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ABSTRACT 

Water-fat chemical shift imaging (CSI) has been an active research area in magnetic 

resonance imaging (MRI) since the early 1980's. There are two main reasons for water-fat 

imaging. First, water-fat imaging can serve as a fat-suppression method. Removing the 

usually bright fatty signals not only extends the useful dynamic range of an image, but 

also allows better visualization of lesions or injected contrast, and removes chemical shift 

artifacts, which may contribute to improved diagnosis. Second, quantification of water 

and fat provides useful chemical information for characterizing tissues such as bone 

marrow, liver, and adrenal masses. A milestone in water-fat imaging is the Dixon method 

that can produce separate water and fat images with only two data acquisitions. In 

practice, however, the Dixon method is not always successful due to field inhomogeneity 

problems. In recent years, many variations of the Dixon method have been proposed to 

overcome the field inhomogeneity problem. In general, these methods can at best separate 

water and fat without identifying the two because the water and fat magnetization vectors 

are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods 

usually depend on two-dimensional phase unwrapping which itself is sensitive to noise 

and artifacts, and becomes unreliable when the images have disconnected tissues in the 

field-of-view (FOV). 

We will first introduce the basic principles of nuclear magnetic resonance (NMR) and 

magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat 

imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-

fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the 

ii 



chemical shift information is achieved, which allows an unambiguous determination of 

water and fat on a pixel by pixel basis. Details of specific implementations and noise 

performance will be discussed. Representative results from volunteers and patients in a 

clinical setting will be presented. In chapter 4, new improvements in the signal-to-noise-

ratio (SNR) for the DPE method will be introduced and details of noise performance 

analysis will be discussed. In chapter 5, a special DPE sampling scheme will be 

introduced. With three-orthogonal phase (TOP) image acquisitions, it allows a correction 

of image magnitude errors caused by factors such as T2* relaxation. Details of data 

acquisition and signal processing will be discussed. Representative results from 

volunteers will be presented. In chapter 6, we will introduce a new two-point water-fat 

imaging method. By sampling water and fat asymmetrically and minimizing the gradient 

energy in a phase map, this method determines water and fat without ambiguity and 

handles disconnected tissues well. Details of data acquisition, signal processing, and 

noise performances will be discussed. Representative, results from volunteers will be 

presented. In chapter 7, we will introduce a new general method of chemical shift 

imaging with spectrum modeling (CSISM). CSISM models a spectrum as several peaks 

with known resonance frequencies but unknown peak amplitudes which can be resolved 

from a set of spin-echo images. Details of data acquisition, signal processing and noise 

performances will be discussed. Representative results from phantom experiments and a 

clinical scan will be presented. In chapter 8, the general ideas, results and conclusions of 

all the methods we introduced in this thesis will be discussed, compared, and 

summarized. 
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CHAPTER 1 

INTRODUCTION 

1.1 Important Discoveries in Nuclear Magnetic Resonance (NMR) 

In 1933, Otto Stern and his collaborators first observed the effect of nuclear spin by 

the deflection of a beam of hydrogen molecules in a magnetic field [1,2]. In 1937, I. I. 

Rabi and his co-workers conducted the first successful nuclear magnetic resonance 

(NMR) experiment with a modified molecular beam apparatus [3]. In 1944, Otto Stern 

was awarded the 1943 Nobel Prize in Physics "for his contribution to the development of 

the molecular-ray method and his discovery of the magnetic moment of the proton" [4]. 

At the same time, the 1944 Nobel Prize in Physics was awarded to I. I. Rabi "for his 

resonance method for recording the magnetic properties of atomic nuclei" [4]. 

NMR in bulk materials was first achieved by two groups of physicists independently. 

One group of physicists were Edward M. Purcell, Henry C. Torrey, and Robert V. Pound, 

who were employed by MIT but carried out their experiments at Harvard University. 

They obtained the NMR signal with an absorption experiment in late 1945 [5]. In their 

experiment, a resonance cavity was placed in the gap of a large electromagnet. The cavity 

was filled with about 1kg of paraffin. A radiofrequency magnetic field fixed at 30 MHz 

was introduced into the cavity with the direction of the RF field perpendicular to the static 

field everywhere. The RF field output from the cavity was detected by a bridge circuit. 

They expected the cavity output to drop due to the absorption of the RF field by the 

paraffin when magnetic resonance occurs. It was known that, at resonance, the static 
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magnetic field strength B and the RF angular frequency to should satisfy the Larmor 

equation 

co = -yB (1-1) 

where y is the gyro-magnetic ratio. For hydrogen, yH is equal to 26752 rad/sec/gauss , or 

equivalently, yJ2n is equal to 4.2577 kHz/gauss. The magnetic field strength B was 

slowly varied around the expected resonance value by changing the magnet current. At a 

field of 7100 Gauss, the cavity output dropped significantly. The first nuclear magnetic 

resonance in bulk material was thus observed. Another group of physicists at Stanford, 

consisting of Felix Bloch, W. W. Hansen, and Martin Packard, obtained a NMR signal in 

early 1946 with an induction method [6]. In their experiment, a brass box was placed in 

the gap of an electric magnet. Their sample of liquid water was put into the box along 

with two orthogonally placed RF coils. One coil was used to excite the sample with an 

RF field while the second coil was used to pick up the nuclear induction signal as the 

magnetization precessed around the static magnetic field after magnetic resonance. Bloch 

and Purcell shared the Nobel Prize in Physics in 1952 "for their development of new 

methods for nuclear magnetic precision measurements and discoveries in connection 

therewith" [4]. 

The use of NMR in imaging was introduced by Paul Lauterbur in late 1971. In his 

historical paper published in 1973 [7], Lauterbur described a method to generate a 2-

dimensional or 3-dimensional NMR image by the use of magnetic field gradients in 

several directions and back-projecting the one-dimensional spectra produced from each 

gradient. The first Fourier transform (FT) imaging technique was proposed by Kumar, 

Welti, and Ernst in 1975 [8]. A few years later, a modified FT imaging method was 



developed by Edelstein et al and named as "spin warp" method [9]. Most of the imaging 

pulse sequences we use today are based on this spin warp method. In the next section, we 

will introduce some basic principles of NMR physics and spin warp imaging. 

1.2 Magnetization at Equilibrium 

A nucleus with an odd number of protons and/or an odd number of neutrons 

possesses a magnetic moment and is referred to as a spin. When a spin is placed in a 

magnetic field, the spin will have a potential energy. To analyze this single spin system 

with quantum mechanics, the Hamiltonian H is set to be equal to the potential energy of 

the spin 

H = - u B (1-2) 

where \i is the magnetic moment of the spin and B the magnetic field. The magnetic 

moment u. is related to the spin angular momentum S by 

u = 7S (1-3) 

Thus 

H = -7S-B=-7S2B (1-4) 

Where operator Sz is the z component of S. It is easy to see that the stationary states of the 

system are the eigenstates of S2 and the energy levels are given by 

Ems=-7/zBms -s<ms<s (1-5) 

The constant h is equal to h/27t, where h is known as the Plank's constant, s is the. 

quantum number of the spin angular momentum S. For a proton spin, s is known to be 

1/2. Thus ms can only be -1/2 and 1/2, corresponding to "spin-down" and "spin-up" 

eigenstates respectively. The energy separation of the two states is 



AE = 7#B (1-6) 

which is illustrated in Figure (1-1). A transition from the lower to the upper state can be 

made by absorption of RF energy of angular frequency (0 which satisfies 

ftco = AE (1-7) 

Substituting equation (1-6) into equation (1-7), the Larmor equation given in equation (1-

1) is obtained. For a large number of proton spins in a magnetic field, the population of 

spins on each energy state follows Boltzmann's distribution when the system reaches 

thermal equilibrium. The spin population ratio R between the spin-down and spin-up 

states is given by 

„ n , AE^ , y^B O N R = — = exp(-—) = exp(-l—) (1-8) 
n + kT kT 

where the Boltzmann's constant k equals 1.38 x 10"23 Joule/K°. At a room temperature of 

) T =300 K° and a magnetic field of B = 1.5 Tesla, AE / kT is about 1.0 x 10"5. Therefore, 

R is approximately 

R . , - ^ . , . ! * ! (1-9) 

kT kT 

Hence, there are slightly more protons on the spin-up state than on spin-down state, 

resulting in a net macroscopic magnetization. Magnetization is defined as the total 

magnetic moment in a unit volume. Considering a total of N protons in a unit volume, the 

magnetization vector Mo can be calculated by, 



M 0 =ji(n+ -n_) 
(n+ -n_) 

u(n+ +n_) (n++n_) 

= pN ( 1 R ) (1-10) 
(1 + R) 

~ uN J 

2kT 
y2h2 

= 1 NB 
4kT 

where \\ = ynll is used, which can be derived from equation (1-3). From equation (1-

10), we see that the magnetization vector at thermal equilibrium lies in the direction of B 

and has a magnitude proportional to the strength of B, and is also proportional to the 

proton number density N. 

n_ 
spin-down, ms = - 1/2, E = 7 h B / 2 

B = 0 
spin-up, ms = 1/2, E = - 7 h B / 2 

B*0 

Figure 1-1 Energy splitting of a proton spin in a magnetic field. 

1.3 Equation of motion for the Magnetization Vector 

In the previous section, we calculated Mo in a static magnetic field B at thermal 

equilibrium. Here, we will analyze the dynamic behavior of magnetization vector M in a 

magnetic field B that is generally time dependent. As a time-independent operator in 

quantum mechanics, the magnetic moment p. satisfies the following equation of motion 



^<u^=|<[H,ui> (1-11) 
dt n 

where "< >" denotes the expectation value of a variable, and [H,p.] is the commutator of 

the Hamiltonian H and magnetic moment p.. Substituting the definitions of H and p, 

defined in equation (1-2) and equation (1-3) into equation (1-11), as well as using the 

following commutation properties of S 

[Sx,Sy] = iftSz 

[Sy,SJ = ifcSx (1-12) 
[S2,Sx] = iftSy 

Equation (1-11) can be transformed into 

d 
— < L L > = < L l > X 7 B (1-13) 
dt 

where " x " denotes cross product. For an ensemble of N non-interacting proton spins in a 

unit volume, the magnetization vector M is equal to N < p. >. Thus, the equation of 

motion for the magnetization vector M is 

— M = M X Y B . (1-14) 
dt 

Considering a static magnetic field in the z-direction B = B0z, equation (1-14) has the 

following general solution 

M x (t) = M x (0) coso)0t + M y (0) sin (O0t 

M y (t) = - M x (0) sin w0t + M y (0) cos co0t (1-15) 

Mz(t) = Mz(0) 

where Mx(t), My(t), Mz(t) are the three components of M at time instance t while Mx(0), 

My(0), Mz(0) are their initial values. The constant O)o is the Larmor frequency given by 

to0 = 7B0. The solution means the magnetization vector M will precess about B forever 
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after being tipped away from the direction of the magnetic field B, see Figure 1-2. How to 

tip M away from the direction of B will be discussed in detail in the next section. 

B 

Figure 1-2 The precession of M about the magnetic field B. 

In the above analysis of the motion of magnetization M, relaxation effects of M have 

been ignored. There are two relaxation processes going on after M is tipped away from 

the direction of B, one of which is Ti relaxation and the other is T 2 relaxation. Ti 

relaxation is a measure of the time for the longitudinal component of the magnetization to 

go back to its thermal equilibrium value. During Ti relaxation, spins give up energy to the 

surrounding lattice in order to go back to their lowest energy state, i.e. the state of thermal 

equilibrium. Hence, Ti relaxation is also called spin-lattice relaxation. T 2 relaxation is a 

measure of the time of disappearance of the transverse component of the magnetization. 

T 2 relaxation can be understood as follows. The interactions among spins cause internal 

magnetic field inhomogeneity. The magnetization vectors of different spin groups will 

precess at slightly different free-precession frequencies if they experience slightly 

different magnetic fields. After a period of time, the transverse component of the net 

magnetization vector M will disappear as the transverse components of the magnetization 

vectors of different spin groups lose coherence. T 2 relaxation is also called spin-spin 
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relaxation. Ti is greater than T 2 for biological tissues. Typically, Ti is in the order of 1 sec 

and T 2 is in the range of 10 ms to 100 ms. 

Taking the relaxation processes into consideration, the equation of motion for the 

magnetization is described by the Bloch equation, 

where Mo is the magnitude of the magnetization vector M at thermal equilibrium. 

Considering a constant magnetic field B = B0z, equation (1-16) can be written in 

components as 

which has the following general solution, 

M x (t) = [Mx (0) cos cu0t + M y (0) sin co0t)] exp(-t / T2) 
M y (t) = [-Mx (0) sin CD0t + M y (0) cos o)0t] exp(-t / T2) (1-18) 
Mz(t) = M 0 + [Mz(0) - M0]exp(-t / T,) 

The above equation expresses in a quantitative manner that M not only precesses about 

Bo at the Larmor frequency but also has Ti longitudinal relaxation time Ti and transverse 

relaxation time T 2, see Figure l-4(a). To simplify the equation of motion for M, we 

introduce a rotating frame of reference (x', y', z'), which rotates clock-wise around z-

direction at Larmor frequency o)0 = yB0, see Figure 1-3. 

— M = MxvB 
dt 

Mxx + Myy (M z -M 0 )z 
T T (1-16) 

(1-17) 
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z, z' 

Figure 1-3 Rotating frame of reference (x\ y',z') 

The time derivative of M in the rotating frame —Mis related to the time derivative of 
5 dt 

M in the laboratory frame — M by, 

— M = — M - Q x M 
dt dt 

(1-19) 

where Q is the angular velocity of the rotating frame relative to the laboratory frame and 

is equal to -C0QZ. Hence, the Bloch equations in the rotating frame can be obtained by 

substituting equation (1-16) into equation (1-19), 

D ' ™ ™ A » M xX'+M y y' (M z-M 0)z* 
— M = MxvAB : —- — 
dt T, T, 

(1-20) 

where AB is the effective field in the rotating frame and is given by AB = B - B 0z. When 

there is no other field but the homogeneous static field Boz, AB equals zero and the 

solution of the Bloch equation in the rotating frame is, 

M!,(t) = M!

x(0)exp(-t/T2) 
M' y (t) = M'y(0)exp(-t/T2) 
M' z (t) = M 0 + [M'z (0) - M 0 ] exp(-t / T,) 

(1-21) 



10 

where M'x(t), M'y(t), M'z(t) are the three components of M at time instance t in the 

rotating frame while M'x(0), M'y(0), M'z(0) are their initial values. In the rotating frame 

of reference, the magnetization vector only undergoes Ti and T 2 relaxation processes and 

has no precession since the effective field is zero, see Figure 1-4 (b). 

1.4 RF Excitation and Signal Reception 

Now it is time to answer the question of how to tip the magnetization vector, away 

from the direction of the static magnetic field. The answer lies in the original induction 

experiment performed by Bloch et al. In the induction experiment, the magnetization 

vector was tipped away from the direction of the static magnetic field by applying an RF 

field perpendicular to the static magnetic field. Then, the magnetization vector will 

precess about the static magnetic field and induce a signal in a receiving coil. This 
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induction method has been and still is the foundation of NMR technologies. We will use 

a simple example to explain the induction theory. 

Figure 1-5 Schematic illustration of NMR signal induction 

As shown in Figure 1-5, a small sample is placed in a static magnetic field Bo=Boz. 

The magnetization vector of the sample at thermal equilibrium will be in the B 0 direction 

and is assumed to be Mo=Moz. An RF coil is placed along the x-axis to transmit an RF 

field Bx(t) to excite the sample. The RF field is tuned to the Larmor frequency and is 

given by 

Bx(t) = x2B1cosco0t (1-22) 

This linearly polarized field can be decomposed into two circularly polarized 

components Bx(t) = B,(t) + B,'(t), with Bj(t) rotating clockwise and B t̂) rotating 

counter-clockwise 

B1(t) = xB1cosw0t-yB1sin(00t 
B^t) = xB, cosOgt + yB! sinco0t' 

In the rotating frame of reference, Bi(t) becomes a constant field and Bi'(f) rotates at an 

angular velocity twice of the Larmor frequency, 
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B1(t) = x:B1 1 (1-24) 
B,' (t) = x' B, cos 2co0t + y'B, sin 2(00t 

Because the duration of RF field is very short compared to Ti and T2, the relaxation 

effects during the RF excitation period are ignored. The equation of motion for M in the 

rotating frame of reference is, 

— M = Mx7AB = Mx7B1(t) + Mx7B,'(t) (1-25) 
dt 

Since Bi'(t) is rotating with angular velocity 2u)o, the torque Mx7B,'(t) averages to 

zero and has no significant effect on M. The equation of motion can be simplified as, 

— M=Mx7B,(t) (1-26) 
dt 1 

The solution of the above equation is given by, 

Mx,(t) = 0 
My,(t) = M0sinYB1t (1-27) 
M2,(t) = M 0 cos 7 6 ^ 

which represents the precession of M about the x' axis at an angular velocity 7B1, see 

Figure 1 -6. The flip angle a of the magnetization is given by, 

c c ^ B ^ (1-28) 

where T is the duration of the RF pulse. The magnitude of Mj, the transverse component 

of M, is calculated by 

M T =M0sin(a) = M0sin(7B1T) (1-29) 
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Mo 
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\ 

x' 
Figure 1 -6 Nutation of M in the rotating frame of reference. 

After the termination of the RF field Bx, the effective field becomes zero and the 

magnetization vector stays stationary in the rotating frame. In the laboratory frame, 

however, the magnetization vector M precess about z axis at angular velocity coo, see 

Figure 1-7 (a). The rotation of M T induces an electromotive force (emf) in the coil that 

can be observed using an oscilloscope. The emf in the coil is called free induction decay 

(FID) and will persist in the coil until My decays out by T 2 relaxation and other factors. 

The FID is schematically illustrated in Figure 1-7 (b). 

z FID 

x 

(a) (b) 

Figure 1-7 (a) Free precession of M in the laboratory frame after termination of the 
RF pulse (b) Induced voltage in the coil 
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Now, we will show how to calculate the FJD signal. For an elementary volume dV at 

location r in a sample, the elementary magnetic moment is given by d m = M(r, t) dV. 

The transverse component of the magnetic moment is given by dmT = MT(r,t)dV. The 

free precession of dmj at Larmor frequency will induce an electromotive force (emf) in 

the coil. The total emf in the coil is the integral of the contributions from all the 

elementary magnetic moments. A master equation for the signal from a NMR experiment 

was developed by Hoult et al [10] that can be expressed as, 

where §(t) is the induced emf or voltage in the coil; Bj(r) is a hypothetical magnetic 

field and B1T(r) its transverse component; <p(r, t) represents the phase angle of MT(r,t) 

in the rotating frame of reference. Based on the principle of reciprocity, the hypothetical 

magnetic field Bj(r) is defined as the magnetic field that would be created by the coil if 1 

A of current were to be passed through it. Because both M T and coo are proportional to the 

static magnetic field strength Bo, according to equations (1-1) and (1-10), the induced 

signal is proportional to B .̂ 

In order to analyze the FED signal, we need to demodulate the signal and store it into a 

computer. Quadrature signal detection is widely used to demodulate the signal. In 

quadrature signal detection, the FED signal ̂ (t) is split into two channels î(t) and (̂t) by 

multiplying two reference signals which are cos co0t and sin co0t respectively, 

(1-30) 
J o)0B1T(r)MT(r, t)cos[<t>(r, t) - w0t] dV 
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1 r ~ 1 r ~ |j(t) = |(t)cosG)0t=-| u)0B1TMTcos(2co0t -(|))dV + — I 0)0B1TMTcos((j))dV 

I „ \ _ (1"31) 

%2(t) = |(t)sin to0t = — Jw0B1TMTsin(2a)0t-(|))dV +—Jco0BITMTsin((j))dV 

Typically, 2u)o is in MHz range while the rate of change of § is in the KHz range. So, the 

low frequencies of the signal can be separated from the high frequencies of the signal by a 

low pass filter. After low pass filtering, the signals in the two channels become 

,̂ (t) = — J O)0B1TMTcos(()))dV 

1 ~ ( 1 " 3 2 ) 

|2(t) = — Ju)0B1TMTsin((|))dV 

The signals of the two channels can be combined into one complex signal array S(t) 

which is defined as S(t) = ̂ ,(t) + i§2(t). Therefore, 

S(t) = ̂ Jto0B1TMTexp(i(j))dV (1-33) 

For a well designed coil, B 1 T is highly uniform and can be considered as a constant in the 

whole region of interest. For simplicity, all constants are removed from equation (1-33) 

and S(t) becomes 

S(t) = jMTexp(i<J))dV (1-34) 

It is not difficult to see that MTexp(i<|)) is the complex form representation of the 

transverse magnetization vector M T in the rotating frame. As an integral of M T over the 

whole volume of the RF excited part of the sample, the complex signal S(t) is actually the 

total magnetic moment of the sample at time t in the rotating frame. 
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For the above simple induction experiment, the direction of transverse magnetization 

stay stationary in the rotating frame, thus (|> is equal to zero. The complex signal S(t) is 

written as 

= VM0sin(a)exp(-t / T2) 

where V is the total volume of the RF excited part of the sample. The signal S(t) is simply 

a T 2 decay curve. 

1.5 Proton Chemical Shift Spectroscopy 

In the previous sections, all of our theories were based on the assumption that the 

resonance frequency of a proton spin depends only on the external magnetic field 

according to the Larmor relationship. If this is strictly so, NMR would have been of little 

usê in chemistry and biology. However, it was observed that nuclei in different chemical 

environments may have different resonance frequency shifts. The resonance frequency 

shift depends on the molecular structure, and thus, is referred to as the chemical shift. The 

first observation of chemical shift was reported by Proctor and Yu when they use 

ammonium nitrate (NH4NO3) to determine the magnetic moment of 1 4N [11]. A saturated 

solution in water produced two strong lines instead of one. The observation was attributed 

to some "nasty" chemical effect. Arnold et al first clearly demonstrated the chemical shift 

effect by the observation of three separate lines in the NMR spectrum of ethanol 

(CH3CH2OH) [12]. The three separate lines are associated with three different chemical 

groups, CH3, CH 2, and OH. 

= V M T (1-35) 
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The cause of the chemical shift can be explained as follows, which is 

diagrammatically illustrated in Figure 1-8. 

Bo 
• 

" ,• 

- » - - - ' 
- -
-*-

Figure 1-8 Electron shielding: the origin of chemical shift 

In the external magnetic field B 0, the electron cloud surrounding the nucleus is induced to 

circulate counter-clockwise about Bo. The moving negative charge will generate an 

electric current circulating clockwise, which in turn creates a small magnetic field o~Bo 

opposing the external field. The term a is a dimensionless shielding constant, which is 

independent of the external magnetic field. The magnitude of o is very small and 

typically on the order of a few parts per million (ppm) for protons. The effective field that 

the nucleus experiences is given by 

B = B 0 -oB 0 =(l -a)B 0 (1-36) 

i Thus, according to Larmor equation, the resonance frequency to becomes 

o) = 7 B = 7(l-a)B 0 (1-37) 

Ideally, the shielding constant o~ could be calculated by knowing co, y, and Bo accurately. 

However, it is not easy to generate a highly accurate magnetic field. On the other hand, it 

is convenient to measure the frequency difference between the resonance frequency of the 

sample and that of a standard chemical with the same nucleus, and then calculate the ratio 
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of the frequency difference and the resonance frequency of the standard chemical. This 

ratio will be quoted as the chemical shift for the sample. For proton chemical shift 

experiments, TMS (tetramethyl silane, Si(CFl3)4) is an accepted standard. The chemical 

shift 8 is defined as 

5 = (o-(o T M S ( 1 3 8 ) 

W T M S 

where to m s is the resonance frequency of TMS. Chemical shift 8 is related to the 

shielding constant o by 

g _ to - (0TMS 

^ T M S 

7( l -q)B 0 -7( l -q T M S )B 0 

7(l-a T M S )B 0 (1-39) 

1 — ° T M S 

~ ° T M S ^ 

where aT M Sis the shielding constant of TMS. Because the protons in TMS are highly 

shielded, the shielding constant of TMS is greater than that of most other substances. 

Therefore the chemical shift 8 is usually a small positive number on the order of several 

ppm. 

Modern proton chemical shift spectroscopy experiments are usually done with the 

Fourier transform (FT) method, which was introduced by Ernst et al in 1965 [13]. The 

basic concept of FT spectroscopy can also be illustrated by using the simple induction 

experiment shown in Figure 1-5. The sample in this experiment can be a mixture of 

proton nuclei of different chemicals. These proton nuclei with a broad range of resonance 

frequencies are excited by a wide bandwidth RF field, i.e. all the nuclei with slightly 
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different Larmor frequencies are all nutated down 90° to the transverse plane. The FID is 

then acquired and demodulated into complex signal S(t) which is the total transverse 

magnetic moment in the rotating frame. Due to their different chemical shifts, protons in 

different chemical components can have different Larmor frequencies and precess with 

different frequency to' in the rotating frame. The rotating frame is selected to be rotating 

at the center frequency of the RF field. Ignoring the relaxation effects during data 

acquisition and field inhomogeneity, S(t) can be written as 

S(t) = vjMT(to')exp(-iw't)do)' (1-40) 

where MT(to') is the transverse magnetization for the nuclei with Larmor frequency to'. It 

is clear that S(t) is the Fourier transform of MT(CO') which is what we want to obtain from 

the spectrocopy experiment. However, S(t) only covers half of the time domain, as shown 

in Figure 1-6 (b). The other half can be filled with the hermitian conjugate of the 

available data due to the fact that MT(fa)') should have real values. This is equivalent to 

inverse Fourier transforming S(t) and taking the real part of the result as Mx((o'). Because 

spin density is proportional to My, the spectrum MT(W') is actually the spin density 

distribution as a function of resonance frequency. With the help of this spectrum, we can 

know the chemical constituents of the sample. 

1.6 Spin-Echo Experiments 

In reality, the static magnetic field Bo is not perfectly homogeneous in space. The 

inhomogeneity mainly comes from two sources. One source is the imperfection in the 

magnet that makes the external magnetic field Bo not perfectly homogeneous. The other 
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source is the susceptibility variations in the sample. Even if the external magnetic field is 

perfectly homogenous, the local magnetic field experienced by the spins can be changed 

by susceptibility variations in the sample. As a result of field inhomogeneity, different 

spin groups may experience slightly different magnetic fields and precess at different 

frequencies after a 90° RF pulse. In the rotating frame of reference, the magnetization 

vectors for different, spin groups will fan out and their vector sum, i.e. the magnetization 

vector M, will gradually disappear, see Figure 1-9. 

x' x' x' 

Figure 1 -9 Dephasing of spins in the rotating frame of reference 

due to field inhomogeneity. 

Taking into account the decay due to field inhomogeneity, the transverse component of 

magnetization decays with an effective time constant T2* 

_L = _L + 7 A B . (1-41) 
T T 

where AB is a measure of the field inhomogeneity. Obviously, T 2 is longer than T2*, so 

the decay of the FID is dominated by T 2 \ and T 2 can not be determined directly from the 

FID signal. However, the signal loss due to field inhomogeneity is recoverable. T 2 can be 

measured by a spin-echo experiment. E. L. Hahn performed the original spin-echo 

experiment in 1949 with two 90° pulses [14]. Carr and Purcell made several significant 
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improvements over Hahn's method [15]. We use a CP (named after Carr and Purcell) 

pulse sequence to illustrate how a spin-echo experiment works. The CP pulse sequence is 

denoted as 90o

x> - x - 180°X' — T — echo • At time t = 0, a 90° pulse is applied in the x' 

direction to nutate the magnetization vector down onto the transverse plane, see Figure 1-

10 (a). The duration of the 90° pulse is ignored since it is very short. After the 90° pulse, 

the magnetization vectors of different spin groups begin to fan out due to field 

inhomogeneity, resulting in a reduced total magnetization and FID, see Figure 1-10 (b). 

At time t = T , a 180° pulse is applied in the same direction as the 90° pulse. Alf the spin 

magnetization vectors are flipped over around the x' axis, see Figure 1-10 (c). After the 

180° pulse, the spin magnetization vectors keep precessing clockwise or counter

clockwise the same as before the 180° pulse since all spins still experience the same local 

field. However, the relative advancing or lagging relationship among the spin 

magnetizaiton vectors had been changed by the 180° pulse, therefore the spin 

magnetization vectors are refocusing after the 180° pulse, see Figure 1-10 (d). At time 

t = 2T , all the magnetization vectors of different spin groups are refocused, resulting in a 

peak total magnetization and FID signal, see Figure 1-10 (e). 

(a) 90° pulse (b) dephasing (c) 180° pulse (d) refocusing (e) echo 

Figure 1-10 Spin phase diagram for the CP spin-echo pulse sequence 
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If we continue to apply 180° pulses at time t = 3T,5T,-- - , spin echoes also occur at 

t = 4x,6x, The signal amplitudes of the echoes decay at a rate determined by T 2 since 

the decay caused by field inhomogeneity has been eliminated by spin-echoes. The signal 

amplitudes of the echoes are given by the following relation 

S(2nT) = S(0)exp(-2nx/T2), n = 0,l,2,--- (1-42) 

where S is the signal amplitude. This relation is illustrated in Figure 1-11. 

S 

Figure 1-11 Signal decay curve for a train of spin echoes 

From the above curve, T 2 can be measured correctly. In the above analysis, we 

ignored the chemical shift. In fact, different spin groups belongs to different substances 

can precess with different frequencies at the same external field strength due to their 

different chemical shifts. This will also cause spin dephasing. Spin-echo can refocus the 

dephasing caused by both chemical shift and field inhomogeneity. Thus Spin-echo can 

significantly reduce signal loss caused by spin dephasing and is frequently used in NMR 

spectroscopy and imaging. 
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1.7 Magnetic Resonance Imaging (MRI) 

In the early years of NMR development, spectroscopy played a central role. Through 

NMR spectroscopy, scientists can gain a great deal of knowledge about the molecular 

structures of a substance. Nevertheless, NMR spectroscopy provides very limited spatial 

information. With the advent of MRI, we are able to obtain excellent 2D or 3D magnetic 

resonance (MR) images of the human body, which is of great use for medical diagnosis. 

Today, MRI has become one of the most important applications of NMR. In this section, 

we will use an open field magnetic resonance (MR) imager to introduce the basic 

principles of spin warp MR imaging. 

Figure 1-12 An open field magnet and its magnetic fields 

Figure 1-12 schematically shows the main magnet, the gradient coils, and the RF coil 

of an open field MR imager. This imager has the main magnetic field Bo in the vertical 

direction and directed upward. The main magnet could be a permanent magnet, a resistive 

electromagnet, or a superconducting electromagnet. There are three sets of biplanar 

gradient coils for generating magnetic field gradients G x, G y, and G2. Note that the 
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magnetic fields generated by the three sets of gradient coils are all in the z direction but 

the gradients of the magnetic field strength are in three orthogonal directions, i.e. x, y and 

z. The total magnetic field strength in the z direction has the following form 

B(r) = B 0 + r • G = B 0 + xGx + yGy + zGz (1-43) 

The field gradients can be switched on and off rapidly and altered in magnitude by 

changing the currents flowing through the gradient coils. By controlling the currents in 

the three sets of gradient coils, G x, G y, and G z can be adjusted separately and combined 

into a vector G that can be in any direction. A typical value of the maximum field 

gradient in each direction is 1 gauss/cm. 

In 2D imaging schemes, signal response in the third dimension needs to be restricted. 

This is accomplished by selectively exciting only the spins in a well-defined slice of 

tissue [16]. In order to achieve this, a field gradient in the normal direction of the chosen 

slice is applied, causing a linear variation of Larmor frequencies of the spins along the 

gradient direction. All the spins on the chosen slice will have the same Larmor frequency, 

say to0 for example. Then an RF pulse with center frequency to0 is applied in a direction 

perpendicular to Bo, say the x direction. Only the spins on the chosen slice are on 

resonance and can be tipped down onto the transverse plane (being excited). The RF 

pulse will not affect all the spins outside the chosen slice. In practice, the RF pulse has a 

bandwidth Aco, resulting in a finite slice thickness d. To the first order approximation, the 

slice profile is the frequency spectrum of the RF pulse. So a "sinc-shaped" RF pulse will 

give a rectangular slice profile. The RF bandwidth Aco, the slice selective gradient 

amplitude G S H C e , and slice thickness d is related by 
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Aw = 7G s l i c ed (1-44) 

which shows that the slice thickness is controlled by both the RF bandwidth and slice 

selective gradient amplitude. The slice orientation is determined by the direction of the 

slice selective gradient. The slice location is usually shifted by offsetting the RF center 

frequency. In MRI, it is customary to introduce a new logical coordinate system (x, y, z). 

The old coordinate system (x, y, z) is called the physical coordinate system. The z 

direction of the logical system is in the normal direction of the chosen slice, see Figure 1-

13. 

logical coordinate system 

x physical coordinate system 

Figure 1-13 Physical and logical coordinate systems 

The slice selective gradient Gsiice can also be denoted as G z in the logical coordinate 

system. A pulse sequence of slice selection is plotted in Figure 1-14. 

A 

RF A) 

G z 

Figure 1-14 A pulse sequence for slice selection 
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As shown above, an RF pulse with a sine waveform is applied when a slice selective 

gradient G z is turned on. However, after the termination of the RF pulse, a negative 

gradient lobe is applied again. The reason for applying this negative lobe is to refocuse a 

linear phase dispersion across the slice thickness, see Figure 1-15. 

Figure 1-15 Dephasing and refocusing of the phase across the slice 
thickness viewed in the rotating frame 

As shown in Figure 1-15, the spins at the top, middle, and bottom parts of the slice have 

different Larmor frequencies since they experience slightly different magnetic field 

strength caused by G z. The spins are dephasing while they, are being tipped away from the 

main field direction. The negative gradient lobe can bring the spins in phase. The area of 

the negative lobe should be about half of that of the positive lobe. 

After a slice has been selected, the next task of imaging is to encode spatial 

information within the excited slice. Two distinctive processes are used for encoding the 

two dimensional information, which are frequency encoding and phase encoding. 

Frequency encoding will be discussed first, see Figure 1-16. 
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RF 

Signal 

90° 

Read-out 

Dephaser 

TE-

Figure 1-16 A pulse sequence for slice selection and frequency 

encoding 

The frequency encoding gradient G x is applied in the logical x direction and has a 

negative lobe called dephaser and a positive lobe called read-out. During the read-out 

period, the MR signal is sampled. The area of the dephasor is half of the area of the*read-

out gradient, so that the center of the echo is formed in the middle of the readout since all 

the spins will be refocused at the middle point. The time period from the center of the RF 

to the echo center is referred to as the time-of-echo (TE). During the read-out, the 

precessional frequencies of the spins vary linearly along the x direction. Therefore, spins 

at different x locations contribute to different frequencies in the MR signal. In other 

words, the spatial information x is encoded into the frequencies of the MR signal. A 

Fourier transform of the MR signal will give the x distributions of spins within the 

excited slice. 
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In order to encode 2D information into the MR signal, another gradient field G y, 

called the phase encoding gradient, is used to make a systematic variation in the phase of 

the MR signals. A complete pulse sequence for gradient-echo imaging is shown in Figure 

1-17. 

RF 

G x 

Signal 

l« TE • 

Figure 1-17 Pulse sequence for 2D gradient-echo imaging 

hi Figure 1-17, the only addition to the pulse sequence relative to that shown in Figure 

1-16 is a single gradient G y in the logical y direction. The complete pulse sequence is 

played out many times (typically 128 to 256 times) with the amplitude of G y changing in 

a step-wise manner for each repetition. The time spent for each phase-encoding step is 

referred to as the time-of-repetition (TR). The MR signal sampled during each readout is 

stored in computer as one row of data. The number of rows for a whole dataset will be the 

same as the number of readouts or the number of phase encoding steps. Figure 1-18 (a) 

shows the magnitude of one such MR dataset. Since G y is not turned on during the read-
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out, it does not affect the precessional frequencies of the spins. However, spins at 

different y locations will have different phase twists or 'warps' due to G y prior to each 

read-out. In other words, the spatial information y is encoded in the phase of the spins. 

Spin distribution in the y direction can be resolved from all the read-out signals by 

Fourier transforming the dataset in the y direction. Overall, a discrete 2D Fourier 

transform of the MR dataset will yield an MR image, which is a complex image. Figure 

1-18 (b) shows the magnitude of the complex image. 

In order to illustrate the Fourier relation between a MR dataset and a MR image 

clearly, we give a more detailed derivation. We can label the demodulated MR signal as 

S(t, Gy). According to equation (1-34), S(t, Gy) is expressed as 

(a) (b) 

Figure 1-18 (a) MR signal dataset (b) Reconstructed MR image 

(1-45) 
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where constant T is the duration of phase-encoding gradient G y . The Ti and T 2 relaxations 

during signal acquisitions are ignored, thus the transverse magnetization magnitude 

MT(x,y) is not a function of time. If we introduce two new variables 

k x =7G xt 
(1-46) 

k y =7G y x 

S(t, Gy) can be considered as a function of kx and ky, i.e. S(kx,ky), which is given by 

S(kx,ky) = ff MT(x,y)exp[-i7(Gxt)x -i7(GYT)y]dxdy 
J J (1-47) 

= J j M T (x, y)exp[-i(kx x + kyy)] dxdy 

It is clear that S(k x,k y) is the 2D Fourier transform of MT(x,y). An MR image 

MT(x, y) can be obtained by performing an inverse 2D Fourier transform on S(kx, ky) 

MT(x,y) = ̂ -JJS(kx,ky)exp[i(kxx + kyy)]dkxdky (1-48) 

In practice, S(kx,ky)is a set of discrete digital signals stored in the computer. A 2D 

discrete fast Fourier transform (FFT) is performed to reconstruct the image. kx and ky 

constitute a space called K-space, kx and ky stand for the wave numbers in the x and y 

directions and are 2K times the spatial frequencies vx and vy, respectively. A general 

vector k is defined as 

k(t) = 7 f G(t')dt' (1-49) 
J—co 

and the signal S[k(t)] is written as 

S[k(t)] = JMT(r)exp[-ir-k(f)]d3r . (1-50) 

The raw MR data is nothing but some discrete points in k space. The above gradient-echo 

pulse sequence is scanning the k space line by line. There are different ways of scanning 
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the K-space. As long as the K-space is covered by enough sampling points, an MR image 

can be reconstructed. 

For the gradient-echo pulse sequence, the spins are refocused at the middle of the 

readout by the use of a negative gradient lobe. However, in the presence of main magnetic 

field inhomogeneity and chemical shifts, the spins can not be totally refocused at the 

middle of readout, resulting in a loss of image signal-to-noise ratio (SNR) and artifacts in 

the image. To overcome this problem, the spin-echo imaging pulse sequence can be used. 

A spin-echo pulse sequence is shown in Figure 1-19. The slice selective gradient G z has 

the same amplitude during the 90° RF and the 180° RF so that only the selected slice 

effectively experience both of the RF pulses. On the G x axis, the dephaser has a positive 

amplitude instead of a negative one because it is applied before the 180° RF pulse. The 

imaging procedure for the spin-echo pulse is similar to that of the gradient-echo pulse 

sequence. Nevertheless, the spin-echo sequence can refocuse the dephasing caused by 

field inhomogeneity and chemical shift, thus is superior in image quality but has a longer 

TE. 
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< TE • 

Figure 1-19 Pulse sequence for 2D spin-echo imaging 

A gradient-echo pulse sequence for 3D imaging, as shown in Figure 1-20, can be 

derived from a 2D gradient-echo pulse sequence by replacing the slice selective gradient 

with another phase encoding in the Z-direction. The total number of readouts equals the 

number of phase encodings in y direction multiplied by the number of phase encodings in 

the z direction. Therefore, the imaging time is very long. However, this 3D imaging 

scheme, known as true 3D MRI, offers excellent spatial resolution in the third dimension 

and good SNR performance. 

Generally, in gradient-echo sequences, the RF excitation pulse is not chosen to be 

90° but a significantly smaller value, for example 30°. The reason for this reduced tip 

angle is to optimize the SNR when short TR is used for fast imaging [17]. 
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90° 

Signal 

i \J 

4 TE • 

f 

Figure 1 -20 A gradient-echo pulse sequence for 3D imaging 

In all the drawings of pulse sequences above, the gradients have been drawn as square 

waveforms. In reality, due to the limited inductance of gradient coils, the rising and 

falling edges of the gradient waveforms are digitally controlled to be linear ramps. A half-

sinusoidal waveform is usually adopted for the phase-encoding gradient for the purpose 

of minimizing the quantization error of the gradient amplitude. A practical spin-echo 

pulse sequence is drawn in Figure 1-21. 
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A TE •! 

Figure 1-21 A practical spin-echo pulse sequence 

It can be noticed that the negative refocusing lobe following the 90° RF is removed. To 

compensate this, the extra lobe on the right hand side of the 180° RF pulse is bigger than 

the one on the left-hand side. As long as the total area under the z gradient between the 

90° pulse and data acquisition is zero, spins are in phase across the slice, provided that 

gradient before 180° pulse to be considered negative. The use of extra lobes on both sides 

of the 180° pulse is to destroy any signal contamination due to the imperfection of the 

180° pulse. 

Another imaging technique in daily scan practice is interleaved multi-slice 

acquisitions. As we know, TR is usually much longer compared to TE due to a long time 

period needed for the recovery of the longitudinal magnetization governed by the Ti 

relaxation. Hence, for each readout, i.e. a phase encoding step, there is a long "dead 
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time". This "dead time" allows the imaging hardware to do slice selection, phase 

encoding and readout for other slices. Therefore, multi-slices can be simultaneously 

imaged during the time needed for a single slice. 2D multi-slice acquisitions can offer 3D 

information by stacking the 2D images into a 3D image. The speed of 2D multi-slice 

acquisitions is fast compared to a true 3D sequence, but the resolution in the third 

dimension is poor since the slice thickness can not be too thin due to limited SNR and 

imperfect slice profile. 
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REVIEW OF WATER-FAT IMAGING TECHNIQUES 

2.1 Introduction to Chemical Shift Imaging 

For conventional proton MR imaging, the signal intensity recorded for each voxel is a 

weighted average of the signal contribution from several distinct proton species. This 

conventional approach produces images characterized by excellent spatial resolution and 

image SNR, but at the expense of reduced chemical information. On the other hand, 

NMR spectroscopy provides excellent chemical shift information but almost no spatial 

information. In some applications, one may want to have both spatial resolution and 

chemical shift information. This is the main motivation of the development of chemical 

shift imaging (CSI) techniques. 

CSI was originally proposed in 1982 by Brown et al [18]. Maudsley et al suggested a 

similar procedure in 1983 [19]. In contrast to conventional MR imaging techniques, this 

CSI technique eliminates the readout gradient and uses the frequency encoding to acquire 

the chemical shift information, as in an NMR spectroscopy experiment. To compensate 

for the loss of spatial encoding in the frequency direction, a phase-encoding in this 

direction is added. A typical CSI sequence is shown below. 
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R F 

Signal 

90° 180° 

TE 

Figure 2-1 A CSI pulse sequence 

The dataset acquired from this sequence is composed of N x x N y readouts, where N x 

and N y are the number of phase-encoding steps in the x and y directions, respectively. 

This dataset can be considered as being three dimensional, the readout being one 

dimension in time and the two phase-encodings being two dimensions in k space. Hence, 

the MR data can be written as S(kx, ky, t). What we want to get from a CSI experiment is 

the magnetization distribution MT(x, y, (o) which is a function of spatial location (x, y) 

and chemical shift measured by frequency u) of the proton species in the rotating frame. 

The MR signal is related to the magnetization distribution by 

S(kx,ky,t) = |JjMT(x,y,co)exp(-ikxx)exp(-ikyy)exp(-io)t)dxdyd(0 (2-1) 

It is clear that the data S(kx, ky, t) is the 3D FT of the magnetization distribution Mj(x, y, 

GO). Hence, a 3D inverse FT of S(kx, ky, t) yields MT(x, y, co) 
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MT(x,y,co) = —!-j fffS(kx,k f)exp(ikxx)exp(ik y)exp(itof)dkxdk dt (2-2) 
(271) J J J 

The result is composed of N x x N y spectra, each of which is associated with one pixel in 

the 2D image. A common way to display the result is to construct separate images for 

different proton species, i.e. to identify the peaks in the spectra and construct images 

corresponding to the peaks. Because of magnetic field inhomogeneity, the spectra for 

different pixels may have relative frequency shifts. Moreover, the spectra usually have 

non-zero baselines and very low SNR. These make the image constructions not 

straightforward. Because the amount of data is huge, an automatic procedure is required 

to do the peak identification, peak quantification, and baseline estimation. The whole 

procedure is very time consuming and not reliable. In addition to data processing 

problems, the imaging time is another concern. If the number of phase-encoding steps in 

x and y dimensions are both 128, and TR is 500 ms, then the total imaging time will be 

128 x128 x500ms, i.e. 136 minutes. In order to reduce imaging time, we have to 

sacrifice the spatial resolution by reducing the number of phase-encoding steps. A 

number of 16x16 phase-encoding steps is typically used, which takes about 2 minutes to 

do one scan. Reduced spatial resolution not only loses anatomical details but also causes 

some other problems. When each voxel becomes bigger, the field inhomogeneity per 

pixel becomes larger and the spectral resolution will be degraded. When k space coverage 

becomes smaller, truncation artifacts in the images will be more severe. Partial-volume 

artifacts will also be worsened when voxels become larger. All these problems are great 

impediments to the practical application of the conventional FT based CSI methods. 
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2.2 Early Water-Fat Imaging Methods 

In the last decade or so, a lot of effort has been concentrated on water-fat chemical 

shift imaging due to the fact that most of the signal contributing to the MR images of the 

human body comes from water protons and fat (lipid methylene) protons. Signals from 

other proton species are so much smaller that they cannot be observed without special 

effort. The Larmor frequency of water is measured to be about 3.5 ppm higher than that 

of fat. At a magnetic field of 1.5 Tesla, the Larmor frequency difference between water 

and fat is about 220 Hz. Hence, in every 4.5 ms, the transverse magnetization vector of 

water will rotate one full cycle relative to the magnetization vector of fat. A water-fat 

spectrum is schematically illustrated in Figure 2-2. 

The use of FT based CSI methods on water-fat proton spectrum was first reported by 

Rosen et al [20]. Despite the early interest in this technique, this CSI method is not 

widely incorporated into clinical imaging because of the reasons we pointed out in the 

previous section. 

Another way to exploit the chemical shift between water and fat is known as fat-

suppression or water-suppression. In these methods, narrow-bandwidth RF pulses are 

used prior to the image acquisition to suppress the signal from fat (or water), allowing the 

water 
fat 

Figure 2-2 Sketch of proton chemical shift spectrum 
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other chemical component to be imaged separately. In clinical imaging, fat suppression is 

more frequently used to suppress the strong signal from fatty tissues for an improved 

image contrast. An example of fat suppression pulse sequence can be described as 

follows. First, a narrow-bandwidth RF pulse tuned at fat resonance is used to rotate the 

fat magnetization vector 90° into the transverse plane. Then a spoiling gradient is 

immediately applied to disperse the transverse magnetization vector so that the net 

transverse magnetization is averaged to zero. The unexcited water magnetization remains 

in the z axis and is subsequently imaged using a conventional imaging pulse sequence. 

The images with fat-suppression are often damaged to some degree by field 

inhomogeneity. This is because spatial variations of the field will cause the resonance 

frequencies of fat vary spatially. When the field spatial variations are greater than the 

chemical shift between water and fat (3.5 ppm), water and fat resonance frequencies in 

the whole field-of-view (FOV) will be mixed together. As a result, fat cannot be 

selectively suppressed uniformly in the whole FOV. Therefore, very high B 0 homogeneity 

is required for fat-suppression. However, even if the original Bo field is perfectly 

homogeneous, once the patient is inserted, there can be significant induced field 

variations due to the magnetic susceptibility variations in the tissues. Usually, magnetic 

field shimming is performed after the patient is inserted and before scanning. However, 

the success of shimming is often limited to a small localized region. 

In 1984, Sepponen et al proposed a new method for water-fat CSI, in which the 

spectral information is phase-encoded instead of being frequency-encoded [21]. The 

imaging time can be shortened using this method. The pulse sequence is shown in Figure 

2-3. 
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Figure 2-3 Pulse sequence for Sepponen's water-fat imaging method 

For each phase-encoding step, a series of acquisitions are performed with a fixed TE but 

varying time intervals between the 90° and 180° pulses. According to spin-echo 

principles, all the spectral components at the same spatial location will refocus at time to 

which is twice the time interval between the 90° and 180° pulses. At time TE, the 

spectral component with angular frequency to in the rotating frame will acquire a phase 

approximately being coAt, where At is the time difference between TE and to. In the above 

calculation, the effects of the phase-encoding gradient and readout gradient on the Larmor 

frequency of the chemical component were ignored since the gradient fields are several 

orders smaller than the main magnetic field. Therefore, the spectral encoding depends 

only on At and can be separated from spatial encodings. In each phase-encoding step, 

every acquisition scans one-k space line at the same k space location for a different spin-

echo image. After all the phase-encoding steps, a series of datasets are acquired and the 
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corresponding spin-echo images are reconstructed by simply performing 2D FT on the 

datasets separately. These reconstructed complex valued images have the same spatial 

information but different phase-encodings of spectral components. A ID FT of all the 

images in the third dimension will yield a train of 2D images along the chemical shift 

axis, see Figure 2-4. 

In the experiment described in the literature [21], 16 images in the spectral direction 

were scanned. The spectral resolution is 2.4 ppm. Hence, water and fat can be roughly 

distinguished since their chemical shift difference is 3.5 ppm. The spectral information is 

phase encoded by shifting the 180° refocusing pulse and makes it possible to reduce 

imaging time by sacrificing spectral resolution. Due to the poor spectral resolution, 

truncation artifacts and partial volume artifacts are very severe in the spectral direction. 

In the same year of 1984, Dixon published his famous paper [22]. In his method, the 

spectral information is also encoded by shifting the 180° refocusing pulse, same as in 

Sepponen's method. However, rather than acquiring multiple phase offset images, only a 

pair of images were collected in Dixon's approach, see Figure 2-5. 

10 
ppm 

Figure 2-4 A train of chemical shift images 
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Figure 2-5 Dixon method for water-fat imaging (a) Pulse sequence for the in-
phase image (b) Pulse sequence for the opposed-phase image 

The first image of the pair, usually called an in-phase image, is a conventional spin-

echo acquisition with normal timing of the 180° refocusing pulse. The transverse 

magnetization vectors of water and fat are aligned in the same direction for all the pixels 

in the image. The second image of the pair, usually called an opposed-phase image, is 

acquired with the 180° refocusing pulse shifted 5ms earlier for a 0.35T scanner so that the 

transverse magnetization vectors of water and fat are in opposite directions. Simple 

addition of the two complex images would yield an image of water and simple 

subtraction of the two images would yield an image of fat. The Dixon method is a 

milestone in simple proton chemical shift imaging since it is the first model based CSI 

method. Dixon actually modeled the proton spectrum as two 8-function shaped peaks 

with one peak being water and the other being fat. The chemical shift between the two 

peaks is a known value from spectroscopy experiments, which is 3.5ppm. This known 
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chemical shift value was used to determine the time shift of the 180° refocusing pulse for 

the opposed-phase image. This is the key to the high imaging efficiency for Dixon 

method. 

As Dixon pointed out himself in his original paper [22], the worst problem with his 

method comes from magnetic field inhomogeneities which, over a whole image, are many 

times as large as the chemical shift difference between water and fat. A pair of water and 

fat images reconstructed with the Dixon method is shown in Figure 2-6. Because of off-

resonance and field inhomogeneity errors, water and fat are not successfully separated. 

Another disadvantage with the original Dixon pulse sequence is that patient motion 

between the two independent scans is translated into spatial misregistration artifacts. This 

problem can be largely overcome by interleaving the two acquisitions in each phase-

encoding step, similar to Sepponen's method. 

(a) (b) 
Figure 2-6 Transverse water (a) and fat (b) images of the abdomen, reconstructed with 
the Dixon method. 
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2.3 General Phase Behavior of Water and Fat Magnetization Vectors 

After Dixon's original work, the theory of the general phase behavior of water and fat 

were gradually developed. In this section, we will systematically analyze the general 

phase behavior of water and fat magnetization vectors. 

In the presence of a main magnetic field B 0 with inhomogeneity AB0(x,y), the 

transverse magnetization vector of water, W(x,y), and of fat, F(x,y), will rotate clockwise 

at angular velocities of 7w[Bo+ AB0(x,y)], and 7F[B0+ AB0(x,y)], respectively, where yw is 

the gyro-magnetic ratio for water and yp for fat. As we know, the rotating frame of 

reference is usually selected to be rotating at the center frequency of RF pulse. If we tune 

the RF center frequency at the Larmor frequency of water, the rotating frame will rotate 

clockwise at an angular velocity of YwBn. For a pulse sequence with shifted 180°RF 

refocusing pulse, as shown in Figure 2-5 (b), the MR signal is the sum of contributions 

from water and fat magnetization vectors in the rotating frame and can be expressed as 

S(t, G y , At) = J J W(x, y) exp{-iJ y w [B 0 + AB0(x, y) + G r] - y W B 0 dt} 

+ F(x, y) exp{-i J 7F[B0 + AB0(x, y) + G- r] - y w B 0 dtjdxdy 

= J J W(x, y) exp{-i[7 w AB0 (x, y)(t + At) + 7wG (xt + 7 wGyyx]} 

- i [ ( T F - Y w ) B o ( t + A,) I 
+yFAB0(x, y)(t + At) + YFGxxt + 7 F G y yxJ 

= J J {W(x, y) + F(x, y) exp[i(7w - 7F )B0(t + At)] 

exp[-i(7F -7W)AB0(x,y)(t + At) - i(7F -7W)Gxxt - i(7F -7W)Gyyx]} 

exp[-i7wAB0(x,y)At]exp[-i(7wGxxt + 7wGyyx)]exp[-i7wAB0(x,y)t]dxdy 

The term exp[-i(7F-7w)AB0(x,y)(t +At)-i(7F-7w)G xxt-i(7F-7w)G yyx] can be 

approximated to 1 since all the phase terms inside the exponential are extremely small. 

+ F(x,y)exp^ 
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The last term in the above equation, exp[-i7wAB0(x,y)f], will result in a small spatial 

shift and distortion of the image as in any spin-warp imaging modality. This term works 

on water and fat the same way and will not affect the water-fat chemical shift result, 

subsequently, it is not our concern here and is ignored. The term ( 7 W -7 F)B 0is the 

chemical shift between water and fat, it can be labeled by AGO. The above equation can be 

simplified as 

S(t, G y , At) = JJ [W(x, y) + F(x, y) exp(iAwAt) exp(iAo) t)] expHY w AB0 (x, y) At] 

exp[-i(7wGxxt + 7WG yx)]dxdy 
(2-4) 

= JJ (W(x,y) + F(x,y)exp(iAtoAt)exp[ikx(Ato/7wGx)]} 

exp[-iYwAB0(x,y)At]exp[-i(kxx + kyy)]dxdy 

where kx = 7 w G x t and ky = 7 w x G y . The reconstructed spin-echo image I(x,y) is the 

inverse Fourier transformation of S(t,Gy, At), 

I(x, y) = J | S(t, G y , At) exp[i(kxx + kyy)]dkxdky (2-5) 

that can be proved to be 

I(x, y) = [W(x, y) + F(x - Aco / (7 WG X), y) exp(iAu)At) ] exp[-i7 w AB 0 (x, y)At] (2-6) 

We can notice that water and fat has a small relative spatial shift of AGO / ( 7 w G x ) in the 

frequency encoding direction. Consider a main field strength of 1.5 T and a readout 

gradient of 0.4 Gauss/cm, the value of the shift equals 1.3 mm, which usually corresponds 

to one to two pixels in the image. There is also another relative shift between water and 

fat in the slice selection direction, with value of A G O / 7 w G z . These misregistrations are 

usually small for water-fat imaging and could be ignored. Due to phase offset resulting 

from RF penetration effects and other systematic phase shifts such as data sampling 



window off-centering, another phase term exp[iO(x,y)] is multiplied to I(x,y), So I(x,y) 

can be written as [28-32] 

where a = Au)At, ® = -YwAB0(x,y)At. a is the phase angle between W and F due to 

chemical shift effect. 0 is the phase error due to magnetic field inhomogeneity. Both a 

and 0 are proportional to the time shift At. <D does not change with time shift At. 

Equation (2-7) is the master equation for the general phase behavior of water and fat in a 

complex image. 

In the Dixon method, a pair of images Ii(x,y) and I2(x,y) are acquired with a equals 0 

(in-phase) and K (opposed-phase) respectively. This sampling scheme is labeled as (0,n) 

or (0, 180°) according to the angle between the W and F vectors. The differential Larmor 

frequency between water and fat Aw is 3.5 ppm of the resonance frequency. At a field 

strength of 1.5 T, the resonance frequency is 63.9 MHz and the Larmor frequency 

difference between water and fat is 224 Hz. Hence, At needs to be 0 and 2.24 ms to make 

W and F in-phase and opposed-phase. The two images can be written as 

If the magnetic field is perfectly homogeneous, the phase error 0 will be zero 

everywhere. Then, the term exp(i0) is a constant i. The water image W and fat image F 

can be simply solved by 

I(x, y) = [W(x, y) + F(x, y) exp(ia) ] exp(iO)exp(i0) (2-7) 

Ij =(W + F)exp(i<D) 
I2 = (W - F) exp(iO) exp(i®) 

(2-8) 

W=II,+I2 1/2 
F=II, - I 2 1/2 

(2-9) 
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When the field inhomogeneity term exp(i©) is too large to be ignored, we cannot get a 

correct water-fat result from Dixon method. 

2.4 Water-Fat Imaging with Single Quadrature Sampling 

Shortly after Dixon's original work, a new water-fat imaging method was proposed by 

several authors [23-25]. This method acquires only a single image with the magnetization 

vectors of water and fat placed orthogonal to each other by properly setting the time shift 

At. The complex image can be written' as 

I, =(W + iF)exp(PP) (2-10) 

where W comprises all the phase errors. If W is small enough to be ignored, W will be the 

real part of Ii and F will be the imaginary part of Ii. So ideally, water and fat can be 

separated and distinguished by a single image acquisition. However, the phase errors 

cannot be ignored in most cases, which prevents a clean separation of water and fat. 

Although a phase correction method has been proposed [26] and there is a renewed 

interest in this approach [27], this method is still not clinically feasible. The main 

difficulty lies in the lack of information necessary for phase correction. Despite the 

problems caused by phase errors, this asymmetric sampling scheme points to later 

developments of water-fat imaging methods. 

2.5 Variations of Dixon method 

In the last decade, many methods have been proposed to correct the field 

inhomogeneity problem by using additional data acquisitions [28-36] to sample the water 

and fat vectors at angles of multiple of n radians. Among these methods, a representative 
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sampling scheme is (-71, 0, ri) [31]. Three complex images Ii(x,y), l2(x,y), and T:(x,y) are 

acquired with At being -x, 0, and x respectively, where x is set to satisfy Aco x = 71. The 

acquired images can be written as 

I, = (W-F)exp(iO)exp(-i@) 
12 =(W + F)exp(iO) (2-11) 
13 = (W - F) exp(iO)exp(i0) 

where © is given by © = -yAB0x . Because W and F should have positive real values, the 

phase error term exp(iO) is actually the phasor of h, where the phasor of a complex 

number can be calculated by normalizing the magnitude of the complex number to unit 1. 

Phase corrected images T', I2', I3' are obtained after exp(iO) are removed from I], I2 and 

I3, respectively 

Î  = (W-F)exp(-i@) 
I2' = (W + F) (2-12) 
I3'=(W-F)exp(i0) 

The solutions of W and F are given by 

W = J ( I 2 ' + P V I 7 V ) 
(2-13) 

* = - ( i 2 H > V V V ) 

where p = ±1 is a switch function which contains the sign of the square root. For each 

pixel, there is an ambiguity between W and F due to the sign of p. To solve this problem, 

the following procedure is adopted. It is straightforward to see that 

y i / ^ W - F ) 2 exp(i2@) (2-14) 

where "*" represents the complex conjugate of a complex number. The principle value of 

the phase angle 2© can be calculated by 
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(2©)principlev,ue=arg(I3'I1") (2-15) 

where the operator "arg" returns the phase angle, within (-7t, 7i), of a complex number. 

When |2@| is less than n, 2© is the same as its principle value. When J20| is larger than 

7t, 2© cannot be uniquely determined as the argument of I3*I,** because it can have a 

multiple of 2n difference. Phase unwrapping techniques are needed to obtain the 2® map, 

which will be discussed in the next section. After 2© is known, 0 is simply obtained as 

half of 2®. When arg[I,'exp(i©)] equals 0, W is larger than F, p should be 1; When 

arg[I1'exp(i©)] equals J I , W is smaller than F, p should be -1. After p is determined for 

every pixel, water and fat images are successfully separated. One problem with this 

method is that 2® is undetermined for voxels containing identical amounts of water and 

fat because of signal cancellation on the two opposed-phase images which were used to 

calculate 2®. In order to overcome this problem, a similar method with a sampling 

scheme of (0,7t,27t) was proposed [32]. In the (0,TC,27t) scheme, the first and third images 

are both water fat in-phase images. However, compared to the first image, the third image 

has an extra term exp(20) due to field inhomogeneity. Therefore, exp(2©) can be easily 

obtained by multiplying the complex conjugate of the first image to the third image. 

Because the first and third images are both in-phase images, there is no phase 

indetermination problem. 

We [37] and others [38-43] have found that the third image in the (-7t, 0, n) scheme 

is very much redundant except for some gain in SNR. This can be seen from equation (2-

12), where I3' is simply the complex conjugate of Ii'. The third image in a (0,7t,27t) 
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scheme also has this redundancy even though it can provide some information on 

relaxation effects and avoid 20 indetermination problem for some pixels. In fact, the 

original 2-point Dixon method can provide us almost the same amount of information as 

the (-71, 0, TI) method does. It can be seen from equation (2-8), a wrapped 20 map can be 

obtained by 

(2@)princip,evalue=arg[(I2i;)2] (2-16) 

Similar to the previous 3-point method, successful phase unwrapping is needed to get a 

unique answer of 0. 

2.6 Introduction to Phase Unwrapping Techniques 

The argument of a complex number is defined within a range of 2n radians, typically 

from -7i to +7i. As a result, the argument of a complex number can only represent the 

principle value of a phase angle. Phase wrap or phase aliasing occurs if the absolute value 

of the phase angle is greater than n. For example, in the previous discussion, phase error 

20 is caused by field inhomogeneity and it can be larger than TZ or smaller than -n. 

However, the principle value of 20, calculated by (20)principlevalue =arg(I3T1'*), is limited 

in the range from -n to +7t, and it can have a multiple of 2n difference from the real phase 

value of 20. To obtain the real phase map from a wrapped phase map is called phase 

unwrapping. Figure 2-7 shows a wrapped 20 map and the corresponding unwrapped 

phase map. 
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(a) (b) 
Figure 2-7 (a) A wrapped 2© phase map (b) The unwrapped 2® phase map 

Phase unwrapping is still a new topic in MRI, but it has been actively developed for a 

long time in other areas such as optical engineering and radar signal processing [44]. 

Some of the phase unwrapping methods used in MRI and other areas are listed below: 

• Phase unwrapping by polynomial fitting [31,45] 

• Simple region growing phase unwrapping [33,39,40] 

• Phase fringe counting / scanning approach to phase unwrapping [46] 

• Cellular automata method for phase unwrapping [47] 

• Noise-immune cut methods of phase unwrapping [48] 

• Flood phase unwrapping algorithm [49] 

• Phase unwrapping by regions [50] 

• Temporal phase unwrapping [51-53] 

• Iterative least-squares phase unwrapping methods [54,55,41] 
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• Phase unwrapping using a priori knowledge about the band limits of a function [56] 

• Minimum spanning tree methods [57] 

• Phase unwrapping based on dipole connections [58] 

For water-fat imaging, polynomial fitting [31], simple region growing [33,39,40], and 

iterative least-squares phase unwrapping methods [41] have been used. Instead of 

analyzing these phase unwrapping methods, we will discuss some basic theory of phase 

unwrapping in order to understand the limitations of phase unwrapping. 

The difficulty of phase unwrapping lies in the existence of 'poles' [58] or "isolated 

zero points" [54]. Given a wrapped phase map <))w(x,y), a pole criterion c(x,y) is defined 

as the sum of wrapped phase differences around a 2x2 pixel loop 

c(x, y) = W[<|)w (x +1, y) - <|>w (x, y)] + W[<|>w (x +1, y +1) - <|>w (x +1, y)] 
+ W[<|>w (x, y +1) - ((>w (x +1, y +1)] + W[<|>w (x, y) - <t>w (x, y +1)] 

where the wrapping operator "W" represents taking the principle value of a phase angle. 

Since the result of the subtraction of two wrapped phase angles is between -2K and 2K, 

W(A(|>) can be simply calculated by 

W(A<j>) = 
A(j) + 27t if A(p < —7t 
A<t>-27T. if Ad> > 7T (2-18) 
A(|) otherwise 

where A<j) is a phase angle in the range of -2K to 2K. The pole criterion c(x,y) has three 

possible values: 0, 2K, or -27t. If c(x,y) equals 0, pixel (x,y) is not a pole; If c(x,y) equals 

2K, pixel (x,y) is a positive pole; If c(x,y) equals -2K, pixel (x,y) is a negative pole. 

Another useful concept in phase unwrapping is the phase gradient map G(x,y) [54], 

whose two components Gx(x,y) and Gy(x,y) are defined as 
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Gx(x,y) = w = W[<|)w(x + l,y)-<|)w(x,y)J 

Gy(x,y) = 

9x 

w = W[<|)w(x,y + l)-(|)w(x,y)] 
(2-19) 

3y 

The curl of the 2D map G(x,y) is in the z direction and can be calculated by 

[VxG(x,y)]z = 
dGy 3GX 

dx dy 
= [Gy (x +1, y) - G y (x, y)] - [Gx (x, y +1) - G x (x, y)] 

(2-20) 

Substituting the definitions of G x and G y into equation (2-20), it is easy to prove that 

Therefore the pole criterion c(x,y) is nothing but the curl of the phase gradient map. 

Being a vector field, G(x,y) satisfies 

where dl is a unit step from one pixel to a neighbouring pixel in the horizontal or vertial 

direction; dA is a unit area. The above equation means that the integral of phase gradient 

along any closed path equals the sum of pole values in the region enclosed by the path. If 

the integral equals zero, it means there are no net poles in the region, i.e. there are no 

poles or the number of positive poles and the number of negative poles are equal in the 

region. If there is no pole in the wrapped phase map, the curl of the gradient map G(x,y) 

is zero everywhere. Therefore, G(x,y) is a conservative vector field and a potential <|>(x,y) 

can be defined as 

c(x,y) = [VxG(x,y)]2 (2-21) 

(2-22) 

<Kx,y)= JG(x,y).dl (2-23) 
("o.yo> 
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where (xo, yo) is the initial point. The potential <|>(x,y) is in fact the unwrapped phase map 

of 0w(x,y). Therefore, phase unwrapping for a wrapped phase map without any poles is 

straightforward. In reality, however, the wrapped phase maps usually have poles, which 

means the curl of the G(x,y) has non-zero points. Consequently, G(x,y) is not a 

conservative field and no potential can be defined in the whole field since the above 

integration will be dependent on the integral path. However, a potential can still be 

defined in a region that has no poles and it does not enclose any inner region that has net 

poles. 

There are two kinds of poles in a wrapped phase map. The first kind of poles are in 

the background noise. If the noise distribution in a phase map is uniform, it can be proved 

that 1/6 of the noise pixels are positive poles and 1/6 negative poles. These poles in the 

noise pose a lot of difficulties to phase unwrapping but could be overcome by the use of a 

proper phase unwrapping method. The second kind of poles are in the signal region. A 

main reason of causing these poles is under-sampling of the image. For this kind of poles, 
I 

there is no guarantee that the unwrapped phase map is the true phase map. A good phase 

unwrapping method can only give a result that has a higher probability to be correct. 

Phase unwrapping has been and will still be a problem seeking better solutions for 

different applications. 

All the water-fat imaging methods we mentioned previously rely on a successful 

phase unwrapping of the 20 map, which is often difficult and not robust in clinical 

applications. Phase unwrapping of the 20 map is especially difficult if not impossible 

when the .tissues are imaged as disconnected pieces in the FOV. Even if the phase 
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unwrapping is successful, water fat can be separated but cannot be uniquely identified. 

This may cause the water images and fat images displayed inconsistently when multi-

slice images are to be displayed. Inconsistent water and fat separation can also occur 

between disconnected pieces of tissues in the FOV. 

2.7 Thesis Outline 

In chapter 3, we will introduce a new method for water-fat imaging. With three image 

acquisitions, a general direct phase encoding (DPE) of the chemical shift information is 

achieved, which allows an unambiguous determination of water and fat on a pixel by 

pixel basis. We have three publications [59,60,61] about this method. 

In chapter 4, new improvements in image SNR for the DPE method will be 

introduced and details of noise performance analysis will be discussed. 

In chapter 5, a special DPE sampling scheme will be introduced. With three-

orthogonal phase (TOP) image acquisitions, it allows a correction of image magnitude 

errors caused by factors such as T2* relaxation. We have one publication [67] about this 

method. A US patent application of the techniques described in chapter 3, chapter 4, and 

chapter 5 has been filed. 

In chapter 6, we will introduce a new two-point water-fat imaging method. By 

sampling water and fat asymmetrically and minimizing the gradient energy in a phase 

map, this method determines water and fat without ambiguity and handles disconnected 

tissues well. We have one publication [70] about this method. 

In chapter 7, we will introduce a new general method of chemical shift imaging with 

spectrum modeling (CSISM). This method models a spectrum as several peaks with 
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known resonance frequencies but unknown peak amplitudes which can be resolved from 

a set of spin-echo images. We have one publication [72] about this method. A US patent 

application of this technique has been filed. 

In chapter 8, the general ideas, results and conclusions of all the methods we 

introduced in this thesis will be discussed, compared, and summarized. 

2.8 Glossary 

CSI: Chemical Shift Imaging 

CSISM: Chemical Shift Imaging with Spectrum Modeling 

DPE: Direct Phase Encoding 

FOV: Field Of View 

GOF: Global Orientation Filter 

LOF: Local Orientation Filter 

LSE: Least Square Error 

MGE: Minimized Gradient Energy 

MRI: Magnetic Resonance Imaging 

MST: Minimum Spanning Tree 

NMR: Nuclear Magnetic Resonance 

NSA*: effective Number of Signals Averaged 

RF: Radio-Frequency 

RMST: Regional Minimum Spanning Tree 

SNR: Signal to Noise Ratio 

SRF: Spin Reversal Filter 



TE: Time of Echo 

TOP: Three Orthogonal-Phase 

TR: Time of Repetition 



59 

CHAPTER 3 

WATER-FAT IMAGING WITH DIRECT PHASE ENCODING (DPE) 

3.1 Data Acquisition and Direct Solutions to the Complex Equations 

We developed a new 3-point water-fat imaging method that allows a direct solution 

of water and fat at the pixel level. The two rotating vectors of water and fat were sampled 

asymmetrically instead of sampling them only at angles of multiple of n radians. At the 

beginning of our research, a (0, TT/2, ii) sampling scheme was adopted [59]. Several 

months later, a general DPE sampling scheme (do, ao+cc, ao+2a) and corresponding 

processing algorithm were developed [60,61]. For DPE, either a spin-echo or a gradient-

echo pulse sequence can be used to acquire three complex images with time shift At = To, 

To+T, and TO+2T. AS shown in Figure 3-1 (a) and (b), the time shift At is measured from 

the refocusing time to to the echo-time TE, where to has different definitions in spin-echo 

and gradient-echo pulse sequences. In a spin-echo sequence, the refocusing time to is 

simply the Hahn echo position; in a gradient-echo sequence, the refocusing time to must 

be one of those time instances when the water and fat vectors are in-phase, i.e. to must 

satisfy that 

Atot0 = n 2K (n- integer) (3-1) 

In a spin-echo sequence, At can be adjusted by either changing the location of the 

180° refocusing pulse or the TE, or both. In a gradient-echo sequence, At is adjusted by 

changing the TE. 
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Figure 3-1 (a) Spin-echo and (b) gradient-echo pulse sequences for DPE 

Three acquisitions with different amount of time shift At are performed for each 

phase encoding step. After ordinary image reconstruction, three complex images Ii, I2, 

and I3 are obtained and expressed as 

Ij = [W + Fexp(iao)]exp(iO)exp(i0o) 
12 = [W + Fexp(iao)exp(ia)]exp(iO)exp(i0o)exp(i0) 
13 = [W + F exp(ia0) exp(i2a)] exp(iO) exp(i0o) exp(i20) 

(3-2) 

where a 0 = Aco T 0 , a = Aco x, © 0 = - Y A B 0 X 0 , and 0 = -yAB0x; <D is still the constant 

phase error caused by systematic errors such as RF inhomogeneity and data acquisition 

window off-centering. For a gradient-echo sequence, O also contains an additional 

component YABoto due to B 0 inhomogeneity. The above equation can be transformed into 

L=(W + CF)P0 

12 =(W + CAF)P0P, 

13 =(W + C A 2 F)P0P,2 

(3-3) 

by defining four complex factors C, A, P0, and Pi as follows 
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C = exp(ia0) 
A = exp(ia) 
P0 =exp(iO)exp(i0o) 
P, = exp(i0) 

It is helpful to introduce two new complex variables X and Y as 

X = WP0P, 
Y = FCAP 0P 1 

(3-4) 

(3-5) 

Obviously, W and F are the magnitudes of X and Y. From equations (3-3), we have 

(3-6) I2 =X + Y 
IJ 3 = X + Y + XY(A + 1 / A) 

This set of complex equations has two possible solutions for X and Y 

X = i ( I 2 ± A I ) 

Y=|(I 2+AI) 
(3-7) 

where Al is defined as 

Al =>/(A +1)212

2 - 4AI,I3 /(A -1) (3-8) 

The ambiguity in the solutions of X and. Y is caused by the complex square-root 

operation. This ambiguity is expected since X and Y hold symmetric positions in 

equations (3-5). However, this symmetry between X and Y can be broken by using the 

definitions of X and Y in equations (3-5), provided that 

CA * ±1 (3-9) 

The phasor CA is given by CA = exp(cc0 + a), where a 0 + a is determined by the 

parameter x0 + x. It can be seen from equations (3-5) that vectors Y and (CA) X are in 

the same direction. Therefore, vector Y is leading X by the angle of tx0 + a . When CA is 
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1 or -1, X and Y are parallel or anti-parallel and cannot be distinguished by the leading 

and lagging relationship. Therefore, we should avoid making a 0 + a multiples of n in 

data acquisitions. As a matter of fact, X and Y represent the water and fat magnetization 

vectors in the second image. Because fat has a lower precession frequency than water 

does, fat magnetization rotates counter-clockwise relative to water magnetization. 

Therefore, the fat magnetization vector should be leading the water magnetization vector 

by an angle of a 0 + a at time shift At = x0 + x. According to this leading and lagging 

phase relationship, the correct X and Y solution can be determined from the two possible 

solutions. This binary choice of solutions is schematically illustrated below. 

Figure 3-2 Binary choice between the two solutions 

This binary choice between the two solutions is implemented in the computer program as 

follows. First, one set of solutions for X and Y in equations (3-7) is taken temporarily as 

the right answer. Then, two dot products Di and D 2 are calculated by 
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D, = X • [Y / (CA)] = real(X) real[Y / (CA)] + imag(X) imag[Y / (CA)] 
D 2 = Y • [X / (CA)] = real(Y) real[X / (CA)] + imag(Y) imag[X / (CA)] ( 3 " 1 0 ) 

where "real" and "imag" represent taking the real part and imaginary part of a complex 

number, respectively. If Di is greater than or equal to D2, it means the choice of solution 

is correct and X and Y remains unchanged; If Di is less than D2, it means the choice of 

solution is wrong and X and Y should be swapped. This binary choice procedure is 

performed for every pixel in the FOV. 

3.2 Special Treatment for Pixels with A Single Component 

The above solution of water and fat vectors works well if both W and F are 

significantly larger than noise in a pixel. However, it is possible that one of the two 

components in a pixel is so small that it is embedded in the noise. This corresponds to the 

troublesome "single peak" situation even in localized spectroscopy, where we cannot tell 

which chemical the peak represents since the relative relationship between peaks is not 

available. In our case, when a pixel has only a single component, the binary choice of 

water and fat based on their relative phase relationship becomes unreliable, with about 

50% chance to be incorrect depending on the local SNR. However, a voxel containing 

pure fat is not realistic in living tissue [62]. If one of the two variables X and Y is nearly 

zero, one can simply assign this pixel to be pure water. In our implementation, we simply 

compared the magnitudes of X and Y. If one is less than a small fraction (e.g. 7 %) of the 

other, the longer vector will be determined as water and the shorter one as fat. This 

operation is used to introduce a statistical bias towards water for those single peaked 

pixels. The specific value of the threshold is not critical if the "global orientation filter 

(GOF)" described in the next section is used. 
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3.3 Orientation Filtering 

After the steps described in the previous two sections, X and Y have been determined 

for most of the pixels. Some pixels, many of which are single peaked pixels, could be 

given swapped (X, Y) solutions due to poor SNR or artifacts. These wrong assignments 

can be corrected for based on the fact that the complex phasors Po and Pi, although 

unknown, are usually smoothly changing spatial functions. 

A local orientation filter (LOF) was first developed. An orientation vector O is 

defined as 

0 = X + Y/(CA) (3-11) 

From the equations (3-4), we see that O is parallel to PoPi if X and Y has been correctly 

determined. A mean value <0> of the orientation vector O is calculated in a sliding 

window (e.g. 7x7 pixels). Then, two possible values of O for the central pixel, Oi and 

O2, are computed by 

O, =X + Y/(CA) 
1 (3-12) 

0 2 - Y + X/(CA) 

These two orientation vectors are compared with <0> by computing two dot products 

D.=0,<0> 
1 1 (3-13) 

D 2 = 0 2 < 0 > 

If Di is greater than or equal to D2, X and Y keeps unchanged; If Di is less than D2, X 

and Y are swapped. The basic assumption here is that the majority of the pixels 

everywhere in the FOV have correct (X,Y) assignment before filtering. Hence, <0> 

represent the correct direction of O for the central pixel in the sliding window. If Oi 

agrees better with <0>, as reflected in a greater Di value, the original assignment of 

(X,Y) for the central pixel would be correct; But if 0 2 agrees better with <0>, it means 

1 
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that the original (X,Y) assignment for the central pixel is wrong, thus X and Y need to be 

swapped. 

LOF has been successfully used to reconstruct many water-fat images. In a few cases, 

LOF failed for some regions where the majority of pixels have wrong (X,Y) assignments 

before filtering. These regions were contaminated by artifacts and some unknown factors. 

In such a situation, information from more distant pixels can be helpful in getting the 

correct (X,Y) assignments for pixels in the troubled regions. Global orientation filter 

(GOF) was developed to achieve this goal. 

GOF is a statistical operator based on repeated region growing from randomly 

distributed seeds. Initially, a pixel is chosen at random as a seed and its normalized 

orientation vector Os defined as 

Os = phasor [X, + Ys / (CA)] (3-14) 

is computed, where X s and Y s are the X and Y vectors for the seed. Two normalized 

orientation vectors Oi and 0 2 defined as 

0,=phasor[X + Y/(CA)] ( 3 

0 2 =phasor[Y + X/(CA)] 

are computed for the surrounding 4-connected neighboring pixels and compared with that 

of the seed. The comparison is done by computing the dot products Di and D 2 defined as 

D, =0-0, 
1 s 1 (3-16) 

D 2 = O s 0 2 

If Di is greater than a threshold T (e.g.T = 0.985), the pixel is grown with X and Y 

unchanged; If D 2 is greater than the threshold T, the pixel is grown with X and Y 

swapped; If both Di and D 2 are greater than or smaller than the threshold T, the pixel is 

not grown. The use of the threshold T is to prevent growing in the background noise, as 
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we can see that the neighboring pixel will not be grown unless Oi or O2 is nearly parallel 

to Os (within ±10° range for T=0.985). This range is to accommodate the impact of noise 

and artifacts on the solutions, as well as the finite line-width of fat in the chemical shift 

spectrum. After the 4-connected neighboring pixels have been visited, the grown pixels 

are used as new seeds for the growing of the next layer. The grown pixels will not be 

visited again. This process continues until no more pixels can be grown. To monitor the 

operation of the global orientation filtering, a consistency score has been accumulated as 

where Sn and Sn+i are the consistency scores after the nth and (n+l)th pixel are grown, 

respectively. S is the differential number of pixels without and with (K,Y) swaps, 

reflecting the reliability of the original X and Y solutions at the seed, as well as the 

performance of the growing process. For instance, if the seed is a "bad" pixel with a 

wrong assignment of X and Y, one can expect a large number of (X,Y) swaps due to the 

data inconsistencies, and the. score S will be negative. In contrary, if the seed is a "good" 

pixel with a correct (X,Y) assignment, there will be less (X,Y) swaps, and the score S 

will be positive. If at any step the score S is negative, the growing process is considered 

invalid and will be terminated and the process will start again with a new seed. 

A grown region usually covers one piece of isolated tissue. There can be many pieces 

of isolated tissue in the whole FOV. Hence, the above growing process is repeated with 

many different candidates of seeds. They are chosen at random and are evenly distributed 

in the FOV with sufficient density so that every piece of isolated tissue is covered. A 

predetermined integer N (e.g. N=7) is used to limit the processing time: for a seed to 

qualify to grow, the pixel must be visited less than N times by the previous growths. 

if X and Y are not swapped at the (n + l)th pixel 
if X and Y are swapped at the (n + l)th pixel 

(3-17) 
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From the results of all the valid growths, a "vote" is taken at each pixel to decide whether 

the X and Y values should be swapped or not: They are swapped if more than half votes 

indicate so. 

Theoretically, the GOF requires only more than half of the pixels on each isolated 

piece of tissue to be correct in the original X and Y assignments. Usually this condition is 

satisfied in tissues, as pixels containing both water and fat are well determined. These 

double peaked pixels constitute a significant fraction of the total, and the rest are about 

50% to be incorrect. The statistical bias introduced by no-pure-fat assumption is only 

necessary to handle challenges created by an entire isolated piece of fat free tissue, which 

seldom happens in a realistic clinical MRI scan. 

Because the GOF uses the global statistical properties of the original X and Y images, 

it is much less sensitive to local image artifacts than the LOF. However, due to the 

threshold in GOF, some isolated noisy pixels may not be corrected by GOF. In this case, 

LOF after GOF can be helpful to correcting for these isolated noisy pixels. 

3.4 Second Pass Solution and Optimal Averaging 

After the X and Y images are treated by the GOF and LOF, they can be directly used 

to produce water and fat images by simply taking their magnitudes. Alternatively, W and 

F which are the magnitudes of X and Y, can be substituted back into equations (3-3) to 

obtain the unknown phasors Po, PoPi, and PoPi2, allowing a second pass solution of water 

and fat components. The latter option is much superior in terms of SNR in the final 

results. The phasors Po, PQPI, and PQPI 2 are calculated by 
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W + CF 

P0P,= ~ (3-18) 
0 1 W + CAF 

PJ>,2 = 1 3 

0 1 W + CA 2F 

Ideally, the above phasors should be fairly smooth functions. In reality, they may have 

significant fluctuations as they were obtained pixel by pixel from a set of non-linear 

complex equations where the noise and artifacts can propagate in a complicated manner. 

A simple smoothing operation on these phasors with a standard n x n (e.g. 7x7) pixel 

sliding window averaging should effectively reduce the standard deviation of the 

fluctuation by a factor of n. After the phasors Po, PoPi, and PoPi2 are smoothed, they can 

be removed from the original equations (3-3), resulting in the following phase corrected 

images 

J[ = W + CF 
J 2= W + CAF (3-19) 

J 3=W + C A 2 F 

where Ji, J 2, and J3 are obtained by multiplying I), I2, and I3 with the complex conjugate 

of the appropriate phasors, respectively. Three sets of solutions for W and F can be found 

from the three equation pairs formed from the above equation 
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w - j ' a 2 j ? 

1 3 ~ A 2 - l 
A 1 (3-22) 

J - J 
p J 3 J l 

1 3 ~C(A 2 -1) 
These solutions should be essentially identical and differ only in noise and artifacts, 

therefore they can be averaged for an improved final result. Since the three solutions in 

general have different SNR, an optimally weighted averaging would be superior to a 

simple averaging [63]. Thus we have 

< W >= XW„ + T|W„ + | w n 

12 1 3 (3-23) 
<F> = XFl2+r\F23+^Fl3 

where X, r\, and £, are the optimal weighting factors which are shown to be [Appendix A] 

1 
X = r\ = 

2(2 +cos a) 
1 + cos a 
2 + cosa 

where a is the angular increment in the three acquisitions. The SNR equivalent "number 

of signal averaged" (NSA*) [32] of the optimal averaging is [Appendix A] 

(NSA*)opt = (̂2 + cosa)(l-cosa) (3-25) 

Similarly, the NSA* for a simple averaging can be obtained as 

( N S A * W = , ' 8 S ' " ' a . , (3-26) 5 + 4cosa + 2sm a 

The two curves of (NSA*)opt and (NSA*)simple are plotted in Figure 3-3. The NSA* of the 

optimal averaging is higher everywhere than the simple averaging, except at points of 0° 

and 120°, where they are both 0 and 3 respectively. They are very close for a angles 

under 120°, but differ significantly for larger a angles. This is due to the fact that as a 
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approaches 180°, solutions W,3 and Fi 3 become more noisy, therefore their weighting 

factor £, should diminish for an optimal SNR, as can be seen from equation (3-24). 

alpha (degrees) 

Figure 3-3 The NSA* curves as functions of angle a. Solid line is for optimal 
averaging, dotted line is for simple averaging. 

The final output of water and fat images can be taken as the real parts of the optimal 

averaging <W> and <F>. By definition, any leakage in the imaginary channels is due to 

noise and artifacts. This allows another improvement of image quality because the energy 

of the noise and artifacts in the imaginary channel are discarded and not contributing to 

the total energy in the result. Similar ideas have been used to identify the spatial 

distribution of motion artifacts and consequently reducing them [63], or to reduce flow 

artifacts in MRI by replacing the conventional magnitude reconstruction with a phase-

corrected real image reconstruction [64]. 
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3.5 Solution Stability and Phase Error Tolerance 

SNR is not the only parameter determining the quality of the water and fat images. If 

there is a systematic error in the first pass solution of W and F, say a reversed water and 

fat assignment, the final result will be degraded, which is not characterized by the SNR. 

This systematic error is related to the stability of the original (X,Y) solutions in equation 

(3-7), as well as the phase error tolerance in choosing the two sets of (X,Y) solutions and 

in the orientation filters. A minimized systematic error can be a more important factor 

than a maximized SNR, in terms of the general quality of the water and fat images. 

The solution stability depends on the angular increment a that determines the 

parameter A in equation (3-8). For example, when a is so small that A is close to 1, the 

(X,Y) solutions in equation (3-7) become unstable since the denominator in equation (3-

8) is nearly zero. On the other hand, a = 180° (corresponding to A = -1) would be a 

good choice for a more stable (X,Y) solutions. 

Equation (3-5) shows that the angle between vectors X and Y, or the water and fat 

magnetization vectors in the second acquired image, is equal to the combined angle 

a 0 + a. Correctly choosing this angle is crucial in determining the leading and lagging 

vectors, as well as performing the orientation filtering. Clearly, for these operations, the 

phase error tolerance in X and Y is maximized when this angle is 90° or -90°. A 

sampling scheme with water and fat being orthogonal in the second image would be 

optimal, i.e. the central point should be a quadrature sampling. 

In situations where the first image is acquired with water and fat in-phase, then ©o=0 

and it is possible to perform an initial phase correction of the phase error <D. The phase 

error O can be obtained as the phasor of the in-phase image and removed from all three 
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complex images. This initial phase correction can be especially useful for gradient-echo 

sequences where the phase error <D contains a major contribution of Bo field 

inhomogeneity. This phase error, when very large and not corrected, may have negative 

impact on the orientation filters and the smoothing operations. 

3.6 Experimental 

Considering factors such as solution stability, phase error tolerance, SNR, span of At, 

and initial phase correction, we implemented a (0°,90°, 180°) version of DPE on several 

clinical imagers with field strengths ranging from 0.5T to 1.5T (SIGNA, GE Medical 

Systems, Milwaukee, WI; and EDGE, Picker International Inc., Highland Heights, OH). 

The standard spin-echo sequences were modified to perform a 3-point interleaved 

acquisition by shifting either the 180° RF pulse or the frequency encoding structure. With 

this sampling scheme, the more familiar "in-phase" and "opposed-phase" images are also 

easily available, which by themselves may be useful in certain applications [65]. 

Different parts of the body of volunteers and patients have been imaged in the past years, 

including head, neck, shoulder, abdomen, pelvis, thigh, knee, calf, ankle, and wrist, using 

various types of RF coils [66]. The NSA* for the (0°,90°,180°) sampling scheme is 2.67. 

Raw data or complex image data were saved and processed on UNIX based 

workstations (Sun Sparc 10, Sun Microsystems, Mountain View, CA; and DEC 

3000/400, Digital Equipment Corporation, Maynard, MA). The algorithm was coded in 

the C and C++ programming language as a subroutine that inputs the three complex 

images and outputs the water and fat images with no user intervention. The operations 

are summarized as the following steps 
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• If C=l, remove phase error O in original images L, I2, and I3 

• Find 2 sets of possible solutions for (X,Y) 

• Choose the correct (X,Y) according to the leading or lagging phase relationship 

• Single peak treatment 

• Apply GOF & LOF to X & Y images to get the 1st pass W & F solutions 

• Find 3 phasors and obtain phase corrected images Ji, J2, and J3 

• Find 3 sets of 2nd pass W & F solutions 

• Output W & F images as optimal averaging of the 3 sets of solutions 

The data processing software has been made so user friendly that the water and fat 

images could be reconstructed by the technologists in minutes after each scan. With a 

current version of the software, the processing time per slice from the three complex 

images to the water and fat images on a Sparc 10 workstation is only 10-15 seconds, 

depending on the anatomical structure in the image. Experiments were also performed to 

test other sampling schemes such as (45°,90°,135°) or (0°,120°,240°) with both spin-

echo and gradient-echo sequences on a 0.5T GE SIGNA system, as well as on a 1.5 T 

Picker EDGE system. In all the experiments, no special effort was spent to shim the 

magnetic field. 

Hundreds of studies on volunteers and patients each of 5-32 slices have been 

performed in several local hospitals, mostly with Ti Weighted but a few T 2 weighted 

scans. The results were excellent. Some typical results are shown in Figures 3-4 to 3-6. 

DPE is quite tolerant to noise and artifacts, therefore appears to be robust. In Figure 3-7, 

water-fat images from sampling schemes of (45°,90°,135°), (0°,90°,180°), and 

(0°, 120°,240°) were compared. The SNR is consistent with the theoretical description in 
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equation (3-25). DPE is also experimentally tested to be successful with gradient-echo 

sequences. Some typical results are given in Figure 3-8. 

Figure 3-4 Transverse water (a) and fat (b) images of the head acquired at 0.5 T. 
Spin-echo, TR=500ms, TE~ 15ms, sampling scheme (0°,90°,180°). 



(a) (b) 
Figure 3-5 Transverse water (a) and fat (b) images of the abdomen acquired at 0.5 T. 
Spin-echo, TR=600ms, TE«20ms, sampling scheme (0°,90°,180°). The result is 
uniformly good over a large FOV, which is difficult for conventional RF fat 
saturation to achieve. 

(a) (b) 

Figure 3-6 Saggital water (a) and fat (b) images of the knee acquired at 0.5 T. Spin-
echo, TR=600ms, TE« 16ms, sampling scheme (0°,90°,180°). 





Figure 3-7 Transverse water (a, c, e) and fat (b, d, f) images of the knee acquired at 
0.5 T with different sampling schemes: (45°,90°,135°) for(a,b), (0°,90o,180°) for 
(c, d), and (0°,120°,240°) for (e, f). Spin-echo, TR=600ms, TE~ 20ms. 

( a ) (b) 
Figure 3-8 Transverse water (a) and fat (b) images of the head, acquired with a 
gradient-echo sequence at 1.5 T. TR=500ms, TE=9.00, 10.13, and 11.25 ms, 
sampling scheme (0°,90°,180°). 
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3.7 Discussion 

If two rotating vectors are sampled only at angles of multiples of n, their relative motion 

can not be determined without ambiguity. This is analogous to,the impossibility of telling 

how the two hands on a clock exactly rotate if one only sees them being parallel or anti-

parallel. DPE samples the rotating magnetization vectors of water and fat at other angles, 

which is the key to break the symmetry between them, and resolves them for each pixel 

unambiguously. DPE can not only adequately separate the two components, but also tell 

which image is water or fat. 

A significant advantage of DPE is that it does not rely on the error-prone phase 

unwrapping, neither assumes global tissue connectivity as required by other methods. 

DPE determines the water and fat components directly for more than half of the pixels in 

the image, and we treat the rest by using orientation filters that are only based upon the 

fact that the phase errors are smoothly changing in tissues. This allows disconnected 

tissues in the FOV to be resolved without any additional effort. 

For pixels containing only a single component, the shorter vector in (X,Y) would be 

at the noise level without a definite phase relationship relative to the longer vector. As a 

result, the direct solution of DPE for these pixels will have only about 50% chance to be 

correct. Although the overall fraction of correctly resolved pixels is still more than half as 

required by the GOF, the single peak treatment is useful, especially when the original 

images are of poor quality or there is a pure water phantom in the FOV. The single peak 

treatment is based on the fact that pure fat does not exist in living tissues. This 

assumption, however, is not quite true for some pixels that are chemically shifted in the 

frequency direction near the tissue boundary. The water-fat misregistration makes it 
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possible for these pixels to contain only pure fat. Fortunately, since they have only a very 

small population and do not change the statistical balance between correctly and 

incorrectly resolved pixels, therefore their effect is negligible. 

The data acquisition and utilization of DPE are very efficient. The three interleaved 

acquisitions not only provide a reliable water-fat determination, but also improve the 

SNR significantly. Since multiple averaging is often used for SNR anyway in clinical 

MRI, the water-fat determination can be considered as almost a bonus at very little or no 

cost of SNR. 
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CHAPTER 4 

SNR IMPROVEMENT FOR THE DPE METHOD 

4.1 Introduction 

In the past year, we have gained some new understanding and made improvements to 

the DPE method. Firstly, we have realized that the final water-fat result obtained from 

optimal averaging is actually identical to the result obtained from a complex valued least 

square error (LSE) method. Furthermore, we have found a real valued LSE method that 

allows a higher SNR for the final water-fat images. 

4.2 Complex Valued LSE Method 

The equations (3-19) are a set of over-determined linear equations since they have 

three equations but only two unknowns, i.e. W and F. It is a common practice to solve a 

set of over-determined linear equations by least square error (LSE) algorithm. Equations 

(3-19) can be expressed in matrix form as 

U = MV (4-1) 

where V is an unknown vector with elements W and F 

v = 
F 

(4-2) 
V 

U is an known vector representing the phase corrected images 

(4-3) 

M is a 3 x 2 matrix given by 
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fl C >> 
M = 1 CA 

1 C A 2 

(4-4) 

V J 

The LSE solution [68] of equation (4-1) is given by 

V = L U (4-5) 

In the above equation, L is a 2 x 3 matrix given by 

L = (M +M) _ 1M + (4-6) 

where "+" represents the complex conjugate of the transpose of a matrix; "-1" represents 

the inverse of a matrix. Equation (4-5) can be written more clearly as 

From equation (4-7), W and F can be calculated numerically. The final result of water 

and fat images can be taken as the real parts of W and F, respectively. 

Through analytical derivations, we can prove that the final water-fat result given by 

the optimal averaging method and the above complex valued LSE method are identical 

[APPENDIX B]. Due to its simplicity and popularity, the LSE approach appears more 

attractive. Nevertheless, the equivalence of the optimal averaging method and the 

complex valued LSE method shows that LSE method is optimal in SNR because the 

optimal averaging method is designed to maximize SNR. 

4.3 Real Valued LSE Method 

In the previous section, three complex equations are solved with LSE method to give 

a complex valued water-fat solution. Then the knowledge of W and F being non-negative 

real numbers is used to take the real parts of W and F as the final result. In this section, a 

(4-7) 
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new approach is adopted to calculate the final water-fat result. First of all, the knowledge 

of W and F being a non-negative real number is used to split the three complex equations 

into six real valued equations. Then the LSE solution of (W,F) is calculated from the six 

real valued equations. 

Complex equations (3-19) can be split into the following real valued equations 

real( J,) = W + F cos(a0) 
imag^) = Fsin(a0) 
real( J2) = W + F cos(a0 + a) 
imag( J2) = F sin(a0 + a) 
real(J3) = W + Fcos(a0 + 2a) 
imag(J3) = Fsin(a0 + 2a) 

(4-8) 

The equations (4-8) can be written in matrix form as 

U = MV (4-9) 

where V is an unknown vector with unknown elements W and F 

v = 
F 

(4-10) 
v J 

U is a known vector given by 

U = 

(real(J,) " 
imagCT,) 
real( J2) 
imag(J2) 
real(J3) 
îmag(J3)y 

(4-11) 

M is a 6 x 2 matrix given by 



83 

M 

fl cos(a0) 
0 sin(a0) 
1 cos(a0 + a) 
0 sin(a0 + a) 
1 cos(a0 + 2a) 

\0 sin(a0 + 2a) 

The LSE solution of equation (4-9) is given by 

V = LU 

In the above equation, L is a 2 x 6 matrix given by 

L = (MTM)~'MT 

(4-12) 

(4-13) 

(4-14) 

where "T" represents the transpose of a matrix. Equation (4-13) can be written more 

clearly as 

= L 

r̂eal(J,) A 

imag( J,) 
real(J2) 
imag(J2) 
real(J3) 
imag(J3) 

(4-15) 

From the above equation, W and F can be calculated numerically and output as the final 

water and fat images. 

Now, we want to calculate the NSA* of the second pass (W,F) solution. From 

equation (4-15), The solutions of W and F can be written in more detail as, 

W = L, , real(J,) + L, 2 imag(J,) + L 1 3 real(J2) + L, 4 imag(J2) 
+ L l i 5 real(J3) + L 1 > 6 imag(J3) 

F = L 2 , real^) + L 2 2 imagCJ,) + L 2 3 real(J2) + L 2 4 imag(J2) 
+ L 2 5 real(J3) + L 2 6 imag(J3) 

(4-16) 
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where Lm,n is the matrix element of L at the mth row and nth column. The phase corrected 

images Ji, J2, and J3 have the same noise variances as their original counterparts Ij, I2, and 

I3, i.e. ô 2 = o~2

2 = o3

2 = a 0

2 , since the noise variances in the phasors Po, P0P1, and PoPi2 

are greatly reduced by heavy smoothing operations. The noise variance of the real part 

and imaginary part of Ji, J2, and J 3 is o0

2 / 2, because the noises in the real part and 

imaginary part of Ji, h, and J3 are independent of each other and they should add to o0

2. 

Then the noise variance in W, o~w

2, and the noise level in F, oF

2, are given by 

o w

2 = ( L 1 > I

2 + L l i 2

2 + L 1 > 3

2 + L 1 > 4

2 + L l i 5

2 + L l i 6

2 X o 0

2 / 2 ) 

oF

2 = ( L 2 > 1

2 + L 2 2

2 + L 2 _ 3

2 + L 2 4

2 + L 2 5

2 + L 2 6

2)(a0

2 / 2) 

From numerical calculation, it can be proved that o w

2 is always equal to oF

2. Therefore, 

NSA* of the water image and fat image can both be calculated by 

NSA* = — - — 
a w

2 / (a0

2 / 2) 
i (4-18) 

_ T 2
+ T 2 + T 2 + T 2 + T 2 + T 2 

M,l ^^1,2 ^ ^ 1 , 3 TJ^1,4 -̂̂ 1,5 T 1̂,6 

The curves of NSA* versus phase increment angle a with different initial phase angle Oo 

are plotted in the Figure 4-1. 
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3.5 -1 T" -1 T" 

alphaO = -90 degrees 

alphaO = -45 degrees 

20 40 60 80 100 120 140 160 180 
alpha (degrees) 

Figure 4-1 NSA* curves as functions of phase increment angle a with different 
initial phase angle do. 

For the purpose of comparison, the curve of optimal averaging method (complex 

valued LSE method) in Figure 3-3 and the curve for real valued LSE method with 

a 0 = 0° in Figure 4-1 are plotted in Figure 4-2 

3.5 -i 1 1 r- ~i r 

20 40 60 80 100 120 140 160 180 
alpha (degrees) 

Figure 4-2 NSA* curves for the optimal averaging method (dotted line) and the 
real valued LSE method with a 0 = 0° (solid line). 
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Figure 4-2 shows that the real valued LSE method is superior to the optimal 

averaging method in overall NSA* performance. For the (0°,90°, 180°) sampling 

scheme, the NSA* is 2.67 for the optimal averaging method and 3.0 for the real valued 

LSE method. 

4.4 Experiments and Results 

Before this real valued LSE method was adopted, We have already implemented a 

(0°,90°,180°) version of DPE on several clinical imagers with field strengths ranging 

from 0.5T to 1.5T (SIGNA, GE Medical Systems, Milwaukee, WI; and EDGE, Picker 

International Inc., Highland Heights, OH). Now, we replace the optimal averaging 

algorithm in the water-fat reconstruction programs with the real valued LSE algorithm. 

The results were excellent. The NSA* for the (0°,90°,180°) sampling scheme was 

improved from 2.67 with the optimal averaging algorithm to 3.0 with this real valued 

LSE algorithm. A representative result of a phantom experiment is shown in Figure 4-3. 

The noise variance in image (a) is about 12% higher than in image (b), which agrees with 

the NSA* ratio between the optimal averaging algorithm and the real valued LSE 

algorithm. 
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4.5 Discussion 

The definitions of NSA* in the optimal averaging method and in the real valued LSE 

method are identical even though they look different. In the optimal averaging method, 

the NSA* is defined as [APPENDIX A] 

NSA* = — ^ - (4-19) 

Assume the NSA* of a pair of water and fat images is 3.0 in the optimal averaging 

method. The NSA* would become 1.5 if we use the NSA* definition defined in equation 

(4-18). However, the water and fat images in optimal averaging are complex images. We 

can take the real part of these images as the final water and fat images to reduce the noise 

variances by 50 %. Hence, the final NSA* for the real valued water and fat images are 

still 3.0. 
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Even though the real valued LSE method is superior to the optimal averaging method 

in overall SNR performance, the real valued LSE method may be more sensitive to phase 

errors since the six real valued equations of equations (4-8) are more sensitive to phase 

errors than the three complex equations of equations (3-17). 
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CHAPTER 5 

WATER-FAT IMAGING WITH THREE ORTHOGONAL-PHASE (TOP) 
ACQUISITIONS 

J 

5.1 Introduction 

We know that, for the general DPE method, a sampling scheme with A = -1 is the 

best choice for the (X,Y) solution stability, while a sampling scheme with CA = ± i is the 

best choice for phase error tolerance. The sampling scheme (0°,90°, 180°), which we 

use most frequently, satisfies the condition of CA = ± i but does not satisfy the condition 

of A = -1, thus the solution stability is not maximized. A sampling scheme of 

(-90°,90°,270°) or (90° -90°,-270°) would satisfy both conditions, thus has both 

stable (X,Y) solutions and strong phase error tolerance [67]. Furthermore, the three 

orthogonal-phase (TOP) images should have equal magnitudes. Any magnitude 

difference among these three images should be caused by factors other than water-fat 

chemical shift effects. This allows a magnitude correction and leads to improved water-

fat image qualities. In this chapter, we will investigate TOP thoroughly by taking the 

(-90°,90°,270°) case as an example. The other (90°,-90°,-270°) case will be very 

much identical, thus will not be discussed. 

5.2 Data Acquisition and First Pass Solution 

The (-90°,90°,270°) water-fat phase encoding corresponds to a 0 = -90° and 

a = 180° in the general DPE sampling scheme (a 0,a 0 + a,a 0 + 2a). The three acquired 

complex images can be expressed as 
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L=(W-iF)P 0 

I 2=(W + iF)P0P, (5-1) 

^ ( W - i F ^ P , 2 

where W, F, Po and Pi are defined the same way as in chapter 3. Since the magnetization 

vectors of water and fat are orthogonal in all three images, the magnitudes of Ii, I2, and I3 

should be equal and can be normalized to a same value, such as the average value of the 

three images. This can reduce the effects of erroneous magnitude modulations, of which 

one major cause is intra-voxel dephasing including the effect of T 2*. Hereafter, I], I2, and 

I3 in equation (5-1) represent normalized images. Equation (5-1) can be solved similarly 

as in the DPE method. By defining X and Y as 

X = WP 0P, 
Y = iFP 0P 1 

(5-2) 

The following equations are obtained from equations (5-1) 

I2 =X + Y 

1,13= ( X - Y ) 2 
(5-3) 

Two possible sets of (X,Y) solutions are given by 

x = Ui2±fiT3) 
2 

Y = ^(I 2 +VW 
(5-4) 

The ambiguity in the solutions of X and Y is caused by the complex square-root 

operation. This ambiguity is expected since X and Y hold symmetric positions in 

equations (5-3). However, this symmetry between X and Y can be broken by using the 

definitions of X and Y in equations (5-2), from which we see that Y should be leading X 

by 90°. Therefore, X and Y can be distinguished by checking their phase relationship. 

This works well when both components are significantly greater than noise in a pixel. For 
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some pixels with one of the two components being comparable with the noise level, the 

single peak treatment is used the same way as in the method described in chapter 3. 

5.3 Spin Reversal Filtering (SRF) 

After the steps described in the previous section, X and Y has been determined for 

most of the pixels. Some pixels could still be given swapped (X, Y) solutions due to poor 

SNR or artifacts. These wrong assignments can be corrected for by the use of an 

orientation filter. Although a general GOF has been tested to be quite effective for a 

general DPE sampling scheme (a 0,a 0 + a,a 0 + 2a), two practical problems still remain. 

The first problem is that there could be several invalid growing processes for a region 

before a successful growth is found because an original seed with wrong (X,Y) 

assignment will result in an invalid growing process. These invalid growing processes 

consume some precious processing time. The second problem is the choice of the 

threshold angle in determining if a pixel should be grown. From our experience, ±10° is 

a good value. This angle is so small that it could be difficult to choose a proper universal 

threshold for different imaging applications, and on different scanners. If the second 

image I2 is a quadrature image, i.e. C A = ± i , a spin reversal filtering (SRF) can be used 

to solve the first problem. The second problem can also be solved if a regional minimum 

spanning tree algorithm (RMST) is used in the SRF. The sampling scheme 

(-90°,90°,270°) satisfies the condition of CA = +i, thus SRF can be used to do the 

orientation filtering. In SRF, a normalized orientation vector O is defined as 

0 = phasor(X2-Y2) (5-5) 

From the definitions of X and Y, O is found to be 
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O = phasor[(W2 + F2) P0

2P,2 ] = P0

2P,2 (5-6) 

As we know, Po and Pi are usually smooth phasor maps, thus O will be a spatially smooth 

phasor map if the (X,Y) assignments are correct for all the pixels. However, O has some 

sudden reversals due to wrong (X,Y) assignments since the orientation vector O will be 

equal to -P 0

2Pi 2 when a pixel has a wrong (X,Y) assignment. SRF is used to correct for 

the wrong (X,Y) assignments through removing the sudden reversals of O. There are two 

alternative approaches to do SRF, which will lead to the same result. 

The first approach is to operate SRF directly on the orientation vector O. Initially, an 

arbitrary pixel in the FOV is chosen as an original seed and its orientation vector Os is 

computed. The orientation vectors of the surrounding 4-connected neighboring pixels are 

computed and compared with that of the seed. The comparison is done by computing a 

dot product defined as 

D = Os O n = real(Os)real(On) + imag(Os)imag(On) (5-7) 

where On is the orientation vector of a neighboring pixel. If IDI is greater than a threshold 

L (e.g. L= 0.96), i.e. Os and On are near parallel or anti-parallel, D is added to an 

initially empty data structure T. After four dot products associated with the four 

neighboring pixels are processed , a dot product with maximum absolute value, D m a x, is 

searched out from the data structure T and the associated neighboring pixel is identified. 

If D m a x is positive, the pixel is grown with X and Y unchanged; If D m a x is negative, the 

pixel is grown with X and Y swapped and O is reversed to -O. Once grown, the seed is 

labeled to be "visited" to prevent from being visited again in the future rounds of growth, 

and D m a x is removed from the data structure T. The newly grown pixel, in turn, becomes 

a seed for the next round of growth. In each round of growth, from zero to four dot 
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products between the seed and its neighboring pixels that have not been "visited" can be 

added to the data structure T; The dot product with maximum absolute value is searched 

out from T and the associated pixel is grown; The newly grown pixel becomes the seed 

for the next round of growth. This growing process continues until T becomes empty. 

After the growing process is finished, all the grown pixels constitute a region. In this 

region, The orientation vectors for all the pixels are consistent with that of the original 

seed since the inconsistent orientation vectors have been reversed. Nevertheless, the 

orientation vector of the original seed is not guaranteed to be correct, as a result, the 

orientation vectors for all the pixels in the region could be all wrong. Hence, there is a 

binary choice to make for the region: keeping the orientation vectors unchanged or 

reversing them. A consistency score has been accumulated as 

where Sn and S n + i are the consistency scores after the nth and (n+l)th pixel are grown, 

respectively. Rn is the reliability of the original (X,Y) assignment for the nth pixel. In our 

implementation, Rn is chosen to be the smaller value between IXI and IYI since the 

smaller component is easier to be affected by noise and artifact, and hence, more crucial 

in determining the reliability of the (X,Y) assignment. If the consistency score S for the 

region is greater than or equal to zero, the orientation vectors are kept unchanged; If S is 

less than zero, the orientation vectors are reversed and (X, Y) assignments are swapped 

for all the pixels in the regions. This binary choice is based on the fact that most of the 

pixels have correct (X,Y) assignments before this orientation filtering. When S is less 

than zero, it means the original seed for the region has a wrong (X,Y) assignment which 

leads to all the correct (X,Y) assignments in the region being swapped and all the wrong 

Sn+R 
S n - R n 

n if O is not reversed at the (n + l)th pixel 
if O is reversed at the (n + l)th pixel 

(5-8) 
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(X,Y) assignments being unchanged. This is why we swap all the (X,Y) assignments in 

the region if score S is less than zero. Unlike GOF, the result of the growth can still be 

used when the consistency score S is less than zero, therefore there is no invalid growth 

here, resulting in reduced processing time. 

A region usually covers one piece of isolated tissue. There can be many pieces of 

isolated tissues in the whole FOV. Hence, the above growing process is repeated many 

times with virtually every pixel in the FOV being a candidate for original seeds. To be 

qualified as an original seed, the candidate must not have been visited by previous 

growths, so that each region can only be grown once. 

In the whole process of the above spin reversal filtering, two things are worth further 

discussion. One issue is the specific data structure of T. The search speed of the data 

structure T largely determines the speed of the whole filtering process. In our 

implementation, T is a Red-Black Tree [69] that is a balanced binary search tree. Red-

Black Tree is fast in search speed and relatively easy to program. The time complexity of 

searching the maximum or minimum value in the Red-Black Tree is 0(log2n), where n is 

the number of nodes on the tree. Another issue is that the growing paths constitute a 

minimum spanning tree (MST) for the region. In order to understand MST, some 

concepts in graph theory need to be introduced. A graph G = (V,E) comprises a set of 

vertices V = [vi, V2, ...] and another set of edges E = [ei, e2, ...]. A tree is a connected 

graph without any circuits. In our case, each pixel in an image is considered as a vertex 

and the link between two connected pixels is considered as an edge. Figure 4-3 shows an 

example of a tree. In a weighted graph, a weight is associated with each edge. A 

spanning tree in a graph is a tree connecting all the vertices of G. The weight of a 
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spanning tree is defined as the sum of the weights of all branches in the tree. If the weight 

of a spanning tree is minimum among all the spanning trees in the graph, this spanning 

tree is called a minimum spanning tree. It has been found out that the growing path in our 

SRF process is actually a minimum spanning tree (MST) for the region if we define the 

weight for each edge w as 

1 
w 1 + IDI 

(5-9) 

The growing method we used belongs to the category of Prim's algorithm for generating 

a MST [69]. The difference between our MST and a general MST is that we use a 

threshold to generate a regional minimum spanning tree (RMST) instead of a MST for 

the whole FOV. It has been proved by experiments that the result of the SRF with RMST 

is highly consistent no matter which pixel is chosen as the original seed of the region. 

1 f 
v 1 

•*• 
A 

J •4 % 
1 •4-

= A vertex 

= An edge 

Figure 5-1 An example of a tree in an image 

The second approach for doing SRF is based on a regional minimum spanning tree 

phase unwrapping method. A wrapped phase map Pw for O is calculated by 

Pw=arg(02) (5-10) 

The wrapped phase map Pw is unwrapped by the following procedure that is analogous to 

the growing procedure we described above. Initially, an arbitrary pixel in the FOV is 
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chosen as an original seed and its unwrapped phase, Ps, is simply set to be its wrapped 

phase Pw>s. Four phase differences between the seed and its 4-connected neighboring 

pixels are computed, with each of the phase difference AP being defined as 

AP = W(P w n -P w s ) 

P w , „ - P w , s + 2 * if Pw,n - Pw>s < -71 

P - P - 2 7 1 i f P - P > 7 U 
w,n w,s w,n w,s 

P w n - P w s otherwise 

where the operator "W" returns the principle value of a phase angle. PW)„ is the wrapped 

phase of a neighboring pixel. If IAPI is less than a threshold M (e.g. M=0.6), AP is added 

to an initially empty red-black tree T. Next, a phase difference of minimum absolute 

value, APmin, is searched out from T and the associated neighboring pixel is identified. 

The phase for the neighboring pixel, Pn, is unwrapped by 

Pn=P s+APm i n (5-12) 

The neighboring pixel is labeled to be "visited" to prevent from being visited again in the 

future rounds of growth, and APmin is also removed from T. The newly grown pixel, in 

turn, becomes a seed for the next round of growth. This growing process continues until 

T becomes empty. After the growing process is finished, all the grown pixels constitute a 

region. In this region, P, the unwrapped phase of O , is obtained. The unified orientation 

vector field O for the region has two possible values 

0 = ±exp(iP/2) (5-13) 

Note that to use "+" or "-" sign should be consistent for all the pixels in the region. In 

order to make the binary choice, this unified orientation vector field O is compared with 

the original O field pixel by pixel to see if O has been reversed. A consistency score S, 

defined in the same way as that in equation (5-8), is used to determine the correct O field 
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in a similar manner as the first approach. This growing process is repeated many times to 

cover the whole FOV. This approach of doing SRF will give exactly the same result as 

the first approach does provided that we make the two threshold values L and M 

equivalent, which requires 

L = cos(M/2) •' (5-14) 

Since some phase unwrapping techniques have been used in the second approach of 

SRF, it is worthwhile to compare SRF with a general phase unwrapping method [43]. 

SRF differs from a general phase unwrapping method in at least three aspects. Firstly, 

SRF is based on regional phase unwrapping which, in many cases is much easier than a 

general phase unwrapping in the whole FOV. For instance, it is very hard if not 

impossible for a general phase unwrapping to handle a case where there are separated 

tissues in the FOV. Secondly, SRF is not a pure phase unwrapping method because it 

uses other information to do a binary choice of the orientation vector field in each region. 

Thirdly, the requirement for SRF is less than that of a general phase unwrapping method. 

SRF, after all, is only required to make a binary choice for each pixel. 

Due to the use of RMST, the threshold value in the region growing for SRF is easier 

to select than for a general GOF. Therefore SRF with RMST is more robust than a 

general GOF. In addition, SRF is more efficient than a general GOF since there is no 

invalid growths in SRF. 

In some applications, asymmetric k-space data are acquired and the associated 

complex images will have a linear phase ramp if no phase correction has been done. 

Hence there may be a linear phase ramp in the constant phasor map Po. When this phase 

ramp is very steep, it may challenge the spin reversal filtering process that assumes a 



98 

smoothly changing phase error. However, it is not difficult to remove the linear phase 

ramp from the original images I|, I2, and I3 by either re-centering the data in k-space or 

automatically detecting and correcting the phase ramp in the image domain as follows. 

Averaged phase gradients of Ii, <GX> and <Gy>, are calculated by 

< G - > = ^ E p h a s o r [ I i ( x + 1 - y ) I i ( x ' y ) * ] 
i (5-15) 

< G y > = — S p h a s o r t I i ( x ' y + 1 ) I i ( x ' y ) * i 

where N is the total number of non-noise pixels in the image and "X" represents the sum 

over all the non-noise pixels in the image. A phase coherence check is used to see if a 

pixel is noise or not. If the direction of vector Ii(x,y) is roughly in agreement with that of 

all its eight neighboring pixels, pixel (x,y) will be considered to be non-noise. Otherwise, 

the pixel will be considered to be noise. The two averages <GX> and <Gy> very much 

represent the linear phase ramps measured in radians per pixel in x and y directions. The 

linear phase ramps can be removed from the original images Ii, I2, and I3 by multiplying a 

phasor map Pc, which is given by 

Pc =exp(-i<Gx >x- i<G y > y) (5-16) 

5.4 Second Pass Solution 

After SRF, W and F can be obtained by simply taking the magnitudes of X and Y. 

For the improvement of SNR, W and F can be substituted into equations (1) to obtain the 

unknown phasors Po, PQPI, and PQPI 2 
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I 
W - i F 

W + iF 
(5-17) 

W - i F 

Because the above phasors are usually smooth spatial functions. They can be smoothed 

with a small sliding window (e.g.9x9 pixels) to reduce noise. The three smoothed 

phasor maps Po, PoPi, and PoPi2 are removed from equations (5-1), resulting in the 

following phase corrected images 

where Ji, J 2, and J3 are obtained by multiplying Ii, I2, and I3 with the complex conjugate 

of the appropriate phasors, respectively. Note that we use the original images of Ii, I 2 ,13 

instead of the magnitude normalized images when calculating Ji, J2, and J3. There are two 

reasons behind this. One reason is that we want to keep the noise in J t , J 2, and J3 being 

independent to each other so that the signal-noise analysis will be simpler. The other 

reason is that the normalized Ii, I2 ,13 in the previous calculations can be anything, such as 

constant 1, as long as the magnitudes of the three images are equal. In this case, the 

original images Ii, I2, and I3 have to be used to recover the lost magnitude information. 

From equations (5-18), three sets of solutions for W and F can be found as 

J, - W - i F 
J 2 = W + iF 
J 3 = W - i F 

(5-18) 

W, =real(J!) 
F, =-imag(J,) 

(5-19) 

W2 =real(J2) 
F2 = imag(J2) 

(5-20) 
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W3 =real(J3) 
F3 = -imag(J3) 

(5-21) 

These three sets of solutions should be essentially identical and differ only in noise and 

artifacts, therefore they can be averaged for an improved final result. Thus we have 

The NSA* for <W> and <F> are 3.0. This final result in equation (5-22) is actually the 

real valued LSE solution to equation (5-18). 

5.5 Experimental 

TOP has been tested on a 0.5T GE SIGNA scanner. The standard spin-echo 

sequences were modified to perform a 3-point interleaved acquisition by shifting the 

180°RF pulses. Complex image data were saved and processed on UNIX based 

workstations. The algorithm was coded in the C and C++ programming language. It takes 

15-20 seconds to generate a pair of water and fat images. The operations are summarized 

as the following steps 

• Remove linear phase ramps in the original images if necessary 

• Normalize the magnitudes of the three original complex images. 

• Find 2 sets of possible solutions for (X,Y) 

• Choose the correct (X,Y) based on the fact that Y is leading X by 90° 

• Single peak treatment 

• Apply SRF with RMST to get the 1st pass W & F solutions 

• Obtain phase corrected images Ji, J2, and J3 

• Find 3 sets of W & F solutions from the real part and imaginary part of Ji, J2, and J3 

<W>=(W1+W2+W3)/3 
<F> = (F!+F2+F3)/3 

(5-22) 
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• Output W & F images as simple averaging of the 3 sets of solutions 

5.6 Results 

Studies on volunteers each of 8 slices have been performed with Ti Weighted scans. 

The results are excellent with no failure so far. Some representative water-fat images are 

shown below. 

Figure 5-2 Transverse water (a) and fat (b) images of the head acquired at 0.5 T. 
Spin-echo, TR=500ms, TE«20ms, sampling scheme (-90°,90°,270°). 
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(a) (b) 

Figure 5-3 Transverse water (a) and fat (b) images of the leg acquired at 0.5 T. Spin-
echo, TR=500ms, TE= 20ms, sampling scheme (-90° ,90° ,270°). 

5.7 Conclusions 

As a special case of DPE, TOP is the best sampling scheme for the solution stability 

since it satisfies A = -1. TOP has the best phase error tolerance and allows the use of 

SRF in orientation filtering due to the fact that TOP satisfies CA = ± i . SRF appears to 

be an efficient and robust filter, and is applicable to any sampling schemes with the 

second acquisition being quadrature. It has been used for the TOP and (0°,90°, 180°) 

sampling schemes. TOP also allows a magnitude error correction, which leads to a better 

magnitude error tolerance. TOP is optimal in SNR with the NSA* being 3.0. Overall, 

TOP appears to be an optimal sampling scheme of DPE. 
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CHAPTER 6 

TWO-POINT WATER-FAT IMAGING WITH MINIMIZED GRADIENT 
ENERGY (MGE) 

6.1 Introduction 

We have shown that DPE and its special case TOP are very robust and efficient 

water-fat imaging methods. They are the methods of choice if robustness and good SNR 

is desired. However, when the imaging time is a major concern for some applications, the 

three-point methods may not be preferred. Instead, two-point methods can be more 

favored. The existing two point water-fat imaging methods acquire the water-fat in-phase 

and opposed-phase images by two excitations or single-excitation double-echo sampling 

schemes [37-43]. From the in-phase and opposed-phase images, the phase error 2© map 

can be obtained. Separate water and fat images can be calculated after the © map is 

obtained by phase unwrapping the 2® map. One major problem with existing two-point 

methods is the unreliability of phase unwrapping. A successful phase unwrapping in the 

whole FOV is especially difficult if not impossible when tissues are separated by noise, 

such as the cross-sections of the two separated legs. Even when phase unwrapping is 

successful, the existing two-point methods can only separate water and fat but cannot tell 

which is water and which is fat. This is a problem for automatic water-fat image 

reconstruction and display. We have proposed a two-point method [70] utilizing the 

gradient energies in the phasor map of a W + iF image to solve the order/connectivity 

problem [42]. In that method, the gradient energy processing was complicated. In this 

chapter, we will introduce a more general two-point method with a more clearly defined 
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gradient energy criterion. This two-point method determines water and fat with no 

ambiguity and handles well-disconnected tissues. 

6.2 Data Acquisition and First Pass Solution 

180 180° 

RF 

G 7 

G x 

Signal 

Figure 6-1 Pulse sequence for two-point water-fat imaging with MGE 

The pulse sequence is shown in Figure 6-1. It is a spin-echo sequence with two 

echoes in each excitation. Two images from the two echoes have water-fat phase 

encoding scheme of (180°,a). Time ti and t2 are the two Hahn echo positions, at which 

moments the water and fat magnetization vectors are in phase. The center of the first 

readout gradient and acquisition window are located at At] to the right side of the Hahn 

echo position ti so that the water and fat magnetization vectors have opposed phases at 

the first echo time TEi. The time shift Ati satisfies 

Aco At, = 7t (6-1) 
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where Aco is the chemical shift between water and fat. The center of the second readout 

gradient and acquisition window are located at At2 to the left side of the Hanh echo 

position t2 so that the fat magnetization vector has a phase angle a with respect to that of 

water at the second echo time TE 2. The time shift At2 satisfies 

-AcoAt2=a (6-2) 

This sampling scheme can be labeled as (n, a). The two complex images Ii and I2 

reconstructed from the two echoes can be written as 

I =(W-F)P, 
1 1 (6-3) 

I2 =[W + exp(ia)F]P2 

where W and F are the magnitudes of water and fat; Pi and P2 are phasors due to field 

inhomogeneity and other systematic errors. In some cases, asymmetric k-space data is 

acquired and the associated complex images will have a linear phase ramp. The phase 

ramp can be removed from Ii and I2 by using the method described in equations (5-15) to 

(5-16). From the magnitudes of equations (6-3), W and F are found to have the following 

two possible sets of solutions 

W = (ALUI, I)/2 ( 6 4 ) 

F = (AFflI, l)/2 

A A 

where W and F are the solutions of W and F, respectively; The term Al is given by 

M jaiZ-g-cosa)!!,!' 
V 1 + cosa 

A A 

The reason of introducing two new variables W and F is to make later derivation more 

A A 

clear. W and F represent the correct values of water and fat, while W and F represent 
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A A 

our current water and fat solutions. It can be seen that W = W and F = F when the 

A A A A A A 

(W, F) assignment is correct; W = F and F = W when the (W, F) assignment is wrong. 

Different from the previous three-point methods, we do not have extra information to 

make a binary choice between the two possible solutions at the pixel level. Therefore, we 

temporarily take one solution as the correct result for each pixel. Next, a spin reversal 
A A 

filter is used to get the correct (W, F) assignment in the whole FOV. 

6.3 Spin Reversal Filtering with Minimized Gradient Energy 

A normalized orientation vector O is defined as 

0 = phasor[I,(W-F)] (6-6) 

A A 

If the (W, F) assignment is correct, it can be derived from equations (6-3) that 

0 = P, (6-7) 

Therefore, the orientation vector O should be a spatially smooth phasor map. However, O 
A A 

has some sudden reversals due to wrong (W,F) assignments because the orientation 

A A 

vector O will be equal to -P, when the pixel has a wrong (W, F) assignment. This spin 

reversal filtering process is very similar to SRF used in TOP. The only difference is the 

consistency score S for each region, where the score S is calculated after orientation 

vectors O are unified in a region. Here, the consistency score S consists of two parts: Si 

and S2 . Score Si will be discussed first and S2 will be introduced later. Score Si is defined 
A A 

as the total gradient energy of P 2 in the region, where P 2 is one of the two possible 

values of P 2 . Si is given by 
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A A 

s, = X ( i ^ i 2 + i i r - i 2 ) ( 6 - g ) 
region OX 

A 

where P 2 can be calculated by 

P 2 = phasor{I2 * [W+ exp(-ia) F]} (6-9) 

After the orientation vector O is unified in one region by reversal filtering or localized 

A A 

phase unwrapping, as described in the previous chapter, the (W, F) assignments for all 

A 

the pixels in the region could be all right or could be all wrong. As a result, P 2 can be of 

two possible phasor maps, and thus, S] has two possible values for the region. We have 
A A 

found that the smaller Si value corresponds to the correct (W,F) assignment for the 

region. This conclusion has been tested by many experiments. The reason is as follows. 
A 

According to equations (6-3) and (6-9), P 2 is found to be 

A 

P2 = 

A A 

P2 when (W, F) assignment is correct 
A A 

P2PWF when (W, F) assignment is wrong 
(6-10) 

where P W is given by 

P W F = phasor{[ W + exp(ia)F] [F + exp(-ia)W]} (6-11), 

A A 

Therefore Si is the total gradient energy of P2 when (W,F) assignment is correct and that 

A A 

of P2PWF when (W, F) assignment is wrong. Since the detailed structures of P2 and PWF 

is very unlikely to be correlated, the total gradient energy of P2PWF can be shown to be 

roughly the sum of the total gradient energies of P2 and PWF [71]. Thus the total gradient 

energy P2PWF is generally greater than that of P 2 . Hence, a smaller Si corresponds to the 
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A A 

correct (W,F) assignment for the region. There are three conditions for the above 

gradient energy criterion to work. Firstly, a can not be 0 or n. When a is 0 or n, PWF will 

be constant 1, thus P 2 and P2PWF will be the same. Secondly, the pixels in the region can 

not be pure water (pure fat is impossible) since pure water will result in a constant PWF, 

consequently, the gradient energies of P 2 and P2PWF will be the same. Thirdly, the region 

has to have some structures, otherwise, the gradient energy of PWF will be close to zero. 

This condition is usually satisfied in real human body imaging. 

The other part of the consistency score, S2, can give some help when Si fails to tell 
A A 

the difference between the two possible (W, F) assignments. S2 is the sum of S2(x,y) for 

all the pixels in the region 

S2 = £ s 2 ( x , y ) (6-12) 
region 

where S2(x,y) is defined as 

s2(x,y) = 

1 ifW(x,y)>cF(x,y) 

-1 ifF(x,y)>cW(x,y) (6-13) 
0 otherwise 

The constant number c is chosen as 14 in our implementation. When W(x, y) is much 

A A A 

larger than F(x,y), the pixel is probably pure water and the (W,F) assignment for the 

A A 

pixel is probably correct. So S2 is added by 1. When F(x,y) is much larger than W(x,y), 

A A 
the (W,F) assignment for the pixel is probably wrong since there is no pure fat in a 

living tissue. This pixel should be pure water. Hence, this pixel has a -1 contribution to 
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A A 

S2. When the W(x,y) and F(x,y) are not greatly different, this pixel has no contribution 

A A 

to S2. When S2 is greater than 0, it means the (W, F) assignment for the whole region is 

A A 

probably correct. When S2 is less than 0, it means the (W, F) assignment for the whole 

region is probably wrong since there are more pixels in the region being probably wrong 

than being probably correct. The S 2 criterion works well in a region with a lot pixels 

being pure water. 

The two consistency scores Si and S2 can be normalized and combined together to 

give a comprehensive consistency score S which can be defined as 

S = (S,-S1')/(S,+S1') + X S 2 / N (6-14) 
A A 

where Si' is the other possible value of Si, corresponding to the swapped (W,F) 

assignments for the whole region; N is the total number of pixels in the region; A. is a 

constant, which can be chosen as 1.0 in a simple case. When the consistency score S is 
A A 

greater than zero, it means the (W,F) assignment for the region is correct. When the 

A A 

consistency score S is less than zero, it means the (W, F) assignment for the region is 

A A 

wrong and the (W, F) assignments for all the pixels in the region need to be swapped. 

6.4 Second Pass Solution 

After SRF, the first pass water-fat solution is obtained. For the improvement of SNR, 

a second pass water-fat solution is calculated. In the SRF process, phasor maps Pi and P 2 

A 

have already been calculated. Pi is the final filtered O and P2 is the correct P 2 which is 

calculated in equations (6-9). Next, Pi and P2 are smoothed by weighted averaging with a 
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standard n x n (e.g. 9x9) pixel sliding window. The smoothed phasors are removed from 

equations (6-3), resulting in the following phase corrected images 

J, = W - F 
J 2 = W + exp(ia)F 

(6-15) 

where Ji and J 2 are obtained by multiplying Ii and I2 with the complex conjugate of the 

appropriate phasors, respectively. Complex equations (6-15) can be split into the 

following real value equations 

real(J,) = W - F 
real(J2) = W + Fcosa . 
imag(J2) = Fsina 

These real value equations can be written in matrix form as 

U = MV 

where V is an unknown vector with elements W and F 

(W\ 

•V = 
IF J 

U is a known vector given by 

U = 
'real(J,) ^ 
real(J2) 
imag(J2)y 

M is a 3 x 2 matrix given by 

M 
(\ -1 ̂  
1 cos a 
0 sin a 

The LSE solution of equation (6-17) is given by 

V = L U 

(6-16) 

(6-17) 

(6-18) 

(6-19) 

(6-20) 

(6-21) 
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In the above equation, L is a 2 x 3 matrix given by 

L = ( M T M ) _ 1 M T (6-22) 

Equation (6-21) can be written more clearly as 

V F J 

'realCJ,) 
= L real(J2) 

îmag(J2) 7 

(6-23) 

From equation (6-23), W and F can be calculated numerically and output as the final 

water and fat images. 

Now, we want to calculate the NSA* of the second pass water-fat solution. Equation 

(6-23) can be expanded to 

W = L , , real(J,) + L . , real(J7) + L , , imag(J2) 
i,i 1,2 i,3 (6-24) 

F = L 2 1 real(J1) + L 2 2 real(J2) + L 2 3 imag(J2) 

where L m ; n is the matrix element of L at the mth row and nth column. The phase corrected 

images Ji, h, and J3 have the same noise variances as their original counterparts Ii, I2, and 

I3, i.e. Gj2 = o 2

2 = o~3

2 = a 0

2 , because the noise variances in phasor maps Po, P0P1, and 

PoPi2 are greatly reduced by heavy smoothing operations. Hence, the noise variances of 

the real part and imaginary part of Ji, J2, and J3 are o 0

2 / 2 . Because the noises in the real 

part and imaginary part of Ji, J2, and J3 are independent of each other, the noise variance 

in W, o~w

2, and the noise variance in F, a F

2 , are given by 

From analytical derivation, it can be proved that o w

2 is always equal to o F

2 . Therefore, 

NSA* of the water image and fat image can both be calculated by 

a w

2 = ( L u

2 + L u

2 + L u

2 ) ( a 0

2 / 2 ) 

a F

2 = ( L 2 / + L 2 / + L 2 / ) ( o 0

2 / 2 ) 
(6-25) 
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NSA* = — -
a w / (a 0 12) 

= — 2 K 1 ( 6' 2 6> 

T + L + L 
-̂ 1,1 ^ ^1,2 T

 M,3 

_ 6-2cosa 
(cosa-3)2(l + cos a) 

The curve of NSA* versus phase angle a is plotted in Figure 6-2 below. 

alpha (degrees) 

Figure 6-2 NSA* curve as a function of phase angle a. 

6.5 Experimental 

For the reason of gradient energy performance and image SNR, a (180°,-45°) 

sampling scheme was adopted in our experiments. The NSA* of the final water and fat 

images are 1.95 which is very close to 2.0. The experiments were performed on a 0.5T 

GE SIGNA scanner. A standard spin-echo sequence with double echoes were modified to 

realized the (180°,-45°) sampling scheme by shifting the two 180° RF pulses. The time 

shift Atj was set to be 3.356ms and At2 was 0.840ms. Complex image data were saved 

and processed on UNIX based workstations. The algorithm was coded in the C and C++ 
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programming language. It takes 10-15 seconds to generate a pair of water and fat images. 

The operations are summarized as the following steps 

• Remove linear phase ramps in the original two images if necessary 

• Find 2 sets of possible solutions for water and fat 

• Spin reversal filtering with minimized gradient energies for the phasor map P 2 

• Remove smoothed Pi and P 2 from l\ and I 2 to obtain phase corrected images Jj and J 2 

• Find the final W & F images by real value LSE method 

6.6 Results 

Images of volunteers each of 6-8 slices were acquired. The results were all successful. 

Some of the representative results are shown below 

(a) (b) 

Figure 6-3 Transverse water (a) and fat (b) images of a human head acquired at 0.5 T. 
Spin-echo, 2 echoes, TR=500ms, TEi=20ms, TE2=42ms. Sampling scheme 
(180°,-45°). 
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(a) (b) 

Figure 6-4 Sagittal water (a) and fat (b) images of a human head acquired at 0.5 T. 
Spin-echo, 2 echoes, TR=500, TEi=20ms, TE2=42ms. Sampling scheme 
(180°,-45°). 

(a) (b) 

Figure 6-5 Transverse water (a) and fat (b) images of legs acquired at 0.5 T. Spin-
echo, 2 echoes, TR=500ms, TEi=20ms, TE2=42ms. Sampling scheme (180°-45°) 
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(a) (b) 

Figure 6-6 Sagittal water (a) and fat (b) images of a human head acquired at 0.5 T. 
Spin-echo, 2 echoes, TR= 1000ms, TEi=20ms, TE2= 120ms. Sampling scheme 
(180°,-45°). 

6.7 Discussion 

This unparalleled two-point sampling scheme allows the use of gradient energy of the 

phasor map to help determine the water-fat assignments in a whole region. The 

order/connectivity problem, which is still bothering other two-points methods, are solved. 

The assumption that the structures in the phasor map Pi and the structures in water and 

fat tissues are very much uncorrelated has been proved by imaging different parts of the 

human body. The SRF filter with minimized gradient energy has been proved to be 

robust. The score Si, which is related to the gradient energy difference, is maximized 

when a is chosen to be ±90°. However, The SNR of the water and fat images are not 

optimal when a is chosen to be ±90°. The (180°,-45°) sampling scheme is a good 

balance between good Si score and optimal image SNR. 
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CHAPTER 7 

CHEMICAL SHIFT IMAGING WITH SPECTRUM MODELING (CSISM) 
r 

7.1 Introduction 

In Fourier transform based chemical shift imaging (CSI) techniques, spectral 

resolution is realized by frequency encoding and spatial resolution is accomplished by 

multi-dimensional phase encoding which takes an extremely long scan time for a good 

spatial resolution [18,19]. To reduce imaging time, CSI experiments with low spatial 

resolution are often performed. However, low spatial resolution may degrade the spectral 

resolution due to larger Bo inhomogeneity per pixel, partial volume and truncation 

artifacts. Furthermore, automatic spectrum quantification for each pixel is complicated, 

unreliable, and time consuming, thus has major limitations. 

Dixon [22] first modeled fat and water in tissue as two rotating vectors and made it 

possible to obtain separated fat and water images with only two spin-echo data 

acquisitions. Based on the Dixon model, DPE [60,61] resolves fat and water pixel by 

pixel without ambiguity, in the presence of field inhomogeneity errors. 

Chemical shift imaging with spectrum modeling (CSISM) [72] is a generalization of 

DPE, which can output separate images of different chemical components with only 

several spin-echo data acquisitions. CSISM achieves high scan time efficiency by 

modeling the NMR spectra of the sample as several peaks with known resonance 

frequencies and unknown peak amplitudes before the data acquisitions are performed. 
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7.2 Data Acquisition and First Pass Solution 

When a sample is given, one or several localized NMR spectroscopy experiments 

can be performed to obtain the NMR spectra of the sample. Every primary peak in the 

spectra is associated with a certain chemical component. It is reasonable to model the 

spectrum for every voxel in the sample as several delta-function shaped peaks with 

known resonance frequencies but unknown amplitudes. This is equivalent to say that 

every voxel in the sample consists of several chemical components and all the 

components have fixed chemical shift values and no line broadening. Based on this 

model, several spin-echo images are collected with the 180° refocusing pulse shifted a 

different amount of time for every image. As a result, the magnetization vectors of the 

chemical components are put into different orientations across these spin-echo images. If 

the images are properly collected, the amplitudes of the magnetization vectors for 

different chemical components can be resolved from these complex images. Assume we 

found N peaks in the spectrum of the sample with angular frequency shifts being 

8o)i, 8o)2,8U )N , respectively. Then, we can model each voxel as being composed of N 

distinctive chemical components with their magnetization vectors revolving clockwise at 

angular frequencies 8u)i, 80)2 ,8U )N in the rotating frame of reference. The unknown 

amplitudes of these N magnetization vectors are labeled as Xi, X 2 , X N , respectively. In 

order to resolve these unknown amplitudes, K spin-echo images Ii, I 2 , I K are acquired 

with the 180° refocusing pulse shifted by Mi At, MaAt,MicAt, respectively, where At is 

the minimum time shift unit and Mi, M 2 , M K are integers with Mi equal to zero. A 

sketch of the pulse sequence is shown in Figure 7-1. 
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Figure 7-1 Pulse sequence for CSISM 

The acquired K complex images can be expressed as 

I ,=(X,+X 2 +- + XN)P 0 

I 2 =(Ar 2 X 1 + A 2

M >X 2 +.. . + A ^ X J P 0 P ^ 

I K = ( A j l « X 1 + A 2

M " X 2 + . . . + A^X N )P 0 P i

M » 

(7-1) 

where An, with n = 1, 2,..., or N, is a known phasor given by 

A n = exp(-i 8conAt) (7-2) 

which represents the orientation of the nth magnetization vector in the rotating frame at 

the unit time shift At. Hence the phasor A^ k , with k = 1, 2, or K, represents the 

orientation of the nth magnetization vector in the kth image which is acquired with a time 

shift MkAt. The parameter Po is a phasor map due to phase errors caused by factors such 

as RF field inhomogeneity or data acquisition window off-centering. The phasor map Po 
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is a constant across the K images for a given pixels. Parameter Pi is a phasor map caused 

by field inhomogeneity error and it is given by 

P, = exp(-iy AB0At) (7-3) 

where y is the averaged gyro-magnetic ratio of the N chemical components; ABo is the 

field inhomogeneity map. The term P,Mk in equations (7-1) represents the phase error 

caused by field inhomogeneity in the kth image which has a time shift MkAt. Because X ] , 

X 2 , X N should have non-negative real values, Po is simply the phasor of Ii and can be 

removed from equations (7-1). To reduce noise, Po can be calculated as the phasor of 

smoothed Ii by a small sliding window (e.g.7x7 pixels). By multiplying P0* to Ii, 

I 2 , a n d IK respectively, phase corrected images Ji, J 2 , J K are obtained. Equations (7-

1) are transformed into 

J ^ X ^ X . + . - . + X N 

J2P,-M2 =A I

M 'X I +A 2

M 'X 2 +. . . + AjJ'XN 

jKprM K
 = A ^ K X 1 + A ^ X 2 + - - - + A M K X N 

Except the first equation in equations (4), all the other equations are complex value 

equations. Equations (7-4) can be split into 2K-1 real value equations 

J ^ C X . + X J + . - . + X N ) 

real(J2P,-M2) = real(A^ ) X , + real(A2

M2 ) X 2 + — + real(AM2 ) X N 

imagtJ.P^) = imag(A,M2 ) X , + imag(A2

M2 ) X 2 + • • • + imag(AM> ) X N 

': (7-5) 

real(JKPrMK) = real(A,MK ) X , + real(A2

MK ) X 2 + • • • + real(A^K ) X N 

imag(JKPrMK) = imag(ArK ) X , + imag(A2

MK ) X 2 + • • • + imag(A^ ) X N 
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where operators "real" and "imag" represent taking the real part and imaginary part of a 

complex number, respectively. In equations (7-5), there are N+l unknown variables: Pi 

and Xi, X 2 , X N . If the number of equations 2K-1 is no less than the number of 

unknowns N+l, it is possible to solve equations (7-5) which can be expressed in matrix 

form as 

Y(Pj) = AX 

where X is an unknown N-dimensional vector 

x , 

v x N y 

Y(Pi) is a (2K-1) dimensional vector 

Y(P,) 

real (J 2 Pi 2 ) 

imag(J2P-M2) 

V 

A is a (2K-1) x N matrix 

f 1 

real(JKPrMK) 

imag(JKPrMK) 

A = 

1 
real(A,Mj) real(A^) 
imag(A^) imag(A2

M2) 

reaKA^) real(A2

MK) 
imagCAf*")' imag(A2

MK) 

1 
real(A^) 
imag(A^) 

real(A^) 

(7-6) 

(7-7) 

(7-8) 

(7-9) 

imag(A^) 

We start solving the nonlinear equations (7-9) by fitting Pi whose magnitude is always 1 

and its phase angle ranges from - J I to 71. Typically, 360 different testing angles with 1° 
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increment per step are tried out for the phase angle of Pi. For each given Pi, equation (7-

6) becomes linear equation of X whose least square error (LSE) solution is given by 

X = LY(P,) (7-10) 

where L is a N x (2K -1) matrix given by 

L = (ATA) _ 1 A T (7-11) 

where operator "T" represents the transpose of a matrix and operator "-1" represents the 

inverse of a matrix. The least-square errors LSE for different values of Pi can be 

calculated by 

LSE = energy[Y(P,) - AX] 
= energy[ Y(P,) - A( A T A)"1 ATY(P,)] (7-12) 

= energy{[U - A(AT A) - 1 A T ] Y(P,)} 

where operator "energy" returns the square sum of all the elements of a vector; U is a 

(2K-l)x (2K-1) unit matrix. Different Pi values usually result in different LSE values. 

The Pi value with minimum LSE is selected as the correct answer for Pi, and the 

associated solution of X is the correct result for the peak amplitudes. 

The results for Pj and X from the fitting process are reliable for pixels with balanced 

peak amplitudes. For pixels with only one chemical component or insufficient number of 

chemical components, the results for Pi and X are not reliable. From equation (7-12), it is 

not difficult to see that LSE is a polynomial function of cos(©) and sin(@), where 0 is the 

phase angle of Pi. Therefore, a curve of LSE versus the phase angle of Pi is a smooth 

curve with limited number of local minimums. For a pixel with balanced peak 

amplitudes, the minimum value of LSE is significantly smaller than the other local 

minimums on the curve. Thus, it is easy to find the correct phase angle of Pi. For a pixel 

with a single peak or insufficient number of peaks, the values of several local minimums 
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will be very close. Thus, it is often impossible to tell which local minimum corresponds 

to the correct phase angle of Pi. To help illustrating the above statements, two plots of 

LSE versus the phase angle of Pi from a CSISM experiment are shown in Figure 7-2. 

Phase anĉ eof P1 Phase antfeofPI 

(a) (b) 

Figure 7-2 Plots of LSE versus the phase angle of Pi, in a pixel with two chemical 
components (a), and a pixel with a single chemical component (b). The sample has 
three chemical components. Three complex images were acquired. 

From the two curves in Figure 7-2, we can easily tell which pixel has more reliable 

results for Pi and X. To mathematically evaluate the reliability of the results for a pixel, 

a score S is calculated for the pixel by the following procedure. First, all the local 

minimums are identified by checking the testing phase angles of Pi one by one. If the 

LSE value of a phase angle is smaller than or equal to the LSE value of its left neighbor 

and right neighbor, the LSE value at this phase angle is a local minimum. To avoid 

having extra local minimums due to round off errors, no. other local minimums are 

allowed in the proximity of an existing local minimum. Second, the global minimum and 

second minimum values are sorted out from the local minimums. The minimum value is 
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labeled as LSE] and the second minimum value is labeled as LSE2. Third, a score S is 

calculated for this pixel 

S = (LSE 2-LSE,)/(E + C) (7-13) 

where E is the total energy of vector Y, i.e. the square sum of all the elements of Y; C is a 

constant which can be chosen to be 10 times the averaged energy of vector Y for the 

pixels in the background noise. A pixel of noise can be roughly determined by checking 

its phase coherence with its neighboring pixels in the in-phase image Ij. When S is large, 

the results from the fitting process are reliable, and vice versa. 

In addition to the single peak or insufficient peaks problem, the computation time for 

the fitting process is also too long. To solve these two problems, a process of combined 

region-growing and fitting is adopted. Initially, a small number of pixels, which 

distributed uniformly in the whole FOV (e.g. one pixel in every 8x8 pixels) except the 

regions of background noise, are picked as original seeds. The above fitting process is 

performed for each of these original seeds to calculate Pi and score S. Then, the original 

seeds are sorted into an array with their scores in a descending order. The growing 

process begins from the original seed which has the highest score S. To avoid growing in 

noise, phase differences between the seed and its 4-connected neighboring pixels in the 

in-phase image Ii are calculated. If the phase difference between the seed and a 

neighboring pixel is out of a range (e.g. ±10°), the neighboring pixel is discarded and 

will not be "grown" by this seed. On the other hand, if the phase difference between the 

seed and a neighboring pixel is within the range, the neighboring pixel qualifies to be 

grown, as a result, Pi and LSE values for the neighboring pixel will be calculated. With 

the Pi value for the seed previously determined, the P] value for a neighboring pixel is 
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quickly obtained by fitting the phase angle of Pi in a small range (e.g. ± 10°) around the 

phase angle of the seed, since P] should be a fairly smooth phasor map. After Pi and 

minimum least square error LSEj are obtained, an error ratio R is calculated for the 

neighboring pixel 

R = LSE,/(E + C) (7-14) 

where E and C are same defined as in equation (13). The Pi value for the neighboring 

pixel is more reliable when R is smaller. The R values for the grown neighboring pixels 

are added to an empty red-black tree. The grown pixels are labeled as "visited" to prevent 

from being grown again. For the second round of growth, a newly grown pixel with 

minimum R is searched out from the red-black tree and acts as the seed for this round of 

growth. In each round of growth, there is only one seed. Four neighboring pixels of the 

seed are checked to see if they can be grown. If a neighboring pixel is phase coherent 

with the seed and has not been "visited" before, it is grown and its R value is added to the 

red-black tree. From searching the red-black tree, a pixel with the smallest R value is 

selected as the seed for the next round of growth and its R value is removed from the red-

black tree. This growing process continues until the red-black tree becomes empty. 

The grown pixels from one original seed usually covers one piece of isolated tissue. 

There can be many pieces of isolated tissue in the whole FOV. In order to cover the 

whole FOV, the original seed with the second highest score is selected to start a new 

growth if the original seed has not been "visited" by the previous growths. All the 

original seeds will be gone through according to their order of score S. After the growing 

process stops, tissue in the whole FOV should be covered. Some left over pixels in the 
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background noise will not affect our result. From the growing process, we obtain the Pj 

map in the whole FOV. 

7.3 Second Pass Solution 

The images of all the X elements can be obtained from the above process of region 

growing and fitting. For the improvement of image SNR, however, a second pass solution 

of X is calculated. First, Pi map is weighted smoothed with a small sliding window (e.g. 

9 x 9 in size) to reduce the noise level in Pt. There will not be much useful information 

loss since Pi should be a smooth phasor map after all. The weighting for each pixel in the 

smoothing operation is chosen to be the magnitude of image Ii. The smoothed Pi map is 

substituted into equation (7-8) and the second pass solution X is directly given by 

equation (7-10). The images of the elements of X are output as the spectroscopic images. 

Now, we want to calculate the NSA* of the second pass spectroscopic images. 

Assume the original complex images Ii, I2,---,IK have equal noise variances of o 0

2 . 

Then, the noise variances in the real part and imaginary part of the images are o 0

2 / 2 . 

Because the noise variances in Po and Pi are greatly reduced by heavy smoothing 

operations, The noise variances for the elements of Y, given in equation (7-8), are all 

approximately a 0

2 / 2. Based on equation (7-10) and the fact that the noises in the 

elements of Y are independent to each other, the noise variance for the first element of X, 

a x

2 can be calculated by 

< = X L . , k V / 2 (7-15) 
k=l 



126 

where Li^ is the matrix element of L at the first row and kth column. From numerical 

calculation or analytical derivation, it can be proved that o~Xn

2, for n=l to N, are all equal 

to o x

 2 . Therefore, NSA* of all the chemical shift images can be calculated by 

NSA* = • 1 
aXi

 2 / ( a 0

2 / 2 ) 

2 K - 1 
(7-16) 

= l / ( E L u ) 
k=l 

Overall, the major.operations in CSISM are summarized in the following flowchart 

START 

Model the spectrum as several peaks and determine the optimal time 
shifts for the 180° RF pulses. 

Acquire the spin-echo images 

a . 

Solve complex equations by fitting Pi for some sparsely picked pixels. 

Find Pi for all pixels using the process of region growing and fitting 

-CL 
Find the second pass solutions of the peak amplitudes and output them 

as the spectroscopic images 

END 

Figure 7-3 Flowchart of the CSISM operations 
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7.4 Experimental and Results 

Experiments on an ethanol (CH3CH2OH) phantom were performed on a 1.5T GE 

SIGNA scanner. A localized spectroscopy was conducted prior to imaging to measure the 

peak frequencies for ethanol. The reconstructed spectrum is shown in Figure 7-4 

J CH 3 

< ppm 

Figure 7-4 Localized NMR spectrum of ethanol (CH3CH2OH) 

If we assume the Larmor frequency of CH 3 is 0 Hz in the rotating frame, the angular 

frequencies of the three peaks will given by d(0{ - 2n x 0 Hz (CH3), 8to2 = 2n x 156 Hz 

(CH2), and 5to3 =27ix267 Hz (OH). Four spin-echo images were acquired with the 

180° RF pulse shifted 0.000, 0.848, 1.696, and 2.544 ms. For simplicity, these numbers 

were selected to make the time shift MkAt linearly increasing, i.e. Mi=0, M2=l, M3=2, 

and M4=3. The unit time shift At is so chosen that the reciprocal condition number of 

matrix ATA is as large as possible while keeping At as small as possible. A plot of 

reciprocal condition number of ATA versus At is plotted in Figure 7-5 (a). 
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Figure 7-5 Plots of the reciprocal condition number of ATA versus At (a), and 
NSA* versus At (b) 

At At=0.848, the reciprocal condition number is 0.82. The values of NSA* for different 

At values are calculated using equation (16) and plotted in Figure 5 (b). At At=0.848, the 

NSA* is 3.97 which is very close to 4.0. Therefore, the SNR for this four point sampling 

scheme is very close to be optimal. Complex images from the scans were saved and 

processed on UNFX based workstations (Sun Sparc 10, Sun Microsystems, Mountain 

View, CA; and DEC 3000/400, Digital Equipment Corporation, Maynard, MA) The 

algorithm was coded in the C and C++ programming language. The plots were drawn 

using Matlab package. A set of representative spectroscopic images of ethanol is shown 

in Figure 7-6. The peak amplitudes are in agreement with the results from localized 

spectroscopy plotted in Figure 7-4. 



129 

(c) C H 2 image (d) OH image 

Figure 7-6 Spectroscopic images of ethanol acquired at 1.5 T. Spin-echo, 
TR=500ms, TE=20ms. 

We have found that water-fat-silicone imaging is a practical application of CSISM for 

patients with silicon implants in breasts. Three acquisitions will be enough to reconstruct 

a set of water fat and silicone images. Doctors at a local hospital did a muti-slice (22 
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slices) water-fat imaging with a DPE sampling scheme of (0°,90°,180°). The water-fat 

results had some problems because the patient has silicone implants in her breasts. By 

using CSISM, we were able to reconstruct water-fat-silicone images successfully for 

most of the slices. We assume the chemical shift between water and fat is 3.5 ppm, and 

the chemical shift between fat and silicone is 1.7 ppm [73]. The order of the Larmor 

frequencies is water, fat, and silicone with silicone having the lowest Larmor frequency. 

A representative water-fat-silicone result is shown in Figure 7-7 

(a) In-phase image (b) Water image 
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(c) Fat image (d) Silicone image 

Figure 7-7 Transverse images of woman breasts with silicone implants 
acquired at 0.5 T. Spin-echo, TR=500ms, TE=20ms. 

We have also performed some water-fat-silicone experiments on a 1.5 T scanner. A 

phantom of pork and silicone implant was used in the experiments. Before imaging, 

localized NMR spectroscopy experiments were performed to measure the chemical shifts. 

If we define the chemical shift for silicone to be 0 ppm, then the chemical shift for fat is 

1.2 ppm and the chemical shift for water is 4.7 ppm. Three spin-echo images were 

acquired with the 180° RF pulse shifted 0.000, 1.34, and 2.68 ms. The spectroscopic 

images are excellent. A representative water-fat-silicone result is shown in Figure 7-8 
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o 
(a) In-phase image (b) Water image 

(c) Fat image (d) Silicone image 

Figure 7-8 Transverse images of a pork-silicone phantom acquired at 1.5 T with 13 
slices. Spin-echo, TR=800ms, TE=25.6ms. 
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7.5 Discussion 

Before data acquisitions are performed, the spectrum of the sample is modeled as 

several separated peaks with known resonance frequencies but unknown peak 

amplitudes. The spectrum model is based on localized NMR spectroscopy experiments or 

published information. With the help of the spectrum model, we only need to sample 

several special points in the temporal direction to resolve the spectrum instead of 

hundreds of evenly distributed points as in a NMR spectroscopy or a Fourier transform 

based chemical shift imaging. This is the key to the imaging efficiency of CSISM. With 

spatial resolution, the special points in the temporal direction are actually spin-echo 

images. The temporal positions of these spin-echo images are controlled by the time 

shifts of the 180° RF pulses relative to their Hahn echo positions. 

The time shifts of the 180° RF pulses are so chosen that matrix ATA to be well 

conditioned while keeping the time shift not too large. When matrix ATA is well 

conditioned, the inverse of matrix ATA will be stable, as a result, the solutions will be 

more stable. Meanwhile, when matrix ATA is well conditioned, the SNR of the final 

spectroscopic images will also be close to optimal. 

The simplest shape model for the peaks are delta-function shapes, i.e. the peaks have 

no line broadening. Other shape models for the peaks can also be used by changing the 

values of Ak (k = 0, 1,..., K). For peak shapes other than delta-function shape, the 

magnitude of Ak will be less than 1. 

The number of spin-echo images K must satisfy that 2K -1 > N +1, where N is the 

number of peaks in the model of the spectra. However, enough images do not guarantee 

the unambiguous solutions to the unknowns everywhere in the FOV. The spectra for 
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some pixels, with single peak or insufficient number of peaks, cannot be unambiguously 

resolved. Information from other pixels must be used to help solve this problem. 

The SNR of CSISM is close to optimal. The more images you acquire, the more 

reliable results and better SNR you can get, provided the temporal positions of the images 

are correctly chosen. 

One major limitation of CSISM is that every peak in the spectrum that you want to 

distinguish must have strong enough signal. Otherwise, the small peaks will be embedded 

in noise and errors of large peaks, thus cannot be resolved. 

CSISM achieves spectroscopic resolution while its scan time, spatial resolution, and 

image SNR is comparable with those of ordinary spin-echo imaging applications. CSISM 

should be able to be used for applications with reasonable peak amplitudes and well 

defined peak separations. Water-fat-silicone imaging appears to be the first practical 

application of CSISM. 
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CONCLUSION 

Among all the CSI methods we developed, one common characteristic is spectrum 

modeling before data acquisitions. A spectrum is modeled as two peaks in water-fat 

imaging or several peaks in CSISM based on prior knowledge about the spectrum, which 

comes from published information or localized NMR spectroscopy experiments. With the 

help of the spectrum model, several data acquisitions are enough to yield the chemical 

shift images, for which hundreds of data acquisitions are needed by Fourier transform 

based CSI methods. 

It is Dixon [22] who first introduced spectrum modeling to water-fat chemical shift 

imaging, which led to a dramatic improvement in imaging efficiency. However, in the 

Dixon method and its variations, the phase relationship between water and fat 

magnetization vectors is not fully used, thus the symmetry between water, and fat cannot 

be broken. DPE samples the water and fat magnetization vectors asymmetrically and 

breaks the symmetry between water and fat. Unlike existing water-fat imaging methods, 

DPE fully exploits the complex nature of the MRI signal. The leading and lagging phase 

relationship between the magnetization vectors of water and fat is used to identify them. 

DPE allows a direct and unambiguous, determination of water and fat on a pixel by pixel 

basis. This is a fundamental difference between DPE and other existing methods. To 

correct for possible wrong water-fat assignments due to single peaks, artifacts, and noise, 

GOF is developed. GOF is a statistical operator by nature, and thus is reliable. With 

second pass solutions and optimal averaging, DPE offers good image SNR. DPE with a 
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sampling scheme of (0°, 90°, 180°) has been implemented at several local hospitals and 

thousands of water-fat images have been successfully reconstructed and used as part of 

their clinical practice [66]. 

In chapter 4, we proved that optimal averaging is equivalent to the complex valued 

LSE method. Generally, image SNR for DPE can be further improved with the real 

valued LSE method. For the sampling scheme of (0°,90°, 180°), the image NSA* is 

improved from 2.67 with optimal averaging to 3.0 with the real valued LSE method. 

TOP is a special sampling scheme of DPE, allowing the correction of magnitude 

errors due to intra-voxel dephasing (T2*) or other effects causing magnitude modulations. 

TOP also has the maximum solution stability among all possible DPE sampling schemes. 

A more efficient orientation filter SRF is developed for TOP and any other DPE sampling 

schemes, for which the middle acquisition is quadrature. SRF is adaptive and stable with 

the use of a regional minimum spanning tree algorithm. Compared to a general GOF, 

SRF is more efficient and robust. TOP has been successfully tested on volunteers at a 

local hospital and the water-fat images are excellent. 

Unlike other 2-point methods with symmetric sampling, MGE solves the order 

/connectivity problem, as demonstrated in a 2-point double-spin-echo single-excitation 

experiment. By minimizing the gradient energy of a phasor map, correct water-fat 

assignments are achieved. With second pass solution using real valued LSE method, 

image SNR for MGE is close to optimal. MGE has been successfully tested on volunteers 

at a local hospital. 

When robustness and good image SNR are required, TOP and other DPE sampling 

schemes, such as the (0°, 90°, 180°) scheme, are the methods of choice. Even though 
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TOP or the (0°,90°, 180°) sampling scheme uses three data acquisitions which triples the 

scanning time of a spin-echo sequence, the NSA* of the water and fat images is 3.0, 

therefore there is no waste of scanning time. As a matter of fact, spin-echo imaging with 

three or more image averages is often used in the hospitals for an improved SNR. DPE 

can provide normal water-fat in-phase images with good SNR, as well as a pair of water 

and fat images as a bonus. When scan time is a major concern for some applications, the 

2-point MGE method should be implemented with a double-echo single-excitation pulse 

sequence. The imaging time for MGE is only one-third of the imaging time needed for 

DPE. However, the allowed number of interleaved slices in one scan for MGE is reduced 

because there are two echoes in each excitation. A one-point qualitative water-fat 

imaging method is newly proposed [74], where a pair of qualitative water and fat images 

can be resolved from a single quadrature acquisition. This approach allows more 

interleaved slices than MGE does. Due to its fast speed, this one-point method can be 

used when a qualitative fat suppression is needed. 

CSISM is an extension of DPE to general chemical shift imaging. It works well for 

spectra with well-defined peak resonance frequencies and sufficiently large peak SNR. 

CSISM models a spectrum as several peaks and find the amplitudes of these peaks from a 

set of spin-echo images. The time shifts of the RF pulses are so chosen that matrix ATA 

can be well conditioned while keeping the time shift not too large. When matrix A TA is 

well conditioned, the first pass solutions will be stable and the SNR of the final 

spectroscopic images will also be close to optimal. CSISM has been successfully tested 

with ethanol phantoms and pork-silicone phantoms. Water-fat-silicone images are also 

successfully reconstructed from a clinical scan of a female patient with silicone implants. 
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In the future, we plan to do more clinical trials for DPE, TOP and MGE. Our final goal is 

to make a series of water-fat imaging methods clinically available. Although these 

techniques have been mostly demonstrated with spin-echo experiments in this thesis, they 

are by no means limited to spin-echo imaging. Being independent methods, they can be 

combined with many other existing MRI methods, such as gradient-echo imaging, RARE 

[75], or fast-spin-echo imaging [34,76], or echo-planar-imaging [77] for a faster scan 

time. Further development of water-fat-silicone imaging is also high on our agenda. More 

experiments on phantoms or volunteers with silicone implants are needed for optimized 

performance. In addition to water-fat-silicone imaging, we also anticipate other practical 

applications for CSISM. Phosphate is an attractive potential candidate for CSISM 

because of balanced peak amplitudes in its spectrum. 
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APPENDIX A 

Form equations (3-18) to (3-23), the water image after weighted averaging can be written 

as 

< w>=^— (k + -^— |)J. +—!— (Ar\-X)J2 — (T| + —^—)J, (A-l) 
A - l A + 1 S 1 A - l 2 A - l A + l 1 

According to the rule of noise propagation, the noise variance in <W> is 

a w

2 = E 
i=l 

a< w > (A-2) 

We have assumed that Ji, J 2, and J3 have the same noise variance as their original 

couterparts Ii, I2, and I3, i.e. a,2 = a 2

2 = a 3

2 =o0

2, since the noise variances in the 

phasors Po, P0P1, and PoPi2 are greatly reduced by heavy smoothing operations so that 

they can be negligible. Using the fact that A = exp(ict) and I Al = 1, we find the output-

input noise variance ratio 

'w 1 
IA-112 

(IA + ^ ^ 1 2 +\Ar\-X\ 2 +lT) + - ^ - l 2 ) 
A + l A + l 

1 
(A-3) 

[A2 + T | 2 -A.r|cosa + (A. + r|)^/2 + ^ 2 /(1 + cosa)] 
1 - cos a 

Substituting ^ with 1-A.-T), we have 

'w 2(1 + cos a ) . . . 2 , , 
1-cosa 

[(A, + TJ - 2>LT) cos a)(2 + cos a) + (X + r|)(cos a -1) +1] (A-4) 

To minimize the above expression with appropriate X and T|, we need 

3 ,o\ 

dX ^ On ^ 

a .0 

(A-5) 

e*r) = o 
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From equations (A-5), it is straightforward to obtain the following 

X = T 1 =2(2 + cosa) ( A 6 ) 

fc _ 1 + cos a 
2 + cosa 

Substituting (A-6) into (A-3), the optimized output-input noise variance ratio is 

a 0

2 o p l 4(2 + cosa)( l -cosa) (̂ V)op, = "T7T~ ^ -7 (A-7) 

Therefore, the optimized equivalent "number of signal average" (NSA*) [24] is 

(NSA*)opt = 1 / H V ) o p l = -(2 + cosa)(l - cosa) (A-8) 

Substituting X = r\-^ = l / 3 into (A-3), we obtain the corresponding result for simple 

averaging 

o w

2 _ 5 + 4 cos a + 2 sin2 a 
( rXimple - i o • 2 „ ( A _ Y ) 

a 0 18 sin a 

and 

(NSA*) s i m p l e=l/(^) s i m p l e 

(A-10) 
18 sin a 

5 + 4 cos a + 2 sin2 a 

Exactly analogous procedure can yield identical result for the fat image. 
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APPENDIX B 

Substituting equations (3-20), (3-21), (3-22), and (3-24) into equations (3-23), the 

final water-fat result with the optimal averaging method is given by 

f<W> 

<F> 
1 

2(2 +cos a) V F 12 J 
+ -

1 rw23̂  i+ 
2(2 +cos a) 

' 23 

V F 23 J 

cos a 
2 + cosa V F 13 J 

'A(A + 2)(A +1) I, + (A + 1)(A -1) I2 - A* (2A +1)(A +1) I3 

-C* A*(2A + 1)(A +1) I, + C* A* (A + 1)(A -1) I2 + C*A*(A + 2)(A +1) I3 

/[2(2 + cosa)(A-l)(A + l)] 
(B-l) 

1 
2(2 + cosa)(A-l) 

A(A + 2) I, + (A + (A -1) I2 - A* (2A +1) I3 

-C* A* (2A +1)1, + C* A* (A -1) I2 + C* A* (A + 2) I 
3 7 

Substituting equations (4-4) into equations (4-6), matrix L for the complex valued 

LSE method is given by 

L = 
^ 2 - A - A 2 , 2 -A - A , 2 - A - A 
C*(2 - A* 2 - A*), C*(2A*-1 - A*2), C*(2A*"-1 - A*) 

/[(4 + A + A*)(2-A-A*)] 

-(A + 2)(A-1), 

C*A*2(2A + 1)(A -1), - C*A*'(A -1)2, - C*A*Z(A + 2)(A -1) 

/[2(2 + cosa)(-A*)(A-l)2] 

1 fA(A + 2), (A-l), -A*(2A + 1) 

- A* (A -1)2, A*2 (2A + 1)(A -1) ^ 
*2 . 

(B-2) 

2(2 + cosa)(A -1) ^-C* A*(2A +1), C'A*(A -1), C*A'(A + 2), 

The final water-fat result with the complex valued LSE method can be obtained by 

simply substituting equation (B-2) into equation (4-7) 

1 
2(2 + cosa)(A-l) 

A(A + 2)I, + (A + (A-1)I2 - A*(2A + 1)I3 

-C*A*(2A + 1)1, + C*A*(A - 1)I2 + C*A*(A + 2)1 
(B-3) 

3 7 
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The result in equation (B-3) is identical with the result in equation (B-l). Therefore, the 

optimal averaging method is identical to the complex valued LSE method. 
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