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Abstract 

Certain driven systems consisting of a large number of elements evolve towards a critical 

state with no characteristic time or length scales. This class of phenomena is described 

as Self-Organized Criticality (SOC). SOC relies on the condition of a slow driving of the 

systems and the existence of fast burst-like responses of them and includes earthquakes. 

We employ a model proposed by X u et al. for ruptures in an elastic medium, subject 

to shear stress, and apply it to the study of earthquakes. In the model, the size of an 

earthquake is defined as the number of ruptures occurring sequentially on the basic units 

of discretization (squares) of the medium. A histogram of the earthquake sizes shows 

that the model is not completely scale invariant due to finite-size effects. To take them 

into account, we implement a finite-size-scaling analysis. The results of this analysis show 

that the model is scale invariant only when there is stress conservation. So, the model 

displays SOC in the conservative case only. 

We also study the dynamic quantities of the model, in particular the average stress 

in the system. The sets of average stress values are analyzed using two types of time se

ries analysis. The nonlinear forecasting analysis investigates whether time series exhibit 

low-dimensional chaotic behavior as opposed to high-dimensional (or stochastic) behav

ior. We find that the above time series have a nonlinear structure, but with a substantial 

stochastic component, so SOC is inherently high-dimensional. The appearance of nonlin

ear structure is due to the fact that the system stops following linearly the external drive 

when it releases stress through earthquakes. The rescaled range analysis characterizes 

the time correlations (or memory effects) in the time series. We find strong positive time 

correlations in the above time series. Their presence is due to the nature of the driving 

i i 



in the model. These memory effects are destroyed as soon as a large earthquake resets 

the system. 
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Chapter 1 

Introduction 

Once upon a time, science was not divided into disciplines as it is today. There was no 

distinction between social and natural sciences, and certainly not the fragmentation of 

the latter into physics, chemistry, biology, geology, etc. However, when one is confronted 

with a new problem or phenomenon, it is usually impossible to neatly assign the problem 

to a particular discipline. One needs to recall and fuse together the knowledge one learned 

before and, if that is insufficient, to consult scientists in other areas [56]. 

In recent years, under the banner of complex systems (or complex phenomena to 

emphasize the fact that the interest is in problems from the real world), some scientists 

have ventured out of their trained disciplines. Complex systems research is a synthetic 

approach in the investigation of systems consisting of a large number of interacting, 

simple elements, irrespective of their origins (see [56] for a general outline of the complex 

systems research). It has led recently to the introduction of the concept of Self-Organized 

Criticality (SOC) by Bak, Tang and Wiesenfeld [3]. This concept has been introduced 

in order to understand the origin of the power laws observed in the study of various 

phenomena [81, 37, 57, 70, 61, 28]. 

1.1 Self-Organized Criticality 

According to S O C , certain dynamically driven systems consisting of a large number of 

elements evolve spontaneously towards a critical globally stationary dynamical state with 

no characteristic time or length scales. This critical state is reached without fine tuning 
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Chapter 1. Introduction 2 

of an external control parameter, unlike for phase transitions in equilibrium statistical 

physics. Those systems are made critical by the choice of a threshold (nonlinear) dynam

ics that forbids them to follow adiabatically the external drive. 

To illustrate the basic ideas of S O C , Bak, Tang and Wiesenfeld [3] used a cellular 

automaton inspired by the creation of avalanches in a pile of sand. In this model, sand is 

added grain by grain at a random location in the lattice (random driving) until somewhere 

a local slope becomes unstable (i.e. the local slope is larger than a threshold value), and an 

avalanche is initiated. The pile eventually reaches a stationary critical state, characterized 

by a critical slope, in which additional grains will fall off the pile via avalanches of all 

sizes, distributed in size and lifetime according to a power law. It is of interest to note 

that the relative number of large and small avalanches in the model does not depend on 

the microscopic mechanisms, i.e. the global behavior of the sandpile can be synthesized 

from a simple model such as the one above. 

Over the years, three facts have been established about S O C [94]. First, some systems 

qualify as self-organized critical if their large scale evolution obeys a diffusion equation 

which satisfies a global conservation law [49, 41]. Second, some systems, which exhibit 

diffusion-like response but do not obey a global conservation law, nevertheless exhibit 

S O C [77, 26, 1]. In these systems, S O C is believed to be related to the problem of 

synchronization of coupled threshold oscillators of relaxation [67, 7, 19]. Th ird , a feedback 

mechanism must operate which describes the action of the order parameter onto the 

control parameter [92] and attracts the dynamics to a critical state. 

Recently, a unifying formalism has been presented by G i l and Sornette [36] to describe 

the general conditions under which a system exhibits S O C . They have introduced a 

continuous formulation in terms of the Landau-Ginzburg theory of phase transitions 

which takes into account the nonperturbative nature of the threshold dynamics. S O C 

was identified as the regime where diffusive relaxation is faster than the instability growth 
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rate whereas synchronization of threshold oscillators was observed in the limit of slow 

diffusion. 

Now that the S O C concept has been described, we can talk about the properties that 

are necessary for a model to display S O C . 

1.2 Identification of Self-Organized Criticality 

It is often asserted that the hallmark of S O C is the simultaneous existence of two prop

erties [93]: (1) power law distribution of events, and (2) spatial and temporal correlation 

functions decaying algebraically. According to [93], property (1) is more characteris

tic of the class of phenomena described by S O C , since it relies on the condition of a 

very slow driving of the system and the existence of fast burst-like responses. A num

ber of self-organized critical phenomena can be described as ordinary phase transitions 

made self-organized [94]. Apart from the absence of tuning and the property of self-

organization, the latter are similar to ordinary phase transitions. We will not consider 

this class of phenomena in this thesis. 

For a system to be self-organized critical, it must exhibit a power-law distribution of 

event (response) sizes. But the opposite is not true: the observation of a power-law dis

tribution of event sizes does not necessary imply that the system is self-organized critical 

[93]. As an illustration of this, it is of interest to note that a number of numerical and 

experimental works claiming the observation of S O C in fact rely on a different physi

cal mechanism, called sweeping of an instability [93]. This mechanism involves the slow 

sweeping of a control parameter on the approach to and possibly beyond an instability 

at the critical value of that control parameter. In other words, the power law arises if a 

control parameter crosses over from one side of the critical point to the other side. As a 
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result, the system can not operate persistently since the control parameter does not re

main constant. Many examples of how that mechanism operates are provided in [93] and, 

among them, foreshocks (shocks preceeding a large earthquake) and acoustic emissions 

during the progressive deformation of materials submitted to increasing stresses. 

The S O C concept applies to many different phenomena occurring in nature and in 

particular, to phenomena in the field of geophysics. 

1.3 Geophysics as a Field of Application for Self-Organized Criticality 

Geophysics is a field in which many phenomena are well suited to the concept of S O C . In 

particular, the earthquake phenomenology was argued by several authors [96, 2] to bear 

the signature of S O C . To illustrate this, we summarize a part of the discussion in the 

paper of Sornette et al. [94]. 

Let us consider a model elastic tectonic plate [20] scaled down in the laboratory to 

perform a mechanical experiment. A shear force (F) is, in the simplest case, imposed 

on two opposite borders of the plate, the other two borders being free. As F increases, 

the plate starts to deform. For low F, after some transient during which the plate 

deforms and adjusts itself to the applied force, the plate becomes static: the strain rate 

(r) is zero (if any ductile behavior is neglected). As F increases, the transient becomes 

longer and larger deformations develop within the plate. A plasticity threshold (Fc) will 

be eventually reached and then the plate will start to flow with a non-zero strain rate 

(r > 0) under fixed F. As F increases above Fc, r increases. In laboratory experiments, 

such a transition from a brittle to a ductile behavior may be critical. Parameters F and 

r qualify respectively as the control parameter and the order parameter (r is non-zero 

only when F > Fc). 

Now, instead of controlling the shear force exerted on the plate, we imagine that 
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a constant (very small) shear rate of deformation (r —» 0) is applied at the borders 

of the plate. Then, the natural boundary condition for earthquakes and plate tectonic 

deformations is recovered. Such a situation has been studied in many works showing the 

existence of S O C , in particular in the shape of a power-law earthquake size distribution 

(the well-known Gutenberg-Richter power law [43]). The above boundary condition is 

nothing but driving the plate at the critical point (F —¥ Fc) by controlling the order 

parameter (r) to a very small value (r —>• 0), thus ensuring the critical properties of the 

plate. The fact that r is non-zero even if it is very small proves that the plate is an 

out-of-equilibrium system. 

The above example illustrates the relevance of the concept of S O C to the earthquake 

phenomenology. We will focus on the earthquake phenomenon throughout the present 

work. 

The S O C concept is interesting not only from a practical point of view (e.g. under

standing earthquakes), but also from a theoretical point of view. 

1.4 Interests of the Concept of Self-Organized Criticality for Physicists 

The interests of the physics community in the study of S O C is twofold. Firstly, S O C , as 

was shown by Sornette et al. [94], can be mapped onto ordinary criticality in many cases. 

Then, rather than searching for the underlying mechanism for S O C , physicists can study 

unstable critical points (i.e. critical points which are not self-organized). This task can 

be performed by using the toolbox developed in the last decades in this field. However, 

setting the order parameter of an unstable critical point to an infinitesimal number does 

not allow for a standard renormalization group procedure, because there is no control 

parameter and the exponents related to the distance from the critical point do not exist. 

There have been some attempts [76, 49, 83, 24] at finding a general renormalization group 
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theory for systems right at their critical point, but much work along this line remains to 

be done though. Such a theory could provide a new class of tools for critical phenomena 

as suggested in [94]. 

Secondly, S O C applies to phenomena actually occurring in nature and so may be 

useful to their understanding. Among these phenomena are, apart from earthquakes, 

formation of river networks [100], formation of clouds [72], evolution of populations [1], 

neuron dynamics [7, 19], etc. The models used to study such phenomena are often 

idealized in the sense that they capture only the essential features of real systems. If 

these simple models would turn out to be robust with respect to various modifications, 

then extrapolation to real situations could be possible. (It is of interest to note that such 

an approach has been successful in equilibrium statistical mechanics, where universal 

features in real systems can be understood from the study of simple models). Also, if 

models used to study a priori not closely related phenomena were to have similar features, 

then this could prove that a unique universal dynamics is behind those phenomena. 

Indeed, why could we not learn about the dynamics of neurons of the human body by 

studying earthquakes? 

Our interest in the concept of S O C is oriented towards the understanding of the 

earthquake phenomenon in the current work. 

1.5 Organization of the Thesis 

The present work is devoted to the detailed study of a model introduced by X u et al. 

[113, 114] which was intended to be applied to earthquakes. This model was shown to 

be self-organized critical [114]. However, we believe that a more rigorous proof is needed 

before to state whether or not the model displays S O C . In addition, the temporal aspects 

of the model have almost entirely been left out in [113, 114] and so, we want to study 
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them thoroughly in this work. 

The organization of the present work goes like this: in chapter 2, we describe the 

approach used to model fractures in a planar region, the occurrence of earthquakes being 

closely related to the appearance of fractures in nature. We use a particular lattice 

model, which has been introduced recently by X u et al., to do so. In chapter 3, we study 

the scaling properties of the model by means of a finite-size-scaling analysis, a technique 

which has been extensively used in the study of equilibrium phase transitions. This will 

enable us to clearly state whether the model displays S O C . In chapter 4, we implement 

two types of time series analysis, namely a nonlinear forecasting analysis and a rescaled 

range analysis. The time series are generated from the model. Finally, in chapter 5, we 

summarize our results, draw the relevant conclusions and make suggestions for future 

work. 



Chapter 2 

Lattice Mode l for the Study of Earthquakes 

In nature, the occurrence of earthquakes is closely related to the appearance of fractures. 

The modeling of fractures can be done using different approaches (see chapter 5 of [45] 

for instance). These approaches are discussed in section 2.1. The approach presented 

in section 2.2 follows an intermediate route and uses lattice models as the tool to study 

fractures in the presence of disorder. The lattice model that we use in this work is 

presented in section 2.3 and applied to the study of earthquakes in section 2.4. Finally, 

it is compared to other earthquake models and to models of integrate-and-fire oscillators 

in section 2.5. 

2.1 Approaches to Fracture Model ing 

The description of fracture of samples of materials in the cases where disorder is important 

is the main goal of the material scientist interested in the fracture phenomenon. One 

possible approach he (or she) can use is to set up some microscopic rules which determine 

the mechanical behavior of the medium as well as how rupture will take place. If the 

medium is homogeneous and the rupture process deterministic, one can very simply know 

what the macroscopic behavior will be. However, in the presence of disorder, the solution 

to the problem is not that easy. 

Among the various ways of handling disorder directly, three different approaches can 

be distinguished [45]: mean-field, local models and renormalization methods. Next, we 

discuss each of them. 

8 
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The mean-field approach treats the surroundings of a volume element as a homoge

neous embedding medium. In this way, each element interacts equally with all the others. 

However, because fracture is sensitive to disorder, this approach gives poor results. 

The approach using local models tries to reproduce as closely as possible the real 

microscopic behavior starting from first principles. This is the case, for instance, for 

molecular dynamics that we now briefly describe. Suppose one chooses an interatomic 

potential, for example the Lennard-Jones (6-12) potential, to decribe the interactions 

between the particles of the system under study. The particles are placed on a regular 

lattice. On the outer boundary of the system, an external load is applied by assigning 

a constant force vector to the particles lying on this boundary. To obtain the motion of 

the system, time is discretized into slices of duration At and one calculates the position 

that each particle has after the time At. In the simplest case, one calculates, using 

the equations of motion, the velocity of each particle. When all velocities v are known, 

all particles are simultaneously displaced by vAt. Then, the step is repeated for the 

next time interval starting from the new positions, and so on. The molecular dynamic 

framework provides naturally the fracture properties without having to insert by hand any 

rheological behavior. However, the study of a system with several cracks in a disordered 

medium is, with the present means of computation, not possible. Much work remains to 

be done along this line though. 

The approach using renormalization methods views the fracture process as a critical 

phenomenon. It expresses the invariance of some physical quantities under a change of 

length scale. However, the few situations where this technique has been used contain 

some severe approximations, or use unphysical and simplistic geometries [91, 74]. 

The above approaches are not adequate to study in an effective way the fracture phe

nomenon. This pessimistic picture seems to close all doors towards a solution. Neverthe

less, the situation is not so hopeless. The approach used in [45] follows an intermediate 
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route: it describes very simply the mechanical behavior of mesoscopic (not microscopic) 

elements and considers the collective behavior of these elements in the presence of disor

der. We now summarize this approach. The interested reader is referred to [45] for the 

details. 

2 .2 Lattice Models 

A numerically tractable lattice formulation of fracture, alternative to molecular dynamics, 

is given by discretizations of continuum equations. In this case, the medium is reduced 

to a set of points embedded into a grid. Only local laws (e.g. the balance of force) are 

considered and their implementation involves for each point only a few neighbors. The 

calculation of collective properties like the equilibrium displacement field is reduced to 

solving a set of coupled linear equations. 

Lattice models have their validity at much larger length scales (than the atomistic 

length scale) where the medium can be described by continuous fields. The breaking of 

the lattice is not a natural consequence of the simulation but has to be put into the model 

by hand as an additional rule of the model. This rule can lean on experimental data or 

on phenomenological laws, but the fact that it does not follow from first principles shows 

that lattice models are less fundamental than molecular dynamic models. 

One advantage of lattice models is that they allow for the easy introduction of dis

order. A n even bigger advantage is that they are more rigid than a crystal in molecular 

dynamic models because the number of neighbors is fixed and the breaking of a bond is 

an irreversible yes-no decision. Lattice models are therefore good candidates to.overcome 

the numerical difficulties encountered in molecular dynamic models. 

Lattice models have been studied by engineers and physicists, but the methods used 

in the two science communities are different. Indeed, engineers use mostly Finite Element 
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Models ( F E M ) whereas physicists focus on less formal models. We now discuss in some 

details lattice models as considered by both engineers and physicists. 

2.2.1 L a t t i c e m o d e l s cons idered b y engineers 

In engineering practice, the most commonly used lattice models are F E M . We want here 

to give a brief outline of the finite element method as applied to fracture problems. The 

reader is referred to one of the many pedagogical textbooks on the subject for more 

details (see for instance [105]). 

Basically, the F E M are ways of discretizing the general continuum rheological equa

tions on a lattice (usually triangular in two dimensions). The displacement field is ap

proximated by a best fit within a subspace of trial functions. The best fit is found by 

minimizing the total potential energy over all admissible fields. 

In the F E M , the description of a real elastic solid will be accurate only if the dis

placement field varies slowly over the size of the elements used. In particular, if one 

wants to introduce a crack in a medium, the displacement field around the crack will be 

accurate only if the elements are much smaller than the size of the crack itself. This is a 

serious drawback for the modeling of a dense array of microcracks in a medium. Similar 

drawbacks, although less dramatic, will appear if one wants to model a heterogeneous 

solid. In fact, in such a case, the size of the heterogeneities should be large compared 

to the mesh size. Also, fluctuations of elastic moduli from element to element should be 

small. 

F E M are popular because of their simplicity (although elaborate codes often use 

all sorts of sophisticated optimizations) and flexibility in dealing with very different 

problems. These codes are tools and used like black boxes rather than being considered 

to have a physical interest on their own. The lattice models used by physicists are less 

sophisticated than F E M . However, they have the advantage of being built in such a way 
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as to have all the steps directly accessible and easily interpreted physically. 

2.2.2 Lattice models considered by physicists 

Models considered by physicists tend to have a certain common setting which can be 

summarized in the following way [45]: the medium is discretized such that all spatial sites 

are equivalent (contrary to F E M , the grid is not made finer in regions of higher stress) and 

have the same number of neighbors (regular lattice). The variables that characterize the 

medium are placed on the sites of the lattice. The equations that describe the medium are 

discretized so that, for each site, one has one equation per variable which only involves 

variables on the neighbor sites. Also, a boundary condition on the outer perimeter is 

implemented. The boundary condition on the internal boundary (crack surface) reflects 

the response of the bonds that constitute the crack. Then, the set of equations has a 

unique solution. 

As mentioned in [45], the simulation of a rupture process must be done in an iterative 

way: the equations must be solved in order to determine which bonds should be broken, 

but once the bonds have been broken, the internal boundary condition gives rise to a 

change in the internal stress. Consequently, the equations must be solved again if one 

wants to know which bond to break next, and so on. The process is computationally 

demanding because the set of linear equations must be solved as many times as bonds 

are broken (unless several bonds are broken simultaneously). The algorithm performed 

in one iteration can be decomposed into four steps [45]: 

(1) solve the set of equations, 

(2) determine the set of bonds eligible to be broken, 

(3) select from the eligible bonds one which will be broken, 
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(4) break the bond, i.e. change its elastic properties. 

Each of these steps allows for a large variety of options that describe many possible 

physical situations. Step (1) describes the nature of the medium and the externally 

applied constraints, step (2) the connectivity of the crack, step (3) the breaking rule and 

disorder and step (4) distinguishes for instance between a breakdown and a fuse problem 

(see [45] for the details). We now briefly discuss each of these steps. 

To do step (1), the type of model and the type of external constraints need to be 

specified. For the elasticity, scalar, vectorial and tensorial models are found in the liter

ature. To our knowledge, there exists only one scalar model dealing with elasticity and 

it was introduced in [68]. This model simulates antiplane shear deformation along the 

axis Oz of a thin plate placed in the x-y plane. A constant slow antiplane velocity along 

Oz is applied at the boundaries of the plate. Vectorial and tensorial models allow for a 

larger variety of externally imposed constraints than scalar models. Vectorial models of 

common use are the central-force model [32], the bond-bending model [52] and the beam 

model [86]. The latter vary in the discretization scheme used to solve the equations of 

elasticity. The central-force model, the simplest of the three, is a network of Hookean 

springs which can freely rotate around the sites of the lattice. So, in this model, force can 

act only in the direction of the bond. The other two vectorial models fall in the same class 

in the sense that a bond can not rotate around a site without a cost in energy. Tensorial 

models have been introduced only recently by Chen et al. [15] and X u et al. [113, 114] 

and have some -advantages over vectorial models, in particular they are computationally 

less demanding. The discretization scheme used in [113, 114] will be presented in the 

next section and compared to the one used in [15] in section 2.5. 

To study crack propagation [step (2)], one can pursue two philosophies: understand 

how one crack grows or see how in a stressed medium cracks appear, coalesce and break 



Chapter 2. Lattice Model for the Study of Earthquakes 14 

the system. The first philosophy is artificial in most experimental situations since the 

surface of a crack in a lattice is not uniquely defined. The second philosophy corresponds 

to the majority of experimental situations because all not yet broken bonds are eligible 

to be broken. 

The breaking rule and disorder are two major ingredients of the model [step (3)]. 

The breaking rule must be put by hand into the model to reflect the phenomenological 

nature of lattice models. It is usually chosen as simple as possible. Disorder has a major 

impact on the breaking rule as well as on the breaking process. If disorder is unaffected 

by the breaking process, then it is quenched and otherwise it is annealed (interplay of 

disorder and fracture has to be taken into account). O n the length scales that lattice 

models are supposed to describe, disorder can be reduced to a spatial dependence of the 

elastic modulus and/or strength, often chosen to be a random distribution. 

The bond represents the system on a mesoscopic scale and is characterized by a 

constitutive law (e.g. force F linearly dependent on the displacement 5). The relation 

between F and 5 can be chosen to remain linear up to a breaking threshold 5C. The 

strength of the bond is given by the value of F at 6 = 5C and the elastic modulus by 

the slope of the straight line. Disorder can be implemented by randomly choosing the 

strengths and/or the elastic moduli of the bonds of the lattice. In quenched systems, 

the random variables (strength and elastic moduli) are fixed at the beginning of the 

simulation and the following rupture process is deterministic: to break a bond, the 

equations are solved and the bond for which S/Sc is the largest is chosen to be broken. 

O n the other hand, annealed disorder leads to a probabilistic rupture process. In this 

case, the bond to be broken may be chosen according to a probability p oc d~n, where n is 

a given exponent [66]. 

Finally, regarding step (4), once the bond to be broken has been chosen, its actual 

removal or replacement has to be implemented. In the case of fracture, the elastic 
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modulus of that bond can be set to zero or reduced by a certain amount. 

2.3 A New Lattice M o d e l 

The central-force, bond-bending and beam models (vectorial models) are physical in the 

sense that the basic elements (Hookean springs or elastic beams) have a real physical 

meaning. However, these models have some drawbacks [45]. One of them, and surely the 

most severe one, is the computer time involved. It is enormous due to the fact that, at 

each time step, one has to solve a huge array of linear equations. This is a major obstacle 

to progress in this area. The (tensorial) lattice model that we use was introduced by X u et 

al. [113, 114] and it overcomes some of the difficulties encountered in the above vectorial 

lattice models. It proposes a new method of discretizing the continuum elastic equations 

and has some advantages over the latter. 

2.3.1 A new discretization scheme 

X u et al. have introduced recently a new scheme to discretize the continuum elastic 

equations. Because it is not as well known as the discretization schemes presented in 

[45], we summarize here the most important steps of this new scheme. The interested 

reader is referred to [114] for the details. 

The first step is to construct discrete derivatives. We do this only for a two-dimensional 

system for simplicity. (Generalization to a three-dimensional system is straightforward 

in principle). These derivatives are of the form (say for a function g(f)) 

and 

_ x + y\ (_ x — y\ _ x + y\ (_ x — y 
9\r + — T " +9 [r + — — \ - 9 \ r — -g[r — 

x + y\ (_ x — y\ (_ x + y\ (_ x — y 
9\r + -^r- ~ 9 \r H — - g\r — ) + g[r —-
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where x and y are unit vectors oriented along the X-axis and Y-axis respectively, and 

the lattice constant (a) is taken to be unity. Note that if g sits on the nodes of a square 

lattice, then Dag (a = x, y) sits on the centers of the squares formed by the nodes of the 

lattice, and vice versa. The above derivatives ensure that the basic unit of discretization 

is a square instead of a bond. 

Using these discrete derivatives, the discretization of elastic theory is straightforward. 

First, a displacement vector u is defined on each node (corner of a square). The distortion 

of a square is characterized by the strain tensor (defined at the center of each square): 

Initially, all deformations are elastic and the stress tensor is related to the strain tensor 

through the special Hooke's law: 

o-ij{r) = X'SijUuif) + 2p,Uij(f), 

where / J is the shear modulus, and A' a Lame constant modified to take into account the 

plane-stress geometry of the problem (see [59] for instance). Summation over repeated 

indices = x,y) is implied. The discretized elastic equations are given by the force 

balance condition = DjOij = 0 which must be satisfied on each square. We further 

restrict our consideration to the shear mode of rupture (most ruptures in earthquakes 

are shear mode fractures!). In this case, only two stress components are needed to 

determine where a rupture will occur: o\ = oxy (rupture along the X-axis or Y-axis) and 

° 2 = {o-yy — axx)/2 (rupture at 45° or 135° to the X-axis). In this thesis, we consider only 

the stress component o\ = axy for simplicity. We do not think that to have two stress 

components would have a major influence on the results presented in this thesis as well 

as in [42]. 

Now, a rupture is assumed to occur at the square centered at f*o in an infinite medium. 

This happens when axy(f0) > ath, where ath is the stress threshold of that square. The 



Chapter 2. Lattice Model for the Study of Earthquakes 17 

additional shear stresses (cr|-) caused by the rupture are separated into an elastic part 

(ofj) and a non-elastic part (at r 0 only) [to express the violation of Hooke's law at this 

location]. The new stress tensor components (cr™™) can be expressed as a function of the 

stress tensor components before the rupture (cr°jd) in the following way: 

^(f)=ag d(f) + ay(f), 

where 

= - f ^ r o (2-1) 

<4(*) = °tif) (2-2) 

°'Vy(f) = °SfW- (2-3) 

At equilibrium, o™w must satisfy the force balance condition on each square and as a 

result, 

DjO-'ij = 0 (2.4) 

since Djoff = 0. Using (2.1), (2.2) and (2.3) in (2.4), it can be shown [114] that 

L>g + Ff = 0, 

where 

and 

-T„, = ;= 0 , x+v — 0 i+y — 0 i-v -\- 0 , x — v 
\Pi T , T 2 r > r 0 - - p r , r o - ^ r , r 0 + - 2 I J 

Therefore, afj can be viewed as generated by the external source Fd = (Fd,Fd), which 

is only non-zero at the corners of the ruptured square, and is represented on figure 2.1. 

Fd satisfies the conditions that its net force and net torque are zero, and thus is a double 

couple (a term used in seismology to describe the earthquake source having double couple 
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- f 

Figure 2.1: One-layer planar region considered in the model of Xu et al. The region is 
discretized into squares. It is embedded in an infinite medium (providing the necessary 
external drive) and the effect of any activity originating outside the region is neglected 
(open boundary conditions). In the model, the interaction between the external drive 
(represented by the arrows outside the region) and a square of the region is treated in 
a mean-field way, i.e. it is the same whatever the square location. The arrows at the 
corners of one of the square inside the region are a schematic representation of a double 
couple force redistribution following the shear rupture of that square. This figure was 
modified from [114]. 
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force / ) . The discretization scheme of X u et al. is in agreement with the fact that a 

shear rupture can be modeled by a double couple force redistribution [11]. 

Next, ofjif) can be determined by using the above earthquake source and the method 

of Fourier transformation. Since oxy is the only relevant component of the stress tensor, 

we drop the subscript (from now on, stress simply refers to the shear stress component 

axy). It can be shown [114] that the redistributed field is given by 

o-'(r-)=a'xy(r) = -fG(r-f0), (2.5) 

where / = fV2(X' + p)/{X' + 2p) and G is a lattice Green function expressed as 

G(f) = fV — r d k y S i n 2 k x S i f l 2 k y d t f (2 6) 
J-ir 2TV J-TT 2TT (1 — cos kx cos ky)2 

dkx fw dky sin 2 kx sin 2 ky 

2-K (1 — cos kx cos ky)' 
In appendix A, we illustrate how to simplify the calculation of G by reducing the number 

of integrals in (2.6) from two to one. This has a positive impact on the accuracy of the 

computation of G(f— f*o) especially at large value of f— r 0 . Also, in appendix B, we do a 

coarse-graining procedure to overcome an unphysical property of G. Our coarse-graining 

procedure is different from the one introduced by Chen et al. [16] in a study of the model 

of X u et al. in the sense that it is not implemented in the derivation of the equations of 

the model, but instead applied directly to the Green function (2.6) [see appendix B]. 

In the model, the unit of discretization (square) may be sufficiently large that the 

whole square will not break in an individual rupture event. Instead, it will retain some 

shear stress. Assuming that 

anew(r0)=Xaold(r0), (2.7) 

where X is the fraction of the original stress which is not released, (2.5) can be rewritten 

as 

a (f) = - (1 - X)aold(f0)G(r- f0)/G(0). (2.8) 



Chapter 2. Lattice Model for the Study of Earthquakes 20 

After the original rupture at r 0, which is followed by stress redistribution, it can 

happen that the stress exceeds the stress threshold on several squares. We will then let 

them all break independently and add the respective stress redistribution contributions. 

This procedure was used as well in [113, 114]. Other rules for the order in which the 

squares break could have also been considered. For instance, we could have picked 

only the square whose stress exceeds its stress threshold most. We could, as well, have 

considered a self-consistent scheme in which the redistributed stresses from different 

broken squares are coupled as in [6]. We employ the independent rupture procedure 

because it is the simplest. 

2.3.2 Advantages of that discretization scheme over others 

The discretization scheme introduced by X u et al. is rather simple and easy to implement. 

Before applying it to the study of earthquakes, we mention the advantages it has over 

discretization schemes discussed in [45]: 

(i) Each square is characterized by a strength. The length scale is set by the size of 

the square. This makes it possible to study engineering type problems (e.g. crack 

growth in ceramics) as well as geological scale problems (e.g. plate tectonics and 

earthquakes). 

(ii) The stress tensor is dealt with directly, so the simulation process is explicit in its 

physical interpellation. 

(iii) When open boundary conditions are used, one focuses on a finite region embedded 

in an infinite medium and the effect of any activity originating outside the region 

is neglected. In this case, the method of X u et al. becomes straightforward since 

the calculation of the lattice Green function can be done as for an infinite region. 
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2.4 Application to the Study of Earthquakes 

The phenomenology of earthquake occurrence is complex (for a review, see [55]). Many 

statistical relations have been deduced over the last century from the observation of 

earthquakes, which can be viewed as sequences of ruptures releasing the elastic stress 

built up slowly by the movement of tectonic plates. Among them are the well-known 

Gutenberg-Richter [43] and Omiri [78] power laws. The former relation expresses the 

frequency of occurrence of earthquakes of a given magnitude whereas the latter expresses 

the aftershock occurrence decay with time from the mainshock. 

The global dynamics of earthquakes is rich and complex. There have been many at

tempts at earthquake modeling, yet there are still many unsolved problems due to the fact 

that one does not know how to model the physics well [55]. Knopoff suggested to intro

duce at least five constraints when modeling the complex phenomenology of earthquake 

occurrence [55]: 

(i) plate tectonics to restore the energy dissipated in earthquakes, 

(ii) a wide range of earthquake sizes, 

(iii) a brittle-ductile rheology to provide for the time delays between clustering events 

(aftershocks in particular) and the abrupt occurrence of ruptures, 

(iv) stress redistribution upon rupture to provide the mechanical coupling between 

earthquake events, 

(v) a complex geometry, to take into account the distribution of earthquakes as well as 

the finite size of the fracture surfaces. 

The model of X u et al. is in principle able to incorporate those five constraints as well 

as the tensor character of the stresses (the latter is also believed to be important for 



Chapter 2. Lattice Model for the Study of Earthquakes 22 

earthquake modeling [55]). However, in practice, aftershocks will appear in this model 

only if a static fatigue law is introduced by hand into the model [113, 114] (static fatigue 

is believed to be the mechanism responsible for aftershocks [89]). Also, the model is two-

dimensional and only a one-layer system is considered (see figure 2.1), so the complex 

geometry of fracture surfaces is approximately dealt with. In the version of the model of 

X u et al. used in this work and in [42], aftershocks are absent since no static fatigue law 

is considered. However, even with this simplification, we will see that this version of the 

model still has many complex features. 

To apply the model of X u et al. to the study of earthquakes, we implement the 

following algorithm, divided into twelve steps: 

1. Consider a finite (planar) region embedded in an infinite medium, neglecting the 

effect of any activity originating outside the region (open boundary conditions). 

2. Divide the region into L\ x L 2 squares each having a size equal to unity. 

3. Set the stresses on all squares to zero at the beginning of the simulation. 

4. At the beginning of the simulation, introduce disorder by assigning random num

bers between Q[ and 9U to the stress thresholds (crt/l) of the squares. The random 

distribution of stress thresholds is taken as uniform in this work. 

5. Drive the system, i.e. increase the stresses uniformly until on a square the stress 

exceeds the stress threshold (this is called a rupture). The amount of stress added 

to every square is ACT. An earthquake sequence then begins and the driving process 

stops. 

6. Increment the long time scale (defined by variable t throughout this work) by the 

amount ACT. 
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7. Reset the stress threshold of the ruptured square to a random number between 9i 

and 9U (rule I) or to the constant value 1.0 (rule II). 

8. Calculate the stress redistribution [using (2.8)]. 

9. Check if other ruptures occur in the region afterwards. If so, then step 7 is repeated 

for all the ruptured squares. 

10. Repeat step 8 for all the ruptured squares (independently) and do step 9 again. 

The earthquake sequence stops when the stress is lower than the stress threshold 

on all squares. 

11. Count the number of units (S) that have ruptured during the sequence. S is 

a measure of the magnitude of the earthquake. Note that if a square ruptures 

more than once during the sequence, every occurrence is counted (unless otherwise 

specified). 

12. Go to step 5 to generate the next earthquake sequence. 

We describe next most of the above steps in some details. 

Step 1 describes the region and the boundary conditions considered. Physically, 

the planar (two-dimensional) region represents a thin piece of the earth's crust, or at 

least a region for which the largest horizontal dimension is much larger than its thickness 

(vertical dimension) [see figure 2.1]. Therefore, it means that as soon as earthquakes occur 

in this one-layer region, the faults generated break the region over its entire thickness. The 

activity happening outside this region is neglected. However, the medium surrounding 

the region of interest (see figure 2.1) is essential since it provides the necessary external 

drive (see step 5 for the details). The boundary conditions that represent best such a 

situation are the open boundary conditions. The latter greatly facilitate the calculation 

of the lattice Green function (2.6) since it can be done as for an infinite region. 
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In most of the models studying S O C , the continuous space is discretized into elements 

(step 2). It is the existence of such distinct elements that is the basis of the complex 

response of the model to an external drive. This is due to the fact that each element acts 

as an oscillator of relaxation. The coupling between many such oscillators with different 

characteristics is known to generate complicated behaviors. It could be argued that the 

results presented in this work are specific to the discrete nature of the model of X u et al. 

and are thus not relevant to real geology. However, as suggested by Sornette et al. [95], 

it is clear that the presence of heterogeneities in the earth's crust generates a distribution 

of characteristic scales. Somehow, models such as the one of X u et al. provide simple 

ways to represent the heterogeneities which are rescaled from the infinitesimal scale up 

to the smallest scale considered in the models, i.e. the lattice constant (a). 

In step 4, we take into account the fact that the region modeled is heterogeneous. 

However, it is of interest to note that disorder is incorporated solely in the stress thresh

olds and not in the elastic constants. The latter form of disorder would destroy the 

translational invariance of the lattice Green function as mentioned in [114]. This repre

sents one limitation of the model. 

The driving of the region (step 5) is done slowly and uniformly. The slow driving 

(this defines the long time scale) is not an artificial constraint imposed but, as we have 

seen in chapter 1, is fundamental to get S O C in a model. This constraint makes sense for 

plate tectonic problems. The uniform driving condition is a mean-field approximation 

of what happens (or happened) in nature. Indeed, in the case of the Asian continent 

deformed by the indentation of India for instance, the stress increase was distributed 

non-uniformly over large distances. In such a case, the model of X u et al. would treat 

the interaction between the external drive (India in the above example) and the region 

(the Asian continent in the above example) as being independent of the position in the 

region. This is another limitation of the model. 
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In step 6, it is implied that the rate of stress increase (p) is set to the value 1. The 

choice of such a value is motivated by practical considerations: because no aftershocks or 

foreshocks can happen in the current version of the model of X u et al., it is not necessary 

to use a small value of p (e.g. p = 10~9) since no rupture can occur between two 

earthquake sequences. As a result, the amount ACT is added as a whole rather than being 

added little by little to all the squares of the lattice, and this makes the computation 

much faster. It is of interest to note that the value of p determines the order of magnitude 

of the long time scale (defined by variable t): t ~ p~l = 1. Also, once a sequence has 

begun, t is frozen. This reflects the fact that t/tseq 3> 1, where tseq is the short time 

scale (or time scale for the duration of an earthquake sequence). As a result, the two 

time scales in the model are well separated, a fact which is important to obtain S O C in 

a model as discussed in chapter 1. 

The resetting rules of the stress threshold of a ruptured square are defined in step 7. 

Rules I and II do not have a physical basis contrary to the rules used by X u et al. in 

[113, 114], for which slow annealing of the fracture surfaces was allowed. In particular, 

rules I and II avoid the problem of having to deal with the whole range of time scales 

implicit in the annealing process of a fracture surface. The big advantage of using rules I 

and II is that they allow for the easy investigation of the effect of disorder on the scaling 

properties of the model (see chapter 3). 

Step 10 defines an independent redistribution procedure when more than one square 

break simultaneously. When such a procedure is used, the model of X u et al. is said to be 

a series model (according to the terminology in [35]). This means that the time for the 

stress on a ruptured square to be released is shorter than the time needed to redistribute 

(transmit) that stress to the other squares. Therefore, we have a series of stress releases, 

followed by a series of stress transmissions, followed by a series of stress releases and so 

on. We will see in chapter 4 that this independent redistribution procedure gives rise to 
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earthquake sequences that are temporally not correlated. The model of X u et al. is also 

said to be quasistatic because it does not describe the details of the dynamical process 

of rupture, but only the stress distribution before and after an earthquake sequence 

(treated as an instantaneous event on the long time scale). In other words, the inertial 

forces on the long term, which are very small compared to other forces, are neglected and 

thus, the region is always in mechanical equilibrium. Therefore, the model of X u et al. 

describes the avalanche analogue of a fracture, or a moving dislocation [97]. According 

to Sornette et al. [95], a series (or dislocation) model is more adapted to the study of 

large earthquakes, i.e. the ones which break the entire thickness of the earth's crust. 

The latter situation is precisely the one which we consider in this work (see the above 

paragraph related to step 1). 

In this work, we estimate the magnitude of an earthquake in a simplified way by 

counting the number of squares that have broken during an earthquake sequence (step 

11). The use of such an estimator of the earthquake magnitude (i.e. S) is convenient 

since most of the work that has been done on earthquake models considered a similar 

estimator. As a result, the comparison of our results to the ones obtained by other people 

will be easier. Obviously, other estimators of the earthquake magnitude could have been 

used, such as a^j — o^aft, where &bef and aa/t are the average stress in the system before 

the earthquake and the average stress in the system after the earthquake respectively. 

However, we do not believe that the scaling properties of the model of X u et al. (see 

chapter 3) will be qualitatively dependent on the estimator of the earthquake magnitude 

used, and so, we consider only the above definition in the present work. 

The algorithm outlined above describes how to apply the model of X u et al. to the 

study of earthquakes. In its current version (and also in [42]), this model conserves the 

stress if the small fraction of it lost at the boundaries of the region due to the long-range 

stress redistribution is ignored. (This fraction goes to zero as the size of the region goes 
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to infinity). In addition, stress dissipation can be incorporated into the bulk of the region 

as well by multiplying a (f) at all rexcept r*o (rupture location) by a factor a between 0.0 

and 1.0 [see (2.8)]. The reason for introducing parameter a is to investigate the effect of 

the degree of stress nonconservation on the scaling properties of the model, a task which 

will be performed in chapter 3. 

In all cases, the system organizes itself into a stationary state where on average the 

stress added to the region balances the stress removed from it. The stationary state of the 

model can be obtained by initially discarding a large number of earthquake sequences. 

Afterwards, by generating a sufficient number of subsequent sequences, it can be checked 

whether the cumulative size-frequency distribution obeys the Gutenberg-Richter power 

law [43] 

C ( S ) oc S~T, (2.9) 

where C(S) is the fraction of sequences during which S or more squares have ruptured, 

and r is the exponent of the power law. 

2.5 Comparison of the M o d e l of X u et al. to Other Models 

Before we study the scaling properties of the model of X u et al. (see chapter 3), we com

pare the latter to other earthquake models and to models of integrate-and-fire oscillators. 

2.5.1 M o d e l of X u et al. versus other earthquake models 

Friction and fracture are two equally important phenomena occurring during earthquakes. 

To our knowledge, only the model of Mora and Place [71] is able to incorporate both 

friction and fracture in a unique model. Most of the earthquake models deal with either 

friction or fracture. The models dealing with friction only are stick-slip models and the 

ones dealing with fracture only are lattice models (see section 2.2). The model of X u et 
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al. (presented in section 2.3) is a lattice model. We now describe in some details the 

model of Mora and Place, stick-slip models and other lattice models applied to the study 

of earthquakes. 

The model of Mora and Place is based on molecular dynamics. While it is infeasible to 

directly simulate the number of particles required for geophysical scales, this model can be 

used to simulate larger units such as pieces of rock. The interactions between the particles 

are specified through potentials which are compatible with geophysical observations. Up 

to now, the number of particles considered in the model of Mora and Place has not been 

sufficient to simulate in a realistic way the behavior of a two-dimensional tectonic plate 

(see [25]). 

Stick-slip models focus on regions with a pre-existing fault. One of the first model 

of this type was the one-dimensional model of Burridge and Knopoff [12]. It consists in 

a chain of blocks lying on a rough stationary surface and connected by springs. Also, 

the blocks are all connected by flat springs to a top surface moving with a certain speed 

relatively to the bottom surface (system driving). The dynamics of the model is defined 

as follows: as long as all the Fj's (Fi is the total force on block i) are smaller than a 

constant threshold value (Fth), then all the blocks are stuck. As the system is being 

driven, eventually one block i will have Fi > Fth and the excess force will be relaxed. 

The excess force will be transferred equally to the two neighboring blocks, which can 

in turn slip if they overcome the static friction force with the bottom surface. A chain 

reaction (sequence) might thus happen, which can involve an arbitrary number of blocks 

(N). The frequency distribution of sequences involving N slipping blocks was shown not 

to be a power law by Burridge and Knopoff [12]. 

The model of Burridge and Knopoff has inspired a great deal of work in the last 

decade. For instance, Carlson and Langer [13] added a nonlinear friction law to the 

original model and got the power law that Burridge and Knopoff were unable to obtain. 
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Nakanishi [73] also got a power law by studying a coupled map lattice version of the 

original model of Burridge and Knopoff. Despite these findings, the model of Burridge 

and Knopoff as well as its many versions were shown to N O T be self-organized critical [93]. 

O n the other hand, the model of Olami et al. [77] was shown to display S O C [17]. The 

latter model was also inspired from the model of Burridge and Knopoff for its derivation 

but, apart from this, it can be regarded as a two-dimensional generic representation of 

a nonconservative model, since the final equations of the model of Olami et al. do not 

contain the physical constants of the original model. In this sense, we do not consider 

the model of Olami et al. as a stick-slip model. Stick-slip is a label which will be reserved 

for the models displaying explicitly the physical constants of the model of Burridge and 

Knopoff. 

The stick-slip models are in principle able to solve the fully dynamic problem where, 

during an earthquake, a rupture propagates with a speed close to that of shear waves. 

However, these models are too simplified from a geometrical point of view: the region 

modeled is that of a pre-existing fault with many asperities coupled only to their nearest 

neighbors and so, nothing is said about how the fault was generated and about the effect 

of the surrounding medium. 

The creation of faults is related to the fracture phenomenon and can be modeled 

using lattice models such as the ones discussed in sections 2.2 and 2.3. These models 

use a continuum (macroscopic) description of matter as opposed to the discontinuous 

(microscopic) description used in the model of Mora and Place [71]. The continuum 

description of matter allows for the easy prediction of where the rupture will occur but 

poorly describes the evolution of discontinuities such as faults [27, 106]. Apart from the 

models discussed in [45], other models using a continuum description of matter include 

the ones of Chen et al. [15] (see also a modified version of it in [6]) and X u et al. 

[113, 114] (see section 2.3). The latter have been applied to the study of earthquakes. 
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They differ in the discretization scheme used to solve the continuum elastic equations. 

In [15] (and [6]), the basic unit of discretization is a bond whereas in [113, 114], it is a 

square. As a result, the earthquake source is a dipole in [15] (and [6]) and a quadrupole 

(double couple) in [113, 114]. A rupture is followed by long-range stress redistribution in 

both models however. This should be contrasted with stick-slip models and the model 

of Olami et al. [77] in which the stress redistribution is to the nearest neighbors only. 

2.5.2 M o d e l of X u et al. versus models of integrate-and-fire oscillators 

A class of models, which are mainly applied to the study of biological systems, has 

appeared in the last decade. These models focus on large assemblies of oscillators which 

can spontaneously evolve to a state of large scale organization. Collective synchronization 

is the best known phenomenon of this kind. This effect has attracted much interest in 

the study of fireflies [10], pacemaker cells of the heart [82], cells of the pancreas [90], etc. 

Most of the works on synchronization have used models in which the interactions between 

the oscillators are smooth and continuous in time. Comparatively few works have been 

done with models in which the interactions are episodic and pulselike, although these 

models are relevant to the study of certain species of fireflies for instance. Models of this 

type are often called models of Integrate-and-Fire Oscillators (IFO). 

Models of IFO are closely related to the models of X u et al. [113, 114] and Olami et 

al. [77]. This can be seen by identifying the state variable of earthquake models (usually 

a shear component of the stress tensor) with the voltage magnitude of models of IFO. 

It is of interest to note that the models of IFO study the level of mutual entrainment 

(i.e. the synchronization) between the elements whereas the earthquake models focus 

on the size distribution of the sequences generated (if it is a power law, then the model 

might display S O C ) . Considering the fact that both of these classes of models contain 

the same basic ingredients then, from this point of view, S O C and synchronization can 
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be considered as two sides of the same coin. For completeness, we mention that, contrary 

to earthquake models, the models of I F O could allow for more general driving processes 

than slow uniform driving (e.g. random driving of individual elements). 

Models of IFO exist in at least two varieties. In some models [69, 7], the oscillators 

are equally coupled with each other, so the firing of one oscillator leads to an equal 

redistribution of voltage to all the other oscillators in the system. In other models (see 

[19] for example), the oscillators are coupled only to their nearest neighbors, so the firing 

of one oscillator leads to a voltage redistribution to the nearest neighbors only. Therefore, 

as in earthquake models, the firing of one element leads to the redistribution of the state 

variable either to all the other elements or to the nearest neighbors of that element only. 



Chapter 3 

Study of the Scaling Properties of the M o d e l 

The scaling properties of the model of X u et al. [113, 114] are studied by means of a 

finite-size-scaling analysis. In section 3.1, we give the motivation for such a study and in 

section 3.2, we present how to implement finite-size scaling in the context of SOC in an 

earthquake model. The results of the analysis, obtained by considering one-dimensional 

lattices, are presented in section 3.3 in both the conservative and non-conservative cases. 

The stress ordering in one-dimensional lattices is investigated in section 3.4. This inves

tigation is useful in explaining some of the results obtained in section 3.3. We introduce 

in section 3.5 a mean-field version of the model. Finally, in section 3.6, we summarize 

the important results obtained in this chapter and draw our conclusions. 

3.1 Motivation for this Study 

The Gutenberg-Richter power law (2.9) is obtained only in the limit of an infinite system. 

Obviously, the power law may also appear for a finite system, but it will prevail only over a 

limited range. The system is never completely scale invariant. It is then important to sort 

out effects due to the finite size of the system and those due to the finite size of the basic 

unit of discretization. Such a problem arises because systems of interest are heterogeneous 

on scales much smaller than the discretization unit, so that the continuum limit is not 

meaningful. Quantities relating to the stress threshold (ath), the degree of stress retained 

by a ruptured square (X) [see section 2.3] and the degree of stress conservation (a) [see 

section 2.4] may therefore depend upon the size of the discretization unit and the size 

32 



Chapter 3. Study of the Scaling Properties of the Model 33 

of the system in a non-trivial way. This type of dependence was realized by Weibull 

[110], but has since often been forgotten. To illustrate more specifically these ideas, we 

discuss the effect of parameter X introduced in section 2.3 [see (2.7)]. The case X = 0 

corresponds to a rupture opening the whole element, as in [6]. The interpretation of a 

rupture event and the scaling properties are somewhat different if X ^ 0. We expect 

parameter X (as well as the stress threshold distribution) to depend on the size of the 

discretization unit. In fact, two discretizations of the same system can be considered, 

one with a coarser mesh than the other. Then, a coarser mesh element will rupture more 

often than a finer mesh element, but the total number of rupture events in the whole 

system will be the same. These ideas will be illustrated quantitatively in section 3.3. 

Disentangling the effects due to the finite size of the system from those due to the 

finite size of the basic unit of discretization is the motivation of the study in this chapter. 

To achieve this, we need to vary the various parameters of the model of X u et al. From 

what we said above, it is clear that varying the parameters of the model is not merely 

a mathematical procedure: it is a physically motivated one. The results obtained from 

the study in this chapter will ultimately serve to confirm whether the model of X u et al. 

really displays S O C . Before we present our results, we briefly describe finite-size scaling. 

3.2 Finite-Size Scaling 

It is now well known that a finite system can not have a true singularity in its thermody

namic properties at a non-zero temperature. For instance, this is easily seen in the case 

of the Ising model in any dimension. Experimental systems, even if very large, are always 

finite. For all practical purposes, true phase transitions do occur in these finite systems 

and this fact must be reconciled with the rigorous proof that no phase transition can 

occur in any finite system. This is one of the roles of finite-size scaling. As an illustration 
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of this, we consider a L x L x L system. Such a system falls into the category mentioned 

above of a system without a true thermodynamic equilibrium phase transition. In this 

situation, the susceptibility and specific heat remain finite at all temperatures and the 

power law divergences of the infinite system are replaced by rounded peaks. Finite-size 

scaling describes the dependence of the peak height and the range in temperature over 

which the power-law behavior is observed on the system size L. 

Finite-size scaling has been extensively used in the study of equilibrium phase tran

sitions (see for instance [84]). Its use in the present work is justified by the fact that, 

as argued by Sornette et al. [94], S O C can often be mapped onto ordinary criticality. 

The way to implement mathematically finite-size scaling, in the context of S O C in an 

earthquake model, is to replace the Gutenberg-Richter power law (2.9) (valid in the limit 

of an infinite system) by 

C(S,L) = S-T

9[{S-1)L-V], (3.1) 

where L is the largest dimension in a L\ x L 2 lattice, g a scaling function and v an 

exponent that expresses how the finite-size effects scale with the size of the system. 

When comparing systems with different parameter values, we also attempt 

C(S, L) = S-Tg[(S - \)L-v/f(X, 9h a)], (3.2) 

where we assume that parameter 9U, the upper bound for the stress threshold distribution 

(see step 4 of section 2.4), is set to a fixed value. The function / is included to test our 

hypothesis that, if the mesh size for a given system is changed, then some of the parameter 

values must also be changed. The term (S — 1) in the argument of the scaling function 

ensures that g(0) = 1, i.e. when scaling, we map the size interval [l,oo) on [0, oo). It is 

of interest to note that the function g acts as a correction factor for the finite size of the 

system and the finite size of the discretization unit. 
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We are now ready to do our finite-size-scaling analysis. Our hope is that finite-size 

scaling will turn out to be as useful for S O C as for ordinary criticality. 

3.3 Results of the Finite-Size-Scaling Analysis 

We consider lattices with L x L2 units, where L 2 = 1 (unless specified otherwise). The 

lattice configuration considered is therefore a strip (i.e. a one-dimensional lattice). We 

believe that the scaling properties of the model of X u et al. will be sensitive to this 

particular lattice configuration though, in the sense that with two-dimensional lattices, 

we would probably find different values for the exponents r and v [see (3.1) and (3.2)}. 

However, the use of one-dimensional lattices allows one to go to large lattice sizes, and 

check if the scaling laws are valid over the whole range of lattice sizes. 

Now, regarding the parameters of the model, 9U is fixed to the value 1 while 9i, X 

(see subsection 3.3.1) and a (see subsection 3.3.2) are allowed to vary. In particular, 

parameter a can be set to 1 (conservative case) and to values smaller than 1 (non-

conservative case). Also, the degree of disorder in the distribution of stress thresholds 

(ath £ [9i,9u = 1.0]) can be changed by using one or the other resetting rules (see step 7 in 

section 2.4). The use of rule I maintains the degree of disorder of the initial distribution 

of stress thresholds, whereas the use of rule II makes disorder disappear after a small 

number of iterations. Below, the latter two situations will be respectively identified as 

random ath and constant ath-

We let the model reach a stationary state by discarding the first 105 earthquake 

sequences and include 106 sequences to do the finite-size-scaling analysis. 
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3.3.1 Results in the conservative case (a = 1) 

We show in figure 3.1 the cumulative size-frequency distribution C(S,L) for random ath 

and various L values. The main features are the power-law behavior for small events, 

and the L-dependent fall-off of the frequency of large events. The power-law behavior 

extends over two or three decades depending on L. In figure 3.2, we note that the data 

sets of figure 3.1 obey quite well the scaling behavior predicted by (3.1) [see the middle 

curves]. The exponent r = 0.30 was found and cannot be changed by more than 0.01 

before there is a noticeable deterioration in the data collapse. As can be seen from figure 

3.1, this value of r is smaller than the one obtained from a linear fit to the straight 

segment of the log-log plot (especially for L = 200 and L = 400). However, the exponent 

r is the same if we count the number of ruptures on distinct units or if we count all 

ruptures. The exponent v, on the other hand, is different in these two cases, as is the 

scaling function g. When all ruptures are counted, the same exponents are found for the 

L x 1 and L x 2 lattices, but the scaling functions are different. We attempted a data 

collapse of the data sets for the L x 1 and L x 2 lattices (when all ruptures are counted) 

by rescaling the horizontal axis for one of the sets, but found it to be significantly worse 

than that of figure 3.2. 

We now turn to the effect of having constant ath- From figure 3.3, we see that large 

events become less common. We were unable to find a scaling function which fits both 

small and large events for L x 1 lattices, no matter if all ruptures or ruptures on distinct 

units (results not shown) are counted. However, from figure 3.3, it is clear that the 

shoulder broadens as L increases, so C(S, L) might scale with L if the small events (i.e. 

those with S < 50) are not considered in the data collapse. We found that, for r = 0.30 

and v = 1.38 (values obtained above with L x l systems having random ath), the scaling 

function (3.1) works well with systems having constant ath when only the events with 
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Figure 3.1: Log-log plot of the cumulative size-frequency distributions for L x 1 lat
tices, random ath, X = 0, 9i = 0.25 and a = 1. For comparison, we show the curve 
C(S) = 5 - ° - 3 0 . 
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Figure 3.2: Log-linear scaling plots of the cumulative size-frequency distributions for 
L x 1 and L x 2 lattices, random ath, X = 0, 9i = 0.25 and a = 1. A l l curves use the 
fitting parameter r = 0.30. For the left and middle curves, all ruptures are counted while 
for the right curves, only ruptures on distinct squares are counted. The left curves were 
obtained for L x 2 lattices using v = 1.38, the middle curves for L x 1 lattices using 
v = 1.38, and the right curves for L x 1 lattices using v = 1.01. 
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S > 50 are included in the fit (results not shown). This shows in particular that exponent 

r = 0.30 is universal in the sense that it is independent of the degree of disorder in the 

model. O n the other hand, the crossover region (S < 50) on figure 3.3 is not a universal 

feature since it appears only for systems with constant oth- We have checked that the 

crossover region is a robust feature which is not sensitive to the initial configuration of 

the model. Therefore, even if an ensemble average of initial configurations is carried out 

(see [45]), the crossover region remains. The presence of the crossover region will be 

explained in the next section by studying the stress ordering in one-strip systems with 

constant oth-

We next investigate the effect of the parameter X controlling the fraction of stress 

retained by a ruptured square. The data collapses on figure 3.4 are seen to be good for 

systems with random o~th- Also, for a fixed L, we note that an increase in X extends 

the power law to larger S. This makes sense because a larger X means that a ruptured 

element retains more stress, so it will be easier to have it involved in the near future in an 

earthquake sequence (because stress remains close to stress threshold). As a result, the 

largest size for an earthquake sequence increases. In figure 3.5, we show, for a 1000 x 1 

lattice and random ath, a fit to the scaling form 

C(S,L) = S-Tg[(S-l)L-»/f(X)}. 

The fit, although not perfect, implies that a system which has been discretized by a fine 

mesh and a small value of X (i.e. a ruptured square almost opens) can be approximated 

by a coarser mesh and a larger value of X (i.e a larger fraction of the stress is retained 

by the ruptured square). 

The effect of changing the lower bound 0; for the uniform stress threshold distribution 

is shown on figure 3.6. The data collapses are very good for systems with random ath-

For a fixed L, we note that a decrease in Q\ extends the power law to larger S. Comparing 
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Figure 3.3: Log-log plot of the cumulative size-frequency distributions for L x 1 lattices, 
constant ath, X = 0, 0/ = 0.25 and a = 1. The segment S < 50 is a crossover region and 
its origin is explained in section 3.4. Beyond 5 > 50, C(S,L) has a linear segment with 
a slope close to 0.30. This linear segment gets longer as L increases but cuts off at large 
S. For comparison, we show a curve proportional to 5 - 0 3 0 . 
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Figure 3.4: Log-linear scaling plots of the cumulative size-frequency distributions for 
L x 1 lattices, random crth, 9i — 0.25, a = 1 and two values of X. Exponents used are 
T = 0.30 and u = 1.38. 
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Figure 3.5: Log-linear scaling plot of the cumulative size-frequency distributions for a 
1000 x 1 lattice, random ath, 9i = 0.25, a = 1 and three values of X. Exponents used 
are r = 0.30 and v = 1.38. 
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figures 3.4 and 3.6, we see that, for a given L, an increase in X has much the same effect 

on the power law as a decrease in We have also attempted a fit to the scaling form 

C{S,L) = S-rgftS -l)L-»/M)]. 

The quality of the fit (see figure 3.7) is comparable to the one on figure 3.5. This result 

implies that a system which has been discretized by a fine mesh and a large value of 9i, 

can be approximated by a coarser mesh using a smaller value of B{. We expect that this 

near equivalence can be made even better if we simultaneously adjust both X and #/. 

We have also investigated the effects of changing parameters X and 9i in systems 

with constant ath- Again, we fail to find a satisfactory scaling form which is valid for 

both small and large events since a crossover region at small S is still present. As we did 

above, we attempted data collapses for various X and 9t by focusing only on the events 

outside the crossover region and found that with r = 0.30 and v = 1.38, the scaling 

function (3.1) works well. This shows that r m 0.30 is a universal value. 

Before we consider the case of non-conservative systems (a < 1), we comment on the 

value obtained for exponent r . We have obtained through a finite-size-scaling analysis 

r = 0.30 ± 0.01, which seems to be robust. This value can be compared with the 

one obtained in [68] (0.31 ± 0.04), which was obtained with a long-range scalar model 

with quenched disorder (stress thresholds are kept equal to their initial random values 

throughout a simulation). Our value of r is in agreement with the latter, but is not in 

agreement with the value (0.4) obtained by X u et al. [114] and Chen et al. [15] for a 

two-dimensional system. As we have checked for a 100 x L 2 system (results not shown), 

the discrepancy between our value of r and theirs is significant since as Li increases, the 

cumulative size-frequency distribution settles onto a curve with a linear segment having a 

slope close to 0.4. This was observed for systems with both random ath and constant ath-

(In some way, this discrepancy shows that if we would have studied the scaling properties 
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Figure 3.6: Log-linear scaling plots of the cumulative size-frequency distributions for 
L x 1 lattices, random crth, X = 0, a = 1 and two values of 0/. Exponents used are 
T = 0.30 and v = 1.38. 
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Figure 3.7: Log-linear scaling plot of the cumulative size-frequency distributions for a 
1000 x 1 lattice, random atn, X = 0, a = 1 and three values of f?;. Exponents used are 
T = 0.30 and v = 1.38. 
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of isotropic lattices instead of one-strip lattices, then we would have obtained a different 

value of r , but apart from that, qualitatively similar results). Finally, Christensen and 

Olami [17] obtained a different value (0.22 ± 0 . 0 5 ) through a finite-size-scaling analysis of 

the short-range, two-dimensional model with constant oth in [77]. Therefore, the models 

in [77] and [114] seem to belong to different universality classes. Some light is shed on 

this question in section 3.5. 

3.3.2 Results in the non-conservative case (a < 1) 

In this subsection, we examine two effects for L x 1 systems with random ath a n d constant 

Gth when X is fixed to 0 and 6i to 0.25. The first one is the effect of parameter a for a 

fixed L, and the second is the effect of L for a fixed a < 1. 

In figure 3.8, we present the cumulative size-frequency distributions for different values 

of the parameter a controlling the level of stress conservation for a 2000 x 1 system with 

random o~th- A decrease in a makes the power law cut-off happen at increasingly smaller 

S. Also, as a decreases, the magnitude of the slope of the straight segment of the log-log 

plot increases, an effect which was also noticed in [17]. In figure 3.9, we show C(S,L) 

for a = 0.94, random ath and different lattice sizes (L). As expected, as L increases, the 

straight segment of the log-log plot extends to larger S. However, a saturation is noticed 

for L > 2000. We have fitted the cumulative size-frequency distribution for fixed L and 

a (see the dashed lines on figure 3.8) to 

C(S) = S~T exp[(l - S)/S0 + bS2 + cS3+ ...}. (3.3) 

For large L, we found that only the first term in the argument of the exponential is 

significant, where So is a characteristic earthquake size. In this case, (3.3) reduces to a 

form similar to the one fitted in [58]. In table 3.1, we give the values of r and So for various 

values of a and L. For a fixed a, SQ{L) increases with L and appears to saturate. It is 
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a L T s0 

0.94 4000 0.482 52.2 
0.94 2000 0.477 50.0 
0.94 1000 0.490 48.2 
0.94 400 0.419 37.2 
0.94 200 0.354 27.4 
0.97 2000 0.428 115 
0.97 1000 0.405 98.5 
0.97 400 0.361 70.6 
0.99 2000 0.386 407 
0.99 1000 0.367 307 
0.99 400 0.277 149 

Table 3.1: Exponent r and characteristic earthquake size So for L x 1 lattices, random 
o~th, X = 0, 6i = 0.25 and three values of a. 

possible with our data that SQ(L) diverges, but slower than L (SQ{L) ~ IP with /? <C 1) 

as suggested by Janosi and Kertesz [50]. The discussion in section 3.5 suggests, however, 

that this is unlikely. From table 3.1, we also note that, for a fixed L , So increases with 

a and r increases as a decreases. We therefore corroborate quantitatively conclusions 

obtained qualitatively from the curves on figure 3.8. 

We have also studied the above effects for systems with constant ath (results not 

shown). Again, as in the conservative case, a crossover region is observed. Then, we 

found that a straight line can be fitted, for fixed L and a, to the log-log plot of C(S, L) 

versus S for values of S outside the crossover region up to a cut-off value much smaller 

than in the conservative case. We noted that the slope of the straight segment increases 

and the cut-off value decreases as a decreases. Also, for a fixed cv, we found that the 

cut-off value saturates as L increases. Because the cut-off value (for a fixed L) is smaller 

for a < 1 than for a = 1, we can again associate a characteristic earthquake size So to 



Figure 3.8: Log-log plot of the cumulative size-frequency distributions for a 2000 x 1 
lattice, random ath, X = 0, B\ = 0.25 and three values of a. The dashed lines are the fits 
to relation (3.3). 
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Figure 3.9: Log-log plot of the cumulative size-frequency distributions for L x 1 lattices, 
random crth: X — 0, 9t — 0.25 and a = 0.94. 



Chapter 3. Study of the Scaling Properties of the Model 50 

C(S,L). 

Finally, it was observed that simulations running for longer times are providing data 

which are not altering our results. This is in contrast to a study of the short-range model 

in [77], which found that the time for total invasion of the interior of large lattices by S O C 

can be very large, especially for values of a close to 0.0 [67]. We believe that because the 

model of X u et al. is long-range, the invasion is much faster than in the model in [77]. 

3.4 Stress Ordering in One-Dimensional Lattices 

In the previous section, we found that for one-strip systems with constant ath, the cumu

lative size-frequency distribution C(S, L) exhibits a crossover region for S < 50, which 

seems to be robust. We also discovered that for S > 50, up to a cut-off value scaling with 

L, the log-log plot of C(S,L) versus S displays a straight segment (see figure 3.3). The 

goal of this section is to explain the presence of that crossover region. To achieve this, 

we study the stress ordering in one-strip systems, and in particular in one-strip systems 

with constant ath. To our knowledge, a study of the stress ordering in a system has only 

been performed by Grassberger [38] in the case of the short-range model in [77]. We 

begin by describing the stress ordering study and afterwards, attempt an explanation for 

the presence of the crossover region for systems with constant oth-

The stress ordering in a system can be either local or global [38]. To explain the 

presence of the crossover region, it is sufficient to study the local stress ordering. In 

fact, in the case of a one-strip system with constant ath, the study of both kinds of 

stress ordering is redundant since if some local stress ordering is found in a system, then 

automatically global stress ordering also prevails in the system. Local stress ordering 

is studied by considering the stress differences between nearest-neighbor elements in a 

system, i.e. 5{ = | ai+i — Oi \ (i = 1,2,...,L — 1 for a L x 1 system). In comparison, 
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global stress ordering can be studied by focusing on the fitness, defined as / ; = o\h — o~i, 

where i = 1, 2 , L for a L x 1 system, o\h being the stress threshold of the iih element. 

A histogram plot of the <5j's can be obtained and used to conclude whether local stress 

ordering exists in a system at any given time. The presence of peak(s) in the histogram 

ultimately proves that local stress ordering prevails in the system. 

We begin our exploration by considering a system with constant ath- O n figure 3.10, 

we plotted the Si's for a 1000 x 1 system. A series of patches of various sizes are observed 

at this particular time (arbitrarily defined as to, where here time refers to the long time 

scale) for small <5;. In particular, the two biggest patches on figure 3.10 have sizes 61 (at 

% ~ 800) and 46 (at i « 600), which means that the number of elements at about the 

same stress level is 62 and 47 in these two cases respectively. Assemblies of elements next 

to one another, which are at about the same stress level, will be referred to as GROUPS 

of elements below. As long as one element in a group has its stress over o~th, then the 

other elements in the group will likely rupture in the same sequence. We have checked 

that the groups of elements are not static features, i.e. they do not involve the same 

elements at later times. A histogram of the data of figure 3.10 was obtained and the 

result is plotted on figure 3.11 (solid line). The other curve on figure 3.11 was obtained 

with data taken at time t\ > t0. The histograms at both times display a peak at Si ~ 0, 

showing that local stress ordering prevails in the one-strip system with constant ath-

We have also checked that local stress ordering is maintained at any time by varying 

parameters X and 9i (results not shown). The quantitative difference a larger value of 

X (or a smaller value of 9{) makes, as compared to X = 0 (or 9i = 0.25), is to restrict 

the Si's to be smaller numbers. For instance, we have checked that for X = 0.8, the Si's 

cut off approximately at 0.2 (as compared to about 1.0 for X = 0 on figure 3.11). 

At this point, we attempt an explanation for the presence of the crossover region 

observed for systems with constant ath (see figure 3.3): during an earthquake sequence, 



Chapter 3. Study of the Scaling Properties of the Model 52 

Figure 3.10: Distribution of the stress differences 6i (i = 1,2, ...,999) between the near
est-neighbor elements of a 1000 x 1 system with constant oth, X = 0, 0i = 0.25 and 
a = 1. 
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Figure 3.11: Histogram plots of the stress differences <5j between the nearest-neighbor 
elements of a 1000 x 1 system with constant oth, X = 0, 6i = 0.25 and a = 1 at two 
distinct times. The solid line curve was obtained with data taken at the arbitrary time to 
(data of figure 3.10) and the curve plotted using a dashed line and lozenges was obtained 
with data taken at time t\ > to. Fifty bins were used to get the histograms. 
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when the ruptured elements are found mostly in a given group of elements or in a couple 

> of small groups of elements away from other groups in the system, then the size of the 

sequence (S) is limited by the number of elements in the group(s), so S tends to be small 

(i.e. in the crossover region). O n the contrary, if the ruptured elements are found mostly 

in groups of appreciable sizes close to one another, then S tends to be large. In other 

words, the localized (versus delocalized) nature of the activity in a sequence determines 

whether S is small or large. We believe that this explanation is plausible considering the 

fact that for a 1000 x 2 system with constant o~th, no crossover region is observed (results 

not shown) since the presence of a second strip of elements allows the derealization 

of the activity to take place. Along the same line, we have noticed that systems with 

random ath never display patches (and in a more general sense, local stress ordering) such 

as the ones on figure 3.10 (results not shown), so the localization of the activity never 

happens in these systems. This explains why systems with random ath always display 

simple cumulative size-frequency distributions (as on figure 3.1 for instance). 

We now turn to a simplified version of the original model of X u et al. by considering 

a mean-field version of it. 

3.5 M e a n - F i e l d V e r s i o n o f the M o d e l of X u et a l . 

We present in this section a mean-field version of the model of X u et al. in which all the 

elements are coupled equally with each other. As a result, it is not necessary to use a 

Green function and to refer to a lattice structure anymore. The additional stresses (a1) 

caused by the rupture of a given square are now all expressed as 

• = ^ f , (3.4) 

where L is the number of squares in the system and the other symbols have the same 

meaning as in the case of relation (2.8). Therefore, the rupture of a square is followed by 
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a stress decrease [(1 — X)oold] on this element and a stress increase [(1 — X)a°ld/(L — 1)] 

on all the other L — 1 elements, which leads to the same total stress value before and 

after the rupture. Such a situation leads to a total stress growing without limit in time. 

To prevent this from happening, we can multiply a' in (3.4) by a constant a between 0.0 

and 1.0. We use the same symbol as in subsection 3.3.2, but it is important to keep in 

mind that in the mean-field model, nonconservation of stress is essential for the model to 

describe earthquakes. In the mean-field model, a should be adjusted to values close to 1 

in order to not have earthquakes releasing artificially too much stress from the system. 

We will say more about this below. 

In section 3.3, we presented results obtained with a version of the original model of X u 

et al. Systems with random ath and constant o~th were both considered. In the case of the 

mean-field model, systems with constant ath lead, in the stationary state, to trivial size-

frequency distributions, since groups of elements which ruptured simultaneously in the 

past, will rupture simultaneously in the future as well. Indeed, for a given such system, 

depending on the number of elements (Ne) in each group, the resulting size-frequency 

distribution consists of a series of peaks, one for each distinct value of Ne. Therefore, 

the mean-field model is N O T self-organized critical when disorder in the stress threshold 

distribution is absent, since no power law can be obtained for the size-frequency distri

bution. In systems like this, it remains the possibility of studying the synchronization in 

the system, but we will not do such a study here (see however [69, 7] for a discussion of 

mean-field models of integrate-and-fire oscillators). The study of systems with random 

ath with the mean-field model is non-trivial. 

The study of systems with random ath with the mean-field model can be done by 

implementing the algorithm of section 2.4, except for steps 1 and 2. Only resetting rule 

I (see step 7) of the algorithm is meaningful and so is the only one we use. To do step 8 

of the algorithm of section 2.4, i.e. to calculate the stress redistribution after the rupture 
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of an element, relation (3.4) is used rather than (2.8). Again, we let the model reach a 

stationary state by discarding the first 105 earthquake sequences generated and include 

10 6 sequences to obtain the cumulative size-frequency distribution C(S,L) for a given 

number of elements (L) in the system. Now, if we would set a to a given value and plot 

C(S, L) for a few values of L, then we would obtain a graph similar to the one on figure 

3.9, with no data collapse of the distributions for different values of L. Because we want 

to attempt a data collapse of the distributions for different L, we use an alternate route: 

for a given L, a will be set equal to a e / / , the effective value of a for a L x 1 system 

(when a — 1) studied with the original model of X u et al. We plotted on figure 3.12 

log(l — aeff) versus log(L) for L 6 [100,1000], where cv e// was obtained by averaging 

over 2000 earthquake sequences generated by the original model of X u et al. with X = 0, 

0i = 0.25 and a = 1. From figure 3.12, we see that log(l — aejj) decreases about linearly 

with log(L). The slope of the straight line was found to be —1.02. The fact that aeff ^ a 

even if these two quantities are close together results from the long-range nature of the 

model of X u et al.: there is always a fraction of the redistributed stress from a ruptured 

element which is lost at the boundaries of the system. This fraction goes to zero as 

the size of the system goes to infinity (i.e. L —» oo). Now, using for a in the mean-

field model the value of aeff on figure 3.12 for the appropriate L, we did simulations 

of the mean-field model for L = 200, L = 400 and L — 1000. A fit of the cumulative 

size-frequency distributions to the finite-size-scaling function (3.1) was attempted with 

the values r = 0.3 and v = 1.38, but the data collapse was found to be bad (results 

not shown). For this reason, we simply plotted on figure 3.13 C(S, L) versus S without 

finite-size scaling. It is obvious from the figure that even if C(S, L) extends to larger 

S as L increases, it is not possible to get a statisfying data collapse for both small and 

large S. As a result, the exponent r seems to be sensitive to the details of the model, 

i.e. in this case the fact that the elements are equally coupled with each other and not 
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arranged in a lattice as in the original model of X u et al. It is also possible that the 

trick we have used above to fix a for a given L in the mean-field model does not allow to 

get optimal results, which could explain why no satisfying data collapse was obtained. 

It is relevant to mention that ae/f obtained from the original model of X u et al. is not 

unique for a given L in the mean-field model since it depends on how the squares are 

joined together in the original model. For instance, aeff obtained for L = 400 is not the 

same if the lattice configuration is a strip (400 x 1) rather than a two-dimensional 20 x 20 

arrangement. 

This study of the mean-field model was just a first attempt at trying to investigate 

the effect of changing the rules of the model. Much work along this line remains to be 

done. 

3.6 Summary of the Important Results and Conclusions 

In this chapter, we have studied the scaling properties of the original model of X u et 

al. as well as a mean-field version of it by means of a finite-size-scaling analysis. In 

the mean-field model, the elements are equally coupled with each other. In the original 

model, one-dimensional (L x 1) lattices were considered for convenience. We summarize 

the results obtained in this chapter and draw our conclusions. 

For the original model, the finite-size-scaling function (3.1) works well over the whole 

range of S for systems with random ath and for S > 50 for systems with constant ath-

For systems with constant ath, there is a crossover region for S < 50 and it appears 

whatever the parameter values in the model. The existence of such a crossover region is 

related to the localized nature of the activity on a group of elements or on a couple of 

small groups of elements at about the same stress level (and therefore likely to rupture 

together as long as one of them will do so) isolated from any other group in the system. 
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Figure 3.12: Log-log plot of 1 — a e / / values versus L for L x 1 lattices, random a^, 
X — 0, 6i = 0.25 and a = 1 obtained with the original model of Xu et al. The slope of 
the straight segment was found to be -1.02. 
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Figure 3.13: Log-log plot of the cumulative size-frequency distributions for systems of L 
elements equally coupled with each other. The values of the parameters are X = 0 and 
the stress thresholds (i.e. the ath) are taken from a uniform distribution with 9i = 0.25. 
From left to right, the distributions refer to systems having L = 200, L = 400 and 
L = 1000. The values of a differ for all three distributions (see how they were adjusted 
in the text). 
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The crossover region disappears for two-dimensional systems with constant ath a s well as 

for systems with random oth-

The effects of parameters X (controlling the degree of stress retained by a ruptured 

square) and 9i (controlling the width of the uniform distribution of stress thresholds) 

were also investigated and we found a fair agreement with the finite-size-scaling function 

(3.2) over the whole range of S for systems with random ath and for S larger than about 

50 (outside the crossover region) for systems with constant ath- This result implies that 

a system which has been discretized by a fine mesh and a small value of X (or a large 

value of 6i) can be approximated by a coarser mesh using a larger value of X (or a smaller 

value of 0i). 

The exponents of the finite-size-scaling functions (3.1) and (3.2) were found to be 

T = 0 . 3 0 ± 0 . 0 1 and u « 1.38. This value of r is robust and in particular, it is independent 

of the degree of disorder in the system (i.e. it is the same for systems with random oth 

and constant ath)- However, we have checked that for systems with more than one strip, 

there is a crossover of the exponent r to r % 0.4. Therefore, the results in this chapter 

are quantitatively specific to one-strip systems. 

Introduction of stress nonconservation (controlled by parameter a) results in the 

appearance of a characteristic earthquake size (So), which is smaller than L for large L. 

For a fixed L, So increases with a and the exponent r increases as a decreases. The 

latter observation is in agreement with the findings of Christensen and Olami [17]. These 

results were found to be independent of the degree of disorder in the system. 

For the mean-field model, only the study of systems with random ath is non-trivial. In 

addition, this model necessitates stress non-conservation in order to apply to earthquakes. 

We have used a trick to fix parameter a for a given number of elements (L) in the mean-

field model. When such a trick is used, we get a rather poor fit to the finite-size-scaling 

function (3.1) when r = 0.30 and v — 1.38 are used. We conjectured that this could be 
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due to the sensitivity of the exponent r to the details of the model. However, it is also 

possible that the trick that we have used to fix a does not work well. 

The general conclusions that we can draw from our study of the scaling properties 

are that the model of X u et al. displays S O C in the conservative case but not in the 

non-conservative case. In the conservative case, this was proven by the fact that C(S, L) 

is a power law which cuts off due to finite-size effects. O n the other hand, in the non-

conservative case, a characteristic earthquake size smaller than the system size appears. 

In such a case, C(S,L) is best fitted to a function of the type (3.3) and the model is 

N O T self-organized critical. 



Chapter 4 

T i m e Series Analyses 

In this chapter, we implement two types of analysis of time series generated by the 

original model of X u et al. These time series are presented in section 4.1. In section 

4.2, we perform a nonlinear forecasting analysis. This analysis investigates whether the 

data in a time series generated from a dynamical system exhibit low-dimensional chaotic 

behavior, as opposed to high-dimensional (or stochastic) behavior. The second time 

series analysis consists in doing a rescaled range analysis, which allows computing the 

Hurst exponent (see section 4.3). This exponent enables one to learn about the time 

correlations (or memory effects) in a system. Finally, in section 4.4, we summarize the 

results obtained in this chapter and draw our conclusions. 

4.1 T i m e Series of Interest 

A t least two types of time series can be generated by the model of X u et al. The first 

type involves time series consisting in the size of the earthquake sequences (S) at different 

values of the long time (t): {Si} (i = 1, 2 , N ) . A typical time series of this type is 

plotted on figure 4.1 for a 100 x 100 system with random ath- A time series looking 

qualitatively similar is obtained for a two-dimensional system with constant ath as well 

as for one-dimensional systems (see chapter 3). (Most of the work in this chapter will 

be performed on time series for two-dimensional systems, but for completeness, we will 

sometimes analyze time series for one-dimensional systems with constant ath since we 

saw in chapter 3 that stress ordering prevails in these systems. Also, unless otherwise 

62 
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specified, the values of the parameters of the model of X u et al. will always be assumed 

to be a = 1, X = 0 and 9i = 0.25). From figure 4.1, we note that Si fluctuates greatly 

over time and that the sequences are instantaneous events on the long time scale. Also, 

even if it is not completely clear from the figure, the time intervals between consecutive 

earthquake sequences vary over several orders of magnitude. Therefore, a time series 

such as the one plotted on figure 4.1 is highly variable in both its dependent variable (Si) 

and independent variable (ti). At this point, it is desirable to fix one of these variables 

and allow the other one to vary. This can be done according to one of the three following 

procedures: 

(a) focus only on the earthquake sequences having S = So ° r S > So- Then, the time 

intervals between these consecutive sequences constitute a time series of interest, 

(b) focus on all the earthquake sequences whatever S. Then, the time intervals between 

these consecutive sequences constitute another time series of interest, 

(c) sample the original time series every At time units. Now, because there is in general 

not a sequence happening at a particular sampling time, the sequence which is 

closest in time to the latter will be treated as having happened at that sampling 

time. This sequence will have its size retained as a datum for a newly generated 

time series consisting in the size of earthquake sequences about equally sampled 

in time. (For completeness, we mention that another related procedure that takes 

advantage of the fact that the earthquake sequences are point events could be used: 

sum the size of all the earthquakes occurring in a time window of a given size. The 

time corresponding to the midpoint of the window, for instance, can then have 

this sum of earthquake sizes assigned to it. The resulting time series is also evenly 

sampled. This procedure is appealing but we will not consider it in this thesis). 
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Consequently, the time series of type 1 exist in three varieties, defined as varieties (a), 

(b) and (c). A n example of a time series of variety (b) is plotted on figure 4.2. It can 

be obtained from figure 4.1 by calculating the time intervals between the consecutive 

earthquake sequences. As mentioned above, it is obvious from figure 4.2 that these time 

intervals vary over several orders of magnitude. Now, regarding the time series of variety 

(a), their structure depends on the value of the parameter So. When So is small, the 

time intervals between the consecutive sequences are rather small whereas for So large, 

the time intervals are larger (results not shown). To this effect, we will try to confirm 

by a different technique the results obtained by Chen et al. [16] with the model of X u et 

al.: the large earthquakes are temporally correlated but the small earthquakes are not. 

Finally, for the time series of variety (c), we noted that parameter At has little effect on 

their structure (time series not shown). 

The second type of time series (hereafter called type 2) which can be obtained from 

the model of X u et al. involves the average stress in the system (a) as a function of the 

long time (t), where a is defined as 

Ns being the number of elements in the system and o\ the stress on element i. Here, we 

have chosen not to take the absolute value of o~i in calculating a. As we have checked, 

this choice has no effect on the time series for one-dimensional systems since the cr̂ 's are 

all positive. O n the other hand, for two-dimensional systems, <7; is sometimes negative, 

but we have checked that this occurs for about 1% of the elements only and so, the 

effect on a is minor. A time series of this type for a 100 x 100 system with random 

ath is plotted on figure 4.3. A time series looking qualitatively similar is obtained for a 

two-dimensional system with constant otn. as well as for one-dimensional systems. From 

figure 4.3, we note that a well-defined pattern appears: diagonal lines are connected to 
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Figure 4.1: Typical time series of type 1: Size of an earthquake sequences (Si) as a 
function of the occurrence time (tj). The whole time series has 5 x 104 data but for 
clarity, only the first 2000 are plotted. The sequences were generated from a 100 x 100 
system with random oth- The time at which the first sequence happens is arbitrarily set 
t o « i = - 0 . 
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Figure 4.2: Typical time series of type 1 [variety (b)]: Time intervals £j — 
(i = 2 , 3 , 2 0 0 0 ) between consecutive earthquake sequences. The sequences were gen 
erated from a 100 x 100 system with random cth (see figure 4.1). 
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vertical lines, which are themselves connected to diagonal lines, and so on. The diagonal 

lines symbolize average stress increases due to system driving. The slope of the diagonal 

lines (i.e. the rate of stress increase) is symbolized by p and was set to 1 for convenience 

(see section 2.4). The vertical lines represent average stress decreases due to earthquake 

occurrences and give a hint about the magnitude of the earthquakes. A time series such 

as the one on figure 4.3 is unevenly sampled. We will also consider below evenly sampled 

versions of the time series of type 2 by sampling every At time units the original time 

series of type 2. This is possible since, as explained in section 2.4, we assume that a 

increases linearly with time between two earthquake sequences. 

As a preliminary study, we can analyze the time series plotted partially on figures 4.2 

and 4.3 by considering the linear correlation coefficient [85] 

where / is called the lag and x and x' are the mean of the time series {XJ} and 

(i = 1,2,...,N) respectively. As suggested in [54], r ; is reliable only for I < N/4 and 

thus, we do not calculate 77 for I > N/4. The set of values r ( (I = 1, 2 , N / 4 ) and the 

plot of 77 against I is referred to as the Autocorrelation Function ( A C F ) . The A C F for 

the time series plotted on figure 4.2 and the time series plotted partially on figure 4.3 

are displayed on figures 4.4 and 4.5 respectively. The A C F for the time series of type 

1 (N = 1999) exhibits oscillations around 0, and 77 remains small for all / except / = 0 

(ro = 1 is not shown on figure 4.4). This seems to reveal that the data in this time series 

are not correlated. O n the other hand, the A C F for the time series of type 2 (N = 2000) 

decreases with / (for I < 100) and fluctuates around 0 at larger It is of interest to 

note that the bump of the A C F between / « 160 and I « 220 (see figure 4.5) is a feature 

reflecting the presence of non-trivial correlations in the time series of type 2. However, 

^2(xi - x){xi+i - x') 
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0.35 

0.325-

0.32 J — i 1 1 1 1 
0 0.05 0.1 0.15 0.2 t 

Figure 4.3: Typical time series of type 2: Average stress (a) as a function of the long 
time (t). The data were generated from a 100 x 100 system with random ath- The whole 
time series has 5 x 104 data but for clarity, only the first 500 data (i.e. the end points of 
the vertical lines) are plotted. The time of the first datum is arbitrarily set to zero. 
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the A C F is not powerful enough to reveal exactly what type of correlations are present 

in the latter time series. More sophisticated analyses are required to do so. Two of them 

are considered in this chapter and are outlined below. 

In summary, we consider in this chapter two types of time series. Note that only the 

time series of type 2 are explicitly linked to the state variable (i.e. the stress) of the 

model. Time series consisting in the value of the stress at a given location in the system 

as a function of the long time could have also been considered but, as we have checked, 

they exhibit large fluctuations and depend on the location chosen to measure the stress, 

so they are not adequate for a time series analysis. 

4.2 Nonlinear Forecasting Analysis 

In this section, we implement the first of two types of time series analysis, namely a non

linear forecasting analysis. We begin with a general introductory discussion in subsection 

4.2.1. Afterwards, we describe the two important ingredients entering into a nonlinear 

forecasting algorithm, namely the state space reconstruction (subsection 4.2.2) and the 

nonlinear function approximation (subsection 4.2.3). The forecasting algorithm that we 

use is presented in subsection 4.2.4 and tested by considering time series having a known 

structure in subsection 4.2.5. In subsection 4.2.6, we apply this algorithm to the analysis 

of the two types of time series generated by the model of X u et al. and discuss the results 

obtained. 

4.2.1 Introductory discussion 

Until recently, it was assumed that randomness was caused by extreme complication, i.e. 

the presence of many irreducible Degrees Of Freedom ( D O F ) . This led to Kolmogorov's 

theory of random processes, which he defined in terms of the joint probability distribution 
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I 

Figure 4.4: Autocorrelation function for the time series of type 1 [variety (b)] plotted on 
figure 4.2. For convenience, the value r 0 = 1 is not shown on the graph. 
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P. For a time series (i = 1 , 2 , N ) , the dih order probability distribution is 

'-P(fi. •••>&) = Probability^ < • < 

The theory of random processes copes with situations in which inadequate information is 

available and makes no statements about the causes of the randomness. As a result, with 

more data or more accurate observations, a phenomenon that previously seemed random 

might become more predictable, and hence less random. Many of the classic examples 

of randomness are not complicated. This is the case for a flipping coin for example. 

The dynamics of a flipping coin involves only a few D O F . Its randomness comes from a 

sensitive dependence on the initial conditions: a small perturbation causes a much larger 

effect at a later time, making prediction difficult. When sensitive dependence on the 

initial conditions occurs in a sustained way, it is called chaos (see [21] for an outline at 

the introductory level). Since chaos is defined in the context of deterministic dynamics, in 

some strict sense chaos is not random. But it is relevant to note that chaos amplifies noise 

exponentially, so any uncertainty present initially is amplified to macroscopic proportions 

in a finite time. As a result, short-term determinism becomes long-term randomness. 

The flipping coin being a chaotic system, it is inherently nonlinear. A nonlinear system 

is not necessarily chaotic though! The flipping coin is an autonomous system since it 

receives no time dependent input from the outside. Non-autonomous (or driven) systems 

are rather common: they are found in many fields of science, for example in engineering, 

chemistry, biology, physical geography and economics. A n external agent provides the 

necessary drive, which can take on many different forms: periodic and random are the 

most common forms. When the driving process is periodic, a Poincare section can reduce 

the system to an autonomous mapping problem. On the other hand, when the driving 

process is random, it is not possible to simplify the problem in such a way. This is the 

case in vibration tests performed on mechanical systems. A generic representation of 
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the kind of mechanical systems that are studied in engineering is provided by the driven 

Duffing oscillator. It is described by the equation (see [47] for instance) 

x"~x0" + 2(ujn(x'-x0')+un

2(x-x0) + aLon

2(x-x0)2 + (3un

2 (x - x^) \ X-XQ |=0, (4.1) 

where u>n is the natural frequency in the absence of nonlinearity, £ the damping coefficient 

and f3 (respectively a) the coefficient of the antisymmetric (respectively symmetric) non

linear restoring force. The oscillator is driven through the acceleration x0", from which 

XQ and XQ can be computed. Substantial high-order harmonic responses alert to the 

presence of a nonlinearity in the system. For given values of a and (3, the behavior of 

equation (4.1) is chaotic for appreciable driving levels and nearly linear for low driving 

levels [47]. The driven Duffing oscillator is useful to illustrate what is going on in the 

model of chapter 2, with the important difference that the former has only a few D O F . 

As seen in section 2.4, the systems studied with the model of X u et al. are slowly driven 

and thus the amount of stress added to the system is just enough to cause one rupture 

in it. As a result, the systems studied with the model of X u et al. will not be treated as 

input-output systems: we will consider instead that only a single time series is available 

for the forecasting analysis and use the techniques appropriate for such situations (see 

below). Note that the important role played by the external drive in the model of X u et 

al. should not be minimized though. 

Both chaotic and random time series have broadband spectra, so that distinguishing 

them requires some other statistics than the autocorrelation function and the Fourier 

power spectrum. There are a number of statistics which are sensitive to nonlinear be

havior, namely the short-term prediction error, the Lyapunov exponents [112] and the 

correlation dimension [39]. The short-term prediction error is small for a chaotic system 

and large for a random process. The Lyapunov exponents quantify the rate at which 
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nearby trajectories in the state space of a system diverge. For a system to be consid

ered as chaotic, at least one of its Lyapunov exponents must be positive (necessary but 

not sufficient condition). The correlation dimension (v) estimates the dimension of the 

subset of the state space of a system (often called the attractor of the system) that the 

trajectories approach. For example, fluid flows have an infinite-dimensional state space, 

but can have low-dimensional attractors [60]. The correlation dimension can be obtained 

by applying the algorithm of Grassberger and Procaccia [39]: 

vn = l i m l o g C „ ( e ) / l o g ( e ) , 

where Cn is the correlation integral for the n-histories of the time series 

C»W = (iv(FrT)) g ^ " II * " '"' 

9(x) being the Heaviside function (9(x) = 1 for x > 0 and 9(x) = 0 otherwise) and the 

norm used is the maximum norm. The n-histories of the time series are constructed by 

using the vectors 

•^i — ip^i—n+l j %i—n+2•> • • • > %i)• 

If the time series comes from a chaotic system, then vn does not increase with n and 

converges to the value v. A n alternative way of characterizing the attractor of a system 

is through the fractal (or Hausdorf) dimension (D). This number can be obtained by 

using the box-counting algorithm for instance (see [40]). In most cases, if D < 2, then v 

and D are close together, but it is important to keep in mind that D has only to do with 

the geometrical structure of the attractor whereas v is sensitive to the dynamical process 

of coverage of the attractor [39]. As a result, u tends to be a more relevant measure 

of the attractor than D. The correlation dimension (y) is useful to distinguish between 

chaos and randomness. However, the use of the correlation dimension as a statistic to 

distinguish between chaos and randomness has its limitations (see for instance [79]). 
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Along the same line, three economists (Brock, Dechert and Scheinkman) have recently 

introduced a test based on the correlation dimension: the BDS test [9]. It is a test 

against IID (Independent Identically Distributed) noise (null hypothesis). The test can 

be modified to single out the nonlinear behavior by subtracting out the linear component 

of the data and applying the BDS test to the residuals. A procedure advocated in [102] 

is instead to combine the BDS test with a technique called bootstrapping with surrogate 

data sets. The result is a powerful tool to detect any nonlinearity in a time series. 

In this work, we consider only the short-term prediction error. This statistic is very 

powerful in distinguishing between low-dimensional chaos and randomness, but does not 

have the limitations observed with the correlation dimension. An example of the use 

of the short-term prediction error for such a purpose is provided by the nonlinear fore

casting algorithm of Farmer and Sidorowich [29]. In this algorithm, the error of a local 

linear predictor is plotted against a variable smoothing parameter. If maximum smooth

ing allows to get the best forecasts, then the structure in the time series is described by 

a linear stochastic model. If the smallest forecasting errors are obtained for minimum 

smoothing, then the time series is generated from a low-dimensional chaotic system. If 

any amount of smoothing less than the maximum but more than the minimum is needed 

to get the best forecasts, then a nonlinear stochastic model describes the structure in 

the time series. We will outline in subsection 4.2.4 an algorithm which can be used to 

construct these different types of models. For now, we mention that linear stochastic 

models have a long history, going back at least to Yule [116] and more recently Box and 

Jenkins [8]. On the other hand, nonlinear deterministic models have been constructed by 

the dynamical systems community since about 1987 (see [23] for instance) and indepen

dently, the statistics community has constructed nonlinear stochastic models since about 

1980 (for a review see [103]). 

In this work, we assume that a good model from first-principles can not be found, 
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and so we must find it directly from the time series obtained from the observation of the 

dynamical system. This situation is what happens for a dynamical system studied with 

the model of X u et al. since the collective behavior of the large number of elements in 

the system does not arise from a small set of equations. (Generally, self-organized critical 

systems are believed to have many D O F [14]). The time series generated in this thesis are 

all scalar (see section 4.1), i.e. they each involve only one variable, which is less than the 

number of variables necessary to fully describe the dynamical system. These time series 

are not contaminated by observational noise. However, dynamical noise affects the time 

series because the dynamics is in general not deterministic. To this effect, it is relevant 

to note that because time series for systems with both random oth and constant oth are 

considered, then it is possible to study the effect of the dynamical noise on the system 

dynamics. In any case, if neither observational noise nor dynamical noise are too large 

and the randomness in the time series is caused by low-dimensional chaotic behavior, 

then building a dynamical model directly from the time series involves two steps: state 

space reconstruction and nonlinear function approximation. These are the two important 

ingredients entering into a nonlinear forecasting algorithm. Before we present the version 

of the nonlinear forecasting algorithm that we use, we describe in some details these two 

ingredients. 

4.2.2 State space reconstruction 

In most physical situations, only a single scalar time series {xi} (i = 1 , N ) obtained by 

making measurements on a dynamical system is available. The time series has in general 

fewer variables than the number of variables necessary to fully describe the system. An 

illustration of this situation is provided by a fluid flow experiment, which in principle can 

be modeled by the Navier-Stokes equations. In the case in which only a single measure 

of a given velocity component at a given point in space is performed, then the resulting 
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time series is inadequate to provide the initial conditions for the Navier-Stokes equations. 

To build a model directly from the time series, the state space of the dynamical system 

must be reconstructed from this unique time series. 

A popular method for reconstructing the state space of a dynamical system was 

introduced by Packard et al. [80] and put on a firm mathematical foundation by Takens 

[101]. In this method, the past behavior of a single scalar time series is used to get 

information about the present state of the system. This information can be represented 

as a delay vector of embedding dimension m and delay time r: 

X-i — (Xj, X j _ r , Xj_( m _ i ) T ) ^ , (4-2) 

where the components of a delay vector are called the delay coordinates. The t symbol 

insures that the delay vectors are column vectors, which is the standard way of repre

senting them in the literature. The optimal choice of parameters m and r has been the 

subject of many theoretical studies (see [34] for instance). In practice, r is arbitrary but 

it should not be too small or too large. Also, m is often chosen by trial and error, starting 

with a small value and increasing it, searching for optimal results. 

Other methods of state space reconstruction of common use include the principal 

component technique and reconstruction using derivative coordinates (see [30] for a brief 

outline of these methods). Also, filtering is sometimes used in combination with any 

reconstruction method. It is of interest to note that principal component, derivative 

and delay coordinates, and filtered versions thereof, are all related to each other by 

linear transformations whereas the transformation from delay coordinates to the original 

coordinates (i.e. the data of the time series) is nonlinear. As demonstrated by Fraser 

[33], nonlinear coordinate transformations can be greatly superior. It is not clear which 

method of state space reconstruction works best and what causes one method to be better 

than another though. In the forecasting algorithm presented in subsection 4.2.4, delay 
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coordinates are used to reconstruct the state space of the dynamical system. 

4.2.3 Nonlinear function approximation 

Once the state space of the dynamical system has been reconstructed, the next task is to 

predict the future behavior of the scalar time series obtained by making measurements 

on this system. This is called forecasting and it involves an extrapolation in time, in the 

sense that one uses data from one domain (the past) to extrapolate to the behavior of 

data in a disjoint domain (the future). State space reconstruction makes it possible to 

convert the extrapolation of a time series into a problem of interpolation in the state 

space of the system. This problem can be expressed mathematically in a simple way. 

Indeed, using the fact that the delay vectors [see (4.2)] contain information about the 

states of the system at different times, we have 

Xi+T = fTXi = fT{xl, Xi-T, £ i _ ( m _ i ) T ) t , (4.3) 

where, for simplicity, we assume that only the first coordinate of X{+T is forecasted, 

T being called the forecasting time. The function fT : 7cm —> TZ holds for all i. The 

function fT can, in general, only be determined approximately. The most commonly used 

approach to time series forecasting assumes that fT is a linear function [8]. However, 

almost any real system contains nonlinearities, which must be taken care of by a nonlinear 

fT. A particular and important kind of nonlinearity is one due to chaos, for which the 

scalar time series is generated by motion on a L>-dimensional attractor. According to 

Sauer et al. [87], it is sufficient to take m > 2D for a smooth fT to hold for all i 

and if D < m < 2D, then (4.3) holds for almost all i. In contrast, if the time series is 

generated by a stochastic process then, for all m, a noise term is expected to appear 

on the right-hand side of (4.3) and the delay vectors are expected to fill out a set of 

dimension m [87]. This situation also prevails if the time series is generated by motion 
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on an attractor with dimension D large. Indeed, in such a case, there will be insufficient 

data to approximate fT with a deterministic model with m > D and in this sense, a high-

dimensional deterministic system is equivalent to a low-dimensional nonlinear stochastic 

system [14]. On the other hand, when D is small, then an accurate approximation of fT 

can always be obtained with a modest number of data (N ~ 10°). 

The approximation of function fT requires that a representation as well as a method of 

selecting the parameters of the representation be chosen. When fT is nonlinear, there is 

an infinite variety of possible representations, and in the absence of any prior knowledge, 

no reason to prefer one representation over another. In many cases, a given representation 

is chosen because it allows a fast algorithm for fitting the parameters. It is beyond the 

scope of this thesis to review the most popular nonlinear function representations (see 

however [30]), but it is relevant to mention that representations can be both global and 

local. We describe next one one way of obtaining a local approximation of fT since 

this method is used in the nonlinear forecasting algorithm considered below. A local 

approximation usually enables one to get a good fit since the variations are less extreme 

than when a global representation is used. 

The basic idea of a local approximation of fT is to break up the domain of fT into 

local neighborhoods and fit different parameters in each one. There are several ways to 

assign the neighborhoods (see [30] for a review). One way of doing this was introduced 

by Farmer and Sidorowich [29] and is now commonly used: they impose a metric on 

the state space, denoted by || ||, and find the k nearest neighbors of Xi [see (4.3)], 

i.e. the k delay vectors Xj with j < i that minimize || Xi — Xj ||. Afterwards, in 

each neighborhood, a local predictor for xi+T is constructed. The simplest approach 

to do so is an approximation by the nearest neighbor (k — 1), i.e. X?™T — Xj+T- For 

example, to predict tomorrow's weather, one would search the historical record and find 

the weather pattern the most similar to that of the last few days, and predict that 
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tomorrow's weather pattern will be the same as the neighboring pattern one day later. 

A superior approach is the local linear approximation (k > 1). This approach consists 

in fitting a linear polynomial to the pairs ( X J , X J + T ) . The fit can be made in any of 

several ways. Often, least squares by singular-value decomposition (see [85] for instance) 

is realized. In principle, approximations using higher-order polynomials can be performed 

but in practice, this may or may not give an improvement depending on the time series 

analyzed. The method of Farmer and Sidorowich has the advantage of being quick and 

accurate, but the disadvantage that the approximations are discontinuous. Continuity 

may be guaranteed by weighted local fitting (see an illustration of this in a particular 

case in [98]) but for simplicity, simple local fitting is often considered. In the nonlinear 

forecasting algorithm presented next, simple local linear fitting is implemented. 

4.2.4 Nonlinear forecasting algorithm considered 

The nonlinear forecasting algorithm presented below investigates whether the data in a 

scalar time series generated from a dynamical system exhibit a low-dimensional chaotic 

behavior, as opposed to a high-dimensional or stochastic behavior. The algorithm con

structs models with a variable smoothing parameter (k) which at one extreme defines a 

nonlinear deterministic model, and at the other extreme, a linear stochastic model. The 

accuracy of the short-term forecasting error as a function of the smoothing parameter 

reveals much about the underlying dynamics generating the aperiodic time series. In 

particular, if any amount of smoothing less than the maximum allows one to get the 

best forecasts, then the structure in the time series is described by a nonlinear stochastic 

model. The smoothing parameter (k) represents the number of nearest-neighbor delay 

vectors included in the local linear fitting of the function fT (see the discussion in the 

previous subsection). 

In addition to its use for detecting low-dimensional chaos, the nonlinear forecasting 
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algorithm considered below can be used to investigate whether time series from high-

dimensional deterministic systems can be approximately modeled with low-dimensional 

nonlinear stochastic models. This problem has recently attracted the attention of some 

physicists who study collective phenomena such as spatiotemporal chaos [22], robust 

intermittency [53] and Self-Organized Criticality (SOC) [3]. 

A version of a nonlinear forecasting algorithm is now outlined. It was mainly in

spired from the algorithm introduced by Casdagli [14] and described by Ward [109]. The 

implementation of this algorithm involves the following steps: 

(a) Divide the analyzed time series into a fitting set x i , . . . , X N F and a testing set 

X N / + I , ...xN. As suggested in [102], the fitting set should be appreciably larger 

than the testing set. 

(b) Choose an embedding dimension m and set the delay time r as well as the fore

casting time T to 1. 

(c) Choose a delay vector Xi with Nf + m < i < N — 1 for a 1-step ahead forecasting 

test. 

(d) Compute the distances dij of test vector Xi from the delay vectors Xj 

(m < j < Nf — 1) in the fitting set using the ordinary Euclidean norm. 

(e) Order the distances d^, find the k nearest neighbors Xj(i), ^j{2), ^j(k) of Xi and 

fit a model of the following form: 

m 

w a0 + dnxj{iyn+i (I = 1, ...k). (4.4) 
71 = 1 

The heapsort algorithm described in Press et al. [85] is used to order the distances 

dij. The parameters exo,am are obtained by solving the normal equations for the 

linear system of equations (4.4) using singular-value decomposition (see [85]). 
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(f) Use the fitted model (4.4) to estimate a 1-step ahead forecast Xi+i(k) for test vector 

Xi and compute its error 

ei(k) - \ xi+i(k) - x i + l | . 

(g) Repeat steps (d)-(f) for all allowed i in the testing set and compute the normalized 

Root-Mean-Square (RMS) forecasting error 

Em{k) = 1 

Ntxo-

where a is the standard deviation of the time series and Nt = N — Nf — m is the 

number of allowed vectors in the testing set. The time series is forecastable only if 

Em(k) < 1. 

(h) Repeat step (g) for several representative values of k between 2(m + 1) and Nf — m. 

(i) Vary the embedding dimension m. 

This algorithm can readily be applied to the analysis of time series by studying the 

curves Em(k) as a function of k for a few values of m. We will do that first for time series 

having a known structure in order to illustrate the different types of curves that result 

from the analysis. Afterwards, we will apply this algorithm to the analysis of the time 

series generated by the model of X u et al. (see section 4.1). 

In the literature, it is not always clear whether a nonlinear forecasting algorithm 

should be applied to the raw time series or the first-differenced time series. On the 

one hand, Sugihara and May [99] have analyzed first-differenced time series, where the 

first-difference operation was performed, they say, to clarify the suspected nonlinearities 

by reducing the effects of any short-term linear autocorrelations. On the other hand, 

Casdagli [14] has analyzed raw time series that he assumed stationary, this assumption 
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being important since only stationary time series should be analyzed with the algorithm. 

According to Kendall and Ord [54], a time series is stationary if its mean and variance 

are constant over time and if the structure of the time series depends only upon the 

relative position in time of the observations. These conditions must be satisfied at least 

to a reasonable degree of approximation for a time series to qualify as stationary. In the 

case of the time series generated by the model of X u et al., we have checked that they 

are reasonably stationary. This means that it is not necessary to first-difference the time 

series since they are stationary in the mean (i.e. they do not exhibit a linear drift in the 

mean). However, the first-difference operation performed in [99] was shown to improve 

the results. For this reason, we will take no chance and consider both raw time series 

and their first-differenced counterparts. This obviously applies only to the time series 

generated by the model of X u et al. since the ones considered in the next subsection have 

a known structure and we therefore know what results to expect from the algorithm. 

4.2.5 Tests of the algorithm with time series having a known structure 

In this subsection, we test the forecasting algorithm outlined in subsection 4.2.4 by 

analyzing four time series having N = 1000 data and a known structure. Before we 

do this, we describe how we generate these time series. 

The first two time series are generated by low-dimensional chaotic maps, namely the 

logistic map and the Henon map. The logistic map is univariate and is defined as [65] 

where p is the parameter of the map. For p > 3.58, the map exhibits chaos for almost 

all values of p. The time series was obtained for the value p = 4.0, a value in the chaotic 

regime. The Henon map is bivariate and is described by the pair of equations [44] 

Xi = 1 - Ax\_x + yi-i 
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which can be combined to get the single equation 

. Xi = 1 - Ax}_x 4- Bxi-2-

For the special values A = 1.4 and B = 0.3, the map is known to have a chaotic behavior. 

The last two time series have a substantial stochastic component. One of them is 

generated by a nonlinear stochastic model, the Threshold AutoRegressive (TAR) model. 

The T A R model is expressed mathematically as [104] 

Xi = ax^i + Ui (XJ_I < 1) 

Xi = fiXi-i + Ui > 1), 

where Ui is distributed according to a Gaussian with zero-mean and standard deviation 

equal to 1 (see [85] for the description of an algorithm to produce Gaussian deviates). 

To obtain the time series, we used the values a = —0.4 and 0 — 0.5. The last time series 

is generated by a linear stochastic model, a AR(1) (first-order autoregressive) model (see 

[54] for instance), i.e. 

Xi = (f)Xi-i + Ui, 

where <f> is a constant. To obtain the time series, we used the value </> = 0.5. 

For the logistic map, the T A R model and the AR(1) model, it is necessary to choose 

one starting point for the iterations, whereas for the Henon map, it is necessary to choose 

two. The starting point(s) has (have) some effect on the resulting time series. However, if, 

say, the first 500 data generated in an iteration process are discarded, then the resulting 

time series will not be sensitive to the starting point(s). The four time series can then 

be readily analyzed using the nonlinear forecasting algorithm presented in the previous 

subsection. 
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The two time series generated by low-dimensional chaotic maps were first analyzed 

with the forecasting algorithm and the results are displayed on figure 4.6 for an embedding 

dimension (m) equal to 2. Comparable results are obtained for m > 2 and are not shown. 

As expected, the best forecasts (i.e. the smallest Em(k)) are obtained, for both time 

series, when the smoothing parameter (k) is small. It is relevant to note also from the 

figure that excellent forecasts (i.e. Em(k) -C 1) are obtained at small k and that they are 

much better than the ones obtained at large k. This reflects the fact that no stochastic 

component is present in the time series. It is also possible from figure 4.6 to compare the 

forecasting errors for the logistic map and the Henon map. Indeed, at small k, Em(k) 

is always smaller for the logistic map than for the Henon map. This feature reflects the 

fact that the attractor for the Henon map has a more complex structure than the one 

for the logistic map. 

If we now turn to the time series having a stochastic component, the results of the 

analysis are plotted on figure 4.7 (time series for the T A R model) and figure 4.8 (time 

series for the AR(1) model) for three values of m in both cases. On figure 4.7, we see 

that the best forecasts are obtained at intermediate values of k (k ~ 400 — 500) and that 

the improvement in accuracy over a linear stochastic hypothesis (corresponding to the 

largest values of k) is only of about 2 — 3%. This is typical of a nonlinear time series 

having a substantial stochastic component. On figure 4.8, we notice that the forecasts 

get better as k increases, but no upturn in Em(k) at large k is observed. These features 

are typical of a linear time series having a substantial stochastic component. Finally, it 

is interesting to compare figure 4.6 to figures 4.7 and 4.8. We note that Em(k) is always 

much smaller for the time series generated by the low-dimensional chaotic maps than for 

the stochastic time series, as it should. 

Now that we have obtained typical curves of Em(k) versus k for time series having a 

known structure, we turn to the analysis of the time series introduced in section 4.1 and 
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Figure 4.6: Normalized RMS forecasting error Em(k) as a function of k for time series 
having N = 1000 data generated by the logistic map (with p = 4.0) and the Ffenon map 
(with A = 1.4 and B = 0.3). The solid line is for the logistic map time series and the 
dashed line for the Henon map time series. The parameters of the nonlinear forecasting 
algorithm are Nj = 800 and m = 2. 
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Figure 4.7: Normalized RMS forecasting error Em(k) as a function of k for a time series 
having N = 1000 data generated by the T A R model (with a = -0.4 and 0 = 0.5). The 
parameters of the nonlinear forecasting algorithm are Nf = 800 and m = 2 (solid line), 
m = 3 (dashed line), m = 5 (dotted line). 
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Figure 4.8: Normalized RMS forecasting error Em(k) as a function of k for a time series 
having N = 1000 data generated by the AR(1) model (with <f> = 0.5). The parameters of 
the algorithm are Nf = 800 and m = 2 (solid line), m — 3 (dashed line), m — 5 (dotted 
line). 
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generated by the earthquake model of X u et al. 

4.2.6 Results obtained with the time series of interest 

Unless otherwise specified, all the time series considered in the analysis have N — 2000 

data. As discussed in subsection 4.2.4, we consider both raw time series and first-

differenced versions of them. The two types of time series outlined in section 4.1 are 

analyzed. Also, for a given type of time series, time series for systems with both random 

Oth and constant oth are considered. 

We first analyze the time series of type 1. As discussed in section 4.1, the time series 

of type 1 exist in three varieties, namely (a), (b) and (c). We have analyzed the three 

varieties of time series of type 1 and found, for a 100 x 100 system, that only the time 

series of variety (c) are forecastable (i.e. have Em(k) < 1). The results for a time series 

of variety (c) for a system with random oth are plotted on figure 4.9. Similar curves are 

obtained with a time series for a 100 x 100 system with constant oth (results not shown). 

On figure 4.9, we observe a monotonic decrease of Em[k) with k. Also, we notice that 

the smallest forecasting errors are at most 5% better than the standard deviation of the 

corresponding time series. This suggests that the time series of variety (c) are weakly 

forecastable, probably because they have a large stochastic component. In addition, no 

nonlinear structure exists in the time series of variety (c). This was also found to be 

true for the time series of varieties (a) and (b) and whether or not the time series are 

first-differenced. Now, we turn to the time series of type 1 for a one-dimensional system. 

Contrary to the case of the time series for a 100 x 100 system, all three varieties of time 

series are forecastable, but they still have a large stochastic component and no nonlinear 

structure (results not shown). A time series which is of particular interest is the one 

consisting in the time intervals between large earthquakes. As we saw in chapter 3, the 

one-dimensional systems with constant oth are particularly interesting since they display 
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stress ordering. For this reason, we included only the results for a time series of variety 

(a) (S > 1000) for a 1000 x 1 system with constant ath (see figure 4.10). The curve for 

m = 2 in particular seems to show that the best forecasts are obtained at intermediate 

values of k, but it should not be concluded that the time series has a nonlinear stochastic 

structure since it has not enough data. Instead, we prefer to safely state that the time 

series has probably no nonlinear structure but a large stochastic component. The best 

forecasting errors are 25% better than the standard deviation of the data. This may 

not be sufficient to allow the prediction of a future large earthquake in the model of X u 

et al. To further confirm this possibility, we have plotted on figure 4.11 the histogram 

N(5t) of the time intervals 5t between large earthquakes. The plot on figure 4.11 is a 

log-linear one in order to better illustrate that the distribution is roughly exponential, 

i.e. N(5t) ~ e~5t/5°. Obviously, because of the small number of data used to get the 

histogram, then the straight line on figure 4.11 does not cover the whole range of 5t. We 

can then conclude from figure 4.11 that the large events generated in the model seem to 

be Poisson events. (As a result, we have confirmed explicitly that it was correct above 

to conclude from the curves on figure 4.10 that no nonlinear structure was present in 

the data). We got similar results with the time intervals between large events generated 

in a 1000 x 1 system with random ath as well as in 100 x 100 systems. This result is 

surprising and seems to contradict a conclusion of Chen et al. [16] obtained in a study 

of the model of Xu et al. that the large events are temporally correlated. However, we 

believe that our conclusion is not in contradiction with theirs simply because we studied 

a series version of the model and they studied a parallel version of it (see the discussion 

in section 2.4 and [35]). Consequently, it seems that only the more complicated to study 

parallel models can give rise to temporally correlated large events. 

We next turn to the analysis of the time series of type 2, which are unevenly sampled. 

The Em(k) versus k curves obtained for a 100 x 100 system with random ath are plotted 
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Figure 4.9: Normalized RMS forecasting error Em(k) as a function of A; for a time series 
of type 1 [variety (c)] for a 100 x 100 system with random oth- The sampling time interval 
A t is equal to 10 times the average time interval between the earthquake sequences. The 
parameters of the nonlinear forecasting algorithm are Nf = 1600 and m = 2 (solid line), 
m = 3 (dashed line), m = 5 (dotted line). 
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Figure 4.10: Normalized RMS forecasting error Em(k) as a function of k for a time series 
of type 1 [variety (a)] for a 1000 x 1 system with constant oth- The data in the time 
series (N = 331) are the time intervals between large earthquakes (S > 1000). The 
parameters of the nonlinear forecasting algorithm are Nf = 264 and m = 2 (solid line), 
m = 3 (dashed line), m = 5 (dotted line). 
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Figure 4.11: Histogram plot of the time intervals between large earthquake sequences 
(S > 1000) generated in a 1000 x 1 system with constant uth- The data set has 331 data 
and 20 bins were used to get the histogram. The vertical axis is logarithmic in order to 
better illustrate that the distribution is exponential. 
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on figure 4.12 (raw time series) and figure 4.13 (first-differenced time series). The curves 

obtained on both figures reveal a weak nonlinear stochastic structure (see figure 4.7 

for comparison). However, Em(k) is appreciably smaller and the curves are less noisy 

for the raw time series, showing that the first-difference operation has blown up the 

stochastic component. It is therefore disadvantageous to perform first-differencing on 

the time series of type 2. On figure 4.12, the improvement in predictive accuracy of the 

nonlinear stochastic models (intermediate k) over the linear stochastic models (large k) 

is at most of 4% and it is at most of 3% on figure 4.13. As a matter of comparison, we 

show on figure 4.14 the Em(k) versus k curves for a time series for a 100 x 100 system 

with constant oth (without first-differencing). Again, we see that the time series has a 

weak nonlinear stochastic structure, where the improvement in predictive accuracy of 

the nonlinear stochastic models (intermediate k) over the linear stochastic models (large 

k) is about 8 — 9%. We believe that this 8 — 9% improvement for the time series for a 

system with constant oth as compared to at most 4% for the time series for a system 

with random oth reflects the fact that the latter system has a more noisy dynamics than 

the former. We have also considered a time series for a system with random oth when 

the parameter a controlling the level of stress conservation (see chapter 3) in the system 

is set to 0.9 (rather than 1.0 for the time series of figure 4.12). The results obtained by 

analyzing this time series are plotted on figure 4.15. A nonlinear stochastic structure is 

still observed though weaker than in the case a = 1.0 (see figure 4.12). As compared 

to the case a = 1.0, Em(k) is now about 30% smaller on figure 4.15, showing that 

the introduction of stress nonconservation in the system allows for better forecasts. We 

believe that this is related to the fact that, as seen in chapter 3, stress nonconservation 

destroys the scale invariance and introduces a characteristic earthquake size in the system. 

For completeness, we finally mention that the analysis of time series for one-dimensional 

systems leads to similar features as the ones observed with two-dimensional systems. 
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Figure 4.12: Normalized RMS forecasting error Em(k) as a function of A; for a time series 
of type 2 for a 100 x 100 system with random uth- The parameters of the nonlinear 
forecasting algorithm are Nf = 1600 and m = 2 (solid line), m = 3 (dashed line), m = 5 
(dotted line). 
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Figure 4.13: Normalized RMS forecasting error Em(k) as a function of k for a 
first-differenced time series of type 2 for a 100 x 100 system with random oth- The 
parameters of the nonlinear forecasting algorithm are Nf = 1600 and m = 2 (solid line), 
m = 3 (dashed line), m = 5 (dotted line). 
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Figure 4.14: Normalized RMS forecasting error Em(k) as a function of k for a time series 
of type 2 for a 100 x 100 system with constant oth- The parameters of the nonlinear 
forecasting algorithm are Nf = 1600 and m = 2 (solid line), m — 3 (dashed line), m = 5 
(dotted line). 
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Figure 4.15: Normalized RMS forecasting error Em(k) as a function of fc for a time series 
of type 2 for a 100 x 100 system with random oth when the parameter a controlling the 
level of stress conservation in the system (see chapter 3) is set to 0.9. The parameters of 
the nonlinear forecasting algorithm are Nf = 1600 and m = 2 (solid line), m = 3 (dashed 
line), m = 5 (dotted line). 
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The appearance of nonlinear structure on figures 4.12, 4.14 and 4.15 is connected to 

the fact that, when the stress releases due to earthquakes happen, then the system stops 

following linearly the external drive (threshold dynamics!). In addition, the presence of 

a stochastic component in the time series simply reflects the fact that the response of 

the various elements in the system varies from one element to the other: not all elements 
t 

are triggered simultaneously as one element ruptures. The main consequence of these 

findings is that the phenomenon of SOC that the model of X u et al. was shown to 
I 

display in chapter 3 is inherently high-dimensional. This conclusion 'might be specific 
i 

to the model studied in this thesis though. It could have been guessed from the start 

since the systems we study are made of a large number of elements and rarely is low-

dimensional chaos found in systems with many DOF, away from the transition to chaos. 

This was illustrated by Casdagli [14] through a nonlinear forecasting analysis of a time 

series consisting in a component of the velocity at a point in a fluid in a highly turbulent 

regime (i.e. the Reynolds number is high). 

We have checked for the robustness of the nonlinear stochastic structure found above 

by analyzing evenly sampled time series of type 2. The results we1 show are for an 

evenly sampled time series of type 2 for a 100 x 100 system with random ath, but similar 

results are obtained for a system with constant ath- Figure 4.16 displays the Em(k) 

versus k curves for such a time series. The comparison of the magnitude of Em(k) on 

figures 4.12 and 4.16 leads us to conclude that the sampling procedure has weakened 
i 

even more the nonlinear stochastic structure: the improvement in predictive accuracy of 
• 

the nonlinear stochastic models over the linear stochastic models is about 2% on figure 

4.16 as compared to 4% on figure 4.12. Now, to show that the observation of a nonlinear 

stochastic structure in the time series of type 2 is not an artifact of the algorithm, we 

have randomized the phases of the frequency components of the evenly sampled time 

series of type 2 whose results are plotted on figure 4.16, but without altering its power 
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spectrum. The resulting time series is called a surrogate data set of the original data set. 

We generated the latter using the method of Theiler et al. [102]. In this method, the 

frequency components are multiplied by a factor e2*, where cp is uniformly distributed 

between 0 and 27r. Afterwards, the phases are symmetrized to take into account the fact 

that the original time series is real. The Em{k) versus k curves for one such surrogate data 

set are plotted on figure 4.17. We note from this figure that the weak nonlinear stochastic 

structure apparent on figure 4.16 has disappeared and that the resulting curves look like 

the ones for a linear stochastic time series (see figure 4.8). As a result, we have proved 

that the nonlinear stochastic structure observed on figure 4.16, even if it is weak, is real 

and some weakly coherent phase relationships exist between the frequency components 

of the system. 

In summary, we have found that the time series of type 1 are weakly forecastable or not 

at all in most of the cases considered. Only the time series of the time;intervals between 

large earthquakes generated in a one-dimensional system was found to have some degree 

of forecastability. For all the time series of type 1, no nonlinear structure was found. On 

the other hand, the time series of type 2 were found to be weakly nonlinear but with a 

substantial stochastic component. These results suggest that SOC is inherently a high-

dimensional phenomenon. Note however that it is possible that, with a parallel version 

of the model (see chapter 2), this conclusion does not hold true, but this remains to be 

investigated. Also, we have checked that there are weakly coherent phase relationships 

between the frequency components. We will see in the next section that the absence of 

strong phase relationships between the Fourier components in the evenly sampled time 

series of type 2 enables us to implement a rescaled range analysis. The1 information that 

we will get from this second type of analysis is complementary to the one extracted in 

this section. In the next section, we will restrict our attention to the time series of type 

2 since, as we saw in the present section, the time series of type 1, whatever the variety, 
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Figure 4.16: Normalized RMS forecasting error Em(k) as a function of k for an evenly 
sampled time series of type 2 for a 100 x 100 system with random oth- The sampling time 
interval A i is about equal to 1.5 times the average time interval between the earthquake 
sequences. The parameters of the nonlinear forecasting algorithm arej Nf = 1600 and 
m = 2 (solid line), m = 3 (dashed line), m = 5 (dotted line). 
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Figure 4.17: Normalized RMS forecasting error Em(k) as a function of A; for a time series 
which has the same power spectrum as the time series of figure 4.16, jbut randomized 
phases. The parameters of the nonlinear forecasting algorithm are Nf —, 1600 and m = 2 
(solid line), m = 3 (dashed line), m = 5 (dotted line). 
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very much look like white noise and so, are not of interest anymore. 

4.3 Rescaled Range Analysis 

In this section, we perform a second type of time series analysis, namely a rescaled range 

analysis. We begin with a general introductory discussion in subsection 4.3.1, followed 

by a brief discussion of the fractal analyses in subsection 4.3.2. We present the algorithm 

used to do the rescaled range analysis in subsection 4.3.3. This algorithm is tested on 

synthetic time series generated by the method of successive random addition in subsection 

4.3.4 and applied to the evenly sampled time series of type 2 in subsection 4.3.5. In the 

latter subsection, we also discuss the results obtained. ; 

4.3.1 Introductory discussion 

The power spectrum analysis is often used to examine irregular time series. It is rather 

common in nature to observe power spectra which have no eminent peaks and exhibit 

instead appreciably more power at low frequencies than at high frequencies. In such 

cases, the power spectrum density P(f) is in most cases approximated as a power-law 

function of the frequency (/): P(f) oc where (3 is called the spectral exponent and 

is positive. In this approximation, (3 is one of the quantities describing the irregularity of 

the time series. Time series which exhibit power-law behavior in their power spectrum 

are often termed fractal time series [115], but as shown by Higuchi [46], this is only a 

sufficient condition. Indeed, it is necessary for a time series to qualify as fractal that 
i 

the phase distribution of the frequency components be random. To illustrate this more 

clearly, we follow the ideas of Higuchi [46]. When the total number of data (N) in the 
i 

evenly sampled time series {x(j)} (j = 1, 2 , N ) is even, x(j) can be expressed in terms 
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of the Fourier series representation as follows: 
N/2 N/2-1 N/2 

x{j) = J2AkCOs{2njk/N)+ Yl Bksm{2njk/N) = YiCkcos(2ijk/N-6k), 
fc=0 k=l k=0 

where Ck = y/A\ + B\ and 9k = tan" 1 (Bk/Ak) (k ̂  0, N/2). For k = 0 and k = N/2, 

Ck = A k . Both 9Q and 9N/2 are set to zero. The variables Ck and; 9k represent the 

amplitude and phase for this given value of k respectively. The power [spectrum density 

for a given k is 

P(k) = Cl/N, (4.5) 

where the phase 9k is absent from the relation. If the time series has a power-law behavior 

(with exponent (3) in the power spectrum, i.e. if P(k) oc k~^ , then (4.5) can be used 

to obtain Ck for all k except k — 0. Higuchi has fixed Co to zero. Now, to construct 

simulated data having a power-law spectrum, the phase 9k must be determined for a given 

k. For simplicity, Higuchi assumed that 9k is given by a random variable with a uniform 

distribution in the range [0,#m a a ;], where 9 m a x can vary within the range [0,360°]. The 

correlation between the phases is set to be {9k9ki) = 8kkt, where Sij denotes the Kronecker 

delta. Higuchi has considered the case (3 = 2 and varied the value of 9 m a x in the range 
i 

[0,360°]. His results have shown that the resulting time series {x(j)} becomes more and 

more irregular (fractal) as 9 m a x increases, but definitely that for small 9 m a x , the time 

series is not fractal. This shows that a quantitative analysis using only the power-law 
i 

exponent (3 is inappropriate for describing the irregularity of a fractal time series: the 

phase distribution of the frequency components must also be random.' 

When (3 is in the interval 1 < (3 < 3 and 9 m a x = 360°, the time series {x(j)} 

i 

obtained by the above procedure is a fractional Brownian motion (fBm) time series. 

Fractional Brownian motion has been introduced by Mandelbrot and I Van Ness [62] as 

a generalization of the ordinary Brownian motion (corresponding to: (3 = 2). When 

(3 = 2, x represents the positions of a particle undergoing a one-dimensional random 
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walk. Fractional Brownian motion (fBm) time series satisfy the relationship formalized 

by Mandelbrot and Van Ness 

x(hj + jo) - x(j0) = hH[x(j + j0) - a;(jo)] 

for any integer h > 0 and jo, where = implies that both sides of the equation have the 

same distribution function. The exponent H is called the Hurst exponent (0 < H < 1) 

and it is related to the spectral exponent (3 through the relation j3 = 2H + 1. It is relevant 

to mention that self-affinity and not self-similarity applies to the fBm time series since in 

general the stochastic variable (x) does not have the dimension of tim'e. However, since 

in the literature fractal time series is often used to define both fractal ahd self-affine time 

series, we will stick to this expression in this thesis. Now, a property which is particular to 

fBm is that it has long-run correlations, in the sense that past increments are correlated 

with future increments. This property can be illustrated more easily by shifting the data 

index (j), so that j now runs from —N/2 +1 to N/2 (the data with j = 0 had previously 

j = N/2). Also, for convenience, the new x(0) is set to zero and all the other x(j) are 

shifted accordingly. Then, the correlation function of future increments x(j) — x(0) with 

past increments x(0) — x(—j) normalized by the variance of x(j) can be expressed as [31] 

c ( j ) = < - i . ( : j . y ) > = 2 — - 1 . 

(x(j)2) 

As can be easily checked, C(j) vanishes for all j in the case H — 0.5. On the other hand, 

C(j) is non-zero independent of j when H / 0.5. This remarkable feature of fBm leads 

to persistence for H > 0.5 and to antipersistence for H < 0.5. Persistence means that if 

we have in the past a positive (or negative) increment, then we also have on average a 

positive (or negative) increment in the future. On the other hand, antipersistence signifies 

that an increasing (or decreasing) trend in the past implies a decreasing (or increasing) 

trend in the future. 
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The generation of fBm curves requires special methods. The two most popular meth

ods are successive random addition [107] and spectral synthesis [88]. ' It is beyond the 

scope of this thesis to outline one or the other of these methods. We have generated fBm 

curves on figure 4.18 for three values of i f by the successive random addition method (see 

[31] for a quick algorithm to achieve this task). We see from the figure that as H gets 

larger, then the fBm curves get smoother and vice versa. Indeed, the curve for H = 0.1 

exhibits local noise of the same order of magnitude as the total excursions of the curve 

whereas the one for H — 0.9 displays rather clear trends with relatively little noise. The 
i 

curve for H = 0.5 represents a crossover between these two behaviors. As a result, we 

see that exponent H characterizes the degree of roughness of a fBm curve. 

At this point, we would like to show the relevance of the concepts introduced above for 

fractal times series for the evenly sampled time series of type 2. The stochastic variable 

of the time series of type 2, i.e. the average stress (a), is like the water level in hydrology. 

The accumulated differences from the mean water level is called the volume accumulation 

in that field. By analogy with hydrology, we can introduce the volume accumulation of 

the average stress in the model of X u et al. Such a quantity is plotted on figure 4.19. The 

curve on this figure was obtained by a running sum of an evenly sampled time series of 

type 2 from which we originally removed the trend and the mean. A similar curve would 

be obtained with an unevenly sampled time series of type 2. (Note that, for convenience, 

we restrict the discussion to evenly sampled time series of type 2, but since from section 

4.2 we know that the original time series of type 2 and their evenly sampled counterparts 

have a similar structure, then this restriction does not have serious implications). The 

curve on figure 4.19 is reminiscent of a fBm curve (for comparison, see figure 4.18), but 

this does not prove that it is actually a fBm curve! We have also obtained the power 

spectrum for the time series plotted on figure 4.19. We now outline the procedure that 

we have used to achieve this task. 



Chapter 4. Time Series Analyses 107 

Q i ___ ^ i ^ \ I 

0 1000 2000 3000 4000 • 5000 6000 7000 8000 
3 ; 

Figure 4.18: Fractional Brownian motion (fBm) signals having 8193 data generated by 
the successive random addition method. From top to bottom, the curves have H = 0.1, 
H = 0.5 and H = 0.9 and have been shifted for clarity. 
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The discrete Fourier transform of an evenly sampled time series (with sampling time 

interval A i ) {x(j)} (j = 0 , 1 , N — 1) is defined as 

X ( k ) = j : x ( 3 ) e 2 ^ N , 
3=0 

(4.6) 

where k — 0,1, 2 , N — 1. The discrete Fourier transform can be easily obtained using 

the Fast-Fourier Transform (FFT) technique [85]. Afterwards, the periodogram estimate 

of the power spectrum can be obtained at N/2 + 1 frequencies using (see 

p(fk) = ^ (I X{k) | 2 + | X(N - k) |2) = A | X(k) 
N2 

where the frequencies (k = 0,1, 2 , A ^ / 2 ) are defined as 

k 

[85] for instance) 

fk = NAt 

and the time series is assumed real (i.e. not complex). To prevent the leakage of cer

tain frequencies to adjacent frequencies, it is necessary to use a technique called data 

windowing. The window function that we use is of the form 

u;0-) = - { l - c o s [ 0 - + l/2)107r/7V]} 

w(N - j - 1) = w(j) 

where the values of j considered are the ones for which the argument of the cosine 

function is smaller than ir (otherwise w(j) is set to 1). In other words, the window 

function influences only the first 10% of the data at both ends of thej time series. The 

way the window function enters into the calculation of the power spectrum is by replacing 

in (4.6) x(j) by w(j)x(j). We have obtained the power spectrum for the data set plotted 
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on figure 4.19 by the above calculation (see figure 4.20). We have not performed such 

a calculation for the running sum of an original time series of type 2 because it is not 

evenly sampled. The Lomb normalized periodogram (see [85] for instance) could be used 

to estimate the power spectrum in the latter case, but this computation has not been 

accomplished here. A power-law decrease of the power spectrum is observed on figure 

4.20. However, there seems to have different j3 for different frequency intervals: we fitted, 

for fkAt < 0.04 and fkAt £ [0.04, 0.3], (3 = 2.94 ± 0.05 and (3 = 3.46 ± 0 . 0 3 respectively. 

As a result, the running sum of the time series of type 2 has a more complicated power 

spectrum than a fBm time series. The change in slope on figure 4.20 is probably related 

to finite-size effects in time. We will return to these considerations below. 

Despite the fact that figures 4.19 and 4.20 seem to suggest that the evenly sampled 

time series of type 2 are fractal time series, we know from section 4.2 that they are not 

pure fractal time series since they have a nonlinear component. However, they surely 

have an important fractal component because the power spectrum on figure 4.20 can 

be fitted to two power laws and from section 4.2, we know that they have only weakly 

coherent phase relationships between the frequency components. The!presence of more 

than one component in a time series is commonly observed in nature. For example, 

while the human heartbeat intervals have been hypothesized to be fractal in nature (this 

was based solely on the observation of a power-law dependence in the power spectrum!), 

there are also well-defined harmonic oscillations due to the feed-back regulation of blood 

pressure and the external forcing by respiration [111]. Now, despite the fact that the 

phase relationships between the frequency components are not fully random in the evenly 

sampled time series of type 2, it is possible to use fractal time series, analyses, even if 

in principle the latter are applicable only to pure fractal time series. This is what we 

want to do in this section by focusing on one fractal time series analysis, the rescaled 

range analysis. The goal of this analysis is to calculate the Hurst exponent H, which 
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Figure 4.19: Running sum of an evenly sampled time series of type 2 for a 100 x 100 
system with random oth having TV = 16,384 data. The sampling time interval At is equal 
to 1.5 times the average time interval between the earthquake sequences. The trend and 
the mean have been removed from the time series before computing the running sum. 
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Figure 4.20: Periodogram estimate of the power spectrum of the running sum of an evenly 
sampled time series of type 2 for a 100 x 100 system with random oth- The sampling 
time interval of the time series At is equal to 1.5 times the average time interval between 
the earthquake sequences, where the time series has 16,384 data. We have removed the 
trend and the mean before calculating the power spectrum. To reduce the fluctuations, 
we have computed an average power spectrum over 8 non-overlapping subsets (with 2048 
data) of the time series resulting from the running sum operation. The dashed lines were 
obtained by doing linear regressions and have slope (3 — 2.94 ± 0.05 (left segment) and 
P = 3.46 ± 0.03 (right segment). 
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characterizes the time correlations in a time series. Note that the use of the rescaled 

range analysis in cases where the time series has a weak fractal component is unreliable. 

(This shows the danger of applying blindly the rescaled range analysis to any time series 

because the latter will always return a value of H whatever the importance of the fractal 

component). In cases like that, the only technique that we think could be used is the 

coarse-grained spectral analysis of Yamamoto and Hughson [115]. This technique extracts 

the fractal component from a time series and estimates what percentage of the power 

spectrum is due to the fractal component (this percentage is 100 for a fBm time series 

and zero for a pure harmonic signal). 

4.3.2 Fractal time series analyses 

Fractal time series analyses assume that the moments (such as the mean and variance) 

of the processes studied depend on the number of pieces included at a| given resolution. 

Because the number of pieces depends on the resolution, these moments do not have fixed, 

limiting values. For example, when studying the fluctuations of a fractal (or self-affine) 

time series, the difference between the maximum and minimum values of the time series 

(i.e. the range) increases with time. Therefore, as more data are analyzed, the variance 

increases continually. A few fractal techniques are commonly used. Among them are the 

dispersional analysis and the rescaled range analysis. 

The dispersional analysis involves the measurement of the variance of a signal at a 

succession of different levels of resolution [5]. This technique has been widely used in 

experimental physics (e.g. in molecular beam epitaxy) but also in studies related to 

medecine and physiology. It seems that the general physics community as well as the 

medical physics community have used different names to describe the same analysis. The 

dispersional analysis is considered as a relatively recent technique. On the other hand, 

the rescaled range analysis was introduced by Hurst [48] in the 1950's. Its use is still 
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mostly concentrated in the earth sciences [75], but it spreads slowly to other disciplines 

[18, 31]. The rescaled range analysis has benefited over the years from the works of 

Mandelbrot and Wallis [63, 64] and Bassingthwaighte and Raymond [4] among others. 

Basically, this analysis studies how the range of cumulative deviations of the data from 

the mean (R) divided by the standard deviation of the data (S) (or the ration R/S) 

varies with the size of the time window (or the number of data in the window M for an 

evenly sampled time series). For self-affine (or fractal) time series, R/S is a power-law 

function of M [R/S oc MH], where H is the Hurst exponent. The rescaled range analysis 

is the only fractal analysis that we consider in this thesis. 1 

Before we describe the algorithm to implement the rescaled range analysis, we sum

marize the main ideas brought about by the pioneering work of Hurst [48]. For the Nile 

river, Hurst observed that records of levels at a gauge did not vary randomly, but showed 

series of low flow years and high flow years (i.e. memory effects!). Because the flow in a 

large river system such as the Nile depends on the water content in a large drainage area, 

the amount of water stored in the drainage area will increase in prolonged periods of 

higher than average precipitation and the excess amount of water stored will contribute 

to the discharge in drier years, and vice versa. Similar ideas were expressed later by 

Mandelbrot and Wallis [63]. The fBm concept is capable to take these memory effects 

into account. However, some authors [75] suggested that it not necessary to resort to a 

complicated concept such as fBm: autocorrelation (or a lack of serial; independence) is 

generally accepted as a feasible explanation for the existence of memory effects. 

4.3.3 R e s c a l e d range analysis a l g o r i t h m c o n s i d e r e d 

The rescaled range algorithms that are usually found in the literature proceeds by dividing 

the analyzed time series into subseries of length M: for each subseries, R(M) and S(M) 
l 

are computed. The manner in which the time series is divided into subseries, and the 
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range of values of M over which the calculation is performed, control the determination of 

the Hurst exponent H. The procedures advocated in [108] are flawed since the subseries 

overlap for any M, and as a result, the values of R(M)/S(M) are not independent. The 

only way to achieve the independence of the calculated ratio values is to choose, for a 

given M, nonoverlapping subseries. This procedure was advocated in [64, 4] and used in 

[18]. It will be used in this work. For a given M, it is recommended in [4] to obtain an 

average value of Rf S over the various subseries. These are the values that we will use in 

the fit to obtain H. Now, the fit of R/S oc MH can be done either using an optimization 

procedure for parameterization of the nonlinear regression or a linear regression between 

\og(R/S) and log(M). The former is theoretically more correct but it was shown in 

[4] that it provides values of H indistinguishable from the ones obtained by the latter 

for data sets not too small. For this reason, we will use the linear regression below to 

determine H. The algorithm that we implement is similar to the one in [18]. It does not 

include trend correction [4] for simplicity, but this choice should not be seen as limiting 

since trend correction does not always have a positive effect on the results as we have 

checked. Hurst did not consider trend correction in his original method [48]. 

The times series {x(j)} (j = 1, 2 , J V ) analyzed will be such that they have a number 

of data (N) which is an integral power of two. They are divided into non-overlapping 

subseries of M data, where M is an integral power of two ranging between 2 and N/2. 

The number of subseries of length M is N(M) = N / M and is an integer whatever M. 

We compute the quantity (R/S)M for each M, where the latter is an average value of 

R/S over the non-overlapping subseries. We now outline the algorithm that we will use. 

We start by calculating the mean, (x)n M, of the n-th subseries of length M, which is 

nM 

j=z(n-l)M+l 

We also calculate the standard deviation SUIM of the n-th subseries of length M, which 
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where M and not M — 1 is used since the population standard deviation rather than 

the sample standard deviation is considered. This choice has only little effect on the 

results as we have checked. Our use of the population standard deviation is guided by 

the fact that in the literature, it is this quantity that is usually considered. In addition, 

we compute for all the allowed values of j the quantity 

j 

k=(n-l)M+l 

where (n — 1)M + 1 < j < nM. The range Rn,M in the n-th subseries is obtained by 

subtracting the least value of Yn>M(j) from the greatest value of YntM(j)- The rescaled 
i 

range of the n-th subseries of length M is determined by the relation 1 

{R/S)n>M = (RTI,M) I'(STI.M)-

An average rescaled range, denoted by (R/S)M, is then defined by 

/ 1 \ N(M) 

{ R , S ) M = \NW)) £ { R / S ) N ' M i 

and computed for each allowed value of M. Afterwards, a straight line is fitted to the 

plot of log[(jR/5)M] versus log(M), the slope of which is precisely the Hurst exponent H. 

We are now ready to apply this algorithm to the analysis of times series. We will do 

this first for time series having a known value of H. This preliminary istudy will enable 

us to test whether the above algorithm gives reliable results. In a second time, we will 

apply the algorithm to the analysis of the evenly sampled time series of type 2 introduced 

in section 4.1. 
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4.3.4 Tests of the a l g o r i t h m w i t h t i m e series h a v i n g a k n o w n value of H 

The time series that we consider in this subsection were generated by the successive 

random addition method [107] using the algorithm presented by Feder [31]. As discussed 

by Churilla et al. [18], it is clear that the time series to be analyzed with the rescaled range 

algorithm are the time series of the increments, not the time series of the accumulated 

increments, where the former is obtained from the latter by a first-difference operation. 

This is because the rescaled range analysis computes the range of cumulative deviations 

of the data from the mean (R). • 

We have analyzed with the algorithm of subsection 4.3.3 synthetic time series with 

a known value of H having N = 2 1 3 data. The results are plotted on figure 4.21 for 

H = 0.1, H = 0.5 and H = 0.9. The curves are almost perfect straight lines, except the 

one for H = 0.1. Also, note that even at large M, the slope of the latter is still larger 

than 0.1, showing that the slope value 0.1 is reached only asymptotically. The method 

of generation of the time series is not responsible for the absence of! a linear segment 

for the case H = 0.1 on figure 4.21 since we have obtained rather straight lines for the 

other two cases. It is now well documented (see [4] for instance) that the rescaled range 

analysis does not work well on time series having negative correlations (i.e. H < 0.5) 

and our results are simply in agreement with this fact. It is fortunate that the rescaled 

range analysis works fine when applied to signals having H > 0.5 because, in the real 

world, the latter are common while the signals with H < 0.5 are relatively rare. Now, 

we have fitted straight lines to the curves having H > 0.5 on figure 4.21 and found the 

values HRR « 0.55 and HRR « 0.83 for the curves for H = 0.5 and H = 0.9 respectively. 

The discrepancies between HRR and H are of about +10% for H = 0.5 and —8% for 

H = 0.9. As a result, the rescaled range analysis is a biased method which overestimates 

H when H ~ 0.5, underestimates H when H ~ 0.9 and provides wrong estimates of H 
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when H is small. These findings are in agreement with the ones in [4] ii i particular. Note 

that these limitations of the rescaled range analysis are not so severe if one is interested 

only in the order of magnitude of H for an unknown signal though. The reliability of the 
i 

estimate of H provided by the analysis can be checked for instance by shuffling the order 

of the data and reapplying the algorithm to the resulting time series. If largely different 

estimates of H are obtained for the original time series and the shuffled time series, then 

one can safely conclude that the value of H obtained for the former is representative of 

a real physical effect. 

We can now safely apply the algorithm of subsection 4.3.3 to the analysis of the evenly 

sampled time series of type 2 since it works rather well on synthetic time series having 

a known value of H, at least if H > 0.5. Our hope is that the time correlations in the 

evenly sampled time series of type 2 are positive. 

4.3.5 R e s u l t s o b t a i n e d w i t h the t i m e series of interest 

Evenly sampled time series of type 2 for systems with both random oth and constant oth 

are analyzed in this subsection. As mentioned in subsection 4.3.1, a running sum of an 

evenly sampled time series of type 2 is reminiscent of a fBm time series,1 even if in fact we 

have found that it is not a pure fBm time series. The evenly sampled time series of type 

2 are therefore suitable to be analyzed with the algorithm of subsection 4.3.3. However, 

since the phase relationships between the frequency components in these time series are 

not fully random (due to the nonlinear component), we will investigate if this has an 

effect on the results of the rescaled range analysis. 

The results of the analysis for an evenly sampled time series of type 2 for a system with 

random oth having N = 2 1 4 data are plotted on figure 4.22. The sampling time interval 

At is equal to 1.5 times the average time interval between the earthquake sequences. 

We got similar results with larger values of At but in these cases, the (R/S)M versus 
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Figure 4.21: Log-log plot of (R/S)M versus M for three synthetic time series having 
N = 2 1 3 data generated by the successive random addition method. From top to bottom, 
the curves correspond to the cases H = 0.9, H = 0.5 and H = 0.1. The dashed line at the 
right of the figure has a slope of 0.1 and is there to illustrate that the curve for H — 0.1 
will only slowly reach the slope value H R R = 0.1 as M increases. Note that each curve 
was obtained by averaging (R/S)M (for a given M) over 5 realizations corresponding to 
the same value of H. For each curve, we have excluded the point corresponding to M = 2 
since it is trivial and always has (R/S)M=2 — 1-
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M curves cut-off at increasingly smaller M (results not shown) since there are less data. 

For M = 2, the ratio is always equal to 1, so we did not include this trivial point on 

figure 4.22. What we observe on the figure is a segment of a given slope for the smallest 

values of M and another one with a lower slope for the largest values of M. The slope 

for the segment M € [22,27] is H ^ 0.90 (see figure 4.22). To check if the decrease of 

the slope at large M is not an artifact of the time series under consideration, we have 

also analyzed evenly sampled time series of type 2 for 50 x 50 and 25 x 25 systems with 

random o~th- The (R/S)M versus M curves for these two time series as well as for the 

100 x 100 time series (see figure 4.22) are plotted on figure 4.23, where the sampling time 

interval At is the same for all three time series. From this figure, we observe that, as 

the system size gets smaller, then the change in slope tends to occur at smaller M. As 

a result, the change in slope on figure 4.22 is a real effect, and represents some kind of 

finite-size effect in time. Note that since all three curves on figure 4.23 span the same M 

interval, then the change in slope can not be due to the finite number of data in the time 

series: the system size solely determines at what value of M it will take place. Now, the 

presence of positive correlations in the 100 x 100 system with random oth is real as we 

have checked by randomizing the order of the data. The curve obtained by averaging over 

5 random shuffles is plotted on figure 4.22 (bottom curve). This curve is rather straight, 

with a slope equal to H ~ 0.55. Therefore, randomizing the order of the data has caused 

the destruction of the positive correlations that exist in the system. We have also found 

similar results for an evenly sampled time series of type 2 for a 100 x 100 system with 

constant ath (see figure 4.24). Again, we notice that the linear segment M G [22,27] 

of the curve has a slope H 0.90. There is still a change in slope due to finite-size 

effects. In addition, we noted that randomizing the order of the data has destroyed the 

time correlations (see the curve at the bottom of figure 4.24). Thus, we can say that the 

evenly sampled time series of type 2 for systems with both random errand constant ath 
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have positive correlations that are affected by finite-size effects. 

We have also analyzed evenly sampled time series of type 2 for one-dimensional sys

tems and found results (results not shown) which are qualitatively similar to the ones 

obtained with two-dimensional systems. In addition, time series for which parameter a 

controlling the degree of stress conservation in the system (see chapter 3) is set to values 

smaller than 1 provide results again qualitatively similar to the ones obtained with time 

series for which a = 1. '• 

In section 4.2, we have conjectured that the evenly sampled time series of type 2 have 

weakly coherent phase relationships between their frequency components. The latter are 

responsible for the observation of a weak nonlinear stochastic structure. Now, we would 

like to investigate if these weakly coherent phase relationships have any effect on the 

(R/S)M versus M curves. This can be done by obtaining the (R/S)M\ versus M curves 

for a given time series and for a surrogate time series having the same power spectrum as 

the original time series but randomized phases (see the algorithm of Theiler et al. [102] 

for how to generate such surrogate data sets). We have performed such a calculation 

for a time series for a 100 x 100 system with random o~th as well as for 5 surrogate time 

series of the above type. The results are plotted on figure 4.25 and clearly show that 

the weakly coherent phase relationships between the frequency components have a minor 

effect on the (R/S)M versus M curve. Therefore, this confirms that it was correct in the 

first place to analyze the evenly sampled time series of type 2 with the rescaled range 

analysis because the nonlinear component is sufficiently weak, so the fractal component 

of the time series is clearly dominant. 

Finally, to conclude this section, we give our arguments to justify the results obtained 

with the evenly sampled time series of type 2. We believe that the existence of strong 

positive correlations is due to the nature of the driving in the model of X u et al. because 

the amount of stress added to the system between the earthquake sequences depends 
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Figure 4.22: Log-log plot of (R/S)M versus M for an evenly sampled time series of type 
2 for a 100 x 100 system with random ath having At equal to 1.5 times the average time 
interval between the earthquake sequences (N = 2 1 4). The curve corresponding to this 
time series is plotted using a solid line and lozenges. The dotted line (H = 0.9) is a 
fit of the linear segment M G [22,27] of the latter curve. The curve at;the bottom was 
obtained with 5 random shuffles of the time series: the curve of (R/S)M versus M was 
calculated for each realization and an average value of (R/S)M over the 5 realizations 
was computed for each M. 
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Figure 4.23: Log-log plot of (R/S)M versus M for evenly sampled time series of type 2 
for L x L (L = 25,50,100) systems with random oth- The sampling time interval A i is 
equal to 1.5 times the average time interval between the earthquake sequences and the 
number of data is N = 2 1 4 for all three time series. From top to bottom, the curves refer 
to the 100 x 100, 50 x 50 and 25 x 25 systems respectively. 
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Figure 4.24: Log-log plot of (R/S)M versus M for an evenly sampled time series of type 
2 for a 100 x 100 system with constant oth having At equal to 1.5 times the average time 
interval between the earthquake sequences (N = 2 1 4). The curve corresponding to this 
time series is plotted using a solid line and lozenges. The dotted line is a fit (H = 0.9) 
of the linear segment M G [22,27] of the latter curve. The curve at the bottom was 
obtained with 5 random shuffles of the time series: the curve of (R/S)M versus M was 
calculated for each realization and an average value of (R/S)M over the 5 realizations 
was computed for each M. 
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Figure 4.25: Log-log plot of (R/S)M versus M for an evenly sampled time series of type 
2 for a 100 x 100 system with random cr(/ l. The sampling time interval At is equal to 
1.5 times the average time interval between the earthquake sequences and the number of 
data is N = 2 1 4. The curve plotted using a solid line and lozenges was Obtained with the 
original time series whereas the one plotted using a dashed line and pluses was obtained 
with 5 surrogate time series having the same power spectrum as the original time series 
but randomized phases. For the latter curve, {R/S)M was calculated for each realization, 
for a given M, and an average value of (R/S)M over the 5 realizations was computed for 
this value of M. 
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on the past history (see chapter 2). In addition, the correlations are positive (H > 0.5) 

and not negative (H < 0.5) because the system tends to accumulate stress until a large 

earthquake sequence occurs and releases a sizable fraction of that stress. This can be 

seen on figure 4.3 for instance where sometimes the average stress added to the system 

is much less than the average stress released from it, but this large stress release is due 

to the past accumulation of stress in the system (stress reservoir is full!). Now, we have 

also noticed that these positive correlations are affected by finite-size effects. We attempt 

here an explanation for the latter. We have seen in chapter 3 that the cumulative size-

frequency distribution is affected by the finite size of the system in the sense that the 

power law for small earthquake sizes does not extend to large earthquake sizes (see figure 

3.1 for instance). On the other hand, we have checked in section 4.2 that the histogram 

(N(5t)) of the time intervals (5t) between large earthquakes is roughly exponential, i.e. 

proportional to e~5t^°, where 50 is a characteristic time interval and can be determined 

by a linear regression of log[N(5t)} versus 6t. We have performed such a linear regression 

for the large earthquakes (S > 200) generated in a 100 x 100 system with random o~th and 

found the value So ~ 0.154. We conjecture that this characteristic time interval between 

large earthquakes is responsible for the decrease of the slope at large M on figure 4.22. 

Indeed, the cut-off happens at M 128 on this figure, which corresponds to a window 

of size MAt. Therefore, using the value of At for the corresponding time series, we 

get MAt — 0.167 ~ 5 0. As a result, we have demonstrated that the finite-size effects 

affecting the (R/S)M versus M curves are due to a characteristic time interval between 

large earthquakes. These large earthquakes have the effect of resetting the system by 

destroying the memory effects in it. Since, as we have checked, 80 gets smaller as the 

system size decreases, then this explains why on figure 4.23 the change in slope occurs 

at increasingly smaller M as the system size gets smaller. Note in addition that if we 

would go to arbitrarily large M, then we would see that the slope past the cut-off point 
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approaches 0.5, the value in the absence of any memory effects. 

4.4 Summary of the Important Results and Conclusions 

In this chapter, we have performed two types of analysis of time series generated by the 

model of X u et al. These time series are of types 1 and 2. The time series of type 1 

involve the size of the earthquake sequences (S) as a function of the occurrence time. 

They exist in three varieties: varieties (a), (b) and (c) consist in the time intervals between 

consecutive earthquake sequences with S = So (or S > So), the time intervals between 

consecutive earthquake sequences whatever S and the sizes of earthquake sequences about 

evenly sampled in time respectively. The time series of type 2 involve the average stress 

in the system as a function of the long time. 

A nonlinear forecasting analysis was first implemented. It investigates whether the 

data in a scalar time series generated from a dynamical system exhibit low-dimensional 

chaotic behavior as opposed to high-dimensional (or stochastic) behavior. The analysis 

was performed by using an algorithm which constructs models for the structure in the 

time series with a variable smoothing parameter (k). The accuracy of the short-term fore

casting error as a function of k reveals much about the underlying dynamics generating 

the time series. We have applied a nonlinear forecasting algorithm to the analysis of the 

time series of types 1 and 2. The time series of type 1, whatever the variety, were found 

to be weakly or not at all forecastable. The only time series of type 1 that have some de

gree of forecastability are the ones involving the time intervals between large earthquakes 

generated in one-dimensional systems. For these time series as well as those involving the 

time intervals between large earthquakes generated in two-dimensional systems, we have 

obtained histograms of the data and found that they have an exponential distribution. 

This is in contradiction with the finding that large earthquakes are temporally correlated 
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in the model of X u et al. [16]. We argued that this is because the model of X u et al. in 

the form used in this thesis is a series model. For all the time series of type 1, no nonlin

ear structure was found, but they all have a large stochastic component. For this reason, 

they are of little interest since they seem to be indistinguishable from white noise. The 

time series of type 2 were found to be forecastable, with a nonlinear but high-dimensional 

structure. For the evenly sampled time series of type 2, we have checked that the weakly 

coherent phase relationships between the Fourier components are responsible for the ob

servation of this structure. We suggested that the appearance of nonlinear structure was 

due to the fact that the system stops following linearly the external drive (threshold 

dynamics!) when it releases stress through earthquakes. A direct consequence of these 

results is that self-organized criticality is inherently a high-dimensional phenomenon, as 

previously suspected by other authors. Note that this conclusion might be particular to 

the model studied in this thesis. 

Fractal time series have power-law behavior (/~ /3) in their power spectrum. This is 

however only a sufficient condition since, as shown by Higuchi [46], fractal time series 

must have random phase relationships between their frequency components. A common 

example of a fractal time series is provided by the record of the positions of a Brown

ian particle moving in a one-dimensional Euclidean space. Fractional iBrownian motion 

(fBm) is a generalization of the ordinary Brownian motion exhibiting long-run time cor

relations. The latter are positive if H > 0.5, negative if H < 0.5 and zero if H = 0.5 

(ordinary Brownian motion), where H is called the Hurst exponent and it characterizes 

the degree of roughness of the record of the motion. From the results of the nonlin

ear forecasting analysis, we know that the evenly sampled time series of type 2 are not 

pure fractal time series since they have weakly coherent (and not truly random) phase 

relationships between the frequency components, but at least they have an important 

fractal component. The determination of the Hurst exponent H characterizing the time 
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correlations in time series with an important fractal component can be accomplished by 

implementing a rescaled range analysis. This analysis consists in studying how the range 

of cumulative deviations of the data from the mean (R) divided by the standard devia

tion of the data (S) (or the ratio R/S) varies with the size of the time window (or the 

number of data M in the window for evenly sampled time series). The' plot of \og{R/S) 

versus log(M) is linear with a slope H for a pure fractal time series. The quantity we cal

culated for each M was (R/S)M, which is an average value of R/S over non-overlapping 

subseries of M consecutive data. The values of M were chosen to be equally spaced on a 

logarithmic scale. The analysis of the evenly sampled time series of type 2 has led to the 
I 

following results: the time series of type 2 have strong positive correlations (H ~ 0.9) 

which are affected by finite-size effects since H decreases for large time windows. The 

weakly coherent phase relationships between the frequency components were shown to 

have little impact on our results. The presence of strong time correlations in the time 

series of type 2 is due to the nature of the driving in the model because the amount of 

stress added to the system between the earthquake sequences depends on the past history. 

The correlations are positive (and not negative) since the system tends to accumulate 

stress until a large earthquake occurs and releases a sizable fraction of that stress. A 

characteristic time interval between large earthquakes is responsible for the appearance 

of finite-size effects in time. The large earthquakes cause the destruction of the memory 

effects in the system by resetting the latter. 



C h a p t e r 5 

C o n c l u s i o n 

The research on complex phenomena has led recently to the introduction of the concept 

of Self-Organized Criticality (SOC) by Bak, Tang and Wiesenfeld [3]. ;This concept has 

been presented in order to understand the origin of the power laws observed in nature. 

Acccording to SOC, certain driven systems consisting of a large number of elements 

evolve towards a critical state with no characteristic time or length scales. The critical 

state is reached without fine tuning of a control parameter, unlike for phase transitions in 

equilibrium statistical physics. A simplified sandpile model illustrates the ideas of SOC. 

In this model, sand is added grain by grain at a random site on the pile. This random 

driving process lasts until one site becomes unstable, i.e. when the local slope becomes 

larger than a threshold value. Then, grains are redistributed to the nearest neighbors of 

the unstable site and might themselves become unstable as well, and j so on, leading to 

the creation of an avalanche. After a while, the pile eventually reaches a critical state, 

characterized by a critical slope, in which additional grains fall off the pile via avalanches 

of all sizes, distributed in size and lifetime according to a power law. According to 

Sornette [93], the class of phenomena described by SOC relies on the condition of a 

very slow driving of the systems and the existence of fast burst-like responses of them. 

Earthquakes are one of the first example of phenomena that comes to mind for which 

such a time scale separation is apparent. Our interest in the SOC concept has been 

oriented towards the understanding of earthquakes in this thesis. 

The earthquake occurrence is related to the appearance of fractures as well as to 

129 
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friction. In principle, both fracture and friction should be incorporated in an earthquake 

model. However, in practice, this is a formidable task and realistic situations have yet to 

be correctly modeled. The model that we have used throughout this thesis studies the 

creation of faults in a planar elastic region and was introduced by Xujet al. [113, 114]. 

This model has its validity at much larger length scales than the atomistic one, where 

the medium can be described by continuous fields. The model of X u et al. involves the 

following: 

• it focuses on a one-layer planar region which is discretized into L \ x L 2 squares, 

• it assigns the stress tensor directly to each square, 
! i 

• it solves the elastic equations for all the squares before and after the rupture of a 

given square. 

In the model, a square ruptures when a > ath, where a is the stress on that square 

(a = axy if there is only one shear mode of rupture, axy being one component of the 

stress tensor) and o~th the stress threshold, and this is followed by a double couple stress 

redistribution. We have applied the model of X u et al. to the study of earthquakes by 

implementing the following: 

• embed the region of interest in an infinite medium and neglect'the effect of any 

activity originating outside the region (i.e. we use open boundary conditions), 

• uniformly drive the region by adding stress amount ACT to all the squares (this is 

enough to cause the rupture of the square which has a the closest to ath), where 

the surrounding medium provides the necessary external drive, 

• increment the long time scale (defined by variable t) by the amount ACT, 
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• once an earthquake sequence has begun, freeze t since earthquakes are instantaneous 

events on the long time scale, 

• reset oth of a ruptured square to a new value (for a system with random crtfl) or set 

it to a constant value (for a system with constant ath), 

• when more than one square break simultaneously, use the independent redistribu

tion procedure, 

• count the total number of broken squares (S) during the sequence to estimate the 

size of the earthquake. 

The parameters of the model are: 

• 9i, which controls the width of the uniform (random) distribution of stress thresh

olds (ath e [0*,i.o]), 

• X, which fixes the fraction of stress retained by a ruptured square, 

• a, which introduces stress nonconservation in the redistribution of stress (a = 1 

corresponds to the conservative case). 

Once the model has reached the stationary state, we have checked that the Gutenberg-

Richter power law C(S) oc S~T is satisfied, where C(S) is the cumulative fraction of 

earthquakes with S or more broken squares. However, this power law is affected by 

finite-size effects: there are the effects of the finite size of the system and of the finite size 

of the squares. To take these effects into account, we have performed a.finite-size-scaling 

analysis. For simplicity, we have considered systems with L x 1 squares (i.e. lattices 

arranged in a strip). The finite-size-scaling function that we have considered includes a 

factor which corrects for the finite-size effects affecting the power law:; 

C(S, L) = S-rg{(S - l)L-v/f(X, 0U a)}. 
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The results that we have obtained are, for a = 1: 

• for fixed parameter values, when L is allowed to vary, then the finite-size-scaling 

function works well over the whole range of S for systems with random ath and for 

S > 50 for systems with constant ath- For systems with constant ath, there is a 

crossover region for S < 50, 

• for fixed L, when 8i or X is allowed to vary, then the above function works fine for 

all S for systems with random ath and for S > 50 for systems with constant o~th-

These results imply that a system which has been discretized by a fine mesh and 

a small X (or a large 9{) can be approximated by a coarser mesh using a larger X 

(or a smaller #/). 

In all the cases, r ?s 0.30 gives the best results and is a robust value for L x 1 systems. 

However, for L x L systems, a preliminary check has convinced us that r ~ 0.4 provides 

optimal results. This shows that, at least quantitatively, the results obtained with L x 1 

systems are particular to this lattice configuration. We have also considered a mean-field 

version of the model of X u et al. in which all the elements are equally coupled with 

each other and discovered that the finite-size-scaling function with r ^ 0.30 does not 

work well. This shows that r is also sensitive to the details of the model. Despite the 

sensitivity of r to the lattice configuration and the details of the model, we can state that 

the model of X u et al. displays SOC since the finite-size-scaling hypothesis works fine. 

This conclusion holds only in the conservative case (a = 1). In the non-conservative case 

(a < 1), the model is not self-organized critical since, as we have checked, a characteristic 

earthquake size So < L appears, So being a function of a and L. 

The quantity that we have considered in the finite-size-scaling analysis is the power 

law C(S) oc S~T, which is an average over time as well as over space of the activity in 
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the system. In the stationary state, this is a static distribution. We have also studied 

in this thesis the dynamic quantities of the model, such as, for instance, the size of the 

earthquake sequences (S) and the average stress in the system (a), o referring to a spatial 

average over the squares of the system. The sets of values of S and a over the long time 

(t) make up time series which we have called time series of types 1 and 2 respectively. 

The time series of type 1 exist in three varieties: varieties (a), (b) and (c) consist in 

the time intervals between consecutive earthquake sequences with S = So (or S > So), 

the time intervals between consecutive earthquake sequences whatever S and the sizes of 

earthquake sequences about evenly sampled in time respectively. These time series have 

been analyzed using two different types of analysis. ' 

A nonlinear forecasting analysis was first implemented. It investigates whether the 

data in a scalar time series generated from a dynamical system exhibit low-dimensional 

chaotic behavior as opposed to high-dimensional (or stochastic) behavior. That analysis 

was performed by using an algorithm which constructs models for the structure in the 

time series with a variable smoothing parameter (k). The accuracy of the short-term 

forecasting error as a function of k reveals much about the underlying dynamics gener

ating the time series. We have applied a nonlinear forecasting algorithm to the analysis 

of the time series of both types. The time series of type 1, whatever the variety, were 
i 

found to be weakly or not at all forecastable. The only time series of type 1 that have 

some degree of forecastability are the ones involving the time intervals between large 

earthquakes generated in L x 1 systems. For all the time series of type 1, no nonlinear 

structure was found, but they have a large stochastic component. For this reason, they 

are of little interest since they seem to be indistinguishable from white noise. On the 

other hand, the time series of type 2 were found to be forecastable, wifh a nonlinear but 
i 

high-dimensional structure. We suggested that the appearance of nonlinear structure in 
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these time series was due to the fact that the system stops following linearly the exter

nal drive (threshold dynamics!) when it releases stress through earthquakes. A direct 

consequence of these results is that SOC is inherently high-dimensional, at least in the 

model studied in this thesis. It might be possible to observe a low-dimensional behavior 

in other versions of the model, but this remains to be proven. 

Since it is usually the magnitude of the earthquakes which is known in practical 

situations, the results obtained with the time series of type 1 seem to close all doors 

towards the prediction of earthquakes. However, it is relevant to note that the definition 

of S used in this thesis is not tied to the state variable (i.e. the stress) in the model. If 

we would have considered as a definition of S the difference between the average stress in 

the system before and after the earthquakes (i.e. a^f — a Q/ t), then the results obtained 

with the time series of type 2 suggest that it might be possible to make some predictions 

on the latter quantity. On a related note, we mention that o\,et — aa/t is of the same 

order of magnitude as the quantity called stress drop in the literature on seismology, the 

latter being related to the magnitude of the earthquakes (see [51] for instance). 

The second type of time series analysis that we have performed is a rescaled range 

analysis. In principle, it is applicable only to fractal time series, which have random phase 

relationships between their frequency components as well as a power-law behavior in their 

power spectrum [46]. However, in practice, it is usually sufficient for the time series to 

have an important fractal component for the rescaled range analysis to apply. This is the 

case for the evenly sampled times series of type 2 which, in addition toj a weak nonlinear 

component, have an important fractal component as we have checked. The rescaled range 

analysis determines an exponent, the Hurst exponent H (0 < H < 1), characterizing the 

time correlations in time series with an important fractal component (and in general 
i 

in fractal time series). This analysis consists in studying how the range of cumulative 

deviations of the data from the mean (R) divided by the standard deviation of the data 
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(S) (or the ratio R/S) varies with the size of the time window (or the number of data M 

in the window for evenly sampled time series). The plot of \og(R/S) versus log(M) is a 

straight line with a slope H for fractal time series. We have used an algorithm to achieve 

that task and found the following results for the evenly sampled time series of type 2: 

they have strong positive correlations (H « 0.9 > 0.5) which are affected by finite-size 

effects since H decreases for large time windows. The presence of strong time correlations 

in the time series of type 2 is due to the nature of the driving in the model because the 

amount of stress added to the system between the earthquake sequences depends on the 
i 

past history. The correlations are positive and not negative (when H < 0.5) since the 

system tends to accumulate stress until a large earthquake occurs and releases a sizable 

fraction of that stress. We have checked that a characteristic time interval between large 

earthquakes causes the appearance of the finite-size effects in time. The large earthquakes 

are responsible for the destruction of the memory effects in the system because they reset 

the latter. -

The work performed in this thesis has enabled us to better understand the earthquake 

phenomenon but is in no way exhaustive. In the future, we suggest considering more 

realistic versions of the model of X u et al., for instance a parallel version of it. A parallel 

model treats the situations where more than one square rupture simultaneously in a self-

consistent manner, by assuming that the rupture at one site is affected by the ruptures 

at the other sites. Chen et al. [16] have initiated that task, but much work remains to 

be done though. For instance, it would be interesting to see if improyed forecastability 

is obtained with the time series of type 2 and if the memory effects are modified in this 

version of the model. An extra suggestion for the future is to focus on a definition of the 

size of the earthquakes (S) which is more closely tied to the dynamics than the one used 

in this thesis: S = dbej — daft. In particular, it would be interesting to investigate, by a 

finite-size-scaling analysis, what is the effect on the power-law exponent r of this choice 
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for S. This should be done for both the series and the parallel versions of the model. 
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Appendix A 

Lattice Green Function Simplification and Properties 

Firstly, we want to illustrate how to simplify the calculation of the lattice Green function 

(G) introduced in the discretization scheme defined by X u et al. and presented in chapter 

2. This will be done by reducing the number of integrals in (2.6) fromftwo to one. This 
i 

will allow a much more accurate evaluation of the value of G(f — f0), especially at large 

r-f0. ; 

Secondly, we want to give some useful properties of the lattice Green function which 

are easy to prove. 

A . l Simplification of the Lattice Green Function 

Referring to (2.6) and (2.8), the lattice Green function is expressed as 

G , f _ f o ) = [* dk^r dky sin 2 kx sin 2 ky ^.(f_fo) ( A ^ 
J-IK 2TT J-TT 2TT (1 — cos kx cos ky)2 

where f — f0 = (X, Y), X and Y being two integer numbers proportional to the lattice 

constant a (defined as 1 in this work for simplicity) and which can be negative, zero or 

positive. If the lattice has L\ x L2 squares, then | X |= 0,1, 2 , L x — | l and 

| Y |= 0,1,2,...,Z, 2 - 1. We will see below that G(X,Y) = G(-X,Y) = G{X,-Y) = 

G(—X, — Y) so it is sufficient to focus on X > 0 and Y > 0 throughout this appendix. 

Then, k • (r — r 0 ) = kxX + kyY and the exponential factor in (A. l ) can be written as 

eiH?-r0) = C0S(kxX + kyY) + isin(kxX + kyY). (A.2) 
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The right-hand side of (A.2) can be further developed using obvious trigonometric identi

ties to give four terms. Out of these four terms, only one provides a non-zero contribution 

to G(f — fQ) whatever the values of X and Y [cos(kxX) cos(kyY)}. The other three terms 

are such that they render at least one of the integrals in (A.l) odd and' as a result, their 

contributions are zero since the integration is done over a complete cycle. Keeping only 

the relevant term of (A.2), (A.l) becomes 

7 - 7 T 2TT J-n 2-7T (1 — cos kT cos kvY 
(A.3) 

Let us rewrite (A.3) as 

G(X,Y) = - ^ s i n 2 £ ; x c o s ( £ ; x X ) / dky-
'KJ-TT ZTT JO 1 

r 7 r sin 2 ky cos(kyY) (A.4) 
(1 — c x cos ky)2 

where c = cos kx is treated as a constant when the integration over ky is done. Defining 

the integral over ky as / , where 

rn sin 2 ky cos(kyY) 
Jo d k y (1 — c x cos ky)2' 

(A.5) 

(A.4) can now be written as 

1 rn rlk 

G(X, Y) = - — sin 2 kx cos(kxX) x / . (A.6) 

The next step is to obtain an analytical expression for I for various: values of Y. The 

simplest case is Y = 0. Setting Y = 0 in (A.5), we have: 

7 T r • ' 2 

IY=O = / ' 
Jo 

sin L, 

1 — c x cos k y J 

Using a software such as Mathematica, an analytical expression for IY=o can be easily 

derived: 

IY=> 
(l-VT^) 

Y=0 
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For values of Y different from 0, I can be simplified further by using software Mathe-

matica. We thus obtain, starting from (A.5), 

1 r* 

= 2 c 4 d k y 

-2 cos{kyY) + cY cos [(1 - Y)ky] - cY cos [(1 + Y)ky] 
— 1 + c x cos kv 

(A.8) 

It is not possible to simplify I further without fixing Y > 0. For simplicity, we consider 

only the smallest possible values of Y > 0. Then, setting Y = 1 in (A.8), and using 

software Mathematica, we obtain, after some simplification of the resulting expression, 

7T r 2 - c 2 

iy=i = -2 + (A-9) 

Repeating this procedure for Y = 2, Y = 3 and Y = 4, we obtain respectively 

IY=2 
IT ' 6 6 - 5c2 

2 - - + 

IY=3 — 
IT 

2(-8 + 5c2) + 

c 2 c 2 \ / l - c 2 

2 , . 16 - 18c2 + 3c4 

iV"=4 — 
7T 

4(-10 + 9c2 - c4) + 

vT 
40 - 56c2 + 17c4 

vT 

(A.10) 

(A.11) 

(A.12) 

We could pursue this procedure for all the necessary values of Y but we stop here for 

brevity. 

Now, we can substitute back into (A.6) the analytical expression of I for the given 

value of Y and try to cast the expression in a convenient form. Let us illustrate this in 

the case Y = 0. Using c = coskx in (A.7) and substituting in (A.6), we have 

dk. 
/

7T fjL~ 
—?-sm2kxcos(kxX) 

- 7 r LIT 

1 — \J\ — cos2 kx 

cos2 kxy/\ — cos2 kx 

Using obvious trigonometric identities, we can simplify the integrand; in the latter ex

pression and cast the integral in the form 

rw dkx sin 2 kx cos(kxX)(l— | sinA^ |) 
/

7T 

- 7T 2TT cos2 kx I sin kx 

(A.13) 
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Now, the integrand of (A.13) is even in kx and so, using the fact that sin£; x > 0 for 

kx £ [0,7r], we can get rid of the absolute values and simplify (A.13) further: 

^ , - , r ^ rn dkx sin kxcos(kxX) ,A „ 
G(X,0)= — ^ - 1 , (A.14) 

Jo f 1 + sin kx 

We can make the change of variables kx —> kx'+n/2 which leads to sin(kx'+ir/2) = cos kx 

and cos[(A;x' + ir/2)X] = cos(kx'X) cos(fX) - sin(kx'X) sin(f X ) . Out;of the two terms 

in the latter identity, only the first one leads to an integrand even in Mx' (the bounds of 

the integral over kx are — TT/2 and 7r/2) and so, to a non-zero contribution to G(X, 0). 

As a result, (A.14) becomes 

g(*,o) = ± ( g ) r v - c 0 ^ ; c ° t - ? . 1
 (A.i5) 

\7r/ 7o 1 + coskx 

where we have used the fact that for an integer X, co s ( |X) = 1 for X = 0,4,8,... [(+) 

sign in (A.15)], cos(f X) = - 1 for X = 2, 6,10,... [(-) sign in (A.15)], !and cos(fX) = 0 

for X odd. 

We can repeat a similar procedure for G(X, 1), G(X,2), G(X,3) and G(X,4) using 

(A.9), (A.10), (A.11) and (A.12) respectively. For brevity, we just give the results: 

G(X,i)=± (-) r ' 2

d k & - ™ * * ' ) M * * ' x ) • 

' Jo x (1 + cos kj) tan kx 

[2\ W 2 (i - 2coskx')coskx cos(kx'X) 
G(X,2) = ± ( - ) dkx'K- x V > 

\7T/ 70 (1 + COS kx Y 
G(X 3) = ± f-1 f / 2 eta /(1-3 c o sO(1-C Q S^ ,) s i n( f c^) 

' \TV) Jo x (1 + cos kx')2 tan A;x' 

/- . /v ^ ( r / 2 j / l{l-4coskx')(l-coskx')coskx'cos{kx'X) 
G(x,4) = ±{-)jQ dkx ( 1 + c o s i f c x 0 3 ; • 

When y is an odd integer, then the (+) sign applies to X = 1,5,9,... and the (—) 

sign to X = 3,7,11,... whereas when Y is an even integer, then the (j-) sign applies to 

X = 0, 4, 8,... and the (-) sign to X = 2, 6,10,.... : 
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To summarize, let us give the expressions for G(X, Y) when Y is fixed to a given 

value (odd or even integer) different from 0 (the case Y = 0 is special and then G(X, 0) 

is given by (A.15)). It can be easily checked that the above results for G(X, 1), G(X, 2), 

G(X, 3) and G(X, 4) are special cases of the following general expressions: 

• Y is an even integer different from 0 

2^ /-"/a ,(1 - ycosfc s ' ) ( l - cosA:x')T-1cos'A;I'cos(A; : r'A:) 

(l + coskx')$+1 ' 
(A.16) 

where the (+) sign is for X = 0,4, 8,... and the (—) sign for X = 2, 6,10,... 

• Y is an odd integer 

G(X,Y) = ± C-) r ^ , / l - y c o s f c , - ) ( l - c o ^ , - ) ^ s i n j ( ^ ) 

Vvr/7o (1 + cos kx) 2 tan£; x ' 

where the (+) sign is for X = 1, 5, 9,... and the (—) sign for X = 3, 7,11,... 

These expressions clearly show that if X + Y is an even integer, then G(X,Y) ^ 0 

whereas if X + Y is an odd integer, then G(X, Y) = 0. We will see in appendix B how 

to overcome this unphysical property of G(X,Y). For now, let us describe some useful 

properties of G(X, Y). 

A.2 Properties of the Lattice Green Function 

Using (A.3), it can be checked that the following property applies to G(X,Y): 

G(X,Y)=G(-X,Y). 

The proof of such a property can be done by replacing in the expression for G(—X, Y) 

kx by — kx and reorganizing the integrand, which will turn out to be identical to the one 

of G(X, Y). In a similar way, the following properties also apply: 
I 

G(X,Y) = G(X,-Y) 



Appendix A. Lattice Green Function Simplification and Properties 148 

G(X,Y) = G(-X,-Y). 

Another useful property of G(X, Y) is 

G(X,Y) = G(Y,X) 

which can be proved by replacing in the expression for G(Y, X) [using (A.3)] kx by ky and 

ky by kx. These changes of variables can be done since kx and ky are dummy variables. 

That property greatly simplifies the task of calculating G(X, Y) for all X and Y. Indeed, 

we can then limit ourselves to the computation of G(X, Y) for X > Y. 

We have also checked that G(X,Y) falls off as 1/r2 at large r = \/X2 + Y2, where 

r is the distance from the rupture location to a given square of the lattice. The latter 

property can be useful when dealing with very large lattice sizes because the calculation 

of G(X,Y) using (A.16) and (A.17) is sometimes not accurate at large r. 

Finally, it is of interest to note that G(X, Y) can be multipled by a global constant 

without changing the redistributed stresses. This can be seen by referring to (2.8). 



Appendix B 

Coarse-Graining of the Lattice Green Function 

As we have seen in appendix A , G(X, Y) — 0 for X + Y equal to an odd integer and 

G(X,Y) ^ 0 for X + Y equal to an even integer, where X and Y are assumed to be 

positive or zero but not negative. (The latter restriction is not severe since from the 

properties of G(X, Y) outlined in appendix A, the signs of X and Y are irrelevant). This 

unphysical property of G(X, Y) can be overcome by a coarse-graining procedure. 

First, we illustrate this procedure on a one-dimensional strip having 2L\ squares. Such 

a lattice configuration is considered in chapter 3 for the study of the scaling properties of 

the model of X u et al. We imagine that one of the elementary squares (called the source 

square) breaks. During the stress redistribution which follows, we can mentally combine 

the squares pairwise, so that there are now L\ pairs of squares in the lattice. The lattice 

Green function associated with the pairs can be expressed as 

G\X,0) = G(2X,0), 

where 2X is the horizontal distance between the left (right) source square to a given left 

(right) square (in unit of a), and X = 0,1, 2 , L \ — 1 is the distance between the pairs 

in unit of 2a (a was fixed to 1 in chapter 2). 

For completeness, it can be mentioned that in the case of a two-dimensional 

(2Iq) x (2L 2) lattice of squares having a = 1, we can, during the stress redistribution 

which follows the rupture of an elementary square (again called the source square), gen

eralize the above procedure by mentally combining four of them such as to form a bigger 

149 
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square with lattice constant a = 2. The lattice now has L\ x L 2 squares with a = 2. The 

most natural coarse-grained lattice Green function can be expressed in this case as 

G2(X,Y) = G(2X,2Y) + ^[G(2X+ 1,2Y+ 1) + G(2X+ 1,2Y-1) + 

G(2X - 1,2Y + 1) + G{2X - 1,2Y - 1)] \ 

where X = 0,1, 2 , 1 ^ — 1 and Y = 0,1, 2 , L 2 — 1 refer to distances between the 

squares with a = 2. 
i 

G1 and G2 will be used in (2.8) to replace G when the lattice of squares is one-
j 

dimensional and two-dimensional respectively. 

Now, using the properties of the elementary (not coarse-grained) lattice Green func-
i 

tion (G) outlined in appendix A , we can easily prove the following [properties of the 

coarse-grained lattice Green function G (it refers to both G1 and G2): 

G(X, Y) = G(-X, Y) = G(X, -Y) = G(-X,-Y) 

G(X,Y) = G(Y,X). 

We have also checked that G(X,Y) falls off as 1/r2 at large r = s/X2 + Y2. It is 

remarkable that the elementary lattice Green function (G) and the coarse-grained lattice 

Green function (G) have similar properties. This gives us confidence that the coarse-

graining procedure that we use does not alter G that much. 


