The sign of the vertex correction is important because if it is positive, the vertex correc

tions tend to increase the effect of the spin fluctuations on the electron system resulting 

in a higher T c . On the other hand if it is negative, it decreases the spin-fermion coupling 

and reduces the Tc. We saw that at the optimal doping, our calculation indicates a nega

tive sign for the first vertex correction. On the other hand, Ref. [93, 50] report a positive 

sign at the optimal doping but negative sign near the antiferromagnetic instability. In 

this section we discuss what a change in the sign of the vertex correction between strong 

and weak doping would entail physically - essentially it implies a phase transition of some 

sort for which there is no experimental evidence that we know of. We give our argument 

based on a fact with which everyone agrees: near the antiferromagnetic instability the 

sign of the vertex correction has to be negative to suppress the effect of spin-fermion 

coupling [47]. 

If the sign of the vertex corrections at the optimal doping is negative, as we found, 

then the vertex corrections tend to decrease the dressed coupling. Decreasing doping, 

increases the effect of spin fluctuations and therefore increases the magnitude of the vertex 

corrections. This can be checked by Eq. (3.124). Decreasing doping would increase XQ 

(oc £ 2 ) and thereby the vertex correction. Consequently, the dressed coupling would be 

decreased even further. This trend continues until the total vertex vanishes completely 
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at the edge of the ordered phase. Thus the flow of the renorrnalized coupling when 

changing the doping is continuous. On the other hand if the vertex corrections have 

positive sign at the optimal doping, decreasing the doping would increase the dressed 

vertex. Continuation of this trend towards zero doping would give a very large dressed 

coupling which is unphysical. 

Interestingly it was speculated by Chubukov et al [51, 93] that perhaps a weak phase 

transition (a Lifshitz transition ) might exist in the intermediate doping regime. The 

transition would change the big Fermi surface, compatible with Luttinger's theorem, to 

small hole pockets centered at (ir/2a, ir/2a) and symmetry related points. If this were 

really true, and moreover followed from the Hubbard model, it might save the consistency 

of the N A F L approach, in that it would make it possible for a sign change of the vertex 

corrections, at some critical g = gc. To our knowledge, no experimental justification 

exists yet [52] and the evolution of the Fermi surface is not widely believed. Without this 

evolution, the positive sign of the vertex correction at optimal doping is not physical. At 

the end we point out that the suppression of the spin-fermion coupling due to the vertex 

corrections, also gives a natural way to explain why Tc reduces at low dopings in spite of 

the increase in the spin susceptibility [93] (although other reasons can also be thought 

of, e.g. reduction of charged carriers, etc.). 

3.6 Concluding Remarks 

We re-emphasize here that these results do not necessarily invalidate the internal consis

tency of the Fermi liquid starting point, in N A F L theory. However they do show that 

the theory cannot be trusted quantitatively, at least in the usual R P A form. As is well 

known the R P A is not a "conserving approximation", and for spin fluctuation theories 

this makes it unreliable (cf. ref. [63], especially section 3). It is useful to compare the 
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case of nearly ferromagnetic 3 He liquid, where vertex corrections are also quite large, 

and where use of the paramagnon model yields values for m*/m which are off by a large 

factor [102]. Thus if we use melting curve Landau parameters, Z0 ~ 0.75 and F\ ~ 15, 

we infer a value for the Stoner factor S ~ 24 which yields m*/m = | In 5 ~ 15 , in the 

paramagnon model. This is roughly 2.5 times the correct value of ~ 6 (note that the first 

vertex correction is 5A/1 ~ In S ~ 3 in this model), and no amount of self-consistent 

summing of diagrams can cure this numerical problem. 

Similar problems can clearly occur in the present N A F L model. We believe this is 

the main reason for the difficulty one encounters in the M P models, in determining a 

value for g that (a) gives the correct superconducting T c , and (b) is consistent with the 

observed spin susceptibility. 

To check the structure at higher order, we have also estimated the contributions from 

the graphs containing 2 spin fluctuation lines (there are actually 7 distinct graphs at 

this level), and found that some of them are also large for the values of g used above. 

Thus, just as for the case of nearly ferromagnetic 3He, we see no reason to believe, for 

the values of the parameters given in the table, that performing infinite graphical sums 

will lead to results which are numerically more reliable, even if they do converge to some 

smaller renormalized vertex-there will always be other diagrams with large values, which 

will in general give uncontrolled contributions. 

It is interesting to compare our results with some other investigations. As we men

tioned briefly, in the weak-coupling limit, Chubukov [49, 93] has calculated the leading 

vertex corrections to g, concentrating on the gapless case; in the case where there is a 

gap, he finds that the renormalized coupling is large (for a large Fermi surface consid

ered in our investigation). On the other hand Schrieffer [47] has argued that a correct 

formulation of the theory, even in the weak-coupling limit, must take account of the 

short-range local antiferromagnetic order even in the normal state-if this done, he finds 
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that a weak-coupling calculation shows very strong suppression of the vertex when one. 

is close to the antiferromagnetic transition. This theory seems rather interesting-note 

that a related calculation by Vilk and Tremblay [64, 103]finds that the existence of such 

a short-range antiferromagnetic order in 2-d will cause a breakdown of the Fermi-liquid 

starting point itself when the correlation length becomes larger than the single particle 

de Broglie wavelength! Thus the question of what is the correct theory itself is rather 

confused, even in the weak-coupling regime. It is certainly not clear how any of these 

arguments will work in the regime discussed in this paper, when g is not small enough 

to control the magnitude of the vertex corrections. 

It is of course crucial that these higher-order corrections also be included in any version 

of this theory that tries to reconcile different experiments - as emphasized by Pines [32], 

the justification of the theory stands or falls on its ability to do this quantitatively. It is 

possible that such a program might succeed if one can show that the actual parameters g, 

cosf, and XQ a r e s u c n t n a t . |<5A^|/AQ is considerably less than one (i.e., if one is genuinely 

in the weak-coupling regime). This would also be true of versions of the theory in which 

cosf depends on g, whilst the spin gap becomes an independent parameter [49]; or of the 

theory of Schrieffer cited above [47]. On the other hand if \5Ak\/A0 > 0(1), we see no 

hope that such a scheme could succeed quantitatively (in, e.g., the calculation of T c ), 

since the vertex corrections become large. 



Part II 

Vortices in d-wave Superconductors 
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Chapter 4 

Introduction 

Although at a microscopic level, theories of high Tc superconductors, especially for nor

mal state properties, are not well established, superconducting properties of cuprates 

are better understood. Almost everybody now agrees that the symmetry of the order 

parameter is d I2_y2-wave, and the existence of nodes in the superconducting gap is well 

established [33, 34]. A highly anisotropic dx2_j/2-wave order parameter, with four nodes 

in the superconducting gap is a unique property of cuprates ans also some organic super

conductors, with no analog in conventional superconductors. The effect of this anomalous 

symmetry on different observable quantities has been a subject of investigation in recent 

years. 

An early theoretical investigation of the weak-field response of a dx2_y2 superconduc

tor by Yip and Sauls [104] predicted a direction dependent non-linear Meissner effect, 

associated with the quasiclassical shift of the excitation spectrum due to the superflow 

created by the screening currents. Maeda et al. [105] reported experimental evidence 

for such an effect in Bi 2 Sr 2 CaCu20j / , but subsequent experiments [106] failed to confirm 

their findings and the situation remains controversial. A similar effect was also studied 

independently by Volovik [107]. In the mixed state, he predicted a contribution to the 

residual density of states (DOS) proportional to the inter-vortex distance ~ \fH. Such a 

contribution was identified in the specific heat measurements on YBa 2 Cu 3 07_5 (YBCO) 

by Moler et al. [108] but later this interpretation was disputed by Ramirez [109] who found 

evidence for a similar effect in a conventional superconductor VaSi and by others[110]. 

60 
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Kosztin and Leggett [111] predicted that the nonlocal response at very low temperatures 

will lead to a T 2 dependence of the penetration depth in clean samples in contrast to the 

linear T-dependence obtained from the local theory for d-wave materials. 

Another important characteristic of high Tc compounds is their short coherence length 

£ 0; responsible for strong fluctuation effects near Tc [112]. The large ratio K = A0/£o 3> 1 

(A 0 is the magnetic penetration depth) also makes them extremely type-II superconduc

tors. Existence of a mixed state, characterized by a regular array of magnetic flux lines 

penetrating the material, is perhaps one of the most striking properties of type-II su

perconductors. The original pioneering work of Abrikosov [113], based on the solution 

of Ginsburg-Landau (GL) equations [114] near the upper critical field Hc2, predicted a 

triangular flux lattice. This prediction was subsequently verified by low field magnetic 

decoration experiments on a variety of conventional superconductors. In stronger fields 

neutron scattering experiments revealed significant deviations from perfect triangular 

lattices [115] which where attributed to anisotropics in the electronic band structure and 

other effects. These were modeled by G L theories containing additional higher order 

derivative terms reflecting the material anisotropics [115]. 

Based on the experience with conventional superconductors one would expect even 

richer behavior of flux lattices in the copper-oxide superconductors. In high-Tc cuprates 

much of the experimental and theoretical effort has been focused on the sizable region of 

the phase diagram just below TC(H) in which the vortex lattice properties are completely 

dominated by thermal fluctuations [116]. While understanding the physics of this fluctu

ation dominated regime poses a very difficult statistical mechanics problem, investigation 

of the equilibrium vortex lattice structures at low temperatures may provide clues about 

the microscopic mechanism in these materials. 

Neutron scattering [117] and S T M [118] experiments on YBa2Cu 3 0 7_,j compound, 

revealed vortex lattices with centered rectangular symmetry and different orientations 
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with respect to the ionic lattice. These have been modeled by phenomenological G L theo

ries appropriate for anisotropic superconductors, containing additional quartic derivative 

terms [119] or a mixed gradient coupling to an order parameter with different symmetry 

[120, 121, 122, 123]. These works found structures in qualitative agreement with exper

iment, but their inherent shortcoming is a large number of unknown phenomenological 

parameters and subsequent lack of predictive power. Also, the G L theory is only solvable 

for a vortex lattice near Hc2, which is experimentally inaccessible in cuprates away from 

T c . The observed behavior of the vortex lattice may also be understood by incorporating 

penetration depth anisotropy and twin-boundary pinning without involving any effects 

associated with mixing symmetries or gap anisotropy [124]. 

Muon-spin-rotation (/xSR) experiments [125, 126, 127, 128], on the other hand, show 

an unusual magnetic field dependence in their line-shapes for the magnetic field distribu

tion. This has been attributed to a field dependent penetration depth - which is expected 

in the Meissner state because of quasiparticle accumulation at gap nodes [104]. It was 

also modeled using an approach based on the Bogoliubov- de Gennes (BdG) equations 

in a square lattice tight-binding model [129]. 

At intermediate fields Hc\ < H <C Hc2, properties of the flux lattice are determined 

primarily by the superfluid response of the condensate, i.e. by the relation between the 

supercurrent j and the superfluid velocity vs. In conventional isotropic strongly type-II 

superconductors this relation is to a good approximation that of simple proportionality, 

j = -epsvs, (4.132) 

where ps is a superfluid density. More generally, however, this relation can be both 

nonlocal and nonlinear. The concept of nonlocal response dates back to the ideas of 

Pippard [130] and is related to the fact that the current response must be averaged over 

the finite size of the Cooper pair given by the coherence length £0- In strongly type-II 
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materials the magnetic field varies on a length scale given by the London penetration 

depth Ao, which is much larger than £ 0 and therefore nonlocality is typically unimportant 

unless there exist strong anisotropies in the electronic band structure [131]. Nonlinear 

corrections arise from the change of quasiparticle population due to superflow which, to 

leading order, modifies the excitation spectrum by a quasiclassical shift [130] 

Sk = Ek + vf • vs, (4.133) 

where Ek = \Je\ + A 2 , is the BCS energy. Again, in clean, fully gapped conventional 

superconductors this effect is typically negligible except when the current approaches 

the pair breaking value. In the mixed state this happens only in the close vicinity of 

the vortex cores which occupy a small fraction of the total sample volume at fields well 

below HC2. The situation changes dramatically when the order parameter has nodes, 

such as in dx2_y2 superconductors. Nonlocal corrections to (4.132) become important for 

the response of electrons with momenta on the Fermi surface close to the gap nodes even 

for strongly type-II materials. This can be understood by realizing that the coherence 

length, being inversely proportional to the gap [130], becomes very large close to the 

node and formally diverges at the nodal point. Thus, quite generally, there exists a locus 

of points on the Fermi surface where £ 3> A 0 and the response becomes highly nonlocal. 

This effect was first discussed by Kosztin and Leggett [111] for the Meissner state and 

by us [132] in the mixed state. Similarly, the nonlinear corrections become important in 

a d-wave superconductor. Eq. (4.133) indicates that finite areas of gapless excitations 

appear near the node for arbitrarily small va. 

One of the simplest theories to study the magnetic behavior of the type-II supercon

ductors is the London model [133]. In London theory the Free energy is.written only in 

terms of magnetic field and is therefore very easy for calculation. Unlike in G L theory, 

the order parameter does not appear explicitly in London free energy. The effect of the 
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symmetry of the order parameter or other Fermi surface anisotropies, is therefore not 

contained in the London model. Simple generalization of the model however can incor

porate these effects. The generalized model contains anisotropic higher order and higher 

derivative terms reflecting the symmetries of the order parameter and the anisotropic 

Fermi surface. 

In the next chapter, we first briefly introduce Ginsburg-Landau (GL) theory, and 

London theory emphasizing the solutions for a vortex lattice. Starting from a G L model, 

we then derive the leading fourfold anisotropic corrections to the London equation mak

ing the usual assumption that the free energy was an analytic functional of the order 

parameter and field. The number of new parameters in this model is far smaller than in 

the G L approach (a reasonable model contains only one new parameter which controls 

the strength of the symmetry breaking term) and numerical simulations are consider

ably easier. This provides a useful tool to study vortex lattice structure, pinning by twin 

boundaries and the magnetic field distribution measured in fj,SR experiments. The model 

is suitable to study the intermediate field region Hci <C H <C Hc2 which is experimentally 

most relevant but traditionally difficult to handle within the G L theory. Furthermore, 

this approach can be extended to T = 0 where G L theory breaks down and the supercur-

rent becomes singular. With increasing magnetic field this model predicts a transition 

from triangular to centered rectangular and eventually a square vortex lattice. While no 

direct experimental evidence exists in cuprates at present to confirm such a prediction, a 

similar transition has been recently observed in a boro-carbide material E r N i 2 B 2 C [134] 

and has been described by a similar London model [131]. 

In the last chapter of this thesis, we again derive a generalized London free energy, but 

this time completely from a weak coupling microscopic model, including the nonlinear and 

nonlocal effects mentioned above. We show that the dominant effect that determines the 

vortex lattice geometry and the effective penetration depth as defined in //SR experiments 
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is the nonlocal corrections, while the nonlinear corrections play a secondary role at low 

T. At high temperatures we obtain a nonlocal correction similar to the one suggested 

in chapter 5. At low temperatures however, we find a novel singular behavior directly 

related to the nodal structure of the gap which completely changes the form of the 

London equation. This singular behavior has profound implications for the structure of 

the vortex lattice which, as a function of decreasing temperature, undergoes a series of 

sharp structural transitions and attains a universal limit at T = 0. Our theory is now 

completely parameter free. The London free energy at low T is non-analytic and its long 

wavelength part is fully determined by the nodal structure of the gap function. Such 

behavior is caused by the low-lying quasiparticle excitations within the nodes and thus 

could never occur in conventional superconductors with anisotropic band structures. 

Finally, in the last section of chapter 6, we talk about the experimental justifica

tion of our low temperature nonlinear nonlocal theory. We especially emphasize //SR 

experiments. Recent //SR data at high fields have justified our prediction for the Field 

dependence of the penetration depth in vortex state. 
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Phenomenological Model 

5.1 Ginsburg-Landau Theory 

In 1950 Ginsburg and Landau [114] proposed a phenomenological theory to describe the 

behavior of superconductors near their transition temperature. At a mean field level, the 

phase transition of superconductors is second order (gauge field fluctuations however are 

believed to change the order of the transition to a weak first order [135]). A free energy 

density that can describe such a transition was proposed to be 

^ = 2 ^ l ( - f l l v - 7 ^ * l > + o | * l ' + i l * | 4 + 8 7 ( 5 ' 1 3 4 ) 

where e* (= 2e) and m* (= 2m) are the charge and effective mass of a Cooper pair, 

H and A are magnetic field and vector potential respectively. Superfluid density ns is 

related to the order parameter by |\I , | 2 = ns/n, where n is the total density of electrons. 

Ginsburg-Landau (GL) equations can be obtained by minimizing / with respect to ^ 

and A 

aV + m\2y + — \(-ihV - -A)2V = 0 (5.135) 
2m c 

j = - V x B = — ( f - $ V $ * ) - — ^ M (5.136) 
J 4TT 2im*V ; m*c • 

where j is the current density. In the absence of magnetic field (i.e. H = A = 0) and for 

uniform the minimum of / occurs at | * | = 0 when a > 0, but at | ^ | = yJ-a/0 when 

a < 0. A continuous transition therefore happens as a goes from positive to negative 

values. Taking aoc (T - T c ), one can study the critical behavior of the superconductor 

66 
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and calculate all the critical exponents near Tc. G L theory has been studied extensively 

in the literature in both Meissner and vortex states of superconductors. It is not our 

attempt in this thesis to discuss the solutions of G L equations for different problems. 

Instead, we shall focus on deriving a London theory from G L theory, especially in the 

vortex state. Interested readers should refer to Ref. [136, 130] or any other standard text 

books in the subject, for more detailed information. 

5.2 London Theory in Vortex State 

Although we will use G L equations to derive the London equation, London theory was 

proposed long before GL, by F. and H. London in 1935 [133]. The basic assumption in 

their theory is a local proportionality relation between supercurrent j and vector potential 
—* 
A 

-> n«e 2 r 
j = —-—A. 5.137 

mc 

This equation is usually taken as the definition of superfiuid density ns. Eq. (5.137) is 

not a gauge invariant equation. However, to satisfy current conservation, one has to fix 

the gauge to the London gauge 

V - i 4 = 0. (5.138) 

This way (5.137) and all the results following from it are gauge independent and therefore 

physical. Eq. (5.137) plays a very important role in our theory for the vortex lattice. 

Generalization of this equation will be used in this chapter and also in the next chapter 

to develop a generalized London theory to describe the vortex lattice properties of d-wave 

superconductors. 

Taking the curl of the both sides of (5.137) and using the Maxwell's equation V x B = 

(47r/c)j we get 

A 2 V x V x B + fi = 0 (5.139) 
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which is the famous London equation. A is called the London penetration depth and is 

given by 

A=\S (5-140) 

A free energy density that gives rise to (5.139) via minimization with respect to the. 
—* 

magnetic field B, is called the London free energy density 

/ L = ^ ( B 2 + A 2 | V x B | 2 ) (5.141) 

We now obtain London equations (5.139) from G L equations (5.135) and (5.136). 

5.2.1 Derivation of the London Equation from GL Theory 

Let us begin our derivation of the London equation by writing the order parameter as 

v[/ = ipe

l<t>, with ip and <p being real functions of position x. Substituting \& into (5.136) 

we get 

A 2 V xB + A = p-V(f> (5.142) 
27T 

where A = ^m*c2/A.-ne*2ip2 is the London penetration depth and $o = (hc/e*) is the 

flux quantum. In type II superconductors tp varies over a length scale £ much smaller 

than the penetration depth A. £ is usually called the coherence length and is of the order 

of the extent of a cooper pair. In the Meissner state therefore, ip (and consequently A) 

stays constant in the bulk of the superconductor away from the boundaries. The London 

equation (5.139) can therefore be derived easily by taking the curl of Eq. (5.142) and 

keeping in mind that V x = 0. 

In the vortex state on the other hand, ip is not a constant and actually vanishes at the 

center of each vortex. Taking this into account gives rise to the effect of the vortex core 

which is the subject of the next subsection. Furthermore, in the derivation of (5.139), 

we used V x V(p = 0 which is not true in the vortex state. The reason is that around a 
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vortex, <f> has a topological winding number equal to 1. In other words, 4> increases by 

2n in every turn around a vortex core. Integrating (V x V</>) • dS over a. small region 

around the vortex center we get 

J(V x V4>) • dS = j> • rff = (j)f - 4>i = 2im (5.143) 

where n is the topological winding number; which is one in our case. This equation is 

satisfied for every infinitesimal region around the center of the vortex r 0 , only if V x = 

2^8^ (f — fo). The London equation in the presence of a vortex will therefore become 

(assuming constant tp again) 

A 2 V x V x B + B = < ± V ( 2 ) ( r - f 0 ) (5.144) 

To find a solution for a single vortex, it is easy to take the magnetic field in ^-direction 

and write B = B(r)z. Eq. (5.144) then becomes 

r dr dr 

which is actually a Bessel's differential equation. The solution to this equation is 

B W = ( 5 : 1 4 6 ) 

where KQ is the zero-order modified Bessel function. Important to notice here is that K0 

diverges logarithmically as r —> 0; which is apparently non-physical. The reason behind 

this non-physical behavior lies in the fact that we did not incorporate the effect of the 

vortex core properly. In other words, the order parameter ip always vanishes at the center 

of the vortex. Therefore, it is not a good approximation to consider it to be homogeneous 

everywhere in the lattice. We shall take into account this effect in more detail in the 

next subsection. 
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5.2.2 The Effect of the Vortex Core 

Let us start from eq. (5.136) again by writing it as 

j(r) = e*ns{r)vs{r) (5.147) 

where ns = ip2 is the superfluid density and vs is the superfluid velocity defined by 

< 5 - 1 4 8 ) 

At the center of a vortex, ns vanishes. We can therefore write 

ns(r)=n0n(r) (5.149) 

where rj (r) is a function with the property 

(5.150) 
rj(r) = 0 at r = 0 

r)(r) —• 1 for r / f » 1 

and £ is the coherence length of the superconductor. The exact form of rj should come 

from a microscopic theory or a complete solution of G L equation. Here, we do not derive 

rj. Instead, we find the source function for a few assumed forms for tj. Before that, let 

us take the curl of both sides of (5.147), keeping in mind that 

V x (r)vs) = —ritfWlf) - + Vn x vs = ^ - B + Vnxvs (5.151) 
m* $o m*$o 

and also from (5.147) 

\e*n0n J y47re*n0n 

The generalized London equation therefore becomes 

1 V = " (-7-L- 1 V x B (5.152) 

A 2 V x V x B + B = p(r) (5.153) 
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with a source term p(f) defined by 

p(f) = (1 -77)73 + >?~ x V x B (5.154) 

Equations (5.153) and (5.154) can be viewed as a set of self-consistent equations to be 

solved for B and p. However, p(f) can be simplified significantly in extremely type II 

superconductors which have large K = A/£. First notice that p is non-zero only in a 

region of size £ around the center of the vortex. In this region, both B and r\ scale with 

£. Therefore the first term in the left hand side of (5.153) and the second term on the 

right hand side of (5.154) are both 0(\2/£2)B and therefore are the dominant terms in 

(5.153). Ignoring the subdominant terms, (5.153) can be written as 

V X T 3 = ^ X T I V x - = 0 (5.155) 
V \vj 

where u = V x B. If we assume rotational symmetry and let B = B(r)z and therefore 

u = u(r)9 where 9 is the azimuthal angle, then (5.155) leads to 

~ ( r ^ ) = 0 => u = CV- (5.156) 
r dr \ rj J r 

C is a constant that can be found, using the fact that / p-dS = $ 0 5 to be C = ($ 0/27rA 2). 

Substituting all into (5.154), the source function now can be written as p(r) = p{r)z, 

with 

P(r) = P-P- (5-157) r v ; 2?rr dr v ' 

Now let's calculate p for different choices of rj. 

Example 1: Clem's Ansatz 

Let's assume that 

r?(r) = - ^ with R2 = r2 + ev (5.158) 
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where is some parameter of the order of the coherence length £. Substituting into 

(5.157), we find the source term to be 

P(r) = ^f4 (5.159) 

In order to calculate the magnetic field, it is easier to find the source term in terms of 

the magnetic field, using (5.154). Ignoring the first term we get 

* > ~ ^ . 
Substituting back into (5.153), with a little algebra, we get 

Comparing (5.161) with (5.145), the solution would be 

* < r > = 2 f W l ) ( 5 ' 1 6 2 ) 

This result was first obtained by Clem [137], directly by solving G L equation. It was 

later shown by Brandt [138] that the magnetic field obtained this way in a vortex lattice 

is consistent with the exact solution of the G L equations. In Clem's approach, is a 

variational parameter to be determined by minimizing the free energy. It turns out that 

in extremely type II superconductors f„ = \/2£- As is clear from (5.162), B(r) is not 

divergent as r 0. In fact, B(0) = ($Q/27r\2)KQ(t/\). 

Another way to find the magnetic field is by Fourier transforming (5.153) to get 

d2k F(k)ei%f 

where 

X2k2B(k) + B(k) = F(k) or B{r) = J ^ y f ^ (5-163) 

F(k) = J d2re-&fp{r) (5.164) 
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is the Fourier transform of the source function which sets an ultraviolet cutoff in momen

tum integrations. In the present case, it is not difficult to show that 

F{k) = QotvkKifak) (5.165) 

where K\ is the first order modified Bessel function. Substituting (5.165) into (5.163), 

we get back to (5.162). 

Example 2: Gaussian Source Function 

Now let us assume that 

7/(r) = 1 - e~r2M2 (5.166) 

The resulting source function will then be 

p ( r ) = = *o c - r W (5.167) 

The corresponding cutoff function will also have a Gaussian form 

F(k) = $ o e - W 2 (5.168) 

This form of momentum cutoff was first proposed by Brandt [139]. This is actually the 

form of cutoff we are going to use in our calculations throughout the rest of this thesis. 

We will talk about the sensitivity of our solutions to this particular choice of cutoff 

function, when appropriate later. 

5.2.3 Solution for a Vortex Lattice 

In a vortex lattice, taking the magnetic field in z-direction (B = Bz), equation (5.153) 

becomes 

-X2V2B + B = y£p{r~fi) (5.169) 
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where u are lattice vectors indicating the position of vortices. Taking the Fourier trans

form of both sides of (5.169), we get 

F(k) 

k 

(5.170) 
1 + \2k2 

where k are now reciprocal lattice wave vectors, B is the average magnetic field given by 

B = §o/Q, with f2 being the area of a unit cell. Unlike G L , the London approach does 

not automatically determine the form of the lattice for us. Instead, one has to calculate 

the free energy for different configurations of the lattice and find the one that minimizes 

the free energy. Although this sounds a formidable job, symmetries of the free energy 

help us in our initial guess. In other words, the lattice that satisfies the symmetries of 

the free energy the most, is the most likely lattice for the vortices to exist on. 

Figure 5.9: Magnetic field distribution in a triangular lattice, using the ordinary London 
equation with Gaussian cut off. 

Using (5.141), the free energy per unit cell is given by 

fL=f d2r[B2 + (VB)2} = £ ( 1 + X2k2)B2 = B2J2-
J u c n . k 

Substituting the Gaussian cutoff function (5.168), we find 

F(kf 

+ \2k2 

B(f) 
0ik-rp-ek2/2 

+ X2k2 

(5.171) 

(5.172) 
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These sums can be performed numerically quite easily. The lattice configuration that 

minimizes the free energy (5.173) is a triangular lattice. The contour plot of the magnetic 

field in this lattice is shown in Fig 5.9. 

A n important thing to notice is that the free energy (5.173) is isotropic and therefore 

does not determine the orientation of the lattice. In other words, there is an infinite 

degeneracy in the orientation of the lattice. This degeneracy will be removed as soon as 

symmetry breaking terms are added to the London equation. We will discuss this issue 

in more detail in the next two sections. 

5.3 M i x i n g of d-wave w i t h s-wave 

So far we have established a London theory derived from G L theory, but we didn't 

mention anything about the symmetry of the order parameter. Since an s-wave order 

parameter is isotropic, whatever we discussed in the previous sections is expected to 

hold for an s-wave superconductor. A d-wave order parameter on the other hand, is not 

isotropic. Instead, it has fourfold anisotropy, and consequently, it is natural to expect this 

anisotropy to influence the structure of the vortex lattice. Surprisingly, the G L equations, 

as written in (5.135) and (5.136), have exactly the same form for a d-wave order parameter 

as s-wave. A l l the statements in the previous sections should therefore hold for a d-wave 

superconductor as well. A way out of this dilemma, is to notice the fact that the G L 

free energy written in (5.134), is an approximation and contains only the lowest order 

contributions. In other words, we have ignored all higher order derivative terms. We have 

also overlooked the possibility of existence of a second order parameter that in general 

can couple to the main (d-wave) order parameter. It is conceivable that including these 

effects will introduce some fourfold anisotropic terms to the G L equations, reflecting the 
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d-wave nature of the superconductor. In this section, we shall first consider the second 

possibility, namely including an s-wave order parameter coupled to the original d-wave 

order parameter. We shall see that the effect of this inclusion is to introduce higher order 

derivative terms in the effective G L free energy written only in terms of the d-wave order 

parameter. We shall then show how this additional high-derivative term will change the 

London free energy. This way we actually cover both possibilities mentioned above. The 

material discussed in this section has been published in Ref. [140]. 

A G L free energy density to describe mixing of d-wave and s-wave order parameters 

was first proposed by Joynt [141] as 

/ = as|s|2 + ad|d|2 + 7 s|ns|2 + 7 d |rid| 2 + /4 + iI2/87r 

+jv[(nys)*(Jlyd) - (Uxs)*(Uxd) + cc.]. (5.174) 

where II = — zV — e*A/hc and f$ contains the quartic terms, d and s represent d-wave 

and s-wave order parameters respectively. In the bulk of the superconductor and in the 

absence of magnetic field, we want only a d-wave order parameter to exist. Therefore 

below Tc, we expect to have a<j < 0, but as > 0. In finite field (H > Hci) on the other 

hand, a small s-component with a highly anisotropic spatial distribution is nucleated 

in the vicinity of a vortex [120, 121]. This free energy has been extensively studied 

in the literature [120, 121, 122, 123, 142]. It is well known that it gives rise to non-

triangular equilibrium lattice structures [120, 121]. Our objective here, is not to discuss 

the solution to the G L equations resulting from this free energy, but to focus on deriving 

the corrections to the London equation that result from this free energy. Our strategy 

will be to simplify the free energy (5.174) by integrating out the s-component in favor of 

higher order derivative terms in d. In this process, some short length-scale information 

on the order parameter is lost but the magnetic field distribution is described accurately. 

Using its Euler-Lagrange equation, s can be expressed to the leading order in (1 — 
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T/Tc) as 

S = ( 7 , M ) ( n 2 - n 2 ) d . (5.175) 

Substituting this into / gives the leading derivative terms in d of the form: 

f = 7d[\Ud\2-(^hdaMK-^2
y)d\2} + ... (5.176) 

Various additional corrections to the free energy are obtained from integrating out s more 

accurately, taking into account the 7 s|ITs| 2 term and quartic terms. However these all 
—* 

involve higher powers of n or other terms that will not concern us. The coefficient of 

the second term has dimensions of (length)2. For future convenience, we will write it 

in the form e£ 2 / 3 , where e = 3(adj2 / agjf) is a dimensionless parameter which controls 

the strength of the s-d coupling and £ = \J^d/Wd\ is the G L coherence length. We 

henceforth assume e < l . As we will discuss in the next section, neutron scattering and 

S T M experiments probably support this assumption. As mentioned before, a term of the 

form |(n2—n2)d|2 could arise without invoking s-d mixing. It can result from a systematic 

derivation of higher order terms in the G L free energy starting with a BCS-like model 

and taking into account the square symmetry of the Fermi surface [143, 119, 144, 145]. 

The free energy (5.176) is not bounded below, exhibiting runaway behavior for rapidly 

varying d-fields. This is in fact cured by keeping additional higher derivative terms that 

also arise from integrating out s. In fact, the approximation of Eq. (5.176) will be 

sufficient for our purposes, yielding a local minimum which we expect would become a 

global minimum upon including the additional terms. 

In the case of extremely type II superconductors - which we are considering here -

the penetration depth A » £. We may therefore assume that \d[f)\ « d0, the zero field 

equilibrium value, almost everywhere in the vortex lattice, except within a distance of 

0(£) of the cores. This gives the London free energy, 

h = (1/8TT)(73)2 + 7<^K - K 2 /3)[(^ - ^ 2 ) 2 + (dyvy - dxvx)2}}, (5.177) 
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written in terms of the superfluid velocity (we set h — m* = 1), 

v = V9 - [e*/c)A, (5.178) 

where 6 is the phase of d. 

The corresponding London equation, obtained by varying fL with respect to A, is: 

c {2G*\ 2 

— V x S = J 1dl{v--^2[{yvy-xvx){vl-vl)-{ydy- (5.179) 

For many purposes it is very convenient to express v in terms of B and its derivatives, 

and then substitute this expression for v back into / L , giving an explicit expression for 
—* 

fi as a functional of B only. For e = 0 this gives 

v<°) = V x B/BQ, (5.180) 

where B0 = $0/27TAQ is a characteristic field of order Hc\, and 

/ » = ( l M B 2 + A g ( V x B f ] . (5.181) 

which is actually the ordinary London free energy (i.e. Eq. (5.141)). Here the penetration 

depth, for e = 0 is AQ2 = 87r7d(e*d0//ic)2. It is presumably not possible to solve Eq. 

(5.179) in closed form for v as a function of B for e ^ 0. However, this can be done 

readily in a perturbative expansion in e. The first order correction is: 

tfW = (2eem{(H0 ) - ^ ) H ° ] ) 2 - (^ 0 )) 2] - (Vfy - ^x){dyvf - dxv®)} (5.182) 

with {̂ °̂  given by Eq. (5.180). The London free energy density, up to 0(e) is then: 

h = fl + ^ m d y B ) ' + ((dxBr-(dyB)y/Bl}. (5.183) 

Note that we could have arrived at a similar conclusion by simply writing down all terms 

allowed by symmetry in fi, expanding in number of derivatives and powers of B. Square 



Chapter 5. Phenomenological Model 79 

anisotropy is first possible in the fourth derivative terms. In principle, we should also 

include all isotropic terms to order B4 and V 4 . However, assuming that these have small 

coefficients, they will not be important. As we shall see in the next chapter, similar results 

can also be obtained from nonlocal effects due to the divergence of the coherence length 

along the node directions [132] and also from considering generation of quasi-particles 

near gap nodes [104, 146], in a range of temperature and field where the supercurrent can 

be Taylor expanded in the superfluid velocity. More generally, the quadratic and quartic 

terms in (5.183) have independent coefficients. 

The corresponding London equation is obtained by varying fL with respect to B(r). 

For B along the z direction, one obtains 

[1 - A 2 V 2 + U\ie(dxdy)2]B - eQ[B] = 0, (5.184) 

where 

Q[B] = 2A 2

)£ 2£? 0- 2[(d 2 - d2
y)B + dxBdx - dyBdy][(dxB)2 - (dyB)2} (5.185) 

is the non-linear term arising from the last term in Eq. (5.183). 

Our numerical calculation (next section) shows that, the effect of the non-linear term 

is negligible (Contrary to naive expectation, it doesn't become more important with 

increasing applied field because the field becomes nearly constant in the vortex lattice 

when the applied field is large.) Thus to an excellent approximation one may neglect 

Q[B] in the London equation (5.184). To get a feeling for the effect of the extra nonlocal 

(four derivative) term, consider a semi-infinite superconductor in its Meissner state with 

an interface parallel to the yz plane. The magnetic field in this case depends only on x; 

all the y-derivatives and thereby the extra term vanish. The penetration depth will then 

remain unchanged and equal to A 0 . On the other hand, if the interface is 45° rotated 

with respect to x and y axis (a and b directions), the magnetic field will be a function 
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of (x + y). Substituting B = B0e (x+v)/^x into (5.184), we get (neglecting the nonlinear 

part) 

(5.186) A = A 0 

i ir^1'2 

2+U A§ j 
Here we keep only the larger solution because it is the one that determines the decay rate 

of the field and therefore can be identified as the penetration depth. The penetration 

depth is now longer along the crystal axes as is clear from (5.186). 

To determine vortex lattice structure, we insert source terms p(r—rj) at the vortex 

core positions, fj, on the right hand side of Eq. (5.184). The source term we use is the 

Gaussian source term introduced in eq. (5.167). Taking Fourier transform, the magnetic 

field may be written explicitly as: 

eik-re-k2£2/2 
B^ = B^TTWT^WW- (5'187) 

Here the sum is over all wave-vectors in the reciprocal lattice and B is the average field. 

The lattice constant is determined by the condition that BQ, = $ 0 ) where Q is the area 

of the unit cell. The lattice symmetry is then determined by minimizing the Gibbs free 

energy QL = FL~ HB/A-K, where 

•v e 
1 + XU,2 

k 
^ = 5 2 ? l + A ^ + 4 e A ^ ( W ( 5 J 8 8 ) 

5.4 N u m e r i c a l Results and Exper imenta l Real izat ions 

Ignoring the nonlinear term, one can perform the sums in (5.187) and (5.188) numerically 

to find the magnetic field and lattice structure. The correction due to the nonlinear term 

can then be found iteratively. To do so, we start by writing (5.184) in Fourier transformed 

form (with Gaussian source) as 

h " l + A ^ + 4 e A ^ ( W , {0-1™> 
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where Q[Bk] is the Fourier transform of Q[B] and the superscript n represents the stage 

of iteration. The initial B% is found by neglecting the nonlinear term. At each following 

step we calculate Q[Bk] using the known value for B^, substitute it into (5.189) to find 

the new Bk. We continue this iteration until we get the desired accuracy. Having B, we 

then can calculate the Gibbs free energy QL = FL — HB/4n using (5.183). We calculate 

the Free energy this way for different configurations of the vortex lattice. We find that a 

centered rectangular flux lattice, with principal axes aligned with the ionic crystal lattice 

minimizes the free energy. An angle (3 between unit vectors (Fig. 5.10) characterizes the 

dependence of the lattice on e and the magnetic field. A n example of such a centered 

rectangular lattice is shown in Fig. 5.10. 

Figure 5.10: Distribution of magnetic field in a vortex lattice for e = 0.3 and H = 6.8T, 
leading to an angle of (3 ~ 74°. We use A 0 = 1400A and K = A 0 /£ = 68. 

In agreement with earlier results within G L [121] and Eilenberger [147] formalisms, 

individual vortices are elongated along the crystalline axes. Figure 5.11(a) shows the 

dependence of Gibbs free energy on f3 for various values of e at fixed applied field H = 

400i?o — 6.8T. For e = 0 minimum occurs for /?MIN = 60°, corresponding to a hexagonal 

lattice. As e increases, /?MIN continuously increases and for sufficiently large e, the flux 
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lattice becomes tetragonal with /?MIN = 90°. For / ? M I N 90°, there are always two 

solutions, related by a 90° rotation, in which the long axis of the centered rectangle is 

aligned with either the x or y axis. The degeneracy is much larger for e = 0, when the 

flux lattice may have an arbitrary orientation relative to the ionic crystal lattice. 
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Figure 5.11: a) Gibbs free energy as a function of P for the same parameters as Fig. 5.10 
and various values of e. Arrows indicate positions / ? M I N of the minima and G0 = —H2/8TT. 

b) Equilibrium angle PMIN
 a s a function of H for several values of e. 

The dependence of /?MIN on the applied field for various values of e is displayed in 

Fig. 5.11(b). Clearly the anisotropic term becomes more important at larger fields. Our 

perturbative elimination of v in favor of B breaks down when e and H are sufficiently 

large that Pum differs significantly from 60°. Furthermore, we might expect higher 

order corrections to (5.177) to be important in this regime. By fitting Fig. 5.11(b) to 

experimental data on tetragonal materials such as Tl 2 Ba 2 Cu0 6 +d (once such data become 

available) one can directly assess the magnitude of e, the only unknown parameter in the 

model. 



Chapter 5. Phenomenological Model 83 

The analysis presented here, can be easily extended to take into account effective 

mass (i.e. penetration depth) anisotropy. In a simple one-component G L model, the 

derivative term is generalized to: 

/ = £ 7 * | I M 2 . . (5.190) 

i=x,y,z 

We restrict our attention to fields along the z-axis. The anisotropy then can be removed 

by a rescaling of the rr-coordinate and a corresponding rescaling of the magnetic field. The 

coherence length and penetration depth anisotropies are considered the same: Cy/Cx = 

Xx/Xy. Making a simplifying assumption that the higher derivative and mixed derivative 

terms in T are also simply modified by a rescaling by a common factor, it then follows that 

the flux lattice shape is obtained by stretching along the rr-axis by the factor Xx/Xy. We 

now obtain two possible vortex lattices, both of centered rectangular symmetry, aligned 

with the ionic lattice, with different angles, /3. (Relaxing our simplifying assumption may 

split the degeneracy between these two lattices.) On the other hand, when e = 0, we 

may rotate the hexagonal lattice by an arbitrary angle before stretching. This gives an 

infinite set of oblique lattices with arbitrary orientation. 

To compare theory with Y B C O we should take into account twin boundaries; which 

are the boundaries between different orientations of crystal lattice. They may also tend 

to align the vortex lattice by pinning vortices to the twin boundaries, at ±45° to the 

z-axis. This effect competes with alignment to the ionic lattice which we have been 

discussing. Only in the special case of a square vortex lattice does a line of vortices occur 

at ±45°. If this is not the case, and if pinning by twin boundaries is significant, then 

we should expect that the vortex lattice will align with the ionic lattice far from twin 

boundaries but will be deformed in the vicinity of a twin boundary in an effort to align 

itself with the twin boundary. On the other hand, for e = 0, the vortex lattice would 

remain aligned with the twin boundaries everywhere except within vortex lattice domain 
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boundaries which necessarily exist roughly midway between the twin boundaries. 

Neutron scattering experiments on Y B C O [117] suggest that the vortex lattice is well-

aligned with the twin boundaries and is close to being centered rectangular (the ratio 

of lattice constants is about 1.04) with (3 « 73°, with weak dependence on H. This 

corresponds to a rotation away from alignment with the ionic lattice by 9°. Four dif

ferent orientational domains, related by reflection in the (1,1,0) axis and 90° rotation 

were reported. These results can be rather well fitted [124] by the basic London model 

(e = 0) with mass anisotropy. For \ x / \ y = 1.5, a value roughly consistent with infrared 

experiments, this lattice has about the right shape. Taking into account the two crystal-

lographic domains (related by interchanging A^ and Xy) there are altogether four vortex 

lattice domains, as seen experimentally. The experimental fact that the vortex lattice 

appears to be well aligned with the twin boundaries suggests that the tendency to align 

with the ionic lattice is small. No evidence for a bending of the vortex lattice (by 9°) 

into alignment with the ionic lattice far from the twin boundaries has so far been found. 

S T M imaging of the Y B C O vortex lattice [118] also suggests that the (highly disor

dered) lattice has approximately centered rectangular symmetry with / ? « 77°. However, 

no evidence for the 9° tilt into alignment with the twin boundaries was reported. Con

sidering the observed anisotropy of the vortex cores it has been concluded that the mass 

anisotropy alone cannot account for the measured 77° angle of the vortex lattice. It has 

been suggested that a mechanism related to the internal symmetry of the order param

eter (such as the one discussed in the present thesis) needs to be invoked in order to 

reconcile these observations. 

Low field Bitter decoration data on Y B C O [148] show vortex lattice geometry with a 

very small distortion from hexagonal, consistent with a much smaller anisotropy Xx/Xy = 

1.11 — 1.15. One may be tempted to attribute this apparent field dependence of f3 to 

the effects discussed above in connection with Fig. 5.11(b). A n alternative explanation 
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is a poor quality of samples used in the Bitter decoration experiments that may have 

resulted in partial washing out of the a-b plane anisotropy [149]. 

6.795 6.800 6.805 6.810 6.815 

B m 

Figure 5.12: Magnetic field distribution function; Solid line: using the same parameters 
as in Fig. 5.10. Dashed line: the same parameters except for e = 0. 

//SR experiments measure the field distribution n(B) = (I/O) / S[B — B(f)]dxdy. Our 

calculation of this quantity is shown in Fig. 5.12. For comparison we show our results 

with (solid line) and without (dashed line) the extra nonlocal term. For pi ̂  60°, B(f) 

has two inequivalent saddle points leading to two peaks in n(B). n(B) is unaffected by 

effective mass anisotropy, as can be shown by the rescaling transformation, mentioned 

above. Existing pSR experiments show only a single peak [150] but this might be due 

to the large broadening as a result of finite muon lifetime. 

The weak field dependence of (3, the alignment with twin boundaries in the neutron 

scattering experiments, and the single peak in n(B) suggest that e is small in Y B C O 

and that the normal London model, together with twin boundary pinning, provides a 

good fit to the data. S T M and Bitter decoration data on the other hand, seem to favor 
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finite e and weak pining to twin boundaries. Further experimental work, preferably on 

untwinned Y B C O or other tetragonal superconductors, will probably be necessary to 

clarify the importance of square lattice anisotropy in high-Tc superconductors. 

Most of the experiments mentioned above are done at temperatures far below Tc, i.e. 

beyond the validity range of G L theory. Thus our derivation of the generalized London 

model from G L theory is not valid for most experimental situations. However, as we 

emphasized, the corrections we introduce to the London free energy are the most general 

analytic corrections possible by symmetry to the order of our concern. It is therefore 

reasonable that even at lower temperatures all the lowest order analytic corrections come 

with these forms. We will see in the next chapter that at very low temperatures, the 

lowest order corrections are actually non-analytic. This is because of the existence of the 

gap nodes; a unique feature of d-wave superconductors. Even those effects turn into the 

analytic forms discussed here at higher temperatures. 



Chapter 6 

Microscopic Model 

6.1 Gorkov Theory and Quasi-Classical Approximation 

Ginsburg Landau theory, discussed in the last chapter, is a theory that is valid only near 

the transition temperature Tc. Most of the experiments however, are done at tempera

tures far below Tc. Also, one of the most essential characteristics of d-wave supercon

ductors, i.e. the existence of nodes in the superconducting gap, does not show a direct 

effect on the G L equations. Thus a more sophisticated microscopic approach is necessary 

to describe the vortex lattice properties of high Tc superconductors. The microscopic 

theory we present here is based on the theory developed by Gorkov [151] in 1959. In his 

paper, Gorkov showed how G L theory results from pairing theory at temperatures close 

to T c . Here, we don't give the detailed derivation of Gorkov's equations from the first 

principles. Our goal instead, is to derive relations between supercurrent j and superfluid 

velocity vs (or vector potential A) starting from these equations. This relation is then 

used to obtain a generalized London equation. For a detailed derivation of the Gorkov 

equations, interested reader should refer to ref. [136, 152]. 

Let us start from an interaction Hamiltonian of the form 

Hint = j d3rdW^)M?)4(^MrlV(?-f) (6.191) 

The Gorkov equations for this Hamiltonian are 

OT L C 

87 
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+ J A(r,f').F t(r''T,fV)dV = 5^(f-f")6(r - r') (6.192) 

- j A*(fy)g(f'TyT')d3r" = o (6.193) 

where Q and F are regular and anomalous parts of the Nambu-Gorkov Green function 

respectively, 

S(rr,fV)<W = - < T T ^ ( F r ) ^ , ( f V ) > (6.194) 

^ ( f r . f V ) = - < TT^{(rr)V>I(fV) > (6.195) 

Here, and also throughout the rest of this chapter, we choose h = m = 1. The order 

parameter A is related to the interaction potential V by 

A ( f - f ' ) = V ( f - f ) < ^ ( r ^ f ) > . . (6.196) 

Equations (6.192) and (6.193) have to be solved for Q and T self-consistently with A . 

The self-consistency equation follows from (6.195) and (6.196) to be 

A*(f-fO = V(f-7)^(rTj+yO) (6.197) 

Solving these equations self-consistently, in a general case at the presence of Magnetic 

field is tedious if not impossible. However, substantial simplification can be achieved 

using local approximation or gradient expansion. The method we use here (with some 

minor differences), is a generalization of the gradient expansion method discussed in Ref. 

[152]. The generalization is necessary to study d-wave superconductivity. 

6.1.1 Local Approximation 

Gorkov equations (6.192) and (6.193) take much simpler forms in Fourier space. If the 

system is translationally invariant in time, Q and T are only functions of (r — r ') . We 
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can therefore take their Fourier transform with respect to (r — r') and define 

Qu{f,f) = J G(fT,T*0)e-iuj»TdT 

?l{r,7) = j T^rr^tye-^dT (6.198) 

where ton = 7rT(2n — 1) are fermionic Matsubara frequencies. We also change the co-

ordinates to R = r' and p = r — r' and take the Fourier transform with respect to p to 

get 

GU{R, k) = f G„{R + p, R)e-i%"dzp (6.199) 

J*(R\ k) = j Tl(R + p, R)e-^d3p (6.200) 

A{R, k)= f A{R + | , R - he'^d^p (6.201) 

(6.192) therefore becomes 

{iun + hik--A(R + i^)]2 + p}g„(R,k)+ f dzp f d3rne-^i\{R + py)J*{<r*',R) = 1 
2 c dk J J 

(6.202) 

The integral on the left hand side of (6.202) can be written as 

J dz

Pl j d3p2e-^+^A(R + p1 + p2,R + p2)Fl(R + p2, R) 

= lim / d 3

P l / d'p^'^e-^AdR + p2 + f ) + £ (R + ih + f ) - f )^l(R + P2, R) 
k'->kJ J 2 2 2 2 

= Jim A{R + i ^ + l-^r, k')Fl(R,k) (6.203) 
k'-+k dk *dk' 

If A(R) and A(R, k) are slowly varying functions of R, then we can neglect all -J* and -4; 

which are at most of the order of £. We can also follow the same procedure for (6.193). 

The resulting Gorkov equations in this limit will be 

{ ^ n _ I ^ _ ^ i ( ^ ) ] 2 + ^ ( ^ ^ + A ( ^ ^ ) j r t ( ^ f c ) = ! (6.204) 
2 c 

{- iw n - i [ fc + ^ ( £ ) ] 2 + ^^ = 0 (6.205) 
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These are now algebraic equations instead of integral equations. This approximation is 

usually referred to as quasi-classical approximation. The reason is that the equations 
—* —* 

involve position R and momentum k at the same time, similar to classical equations. 

The self-consistency equation also takes the form 

A*(R, k) = \Y,i d3k'V(k - k')Fl(R, k') (6.206) 
P n J 

where V(k) is the Fourier transform of V(r). The solutions to (6.204) and (6.205) are 

GU(R, k) = -
-iojn-\[k + ZA(R)}2 + y 

{iujn - \[k - \A(R)Y + »}{-iun - \[k + ~cMR)]2 + »} + &2(k) 
A * (A?) 

{iujn - \[k - \A{R)f + a){-iun -\[k + \A{R)Y + u} + A*(k) 

In the absence of magnetic field these solutions will be simplified to 

k 

* ® = J r l i (6-207) 

k 
with 

H = \ k 2 - i i and E% = y)^ + £s?(k) (6.208) 

The self-consistency equation (6.206) also will be 

A%R,k)= fd3k'V(k-k')A*(k')W-Y^ (6-209) 

Summing over Matsubara frequencies, the self-consistency equation becomes 

A(k) = -Jd*k'V(k-k')^tanh(^) (6.210) 

which is the well known BCS gap equation. 
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In the presence of magnetic field, simplifications can be achieved if we introduce new 

Green's functions Q and T by 

G(fr, r V ) = ^(fr, ^ r ' ) e - W - x ^ » 

and also a new pairing potential 

(6.211) 

(6.212) 

where x ( 0 i s the phase of the operator ip(f) at some fixed gauge. The Gorkov equations 

(6.204) and (6.205) for Q and T become 

{iujn-^[k + vs(R)]2 + p}Gu{R,k) + ^ = 1 (6.213) 

{ - iw n -^ [ fc - t7 , ( J? ) ] 2 + ^^ = 0 (6.214) 

where vs is the superfluid velocity defined by 

(6.215) 

This is the same definition as in (5.148) if we notice that x = 4>/2- Shifting the chemical 

potential p by v2/2, we have 

6 -» 
vs(r) = V x(r) - -A(f) 

c 

-(k ± Vs)2 - fj, = ± • u s (6.216) 

Gorkov equations will then be simplified to 
—* — 

iuon - €£ - k • vs A 

A* 
and their solutions will be 

V 

G 

Gu{R,k) = 

iu)n + e^ - k- vs 

—* 

icon - k • vs(R) + 6% 

(6.217) 

[iujn-k-vs(R)]2-El(R) 

-A*{R,k) 
[iun-k-vs(R)]2-El{R) 

(6.218) 
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Notice that the only difference between these and (6.207) is a Doppler shift (by k • vs) 

in the Matsubara frequencies. We again sum over the Matsubara frequencies in the gap 

equation to get 

A(R, k) = - /d*k'V{k - k')^l^{f[k' • Vs(R) - E-k,(R)] - f[k' • vs(R) + E-k,(R)}} 
J ^Ek\R) 

(6.219) 

where 

/^) = ^ T T ( 6 - 2 2 0 ) 

is the Fermi distribution function and is the inverse temperature 1/T. Note that as 

vs —> 0, this reduces to (6.210). 

6.1.2 Calculation of Current in a Superconductor 

The current density, in terms of the Green functions, can be written as 

j(r) = % lim £ ( V , - VR-) < j>ti?)M?) > £ < tiWMV > 
2 r -+f"^ C c 

1 
IP . P _* _ 

= ^ l i m £ ( V R - , - V ^ ( f D > f O + ) - - A ( f ) E ^ ( f D , H ) + ) 

= ie lim (VP - Vf)G{rO, f"0+) 4- 2ei7,(r)0(fO, rt)+) (6.221) 
f—>f 

The current in this form is manifestly gauge invariant. Keeping in mind that the super-

fluid density is ns(f) = E<r < ^(0^(0 > = z 2£(r t ) , r t ) + ) , the current can be written 

as 

J(r) = ensvs(f)+jqp(?) (6.222) 

where 

jqp(r) = ie lim (VR-> - V r - )£( fD, r*0+) (6.223) 
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jgp turns out to be the current due to quasiparticle excitations in the superconductor. 

Fourier transforming, using the same techniques discussed in the last subsection, we get 

lv(R^ = ief^{VA-2ik)-^gMk) (6.224) 

Again under quasi-classical approximation, one can neglect and write 

UR) = j ^ j ^ g ^ k ) 

T^HO- + £)f[Ei + k • MR)] - (1 - f)m - k • v-s(R]$.22h) 

In the last step, we have performed a Matsubara sum. Combining the two terms the 

current can be written as 

jqp(R) = -2c j -0pkf[Ei ~ k • vs(R)} (6.226) 
or 

jqp(R) - -4eNF (vF | o ° ° ̂ / ( V ^ + IAI 2 - vF • vs^j } (6.227) 

where NF is the density of states at the Fermi surface and (. . .) F S represents averaging 

over the Fermi surface. Note that A , in general, can depend on the point on the Fermi 

surface. Equation (6.227) has a natural interpretation. The argument of the Fermi 

distribution function / is the Doppler shifted quasiparticle energy at the particular point 

on the Fermi surface. Thus (6.227) is actually a Fermi surface average of the current due 

to the quasiparticles excited via thermal excitation plus the Doppler shift. This can be 

viewed as a normal fluid in the opposite direction of the superfluid that tends to reduce 

the supercurrent density. At zero temperature, the Fermi function is a step function 

which is zero unless its argument is negative. Therefore (6.227) is zero unless 
vF • vs > | A | (6.228) 



Chapter 6. Microscopic Model 94 

Eq. (6.228) actually defines a critical value vc = | A| m i n/uF for the superfluid velocity vs, 

beyond which the superconducting gap vanishes at some regions of the Fermi surface. 

Increasing vs beyond vc increases the number of quasiparticle excitations and eventually 

destroys the superconductivity. Therefore, there is an interval of vs over which we can 

have superconductivity with a gap that vanishes in some region of the Fermi surface. This 

is usually known as gapless superconductivity. For an s-wave superconductor, (6.228) 

gives a finite critical value for the superfluid velocity. For a d-wave superconductor (or 

any superconductor with nodes in the superconducting gap) on the other hand, the gap 

vanishes at the nodes even at zero vs. In other words, quasiparticles exist at node lines 

even for infinitesimal vs and zero temperature. This phenomenon is highly anisotropic 

because the nodes exist only at four symmetric points on the Fermi surface. The effect of 

these nodal quasiparticles in the Meissner state was studied by Yip and Sauls [104] and 

others [153]. Here, we focus on the effect in the vortex state; which has been studied in 

[132, 146]. We again derive a generalized London equation and solve it numerically for a 

vortex lattice to calculate physical quantities. 

6.2 Generalized London Equation 

As we mentioned earlier, the fourfold anisotropic nature of the gap nodes is expected 

to influence the magnetic properties of a d-wave superconductor. This influence will be 

via two distinct effects: a nonlinear effect due to quasiparticle generation because of 

Doppler shift in the quasi-particle spectrum, and nonlocal effect due to divergence of the 

coherence length along the nodal directions. In this section we study these effects in two 

separate subsections. In what follows we assume that these two effects can be studied 

independently and their effects are additive. In other words, we assume that any inter

connection between these two effects produces higher order corrections to our generalized 
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London equation. In general the excitation of quasiparticles at the gap nodes can affect 

the coherence length and therefore the nonlocality of the system. Similarly nonlocalities 

can change the form of Eq. (6.227). This effect which is neglected in our calculations 

has been studied extensively in the context of superfluid 3 He [154]. 

6.2.1 Nonlinear Corrections 

Let us first neglect any nonlocal effect and focus on the quasiparticles generated at the 

gap nodes. As we mentioned at the end of the last section, excitation of quasiparticles 

at the gap nodes produces a current density flowing in the direction opposite to the 

superfluid velocity - sometimes called back-flow. The total current is given by (6.222). 

We again define the superfluid velocity by 

vs = l(V<P-—A). (6.229) 

with 4> being the phase of the order parameter. In this definition, vs is in the direction 

of the superfluid, i.e. in the opposite direction of motion of the Cooper pairs (which 

is used in [104, 146] as the definition for the direction of vs). The contribution of the 

quasiparticles generated at the nodes to the total current is given by (6.227) which we 

rewrite it as 

jqp = -AeNF jps dsvF(s) d£f(y/e + A(s ) 2 - vF(s) • vs) (6.230) 

where s parameterizes a point on the Fermi surface. A(s) is the superconducting gap 

which in general can have s-wave, d-wave, or other symmetries. At zero temperature 

(6.230) leads to 

jqp = -4eNF j dsvF(s)0(vF • vs - \A\)y/(vF • vs)2 - A 2 (6.231) 

At higher temperatures however, this gives the first term in the Sommerfeld expansion; 

which is a good approximation as long as T < T* = TC(H/H0), where H0 is of order of the 
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Figure 6.13: Circular Fermi surface with a dx2_y2 gap. Quasiparticles will be excited at 
nodes marked by VFI and vp2 opposite to vs. 

thermodynamic critical field, Hc [104]. The presence of the ^-function in (6.231), results 

in excitations only at the nodes which are in the direction of va. Fig. 6.13 illustrates 

a circular Fermi surface with a d-wave gap. The quasiparticles are excited at the nodes 

marked by vpi and vp2 in the direction of vs. For a small enough vs, the excitations stay 

very close to the gap nodes. Therefore, one can linearize the gap function near the nodes 

writing A(9) ~ ^/A09, with A 0 the maximum gap and 7 defined by 

7 = ^ [ ^ A ( 0 ) ] n o d e (6.232) 

The most commonly used form for a d-wave gap is A(9) = A0cos(2#). In that case, 

(6.232) leads to 7 = 2. The component of jqp along the x'-direction which is diagonal to 

the x and y (a and b) directions (as illustrated in Fig. 6.13) is then 

,9C d9 I 
jqpx' = -AeNFvF —^/(vFvscosa)2-\jA09\2 

= — ens— cosa cosa = — ens (0.266) 
v0 v0 

a is the angle between vs and x'-axis, ns = NFvp is the superfluid density, v0 = 'jAo/vp 

is some characteristic velocity and 9C is a cut off imposed by the ^-function in (6.231). 
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Similarly the y'-component is 

UvV = - e n s

V s y ' M (6.234) 

and the total current thereby becomes 

j = ens[vs - [vsxi\vsxl\x' + vsy/\vsyl\y')/v0]. (6.235) 

The nonanalytic nature of the effect is evident from this equation. It is now possible 

to write a free energy in such a way that (6.235) can be obtained by minimization 

with respect to A. Keeping in mind that j = (c/47r)V X B = (c/47r)V x V x A and 

d/dva = —-JdjdA, the corresponding free energy density can be written as 

/ = ns L 2 " ' - 3 ^ ( l ' ' » ' | 3 + K ' ' ' | 3 ) 
+ ^ (6.236) 

In general, it is possible to solve (6.235) for vs in terms of j = (c/47r)V x B, substitute 

it into (6.236) and write down a London free energy only in terms of B and its derivatives. 

However, instead of solving (6.235) exactly, we find vs perturbatively assuming that the 

nonlinear part is much smaller than the linear part. This way we get a polynomial 

correction to the London equation which is convenient for numerical purposes. To first 

order in perturbation theory we have 

c 
Vs = . V x B + — ((V x B)X,\V x B\x,x' + (V x B)y,\V x B\y/y')) 

(6.237) 

Substituting this into (6.236) and keeping the lowest order terms, the London free energy 

density becomes 

h = ^ [ B 2 + Ag(V x Bf + ( ^ ) ^ ( I ( V x B)x,\* + | (V x B)y,\3)} (6.238) 

where A 0 = ^/c2/47re2n s is the zeroth order penetration depth, £ 0 = vp/^Ao is the 

coherence length, B0 = (j)o/2^Xl is a characteristic field of the order of Hcl and = W e 
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is the flux quantum. For magnetic fields in the z-direction, (6.238) becomes 

h = 871*' + A ° ( V 5 ) 2 + ( 3 ^ ) ^ ( I ^ ' j B | 3 + l ^ ' j B | 3 ) l = f l + / n l ( 6 - 2 3 9 ) 

with / ° and /„/ representing the ordinary London free energy density and the leading 

nonlinear correction to the free energy density respectively. The corresponding London 

equation is given by 

-X2V2B + B- (—)^L(d2
x,B\dx,B\ + d2

y,B\dy,B\) = 0 (6.240) 
7 B0 

A similar London equation is also derived by Zutic and Vails who investigated the effect 

in the Meissner state [153]. 

In order to find the magnetic field distribution in a vortex lattice, one has to insert 

a source term Y>jp{f — f3) on the right hand side of (6.240) with fj being the position 

of the vortices in the lattice. The function p{f) takes into account the vanishing of the 

order parameter at the center of the vortex cores. Numerically, it is more convenient to 

work in Fourier space rather than real space. Fourier transforming (6.240) with a proper 

source term on the right hand side yields 

B-k + X2k2BR - Gn,{k, BK) = BF{k) (6.241) 

where k is a reciprocal lattice wave vector, Gn\ is the Fourier transform of the nonlinear 

term and B is the average magnetic field. The cut off function F(k) comes from the 

Fourier transformation of the source term and removes the divergences by cutting off 

the momentum sums. We are going to use Gaussian cutoff (5.168) in our numerical 

calculation in the next section. 

6.2.2 Nonlocal Corrections 

In our derivation of the corrections to the London equation in the previous subsection, 

we derived a local relation between current density j and superfluid velocity vs (or vector 



Chapter 6. Microscopic Model 99 

—* _ 
potential ^4). This was a result of the local approximation we used in our derivation. 

In fact, this relation is always nonlocal over the length scale of the coherence length 

£ 0; which is of the order of the finite spatial extent of the Cooper pair [130]. Magnetic 

field in a superconductor varies in the length scale given by London penetration depth A 0 

and therefore nonlocal corrections to physical quantities, such as the effective penetration 

depth, will be of order K ~ 2 , where K = A0/£o is the G L ratio. For strongly type II materials 

(K 1) such corrections are negligible. Since cuprate superconductors fall well within 

this class (K is of 50 for most) local electrodynamics is usually used. However, a closer 

examination suggests that this might not be justified in all situations, if, as it is widely 

believed, these materials exhibit nodes in the gap. In such a case in place of the usual 

coherence length £ 0 = VF/ITA0 one is forced to define an angle dependent quantity, £o(p) = 

VF/TTAP, which diverges along the nodes. Clearly, in the vicinity of nodes the condition 

A0/£o(p) 3> 1 is no longer satisfied and, in fact, the extreme nonlocal limit is achieved. 

Nonlocal corrections therefore cannot be dismissed in unconventional superconductors. 

The effect of these corrections on the temperature dependence of penetration depth at 

low T was studies by Kosztin and Leggett [111]. Here, we discuss about the effect on 

the vortex lattice properties. What we follow here is based on a work published in 

Ref. [132]. From the above arguments, it is clear that corrections due to the nonlocal 

effects at the gap nodes will be highly anisotropic and will in general break the rotational 

symmetry of the flow field around the vortex, contributing an anisotropic component to 

the inter-vortex interaction in the mixed state. 

Let us now find these nonlocal corrections to the London model neglecting all the 

nonlinear effects discussed in the previous subsection. In the next subsection, we will 

combine these two effects into a single London equation to be used in numerical evalua-
—* —* 

tions. Nonlocal relation between j and A is conveniently written in the Fourier space as 
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[130] 

jk = -{c/4n)Q(k)Ak. (6.242) 

Here Q(k) is the electromagnetic response tensor which can be computed, within the 

weak coupling theory, by generalizing the standard linear response treatment of Gorkov 

equations [155] to an anisotropic gap. We find 

Qv® = *g.H , ^F,i>F> V (6.243) 

where 7̂  = vp • k/2, A 0 = \Jc2/4.-Ke2vFNF is the London penetration depth as before, u>n 

are the Matsubara frequencies and the angular brackets again mean the Fermi surface 

averaging. Derivation of (6.243) involves a calculation of the perturbative correction 

to the Green's functions to linear order in A using Gorkov's equations. The result is 

then used to calculate the supercurrent j [155]. Eq. (6.243) is valid for arbitrary Fermi 

surface and gap function. For isotropic gap one recovers an expression derived by Kogan 

et al. from the Eilenberger theory [156]. One may simplify solving the London equation 

again by writing it in terms of magnetic field only. Eliminating j from (6.242) using the 

Ampere's law j — (c/47r)V x B, one obtains 

Bk-k x [Q-\k){kx Bk)] = 0. (6.244) 

To study vortex lattice using this formalism, it is necessary to insert a cutoff function 

F(k) on the right-hand side of the Eq. (6.244). In our numerical calculations in the 

next section we again use Gaussian cutoff function (5.168). For many purposes it is also 

convenient to write down the corresponding London free energy, such that SJ^L/SBk = 0 

gives the above London equation: 

J~L = Y $ t + (kx Bk)Q-\k)(k x Bk)]/8ir. . (6.245) 
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At long wavelengths Q(k) can be evaluated by expanding expression (6.243) in powers 

of 7jg. The zeroth order term 

clearly recovers the ordinary London free energy. Here, A = A(T) is the temperature 

dependent penetration depth which, at low temperatures, has the well known T-linear 

behavior [157, 33]; for a dx2_y2 superconductor with A p = A d ( p 2 — p2) and a cylindrical 

Fermi surface (from now on we shall focus on this simple case) A - 2 « AQ 2 (1 — 21n2T/Ad). 

The leading nonlocal term is quadratic in k: 

( 2 ) _ 4 T T T / AjvFlvFj \ 
Q L 3 A 2

 B ^ o \ ( ^ + A j ) » / 2 7 * / - [ b - M 7 ) 

The expression Qij = 8ijX~2 + Cj\f is easily inverted to leading order in k to get Q ^ 1 « 

X2[Sij - X2Q{f]. Substituting this into (6.245) and specializing to fields along the z-

direction we have 

? L = £ + X2k2 + A 2 e 2 ( C l f c 4 + c2k2

xk2

y)}/8n. (6.248) 
k 

Here £ = vF/7tAd and A^ is assumed to be a temperature dependent solution to the 

appropriate gap equation. Dimensionless coefficients C\ and c2 are given by 

*=5^£sf"R^- ( 6 ' 2 4 9 ) 

where wx = v2

Fxv2

Fy, w2 = (t)^ - t) 2^) 2 - 4 ? } ^ ^ and the Fermi surface has been 

explicitly parameterized by the angle 9 between p and x-axis; vF = (cos 9, sin 9) and 

A p = Ad cos 29. Coefficients ci and c2 depend on temperature through a dimensionless 

parameter t = T / A d . From (6.249) one can deduce their leading behavior in the two 

limiting cases: for t <C l we find 

C i = y f i ' C 2 = _ 4 c i ' ( 6 - 2 5 0 ) 
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and for t ̂ > 1 (i.e., near Tc) 

A 2 1 
c 2 = 8ci (6.251) 

where a = C ( 5 ) ( l - 2~5)/87r2 = 0.01272. In the above A also depends on t, but this will 

be unimportant for the following qualitative discussion. 

The free energy (6.248) formally coincides with (5.188), deduced previously in the 

last chapter with phenomenological considerations. The present model however, allows 

us to evaluate the coefficient of the symmetry breaking term c 2 (or e in (5.188)). At 

high temperatures, c 2 is found to be positive; in agreement with our previous result. 

As we showed in the last chapter, such a term leads to a centered rectangular vortex 

lattice structure with principal axes oriented along x or y axes of the ionic lattice (see 

Fig. 6.14a). The magnitude of distortion from a perfect triangular lattice is controlled 

by the magnitude of c 2 and grows with increasing magnetic field. Eq. (6.251) shows 

that at fixed field this distortion will initially grow with decreasing temperature. At low 

temperatures (6.250) predicts c 2 < 0. This will lead to the same centered rectangular 

lattice but rotated by 45° (Fig. 6.14b). Numerical evaluation of (6.249) shows that c 2 

passes through zero at t* ~ 0.19. At this temperature the free energy (6.248) is isotropic 

and the lattice will be triangular at all fields. The change of sign of c 2 reflects the 

competition between the two terms of different symmetry in w 2 . At t <C 1 only the 

region around the node is important where (vFx — vFy)2 vanishes, while at £ 3> 1 the 

average involves the entire Fermi surface to which both terms in iy 2 contribute. This 

change of sign is a unique consequence of nodes in the gap function and would not occur 

in conventional superconductors. 

Another consequence of nodes is the fact that, as can be seen from (6.250), both c\ 

and c 2 diverge as 1/t for t —> 0. This divergence signals that the response tensor Q(k) is 

a non-analytic function of k at T = 0, and the expansion in powers of 7 | breaks down. 
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Figure 6.14: Two high symmetry orientations of centered rectangular unit cell. 

Formally this is caused by the fact that at T = 0, at the nodal point, the expression 

(6.243) for Qij(k) contains a term proportional to 1/7|- At T = 0 the frequency sum in 

(6.243) becomes an integral which can be evaluated exactly with the result: 

^ /r\ 1 / - ~ 2arcsinh , y\ ,„ Q v { k ) = - ^ V F i V F j - ^ . y (6.252) 

where y = For small k the dominant contribution to the angular average comes 

from the close vicinity of nodes and can be evaluated by linearizing Ap around the 

nodes. One finds that the leading nonlocal contribution is linear in k rather than 

quadratic. For Qij = S^XQ2 4- Q\f, we have Qx

1} = Q^J = -/j.(kM€o) and — 

Qy

lx = -At(^m£o)sgn(A;a:fcy), where kM = max(|fcx|, \ky\) and km = min(|A;x|, \ky\). Prefac-

tor n = 7 r 2 /8 \ /2 = 0.8723 is exact in the sense that all corrections to are 0(k2). The 

resulting free energy at T = 0 is 

^ = E + X2k2 + iiX2SkM{k2

M - k2J]/87r. (6.253) 
k 

The nonlocal term is clearly non-analytic in k. Its functional form is universal in the 

sense that it is independent of the Fermi surface structure (as long as it has the same 

symmetry as the order parameter) and the prefactor \i only depends on the angular slope 

of the gap function and Fermi velocity at the node. 
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The present calculation can be easily generalized to treat the effects of Fermi surface 

anisotropy. As mentioned above tetragonal anisotropy will not modify the T —> 0 univer

sal behavior but may lead to quantitative changes at higher temperatures. Orthorhombic 

anisotropy, on the other hand, will modify even the T —>• 0 limit. We expect that it will , 

to leading order, merely rescale the coordinate axes, leading to the same structures as 

described above stretched by the axes, leading to the same structures as described above 

stretched by the appropriate factor [140]. It may further remove the degeneracy between 

two equivalent lattices related by 90° rotation. Also neglected in our calculation is the 

effect of electronic disorder, which will remove the non-analyticity of Q(k) at longest 

wavelengths, just as small finite temperature would. Since the lattice structure is most 

sensitive to Q(k) at finite k ~ l/l (I is the vortex spacing), we expect our predictions to 

be robust with respect to weak disorder. 

6.2.3 Combining Nonlinear and Nonlocal Corrections 

Having established theories for nonlinear and nonlocal effects independently, we now 

would like to combine them in one London equation to be used in numerical calculations. 

Nonlocal effect can be added to the generalized London equation (6.241), simply by 

replacing the second term with its nonlocal counterpart 

Bj; + Cij{k)kikjB-k-Ga,(k,B~k) = BF(k). (6.254) 

—* 

Sums over i and j are implicit here. Cij(k) is related to the electromagnetic response 

tensor Q(k) by . 
Cij{k) = Qij(k)/detQ{k). (6.255) 

The electromagnetic response tensor Q(k) is given by (6.243) for T ̂  0, and by (6.252) 

a t T = 0. 
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In the local case, we have Cij(k) = A 2 , ^ which leads back to (6.241). Taking Gn\ to 

the right hand side of (6.254), can be obtained by 

flF(3+ft,(£,Bri . (6.266)-

1 ~\~ )C*ij (&) k%kj 

We will use this equation, in the next section, to find Bk iteratively for a specific lattice 

geometry. Having B^, the free energy can be easily calculated using 
•T7 = .Fni + £ [ 1 + dj^kik^Bl (6.257) 

where Tn\ is the free energy due to the nonlinear term in Eq. (6.239) 

= 0 ^ Jd\ (|cV/3|3 + \dy,B?) (6.258) 

6.3 N u m e r i c a l Calculat ions 

Unlike Ginsburg-Landau, the London free energy cannot completely determine the vortex 

lattice by a simple minimization. Instead, one has to impose a set of source terms 

located at the position of the vortices on an assumed lattice. The functional form of 

the source terms does not come from the London theory and requires more fundamental 

treatments; as we discussed in Sec. (5.2.2). Information about the functional form of the 

source term is included in (6.256) via F(k), and information about the positions of the 

vortices is included in the reciprocal lattice vectors k. The free energy must then be 

minimized with respect to the positions of the vortices in order to find the equilibrium 

lattice configuration. In general, a 2D lattice can be determined by four parameters. 

However, it turns out that a centered rectangular lattice is energetically more favorable 

than an oblique lattice. On the other hand, the vortex lattice spacing is fixed by the 

average magnetic field B (B & H away from Hci). Thus we are left with two variational 

parameters, i.e. the lattice orientation with respect to a and b directions and the apex 
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angle /5 - the angle between the two basic vectors of the lattice. We therefore find the 

vortex lattice geometry by minimizing T in with respect to the apex angle /3 for different 

orientations of the lattice. 

In our numerical calculation, we first neglect the nonlinear effects and consider only 

the nonlocal corrections. At the end, we will add the effect of the nonlinear corrections to 

the results. We shall see that the nonlinear corrections are subdominant to the nonlocal 

ones. Therefore the results we obtain, ignoring the nonlinear effects, are actually very 

close to the reality. In our calculations, we first find Bk using (6.256) but ignoring Gn\ 

(i.e. ignoring the nonlinear corrections). Substituting (6.256) into (6.257), and also 

ignoring we can calculate the free energy. At T = 0, we can alternatively use 

(6.253) to calculate the free energy. Numerical evaluation, shows that the free energy 

70.0 

65.0 

P 60.0 

Figure 6.15: Equilibrium angle /? as a function of reduced temperature t = T/Aj for 
various fields. Open symbols mark lattice with orientation along x or y direction while 
solid symbols mark the lattice rotated by 45°. We use A 0 = 1400Aand K = 68. Inset: (3 
as a function of field at fixed T. 

(6.253) gives rise to a centered rectangular vortex lattice, aligned with a; or y axes, but 
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now with the apex angle pi < 60°; unlike (5.188) which gives a pi > 60°. In order to. 

map out the complete equilibrium H-T phase diagram we have carried out a numerical 

computation of the vortex lattice structure using the full expression for the response 

tensor Q(k), as given by Eqs. (6.243) and (6.252). We find that the free energy has two 

local minima for centered rectangular lattices aligned with two high symmetry directions 

(see Fig. 6.14), as expected from the tetragonal symmetry of the problem. Which of 

the two becomes the global minimum depends on temperature and field. The results 

are summarized in Fig. 6.15. For high temperatures, the exact result agrees well with 

the one obtained from the long wavelength free energy (6.248). The deformation of the 

lattice from perfect triangular, grows with decreasing temperature, reaches maximum, 

and then falls. Maximum distortion occurs around t ~ 0.3, attaining pi ~ 70° at 10T. 

Extrapolating this field dependence (see inset to Fig. 6.15), the lattice should become 

square lattice around H « 30T, but this field is outside the domain of validity of the 

London model. At lower temperatures the distortion decreases but instead of going all 

the way back to triangular at t*, the lattice undergoes a first order phase transition to 

another centered rectangular lattice rotated by 45° and with j3 < 60°. Further decrease 

of temperature causes the angle to grow again. We note that the precise temperature at 

which it crosses 60° depends on field, but for all fields it is close to t* = 0.19, as predicted 

by the long wavelength approximation. At yet lower temperature we predict another 

first order transition to a centered rectangular lattice along x (or y) with pi < 60°. It 

has to be noted that the free energy difference between the two minima is very small in 

the region where the 45° rotated lattice wins. It is thus likely that real system, in which 

vortex pinning to various defects occurs, will prefer to remain in the metastable state at 

these intermediate temperatures. Instead of two consecutive first order transitions the 

experiment would detect only a smooth crossover from a lattice with pi > 60° to the one 

with pi < 60°. Alternatively domains with various orientations may develop. 
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Figure 6.16: Apex angle (3 as a function of magnetic field B at T = 0. Circles represent 
the result of the calculation using only the nonlocal corrections. Squares correspond to. 
the calculations considering both nonlinear and nonlocal corrections. 

At this point, we can add the nonlinear corrections to our numerical calculations. 

The general strategy is to use (6.256) to calculate iteratively. At each step Gn\ has 

to be calculated numerically. The non-analytic form of G n i , prevents us from using usual 

convolution integrals in our Fourier transformation. Instead, we first calculate Gn\ on a 

lattice in a unit cell of the vortex lattice in position space. Then we use Fast Fourier 

Transformation (FFT) to calculate the Fourier transformed Gn\ at the reciprocal lattice 

wave vectors k. In our numerical calculation, we use A 0 = 1400A, K = Ao/£o = 68 as 

before and also 7 = 2. 

At T = 0, the stable orientation of the lattice is again aligned with a and b axes. Fig. 

6.16 shows the results of our numerical calculations for (3 as a function of magnetic field. 

The upper curve (squares) is the result of combined calculation, considering both nonlocal 

and nonlinear corrections, i.e. using (6.256) and (6.257). The lower curve (circles) on the 

other hand, corresponds to taking into account only the nonlocal corrections (this curve 

is the same as the t = 0 curve in the inset of Fig. 6.15). As is clear from Fig. 6.16, the 
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Figure 6.17: The effective penetration depth as a function of the magnetic field. Circles 
represent the result of the calculations considering only the nonlocal effects whereas 
squares are the result of combined calculation considering both nonlocal and nonlinear 
effects. 

difference between the two cases is small and about one or two degrees. Therefore, the 

phase diagram given in Fig. 6.15 retains its validity qualitatively, even after adding the 

nonlinear correction to the generalized London free energy. 

We also calculate the effective penetration depth Aeff for different magnetic fields in 

almost the same way as it is calculated from / J S R data [125]. In these experiments, the 

/ / S R precession signal obtained from experiment is fit to a signal obtained by Fourier 

transforming a theoretical magnetic field distribution function n(B) defined by 

with £1 denoting the area of a unit cell. The magnetic field B(r) in (6.259) is calculated on 

a hexagonal vortex lattice with the same average magnetic field as the experimental field 

and using the ordinary London model with some cutoff function. The A which provides 

the best fit to data is considered as Aeff. Here, we calculate Aeff in a different way (but 

similar in spirit), using the fact that in the ordinary London model, for a general vortex 

(6.259) 
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lattice and for a large enough field, 

(B- B)2 = AB2 = B2 

(1 + X2k2)2 r (0A - 4 (6.260) 

were T(£) is a function that depends on the structure of the vortex lattice. Associating all 

the field dependence of AB2 in our calculation with the field dependence of an effective 

penetration depth Aeff, we can define Aeff by 

where ABQ is the mean squared value of the magnetic field (Bo(r) — B) evaluated using 

with the penetration depth A 0 . 

Fig. 6.17 shows the result of our numerical calculation for Aeff using (6.261). The lower 

curve corresponds to the calculations including only the nonlocal correction. The upper 

curve corresponds to the result of the calculations using both nonlinear and nonlocal 

terms. The effect of the nonlinear term to the field dependence of Aeff is almost nothing 

but an overall shift. Fig. 6.18 exhibits magnetic field distribution n(B) at the average 

magnetic field B — 5.9T. The solid line in Fig. 6.18 represents the magnetic field 

distribution calculated from the nonlinear-nonlocal London equation. The double peak 

feature is a sign of existing two different saddle points in a unit cell of the lattice which 

is a result of having a pi ^ 60°. This line-shape is then compared with another line-shape 

(dashed line) obtained from an ordinary London calculation but with a larger value of 

A 0 . Similar line shapes with some additional broadening can also be produced from p$R 

data. The broadening is due to lattice disorder, interaction of muons with nuclear dipolar 

fields and finite lifetime of muons. The resolution of the magnetic field as a result of this 

broadening is 8B ~ 10 _ 3 T. The difference between the solid line and dashed line in Fig. 

6.18 as well as the double peak feature of the solid line is therefore not observable by 

(6.261) 

the ordinary London model on a hexagonal lattice with the same average field B and 
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Figure 6.18: Solid line: Magnetic field distribution obtained from the nonlinear-nonlocal 
London equation with B — 5.9T and A 0 = 1400 A. Dot-dashed line: field distribution 
obtained from an ordinary London equation on a hexagonal lattice with the same B and 
A 0 . Dashed line: Result of the same ordinary London calculation but with A 0 = 1850 

//SR experiments because of these broadening effects. Thus as far as these line-shapes 

are concerned, it is difficult to distinguish a nonlinear-nonlocal effect from a simple shift 

in the magnetic penetration depth in the ordinary London model. Fig. 6.19 compares 

the effect of including both nonlinear and nonlocal corrections to the London equation 

with the effect of including only the nonlocal term. Comparing the two line-shapes, it is 

apparent that the effect of the nonlinear term is small compared to the nonlocal term as 

was emphasized before. 

6.4 Conclusion 

Ordinary London theory is not adequate to describe all the different properties of a vortex 

lattice in high T c superconductors; especially the properties resulting from the presence 

of the superconducting gap nodes or other anisotropies on the Fermi surface. However, 

A. 
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Figure 6.19: Solid line: Magnetic field distribution obtained from the nonlinear-nonlocal 
London equation. Dashed line: Magnetic field distribution obtained from a London 
equation including only the additional nonlocal term using the same parameters. 

as we established throughout this thesis, a generalized London model with appropriate 

higher order corrections which take into account these anisotropic effects, can still provide 

a fairly simple way to calculate different properties of a vortex lattice. The corrections we 

found to the London equation were classified into nonlocal and nonlinear ones. In both 

analytic and non-analytic (low T) cases, nonlocal corrections play the dominant role in 

determining the vortex lattice properties. 

Equilibrium vortex lattice geometry exhibits novel field and temperature dependence 

owing to the fourfold anisotropic effects expressed by the corrections to the London 

equation (Fig. 5.11, Fig. 6.15 and Fig. 6.16). Numerical calculation of the lattice 

geometry is rather insensitive to the details of the vortex cores. The reason is that the 

details of the magnetic field inside the vortex cores mainly affect the magnetic self-energies 

of the vortices. In magnetic fields far below HC2 on the other hand, the vortex lattice 

geometry is mostly determined by the magnetic interaction energy between vortices which 

is not sensitive to the precise shape of the core. Therefore, our replacement of the vortex 
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core by a simple Gaussian source term should be adequate for the vortex lattice structure 

calculations. 

The effective penetration depth A es also exhibits field dependence at low temperatures 

as illustrated in Fig. 6.17. Some important points need to be emphasized here: 

(i) The field dependence of Aeff is not linear as is evident from Fig. 6.17. Variation 

of Aeff with magnetic field is faster at lower fields. At low magnetic fields, the relative 

variation of the effective penetration depth in our calculation is about 7% for an increase 

of IT in the magnetic field which is close to 7.3% variation obtained from //SR data 

for an optimally doped and 9.5% variation for a detwinned underdoped Y B C O single 

crystal using the same cutoff function as (5.168) for fitting calculations [125, 127]. Most 

recent //SR results [158] extrapolated to T = 0, has provided a measurement of Aeff as 

a function of magnetic field up to 7.5T. A n excellent agreement between this result and 

our nonlinear-nonlocal theory is presented in Fig. 6.20. 

(ii) More importantly, this field dependence of Aefr has a predominantly nonlocal origin 

rather than a nonlinear one; contrary to what is generally believed. The contribution of 

the nonlinear term to the total (minimized) free energy is almost one order of magnitude 

smaller than the nonlocal term. What is more important however, is the field dependence 

and (3 dependence of these terms not their orders of magnitude at fixed J3 and B. As we 

mentioned earlier, we consider /5 as a variational parameter to be fixed by minimizing 

the London free energy. As can be inferred from Fig. 6.16 and Fig. 6.17, the field 

dependence and /? dependence of the nonlinear term in the free energy is also smaller 

than the nonlocal term. It is worth noting that in the Meissner state, a linear nonlocal 

term can never produce field dependence in the penetration depth (as it is usually defined 

in that state) and therefore a nonlinear term is necessary for such an effect [104]. In the 

vortex state on the other hand, a nonlocal term can result in a field dependent effective 

penetration depth, if we define it the way it is defined in //SR experiments. We should 
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Figure 6.20: Comparison between our nonlinear-nonlocal theory and a recent pSR result 
at T — 0. Squares represent our calculation of the effective penetration depth using 
nonlinear-nonlocal model (cf. Fig. 6.17). Circles correspond to the recent //SR data 
[158]. Our A 0 (= 1400 A) is a fitting parameter which might be different from the 
measured value. 

emphasize here that in this way of definition, does not directly give the superfluid 

density as it does in the Meissner state.. 

To understand this better, let's neglect the nonlinear term and assume a linear but 

nonlocal London equation. The total magnetic field, in this case, will be the superposition 

of the fields around individual vortices. The magnetic field around an isolated vortex is 

given by 
d2k F(k)eiR-f 

B « = *»/(2rfr , N O - " (6.262) 
(27r)2l + / v i ( f c ) ^ 

where $o is the flux quantum and F(k) is the cutoff function resulting from the source 

term. £ij(k) is defined in (6.255). The field decays with some constant (field independent) 

decay rate A; which is the Meissner state penetration depth (see Fig. 6.21). Increasing 

the magnetic field does not affect the profile of the magnetic field and therefore A. Rather 

it squeezed the vortices together. For small values of k, £ij(k) « A2<%. Since small k 
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Figure 6.21: Magnetic field as a function of the distance from the center of the vortex 
(a-direction) for an isolated vortex. The solid line corresponds to the nonlocal London 
equation whereas the dashed line represents an ordinary London calculation with the 
same value of A 0 . BQ = B(r — 0) for the ordinary London vortex. 

corresponds to large r, one expects an isotropic field, similar to the local London case, 

far away from the vortex core. For large values of k on the other hand, Cij(k) has 

strong ^-dependence with four-fold anisotropy. Thus the closer to the vortex core, the 

more deviation form an isotropic ordinary London single vortex is expected, as is clearly 

shown in Fig. 6.21. At low magnetic fields, the vortices are far apart and their magnetic 

fields overlap in regions far away from their cores. The properties of the vortex lattice 

should then be similar to the ordinary london hexagonal lattice. As the magnetic field is 

increased, the vortices come closer to each other. Although the profile of the magnetic 

field around each vortex remains unchanged, the overlap regions will be closer to the 

vortex cores and will be more affected by the nonlocal term. Therefore, it is conceivable 

that at large magnetic fields, the vortex lattice properties such as the magnetic field 

distribution will be affected by the nonlocal term in the London equation. The magnetic 

field near the vortex core is always reduced by the nonlocal term as is clear in Fig. 6.21. 
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This is because £ij(k) — A 2 ,^- is a positive definite tensor for all k and therefore the 

denominator of the integrand in (6.262) is always larger than the corresponding ordinary 

London one. As a result, the magnitude of AB2 is smaller for the nonlocal case and 

therefore Aeff defined by (6.261) tends to be larger. This explains why A eff/A 0 is always 

greater than one in Fig. 6.17. Fig. 6.18 exhibits the resemblance between a change in the 

magnetic field distribution due to the nonlocal term and due to a shift in the ordinary 

London penetration depth. The slight difference between the solid and dashed lines in 

Fig. 6.18 would be unobservable in //SR experiments as a result of the broadening effects. 

Since no field dependence due to the nonlocal term is expected in the Meissner state, 

Aeff as defined here and also in //SR experiments is expected to be conceptually different 

from what is usually defined as penetration depth in the Meissner state, although they 

are closely related. 

(iii) The magnitude and field dependence of A eg is not so sensitive to the apex angle 

0. In other words, a few degrees change in the variational parameter /3 does not modify 

the magnetic field distribution as much as a variation in the average magnetic field does. 

(iv) Calculation of Aeff is rather sensitive to the form of the vortex source term. The 

importance of the source term in the calculation of AB2 has already been emphasized by 

Yaouanc et a/.[159]. In Ref.[125], Aeff is obtained by fitting to the //SR data using both 

a Gaussian cutoff ((5.168)) and also the cutoff function proposed by Hao et a/.[160, 159]. 

The difference between the two cases is significant and about 30% for the magnitude of 

Aeff and even more (for detwinned sample) for the relative variation with respect to the 

magnetic field. This can explain the importance of the source term in calculations of the 

effective penetration depth. 

//SR experiments [125, 128] on NbSe 2, which is believed to be a conventional super

conductor, also show a field dependence in the effective penetration depth; although it 
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is much weaker than what is observed in high Tc compounds. Since there is no node in 

the superconducting gap of these materials, the theory presented in this thesis cannot 

explain this field dependence. However, since the size of the vortex core in these ma

terials is large and comparable to the vortex lattice spacing for the magnetic fields of 

experimental interest, it is conceivable that a significant effect can come from the cores 

as is pointed out in Ref. [159]. Thus, a more careful consideration of the vortex core 

might be necessary in order to have a better quantitative explanation of the experimental 

results. 
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