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ABSTRACT 

4 

The attenuation of second sound near the superfluid transition in He 

has been determined by measuring the decay time for free oscillations of 

plane wave modes in a resonant cavity. The results for both the critical 

exponent and amplitude of the second sound damping coefficient are con

sistent with the early predictions of Hohenberg, Siggia and Halperin based 

on renormalization group theory. However, the damping observed in this 

work is less than the recent predictions of a non-linear renormalization 

group analysis by Dohm and Folk. 

The measurements cover the temperature interval 1.8 x 10 ^ < t < 

2.1 x 10 , where t c (T^ - T)/T^. Fitting the results to a single power 

law for t < 10 , the critical exponent governing the temperature depend

ence is found to be 0.31 ± 0.05. If the results are constrained to obey 

the theoretical asymptotic temperature dependence with an exponent of 
2 -1 

0.288, then the amplitude obtained for the damping is 3.7 ± 0.4 cm s . 

This corresponds to a value for the universal amplitude ratio, R̂ , of 

0.11 ± 0.01. For t > 10 the damping departs from the critical behav

iour, and increases to obtain the values previously observed by Hanson 
-2 

and Pellam for t > 10 . 
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CHAPTER 1 

INTRODUCTION 

This chapter begins with a brief chronological review of the theor

e t i c a l advances in the f i e l d of c r i t i c a l phenomena and an indication of 

the motivation for this study. In section B the problem addressed i n this 

thesis i s described i n more detail through a review of other work and a 

discussion of the implications of recent developments. The theoretical 

ideas concerning the dynamics of superfluid helium i n relation to second 

sound attenuation are presented i n section C. 

A. Introduction to C r i t i c a l Phenomena 

A material with a temperature approaching the c r i t i c a l value of a 

phase transition displays singular behaviour in a variety of both static 

and dynamic properties. A few examples'of c r i t i c a l points are: the Curie 

point in ferromagnets, the superconducting transition occurring in many 

metals, the c r i t i c a l point of gas-liquid transitions, the lambda line or 

superfluid transition i n helium. 

The i n i t i a l efforts to describe,the form of c r i t i c a l point singu

l a r i t i e s are reffered to as classi c a l or mean f i e l d theories*. These were 

developed around 1900 and include Van der Waals equation for a f l u i d , the 

Weiss molecular f i e l d theory of ferromagnetism, and the Ornstein-Zernicke 

equations for correlation functions. These theories are quantitatively 

incorrect in the c r i t i c a l region, but achieve par t i a l success i n that they 

yield appropriate qualitative behaviour in the form of singularities which 

can be expressed i n terms of c r i t i c a l exponents. Thus, a singularity in 

the temperature (T) dependence of a physical quantity, A, with c r i t i c a l 



2 

exponent, a, i s described by A •= A o|(T - Tc>/ T c J a where T £ is the c r i t 

i c a l temperature and A q i s the amplitude of the singularity. In 1937 

Landau proposed a general theory of the continuous or second order phase 

transition. His work results in the same exponents as the classical 

theories and consequently i s incorrect. However, he does advance the con

cept of an order parameter - a central element in modern theories. The 

generalization to include dynamic properties occurred in 1954 with the 
2 

introduction of an equation of motion for the order parameter . Equations 

of this type are employed in current time-dependent Ginzburg-Landau models. 

In the mid-sixties there evolved a phenomenological treatment of 
3 

phase transitions known as scaling . This theory predicts relationships 

or scaling laws which exist among various c r i t i c a l exponents and therefore 

escapes the limits of mean f i e l d theory. By the end of the sixties the 

extension of scaling to include dynamic properties had been accomplished . 

Along with scaling there developed a related concept known as universality. 

I n i t i a l l y formulated as the law of corresponding states, the hypothesis of 

universality means that relatively few fundamentally different types or 

classes of c r i t i c a l behaviour are sufficient to accommodate a complete 

categorization of phase transtions. In particular, the entire lambda line 

in liquid helium i s in one universality class and therefore the effects of 

elevated pressure should be mild in the sense that, for example, exponents 
remain unchanged. 

During the last decade the renormalization group methods of quantum 

f i e l d theory have been applied, with great success, to the problem of both 

static^ and dynamic^ c r i t i c a l phenomena. Renormalization group theory 

(RGT) provides a more fundamental derivation of scaling, as well as a means 

of calculating c r i t i c a l exponents and the values of certain amplitude 

ratios. On the basis of RGT there i s a concrete formulation of univer-
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sality in which the equivalence classes are essentially determined by the 

dimensionality, d, of the system and the number of components, n, in the 

order parameter. The transformations involved in this theory are suf

ficiently complex that results can usually be evaluated only approximately 

with expansions in 4-d or 1/n. Indeed, the mathematical structure of the 

RG as well as its application to physical systems is the subject of much 

current research. 

The i n i t i a l motivation for this work was based on one of the pre

dictions of dynamic scaling related to the damping of second sound near 

the lambda transition in liquid helium. Second sound is a propagating 

mode of thermal transport which appears as a temperature-entropy wave in 
4 

the low temperature superfluid phase of He. It was felt that precise 

measurements of the critical damping at various pressures would provide 

a severe test of both scaling and universality. This prediction, the ex

perimental situation regarding second sound damping, and the implications 

for this work which resulted from the advent of RGT are the subject of the 

following section. 
B. Review of Second Sound Damping 

The earliest measurements of the attenuation, a^, of second sound 

relevant to this work are those of Hanson and Pellara (HP) in 1954^. From 

their data i t is possible to extract the, now more pertinent, damping co

efficient D£ by means of the hydrodynamic expression 

a2(03,T) - Js(w2/uJ) D2(T) (1) 

where w is the angular frequency of the second sound with velocity \x^. 

This expression is derived in section C and, as indicated by the notation, 

in the regime of hydrodynamics D2 depends only on temperature. The range 
_2 

of temperatures covered by HP are such that AT • T^ - T ^ 10 K and there-
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fore do not enter deeply into the c r i t i c a l region. However, their measure

ments are Important in the interpretation of the results of this work and 

w i l l be discussed in later chapters. 

As previously mentioned, theoretical work in the late sixties resulted 

in the dynamic scaling prediction of the c r i t i c a l temperature dependence 

of D2: 

D = u2K (2) 

where £ is the correlation length for fluctuations of the order parameter. 

The arguments used to arrive at this result are outlined in section C. In 

view of the proportionality, the experimental verification of relation (2) 

w i l l involve only the exponents which govern the behaviour of each quantity 

as T * T^. From the two-fluid hydrodynamic expression for u 2 (see E q . (26) 

in section C), the terms with a significant dependence on AT indicate • 

u„ a (p /c ) where p is the density of the superfluid component and 2 s p s 
c i s the specific heat at constant pressure. The definition of a cor-
P 

relation length for a power law decay of the correlation function at large 

distances, as i s the case for helium with T < T^, and the formulation of 

hydrodynamics in terms of correlation functions yields £ o c P g ^ « There-
-h 

fore, the scaling prediction (2) becomes D 0
 a (c p ) . The exponent 

for p a (AT)^ has been found to be C = 0.666 ± 0.006 from an s 
Andronikashvili-type experiment . Alternatively, p may be derived from 

measurements of u 2 (plus other empirical information and the hydrodynamic 

expression for u2> with the result Z, c 0.674 ± 0.001 at saturated vapour 
9 

pressure . The specific heat, c^, increases slowly with a near logari

thmic dependence on AT as, AT decreases. Thus measurements of D 2 would 

verify dynamic scaling to the extent that they confirm 
D, « (c ) ~ h ( A T ) ~ C / 2 ^ ( A T ) _ 1 / 3 (3). 

2 P 
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Prior to the beginning of this study an experiment by Tyson*"0 pro

vided the only test of relation (3) for the case of macroscopic second 

sound*"*". His results give 0.34 ± 0.06 for the exponent of D 2 and con

sequently agree with the value 1/3. However, the results do not confirm 

the predicted contribution from c^ in (3). This might be expected to 

lower, to perhaps 0.28, the exponent which would be calculated from a 

power law f i t to the data for D2(AT) over the temperature range of his 

experiment. I n i t i a l l y one of the objectives of this work was to obtain 

more precise values of D 2 in order to establish or deny the presence of 

0^ and so provide a stringent test of the details of dynamic scaling. The 

second objective was to test the universality of the scaling relation (2) 

by performing the measurements of c r i t i c a l damping under pressure. There 

was, and s t i l l i s , no such information on D 2 available. 

The renormalization group treatment of a dynamic model^ of helium 

confirms the scaling relation (2), and provides a means of calculating the 

universal constant defined by the ratio R 2 = D 2/2u 2£. The theoretically 

estimated value for R2, given in the next section, has been found to be a 

factor of about five smaller than that indicated by Tyson's data. This 

discrepancy had serious implications in the i n i t i a l stages of this work. 

If the smaller value of R 2 as predicted by theory was in fact correct, then 

a considerable improvement in the experimental error, compared to that 

obtained by Tyson, would be required in order to resolve the predicted 

temperature dependence of D 2« 
o 12 During the course of this work, Tanaka and Ikushima have interpreted 

3 4 
their studies on thermal transport in He - He mixtures as evidence in 

13 

support of the value of R 2 obtained from Tyson's data. Recently Ablers 

has reported results on second sound damping which are in agreement with 
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the value of R 2 I n i t i a l l y calculated by Hohenberg, Siggia and Halperin 
14 

(HSH) on the basis of RGT. More recently, a nonlinear renormalization 

group analysis of the dynamics of the superfluid transition by Dohm and 

Folk (DF)^ has resulted in predictions concerning second sound damping 

which are also in agreement with the work of Ahlers; however, their theory 
ef f 

predicts a temperature dependence for the effective ratio R 2 (AT/T^) 
ef f 

which enters the equation, D 2 • R 2 2u 2£, governing the behaviour of D 2 < 

Also, their predictions for D 2 cover a larger temperature interval ex

tending beyond the c r i t i c a l region. 

In view of the theoretical and experimental status of D 2 outlined 

above, the results of this work are significant in that they confirm the 

results of Ahlers. In addition, since the measurements of this work are 

of greater accuracy and cover a larger temperature interval, they provide 

a more severe test of the theoretical predictions of HSH and DF, and i n 

dicate the behaviour of D 2 in the temperature interval between the pre

viously existing experimental data in the c r i t i c a l and non-critical regions. 
C. The Dynamics of Superfluid Helium 

i) Hydrodynamics and the Damping Coefficient D^ 

The hydrodynamics of the two f l u i d model of superfluid helium is re

viewed here. This theory Is relevant to an understanding of second sound 

and the mechanisms responsible for i t s damping, as well as providing the 

foundation and interpretation of the dynamic models employed in scaling 

and RGT. 

The two f l u i d model obtains some microscopic j u s t i f i c a t i o n in the 

quasi-particle (elementary excitation) theory of Landau^, and more re

cently in the theory of Hohenberg and Martin*^ based on the assumption of 

a Bose condensate. This model describes He II in terms of interpenetrating 



normal and superfluid components with densities and p g respectively. 

The velocity f i e l d s associated with these components are V r and vg., subject 

to the irrotational condition on v 
s 

curl v g » 0, (4) 

provided v and v are below some c r i t i c a l value. In the approximation in n s 
16 18 

which dissipative effects are neglected, a typical derivation * of the 

hydrodynamic equations begins with the conservation laws and an equation 

of motion for v_ satisfying (4). Thus s 
|£ + div J «= 0 (5-A) 

expresses mass conservation in terms of liquid density p and mass current 

~i = ( j j ) which i s the momentum per unit volume; 

3 j i 8 1 1 ik 
i r — + -s = 0 (summation convention) (5-B) ot ox, k 

is the statement of momentum conservation where H., is the momentum flux 
ik 

density tensor; the absence of dissipation i s written as conservation of 

entropy 

f f i S - + div F = 0 (5-C) 

where a is the entropy per unit mass and F is the entropy flux; the i r 

rotational character of the superfluid velocity f i e l d means that the time 

development of v satisfies an equation of the form 

- ~ + grad (Ssvj + h) = 0 (5-D) ot S 

where h i s a scalar function. These, (5-A,B,C,D), are eight equations for 

the eight basic variables p, O, v , in terms of the yet to be determined 
s 

quantities II ik, F, h. Conservation of energy, 

|£ + div Q - 0 (6) 



where U i s the energy per unit volume and Q i s the energy flux density, 

i s a ninth and hence redundant equation which must be automatically sat

is f i e d by (5-A,B,C,D). This constraint, the application of Galilean re

l a t i v i t y and thermodynamic arguments are sufficient to determine F, h 

under the assumption that they do not contain dissipative contributions in 

the form of spatial gradients of thermodynamic variables. 

In the determination of F, h the existence of two independent 

velocity f i e l d s i s significant to the thermodynamics since i t i s not gen

erally possible to transform to a frame in which the fl u i d i s at rest. 

Thus, there appears an additional conjugate pair of thermodynamic variables 

arising from the relative internal velocity. Consider a Galilean trans

formation relating two frames denoted by subscripts 1 and 2 and with r e l -

ative velocity v^. The relations for velocity, momentum and energy den-

sity are V 2 = v i + v
r » J 2 = ^1 + P V r ' U 2 = U l + V r * ̂ 1 + ^ P V r * A n e n e r S y 

density which satisfies this transformation i s 

U = U + v » ( j - p v ) + hpv2 (7) 
O S s s 

where U is a Galilean invariant and represents the energy density in a o 

frame in which the superfluid is at rest. As U q is an invariant i t s de-

pendence on the basic variables p, C, j , v i s 
dU_ «= ydp + Td(pa) + w »d(j - pv R) (8) 

since j - pv is invariant. In (8) w is the conjugate to j - pv (as y s s 
is to p and T is to pa) and serves to define via w " v

n ~ V
E ' Then, 

the last term in (8) states that the derivative of energy with respect to 

momentum is velocity. With expressions (7) and (8) for the energy density, 

the constraint imposed by energy conservation can be used to determine 

n"ik' F, h. By differentiating U with respect to time and then replacing 

a l l time derivatives by spatial derivatives through the use of equations 



(5-A,B,C,D), i t i s possible to identify the energy flux density Q as well 

as F, h. The algebra can be found in considerable detail in ref

erence 18. The results become intuitively appealing when the basic var-
-»• -*• -V- . •+ 

iable set i s taken to be p, a, v , v where v i s related to 1 by 
' ' n* s n 

j - P nv + P ev with p + p = p (9). n n s s n s 

Then the expression for i s 

n i k * P 6 i k + P s V s i v s k + p n v n i v n k ( 1 0 ) 

where p i s the pressure. Thus, appears as a natural generalization of 

the momentum flux density » P^ik + s * n 8 l e f l u i d hydrodynamics. 

The result for the entropy flux vector i s 

F - pov n (11) 

which means that a l l entropy i s carried by the normal f l u i d . The scalar 

function 
h •= V - (12) 

is the chemical potential. The quantities y, p, p ^ which now appear are 
-»• -*• 2 

functions of p , O as well as (v - v ) . Thus, the hydrodynamic equations, 

neglecting dissipation are (5-A,B,C,D) with j , F, h given by (9, 10, 

11, 12). Before discussing wave solutions to these equations, they w i l l be 

augmented to include dissipation in anticipation of obtaining a hydrodynamic 

expression for second sound attenuation. 

Dissipation i s a consequence of the irreversible processes associated 

with thermal conduction and the viscosity or internal f r i c t i o n which re

sults from internal motion. These irreversible processes occur when there 

are departures from equilibrium and cause the system to move towards an 

equilibrium 6tate characterized by a maximum in the entropy. Thus, the 

approach to equilibrium involves entropy production, Z/T, and the gener

alization to equation (5-C) i s 
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div (pov n + |) •= | (13-C). 

The dissipative contribution to entropy flux, q/T, i s , of course, identified 

in lowest order with thermal conduction. Admitting a dissipative contrib

ution, h', to the superfluid flow but s t i l l requiring curl v g «= 0, the 

superfluid acceleration equation (5-D) becomes 

+ grad (y + %v + h') «= 0 (13-D). 
d t S 

There s t i l l remain the conservation laws for mass, momentum and energy. 

The equation for mass conservation or continuity i s unchanged: 

| | + div j - 0 (13-A). 

Vith a viscous stress tensor the momentum equation i s 

3j 3(11 + T ) 

l + I K l k = 0 (13-B). 
d t dX, k 

Energy conservation is now 

| | + div (Q + Q») - 0 (14) 

where Q' i s the additional dissipative energy flux density. 

The form of Z , q, h', must now be determined. As in the non-

dissipative case the energy equation (14) must be satisfied automatically. 

By differentiating with respect to time the expression for the internal 

energy (7, 8) and replacing time derivatives by spatial ones through the 
-*• -+• 

use of (13-A,B,C,D), a pure divergence term may be identified with Q + Q , 

while the remainder must vanish. This yields for the entropy production 

*- - ̂  - * u - »'K*s - V (»)• 
k 

The entropy production must be positive definite and vanish in equilibrium. 

This requirement, and those based on Galilean covariance, are sufficient 
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to determine expressions for the fluxes q, h' which, to f i r s t order 

in the deviations (spatial derivatives) from equilibrium, involve thirteen 
-+• 

independent kinetic coefficients. At this level v - v i s not considered r n s 
•+ •+ 

small since in the equilibrium state of solid body rotation v - v can be 
n s 

large due to the presence of superfluid vortices. However, in the limit 

of small deviations from a non-rotating equilibrium state, as applies to 

this work, v - v is also small. Then there appear kinetic coefficients n s r r 

in the fluxes as follows: 

q = -KV" T (16) 

where K is the coefficient of thermal conduction, 

\i - -^tef+ £f - KjH) • s«(hW\-\> + ^H) (17> 
and 

h' = ,v".p (v" - v ) - C,v"4 (18). o s s n 4 n 

In the viscous stress tensor, T.., there are the usual coefficients of 

f i r s t and second viscosity, ri and Z,^, which appear in the "normal" f l u i d 

hydrodynamics. Due to the additional degree of freedom allowed by v , 
s 

there appears in another second viscosity, which determines the 

dissipation generated by relative motion, v
n ~ v

s * The dissipative cor

rection, h', to the chemical potential contains two more coefficients of 

second viscosity £ 3 , £45 however, by the Onsager reciprocity theorem, 

£^ = g so that there are five independent kinetic coefficients. Also, 
2 

Z > 0 requires that K, n, &2, &3 be positive and ^ < X,2^>y 

The characteristics of sound propagation can now be analyzed on the 

basis of the hydrodynamic equations, (13-A,B,C,D), with the substitutions 

(15, 16, 17, 18). The equations for p, O, v , v are written in linear-

ized form by means of 
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p - pn + 6p o - O Q + 60 

p - p + 6 p T = T + 6 T 
•+ 

V • OV V • ov n n s s 

The disturbances, 6, contain the space and time dependence. The e q u i l i 
brium state, denoted by a subscript 'o', i s one in which v - v «* 0. The 

* J n s 
linearized, that i s , to order 6, equations including dissipation are then 

35v . 36v , 
. r - ^ + P - 5 — — = 0 (19-A), 3t no 3x A

 Kso dx̂ ^ 

3 _ , 3Pso<6vsk - *W + ^nk j ( w . B ) i 
+ 3 X j

 l C l 3x v 2̂ 3x k > 

33(pa) 9 S v n k < 3 36T (19-C), 
3t Po°o 3x, T 3x. 3x, k i i 

36v ^ r - 3p (6v , - &V , ) 35v . , s i , 3<5u 3 r Kso sk nk , nk > ... 

i i k k 

In this approximation 6u i s just the usual 6y = (l/p)Sp - 0 6 T . Wave 

solutions are attempted in the form 

. i(ut - kx) ~ -iw(t - x/u) 
6p = pe « pe , . 

and similarly for 6o, 6p, 6T, 6v « 5v x, 6v • 6v x. The linearized J * v* * n n ' s s 
equations now become, dropping the subscript 'o', 

-iwp + ikp v + ikp v =0 (20-A), 
K n n s s 

-iwp v - iwp v + ikp - -k 2( 4l - P ?i + S,)^ - k2c; p v (20-B), n n s s 3. s i 2 n l s s 

-iw(po + pa) + ikpav «= -k 2 £ T (20-C), 
n 1 
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-low e + ik( £ - O-T) - k 2(C A - P s ? 3 ) v n - k 2 £ 3 P s v 6 (20-D). 

Thus, there are now four equations for four unknowns p, 5, v , v . The 

small variations p, T depend in this approximation on p, O as 

„ 8T<\ ~ ST-* ~ 

A dispersion relation, co(k), can be obtained by eliminating v , v in 

favour of p, o and retaining only f i r s t order terms in the kinetic co

eff i c i e n t s . Equation (20-B) through the use of (20-A) and (20-C) becomes 

A second equation is obtained from (20-D) by using (20-B) as an expression 

for p and subsequently eliminating v^ and v g by means of (20-A) and (20-C). 

The result is 

t 3T u)2 pn >~ r 1 , _ . ?2 . 4 n . P n K 3T.~ 

K. S S 

s 

- o | £ p (22). 
3p 

Consider for the moment the approximation in which dissipation i s ne

glected by ignoring the kinetic coefficients in equations (21) and (22). 

Then they read 

<Sl - & - 0 a & ) p 5 - o ( a , 
k u^ r 

k u 2 
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with u 2 - Op/3p) 0 and u 2 - (P s/P n)o 2(3T/9a) p - (ps/pn)a2T/cv. The con
dition for the compatibility of (23) and (24) is that the determinant of 

the coefficients vanish. Thus 

Hk-u c-̂ r - o - C|g>a tfDp tfgla ĉ )p k 2 u 2 k^u 2 

= (c - c )/ c P v p 

~ = u „ » f_J> 13.]* c = c - c (26) *-p c J p v 
CO 

k " u2 

At the saturated vapour pressure and for the values of AT in this exper-
19 

iment (c - c )/ c << 1, so the approximation that this term is zero P v p 
results in decoupled modes 

• f - ' l " ^ <25> 

n 

known as f i r s t and second sound. The f i r s t i s the usual adiabatic density-

pressure sound wave, while second sound is an entropy-temperature wave at 

constant density. 
Now consider the dissipative equations (21) and (22) in the decoupled 

approximation (c - c )/c - 0. To f i r s t order in the kinetic coefficients * P v p 

the requirement that the determinant of the coefficients of p' and o' van

ish yields dispersion relations as follows: 
2 

co 2 4 W f 4 ^ , r " ) 

co2 2 ico p s t 4 ^ . 2 n f r . r . , _ . P n ic and — = u 2 - _ _ ( y n + p S 3 - p ^ + + C 2 + — - ( 2 7 ) 

k n s 

Considering the second sound solution, the attenuation can be deter

mined by writing k - k Q + i a 2 and expanding to f i r s t order. This gives 

PU2 n 8 
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The damping constant D 2 i s defined by 

a2(a),T) - hCw 2/ u^) D 2 (28) 

Therefore in linearized hydrodynamics D 2 is independent of frequency and 

M T ) - ? r ( f i i + P\ - P t t j . + C A ) + C 2 + ^ f ) ( 2 9 ) . 
' 2 - PP n 

Thus, on the basis of hydrodynamics alone, measurements of second 

6ound damping may only be interpreted in terms of a rather lengthy com

bination of thermodynamic properties. However, some information concerning 

D 2 can be gained from independent measurement and theoretical calculation 

of the individual quantities contributing to D2. * n particular, the be

haviour of D 2 as T •+ T^ i s expected to be approximately proportional to 

- 1/3 
(AT) . The contributions to this divergence are as follows. It i s 

2/3 
known from experiment that p a (AT) . The viscosity, T), i s measured 

s 

to be f i n i t e at T^ so i t s effect on Dj, i - P sn, vanishes. The second v i s 

cosities z;̂ , C 2 > £3 are expected, from f i r s t sound attenuation measure

ments and the Landau theory, to vary roughly as (AT) *" and therefore 

- 1/3 
contribute (AT) . The strength of the thermal conductivity term i s 
conjectured. If i t s behaviour below T^ (which cannot be measured due to 

- 1/3 

superfluidity) i s the same as above, then i t Is about (AT) . If, as 
3 A 

experiments on He - He mixtures suggest, tc i s f i n i t e at T^, then the 

growth of the specific heat, c, as T •* T^ would cause tc/pc to diminish. 

The scaling treatment of c r i t i c a l dynamics as i t relates to D 2 i s now 

discussed. 
i i ) Scaling and D,, 

Scaling^ begins with the recognition of the importance of the variable 

which has the largest fluctuations near the transition and consequently Is 

most responsible for the c r i t i c a l behaviour. This variable, the order par-
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amter tj;, has a range, £, of correlations in the fluctuations which is div

ergent as £ • C 0 ( A T / T c ) ~ V . The description of fluctuations of any (Her-

mitian) variable A(r,t) i s done in terms of the correlation function 

c (r,t) defined as 

c A ( r , t ) •= h < ( ( A ( r , t ) - < A ( r , t ) > ) , (A(0,0) -<A(0,0)»}> (30) 

where the angular bracket denotes equilibrium average and the curly brack

et is an anticommutator. In dynamic scaling the Fourier transform of 

~A 

c (r,t) i s written in the form 

c£(k,C0) = 2lT ft£(k) _ 1 C ^ ( k ) f^ r ( -T—) 
*> * 0>*(k) 

where the subscripts £ indicate a parametric dependence on the dominant 

order parameter correlation length. This expression contains the equal 

time correlation function (t • 0 in (30)) 
00 

CrOO - J ^ c E(k,o>) 

and a shape function, f, such that 
00 

/ fJ r(x) dx = 1 
_oo > ^ 

The 0)^ (k) is the characteristic frequency defined by 

j f f £ i ? ( x ) d x - | . 

The shape function, f, i s determined by the hydrodynamics of the system 

being considered. The general relationship between the hydrodynamic 

equations and correlation functions has been established by Kadanoff and 

20 

Martin , and the specific case of helium has been dealt with in reference 

17. The correlation function description is in principle more general 

than the hydrodynamic description, and the two are equivalent in the limit 

of small k and 0) where hydrodynamics applies. In particular, the 
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frequencies and damping of the normal modes in hydrodynamics appear as the 

poles of the appropriate correlation functions. This structure is contained 

in the shape function, f, given previously. Thus, for example, i f the 

hydrodynamics yields the frequency and damping of a normal mode expressed 
2 2 2 2 

in terms of the dispersion relation co = u k - icok D as in equation (27), 

then the correlation function description of this mode is reflected in a 

shape function of the type 
1 y k f, r(x) = — —5 9 o 

k ^ * (x 2 - l ) 2 + y 2 

The characteristic frequency co^(k) Implicit in x i s just the frequency of 

the normal mode 

and the width y^ i s 

co^(k) • uk » 

Dk2 Dk 
y = — *= 

k u k u 

Now one assumption, of dynamic scaling is that the shape function for the 

order parameter correlation function depends on k and £ only through the 

product k£. Thus, i f the normal mode and shape function discussed above 

correspond to that of the order parameter, then this assumption means, 

since y^ is linear in k, that 
D « u£ (31). 

In the case of the X-transition there are complications which stem 

from the fact that the order parameter i s the average, over a small region 
21 

of space-time, of the annihilation f i e l d operator . As the f i e l d oper

ators are not Hermitian, the order parameter i s complex, that i s , i t has 

two components. The order parameter correlation function then decays at 

large r according to a power law, p, so that 
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c^(r) »u \$\2 ( | ) P for r + » . 

and this serves as a deflntion of the correlation length £. Also, as dem

onstrated by the hydrodynamics, there are two propagating modes. However, 

i t i s shown in reference 17 that the order parameter correlation function 

i s dominated by the second sound mode to the extent that (c - c )/c << 1. 
3 p v p 

In addition, i t i s shown that c^(k,w) , which i s not directly observable, 

has poles which are identical to those of the correlation function of the 

heat operator 
q(r,t) * U(r,t) <£ -^2>p( r,t) 

= U(r,t) - <y + To> p(r,t) (32). 

Thus, i t is possible to formulate scaling in terms of the observable f l u c 

tuations of the heat operator ((dq^= ^Tp do}) which correspond to second 

sound. The scaling relation (31) is then a prediction of the damping of 

second sound 

The significance of this result to this work was discussed in the previous 

section, B. 

i i i ) Renormalization Group Theory and D,, 

The RG treatment of the dynamics of the lambda transition i s a work 

of such magnitude that even a mildly comprehensive development of the pre

diction for D 2 i s beyond the scope of this thesis. Thus, following a dis

cussion of the dynamic model which undergoes the renormalization, only the 

procedure for performing the RG transformation i s indicated. Then the pre

diction for D 2 is given. 
The dynamic models treated by RG techniques are semi-microscopic in 
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that they are defined by equations of notion for the variables which re

main after averaging over length scales which are larger than atomic dim

ensions but smaller than the correlation length for the order parameter 

when T i s near T £. One such variable for which an equation of notion must 

be given i s the order parameter, ty. The equations for the other var

iables reflect the various symmetries, or equivalently the conservation 

laws, of the system being studied. In liq u i d helium there are three con

served f i e l d s . As in the two f l u i d hydrodynamics, they are the energy 

density, U, the mass density, p, and the momentum density, j . A complete 

semi-microscopic description of the dynamics of helium would then Involve, 

including the order parameter, four f i e l d s . However, i t i s anticipated 

that, as a starting point, a two f i e l d model Is adequate since i t is pos

sible to incorporate into such a model the c r i t i c a l hydrodynamic mode ass

ociated with a f i e l d , m, which couples most strongly to the order parameter. 

The f i e l d m is the linear combination of U and p which produces second 

sound for T < T^ and i s denoted by q in equation (32). The two f i e l d 
6 22 

model of helium i s defined by the following stochastic equations ' : 

^ L £ > - - » O - i * 0 * £ • e n C33-A). 

at o Om o v ' n 

F - F o - Jd dx {hm(x,t)m + Re( h^(x,t)\J>* )} (33-C), 

F o - Jd dx (»sro \ty\2 + h\Vi>\2 + u O M * + ̂ m 2 + yom\ty\2) (33-D). 

Some of the features of this model are Indicated now. The 8 , C are 
n n 

Langevin noise sources. In the absence of time dependent applied fi e l d s 

h and h,, these noise sources, when chosen appropriately, ensure that ty 
m ty 
and m achieve values consistent with the equilibrium probability d i s t r i b -
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ution P (ty,m) - e / Je d̂ dm. The f i r s t three terms in the 
eq 

functional F q represent the usual Ginzburg-Landau expansion in terms of the 

order parameter. A similar expansion in the f i e l d m i s truncated after 

the f i r s t term. In RGT the higher powers of m in the expansion are I r r e l 

evant, while in the expansion in powers of ty the interesting or nontrivial 

behaviour i s a result of the U Q | ^ J ^ term. The interaction term, Y^ l^ i^ , 
in F is included because a variation in m, which is identified as second o ' 

sound, means there i s a change i n the local value of AT which in turn re

quires that ty obtain a new local equilibrium value. The f i r s t term on the 

right hand side of (33-A) indicates that ty is not a conserved f i e l d in that 

i t causes ty to relax (ReT > 0) to a value which minimizes F . The f i e l d 
o o 

m, however, i s a conserved quantity since the right hand side of (33-B) 

can be written as the divergence of a current for h^ • 0 and £ r as given 

in reference 22. 

The significance of the coupling constant g Q in (33-A,B) can be under

stood by considering the effect of a uniform time-dependent applied f i e l d 

which i s conjugate to m, h (x,t) = h ( t ) . Writing the complex (two com-
m m 

ponent) order parameter in terms of a phase angle 4> as ty = |^|e^, then 
(33-A) gives the effect of h on <t> as 

m 
! £ = g h (34), dt °o m 

that i s , h causes a rotation of the order parameter. Although the notation 
m 

in (34) is more suggestive of an equivalent system of spins known as the 
0 0 O1 O / 

planar ferromagnet Z J » z ,the corresponding rotation equation for helium 
21 

i 6 a "Josephson" equation 

C 3 5 ) 

where y i s the chemical potential per particle of the fl u i d at rest. The 
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connection between (35) and the superfluid acceleration equation (5-D) in 

the two f l u i d model can be made by the identification ti^ct « mv where m 

6 

i s the mass of a helium atom, and adding the kinetic energy contribution 

2 
h m v to the chemical potential in (35). The result of the coupling, g , 

6 O 
on the hydrodynamics i s that there i s a propagating mode for T < T which 

22 24 

involves coupled variations in m and cp ' . This i s second sound in 

helium while the corresponding mode in the planar magnet is a spin wave. 

The renormalization group transformation is applied to the cor

relation function formulation of the equations of motion (33-A,B,C,D). It 
s i s 

is defined by = ̂ b^b w n e r e ^ * s a s c a x e change 

x -*• x* «= x/b 

A -»• A' = Ab 

ip \K = bai> 

co •*• co = b co 

such that b > 1, and a, z are determined within the theory. The operation 

R̂  applied to the diagrammatic expansion of the equations of motion is an 

Integration over wave vectors such that b ^A < k < A and frequencies from 

_» to +°°. The transformation i s iterated, say n times. The requirement 

that the equations retain the same form leads to recursion relations for 

renormalized constants \f , g , X ... } which have developed from the 
1 n en' n ' 

original set {r , g Q, X q ... }. An analysis of the fixed points of the 

recursion relations, that i s , those limiting values [T , g , X which 

remain unchanged by successive iteration, leads to scaling laws as well 

as values for exponents and certain universal amplitude ratios. 

One such universal amplitude ratio i s 

*2 " <36> 

where i s the damping constant of second sound with velocity u 2 > and £ 
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i s the transverse correlation length of the order parameter. (In super-

f l u i d helium there are two correlation lengths, one associated with f l u c 

tuations in magnitude, the other with fluctuations in phase. The latter 
IA 

i s called the transverse correlation length.) Different methods may be 

used to evaluate in three dimensions. One approximation technique using 

an expansion in e - A - d gives R 2 ^ 0.15. Another method i s a general

ization of RGT to three dimensions and results in R 2 ^ 0.09. In each case 

the calculations are based on the simpler symmetric model for helium (equ

ation (33) with Yq • 0) which i s expected, in three dimensions, to give 

the correct asymptotic behaviour as T T^. The accuracy for either method 

of calculation i s expected to give R 2 to within a factor of two. 

An explici t expression for D 2(t) where t • (T^ - T)/T^ may be ob-
13 

tained by using empirically determined expressions for u 2 and £ . Ahlers' 9 3 0 387 measurements give • 4.63 x 10 t cm/sec at saturated vapour 
pressure. The same data, in conjunction with the hydrodynamic expression 

for u_ and measurements of c and o provide the best information on p ( t ) . 
i P 5 

-2 2 

This may be used to evaluate £ • m (k^T)/ fi Pg( t^ v * t h the result 

£ • 3.57 x 10 8 t 0*675 cffi^ Then, the prediction for D 2 becomes 

D 2 - ( 3 or 5 ) x 10"5
 t " 0 * 2 8 8 cm s" 1 (37) 

depending on the two estimates for Rj. It is noted that both the amplitude 

and the exponent are subject to verification by experiment. 

The recent treatment by Dohm and Folk (DF)*"^ of the dynamics of the 

superfluid transition yields new predictions concerning D 2 > They begin 

with the stochastic model employed by HSH and described by equations 33 A, 

B, C, D, with YQ " 0. However, their analysis of the fixed points of the 

renormalization group transformation leads DF to predict a temperature 

dependent effective ratio, R 2
f f ( t ) , which determines D 2 via D 2/2u 2£ • R***'. 

Using thermal conductivity data above T^ to evaluate non-universal par-
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ef f -A 
ameters entering their theory, DF obtain a value for at t « 10 of 

-A 
about 0.1A. The temperature dependence i s weak over the interval 10 > 

t > 10 , but stronger for t > 10 . As a simple analytic expression for 

D 2 i s not available in their report, the graphical presentation of their 

predictions i s reproduced in Chapter A along with a discussion of the re

sults of this work. They {DF) do not indicate the expected accuracy of 

their calculations. 
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CHAPTER 2 

EXPERIMENT 

The f i r s t section of this chapter is a discussion of techniques used 

in second sound attenuation measurements with particular emphasis on the 

method chosen for this work. Section B i s a discussion of the apparatus. 

This includes a description of the cryogenic apparatus, the resonator, and 

the electronics. An outline of the experimental procedure i s given in 

Section C. 

A. Techniques 

There are several methods available which may be used to measure the 

attenuation of macroscopic second sound. The most direct approach i s that 

used by Hanson and Pellam (HP). They measure the temperature amplitude, T, 

of a travelling second sound wave as a function of the distance, x, between 

the generator and detector, and determine the attenuation, a, by means of 
~'CtX 

T = T Qe . In another method, as employed by Tyson and Ahlers, the atten

uation i s determined from the frequency dependence of the amplitude of 
25 

standing waves in a resonant cavity. A third technique has been developed 

which involves an analysis of the shape of second sound pulses and has 

been used to determine the attenuation under pressure but for T much less 

than T^. Other methods are conceivable. For example, one might expect 

that attenuation measurements could be made using the amplitude decay of 

a second sound "tone burst" propagating between reflecting plates. 

In this experiment a resonance method has been developed in which the 

attenuation i s derived from the decay time, T, for free oscillations of the 

plane wave modes of a cylindrical cavity. This i s essentially the Fourier 

transform of the technique used by Ahlers and Tyson. In their experiments 
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a Is related to the f u l l frequency width, Au>, at half maximum of the power, 
2 

that i s , T , by Ato * 2U2CU In the present work T determines the temporal 
M2 a.2 — t / T 

response as T • T^e . The expression which applies to plane trav

e l l i n g waves, 1 « l ^ e - 0 0 1 , becomes T « 5 L^ E
K X U2 T appropriate to a standing 

plane wave mode and therefore 1 / T E 2U2O1. Of course, Aw «= 1 / T . In these 

expressions a i s the total attenuation due to the bulk helium and contrib

utions associated with the boundaries of the resonant cavity. 

The decay time method used in this experiment gains one particularly 

significant advantage while retaining the benefits of a resonance approach. 

The reasons for choosing a resonance technique in general are based on the 

desire to approach as closely as possible and achieve a resolution i n 

AT on the order of 10*"̂  K. Thus, in addition to the requirement of temp

erature s t a b i l i t y , a small system i s preferred in order to minimize the 

pressure increase due to gravity which alters the value of T^ by about 

1.3 x 10~^ K per centimeter of helium. It i s f e l t that thermal isolation 

and small size are more easily achieved with a resonant cavity as opposed 

to the method of HP which requires a variable propagation path of con

siderable length to avoid multiple reflections. Also, the effects of 

f i n i t e second sound amplitude (recall the approximations of linearized 

two f l u i d hydrodynamics and that v n > V g are proportional to 1) become more 

severe as T + T, since then v can become large due to the vanishing of p . 
A s s 

Therefore, i t is desirable to use small signal levels to avoid what may be 

a d i f f i c u l t interpretation of large amplitude effects. In addition, the 

frequency dependence of 02 indicates that a signal with limited frequency 

content requires less interpretation than, say, a pulse signal. A res

onance method provides a continuous wave, narrow band signal to which 

standard but powerful detection techniques may be applied. Moreover, the 

resonance i t s e l f results in an amplification of the AC excitation. This 
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is important i f the second sound is generated, as i t is in this experiment, 

by the AC e l e c t r i c a l heating of a resistive element. Then there is a DC 

component present in the power spectrum of the excitation which results 

in a steady counterflow of v^ and v g upon which the AC second sound flow 

i s superimposed. However, to the extent that the gain*of the cavity i s 

very large, the DC flow velocities are negligible in comparison to the 

AC flow velocities. As this selective 'gain' i s not present in the methods 

using a travelling wave, or pulsed second sound, a resonance method is 

preferred since i t , i s expected that with a DC counterflow there are cor-
18 

rections to the expression (27) for the attenuation 

The measurement of decay times as opposed to line widths overcomes 

a problem related to the limitations of temperature s t a b i l i t y and frequency 

range that are encountered in this experiment. To understand the nature 

of the problem, consider the harmonic sequence for plane-wave modes in a 

cavity consisting of parallel plates separated by a length a. The resonant 

frequencies are given by 
co = u 0k = u 0(pTT/a) p I p 2 

where p = 1, 2, 3 ... . During the course of a frequency sweep through some 

resonance of width Aco^ at cô  suppose that the ambient temperature changes 

by 6T. Then the second sound velocity changes by = (3U2/9T)6T and, 

therefore, the resonant frequency changes by an amount Scô  • 6u2kp, or 

660̂  = (6u2/u2)t0p. For small AT, 6U2 becomes large since S^/BT diverges 

as T T^. The amplitude response to the driven oscillations now approaches 

a different value appropriate to the new resonant frequency cô  + Scô . 

Thus, the typical temperature fluctuations, 6T, result in distortions of 

the resonance response curve making i t d i f f i c u l t to determine Acô . This 

i s significant when the "temperature noise width", 6cop, becomes comparable 
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to the Intrinsic width (AWp)a • l n principle this problem can be overcome 

by using higher harmonics since the intrinsic width i s expected to vary as 
2 2 

(AOJ ) • 2u„a 0 « (a) /u„)D-, and the frequency squared dependence w i l l u l -
p ot2 2 2 p 2 2 

timately dominate the linear dependence in 50)̂  = (5u2/u2)top. Unfortunately, 

modes which do not correspond to plane waves, but' rather to Bessel func

tions, complicate the cavity response. The excitation of 'Bessel modes', 

to be discussed below, makes i t d i f f i c u l t in this experiment to interpret 

the resonant structure at the frequencies of the higher harmonics. However, 

the attenuation, a 2, can be obtained by measuring the decay times of the 

well isolated, low frequency harmonics. In this method the cavity i s driven 

at or near the resonant frequency u n t i l the excitation reaches some desired 

high le v e l . The drive i s then turned off and the decay of the excitation 

recorded. The os c i l l a t i o n frequency s t i l l fluctuates by Sco^ due to the 

temperature noise, 6T, but now this does not appear as amplitude noise in 

the signal since the response is not driven but allowed to decay freely. 

It i s only necessary that the bandwidth of the detection system be large 

enough to accommodate the frequency content of the decay, e t^ T,' and the 
excursions, 6w , which occur during the decay. The details of the signal 

P 
recovery system are found in the discussion of the electronics. 

The general resonant frequencies of a cylindrical cavity of radius r 
26 

and length a are given by, 

2 a 2 
p,m,n /. v a r ' 

The a , with m, n «= 0, 1, 2 ... , are solutions to (dJ (ircO/da) • 0, mn m 
where J (TO) i s a Bessel function of the f i r s t kind. The plane wave modes 

m 

are obtained for a^g •= 0. The modes with m or n not zero are loosely re

ferred to as Bessel modes. For m or n near one, the a are on the order 
mn 

of unity, while for large m and n approximate values are a^o - m/tT and 
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- n + Jsn + h when n > m. The dimensions of the cavity in this exper

iment are such that r - 2.A a, and therefore the lowest resonant frequencies 

correspond to Bessel modes. The density of the Bessel modes Increases 

with frequency with the result that at the frequencies of the higher plane 

wave harmonics there may be several Bessel modes having nearly the same 

frequency as any particular plane wave mode. With the use of equation 
26 

(38) and the tabulated values of a for m = 0 to 8 and n = 1 to 20, 
mn 

the resonant frequencies can be calculated to determine which of the 

plane wave modes are well separated from Bessel modes. Because of the 

high density of the Bessel modes, the results are sensitive to the value 

of the ratio r/a, which i s known with an accuracy of about ± 0.5%. In an

ticipation of the observations on harmonics 1, 2, 3 and A, a calculation 

indicates that the f i r s t and third harmonics are isolated to the extent 

that to within ± 1% of their frequencies there are no Bessel modes. In 

view of the uncertainty In r/a, this means that harmonics one and three 

are fractionally isolated from Bessel modes by at least 0.5% of their re

spective frequencies. This degree of isolation is significant since i t 

is large compared to the maximum fractional width of a resonance, Aco/cô , 

of about 0.05%. However, for harmonics two and four, there are two 

Bessel modes within ± 0.5% of the frequency of harmonic two, and four in 

the case of harmonic four. Thus, i f the Bessel modes are excited, they 

could influence the response at the second and fourth harmonics. The 

consequences of the position of the Bessel modes w i l l be discussed in more 

detail in relation to the experimental observations. Possible mechanisms 

which may be responsible for the excitation of the Bessel modes are sug

gested in the general discussion of the concluding chapter. 
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B. Apparatus 

I) Cryogenic Apparatus 

The general features of the cryogenic apparatus are illustrated in 

Figure 1 and described here. The experimental c e l l containing the reson

ator was suspended inside an evacuated container. This in turn was im-
« 

mersed in a bath of liquid helium (T < T^ ) to provide a- stable thermal 
27 

environment. The temperature of this outer bath could be regulated to 
-4 

better than 10 K over a half hour interval. Helium from this bath 
3 

f i l l e d the experimental c e l l (about 15 cm ) through a valve and capillary. 

A porous stainless steel f i l t e r over the valve entrance kept solid a i r 

particles out of the capillary and valve seat. An estimate of the helium 

level in the c e l l was made using a depth gauge that consisted of a c y l i n 

d r i c a l capacitor that formed part of a tunnel diode os c i l l a t o r . A therm

ometer and standard resistor at the bottom of the c e l l formed the cryogenic 

part of a bridge c i r c u i t that was primarily used as a temperature con

t r o l l i n g device in conjugation with a feedback resistor wound on the out

side of the copper top of the c e l l body. The second sound resonator was 

held in a brass frame that enabled the resonator body to be held together 

by spring loading. The second sound detector (bolometer) in the reson

ator was a superconducting device. Its transition temperature was trimmed 

to the desired temperature by a magnetic f i e l d produced by means of a sol

enoid wound on the outside of the vacuum container. 

A few other features might also be considered as follows: 

(i) A second capillary connected the c e l l to room temperature access. This 

was available for pumpimg away excess helium in case of accidental over

f i l l i n g . Also, this line would be necessary for studies at elevated pres

sures. 
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Figure 1 

Cryogenic Apparatus 
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( i l ) There existed several thermometers and heaters at various locations 

that were used to establish i n i t i a l working conditions. Those mounted on 

the capillaries were particularly important since It was necessary to de

stroy temperature i n s t a b i l i t i e s of an oscillatory character, and magnitude 

_3 

of about 10 K, that were generated by helium in the ca p i l l a r i e s . The 

insertion of piano wire (0.2 mm diameter wire in 0.3 mm i.d. capillary) 

along with the power input from the heaters overcame these i n s t a b i l i t i e s . 

( i i i ) The c e l l , suspended by three steel piano wires, was held secure by 

using the remnants of a poorly designed heat switch as a clamp. 

(iv) General purpose e l e c t r i c a l leads made of Advance alloy were brought 

down the vacuum pumping l i n e . Signal leads for the bolometer, generator, 

thermometer and level indicator were' brought down separate stainless steel 

tubes. The bolometer leads consisted of a twisted pair of #40 copper wire. 

Leads into the c e l l were brought through holes in the bottom brass flange 

and sealed with epoxy. 
II) Resonator 

(i) Cavity 

A side view of the resonator i s shown in Figure 2a. . Two fused quartz 

optical f l a t s separated by a stainless steel annulus (length 3.0 mm, inside 

radius 7.4 mm, and wall thickness 0.38 mm) formed the cylindrical resonant 

cavity. Thin (̂  6 x 10 mm) mylar gaskets glued to the annulus elec

t r i c a l l y isolated the bolometer and generator thin films on the fla t s from 

the annulus. Polishing the ends, with gaskets in place, ensured that the 

f l a t s (better than one light wave f l a t ) were parallel to within a few light 

waves. It was hoped that this alignment would result in preferential ex

citation of only plane wave modes. The inside surface of the annulus was 

also polished. After assembly a small amount of glycerine was applied to 
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a) RESONATOR B O L O M E T E R F L A T 
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the corners formed by the annulus and f l a t s . This ensured that the cavity 

Interior was sealed off from the external helium in the c e l l and prevented 

any possible coupling between the internal cavity modes and those modes 

that existed outside. Such a coupling could result in an energy loss mech

anism that might be misinterpreted as intrinsic attenuation. However, i t 

was s t i l l possible for the superfluid to penetrate the gylcerine seal and 

f i l l the resonator in approximately four hours. 

The optical f l a t s , with 25 mm diameter, were typical of those commer

c i a l l y available. They were quite thick, the f l a t with the generator being 

3.2 mm while the one with the bolometer was 6.4 mm thick. Both materials, 

fused quartz glass and stainless steel, used in the construction of the 

cavity have low thermal conductivities. This property resulted in 6trong 

reflection of the second sound at the boundaries and w i l l be discussed in 

more detail in following chapters. The heat generated in the cavity es

caped mostly through the relatively thin annulus walls and raised the 

temperature of the cavity by about 20 KW *" above the ambient temperature 

of the c e l l . 

Considerable effort went into the construction of the thin resistive 

films which constitute the bolometer and generator. Besides possessing 

specific properties described below, i t was f e l t that they should be as 

close as possible to an ideal surface so that "perfect" reflection occurred 
28 

at the end plates. Indeed, recent studies comparing thin resistive films 

(Aquadag) to superleak (nucleopore) transducers have indicated that the 

reflection properties of the former are much simpler to Interpret. 
o 

( i i ) Generator 

A top view of the generator i s shown in Figure 2b. Conventional vapour 

deposition techniques have been used in construction. The parallel 6trip 
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electrodes were deposited f i r s t . Particularly robust electrodes were made 

by depositing a thin layer of chromium with a film of gold on top. Simpler, 

less expensive but less durable electrodes were also made using only alum

inum. Electrodes were typically 300 nm thick with a resistance less than 

1 U per square. Leads of #40 copper wire were usually attached by simply 

cold welding with a bit of indium. The active resistive element which gen

erated the second sound was a thin uniform film of chromium overlapping the 

electrodes at the edges. The resistance of this film was about 43 ft per 

square, independent of temperature from 300 K to 2 K. Its thickness has 

not been determined accurately, but the resistance would indicate that i t 

was at least 3 nm, while mechanical measurements gave an upper limit of 

about 100 nm. The film was sufficiently robust that i t suffered no damage 

on contact with the annulus. The position and size of the annulus relative 

to the generator are indicated by the dashed c i r c l e in Figure 2b. 

The reason for choosing the geometry illustrated in Figure 2b was to 

preferentially excite the plane wave modes of the cavity. The significance 

of the thickness, d, of the generator film can be appreciated by comparing 

i t to the length 6 = (2 D/co) which governs the phase and exponential att

enuation of temperature oscillations at angular frequency co in a material 

29 

of d i f f u s i v i t y D . The d i f f u s i v i t y ( D= ic/c where K is the thermal con

ductivity and c is the specific heat per unit volume) i s d i f f i c u l t to est

imate for what Is probably a polycrystalline chromium film; however, even 

a cautious estimate indicates that d « 6 for the frequency range of this 

experiment. This means the generator was thin in a thermal 6ense. There

fore i t was capable of fast response, and the reflection properties were 

determined by the glass substrate. 
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( i i i ) Bolometer 

The temperature sensitive mechanism of the bolometer was the super-
30 

conducting transition of a gold and lead composite film . The center 

temperature of transition was adjusted, by means of a magnetic f i e l d , to 

the operating temperature of the resonator. The temperature excursions 

associated with second sound resulted in corresponding variations in the 

resistance of the film. By biasing the film with a constant current the 

resistance variations appeared as voltage changes which in turn were re

covered by the electronics. 
The gold-lead films were constructed by depositing 8.0 nm of gold 

31 

followed by 14 nm of lead . The gold was evaporated from a tungsten f i l 

ament, the lead from a boat or crucible lined with AljO^. Deposition rates 

were 10 * nm per second. The films were extremely delicate and sensitive 

to chemical attack when l e f t exposed to the atmosphere for periods of about 

a day. The resistance of the films at room temperature was about 25 Q 
-2 

per square. The superconducting transition was typically 5 x 10 K above 

T^, and could be lowered to T^ by a f i e l d of about 100 gauss. 

The electrode and bolometer configuration are shown in Figure 2c. 

Apart from the difference in pattern, the electrodes are similar to those 

used in the generator. The operating resistance of a square section of 

film was too low to provide an adequate signal level and impedance match 

to the electronics. To remedy this, the resistance of the bolometer was 

increased by a factor of 20 by cutting i t with a steel scribe into the 

pattern shown in the figure. A typical current path for the constant 

bias i s shown by the dotted l i n e . This particular pattern was chosen to 

maintain an active area as large as possible without allowing the easily 

damageable films to come into contact with the annulus. The sides of the 
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film were also cut to prevent edge effects from reducing the sharpness of 

the transition. 

A useful figure of merit for a bolometer of resistance R is the sen

s i t i v i t y defined by (1/R)(dR/dT). For the bolometer used in this work the 

most rapid variation of R with T occurred near the center of the trans

ition where R had fallen to one-half the high temperature value. There 

the resistance and sensitivity were 140 f2 and 40 K ^ respectively. As a 

comparison, the sensitivity of conventional carbon film bolometers is more 

than a factor of ten smaller. 

The bolometer film was also thermally thin and capable of fast res

ponse. However, i t might be expected that the power dissipation due to 

the bias current would have some effect on the resonance decay, and con

sideration was given to this in the collection of data. 

I l l ) Electronics 

A block diagram of the major electronic circuitry is shown in Figure 

3. 

(i) Signal Excitation and Recovery 
32 

The output, at f / 2 , of a frequency synthesizer was supplied to the 
generator which produced, by Joule heating, second sound at frequency f. 

33 
The same f / 2 output served as a reference for the lock-in analyzer . The 

34 

cavity response signal, as detected by the bolometer, was amplified and 

fed to the lock-in analyzer which responded to the second harmonic of the 

original f / 2 reference. The outputs available from the analyzer were the 

components of the signal that were in-phase, I, and out-of-phase, Q, with 
35 

respect to the reference. These components were squared and summed to 
2 2 

produce a signal, I + Q , which was proportional to the squared amplitude 

of the second sound in the cavity. In the measurement of decay times, once 
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2 2 the I + Q signal reached some preset threshold the AC excitation to the 

generator was interrupted and replaced with a DC drive which produced equiv

alent power input to the resonator. This enhanced the temperature stab

i l i t y in the cavity. Simultaneous with this inerruption, a pulse was 

36 2 2 

sent to trigger the signal averager and the decay of the I + Q s i g 

nal was recorded. After some predetermined time the AC excitation was 

again applied to the generator. If the resonant frequency of the cavity 

had changed slightly due to temperature d r i f t s then the frequency of the 

synthesizer was manually adjusted by some acceptable small amount to come 

back onto resonance. The process was repeated u n t i l , by averaging, an 

acceptable signal to noise ratio was achieved. 

As previously mentioned, i t was necessary that the bandwidth of the 

detection system be sufficiently wide to accommodate, the frequency excur

sions of the signal during decay, as well as the frequency content of the 

decay. This requirement s t r i c t l y applied in the i n i t i a l f i l t e r i n g stages 

where the narrow bandwidth appeared at the lock-in analyzer. However, 

following the square and sum operation i t was useful to insert a low pass 

f i l t e r . Since at this stage i t was only necessary to pass the decay s i g 

nal, the "bandwidth" of this f i l t e r could sometimes be less than that of 

the lock-in analyzer. 

I n i t i a l l y i t was useful to identify the mode structure of the cavity 

by recording the response as a function of the drive frequency. Then the 

threshold device and signal averager were not active. A microcomputer 

stepped the synthesizer and stored the cavity response at each frequency 

increment. The resulting data could be readily plotted using the U.B.C. 

computing f a c i l i t i e s . 
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(ii) Temperature Regulation 
The internal reference of a lock-in amplifier was used to excite a 

37 
bridge circuit consisting of a seven decade ratio transformer and two 
cryogenic arms containing a carbon resistance thermometer and a temperature 

38 
insensitive reference resistor. The amplified unbalanced signal from 

39 
the bridge was fed to the lock-in amplifier , the output of which was com-

40 

bined with a DC offset and then applied to the heater wound on the ex

perimental ce l l . This negative feedback maintained a null signal and reg

ulated the temperature of the cell at a value corresponding to the bridge 

ratio. With this control scheme the balanced bridge ratio could be held 

fixed for several hours to within the low frequency (0.2 Hz) temperature 

noise of ± 2 x 10 ̂  K. From the measured sensitivity of the system, dif

ferent values of AT could be obtained by simply changing the bridge ratio 

to the appropriate value. 
( i i i ) Level Detection 

This circuit i f not shown in Figure 3. Essentially i t was an o s c i l l -
41 

ator consisting of an LC circuit driven by a tunnel diode . The level 

sensing component was the capacitance formed by a tube and the inside of 

the cell (see Figure 1). The accuracy of this device, ± 10% of f u l l , was 

limited by the mechanical stability of the entire cryostat. Nevertheless, 

i t was found extremely useful during f i l l i n g , and permitted a daily check 

on the level in the cel l . 
C. Procedure and Tests 

Initial studies were performed at large values of AT (AT > 2 x 10 K) 

to determine which modes of the cavity were excited and, in particular, to 

search for plane wave modes which were well separated from other Bessel 

modes. By sweeping the frequency through the plane wave modes i t was 
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found that the f i r s t and third harmonics were "clean", while the other 

harmonics were accompanied by the nearby resonant structure of Bessel 

nodes. Similarly, the time decay of the f i r s t and third harmonics was 

governed by a single time constant, while the other harmonics displayed 

a more complicated behaviour where beating with the nearby resonances was 

often evident. Consequently, the time decays of harmonics one and three 

were obtained for smaller values of AT. The data covered the temperature 
-5 -2 

range A x 10 < AT < 5 x 10 K, over which the frequency of the fun
damental harmonic varied from 112 to 1,730 Hz. 

At each temperature several decay curves were recorded for different 

values of both the bolometer bias power and the amplitude of the second 

sound in the cavity. The effects of bolometer power, which ranged from 

3.6 x 10 ^ W to 2.5 x 10 ^ W, were usually weak. Amplitude effects, how

ever, could be quite severe in that there was a c r i t i c a l amplitude above 

which a resonance would decay very quickly with a strong amplitude de

pendence. Below this c r i t i c a l value the decay rate was much slower, a l 

though there s t i l l remained a weak amplitude dependence that became more 

significant as T •*• T^. To stay below the c r i t i c a l amplitude, which be

came smaller for decreasing AT, i t was necessary to use second sound with 

i n i t i a l (i.e. at the beginning of a decay) temperature amplitudes as low 
—8 

as 3 x 10 K rms. The recovery of these signals required averaging over 

hundreds of decays. The f i n a l results derived from the data for the f i r s t 

and third harmonics at fifteen values of AT are determined from the an

aly s i s of 250 decay curves, each representing an average of between 16 

and A50 decays. The minimum generator power density used to excite the 
-9 -2 -8 -2 cavity was as low as 3 x 10 W cm and 1 x 10 W cm for the f i r s t 

and third harmonics respectively, while for large AT levels as high as 
—6 —2 

^ 10~ W cm" were used to study amplitude effects. The treatment of the 
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residual amplitude and power dependence i s discussed in the analysis of 

results. 

The temperature difference, AT, was determined using the express-
9 A2 

ion ' for the second sound velocity 

u 2 •= A6.28(AT/T X)* 3 8 7 m s ~ \ (39) 

and the observed resonant frequency, f^, of the fundamental harmonic which 

gives u 2 by 

u 2 - 2af x 

where a is the known length of the resonator. This method, as opposed to 

measurements with the thermometer, was used because i t gave a value of AT 

appropriate to the interior of the cavity which was at a temperature typ

i c a l l y 2 x 10 "* K greater than the surrounding bath which contained the 

thermometer. Also, i t eliminated the need for the tedious, periodic c a l -
A3 

ibration of the thermometer which i s known to d r i f t slowly with time. 

The v a l i d i t y of the procedure to derive AT from f^ via u 2 was checked once 
by calibrating the thermometer at the lambda-point using the anomaly in 

A3 -5 the warming curve . A value of AT ^ A x 10 K derived from this c a l -
AA 

ibration point and the measured thermometer sensitivity 

( l/R(dR/dT) = 1.27 K _ 1 ) was consistent with that derived on the basis 

of second sound velocity and the estimate of the internal heating in the 

cavity. For AT > 2 x 10 K the expression (39) begins to break down 
9 

and a simple graphic interpolation of the numerical data given by Ahlers 
was used to determine u 2(AT). 

While collecting data, the drif t i n g thermometer calibration resulted 

in a corresponding change in the value of AT and resonant frequency for 

a fixed value of the bridge ratio. This was compensated for by adjusting 

the bridge setting appropriately to maintain a fixed AT within suitable 
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limits, typically ± 2 x l C f 6 K. 

The uncertainty in AT is the maximum of ± 3 x 10~6 K or ± 0.5% of AT. 

The major contributions to this error estimate are the uncertainty in the 

cavity length, a, which enters the above expression for u2» and the stab

i l i t y in AT during the collection of data. It will be evident in the pre

sentation of results in Chapter 4 that this uncertainty in AT is insig

nificant in comparison to the error estimates on the damping. 

During the collection of data i t was realized that a thermal emf 

-3 -7 

3 x 10 V) resulted in a dissipation of about 10 W in the gener

ator. This power was eliminated by using a simple battery circuit to 

oppose the current driven by the emf. Studies indicated the the thermo

electric power had no effect on the decay curves for the first and third 

harmonics. However, when the thermal emf is added to the AC voltage ex

citation at frequency f, the resulting power spectrum has a contribution 

at f, as well as the desired 2f component. Thus, when exciting an even 

numbered harmonic at 2f there would also be present the harmonic at f. 

In the case of harmonics two and four, i t was found that the nearby res

onant structure disappeared when the thermo-electric power, and conse

quently the coincidental excitation of harmonics one and two respectively, 

was eliminated. Therefore, with the thermo-electric power absent, some 

data was collected on the second and fourth harmonics. However, as will 

be discussed in the analysis of results, for these resonances there s t i l l 

appears to be some additional loss that is probably related to the exist

ence of the nearby modes that were evident when the two harmonincs, four 

and two, or two and one, were simultaneously excited. 
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CHAPTER 3 

INSTRUMENTAL SOURCES OF ADDITIONAL ATTENUATION 

This chapter contains a discussion of sources of attenuation of sec

ond sound other than that arising from the bulk helium. These additional 

sources of energy loss occur at the boundaries of the resonator and result 

from thermal conduction and the viscosity, ri, of the normal f l u i d . The 

total attenuation, a, is written as 

a = a„ + a + a + a 
2 T\ e s 

where i s the bulk contribution given by equation (28) on page 15, 

is the contribution from viscous drag at the side walls, a g and a g result 

from thermal conduction at the reflecting end plates and side walls res

pectively. The development of the expression for has been presented 
A5 

in considerable detail by Heiserman and Rudnick , while the thermal con-
A6 

duction losses have been treated by Khalatnikov . The derivations of the 
expressions for a , a , a are outlined in sections A and B. Some aspects 

r rr e s 

of the application of these results to this experiment are discussed in 

section C. 

A. Attenuation Due to Viscous Surface Loss, 

For a plane wave of second sound propagating In a tube, the normal 

f l u i d , which moves parallel to the wall of the tube, i s entrained in the 

v i c i n i t y of the wall due to viscous interaction. This effect penetrates 
\-

into the f l u i d a characteristic distance X - (2n/p co) and results in 
n 

a velocity dispersion and attenuation. This expression for X i s obtained 

from the related problem of an oscillating plate in contact with a viscous 
18 

f l u i d . In that case the solution i s a viscous diffusion wave with X de

termining the normal f l u i d velocity a distance x from the plate by 
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-x/X -i(cot - x/X) v = v e e n no 
To calculate the viscous surface losses for second sound propagating 

along a tube of cross-sectional area A and perimeter B, the linearized two 

f l u i d hydrodynamic equations of Chapter 1 are employed. Again, using 5 

to denote small quantities, the non-dissipative equations for mass, entropy, 
and superfluid acceleration are: 

35p/3t + V«(p 6v + p 6v ) = 0 (40), n n s s 

p(3So/3t) + o(36p/3t) + pa(V«6vn) = 0 (41), 

36v / 3 t = -Vu (42). s 

The linearized momentum equation, which i s 3(p 6v + p 6v ) / 3 t = -Vp in 
^ ' n n s s * 

the non-dissipative approximation, i s modified to include the effects of 

viscous interaction with the walls. Choosing the z-axis as the propa

gation direction and denoting by r the perpendicular coordinate which i s 

zero at the wall, the momentum conservation law including a viscous stress 

term i s 
3(p 6v + p 6v ) _ 3v n nz s sz „ B n2 ^ _ - Vp - - r, ̂ — J r = Q (A3) . 

The assumption implied in writing this equation i s that *"he viscous pen

etration length is much smaller than the lateral dimension of the tube and, 

therefore, the wave fronts are essentially plane wave. The approximation 
-3 -4 

is valid for this experiment since X i s typically 10 to 10 cm. 
16 18 

For a second sound wave the fl u i d momentum is zero * , that i s , 

p v + p v Kn n s s 
(44) 

Thus, the hydrodynamic equations become 

36p/3t » 0 ( 4 5 ) . 

35o/3t « -o3v /3z (*6), nz 
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85vsz/3t - +a(3T/3z) - l/p(3p/3z) (47), 

3p/3z - - (B/A)n (36v n z/3r)\ r m Q (48). 

With equations (44, 46, 47, 48) and the approximation 

3T/3z ̂  (T/c)3a/3z which neglects (3T/3p)o for second sound, i t is easy 

to derive the following wave equation for the entropy: 

3 2 6a , ps B 3 26o i 2 3 2 6o 

3t 2 P P n 3 t 9 r r=0 2 3z 2 

2, h where u„ = (p To /p c) is the speed of second sound. By analogy to the 
2 s n 

oscillating plate problem, a solution to (49) is attempted in the form 

t x / , i r / X - r / X ' i ( k'z - cot) , c n N 6o «= 6a (1 - e ) e (50) o 

with k ' = k + ia . Substituting (50) into (49) gives 

2X , . Ps B n « i ( k'z - cot) 2, ,2. .... 
co 6o + ico - T - (1 - i ) w e = u - k ' 6a (51). 

pp A A o I n 

Now, for X much smaller than the lateral dimensions of the tube, the app

roximation 6o = 6a e*^ z ~ is made in (51) with the real and imag-
o 

inary components resulting in 

OJ2
 + co(p /pp ) (B/A)(n/X) = u

2 ( k 2 - a 2) , s n z n 

and co(p g /pP n)(B/A ) ( r i /X) «= 2u2 a^k . 

Solving these equations yields the dispersion co(k) and, for small disper

sion where to - U j k , the attenuation: 

1 rB, Ps T 1 

TI 2u, W p p x * 
2 n 

Using X = (2n/Pnoo) , then the viscous surface attenuation for a circular 

cylinder of radius r, as in this experiment, i s : 

a - (1/ru.) (p /p) (na^p)*5 (52). 
T) 2 s n 
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B. Attenuation Due to Heat Conducting Surface Losses, and a g 

The temperature excursions associated with second sound result in 

thermal conduction at the boundaries which diminishes the magnitude of the 

temperature excursions and, therefore, contributes a source of attenuation. 

Neglecting dissipation in the helium, consider 8 plane wave of second 

sound propagating in the z-direction and incident on a solid body f i l l i n g 

the half space z > 0. In the second sound wave the energy flow, 3 , in 

the z direction through unit area per unit time is written as 

, , y ikz * - i k z N -icot .... J - (J^e - J 2e )e (53) 

where 3^ and 3 2
 a r e t n e amplitudes in the incident and reflected waves re

spectively. The corresponding temperature oscillations, T, are given by 

I - ( l / p c u 2 ) ( 3 1 e i k 2 + 3 2 e - i k * ) e - i a 5 t (54) 

with c being the specific heat of helium. The desired quantity to be 

calculated is the reflection coefficient 3 2 / 3 ^ . At the boundary there 

are two thermal impedances to be considered, one being the impedance of 

the 6 o l i d body, the other is the Kapitza resistance of the surface i t s e l f . 

The prof i l e of the temperature excursions, T', in the solid body is det

ermined by the heat equation 

c " ( 3T ' / 3 t ) - K ( 3 2 T 7 3 z 2 ) (55) 

where ic is the thermal conductivity, and c i s the heat capacity per unit 

volume of the solid. The solution to ( 55 ) with the boundary condition 

T'(z-O) - T'e~ i C t 5 t, i s the diffusion wave o * 
r - re-'^r (1//2 - i/iu r i « t ( 5 6 ) > 

o 

The amplitude of the temperature excursions, T^, of the wall at z 1 0 is 

not equal to the amplitude, + J 2)/pcu 2, in the helium at z • 0 due to 

the Kapitza resistance, 1/G, of the surface. The requirement of contin-
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uity of energy flow at the boundary provides two equations: 

31 ~ 32 " G ( ( 3 1 + 3 2 ) / p C U 2 " T o } ( 5 7 ) 

and C 1 - J 2 ) e " i ( 0 t - -KRe < 3 T 7 3 z ) z = 0 (58). 

Implicit in writing (58) i s an approximation which neglects in (53) a 

small contribution to 3 2 of magnitude - J 2 and phase shifted by TT/2 

with respect to j' 2e~ i a 3 t. Substituting (56) into (58), and eliminating 

T' from (57) and (58), gives o 
(G/pcu 2) 

2 = 1 + G(2/cKco)^ 
r (GTPTUT) ( 5 9 )-

1 + - h r 
1 + G(2/c<a>K 

Using the inequality G « pcu 2, which holds for the temperature range of 

this experiment, the reflection coefficient becomes 

^ • = 1 - (60). 
1 pcu 2(l/G + /2/cicw ) 

Although there i s considerable variation (an order of magnitude) in 

the reported measurements of the Kapitza resistance near T^, for the 

largest frequencies in this experiment the solid body resistance, / 2 / C K G J , 

is greater than the Kapitza resistance. The approximation which neglects 

1/G, to be discussed in section C of this chapter, yields for the reflection 

coefficient 
= 1 - 6 = 1 - (2/pcu2) Vc<oV2 (61). 

This result i s now used to calculate the attenuation, ot and ct , due to 

thermal conduction at the ends and 6ide walls of the resonant cavity. 

Consider a plane wave propagating between reflecting end plates sep

arated by a distance 'a'. It i s evident that the effective attenuation, 
-a a 

a^, due to reflection i s such that e « 1 - B. Substituting from (61), 
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and using $ « 1, gives 
— h 

a - — J (62). 

e apcu 2
 v 2 ' 

To obtain the attenuation, a , due to thermal conduction at the side 
s 

walls, consider a cylindrical resonator of cross-sectional area A, per

imeter B, and symmetry axis in the z-direction. The amplitude of the 

temperature excursions, T" , i s proportional to + 3 2 , which, for strong 

reflection, i s approximately 2 3 ^ The amplitude decrease, d f Q , due to 

thermal conduction through an area Bdz at the side wall is proportional 

to ( 3 1 - 3 2)(Bdz/A). Thus, the effective attenuation is 
, dT 3 . - 3 , _ 1 o 1 2 fB>| 

a s : T ^ 217 y • 
o 1 

Using equation (61) gives 
a = (2/rpcu.) (CK03/2)* 5 (63) s 2 

for a cylinder of radius r. 

C. Discussion of ot , a , a Ty e s 

The inverse of the decay time is related to the total attenuation by 

1/T = 2u 2a. From equation (52) the contribution to 1/T by viscous surface 

loss i s 
(1/T ) = (2/r)(p /p)(nw/2pn)15 (64). n s n 

This quantity has a strong dependence on AT, and becomes small for de

creasing AT. In the analysis of results, 1/T^ i s evaluated using the 

42 
following expressions (t = AT/T,): 

A 
(i) p /p « 2 . 5 3 4 ( t ) * 6 7 4 

( i i ) n/n x - 1 - 5.19(t) , 8 5° with n x - 2.47 x 10"5 poise 
_3 

( i i i ) p - p ( l - p / p ) with p -0.146 g cm 
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The contribution to 1/x from thermal conduction at the resonator ends 

i s 

1 / T E - (4/apc) (CKOJ/2) 1 5 (65) 

where c and K are those quantities for fused quartz glass. At the side 

walls thermal conduction contributes 
1/T «= (4/rpc) (cico)/2) l s (66) s 

with c and K for stainless steel.. The major temperature dependence In 

1/T and 1/T comes from c, the specific heat of helium. The temperature 
e s 

dependence through c and K i s weaker in that they can be considered to 
47 ' 

vary primarily with T, not AT. An estimate using representative values 

for c and ic indicates that 1/T i s a factor of five greater than 1/T . 
6 e 

As the available information on c, K does not warrant an accurate eval
uation of 1/T and 1/T , and for reasons discussed in Chapter 4, in the 

e s 
f i n a l analysis of the data only the frequency dependence is used. Thus, 
the thermal conduction losses are treated collectively as 1/T- *= 1/T + 1 / x 

K e s 

with 
1/T- - gOOu* (67). 

I N 

The function g(T) denotes the temperature dependence through c, c, K . 

Recall that an assumption involved in deriving (65) and (66) was 

(2/CKGO ) » 1/G. The v a l i d i t y of this approximation is d i f f i c u l t to ass

ess due to the range of reported values for 1/G, reflecting i t s variab-
48 

i l i t y with material and detailed surface condition. Also measurements 

of 1/G using an AC method involving coupled second sound resonators 

suggest that the value of 1/G for AC heat flow is much less than that 

measured with DC flows. If the AC data i s taken as being representative 

of the present situation, then, at the highest frequency for the third 

harmonic of this experiment, the above inequality i s satisfied by about 
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a factor of 100 for glass and eight for stainless steel. In view of the 

uncertainties involved, the val i d i t y of the approximation i s subject to 

experimental ve r i f i c a t i o n . 

The derivation of (67) involved use of (56), which i s s t r i c t l y correct 

only for a reflecting body of i n f i n i t e extent. The approximation to a 

f i n i t e wall breaks down at sufficiently low frequencies when the thermal 

diffusion length, (2</cco) , becomes equal to the wall thickness. As i t 

is estimated that this occurs at 40 Hz, a factor of three less than the 

lowest frequency obtained in this experiment, equation (67) is expected 

to apply. 
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CHAPTER A 

ANALYSIS OF DATA FOR THE DECAY RATE, 1 / T 

The method used to determine the decay rate, 1/T, from the chart re

cordings of the resonance decay curves i s described in section A. Section 

B contains a discussion of several aspects of the results for 1/T, i n 

cluding the frequency and temperature dependences. The results for 

are presented in section C. 

A. Obtaining 1/T From Decay Curves 

Figure A illustrates a decay curve representing the average of 150 

individual decays of the third harmonic obtained at a temperature 
-A 

AT «= 1.70(± 0.03) x 10 K and frequency 588 Hz. In this example the 
—8 —2 

second sound, generated by an input power density of 2 x 10 W cm , had 
—8 

an i n i t i a l amplitude of 5 x 10 K rms. Bias power in the bolometer was 

1.2 x 10~^ W. The spike at the beginning of the trace results from the 

contribution of noise to the triggering threshold at which the decays are 

init i a t e d . As can be seen, this noise remains coherent for a relatively 

short time and i s ignored in an extrapolation to time zero when drawing 

the smooth curve through the trace. The amplitude of this smooth curve 

is normalized to unity and i s used to determine the inverse decay time, 

1/T, from the slope of a plot of the natural logarithm of signal amp

litude versus time. This plot i s indicated in the inset of Figure A . 

It was mentioned in Chapter 2 that the decay rates are dependent on 

the power input to the cavity. Consequently, at each temperature several 

decay curves for the f i r s t and third harmonics were obtained for different 

values of the excitation power and bolometer bias power. Generally, for 

high values of the excitation power and bolometer power, the logarithmic 
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Figure A A Decay of a Second Sound Resonance Yielding a Value for the Decay Rate 1/T 
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plots displayed a curvature Indicating a larger value for the slope, 1/T, 

at the beginning of the decay. At sufficiently low powers the curvature 

was not noticeable over the useful amplitude range (about 85% of f u l l 

scale) of any particular decay. However, using even lower generator ex

citation powers indicated that there could s t i l l be a detectable amplitude 

dependence, a smaller value of 1/T occurring for those decay curves with a 

smaller i n i t i a l second sound amplitude. A plot of the results for 1/T at 

AT = 1.70 x 10 K for the third harmonic is given in Figure 5 to i l l u s 

trate the nature of the extrapolations involved in determining the zero 

amplitude limit for 1/T. At the highest bolometer and excitation powers, 

the presence of some curvature i s the most significant contribution to 

the error estimates. For a given bolometer bias and lower excitation 

power the curvature diminishes or disappears and, as "goodness" of the f i t 

to a simple exponential decay improves, the error estimates decrease. The 

errors are then limited primarily by the uncertainty in establishing the 

baseline of the decay curve in the presence of noise and small inaccu

racies in the squaring c i r c u i t r y . To obtain data at the lowest second 

sound amplitudes i t was necessary to use the higher bolometer bias v o l 

tages in order to obtain *n adequate signal. An extrapolation to zero 

amplitude, that i s , zero excitation power, indicated by the line in Fig

ure 5, i s used to estimate a "best value" for 1/T. A S the extrapolation 

is subjective and without theoretical guidance, the associated error es

timates, indicated by the shaded region in Figure 5, are treated gener

ously according to the following c r i t e r i a . The upper limit on the error 

estimate includes at least one value for 1/T that has been actually meas

ured. Thus, the upper limit i s determined with confidence. The lower 

limit on the error estimate i s determined in a much more qualitative 

fashion by simply choosing a more severe extrapolation that i s compatible 
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Figure 5 An extrapolation of values for 1/T to zero generator power for 

different levels of bolometer power. The extrapolation to zero amplitude, 

that i s , zero excitation power in the generator, i s used to estimate a 

best value for 1/x. The hatched region indicates the error estimate. The 
-4 

data i s for the third harmonic at AT = 1.70 x 10 K. 
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with the measured values for 1/x, or by symmetrically placing the lower 

limit a distance below the best value which i s equal to the difference 

between the upper limit and best value. In the sense that this extra

polation procedure goes beyond the actual measurements of the experiment, 

the lower limits to the error estimate on 1/x are not determined with the 

confidence of the upper li m i t s . 

Generally, the amplitude effects for the f i r s t harmonic were not as 

significant as those for the third harmonic. Although at high amplitudes 

curvature similar to that for harmonic three was obtained, at lower amp

litudes the extrapolated correction to zero amplitude was usually slight 

or insignificant for harmonic one. This observation suggests that the 

amplitude effects, at least at low amplitudes, result from additional 

loss mechanisms that are proportional to the bulk helium loss rather than 
2 h 

surface losses. Recall the frequency dependence, co versus co , of the 

sources of attenuation described in Chapters 1 and 3. Then, comparing 

harmonic one to harmonic three, the contribution to 1/x from the bulk 

is fractionally smaller relative to the surface losses by a factor 9//3~. 

Therefore, bulk related effects should be less significant at lower fre

quencies . 

The effects of bolometer power were of two varieties. In one case 

the dependence of the decay rate on bolometer power was more significant 

at larger generator powers, or equivalently, larger second sound amp

litudes. At the large amplitudes where curvature was present in the log

arithmic plots of the decay, increasing the bolometer power resulted in a 

more severe curvature. However, at lower amplitudes where the curvature 

was smaller or not noticeable, the effects of changing the bolometer power 

were also smaller. At the smallest amplitudes a dependence on bolometer 

power was not resolvable within the accuracy of the measurements and ex-
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trapolation to zero amplitude. Thus, corrections for bolometer power were 

usually not necessary. There was, however, a second type of dependence 

on bolometer power which was of an entirely different character compared 

to that described above. For the range of bolometer powers used in this 

experiment, there was an anomalous bolometer power at which enhanced losses 

occurred. The value of the anomalous power decreased through the range of 

available power levels as AT decreased through the temperature interval 
-4 -3 

4 x 10 <_AT <_1 x 10 K. The enhanced losses were not strongly depend

ent on second sound amplitude in that, at low amplitudes, the decay curves 

were governed by single time constants with the logarithmic plots showing 

no noticeable curvature. The magnitude of the enhanced losses at the an

omalous power was about 50% of the zero power losses for harmonic one, and 

therefore the effect was quite dramatic. In addition, the value of the 

bolomet er power at the anomaly was the same for the f i r s t and third harm

onics and in this sense was independent of frequency. Also, the absolute 

magnitude of the enhanced losses appeared to be about the same for the 

f i r s t and third harmonics, although this was d i f f i c u l t to determine with 

precision since the normal amplitude effects confounded the observations. 

Since the enhanced loss was a sharp function at the anomalous bolometer 

power, i t was possible, by operating either well above or below this pow

er, to obtain meaningful data. It is emphasized that the enhanced losses 

diminshed with increasing bolometer power above the anomalous value, and 

for powers sufficiently removed from the anomaly the results became i n 

dependent of bolometer power apart from the effects of the f i r s t variety 
-4 

described above. However, as stated above, in the interval 4 x 10 < 
_3 

AT < 1 x 10 K the anomalous power was within the range of available 

bolometer powers and systematic effects, particularly for harmonic one, 

were observable. When operating within this interval at temperatures 
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AT = 1.02 x 10~3 K and AT = 5.94 x l O - 4 K with the bolometer power less 

than the anomalous value, the best values for 1/T are obtained by extra-
-4 

polation to zero bolometer power. For AT <^4.23 x 10 K, the anomalous 

power i s near or below the lowest useable bolometer powers. Then, the 

best values for 1/T correspond to the "high power" data; that is high 

power relative to the anomaly. Additional support for the general va l i d -
-4 

ity of the "high power" results i s gained at AT = 3.05 x 10 K. At this 

temperature the results of two additional decay curves for the second and 

fourth harmonics are consistent with the f i n a l results for D 2 based on 

the data for the f i r s t and third harmonics. 

The mechanisms by which the bolometer power contributes to additional 

attenuation are not clear. The power dependent effects of the f i r s t var

iety described above can be qualitatively explained in relation to the sec

ond sound amplitude effects. If i t i s accepted that the amplitude effects 

simply reflect the departures from the zero amplitude requirements of l i n 

earized hydrodynamics, then the superposition of a DC counterflow, produced 

by the bolometer power, with the AC counterflow in the second sound would 

result in more severe violation of the requirement of small flow velocities. 

Of course, the situation in the cavity is further complicated by the asym

metry, AC versus DC flow, as well as the directionality of the flows, most 

of the DC heat leaving through the side walls while the AC flows are p r i 

marily parallel to the side walls. It i s pointed out, however, that the 

DC flow velocities are at least a factor of two less than the rms flow 

velocities in the smallest amplitude second sound wave at the smallest 

value of AT in this experiment. The mechanism responsible for the add

iti o n a l losses of the second type described above is a mystery. If the 

curious reader wishes to speculate, he may consider the possible role 

played by vortices. 
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B. Discussion of the Data for 1/T 

As discussed in Chapters 1 and 3, the bulk helium damping, viscous 

surface losses, and thermally conducting surface losses contribute to 1/T 

as 
1/T = 1/T, + 1/T + 1/T_ 

2 M K 

In terms of the damping coefficient D^, the expression for 1/T2 * s 

1 / T 2 = 2u 2a 2 = (co 2/u 2)D 2 - (p*/a) 2D 2 (68) 

for harmonic "p" and resonant length "a". The expressions for the surface 

losses due to viscosity and thermal conduction, 1/T and 1/T_ respectively, 
T) K 

are given in equations (64, 65, 66, 67). The essence of the method involved 

in obtaining 1 / T 2 from the data for 1/T is to use the difference in fre-

quency dependence, co versus co , between the bulk contribution and the sur

face contributions. To best i l l u s t r a t e this method and enhance the graph

i c a l presentation of the data, i t is useful to compute 1/T according to 

the prescription in Chapter 3 and reduce 1/T to 1/T - 1/T^. This "cor-

rection" i s significant for large AT. However, for AT < 1 x 10 K, 1/T 

i s numerically small and comparable to or less than the error estimates 

on 1/T. In addition, i t i s useful to decompose the bulk contribution as 

follows: 
1 / T 2 = l / T 2 R P + A ( l / T 2 ) (69). 

Here, i/ T2jjp denotes that value of 1 / T 2 which corresponds to the minimum 
-4 2 -1 

value of D^, 3.68 x 10 cm s , observed by Hanson and Pellam at a temp-
erature AT «= 3.2 x 10 K. Thus, l / T 2 H P is just a constant which, using 

-2 -1 

equation (68), i s equal to 3.93 x 10 s for harmonic one and 

3.54 x 10 * s * for harmonic three. The quantity A ( 1 / T 2 ) represents changes 

from the minimum value observed by H P . Then the data for 1/T is further 

reduced to 1/T - 1/T^ - I / T J H P which i s just 1/T_ + A ( 1 / T 2 ) . Although i t 



59 

44 
i s necessary to correct the HP data to the "T^g" temperature scale , their 

.values can be considered trustworthy i n the sense that they have used a 

method of measurement that yields directly. As their results indicate 
- 2 -2 

only 6mall changes in D 2 over the temperature range 1 x 1 0 < AT < 5 x 10 

K, A ( 1 / T 2 ) is expected to be small over the interval. Thus, their results 

are used to "calibrate" the present system in the sense that they are used 

to check the v a l i d i t y of the predicted co dependence for the surface losses, 

and to check the mode purity of the resonances (recall equation (38) for 
co on page 27) . p,m,n 

Before presenting the data for 1/T - 1/T^ - l / T 2 H P

 B 1/T_ + A ( 1 / T 2 ) , 

i t i s emphasized that the subtraction of 1/T^ from 1/T is done only as a 

convenience in the graphical presentation to remove a large, strongly 

temperature dependent contribution at large AT. As an indication of the 

magnitude and temperature dependence of 1/T^» some representative values 

of l / 1 ^ * * n units of s ~ \ for the f i r s t and third harmonics are: 0.350, 

0.607 at AT «= 31.3 x 10"3 K; 0.133, 0.231 at AT - 10.3 x 10~3 K; 0.018, 

0.031 at AT «= 1.02 x 10 K. Also, the subtraction of l / T 2 H P simply re

duces the data by the appropriate constant value and provides a convenient 

way of displaying more clearly any changes, A ( 1 / T 2 ) , from the minimum value 

obtained by HP. In the f i n a l analysis, discussed in section C, the ap

propriate values of 1 / T . _ and 1/T are added to 1/T_ + A(1/T.) to re-
2 HP T) K 2 

cover 1/T. 
The values of 1/T - 1/T - 1 / T 0 1 _ are shown in Figure 6 for harmonics 

T"| Zrir 
-3 -2 

one and three at temperatures such that 1.0 x 10 < AT < 4.6 x 10 K. 
The solid lines are meant as visual aids. Several features of Figure 6 

are discussed now. 

Consider f i r s t the data for p • 1, 3. The solid smooth line drawn 
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Figure 6 The reduced decay rate 1/T - 1/T^ ~ ̂ /T2HP ^ o r ^ a r m o n ^ c s * a n ^ 

3 as a function of AT for 1 x 10~3 < AT < 5 x 10~2 K. l / T 2 H P is 
-2 -1 -1 

3.93 x 10 s for harmonic 1, and 0.354 s for harmonic 3. The v i s 
cous surface loss, 1/T , varies from 0.350 s - 1 at AT - 31.3 mK to 0.018 

n 
s~* at AT = 1.02 mK for harmonic 1, and is just /T times greater for 

harmonic 3. The multiplicative factor, /3~, indicated in the figure I l l 

ustrates the 0)^ frequency dependence of the surface losses, 1/T , 1/T_. 

Also indicated in the lower portion of the figure is the temperature 

dependence, relative to 1 mK, of the surface loss 1/T_. The crosses 
K 

represent the "observed" temperature dependence and are derived from 

the data for the f i r s t harmonic by removing the frequency dependence 

with the factor [6J^(AT)/to^(l mK)] . The solid circles represent the 

predicted behaviour as determined by the temperature dependence of the 

specific heat of helium. 
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through the data points for p • 1 yields, after multiplication by /3~ as 

Indicated, the solid line through the data points for p * 3. Since the 

major bulk attenuation contribution has been removed using the HP values, 

i t i s expected that A ( 1 / T 2 ) i s zero or very small in the temperature region 

around AT ̂  3 x 10 K. Thus, on the basis of the good agreement between 

the p • 3 data and that derived form the p = 1 data using the multiplic

ative factor of /3~, i t i s concluded that for the f i r s t and third harmonics, 

the contributions to 1/T from sources other than bulk damping are pro-

h 
portional to w . 

-3 
The data for the third harmonic, at temperatures such that 1 x 10 < 

_2 

AT < 1 x 10 K, f a l l s below the line derived from the data for the f i r s t 

harmonic. Because the third harmonic i s nine times more sensitive to 

changes in D 2 than the f i r s t , these deviations indicate a negative value 

for A(1/T 2), or equivalently, the bulk damping is f a l l i n g below the minimum 

value observed by HP. Of course, the changes in D 2 are also present to a 

lesser extent in the data for the f i r s t harmonic and, therefore, the value 

of l / ^ 2 is determined by the solution, given in section C, to two sim

ultaneous equations. 

Finally, the temperature dependence of the surface losses i s indic

ated by the crosses (x) in the lower portion of Figure 6. The smooth 

li n e through the crosses i s a visual aid. This information i s obtained as 

follows. The data for p = 1 contains both a temperature and frequency de

pendence. The latter i s removed by dividing by the factor 

-3 ^ 

{o)1(AT)/6J1(10 K) ] where o^CAT) i s the frequency of the f i r s t harmonic 

at AT. In this way the surface losses are normalized to the measured 
value at 1 x 10 K, and any variations would reflect the temperature de-

h 
pendence. Of course, this requires that the frequency dependence, co , i s 
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correct and that any significant corrections from A ( 1 / T 2 ) in the data for 

p « 1 are accounted for. The expected temperature dependence, as pre

dicted by equations ( 6 5 ) and ( 6 6 ) , due to the specific heat of helium i s 

indicated by the c i r c l e s . Variations in the properties of the re

flecting materials ( C , K ) have been neglected, and would only account for 

a small fraction of the difference between the observed and predicted fre

quency dependence. It is not clear what the source of the discrepancy i s . 

It may indicate that the theory for 1 / T _ i s incomplete and that some con
ic 

sideration should be given to the details of the interface between the he

lium and the solid. For example, the presence of a viscous boundary layer 

might supress the losses due to thermal conduction. Alternatively, the 

theory for 1 / T m a y D e lacking. If the "true" viscous contributions to 

1 / T were 40% to 50% of the calculated values for 1 / T that have been used 

in obtaining the data in Figure 6, then the observed differences would re

sult. In any case, by measuring 1 / T for both the f i r s t and third harmonics 

at each temperature, knowledge of the temperature dependence is not re

quired to obtain D 2« 

In a fashion similar to Figure 6, the results for 1 / T - 1/ T2HP ~ ^ Tn, 

for harmonics one, two and four are shown in Figure 7. The dashed lines, 

derived from the f i r s t harmonic by multiplication by /2~ and 2, are ex-
• _2 

pected to represent the contribution of 1/x to 1 / T . At AT ^ 3 x 1 0 K 

i t i s evident, particularly for harmonic four, that there is some add

i t i o n a l loss mechanism present which i s not derivable from the f i r s t har-
monic on the basis of an co proportionality. It i s noted, however, that 

-1 -2 the discrepancy of about 0.25 s for harmonic four at AT ^ 3 x 1 0 K is 

only about 10% of the total value for 1 / T . It i s apparent that the dis-

crepancy diminishes as AT decreases and, for AT < 3 x 10 K, i t is v i r 

tually insignificant. The results from three additional decay curves ob-



Figure 7 Similar to Figure 6, this figure shows the reduced decay 

rate 1 / T - 1 / T - 1 /T_„_ for harmonics 1, 2 , A. The figure illustrates 
T\ 2. HP 

that there is an additional loss mechanism present for harmonics 2 and 

A. The additional loss decreases with decreasing AT. 
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tained for p - 2 , A at AT « 3.05 x 10" 4 K and p - 2 at AT - 2.57 x 10~ 3 K 

are consistent with the ultimate results for J>2 derived from the f i r s t 

and third harmonics. 

The source of the additional loss appearing in the second and fourth 

harmonics at large AT i s probably related to the associated resonant struc

ture which appears when two harmonics, say two and four, are excited simul

taneously as described in Chapter 2 , section C. Mechanisms which could re

sult in this additional loss by exciting Bessel modes are suggested in the 

general discussion of the f i n a l chapter. As a consequence of this discrep

ancy, only data for the f i r s t and third harmonics has been used in the 

f i n a l analysis for D^. 

The values of 1/T - 1 / T - 1 / T , _ - 1/T_ + A ( 1 / T . ) for the f i r s t and 

third harmonics over the entire temperature range covered in this exper

iment are shown in Figure 8. The c r i t i c a l damping i s evidenced by the 

increase in the value of A ( 1 / T 2 ) for the third harmonic as AT 0. For 

AT < 10 K, the error estimates reflect the severity of the extapola-

tions and the extent to which the data was collected at any particular 

temperature. For large AT the error estimates are due to the fractional 

resolution (1 or 2 % ) in determining 1/T with large surface contributions 

present. At the three smallest values of AT i t i s clear that the error 

estimates are increasing rapidly. This i s a result of the severe extra

polations resulting from the amplitude effects described previously. As 

a matter of consistency with the data at larger values of AT, a best 

value and lower limit have been estimated at these three smallest values 

of AT; however, i t i s f e l t that the most significant information con

tained in these data points i s the upper limit that these place on the 

ultimate values for D^. 



67 

Figure 8 1/T - 1/T^ - l/T2Hp f° r harmonics 1 and 3 over the entire range 

of AT. Mote that the temperature axis i s logarithmic. The c r i t i c a l 

damping for AT < 10 results in the increasing separation of the data 

as AT 0. The inset illustrates the frequency and temperature dependent 

contributions to the p • 1 data relative to 1 mK. The dashed line i s 

derived by considering only the frequency dependence, while the solid 

line also includes the expected temperature dependence as determined by 

the specific heat, c, of helium. 
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The inset of Figure 8 il l u s t r a t e s the predicted and observed be-
_3 

haviour of 1/x for harmonic one and AT < 1.0 x 10 K. The solid circles 
ic 

are the values for 1/x - 1/x - l/x„„_ = l/x_ + A ( l / x 0 ) . The open circles 

are derived from the solid circles by subtracting the contribution A(l/x 2) 

using the data for the third harmonic and the expression given in the 

following section. Thus, the open circles represent l/x_. The solid 

line represents the predicted behaviour of 1/x , relative to the value at 
. 3 * AT = 1.0 x 10 K, accounting for both the frequency dependence, that i s , 

di , and the temperature dependence as determined by the specific heat, c, 

of helium. The dashed line results from considering only the frequency 

dependence. The temperature dependence of 1/x , as reflected by the de-
K 

parture from the dashed curve, i s in qualitative agreement with the pre

dicted solid l i n e . Although i t appears that there are systematic dep

artures from the expected behaviour, the accuracy of the measurements i s 

not sufficient to establish the precise form of these. 

At AT = 4.0 x 10~ 5 K i t was d i f f i c u l t , because of noise, to obtain 

data for the f i r s t harmonic. Consequently, in the analysis for D 2» a 
value for l/x_ appropriate to the f i r s t harmonic is determined by a con

ic 

tinuation of the open circles (or solid line) in the inset of Figure 8. 

In view of the relative uncertainty in 1/x for p = 3 at this temperature, 

and the small magnitude of the surface loss, this extrapolation does not 

introduce significant error. 

C. Results for the Damping Coefficient, 

The inverse decay time for the f i r s t harmonic is described by an ex

pression of the form 

1 ^ 2 2 k 
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Similarly, the expression for the third harmonic is 

1 2 2 U 
T " (V»2>«3 + 6̂ 3 

(70) 

Vith to^ • 3cô , these equations may be solved to obtain 

,(3) . , .(3) .(1) . 
i - (D2/u2)0)2 - ( i - / 3 " i ) [1 - (/3/9)] - 1 

(3) 
vhich i s the desired expression for 1 / T 2 i° terms of the measured 
quantities 1 / T ^ and 1 / T ^ \ Using the dispersion relation u • u 2k and 

(3) 
the resonance condition k a • pTT, the expression relating D- and 1 / T 0 

P 2 2 

is 
2 2 1 ( 3 ) 

D 9 - (a Z/9TT Z) i (71). 
^ 2 

(To apply directly to the "reduced" data which has been presented in Fig-
(3) 

ures 6 and 8, the appropriate expression for 1 / T 2 i s 

.(3) .(3) (3) ,(3) .(3) (1) (1) 
I . 1 « A i « { i + 4 - / 3 ( i + A i )}[! - (/3/9)]-1 .) 
T2 T2HP T2 ? T2 T £ T2 The expressions (70), (71) are used to calculate from the measure

ments of 1 / T ^ and 1 / T ^ 3 \ The numerical values for D 2 as a function of 

temperature are found in Table A in Appendix A. The results for iog^o D2 

are presented in Figure 9, including the theoretical predictions of HSH. 

The results are reproduced in Figure 10 which also includes the experimental 

results of HP7, Tyson*^, Tanaka and Ikushima*2, Ahlers* 3, and the theor-
14 15 

e t i c a l predictions of HSH and DF . The results of this work are in 
good agreement with those of HP and Ahlers. In the c r i t i c a l region, which 

X 
_3 

evidently extends to « t * (0.5 or 1) x 10 , there i s confirmation 
_3 

of the renormalization group treatment of HSH. However, for t < 10 , the 
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Summary of Results for the Second Sound Damping Coefficient 
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results are not in agreement with the theory of DF, and Indicate values for 

which are les6 than their predictions. Considering the temperature de

pendence of l>2* the results are not sufficiently accurate to resolve any 

possible deviations from a single power law that might be interpreted in 
ef f 

terms of a temperature dependent ratio, (t) • D^/2\i^K% as predicted 

by DF. 

A more quantitative comparison of this experiment and theory i s 
~ Yex achieved by describing the results in terms of the function D„ • D t 2 oex ' 

with D Q e x and y representing the experimental values for the amplitude 

and exponent for D^. Considering the evident coherence of the data in 

Figure 9, i t is tempting to use a least squares f i t to the above function. 

However, i t is f e l t that such a treatment, particularly with respect to the 

s t a t i s t i c a l estimate of a standard error, i s unrealistic, and possibly 

misleading, in view of the possible (systematic) errors as represented by 

the error bars in Figure 9. A r e a l i s t i c , although subjective, estimate 
for y i s ex 

Y « 0.31 ± 0.05 ex 

The subjective estimate of error, ± 0.05, is determined by evaluating, in 

Figure 9, the slopes of lines that are half way between the best f i t and 

the extreme limits compatible with the error bars. Thus, while the re

sults of this experiment do not provide a severe test of a detailed pre

diction for the c r i t i c a l temperature dependence, they do provide signif-

cant support for the appropriate type of c r i t i c a l behaviour for D^ in the 
-3 

region t < 10 . 
Since the amplitude, D , is sensitive to the value of y , the 

OCX 
best independent estimate for D i6 obtained by constraining y to the * oex 
theoretical prediction of y « 0.288. Then the value of I> o e x t -gain with 
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subjective consideration given to the possible systematic errors, is 

D = (3.7 ± 0.4) x 10"5 cm2 s" 1 

oex 
Of more general theoretical significance i s the universal amplitude ratio, 

R 2 •? D 2/2u 2£. This may be evaluated using the expressions for £ and u 2 

given at the end of Chapter 1 and the above value for D obtained for ° r oex 
y = 0.288, with the result ex 

R„ -= 0.11 ± 0.01 2 ex 
This experimental value l i e s between the theoretical values of HSH, 0.09 

and 0.15, which are expected to be accurate to within a factor of two. 
ef f -4 

The value for R2 at t = 10 as predicted by DF is-about 0.14. However, 
as they do not indicate the accuracy of their calculation, i t is d i f f i c u l t 

ef f 
to assess the significance of the difference between R 2 ex a n d R2 * 
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CHAPTER 5 

CONCLUSIONS AND DISCUSSION 

Section A i s a statement of the major conclusions of this work con

cerning the c r i t i c a l behaviour of the second sound damping coefficient, D^. 

In section B there is a discussion of several general observations related 

to this experiment. 

A. Conclusions 
4 

The damping of second sound in superfluid He has been measured over 
-5 -2 

the temperature interval 1.8x10 < t < 2.1 x 10 . In the c r i t i c a l re
gion the results, as illustrated in Figures 9 and 10, are in good agree-

14 

ment with the i n i t i a l renormalization group treatment of D 2 hy HSH . How

ever, the results do not support a recent renormalization group analysis 

by DF*'"', the observed values for D 2 being less than the predicted values. 

The experimental result for the c r i t i c a l exponent, 0.31 ± 0.05, compares 

favourably with the predicted asymptotic temperature dependence, that i s , 
D2 ^ U2^' w i t n a n e * P o n e n t o f 0.288. If the results are constrained to 
obey exactly the theoretical temperature dependence, then the experi-

0 288 
mental value for the amplitude D defined by D_= D t is 

r oex 2 oex 
D = (3.7 ± 0.4) x 10 - 5 cm2 s" 1. oex 

The corresponding value for the universal amplitude ratio defined by 

D 2/2u 2? i s 

R 0 = 0.11 ± 0.01 2 ex 
In the common interval 10~A < t < 5 x 10~\ the results of this work 

13 -3 

are in good agreement with those of Ahlers . For t > 10 , i t is observed 

that D 2 departs from i t s c r i t i c a l behaviour and increases to obtain the 



76 

values measured by HP'. 

B. Discussion 

In this experiment the attenuation of second sound has been determined 

by measuring the decay time of plane wave modes in a resonant cavity. As 

opposed to measuring the resonant line-widths in a swept frequency method, 

the decay time technique possesses the significant advantage of being 

virtually immune to low frequency fluctuations in the ambient temperature. 

Consequently, this method may prove useful for future measurements of 

second sound damping at much smaller values of AT, as well as in studies 

of critical damping in other systems. 
Tyson*^ used electrically thin resistive films to generate and detect 

13 
second sound in his attenuation measurements. Ahlers , however, used 

porous superleak transducers. The discrepancy in their results suggested 

that there may have been some qualitative difference associated with the 

generation and detection devices. In view of the concurrence of the re

sults of this work, which uses resistive devices, with that of Ahlers, 

it appears that there is not some fundamental disparity between the methods 

used to transduce second sound. There are, however, differences between 

the experimental methods of Tyson and this work which may account for the 

difference in results. Three major differences are described here. One 

involves Tyson's treatment of the reflection coefficient at the end walls 

of the resonator. In that experiment the reflection coefficient is assumed 

to be independent of frequency, and its contribution to the resonance 

widths is determined from an extrapolation of the total widths to zero 

frequency. In contrast, on the basis of this work there is theoretical 

and experimental evidence for a frequency dependent reflection coefficient, 

although at sufficiently high frequencies the presence of a Kapitza res-



77 

istance could result in the reflection coefficient becoming frequency i n 

dependent. A second difference is that the input power densities used by 

Tyson are at least an order of magnitude greater than the power levels 

used in this experiment. Although Tyson extrapolates to xero power, this 

procedure might'introduce systematic errors that could account for the 

difference in results. The third difference is that in Tyson's experiment 

the absence of side walls in the resonator required a correction to the 

resonance widths involving diffraction loss. In the resonator of this ex

periment there are side walls present which eliminate diffraction loss, but 

introduce viscous and thermal conduction losses. Although the calculated 

diffraction loss in Tyson's experiment i s small or insignificant, early 

studies in this work on a cavity without side walls gave results that were 

d i f f i c u l t to interpret on the basis of diffraction from a plane-wave res

onance. Indeed, the frequencies of the major resonances did not correspond 

to a harmonic series co - _ for p = 0, 1, ... 5, but rather to a series 
p,0,0 

with a Bessel mode character corresponding to co _ . or co . ft. At higher 
p, U, 1 p,i,u 

frequencies such that p > 10, the resonances did not display a single mode 

character, but contained several peaks resulting from overlapping modes. 

Subsequent studies with c variety of boundary conditions at the sides i n 

dicated that the resonant structure was sensitive to the details of the 

6ide boundary. As a result, the simplest, "ideal", side wall described in 

Chapter 2 was f i n a l l y used. 

Although care was taken to prevent the excitation of Bessel modes in 

the cavity, they were, nevertheless, excited. A general mechanism respon

sible for their excitation is suggested on the basis of the following ob

servation made in this experiment. It was found that Bessel modes in the 

v i c i n i t y of a plane wave harmonic were excited, while deep in the region 

between the plane wave harmonincs there were no Bessel modes v i s i b l e . This 
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indicates that the excitation proceeds by way of the plane wave resonance. 

Once the relatively large energy excursions in a resonance are established, 

a small perturbation at the walls of the cavity 16 capable of directing a 

significant portion of the energy into the excitation of another mode. As 

an example, the viscous loss occurring at the side walls of the cylindrical 

cavity could result in a temperature and velocity p r o f i l e in the radial 

direction which i s not f l a t , but instead, curved at the edges near the 

wall. This prof i l e could then establish an energy flow in the radial d i r 

ection and excite a Bessel mode. This type of mechanism could account for 

the excess loss in harmonic four, where i t i s observed that the excess loss 

diminishes as the frequency and AT, and therefore the viscous loss, de

crease. Other factors that could excite Bessel modes by developing ang

ular and radial variations in the cavity include thermal conduction losses 

through the side walls, and the possibility of a variable reflection co

ef f i c i e n t , due to power dissipation, across the face of the bolometer. 

Progress has been made in understanding the loss mechanisms occurring 

at the walls of a resonant cavity, although there i s some d i f f i c u l t y in 

interpreting the observed temperature dependence. Systematic studies on 

several resonant cavities of different dimensions and materials would 

li k e l y solve this problem and, in addition, provide some information about 

the contribution of the Kapitza resistance to the reflection of second 

sound. While i t i s doubtful that the knowledge gained from such studies 

Is in i t s e l f worth the effort, the information would be useful in optim

izing the cavity geometry for further improvements in the measurement of 

the c r i t i c a l damping of second sound. Thus, for example, by using a 

longer cavity for a given radius, one should obtain more clean plane wave 

modes that are useable for attenuation studies. However, i f the overall 

resolution of the experiment i s to improve, the frequency of the highest 



useable mode must not decrease due to the interference of nearby Bessel 

modes. To ensure that the frequency range i s maintained i t might be pos

sible to design the cavity to c r i t i c a l tolerances in the radius-to-length 

ratio, r/a, in order to avoid Bessel modes. 

While consideration must be given to the possible means of Improvement 

available through changes in the resonator geometry and materials, i t is 

also important to overcome the effects on attenuation due to second sound 

amplitude and bolometer power. Although small amplitudes and low power 

have been used in this experiment, these, nevertheless, have limited the 

ultimate accuracy at the smaller values of A T . To recover lower level 

signals, enhancement of the signal to noise ratio could be made with im

provements to the bolometer. Experience with several bolometer films 

suggests that the sensitivity can be increased by at least a factor of 

two. Also, increasing the bolometer resistance with a more intricate 

pattern design would increase the signal level and provide a better im

pedance match to the noise figure of the existing electronics, although 

some care must be taken with this procedure as i t ultimately reduces the 

active area of the bolometer. Another Immediate improvement which, un

fortunately, was not taken advantage of, involves using different elec

tronics in order to obtain a lower noise figure at the i n i t i a l stages of 

amplification. For example, with the bolometer resistance and frequencies 
49 

of this experiment, an appropriate input transformer and preamplifier 

would reduce the amplifier noise by about a factor of two. Although not

iceable, the extent to which this factor would be realized in the overall 

signal to noise ratio depends on the strength of other noise sources such 

as pickup in the leads and " i n t r i n s i c " bolometer noise. I n terms of 

future work, a more useful and flexible low noise input that also reduces 
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the effect of lead pickup would be a low temperature preamplifier. 

Then, achieving a f i n a l accuracy in on the level of a few percent, 

i t would be possible to provide detailed information of the temperature 

dependence of D^. It would also be worthwhile to perform the measure

ments at elevated pressures as a test of universality. 
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APPENDIX A 

TABLE A 

Results f o r Ts^ 

-4 2 -1 
AT(K) t = AT/T^ D 2 (10 cm s ) 

4.62 X ID" 2 2.13 X i o " 2 3.86 + 0.7 
4.12 X IQ" 2 1.90 X i o " 2 4.39 + 0.6 
3.13 X ID" 2 1.44 X i o " 2 3.83 + 0.5 
1.97 X IQ" 2 9.07 X i o " 3 3.35 + 0.5 
1.03 X i c " 2 4.74 X i o " 3 3.31 + 0.4 
5.17 X IQ" 3 2.38 X i o " 3 3.09 + 0.6 
2.57 X i o - 3 1.18 X i o " 3 2.72 + 0.6 
1.02 X ID" 3 4.70 X i o " 4 3.26 + 0.6 
5.94 X i o " 4 2.74 X i o " 4 3.88 + 1.0 
4.23 X i o " 4 1.95 X i o " 4 4.24 + 0.5 
3.05 X i o " 4 1.40 X i o " 4 4.70 + 0.5 
1.70 X i o " 4 7.83 X i o " 5 5.69 + 0.6 
9.10 X i o " 5 4.19 X IO" 5 6.86 + 1.0 
5.95 X i o " 5 2.74 X IO" 5 7.92 + 1.2 
4.00 X i o " 5 1.84 X i o " 5 9.14 + 1.8 


