
STUDIES OF THE FLUX FLOW RESISTIVITY IN YBa2Cu3O695 BY

MICROWAVE TECHNIQUES

By

David Craig Morgan

M.Sc. (Physics), University of British Columbia

B.Sc. (Physics), University of Waterloo

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

PHYSICS

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

Decenibar1 1993

© David Craig Morgan, 1993



In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature

__________________________________

Department of Ph’sLc5
The University of British Columbia
Vancouver, Canada

Date D€cembr 21., ()c)3

DE-6 (2/88)



Abstract

Measurements of the microwave surface resistance at 5.4, 27 and 35 GHz on a high

quality single crystal of YBa2Cu3O695 in magnetic fields up to 8T (applied parallel to

the c-axis) and at temperatures from 20K to ]00K are presented. The Coffey-Clem

expression for the surface impedance of a superconductor in the mixed state is used to fit

the data in terms of a pinning frequency and a free flux flow resistivity (thermal hopping

of vortices is not included since it is not important for YBa2Cu3O6•95 at microwave

frequencies). A temperature dependent pinning frequency is found that varies from ‘-. 20

GHz at 20K to effectively zero by 80K. The flux flow resistivity is strongly temperature

dependent and consistent, down to at least 50K, with the Bardeen-Stephen expression

pff/p(T) H/H2(T) if an extrapolation of the linear normal state resistivity from

above T is used for p(T). This suggests that the traditional picture of a vortex core as

a cylinder of normal material may be valid in these materials. In contrast, the normal

fluid quasiparticle scattering rate, as determined by zero field microwave measurements

on the same single crystals1,drops precipitously below T and, thus, is probably not the

relevant scattering rate for the charge carriers in the vortex core.

‘D.A. Bonn et al. Phys. Rev. Lett., 68:2390, 1992.
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Notation

h Plank’s constant

e charge of electroll

kB Boltzmann’s constant

4o flux quantum

w angular frequency of rf fields

m mass of the charge carriers

m inertial mass associated with the vortex

J current density

J normal fluid current density

J8 superfluid current density

JT transport current density
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B magnetic induction

H magnetic field

H thermodynamic critical field

H1 lower critical field
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coherence length in the c-direction

= a-b plane coherence length

\L London penetration depth
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5 complex conductivity

o1 real part of the complex conductivity

2 absolute value of the imaginary part of the conductivity

n number of vortices per unit area

,On resistivity associated transport due to normal carriers
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vortex viscosity

f linear/angular pinning frequency
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vL vortex velocity
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v velocity of charge carriers in the core of the vortex
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v velocity of charge carriers ill the superfluid circulating the vortex
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Chapter 1

Introduction

In the 1960’s, during dc transport measurements on conventional type-IT superconductors

in a magnetic field[1], it was observed that for current densities greater than a so-called

depinning critical current density, a finite resistance to current flow developed. Indeed,

above this critical current density, the I-V characteristics took on an ohmic character.

This finite resistance was attributed to viscous flow of vortices and the slope of the I-V

curve was used to define a flux flow resistivity, pff . The superconductor was thus acting

like a normal metal with a resistivity given by pff instead of the usual resistivity of a nor

mal metal (which at the low temperatures associated with conventional superconductors

would be the temperature independent impurity limited value). The basic picture of the

process was that the vortices move in response to a Lorentz force per unit length, J x ,

where J is the transport current density and the magnetic flux quantum that threads

through the vortex. The vortices remain immobile until this force exceeds the pinning

force (typically due to defects that act to pin the vortices at particular locations). Once

they start to move, an electric field is induced along the direction of the applied current

causing power dissipation and a finite resistance.

It was postulated that the vortices are subject to a viscous retarding force per unit

length, F = —ivL, where vL is the vortex velocity and i a vortex viscosity. It was

found from dc transport measurements on a number of superconducting alloys[1, 2, 3]

that for low temperatures and magnetic fields the flux flow resistivity obeys a law of

1



Chapter 1. Introduction 2

corresponding states
— H

Pn

although there there seems to be some confusion as to whether the H2 factor in the

denominator on the RHS should be H2(0) or H2(T). The flux-flow resistivity was

also found to determine the energy dissipation at microwave frequencies[4, 5, 6, 7, 8]

even for current densities much less than the depinning critical current densities at dc.

The power absorbed was found to exhibit a crossover{4, 5] as a function of frequency

from a low dissipation regime at low frequency to a regime at high frequency where

the superconductor effectively behaves like a metal with resistivity given by . The

crossover was characterized by a so-called pinning frequency, f’,, the magnitude of which

was typically in the 10 MHz range. Thus the microwave surface resistance could be used

to extract the flux flow resistivity and the results were also found to be consistent with

equation 1.1 (with H2(O) in the denominator) for low temperatures and fields.

Equation 1.1 also comes out of a theory developed by Bardeen and Stephen[9] who

calculated the dissipation in the clean limit (mean free path much greater than the

coherence length, 1 > ) and at zero temperature, to a vortex moving in response to a

Lorentz force per unit length, J x , and retarded by a viscous force per unit length,

—llvL. They modelled the vortex in terms of two components: a totally normal core of

radius the coherence length, , and a transition region where the order parameter changes

over a length scale from zero at the core boundary to its equilibrium value in the bulk

of the superconductor. They also found that close to T

H
12

p7, — H2(T)

More rigorous calculations based on time dependent Ginzburg-Landau theory[10, 11, 12,

13, 14, 15] were able to obtain solutions for Pif but only in certain limits. In the dirty

limit and for T << T and H << H2 an expression close to equation 1.1 was obtained[16].
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One of the interesting aspects of the flux-flow resistivity is that it provides infor

mation about the scattering rate of the normal quasiparticles in the core of the vortex.

In conventional superconductors, the quasiparticle scattering rate is temperature inde

pendent and the same in the normal core as it is in the bulk superconductor. In the

high-Ta superconductor, YBa2Cu3O695 , the normal state resistivity is strikingly linear

over a large temperature range above T until the pronounced rounding that occurs due

to two dimensional fluctuations near the superconducting transition[1 7]. Thus the scat

tering rate of the charge carriers is temperature dependent at T and not temperature

independent as it is for conventional superconductors. Moreover, the scattering rate for

the quasiparticles in the normal fluid in zero field has been observed to drop rapidly as

a function of temperature below T [18, 19]. However, it is not obvious whether or not

this scattering rate is the relevant one for the charge carriers in the core of the vortex.

If we retain the picture of a normal core, it is tempting to extrapolate the linearly de

creasing scattering rate of the charge carriers from above T down to low temperatures.

The Bardeen-Stephen[9] picture of moving vortices has a contribution to the dissipation

from the transition region outside the completely normal core equal to the one from the

normal core itself. This raises the possibility that both of the above scattering rates

might be relevant in determining the flux flow resistivity. In addition, the Hall angle, OH,

in the mixed state is intimately bound up with the lifetime of the quasiparticles in the

cores[9, 20]. Due to strong pinning, OH in YBa2Cu3O695 has not been measured below

about 70K. Thus a possible effect on the measurement of p due to a non-negligible Hall

effect must be kept in mind.

The situation is made more complicated by the possibility that the picture of a cylin

der of normal material may not be a very good approximation for vortex cores in high-Ta

superconductors. The basis for the idea of a normal core in conventional superconductors

(apart from the fact that the order parameter goes to zero at the centre of the core) was
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the demonstration that there is a set of low-lying closely spaced energy levels localized

in the vortex core that is comparable to a cylinder of normal metal of radius [21]. The

level spacing is of order/2/EF where Li is the energy gap and EF the Fermi energy.

For low-Ta superconductors, this spacing is lmK whereas for high-Ta materials it is

estimated to be 10K or more[22, 23]. Thus there is the possibility of the discrete nature

of the energy level spectrum playing a role.

Another layer of complexity has become apparent with the growing body of evidence

for an unconventional pairing state in the high-Ta superconductors[24]. A possible can

didate is d-wave pairing and the effect of such a state, whose gap function has line nodes

on the Fermi surface, on the models of vortex motion is unclear. It is thus important to

retain a broad view of flux flow resistivity measurements since it is unlikely, given the

current state of uncertainty as to the underlying mechanisms involved, that we will be

able to arrive at a definitive understanding of flux flow.

The microwave technique is especially helpful in trying to measure the flux flow re

sistivity of YBa2Cu3O695 because of the very strong pinnrng of vortices in this material.

Extremely high current densities are required to exceed the depinning critical current

density. Practically speaking, this limits the dc technique to only a 10—15K temper

ature range below T and, even here, very large current densities (‘-- 106A/cm2)are

required [25]. Also, to measure pS,-, directly by applying a magnetic field greater than

H2 is only possible close to T because of the large H2 ‘s in YBa2Cu3O695 (H2 (0) is

estimated to be ‘—‘120T[26}). Such strong pinning means that the pinning or crossover

frequency might be much higher than that observed for conventional superconductors.

We cannot assume, therefore, that frequencies in the range 5—35 GHz will be in the high

frequency, flux flow limit. In addition, due to the higher temperature scale associated

with high-Ta materials, thermally activated vortex motion[27] plays a more prominent

role than in the vortex dynamics of conventional superconductors, although later, we will
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argue that for YBa2Cu3O695 at our frequencies, the dynamics are not contaminated by

this latter effect.

We will rely mainly on a model derived by Coffey and Clem[28, 29] (but in the

limit of no thermally activated flux motion) to fit our microwave data. In this limit their

expression for the surface impedance is just a slight generalization of the one used[4, 5] to

extract pff in the microwave experiments on conventional superconductors. It should be

made clear from the outset that the use of this model in no way assumes a temperature

or field dependence of the flux flow resistivity. It is a vehicle to get from the surface

resistance data to the flux flow resistivity: we use it to fit the data at three different

frequencies (5.4, 27 and 35 GHz) in terms of a vortex viscosity and a pinning frequency.

We are principally interested in the viscosity since this gives pff directly; the fit to the

prnnrng frequency removes pinning effects that otherwise might be attributed to the field

or temperature dependence of pj . With only three frequencies, we are not able to

unequivocally demonstrate the existence of the high frequency, flux flow limit. However,

fitting to the Coffey-Clem model shows that the data is consistent with a temperature

dependent pinning frequency that is --20 GHz at 20K and that decreases to zero by

--80K. Thus we believe that the vortex viscosity and flux flow resistivity that we extract

from the surface resistance is independent of the effects of pinning. We find a flux flow

resistivity that decreases rapidly below T and is reasonably well described down to about

50K by
fiff — H

13
p(T) — H2(T)

where p(T) is given by the extrapolation of the linear dc resistivity from above T and

H2 (T) is given by an estimate based on the measured slope of H2 (T) near T . Below

50K, the extracted is higher than what we would have expected from the above

equation.
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To our knowledge, this is one of the oniy measurements of the flux flow resistivity

down to lower temperatures in high quality single crystals of YBa2Cu3O695 We will

discuss some of the possible implications of these measurements but must ultimately

leave the questions open until there is a better understanding of vortex motion in the

high-Ta superconductors.



Chapter 2

Introduction to YBa2Cu3O7_3

In this chapter, we will introduce some of the essential features of high-Ta superconduc

tors, specificallyYBa2Cu3O7_8.It is lot meant as a comprehensive review of the current

state of research in the field. Rather, it is meant to set the context for the main topic of

this thesis: the free flux-flow resistivity in the mixed state.

Before embarking on this discussion, we should briefly mention a matter of conven

tion. The units used in this thesis will be MKS. However, there has been a strong

tradition in the literature of using cgs to discuss theory and experiments concerning su

perconductivity. In particular, the terminology of H, H1and H2 as referring to the

critical fields instead of B, etc. is deeply ingrained. To adhere to this convention while

still maintaining consistency with MKS units, we adopt the following compromise: in a

general discussion of, say, the upper critical field we use, H2 , but in formulae we insert

the appropriate factors of [to; the reader can take for granted that, in this thesis, B can

always be obtained from H simply by multiplying by p.

2.1 Some basic features

One of the most basic features of high-Ta superconductors is their anisotropy: conduction

occurs primarily in two dimensional Cu02 layers which are weakly coupled together. We

can imagine the superconductor as a stack of such layers in what we label, conventionally,

as the c-direction; the Cu02 layers lie correspondingly in the a-b plane. Figure 2.1 shows

the dc electrical resistivity in the a-b plane as a function of temperature measured by

7
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Baar et al[17J on high quality single crystals of YBa2Cu3O695 made at U.B.C. by Liang

et al[30]. Pc has also been measured on these crystals and shows the same T but has an

overall magnitude about fifty times greater than Pab aild exhibits a slight upturn before

Tc - this thesis deals almost exclusively with a-b plane currents and so c-axis transport

will not be discussed further. The superconducting transition at —93K is dramatically

evident T ‘s of up to 93.4K have been observed in these crystals.

There are two other features of interest. First is the striking linearity of the resis

tivity in the normal state above about 120K and that it extrapolates to very close to

zero at zero temperature. The Debye temperature in YBa2Cu3O7_is estimated to be

400K[31] and so a linear resistivity in this temperature range is highly anomalous.

Indeed, this linear resistivity is a powerful constraint on theories that try to explain

high-Ta superconductors. The other interesting feature of the resistive transition is the

pronounced rounding starting at about 120K. This rounding has been interpreted in

terms of fluctuations associated with the two-dimensional nature of the material. The

large temperature range above T where these fluctuation effects are observable is charac

teristic of the Cu02 superconductors. The usual fluctuations associated with deviations

from mean field theory near the transition would only be expected to play a role within

‘1KofT.

Estimates of the coherence lengths in YBa2Cu3O7_5can be made by magnetization

measurements close to T. Weip et al[26] performed such measurements on single crystals

of YBa2Cu3O7_5down to about 8K below the transition and found their data consistent

with a linear dependence of H2 on temperature with uodH2/dT ITc being -1.9T/K and

-10.5T/K for the field oriented parallel and perpendicular to the c-axis respectively. They

use the Werthamer-Helfand-Hohenberg formula{32, 33]

H2(0)=0.7 (8Hc2)T (2.1)
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Figure 2.1: Temperature dependence of the a-b plane dc resistivity of YBa2Cu3O695
Inset: a close-up of the transition. This measurement was made by Baar et al[17] 011 the
U.B.C. single crystals (Liang et al[30]).
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Chapter 2. Introduction to YBa2Cu3O7_3 10

to obtain estimates of iuoHc2c(0) = 122T (field parallel to the c-axis) and it0H2(0) =

674T (field parallel to the a-b plane). An empirical formula consistent with0dH2/dT ITc

being -1.9T/K and H2(0) being 125T is given by

(1 _t2)
0H2(T) = 125(1 +t2)’/2

‘ (2.2)

(t = T/T) and we will use it for the temperature dependence of0H2(T) throughout

this thesis. Using the formulae[34}

[LOHc2c=
;

=
(2.3)

ab

an a-b plane coherence length, tab, of 16.4 A and a c-axis coherence length, , of 3.OA can

be found. Both and ab are considerably shorter than the coherence lengths associated

with conventional superconductors. In this thesis, we are concerned principally with tab,

and so we set = ab for convenience.

The zero temperature value of the London penetration depth, )..L(0), is also of great

interest. However, considerable debate still exists about its correct value. Callin and

Berlinsky[24] have reviewed and evaluated the experiments that claim to measure this

quantity and we follow their discussion here. Typically, microwave experiments measure

only the change in the penetration depth and not its absolute value. Nevertheless, Pond

et al[35] used a transmission line resonator consisting of a 2000A thick YBa2Cu3O7_3

layer and found )L(0) = 13001; however, they have had difficulty in reproducing the

measurement. Muon spin resonance is a bulk probe that measures the distribution of

magnetic fields in the mixed state. This can be related to the penetration depth via

Ginzburg-Landau theory. Estimates of .L(0) from this technique on the U.B.C. single

crystals give 1400A although there is still some field and sample dependence in the data.

Infrared measurements can also be used to obtain a value for \L(0). Since the complex
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conductivity for frequencies well below the gap is given by

— i

2 (2.4)
/10 AL

AL can be obtained by measuring the coefficient of the 1/w divergence in the imaginary

part of the conductivity as w — 0. It is also possible to measure the missing oscillator

strength in a1 (cü) from above to below T to determine AL [34]. These two methods were

found to give the same value for AL. Basov et al[36] foulld a value of 1440A for the

YBa2Cu3O695 single crystals from U.B.C. . Measurements of the lower critical field can

also be used to obtain a value for AL through the expression

42 In () . (2.5)

Umezawa et al[37] obtained values in the range 900—950A while Liang et al[38] obtained

800)1 (on U.B.C. crystals). The significant difference between these numbers and the

values obtained using other techniques has not yet been explained.

Clearly YBa2Cu3O7_3is an extreme type-TI superconductor with i’ = AL/C ‘ 70—80

and therefore a system in which a local treatment of the electrodynamics makes sense.

Thus, the two London equations

E = t0 A2 (2.6)

and

H = —AL2V x J (2.7)

might be expected to do a reasonable job of describing the electrodynamics. We should

also note that because the coherence lengths are so small, we are almost certainly in the

clean limit (1 > ).
Given the linear nature of the temperature dependence of the scattering rate of the

charge carriers above T , it is natural to wonder about the temperature dependence of
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the quasiparticle scattering rate below T . The zero-field microwave surface resistance

measured by Bonn et al[18, 19] on the U.B.C. single crystals of YBa2Cu3O695 addresses

this issue rather directly. Figure 2.2 shows R3 as a function of temperature on a semi-log

scale. (Incidentally, the sharpness of the transition as well as the magnitude of the drop

of the surface resistance just below T is testimony to the quality of the U.B.C. single

crystals). To analyze the data, they used a generalized two-fluid picture with the complex

conductivity givell by equation 2.4. The surface impedance is given by (see Appendix A)

= (iILOLL)h/2
(2.8)

When o <<cr2 (which is a good approximation until very close to T ), we obtain

R8
= 1 2

XL3. (2.9)

Taking ‘L from the penetration depth measurements of Hardy et al on the same single

crystals, they obtain a1 as a function of temperature and this is shown in figure 2.3.

Assuming a Drude type form for the conductivity, then

o cx x(T) T(T) (2.10)

if cr << 1 where x(T) is the normal fluid fraction and T(T) is the normal quasiparticle

lifetime. In this two-fluid approach x(T) = 1
— )‘L2(0)/)(T) and so they extract

-r(T). This is given in figure 2.4, which shows a quasiparticle scattering rate that drops

precipitously below T . The characteristic bump in the temperature dependence of the

surface resistance is understood as follows: the initial drop below T is due to the onset

of enhanced screening as ‘L decreases very quickly; below 77K, the increase in a1 due

to the rapidly increasing r wins out as the temperature depeildence of ‘\L slows down so

that R8 starts increasing with decreasing temperature; at about 40K, we reach a peak

in the conductivity below which the decreasing normal fluid fraction takes over as l/r
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Figure 2.2: Temperature dependence of R3 at 3.9 GHz in zero field for YBa2Cu3O695
This was measured by Bonn[39] on U.B.C. single crystals (Liang et al[30]).
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Figure 2.4: Temperature dependence of the quasiparticle scattering rate[39]. The spike
at T is again due to sample dependent broadening of the transition. Below about 40 K,
the scattering runs into an impurity limit and levels off.
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begins to run into an impurity limit, and thus R3 starts decreasing again. It should be

noted that the broad peak in the real part of the conductivity has nothing to do with a

coherence peak. The rapidly decreasing quasiparticle scattering rate with an onset at T

suggests the dominance of electron-electron scattering above T which is rapidly quenched

once the charge carriers freeze out into the superconducting condensate. Certainly, an

electron-phonon picture for the scattering seems unlikely.

Another aspect of the R5 temperature dependence which has provoked intense interest

is its rather slow variation as T —* 0 (approximately linear). In a conventional BCS s

wave picture, an exponential temperature dependence is expected. Also suggestive of

unconventional superconductivity in YBa2Cu3O7_3is the linear temperature dependence

of zX(T) at low temperatures measured by Hardy et al[40] (they measure AA and take

a value of )L(0) from the literature to obtain )L(T)). This is shown in figure 2.5. Such

a linear temperature dependence is predicted by calculations based on clean d-wave

superconductors. For d-wave pairing, the gap function could be of the form

= L (cos k — cos k) (2.11)

and this has line nodes on a cylindrical Fermi surface. Regions of the Fermi surface where

the gap vanishes imply sets of low lying energy levels which have dramatic effects on the

low temperature variation of a wide variety of properties. There is a growing body

of evidence that is consistent with d-wave or at least some sort of effectively gapless

superconductivity. For a more complete review of the evidence for and against a d-wave

model of the high-Ta superconductors, the reader should consult Kallin et al[24].

2.2 Introduction to vortex motion in YBa2Cu3O7_5

One of the principal differences in the vortex dynamics between high-Ta and conventional

superconductors is the more prominent role of thermal effects. This is a vast subject
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about which we give oniy a very general description, our main concern being to motivate

the picture of vortex dynamics which we use in this thesis.

Paistra et al[27j have performed detailed studies of the dc resistivity of YBa2Cu3O7_5

single crystals (T 88K) in magnetic fields both perpendicular and parallel to the a-b

plane. Figure 2.6 shows their measurements of Pdc as a function of T on a semi-log plot

with the applied field perpendicular to the a-b plane. It is immediately apparent that

even in fields up to 12T, the resistivity decreases very rapidly below T . For example,

in a field of iT, the resistivity has decreased at least five orders of magnitude by 80K

(t = T/T = 0.91). They allalyze their data in terms of the Anderson-Kim flux creep

theory[41, 421. In this scenario, vortices are pinned at the minima of a periodic pinning

potential. They can move in response to the Lorentz force of the transport current even

though the applied current is less than the depinning critical current due to thermal

activation over the barrier height, Uo, between the neighbouring pinning sites. Based on

this type of analysis, they find that the barrier heights or activation energies have already

increased to approximately 500K in YBa2Cu3O7_5by the time t has dropped to 0.93

(whereas activation energies as high as this are only found at temperatures, T < 50K,

inBi2Sr2CaCu2O8).
It is natural to postulate the existence of a boundary in H—T space above which

the vortices are thermally depinned and flow freely for any transport current aild below

which a non-zero depinning critical current density still exists and must be exceeded to

achieve flux flow. Such irreversibility or depinning lines have indeed been observed in. both

YBa2Cu3O7_3andBi2Sr2CaCu2O8[43]. There is considerable debate as to whether or not

these are in fact ‘melting’ lines and representative of thermodynamic phase transitions

from a vortex solid to a vortex liquid[44]. This is an interesting and complex subject

but a discussion of it is beyond the scope of this thesis. The important point for our

purposes is that while forBi2Sr2CaCu2Og this line (at low frequencies) is at ‘—i 30K for
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0 < H < lOT, for YBa2Cu3O7_3it is within a few degrees of T [43]. Moreover, this line

is frequency dependent[27] and shifts to higher fields aild temperatures as the frequency

is increased. Paistra et al[27] remark that even forBi2Sr2CaCu2O8, if the frequency is

greater than 1GHz, thermally activated flux motion only plays a role very close to T.

Within this picture, the reason for this frequency dependence is that at high enough

frequencies the vortices never get a chance to wander far enough away from the pinning

minima during the rf cycle to thermally hop to the next pinning site. In fact, at such

high frequencies we must modify our picture[4, 5] to include explicitly a vortex viscosity,

, and a pinning force constant, is,, in our description of the dynamics. Together, they

define another frequency scale, w = called the pinning frequency. We defer a

discussion of this until Chapter 3.

We conclude this introductory discussion of YBa2Cu3O7_5in the mixed state by

briefly mentioning the work of Welp et al[45] who analyzed their magnetization data near

T on single crystals of YBa2Cu3O7_5in terms of thermodynamic fluctuations. They find

that in the temperature region corresponding to the upper half of the resistive transition

in a magiletic field, their data scales according to Ginzburg—Landau theory for a 3-D

superconductor. Thus, they argue that the characteristic shape of these dc transitions

in a magnetic field as well as the apparent lack of field dependence on the the onset of

superconductivity is a result of fluctuations. This must be kept in mind when we come

to look at the surface resistance in a magnetic field close to T or H2



Chapter 3

Flux Flow in Conventional and High-Ta Superconductors

In this chapter, we will review the current understanding of flux-flow both in conventional

and high-Ta superconductors. We will first describe the basic phenomenology of flux-flow

and then summarize the theories that have been suggested to model the dissipation and

Hall effect in conventional superconductors. These range from the semi-phenomenological

approaches of Bardeen and Stephen[9] and Tinkham[46] to the more rigorous methods

based on time dependent Ginzburg-Landau (TDGL) theory[lO, 11, 12, 13, 14, 15]. We

will then review some of the most important experiments aimed at understanding flux-

flow. These experiments basically fall into two categories: dc and high frequency. In

the second part of the chapter, we will summarize some of the work done on high-Ta

superconductors, both theory and experiment.

3.1 Basic Properties of the Mixed State

In a type-Il superconductor, the magnetic flux, instead of being screened out until the

thermodynamic critical field, H, has been reached, starts to penetrate in the form of

vortices once the applied field has exceeded a lower critical field, H1. Each vortex is

threaded by only one quantum of flux, o = h/2e. If the number of vortices per unit

area is given by n, then the average magnetic field is given by B = n40. As the applied

field is increased, the superconductor is penetrated by greater and greater numbers of

vortices until at an applied field H2 > H, the superconductivity is quenched and a

transition into the normal state occurs.

21
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A vortex consists of a core of radius equal to the coherence length, , in which the order

parameter (or equivalently, the density of superconducting electrons) decreases to zero at

the centre from its bulk, equilibrium value at the perimeter. The microscopic magnetic

field is maximum at the centre of the vortex and decays to zero outside the core due to

circulating supercurrents that screen out the field over a length scale characterized by

the penetration depth, )‘L. For typical type-TI superconductors, )‘L >> , and so a typical

vortex has an essentially normal inner core where the density of the superconducting

electrons goes to zero and a much larger region outside this core where the supercurrents

and the field decays. The concept of a ‘normal’ core was put on a more rigorous footing

by Caroli, de Gennes and Matricon[21] who found that although the order parameter is

strictly zero only at the centre of the vortex, there is a sea of low lying energy levels with

spacing of order L2/EF (f.1 1 mK for conventional superconductors) centred on the axis

of the vortex that acts essentially like a cylinder of normal material with radius .

3.2 Transport Properties

3.2.1 Simple treatment of the viscous flow of vortices

We now consider such a lattice in the presence of a uniform, superfluid, transport curreilt

J = as shown in figure 3.1. In the presence of the transport current, each vortex is

subjected to a Loreritz force per unit length, J x o which in the absence of other

forces causes them to move in a direction perpendicular to the direction of the transport

current [34]. In a real material, there may be defects and other structures which teild to

pin the vortices and stop them from moving in response to the Lorentz force. For the

moment, we consider an ideal material where there is no pinning and the vortices are thus

totally free to move. The moving vortex gives rise to a time dependent magnetic field on

a microscopic scale and so we might expect an induced electric field in the direction of
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Figure 3.1: Vortex motion in response to a uniform, superfluid, transport current. The
upper figure shows the response considering only the conventional Lorentz force. The
lower figure includes the magnus force which is thought to be responsible for the Hall
effect.
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the transport current coming from the Maxwell equation V x E —8B/ãt. It has been

argued[47], however, that in a steady state experiment with vortices moving across the

sample (perpendicular to the transport current) and leaving on one side while entering

on the opposite side at the same rate, there is no net change of flux through a circuit

consisting of the superconductor and a voltmeter, and thus there should be no induced

electric field. This question was resolved by Josephson[48] who found that the electric

field created by moving vortices with velocity vL is indeed

E=—VLXB (3.1)

as we might guess based on a simple induction mechanism. The gist of this argument

can be gleaned by considering a closed loop, C, consisting of a segment, C2, that resides

entirely in a purely superconducting region and a segment, C1, that completes the loop

in a superconducting regioll in the mixed state. From Faraday’s law[49] we have that

E.d1=—,cvLXB.d1 (3.2)

where E is the electric field around the ioop and vL is the velocity at which the magnetic

flux crosses the boundary. No flux can cross the boundary, C2, in the superconducting

region and E is everywhere zero inside the pure superconductor; therefore, equation 3.2

becomes

JE.dl= Jc.’L xBd1. (3.3)

If we assume that the field distribution at a point in the mixed state is only determined

by the flux lines etc. in the immediate vicinity, then equation 3.3 holds for any path Ci,

not just one completed through a purely superconducting region. The differential form

of equation 3.3 is given by equation 3.1.

Since there is an electric field parallel to the transport current, there is energy dissi

pation per unit volume given by

P=EJ (3.4)
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The situation is similar to a normal material where a voltage, V, is developed along the

path of the current, I, and we get energy dissipation VI. This energy dissipation can be

taken into account in a phenomenological fashion by introducing the parameter , called

the vortex viscosity. We imagine that the energy dissipation comes from the work done

against a viscous force per unit length of vortex, ?lvL. Then in the steady state with no

pinning, we have

J0 = ?7VJ . (3.5)

Using E = VLB, we get
E 0B

fJff7= (3.6)

where we have defined to be the flux-flow resistivity — the ratio of the induced electric

field to the applied transport current. The work done per unit time per unit length by

the viscous force to dissipate energy can be written

W=—FvL=vL2. (3.7)

Equivalently, we can write the power per unit volume as

P=E•J=pffJ2=n(ivL2) (3.8)

Since n is the density of vortices per unit area, we find again that the energy dissipated

per unit length is given by 7v2.

3.2.2 Viscous flow including the Hall Effect

Although the treatment given in section 3.2.1 is a good starting point for understanding

flux flow and, indeed has been used extensively to model experiments, it ignores the Hall

effect where there is a component of vortex velocity not strictly perpendicular to the

applied superfluid transport current. It has been argued, originally by de Gennes and
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Matricon[50j, and subsequently by Nozières and Vinen[20}, that this motion is the result

of the Magnus force similar to that felt by vortices in a classical uncharged fluid. In this

scenario, the force exerted on the vortex is not simply J x 4o =n8evT x o but

n3 e (VT — vL) x o (3.9)

where it is now the relative velocity of the vortex with respect to the applied superfluid

velocity that determines the Lorentz force. We can clearly see from this expression that

a vortex moving in a direction perpendicular to the transport current will see a force in

the direction of the transport current. The force balance equation for the vortex becomes

f+n8e(vT—vL) x o =0 (3.10)

where f is the frictional drag term. This equation is appealing because in the limit of

a pure superconductor, f = 0 and so VT = vL i.e. the vortices move along with the

superfluid as in superfluid helium II. However, writing f = —7lvL leads to significant dis

agreement with experimerit[51]. It was argued by Bardeen[52} that the term r evL X o

should be dropped while Nozières and Vinen assert that it is the form of the frictional

drag force that must be modified. This question has never been elltirely resolved (indeed,

a complete theory of flux-flow valid in all limits of physical interest has yet to be devel

oped), but as a reasonable compromise we can write a force balance equation in terms

of phenomenological parameters to be determined either by experiment or subsequent

theory [53]:

71VL—aVLXz=---4oJXz, (3.11)

where we have now taken o = —o in order to be consistent with figure 3.1. J =

as before is the superfluid transport current density (in the x-directiori),n3eVT, and a is

a parameter that together with determines the Hall angle (see figure 3.1). The avL X

term comes from the second term on the LHS of equation 3.10, with its coefficient now
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given by a. The 0J x term (conventionally thought of as the Lorentz force) is precisely

the first term on the LHS of equation 3.10. Since we now have a component of the vortex

viscosity in both the x and the y direction, the derivation of the longitudinal flux-flow

resistivity is less trivial. Writing down the x and y components of the equation, we have

7iVLa — avL, = 0 (3.12)

7lvLy+avLx= FoJ (3.13)

Using equation 3.1 for the induced electric field, we have

E=vLB ; E=—vLB (3.14)

and since
Ev Ea VLy B

(3.15)

and

tanOHI
= E =

(3.16)
VLy

(OH is the Hall angle) we find that

0B

(i +
(3.17)

tanOH = . (3.18)

To first order in a/a, we recover equation 3.6, the previous result for the flux-flow resis

tivity. We learn from this that for small Hall angle, we get the same flux-flow resistivity

that we would get in the absence of Hall fields.

There have been two main approaches’ to modelling this power dissipation in terms

of parameters describing the structure of the vortex. The most widely known approach is

‘There is also the model proposed by Clem[54] who showed that dissipation can arise from irreversible
entropy flow. His ideas were used to explain the existence of a flux flow resistivity minimum as a function
of temperature that was observed in certain high , alloys such as Ti-V[1].
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the one due to Bardeen and Stephen. The other involves the more rigorous calculations

based on time dependent Ginzburg Landau theory originally inspired by Tinkham’s ideas

on the time relaxation of the order parameter. We consider first the Bardeen-Stephen

theory.

3.3 The Bardeen-Stephen Model

Given the picture of a vortex core as a cylinder of normal material, a natural approach

to modelling the dissipation due to a moving vortex would be to somehow relate it to

joule heating of the normal electrons in the core. This is in essence the approach taken

by Bardeen and Stephen in their solution of the problem[9}. They model the vortex in

terms of a totally normal core (superconducting order parameter is zero) of radius the

coherence length, , and a transition region outside the normal core where the order

parameter goes from zero to its equilibrium value in the bulk. Their theory is derived at

zero temperature and in the clean limit where the mean free path, 1, is greater than the

coherence length.

Following Tinkham[34], we can quickly reproduce the calculation of the dissipation

due to the electrons in the core (in the slightly more simplified case that, outside the

core, the material is completely superconducting). We imagine a vortex at the origin (its

magnetic flux directed in the —z-direction) with a velocity, vL, in the y-direction (see

upper diagram in figure 3.1). We use the first London equation, equation 2.6, to relate

the electric field outside the normal core to the circulating superfluid current density:

E =
(m:s)

(3.19)

where we have used that J(r — vLt) =n3ev(r — VLt). We have by the chain rule that

= —(vL . V) v, (3.20)
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and so we get that

E=—vLV () . (3.21)

For >> (,>> 1), we have that [341

v = —0 , (3.22)
m r

where 0 is measured from the x-direction and 0 is a unit vector in the direction of

increasing 0. Substituting this into equation 3.21 and recalling that vj. is in the y

direction

E =
— (VLo) 8 (ö =

— Vl(sin0 +cos0 ). (3.23)
2r öy \rj 2Kr

Requiring continuity of the tangential component of E at the boundary of the normal

core gives a uniform electric field in the core

E *. (3.24)

We can see this because at r = and 0 = ir/2, 3r/2, the electric field is given by the

above expression, whereas, in the core, we have both V E = 0 and V x E = 0, and

so a constant field given by equation 3.24 certainly satisfies Maxwell’s equations and

also satisfies the boundary condition on the tangential componeilt of E. Therefore, it

is the unique solution for the electric field in the core. Of course, discontinuity of the

normal component of E implies a surface charge density at the core boundary. This is

an unrealistic feature of the model due to the simplified view being taken of the vortex

core; ill reality, this charge density would be smeared out.

We can now easily calculate the energy dissipation per unit length of vortex in the

core. Since the core is normal with a conductivity, o, we have J = uE and so the

dissipation per unit length is given by

w=2JE=2uE2=’l0. (3.25)
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This calculation of the dissipation relies on local equilibrium of the electrons in the normal

core with the lattice. It was remarked by Nozières and Vinen[20] that this does not make

sense for the situation where the mean free path is bigger than the core size (1 > ).
However, Bardeen et al[9] argued that even if an individual electron does not suffer a

collision in the core, the friction force involves an average over all electrons and so the

picture still makes sense on the average.

It turns out that an equal amount of dissipation occurs due to normal currents in the

transition region outside the core (where the order parameter rises back up to its bulk,

equilibrium value), but this is considerably more complicated to calculate[9]. The total

dissipation is therefore

W = °
. (3.26)

2ir2

Equating this to W = and using

= 27r2
(3.27)

we get
= 00H2

(328)
Pm

In terms of the flux-flow resistivity, this becomes

= --. (3.29)
p. H2

This is an appealing result because H/H2 is roughly the fraction of material in the

normal cores of the vortices, and so it is as if the curreilt flows right through them. In

fact, we can calculate the velocity of the electrons in the cores. If we consider the cores

to be normal material with an electron scattering time, r, then

v = (er/m)E . (3.30)



Chapter 3. Flux Flow in Conventional and High-Ta Superconductors 31

Equating the viscous force with the Lorentz force on the vortices, we get

‘7 Vj = J F0 = Ti e VT (h/2 e) = (n h/2) VT . (3.31)

Combining equations 3.30, 3.24 and 3.31 we find

V VT . (3.32)

In other words, the normal current density in the cores equals the superfluid transport

current density and so we see that in this picture the current does indeed flow right

through the moving cores. It is important to realize that the motion of the cores is

essential otherwise the material in the superconducting bulk would simply short out the

normal material in the vortices.

Close to T0 we can explicitly verify that the dissipation due to the normal currents

outside the core contributes as much to the total dissipation as the normal currents inside

the core. Close to T , the real part of the conductivity is approximately equal to the

conductivity of the normal material above T0 (see figure 2.3 for example) and so the

dissipation can be written

too p2r

P = I I o, E(r) . E(r) r dr dO . (3.33)
J Jo

Using equation 3.23 for the electric field outside the core, we have

uvbgjoo J27

—rdrdO= UflVL1J
(3.34)

47r o r4

and this is the same as the dissipation from equation 3.25. Thus close to T0 , we have

H
335

Pfl C2( )
In treating the Hall effect, Bardeen and Stephen replace the simple expression for the

core velocity, equation 3.30, with

v = (er/m)E + (v x B). (3.36)
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This is just the expression we would use for the drift velocity of electrons in a normal

material in a field H 2 (and in this model the Hall effect due to the currents in the

transition region is the same as that due to the normal currents in the core[55]). Using

= VT from equatioll 3.32 we can write this as

vT=(er/m)E+—(vTxB). (3.38)

Resolving this equatioll into x and y-components as we did with equation 3.11, we fluid

!MLIL (339)
°fl

as before, and

tanOH=zL,Cr (3.40)

where w is the cyclotron frequency, eB/m. For wr >> 1, we find that VL = (H/H2)vT

which does not reduce to VL = VT as expected for a pure superconductor. Nozières and

Vinen[20] suggested a slight modification of the Bardeen-Stephen model which yields the

same flux-flow resistivity but

tanOH=w2r (3.41)

where w2 = eB2/m. In the limit w,2r>> 1, their equation reduces to vL = VT.

For conventional superconductors, L.’T and w2r are both small and so only small Hall

angles are expected. In any event, the longitudinal flux-flow resistivity is left unchanged.

2The force acting on a charge carrier of charge e with velocity v (and scattering time r) in an electric
field E and magnetic field B can be written as a differential equation for the momentum p = my:

= e (E + v x B) — . (3.37)

In the steady state, dp/dt = 0, and we get equation 3.36.
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3.4 Tinkham’s time dependent order parameter and TDGL

Tinkham’s idea[46] was that there is energy dissipation associated with the time depen

dence of the order parameter at a particular location in the superconductor due to the

passage of a moving vortex through that point. The order parameter, [bI2, at this point

changes from its equilibrium value, 1oI2, (before the arrival of the vortex) to zero (the

axis of the vortex lies on top of the point) back to boI2 again (after the vortex has passed

through). Following Gor’kov and Kopnin[15], we give a rough calculation of the flux-flow

resistivity that we would get due to this mechanism valid for dirty superconductors at

low temperature.

We can estimate the time required to reestablish equilibrium in the superconductor

after the passage of a vortex as the time taken for an electron to move a distance of the

order of the coherence length (for a dirty superconductor ‘- 1) and since

(VF is the Fermi velocity and L the energy gap) we get

TO-—. (3.42)

The time it takes for the vortex to pass through any given point in the superconductor

will be of the order

to -f-. (3.43)

Since 1/ro is the gap frequency, To/to << 1 for most processes and so, if F is the free energy

density, the amount of energy dissipated will be approximately the fraction (ro/to) <F>

(< F > is the time average of the free energy density). Tinkham interprets this energy

dissipation as the result of generation and heating of normal quasiparticles as the electrons

leave and condense back into the superconducting condensate during the 11011-equilibrium

situation that causes the finite rate of change of I,I2. The power per unit volume in a
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superconductor with vortex density, n, aild an average flux density B = n4o is

W
=

<F> 2 (344)

Substituting for to and n and using < F >-- H2 we find

w = Tçj vL2H B
(345)

Since

W = (l/pff) E2 = H E2 = Uff VL2B2, (3.46)

we have using H1 -. Fo/X2 (X is the penetration depth in a dirty superconductor and is

different from the London penetration depth) and H2 H1H2 that

r0 r0 H2
= B 2 H1 = B )2 (3.47)

For a dirty superconductor, )2 /\L24o/l and so we can write

ne2l 1 h

= mvF = VFAL2(O) (O)2(O) (3.48)

Together with equation 3.47 this gives

(349)
Pfl C2

in qualitative agreement with the Bardeen-Stephen result.

A more rigorous approach to the effects of a time dependent order parameter in

the context of moving vortices was attempted using the time dependent Ginzburg Lan

dau theory originally formulated by Gor’kov and Eliashberg[56]. The difficulties in

solving a time dependent version of the Ginzburg Landau equations are such that the

solutions obtained were mostly restricted to gapless superconductors. Following the work

of Schmid[57j and of Caroli and Maki[1O, 11, 12, 13], Thompson and Hu[14] were able to
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obtain expressions for pff in a high i superconductor with a large number of paramagnet

ic impurities (to satisfy the condition that the superconductor be gapless). Among other

things, their solutions contained supercurrents in the core of the vortex. Tinkham[34]

has pointed out how this highlights the oversimplification involved in considering the

core to be a cylinder of normal material. Nevertheless, in the limit as T —* 0 for a dirty

superconductor with no paramagnetic impurities, Gor’kov and Kopnin[16] obtailled the

expression

= 1.1
H(0)

(3.50)

which is in good agreement with the simple Bardeen-Stephen result.

3.5 Experiments on Flux Flow

We will discuss first the dc measurements made mostly on superconducting alloys such as

PbIn and NbTa. Real materials have defects which tend to pin the vortices and stop them

from moving in response to some driving force. Indeed, this is a very desirable feature

when fabricating magnets out of superconducting wire. Such magnets are designed to

run in the so-called persistent mode where they are disconnected from the power supply

after having been charged to the desired current. Because the wires are sitting in their

own high magnetic field, they are threaded by many vortices. These vortices will move

in response to the Lorentz force and hence cause energy dissipation and degradation of

the current unless they are held in position by even stronger pinning forces. However,

for doing experiments probing intrinsic physics, it means that a large enough transport

current (called the depinning critical current) must be applied to overcome the pinning

forces. The I-V characteristics of such an experiment (performed by Kim et al[l]) when

a dc current is applied to PbIn alloys is shown in figure 3.2. To define the flux-flow
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resistivity under such circumstances requires a slightly different approach from the zero-

pinning case. Now we have

?lvL=FL—Fp for FL>Fp (3.51)

where F is the pinning force and FL is the Lorelltz force J cTo. Since E = VLB, we get

dE 0B
fjff

= —j =
(3.52)

and here we have generalized the definition of the to be the derivative of the electric

field with respect to the current. Experimentally, this means that the flux-flow resistivity

is obtained from the slope of the I-V characteristic once the depinning critical current

has been exceeded. This slope was found to be independent of the critical current as

it would have to be for this definition of p to be consistent. A set of p curves as a

function of field is shown in figure 3.3 for a Nb05Ta05 alloy. For low temperatures and

fields, we see that
H

3
pt-, — H2(O)

As the temperature gets closer to T , this empirical law is violated at lower and lower

fields; nevertheless, for small enough fields the slope of the Pff/Pn is 1/H2(O) for all

temperatures (note that the pt-, used to scale the p data is independent of temperature

and equal to p(T) since an alloy is in the impurity limit by T ). This behaviour is

claimed to be representative of low-field (H2 (0) iT), intermediate (t 5) super

conducting alloys such as NbTa and PbIn. A similar result was obtained by Vinen and

Warren[2] on Nb and NbTa alloys. Thus the data at low fields seem to agree with the

zero temperature Bardeen-Stephen result even though this result was derived for a pure,

clean-limit superconductor whereas the alloys used in the experiments are in the dirty

limit. The result is also in agreement at with the TDGL result, equation 3.50, for dirty

superconductors for T << T and H << H2.



Chapter 3. Flux Flow in Conventional and High-Ta Superconductors

>

>
-J

0

I (AMP)

37

Figure 3.2: I-V characteristics for Nb05Ta05 in a magnetic field. This is reprinted from
the paper by Kim et al[l]. The Lorentz force must overcome the pinning force before
there is any dissipation.
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Figure 3.3: Normalized flux-flow resistivity vs. magnetic field for Nb0.5Ta05. This is
reprinted from the paper by Kim et al [1]. At low temperatures and fields, the data
obeys the empirical law pj/p,, = H/H2(0).
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Another phenomenon observed[1] for high-field superconducting alloys (.c ‘-‘. 10— 100)

such as NbZr, NbTi and VTi. was the paramagnetic effect on p . The effect is due to

aligurnent of the electron spins along the direction of the applied magnetic field. This

lowers the free energy of the corresponding normal state by Xn H2/2 (where Xn is the

normal state susceptibility) and leads to a transition into the normal state as the field

is increased even for H < H2 once this energy reduction becomes comparable to the

gap energy. What Kim et al found was that the empirical relation 3.53 holds not for

the actual H2 (0) but rather from the H2*(0) that we would calculate based on the

Ginzburg-Landau theory in the absence of the paramagnetic effect. Since it is H/H2*(0)

and not H/H2(0) that represents the volume fraction of normal material, it is intuitively

appealing that it is the latter ratio which appears in the equation 3.53. However, to

be totally consistent, it is H/H2(T) (for a given temperature) and not H/H2(0) that

represent the volume fraction of normal material. Rather, we might have expected

p H

Pm — H2(T)

as can actually be derived from the Bardeen-Stephen model for T —+ T.

Behaviour more in line with equation 3.54 was actually seen in later dc experiments on

a Pb076In024 alloy by Fogel et al[3], see figure 3.4. Reasonable agreement with equation

3.54 was seen for H/H2(T) < 0.5 above which increases more rapidly as it

crosses over in to the normal state (slightly anomalous behaviour is seen close to the

origin, however). In fact, Fogel claims that, based on a re-examination of all existing

data at that time, there are departures from the empirical relation of Kim et al[1] for all

conventional type-Il superconductors!

We now turn to the experiments performed at high frequencies. Central to these

experiments was the early work of Gittleman and Rosenblum[4, 5]. They found that the

flux-flow state is accessible for high-frequency transport currents even with J << J as



Chapter 3. Flux Flow in Conventional and High-Ta Superconductors 40

“:6

j7 4’

tl.2

17

Figure 3.4: Normalized flux-flow resistivity vs. field and reduced field: PhIn. This is
reprinted from the paper by Fogel [3]. The different curves represent field sweeps at
different temperatures the higher numbers represent lower temperatures. It is the
temperature dependent H that seems to be the relevant parameter for scaling the data.
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Figure 3.5: Frequency dependent crossover from a flux-pinned to a flux-flow state for
some conventional superconducting alloys. This graph is reprinted from the paper by
Gittleman and Rosenblum[4, 5]. It shows that above the characteristic pinning frequency,

= the superconductor acts as if it were totally unpinned.

long as the frequency is greater than the so-called pinning frequency, w,,, = i,/i where

.‘c1, is an effective pinning force constant, see figure 3.5. For C.ci >> w, the material acts

like an ideal, defect-free material with the vortices totally unpinned. Their picture of the

dynamics is of a vortex sitting at the minimum of a pinning potential energy well which,

close to the minimum, can be thought of as a parabola ix2/2. If the vortex is acted on by

the viscous retarding force nv = i and the Lorentz force J10 in the opposite direction,

we can write down an equation of motion for the vortex

mi —ic,x—rith+J40 (3.55)

where m0 is the effective mass of the vortex. This mass term is typically thought to be

negligible[58]. If we write J = J0e”t and = = voei(t, we can solve for J0 in the
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above equation

J0 = ( — i (3.56)

Since E0 v0B (see equation 3.1), we get for the effective ac resistivity

E0 F0B
Peff

= = 1 (1 — iw/w)
(3.57)

For w << , p3 becomes purely imaginary and there is no energy dissipation. For

(.) >> L’)p,

0B
Peff = P11 = (3.58)

the pure flux-flow resistivity that would be measured directly in a dc experiment. An

example of the transition from the flux-pinned to the flux-flow regime is shown in figure

3.5. It can be seen from the values of fo in this figure (3.9—15 MHz) that at microwave

frequencies their samples are well in to the flux-flow limit. This result has been under

stood as follows: at high enough frequencies, the vortex spends the entire cycle of the rf

field in the neighbourhood of the potential minimum (where the restoring force, ic,,x, is

very small); therefore, the vortex only samples that part of the pinnrng potential which is

essentially flat, and thus it responds as if it were totally unpinned. In fact, this argument

is flawed in that it implies a dependence upon the amplitude of the motion. We ca see

from equation 3.55 that this is not so: the effective viscous force increases proportiollal to

the frequency and will eventually dominate the pinning force at high enough frequencies.

These observations about the vortex dynamics were later confirmed and investigated

in more detail by Le Gilchrist and Monceau[6, 7, 8] who found that the rf response

was virtually unaffected by pinning for frequencies greater than 1 MHz for appropriately

prepared samples of PbIn, NbTa and Nb. To relate the flux-flow resistivity to the surface

resistance, they used the expression

R3(B) — (\1/2

R pn)
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The reasoning was as follows: if the classical skin effect expression applies to the mixed

state as well as the normal state, then

R8(B)
= (PffILow)h/2

(3.60)

and

R
(PnItOW)h/2

(3.61)

and dividing these two equations, we get equation 3.59. The classical skin effect theory

might be expected to apply if the skin depth, 8, of the rf currents in the mixed state are

large compared to all the length parameters that characterize the mixed state such as

a (the vortex lattice parameter), and (the coherence length). ). is typically the largest

of these. If the skin-effect theory is approximately correct and Pff/Pn ‘-. H/H2 then

=
IL (3.62)

w H2 H2

Using 6 3 x iO’ cm and X i—’ iO cm, thell

= = 0.03 \/rii;:;-
(3.63)

which is small except for H close to zero. The field dependence of R3/R and Pff/Pn 5

shown in figure 3.6. The latter is obtained by squaring the former (in accordance with

equation 3.59). As can be seen from the plots, they also made measurements at dc and

the results are plotted on the surface resistance plot. The agreement is quite good and

confirms that at high frequency, the ideal flux-flow state is recovered. At low fields, the

data seem to scale with a temperature independent H2 in qualitative agreement with

Kim et al[l].
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Figure 3.6: Microwave determination of P1f in conventional superconductors. These
figures are reprinted from the paper by Gilchrist and Monceau[8]. The upper figure
shows R3 and the lower figures pff extracted using equation 3.59. In the lower figure, the
smooth curves are obtained from the microwave data and the discrete points are from dc
measurements of the differential resistivity.
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3.6 Theory of Flux Flow Resistivity in High-Ta Superconductors

3.6.1 Surface Impedance in the Mixed State

The advent of high-Ta superconductors has stimulated considerable new work on deriving

more general expressions[28, 59] for the surface impedance of a superconductor in the

mixed state. Coffey and Clem[28, 29], in particular, propose a solution to the surface

impedance problem taking into account the vortex viscosity, pinning, thermally activated

flux motion and contribution of the normal fluid from the bulk of the superconductor.

They consider the response of the superconductor in the mixed state to an applied ac

field, b, parallel to the surface along the z-axis. In the simplest version of their theory,

the superconductor is taken to occupy the half-space x > 0. They treat the problem of

a static field H >> H1 applied parallel to the z-axis. This establishes the flux lattice

corresponding to an average field B0 = = H/1t0 (where n is the number of vortices

per unit area); the amplitude of the rf driving field is small, b = ,tt0h << Bo. The theory

also assumes B/t0 >> H1 which implies that the vortex lattice parameter, a0, is much

less than the penetration depth, )‘L. The surface impedance is given by

= iw,to.(w,B,T) (3.64)

where ) is the effective skin depth and is in general complex. The ac b field gives rise

to oscillating supercurrents that shake the vortices in their pinning potential wells and

carry field perturbations farther into the superconductor than, say, simply the London

penetration depth. The approach is basically two-fluid in nature with

J = J + J (3.65)

where

J=u1E (3.66)
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(o is the real part of the conductivity due to the normal fluid) and Js is given by a

modified second London equation

V x J = —(toAj’ (B —40n&) (3.67)

(a is a unit vector in the direction of the field in the core of a vortex). This equation takes

into account variations in the flux density from the average, macroscopic value and can

be seen as a generalization of the equation for the current and field distribution about a

single vortex[34]

0VxJ8+B=oS2(r)&. (3.68)

They supplement these equations by an equation of motion for the vortex identical to

the one assumed by Gittleman and Rosenbium

iñ(r,t) + iu(r,t) = J x o& (3.69)

(they ignore the possibility of Hall fields here) where the forces in this equation are per

unit length of vortex. The vortex displacement from its equilibrium position, u(r, t),

and its velocity, ñ(r, t), are both dependent on position, here, because the ac fields decay

inside the superconductor due to screening deep inside the superconductor, u = ii = 0.

Using the ansatz,

— *uo e”3’et (3.70)

for the vortex displacement and ignoring (for the moment) thermally activated flux mo

tion, they derive the following expression for ).

B T
— (B, T) — i/2 B, T)

1/2

3 71
— 1 +2i(B,T)/Sf(w,B,T) .

\L (B, T) is the temperature and field dependent London penetration depth, 6, is given

by

22PV — 0B
Pv . (. )0w
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(w = i/j is the pinning frequency as before) and Snf is the normal state skin depth

coming from the normal fluid
= 2

(373)
P0 °i C’

They also showed [29] that for the slab geometry, we get the same expression for ).

whether the static field is strictly perpendicular or parallel to the broad faces of the slab

(provided that the rf f field is parallel to B0 in the latter case).

As T —* T or H — H2, )L(B,T) diverges and ) becomes

82 1/2
6x= [-a] —(1—i) (3.74)

and so for the surface resistance we get

R8 = Re(ipo) = P06nf = Pm PO
(3.75)

which is the expression for the surface resistance of a metal in the normal state. In zero

field, the Snf term is an essential part of the physics: setting 6 to zero, equation 3.71

becomes
1

1/2

(3.76)
1/) +Z[tOJnfCL’

and so the expression for the surface impedance is

1/2

Z3=ipo)= 0 = 0
(3.77)

U Uflf 2

where ö- is the previously discussed generalized two-fluid expression for the complex

conductivity of a superconductor in zero field.

At finite fields, the term including in the denominator of the expression in equation

3.71 is, practically speaking, rather unimportant apart from the above limiting behaviour.

This is because (XL/8f)2 << 1 except very close to II2 or T . Therefore, over most of

the range of temperatures and fields of interest

1/2

= —

(3.78)
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An important observation is that for )/6 << 1 (and typically this is a good approxi

mation especially for frequencies of the order of a few GHz) ). cx B”2 and in particular

o B’12 no matter how strong the pinning as long as the i and w, are independent of

the field. For w >> , (free flux-flow limit), equation 3.78 becomes

1/2 1/2
= [_jo] [2_2] (3.79)

where is the free flux-flow skin depth. If )/S << 1 i.e. flux-flow skin depth much

larger than the London penetration depth, then

1/2

= —i
°

= (3.80)
[L0LUT/ ,U0W

and so proceeding as before, we get

R3 = (Pffo)1/2
. (3.81)

Thus, to the extent that we can ignore the London penetration depth term, the super

conductor acts like an effective metal with resistivity pff. We can also see that this is the

approximation used in analyzing the flux-flow microwave experiments on conventional

superconductors.

Equation 3.71 can be generalized to take into account thermally activated flux mo

tion. This necessitates introducing an additional parameter U0 which corresponds to an

energy barrier height to thermal hopping of vortices between adjacent pinning sites. The

modified expression for is

___

— e+(wr)2+i(1—e)wr
(382)

pjj — 1+(r)2

where
— 1 I(v)—1 — U0

2 ‘ ,anuv— .

10(v) I,(v)Io(z) JcBT
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The I are modified Bessel functions of the first kind of order p. The ii dependence of e

and ‘rw are shown in figure 3.7. For low temperatures or large activation energies, Uo,

v>> 1 and so T.4J —* 1 and € —* 0 and so equation 3.82 becomes

____

— (/w)2+ i (w/cü)
—.

w (3 84
ff — 1+(w/w)2 —

In the limit, >> wi,, the RHS is simply equal to 1 and we recover the result for free

flux-flow that we had in the absence of any thermal activation. In the high T or low Uo

limit, e —* 1, and equation 3.82 becomes

____

1 + (cr)2 + 0
= 1 (3.85)

ff 1+(r)2

and we again recover the free flux-flow result independent of how the operating frequen

cy compares to the pinning frequency. It is important to understand the distinction

between these two ways (for small driving currents) of achieving free flux-flow. At low

enough frequencies (w <<,), 1ô,, —k pff provided U0 << kBT. At high enough frequencies,

( >> wi,) we get free flux-flow even for U0 >> kBT. Thus the shift of the irreversibility

line to higher fields and temperatures as we increase the frequency (see Chapter 2) is un

doubtedly related to thermally activated flux motion. At very high frequencies, thermal

hopping of vortices is inhibited but we recover free flux-flow again because the vortices

are spending all of their time in the essentially flat bottom of the pinning potential well.

When we come to use the Coffey-Clem theory, we shall set Uo/kBT >> 1 and neglect

thermal hopping entirely.

Coffey et al[60, 61] have also investigated the size of the vortex inertial mass term

(finding results qualitatively similar to those calculated previously by Suhl[58]). They

estimate that for T close to T

m(T) =e00B2(T) . (3.86)
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Using the expression from Chapter 2 for H2 , we find that at, say, t 0.96, B02 = 6.6T.

From equation 3.86, we find that rn,, Cs’ 1025kg/m. If we include a mass term rn,,ii in

the equation of motion for the vortex, the resulting resistivity is

nv = (3.87)
—

zwrn,,/I +ico/w)

and so 77/rn,, = Wm defines another characteristic frequency. Using the Bardeen-Stephen

formula we can estimate ‘7 at t ‘—‘ 0.96 to be r-’ io. This gives

Wm
=

= lo’ (3.88)

At microwave frequencies of the order of 30 GHz, w ‘-s 2 x 1011 and so W/Wm l0 .

It seems likely, therefore, that the effect of the vortex mass is not significant at the

freqnencies of interest. In the subsequent analysis, we shall ignore it.

3.6.2 Microscopic description of vortex motion in terms of core states

Hsu[22, 23] has modelled vortex motion microscopically in the low temperature, low

field, clean, extreme type-Il limit in terms of the quasiparticle states inside the vortex.

As we have already briefly mentioned, the nature of these states was first elucidated by

Caroli, de Gennes and Matricon for conventional type-IT superconductors who showed

that there is a spectrum of energy levels for quasiparticle excitations localized inside the

vortex with a very small energy gap given by4 o = &/EF (‘-.‘lmK for conventional

superconductors). For high-T0 materials this is estimated to be rs’ 10K and thus it is

3Colfey and Clem also treat the case of a layered superconductor and are able to derive a low temper
ature expression for the thertial mass of a vortex parallel to the planes. They find m —‘ 3 x 1022kg/m
for YBa2Cu3O75 over 100 times bigger than the estimate given above. At low temperature, ij 10
(using the Bardeen Stephen formula) and this gives w,,, ‘s’ 4 x i0’. Thus, W/Wm n.j and we still
find that the effect of the mass term is not important at frequencies 30 GHz.
4This energy gap can be estimated by considering the energy levels of a particle confined to a box

of radius . The lowest level has energy n., 112/me2. Using llvF/tX[341 and Pip n.j mv, we find
SE L12/Ep.
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important to understand what effect such a relatively large spacing might have on the

dynamics of moving vortices.

Hsu uses the Bogoliubov-de Gennes equations for s-wave superconductors and supple

meilts them with a local gap equation. He considers the response of a vortex to a uniform

time-varying electromagnetic wave and finds that the time evolution of the quasiparticle

states in the vortex corresponds to vortex motion provided that the velocity involved is

small. A nice feature of the equations is that for a clean system with no pinning and no

dissipation the vortex moves along with the background superfluid as we would expect

(see section 1.2.2). He is able to derive an equation of motion for the vortex including a

dissipation term which is characterized by the lifetime, r, of the low energy quasiparticle

states. The dissipation due to a single moving vortex is calculated and in the limit as

—* 0 a core resistivity corresponding to

= -- (3.89)
Pfl C2

is recovered. This is roughly consistent, then, with the experimental work on conven

tional superconductors where 1l is small. For finite o (and for a given polarization of

the electromagnetic wave) there is an antiresonance in the dissipation at w = The

resulting conductivity has a shallow minimum near ü 1o correspondillg to this antires

onance. For high-TC superconductors, these features are probably located at much higher

frequencies than the maximum frequency used for the measurements in this thesis. In

the limit as —* 0, l0r —+ co and H/HC2 —* 0 equation 3.89 is again recovered. Howev

er, it is not obvious that this clean limit applies to YBa2Cu3O695 : in the normal state

r 10_14 sec while - 2 x 1011. Even if we allow for a one hundred fold increase in r

below TC , the clean limit seems of doubtful validity. This work is sensitive to the nature

of pairing and the effects of a gapless superconductor on the microscopic structure of the

vortex have yet to be calculated. Nevertheless, it seems that Hsu’s approach is the best
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starting point for a complete understanding of vortex motion in high-Ta superconductors.

3.7 Experimental work on YBa2Cu3O7_5

There has not been a great deal of experimental work done that directly addresses the

question of the temperature and field dependence of the flux-flow resistivity. The common

tendency is simply to assume that Pff/Pn = H/H2(T) or p/pn = H/H2(0) and ignore

the question of what is the most appropriate value for p, below T. To our knowledge, the

only real attempt to directly measure this quantity in high quality samples has been by

Kunchur et al[25] who worked with c-axis oriented epitaxial films ofYBa2Cu3O7_5.They

take a novel approach by supplying a pulsed transport current density comparable to the

depinning critical current density (106A/cm2). Nevertheless, they were still restricted to

measurements close to the irreversibility line and above. The films had Ta’s of 88.5K

and 91.1K and the lowest temperature measured was 76K. Lower temperatures required

excessively high current densities. They found good agreement with the Bardeen-Stephell

formula
H

390
p(T) — H2(T)

with p(T) obtained by a linear extrapolation of the linear resistivity from above T and

H2(T)
=

(T — T) (3.91)

was obtained as a fittillg parameter. Values for dH2/dT T were 1.85T/K and 2.2T/K

ill good agreement with values obtained from the literature[26]. They argue that this

result points to the conventional nature of flux-flow in the high-Ta materials. However,

they have only checked the Bardeen-Stephen formula down to t ‘—‘ 0.84 which leaves

open the question of the low temperature behaviour. Also there is some question as to

how much YBa2Cu3O7_3films are affected by intrinsic defects such as grain boundaries
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which might create superconducting weak links, i.e. it is unclear how meaningful it is to

compare thin-film and single crystal data.

Owliaei et al[62] have studied YBa2Cu3O7_3epitaxial films at microwave frequencies.

Figure 3.8 shows their surface resistance data at 10 GHz in magnetic fields up to 7T. It

is clear that by 65K the surface resistance has decreased to a value close to zero. They

claim to see a crossover as a fullction of magnetic field and extract and i within the

framework of the Coffey-Clem theory from the field profiles in the temperature range

78K to 85K. They find a pinning frequency that increases from 3 to 15GHz from 85K

to 78K and a viscosity that increases rapidly in this temperature range. They assume

equation 3.90 with poH2(T) = 115(1 — t) T and find a p(T) that decreases roughly

linearly with temperature but which extrapolates to 0 by about 75K. Again, it is ullclear

what effect the defect structure has on the surface resistance in a magnetic field.

Marcon et al[63j have performed even higher frequency measurements (23 and 48

GHz) in an attempt to deduce information about the vortex viscosity. Unfortunately,

the samples used were not single crystals or films but ceramic samples. The microwave

response of such materials are usually dominated by grain boundary effects such as super

coilducting weak links and other sources of anomalous loss associated with the granular

nature of the material.

That a single pinning frequency model governed by an equation of motion such as

equation 3.55 (the Gittleman and Rosenblum or Coffey-Clem models for example) is

probably not true in detail is indicated by the swept frequency measurements (1—600

MHz) of the impedance of c-axis oriented epitaxial thin films of YBa2Cu3O7_3by Wu et

al[64]. Their technique allows them to extract the complex resistivity very simply from

the impedance data ill a model independent way. They found in the field range (0.5—

8T) and the temperature range (80—86K) that their data was consistent with a vortex

glass to vortex liquid transition[65, 66] characterized by a critical field Hg. Away from
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the transition line, the frequency dependence of the phase angle was consistent with the

scaling model of Fisher, Fisher and Huse[67, 68] rather than the more simple behaviour

predicted by an equation such as 3.55.



Chapter 4

The Microwave Experiment

In this chapter, we describe in some detail the experimental apparatus used to make

the surface resistance measurements on the single crystals of YBa2Cu3O695. We first

quickly review the basics of resonant cavities and then describe the principles of cavity

perturbation. Since, the data presented later in this work was taken at three distinct

frequencies, we describe in detail the so-called split-ring resonator used to make the 5.4

GHz measurements and the right circular cylindrical cavities used to make the higher

frequency measurements at 27 and 35 GHz. Finally, we discuss the overall design of the

two cryostats used to house the low and higher frequency resonators. The heart of the

design is the probe at the end of which the sample is mounted; this piece of apparatus is

common to both the low and high frequency cryostats.

4.1 The Resonant Cavity / Cavity Perturbation

A resonant cavity is often modelled as an RLC circuit, the resonant frequency of a mode

in the cavity being thought of as the resonant frequency of the corresponding circuit.

Just as for the circuit, if we sweep through the resonant frequency in the cavity, the

absorbed power has a Lorentzian line shape. The resonant frequency, and the quality

factor, Q, can both be determined from the Lorentzian line shape, fo being the frequency

at the peak of the line shape and

(4.1)

57
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where /f if the full width at half maximum power. The Q of the mode is also given by

Q = 2 ( energy stored ) (4.2)
energy dissipated per cycle

It is clear from this equation that 1/Q is proportional to the power dissipated in the

cavity.

A real cavity has many resonant modes some of which are degenerate. Consider a

single non-degenerate mode far enough in frequency from all other modes so as to be

unaffected by them. As we have already seen, l/Q is a measure of the power dissipation

inside the cavity; in a empty cavity, it will be due to the energy losses in the walls of

the cavity plus the losses due to the coupling holes which are needed to couple microwave

power into and out of the cavity. Thus, the Q of the cavity can be written as

=-+- (4.3)

where Qo is the intrinsic Q of the cavity and Q is the coupling Q. It is clear that if we

introduce a sample into the cavity, then we will get another term in the above equation

due to the power dissipation in the sample,

1 1 1 1
—=+—+. (4.4)
Q Qo Q Q

We can therefore measure the loss ill the sample by measuring the change in the 1/Q

after inserting the sample

z\(l/Q) = c power dissipation in the sample. (4.5)

The proviso here is that the sample is only a small perturbation of the rf fields in the

cavity. If the change ill the geometry of the fields due to the insertion of the sample is

not small then the modified fields at the walls and at the coupling holes will give rise to

different wall and coupling losses. Consequently, the terms 1/Qo and 1/Q in equations
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4.3 and 4.4 can no longer be considered constant when we perform the subtraction to

get 1/Q3. The net effect is to introduce systematic error into the measurement of the

sample losses. The essence of the cavity perturbation technique, therefore, is to introduce

a sample whose losses are large enough to be measurable but whose effect on the overall

field configuration is negligible.

From Appendix A, we know that the surface resistance, R3, of a sample is proportional

to the power dissipated per unit area, or explicitly

PA — R,. H02. (4.6)

Therefore, we know that

R3 cx PA cx A(1/Q) or R3 = Cz(1/Q) (4.7)

where C is a calibration constant. Once we have measured (1/Q), the task of flilding

R is reduced to determining the calibration constant. For some standard cavities and

samples of particularly convenient shape, C can be calculated. However, much of the

time this is not possible, and we are left with two options: we can set the sample at a

temperature where we know the dc resistivity and (providing the sample is metallic and

sufficiently thick) use the expression

= (Pdco)hI2
(4.8)

to find R5 at that temperature. If the dc resistivity of the high-Ta sample is not known,

or, if for any reason, the simple skin effect formula is not applicable, we can measure

z(l/Q) for an appropriate reference sample of the same dimensions as the sample of

interest.
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rf E fields

4.2 The Split-Ring Resonator

rf B fields

The measurements at 5.4 GHz were made with a so-called split-ring resonator[69, 70]

shown in figure 4.1. In principle, it is a single-turn inductor tuned by the capacitance of

the gap. The mode of interest is shown in the figure. It consists of axial B fields (except

where the field lines turn around at the ends of the resonator) and E fields everywhere

perpendicular to the resonator axis and for the most part confined to the gap. The

resonant frequency of this mode depends primarily on the gap thickness and the radius

Figure 4.1: Split-ring resollator and field geometry.
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of the central bore of the resonator. It is a relatively simple procedure to machine

the resonator from oxygen free high conductivity (OFHC) copper and then use a spark

erosion machine to cut the gap to the desired thickness. Typically, the resonator sits on a

support structure within an outer cylinder which is beyond cutoff for the mode of interest.

Figure 4.2 shows the arrangement used in the 5.4 GHz measurements. Particularly for

high frequencies, this outer cylinder helps to confine the fields and to maintain a high Q.
The main advantage of the split-ring resonator over a conventional cavity (a rectangular

or cylindrical cavity, for example) at frequencies 1 GHz is that it is considerably less

bulky (the dimensions of the conventional cavity are proportional to the wavelength — at

5 GHz, A = 6 cm), and that the filling factor (magnetic energy stored in the sample/total

stored magnetic energy) is typically much higher.

The sample is moved in towards the resonator from above as shown in figure 4.2. As

it begins to interact with the B fields emerging from the central bore of the resonator

(these are roughly perpendicular to the broad surface of the sample), screening currents

are induced in the plane of the sample and dissipate energy thus reducing the Q. For a

metallic sample, this will also have the effect of increasing the resonant frequency. In this

geometry, this is due to the sample reducing the effective size of the cavity (a metallic

sample acts so as to confine the B fields in the space below it) and thus increasing the

resonant frequency. This increase in frequency effectively measures the position of the

sample with respect to the resonator and can be used to set the position of the sample in

a reproducible manner. A change in skin depth of the currents in the sample also has the

effect of changing the resonant frequency; indeed, this is the principle by which we can

make surface reactance or skin depth measurements using cavity perturbation. However,

in this setup, the frequency shift due to a chailge in the skin depth is very small compared

to the frequency shift due to a change in the overall position of the sample. Since this

position is affected by thermal length contraction and expansion effects, it is clear that
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this arrangement is not well suited to measuring surface reactance. By moving the sample

closer to the top of the resonator, we increase the filling factor because we have moved

the sample in to a region where the B fields are more concentrated (equivalently, a region

where the energy density is higher). The fact that we can increase the sensitivity merely

by moving the sample closer to the resonator is a considerable advantage of the split-

ring resonator. As already mentioned, the currents are induced in the sample principally

by screening the B fields from the metal or superconducting sample. The E fields are

confined to the region of the gap and do not play a significant role in generating currents

in the sample (the bevelling of the top of the resonator shown in figure 4.1 and 4.2 helps

keep electric fields away from the sample — this is not so important for single crystals,

but it ca be for thin films having dielectric substrates).

Figure 4.3 shows a schematic diagram of the circuit used for reflectance measurements

at 5.4 GHz. A Hewlett-Packard 83620A frequency synthesizer is the source and delivers

power to the cavity through the main arm of a 20 dB directional coupler. The signal is

then transmitted by semi-rigid co-axial cable to the cavity. The coupling to the cavity

is made inductively with a ioop of wire beneath the resonator and co-axial with its

central bore (see figure 4.2). The coupling strength is set by adjusting the position of

the coupling ioop beneath the resonator. This must be done at room temperature during

assembly and cannot be changed once the apparatus is cooled. Care must be taken in

choosing the length of this wire to avoid )/4 self resonances. One percent of the reflected

signal is coupled to the crystal diode detector. Operation of the calibrated detector

within its square-law regioll yields a dc output voltage proportional to the power in the

reflected signal. The output from the detector is then amplified before being sent to an

analog—to—digital converter for storage and subsequent analysis on the computer.

The resonant frequency, fo, and the quality factor, Q, are determined by sweeping

through the resonance with the synthesizer and recording the reflected power at each
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Figure 4.3: Schematic of circuit used for the 5.4 GHz reflectance measurements.
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of a discrete number of frequency points (100, for example). The line shape of the

reflected signal is fit to a Lorentzian plus a third order polynomial to allow for background

variations. The latter is due to standing waves that are created in the circuit between

the cavity and the directional coupler. These result from constructive and destructive

interference between the incoming and outgoing sigilals. The power in any part of the

circuit becomes position and frequency dependent. The problem tends to get worse as

the overall frequency is increased, the net result sometimes being a background signal

which can be a significant fraction of the power variation associated with the real signal

of interest — the amount of power absorbed at the resonant frequency in the cavity and

sample. This affects our ability to reliably extract the Lorentzian from the background

in the fitting procedure and introduces an uncertainty in the fitted values of fo and Q.

4.3 The 27 and 35 GHz Cavities

The measurements at 27 and 35 GHz were obtained by moving the sample into the centre

of right circular cylindrical cavities. In this frequency range, conventional cylindrical cav

ities work well because, since the cavities are smaller, the filling factor is much larger than

at low-frequency (also, the losses in the sample have typically increased with the square

root of the frequency or even faster). The TE011 mode was used, the field configuration

of which is shown in figure 4.4. During the measurement, the sample is positioned at the

centre of the cavity which corresponds to a node in the E field and a maximum in the

B field. Just as for the split-ring resonator, the sample is placed in an rf B field that is

perpeildicular to the broad face of the sample, inducing screening currents in the plane of

the sample. Thus for a YBa2Cu3O695 single crystal, we induce only a-b plane screening

currents. This field geometry is slightly different from that of the split-ring resonator

in that there are strong B fields at both top and bottom surfaces of the crystal thus



Chapter 4. The Microwave Experiment 66

sapphire rod

sample

rf B fields

coupling loop

teflon spaghetti

rf E fields

OFHC Cu

Figure 4.4: 27/35 GHz cylindrical cavity showing the geometry of the E and B fields.
The well machined into the bottom surface of the cavity is to remove the degenerate
TM111 modes.
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sampling both sides equally; in the split-ring resonator experiment, more of the current

runs on the bottom side of the sample (the side closest to the resonator). It turns out

(see Appendix B) that most of the current runs near the edges of the sample, and so the

difference in current distribution for the two geometries is not thought to be significant.

A separate cavity was built for each frequency in order to have good isolation between

the mode of interest and all other modes. By fine-tuning the radius and height of the

cavity, we can locate the TE011 mode at the desired frequency and place all other modes

far enough away to avoid any mode-crossing when the sample is moved to the centre of

the cavity. Special precaution must be taken to remove the two degenerate TM111 modes

from the vicinity of the TE011 mode. This was achieved by machining out an on-axis well

at the bottom surface of the cavity (see figure 4.4). The axial B fields of the TE011 mode

have a node at the top and bottom surfaces of the cavity (while the E fields have a lode

along the central axis), and thus, it is not shifted much in frequency. The TM111 modes

on the other hand have high field density on the bottom surface. The well is therefore

very efficient in increasing the effective size of the cavity for these modes and shifting

their resonant frequency down and out of the neighbourhood of the TE011 mode.

The electronic circuit for making measurements using either of the two cavities is

shown in figure 4.5. In contrast to the 5.4 GHz measurements, these higher frequency

measurements were made in transmission. The 83620A synthesizer was again used as the

microwave source, but since the unit can generate frequencies no higher than 20 GHz,

the output is amplified (HP 8349B) and doubled (HP 83554A) to give frequencies in the

26.5 GHz — 40 GHz range. The signal is again coupled into the cavity inductively using

a loop of wire to link the H-fields from the TE011 mode. Allother loop and coupling hole

is used to couple the signal to a separate output waveguide. This waveguide takes the

transmitted signal to a microwave detector. The voltage signal is then amplified and sent

to an A/D converter and computer, as for the reflectance measurement.
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Figure 4.5: Schematic of circuit used for the 27 and 35 GHz transmission measurements.
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In transmission, the non-trivial problem of the standing waves manifests itself differ

ently from the sloping background signal observed in reflectance. Away from resonance,

no signal is transmitted through the cavity and so there is not a sloping background.

Instead, the standing waves present in the input and output waveguide circuits will tend

to distort the line shape, and this again introduces uncertainty into the fitted values of

fo and Q.

4.4 Probe Design

Figure 4.6 shows the design of the lower end of the probe. Both the low (100 MHz — 6

GHz) and high (26.5 - 40 GHz) frequency inserts use this design. The sample is mounted

on the end of a rod made from sapphire, which has two important properties in the the

temperature range of interest: it has a very high thermal conductivity and extremely low

loss at microwave frequencies. When the cavity is loaded with the sample, only the sample

itself and the sapphire rod are exposed to the high frequency E and B fields. This is

ensured by having a sapphire rod long enough to keep the copper housing assembly for the

thermometer and heater away from the fields. Since the sapphire has negligible loss, it is

thus only the losses in the sample itself that are measured. In good thermal contact with

the sapphire rod is a Lakeshore Cryogenics carbon-glass thermometer (a tiny amount of

silicone grease is used to ensure good thermal contact between the thermometer and the

copper housing). Thus, because the thermal conductivity of the sapphire is so high, this

thermometer accurately measures the temperature of the sample. At typical operating

temperatures, a gradient of no more than a few tenths of a kelvin was observed between

the two ends of the rod.

Evanohm heater wire of total resistance approximately 200 is wrapped around the

top part of the copper heater/thermometer assembly. It is this heater that is used to
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Figure 4.6: Detail of the lower end of the probe. There is another brass spring positioned
approximately halfway between this end of the probe and the room-temperature end.
There are two brass radiation baffles placed along this length as well.
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adjust the temperature of the sample from its low temperature value of approximately

20K up to temperatures of the order of lOOK. This copper assembly is connected via a

thin wall stainless steel tube to a brass “spring” (see figure 4.6) through which a central

hole has been drilled. The stainless steel tube is soldered to this brass spring and also to

another identical brass spring farther up the probe. Both outer and cross-sectional views

of the brass spring are given in figure 4.6. There are eight spring-like fingers on each end

of the piece. The probe is designed to slide inside a 0.5” O.D. stainless steel tube which

connects the microwave cavity assembly to the top of the cryostat and forms the vacuum

chamber. Figure 4.7, for example, shows the probe inserted into the apparatus used for

the 5.4 GHz experiments. The brass springs have two important functions: they hold

the probe in aligilment with the vertical axis of the experiment; and, since the outer 0.5”

tube is in good thermal contact with the helium bath, they provide the main thermal

connection between the sample and 4.2K. The length of the stainless steel tube between

the copper housing assembly and the solder joint at the lower brass spring sets the time

constant for cooling of the sample. In choosing the length of this piece, a compromise

has to be reached between the power needed to raise the temperature of the sample to

its upper limit and the thermal time constant. In the present apparatus, approximately

100 mW is required to heat the sample above lOOK and the cooling time is about two

hours.

The two wires from the heater and the four wires from the thermometer are enclosed

within teflon spaghetti which is threaded through the stainless steel tubing on its way

to the top of the probe. Connection to a four-lead resistance bridge and a temperature

controller is made via the electrical feedthrough. The six brass wires are heat sunk at

each of the brass springs to reduce the heat leak down the wires. Small baffles are also

used on the outside of the stainless steel tubing to reduce thermal radiation down the

0.5” stainless steel tube.
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Figure 4.7: Overview of the apparatus used in the 5.4 GHz experiments.
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4.5 The Low Frequency Cryostat

Because of the modular design, the cryostat used for the 5.4 GHz measurements could

be used (with the appropriate insertion of a particular resonator) anywhere in the range

from a few hundred MHz up to about 6 GHz. In fact, over most of this frequellcy range,

all that is required is the fabrication of a split-ring resonator with appropriate inner

bore and gap to obtain the desired resonant frequency. At the higher frequencies (e.g.

5.4 GHz) a special insert was used (see figure 4.2) to reduce the diameter of the outer

shield and so keep it well beyond cut-off. Otherwise, there was the possibility of the

microwave fields reaching the copper thermometer/heater housing assembly. Figure 4.7

gives an overall picture of the 5.4 GHz experiment. The resonator sits in a teflon holder

which must be screwed down on to the flange piece. An indium 0-ring is used to make a

vacuum seal at the lower flange. An hermetically sealed SMA feedthrough connector is

used on the insert piece to allow the microwave signal in to the cavity. The feedthrough

connector is screwed into the insert piece during construction and then sealed around the

threads with black 2850 FT epoxy. One end of the coupling loop wire is soldered to the

inner conductor on the feedthrough while the other end is screwed down onto the insert

piece itself to provide a path to ground.

The outer copper cylinder that houses the resonator assembly sits within the bore

of a superconducting magnet that is able to generate a field of up to 4T (corresponding

to a current of 40A). The magnet was home-made using NbTi wire with provision for

persistent mode operation. The two ends of the NbTi wire that emerge from the magnet

are joined together using a technique[71] to give a high critical current. Evanohm heater

wire is wound around a 6cm stretch of the NbTi wire. This section of wire is then potted

in Emerson and Cummings Stycast 1266 epoxy to form the persistent switch. Connection

to two tinned brass shimstock magnet leads are made via short stretches of tinned copper
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wire. These are joined to the superconducting magnet wire via simple soft solder joints.

These joints are not critical as they are only important during charging and discharging

of the magnet. In persistent mode (after the external power supply is switched off) the

current only runs through the loop of superconducting wire and the high critical current

joint. When a current is applied to the heater wire in the persistent switch, the stretch

of NbTi wire potted in epoxy is driven normal, thus allowing the magnet to be charged

or discharged. Two protection diodes on the top of the cryostat at room temperature

provide a safe, dissipative current path in case of a quench of the magnet during charging

or while in persistent mode.

4.6 The 27 and 35 GHz Cryostat

A detailed discussion of the cryostat used for the 27 and 35 GHz measurements will be

given in the Ph.D. thesis of Kuan Zhang. Here, we shall discuss only its most important

features and any conceptual differences from the low-frequency cryostat. Modularity of

design is a convenient feature of this high frequency cryostat as is evidenced by the ease

with which we can switch between the 27 and 35 GHz measurement. All that is required

is to replace the 35 GHz cavity block (made from OFHC copper) with the 27 GHz cavity

block. The frequency limits are set by the 26.5 —40 GHz waveguide, two sections of which

run from each side of the cavity up to the top plate of the cryostat. Unlike the split-ring

resonator set-up, there is variable coupling (on both input and output) and this allows

coupling adjustment at low temperature. This is an absolute necessity if the OFHC cavity

is plated with a superconducting PbSn alloy for high-Q (> 106) usage at low temperature.

The Q of the cavity increases so dramatically, once its temperature drops below the T of

the PbSn, that it is very difficult to set a coupling at room temperature that is suitable

for the high Q at low temperature. The high field measurements of the present study
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preclude the use of PbSn plating (since the field would destroy the superconductivity in

the PbSn); however, variable coupling is still of considerable practical convenience.

A high homogeneity, 8T superconducting magnet is used to generate the static mag

netic fields for the 27 and 35 GHz measurements. It is mounted on a separate support

in which the entire high frequency cryostat can be inserted.

The other important difference in this cryostat is that the main stainless steel tube in

which the probe is situated is not in direct contact with the helium bath. The coupling

holes through which the coupling wires must be free to move while adjusting the coupling

are not leak-tight. Therefore, everything is enclosed within a large stainless steel tube

closed at the low temperature end and sealed to the top-plate of the cryostat with a

rubber 0-ring seal at the room temperature end. It is this tube that is immersed directly

in the helium bath, the main apparatus itself is in vacuum. In order to provide increased

thermal contact between the cavity and the bath, two large copper braids join the cavity

to the bottom of the outer tube. To use the PbSn superconducting cavity, it is important

to lower the temperature of the cavity to well below the 7K transition temperature.

For this purpose, an open stainless steel tube, the lower end of which sits directly in the

liquid helium, is placed in good thermal contact with the cavity. By pumping on the top

end of this tube, cold helium can be drawn up into the tube and used to cool the cavity

to the temperature of the helium bath.
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The Experimental Procedure

In this chapter we first present some of the general characteristics of the YBa2Cu3O695

single crystal sample used in the experiments and then describe the experimental proce

dure used for collecting the data. Since the low-frequency 5.4 GHz measurements and the

high frequency 27 and 35 GHz measurements were made in two totally different cryostats,

they each had their own specific set of problems and are described separately.

5.1 The YBa2Cu3O695 single crystal sample

The YBa2Cu3O6g5sample used in the measurements at all frequencies was a very high

quality single crystal grown at U.B.C.[30]. Crystals from all batches have Ta’s greater

than 93K. The transitions can be characterized by techniques such as dc resistivity,

magnetization, specific heat and microwave surface resistance. All show extremely sharp

transitions; in particular, the specific heat jump at T has a width of less than 0.25K

- the narrowest yet reported. The crystals are typically of uniform thickness and the

best ones have optically smooth surfaces and clean, unfractured edges. The crystals

can be cleaved in the a—b plane quite easily and so often it is possible to cleave away

parts of a crystal that are contaminated by flux or that include a damaged edge. The

latter is important for the microwave technique described in this thesis since the highest

current density exists near the edges of the sample and a crack can cause anomalously

high losses. Microwave surface resistance in zero field indeed provides a stringest test

of sample quality. R8 data measured at 3.8 GHz on one of the single crystals is shown

76
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in figure 2.2. The sharpness of the transition and the low residual loss are indicative of

very high sample quality. Although the occasional crystal can be found with no twin

boundaries, the majority of the crystals are not twin-free. The single crystal used in the

experiments described in this thesis was of dimensions 1.5mm xl .5mmx 1 Om and was

typical of the best crystals; however, twin boundaries were observed to be present.

5.2 5.4 GHz Measurements

An important characteristic of the split-ring resonator is how (1/Q) depends on L(f) as

the sample is moved towards the top of the resonator. Such a curve for the YBa2Cu3O695

single crystal at a temperature of lOOK (this is in the normal state where the losses are

high) is shown in figure 5.1. It is basically linear through the origin with a small vertical

offset. The linear behaviour is to be expected since both the loss in the sample and the

frequency shift measure the overall perturbation to the cavity. The slight offset is due to a

small negative dielectric shift from the sapphire rod which quickly becomes overwhelmed

by the positive shift due to the sample. This is only observed for small samples; larger

samples not only screen the sapphire more effectively but also give rise to larger positive

frequency shifts (for such samples, the zS.(1/Q) versus z(f) curve extrapolates through the

origin). The z(1/Q) versus A(f) curve is universal for a given sample in the sense that no

matter what the loss, the negative offset is always the same and the behaviour is linear. It

is the slope that changes, the line having a steeper slope when there is more loss. Clearly,

the slope of this line is proportional to the loss in the sample. However, since the curve

is always linear with the same negative frequency shift offset, we don’t need to measure

the whole curve but only one point. This is in fact how the measurements were made:

an operating LS.(f) was chosen, 7 MHz for example, the sample was moved in towards

the resonator until a frequency shift of 7 MHz was achieved, and then measurements



Chapter 5. The Experimental Procedure 78

le-04

8e-05

I,
—

6e-05

-o

4e-05

1’

2e-05

Oe+OO I I

0 2 4 6 8
A(f) (MHz)

Figure 5.1: Dependence of L(1/Q) on (f) at 100 K for the 5.4 GHz copper split-ring
resonator. The dashed line is a linear fit. The data is fit well by a line with a small
vertical offset.
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were made by varying the temperature while leaving the sample in this position. Due to

thermal expansion and contraction of the sapphire rod (and to a lesser extent, the entire

probe), the position of the sample with respect to the resonator can change slightly and

the resonant frequency wanders away from the nominal value. However, this is simply

corrected for by moving along the universal curve. For example, if the nominal frequency

shift is given by L\(f)’°m and the measurement gives the pair of values ((f) 4(l/Q) ),
nomthen we can calculate z(l/Q) as follows: the universal curve is

L\(l/Q) = aA(f) + b (5.1)

and so we get

=

b) (f)flOm+ b. (5.2)

It is clearly important for the the operating point for the measurements to be on a

linear portion of this curve. If the operating point corresponds to a physical position

too close to the top of the resonator, it is possible to introduce non-linearity due to the

fringing electric fields from the gap interacting with the sapphire and causing anomalous

negative frequency shifts. This may be accentuated if the sapphire rod is not perfectly

centrally aligned and descends towards the resonator on the side where the gap is. Care

must be taken before a series of measurements is started to ensure that the /X(l/Q)

versus z(f) curve is linear over the frequency range of interest.

Another important check to be made is the /(l/Q) versus z(f) curve for the sample in

the superconducting state in zero field. At 5.4 GHz, the loss in zero field ofYBa2Cu3O695

is orders of magnitude below the sensitivity of the OFHC copper resonator. The L(1/Q)

versus z(f) curve should therefore be a line of zero slope along the L(f) axis (within the

noise). Figure 5.2 shows what was actually measured for the YBa2Cu3O695 single crystal.

It is a line with negative slope meaning that the Q increases as we move the sample in

towards the resonator! This type of non-perturbative effect was discussed in section 4.1.
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It is due to a rearrangement of the rf fields when the sample and sapphire rod are moved

close to the resonator (the rearrangement of the fields is insensitive to any temperature

dependent changes in the sample since these are dwarfed by the effect caused by just its

physical position). This background systematic effect will be independent of temperature

and present in all of the data tending to give an apparent loss less than the actual loss.

Therefore, we must be careful to correct for this in the raw L(1/Q) data. This is done

as follows: if the systematic effect is described by

—a’/X(f) — c’ (53)

then the L(1/Q) corrected for the systematic effect will be

= (a + a’) (f) + (c + c’), (5.4)

and we then get the A(1/Q)cb0m corresponding to the nominal frequency shift as in

equation 5.2

(1/Q)cnom = ((a + + c) (f)flOm
+ (c + c’). (5.5)

We thus have all the ingredients to convert the raw data into a set of L(1/Q) values

corrected for the negative background loss and any small changes in the position of the

sample during the course of the temperature sweep. The following was the step by step

procedure used to measure the L\(1/Q) as a function of temperature for a givell field:

• the LS1/Q) versus z(f) curves for the sample in the normal and superconducting

state in zero field were measured to ensure a linear dependence of z(1/Q) on zX(f)

and to measure the background systematic effect.

nom• an operating point (or nominal frequency shift) was chosen. A L(f) was chosell

large enough to produce easily measurable (1/Q) values but not so large so as to

be out of the linear portion of the zS(1/Q) versus (f) curve.
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• the sample was heated above T

• the static magnetic field was applied.

• with the sample pulled completely away from the resonator, the unloaded fo and

Q o were measured.

• the sample was moved in to the nominal frequency shift position chosen.

• the heater was turned off and the sample cooled to low temperature.

• the resonant frequency and Q of the cavity were measured as a function of tem

perature right up through T . The highest temperature measured was typically

lOOK.

• at the highest temperature, the sample was again pulled back from the cavity, and

the unloaded fo and Qo were measured again.

• the L(1/Q) (T) and z(f) (T) data were corrected for the negative background loss

and any change in position of the sample usillg equation 5.5.

In the above procedure, great care was taken not to change the field or move the

sample unless T > T. The point is that very strong pinning forces can result when the

flux density in the sample is changed. In an earlier experiment, a large YBa2Cu3O6•95

crystal was totally shattered by moving it in the inhomogeneous part of the magnetic

field when T was below T.

Once the corrected z(l/Q) values have been obtained, the data was calibrated by

using the L(l/Q)(lOOK), taking Pdc =77.8 [ta—cm, and using the classical skin effect

formula for the surface resistance of a metal. Although the dc resistivity on this particular

crystal was not measured, this value for pa(lOOK) was typical of other crystals made
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with the same technique. It is probably good to +10%. This gives a calibration factor

c — pdc(100K) to cü/2
— 1686 5 6

- A(l/Q)(100K) -

(.)

However, because the crystal had a thickness of only 10—12 tm and the microwave skin

depth at 5.4 0Hz with a dc resistivity of 77.8 t—cm is 6gm, it was not clear whether

or not the sample was accurately in the classical skin depth limit. For this reason, a PbSn

calibration sample was cut’ to close to the same dimensions as the single crystal sample.

The resistivity of the PbSn was taken from the literature for Pb and has been found

(by Bonn, iii independent measurements with a superconducting split-ring resonator at 3

GHz) to reproduce the temperature dependence of the PbSn to +1%. Using the copper

split-ring at 5.4 0Hz the temperature dependences were found to agree to +5%. The

calibration constant determilled using the reference sample was found to be 1898. As

expected, this number was greater than that obtained using the classical skin effect

formula (a sample comparable in thickness to the skin depth, gives enhanced losses), but

considering the uncertainty in the PbSn calibration procedure, the difference is not large.

It was the latter number that was used to convert the (1/Q) values to surface resistance,

R. The temperature dependence of R5 for applied static magnetic fields ranging between

0.5T and 4T is shown in figure 5.3.

5.3 The 27 and 35 GHz measurements

The high frequency measurements made in the circular cylindrical cavities are slightly

less complicated in practice because the sample is located at a maximum in the microwave

field strength (see Chapter 4) rather than at a steep gradient as is the case with the split

ring resonator. Thus, if we introduce a iossy sample into the cavity and measure the Q as

a function of position, it exhibits a broad maximum at the centre of the cavity where we

‘This was done by D.A. Bonn
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locate the sample for measurements. This means that the sample is insensitive to small

changes in its position during the course of a temperature sweep. However, systematic,

non-perturbative effects on the Q are more difficult to correct for because the zero-field

loss in the sample is not negligible as it was at 5.4 GHz. The reason is that the zero-field

losses in the sample have increased by a factor close to 2 and are therefore measurable

at 35 aild 27 GHz even with copper cavities. We thus have no ‘zero-loss’ sample to easily

identify the changes in Q that result from rearrangement of the field pattern.

This problem was solved in the 35 GHz measurements by making an identical mea

surement of the zero-field L(l/Q) as a function of temperature in the copper cavity and

also in an identical but PbSn plated, superconducting, high-Q, cavity. The two A(1/Q)

curves are shown in figure 5.4. Subtracting off a temperature independent constant from

the curve obtained using the copper cavity, causes the two curves to be essentially iden

tical. This constant was then subtracted off all the data taken with the copper 35 GHz

cavity to correct for this systematic effect. The reasoning here is that when the sample

is inserted into the centre of the cavity, it perturbs the ac fields enough so that extra

loss is generated either in the walls of the cavity or most likely in the coupling loops and

holes. The effect of this will be much less ill the superconducting cavity because of the

greatly reduced loss in all current-carrying surfaces. Thus, we take the superconducting

cavity as the zero-loss reference; certainly, on the scale of the losses measured in a finite

magnetic field, any further corrections are negligible. Once we have determined this con

stant for measurements in the copper cavity for a certain coupling strength on the input

and output, we must not adjust the coupling throughout the rest of the experiment.

As far as acquiring all of the magnetic field data was concerned, the same basic

steps were used as for the split-ring measurements. Only the subsequent corrections for

systematic effects and changes in sample position were different.

Calibration of the 35 GHz data was done using the classical skin effect formula and
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Pdc = 77.8jtQ—cm. The skin depth at 100 K is approximately 2 ,um at 35 GHz — well

into the bulk limit. R versus T for fields ranging from 0 to 6T is shown in figure 5.5.

The 27 GHz R data was obtained in the same manner as the 35 GHz measurements

apart from the correction for the non-perturbative change in the Q upon insertion of the

sample. Since a PbSn plated version of the 27 GHz cavity was not available, the following

procedure was adopted as the next best alternative: the 27 GHz data was first calibrated

ignoring the possibility of a systematic error; zero-field measurements by Doug Bonn

and Kuan Zhang on YBa2Cu3O6•95 single crystals suggest a w19 scaling of the surface

resistance at 70K, and so a constant was subtracted from the 70K, 0-field point at 27

GHz to make it consistent with the 35 GHz zero-field data and the above scaling relation;

this constant was then used to subtract from all the R data measured at 27 GHz.

The resulting R data plotted versus temperature for fields ranging from 0 to 8T are

shown in figure 5.6.
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Chapter 6

The Analysis

6.1 Overview of the Data

Figure 6.1 shows the measured surface resistance as a function of temperature in a mag

netic field of 4T for all three frequencies. The 27 and 35 GHz data have been scaled by

factors of (5.4/27)1/2 and (5.4/35)1/2 respectively to facilitate the comparison. Since for

a metal in the classical skin-effect limit R3 is proportional to ,1/2, this operation should

result in the curves being brought into coincidence above T . However, at 5.4 GHz the

sample is not much thicker than the normal state skin depth, and so above T there are

enhanced losses as is evidenced in the figure. Below T , however, and certainly below

78K, the skin depth is much reduced and we can therefore directly compare the 5.4 GHz

data and the 27 and 35 GHz data. It is immediately apparent that below 70K, the 5.4

GHz surface resistance is greatly suppressed compared to the 27 and 35 GHz surface

resistance. The two higher frequencies scale reasonably well with the square root of the

frequency although at low temperatures the 27 GHz data begins to drop below the 35

GHz result. This behaviour suggests the picture of flux-flow at high temperatures where

the data at all three frequencies scale roughly as 1/2 like an effective metal. It also

suggests temperature dependent pinning frequencies in the range of 5 - 35 GHz which

are large at low temperatures and which decrease with increasing temperature.

This basic picture is reinforced by lookillg at the data in a slightly different way.

Figure 6.2 shows R8 versus B at all three frequencies at low and high temperature.

90
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Figure 6.1: (5.4/frequency)h/2R3at 4T for 5.4, 27 and 35 0Hz. Q: 5.4 GHz; D: 27 0Hz;
: 35 0Hz. The 5.4 GHz data drops clearly below the higher frequency data at low
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Again, we see that at 30K, the 5.4 GHz data is greatly suppressed with respect to the 27

GHz and 35 GHz data while at 78K it has increased to the point that it is scaling roughly

as wh/2 with the two higher frequencies. Again, this suggests a temperature dependent

pinning frequency that is probably larger than 5.4 GHz at 30K and probably less than

5.4 GHz at high temperature.

Another way of seeing the difference at low and high temperature is to plot R3 against

.‘ for a given field and temperature. Figure 6.3 shows this for low and high temperature

on a log-log plot. At low temperature, the low frequency point is well below the line

of slope 1/2 which represents scaling, whereas at high temperature, the scaling is

approximately square-root like.

In figure 6.4, R2 versus B at 27 GHz has been plotted and indicates that R3 has

a roughly square-root dependence on the magnetic field. Ignoring the term in the

Coffey-Clem expression (which we reproduce here for convenience)

2 1/2
LPu/PO F0B

A

1+2i/Sf
, Pu— q(1—iw/w)

we showed in Chapter 3 that R oc in both the flux-flow and flux-pinned regime

(ignoring any field dependence in , and ). Thus, the field dependence is consistent

with this. However, it is not clear that the A, term is completely negligible especially at

the higher frequencies where the mixed state skin depth decreases. Thus the non-linear

portions at low temperature in the R curves for low fields could be due to the ) in the

numerator of the Coffey-Clem expression 6.1 The ) term increases in importance for

low fields and low temperatures where B is small and pj is likely to be small also.

Another feature of the data is the role played by fluctuations in determining R3

as H —* H2. We have already discussed the pronounced rounding of the dc resistive

transition starting at about 20K above T . Thus as H — H2, R3 takes on a value

given by the fluctuation dominated Pdc. This fact must be kept in mind when we look
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at the field dependence of R3 and related quantities when H is not small compared to

H2 . For example, figure 6.5 shows R8 at 27 GHz scaled by a normal state surface

resistance obtained using a resistivity extrapolated from the linear portion of the normal

state resistivity from above T and plotted as a function of H/H2(T) where H2 (T) is

given by the empirical expression in Chapter 2. It seems reasonable (we will discuss this

in greater detail in section 6.3) to use the linear resistivity to set the scale for the surface

resistance for temperatures away from T and H2. Indeed, for temperatures above 70K,

scaling the data iii this way does a good job of mapping the field sweeps onto a universal

curve (for temperatures 70K and below, we are presumably seeing suppressed loss and

surface resistance due to pinning). However, R3/R does not go to 1 as H/H2 goes to 1

nor should we expect it to, because as H/H2 —* 1, fluctuation effects start to enter. This

can also be seen in the (R/R)2versus H/H2 plot (inset in figure 6.5) where the data

looks roughly linear for low fields but begins to curve over at higher fields as fluctuations

take over.

Clearly, we would like to get a view of the data uncontaminated by pinning effects.

What we are really interested in, after all, is the flux-flow resistivity or equivalently the

vortex viscosity. This process will be described in the next section.

6.2 Extraction of the pure flux-flow resistivity

6.2.1 Preliminary discussion

We will be using the Coffey-Clem expression for the surface impedance from equation

6.1. However, before we do, we must address an important issue: Does it make sense to

use this expression given the geometry of the sample and the rf fields in our experimental

setup? The Coffey-Clem expression is derived with the boundary condition h parallel

to the surface of the sample. However, in both the 5.4 GHz split-ring resonator and the
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27 and 35 GHz cylindrical cavities we place the sample into perpendicular h fields. To

solve this problem in general is quite complicated (involving demagnetizing factors etc.)

but we do know the qualitative solution to the problem. The h fields will bend around

the sample and the current distribution will be non-uniform and concentrated principally

around the edges of the sample on the top and bottom surfaces near to the edges (see

Appendix B). The current is distributed so as to screen the h field or, equivalently,

to maintain the boundary condition that h be always parallel to the surface. So as

far as the physics of the material is coilcerned, the two geometries are equivalent; it

is the current distribution which is different. We argue that this non-uniform current

distribution does not produce different physics for the following reasons: the screening

currents all run in the a-b plane and the relevant quantity is the a-b plane penetration

depth — c-axis currents are not involved; the single crystals are of high quality and

the superconducting properties are not expected to vary over the surface of the sample

(this has been explicitly verified in numerous zero-field experiments on many different

crystals — in addition Kuan Zhang, Walter Hardy and Saied Kamal[72] have measured

R3 with h tangential to the surface and similar results are always observed); the surface

resistance has been found to be independent of power for the range of low power used in

these experiments, and so the varying power in the surface currents near and around the

edge of the sample should always give the same value for the surface impedance (which,

after all, is just the ratio of the e11 and h at the surface).

One other point that must be mentioned is that on the edges of the sample the

vortices are parallel to the surface while on the top and bottom surfaces the vortices

are perpendicular. However, we noted in Chapter 3 that Coffey aild Clem have shown

that these two situations give rise to the same expression for the surface impedance. Not

included in the Coffey-Clem calculation is the possibility of vortex bending. We assume

that this does not play a role. Given the anisotropic nature of high-Ta supercoilductors
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and the small displacements of the vortices from their equilibrium position with very

high frequency currents, this is probably not a bad assumptioll.

Equation 6.1, for the surface impedance has four unknowns: AL, u,, , and i,. AL

is the London penetration depth, and for this we use the penetration depth of Hardy

et al measured on single crystals made with the same technique (assuming AL(O) =

1500A). For the field dependence we use the Ginzburg Landau expression AL(B) =

AL(O)/\/l — B/B2. u is the real part of the conductivity for the quasiparticles in the

normal fluid in the bulk of the superconductor. This can be simply extracted from the

zero-field R5 versus T curve using AL(T) (see discussion of the zero field data of Bonn et

al in Chapter 2). We do this for only one frequency although it is likely the u is mildly

frequency dependent in the range 5 to 35 GHz. Such details are in fact almost irrelevant.

The value of u only enters in the denomillator as part of the expression 1 + 2iA/S,

which approximately equal to 1 until we are within a degree of T (where AL diverges).

We are thus left with two unknowns: and ic. We can write the surface impedance

expression in terms of ‘ii and = (see equatioll 6.1) and we choose to do the fitting

in terms of these parameters.

The remaining question is then how to do the fitting. However, before we discuss

the fits in detail, our perspective on this whole process should be reiterated: we are

really only interested in w or ic to the extent that it affects our ability to reliably

extract the flux-flow resistivity. The pinning strengths and frequencies are very likely

to be sample dependent and influenced by factors such as twin density and impurity

concentration. Also, the concept of a single pinning frequency is itself highly questionable

since in general we might expect a distributioll of pinning strengths and frequencies.

should be regarded as an effective pinnillg frequency. It represents our best effort, given

the limited frequency information available, at modelling the pinning and removing its

effects from the data. Thus our discussion of the pinning strengths and frequencies will
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be restricted to qualitative features and orders of magnitude.

6.2.2 Fitting with a field dependent r and

We expect both i and to be temperature dependent. The nature of any field depen

dence is less clear; however, assuming a field independent , for example, is equivalent to

enforcing a flux-flow resistivity that depends linearly on the field aild given the previous

experiments on other superconductors this hardly seems justified, (there is no compelling

precedent for assuming , to be independent of field either). It seems reasonable to as

sume that both and are illdependent of frequency. Indeed, the whole phenomenology

of ac effects in the mixed state makes this assumptioll. Thus for every field and temper

ature at which we have three frequency points, we can fit for and w. For B > 4T, and

certain temperatures such as 20K and 78K < T < 90K, data at all three frequencies is

not available; in fact, at some fields and temperatures there is only one frequency point

(the most complete data set was obtained at 27 GHz). At 20K, we simply solve for w

and ij using the 27 and 35 GHz points while for T> 78 K, the pinning frequency is small

enough (see figure) that we can just set it to zero and use the 27 GHz point to determine

‘7.

The fits were performed using the MINUIT fitting program and are given in figures 6.6

— 6.12. The error bars on the data points result almost entirely from the uncertainty

in the overall calibration constants used at each of the three frequencies. As described in

Chapter 5, the 27 and 35 GHz data were both calibrated by using the classical skin effect

formula and assuming a dc resistivity at lOOK typical of the U.B.C. YBa2Cu3O695 single

crystals. There is a variation from crystal to crystal of ‘-.-‘ +10% in pd(100K)[l7]. The

5.4 GHz data was calibrated usillg a reference sample whose dc resistivity was known.

There is thus an uncertainty of at least +10% in the relative value of R8 at 5.4 GHz

with respect to R3 at 27 and 35 GHz. Because the 27 and 35 GHz data were calibrated
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assuming the same value for pa(10OK) they are not subject to this +10% uncertainty -

we estimate their relative uncertainties to be +3%. To represent these uncertainties in

the absolute value of the surface resistance we have put +10% error bars on the 5.4 GHz

data and +3% error bars on the 27 and 35 GHz data. Given these error bars, the fits

to the data are satisfactory. It should be kept in mind that an error in any one of the

calibration constants has the potential to globally affect the look of the fits.

The field dependence of the fitted vortex viscosity values at a given temperature are

typified by figure 6.13 which shows , vs B at 82K. At 82K, the pinning frequency is

close to zero and so this curve is derived from only the 27 GHz data. However, it is

fairly representative of the field dependence at all the temperatures (except possibly for

T < 40K where we can fit the data reasonably well with a field independent r, see

section 6.2.3): it changes most quickly at low fields and levels off at the higher fields.

This suggests the possibility of a genuinely field independent q at higher fields. It also

raises the possibility that insufficient knowledge of the London penetration depth and

its magnetic field dependence is affecting, at low fields, the quality of the fits and the

resultant fitted values of . At low fields, we are most sensitive to errors in )‘L since

the flux-flow term in the numerator is proportional to B whereas the term probably

increases more slowly. Thus, at higher fields, the flux flow term dominates. For example,

at 82K, ) is 9.7 x l0’ and the flux-flow term is 13.9 x l0_14 at 1T (still comparable)

while at 8T, the pj term becomes 111 x l0’. The effect of a field dependent on

pff is to introduce curvature in its field dependence at low fields, gradually straightening

out as the field increases. Typically, we expect a linear p (or field independent ) for

fields, B << B2 with r, being solely a property of an isolated vortex and independent

of the density of vortices. To show the temperature dependence of w, and , or p

we will use the 4T data as representative of all fields. It will become evident that the

field dependence of and w, is a relatively small effect compared to their temperature
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dependence. We will address this issue once again in section 6.2.3.

Figure 6.14 shows
,

as a function of temperature for B = 4T and this curve is

representative of the temperature dependence at all fields (with the possible exception

of iT). This is the result which we anticipated in the qualitative overview of the data

given in section 6.1. The error bars were generated by the MINUIT fitting program after

having been provided with the experimental uncertainties on the individual frequency

points. The error bars are large because there are only three data points and the 27 and

35 GHz points are providing information mainly about the flux-flow resistivity. Nearly

all the information on the pinning frequency comes from the overall difference in R8

between low and high frequency. We see that the pinning frequency is of the order of

20 GHz at 20K and goes to zero at T 80K. Thus at low temperature, all three

frequencies are affected by pinning: the 27 and 35 GHz data are slightly reduced from

what they would have been in the absence of pinnillg and the 5.4 GHz data is almost

totally suppressed. As the temperature is increased the surface resistance at the two

higher frequencies quickly become only slightly affected by pinning while at 5.4 GHz the

surface resistance experiences a transition from a flux pinned to a flux-flow regime.

Figure 6.15 shows the temperature dependence of the flux-flow resistivity at 4T. It is

highly temperature dependent especially above 50K where it increases rapidly towards

its value near T . It is not hard to understand how this curve comes out of the fitting

given the high frequency R curves. Since R8 pff1/2, it is clear that this curve mirrors

the surface resistance except for the fact that the pinning has been removed. We can

substitute this pj back into the Coffey-Clem equation to generate the R8 that we would

have measured in the absence of pinning. This is shown in figure 6.16 for B = 4T at 27

GHz. We can see that higher loss would have been measured at low temperatures if it

hadn’t been for pinning effects.

In figure 6.17, we have plotted pff against B for the whole range of temperatures
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studied in these experiments. We can see from these sets of curves that not only is the

flux-flow resistivity highly temperature dependent but that it is so in a manner very

different from that observed by Kim et al[1] (see figure 3.3). In their data, they only saw

temperature dependence once they departed from the low-field linear region. Our data

compares better with that of Fogel[3] (see figure 3.4).

6.2.3 Fitting with a frequency and field independent and w

The problem, of course, with fitting to three data points with two parameters is that we

are extremely sensitive to error in any given data point (as we have seen in the previous

section especially with the low field data). It is instructive to try fitting the data at

all three frequencies and all fields at a given temperature in terms of a frequency and

field independent vortex viscosity and pinning frequency. In this situation, we are much

less sensitive to fluctuations in the individual data points: at temperatures where we

have information at all three frequencies, 22 data points can be included in the fitting in

terms of only two parameters. The fits at temperatures 20 - 82 K are shown in figures

6.18—6.25. At the lowest temperatures, 20 and 30 K, the fits are reasonably good

and this gives us some more confidence that the Coffey-Clem model is applicable to our

data. At low temperatures, we might indeed expect to fit in terms of a field independent

vortex viscosity (equivalently, a flux-flow resistivity that is linear in the magnetic field)

especially for B << B2. Note that this good fit in terms of field independent parameters

means that the model is correctly describing the characteristic kilee in the R versus B

curve that we have seen in figure 6.4 and that we discussed also in Chapter 3. This is

the signature of the A term and would seem to indicate that our value for \L(0) is not

too far off. This further strengthens our conviction that the Coffey-Clem expression is

doing a good job of describing the data at these temperatures.

However, the fits are not as good at the higher temperatures. It is important at this
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Figure 6.19: Fitting as a function of frequency and field at 30K. Q: 5.4 GHz; K’: 27
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Figure 6.22: Fitting as a function of frequency and field at 60K. Q: 5.4 0Hz; K: 27
0Hz; D: 35 GHz. Both r and w are field independent.
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Figure 6.23: Fitting as
GHz; 0: 35 GHz. Both

a function of frequency and field at 70K. 0: 5.4 GHz; K: 27
and are field independent.

0.10

0.08

1) -

1
ctS
D
c3-
Cl)

0.04

0.02

0.00
0 2 4 6 8

B(T)
10



Chapter 6. The Analysis 122

0)
Cts
D

Cl)

0.15

0.10

0.05

0.00
0 10

B(T)
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point to distinguish between two separate issues: first, the poor overall fit to the 5.4 GHz

data at intermediate temperatures; second, the poor fit to the field dependeilce of, in

particular, the high frequency data. The first point is most probably due to limitations

of the single pinning frequency model. At low temperatures, the pinning frequency is

large compared to 5.4 GHz and at high temperatures it starts to be small compared to 5.4

GHz. At these temperatures, therefore, we are less sensitive to the shape of the crossover

from the flux-pinned to the flux-flow regime. At the intermediate temperatures where the

pinning frequency is comparable to 5.4 GHz is where we are most sensitive to the exact

shape of the crossover: it will be relatively sharp for a sillgle pinning frequency model

but broadened out if there is a distribution of pinning frequencies. The second point is

more difficult and one about which we will be able to come to no definite conclusion. It

is unclear whether or not the shape of the field dependence and its systematic deviation

from the fitted curve is due to genuine field dependence of or perhaps w (certainly,

canilot alone be responsible because the anomalous field dependence persists even after

,, has become very small) or our lack of knowledge about the true field depeildence of

the London penetration depth. Comparing the 78 K field profiles of the 35, 27 and 5.4

GHz data, figure 6.24, suggests the possibility of a answer. The field depeildence of the

5.4 GHz profile is not inconsistent with the fit whereas the 27 and 35 GHz curves clearly

deviate systematically from the fitted curves. Since we expect and wi,, to be frequency

independent, we might therefore conclude that field dependence of these parameters is

not responsible for the systematic deviations at the higher frequencies. The effect of the

) term on the other hand is quite frequency dependeilt; as we have already seen, at

low frequencies its importance is diminished because of the in the denominator of the

flux-flow skin depth. However, the large error bars on the 5.4 GHz data preclude any

definite conclusions based on the shape of this curve. It is also quite possible that field

dependence of the vortex viscosity due to interactions or a non-zero Hall effect could be
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responsible. It is interesting to note that a good fit to the data at, for example, 70 K

can be obtained by setting )L(0) to effectively zero as in figure 6.26. In other words, the

field profiles are almost purely square-root like at this temperature. However, figure 6.27

shows the same procedure tried at 20 K only here the fit is poor. Evidently, at least at

low temperature, the presence of the ) term is reflected in the data.

Figure 6.28 compares the temperature dependence of at 4T obtained by the field

dependent and field independent fitting procedures. The curves are qualitatively similar,

the largest discrepancies occurring at intermediate temperatures (see inset) — an effect

anticipated by our previous discussion. It is clear that on the scale of the changes observed

as a function of temperature, the field dependence is a minor effect. When we discuss

the temperature dependent scaling of the data in the next section, we will use the pj

curves obtained in section 6.2.2 and shown in figure 6.17. This is more appropriate for

an overall discussion of the data because close to T and H2 we have already seen that

the field dependence of the surface resistance is affected by fluctuations.

6.3 Scaling the Data

In order to try and uncover the mechanism that gives rise to the data set, the obvious

starting point is to try scaling the data by p,-, and H2 as was done in the experiments on

conventional superconducting alloys. We face two immediate problems. First, in scaling

with H2 , do we use the temperature dependent H2 (T) or its zero temperature value

H2 (0). Second, what should we use for p,-, ? This is perhaps the most fundamental

question that we will address in this thesis because this is equivalent to asking about the

scattering time for the electrons in and possibly around the cores. In other words, we

are trying to deduce information about the nature of dissipation in the moving vortex

cores. With the possibility of discrete, widely spaced electronic levels in the cores, is
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it even appropriate to think of a core as a normal material with an effective normal

resistivity ? How would the picture change if the gap has d-wave symmetry and is

thus effectively gapless ? In conventional superconducting alloys, the p used was the

temperature independent impurity limited value. For YBa2Cu3O695 , the normal state

resistivity above T is not constant but linearly decreasing until fluctuations set in about

20-30K above T . As a first attempt at a guess for p, we will use an extrapolation of

the linear portion of p,-, from above T

p(T) = 0.869 T + 0.85j—cm . (6.2)

This was obtained from dc resistivity data[17] and is consistent with the dc resistivity

value used to calibrate the surface resistance (pd(100K) = 77.8 tf—cm). The vortex core

is thus being treated like a region of normal material: its resistivity is determined by the

normal state properties with a linear scaling factor to take into account the temperature

variation. We would not expect the core resistivity to be affected by the fluctuation

contribution to the resistivity because over most of the temperature range of interest, it

is well away from T (except possibly when H gets close to H2 ). Scaling pjj by just this

linear p. and a temperature independent H2 (0) gives the set of curves shown in figure

6.29. Comparing with figure 3.3 from Kim et al[1] shows that we are seeing qualitatively

different behaviour i.e. a law of corresponding states as given by equation 3.53 does not

fit the data.

If we use the H2 (T) function given ill Chapter 2 (equation 2.2) to scale the magnetic

field we get the result shown in figure 6.30. It is clear that this scaling of the flux flow

resistivity and the magnetic field does a reasonable job of bringing all the field curves

together onto a universal curve suggesting the relation

fJff — H
63

p(T) — H2(T)
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This would favour a picture in which the amount of dissipation is proportional to the

volume fraction of normal material. It is also more in line with the behaviour observed

by Fogel[3] in his experiments on PbIn. Again we see that for H close to H2 , pff begins

to curve over as it become contaminated by the fluctuation effects that affect the surface

resistance close to T and H2 (see the discussion in section 6.1).

We can get a better appreciation for how well this empirical expression is describing

the data by assuming that it holds and using the p data and say a linear p,. to predict

H2(T). Alternatively, we can assume an equation for H2 (T) and predict p(T). The

results are shown in figure 6.31 and figure 6.32. The picture seems to hold down to

about 50K, but, below that, significant deviations occur. The flux-flow resistivity is not

decreasing fast enough at low temperatures to maintain consistency with equation 6.3.

One possibility that might account for the above discrepancy is that our formula for

H2 (T) is using an inflated value for 11C2 (0). Indeed, there is some experimental support

for this possibility. Two different Japanese groups[73, 74], using pulsed magnetic fields,

have reported values of about 40T for H2 (0) (field parallel to the c-axis) in YBa2Cu3O7_5

single crystals. The reason for the discrepancy between this value and the one estimated

from theory is not well understood. In any event, such a value for 11C2 (0) would mean

that pff is below what we would expect from this formula.

It is also possible that the low temperature behaviour in figure 6.31 has something to

do with Pauli spin paramagnetic limiting of H2 as discussed in section 3.5 in connection

with the flux flow resistivity measurements of Kim et al[1] on high field superconducting

alloys such as Ti-V. For conventional type-Il superconducting alloys in the dirty limit,

Werthamer et al[32] calculated how Pauli spin paramagnetism competed with anoth

er effect — spin-orbit impurity scattering’ in its effect on H2 . They found that

‘Spin-orbit scattering refers to a process whereby an electron (due its spin-orbit interaction) can
scatter off an impurity in the superconductor with a flip of its spin.
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spin-orbit scattering renders the spin paramagnetism less effective in reducing H2 . In

YBa2Cu3O695 , which is in the clean limit, this scattering mechanism is presumably less

important than in dirty, conventional type-IT superconductors, and thus we might expect

Pauli spin paramagnetism to be an important factor in limiting H2 at low temperatures

in this material. However, it is difficult to quantify this because the standard calculations

for the reduction of H2 due to paramagnetic limiting are for BCS s-wave superconductors

in the dirty limit rather than the clean limit. Another important consideration is that,

as we saw in section 3.5, Kim et al[1] found that the flux-flow resistivity at low fields

and temperatures was related not to the paramagnetically limited H2 but rather to the

expected value ignoring paramagnetic effects — the volume fraction of normal material

being the physically relevant quantity. If we adopt a similar position with regards the

flux flow resistivity in YBa2Cu3O695 , then we would lot expect a value of H2 based on

pj to contain information about paramgnetic limiting.



Chapter 7

Discussion and Conclusions

Based on the temperature dependence of the flux flow resistivity and a reasonable esti

mate for H2 (T), we conclude that the temperature dependence of the scattering rate of

the charge carriers in the vortex cores below T is qualitatively similar to a continuation

of the linearly decreasing normal state resistivity from above T . This is suggestive

that the the picture of a vortex as having a ‘normal’ core has some applicability for

YBa2Cu3O695

Using the Bardeen-Stephen formula[9] at 20K with H2 (20K) 120T and the flux

flow resistivity determined from the microwave surface resistance, we obtain a value of

p(20K) 30t1—cm a decrease of a factor of —2—3 from its value ill the normal

state above T . This is in sharp contrast to the rapid decrease in the scattering rate of

the quasiparticles in the normal fluid of the bulk superconductor away from the vortices.

The surface resistance data in zero field measured on similarYBa2Cu3O695 single crystals

by Bonn et al[18, 19] indicate a drop in this normal quasiparticle scattering rate by a

factor of -.50—100 between T and 20K. That there is qualitative similarity between the

temperature dependence of this scattering rate and that of the flux flow resistivity is

probably misleading. It seems more likely that the rapid drop in p is associated with

the steeply rising H2 with decreasing temperature below T . In fact, we have found

that, for T> 50K, the flux-flow resistivity is in reasonable agreement with the equation

fiff — H
71

p(T) — H2(T)

136
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where we use an extrapolation of the linear dc resistivity from above T given by

p(T) = 0.869T + 0.85 tf—cm (7.2)

and a temperature dependence for H2 given by

(1 —t2)
uoH2(T)

= 125(1 +t2)1/2
(7.3)

This is in qualitative agreement with Kunchur et al[25] in their high current dc mea

surements of YBa2Cu3O7_8epitaxial films, although in our measurements the surface

resistance (and thus the determination of pjj ) is affected by fluctuations close to T and

H2 . To the extent that pj seems to scale with the inverse of the temperature dependent

II2 , our results are also similar to Fogel’s[3] pff obtained from measurements of the dc

resistivity of a PbIn alloy. However, our results differ markedly from those of Kim et

al[1] and others[2] who find that pj can be described by

H
74

p. — H2(0)

If we try to adopt equation 7.4 to describe our data by incorporating all of the temperature

dependence of p into a rapidly temperature dependent p, this leads to absurdly large

values of p(T) (>> p(T)) at higher temperatures. Therefore, the picture of the vortex

dynamics, at least for T > 50K, seems to be a conventional one: the cores are regions

of normal material with a scattering rate for the charge carriers given by a simple linear

extrapolation of the normal state material from above T ; the resistivity of the material

is given by approximately the volume fraction of the material in this ‘normal state’

(H/H2(T)) multiplied by the resistivity of the normal material. However, it should be

appreciated that this is at best an incomplete picture. In the Bardeen-Stephen model[9],

the transition region outside the normal core contributes as much to the dissipation as

the normal core itself. In conventional superconducting alloys, the scattering rate is
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characterized in both regions by the same 1/r (because the scattering is in the impurity

limit). For YBa2Cu3O695 , we might expect different scattering rates for the two regions

because in the transition region it is possible that the ilormal fluid quasiparticle scattering

rate is a factor. It is not obvious therefore that a simple Bardeen-Stephen like model of

vortex motion should make sense in such a situation.

Below 50K, p is larger than what we would expect on the basis of equation 7.1 aild

our estimates of p(T) (equation 7.2) and H2(T) (equation 7.3). Although a large Hall

angle can affect the flux flow resistivity,

0B

_

0B
=

(1 +a2/2)
(7.5)

(see equation 3.17), the result would be to decrease, not increase p . The possibility

that a value of 125T is in fact an overestimate of H2 (0) has been discussed. Given this

uncertainty in H2 (0) it is possible that the validity of equation 7.1 can be extended to

low temperatures.

It is worth reiterating at this point that, at low temperatures, the data analysis is most

sensitive to the limitations of a single pinning frequency model. The pinning frequencies

obtained from the fits, while consistent with estimates [75] for high-Ta superconductors

and with the data of Owliaei et al[62] (see figure 3.8— their surface resistance at 10

GHz is greatly suppressed by 70K indicating a pinning frequency greater than 10 GHz

at lower temperatures), should not be taken too seriously. At lower temperatures, when

the pinning frequency is a substantial fraction of 27 or 35 GHz, we are most sensitive

to errors in pff caused by the possible inability of the model to properly fit the shape

of the crossover from the flux pinned to the flux flow state. We can certainly conclude

(as above) that the p data at low temperature is inconsistent with a rapidly decreasing

scattering rate. However, given the limitations of the model used to fit the data, the

uncertainty in H2(0) and the uncertainty in the exact form for p(T), it is probably
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unwise to make any other definitive statements about the low temperature behaviour of

pff

We are able to get good fits in terms of a field independent and at 20 and 30K.

At these temperatures, we are fitting the data at all frequency and field in terms of

just two parameters. This reinforces our faith in the applicability of the Coffey-Clem

solution[28, 29] to our data. A field independent corresponds to a linear dependence

of pff on the magnetic field and this is what we might expect at low temperature and

field. The functional dependence of the R3 field profiles deviate from a simple square-

root like behaviour because of the presence of the screening term, , in the expression

for the surface impedance. The effect of this term is made quite apparent by plotting

versus B: at low fields, there is non-linear behaviour which gradually gives way to a

linear dependence at higher fields where the flux flow contribution dominates. At higher

temperatures, it is difficult to fit in terms of a field independent . Its field dependence is

strongest at low fields where the effect of the ) term is most important. This suggests

the possibility that our lack of knowledge of the field dependence of )L is affecting the

fitted value of . Other sources for the field dependence of could be interactions with

other vortices or possibly Hall effects. While it is not possible to resolve these issues at

preseilt, we should remember that these are relatively minor effects compared to the scale

of the temperature dependence of or . Our conclusions based on this temperature

dependence are unaffected by the above discussion.

It is unclear what bearing the large spacing between the energy levels of the quasi

particle states in the core of the vortex have on our results. The main effects of the

discrete nature of the energy spectrum happen, according to Hsu[22, 23], at a frequency

corresponding to the level spacing, 2/EF, which is 200—300 GHz for high-Ta super

conductors. It is possible that we are in some sense in the low frequency limit of his

theory in which, in the clean limit, he recovers an expression like that of Bardeen and
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Stephen[9].

At present, it is unknown what effect the existence of a d-wave instead of an s-wave

ground state might have on the picture of moving vortices. We have seen that, with

some reasonable assumptions, the flux flow resistivity, at least in a qualitative sense, can

be understood in YBa2Cu3O695 within the same framework used for conventional s-wave

superconductors. A better understanding of the vortex core energy level spectrum within

the context of d-wave superconductivity is needed before the possible relevance of either

to the flux flow resistivity can be ascertained.

In summary, then, the central conclusions of this work are as follows:

• The Bardeen-Stephen like expression, equation 7.1, is in reasonable agreement with

the data down to at least 50K using a linear extrapolation of the normal state resis

tivity from above T for p(T) and an estimate of H2 (T) based on magnetization

measurements and theoretical estimates from the literature.

• The rapidly temperature dependent normal fluid quasiparticle scattering rate ob

served in zero field microwave measurements on the same crystal is not the relevant

scattering rate for charge carriers in the vortex core.

• The fact that a linear extrapolation of the normal state resistivity from above T

is consistent with the data in our analysis is perhaps suggestive that the idea of a

‘normal’ vortex core is valid for YBa2Cu3O695

Of great interest would be to extend these measurements to even higher frequencies.

This would push the flux dynamics further into the high frequency, flux flow limit and

make the analysis less sensitive to any uncertainty incurred by fitting to the fairly crude,

single pinning frequency model. A study of the sensitivity of the pinning frequency to

the density of twin boundaries would also be useful. It is possible that by measuring
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nearly twin-free crystals, experiments performed at the existing frequencies could better

probe the high frequency limit.



Appendix A

The Surface Impedance of Metals and Superconductors

We consider a material subject to a time dependent magnetic field at its surface. The

material occupies the half space x > 0 and we apply the field in the z-direction along its

surface

H=H0e””t. (A.1)

The material has conductivity & which is in general complex.

We start by taking the curl of the Maxwell equation

VxH=J+E0 (A.2)

we get

VxVxH=VxJ+Eo(VxE). (A.3)

Using the Maxwell equation

VxE=- (A.4)

and the vector ideiltity

VxVxH=V(V.H)-V2H=-V2H (A.5)

(V H = (l/10)V. B = 0) and

J=ó-E, (A.6)

equation A.3 becomes

2 oH 02H
VH=ou--+eoiio--. (A.7)

142



Appendix A. The Surface Impedance of Metals and Superconductors 143

Substituting equation A.1 into equation A.7, we have

a2H
9x2

=i,aow&H—eotow2H (A.8)

The second term on the RHS of equation A.8 is the well-known displacement current

term and is negligible at our frequencies provided that ö >> 2 (fm)1 (u(lOOK)

106 (lm)1 for YBa2Cu3O695 ). If we let

(A.9)

then the solution to equation A.8 (having dropped the displacement current term) can

be written

H = H0 ea (A.1o)

The surface impedance is defined by

z All
8fg°Jd

where E0 is the value of the tangential electric field at the surface of the material (y

direction). That the electric field and the current density are both in the y-direction can

easily be seen from the Maxwell equation A.2 (after dropping the displacement current

term) which can be written
(9IIz)

= = (A.12)

(we know that öH2/öy is zero by symmetry). By integrating equation A.12 we can also

get that

j J dx = H x-0= H0 (A.l3)

aild so equation A.l1 can be written

Z= (A.l4)
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We can express E0 in terms of H0 using the Maxwell equation A.4 which, with our

boundary conditions, becomes

-— =
—--—. (A.15)

Integrating this equation and setting x = 0 to give the fields at the surface, we find

E0=i1t0w;\H0 (A.16)

and so the surface impedance can be written

Z3 = = (A.17)

Since is related to & by equation A.9, the surface impedance can be written in terms

of the complex conductivity as

z= (iow)h/2
(A.18)

The surface impedance is often written

Z3=R+iX3 (A.19)

where the real and imaginary parts are referred to as the surface resistance and surface

reactance respectively. To get a better feeling for R3 we can calculate the power dissipated

per unit area of the surface. This is given simply by the magnitude of the time averaged

Poynting vector

ISavi IRe(E x H*)I (A.20)

evaluated at the surface (x = 0). Substituting for E and H in equation A.20 using

equation A.14 gives

Say = Re(EoH) = .ZRe(Z3HoHo*) = (ReZ3) Ho2 =R3H02. (A.21)

Thus the power per unit area dissipated is proportional to the surface resistance.
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We conclude this appendix by deriving the expressions for the surface resistance of a

normal metal and a superconductor (for the case of local electrodynamics).

In a ilormal metal the conductivity is purely real and given by ö = o where is

the usual conductivity of a metal and p = 1/un is the resistivity. Substituting for in

equation A.18 gives

= (jItopnW)1/2 (1 +i)
(/IoPw)h/2

(A.22)

and so the surface resistance for a normal metal is

R3= (A.23)

By substituting ä = o into equation A.9, we fluid

1i
(A.24)

where
/ 2

\1/2

S= ( . (A.25)
\ fLj n J

From equation A.1O, we can see that this is the characteristic decay leuigth for the H

field in the metal. Equation A.25 is, of course, the familiar expression for the skin depth

in a metal.

In a superconductor, the total current density has both a normal and a superfluid

component

J = J, + J8. (A.26)

The normal component is given by

J=o1E (A.27)

where o is the conductivity of the normal fluid. The superfluid component is determined

by the first London equation

(A.28)
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which gives (assuming an eu1t time dependence for the supercurrent)

= —i a2 E ; a2
=

2 (A.29)
w AL

Therefore the total conductivity is complex and given by

2 (A.30)
jO W

To calculate the surface resistance for a superconductor, we substitute equation A.30 into

equation A.18 and take the real part. Except very close to the transition temperature,

a1/a2 << 1, and so we do the calculation to first order in ui/a2. Equation A.18 then

becomes
=
(L)’2 (_i +)“2 . (A.31)

To take the real part we use the identity

Re(A+iB)= (A2+B2+A)”2. (A.32)

The real part of equation A.31 is then

1/2

R8
= ([Lw)u/2

(_i + 1 + (A.33)

Expanding the square root to first order and substituting for a2 we finally get the ap

proximate form valid for a1 <<a2,

118 = ‘.2a2A3 (A.34)

Similarly, we find that the surface reactance for a superconductor is given by

X8=powAL (A.35)

in the limit o <<u2.



Appendix B

Rf Current Distribution in Samples

We wish to find the current distribution in a thin, plate-like, metallic or superconducting

sample in an rf magnetic field applied perpendicular to its broad face in the limit that

the skin depth or penetration depth is much less than the thickness. A sample of this

shape with thickness 2c can be well approximated by an oblate spheroid with a c

where a, b and c are the lengths of the semi-axes. The rf current distribution in such

an ellipsoid can be determined by analogy with the magnetostatic problem of a perfectly

diamagnetic ellipsoid in a uniform magnetic field, Hext, applied parallel to its minor

axis (of length 2c). The boundary conditions for the two situations are approximately

the same: for the magnetostatic case, the magnetic field inside the sample, is zero

everywhere, and for the rf case, is zero except in a thin layer (characterized by either

the skin depth or the penetration depth) near the surface. Thus, in the magnetostatic

case,

B1 = km Hint = 0 (B.l)

because km = 0 for a perfect diamagnet. For the internal H field, we have

ext ext
Hlflt=l+(km_l)N=l_N (B.2)

where N is the demagnetizing factor. Therefore, the internal magnetization is

ext
Mint = — — Hint = — ,

110 1—N
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Figure B .1: Surface current distribution in uniformly magnetized ellipsoid.

i.e. is uniform and everywhere antiparallel to Hext. The surface current density,

K (curreilt per unit length perpendicular to the direction of flow) is given by

K = M1 x ñ = sinO (B.4)

where ñ is a unit vector perpendicular to the surface, see figure B.1. It is clear from the

diagram that the surface current runs in concentric rings centred about the minor axis

(of length 2c) of the ellipsoid. The sample used for the measurements described in this

thesis corresponds to a ratio a/c ‘—‘ 150; therefore, for a sample of this shape most of

the current runs very close to the edges of the crystal where sinO . 1. Thus, we have

determined the corresponding rf current distribution for a metal or a superconductor

and also, therefore, for a superconductor in the mixed state. The latter is threaded by a

vortex lattice, but to the rf fields these are just regions where the material looks more like

a normal metal as opposed to a superconductor — the macroscopic current distribution

is virtually unchanged.

= MTfltXfl
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To summarize, then, an rf H field applied parallel to the c-axis of a YBa2Cu3O695

single crystal (in the normal, superconducting or mixed state) will induce only a—b plane

screening currents that run mostly near the edges of the crystal.
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