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Abstract

The structural properties of external galaxies may be investigated using a model to

generate the predicted number of stars as a function of apparent magnitude in any field

in the galaxy. An implementation of such a model is explained in detail and is then

tested against observations of M31. These data consist of several CCD images of several

fields in M31 along the minor axis, with one field along a “diagonal”. Additional data

for 5 fields along the major axis was also made available.

Modelling of two galaxy components — the spheroid and the disk — is undertaken. A

spheroid density normalization of 3.1 x 10_6 stars pc3 at 10 kpc is derived for two of the

spheroid fields. The data for the field along the diagonal gives a density approximately

1.5 greater than this, possibly implying that the spheroid of M31 is inhomogenous. The

spheroid axial ratio can be constrained to between 0.4 and 0.7, values similar to previous

works. The effective radius cannot be constrained as well because it has a much smaller

effect on the observed number counts. It is also noted that changes in these parameters

can compensate for changes in the density normalization.

Modeffing the disk counts is more problematical — the reasons for this are discussed

in some detail. The disk density normalization is found to be approximately 1.5 x iO

stars pc3 at 10 kpc giving a disk to spheroid density ratio of about 48:1. Using models

run over grids of scale height and scale length it is found that the scale height is limited

to between 50 and 400 pc, the scale length constrained to between 5 and 7 kpc.
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Chapter 1

Star Counts and Galactic Struêture

1.1 Introduction

One of the most fundamental problems in the field of Galactic astronomy is that of stellar

populations: that is, what is the number and type of kinematic and chemical components

that make up our Galaxy and others. This problem has generated much debate and

controversy amongst researchers, but has also led to some important discoveries about

the nature and history of galaxies. This chapter will briefly review the main points in

the history of this subject and how they relate to this thesis. The emphasis will be on

the subject of star counts rather than on kinematical studies.

1.2 Early Studies of Galactic Structure

The first attempt to derive quantitative measurements of the Galaxy by counting stars

in different areas of the sky was by William Herschel in the l8” century. His work on

“star-gauging” — counting the numbers of stars down to increasingly faint magnitudes —

led him to conclude that the Galaxy was roughly effiptical (with an axial ratio of about

5:1) with the Sun near the center. At that time interstellar absorption was an unknown

quantity and this, coupled with Herschel’s assumption that all the stars were of the same

brightness, led to this erroneous result. 1

1See Mihalas & Binney 1981 for a more complete description and further references.
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With the development of large telescopes and astronomical photography (which per

mitted much more accurate measurements of a larger number of stars) Kapteyn 1922

undertook a similar task, leading to a similar model of the galaxy. Kapteyn deduced

from star counts and proper motion analyses that the Galaxy was a flattened spher

oid, with the density of stars dropping to half the central value at about 800 pc in the

plane and 150 pc perpendicular to the plane. This is now known to be rather too small

because the model also did not include the effects of interstellar absorption. Kapteyn,

whilst aware that absorption could be present, could find no direct evidence for it at that

time.

In Kapteyn’s model the Sun was close (650 pc) to the centre of the Galaxy. This

was disputed by Shapley (see Shapley 1919, for example) on the basis of his analysis of

the distribution of galactic globular clusters. Shapley proposed that the Sun was in the

outer parts of the Galactic plane, about 15 kpc from the centre. Although this value is

nearly twice as large as the currently accepted value, the idea was basically correct.

Support for Shapley’s model of a large Galaxy with the Sun near the edge was pro

vided by the dynamical studies of Lindblad 1927, who also proposed that the Galaxy

may be composed of a number of components all rotating about an axis through the

galactic centre and exhibiting various degrees of flattening depending on the speed of ro

tation. This dynamical reference was one of the first suggestions that the Galaxy may be

composed of two or more physical components with distinct properties. Oort 1927, 1928

built on Lindblad’s ideas to produce a more complete kinematical model of the galaxy,

compatible with Shapley’s.

Baade’s 1944 study of M31 revealed the presence of two classes or populations of stars.

Baade designated these as Population I (young objects in the spiral arms of galaxies, with

colour-magnitude diagrams similar to those of open clusters) and Population II (older

red stars found in the halo, and with globular cluster-like colour-magnitude diagrams). A
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system of five populations (Blaauw 1965) was later considered by many to be necessary

to provide a complete description of the Galaxy. However this figure is now viewed as

unnecessarily high — usually only two populations, a thin disk-like configuration and a

spheroidal halo, are used to model Galactic structure (Bahcall 1986). However there is

some evidence for a third “thick disk” component (see §1.4).

Until quite recently population studies of the Galaxy concentrated mainly on ana

lyzing samples containing detailed information on the spatial, kinematic and chemical

abundances of a number of stars (see, for example, the references in §1.4). These types of

studies usually share a common feature: the samples consist of stars within our Galaxy

with well known properties (kinematics, distances, metafficities etc.). This means that

sample size is often limited, and that samples can often be subjected to observational

bias. For example, the data set of Carney, Latham & baird 1989 is chosen from the

Lowell Proper Motion Catalogue. Compared to other samples (e.g. Norris 1986) the

halo stars in this set have an unusually large velocity dispersion in the radial direction,

implying a bias against stars moving on more circular orbits. The stars in the sample

are therefore kinematically biased but are unbiased in metallicity.

Because the sample sizes are generally small, they are susceptible to bias effects

introduced by the presence of a few stars with extreme properties — for which there may

be no a priori reason to remove from the sample. Further complications arise due to the

fact that the metafficity and kinematics of a population can only be described by some

form of distribution function: therefore there will always be an overlap between the two

or more components.
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1.3 Modern Star Count Analysis

Recently (as discussed in Bahcall 1986) the technique of using star counts has made a

comeback — principally due to the advent of computer controlled machines to analyze

photographic plates and CCD cameras capable of fast and accurate data acquisition.

When making observations of a particular field the final number of stars one sees

(down to some limiting magnitude) comes from three sources: the density distribution

of stars throughout the Galaxy, the distribution of stars with absolute magnitude (the

luminosity function) and the interstellar absorption. Although the latter does not change

the number of stars, it does change their apparent magnitude and therefore the observed

luminosity function. One may formalize this and write that the number of stars, A,

having magnitudes m (mi m m2) in direction (, b) in a projected area d is given

by
pm2 poo

A(mi,m2,t,b)df J dm’J R2p(t,b,R,M)4(M)d2dR (1.1)
mj 0

where M m’ — 5log R + 5 — 0(R). In this “fundamental equation of stellar statistics”,

p, 4 and 0 refer to the density and luminosity functions and the interstellar absorption

in the field. £ and b are the Galactic longitude and latitude respectively. The density

function, p, may also be a function of spectral type or absolute magnitude. For example,

the scale height of stars in the disk varies from approximately 200 pc for the main-

sequence dwarfs up to about 1 kpc for the red giants (Bahcall 1980). In addition the

luminosity function is assumed to be independent of the density function and position.

The classical approach to solve this equation for p, 4 and 0 — given an appropriate

set of data — is to invert it mathematically. The most common methods are those of

(m, log ii-) (see, for example, Mihalas & Binney 1981), and that of Malmquist 1924, 1936.

However these can be unstable mathematical procedures, especially when the sample

is small (as is often the case), its photometry poor and the obscuration is patchy or
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unknown (or both). It is often desirable to obtain the luminosity functions of stars of

different spectral types, (M, S). These are quite well defined and can be extracted

from the data separately. However it is often necessary to solve for a general luminosity

function (M) to avoid reducing the sample size still further.

The alternative adopted by Bahcafl & Soneira 1980, 1984 is to assume that the density

distributions and luminosity functions are known, predict what the star counts (and col

our distribution) should be, and compare this to the observations. This can be repeated

with changes in the model parameters until a suitable match is found. This method is

much simpler than the usual inversion techniques. However, the resulting model will

probably not be unique, but it will determine the basic structural properties of the

Galaxy. Bahcall & Soneira 1984 and Bahcall 1986 have used this model, with only two

structural components (a disk and a spheroid), with considerable success in fitting the

observations from a variety of observers in a multitude of fields in our Galaxy.

1.4 The Thick Disk

In recent years the existence of a third discrete component, usually referred to as a

“thick disk”, has been both proposed by some and been found unnecessary by others.

The presence of a thick disk was first proposed by Gilmore & Reid 1983 who found an

excess in the density distribution perpendicular to the galactic plane. Further evidence

of a thick disk has also been claimed by, amongst others, Gilmore & Wyse 1985, Norris,

Bessell & Pickles 1985, Rose 1985 and Carney, Latham & Laird 1989. However the

original work by Gilmore & Reid has been criticised by Bahcall & Soneira 1984 who

point out that the sample could be contaminated with giants, leading to the observation

of an artificial thick disk. Bahcall 1986 reviews the case for the two component model,

and finds the existence of a thick disk to be unnecessary.
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Furthermore, Norris 1987 demonstrates that a four component model can fit the data

— which implies that one can construct a model composed of almost any number of

components, of which few (or none) may have any physical basis.

However a recent study by Majewski 1992 has shown that there appears to be a

thick disk, and furthermore, that it is a spatially distinct entity. He uses photometry

and proper motion studies of SA 57, caJibrated with COD photometry and claims the

study is unbiased out to a distance of up to 25 kpc from the Galactic plane. He finds a

sharp change in the stellar populations at a height of approximately 5.5 kpc, which he

associates with the edge of the thick disk. The chemical and kinematical properties of

this component are found to be quite distinct from the spheroid.

1.5 Stellar Populations and Galaxy Evolution

The presence, or lack, of a discrete thick disk will have significant effects on theories

of galaxy formation. With no thick disk, a model of monolithic galactic collapse akin

to that proposed by Eggen, Lynden-Bell & Sandage 1962 is plausible. In this model,

the galaxy formed out of a cloud of gas in a uniform manner, the disk rotating faster

as it collapsed and increased its angular momentum. If a thick disk is present then a

slower accretion of “sub-units” (such as that favoured by Searle & Zinn 1978) would be

preferred. After the formation of the disk the collapse of spheroid components’ would be

much more independent and inhomogenous, possibly leading to a flat metallicity gradient

in the outer parts of the galaxy.

If a thick disk is present, and if it has properties distinct from those of the spheroidal

halo (as the results by Majewski 1992 seem to indicate), then its formation cannot have

occurred as a smooth transition between the formations of the (thin) disk and the halo.

Each of the three Galactic components may have formed separately from the others —
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possibly the disk formed via a process similar to that proposed by Eggen, Lynden-Bell

& Sandage 1962, whilst the halo formed “chaoticaJly”.

1.6 External Galaxies

A number of the problems mentioned in §1.3 can be overcome by examining external

galaxies. In practice this usually means looking at the Andromeda Galaxy, M31, where

individual stars can be resolved. This is the most luminous galaxy in our Local Group,

and the third brightest in the sky (after the LMC and SMC). van den Bergh 1960 classifies

its Rubble type as Sb I—IT, making it very similar to our Galaxy (type Sb/c). The distance

is well known — van den Bergh 1991 gives a mean distance (determined from a variety

of methods) of 725 ± 35 Kpc. Walterbos & Kennicutt 1988 (hereafter WK88) have

conducted an extensive study of the surface brightness profiles of M31, particularly the

disk and spiral arm regions. They derive several parameters for the disk and spheroid

that will be referred to in this work, usually as starting points for analysis.

To investigate stellar populations in M31 it was decided to adopt an approach similar

to Bahcall & Soneira — that is, assume a density. distribution and luminosity function

and predict the star counts for various fields in M31 by integrating from the outside into

the galaxy. The model is fairly straightforward — once the projection effects due to the

inclination are accounted for, the distance of the field from the centre of the galaxy can

be found and a “back-bearing” can be obtained to find an effective “t” and “b”. The

integration then proceeds in a manner similar to the Balicall — Soneira model except now

the apparent magnitude is given by M = m — Slog(D ± R) — 0 + 5 where D is the

distance to M31 and R the distance from the plane of M31 (R is added or subtracted

from D depending on whether the integration is proceeding away from or towards the

observer).
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The terminology used by different works to describe various galactic components can

be confusing at times. In this work the spheroid will be taken to mean the extended

distribution of stars in a galaxy — it will not be referred to as the bulge or halo (the latter

often referring to an extended (R—2) distribution of dark matter).

1.7 Star Counts in External Galaxies

Star counts in M31 have been performed by Reddish 1962, van den Bergh 1966 and

Berkhuijsen & Humphreys 1989. However these are not “counts” in the same sense

as the method discussed here — they derived luminosity functions from counts of OB

associations and individual OB stars.

Pritchet & van den Bergh 1994 (hereafter PvdB94) have also performed a study of

the stellar populations of M31 using star counts. However after performing the star

counts and conducting the incompleteness tests they convert these numbers to a surface

brightness to determine the halo parameters. They achieve a good fit to the r law

and also note that the maximum disk contribution is approximately 40% at a minor axis

distance of 15’. They conclude that a single de Vaucouleurs law with a minor axis effective

radius of 1.3 kpc can fit the spheroid from r = 200 pc all the way out to r = 2 kpc. From

analysis of fields along the “diagonal” they derive an axial ratio of 0.55 ± 0.05. This is

fairly consistent with the values of 2.0 kpc and 0.63 derived by WK88.



Chapter 2

Observations and Data Reduction

2.1 Introduction

Any external galaxy model must be tested against observations of real galaxies. In this

work, observations of several fields in M31 were used as a test of the model. These

observations came from a program originally proposed by Fahiman & Richer (private

communication) and combined with a project by Christian & Heasley (private commu

nication).

The data set consists of three nights of observation of globular clusters in M31. These

objects take up a very small area of the frame (the typical diameter is less than 10”) and

can easily be masked out of the analysis procedure. The total amount of data available

in this set is quite large but of variable quality: only six fields were picked for study and

are discussed in this chapter. These fields lie mainly along the south east minor axis,

with one lying due east of the galaxy along a “diagonal”.

Additionally the results of data from five fields along the south west major axis were

kindly made available by Brewer (private communication). Although these data were

obtained with a very different purpose in mind they do lend themselves quite well for use

in star count analysis.

This chapter will describe the observations and data reduction procedures used to -

analyze the first six fields. Interpretation of the results and comparison with the external

galaxy model will be discussed in chapters 4 and 5.

9
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2.2 Observations

The data used in this work were obtained by Fahiman and Christian at CFHT on the

nights of 1990 August 16/17, 1990 August 17/18 and 1990 August 18/19 (designated as

nights 1 to 3 in the following discussion) using HRCam and the SAIC2 CCD. This device

has a size of 1024 x 1024 pixels with a scale of O’f 13 per pixel when used with the High

Resolution Camera.

Table 2.1 lists the fields used in this work, identified by the globular cluster in the field

(column 1, Sargent et al. 1977). Coordinates (epoch 2000.0) are given in columns 2 and 3.

The projected distance from the centre of M31 (a2000 =0h42m445s,
62000 = +41° 16’29”)

— essentially the impact parameter, b — is given in column 4 in kpc. The number of V

and I frames are given in columns 5 and 6 along with the exposure times (in seconds) as

the second number. The size of each field was 1014 x 1023 pixels, or 132” x 133” , after

preprocessing. At the distance of M31 each field is 420 pc on a side.

In addition, the five major axis fields made available by Brewer (private communica

tion) are listed (Bi, B2, B3, B4 and B5). These were obtained with FOCAM at CFHT.

These fields are substantially larger than the HRCam fields at 7’ x 7’. They are more

fully discussed later in this chapter.

Table 2.2 lists the standard star observations for each night. Positions (epoch 2000.0)

are given in columns 2 and 3, exposure times for each standard frame (in seconds) are

given in column 4 (V) and 5 (I). The M92 standards consist of 10 to 12 stars in the

outer regions of M92. Magnitudes in .V and I were taken from Landolt 1992, except for

the M92 stars whose data came from the work of the “Kitt Peak consortium standards

in M92” (Christian et al. 1985, Heasley and Christian 1986).

‘The Canada-France-Hawai’i Telescope (CFHT) is operated by the National Research Council of
Canada, le Centre National de la Recherche Scientifique de France, and the University of Hawai’i.
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Table 2.1: List of observed fields in M31

ID a2000 62000 b V frames I frames Night
0213 0h43m14•6s 41° 07’ 23” 2.2 2 x 300 5 x 120 3
0263 44 03.3 41 04 57 3.9 1 x 450 1 x 450 3
0302 45 14.9 41 06 23 6.2 3 x 1000 4 x 400 1
G312 45 58.8 40 42 32 10.5 6 x 600 5 x 300 2
0352 50 10.0 41 41 01 18.2 3 x 600 3 x 300 3
G355 51 33.9 39 57 34 26.8 1 x 450 — 3
Bi 41 40.4 40 59 00 4.5 9 x 600 7 x 300
B2 41 12.7 40 50 41 6.6 6 x 600 4 x 300
B3 40 21.9 40 36 24 10.3 6 x 600 4 x 300
B4 39 23.8 40 14 32 15.4 6 x 600 3 x 300
B5 35 41.9 39 29 03 28.4 4 x 600 5 x 300

Table 2.2: List of standard star frames

Field a2000 82000 V exp. I exp. Night
SA93—317 0154m38s +00° 43’ 00” 5 2 1
SA93—424 01 55 26 +00 56 43 5 2 1
Feige 16 01 54 08 —06 42 54 5 5 1
M92 17 17 07 +43 08 11 60 60 1
M92 17 17 07 +43 08 11 60 60 2
SA113-492 21 42 28 +00 38 21 2 2 2
P01633+099 16 35 24 +09 47 50 20 10 2
SA93—317 01 54 38 +00 43 00 5 2 3
SA93—424 01 55 26 +00 56 43 5 2 3
Feige 16 01 54 08 —06 42 54 5 5 3
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Figure 2.1: A map of M31 showing the locations of the fields listed in Tables 1 and 2
(the black squares). Also shown are the companions M32 and NGC 205. The shading in
the figure is only representative and does not indicate a true optical size. The centre of
M31 — shown by the small cross — is at a2000 = 0h42m and 82000 = 41° 16’ in this figure.
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2.3 Data Reduction

The frames were preprocessed (bias subtracted and flat fielding) using IRAF 2 If three

or more frames were available for a particular field they were combined using the sigma

clip average option of the IRAF task imcombine. In this procedure each pixel of the

final frame is the average of the same pixel in the input frames, but with deviant pixels

excluded. This has the effect of increasing the S/N ratio and successfully removing most

cosmic rays. If only two frames were available they were averaged and the cosmic rays

removed with the cosmicray task in IRAF. This was also quite successful, and was also

the method used to remove cosmic rays if only one frame was available. The images were

then trimmed to remove several columns of bad pixels along one edge.

In a few cases the same field had been observed on two or more nights. In these cases

the frames from the best night (most frames, better seeing) were combined and used.

Frames taken on different nights were not combined because of small rotations between

the frames. Note that in the case of the 0213 field both V and I data were available but

only the V data is presented here. The individual and combined I images suffer from

extreme crowding and large background variations due to their proximity to the centre

of M31.

After preprocessing and combining (where appropriate) each image was reduced using

the DAOPHOT software package (Stetson 1987). DAOPHOT automates the process of

finding objects on the image, identifying them as stars and measuring their magnitudes.

A certain amount of user interaction is required to set the point spread function (PSF)

for the image. In practice the ALLSTAR program in the latest version of the DAOPHOT

software was used in this analysis.

The output from the reduction of each image is a list of star positions and instrumental

2lmage Reduction and Analysis Facility (IRAF), a software system distributed by the National Optical
Astronomy Observatories (NOAO).
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magnitudes. The final steps are to remove stars that are (a) too near (within 100 pixels

of) the globular cluster on the image; (b) stars on and around the HRCam guide star

on the edge of the image (typically bright and saturated); and (c) remove stars that are

obviously not stars at all — on a few of the final images one or two bright galaxies are

present which the DAOPHOT find detection routine did not classify correctly.

2.3.1 Standard Star Frames

Standard star frames (see Table 2.2) were preprocessed in the same way. For all the

standards (except for the M92 field) it was necessary only to measure the aperture mag

nitude (see the §2.4.2, below). The M92 standard field was sufficiently crowded to require

a full reduction procedure. This enabled the “non” standard stars to be removed (sub

tracted) from the frame. Although this leads to noisier images (in the sense that some

stars will not subtract out perfectly and will leave residual effects behind) it is necessary

to do this to get uncontaminated magnitudes for large apertures.

2.4 Calibration

From Table 2.2 one can see that the available standards were quite limited — the low

number of standards for each night precluded the calculation of extinction coefficients.

Standard CFHT coefficients of av = 0.13 and cq = 0.05 were used instead. Checks were

made, however, to ensure that these were consistent with the data. This turned out to be

the case. The data are also consistent with a zero colour coefficient, though a non-zero

coefficient cannot be ruled out entirely.
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2.4.1 DAOGROW

The DAOGROW program was used to determine aperture magnitudes for both the standard

stars and all the secondary standards on the individual images. The usual calibration

procedure is to use an aperture magnitude and a profile fitting magnitude (PSF mag

nitude) for the same secondary standards to derive an offset, and to correct the PSF

magnitudes of all the stars on the image to the aperture photometry scale. If the frame

is crowded then there may be few (or no) stars that are sufficiently isolated for this to

work properly. In this case two aperture magnitudes can be used (at radii of, say, 3 and

10 pixels). The magnitude in the smaller aperture can be found for many stars, and the

magnitude in the larger one measured for selected uncrowded stars to get a magnitude

that includes all the stellar light in the wings of the profile. These two corrections can

then be combined to provide a single aperture correction. DAOGROW (Stetson 1990)

takes this procedure one step further; It derives a “total magnitude” for a star using

a combination of the empirical curve of growth and an analytical function fitted to the

curves of growth of all the specified stars on the image. In this way it uses all the available

information about the stellar proffle — not just samples of the data at one or two radii.

This total magnitude is then used as the real instrumental magnitude of the star and is

compared to the PSF magnitude to derive an offset.

2.4.2 Standard stars

Table 2.3 lists standard star magnitudes and V — I colours. Reference 1 is Lan-

dolt 1992; reference 2 is from the Kitt Peak consortium standards in M92 (Christian

et al. 1985, Heasley and Christian 1986). Instrumental aperture magnitudes were ob

tained using DAOGROW and corrected for exposure time and extinctions (using CFHT

standard values). Extinction coefficients were hard to measure due to the paucity of
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Table 2.3: List of standard star magnitudes
Standard V 0v V — I oTr_ Reference
Feige 16 12.406 0.0013 —0.001 0.0021 1
SA93—317 11.546 0.0007 0.592 0.0008 1
SA93—424 11.620 0.0009 1.058 0.0008 1
SA113—492 12.174 0.0033 0.684 0.0053 1
SA113—493 11.767 0.0039 0.824 0.0039 1
SA113—495 12.437 0.0024 1.010 0.0057 1
PG1633+099 14.397 0.0025 —0.212 0.0111 1
PG1633+099A 15.256 0.0036 1.015 0.0111 1
M92—4 14.618 0.0140 0.950 0.0380 2
M92—5 16.052 0.0090 0.590 0.0090 2
M92—6 16.331 0.0210 —0.123 0.0110 2
M92—7 16.437 0.0200 —0.127 0.0220 2
M92—8 15.932 0.0210 0.653 0.0240 2
M92—9 16.986 0.0100 1.311 0.0300 2
M92—10 14.036 0.0100 0.933 0.0200 2
M92—11 15.146 0.0230 1.152 0.0280 2
M92—12 15.982 0.0270 0.844 0.0180 2
M92—13 15.078 0.0180 0.681 0.0240 2
M92—21 17.925 0.0090 0.636 0.0170 2
M92—22 17.542 0.0150 0.680 0.0260 2
M92—23 16.791 0.0230 0.771 0.0430 2
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standards. Plotting the magnitude offset as a function of airmass showed that the

standard CFHT values of the extinction coefficients were at least consistent with the

data. There is no convincing evidence for a colour term on any of the three nights.

The number of M92 standards that were usable depended on the precise field and seeing

conditions and therefore varied from night to night.

Night 1

Standard stars available on this night included SA93—317, SA93—424, Feige 16, and six

of the M92 standards (6, 7, 8, 9, 12 and 23). The plot of standard magnitude (V) minus

aperture magnitude (measured using DAOGROW, Vap) against standard V — I is shown

in figure 2.2. M92 standards are plotted as filled circles, the SA93 stars as triangles and

Feige 16 as a square. Panel (c) of the figure shows that there is no significant colour effect.

The zero points are (V
— Vap) — —0.9471 ± 0.0281 and (I lap) = 1.0712 ± 0.0936.

Night 2

Available standards on night 2 included SA113—492, SA113—493, SA113—495, PG1633+099,

PG1633+099A and 11 M92 standards (4, 5, 7, 8, 9, 10, 11, 13, 21, 22 and 23). Figure 2.3

shows the plot of standard minus instrumental magnitude as a function of standard

V — I. M92 standards are plotted as filled circles, the SA113 stars as squares and the

PG1633+099 stars as triangles. M92 standard 21 was not measured in V; standard 10

was not measured in I (that is, the star was either too crowded or the neighbours did

not subtract cleanly enough for a good curve of growth to be measured). Again there

is no significant colour term. The zero points are: (V
— Vap) = 1.0044 ± 0.0734 and

(I
— lap) = 1.0873 ± 0.0386.
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Figure 2.2: This figure shows the zero point shifts (the difference between standard
magnitude (V) and instrumental aperture magnitude (Vap)) for the standard stars for
night 1, plotted against standard (V — I) for the V and I measurements (panel (a) and
(b) respectively). Panel (c) plots the colour difference (V — I) = (V

— I)ap — (V — I).
The M92 standards are plotted as filled circles; SA93 stars as triangles and Feige 16 as
a square. The broken horizontal line shows the mean value in each case.



Chapter 2. Observations and Data Reduction 19

— I I I I I I I I I I I I

—0.9- (a)
*

-1.0 =

•
—1.1: 1 -

-1.2-

—1.3•••

I I I I I I I I I I —

—0.9 - (b)

I I I I I I I I I I I I I

0.1 (c) -

0. H -

—0.1- -

-0.2- 1 I -

• I I I I I I I I I i

—0.5 0.0 0.5 1.0 1.5
v—I

Figure 2.3: This figure shows the zero point shifts for the standard stars for night 2,
plotted against standard (V — I). The M92 standards are plotted as circles; SA113 stars
as squares and P01633+099 stars as triangles. The broken horizontal line shows the
mean value in each case.
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Night 3

Only 3 standards were available this night: Feige 16, SA93—317 and SA93—424. No colour

term is evident in figure 2.4, which shows the zero point shift as a function of V — I. The

zero points are: (V
— Vap) = —0.9600 + 0.0164 and (I

— lap) = —1.1243 ± 0.0652

2.4.3 Secondary Standards

For each frame secondary standards were selected from the final photometry lists using

the criteria that they were relatively uncrowded and bright but not saturated (a selection

method similar to choosing PSF stars). All the stars in the photometry list except these

ones were then subtracted from the frame using DAOPHOT. The instrumental aperture

magnitudes of these stars on the subtracted frames were measured using the DAOGROW

program for several radii. The sample was further “pruned” by selecting stars with

curves of growth that flattened out reasonably well at large radii. Typically 7 or 8 stars

survived this process to provide well measured aperture magnitudes. These aperture

magnitudes were then compared with the profile fitting magnitudes (from ALLSTAR) to

provide corrections from the one to the other. Once again, no colour term was found to be

significant. By summing these corrections (PSF magnitude to aperture magnitude) with

the shifts from equations 2.1, 2.2 and 2.3 (aperture magnitude to standard magnitude)

and adding terms for the extinction with air mass and for the exposure time, a set of

final zero point shifts was derived. These are shown in Table 2.4, for both the V and the

I frames, along with the formal errors.

2.5 Incompleteness Tests

The final observed luminosity function for each field will suffer from incompleteness,

i. e., not all stars that are actually there may have been found and photometered. This



Chapter 2. Observations and Data Reduction 21

I I I I I I I I I I I

—0.94 - (a)

—0.96 -

—0.98

1.00 -

I I I I I I I I I I I I I I

(b)

—1.10 -
-

1.15 -
—

1.20 -
-

I I I I I I I I I I I

(c)

—0.10 -
-

—0.15 -
-

—0.20 -
-

I

I I I I

—0.5 0.0 0.5 1.0 1.5
v—I

Figure 2.4: This figure shows the zero point shifts for the standard stars for night 3,

plotted against standard (V — I). SA93 stars are plotted as filled circles and Feige 16 as
a triangle. The broken horizontal line shows the mean value in each case.
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Table 2.4: Final calibration zero points

Field ZV 0zV ZI

G213 4.1972 0.0536 — —

G263 4.8804 0.0523 4.5339 0.0840
G302 5.6647 0.0919 4.6389 0.0989
G312 5.2903 0.1021 4.4936 0.0599
G352 5.0670 0.0792 4.0952 0.1227
G355 4.7995 0.0623 —

problem gets worse with fainter magnitudes but can be partially alleviated by adding

artificial stars to the image and re-reducing it in exactly the same way as the original.

By comparing the number of artificial stars added in to those recovered it is possible to

estimate how many stars are being missed as a function of magnitude. A small number

of stars are added to the original image to keep the crowding problems at the same

level. This procedure is then done several times to build up a statistically significant test

sample. Typically in this work 20 sets of 100 stars were added independently to each

frame so that errors in the incompleteness ratios could be found. These incompleteness

ratios can be used to correct the observed counts. A very thorough description of the

process is found in Drukier et al. 1988 and also in Bergbusch 1993.

2.6 Observed Luminosity Functions & Colour-Magnitude Diagrams

The observed luminosity function will be contaminated by two effects — foreground stars

belonging to our own Galaxy and background galaxies in the field. The latter is not a

large problem in disk fields due to the increased absorption and much larger numbers

of stars, but visual inspection of such images often revealed large, obvious background

galaxies. These were masked out of the data reduction in the same way as the globular

clusters.
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The number of foreground stars in various fields has been estimated by Ratnatunga &

Bahcall 1985 using the standard Balicail and Soneira Galaxy model (Bahcall & Soneira

1980). Figure 2.5(a) shows this model calculation compared to a version of the code

(called BSM) written during the development of the External Galaxy Model described in

Chapter 3. The new BSM code reproduces the Ratnatunga and Bahcall results very well.

An attempt was made to run this model using exactly the same parameters but because

of the large number of parameters this was not possible. This may account for the slight

discrepancies between the two models.

Figure 2.5(b) compares the same BSM model used above with background field data

from the study of the halo of M31 by PvdB94. The BSM model fits the data very

well for magnitudes V < 22.25 and is used to generate all the estimates of foreground

contamination in this work.

At fainter magnitudes the chief source of contamination is from background galaxies

that have been mis-identified as stars. An attempt was made to remove galaxies explicitly

using a variety of image classification methods. This was found to be unsatisfactory due

to the low signal to noise ratio at these faint magnitudes.

It was decided to remove background galaxies from the luminosity functions (LFs)

in a statistical sense, rather than from the images themselves. There have been several

studies of galaxy counts but the majority of them utilize the I and R bands — for this

work V data is required. Fortunately deep galaxy counts in V have recently been made

by Woods, Fahlman and Richer 1995 who give the following relation for the number of

galaxies per 0.5 magnitude bin per square arc minute:

log N = 0.41V — 9.19 (2.1)

This relation is plotted in figure 2.6, together with the BSM model prediction for the

foreground stars, and with the PvdB94 background field data. The fit of this relation to
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Figure 2.5: (a) A comparison of the Ratnatunga and Balicall 1985 model (filled circles)
and the BSM model described in the text (solid line). N is the number of stars per 2
magnitude bin. (b) A comparison of the PvdB94 background data with the BSM model.
The fit to the brighter magnitudes (V < 22.75) is very good. N is the number of stars
per 0.5 magnitude bin.
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Table 2.5: Contaminant levels for M31

V Stars Galaxies V Stars Galaxies
17.0 0.53 0.03 22.5 2.32 5.07
17.5 0.61 0.05 23.0 2.62 8.13
18.0 0.69 0.07 23.5 2.92 13.03
18.5 0.76 0.12 24.0 3.19 20.89
19.0 0.84 0.19 24.5 3.41 33.50
19.5 0.95 0.30 25.0 3.56 53.70
20.0 1.10 0.48 25.5 3.63 86.20
20.5 1.27 0.77 26.0 3.62 138.04
21.0 1.49 1.23 26.5 3.52 221.31
21.5 1.74 1.97 27.0 3.33 354.81
22.0 2.02 3.16 27.5 3.05 568.85

the faint end of the PvdB94 data is quite good.

Table 2.5 lists these galaxy counts (scaled to the area of the “G” fields of 4.68 square

arc minutes) along with the foreground star counts. In the analysis of the spheroid

component (Chapter 4) the galaxy corrections are only applied for bins V> 20.5 (where

there is more than one galaxy to account for). In the disk analysis (Chapter 5) it is

assumed that no faint galaxies can be seen through the disk, and this correction is not

applied. It should also be noted that in Chapter 4, when the External Galaxy Model is

compared against these corrected LFs, the “goodness of fit” criterion includes a correction

for these contaminants. Since the bins that have been corrected for galaxy contamination

are also those with a large errors in the number counts (because they are faint) these

corrections do not play a large role in the analysis.

Figure 2.7 shows the observed V luminosity functions for the six fields. The thick ver

tical line in each panel indicates the magnitude at which the completeness of the sample is

50%, as obtained from incompleteness tests. These luminosity functions are tabulated in

Table 2.6, which does not incorporate the foreground and background subtractions. The
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Figure 2.6: Estimate of background galaxy counts (per square arc minute) (dashed line)
from Woods, Falilman and Richer 1995, together with the PvdB94 background data
(filled circles) and the BSM model prediction (solid line). At V 21.25 there are equal
numbers of foreground stars and background galaxies.
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counts in this table are the completeness corrected counts in that field (0.0013 square

degrees) in a 0.5 magnitude bin centered at the magnitude given in column (1). The

corresponding errors (a) are a combination of (a) the standard deviation of the mean of

the counts in each bin, as measured over the 20 incompleteness tests, (b) the Poisson

counting errors in each bin for each test, and (c) the error in the incompleteness fraction.

Figure 2.8 shows the colour-magnitude diagrams for the four fields with the best V

and I data: 0263, 0302, 0312 and 0352. These diagrams were constructed by matching

together the V and I photometry lists of each field. Similar diagrams for the 0213 and

G355 fields are not shown. In the former case there is too much crowding and background

variation across the frame; in the latter no I frame was obtained.

2.7 The Brewer Major Axis Fields

To facilitate the analysis of the disk parameters Brewer (private communication) kindly

made available V and I data from five fields along the major axis, taken at CFHT using

FOCAM. These “B” fields (as they will be referred to) are approximately ten times larger

than the “0” fields at 7’ x 7’ in size. Additional information is given in Table 2.2. Data

is also available in two narrow band filters centered around CN and TiO absorption

features respectively. Only stars with a measured V and I magnitude are included in

this discussion — the additional selection procedure of including stars only measured in all

of the four filters was not applied as it was felt this would place unnecessary restrictions

on the data sample.

Figure 2.9 shows (I,V — I) CMDs for each of the five Brewer fields. The Bi and

B4 CMDs show a fairly “clean” disk population — the tip of the giant branch is clearly

delineated, as is the form of the giant branch down to V 22. The situation is more

complex for B2 and B3 — there appears to be a substantial blue component at V—I < 0.6.
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Figure 2.7: The observed V band luminosity functions for the fields G213, 0263, 0302,
0312, 0352 and 0355 (filled circles). The bins are 0.5 mag wide and the ordinate is the
logarithm of the number of stars in the fields per 0.5 magnitude bin at that magnitude.
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Table 2.6: Observed “G” field V luminosity functions.

V G213 @263 @302
19.0 3.40 1.94 0.00 0.00 1.95 1.45
19.5 2.15 1.51 1.00 1.00 0.10 0.44
20.0 5.65 2.50 3.00 1.73 1.65 1.41
20.5 12.40 3.69 1.00 1.10 3.80 2.10
21.0 59.00 43.20 10.00 3.20 3.25 1.86
21.5 66.67 29.15 8.15 2.90 3.20 1.84
22.0 225.40 42.75 42.73 14.55 7.65 3.08
22.5 790.23 114.01 148.93 23.52 40.75 6.73
23.0 1579.01 196.32 682.94 125.90 132.75 11.77
23.5 4580.08 791.44 1302.23 261.00 330.97 44.47
24.0 6246.87 1280.88 3765.73 1491.29 728.43 10660
24.5 28.50 5.89 5709.30 2850.74 1520.52 277.75
25.0 — — 12032.26 12202.14 2123.33 445.03
25.5 — — 7356.38 2993.94
26.0 — 3440.79 2122.12
26.5 — — —

V G312 @352 @355

______

19.0 2.00 1.41 2.00 1.41 0.00 0.00
19.5 1.00 1.00 1.00 1.00 1.00 1.00
20.0 1.00 1.00 1.00 1.00 1.00 1.00
20.5 1.00 1.00 2.00 1.52 3.00 1.73
21.0 1.00 1.00 3.55 2.16 1.00 1.00
21.5 3.00 1.73 10.00 3.60 3.00 1.73
22.0 3.20 1.84 10.40 3.46 5.00 2.31
22.5 16.75 4.14 15.05 4.08 13.10 3.71
23.0 35.95 6.11 33.29 9.97 10.15 3.83
23.5 103.20 10.28 84.27 10.57 35.14 9.51
24.0 210.65 25.36 140.61 16.00 172.57 59.53
24.5 288.62 32.57 292.46 35.11 1389.11 578.15
25.0 657.88 94.63 771.09 97.26 2465.12 1141.90
25.5 1420.03 205.56 2208.30 349.19 — —

26.0 2096.40 414.36 2330.77 924.33
26.5 1647.30 608.11 —



1 2 3
v—I

Figure 2.8: Colour magnitude diagrams in (I,V — I) for the G263, G302, G312 and G352
fields.
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This is especially noticeable in B3 where there is also a comparative excess of stars slightly

above the giant branch at I 20, v—I 1.8. This may be attributed to the presence of a

younger spiral arm component which may be hard to remove in the modelling described

in Chapter 5. WK88 avoid this problem by excluding these regions from their fit to

surface brightness, an option that is not available here. The B5 field has many fewer

stars, appearing to be very much like a spheroid field. However appearances can be

deceptive as the analysis in Chapters 4 and 5 will show.

Table 2.7 lists the observed LFs for the B fields, corrected for the difference in areas

between the FOCAM and HRCAM fields by a factor 0.10022, but not corrected for

foreground or background contamination. The units are stars per 0.5 magnitude bin per

0.0013 square degrees at a magnitude centered on the magnitude given in column (1).

Figure 2.10 plots these LFs along with the foreground correction from Table 2.5. The

background galaxy counts are not included in this plot — it is assumed that faint galaxies

cannot be seen through the disk, a fact borne out by examination of the images. In the

B2 and B3 fields the removal of the component blueward of V — I = 0.6 did not lead

to a substantial reduction in the number of stars. These modified LFs are also listed in

Table 2.7 (columns 4 and 6) as “B2(R)” and “B3(R)”. They are plotted in figure 2.10 as

open circles. Incompleteness fractions were not available for this data set.
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Figure 2.9: Colour magnitude diagrams in (I,V—I) for the Bi, B2, B3, B4 and B5 fields.
The blue (V — I < 0.6) components can be clearly seen in the B2 and B3 diagrams.
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Figure 2.10: V band luminosity functions for the Bi, B2, B3, B4 and B5 fields. The open
circles in the B2 and B3 panels indicate the counts with the blue (V—I > 0.6) component
removed. The dashed line show the level of field star contamination predicted by the
BSM program. The units are the logarithm of the number of stars per 0.5 magnitudes
per 0.0013 square degrees.
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Table 2.7: Observed “B” field luminosity functions.

V Bi B2 B2(R) B3 B3(R) B4 B5
19.0 1.30 2.51 1.50 4.51 2.00 1.40 1.70
19.5 1.20 2.81 1.50 8.72 4.31 1.20 0.50
20.0 2.81 5.71 3.01 15.43 6.51 2.31 0.90
20.5 5.11 9.12 4.51 34.48 18.44 2.91 1.80
21.0 8.62 14.73 6.72 51.81 28.26 4.01 1.60
21.5 12.23 22.55 12.93 89.80 55.82 5.91 2.91
22.0 47.81 49.51 37.48 150.03 97.01 20.45 4.01
22.5 369.31 187.81 177.79 286.33 252.15 100.02 13.93
23.0 1299.65 329.22 326.12 451.99 442.17 301.76 28.16
23.5 1315.29 147.22 146.82 256.06 254.76 187.31 13.13
24.0 478.55 29.16 28.96 56.02 55.92 16.14 1.10
24.5 121.57 5.41 5.41 9.32 9.32 0.80 0.10



Chapter 3

The External Galaxy Model

3.1 Introduction

To predict star counts in M31 a mathematical model, similar to that of Bahcall & Soneira

1980, has been developed. In this chapter this external galaxy model and its implemen

tation will be discussed.

Although a version of the Bahcall & Soniera code (written in FORTRAN 77) was

available in source form, it was quite basic in operation, and was not very flexible in

terms of changing parameters and running extensive sequences and grids of models in

“batch” mode. In any event a number of modifications would have been necessary to

apply it to an external galaxy.

It was decided to write the External Galaxy Model program (referred to hereafter as

EGM) in the ANSI C programming language (Kernighan & Ritchie 1988), rather than in

FORTRAN. It was felt that the improved I/O and memory management facilities of C

offset the slight advantages in coding formul in FORTRAN. The computations required

for this modelling are not excessive or complex — however, there is a substantial amount

of array management, “book-keeping” tasks and parsing of input parameters, for which

C is eminently suitable.

The EGM code was written from scratch using the Bahcall & Soniera Export Code

(Bahcall 1986) only as a reference. The final code, approximately 3000 lines of ANSI C,

bears little resemblance to the latter except in algorithms, especially in terms of how it

35
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is actually used.

This chapter will first describe the Bahcail & Soneira model used to predict star

counts in our own Galaxy, and will then go on to detail how EGM uses the same kind

of techniques for an external galaxy. The modifications that must be made and the

assumptions implicit in the model will be described. Finally a detailed description of the

operation of the core modules of the code will be given.

3.2 The Bahcall—Soneira Model

BahcaJl & Soneira 1985 developed a model to predict star counts for a run of magnitudes

along a given line of sight in our Galaxy. For a given galactic longitude and latitude,

£ and b, the model computed the number of stars per unit magnitude per unit area for

a range of apparent magnitudes. There are, of course, several important factors that

need to be considered. Chief among these are the density distribution of the Galaxy

(i.e., number of stars per cubic parsec as a function of r) and the luminosity function

(LF, the number of stars as a function of absolute magnitude, M). The BahcaJl & Soneira

model performs numerical integration on the fundamental equation of stellar statistics

(equation 1.1, which is repeated below).

p00

A(mi,m2,t,b)df
= J dm’J R2p(R)cI(M)dfZdR (3.1)

0

where M m’ — 5 log R + 5 — 0(R) and the volume element is of size R2dRctl. Any

dependence of p on spectral type or luminosity class will be ignored. Except for very

simplistic (and unrealistic) forms of 4’ and p this equation has no analytic solution,

requiring the use of numerical integration for its solution. The Bahcall & Soneira model,

and its variants, has been used with considerable success by Bahcall & Soneira 1985 and

Ratnatunga & Bahcall 1985 as described in Bahcall 1986 and by Pritchet 1983. There

are several practical points that may be raised here.
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1. The integration does not have to be carried out to r = oo. In practice (and for

sensible models for p) the integration is stopped at some distance rmax where the

contribution to the counts becomes negligible.

2. It is possible to obtain a predicted colour distribution for the model if one has

a colour — absolute magnitude diagram. As the integration proceeds (see §3.7)

through each magnitude bin in the LF , the colour can be found using a look—up—

table of colours and magnitudes. The number of stars with that colour is given by

equation 3.1. By convolving the final colour distribution with a Gaussian having a

width of the typical observed colour error, an expected colour distribution can be

found.

3. 4’ does not have to be an analytic function because discrete steps in M are being

taken. LFs taken from real data can be used.

4. One can integrate in any order (R then M, or vice versa). However it can be useful

to integrate 4’ “inside” the integration of p so that the distribution along the line

of sight can be obtained.

5. Absorption effects are important and must be calculated for each step in R.

6. There are usually a sufficient number of parameters that a change in one can be

compensated for by changing one or more other parameters, resulting in the same

predicted number counts. However it should be noted that this approach is, in

essence, predictive — it does not try to recover p and 4’ from an inversion of the

data set.

7. There is some evidence for a triaxial bulge — the position angles of the bulge and the

disk are offset by some 100. The EGM model currently does not model a spheroid
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with this shape. Variations of the axial ratio with radial distance are also not

modelled.

8. The presence of spiral arms in the disk is not accounted for because there is no

convenient functional form to represent them. Neither is any warping of the disk

modelled, though it would be possible to include one by modifying the form of the

disk density distribution.

9. There is no nuclear bulge component to model fields very close to the centre. How

ever such a component can be easily added to the code if required.

3.3 Geometrical Considerations

As shown in the previous section, the Bahcall & Soneira code integrates the density

distribution and luminosity function along a line of sight from the Sun defined by a

galactic latitude b and galactic longitude £. This same procedure can be applied to

external galaxies if the assumption is made that the observer is in a field in the plane

of the (external) galaxy and is looking back along the line of sight. By calculating the

effective b and £ for that field almost exactly the same procedure can be used — the chief

difference being that the volume element is now a function of the distance along the line

of sight to the galaxy, rather than the distance from the plane of the galaxy.

The first step is to convert the right ascension and declination of a field to rectangular

coordinates, as shown in figure 3.1. The x and y axes are (somewhat arbitrarily) defined

to lie along the apparent major and minor axes of the galaxy. The x—axis is inclined to

the axis of right ascension by the position angle 7. The transformation of the coordinates

of P from (a, 8) to (x, y) is given by equation 3.2.
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y

a

Figure 3.1: Converting the Right Ascension and Declination of the field at P to x and

y coordinates. These are defined to lie along the major and minor axes of the galaxy
respectively. The shaded ellipse is a schematic representation of an inclined spiral galaxy.

= acos7—Ssin7 (3.2)

y = asin7+Scos7

To calculate the- effective galactic latitude and longitude of the observer as seen from

the field (P, in figure 3.1) the procedure is as follows. Figure 3.2 is a side view of the

galaxy, looking along the major (x) axis. An observer at 0 sees a field P in the galaxy

whose plane (G) is inclined at an angle i to the plane of the sky (S). The angle b is

the “galactic latitude” of 0 as seen from P. Provided D >> z then d D and e 0.

Therefore, to a good approximation, b = 900
—

Figure 3.3 shows a projection of the three dimensional geometry. The z—axis is defined

to lie along the line of nodes of the intersection of the galaxy with the plane of the sky.

p. )
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Figure 3.2: A simplified view of the geometry of the situation. The plane of the galaxy
(C) is inclined at an angle i to the plane of the sky (S) (as seen from 0). Assuming
D >>zwehaveb=90°—i.

Figure 3.3: As seen by the observer the field Q on the sky projects to P in the galaxy. r
and 1 can be found by geometrical analysis.

d
V
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The plane of the galaxy is defined by the orientation of the disk component in space. For

the spheroid component such a plane has no physical meaning, but does provide a useful

reference for the coordinate system — this is the plane about which the spheroid may be

flattened by changing the axial ratio. The field Q on the plane of the sky projects to P

(in the galaxy). The angle 4 and the distance of Q from the galactic centre, p, are found

simply from x and y. r (the distance of P from the galactic centre, in the plane of the

galaxy) and £ (the effective galactic longitude) are then found from:

r = p(cos2+ sec2isin2)

8 = arctan(tañ (3.3)
seci J

£ = 900_8

Of course this value of £ is vaJid only for this particular quadrant (x > 0, y > 0 and P

being “behind” the plane of the sky, as seen in figure 3.3). Values of r, 8 and £ for other

quadrants and orientations follow easily, and in a similar fashion, once 8 has been found.

The EGM program described later in this chapter also calculates the distance PQ in

figure 3.3 — the true distance to the plane of the galaxy which is added to the distance

derived from the distance modulus (which is taken to be to the centre of the galaxy.)

Although small compared to the true distance to M31, the extra calculation is trivial and

adds to the completeness of the model.

3.4 Program operation

The major design goals for EGM were to make it easy to use, suitable for batch file

processing and to allow for a large number of adjustable parameters. These were accom

plished by having EGM being driven only by command line options — no direct interaction

by the user is necessary.
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The main method of data entry to the program is via “parameter files” — files contain

ing lists of keyword and value pairs. Virtually every parameter in the model is adjustable,

though in most cases the program supplied default values are more than adequate. For

some of the “key” parameters (inclination, x and y position of the field etc.) these

defaults, and the values in the parameter file, can be overridden using command line

options. This design makes it easy to change key parameters (e.g. the inclination of the

external galaxy) when running several similar models (e.g. with the same input LFs).

The output of the EGM program is a file containing the number counts as a function

of apparent magnitude — both differential (number of stars in that magnitude bin) and

integral (total counts down to that magnitude). Also given is the colour distribution of

the stars for that field. Preceding these data is a header section, listing the values of all

the parameters in the model. This feature allows the model parameters to be recovered

from a data file.

3.5 Component Description

There are currently only two types of components in EGM — an exponential disk and

the spheroidal halo. A third component, the thick disk, is functionally equivalent to the

thin disk model and may be optionally included in the model with separate parameters

than thern thin disk. The functional forms discussed below have been hard-coded into

the program and cannot be changed without rewriting the appropriate subroutines. The

parameters in these formu1 can, of course, be set at run-time.
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3.5.1 The Disk

The density distribution of the disk stars in the model is represented by the following

double exponential function:

pd(r) = pexp [—i-- — _ro]
(34)

where lid is the scale height of the disk and 1d is the scale length. TO is the distance of the

field from the galactic centre (in pc) and z is the height perpendicular to the plane. The

lid, id and r0 parameters can be adjusted in the galaxy model described below. Similar

parameters for the thick disk component (h and i) can also be defined.

3.5.2 The Spheroid

de Vaucouleurs 1959 found that the projected brightness distribution of elliptical galaxies

was well represented by:

log = —3.3307 — ij (3.5)

where r is the spatial distance that projects to an angle containing half the total lumin

osity. Other functional forms (such as power laws) may be used, however in this work the

de-projected form of this will be used. Young 1976 gives an asymptotic approximation

for the spatial density of stars which leads to this form of de—projection:

ir 2

P8(T) = 2r (;:;) (3.6)

where r1 = and the constant b = 7.6692. This formulation is accurate for

7’ O.2Te. At the distance of M31 this equation can therefore be applied to fields that

are more than approximately 1’ from the centre. Pritchet and van den Bergh 1994, in

their study of surface brightness profiles, showed that a de Vaucouleurs profile can fit
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the spheroid over a wide range of distances — from 200 pc to more than 20 kpc. Bahcall

1986 presents a similar function with more terms for greater accuracy. The spheroid can

also be made oblate by introducing an axial ratio parameter a,. In this case the new

effective radius is re/../. Note that this is the true, not the projected, axial ratio. Both

the effective radius, 7’e, and the axial ratio of the spheroid, a,, can be adjusted in the

program.

3.5.3 Absorption

There are three cases where absorption may be included in the model. Absorption from

our Galaxy is included as a fixed value to be added in to the apparent magnitude calcu

lations. The model can integrate both sides of the galaxy (i.e., the nearer and the farther

sides) — it is possible to include a fixed value of absorption to add to the calculations

of the far side integration. This can represent a very thin dust layer throughout the

whole disk, or can be applied to a particular field if it is known that there is an excessive

amount of absorption in that area.

Three different models for internal galactic absorption are currently supported — no

absorption, the “cosecant” law and the Sandage absorption law, the “cosecant” form

being the default model. Each case (except for no absorption) requires various additional

parameters. The cosecant law calculates absorption based on the formula

A(b)=ai(90°)cscb (3.7)

where ai(90°) 0.15 magnitudes in V (the default) and Ày = 0.75AB.

The Sandage absorption model (Sandage 1972) in the V band is

A(b) a2(a3 — tanS) csc S b 50° (3.8)

A(b)= 0 Ib>50°
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where for the V filter a2 = 0.165 and a3 1.192. In the B filter AB = 1.33Av. This

formulation is only defined for the V and B ifiters.

In both the “cosecant” and Sandage absorption laws, the absorption in magnitudes

at distance R from the centre of the galaxy is calculated from

A(R) = A(b) [i — (39)

where a0 is the scale height of the absorbing material. The default is 100 pc. It is

assumed there is no variation with distance from the galactic centre, only an exponential

variation perpendicular to the plane.

WK88 perform a detailed analysis of optical extinction and reddening in M31 using

multi-colour surface photometry. A detailed analysis is quite difficult because of the

unknown nature of the properties of the dust in the disk, coupled with poor knowledge

of the geometrical configuration and sources of illumination. Despite these problems the

analysis can be done and results in a reddening law very similar to that of the Milky Way.

They derive a reddening law of AB/Av = 1.35 + 0.03, Rv = 2.8 ± 0.3 for a dust lane in

the inner region of M31. One may assume that, at least to a first-order approximation,

the reddening laws are the same for both the Milky Way and M31.

3.5.4 Density Normalization and Luminosity Functions

One item of program input that needs careful consideration is the density normalization

to choose for the disk, thick disk and spheroid components. The initial source of this

information is the luminosity function used by the program (and specified by the input

parameters) for each component. The LF used for input into EGM is simply a file con

taining magnitude and number information. Each LF is normalized to some number of

stars per cubic parsec in some magnitude range. Also specified is the distance from the

galactic centre at which that normalization is valid. For example, Bahcall & Soneira
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1980 use a Wielen LF that is normalized to the local density of the disk: 0.13 stars pc3

between M = —6 and M = 16.5 at a distance of 8 kpc.

The LF is then scaled (using equation 3.3) to r0, which is the reference point for the

integration (recall that this is the distance, in the plane of the galaxy, from the centre to

the projection of the field onto the plane).

Different LFs can be specified for the disk, thick disk and spheroid components. These

LFs are stored in files and are read by EGM at runtime. Thus the user can specify any

LF desired. It is usually necessary to have these LFs normalized to a value appropriate

to the density normalization being used.

3.5.5 Colour—Magnitude Diagrams

EGM uses CMDs to calculate the expected colour distribution for the stars in the field

in question. These CMDs are also stored in files and may be specified in a parameter

file. EGM uses them to calculate, at each absolute magnitude in the LF, the colour of the

stars in the volume element. At the end of the computation the colours are convolved

with a Gaussian of some width °ce (the typical error in colour measurement) to simulate

the effect of magnitude errors in measuring colour. Further complications arise if a main

sequence component is included (in the majority of cases it is not, as external galaxies

are in general too far away, however the capability is included in EGM). In this case a file

giving the fraction of stars on the main-sequence as a function of absolute magnitude must

be given. EGM then uses this file to distribute stars in the volume element amongst the

giant branch and main sequence components. This only affects the colour distribution.
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3.6 Parameter List

There are over 50 parameters in the model that may be set by the user — however this also

includes some of the more mundane “management” parameters, such as setting limits on

the output apparent magnitude range and so on. Table 3.1 lists some of the more useful

and important parameters (i.e., ones that affect the model in a meaningful sense, such

as the inclination of the disk, rather than parameters used to define output, such as the

faintest magnitude to carry the integration down to), together with a brief description.

Note that all distances are in parsecs. In the following text “parameter” is taken to mean

one of these parameters that has some impact on the final result.

3.7 Code Description

The operation of the program is fairly straightforward. The basic procedures followed

by the code are shown in the flowchart in figure 3.4. Firstly the model parameters are

initialized to default values. Then the parameter file and command line are checked for

changes to these parameters. The luminosity functions and colour magnitude diagrams

are read in, spline fits are made to them and the results stored in arrays, the size of which

is determined by the ranges of absolute magnitudes the user desires. The projection

parameters (as described earlier in this chapter) are then calculated, as are the scale

factors for the density normalization. This is so that the density normalization radius

can be kept constant when running several different models with the same LF in the

same way that the Bahcall & Soneira model defines the solar circle to be 8 kpc in radius.

The program then proceeds to calculate the differential number counts for the disk

and spheroid, and for the thick disk, if appropriate. If the far side of the galaxy is to be

included in the model (the default case in the following chapters) then these calculations

are repeated, with the required change of projection parameters. The raw data for the
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Table 3.1: The basic model parameters.
Parameter Description

the position of the field in arc minutes along the major axis
the position of the field in arc minutes along the minor axis
field size in square degrees

D distance to the galaxy
i inclination of the galaxy in degrees

distance of projected field to galactic centre
distance of peak of distribution from galactic plane

dm apparent magnitude interval
dM absolute magnitude interval
p the density normalization of the disk at r

the normalization radius for the disk LF
scale length in the plane for the disk component

gd scale height of the disk giants
calculated disk normalization at r0
the density normalization of the thick disk at r
the normalization radius for the thick disk LF

it scale length in the plane for the thick disk component

gt scale height of the thick disk giants
calculated thick disk normalization at ro

p the density normalization of the spheroid at r
the normalization radius for the spheroid LF

re the de Vaucouleurs effective radius of the spheroid
a3 the spheroid axial ratio

calculated spheroid normalization at r0
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colour distribution are collected during the calculations of the differential number counts

— the next step for EGM is to collate this information, and to convolve the raw colour

distribution with a Gaussian function to represent the “colour error” of the data to be

compared. Finally the integral counts are found by accumulating the differential counts,

the results are written out and the program ends.

Program use

The first thing EGM does is initialize all the parameters to default values. Then it

scans the command line for either parameter files or options. If it finds and can read a

parameter file it does so, one line at a time. Each line of this ifie is parsed for a keyword

which is checked against an internal list of valid keywords. If it comes across an invalid

keyword it will stop with an error message, otherwise it will overwrite the default value

of that parameter with the value in the parameter file. If it detects a valid option on the

command line it updates the appropriate parameter directly. A typical invocation of the

program may look like this:

$ egm m31.pm -x 23.0 -y 45.0 -i 77.0

This tells the program to read the keyword — value pairs in the file “m31.pm”, set the

Xo and yo parameters to 23f 0 and 45f 0 respectively, and to set the inclination of the

model to 77°. If the parameter file “m31.pm” sets any of these three parameters itself

their values will be overwritten by the subsequent command line options. Full program

documentation and the source code can be obtained from the author upon request.

Initialization

EGM obtains values for LFs and CMDs by reading in the appropriate file (specified in

the parameter file or on the command line) and using spline interpolation to fill in a
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Figure 3.4: A flowchart for the EGIvt code showing the principle logical steps in construct
ing a model.
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“look up table” (LUT). This is done so that the input LF need not be regularly sampled,

or sampled at the same intervals as any other LF . It then uses this LUT to obtain

information needed when calculating the star counts. Initialization of the various LUTs

occurs after the parameters have been read because the LTJT sizes and limits depend on

input parameters, such as the brightest and faintest apparent magnitude to calculate the

model for. For example, if the brightest and faintest absolute magnitudes for the model

to consider are set to —3 and 4 respectively then a LUT of 15 entries is needed if the

interval is set to 0.5 magnitudes. The input LF specified in the parameter file is spline

fit to this array between these limits.

Several LUTs (which are dynamically allocated at run—time) are needed — one each

for the disk and spheroid LFs and the disk giant and spheroid giant color-magnitude

diagrams and possibly two more for the main sequence CMD and for the fraction of stars

on the main-sequence (FMS) data. These latter two are only needed if the main-sequence

component is being modelled. Corresponding arrays will also be needed for the thick disk

if it is to be included. Other arrays used to hold the results of the integration (number

counts and colour distribution) are also set up at this time but are merely initialized to

zero.

EGM now calculates the “projection” parameters — the effective galactic latitude and

longitude based on the input parameters (as described in section 3.3) as well as r0. The

density normalization is calculated at this point based on the normalization radius (given

on the command line or parameter file). As a convenience it is possible to indicate that

the normalization radius is equal to the distance in the plane from the galactic centre to

the field. EGM will then calculate and use the appropriate value.
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Integration Procedure

The best way to understand how the program works is to examine the source code but

since there are approximately 3000 lines of it a shortcut will be taken! In this section

considerable reference will be made to figure 3.5, which is a listing of the module for

calculating the disk number counts. This is taken directly from the source code, with

minor modifications made to the layout and variable names for clarity. In particular,

variable declarations have been left out. The bracketed numbers down the left hand side

of the code listing denote key points and will be referred to in the following discussion

in brackets. Variable names will be typeset in teletype font. Functions are indicated by

a set of parentheses containing a number of arguments, such as obscure (amode, b, r,

a), or more conveniently, obscure 0.

The procedure starts ([1]) with the calculation of the area of the field in steradians

farea. SQD2ST is a macro defined to be 0.0003046174 (in square degrees per steradian).

riuax_d is the maximum distance to carry the integration out to and dr_d is the size of

the distance step (default is 25 pc) — both may be set by the parameter file. The number

of steps to take along the line of sight is derived from these two parameters.

The main integration starts at point [2]. tot holds the total number of stars computed,

at any point in the integration. (Its main use is at point [17]). The integration proceeds

from r = 0 to r = rmax in steps of dr_d ([3]). If r is less than some minimum radius

(r..iuin, also specified in the parameter file) then that distance step is skipped. The

default value for rmin (and the value used in subsequent chapters) is 0 pc, so this never

usually occurs.

The statement at line [4] computes the distance of the volume element from the

observer along the line of sight, d. The value of DIR is either +1 (integrating from the

“plane” away from the observer — the far side of the galaxy) or —1 (towards the observer
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void calc_dsk() {
[1] farea = omega * SQD2ST;

[2] for (tot = 0.0, j = 0; 3 < (int) r_iuax_d / dr_d ; j = 3 + 1) {
[3] r = 3 * dr_d; if Cr < r_rnin) continue;

[4] ddist+(DIR*r);

[5] absmag = obscureCamode, b, r, a) + abs;

[6] z = r * sin(b);
x = sqrtCro * rO + r * r * cos(b) * cos(b) — 2 * r * rO * cos(b) * cos(l));

vol = d * d * farea * dr_d * drn_abs;
trnp = vol * exp(—(x — rO)/ psi_d) * exp(—z / gsh_d) * dn[DSK];

[7] for (znrn = 0.0, k = 0; k < ni; k = k + 1) {
[81 rn_abs = m_bri + (k * dm_abs);

rn_app = rn_abs + 5.0 * loglO(d / 10.0) + absrnag;

[9] if (DIR == FAR) rn_app + dabs;

[10] if ((rn_app > ma_dim) II (rn_app < rna_brt)) continue;

[11] if (dorns == TRUE) {
frns = frns[kl; fg = 1.0 — fms;

} else {
fms = 0.0; fg = 1.0;

}

[12] dmus = tmp * ifd[k] * frns; dug = tmp * lfdtkl * fg;
chit = dxuus + dug; znm = ziun + dnt;

[13] md = (int) ((rn_abs — rn...bri) / chu_abs) + 1;

[14] if (doms == TRUE)
coi_dist(DSK, m_abs, rn_app, chuus, rns[ind], dug, dg[indl, pm, nm);

else
coi_dist(DSK, rn_abs, rn_app, 0.0, 0.0, dug, dgEindl, pm, mu);

[15] md = Cint) fioor((m_app — (ma_brt — thu_app / 2.0)) / diu_app);

if (md >= 0 && md < nu) nuin[DSK] [mdl = num[DSKI [mdl + dnrns + dug;

1

[16] tot = tot + zluu; if (zmu < c_f ac * tot) break;

return;

}

Figure 3.5: The source code listing for the calculation of the disk component. Function
prototypes and variable declarations have been removed for clarity.
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— the near side). In this way the same routine can be used to determine counts on both

the near and far side of the galaxy. dist is the distance to the external galaxy in parsecs.

The default is 725000.0 (which, by no coincidence, is appropriate for M31).

At this point the amount of absorption affecting the volume element is calculated

([5]) in the obscure() function. This uses the galactic latitude, b, and r to calculate

the absorption at that point. ainode tells it to use no absorption, the cosecant law or the

Sandage model, as discussed in §3.6.3. a is an array containing the various absorption

parameters. Then any fixed value of absorption (abs) is added to the value returned by

obscure C).

At [6] a number of variables whose values remain fixed for that distance step are

calculated: z is the distance above the “plane”; x is the “horizontal” distance in the plane

from the galactic centre; vol is the size of the volume element; and trnp is a temporary

variable used to hold the product of the volume element and the scale factors arising

from the exponential nature of the disk (the exp(-x/psLd) and exp(-z/gsh_d)). Also

included is the scaling due to the density normalization, d.n EDSK], which is computed

as exp (-Cr0 - rn) / psl_d) where rn is the normalization radius. Strictly speaking

the rO term in both these expressions is redundant, but it is calculated this way so that

relative density values may be investigated directly if desired. By including all these

factors into one variable the function executes faster.

The program then loops through the disk luminosity function ([7]), which has been

initialized in a previous function. The array ifd E] contains a look up table of ni elements,

where ni is calculated from the LF limits (m_bri and rn_dim) and the desired absolute

magnitude interval din_abs. These are set by the user to cover the desired range over

which the LF is used. To ensure that the correct magnitude bins are used this array is a

spline fit to the input disk luminosity function. Steps in absolute magnitude are taken,

starting at m_bri ([8]). At each step the apparent magnitude rn_app is calculated from
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m_abs, d and absmag. If the integration is taking place on the far side then the value

of dabs is added ([9]). This is to account for any absorption taking place in the disk of

the external galaxy (a very thin dust component, for example, and is in addition to the

absorption calculated by ob s cure 0).

ma_dim and ma_brt define the apparent magnitude desired for output. If the calculated

apparent magnitude is outside this range then that step through the LF is skipped ([10]).

One point to note is that the integral counts at a particular magnitude are the sum of

the differential counts (per magnitude bin) up to that magnitude. Thus if the magnitude

range is too restrictive (for example, if ma_brt is set too faint) the integral counts will

not include all the stars that they should. For models run in this work the. limits on

apparent magnitude were set at a level to avoid this effect.

[11] For most models of an external galaxy such as M31 one may expect to see only

the giant branch, the main sequence turn-off being at V 27. However the model does

allow the user to include a main-sequence component in the CMD if desired. At a given

absolute magnitude bin (k), the proportion of stars on the main sequence is given by

fms Ek] (a number between 0 and 1), where ±ms LI is an array used as a bUT and filled at

program initialization using spline fitting to a user defined table specified as a parameter.

The fraction of stars on the main-sequence and giant branch, ±ms and fg, are then used

in step [12].

diuus and dng are the counts contributed by the main-sequence and giant branches

for the volume element at that absolute magnitude (k). dut is the sum of these two

variables and zxua is the total for that volume element.

The next step ([13]) is to fill in arrays holding the colour distribution in the model.

This is done in the col_dist C) function ([14]). md is an index into the main-sequence

and giant branch CMD arrays (ms E] or dg E]) which hold the colours for a particular

absolute magnitude bin.
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The final step in the LF loop is to store the number counts ([15]). nuanE] t] is a two

dimensional array containing the differential counts (i.e., counts per magnitude bin, k)

for the disk, thick disk and spheroid components. The macro DSK is defined to point to

the correct column for storage of the disk counts. md is now set to be an index into the

nuinE] E] array. The somewhat baroque looking formula for md ensures proper alignment

of bin boundaries.

Before proceeding to the next volume element a check is made ([16]). tot is the total

number of counts so far for the integration of this component. If the counts from the

current volume element, znm, are less than some fraction of the total (tot), the procedure

finishes. The fraction c...±ac has a default value of 1 x 1O, which is sufficient for most

purposes.

Post-Integration

The integration procedure for the thick disk and spheroid is very similar, differing only

in the choice of parameters (in the former case) and density distribution (in the latter).

The far side of the external galaxy is integrated separately after the near side — this

is also the default mode of operation. The calculations for the far side of the galaxy

proceed in an identical manner, except for the possible inclusion of extra absorption and

the fact that now as distances from the galaxy increases, so do the distances from the

observer.

In the final steps the computed colour distribution is convolved with a Gaussian error

distribution to obtain the predicted colour distribution. Various other statistics of the

colour distribution (mean colours of each component and of the total distribution, etc.,)

are also worked out. The cumulative number counts in each magnitude bin for each

component is calculated from the differential counts. The results are then written out

on the standard output stream or to a file.
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3.8 Source Code Availability

A copy of the source code and full documentation may be obtained from the author, or

via anonymous FTP from ±tp.astro.ubc.ca:/pub/hodder/. ZIPped and compressed

TAR ifies are available for the External Galaxy Model (EgmSrcl7 . zip, EgmSrcl7 .tar. z),

a version of the Bahcafl & Soneira Model developed during the first stage of EGM

(BszuSrc32 . zip, BsmSrc32 . tar. 1), and a set of utility programs useful in creating and

normalizing LFs and CMDs (GmuSrcl2.zip, GmuSrcl2.tar.Z).



Chapter 4

Modelling the Spheroid

4.1 Introduction

This chapter will detail the results of using the EGM model to obtain various parameters

of the M31 spheroid. The sensitivity of the model to these parameters (mainly the axial

ratio of the spheroid and its effective radius) will also be discussed. The observed V

band luminosity functions (hereafter abbreviated to “LFs”) of the fields G302, G312,

G352 and B5 will be used and the limitations of this data set will be explored. It was

thought that the B5 field might be a pure spheroid field — this turns out not to be the

case, but part of the B5 analysis will be discussed here as well as in Chapter 5.

The intent is to determine spheroid parameters first using fields uncontaminated by

the disk. These model parameters can then be used to “subtract” spheroid counts from

the disk field observations. Deconvolution of the disk and thick disk counts (if modelled)

would be more problematical because the two systems are physically coincident.

4.2 The Input Luminosity Function

One of the most important input parameters to the EGM model is the luminosity function

(LF) — i.e., the number of stars per unit volume (cubic parsecs for example) per mag

nitude bin. However, all that is known initially is the observed LF of the field (i.e., the

number of stars per unit area (square parsecs) per magnitude bin). To get the actual

density of stars one must either deconvolve the observed LF and density distribution,

58
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or select an assumed LF and density normalization, compare the resulting model pre

diction to the observations and iterate to a solution. This density normalization must

be specified at some normalization radius — the distance from the galactic centre where

that density applies. However, because the form of the density distribution follows (or

is assumed to follow) the r1 law they are in fact coupled and can be taken as a single

parameter.

Figure 4.1(a) shows the spheroid contribution from points along the line of sight

for a typical (the default) model. As might be expected most of the counts originate

from a comparatively small region where the spheroid peaks in density but because the

distribution still has some finite width it is not possible to easily convert from the observed

LF to a density. If the LF has simple linear form (such as a power law) then adding the

contributions from different densities along the line of sight will not distort the shape of

the final LF. However if the LF is not a simple function, or is a combination of linear

pieces of different slopes, then the final LF will not be the same shape as the input LF. In

practice, because the main contributions to the final observed LF all come from a narrow

region around the peak, any such distortion is minimal. In addition, if the normalization

is restricted to a narrow magnitude range then this effect is greatly reduced. This is

shown in figure 4.1(b), which compares the DaCosta 47 Tuc LF (discussed below) to the

predicted number counts resulting from running it through the EGM model. As can be

seen there is a small amount of overall distortion introduced by the integration process,

and the effect at brighter magnitudes (of interest in this work) is even smaller.

The problem is then deciding upon the density normalization of the LF. One pos

sibility is to assume the observed LF has the correct shape of the actual LF (with the

caveats mentioned above) and choose some arbitrary normalization for it. When run

through the model this will produce a set of predicted counts that can be scaled to the

original normalization. This scaling factor can give the density normalization that will
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Figure 4.1: (a) The spheroid counts for a model 50’ along the minor axis is plotted against
distance from the observer. The counts have been normalized to the maximum value.
(b) The input DaCosta 47 Tuc LF (filled circles) plotted with the final number counts
(open circles) resulting from “convolving” the input LF with the density distribution in
figure 4.1(a).
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return the correct number counts, and can be used to investigate the effect on the number

counts of a particular field for various model parameters. This works because the number

counts reported by EGM scale directly with the density normalization of the input LF.

That is, if the number of observed counts in a particular magnitude range is N0 and the

observed LF is scaled to n stars pc3 , then if the model results in a predicted count

of N the actual density normalization is nN0/N. One interesting result of this is that

foreground absorption “drops out” of the calculation in the sense that if the observed

LF is de-reddened by, say 0.1 magnitude, this must be added into the model in order

that the same LF is recovered. This is not to say that it is not important in converting

apparent to absolute magnitudes.

Alternatively, a known LF can be used — provided that the properties of the object

from which it was derived are similar to those assumed for the spheroid in the model.

The difficulty then is finding a LF corresponding to that metallicity from, say, a suitable

globular cluster. Pritchet and van den Bergh 1988 derive a metallicity of the halo of M31

of [Fe/H] —1. A reasonable approximation to this is to use the 47 Tuc LF presented

by DaCosta 1982. 47 Tuc has an [Fe/H] of —0.71 (Lang 1991) and its LF has been

successfully used in the original Bahcall & Soneira model, although that was for the

Milky Way. Figure 4.2 plots the DaCosta 47 Tuc LF together with the observed number

counts of the G302, G312 and G352 fields. Also shown is the mean observed LF for

the three “C” fields. This was derived by normalizing each LF to some arbitrary value

and taking the mean. The resulting LF represents the mean shape of the LFs, not the

number counts. In the figure some of the “mean G” points lie outside all three C field

LFs — this is because of the arbitrary normalization used to compare the shapes. The

observed LFs are somewhat steeper than the 47 Tuc LF at brighter magnitudes — this

implies that even the best fitting model may not fit very well. Figure 4.1(b) shows that

there is little distortion introduced by assuming the observed LF has the same shape
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with the 47 Tuc LF from DaCosta 1982. The observed LFs have been shifted by the M31
distance modulus and reddening and all the LFs have been arbitrarily normalized to the
same value between —2 M +1 so the shapes can be compared.
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as the underlying luminosity function: it is therefore possible to use the “mean G” LF

as one of the input parameters. It should be noted that this method is guaranteed to

achieve a better fit between the model and observations than using the 47 Tuc LF, and

this should be borne in mind during the following discussions. Note also that the “mean

C” LF has been extended to faint magnitudes by using a standard Wielen 1974 LF for

magnitudes Mv > 1. This has been done for completeness and does not affect the results

significantly — the contributions of these faint stars (below the main-sequence turn off)

is negligible given the type of observations available. For the majority of the analysis

performed in this chapter the “mean G” luminosity function will be used.

All density normalizations have been performed at a distance of 10 kpc and between

the magnitudes —1 Mv +1. These choices are arbitrary but normalizing at different

radii and magnitude ranges merely serves to scale the input LF — the actual values are

not important as long as they are consistent.

4.3 A Default Model

To facilitate the discussion of the response of the model to different parameters it is useful

to define an initial model using a default set of parameters. Some of these parameters

are collected from a variety of previous works which use studies of the galaxy’s integrated

light rather than star counts. This default model can be used as a starting point for each

field.

The two most important spheroid parameters are the axial ratio (cr9) and the effective

radius (re). Pritchet & van den Bergh 1994 use measurements of integrated light of

star counts to derive values of these parameters. (see Chapter 1 for a more complete

description). They derive a3 = 0.55 ± 0.05 and an effective radius of the minor axis of

= 1.3 kpc. It is interesting to compare these values to the results by WK88 derived
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using surface photometry: a, = 0.63 and Te = 2 kpc. It should be noted that in the

model the parameter a, refers to the true axial ratio, not the projected axial ratio as

measured by surface brightness studies. At the low inclination of M31, however, there

will be little difference between the two.

A third parameter important in the model is the inclination, i, of the galaxy. Although

this strictly speaking refers to the inclination of the disk relative to the plane of the sky

any non-spherical halo is assumed to be oblate — that is, flattened about the plane of

the disk. The inclination of the model is set to 775 (van den Bergh 1991). The other

parameters for the default model were chosen to be a, = 0.6 and Te 2 kpc.

van den Bergh 1991 reviews foreground reddening estimates of M31. He adopts a

value of EB_v = 0.08, consistent with Burstein & Heiles 1984 (EB_v = 0.08), Walterbos

& Schwering 1987 (0.06 EB_v 0.09) and Massey, Armandroff & Conti 1986 (from

the minimum reddening for OB associations, EB_v 0.08). A value of EB_v = 0.08,

leading to an absorption in V of 0.248 magnitudes will be assumed in the following work.

It is also assumed that there is no reddening in the M31 halo itself.

As a final point the final field size is set to 0.0013 square degrees (or 4.68 square arc

minutes). This is slightly smaller than the CCD area discussed in Chapter 2 because it

accounts for the masking out of regions of the image containing the guide star, globular

cluster and bright galaxies from the incompleteness tests.

4.4 A Problem with the G352 field.

The data from the G352 field presented something of a problem at the very outset:

even using an approximate r1/4 law calculation there are too many stars by a factor

approximately 2 to 3!

One possible reason for this was an error in the data reduction procedure. The
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final image used in the analysis for the 0352 field was an average of 3 separate frames.

As a check each of the three V frames was re-reduced, calibrated and incompleteness

corrected separately. All three frames gave the same results as each other and with the

combined frame (to within the calculated errors), reducing the possibility of an error in

the reduction process.

During this procedure it was noted that there were a large number of fairly bright and

obvious galaxies on the frame, indicating possible contamination by a background cluster

(in excess of the normal background field galaxies). An attempt was therefore made to

remove these galaxies from the observed LF using image shape statistics. This works

well for the brighter objects but becomes increasingly difficult at fainter magnitudes.

The numbers of galaxies indicated by this method could not account for the excess.

A search for galaxies and cluster of galaxies in the region of 0352 was made using

the NASA Extragalactic Database. 1 There are several individual galaxies and galaxy

clusters in the region but none is near enough to account for the excess objects.

Another possibility is that the area is being contaminated by some other unknown

object external to M31 (e.g. a dwarf galaxy captured by M31, a stellar stream or other

exotica). However a contour plot (not shown) of the number of stars per unit area showed

no indication of any other “physical” component — but given the small size of the field

this is hardly surprising. The CMD also does not reveal any additional components.

4.5 Comparing the Model and Observations

When comparing a particular model to a set of observed number counts it is necessary

to define some sort of “goodness-of-fit” criterion. A simple x2 test is quite suitable.

1The NASA/IPAC EXTRAGALACTIC DATABASE (NED) is operated by the Jet Propulsion
Laboratory, California Institute Of Technology, under contract with the National Aeronautics and Space
Administration
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The model predictions m can be compared to the observed number, n., noting that in

each magnitude bin there are some foreground and background contaminants, c, to be

subtracted. The x2 statistic used in the remainder of this analysis is:

(41
o•n + ci

where the sum is taken over i (all the magnitude bins where n2 > 0). Here o-?I has been

taken from Table 2.6 and is the quadratic sum of the Poisson counting errors for each

incompleteness test, the standard deviation in the mean of each bin for each test and the

error in the incompleteness fraction. It is then possible to find the probability, Q(x2Iv),
that the observed cu-squared exceed the value x2 even if the model is correct. Note that

this definition of x2 assumes that all the errors are Gaussian. This is not quite the case

here, which has the effect of increasing the minimum x2, but does not change its position

is parameter space.

Using this x2 statistic has the effect of giving the bins at the faint end of the LF only

a small influence over the quality of the fit but fortunately this is also the region in which

the background galaxy contamination becomes large and possibly uncertain. The final

estimate of how well the model matches the observed counts is therefore only weakly

influenced by these corrections.

4.6 Model Sensitivity

This chapter is principally involved with trying to determine the effective radius, axial

ratio and density of the spheroid. The EGM model was tested to see if it was possible

to determine these parameters to sufficient accuracy. For example, one could take an

assumed spheroid density and vary Te or a3 and see what effect this has on the resultant

number counts. If the variation is much less than the errors in the observed LFs it may

be difficult to obtain a unique result.
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These sensitivity tests will be presented for sets of test fields along the major and

minor axes. All the fields discussed here are close to one of these axes and it is useful to see

the general trends of the model. In all these tests the “mean 0” luminosity function was

used with a normalization of 3.1 x 10_6 between the magnitude range —1 M +1.

This normalization value provides the best fit to the 0302 and 0312 data in the V = 22.5

to V = 24.5 range using the standard model. See §4.7 below for a detailed discussion of

the density normalization estimates.

4.6.1 Tests with Spheroid Axial Ratio

In this test the sensitivity of the minor axis counts to the spheroid axial ratio were

investigated. The default model was run for 20 minor axis fields at distances of 10’, 20’,

190’, 200’ on the same side of M31 as the observed minor axis fields (which have a

positive value of yo as defined by the coordinate system given in Chapter 3). The G312

field (at x0 = -4f473, yo = 49f648) is sufficiently close to the minor axis that comparison

can be made directly.

In the first test the, axial ratio was varied from 0.1 to 1.0 in steps of 0.1. The a3 = 0

case is not physical and was not considered. Figure 4.3(a) shows a large variation in the

counts in the 0.5 magnitude wide bin centered at V = 22.5 with a, over the whole range

of the minor axis. 2 Also shown are the counts in that bin for the 0302, 0312 and 0355

fields (corrected for foreground and background contamination) — there are 33.36 + 6.73,

19.36 ± 4.14 and 5.72 ± 3.71 stars respectively. The 0302 and 0312 counts both fit the

model quite well, though not exactly because these fields are not aligned precisely along

the minor axis. The 0355 field shows a poor fit — this may be attributed to the poorer

quality of the data (see Table 2.1) and the fact that the counts at this distance from

2A11 figures of this nature have been plotted with the same axis scales for each of the major and
minor axes, to facilitate comparison.



Figure 4.3: This figure shows the variation of spheroid counts with axial ratio, a9, for
the minor axis (panel (a)) and the major axis (b). The remaining parameters used the
default values. The heavy line shows the default models. (a) There is a large variation
in number counts with a3. The points represent the number counts in the V = 22.5 bin
from the G302, G312 and G352 fields. (b) There is much less of a variation along the
major axis, even over the whole range of a9. The counts from the B5 field are also shown
here.
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the centre of M31 ( 127’) are very close to the contaminant levels. At the 50’ field

the counts are 0.3 for a, = 0.1 rising to 33.1 for a, = 1.0 — a factor of approximately

110. Of course it seems unlikely that the spheroid of M31 has an axial ratio as flat as

0.1 but even taking a, = 0.4 (where the number count equals 3.0) as a reasonable lower

bound there is still a possible variation by a factor of 10. The error in the counts is such

that any change in axial ratio by more than 0.1 could be detected (although this may

be masked by changed in re and the normalization). Furthermore, the variation of the

number counts is approximately equal over the whole minor axis range, implying that

this parameter may be tested at fields closer to the centre, where the number counts are

higher and are less susceptible to foreground and background contamination.

Figure 4.3(b) shows the variation of major axis number counts with spheroid axial

ratio. The models were run at the same galacto-centric distances as above but along

the major axis. There does not appear to be a great deal of change from one model

to the next. This is because the flattening of the spheroid with decreasing a, is not

“foreshortened” along the major axis as it is along the minor axis (and as a disk would

be). The counts (corrected for foreground stars and background galaxies) for the B5 field

are also shown on this diagram — the agreement is poor because of the significant disk

contribution at this position in the galaxy. At xo = 130’, which corresponds closely to

the B5 field (see Chapter 2) the spheroid counts change from 2.0 (at a, = 0.3) to 1.4 at

a, = 1. Note the slightly peculiar behaviour of the a, = 0.1 and a, = 0.2 models which

intersect the rest of the curves.

4.6.2 Tests with Effective Radius

The effect of the effective radius, re, on the minor axis counts was tested next. Values

ranged from 1 kpc to 4 kpc in steps of 250 pc — otherwise the same set of fields and

default parameters were used. The results are presented in figure 4.4(a). The crossing
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point of all the models is at Yo 24f 3, which corresponds to a distance of 4639.1 pc on

the sky and 21433.7 pc in the plane of the galaxy. On close examination it was seen. that

the curves did not all intersect at the same point — in this region they are just closest

together.

The larger the effective radius of the spheroid (which, recall, is the half light radius),

the higher the counts at a particular field. Changing re has much less of an effect at

small distances but quite a large one further out in the halo. At Yo = 50’ the counts

only change from 11.6 (for re = 4 kpc) to 5.7 (for Ve = 1 kpc). However at distances of

more than approximately 150’ the number counts become small enough that they can be

affected greatly by foreground contamination regardless of re. (Note that increasing the

field size to try and compensate for this will also scale both the number counts and the

contaminants.)

The 0302, 0312 and 0355 data for the V = 22.5 bin are also shown on figure 4.4(a).

It can be seen that, for the default model, the ability to detect a deviation in re is poor.

This implies that it will be difficult to derive an exact value for the effective radius of

the spheroid.

Similar tests were performed for the major axis — although there is no available data

for halo fields along the major axis it may be useful to know how the halo behaves in that

region. These results may also be used in the analysis of the disk fields where subtraction

of the spheroid counts may be important. Models were generated for fields at 10, 20,

190 and 200’ along the major axis. Note that the EGM model is symmetrical about the

minor axis (i.e., models run at x0 and —x0 will be identical.)

The changes in counts due to changes in effective radius (figure 4.4(b)) can, on the

other hand, be more substantial along the major axis than the effects of axial ratio. At

Xo = 130’ the observed spheroid counts change from 0.9 when r = 1 kpc to 3.1 when

= 4 kpc — a factor of 3.4. However the effect of changing re when the effective radius is
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Figure 4.4: This figure shows the variation of the spheroid counts with effective radius,
re, for the minor axis (panel (a)) and the major axis (b). The remaining parameters
used the default values. The heavy line shows the default models. The variation is
approximately equal for both axes, and is not as large as the variations caused by axial
ratio (figure 4.3). In (a) the counts in the V = 22.5 bin for the G302, G312 and G355
fields are shown; in (b) the B5 counts are plotted.
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already large is minimal. Again note the apparent crossing point of the models at aO

38f4 corresponding to a distance of 7330.9 pc.

4.7 Initial Density Estimates

There are three parameters that have to be determined for the spheroid model: the

axial ratio of the spheroid (a3), its effective radius (re) and the density normalization

p at some radius r. Accordingly data from at least three different fields is needed.

Unfortunately, as noted above, the G352 field shows a large excess in the number counts,

and the B5 has a significant contribution from the disk. However an attempt will be

made to at least set out the problem nd describe a method for solving for a unique

parameter set.

In order to make some initial estimates of the density normalization, one can conduct

the following experiment using the scaling method discussed above: normalize the input

LF to some arbitrary value (1.0, say) between some magnitude range and use it in the

EGM model. The ratio of observed to predicted counts gives the scaling factor for the

normalization. This scaling factor value can be used to compute the normalization that

would predict the same number of stars as is actually observed, for that field and set of

parameters a3 and re.

Using this procedure for the four spheroid fields at 10 kpc and normalizing to counts

using the bins from V 22.5 to V = 24.5 (except for B5 which was to be normalized over

the range 22.5 to 23.0 to avoid using data from faint magnitudes) the following densities

(—1 M < +1) are obtained:

G302: 3.11 x 106 stars pc3 G352: 5.00 x 106 stars pc3

G312: 3.07 x 10_6 stars pc3 B5: 1.81 x iO stars pc3

Note that. the densities for the G302 and G312 fields are very similar, the value for the
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G352 field is too high by a factor of approximately 1.6, and that density returned by the

B5 data is a factor of approximately 6 too large because disk stars are being included in

the calculation. A spheroid density normalization of 3.1 x 10_6 will be used as a default

in the tests that follow.

This procedure was also carried out for the four fields G302, G312, 0352 and B5 over

a grid of c (varying from 0.1 to 1.0 in steps of 0.1) and ?e (varying from 1 kpc to 4 kpc

in steps of 250 pc). The results are shown in figure 4.5. It was assumed that the B5 field

is a pure spheroid field — this is not the case (see Chapter 5) but it is still instructive to

run the test. In these tests the “mean 0” LF was used and was normalized to a value

of 1.0 between —1 < M < +1. For each “0” field the number counts between the

V = 22.5 and V = 24.5 bins were used to derive the required density normalization (at

10 kpc). For B5 the counts in the V = 22.5 and V = 23.0 bins were used. These values

are plotted as contours in figure 4.5. The contour values range from 1 x 106 stars pc3

to 1 x iO. Heavy lines indicate contour values of 106, i0 and 1O and are labelled.

Figure 4.5 can also be viewed as a plot of density surfaces — at each value of a8

and re on the grid the height of the surface gives the density normalization. The set of

parameters (a., r, r) that results in the correct densities for all the fields concerned can

be found where two of these surfaces intersect. This line of intersection when projected

onto the (a9, r) plane will determine the set of values that gives the same density

normalization for each field. Therefore at least three fields are needed: two pairs of fields

will give two lines which will themselves intersect at the solution (indicating that this pair

of (a3, re) values satisfies all three models). However this is not a very rigorous procedure

and provides no information on how well this solution fits the data. In figure 4.5 the

slopes of these “surfaces” are nearly the same for the 0302, 0312 and G352 fields which

further compounds the problem.
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Figure 4.5: A contour plot of the log10 of the density normalizations that have to be
applied to the data for fields G302, G312, G352 and B5. The contours range from
1 x 10—6 to 1 x iO in steps of 0.2 in the log — the contours at 106, iO and i0 are
plotted in heavy lines and are labelled.
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4.8 Parameter Grids

An alternative to the above approach is to run the EGM model over a grid of density

normalizations as well as a grid of a3 and re. The “mean C” LFs was normalized to a

sequence of values running from 2.1 x 10_6 to 6.1 x 10_6 in steps of 5 x io stars pc3,

over the magnitude bins centered at —1 M +1. A grid over a3 and re (as described

above) was run for each of these values. For each model the x2 statistic described in

§4.5 was calculated over the range 22.5 V <24.5 and from this, the probability Q. In

essence a three dimensional “data-cube” is built up over parameter pace.

Figure 4.6 shows the observed G312 LF and four different models, one of which —

using default parameters and a spheroid normalization of 3.1 x 106 stars pc3 — fits

quite well indeed. The x2 value is shown for fitting the model and observations using the

magnitude bins from V = 22.5 to V = 24.5. Note that a x2 of less than 5 (the number

of degrees of freedom for this fit) does not necessarily imply a “more than perfect” fit

but is indicative of an overestimation of the errors. The chi-square probability, Q, is 0.64

for the first model (the default G312 model) and ranges from 5 x iO to 1.5 x

number for the other models shown here. The principle effect of changing parameters is

to increase and decrease the predicted counts — a situation that can be compensated for

by changing the normalization. It can be concluded, then, that it is possible to fit almost

any parameter set.

Figures 4.7 to 4.9 show contour plots of the probability, Q, as calculated from the

x2 statistic, for each of the G302, G312, G352 fields. The fit can also be computed for

combinations of these fields: for each grid point in (a3, re, p) the EGM model is run for

each field and the x2 statistics added together (i.e., the sum in equation 4.1 extends

across magnitude bins in each model). These are shown in figure 4.10 (for G302 and

G312) and figure 4.11 (for G302, G312 and G352). In each of the figures the contours
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Figure 4.6: This figure shows the fit of four models to the G312 data. x2 refers to the
chi squared statistic taken over the V = 22.5 to V = 24.5 bins.
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vary from 0.1 in steps of 0.1 and the maximum value of Q for that grid is shown in the

upper right-hand corner of each plot.

The models for the 0302 field (figure 4.7) show that at all normalizations there is

very little sensitivity to r,. Over the density range shown the axial ratio is constrained

to between 0.7 and 0.4 — values close to the default model. r is not strongly constrained

and there is evidence for more than one best fit for the densities 5.1 x 10—6 and 5.6 x 106

where there is more than one peak. It is possible that this reflects the difference between

the observed LF and the “mean 0” LF. The “best fit” — denoted by the maximum value

of Q — is approximately the same for all grids. The large value of Q for these grids is due

to an overestimation of the errors.

The 0312 models (figure 4.8) typically show two strong peaks — the position of these

peaks can be seen to “drift” as the density normalization changes. Again, a, seems to

be constrained to between 0.7 and 0.4. Te is constrained quite well for any particular

model, but overall varies from 1250 to 3500 pc. This reaffirms the conclusions drawn

earlier from figure 4.6, and from the sensitivity tests. The best fit is, as for the 0302

field, reasonably constant across all the grids. The maximum is lower because the “mean

G” LF does not fit the 0312 observations as well as the 0302 data. This can be clearly

seen in figure 4.2.

Figure 4.9 shows the 0352 field models. In contrast to the previous plots there is a

“ridge” of high Q values containing 2 or 3 individual peaks that “drifts” across the (a,,

?‘e) grid as the normalization increases. This makes it difficult to constrain any of the

parameters.

The fits to a combination of the 0302 and 0312 fields, shown in figure 4.10 are more

interesting. Comparing the broad features of this plot to previous figures it can be seen

that the G302 dominates slightly because it fits the “mean 0” LF better. However the

addition of the 0312 data “sharpens” the peaks (especially in along the re axis) and
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Figure 4.7: Contour plots of Q for the G302 field. Contours start at 0.1 and increase in
steps of 0.1. Values of r are given in kpc. The “mean G” LF was used — the normalization
and maximum value of Q are shown in the top right-hand corner of each plot.
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Figure 4.8: Contour plots of Q for the 0312 field. Contours start at 0.1 and increase in
steps of 0.1. The “mean 0” LF was used — the normalization and maximum value of Q
are shown in the top right-hand corner of each plot.
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Figure 4.9: Contour plots of Q for the 0352 field. Contours start at 0.1 and increase in
steps of 0.1. The “mean 0” LF was used the normalization and maximum value of Q
are shown in the top right-hand corner of each plot.
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typically produces only one maximum. It appears to constrain re to between 2000 and

3750 Pc.

The fits to a combination of the three fields, G302, G312 and G352, are shown in

figure 4.11. This combination favours higher densities because, as has been noted before,

there are too many stars in the G352 field, leading to a correspondingly higher density.

It also constrains re to be larger than 2750 pc, though this figure should be treated with

caution due to this excess in the G352 counts.

4.9 Discussion

The results described in the previous sections show that models can be used to predict

star counts in external galaxies but that, unfortunately, the available data is not of

sufficient quality, i.e., the exposures are not long enough, and the variance between the

data in different fields is too great to allow reasonable parameters to be recovered.

In addition it has been seen that changes in parameters can compensate for each other.

This is illustrated in figure 4.6 which shows that changes in the density normalization,

axial ratio and effective radius the all conspire to change only the magnitude of the final

counts, not the shape of the luminosity function. In figures 4.7 to 4.9 the minimum

x2 value is similar for a particular data set over a wide range of densities — though the

c and re which give this minimum can vary considerably. A similar study using the

DaCosta 47 Tuc LF shows a similar effect, with the mean x2 value being higher due to

the different shapes.

Despite this, because it is possible to place limits on the axial ratio and effective

radius (a3 cannot be greater than 1, for example), it is possible to place limits on how

much the density normalization can be affected by these other parameters. For example

when considering the G312 field, figure 4.3 shows that the density can vary by no more



Chapter 4. Modelling the Spheroid

V

4

3

2

1

4

3

2

1

4

3

2

1

82

Figure 4.10: Contour plots of Q for the 0302 and 0312 fields combined. Contours start
at 0.1 and increase in steps of 0.1. The “mean 0” LF was used — the normalization and
maximum value of Q are shown in the top right-hand corner of each plot.
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Figure 4.11: Contour plots of Q for the 0302, 0312 and 0352 fields combined. Contours
start at 0.1 and increase in steps of 0.1. The “mean 0” LF was used — the normalization
and maximum value of Q are shown in the top right-hand corner of each plot.

4

3

2

1

4

3

2

1

4

3

2

1

2.1E—6
L ... I I

2.6E—6
L — I 1

3.1E—6

0.03 0.55 0.17

I I I I I I I I I i I I I I ‘I I I I I I I I I I I I I I I I I I

3 6E6 4 1E6 4 6E6

IIIIIIIIIIIIIIIII[IIIIIIIIIIIIIIIIEIIIIIIIIIIIIIIIIIIr5.1E—6
5.6E6 6.1E6

® -

I I I .i,li,i l_ I I I I

1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1



Chapter 4. Modelling the Spheroid 84

than a factor of 10, if the axial ratio of the spheroid is limited to the range 0.4 < a, < 1.0.

Similarly the effective radius of the spheroid can change the density by no more than a

factor of 2 over the range 1 kpc to 4 kpc if a, is assumed to be known (and is 0.6). When

coupled together (see figure 4.5) the density can vary between approximately 1 x 10_6

and 1 x io stars pc3.

The excess of counts in the 0352 field is also puzzling. If contamination by background

galaxies or galaxy clusters can be ruled out then it appears that the spheroid of M31 may

be inhomogenous. Interestingly enough recent work by Majewski 1992 seems to indicate

that the spheroid of our own galaxy may contain similar structures — in fact it may be the

case that most halo stars are part of stellar “streams”, left over from structures formed

or captured after the collapse of the disk. It is also possible that the excess may be due

to a fluctuation in the background galaxy counts due to large scale structure. Triaxiaiity

in the spheroid is another possibility but the spheroid would have to have an extremely

non-spherical shape to account for the 0352 discrepancy.

If indeed this is the case for M31 then a possible means of detection would be to

obtain data for a series of halo fields covering as many different areas as possible. If the

spheroid distribution is smooth (and the G352 field counts are indeed anomalous) then

the de Vaucouleurs model should fit the data. Star counts from some fields may lead to a

consistent solution, with other fields showing up as excesses or deficiencies in the overall

scheme. It may even be the case that no consistent model can be found to model the

spheroid of M31.



Chapter 5

Modelling the Disk

5.1 Introduction

The analysis of the disk parameters will be discussed in this chapter. From the outset

the disk is harder to model than the spheroid for the following reasons:

1. The disk of M31 is known to be warped. Baade 1963 notes an asymmetry in the

disk and Walterbos & Kennicutt 1987 show that the isophotes of the southern

major axis exhibit a change in position angle at distances beyond 90’.

2. Spiral arms are present in the disk. WK88 compensate for the surface brightness

of spiral arms by excluding those regions from the fit of an exponential profile —

that luxury is not available in this analysis.

3. The spheroid was assumed to have negligible internal reddening. This is obviously

not the case for any reasonable model of the disk. Unfortunately absorption in M31

is poorly known, although WK88 do present some estimates for internal reddening.

4. In some parts of the disk the stars on the far side of the plane of the galaxy from

the observer will be shining through the disk. The effect of this, in addition to the

internal absorption in the disk, is not well understood.

5. In some fields the spheroid counts will be sufficiently high that they will contribute a

significant proportion of the total counts and must be subtracted from the observed

85
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LF. However this will have to be done by assuming a density normalization from

a spheroid field, assuming a set of spheroid parameters and finding the spheroid

counts in that field. This will lead to a dependency of the disk results on the

spheroid.

The entire issue is further complicated because the star formation history and relative

number of disk and spheroid stars is bound to vary throughout the disk because of

different star formation histories in and out of spiral arms.

5.2 Spheroid Contributions in Disk Fields

As noted above it is necessary to subtract the spheroid contribution from the disk counts

in order to derive the disk parameters. At this stage it is useful to examine a model of

the disk constructed from what are assumed to be plausible default parameters. This

may be used as a stepping stone to more complex and realistic models.

The default spheroid model (c = 0.6, re = 2 kpc and using the “mean C” LF

normalized to 3.1 x 10—6 between —1 My +1) was used to generate the number of

spheroid counts in the B4 field. From an examination of the CMD, this field appears to

be clear of spiral arm contamination. The spheroid counts in that magnitude bin were

subtracted from the B4 observed LF and the resulting number (presumed to be all disk

stars) was used to normalize the Wielen LF so as to reproduce the B4 observed counts

at V 22.5. Only the counts on the near side of the galaxy were used. Default values for

the scale length and height of the exponential disk were taken to be 5500 pc (from §5.3)

and 250 pc (a value comparable with that for giants in the Milky Way) respectively. The

“cosecant” absorption model using the default (i.e., MW parameters) was also used.

1See §5.4 for a more complete description of the choices for the disk LF — the Wielen LF , while not
a perfect fit, is at least a good first order approximation.
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Figure 5.1 shows the relative contribution along the major axis from the disk and the

spheroid models using these parameters and normalizations. In panel (a) the total counts

in the magnitude range 18 Mv 28 are shown; in (b) only the counts at V = 22.5

are plotted. Note how, as might be expected, the disk dominates over the spheroid along

most of the major axis (for 10 < xo < 150’).

An interesting experiment can be done by modelling how the Milky Way would appear

if it “replaced” M31. The EGM model was run using reasonably standard parameters for

the Milky Way (see Bahcall & Soneira 1980): a3 = 0.8, re = 2670 pc, 1d = 3500 pc

and hd = 1200 pc. The Wielen LF was used for the disk, normalized to 0.13 stars

pc3 between —6 M 16.5 at 8 kpc and the DaCosta 47 Tuc LF was used for the

spheroid, normalized to th of that at the same distance. (Typical values of the ratio

of disk to spheroid densities in the solar neighborhood vary between 500 and 1000 to 1).

The results are shown in figure 5.2. Again it can be seen that the disk stars significantly

dominate the spheroid stars at distances of x0 < 200’. In practice one would expect the

disk counts to drop abruptly at a distance corresponding to the physical edge of the disk.

M31 has measured disk isophotes out to 100 ‘along the major axis. If the radius of

the Milky Way disk component is, say, 30 kpc, this corresponds to approximately 150 ‘.

Table 5.1 compares the number of stars seen in each “B” field and in the G213 and

G263 fields (and corrected for foreground stars) in the magnitude bin at V = 22.5 to

the number of spheroid counts predicted using the default spheroid model (a3 = 0.6,

= 2 kpc and the “mean G” LF normalized to 3.1 x 106 between —1 M +1).

Also shown are the remaining disk counts and, in the last column, the number of disk

stars predicted using the default parameters (id = 5500 pc, hd = 250 pc) and a Wielen

LF normalized to 1.5 x iO (see §5.6). As noted in §3.5.5 values of the absorption

parameters appropriate for the Milky Way were used, in the absenceof better data.
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Figure 5.1: The disk (dotted line), spheroid (dashed line) and total (solid line) counts
in the V = 22.5 magnitude bin for (a) the major axis and, (b) the minor axis. The disk
LF was normalized using the B4 counts; the spheroid using the G312 observations as
described in the text.
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Table 5.1: Spheroid contributions to the disk fields

Field Obsd. Sphd. Disk Pred.
Bi 367.0 191.1 175.9 763.2
B2 185.5 82.2 103.3 518.0
B3 284.0 26.0 258.0 260.9
B4 97.7 8.9 88.8 82.0
B5 11.6 1.0 10.6 10.3
G213 787.9 460.5 327.4 346.2
G263 146.6 121.1 25.5 73.6

5.3 Disk Counts along the Major Axis

Table 5.1 shows that there is a reasonably good match between the calculated and ob

served disk counts, at least for the B3, B4 and B5 fields — it should be remembered that

the spheroid contribution is model dependent and that these figures are for the default

model parameters. The disk counts are, by and large, of an exponential nature: fig

ure 5.3(a) shows a plot of the raw counts in the V = 22.5 bin (corrected for foreground

contamination) against distance from the centre of M31. A scale length of 6600 pc de

rived when including the B2 data; a value of 5500 kpc is obtained using the B3, B4

and B5 data only. Figure 5.3(b) plots the same counts also corrected for the spheroid

contribution given in Table 5.1. This has only a small effect on the scale length if B2

is omitted from the fit (5510 pc) due to the relatively small contribution in those fields.

The Bi and B2 data clearly do not fit an exponential, possibly because of the patchy

nature of absorption in the disk, inter-arm gaps, and so on. WK88 obtain a value of the

scale length of 5300 pc, in very good agreement with this data.
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Figure 5.3: A least squares fit to (a) the uncorrected counts and; (b) the B field data
corrected by the predicted spheroid counts. In each case dotted lines indicate a fit made
ignoring the B2. Dashed lines are fits to only the B3, B4 and B5 data.
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5.4 Input Disk Luminosity Function

In the previous sections all the models were calculated using a Wielen LF. The actual

data for this LF comes from the original Bahcall & Soneira model code— it amounts to a

Luyten 1968 LF based on studies of the solar neighbourhood, modified to incorporate the

“Wielen dip” (Wielen 1974), and then extended to fainter magnitudes. In figure 4.5 this

function is shown along with the observed LFs from the “B” fields (shifted in magnitude

and normalized to the same value as the Wielen LF). The “B” data has been corrected

for foreground and spheroid contamination. Bahcall & Soneira 1984 make a good case

for using the Wielen LF in preference to the simpler Luyten 1968 LF, finding that it

gives a much better fit to Galactic star count data.

It is obvious that the shapes of the observed disk LFs differ much more than the

G302, G312 and G352 LFs differ from the “mean G” spheroid LF (see figure 4.2). These

differences in shape may represent differences in the star formation history of these re

gions. However the Wielen LF does provide a moderately good representation of the disk

LFs and will be used throughout the analysis in this chapter. This has the implication

that any calculated x2 values may be unusually large. However the main interest is in

the position in parameter space of the minimum x2, not the actual value.

5.5 Model Sensitivity

The discussion will now turn to the question of the sensitivity of the disk model to its

input parameters (scale length, 1d, scale height, hd, and inclination, i, as well the as

density normalization). In a similar fashion to the spheroid tests a default model was

chosen. This was the B4 field corrected for spheroid counts (as derived from the default

spheroid model) using id = 5500 pc, hd = 250 pc and i = 775 and a density normalization

of 1.5 x iO (used to generate the disk counts for figure 5.1(a)). A “cosecant” absorption
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model was used in the default model and absorption parameters for the Milky Way were

used. The effect of increased absorption will be to reduce the number counts at a given

magnitude (as the LF shifts to fainter magnitudes) — as with the spheroid tests the

important consideration here is the relative change in the counts as the parameters vary.

5.5.1 Tests with Scale Length

These first set of tests were run over 20 fields along the both axis, ranging from distances

of 10’ to 200’ in steps of 10’. The scale length of the disk was varied from 2500 pc to

7500 pc in steps of 500 pc, all other variables being the same.

Figure 5.5(a) shows the variation along the minor axis with scale length. The larger

the scale length, the higher the disk counts, and the further the disk extends, as might

be expected. At this steep inclination, however, the even a large disk does not extend

very far along the minor axis.

For the major axis test (seen in figure 5.5(b)) varying the scale length by has a large

effect on the the model at all distances, changing by, for example, a factor of 19.5 at 100’.

However changing the scale length a small amount (by a few hundred parsecs, say) may

have a minimal effect. The intersection of the models occurs at x0 47’, or 9870 pc.

5.5.2 Tests with Scale Height

The next test (shown in figure 5.6) shows the variation with scale height, hd, for the

minor axis (a) and major axis (b). The scale height was varied from 50 to 1050 pc in

steps of 100 pc.

The minor axis tests, shown in figure 5.6(a), reveal that changes in hd will have large

effect on the observed number counts, but only in a limited range of distances. The

variation between hd 50 and hd 1050 pc at Xo = 20’ is by a factor of approximately
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34 but beyond 100’ along the minor axis the disk has effectively vanished because M31

has a small (12<5) inclination to the line of sight.

The counts along the major axis (at the default inclination) are comparatively in

sensitive to changes in disk scale height, changing only by a factor of 8 to 10 over the

entire major axis. The effect of changing the scale height diminishes as the scale height

increases, reflecting the decrease in density of the disk component.

5.5.3 Effects of Inclination and Absorption

The tests for changes in inclination are not shown — the inclination in all the remaining

models is set to 77’5. However the model does behave as expected to changes in i. Along

the minor axis the changes in number counts will depend on the scale height as well as

the inclination. For the default scale height and at a minor axis distance of 20’ the counts

change by a factor of 11.6 over a range of inclinations from 0° (face on to the observer)

to 80°. At 40’ this ratio has increased to 460 as the inclination becomes lower (more

“face on”) the counts increase more further out along the axis as the line of sight travels

through more of the disk. Along the major axis the effect is constant (the ratio being

0.4). because there is no scale length in the absorption model

The effects of absorption and internal reddening in the disk of M31 will obviously

have an effect on the observed LF . However the determination of the exact absorption

parameters (as described in §3.5.3) is not well understood, Noting that WK88 find that

M31 has a similar reddening law to the Milky Way, this test is conducted using the

same absorption parameters for our own Galaxy. The results will be a reasonable first

approximation. Applying this absorption model reduces the counts at a given distance

by a factor of 1.97 for “cosecant” absorption and 2.04 for the Sandage model. This is a

large effect considering that the scale height is set to 250 pc but it must be remembered

that the disk is highly inclined and the line of sight will pass through a significant fraction
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of the dust, even if it is confined to regions near the plane. Of course, this does allow for

tremendous leeway in fitting the model — in the extreme each disk field could be modelled

with a different set of absorption parameters.

Changing the “cosecant” absorption model parameters causes the model to behave as

one might expect. For example, halving the absorption scale height, a0, to 50 Pc reduces

the counts to 88% of the default model along the major axis. Increasing it to 250 pc

increases the counts by a factor of 1.23. Halving the coefficient, a1, reduces the counts

by 57%.

5.6 Initial Density Estimates

As has been mentioned before, the normalization of the input LF is very important to

the success of the model fitting the data. An initial estimate of the density normalization

for the default model (id = 5500 pc, hd = 250 pc) was made for each field, using the

Wielen LF discussed above. As with the spheroid, the normalization was performed over

the range —1 M ç +1 at a distance of 10 kpc. In each case the LF was scaled to

a value of 1.0 over this range and the resulting number counts used to determine the

normalization that would return the correct counts in the V = 22.5 magnitude bin. The

values obtained were:

Bi: 3.46 x iO stars pc3 B5: 1.55 x iO stars pc3

B2: 2.99 x 10 stars pc3 0213: 1.42 x iO stars pc3

B3: 1.48 x i0 stars pc3 0263: 5.20 x iO stars pc3

B4: 1.62 x iO stars pc3

The values returned by the B3, B4 and B5 fields are quite consistent, the 0213 density

(along the minor axis) is also in good agreement. In the following discussion a value of

1.5 x iO (between —1 M +1 at a radius of 10 kpc) will be used as a default
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model density.

It is of interest to compare these densities to the values derived for the spheroid,

and to compare the ratio of these two to the density normalizations obtained for the

solar neighbourhood. The ratio of disk to spheroid density over the magnitude range

—1 M +1 is 48.4 at 10 kpc. The LFs used for each component are, however,

of different shapes. Using these density values to normalize the LFs it is possible to

calculate the density over the range —6 M +16.5, i.e., down to the H—burning

limit. The spheroid density is then 1.4 x iO and the disk density is 7.5 x 10_2 pc3

leading to a ratio of 53.6.

Wielen 1974 gives a normalization for the Wielen LF of 0.13 stars pc3 down to

this limit. Bahcail, Schmidt & Soneira 1983 derive a density of the spheroid of from

(1 — 9) x iO stars pc3 depending on the model being used. This leads to a disk to

spheroid density ratio, at 8 kpc, of between approximately 1300:1 and 140:1, although

the lower limit usually used is about 500:1.

It appears then that the spheroid of M31 is more massive than the Milky Way’s

whilst the disk is less massive, leading to a relative normalization about an order of

magnitude lower than that of the Galaxy. However it should be noted that a direct

comparison between the Milky Way densities observed in the solar neighbourhood (at

8 kpc) and the M31 densities predicted at 10 kpc may not be completely meaningful.

Possible reasons for this apparent discrepancy may include: the different sizes of the

galaxies; the differences in disk and spheroid parameters; possible differences between the

MW and M31 luminosity functions (recall that only the giant branch is being observed

here); and the difficulty in observing a “clean” disk sample in M31.
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5.7 Parameter Grids

To more fully investigate the properties of the B4 field disk counts models were run over

a grid of density normalizations, scale lengths and scale heights. The scale length, id, was

varied from 2500 Pc to 7500 Pc in steps of 500 pc; the scale height, hd, was varied from

50 pc to 1050 pc in steps of 100 pc. Nine density normalizations were used for the Wielen

LF (in the range —1 M +1) ranging from 5.0 x iO stars pc3 to 2.5 x iO in

steps of 2.5 x iO stars pc3.

The resulting grids for the B3, B4 and B5 fields are shown in figures 5.7 to 5.9

respectively. Figure 5.10 is a fit to a combination of those three fields. Unlike the

spheroid models, these grids plot x2 not Q. This is because even the minimum x2 values

are quite large: the Wielen LF is not asgood a fit to the B field data as the “mean C”

LF is to the spheroid fields. The contours for each field have been chosen to highlight

the “vaJley” of minimum x2 values. The fits were made over the range 21.5 V 23.0

using equation 4.1. Poisson (/) errors were applied to the raw counts, propagated by

the area scaling factor (0.10022) and used as an estimate of 0N. Foreground star counts

and spheroid counts from the default model were used as the contaminants.

The x2 fits to the B3 data are shown in figure 5.7. At higher density normalizations

the scale height is quite well constrained between 50 pc and 1000 pc. However the entire

range of tested scale lengths fits this data. Figure 5.8 shows the results for the B4 field.

Unfortunately neither the scale length or the scale height is constrained very well at

all, the minimum x2 values lying diagonally across the (id, hd) grid. The results for B5

(figure 5.9) are similar, though the fit is generally better with a minimum x2 5.

Figure 5.10 shows the results of fitting all three of the B3, B4 and B5 data simulta

neously. Although even the minimum x2 is questionably large, it appears to constrain

hd between 50 and 400 Pc and the scale length, id, between approximately 5 and 7 kpc.
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Figure 5.8: This figure shows contours of x2 for the B4 field over a grid of scale length
in kpc (id) and scale height (hd) in 100 Pc units. Contour levels range from 300 to 500
in steps of 20. The Wielen LF was used — the density normalization is shown in the
upper right hand corner of each panel. The fit was made to observed counts in the range
21.5 V 23.0.
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Figure 5.9: This figure shows contours of x2 for the B5 field over a grid of scale length
in kpc (id) and scale height (hd) in 100 pc units. Contour levels range from 4 to 104
in steps of 10. The Wielen LF was used - the density normalization is shown in the
upper right hand corner of each panel. The fit was made to observed counts in the range
21.5 V 23.0.
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5.8 Discussion

The analysis of the disk of M31 can be summed up in one word: difficult! The choice of

appropriate spheroid parameters (in order to correct the counts to true disk counts) is

critical. In addition, the inhomogenous character of the disk itself conspires to complicate

the problem. In some respects studies of the surface brightness distribution rather than

star counts may be better suited to the determination of the properties of the disk because

a smooth average over large portions of the disk can be taken (see, for example, WK88).

The spheroid counts appear to be so high because the assumption that all, or most,

of the giant stars seen in these fields belong to the disk population is not necessarily true.

The actual proportion of disk giants to spheroid giants will depend heavily on the star

formation history in that region of the galaxy and deconvolving the two populations will

require this information. The studies of the disk of M31 that use integrated light and

surface brightness profiles do not suffer from this problem because most of the disk light

comes from dwarf stars, which considerably outnumber the giants.

In order to effectively use this kind of star count analysis on the disk fields one must

either obtain data that reaches extraordinarily faint magnitudes, or one must use a bright

“tracer” of the (old) dwarf population whose relative proportion amongst the disk is well

known. Rose 1985 has used RHB stars to find evidence for a thick disk in the Milky Way,

but this has been criticised by Norris & Green 1989 because it is difficult to distinguish

between them and core He burning “clump” stars. These types of studies in M31 are

likely to remain technically infeasible for quite some time. It has also been assumed that

there is no contribution to the disk counts from stars on the far side of the galaxy shining

through the disk. Inclusion of this effect may also improve matters but it will be difficult

to derive the parameters for the absorption.
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Conclusions

The EGM code as described in Chapter 3 has been successfully developed and imple

mented. Tests have shown that it can be used to reproduce and predict counts in various

fields in M31. However, the use of the code to derive parameters for the disk and the

spheroid depends heavily on the data available. The data on the spheroid counts can

be used directly (under the assumption that the spheroid LF , axial ratio and effective

radius does not change with radius) because there are few complications involved when

looking at this component. Modelling the disk is much more challenging — the disen

tanglement of the disk and spheroid giants, the knowledge of the proportion of giants to

dwarfs in each component, and the effects of different star formation on different fields is

a very complex problem and cannot be attempted in this work with the data currently

available.

A more precise determination of the spheroid parameters using the EGM code is quite

feasible but requires better data. In particular the data set should be as homogeneous as

possible — exposure times should be the same in each field to ensure that incompleteness

estimates are only affected by crowding. In addition to data along the minor axis a

study along a “diagonal” (between the major and minor axes) is required to make a

more accurate determination of the spheroid axial ratio. Finally, background fields of

the same exposure time should be taken to remove foreground star and background

galaxy contamination directly without resorting to modelling their contributions.

Majewski 1992 has studied the dynamics of stars in the Milky Way near the North

106
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Galactic Pole using proper motion measurements. As well as evidence of a thick disk

component dominating at heights of 1 kpc to 5.5 kpc above the plane he notes the

presence of a “moving group” of spheroid stars. This group of stars occupies a very

distinct region in velocity space at a height of -- 4550 Pc above the galactic plane. This

seems to indicate that the galactic spheroid is not homogeneous — possibly the result of

a formation scenario similar to the Searle & Zinn 1978 model.

To determine if this is indeed the case for the Andromeda Galaxy it would be necessary

to conduct a systematic survey of the spheroidal component of M31. Very deep exposures

would not be necessary as long as a sufficient number of stars was recorded. The fields

would be distributed over the region around M31 in a grid-like pattern — the number of

these “grid points” and their spacing would select the scale of structure that could be

detected. Because the nature of these inhomogeneities would be essentially stochastic

it might be the case that even an extensive survey would miss any deviations from a

smooth distribution of stars. However if the “background spheroid” distribution is itself

patchy then it may have a reasonable chance of success. Using CFHT, for example, to

completely map out the halo in one quadrant of M31 (as seen from the Earth) out to a

distance of 100’ would require approximately 150 FOCAM frames if a 2048 x 2048 CCD

was used. Clearly this is a massive undertaking and reducing the coverage of the grid

then sets limits on the sizes of deviations that can be detected.

It has been demonstrated that modelling the disk counts is problematic. The con

tamination of the disk giant sample by the spheroid giants seems to preclude any simple

analysis because the relative numbers of giants to dwarfs is likely to change with position

in the disk. Varying star formation histories and the possibility of an inhomogenous

spheroid compound the problem. It seems as if the only way to successfully determ

ine disk parameters is to sample the dwarf population directly or to discover and use

a luminous tracer of the old disk population. In the latter case the relative numbers
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of this “tracer” component and the disk component would have to be well known, and

variations with star formation history would still have an effect. It should be noted that

these problems will be particularly acute if the galaxy is face-on, such as M33, which is

another possible candidate for this sort of study. In this case there will be no “pure”

spheroid field whose fit can be subtracted from the disk fields. This presupposes that

M33 has a significant spheroid.

It was hoped initially to detect and determine the parameters of a thick disk com

ponent in M31. With the data currently available this is not possible. The problem of

separating two components with a similar scale height is still present. This is compoun

ded with the problem noted for the disk analysis — if a thick disk is present then three

sets of LFs and density distributions must be de-convolved. This would only be possible

if both the spheroid and the disk components were well known in that field so that any

deviations from the two component model could be detected. This would require that the

spheroid be homogeneous (so that models derived from several areas produce a consistent

solution) and that any non-uniformities in the disk (different star formation histories for

example) had been accounted for. It is unlikely that the anomalous counts in the 0352

field are due to a thick disk — the field is too far away from the disk of M31 for a thick

disk with any plausible scale height and density normalization to have such a large effect.

Studies of a possible Milky Way thick disk benefit from being able to look straight up

through the thin disk and into the regions of interest. Studies of edge on spiral galaxies

are also more suited to this task, presenting a profile of both the thin and thick disks.

Investigation of other functional forms for the disk (isothermal, with a sech2 dependence

on height) and spheroid (a power law) can be done using the EGM model but are unlikely

to solve this problem.

It would be desirable to compare the results of the EGM model to some independent

data set. Fortunately such data is available in the form of the Pritchct & van den Bergh
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1994 study. Figure 6.1 plots this data, corrected for contamination using the PvdB94

background field data, as connected points (logarithm of the number per square arc

minute per 0.5 magnitudes) for four of the PvdB94 fields (MO, Ml, M2 and El). The

dashed line is the EGM model results using the “mean G” LF, c = 0.6, re = 2 kpc

and a density normalization for the spheroid LF required to reproduce the G312 counts

(3.1 x 106 stars pc3).

As can be seen the fit to the MO and Ml fields is very good indeed, especially consid

ering that the spheroid LF density was derived completely independently. The fit to the

diagonal field El is worse, probably because the axial ratio of the model is not exactly

right. The M2 field is approximately l5 from the centre of M31 — at this point the num

bers of contaminating objects is becoming relatively large and the fit correspondingly

poorer.

It may be concluded that, broadly speaking, this type of analysis — using star counts

rather than surface brightness — does work! Given reasonable model parameters and

normalizations the EGM code will predict the counts one would expect to see. Solving for

these parameters, on the other hand, is much more difficult and requires high quality data

(and plenty of it). It is hoped that this model can be used in future studies to properly

investigate the underlying physical structure of external galaxies as a complement to the

method of examining the observed properties using surface brightness proffles.
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