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ABSTRACT

Detailed measurements have been made of the temperature dependence
of the velocity of three different modes of sound propagation in TTF-
TCNQ crystals, in the range 7-300K. Values for the a and b axis Young's
moduli and the shear modulus cgg are inferred from the sound velocities.
TTF-TCNQ is found to be stiffer perpendicular to the conducting direction
fhan paraliel to it. The elastic anisotropy is typical of crystalline
solids eVen though the anisotropy of the.electrica] conductivity is
unusually large. A small (1.5%) increase in the velocity of extensicnal
waves below the metal-insulator transition'is interpreted as being due
to the disappearance of the conduction electrons. A quantitative theory
of the low temperature velocity anomaly leads to an accurate estimate

of the q » 0 electron-phonon coupling constant.

The sound ve}ocity measurements were made using an acoustic resonance
technique. Resonant modes of vibration of single crystals of TTF-TCNQ
were excited electrostatically and detected capaéitive]y ﬁsing a UHF
éafrier signal. The detection séheme is shown to bé moré sensitive

than conventional d.c. biased capacitive pickups.

A theoretical study of the electronic contribution to the attenuation
of sound in one and two dimensional metals and semiconductors is pre-
sented. The attenuation in cne dimensional mefals is shown to be
anomalously small. In both one and two dimensional metals, in the
quantum limit the attenuation depends strongly on the direction of

propagation of the wave. A transport equation solution to the problem



of calculating the amplification of sound waves in a solid in the
presence of a d.c. electric field is described. The treatment is

much less complex than any that is currently available.
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INTRODUCTION

1. The Organic Conductor TTF-TCNQ

Tetrathiofulvalinium (TTF) tetracyanoquinodimethanide (TCNQ) is an
electrically conducting organic solid composed of the TTF and TCNQ
molecules shown in Fig. 1. The material has several unusual proper-
ties. First it is a better conductor than almost any other organic
material known. In fact, at 60K its conductfvity (1OL+ (Q-cm)‘l) is
comparable with mercury at room temperature. The availability of
_good organic conductors opens up the possibility of making materials
with desirable electronic properties by chemical modification of the
constituent molecules. Potential applications include new or improved

electronic devices and higher temperature superconductors.

A second unusual feature of TTF-TCNQ is that its conductivity is
very anisotropic. The anisotropy arises from the nature of the crystal
structure; as shown in Fig. 2, the large flat TTF and TCNQ molecules
are arranged in segregated stacks. The molecular orbitals for neigh-
bouring molecules on the same stack overlap much more strongly than
the molecular orbitals for molecules on different stacks. The result
~is that electrons are.able to move more freely along the chains than
perpendicular to the chains. The corresponding anisotropy in the con-
ductivity is large enough that the material may be regarded as a nearly

one dimensional metal.

Theory predicts a number of unique properties for one dimensional

conductors. One of these characteristics, namely the Peierls insta-






Fig. 2 - Photograph of a model of the TTF-TCNQ crystal structure



bility, causesia structural phase transition in which the one dimen-
sional metal changes into a semiconductor. Electrical conductivity
measurements reveal that TTF-TCNQ does undergo a phase transition of
this type at low temperatures (see Fig. 3). X-ray and neutron |
scattering experiments seem to confirm that the phase transition

is a Peierls transition. However, below the metal-semiconductor
transition there is at least one and possibly as many ‘as three
(Djurek et al 1977) additional phase transitions. The two most
prominent phase transitions, near 38K and 54K, are best-illustrated
by the teﬁperature dependence of the electronic energy gap in the
semiconducting phase as shown in Fig. 4 (Tiedje 1975). The phase
transitions are reflected in sharp increases in the electronic
eneréy gap 2A, as a function of temperature. The nature of these

phase transitions is not well understood.

Most of the initial work on TTF-TCNQ was stimulated by the ob-
servation in a few samples of TTF-TCNQ of an anomalously high con-
ductivity peak (Coleman et al 1973) just above the metal-insulator
transition. The anomalous conductivity was interpreted at the time
as due to superconducting fluctuations enhanced by the onset of the
Peierls distortion. No one has succeeded in duplicating these measure-
ments, although there have been many attempts. For reviews of recent
work on TTF-TCNQ and related materials see Bulaevskii (1975), André

et al (1976) and Keller (1977).
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2. Organization of the Thesis

The remainder of this thesis is divided into two parts. In
Parf A we investigate the effect of the dimensionality of the
electron gas on the electronic contribution to the attenuation of
sound in metals and semiconauctors. Both electromagnetic and de-
formation potential coupling between the electrons and the sound
wave are considered. The dependence of the attenuation of high
frequency acoustic waves on the direction of propagatioﬁ of the
wave is calculated for one and two dimensional metals. An im-
proved transport theory of the amplification of sound in the

presence of a d.c. electric field is also presented.

In Part B we discuss some evperimental measurcoments on the pro-
pagation of sound in crystals of TTF-TCNQ. The large anisotropy in
the electrical properties of TTF-TCNQ are illustrated by electrical
conductivity measurements (Hardy et al 1976) dielectric constant |
measurements (Cohen et al 1976) and molecular orbital calculations
(Berlinsky et al 1974). Similarly the temperature dependence of the
lattice constants (Blessing and Coppens 1974) and the nature of the
bonding in the crystal suggest that the lattice may be elastically
highly anisotropic as well. In order to measure the anisotropy in
the elastic properties and to help clarify the nature of the low tem-
perature phase transitions detailed measurements have been made of
the temperature dependence of the velocity and attenuation of sound

in TTF-TCNQ.



Part B is divided into three chapters. In the first chapter the
capacitive technique that was used to excite and detect acoustic re-
sonances in single crystals of TTF-TCNQ is described in detail; An
analysis of the sensitivity of capacitive displacement detectors is
included. The second chapter explains how the vibration spectrum
can be used.to determine a number of different elastic constants for
TTF-TCNQ. The principal damping mechanisms for samples vibrating in

air and in a vacuum are discussed.

The final chapter contains an interpretation of the temperature
dependence of the velocity of sound. A small low temperature anomaly
in the velocity is interpreted as being due to an electronic con-
tribution to the e!astic.modu!i. A possible explanation J‘or an in-
crease in damping of some of the acoustic modes at low temperatures

is proposed.



PART A

ELECTRONIC CONTRIBUTION TO ATTENUATION AND AMPLIFICATION OF

ACOUSTIC WAVES
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CHAPTER |

Attenuation

1.1 Introduction

The electronic contribution tovultrasonic attenuation has been
studied extensively in three dimensional metals {(Pippard 1955,
Cohen et al 1960, Rice and Sham 1970). The recent discovery of
_ highly anisotropic quasi one and two dimensional metals has stimulated
interest in the properties of electronic-systems of reduced dimen-
sionality (Glaser 1974, Wilson et al_1975). In this chapter we extend
the theory of ultrasonic attenuation so that it applies to such systems.
We present.general expressions for the attenuation constant of longi-
tudinal and transverse Qaves, and we obtain limiting expressions valid
in the hydrodynamical and in the quantum mechanical limits. We show
that the ultrasonic attenuation in one and two dimensfohal systems
differs significéntly from the attenuation in three dimensional
structures. The difference is particularly significant in the case

of one dimensional systems where energy and momentum selection rules

are difficult to satisfy.

It is well known that the absorption of sound in metals depends
on the relation between the mean free path of an electron at the
27

Fermi surface, £, and the wave length of the sound wave, X = q

this chapter, the Boltzmann transport equation is used to calculate

in

the attenuation as a function of frequency for arbitrary values of
qf. Quantum mechanical perturbation theory is also used to derive

the attenuation in the gquantum limit.



n

Although othef contributions to the attenuation will be present
in real metals, only the electronic contribution will be considered°
here. With this limitation the ultrasonic attenuation problem is
formulated for a three dimensional electron gas using the Boltzmann
equation in the relaxation time approximation. - The electrons are
assumed to interact with the lattice through “col]isfons", self~
consistent electromagnetic fields, and a scalar deformation
potential. Then with the deformation potential interaction alone,
the high frequency (q€ > 1) limit is rederived using quantum
mechanical perturbation theory. The two approaches mentioned
above are then specialized to the three, two, and one dimensional
electronic systems. In each case the atfenuation is calculated
explicitly for free eiectrons. in ail cases the eiectrons are

assumed to be contained in a three dimensional crystal lattice.
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1.2 Transport Equation Approach to Ultrasonic Attenuation

The Boltzmann equation, in the relaxation time approximation, fis

glven by (see e.g. Ziman 1972)

(1] L vV f-eEV, f= -(f - f )
at | L r =L

where E is the self-consistent electric field generated by the

sound wave, and f is the electron distribution function. De-
formation potential coupling is included at a later stage. The
electrons tend to relax towards the local equilibrium distribution
funcfion ?: through scattering. Following Holstein (1959) we
assﬁme that the electrons relax to an equilibrium distribution
function centéred at the local latticeuvelocity. Also, since the
scattering processes are local, the elgctron density is not affected.
For this reason the local equilibrium chemical potential must be ée-
termined self-consistently from the as yet unknown local electron
density. The velocity of an electron in an a}bitrary band structure
Is, v = %; Z_ke(k). Hence the energy of an electron in a frame of

reference moving with the local lattice velocity u is given by

e'(k) = e(k) -hk-u



13

Adding the term Hik-u to the electron energy corresponds to tilting
the band structure in k space. To first order thls corresponds to a
Ferml surface shifted In k space by Eg-. Thus, the local equilibrium

h

distribution function Is
f (k: Xy t) = fo (ﬁ' (k); u(x, t))= fo - '5—8—“(71_'3'9_”‘ o n1)

where u(x, t) is the self-consistent chemical potential mentioned
above, f, is the equilibrium electron distribution in the absence of
2 sound wave, and n3 is the cscillating component of the electren

number density.

The Boltzmann equation may now be solved to first order by

P(ax - wt) is the-

linearizing. Let f = f_+ f; where f} « ¢
oscillating component of the distribution function that is induced

by the sound wave. Equation [1] can now be written

- -lwfl +Jﬁ e (k). g_fl - e-‘f; 4 e(k)

- e -.J—. we—— . —a—u-
= - a°gf‘&-“-+an "1§ .



This solution to first order in E, n;, u, and f;, all of which are

proportional to the amplitude of the sound wave, is

The electronic current density is defined by

o - 2e 3
ie (—Z—agfdk v £y

(31

. 0. , .
winere S = E- is the phase velocity of the sound wave, and

23 3 yy of
[431. .g,- -C"-_TTT:‘] Jd k 1 - iwt + ig-vrT ae° v

o~
il

: k
2¢2t  h 3 Xz _ of
[4b] Z (27)3 m Jd k 1 - iwt + ig-vr Be°

|

1.2 4 - - 3fe
[4c] R an S (2mw)3 Jdk 1 - iwt + ig-vr (35) '

The total current associated with the sound wave consists of the

sum of the ion current and the electronic current which Is induced

n



by the self-consistent electric fleld. The total current density

is

- J=J +neu .
—— ——e —

{f we restrict our attention to monovalent metals, the electron
number density n will equal the ion number density. The continulty

equation for electrons is

mn1e+g_-:l__e=0
or
= - nle'S

1
(5] _ Yent

where Jell ‘is the component of J ¢ parallel to g. The self-
consistent electric field is determined from the total current

density by the Maxwell equations (Kittel 1963). The result is

Lxt [
{6a] En= " o ("eu+ ne ”n)

and :
' (S>2'. o
byt <
[b]  E; 5 T[SV (Je.l_+ ne u-L>
< )

15
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The néxt step Is to obtain expressléns for the self-consistent
electric field and current In terms of the lattice velocity. The
prob]em.can be simpiified by assuming that the sound wavevector 3;
is in the direction of a principal axis of the electron constant
energy surfaces. In this case the conductfvity tensors are all

diagonal, and the components can be treated separately.

In the case of longitudinal waves (glfu), [S5] can be used to

ellminate ny from [3] to give.

where o/ =" Tzé—ﬁ—' , E;x = ilﬁéji- » and the wavevector g Is In
' X x

the x direction. For longitudinal waves, only the x components of

-ie’ E and u are non-zero. Now if [6a] is substituted for Ex’ then
' brio! .
XX XX
[8] Jex =-neu o =
knlc;x
1y
n e?r )
where 0o ® —— . Notice that J ‘2 - n e u .when w «o' ~ L' .
m ex %X XX

In thls (perfect screening) limit the fon current s exactly matched

by the electron current. An expresslon for Ex Is obtained by sub-
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stituting [8] Into [7]:

! hatlo!
ne Uy g w = z;x
[9] Ex“' pr > —O‘
XX Lyig? °
i +
w

In the transverse wave case (g_l_g), there is no electron

density oscillation hence.

mu
(10 J_=o_E -t —-
ey YY Y YY et
-where,g;is,inathequdirectian, and the lattice.wave .is .polarized

in the y direction. Substitute [6b] into [10] then

b o \2
_Y_‘_/_-ﬂl'.(_5_>o

J = -neu Co [} [ \é[
ey Y ’nri(S)z
: . { ~—I\=) ©
. w \C YY
and -
ny _ b (§)2 5

E = neu o w c vy oYy
Y oyy i _ Liat _§, 2 o Jo

w \¢ YY

The screening of the transverse waves Is less efficient than the

screening of the longltudinal wave because the charge carrlers inter-
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act through magnetic forces rather than through the stronger

electric forces. The factors of (%)2 reflect this difference.
The expressions may be written more compactly by observing that
the contribution of the conduction electrons to the dielectric

constant of a metal with conductivity g 1Is

bri
& (qa, w)=,3,+—:-)— g (q, w)
Thus, for longitudinal waves
newu o X;x
[11] , Ex Y w Oo -
XX
and
A
[12] Jex ==neu 1+ —5¥—Gf——~
S exxo
bt

where ¢' =1+ — ¢! . Also for transverse waves
XX w XX )

ney N 2 )
- e - y CAnifs Yy
[13] cy ;K m (c) [Uo 1]

YY
and )
L - g
[14] Je = -neu 1+ X2
Y Y Et Jo



where ct = ] - Bﬂi- §-2 o
YY w \c/ yy °

The work done on the electrons per unlt time by the sound

wave is (Blount 1959)

% *
[15] P=%‘Re [J -E+t-n—y=-(J +neu)]
~e = et —e -

where the electronic enérgy band has been assumed to be.barabolfc.
The first term in [15] is the ohmic loss due to the presence of
the scjf-consistcnt field. The sccond term is a visccus drag
effect, which results from the electron-lattice collisions where-
by .the eleétrons reach local equilibrium with the lattice. This
effect does not depena on the charge of the electrons, and Is
presenf even in the absence of the self-consistent field. However,
since internal electric fields force the electrons to follow the
lattice wave closely, the inclusion of a self-consistent field
greatly reduces the collision drag term. As 'a result the first
term in [15] dominates, except at very high frequenclies. The
attenuation of the soﬁnd wave is found by dividing the power -
absorbed per unit volume, P, by the energy flux %—p[gjzs where
p Is the dehslty of the lattice. Thus

P

Z PiL
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The attenuation of longitudinal and transverse waves Is found by
substituting [11], [12] and [13], [14] respectively, into [}S].

For longitudinal waves we find

é . o)
_ nm ° _ XX
[16a] Gp = oSt Re {3 ( p )

¢ :
nm ‘o 1 oxx
[16b] % = pst Re L a,
Yy
. - 2
where. ., = 1 + 531-.oo.wand ?f =1 - 511~/§N c
© ® { W \F/ e

The last two results are new expressions for ultrasonic attenuation.

So far, the coupling between the sound wave and the electrons has

20

been assumed to be due to collisions and to a self-consistent electromagnetic

field. A deformation potential tensor can also couple the electroﬁs
fo the wave. If the deformation potential is a sca{ér, it affects
only the interaction of electrons with longitudinal wavés, and does
not change the interaction with transverse waves. |If a scalar
deformatlon potential, C, Is introduced into the Boltzmann equation
(see Harrison 1960, or Tucker and Rampton 1972), and the expression
for the power dissipation is suitably modified, it can be shown that

the attenuation of acoustic waves Is gliven by



¢ o! e ~1 o! P
[17] ap = 2 Re|— -2 20— (1 - X pep2 22
pST € o ¢ O, € x

C
knne2

q

where D =

determines the relative importance of electromagnetic and deformation
Lane?

potential coupling. For example, If C >» *-EI— » the deformation
potential will dominate. The three terms in [17] may be inter-
preted as follows. The first term is due to the self-consistent
field plus the screened collision coupling. The last term is the
screened deformation potential alone, and the'second term.is a
Cross taorm which.Inciudes‘contrEbutionswfrom»aif»threeumechanisms.

We now develop an alternative method which is valid in the

quantum limit, and includes only the deformation potential inter-

action.
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1.3 The Quantum Limit

If the energy hw of the externally impressed phonon is larger

than the uncertainty in the electronic energy ‘§- due to the

collisions, then one is said to be working in the quantum limit.

In this limit quantum mechanical perturbation theory can be used to

evaluate the attenuation of a sound wave. The following additional

assumptions are made:

1.

2.

The electrons are free, except for dimensionality constraints.

The phonon dispersion is linear.

. The phonon energy hw is much smaller than the Fermi energy.

. The..electron=phonon.  interaction. .is .adequately .described by the

standard interaction Hamiltonian

o y‘_ﬁ_%lql Ao ) .
Hine = C&=\Zou] ' \%  %-q) “k-a0 “k,0

K,q

(¢}

. . + .
where C Is a scalar deformation potential, ag- is a phonon

+
k,o

electron with wavevector k and spin o.

creation operator, and ¢ is an operator which creates an

Most of the remainder of this section is material which has been

described in detail elsewhere (Kittel 1963, Tucker & Rampton 1972).

It Is Included here to provide a framework for dealing with the one

and two dimensional systems. The probability per unit time that a

22
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phonon of wavevector g s absorbed by an electron Is

.'5. 2pw

w(_) = %Z c? (__fl_) q2 n(q) fo(.;_(_) -(1 - f, (lﬁj—g_b s (5(1‘_) + o

- e (.k_+5L))

and the probability that a phonon g is emitted is

Wiy = %’;’- Z‘;cz (72;15) q2 (n(g_) + 1) fo (k) (1 - .fo(&-g_)>5(e(£)

- ho - e(_k:&))

where the rates are normalized to unit volume, and £, (x), n(q) are
the equilibrium electron and phoron distribution functions respectively.
Acoustic attenuation can be defined as the net rate of absorption

of phonons in the mode g divided by the phonon flux n(_q_)S. Thus

e T M
n(g)s

or

" where we have assumed that kT » hw. This expression may be evaluated

by converting the summation to an Integral. Then



- |
[mlanﬁfgg% ﬁkoxp-fﬂm®6G®+mw-dbuﬂ

It Is of interest to Investigate which electronic states contribute to

the attenuation.

Wavevector (“momentumﬂ) must be conserved in any phonon emission or
absorption process, otherwise the matrix elemént of the electron-phonon
interéction is zero. In an absorption process, for example, k'=k+q.
Furthermore, in the golden rule approximation used heré, the transition

. rate is zero unless energy is also conserved. Thus.

e(k') = e(k) +hSq

For free electrons the energy conservation requirement reduces to

2.
—-———.h:n'ig- = HhSq -ﬁ;—%—z— .
The energy and momentum conservation requirements define a set of
electronic states which can fnteract with the sound wave. These
states lie In the vicinity of a surface in E_;pace, across which an
electron scatters in any phonon absorption or emission process
(Pippard 1963). A crossection of this Interaction surface is shown

In Fig. 5, for a three dimensional Fermi sphere. Clearly the major
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contribution to the scattering rate will come from the neighbourhood
of the Fermi surface where there are empty electronic states for the
electrons to scatter Into. As will be shown in a later section,

this situation Is drastically altered In one dimensional metals.



1.4 Metals

(i) Three Dimensional Metals

Acoustic attenuation in three dimensional metals has been
studfed extensively. The results will be presented hére for
comparison with the one and two dimensiona] cases. The trans-~
port equation method will be used first. For free_e]ectrons,

and kT Kep » the conductivity tensor g =L is given by

g 1 < - )
O = l-i:rc 53-3- - = [tan 1 (A-wt) + tan”i(A + wr)]

N

] 1 + (I\ - mr)z\)
09\1 + (A + wT)Z}

+

Yy zz T-iwt 2a3 2
--I—-]o 1+(A-m1)2] -3
2 T (A ¥ wr)2

where a = 1?$wt’ A=ql, and £=v

2 .
6 =g = 20 3 (a i 1) [tan'1 (A -wt) + tan"! (A +wt)

v is the mean free path of an electron

F

"at the Fermi surface. The other components of the conductivity tensor
are zero. The sound wave is assumed to propagate in the x direction.

The only non-zero component of R is

[19] R = A2 o
X fot(1-iwT) 30,
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Furthermore, If S <<vF, then the conductivity expression reduces to

Q

u

|
o

[20a]

- -1 - Awt
g a tan A i T+AZ g

= = To 2 -1 'Awr
[20b} o, =9,, = 75T 2a3 g(a +1) (ta“ A+I+A2) a}

The attenuation of longitudinal and transverse waves is found by
substituting [19], [20a] and [20b] into [16a] and [16b]. In the low
frequency limit (A <« 1) where the screening is perfecf [ <« Oo» o;x for

2 2
longitudinal waves, w <<<§> G°’(§) Uyy for transverse waves) the attenuation

in the absence of deformation potential coupling is

= LU 2
% 15 pSt A
1 nm | 2
%e 5 pSt A

for longitudinal and transverse waves respectively. For higher
frequencies in which A > 1, but the screening is still perfect,

the following more general expressions may be used:

o hm (A2 tan~! A -
[21] %p = o5t 5T - TR ']

= [ 243 -
t oSt | 3[(1+A2)tan™1 A -4 *

s
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In the high frequency limit (A » 1) where the screening is perfect,

the attenuation Is

For comparison with the result of the quantum calculation,.fhe ex=
presslon for the attenuation, which includes the deformation potential
hay also be evaluated in the quantum limit. In this limit the re-
laxation time is éllowed to become large so that A >»> 1, and

”pzT > @y whgre mp is the plasma"frequcncy;‘"When‘thése conditlions are
satisfied, the expression [17] for the attenuation in the presence of a

.deformation potential, reduces to

XX

\2
. m_ o q2¢
ap = o5t Re ) (’ * m) .

Substituting the appropriate limit of the conductivity [20a], Into

the last equation, we obtaln

Lwne?
(22] o =.’6L nm ¢ q2 Ve
_s\2
pS ‘zjeF (H(q R3) 2)

1
€ />
where Rj =(nnz ) Is the three dimensional Ferml-jThomas screening


file:///6iu/e2-

length. [t s interesting to note that (1 + (q R3)'2) Is the
- mv
Fermi~Thomas dlelectric constant valid for q <« L

In the quantum 1imlt, the attenuation may also be found by inte-

grating [18]. The result Is

T nm c 2 -
[23]) @ =7 5? <;2_—€—F> QVe -
A comparison of the last result with [22] reveals two things. First
tﬁe quantum calculation does not take into account the screening of
the sound wave by the c¢onduction electrons. Secondly, the electro-
nagnetic c0up1ing”machaniémwis,equiva!entuto;a_deformaticn potential
of strength &Iggz-. This is just the potential arising from a
charge density oscillation of the form neiqx. i£ follows from [22]
that when qR3 << 1 the self consistent field coupling is equivalent
to a deformation potential of strength %‘gF . The electromagnetic
electron-lattice coupling normally dominates in metals at all
reasonable frequencies. To summarize, éhe qﬁantum approach glves

the transport result if an electromagnetic coupling energy of

2
h:ge is added to the deformation potential and the entire Inter-

action potential is screened by dividing by the Fermi-Thomas dielectric

constant.
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(ii) Two Dimensional Metals

By two dimensional metals we mean metals in which the eléctronic

. energy depends on kx and ky but not on kz. For examplé, thé Fermi
surface of a two dimensional free electron gas is a cylindér;
centered on the kz axis. Assoclated with the two dimensional nature
of the electron gas, there are three modes of sound propagation in
addition to the longitudinal and transverse waves propagating in the
conducting plane and polarized in the conductinj plane. First there
is a transverse wave travelling in the conducting plane and polarized
perpendicﬁlar to the conducting plane. Secondly there are two modés,
one longitudinal and one transverse,'propagating.perpendicuiar to the

conducting plane.

Waves polarized in the non-conducting direction cannot deliver
energy to the electrons in the.linear approximation considered here.
Hence these waves are not attenuated. The remaining special wave is
the transverse wave propagating in the non-conducting direction.

Referring back to the expression for the conductivity tensor [4a],

we see that for this mode q'v = o, hence 0 =o_ = Jo
- XX

YY 1-iwT and %2z =

This value for the conductivity substituted into [16b] yields the

attenuation

o eon oo 1 (9 ]

which Is much smaller than the corresponding three dimensional result

-1

In all limits.

o.

3



ln calculating the attenuation of the two modes travelling In the
conducting plane and polarized in the conductfng plane, we use the
same procedure as in the three dimensional case. The non-zero
components of the conductivity tensor for a two dimensional free

electron system with kT <« €p are given by

o 2 i
[25a] g =T S5 {1 - ————-}
XX 1-iwt a " /itaZ
0o 2 ' g
[25b] oy = TS oF {/‘az_+1 1 }

where the symbols have the same meaning as ‘in the three dimensional

problem. The only non-zero component cf R is

2 ag
R = A XX
x iot{l-iwt) 206

which differs only in the factor of 2 from the corresponding three

dimensional result.

The attenuation of the longitudinal and transverse modes Is found
by substituting the last three results into [16a] and [16b] respec+
tively. In the low frequency (A <« 1) perfect screening limit,

the attenuatton is
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1 nm Az.

% % T % pST

For arbitrary A, and perfect screening

——— e et et

| nm A2 .
[26]. @p = o = o\ T (iea2-1) Y| -

In the large A limit the last result simplifies to

For phrposes of comparison with the result of the quantum calculation,
the attenuation of longitudinal waves in the long relaxation time,

or quantum limit, is

2
- 2
‘ 1 C o+ brne qv
[27] A, = = _n_m.. q F s
£ 2 pS € (] + (qu)-Z)

1
. A
where Rj =<F;E£%) is the two dimensional Fermi-Thomas screening,
length. The attenuation in this limit may also be found by evaluating

[18] for a two dimensional electron gas, which gives

1 nm fC\?
[28] GL = -2— ;g' ('E—F-) QVF .

As In the three dimenslonal case the quantum result [28] is Identlcal

33
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with the Boltzmann equation result [27], except that the latter in-

cludes electromagnetic coupling and screening.-

A graph of the attenuation of longitudinal acoustic waves in two
and three dimensional metals, calculated from eqns.[21] and [26] as a
function of A (= qf) is shown in Fig. 6. The similarity of the two

curves in Fig. 6 suggests the following interpolétion formula for the

inverse tangent function:
tan"lx = x/[1 +-% (V] ¥ x2 - 1)].

This formula is asymptotically exact for large and small x and de-

viates from the exact value of tan™!x by a maximum of abcut 1.1% for

X = 2,



I | | l l
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Fig. 6 - Acoustic attenuation as a function of q? for 3D and 2D

metals in units of nzzF as calculated from [21] and [26]
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(iii) One Dimensional Metal

We now investigate acoustic attenuation in one dimensional metals.
By one dimensional, we mean that the electronic energy depends only
on kx and not on ky or kz. As a result the Fermi surface consists

of two parallel planes, perpendicular to the kx axis.

As in the two dimensional metal, there aré~five distinct cases
depending on the relative orientation of the conducting axis, the
sound propagation direction and the polarization vector. Only two
6f the waves interact with the electrons. One is a transverse wave
polarized along the conducting axis, and the other is a longitudinal
wave traveliing aiong the conducting axis. The attenuation of the
first of these is identical to the attenuation of fhe similar mode

in the two dimensional metal; hence it is also given by [24].

In the case of the longitudinal wave propagating along the con-
ductjng axis, it is instructive to consider the quantum limit first.
The calculation is similar to the two dimensional problem except that
the electronic energy e(g) is a function of kX only. The result,
however, is quite different. The reason for the difference is most
easily understood by examining the interaction surface. As has been
described above, the interaction surface defines the electron k

states, which are allowed by momentum and energy conservation to
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interact with a sound wave of wavevector q <<kF. Unlike the inter-
action surface for the two and three dimensionél cases, the inter-
action surface for one dimension does not intersect the Fermi sur-
face (see Fig.7).vAlthough this feature does not restrict electrons
from scattering with phonons of wavevector ~2kg in the present case
where q « kF , we expect a much reduced attenuation, which approaches
zero at low temperatures. In fact, this conclusion is borne out by

evaluating [18] in the S <V limit:
: €
F
- nm c \2 [CF -
[29] ap = 27 55 | 7¢ (kT) e kT qve

This expression differs from the corresponding two and three dimen-
€ €

sional results by the presence of the factor i) e kT - Clearly

az approaches zero as T goes to zero.

The quantum limit may also be extracted from the transport inte-
grals. However, the A,wt > o 1limit must be taken with care. Since
the acoustic attenuation expression contains a real part operator,

a small real part may be significant even when the imaginary part is
much larger. The non-zero part of the conductivity tensor for longi-

tudinal sound waves in a one dimensional metal may be written
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This integral may be evaluated in the wt + « limit by using the

functional relation

1im L P O §{v - 8)

WwT > «© V-S<]+i—> v-$
wT

where P means principal part. The real part of the conductivity

(imaginary part of the integral) may now be found exactly, and the

imaginary part can be approximated by treating (: %g) as a delta

function at V- The result is

2 [t €F
¢ = Zo log S Y [_E e kT - i S_
XX A Vg kT vF

Once again there is a simple relation between R and g. The only

non-zero component of R is

R = A2 Txx
X int(1-iwt) oo

When the last two results are substitufed into the attenuation

equation, [17], we obtain

2
brne?

€
| _ iE _ ETE' c + Py ) qu
[30] op =27 Z=\iF) e 2e; (1 ¥ (qR,)-z)2

€p lé

T is the one dimensional Fermi-Thomas screening

where R, =
length. The transport method once again gives the same result [30],

as the quantum method [20], barring the expected failure of the

quantum calculation to include electromagnetic coupling and screening.
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The extreme quantum limit that is considered above (wt >> 1) is
unlikely to be attainable in practice. |In this limit the delta
function in [18] implies strict energy conservation in electron phonon
collision processes, and the attenuation arises from the thermal
broadening of the Fermi surface. |If the condition wt >> 1 is re-
laxed to the weaker condition A >> 1, the finite collision time may

be taken into account by replacing the delta function in [18] by the

Lorentzian

-1
= [(em rho - cl+ q) +(I3>2]

he ultrasonic attenuation, then arises from the intersection of

the Fermi surface with the tail of the Lorentzian and is given by

: _ nm C 2
[31] % = S5t <2—€—>

Aside from a factor of two, this expression differs from the
corresponding two dimensional result [28] by a factor of AT,
This factor reflects the non-intersection of the interaction and
Fermi surfaces. The attenuation [31] may also be obtained using
the transport equation method, by neglecting the self-consistent

field and collision drag, in favour of the deformation potential.



As pointed out earlier, the self-consistent field, election
sound wave coupling, is expected to dominate in metals at least
in the low frequency limit. We first try to obtain an expression
analogous to the two dimensional result [26], using the transport
equation method. However, if the same approximations are made as
in the two (or three) dimensional cases, the attenuation in a one
dimensional electron gas isgidentically zero. To obtain a non-zero
result we relax the zero temperature approximation and calculate

F
depend on temperature through the temperature dependence of the Fermi

2
the transport tensors to order (EI> . The transport integrals

function. As the temperature rises from zero, the unit step in the
Fermi function broadens to a width of crder kT and the chlemical

potential increases from the Fermi energy to

2 kT 2~
" m
“‘EF(1+12 (eF))'

Provided that both of these effects are included, the non-zero

component of the conductivity tensor is found to be

XX 1 - iwt 1 + a2 1 + a2

- Oo 1 _ (3 - a%) a2
[32] | o] ;1 6——(———T §

72 (kT\?
to first order in 6 where 6 = TE-(E—) < 1. Similarly
: F
A2 o
[33] R = XX (1 - 8)

x dwt(l-iwt) o,

L1
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Substituting [32] and [33] into [17] we obtain

[34] = EE. nm 51.2 ___AE__
34 % 3 pST \gg) 1+ A2

for a free electron gas. This expression is valid for arbitrary A,
provided that the perfect screening limit holds (w << g, o;x) and

that A is not so large that the extreme quantum limit applies.

The transport equation method, in the relaxation time>approximation,
may also be used to calculate the ultrasonic attenuation for an arbitrary
band.structure, although the general expression which results, is much
more complicated than [17]. However, in the perfect screening limit the
expression for the attenuation is once again quite simple. We then find
that the attenuation of longitudinal waves travelling in the x direction

is given by

P
_nhm %%  _  Ixx
[35] “2 T bst Re% o] o %
XX XX

2 2

where terms of order (%—) ,<§$—> have been ignored, and the transport
° XX

tensors g, L and R are given by [4a], [4b] and [4c] respectively.

ne2'r

Similarly o where

2

n =WJ f (k)d3_k
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is the total number of electrons in the conduction band. Notice
that the m dependence of [35] is fictitious since both o, and L

are defined to be proportional to m~1.

The one dimensional transport integrals are sufficiently simple
that the temperature dependent part of the attenuation may be
evaluated for an arbitrary band structure, in the perfect screening

limit. |If the band structure in the vicinity of the Fermi surface

is given by
h2(k - k)2
elk) = e + hlk - k) vp + ——5——
where V. = 1 3 and (n*)"1 = 1 32¢
F 'hak k = k 'h 3k2
_‘F . k=kF
then the temperature dependence of the Fermi level is
= 72 (kT)2
L T
F
where e% = %—m* vFZ. The ultrasonic attenuation is given by

2 ot 1+T‘kp kT\2 A2
[36] %p = E oSt h*VF EE 1 + A2

where A = queT as before and the total number of carriers in the

band is n = thkaF where D is the density of states at the Fermi



surface. The last result closely resembles the free electron

result [34].

The non-intersection of the Fermi surface with the interaction
surfacg is reflected in the fact that the attenuation [34] becomes
frequency independent for A >> 1, instead of approaching a linear
frequency dependence. The same behaviour has already been noted
in [31] for deformation potential coupling. On the other hand, the
absence of the leading term in the ultrasonjc attenuation in the
A << 1 limit cannot be explained on the basis of the energy and
wavenumber selection rules. In fact it is easy to show, using the
collision broadened energy cbnservation requirement that for A << 1
e]ecfrons at the Fermi surface are just as likély to interact with
the sound wave as the electrons on the interaction surface. The
reason for the small attenuation in the one dimensional metal for
A << 1 lies in the absence of the higher order relaxation times
Tj', j=2,3, ..., discussed by Bhatia and Moore (1960)- Furtﬁer-
more the expression [34] (or [36]) should be taken only as an order
of magnitude estimate of the attenuation since another term of
order 51\2 has been omitted by assuming the sound wave to be

F
isothermal [Akhiezer, Kaganov and Liubarskii (1957)].

1.5 Anisotropy of Attenuation

In one and two dimensional metals it is possible to adjust the
position of the interaction surface simply by changing the angle
of propagation of the acoustic wave relative to the conducting

direction (or plane). " In the quantum limit, when the interaction

by



surface intersects an extremum of the Fermi surface there is a large
enhancement in the sound absorption. For this reason the attenuation
of acoustic waves will be very anisotropic in one and two dimensional
metals, in the quantum limit. |In this section we assume for con-
venience that the acoustic wave is coupled to the electrons only

through a deformation potential C.
(i) One Dimensional Metal

The interaction surface has been defined above as the surface in
k space for which e(k+q) - e(k) = hgS with q« kp. In a one dimen-
sional metal the electronic energies depend only on ky so that the

definition of the interaction surface reduces to

e(k, + q cos 8) - E(kx)‘= Hqs

for a one dimensional metal in which the acoustic wave propagates at
an angle 6 relative to the conducting direction. Note that changing
the direction of g relative to the conducting axis is mathematically
equivalent to replacing the speed of sound S by $/cos 6. This di-
rection dependence of the apparent velocity of sound has a drastic

effect on the ultrasonic attenuation in the quantum limit.

First we consider the collisionless quantum regime in which wt > 1.

As was pointed out in the previous section, in this limit the absorp-
tion processes arise from the intersection of the exponential tail of

the Fermi-Dirac distribution function with the energy conserving &

b5
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47,

function. Evaluating [18] we find

2
_mnm [/ C A 2 mS2
[37] aﬁ(e) T2 pS <?€F> kT cos 8 sech (2 cos?9 °F /KT

This result reduces to [29]} as 6 -~ 0 and goes to zero as 6 - w/2.
At intermediate values of 6 the attenuation goes throdgh a large
maximum when the interaction surface touches the Fefmi.surface.
The 6 dependence of the absorption is shown in Fig. 8. In this
figure, TTF-TCNQ material parameters taken from Table | have been

used.

TABLE |

- TTF-TCNQ Material Parameters

n 2.8x102! cm~3

p 1.62 g/cm3

S Lkx10° cm/S

TTF Band | TCNQ Band®
m 8 mg b my
vg  0.5x107 107 cm/S
ep  0.5x103 10 K
b axis scattering time (60K) ‘ 5x10714 s

¥ Berlinsky et al (1974)



The absorption peak occurs at 6 ,, = cos™? (S/VF) and has an

angular width of order S/vp radians. The peak absorption is

2
o, =1 nom/CNCF YE o
fmax ~ 2 pS \2e¢) kT 5§ VF

for kT > hw and

_rom/(c\ % VE
“emax ~ 2 55 \2ef) Fw S Vr

for kT < fw. The first result is a factor of order (EF/kT)(VF/S)
larger than the corresponding three dimensional result [23] reflecting
the fact that in a one dimensional metal the interaction surface can
intersect ail of one sheet of the Fermi surface at once, rather than

just a narrow ring as in a three dimensional metal.

When the condition wt>» 1 is relaxed to the Qeaker condition A>» 1,
the attenuation in a one dimensional metal comes from the intersection
of the Fermi surface with the tails of the broadened energy conserving
M8 function. If we replace the 8§ function in [18} by a Lorentzian, as
discussed in the preceeding section, then in the low temperature limit
where the Fermi surface is sharply defined, a trivial integration leads

to

2
. nm C A% cos?e
[38]  «p(8) = oo <28F> (T A2 c0s26)2
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Fig. 9 - Angular depéndence of ultrasonic attenuation irfa 1D metal
calculated from [38] with A = 8.
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for the dependence of the attenuation on the propagation direction.
This ‘expression reduces to the earlier results at6= 0 ([31]) and

/2, and has a peak at 8 = cos"1(1/A). The peak value of the

max

attenuation is much smaller than in the collisionless (wt > 1) regime.

The peak attenuation is

a _ _hm C l!i
£max  pSt \2ef 4

which is a factor of order A larger than the corresponding three

dimensional result. A plot of az(e) for A = 8 is shown in Fig. 9.

(ii) Two Dimensional Metals

The ultrzscnic attenuction in two dimensional nietals is also ani-

¢}

sotropic in the quantum limit. In two dimensional metals there is
a large peak in the attenuation when the interaction surface moves
out to touch the surface of the Fermi cylinder tangentially. This
peak occurs when the acoustic wave propagation direction is nearly
perpendicular to the conducting plane. We now use [17] to calculate
‘the attenuation of an acoustic wave propagating at an angle 6 to the

conducting plane in a two dimensional metal.

In the extreme quantum limit in which wt > 1 and energy is strictly

conserved in electron-phonon collision processes




51

for kT > hw. In this expression when the argument of the square root
is negative the result is taken to be zero. With this proviso the
attenuation is zero at 8 = w/2 and matches the previous result [28]

at 6 = 0. For coso > S/VF
A : , 52 -1
[;9] ) 8) = <%os B - ;F7 aZ(O)

where uE(O) is given by [28]. For 6 near O,y = cos"l(S/vF) the

attenuation reaches a peak of

VE <2€F>%
%max = S \Fw. aK(O).

A non-zero temperature kT > hw) broadens the sharp Fermi surface

and reduces the peak attenuation to

VE (EF 3
%pmax ~ 5 (Ef) aZ(O).

When kT > hw the attenuation as a function of 8 is given by

’ 1 SF% _%
[40] az(e) = =5 <ET> az(O) x * sech?(x-e)dx

with

o
]

52 °F
Q - vF2c052Q> kT

The. integral in [40] must be done numerically. However, for cosé® > S/vp
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Fig. 10 - Angular dependence of ultrasonic attenuation in a 2D metal

calculated from [40]. The inset shows the peak attenuation
with an expanded horizontal scale.
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and at temperatures low compared to the Fermi temperature the last
result ([40]) is equal to [39] to a good approximation. A plot of
the attenuation as a function of angle is shown in Fig. 10, using

ep = 10%K and S/vp = 1073,

It is unlikely that the extreme quantum limit (wt > 1) can be
achieved in practice. |If the condition wt>» 1 is relaxed to the
more realistic condition q€ > 1 then there is no longer strict
energy conservation in electron-phonon scattering processes. In
this case the 6 function in [18] is replaced by a Lorentzian as
described above. In the low temperature limit the two dimensional
integration in [18] may be done exactly for arbitrary direction of

sound propagation. . The result is

2 {tan’l(Acose) _ 1

[41] a, () = = 2 — AZCOSZe]A a, (0).

This expression reduces to the collisionless result [40] at & = 0,n/2;
however, just as in the one dimensional case collisions drastically
reduce the acoustic absorption peak near 6 = /2. A plot of az(e) as
a function of ® is shown in Fig. 11 for A = 8. The peak attenuation

is

®prnax 0.226 A aK(O)

which occurs at an angle 6., = cos~1(1.825/A) with respect to the

conducting plane. Just as in the one dimensional case the peak
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attenuation at 6 = 6 . in the two dimensional metal is a factor
of order A larger than the corresponding isotropic attenuation in

a three dimensional metal.

1.6 Summary

We have extended the theory of ultrasonic attenuation in metals
so that this theory may be applied to metals whoée electronic band
structures are one or two dimensional. Our results are valid for
arbitrary values of A and include electron-phonon coupling via a

-scalar deformation potential as well as coupl}ng via collisions and
via the self-consistent electric field which arises from the response
of the electrons to the scind wave. We have shown that the ultra-
sonic attenuation in one and two dimensional systems differ signifi-
cantly from well-known results for three dimensional systems. In
particular the attenuation is shown to be anomalously small and
strongly temperature dependent for metallic one dimensional systems.
In addition the attenuation is shown to be highly anisotropic in one

and two dimensional metals in the gquantum limit.

There are other applications of the theory in addition to the
application to quasi one and two dimensional metals. For example, it
may be applied to the attenuation resulting from an accumulation layer
in an MOS junction, or to the attenuation associated with layered
metal-insulator heterostructures. The theory also applies to a three
dimensional electron gas in a strong magnetic field. In this case,

one dimensional behavior results from the quantization of the electronic
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motion in the plane perpendicular to the applied field. The Fermi
surface for a particular Landau level may be '‘tuned'' to match the
interaction surface by varying the magnetic field. In the limit
A> 1 this result in large peaks in the acoustic attenuation as a
function of magnetic field. These ''giant quanﬁum oscillations"
have been observed in gallium by Shapira and Lax (1965). This
magnetic field tuning of the Fermi surface is analogous to changing
the position of the interaction surface in a one dimensional metal
by varying the direction of propagation of the acoustic wave. The
principal experimental obstacle to observing the anisotropy of the
'atfenuation in one and two dimensional metals is in obtaining a long
enough electron mean free path and high enough frequency to achieve

the A > 1 limit.



CHAPTER I

Attenuation in Semiconductors

2.1 Quantum Limit

in this chapter the techniques that have already been applied to
metals will be used to calculate the acoustic attenuation due to
electrons in n-type semiconductors. Both deformation potential and
electromagnetic coupling will be considered, and an energy independent
scattering time is assumed. This assumption was unnecessary in the
previous chapter because in metals only the scattering time for Fermi

energy electrons is important.

Thé first step is to use perturbation theory to caiculate the net
phonon absorption rate in the quantum regime where A> 1. The only
difference from the metallic approach is in the definition of the
electron distribution function f(k). For metals f(k) = <éxp‘Ke(5) -
eF)/kT] + 1>‘1 whereas for semiconductors f(k) = exp{(u-e(k))/kf]
where y is the chemical potential. In the metal case Egp > kT while
for semiconductors p<0. |If we assume the energy bands to be parabolic,

the electron energy may be decomposed into a sum of three parts

2 k2 k.2
L G
e(h) 2 \m * mo * m3

where my, m, and m3 are effective masses. This decomposition makes it

possible to write the attenuation
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« =X ) [F0 - fle+ @]o(c ) + o - eli + g)

as a product of sums

(1] o = 22 ] [Fe0 = fl e @] 8 (200 + - elie + )
X . .

x | exp [- E(ky)/kT] L exp [' e(kz)/kf]
ky kg '

where S.llkx° This ability to factorize the electron distribution
function means that the attenuation along the principal directions

is independent of the dimensionality of the electron gas. The dimen-
sionality only affects the form of the expression for the charge

carrier density.

“The expression in [1] may be evaluated by converting the summations
into integrals in the standard way. In two limiting cases the inte-

grations may be performed explicitly. For S« Vih

SN

m/f{C 2
(2] Gg T oS <TZT‘> 9 Vi

and for S » vth

_ nm [C¥/ s\ s2
5 e AR o (e
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where Vep = (ZkT/m)% is the thermal velocity of the electrons. This
thermal velocity takes the place in semiconductors of the Fermi ve-
locity in metals. Similarly the important mean free path in semi-
conductors is £ = v_, T. At room temperature and using the free electron

th
mass th ~107cm/S, so that S/vth ~ 30. {in order for the sound velocity
to be of the same order as the thermal electron velocity the temperature
must be lowered to about 0.3K. In cases in which the thermal velocity

of the electrons is comparable to the speed of sound a numerical inte-

gration is required to evaluate the attenuation.

2.2 Transport Equation Approach

!i the same way as for metals the Do)l tzmanii Lransport equatcion can
be used to calculate the acoustic attenuation fpr arbitrary values of
qf. In what follows the sound wave is assumed to propagate along X
which is assumed to be a conducting direction for the one and two
dimensional semiconductors. The outstanding difference between the
semiconductor and metal results is the lack of dependence on dimen-

sionality in the semiconductor case because of the absence of a

Fermi surface.

The first step is to evaluate the transport tensors [4a] and [4c]
of Chapter |. The frequency dependent conductivity tensor has two
distinct non-zero components for two and three dimensional semicon-
ductors. Only one of these components is zero in one dimension.

They are



41 o= e e e (B ()]

R )

where a = A(1 - iwt)~1 and ¢(z) is the error function defined by

2 z
o(z) = I Jo exp (-t2)dt. The expressions for the conductivity

are valid for wtr < 1 only. Also

R = A2 Oxx
X jet (1 - iwt) 20,

if the sound wave couples to the electrons @rimariiy thréugh a self-
consistent electromagnetic field the.attenuation'of longitudinal and
transverse waves is found by substituting the above transport tensors
into [16a] and [16b] of Chapter !. In the low frequency (A« 1) perfect

screening limit the attenuation is

for longitudinal waves and

1 om
2 pSTt

2
az A

for transverse waves.
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The transport equation approach may also be applied in the quantum
limit in which A>» 1. Just as for the one dimensional metal the A » «
limit must be taken with care in order to avoid losing a small real or
imaginary part. The integration is most easily done in rectangular co-
ordinates as follows:

vZ .
- - 3 X _of
Oxx L3 J dk qlv, - S) - i/t ( 36) ’

Since (- 9f/3e) can be factored the ky and 'k, integrations are straight

forward. The k, integration is done using

Jim 1

— 1 H -
> gy, - S) - i/t P qlvy - S) +im 8(vy - S)

The principal part integral can be done analytically in two limits.

For S >» vth

O, 2 52 2 ) Vth]
I%x T T - iwt a [/; vz &P < v2 >*.l S

and for S« vt

h
o = i g-[ T —%E-- i —§—-]
XX -
1 iwT a Vih Vih
The Oyy component of the conductivity tensor is needed to calculate the

attenuation of transverse waves. |t is calculated in a similar way.

For S « Vth
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and for S >» vt

These expressions may be substituted directly into [16a] and [16b]
in Chapter |, to find the acoustic attenuation. In the perfect
screening limit in the absence of a deformation potential, the

attenuation for the differcnt cases is given below. For S« v, ,
N (SR

Y7 nm
71 op = 5 o5 9 V¢n
o -2 o
t w £
and for S >» Vth
nm S% 52
[8] a, =2 Texp(—-—z——)qv
£ pS vih Vih th
2
Vih

A comparison of these results ([7] and [8]) with [2] and [3] reveals

that in the quantum limit, electromagnetic coupling is equivalent to
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a deformation potential equal to kT. This relationship is analogous
to the equivalence in metals of electromagnetic coupling to a de-
formation potential equal to the Fermi energy, as discussed in

Chapter |.

In semiconductors the carrier densify may be small enocugh that the
screening is incomplete and the electromagnetic coupling (4wne2/q2)
is small compared to deformation potential or piezoelectric coupling.
When the deformation potential is the dominant coupling mechanism,
the attenuation of longitudinal waves is determined by the last term
‘in eqn. [17] of Chapter I. We consider the quantum limit first.
Substituting the appropriate transport tensors calculated above we

find for S « vth

_\/T?nm C 2 -2
(9] %“z—p—(’ﬁ) (1 + @)72)" a vy,
and for S > vth

[10] ap

i
N3
»|3

A~
e
~%
TN
ele

LN
~—
N
o
x
©
/"T\
N
N
~——
0
<
+
po o

where R = (kT/hﬂnez)% is the Debye-Hiickel screening length. The re-
sults [9] and ]10] above are identical to the expressions [2] and [3]
obtained using quantum perturbation theory except that the deformatioﬁ
potential C is replaced by a screened deformation potential. The
factors O + (qk)'2> and (1 - wpz/wz) are dielectric constants for a

classical (non-degenerate) electron gas in'the low frequency and high



frequency (S >» Vth) limits respectively (Kittel 1963). The expression

[9] has been obtained by Spector (1966).

The-transport equation method can also be used to calculate the
attenuation in the low frequency limit (A < 1) when the deformation
potenfial is the dominant coupling mechanism. After expénd?ng thé
conductivity expression [4] to lowest order in A and substituting

the expansion into the last term in eqn. [17] of Chapter | we find

that
Ml o =ﬂ‘-(i>3 T
+ +
£ s \kT) (1 + (aK)?) (w/wpr)
The results [9] and [11] above will be rederived in Chapter Il below

in connection with acoustic amplification in the presence of a d.c.
electric field. The relationship between the attenuation of longitu-
dinal waves and transverse waves is discussed in that chapter, along
with a description of how the deformation potential results are modified

if there is a piezoelectric interaction.

2.3 Metal-Semiconductor Transition

We have just shown thét the electronic contribution to the attenuation
of a sound wave propagating along a conducting direction in a semiéon-
ductor is independent of the dimensionality of the semiconductor. On
the other hand in Chapter | above, the attenuation of sound in a one
dimensional metal was found to be anomalously small. These results

suggest that when a one dimensional conductor undergoes a transition



from a metallic to a semiconducting state (TTF-TCNQ for example)
the electronic contribution to the ultrasonic attenuation may in-

crease rather than decrease as might be intuitively expected.

In order to treat the problem of a metal-semiconductor transition
it is necessary to drop the assumption of free electron energy bands.
In its place we assume a one dimensional band structure consisting

of a single half-filled tight-binding band given by

[12] e(k) = - ep cos k b

where b is the lattice constant along the conducting direction and
ZEF is the bandwidth. The effect of a metal-semiconductor transition
is to open a gap in the middle of the band so that in the semiconduc-

ting phase the energy band is given by

[13] e(k) ==V ei’;: cosZ kb + AZ(T)

where 2A(T) is a temperature dependent electronic energy gap. The +

sign applies for |k| > kF and the - sign for |k| < kF.

It is very difficult to calculate the attenuation in this situation
for arbitrary values of A. The quantum limit on the other hand is more
tracfable. We will consider this limit only. The deformation potential
coupling C is assumed to be a constant, independent of k and the size
of the energy gap, eventhough it is not clear how good this assumption

is, particularly for electronic states close to the gap. As discussed
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in the previous chapter, in the extreme quantum limit sound wave
attenuation results from electron-phonon scattering processes in
which both energy and momentum are strictly conserved. The electronic
states allowed by energy and momentum conservation to participate

in electron-phonon scattering processes define a surface in k space
known as the interaction surface. In a one dimensional metal, when
the sound wave propagation is in the conducting direction, the inter-
action surface is well separated from the Fermi surface. As a result
the attenuation is anomalously small. |In a metallic tight-binding
band there are two distinct interaction surfaces reflecting the fact
fhat the band contains both positive and negative curvature portions.
One of the interaction surfaces is near the origin in k space and the

other is near the zone boundary, as illustrated in Fig. 12.

e(k)

oA
TTUTRRT T

Fig. 12 - Positions of Interaction Surfaces -~ Metallic Band
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If the contribution to the attenuation from both parts of the band

are included then

- & 2 € €
= o N /C N TF - _F
[14] oy =2 75 (e > kT %P ( kT)q VE

according to eqn. [18] of Chapter I. In this expression m* = T\z/er2
is the effective mass for an electron near the bottom of the band and

V. = er/ﬁ is the velocity of a Fermi electron. The above expression

F
is similar to the corresponding result [29] given in the previous

chapter for a free electron gas.

When an energy gap opens up at the Fermi surface two additional
places in the band become available where the energy and momentum
selection rules can be satisfied. As illustrated in Fig. 13 these

new interaction surfaces are close to the Fermi level (or chemical

e (k)

- e " . - am —

Fig. 13 - Positions of Interaction Surfaces - Semiconducting Band

L]
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Fig. 14 - Ultrasonic attenuation as a function of temperature near a metal-

semiconductor transition in a 1D conductor. The attenuation was

. . 2nm* ( CY
calculated from [15] and is normalized to a, = oS ;;3 q vg .
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potential) if the energy gap is not too large, and hence can provide

a significant contribution to the attenuation of sound waves. The
attenuation in the semiconducting phase can be calculated by evaluating
[18] of Chapter | using [13] for the electronic energy band. The

result is

_ . nm* 7 C\?|EF _€F> A o[ b
[15] «p(a) = 2 <5 <EF> [kT. exp ( AR <kT> 9 Vg

assuming q < kF. This time the effective mass m* = ﬁz(l + A2/e%>%/5Fb2.
.A graph of the temperature dependence of the attenuation predicted by
[15] is shown in Fig. 14 for a one dimensional metal which undergoes

a metal-semiconductor transit}on at 50K. The energy gap is assumed to

have 2 BCS-like temnerature dependence below the fransition temperature.

The attenuation in the metallic phase is extfemely small in the
collisionless wr> 1 limit. |f the condition wt> 1 is relaxed to
A> 1, then the attenuation in the metallic phase will be comparable
to [31]. Even though the metallic attenuation will now be much larger
than in the collisionless regime it will still be small compared to
the peak attenuation in the semiconducting phase. On the other hand,
the semiconductor phase attenuation is not significantly affected by
relaxing the wt > 1 condition to A>» 1, since the interaction surface

is already close to the Fermi level, withoﬁt any collision broadening.

In practice the low frequency A<« 1 limit is much more likely to be
physically realizeable than the quantum limit, particularly in a material

such as TTF-TCNQ where the electron mean free path is only a few lattice
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constants. From earlier work in Chapter | we expect the electro-
magnetic coupling mechanism to be far larger than the deformation
potential coupling at low frequencies. In this case the metallic
attenuation is very low so that one might also expect to see an
increase in the low frequency attenuation, to something approaching
the three dimensional value, in going from the metal to the semi-

conductor.



CHAPTER 11}

Amplification

3.1 Introduction

It is well known that under certain circumstances ultrasonic waves
may bé amplified in metals or semiconductors if the conduction electrons
have a d.c. drift velocity (Hutson, McFee énd White 1961, Vrba and
Haering 1973). The amplification of sound waves may be regarded as a
negative attenuation that can occur in the presence of a d.c. electric
field. Accordingly the methods described in Chapter | for calculating
the attenuation may be applied to the amplification problem. In general
the attenuation and hence the amplification of sound waves by electrons
depends on the relation between the electron mean free path £ and the
sound wavelength 2n/q. The theory of acoustic amplification in the

presence of a d.c. electric field has been worked out by Weinreich (1956)

and White (1962) for the low frequency (g€ « 1) limit and by Pippard (1963)

for the high frequency limit (g€ « 1). Spector (1962) has used the

Boltzmann equation to produce a theory that is valid for arbitrary qf.

The Spector (1962) theory is very complex for the following reason.
When a d.c. electric field is introduced into the transport treatmeht
of ultrasonic attenuation a large number of additional terms of equal
order are generated, none of which can be neglected. In this chapter
we outline a theory where the d.c. eletric field is taken into account
by shifting the distribution function in k space. This approach

eliminates the need to deal with a large number of new terms arising

s
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from the d.c. field, and vastly simplifies the problem. Using the
new approach, we are able to confirm Spector's results which have

never been verified previously. In addition our approach is valid
for strong d.c. electric fields in the same way that the method of

Spector (1968) is valid for strong fields.

In this chapter we calculate the attenuation (amplification) of
sound waves in n-type semiconductors and three dimensional nearly-
free-electron metals, in the presence of a d.c. electric field.

The calculation follows the transport equation approach developed in

Chapter |. In both the metal and semiconductor the conduction electrons

are modelled by a free electron gas and non-electronic contributions
to the attenuafion are ignored. In the metal a self-consistent
electric field is used to couple the sound wave to the conduction
electrons. In the semiconductor a deformation potential tensor is
assumed to be the dominant coupling mechanism. First, the probfem
will be set up for arbitrary electron statistics and both self-con-

sistent field and deformation potential coupling.

3.2 Transport Equation

In the. presence of a sound wave described by a local lattice
velocity u « exp[i(gx-wt)], the Boltzmann transport equation for

electrons is
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where f is the electron distribution function, E; is a self-con-
sistent electric field and C is a deformation potential tensor.

In the relaxation time approximation used here scattering processes
cause the electron distribution function to relax to the local
equilibrium distribution function f. As in Chapter |, Section 1.2,

f can be approximated by

[2] flv,r,t) = fo(y_-g; u(L,t))
. of 2€F
= fo " 5 (m19-+ 3n "1>

where fo is the equilibrium electron distribution function in the
absence of a sound wave, 1 is a self-consistent chemical potential,
€F is the electron Fermi energy, n is the equilibrium electron number
density and n; is a small oscillatory component of the electron

density.

A d.c. electric field will be introduced into eqn.[1] by postulating
that the sole effect of the field is to shift the equilibrium electron
distribution by the average drift velocity vy = - %%:EO where Eo is the
d.c. field. This assumption is correct to first order in the electric
field. In this approximation, the d.c. field may be introduced by re-

defining the local equilibrium distribution function ?'by

d
7 29 - o ey yew s LEE )
[3] f(_!_;_[_at) = fO e <m(l¥d) E_+ 3 n ny

for a three dimensional metal where

FO(Y) = folymvy)



is a doppler shifted equilibrium distribution function.

The Boltzmann equation [1] with f defined by [3] may now be

solved to first order by substituting

(o]

where f? is the d.c. part of the perturbation from equilibrium, and

ff « exp[i(gx-wt)] is the a.c. part of the distribution function.

We find that
= fd ¢
o )
and
d
of qq-C-u  mu 2 €F ]
1:.._..2 . e TS T e = | - - — -1 1 -1
(4] £ e [éT<E1 === er) (X.Xd> 3 M O IwT+IQVT) .

- - . 2e 1 43
(5] _\._l.e— WJ_V_fldk.

Now define a doppler shifted a.c. component to the distribution

function by

eiw et

d

£9 =

1 (1 - i(w-wd)T + quT) o€
where

7h
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Then the current expression [5] may be rewritten as

—e d
where
qq-C-u -
[6] \ld = _Qd (El + .:q_—_—:_: - E)— nleSde
—e = \= elw et -
and

Ud=2e"c d3 Kk vV (_i)
= (27)3 1 - i(w-wd)r + iqvT o€

£ of
d _ F 3 \" le)
R = 6m3n sd f d=k i- ( de >

i(w-wd)r + igvt  \

and Sd = (w-wd)/q is the doppler shifted sound phase velocity.

The total a.c. current density due to the sound wave is the sum

of the electronic current and the background ion current. Thus

[7] J=Jd +tney

where J is the total current, and n is the ion number density. In
a monovalent metal (n-type semiconductor) the ion (ionized impurity)
number density will equal the equilibrium electron number density.
In the presence of a sound wave the ion numﬁer density will contain
a small oscillatory component given by nu/S where u/S is the stra}n

induced by the sound wave. The oscillatory term in the electron



number density may be found by using the continuity equation for

electrons
nje + q-° = 0.
wnie * g-J =0

This equation can also be written in terms of the doppler shifted

quantities

d
(w-wd)nle + g:ge =0
or
d _ d
[9] nyesS = JeH
d . d .
where Jellls the component of_ge parallel to q. Also the electric

field which is consistent with the total current . may be found from

Maxwell's equations to be

[10a] Eil = - L‘—Z—L (Jell +ne u“>

énd

5\2
f10b] E%‘— —Ei-~£82—— (98 +neu >
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The next step in obtaining the net power flow from the sound wave
to the electron gas is to obtain expressions for the self-consistent
electric field and current in terms of the local lattice velocity.
For a free electron gas, and a sound wavevector g in the x direction,

the conductivity tensor .is diagonal. In this case the vector notation
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may be dropped and the components can be treated independently.
For longitudinal waves (q Il u) egn.[9] can be used to eliminate

ny from [6]. Thus

- d 1d q2cxxux My
[11] Jex = % (Elx T T eiw e >
where o;d = Gi / (1 - Ri ).. Only the x components of E; and u are

non-zero for longitudinal waves. Substitute [10a] for Ex then

d neu o0 ’
[12] IR p— —-+———old(1+o
ex eld 0, W X XX
qy
where eld = 1 & i i old is a dielectric constant, vy = 1 - —d s
wy X . _ . w
o n e and D__ = 8%xx Also if [12] is substituted into [11]
° - wx = TmmeZ i 2] i ubstituted in

we find the following expression for the total driving field felt by

the electrons:

[13] By + VXX X T+ D -
eiw eid w XX YO,

The self-consistent electric field and current associated with a
transverse sound wave may be found in exactly the same way. When a
transverse wave is polarized in the y direction and propagates in the
x direction there are electric currents in both the x and y directions.
Using the electron continuity equation and [6], we find that the
doppler shifted current in the x direction is,

6 g fe ¢ oy
[14]  Jg =0l (B, + —FL)

ex eiw



If the current and electric field are required to satisfy the Max-

well equation [10a] which in this case reduces to

[15]  Eyp=- —

then the total current in the x direction is

»o;d qzcxyuy
[16] Jex - eid eiwy )

Similarly, the self-consistent current in the y direction is,

d mu vy
[17] JeY - GY <E1Y T et > * S Jex

where Vay is the y component of the electron drift velocity Xd; and

Jex is given by [16]. By using the self-consistency requirement [10b]

we find that

d
o ne u . 2 o] v, J
s} 4 = y hnu<§) 4 - Y ], _dy'ex
ey et w \c Yy Oo S L
Y Y
H 2
where C; =1 --%%LG§> 03. The electric field is found by substituting

[18] back into [17]. Thus
Lri S \? S; ic_i_y_
[19]  Eyy = o g)t/' <€> ne u <1 - U0>+ S Yoy | -

We are now ready to evaluate the energy transfer between the sound wave

and the electron gas.
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3.3 Energy Transfer
The power transferred from the sound wave to the electrons is
1 * qq-L-u mu’*
[20] P=5Reid -(El +———— |+ — {J +tneuji.
2 —e \— eiw et —~e -

The first term is the work done per unit time by the self-consistent

electric field and deformation potential gradienf on the electrons.
The second term in [20] is due to the interaction of the lattice
wave with the electrons through collisions (see Chapter 1) and is
“important only for high frequencies (w ~ 0;). Notice th;t all d.c.
fields and currents have been omitted from [20]. In thé linear
approximation considered here, d.c. quantities contribute terms in
the power expression which either have a zero time average or re-
present the ohmic losses associated with the drifting electron
distribution. The attenuation (amplification) factor for ultrasonic
waves is obtainedvfrom [20] by dividfng by the acoustic energy flux.
Thus

a =P/ (3p|ul?)
where a is the attenuation.

Rather than evaluating the attenuation with both self-consistent
field and deformation potential coupling, we consider two limiting
cases. In the first limit, the deformation potential is assumed to
be negligible compared with the comparable electromagretic coupling

' _ lhnne? . . . . . .
energy 2 This assumption is valid up to high frequencies
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(~ 10 Ghz) in metals. In the second limiting case the deformation

. . Lnne? .
potential is assumed to be much greater than ——ai—- and hence is
the dominant coupling mechanism. This is a good assumption at

high frequency in semiconductors.

First we consider longitudinal waves in metals and neglect the
deformation potential. The attenuation of longitudinal waves is
found by substituting [10a] and [13] into [20]. |If the deformation

bri

potential is set equal to zero and € = 1 +-7;— 04> then

' 1d
[21] o, = 2 Re o (- Ox_
£ pST :za Y%, :

This'expressioﬁ should be compared with [16a] in Section 1.2, the
analogous expression in the absence of a d.c. field. The attenuation
may be evaiuated by substituting the appropriate transport tensors
given in Section 1.4, into [21]. For a three dimensional metal to

the lowest order in S/vF, for w<« oi and A = qf, the result is

_ nm A2 tan~l A _ _
[22] %2~ oSt [}(A - tan™1 A) (1 - w) 1]

for arbitrary A, where u = 9 Vg /w. For A< 1 eqn.[22] reduces to

= nm_q_ LI -
“ﬂ’ps-c[“+15/‘ (1 “)]

and for A>» 1

nm LS

a£=5—sjr- 61\(1".11).
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Similarly, by substituting the traﬁsport tensors for the one and
two dimensional metals from Section 1.4 into eqn.[21], one obtains
the attehuation for the lower dimensionality metals in a d.c. electric
field. The results are summarized in Table |1 for arbitrary A in
the w < oi limit. The three dimensional result [22] is identical
with the expressions obtained by Spector (1962), in the appropriate
limits. o |
TABLE 1|1

Attenuation in 1, 2 and 3 Dimensional Metals in a D.C. Electric Field

nm . :
<pST unlts>

1D : 2D 3D
A2 (1 - y) A2 tan”l A (1 - w)
H 2(/1 + 02 - 1) 1 3(A - tan"! A -

In the absence of a deformation potential, the d.c. electric field
has no significant effect on the attenuation of transverse waves. To

show this, substitute [17] and [18] into [20], then
. 5
at=p—7r- Rez -8—;

Y

2
where % =] — (—) 00 . To lowest order in S/vF the attenuation is

the same as in the zero field case discussed in Section 1.4.

In conventional metals p must be very small compared with one in

order to avoid unrealistically large ohmic power dissipation. There-
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fore, it follows from [22] that unless p > 1 can be achieved,
acoustic amplification through interaction with a d.c. field is
impractical in metals, except possibly at low frequencies (A < 1).
However, in this case there is an additional complication. In the
low frequency limit in the presence of a large d.c. field the
attenua&ion becomes sensitive to a second order term in ie such as
the acoustoelectric current (Mikoshiba, 1959). For example if p ~ 1
then the. self-consistent field E; ~ (u/S) A2.Eo. Since the_strain
u/S < 107° and A<« 1, the self-consistent electric field will be
much smaller than the d.c. electric field Eo' The large d.c. field
coupled with a small second order d.c. term in ie coulid give rise to

a significant contribution to the attenuation, not included in [22].

For maximum acoustic gain one would like a material with a large
electron-sound wave coupling, high mobility carriers, and a relatively
low carrier density to limit the ohmic losses. These characteristics

are available in some semiconductors.

In non-piezoelectric semiconductors we expect the deformation potential
to be the most important coupling mechanism between the electrons and
the sound wave. For deformation potential coupling the attenuation of
longitudinal waves is‘found by substituting [13] into [20] and assuming
q%Cxx

DXX = Tmne? > 1. Thus

e -1
_ _hm 2 O
[23] ap o5t Dyx Re [f?—;gi] .
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In order to evaluate this expression one needs to know the transport
tensor components og and Ri, which are defined by the integrals
following [6]. After doing the integrations with Boltzmann statistics

for the electrons as in Section 2.2, we find that in the limit wry < 1

o

[24] ‘cg = T—_-—-?-w—Y—T- a% [a - /1 exp (51_1?) {1- -9 (%)}]

where a = gf/(1 - iwyt) and the mean free path £ is defined- in terms
of a thermal velocity as £ = (ZkT/m)%T, and

o(x) = —‘%—Jmexp ( -t2) dt .
X

In the quantum limit in which gf,wt > 1, the conductivity is

2 d \2 d
[25] ci —5%1 v <%——> - §___]
q Vth Vth

;
th = (kT/M)* and Ve 7 S has been assumed. In most semiconductors

the thermal velocity of the electrons Veh is much larger -than the speed

where v

of sound S for temperatures above liquid helium temperature. The x com-

ponent of the diffusion vector Bé is related to the conductivity by

d £2 o

- q x

[26] Rx iwyt (1 - wyt) 20
(o]

and the other components of 5? are zero. The attenuation of longitudinal
waves can now be evaluated in the low frequency limit (q€ « 1) and in the
quantum limit (g€ >» 1) by substituting [24] and [25] respectively into

[23] and [26]. In the q€ « 1 limit
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woT

C_\? (gR)™ (1 - )
27 =m<_,>_<5>
' P

. 1
where R = [kT/(hTrnez)]2 is the Debye-Huckel screening length and

wp = (hnnez/m)% is the plasma frequency. Similarly in the q€> 1

limit
c 2
(28] «, = 3ﬁ£ nm < xx> gl (1 - )
£ 2 pSt \ KT 0 + (qR)'2>2
for S« v

th’

Thé above procedure will now be applied to transverse waves in
semiconductors. The attenuation of transverse waves is found by
/ substituting the current expressions [16] and [18] and the electric
field expressions [15] and [19] into the power equation [20]. In
the éase ny:» 1, the current and field parallel to the propagation
direction give the important contribution to the attenuation. The

attenuation is given by

.= —r-]Ln- 2 € - ‘
[29] % T oSt ny Re [TSLj?r—].
€

A comparison of this result with the corresponding result for longi-
tudinal waves, [23], reveals that the two are identical except that

the diagonal component ny

)

of the deformation potential tensor is

replaced by the off diagonal component ny. Accordingly the qf < 1
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.and g€ > 1 limits given in [27] and [28] respectively, also apply

to transverse waves provided that Cxx is replaced by ny.

Althoﬁgh the preceeding qttenuation expressions have been derived
assuming deformation potential electron-sound wave coupling, they
may be'readily modified to include a piezoelectric coupiing constént.
In piezoelectric materials such as CdS where the piezoelectric inter-
action is much larger than the deformation potential interaction af
all attainable frequencies, the deformation potential factor quy can
be replaced by edxy, where dxy is the pjezoelectric con;tant. When
this replacement is made the expression for the attenuation in the low
frequency limit [27] reduces to that obtained by White (1962) using a
different method. Note that in the regime in which the deformation
potential {or piezo"1ectric)coup]fng is dominant, ultrasonic waves
are amplified when the electron drift velocity in the direction of
the sound propagation is greater than the sound phase velocity. This
amplification has been observed in CdS (Vrba and Haering, 1973) and

the measured acoustic gain is consistent with eqn.[27] (Hughes, 1975).

3.4 Conclusion

To summarize, we have outlined a transport equation approach to the
problem of acoustic amplification in a d.c. electric field, that is
much less complex than any that is currently available (Spector 1962,
1968). The new treatment duplicates the results of the earlier work
and is simple enough to be readily generalized to apply to one and

two dimensional metals. Furthermore the method is not restricted to



metals and can be easily applied to semiconductors, unlike the
earlier treatment. In our calculation there is no need to make
any special assumptions about the direction of the d.c. drift

field.
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PART B

MEASUREMENTS ON TTF-TCNQ
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CHAPTER !

Experimental Method

1.1 Capacitive Measurement Technique

Capacitive transducers have been widely used for exciting and
detecting small amplitude vibrations (Barmatz and Chen 1974, Cantrell
and Breazeale 1977, MéGuigan et al 1977). The th main reasons for
the popularity of capacitive transducers are their practicai simplicity
and high sensitivity to small displacements. In the conventional ca-
pacitive displacement detector, a large d.c. bias voltage is applied
between the test object and a nearby electrode. Oscillations in the
position of the test object will modulate the capacitance between the
test object and the electrode and cause a current to flow in‘a large
series resistor. The voltage signal on the resistor becomes progressively
smaller and harder to measure as the frequency of oscillation of the
test object is lowered and the pickup capacitance decreases. In this
paper we describe an alternative capacitive detection scheme which does
not significantly lose sensitivity at low frequencies and low capacitance

values.

The new approach to the capacitive vibration pickup was designed to
make accurate sound velocity and absorption measurements in single
crystals of TTF-TCNQ. A capécitive technique was chosen to avoid
having to make good low loss acoustic bonds to the small and somewhat
irregular TTF-TCNQ crystals. In order to be able to see longitudinal

modes  in the elongated TTF-TCNQ platelets, the pickup transducer must
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operate effectively with a total capacitance of less than 0.1 pf.
In the remainder of this section we describe the new capacitive
displacement measuring technique, and the electrostatic vibration

excitation scheme.

(i) Electronics

Acoustic resonances were excited in the samples elec£rostatically
by relying on the force between the plates of a charged capacitor.
As shown schematically in Fig. 15 the left hand end of the sample
forms one side of the capacitor and a néarby electrode forms the
other side. When this capacitor is driven by the oscillator shown
as eq in Fig. 15, there is a periodic force on the sample. This
cscillator - & frequency synthesiker - is operated in the Trequency
range 0-10 MHz. To increase the force on the sample the synthesizer
output voltage is stepped up by a factor of four to a maximum of
110 V peak-to-peak by a Vari-L,LF-452 wideband transformer. To
further increase the driving force and to reduce the relative importance
of the second harmonic component of the driving force, a d.c. bias
of up to 40O V can be superimposed on the a.c. signal across the

drive capacitor.

The vibration of the sampie is detected by using an rf carrier
signal to measure chaﬁges in a pickup capacitance. |In the simplest
case of a parallel plate capacitor, tﬁe capacitance will be inversely
proportional to the distance between the sample and the pickup electrode.

When the sample moves the detector capacitance will change leading to



a corresponding change in its impedance. This impedance variation
may be detécted using the circuit shown schematically in Fig. 15.
The carrier signal generator marked e. in Fig. 15 operates in the
frequency band 300-1000 MHz, and its output is connected to the
sample. When the sample vibrates, the varying impedance of the
pickup.capacitor, amplitude modulates the rf signal flowing through
it. The amplitude modulation on the carrier is recovergd by a
Schottky barrier diode detector and low pass filter (see Appendix

§ 1.(i) for circuit diagram). Hence any displacement of the sample

is reflected in the diode output voltage.

Although this simple detection scheme is adequate for many purposes,
the sensitivity can be improved by using a bridge circuit as shown
schematically in Fig. 16. In>this circuit the rf signal transmitted
through the sample pickup capacitor is compared with the signal through
a stationary dummy capacitor. |If the sample and dummy capacitances
are equal the output from the balanced/unbalanced wideband transformer
(vari-L, HF-122) will be zero. Of course the inductive and resistive
components of the impedance in the two.arms must also be equal for a
null output. |In principle a tuned transformer would give better
sensitivity, however, a wideband transformer was used in the TTF-TCNQ
measurements because it is more convenient when dealing with a variety
of samples of different size and shape. The output of the transformer
is followed by a low noise UHF amplifier. (Avantek, AMM-1010) and then

by a diode detector.

The bridge improves the sensitivity of the detector for two main
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reasons. The first reason is that the rf signal generator noise is
cancelled out when the bridge is balanced, since this noise is the
same iﬁ'both arms. Secondly the signal is a small deviation from a
null whereas without the bridge the signal is a small ripple on top
of a large rf carrier. Since the bridge output signal is small it
may be amplified in a low noise rf amplifier before detection. This

preliminary amplification reduces the importance of diode noise.

The close proximity of the detector electrode to the drive electrode,
particularly for small samples, can lead to proBlems with electrical
pickup. Even though both electrodes are shielded there is a substantial
direct capacitive pickup from the drive electrode to the detector
electrode. This spurious pickup can cause problems; however, it may
be filtered out with a shorted section of coaxial cable as shown
schematically in Figs. 15 and 16. The length of the coaxia{ cable
is chosen so that it is a quarter wavelength long‘at the frequency
of the rf carrier. The quarter wave short acts as an open circuit
at the carrier frequency and as a short circuit at the lower drive
frequency. If a quarter wave short is connected to the bridge output,
the direct pickup is eliminated before it can cause problems. A
similar coaxial short at the output of the rf generator prevents any

backflow of the drive signal into the rf oscillator.

As described above, when the drive oscillator is turned on the sample
will vibrate and generate a signal that is proportional to the vibration
amplitude at the output of the diode detector. This signal is detected

using a heterodyne detection scheme, outlined in the block diagram in
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Fig. 17, which we now describe in detail. The first step is to amplify
the diode output by about 40 db using a PAR 114 (plug-in 119) low noise
preamp. The PAR preamp is used when the drive frequency is in the range
100 Hz to 1 MHz. For drive frequencies between 1 MHz and 10 MHz a MOSFET
amplifier (see Appendix § 1.(ii) for circuit diagram) was used, followed
by Avantek wideband amplifiers UA 105 and UA 106. The total gain for

this combination was also about 40 db.

The amplified signal then goes info a double balanced mixer (Minicircuits
ZAD-6) together with a reference signal from the drive oscillator. Since
the reference signal and the signal coming from the vibrating sample are
normally at the same frequency, the mixer will have a d.c. output whose
amplitude will depend on the relative phase of the two input signals.

The mixer output will be a maximum for zero phase difference and zero

for 90° phase difference. Clearly the detector diode and amplifiers

will introduce various unspecified phase shifts into the signal coming
from the sample. To compensate, the phase of the reference signal can

be adjusted by a phase shifter (see Appendix § 1.(iii) for circuit diagram).
The mixer output is amplified (see Appendix § 1. (v) for the amplifier

circuit diagram) and fed into a Nicolet 535 signal averager.

In operation the frequency synthesizer steps aﬁtomatically through a
preselected frequency interval in 100 or 1000 steps at a rate of 1, 3 or
10 ms per step. The signal averager stores the mixer output at each
step so that successive frequency sweeps may be accumulated to improve

the signal to noise ratio.
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Fig. 19 - Photographs of mounted samples

Scale: 8 x actual size
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Fig. 21 - Photograph of the outside of the sample holder with the
door plate removed.
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Fig. 22 - Photograph of the inside of the sample holder.
Note the a axis sample between the electrodes.

99



100

In practice one observes a series of peaks in the output as a
function of the drive frequency. These peaks correspond to acoustic
resonances in the sample or its support. The peak width, amplitude
and centre frequency of these resonances are the quantities of inter-

est.

(ii) Sample Support

In this section we describe the sample support mechanism and the
ancillary low temperature apparatus. In ail cases the TTF-TCNQ
samples were glued to a conducting 5upp6rt with Dupont 4929 silver
paint which was diluted with 2-butoxyethyl acetate to lengthen the
drying time. Two basic mounting configurations were used as shown
in Fig.1% and the photographs h?ng.TS. i the “vibrating reed"
configuration (Fig.18a) one end of the sample is glued to a brass
support. In the other configuratién (Fig.18b) the sample is attached
to a pointed tungsten wire at the centre of its broad crystallographic
a b face. 1In this case the glue contact spot is typically about .15 mm
in diameter. A variety of different size tungsten wires were used from
.003" to .015" in diameter. A point was etched on the wire electro~

lytically, in a IM NaOH solution.

The mounted sample is held in a copper box between moveable shielded
electrodes. A cut-away view of a sample mounted in the box is shown
in Fig.20, and photographs of the outside and interior of the box are
shown in Figs.21 and 22. Its main upper part was machined out of a single

piece of copper to reduce rf leakage and improve the mechanical integrity
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of the electrode drive 6echanism. The electrodes can be removed

from the box, so that different shape electrodes can be installed

to match the size of the sample and the type of mode to be excited.
Two of the electrodes used are shown in Figs.23 and 24. The notched
electrode in Fig.2% was used with very small samples. The spacing
betweeﬁ the electrode and the sample is adjusted to .01 - .10 mm

by turning nylon spur gears threaded onto the 0-80 threaded brass
shaft of the electrode. The spur gears in turn are driven by worms.
One rotation of the worm gear moves the electrode by .013 mm, so that
fine adjustments can be made to the spacing betwéen the sample and

‘the electrodes.

in addition to the electrode drive mechanism the copper box also
contains tne transtormer and dummy sample needed for the bridge de-
tection scheme described above (see Fig.éO). The entire assembly is
suspended by three 3 mm semi-rigid coaxial cables inside an evacuated
stainless steel can, as shown in Fig.25. |[In addition, there are three
pieces of thin walled stainless steel tubing connected to the worm
gears. The three pieces éf tubing profrude out of the tecp of the
vacuum can through 0 ring seals, allowing adjustment of the positions
of the electrodes when the sample chamber is evacuated. For low tem-
perature measurements helium exchange gas is introduced into the can
and allowed to circulate inside the copper box which contains the
sample. As long as the pressure is g 0.5Torr, the exchange gas does
not appreciably damp the sample vibration. During a low temperature

run .the vacuum can. is normally suspended above the liquid level, in a



glass dewar containing liquid helium (Fig.25). |In this mode of

operation four litres of liquid helium will last about 24 hours.

The diode temperature sensor and heater on the top of the cobper
sample box (Fig.20) are used in conjunction with a Lakeshore Cryo-
tronics diode temperature controller to maintain the copper box
temperature.constant to < 10 mK. The diode (#D2755) was calibrated
comﬁercia]ly and this calibration is given in the Appendix § 1. It
was checked at liquid helium, liquid nitrogen and roughly at room
temperature. In additidn the diode was used to make four probe d.c.
conductivity measurements as a function of temperature on a TTF-TCNQ

crystal. The measured phase transition temperatures were consistent

with earlier measurements_(Tiedje 1975).

1.2 Sensitivity of the Measurement Technique

(i) Minimum Detectable Length Change

The sensitivity of the apparatus to small displacements of the sample

was determined by driving an a axis sample in its fundamental flexural

mode with a known driving voltage. When a force F is applied to the
free end of a cantilever beam of length £, according to elementary

beam theory the resonant displacement of the free end is

Q Fe?
3

Ad = Fi

where E is the Young's modulus, I is the area moment of inertia of

the crossection of the beam, and Q is the quality factor of the
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mechanical resonance. The minimum detectable displacement is deter-
mined from the signal to noise ratio (SNR) for a known driving force
F by

Ad = Ad/SNR.

min

The force on the end of the beam can be.estimated From the force

on the plates of a charged parallel plate capacitorvwhich is

where A is the area of the plates, d is the plate separation and V

is the veltage on the capacitoer. .

We consider Sample #22 with dimensions 0.335x0.204x0.018 mm as an
example. This sample had its fundamental flexural mode at 118 khz,
with an air damped Q of 100 at room temperature. The drive and de-
tector electrodes covered the bottom third of the sample and were
separated from the sample by approximately 0.08 and 0.02 mm re-
spectively. Using the room temperature a axis Young's modulus of
3.1x1011 dynes/cm? (see Chapter |l below), the measured driving
voltage (10V) and signal to noise ratio (176), we calculate that the
minimum detectable displacement is Adpjn = 8x10~!} cm. For the SNR
of 176 quoted above, the signal averager output noise bandwidth was
1.2 Hz. According to the parallel plate formula, the pickup capacitor

had a capacitance of 9x10-3 pf.



(ii) A.C. Method

In this section we examine some of the practical limitations to
the sensitivity of the capacitive displacement measuring technique.
We consider the simplified model of the detector circuit shown in

the schematic in Fig.26 below.

Fig. 26 - Capacitive Vibration Detector - A.C. Method

The noise source e, is assumed to be due to Johnson noise in the re-
sistive element in the LC resonant circuit, in which C is the pickup
capacitor. We have ignored the generator noise, because in principle
it can be cancelled out by a suitable bridge detection scheme. We
also assume that the effective impedance of both the generator and
the amplifier input can be adjusted to any desired value by impedance
matching using transformers, for example. The matching circuitry

has been omitted in Fig. 26 for clarity.
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For optimum noise performance most rf amplifiers require a source
impedance about equal to their input impedance. This condition will
be satisfied at resonance provided Ry = Ry + Rg. Furthermore; we
assume that the amplitude of the rf carrier signal is limited by the
power dissipation in the sample, or equivalently by the power dis-
sipation iﬁ the resistor Rp. In this situation the optimum
transformed generator impedance is zero. Normally one detects changes
in the pickup capacitance by monitoring the amplitude of the trans-
mitted rf signal. In this case the circuit is most sensitive when

" - 1 .
the generator frequency Wgen = We (1 + Ea;) where wg is the resonant
frequency of the LC circuit and Qg is the quality factor for the

electrical resonance.

When all of the above conditions are met the minimum detectable

change in capacitance is

) AC_ 2 k(T + Ta)Av]%

where T is the temperature of the resistor Ry, T s the noise
temperature of the amplifier (Motchenbacher and Fitchen 1973) and Av
is the output noise bandwidth of the detector. |In eqn.[1] ¢ is a
factor which sets the desired detection threshold for a capacitance
change. For example when ¢ = 1, a signal is considered to be detected
if it has an amplitude equal to the rms noise level. 1In this section
we use [ = 2. P is the power dissipated in R,. An expression similar

to [1] has been obtained by Braginskii and Manukin (1977).
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In practice the power dissipation is not usually a limitation.
The limiting factor is more likely to be the capacitor breakdown
voltage. In this case, when the breakdown voltage is Vhax» the

minimum detectable capacitance change is

RWRL:
(2] %g_ . b2k (T + Ta)Avl_ _ Ad
(we € Qe)? Vpax

where Ad/d is the corresponding fractional change in the spacing of

the capacitor plates.

An order of magnitude estimate for the maximum Q. of an LC resonant
circqit at room temperature is 100, taking into account coupling
losses. Much higher Qga's could be obtained usina superconducting
circuits. For example, Qe > 10% can be achieved for superconducting
LC circuits and even higher Qg's are possible in superconducting
cayity resonators (Hartwig 1973). However, we will consider room

temperature circuits only.

It is interesting to compare the experimental sensitivity to the

theoretical limit [2]. |If the following values are used: T = 300K,

Ta

Qe

limiting displacement is Ad = 2x10"13 VAv cm. Experimentally the rf

170K (Avantek AMM-1010 amplifier), we = 4 x 102 s~1, ¢ = 9x10-3 pf,

]

100 and Vpax/d = 105 V/cm (Cantrell and Breazeale 1974) then the

field on the detector capacitor is likely to be at least an order of
magnitude less than 10° V/cm. Accordingly the experimental sensitivity
of 8x10~1! VAv cm is probably only about an order of magnitude less than

the limiting value predicted from [2], using the actual rf field.
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By judicious selection of the resonance frequency we, (we C Qe)'1 ~ 1
can be achieved at room temperature for a wide range of pickup capa-
citance. For (we € Qu)"1 = 18, ad = 1071 VAy cm. Braginskii et al
(1971) have built a detection system capable of measuring Ad =‘3x10'1“

YAv cm with C ~ 2000 pf and we = 3x107 =1

(iii) D.C. Method

For comparison purposes we now consider the d.c. analogﬁe of the
capacitive disb]acement measuring technique described above. In the
"d.c. approach, a constant bias voltage rather than an a.c. signal, is
used as a probe to measure changes in the pickup capacitance. A
schematic of the detector «ircuit is.shown in Fig. 27 below. ' Changes
in the pickup capacitance C alter the stored charge and induce currents
in the bias resistor Ry. Accordingly any vibration of the sample is

reflected in a voltage on the bias resistor.

c

i)t
Al

= ‘ Ry é A

I

Fig. 27 - Capacitive Vibration Detector - D.C. Method
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There are two main noise sources in the circuit shown in Fig. 27.
They are the Johnson noise in the bias resistor and the amplifier
noise. In order to estimate the sensitivity of the detector some
information about.the noise performance of the amplifier input stage
is required. For vibration frequencies up to 10 MHz at least, the
best available device for the input stage is a junction field effect
transistor (JFET). To be specific, we will consider a Siliconix
2NL4867 transistor which is a good low noise commercially available

device.

A noise equivalent circuit for the capacitive detector using an

amplifier with a JFET input stage, is shown in Fig. 28 below.

1L

17

NV
(—)
N

ONERR0

jwvvce c Rp ib Ci Ri in

Fig. 28 - Noise Equivalent Circuit

The Norton equivalent circuit has been used for the bias resistor noise

generator. The mean-square resistor noise current TI?is LkTav/Ry .



The current signal generated by the oscillating capacitance is repre-
sented by an equivalent current source jwACV, where w is the mechanical
vibratién angular frequency. At midband the rms voltage noise e for
the 2N4867 JFET is 2x10-9 V YAy and the current noise i,

Below 30 hz e, is dominated by 1/f noise and above 10 khz i, increases

n

linearly with w.

From the equivalent circuit in Fig. 28 we find that the minimum

detectable capacitance change is

2

AC_ & ). 2, .2 2 AN E 2 , %]% _ Ad
[3] ¢ ~wev )'b Tt en (R;+Rb> vt (C+ G =

for a 1hz bandwidth. The highest sensitivity is achieved bv using

the largest possible bias resistor Ry up to a resistance of [w(C + C;)]“l
or where the current noise i dominates, at which time the sensitivity
becomes independent of Ry. A reasonable upper limit for Ry is 108 Q.

We assume the input resistance of the JFET is larger than this and that
C; =5 pf. If we substitute the circuit parameters given above into [3]
and use C = 9x10~3 pf and w = 7.4x10° s~! corresponding to the first
flexural mode of Sample #22 then the minimum detectable displacement is

Ad = 10710 cm when the bias field on the capacitor is 10° V/cm.

A contour map in the (w,C) plane of the displacement measuring sen-
sitivity of the d.c. capacitive technique is shown in Fig. 29. From
the contour map we conclude that the d.c. method works best for high

vibration frequencies and large pickup capacitances. In this regime

is 3x10"15 A Vay.

11
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103 104109 166 167 158

Fig. 29 - Minimum detectable displacement Ad as a function of
frequency f and pickup capacitance C using the d.c.
method. The contour labels are in centimeters.
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its sensitivity is comparable with the a.c. method where Ad ~ 107 '%/av
cm. However, the d.c. method is less satisfactory for low vibration

frequencies and small samples for which the pickup capacitance is

necessarily small.
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CHAPTER 11

The Modes of Vibration of TTF-TCNQ Crystals

2.1 Low Frequency Modes of an elongated plate

The acoustic mode spectrum of an elastic body is exceedingly complex
even for objects with simple shapes. It is feasible to calculate the
acoustic resonance frequencies for only a few speciaT cases. Provided that
the material is elastically isotropic, the infinite medium, the infinite
thin plaFe, the infinite cylinder, and the sphere are soluble. For
arbitrary crysta]iographic symmetry only the infinite medium is soluble,
'althoqgh the other cases are soluble for certain types of elastic ani-
sotropy. It is interesting to note that the acoustic resonator problem
is much more complex than the comparable electromagnetic resonator
problem. An intuitive explanation is that there are only two electro-
magnetic waves possible in an infinite medium, namely two linearly
polarized transverse waves, whereas in the acoustic case there are
three waves possible - two transverse waves and one longitudinal wave.
The acoustic resonator we are interested in here is an eiongatéd,
approximately rectangular parallelopiped with monoclinic symmetry.
Although it is not possible to calculate all of the resonance frequencies
of a TTF~-TCNQ crystal, it is possible to obtain some very good approxi=

mations for the low frequency modes.

To begin with let us assume that TTF-TCNQ is elastically isotropic,

in order to simplify the discussion. The complications arising from
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elastic anisotropy will be discussed later, although it will turn

out that TTF-TCNQ is not far from being isotropic, elastically.

(i) Flexural Modes

The lowest frequency mode of the elongated platelet is a bending
(""flexural') mode with displacements perpendicular to the broad
face of the platelet. Since the TTF-TCNQ platelets are geometrically
similar to an ordinary plastic ruler, tﬁe low frequency modés can be
readily visualized with the help of a ruler. The ruler has three
‘different types of modes which could be classified as flexural. The
lowest frequency type (labelled Fbc) corresponds to bending along the
length of the ruler with displacements perpéndicular to the broad
face. The second type (Fba) is the same as the first except that the
displacement is perpendicular to the edge of the ruler. The third
type (Fac) is a bend across the width of the ruler with displacements
perpendicular to the broad face. The rationale behind the mode

labelling scheme will become clear later.

The propagation of a flexural wave along a beam whose long axis is
parallel to y, is described by the wave equation
32y EI 3%y
+— ———— =
[1] at2 . pA oyh 0
in the limit that the wavelength is long compared to the beam thick-

ness. In equation [1] u is the displacement of the beam centre line

from the equilibrium position, A is the crossectional area of the
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beam, and E is its Young's modulus. The area moment of inertia I

is the moment of inertia of the beam crossection about a line through
the beam centre line which is perpendicular to both the direction of
the displacement u and the long axis of the beam. Consider the foot
long ruler again as an example. If t is its thickness and w its
width then T = t3w/12 for the soft Fpe modes and 1 = w3t/12 for the
stiff Fp, modes. Equation [1] also applies to flexural modes in thin
plates. For an isotropic plate with Poisson's ratio v and a width
much larger than a flexural wavelength, the Young's modulus E in [1]

is replaced by the plate modulus E/(1 - v2).

The flexural resonance frequencies are determined by looking for the
solutions of [1] which satisfy the boundary conditions or the ends of

the beam. The resonance frequencies are given by (Timoshenko 1974)

m.\2
@ e/ (7)
where £ is the length of the beam and mp is the nth oot of a transceden-
tal equation which is specified by the boundary conditions. The boundary
conditions of interest here are ''clamped-free' for the vibrating reed
(cantilever beam) configuration and "free-free" for the central pin
support. For these boundary conditions the first four m, values are

given in Table 1|

TABLE 11

Flexqral Mode Parameters

Mo m my’ m3
"Clamped-Free 1.875 4,694 7.855 10.996
Free-Free 0 L.730 7.853 10.996

(n + H)n 1.571 L.712 7.854 - 10.996
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and the corresponding mode shapes are shown in Fig. 30.

n Clamped-Free n Free-Free

0 §i v
3 A /"\
i \% \] 2 [\\ \l

Fig. 30 - Flexural Mode Shapes

For large n, m, asymptotically approaches (n + %)w.

As pointed out earlier the one dimensional wave equation [1] is
only a good approximation if the flexural wavelength is long compared
to the beam thickness. Furthermore the approximation will break down
if the shear modulus is very small. The importance of the shear
modulus is best illustrated by considering the extreme case of a pad
of paper where the shear force between sheets is nearly zero. In

this case the flexural rigidity of the pad of paper is dominated by



the shear modulus between sheets and is therefore close to zero.
In less extreme cases the contribution of the shear modulus is
negligible, and the beam rigidity is determined entirely by the
compression of the concave side of the beam and fhe extension of
the convex side. Nevertheless, because of the chainlike nature of
the crystal structure of TTF-TCNQ it has been suggested that the

interchain shear moduli may be unusually small (Barmatz et al 1974).

The shear modulus and finite beam thickness can be taken }nto
account by adding some more terms to [1] (Timoshenko 1974). |If
‘the modified differential equation is solved for the resonance fre-
quencies, one finds that the additional terms in the equation reduce
the effective Young's modulus for the nth flexural mode in {2], by

the factor (Goens 1931)

[3] 1+K (%)2 m2 —E—

where K ~ 1 and G }s a shear modulus. The beém thickness t is measured
in the diréction of the beam displacemént during bending. In order to
obtain an exact expression for the resonance frequency of even the
lowest frequency flexural mode one would have to solve a three dimen-
sional differential equation and look for solutions which match the
boundary conditions over the entire surface of the beam rather than

just at its ends.

In the samples which are supported by the central pin, the post at the

centre provides an additional constraint which is not easily dealt with

118
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using simple beam theory. However, for the lowest flexural mode a
semiquantitative estimate of the effect of the central support can
be obtained from the numerical calculations of Southwell (1922) for
centrally pinned discs. The effect of even a very small pin contact
area is to raise the zero frequency n = 0 mode of a free-free beam
up to about 80% of the n = 1 mode frequency. The flexural modes
with a mode at the centre and the higher frequency flexural modes

are not affected very much by the pin.

(ii) Torsional Modes

We now consider the low frequency torsional (T) modes of the
elongated piateiet (or ruler). The displaceﬁent of the platelet
for the torsional modes we are interested in here, is a volume con-
serving strain in which neighbouring crossections perpendicular to
the long axis of the sample are twisted relative to one.another.
The propagation of torsional waves along a beam which is long com-
pared to its lateral dimensions is described by the wave equation

(Landau and Lifshitz 1970)

2 . ¢ %

at2 pIp dy2
where the long axis of the beam is along y as before, and ¢ is the
angle of rotation of a crossection. Ip is the area moment of inertia

of a crossection about its centre, and C and p are the torsional rigidity

and density of the beam respectively. The torsional resonance frequencies
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for a beam of length £ are given by

' C
s /T

For thé clamped-free boundary conditions n is an odd intéger and for

the free-free boundary conditions n is an even integer.

Unless the crossection of the beam is circular, plane crossections
become warped under torsion., Because of this feature, fhe torsional
rigidity is a complicated function of the shape of the crossection
(Timoshenko 1951). The torsional rigidities for some simple shapes
are given by Landau and Lifshitz (1970). For a beam with a
rectahgular crossection of width w and thickness t < 0.2 w, C is given

by (Timoshenko 1951)

gt o192t
[6] C=63 (1 s w).
In the t« w limit, the torsional resonance frequencies in [5] reduce

to

where G is the shear modulus, as before.

In theory, if the lateral dimensions of the beam are comparable to a
torsional wavelength then a correction factor analogous to [3] is needed
in the expression for the torsional resonance frequencies. In practice

the correction facter does not change the frequency much even when the
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lateral dimension is equal to a half wavelength. Furthermore an
approximate theoretical calculation of the correction factor is
apparently in disagreement with experimental results (Behrens 1968).

This correction will be ignored here.

(iii) Comments on a Short Plate

We now describe qualitatively the low frequency modes of a plate in
which the width of the plate is comparable td its length. This situation
is of interest because it illustrates what happens to the modes of an
elongated plate when the wavelength is comparable to its width. In
addition some measurements were made on nearly square platelets cut off

the end of standard elongated TTF-TCNQ crystals.

The low frequency modes of a platelare usually f]Tustrated by Chladni
figures, which are the patterns of nodal lines of the modes (Waller 1961,
Leissa 1969). The experimentally determined patterns of nodal lines for
the first few modes of a square cantilever plate énd a rectangular free
plate are shown in Fig.31 and 32 respectively. Observe that the first
mode in Fig.31 appears to be purely flexural, the second one torsional
and the third one flexural again. The fourth mode looks like a trans-
verse flexural mode, bﬁt it is not purely flexural because of the edge
clamp. Although the frequency of this mode cannot be calculated accurately
using the simple beam formulas, the frequency of the first two modes can
be calculated with reasonable accuracy from [2] andv[S], since the
vibration wavelength for both modes is at least four times the width of

the '"beam'. In addition the first two modes are well separated from
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Fig. 32 - Modes of a Rectangular (2:1) Free Plate
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Fig. 31 - Modes of a Square Cantilever Plate
3
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their neighbours in frequency, making them easy to identify experi-

mentally.

An examination of the nodal patterns in Fig.32 shows that just as
for the cantilever plate, the higher frequency modes are likely to
be a ;émp]ex mixture of torsion and flex. It is difficult to obtain
information about the elastic moduli from these modes because of their
complicated nature. We now temporarily leave the subject of torsional
and flexural vibrations and investigate another simple type of vibration

of a long plate.

(iv) Elongational Modes

The final type of mcde which we will coiisider is the longitudinal
stretch or elongational (L) mode. The propagation of an extensional
wave along a rod oriented parallel to the y axis, is described by the
wave equation
[7] 32u - E 32u

ot2 p 0oy2
where u is the displacement of the rod along its axis. The Young's
modultus E appears in [7] rather than a bulk wave longitudinal modulus
because the rod is free to expand or contract laterally depending on

whether it is being compressed or extended longitudinally.

As before, the resonance frequencies are obtained by looking for

solutions of the wave equation which satisfy the boundary conditions
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Fig. 33 - Arrangement of TTF and TCNQ molecuies in the a c plane.
The solid dots are tipped up above the plane.



on the ends of the beam. For free-free boundary conditions the re-

sonance frequencies are
- E n
(8] n = /; 20

For short beams and high frequencies the longitudinal acoustic wave-
length may Ee comparable with the transverse dimensions of the beam.
in this situation, the one dimensional wave equation [7] is no longer
a good approximation just as the one dimensional equations for the
flexural and torsional waves are no longer a good approximation in
the same limit. Provided the wavelength is not too short, the elon-
gational resonance frequencies may be corrected by dividing the

Young's modulus E by the factor (Love 194k)
[9] 1 + l.(ﬂﬂ 2 v2 (t2 + w?)
3 \24
for a beam with Poisson's ratio v and a rectangular crossection.

(v} Crystallographic Symmetry

Up to now we have assumed the vibrating plate or beam to be made of
an isotropic material. However, the TTF-TCNQ samples on which the
measurements were made are not isotropic; rather, they are monoclinic
crystals (space group P21/C+). The positions of the TTF and TCNQ

molecules in the crystallographic a ¢ plane are shown in Fig. 33

1-'This notation is explained by Henry and Lonsdale (1951).
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(Blessing and Coppens 1974). Fig. 2 shows the segregated stacking
arrangement of the molecules in the b direction which is largely re-

sponsible for the unusual electrical properties of TTF-TCNQ.

All of the UBC grown TTF-TCNQ crystals have the unique ( b ) axis
parallel to the long axis of the crystal and the a axis parallel to
the broad transverse dimensions. The ¢ axis is about ‘14.5° away from
being perpendicular to the other two axes; hence it is not quite per-
pendicular to the broad a b face of the crystal. This feature allows
a two fold ambiguity in the direction of the ¢ axis in a real crystal
and opens up the possibility that what appears to be a single crystal
may actually be twinned. For convenience we will use the reciprocal
lattice vector c* which is defined to be perpendicular to a and b,
instead of ¢ when discussing the vibration modes in relation to the

crystallographic symmetry axes.

Monoclinic acoustic resonators are not easy to deal with theoretically,
because in general 13 independent elastic constants need to be considered
(Auld 1973). In a beam made of a monoclinic material, the flexural modes
are coupledvto the torsional modes in a complex way, by certain elastic
constants. However, if the TTF-TCNQ ¢ axis were perpendicular to a (or
the crystal were suitably twinned), the flexural modes and torsional
modes would be uncoupled. To make the vibration problem manageable
we will assume that c is perpendicular to a. Thfs amounts to assuming
that the samples haye orthorhombic symmetry and that the crystallographic
symmetry axes are aligned along the symmetry axes of thg sample crystal.
The approximation is probably not unreasonable since the ¢ axis is only

14.5° away from being perpendicular to the a axis.
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In general an orthorhémbic material has nine elastic constants,
which may be broken down into three Young's moduli, three Poisson's
ratios and three shear moduli. The elastic moduli are most con-
veniently Aefined.in terms of the 6X6 compliance matrix Sij (Auld
1973). The Young's moduli E,, Ey and E. for the three crystallo-
graphié symmetry directions are equal to 5111’ 5251 and 5351
respectively when the a b and c* axes are aligned parallel to the

x y and z axes. Similarly the three shear moduli cyy, c55 and cgg

are equal to Sual’ 55;1 and segl respectively (Lekhnitskii 1963).

The expressions'for the resonance frequencies of isotropic beams
can be readily generalized to apply to orthorhombic beams. Let us
consider the flexural modeg first. The Young's modu[us in the
frequency expression [2] should be the modulus along the direction in
which the beam is compressed and extended during vibration. For
example, the relevant Young's modulus for the Fp. and Fpg modes is
Ep. The shear modulus which goes into the correction factor [3] is
best described wifh the help of the pad of paper analogy. |If the
beam were a stack of weakly interacting sheets, bent in its softest
direction, the appropriate shear modulus to put into the correction
factor would be the modulus against sliding of the sheets on top of
one another in a direction parallel to the long axis of the beam.

For the Fp. modes, cyy is the appropriate shear modulus. The elastic
constants which apply to the three experimentally observed types of

flexural modes are summarized in Table IV.
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TABLE IV

Flexural Mode Elastic Constants

Mode Young's Modulus i Shear Modulus T
E ' G
Fbe Ep Cuy
Fba Ep Ce6
Fac Ea Css5

refer to eqn. [2] and [3]

The torsional rigidity has been calculated for an orthorhombic beam
with a rectangular crossecticn in the books by Hearmon (1961) and
Lekhnitskii (1963). The results may be readily adapted to the two
different types of torsional modes which were studied experimentally.
In the first type of mode (Ta mode) the torsion axis is parallel to
the a axis. In this case the torsional rigidity [6] should be replaced

by
C =c¢ ..ti 1 - 192 _E C66 %
[10] 66 73 W |\ Cuy

for t $ 0.2 w and cgg ~ cyy. The thickness t is to be measured in

the ¢* (thin) direction, and the width is measured in the b direction.
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Similarly,when the torsion axis is parallel to b (Tb mode)

3
. t3w 192 t /Cep
[11] C=ces —3- (‘ T o5 ;(——c55> >

where t is measured in the ¢* as before, and the width w is measured

in the a direction.

It is trivially easy to generalize the egpression fér the elongational
mode frequencies to an orthorhombic beam. One need.on]y replace the
isotropic Young's modulus E in [8] by the b axis Young's modulus Ej.
Although only the b axis modes were meésured experimentally, the fre-
quencies of elongational modes for beams with long axes in the é or c
direction could be calculated in an exactly analogous way. Similarly,

the correction factor [9] for the b axis modc should be replaced by

53]

(Behrens 1968)

2
[12] 1+ -;- (g%) ("fz w2+ 3, tz>

for an orthorhombic beam where vy, and v,3 are Poisson's ratios defined
in terms of the elements of the compliance matrix by vj»/E5 = - s;, and

V23/Ec = T So3.

Before going on to describe soﬁe of the experimental results we first
discuss a more drastic approximation to the elastic symmetry of TTF-TCNQ.
This approximation will be useful later on in obtaining an estimate for
the bulk modulus from the experimental data. The salient feature of the

TTF-TCNQ structure is the linear stacking of the molecules along the
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b direction. Accordingly one might expect the elastic properties

to be different depending on whether the strain is parallel or per-
pendicular to the molecular stacks. The highest symmetry crystal
system for which this distinction is possible is the hexagonal

system, in which tﬁere are five independent elastic constants. A
crystalkbelonging to the orthorhombic system will have hexagonal
symmetry if two of the orthorhombic symmetry directions are equivalent.
This relationship implies that when b is the preferred direction in

a hexagonal material, the a c plane is elastically isotropic. A
necessary condition for the hexagonal symmetry to be a good approxi-
mation is that the difference between the a and c axis Young's moduli
be small, at least compared to the difference between the a and b

axis Young's moduli. The idea that the a'aﬁd c directiohs are approxi-
mately equal by comparison, is supported by recenf room temperature
compressibility measurements (Debray et al 1977) and therﬁa] expansion
data (Blessing and Coppens 1974). In conclusion a hexagonal model is
the simplest approximation to the structure of TTF-TCNQ that still

includes the essential anisotropy of the material.

2.2 Interpretation of Experimental Mode Spectrum

The expressions derived in the previous section for the vibration
frequencies of elongated plates will be used to interpret the experi-
mental mode spectrum of TTF-TCNQ crystals. As we haQe already pointed
out there are severe mathematical difficulties in calculating the

vibration frequencies of a rectangular resonator made of a monoclinic
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Fig. 34 - Experimental flexural mode spectrum. The numbered marks below the experimental trace
indicate the frequencies of the flexural modes computed from [2] using the measured
sample dimensions and a sound velocity to fit the second flexural mode.

The noise
level is comparable to the thickness of the line.
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material. However, a more serious practical limitation to the
accurate calculation of the resonant frequencies is the sbmewhat
irregular geometry of the available TTF-TCNQ crystals. For example,
the sample thickness (c* dimension) which is normally the least
uniform dimension, typically tapers off substantially near the ends.
If the ends are cut off with a razor blade a good crystal will not
vary in thickness by more than about 10% over its length. In addition,
the silver paint clamp on the end of the sample in the vibrating reed
configuration, is neither perfectly rigid nor perfectlyvuniform.
Similarly the central support point for-the longitudinally mounted
samples perturbs the free-free boundary conditions. For all of these
reasons we expect to see deviations from the idealized resonance fre-

quencies given in Section 2.1 above.
\

(i) vibrating Reed Support

The vibrating reed support configuration was uséd to study flexural
and torsional modes. An experimental flexural mode spectrum is given
in Fig.34, which shows the first four Foe flexural modes along with a
theoretical spectrum obtained from [2] by adjusting the Young's modulus
to fit the second experimental flexural mode. The first resonance in
Fig.34 appears to be weaker than the second one because it has a IoWer
Q (see Section 2.3 below) and the amplifier gain is smailer at low
frequencies. The resonance lines are antisymmetric because the phase
of the reference input to the mixer has been set to detect the component

of the sample response which is out of phase with the driving force.
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By increasing the system gain, it was possible to see the next five
harmonics in the series shown in Fig.34. in addition, six low fre-
quency Ty torsional and Fp, flexural modes were identified. By ana-
logy with the continuous dispersion curves for acoustic waves pro-
pagating along an infinitely long sample, dispersion curves can also-
be plotted for the modes of a finite length sample as a series of
discrete points. The low frequency mode dispersion diagram for a
sample in the vibrating reed configuration is shown in Fig.35. In
addition to the modes p]otfed in Fig. 35, a large number of unidenti-
fied higher frequency modes are observed experimentally up to about

1 MHz.

Three pieces of information are helpful in identifying the various
flexural and torsional modes. First, the torsional modes can be se-
parated from the flexural modes by their temperature dependences.

The torsional mode frequencies depend on a shear velocity which has

a weaker temperature dependence than the Young's modulus velocity
which determines the flexural frequencies (see Chapter Il below).
Secondly, the two different types of flexural modes (Fp, and Fy.)

may be distinguished by the way they couple to the drive and detector
electrodes. For example the Fp flexural modes are preferentially
excited if the axis of the drive and detector electrodes is aligned
parallel to the a axis. Needless to say, no matter which type of
mode is preferentially excited it is almost impossible to avoid a
slight excitation of all the other types of modes through non-ideal

sample and electrode geometry. Finally, once the modes have been
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identified as Fba» Fb

¢ or T, the frequency equations [2] and [5]

can be used to assign harmonic numbers and as a check on the Fba’

FbC and'Tb identification.

The.resonance frequencies of a thin vibrating reed can be artifi-
cially reduced if a large d.c. bias voltage is applied to the drive
or detector electrodes (Barmatz and Chen 1974). Because of the d~2
dependence of the force on the plates of a charged parallel plate
capacitor, the spring constant for a bent feed will have an electrical
component as well as an elastic component. In the technique described
here no d.c. bias field is required on the detector capacitor. However,
a d.c. bias is used at the drive electrode to increase the driving
force on the sample. The effect of this bias voltage on the frequency
of the fundamental Foe flexural mode is shown in Fig.36. The d.c.
field has a much smaller effect on the torsional and higher harménic

flexural modes.

As long as the long axis of the reed is aligned parallel with the
crystallographic b axis, the low frequency modes give no information
about the Young's moduli perpendicular to the b axis. In order to
measure the a axis Young's modulus, thin siices were cut off the end
of normal TTF-TCNQ crystals perpendicular to the b axis. The shape of
the four slices studied experimentally ranged from nearly square to
rectangular with the a dimension twice as long as the b dimension.

One end (bc™ plane) of the sample was glued to a support to produce
a small vibrating reed with its long axis in the a direction. Only

the first three or four modes could be confidently interpreted in
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terms of the mode patterns shown in Fig.31 of Section 2.1 (iii) above.
The first and third resonances are F,. flexural modes, whose frequencies
are determined by the a axis Young's modulus E; as outlined in Table IV,
Section 2.1 (v) above. Similarly, the second mode is a T, torsional
mode whose frequency is determiﬁed by the shear modulus cgg as indicated
in eqn. [11]. The measured sound velocities are summarized in

Table 1V.

The signal to noise ratio for the fundameﬁtal flexural mode was
greater than 100 with a 1 Hz noise bandwidth even for the smallest
.sample studied, which was a 2ug, 0.3 mm long slice. Since the a axis
samples were significantly less uniform than the bigger b axis samples
the experimental value for E; is not as accurate as the experimental

value for Ep-

Another experimental difficulty arose on cooiing the a axis samples.
Unless the length (a dimension) of the sample was significantly bigger
than its width (b dimension), differential thermal contraction of the
bond at the end would split the sample in half along its length.
Thermal cracking of the sample shows up as a large irreproducible dis-
continuity in the temperature dependence of the resonance frequency,
and in a splitting of a single resonance line into a doublet or
multiplet. The thermally induced cracks are visible if the crystal
is examined under a microscope. Of the four a axis vibrating reeds
measured only one would cycle down to helium temperature and back to
room temperature without breaking. It is possible that some small

fractures were also produced near the bond in the longer b axis vi-

brating reed samples during thermal cycling.
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(ii) Central Pin Support

The problems with differential thermal contraction may be largely
avoided if the sample is supported by a very small silver paint contact
on the end of a pointed wire, as described in Chapter |, Section 1.1 (ii).
This suppbrt configuration fs a favourable one for exciting elongational
acoustic modes in the sample. For a long sample with a uniform cross-
section, the elongational resonance frequencies are ‘given by [8] pro-
vided one ignores the small pin contact at the centre of the broad a b
face of the sample. This approximation is expected to be best for the
.odd numbered modes since these modes have a node at the support pin.

If the experimental elongational mode frequencies are plotted as a
function of the wavenumber 2mn/L, where £ is the lenath of the sample,
then one obtains the discrete dispersion curve shown in Fig.37.

Eqn.[8] predicts a linear dependence of the resonance frequency on
wavenumber. A close examination of Fig.37 reveals that the even harmonics
areISIight]y below the straight line and the odd harmonics are slightly
above the straight line. |In addition, the even harmonics tend to be
more heavily damped than the odd harmonics. We attribute these diffe-
rences between the even and odd harmonics to the effect of the central
pin support. The effect of the finite length correction factor f9]

(or [12]) is to reduce the frequency of the seventh harmonic by 1-2%.

Beyond the fourth harmonic, more than one frequency is plotted in
Fig. 37 for each wavenumber. The reason for the multiplicity is that
there are several modes of nearly equal strength near the frequency

where a longitudinal resonance should be. Presumeably, as the wave-
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length of the longitudinal mode becomes shorter, the non-unijformities
in the sample dimensions become progressively more important and the
longitudinal modes are coupled more strongly to other acoustic cavity
modes. The other acoustic modes»which could be coupled to the longi-
tudinal modes are high frequency harmonics of the b axis flexural ard
torsional modes and transverse Fy. type flexural modes. Moreover, the
sampTe whose longitudinal resonance frequencies are shown in Fig. 37
begins to support transverse shear wave resonances at frequencies
corresponding to n 2 7. Above 2 MHz the acoustic mode spectrum de-
‘generates into a closely spaced set of heavily damped resonances.

of éourse all of these modes are affected in some complicated way by
the central support. This complexity of the high frequency acoustic
mode spectrum provides a practical upper }imif to_tﬁe frequeincy range
for which the acoustic resonance method is usefgl. The measurements
could probably be extended to higher frequencies by studying acoustic

pulse propagation along the sample rather than looking at resonances.

A comparison of eqns. [2] and [8] in light of the discussion on
the crystalline anisotropy in Section 2.1 (v) above, reveals that the
elongational and b axis flexural resonance frequencies are determined
by the same elastic cbnstant to first approximation - namely Ep. The
Young's modulus velocity (Eb/p)‘I has been measured for eight TTF-TCNQ
samples by substituting the experimentally determined flexural and
longitudinal resonance frequencies into [21 and [8] respectively.
Within our experimental error there is no systematic softening of
the-Fbc type flexﬁra] modes as would be expected from [3], if the

shear modulus cyy were anomalously small as has been suggested by



Barmatz et al (1974) and Ishiguro et al (1977). The shear softening
of the higher frequency Fp, type modes is consistent with the shear

modulus cgg that is determined from the torsional modes.

Even though the flexural modes can be used to determine the same

extensional velocity (Eb/p)£ as the longitudinal mode, the longitudinal

one generally gives a more accurate estimate of this velocity. The

reason is that the longitudinal resonance is less sensitive to variations

in the sample thickness (¢* dimension) which is the least uniform dimen-

sion. The room temperature sound velocities as determined from the
acoustic resonance frequencies of fifteen diffefent samples, are
summarized in Table V. The b axis extensional velocity (Eb/p)% and
the shear velocity (CGG/D)% are consistent with inelastic neutron
scattering measurements of Shapiro et al (1977). The a axis exten-
sional velocity (Ea/p)% is consistent with recent compressibility
measurements of Debray et al (1977). The detailed temperature depen-

dence of these velocities is disccused in the next chapter.

TABLE V

Room Temperature Sound Velocities in TTF-TCNQ

Mode Velocity (10° cm/s)
b axis extensional 2.8 + .1
a axis extensional L. 4 + .5

I+
N

cgp Shear 1.7
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(iii) Mode Coupling

Before going on to discuss the temperature dependence of the sound
velocities in detail, we first outline some of the effects of extraneous
mode coupling on the temperature dependence of the resonance frequencies.
As pointed out in the next chapter, the b axis Young's modulus velocity
has a stronger temperature dependence than the shear velocity. For
this reason, if a mode which depends on the Young's modulus'is at nearly
the same frequency as a torsional mode at one temperature the two modes
may cross as the temperature is changed. A mode crossing of this type
is shown in Fig. 38. The torsional mode starts off just above a nearby
flexural mode at high temperatures. As the temperature is lowered the
frequency of the torsional mode moves beloQ the flexural mode because
of the dif%erence in their temperature dependenceé. Coupling between the
two modes prevents them from actually intersectfng. The coupling could
be caused by the off diagonal component s,g in the monoclinic compliance
matrix (Hearmon 1961) or by asymmetry in the sample or support. The
torsional mode in Fig.38 is the fundamental torsional mode and the
flexural mode is probably a symmetric Fp. type flexural mode with three
nodes. These resonances were observed with the sample supported in the

longitudinal mode configuration.

Mode coupling can be a problem in making accurate measurements of
the temperature dependence of the sound velocity. The problem seems to
be particularly severe for elongational modes in the temperature range

between 20K and 52K, where the Young's modulus has an anomalously strong

température dependence compared with the shear modulus (see next chapter).
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The strong temperature dependence makes it more likely that the re-
sonance of interest will cross some other mode with a weaker tem-

peraturé dependence. Fig. 39 shows a typical mode crossing of this
type. Here an F,_ type mode is crossed near 39K by an unidentified

mode, fhat is probably related to the support.

(iv) Support Modes

It is virtually impossible to avoid some interferencé with the
sample resonances from the modes of the support. However, it is
possible to avoid support modes over a limited frequency range. For
example no support modes were observed among the low frequency flexural
and forsional modes of b axis crystals clamped in the vibrating reed
configuration. On the other hand, as illustrated in Fig.39 there were
some problems with interference with the flexural modes of the a axis
slices probably because these modes were at higher frequencies. Inter-
fefehce from the modes of the tungsten support wire for the longitudinally _'
mounted samples, was alleviated by using a thick support post (0.015"
diameter) so that the support modes were widely spaced and at relatively
high frequencies. |In any case the sample modes and support modes can
be easily distinguished at high temperatures, by the dramatic difference

in their temperature dependences.

2.3 Vibration Damping

(i) Q Measurement
The acoustic resonances can be used to determine the absorption of

sound as well as the velocity of sound. The absorption is proportional
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to the width of the resonance line. A convenient measure of the ab-
sorption is the quality factor Q defined by Q™1 = Af/f where f is
the resonance frequency and Af is the '"full width at half maximum'
of the symmetric (in phase) amplitude response. Equivalently Af is
the separation between extrema in the antisymmetric (out of phase)
resonant response. The Q is related to the intensity attenuation
factor o discussed in Part A above by a = Q"1q where q is the sound

wavenumber.

The Q was measured experimentally by comparing the symmetric re-
-~ sponse of the sample with a synthetic lorentzian on a duaf beam
oscilloscope. The synthetic lorentzian was generated by sweeping a
voltage controlled oscilletor through the resonance frequency of‘a
tuned ﬁircuit (Q ~ 70) as shown in the circuit diagram in Appendix
§ 1.(v). By adjusting the amplitude of the freguency sweep of the
voltage controlled oscillator, the apparent width of the synthetic
line could be adjusted to match the width of the sample resonance.
After calibration the synthetic lorentzian provided a convenient

means for measuring linewidth to a relative accuracy of 1%.

In order to make accurate linewidth measurements one must be
careful to avoid distorting the sample resonance lines. For example
if the drive oscillator is swept too quickly through the acoustic
resonance, a ringing phenomena known in NMR as "wiggles' (Abragam 1961)

will occur. An extreme example of wiggles is shown in Fig. 40.
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(ii) Thermoelastic Damping

Heat conduction is an important loss mechanism for the low fre-
quency flexural modes of TTF-TCNQ crystals. As discussed by Zener
(1948) and Bhatia (1967), whenever the isothermal and adiabatic
elastic moduli (see Chapter {11) are not equal, thermal conduction
between compressions and rarefactions will cause acoustic damping.
In conventional metals thermal conduction does not cause significant
damping of longitudinal waves at frequencies below about 10 Ghz.
However, the damping can be substantial for flexural modes of thin

plates where the compressed part of the plate is close to the ex-

. panded part.
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The thermoelastic damping of a flexural resonance of a reed with

a rectangular crossection is given by (Bhatia 1967)

E - E £
-1 ~ _S T 0 _nD
(13 e E 772 oT2%

where Eg and E{ are the adiabatic and isothermal Young's moduli re-
spectively, f is the resonance frequency and t is the reed thickness,
measured along ¢* for the Fpe modes. The thermal dffquivity D is |
the ratio of the thermal conductivity k to the specific heat at
constant volume, C,- To obtain a numerical estimate for the ab-
sorption we approximate (Eg - ET)/Es by (Bg - BT)/BS where B¢ (By)
is the adiabatic (isothermal) bulk modulus, and use BT/BS = CV/Cp
derived by Bhatia (i967) (see also eqn. [2] in Chapter 11l beiow).
With the expression for the difference between Cp and C,, given by
Landau and Lifshitz (1969) and using the Griineisen approximation
di;cussed in Section 3.1 of Chapter Il below, we obtain

E¢ - ET C, - C

~ P Y =

where y ~ 2.6 is a Grineisen constant and o is the volume expansion

coefficient.

From eqns [13] and [14] we can estimate Q™! for the flexural
modes using published thermal expansion (Schafer et al 1975, Blessing
and Coppens 1974), b axis thermal conductivity (Salamon et al 1975) and
specific heat data (Craven et al 1974). For example, consider Sample

#13 which was 0.038 mm thick and had its fundamental flexural resonance
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at 2.1 khz. For this mode we estimate Q”! = 8x10™" using a thermal
relaxation frequency fy = 21 khz. The experimentally determined
absorption is shown in Fig. 41 as a function of temperature for
the first four Fy_. flexural modes. Although the estimated value
of Q! at 55K of 8x10~" is close to the measured value of 13x10™%
for the fundamental flekural mode at 55K, the dependence of the
damping on the flexural mode frequency is wrong. With fo = 21 khz
in [13] the absorption will be larger for the second flexural mode
whereas experimentally it is observed to be smaller. {in addition,
above 55K the damping of the second, third and fourth harmonics is

only weakly temperature dependent (see Fig. 41).

To help explain these features of the experimental data we make
the following observations. First the thermal relaxation rate fg
will increase with decreasing temperature at leést as fast as T7Ll.
This temperature dependence should be valid down to 30K, at least.
Secondly yaTFO will be a weak function of temperature. The ex-
perimental data in Fig.41 may now be accounted for qualitatively
by postulating that f, satisfies f; < fy < f, where f)(f;) are
the first (second) flexural resonance frequencies. Furthermore, if
we observe that the damping is nearly equal for the first two modes
at LOK, we can estimate fo at this temperature. This estimate for
fo (5 khz) implies that the thermal conductivity in the c* direction
is 0.02 W/cm-K. This value compares with 0.12 wa/cm-K for the b
axis thermal conductivity measured by Salamon et al (1975) at the

same temperature. Similarly fy = 5 khz implies that Q! = 12x10°"
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was repeated after allowing the sample to remain at low temperatures overnight,

The discontinuity at 205K arose when a measurement

tgl



at 40K, which is about a factor of two bigger than the observed
absorption. Clearly, all of these calculations are very rough.
Nevertheless, one can conclude that thermal conduction will have

a significant effect on the damping of the flexural modes. It
should be possible to determine'the transverse thermal diffusivity, .
by careful measurements of the damping of flexural modes. Finally,
we note that thermoelastic damping may account for the anomalous
frequency dependence observed by Barmatz et al (1975) in the damping

of flexural modes in 2H-TaSe,.
~{iii) Elongational Modes

The room temperature damping of the fundamental elongational mode in
TTF-TCNQ is typicaily an order of magnitude smaller than the room
temperature damping of the fundamental flexural mode. In addition
the absorption for the elongational modes increéses with harmonic
number unlike the first few flexural modes. The temperature dependence
of the acoustic absorption for the fundamental longitudinal mode of
Sample #23 is shown in Fig. 42. Although the magnitude and detailed
temperature dependence - of the experimentally observed longitudinal
mode damping are not completely reproducible between different samples
and different runs with the same sample, certain gross features are
always present. There is a broad minimum in the vicinity of 60K where
Q ~ 10*. As the sample is cooled through the metal insulator transition
the absorption begins to increase, reaching a peak in the range 30-40K
where it is a factor of 3-6 times larger than the absorption near 60K.
As fhe temperature is lowered still further the absorption decreases

again.
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In Sample #23 there is also a 10K wide absorption peak near 150K
and a very narrow (< 0.5K wide) peak in the damping just below the
metal-insulator transition. The details of the temperature dependence
of the damping and the velocity of sound near the metal-insulator
transition are shown in Fig. 43. The temperature dependence of the
velocity of sound is discussed in detail in the next chapter. Al-
though neither the narrow absorption peak near fhe transition nor
the wider maximum near 150K were observed iﬁ any other sample, it is
.quite.possible that they were missed by not taking measurements at
~ fine enough temperature intervals. The absorption peak near the metal-
insulator transition is reminiscent of a similar feature observed near
the incommensurate charge density wave transition in 2H-TaSe; by
Barmatz et al (1975). Although the peak near 150K may be due to some
extraneous effect, it is tempting to try to relate it to the dis-
appearance of the 2kp scattering of diffuse X-rays, observed by Khanna

et al (1977) near 150K.

| An upper limit to the conventional electronic contribution to
the absorption can be obtained by using the expressions derived in
Part A, Chapter I, for the attenuation of sound in three dimensional
metals, or the expregsion for the peak attenuation just below the
metal-semiconductor transition, discussed in Part A, Section 2.3.
From the bandstructure (Berlinsky et al 1974), d.c. conductivity,
and crystal structure we estimate the electronic effective mass
m* =6 my, the Fermi velocity Vg - 107 cm/s, the electronic scattering

time T ~ 5x10”!%s at 60K and the carrier density n = 2.8x102! em”™ 3,
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With these values for the material parameters, the electronic con-
tribution to the damping of a 300 khz longitudinal mode is calculated
to be Q! ~ 107%. Since the measured absorption is of order iO'“,

we conclude that the observed damping is not due to the conduction
electron loss mechanism discussed in Part A. If TTF-TCNQ remained
metallic af low temperatures it is possible that this electronic

loss mechanism would eventually become important at low temperatures,

as it does in ordinary metals.

Although thermal conduction is probably the dominant los§ mechanism
‘for the low frequency flexural modes, its contribution to the damping
of the longitudinal modes is completely negligible. Dislocation damping
(Bhatia 1967) and couplfng to low Q support modes are probably important
sources of loss for the longitudinal modes. An.additional damping
mechanism is suggested by the model used in the next chapter to explain
the temperature dependence of the sound velocity. We comment on this

loss mechanism at the end of the next chapter.

(iv) Effect of Air on Resonance Frequency and Q

Before going on to discuss the temperatﬁre dependence of the sound
velocity in TTF~-TCNQ we briefly outline the effect of air at one at-
mosphere on the resonant frequencies and Q of the vibrating sample.
The shift in the resonant frequency is due to the mass of entrained
air that accompanies the vibrating sample. When the sample vibration
frequency is low enough that the corresponding wavelength of sound

in air is long compared to the transverse ( a ) dimension of the



sample, the surrounding air may be treated as an incompressible non-
viscous fluid. For typical TTF-TCNQ crystals this condition is well
satisfied up to about 50 khz. In this limit the air entrained by

an Fp. flexural mode may be approximated by a cylinder with its axis
alongvb and its diameter equal to the width of the crystél, as shéwn

in Fig. 44,

entrained air

a c” sample crossection

Fig.4l -Air Entrained by a Flexural Mode

It is easy to show that the effective increase in the mass of the
sample per unit length leads to a reduction in the Flexural (Fp.)

resonant frequency by the factor

-1
TWPair

where o ;. and p are the densities of air and the sample respectively.
The same result has been obtained by Lindholm et al (1965) using a

more sophisticated approach.
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Lindholm et al (1965) also calculate the corresponding mass

loading for torsional modes and obtain the correction factor

3TwWop_. >'1
air
[16] <1 + 2t )

This factor may be approximated by calculating the additional axial
moment of inertia contributed by two cylinders of air parallel to
the long axis of the sample ( b ) and with diameters equal.to half

the width of the sample as shown in Fig. 45. The resulting correction

factor is
(o)
c %
(N2 s o
KL
a b . ' .

a c¢” sample crossection

Fig.h5 - Air Entrained by a Torsional Mode

the same as [16] except that the numerical factor 3n/32 is replaced

by 9n/6k4.

The frequency shifts caused by air loading can be measured by

looking for a change in resonance frequency when the sample chamber
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is evacuated. For example consider Sample #14. A comparison be-

tween the observed effect of air on the resonance frequency and

the predictions of [15] and [16] is shown in Téble VI for the second
and fifth Fbc flexural modes and the second and third Ty torsional
modes. In Table Vi the air is assumed to be at one atmosphere with
density 0.00129 g/cm3. The observed frequency shifts are in reasonable

agreement with the predicted values.

TABLE VI

Effect of Air at One Atmosphere on Flexural and Torsional Mode Frequencies

Frequency Shift (hz)

~ Mode - Frequency (khz) Theory Expt.
Fpc2 5.3 | 19 25
Fpc5 4h.6 162 - 120
T, 2 47.2 65 100
T, 3 73.5 101 100

The elongational modes are at too high a frequency for the air to
be treated as an incompressible non-viscous fluid. The primary source
of air entrainment in a longitudinal mode is the viscous boundary
layer which attaches itself to the broad ab surface of the crystal
because of the non-zero viscosity of the air. The effective thickness
of the boundary layer is &8/2 (Landau and Lifshitz 1959) where

§ = (Zn/wpair)% is a skin depth for shear waves in a fluid with



viscosity n. If we take n = 1.8x10~"% poise (g/cm?-s) at room tem-
perature then &8/2 ~ 2x10""cm for a 300 khz mode. This layer of air
will reauce the resonant frequency of a 300 khz elongational mode
by 12 Hz. Experimentally the change in resonance frequency is
usually observed to be larger than 12 Hz. Furthermore the shift
does not always have the same sign for different samples. This
behavious is interpreted as being due to a change in coupling be-
tween the elongational mode and other nearby modes caused by the

increase in Q when the air is removed.

The Q of a lossless sample vibrating in air is determined by power
loss due to viscous heating of the air and radiated acoustic energy.
The éir damping may be calculated approximately for standard size
samples above 50 khz. |In this case the viscous loss is relatively
small compared to the radiation loss and the interior dimensions of
the sample container are large compared to the sound wavelength, so

that walls can be ignored.

First we consider the high frequency limit in which the wavelength
of sound in air is small compared to both the a and b dimensions of
the sample. This limit is applicable at typical longitudinal mode

frequencies. The radiated sound power is given by

AL = p i, Vg UZ AA

where vg is the velocity of sound in air and u, is the normal component
of the velocity of the surface element AA. If we assume that the en-

tire surface area generates sound, partly because of surface roughness
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and partly because there may be coupled lateral motions of the

sample, then u, = u and

P wt

1
[17] Q==
2 pair Vs

where Q/2n is defined as the energy stored divided by the energy
dissipated per cycle. The actual air damped Q of Sample #10 was
176 whereas [17] predicts a Q of 143. In a vacuum the measured

Q was 3100.

in the intermediate frequency range in which the sound wavelength
in air is longer than the a dimension of the sample but still shorter
than the b dimension, the sample may be modelled by an infinite

cyiinder with diameter w. The sound power radiated by an inter-
mediate frequency flexural mode may be approximated by the power
radiated by a transversely oscillating cylinder, given by (Landau

and Lifshitz 1959)

1= w3 (w\* =
T Pair Vg2 \2

per unit length where u is the velocity of the cylinder. The corres-

ponding expression for the Q is

2
16 0 vg t
18 = — ———
(18] ¢ w Pajr W° W

If we substitute values appropriate to the fifth Fbc flexural mode
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(44.6 khz) of Sample #1k4, then [18] yields Q = 993. In the absence
of air the observed Q is 1500. ‘Adding this measured intrinsic loss
to the calculated air loss leads to a net air damped Q of 597. This

compares with an experimental value of 500.

Although our calculations of the effect of air on the damping
and resonance frequencies of vibrating TTF-TCNQ samples are only
approximate, the physical origin of the observed effects appear

to be well understood.
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CHAPTER 111

Interpretation of Temperature Dependence of Sound Velocity

3.1 Overall Temperature Dependence

Before discussing the temperature dependence of the elastic moduli,
we first compare the measured elagtic constants (see Table V, in the
previous chapter) and anisotropy of TTF-TCNQ with some common materiéls.
Table Vil contains a list of Young's moduli for covalen£ (Si), metallic

(Au, Pb, Na), ionic (NaCl) and van der Waals (Ar) solids.

TABLE VI

Young's Moduli For Various Materials

Material Young's Modulus T(K)
(1011 dynes/cm?)

Si 13.1 300
Au L.65 0
NaCl 4. 37 300
TTF-TCNQ a 4.3 0
b 2.0 0
Pb 2.05 0
Na 0.241 90
Ar 0.117 .82

¥ Huntington (1958), Kittel (1971), Gewurtz et al (1972)
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The bonding in the a direction in TTF-TCNQ is expected to be at
least partly ionic and the corresponding Young's modulus is comparable
with the ionic solid NaCl. Similarly in the b direction where we ex-
pect some metallic component to the bonding, the TTF-TCNQ Young's
modulus is comparable to lead, a soft metal. Certainly within the
category of metallic solids and to a lesser extent the ionic solids
there is a wide range of elqstic constants. Nevertheless, it is clear
that the elastic constants of TTF-TCNQ are comparable to those for

other common materials.

An anomalously soft a axis modulus might be expected if the conducting
molecular stacks were weakly coupled. However, both the a and b axis
moduli are significantly bigger than the modulus for a weakly bound
solid such as Argon at 82K (see TablelVH). Some idea of the elastic
anisotropy is obtained by taking the ratio of the Young's modulus along
a to the Young's modulus along b. This ratio is about 2.2 for TTF-TCNQ,
whereas for zinc (hexagonal) the ratio of the Young's moduli parallel
and perpendicular to the hexagonal symmetry axis, is 3.37. By this
measure zinc is more anisotropic elastically than TTF-TCNQ. A com-
parison with the elastic constants of other crystalline materials
confirms that the elastic anisotropy of TTF-TCNQ is more or less

typical of non-cubic crystalline materials.

Now let us consider the temperature dependence of the velocity of
sound in TTF-TCNQ. The temperature dependence of the b axis Young's
modulus velocity (Eb/p)1lf is shown in Figs.46 and 47. The data in Figs.hé

and 47 were obtained from an elongational mode and an Fy. flexural mode
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respectively. Fig.48 shows the temperature dependence of the a axis
Young's modulus velocity (Ea/.p)’lf as determined from an Fy. flexural
mode. As discussed in Chapter 1!, Section 2.1 two different forsional
modes can be used to measure the shear velocity (css/p)%, to a good
approximation. The temperature dependence of this shear velocity is
shown in Figs.h6 and 48, The shear velocity data in Fig.46 was obtained
from a T, torsional mode and the data in Fig.48 from a T, mode. All

of the above sound velocity measurements have been corrected for thermal
expansion using the correction of Jericho et al (1977) given in the
Appendix § 3. This correction was inferred from the X-ray data of
Blessing and Coppens (1974) and the b axis thermal expansion measure-
ments of Schafér et al (1975). The temperature dependence of the
elastic constants follows directly from the temperature dependence of

the sound velocity and the density.

The main features in the velocity results are the kink in the Young's
modulus velocities near 52K, and the strong temperature dependence in
the higher temperature region. Before discussing the anomaly near 52K,
we first consider the large overall temperature dependence of the
velocities. The velocity results imply that the elastic moduli de-
crease by ~ 40% between 0K and room temperature. Although this may
seem like a large temperature dependence when compared with conventional
metals where the elastic constants typically change by only a few per-
cent over this range, a large temperature dependence would be expected
from the relatively iow Qolidification temperature for TTF-TCNQ of

Lg8K (Weiler 1977). In fact, if one compares the temperature dependence



of the elastic moduli for a variety of solids from OK up to just
below their melting point a large reduction in modulus (~ 50%) is

normally observed.

We now consider the bulk modulus since the temperature dependence
of this modulus is the easiest to calculate. If we make the hexagoné]
approximation to the crystallographic symmetry of TTF-TCNQ, described
in Chapter I, Section 2.1, then the experimental Young's moduli may
be used to obtain a rough estimate of the bulk moduius. In.the hexago-

nal approximation the bulk modulus is given by

-1
{2 (1 - V) 1 - by
B = < 3 + 3 >

where E5 and E are the a and b axis Young's moduli and v and v' are

Poisson's ratios. 1If the Poisson's ratios are restricted to lie between
0 and % (Landau and Lifshitz 1970) the bulk modulus must be between
<éi-+ét>-l and infinity. Obviously this is not a very precise estimate.
Although v and v' have not been measured experimentally, nevertheless,

if we arbitrarily set v = v' = 0.2 theﬁ the room temperature values for
the elastic constants given in Table V of Chapter Il combined with the
temperature dependence presented earlier in this chapter suggest that

B ~ 2 x 10! dynes/cm? at OK. This estimate for the zero temperature
bulk modulus compares with a room temperature bulk modulus of 0.94 x 101l
dynes/cm? measured by Debray et al (1977). Even though it is not possible

to arrive at a very accurate estimate for B from the experimental data on

E; and Ep, since all of the measured elastic moduli have similar overall

temperature dependences it is reasonable to assume the bulk modulus follows
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the other moduli as a function of temperature.

In general it is extremely difficult to calculate the bulk modulus
of a solid, as it means deriving an expression for the pressure of a
solid as a function of its volume, in other words an equation of state.
In the conventional adiabatic approximation the equation of motion of
the lattice, and hence the sound velocity, is determined by the depen-
dence of the electronic energy eigenvalues on the position of the nuclei
and by the direct electrosfatic interaction Bétween the nuclei. The
direct interaction between different nuclei is probably small compared
to the interaction between nuclei and core electrons and between core
electrons on different nuclei. Accordingly if one knew how the electronic
energy eigenvalues depended on the positions of the ions one could cal-
culate all of the elastic constants. In one special case, namely the
alkali metals, this can be done with a reasonable degree of accuracy.
In this case the outer electrons can be closely approximated by free
electrons and the nuclei and core electrons can be ignored because they
are thoroughly screened between different sites. The free electron
nature of the.electron energy states ddes not change when the lattice
is strained. The only effect of the strain is to cause a change in
the Fermi level necessary to maintain local charge neutrality. Thus,
the dependence of the electronic energy states on the position of the
ions is known and the elastic moduli can be calculated (Kittel 1971).
However, for almost any material other than the alkali metals more
than one electron energy band needs to be considered and the bands

change in complicated ways with strain. Although the contribution of



particular bands to the elastic moduli can still be calculated, it
is no longer reasonable to try to calculate the moduli from first

principies. Instead the normal procedure is to start with a para-
meterized intermolecular potential. We will follow this procedure

here.

In general the isothermal bulk modulus for any system is given by

(Landau and Lifshitz 1969)

32F>

B. = V(=5

2

o)

where F is the free energy of the system, and V is its volume. Simi-

larly the adiabatic bulk modulus is given by

_ 32y
BS =Y <8V2>S 4

where U is the internal energy, and the volume derivatives are taken

at constant entropy S. In order to calculate the temperature dependence

of BT and By we need F and U as functions of temperature and volume.

The standard expressions are (Girifalco 1973)

VB. /V-V\Z VA /Vv-v)3 o
= o-o o) _ _O (o} q
[la] F = Fgy + 5 ( v, ) A < v ) + kT g £n (% sinh 2kT>

Ve V-V 2 V V-V w
0 O o) _ ¥q -9
[1b] U Uo + 2 ( Vo > 6 ( Vo > g 2 ° <2kT>

where the intermolecular potential has been expanded to third order in
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the volume strain. The third order term is necessary because of
thermal expansion, as will be clear later. The thermal phonon fre-

quencies w_ will depend on volume in some complicated way. We

q

approximate their volume dependence by

wg (V) = wy (Vo) (Vo/v)Y

where v is a volume independent Grineisen constant. " In this approxi-

mation the volume expansion coefficient a(T) is given by (Callen 1960)

vCp (T) yCy (T)
S (G N T =

where Cp and C,, are the specific heats at constant nressure and volume

respectively. By integrating [2] we find

o yu yu
[3] V(T)—VO+—B?(-_F)-—VO+-B—S-T_—[_T

where U is the internal energy of the lattice.

fw Hw
U= g —ES- coth (EE%) .

In eqn.[3] we have assumed that Cp = C,, and that the temperature depen-

dence of the volume and bulk modulus is small compared to the temperature

dependence of the specific heat. These approximations improve at low

temperatures.
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Using the definition of the isothermal bulk modulus and the ex-
pression for the free energy [la], one can now write down the iso-
thermal bulk modulus as a function of temperature in terms of the
parameters y and A. Both of these parameters are manifestations
of the anharmonic part of the intermolecular force constants. It
is usefﬁl to express A in terms of the pressure derivative of the
bulk modulus since this quantity can be measured directly. The

pressure derivative of By is obtained from
[4] - v.2 3_3f_ = A - L (Y.H)Z U - 2y (’Y'H) du + YZ ﬂ
SEFY'E Vo dT dT2

by dividing by By. The second term in [4] is expected to be at most
comparcble with the total temperaiure dependent part oF.Bf wnereas A
will be shown to be 2 10B for TTF-TCNQ. To a good approximation the
second term in [4] can be neglected and 3By/38P = A/By. In terms of

9B1/9P the isothermal bulk modulus is

3B 2
- XY S TRl §
[5a] BT(T) = By + V. [:(YH) =5 ] U v Cy -
The first term in the square brackets in [Sa] tends to make the lattice
stiffer at high temperatures. This term arises from the phonon pressure.
The negative 3By/3P term comes from the thermal expansion combined with

the softening of the intermolecular potential with increasing volume.

Similarly, the adiabatic bulk modulus is found by taking partial de-

rivatives of the internal energy with respect to volume, maintaining
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the entropy constant. In the Grineisen approximation, the entropy
may be kept fixed by allowing the temperature to-be a function of
volume in such a way that wq/T is independent of volume. Since the
entropy is a function of wq/T only, it will be constant if wq/T is
constant. A procedure similar to that used in obtaining the iso-

thermal modulus then leads to

v 3B,
[Sb] BS(T) = BO + E [Y+] - —3—‘;— u.

Normally wultrasonic techniques measure adiabatic moduli. Whether
it is the adiabatic or isothermal modulus which is appropriate depends
on the relation between the period of the sound wave and the time for

thermal relaxation between a rarefaction and compression in the wave.

In the TTF-TCNQ experiment the adiabatic moduli determine the reso-
nance frequency of all of the modes studied with the possible exception
of the fundamental flexural mode and its first few harmonics, depending
on the geometry of the samplie. In a flexural mode the compressed and
expanded parts of the sample are separated by a distance equal to the
sample thickness only, even though the mode frequency may be relatively
low. In this case the isothermal modulus applies when the resonant
frequency is small compared to the thermal relaxation frequency fg
discussed in Section 2.3 (ii) and the adiabatic modulus applies at

higher frequencies.
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Eqn.[2] combined with our estimate of Bg(0) and the published ther-
mal expansion and specific heat data, enable us to estimate y. From
the X-ray structure data (Blessing and Coppens 1974) we estimate
a(T) = 1.6 ap(T) where o, (T) is the b axis linear expansion coefficient
measured by Schafer et al (1975). Using this estimate for o(T) we
obtain y = 2.56, which is not an unreasonable value. The Gruneisen

constants for a variety of different materials are given in Table VIII.

TABLE VI

Grineisen Constants for Various Materials

Material Griineisen v T(K)
Si 0.4 300
Au 3.0 0
b NaCl 1.55 300
TTF-TCNQ 2.6 0
Na 1.14 g0
Ar 2.7 82

T Daniels (1963), Gewurtz et al (1972)

Now that we have an estimate for y [2] can be used to predict the
heat capacity beyond the 12K range near 55K measured by Craven et al
(1974) . The heat capacity which results is typical of molecular solids
(Lord 1941). Near room temperature the predicted heat capacity is 35R
and increasing approximately linearly at 0.05 R/K. R is the gas con-

stant per mole of TTF-TCNQ formula wunits. The large vaiue of the heat
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capacity clearly indicates the importance of intramolecular and
librational degrees of freedom. These low frequency Einstein modes

of the TTF and TCNQ molecules dominate Cp above 20K.

It is also possible to make a direct comparison between the tem-
peratufe dependence of the bulk modulus and the thermal expansion co-
efficient. Differentiating [5b] with respect to volume and neglecting

the temperature dependence of 3Bg /3P we get
1 dBg BBS
[6] B_ T]_— = [Y+1 5P (X(T) .

It may not be a very gooa approximation to neglect the temperature de-
pendence of 3B./3P (Daniel: 1963), however, there is neither experimental
data nor a reasonable model ava%lable to describe its teﬁperature depen-
dence. |If we make the previously stated assumption that the temperature
dependence of the bulk modulus follows the temperature dependence of the
measured elastic moduli, then in conjunction with the experimental velocity
data, [6] may be used to estimate 3Bg/3P. Using the b axis velocity data,
together with o = 1.6 ap and y = 2.56 we find 3B /3P ~ 15-17. In light

of the approximations we have made, this number compares well with

9B{/3P ~ 12 inferred from the pressure measurements of Debray et al (1977).
The pressure derivative of the bulk modulus is given in Table IX for a

number of materials.

Between 52 K and about 200K for the b axis extensional modes and over a

wider temperature range for the other modes, the shape of the velocity



TABLE 1X

Pressure Dependence of Bulk Modulus T

9B

Material =
Si ' | 5.3

Au 6.1
NaCl - 5.7
TTF-TCNQ 15-17
Na 3.3

Ar a 8.5

T Daniels (1963), Paul and Warschauer (1963)

curves is consistent with [6]. (Recall that in our approximation

vl av/aT = (2B)"! 3B/3T, where v is a sound velocity.) We there-
fore suggest that if TTF-TCNQ remained metallic down to OK, the
temperature dependence of the velocities would be of the general

form shown by the dashed line in Fig. 48. For this reason we inter-
pret the anomaly near 52K in the extensional mode velocities as a
stiffening in the modulus above a background wﬁiéh represents the
contribution to the elastic constants from anharmonic effects.

The other possible interpretation is to regard the anomaly as a broad
softening between 40K and 120K. This interpretation is rejected be-
cause the resulting temperature dependence does not match the thermal

expansion data quite as well, and secondly-there is no other experi-

mental evidence for such a broad transition temperature region'(>80K).
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Fig. 49 - Enlargement of low temperature anomaly in the Young's modulus
velocity. The dashed line is obtained from-egn.[6] in the text.
The break in the curve near 42K results from a splitting of the
first longitudinal mode caused by interference from another mode,
probably a harmonic of the fundamental filexural or torsional

modes.
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Summarizing, we conclude from the large value for the heat capacity
and from the interdependence of the heat capacity, thermal expansion
and bulk modulus that the temperature dependence of all three quantities

is dominated by librations and intramolecular modes above ~ 20K.

3.2 Low Temperature Anomaly

We now discuss the low temperature anomaly fn fhe sound velocity,
taking the point of view that it is a stiffeﬁing in the elastic modulus
above the background temperature dependence. The vélocity anomaly is
shown in Fig. 49. The low temperature velocity data can-be summarized
as follows. Below the metal-insulator transition there is an anomalous
increase in velocity for modes which involve a volume change. Thfs
increase reaches a maximum of about 1.5% above the extrapolated back-
ground at OK. The fractional increase is about.the same for the Young's
modulus modes in the a and b directions and much smaller or even absent
in the shear modes.. In the remainder of this chapter we show how these
experimental results may be interpreted in terms of the contribution of
the conduction electrons to the sound Qe]ocity. This section is divided
into two parts. In the first part we show that an electron-phonon
interaction in the high frequency quantum limit leads to a softening
of the sound velocity in the metallic phase. In the second part we
consider the tight-binding band structure of TT?-TCNQ in detail and
show that the electron-phonon coupling can also lead to a softening in

the metallic phase at zero frequency.
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~ Fig. 50 - Excitation spectrum for a non-interacting tight-binding
electron band (TCNQ band) and an uncoupled acoustic phonon
branch.



(i) Quantum Lfmit

In the quantum limit (see Part A, Chapter |, Section 1.3) the effect
of the conduction electrons on the sound velocity may be calculated by
treating the electron—phonon interaction as a perturbation on the un-
coupled electron and phonon system. The unperturbed energy levels for
the electrons are described by a single particle tight-binding band.
Consistent with the tight-binding approximation (Barisic 1972), the
unperturbed phonons exist in a lattice of neutral 'ions;. Thus there
is a phonon mode (acoustic phonon) which propagates down to zero fre-
quency with a linear dispersion in the unperturbed system. This be-
haviour contrasts with nearly free electron models where the unper-
turbéd lattice consists of charged icns, and the corresponding un-

perturbed phonon frequency is an ionic plasma frequency.

The excitation spectrum for the non-interacting one dimensional
electron-phonon system at zero temperature is shown in Fig.50. Only
one low frequency phonon branch is shown for clarity, although in
general for any direction of propagation there are two other branches.
The sound velocity determines the slope of the phonon branch and the
Fermi velocity determines the slope of the electron branch near q = 0.
These slopes are drawn approximately to scale in Fig.50. The electfon
Fermi velocity shown is for the TCNQ band calculated by Berlinsky et
al (1974). The shaded area is the locus of e(k+q) - e(k) with k as a

parameter and the additional requirement that the initial state k be

full and the final state k+q be empty. e(k) is the energy of an electron
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in the state k. The electron-phonon interaction H; . (see Part A,
Chapter |, Section 1.3) will couple a phonon with wavevector q to all
the electronic excitations with the same wavevector. In terms of
Fig. 50, the electronic excitations lying along a vertical line

directly above the phonon of interest are coupled to the phonon.

To second order in perturbation theory this coupling reduces the

phonon frequency to

1 <k [H; tl k+Q:>I2
(71 fuq =teg - iy I Sliey - e - Fog

O

The unperturbed phonon frequency is W

and the occupancy n(q) of the
phonon mode q is assumed tc satisfy n(q) » 1. We substitute the

squared matrix elements of

Fiw, \2
- 9 +  _ +
Hing = 9 ) (2 <aq a-q) “k-q0 ko
k,q* —
o
given in Part A, Section 1.3 where the electron-phonon coupling

constant g = C/¥Bg . Bg is the adiabatic bulk modulus and C is a

deformation potential. With these substitutions [7] reduces to

f(k) - f(k+q)
e(k+q) - (k)

o
8] ﬁwq ='ﬁw8 - g2 g

o~

assuming that the sound velocity is much smaller than the electron
Fermi velocity. Although second order perturbation theory is probably

the simplest way of approximating the effect of the electron-phonon
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interaction on the phonon frequencies, a more general technique is
also available.

In the Green's function formalism, the phonon frequency Wq is a
pole of the perturbed phonon Green's function D{q). An expression
for D{q) can be obtained with the help of Dyson's equation shown

schematically in Fig.51.

2.
D(q) = D°(q) + D°(q) g—ﬁ - (q) D{q)
Fig. 51 - Dyson's Equation
This equation may be rearranged to give

[9] p(q)~! = p°(q)"1 - ﬂﬁin (q) -

The last term includes the phonon self-energy T (q). We now substitute

(Abrikosov et al 1963)

_ 02
fiug

D°(a) = o7 207



for the finite temperature phonon Green's function and an identical
expression for D(q) except the superscript zero is removed. {f we

set iw = wy in [9] then

q
f10] - qu = wq°2 [1 + gZ‘H(q)] .

This expression for the perturbed phonon frequencies is valid to
arbitrary order in perturbation theory. The first term in the dia-

grammatic expansion for I (q) is

K+q
n°(q)

Fig. 52 - Electron Gas Polarization Diagram

This lowest order polarization insertion or 'bubble diagram'" is
very well known. In the low frequency limit it can be shown that

(Fetter and Walecka 1971, Doniach and Sondheimer 197L4)

Ly £ = flkeg)
AU e e R

The summation on the right is the Hartree polarizability x°(q) of

the electron gas. |f this expression is substituted into [10] we
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Fig. 53 - Hartree polarizability for the one dimensional TCNQ
band discussed in the text
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regain the second order perturbation theory result [8] for the per-

turbed phonon frequencies.

It is not difficult to evaluate the polarizability x°(q) for a
one dimensional tight binding band of electrons. The static polari-
zability for a metallic band at temperatures low compared with the

Fermi temperature is

H 1
sin kfb fn tan z(kf +

2 sin %‘ tan %<kf -

)
)

[11]  x°(a) = N(eg)

N onofa

where N(e) is the electronic density of states, e¢ is the Fermi energy
and kf the Fermi wavevector. A graph of x°(q) as a function of q is
shown in Fig.53 using the same tight binding band parameiers used in

the excitation spectrum shown in Fig.50. The logarithmic singularity

in xX°(q) at q = 2kf is responsible for the large Kohn anomaly in the

phonon spectrum and the resulting charge density wave or Peierls
transition in one dimensional conductors. The divergence in x°(q)

is present at zero temperature in any material with parallel sections
of Fermi surface. Note that x°(q) for a tight-binding band does not

approach zero for large q unlike the nearly free electron case (André

et al 1976).

Although the singularity in x°(q) is important in determining the
phonon spectrum near 2kf, we are more interested in the long wave-
length phonons with g - 0. In the long wavelength limit, the change

in the sound velocity implied by [8] is
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A 2 of
[12] » TV = - EB—S- J N(E) <" -é'-e—> de

The integral in [12] approaches N(sf) in the metallic phase at low
temperétures and goes exponentially to zero in the semiconducting
phase at low temperatures. From [12] one would expect a fractional
increase in the velocity of sound of N(sf) C2/(ZBS)_in cooling TTF-
TCNQ through its metal-insulator transition. This is qualitatively
the effect which is experimentally obsgrved in the extensional modes.
To see how the size of this effect compares with experiment we sub-
stitute an average density of states for the TTF-TCNQ bands (Berlinsky
et al 1974) of 5.8 ev™! and use Bg = 2x10!! dynes/cm? as discussed
eariier. For a fit to the observéd 1.5% velocity anomaly C = 0.38 ev.
This number is certainly reasonable since the average bandwidth from
‘the molecular orbital calculations (Berlinsky et al 1974) is 0.32 ev,
and tight-binding bands are expected to have deformation potentials

of the order of the bandwidth (Mitra 1969).

The much smaller anomalies observed in the shear volocities are
also explained by this model because the deformation potential for
shear waves is expected to be small for metals in which all of the
Fermi surface is in one Brillouin zone (Kittel 1963). There is no
reason to expect any of the TTF-TCNQ Fermi surface to lie outside

the first zone.

It is interesting to extrapolate the experimentally observed

softening in the sound velocity up to q ~ 2k, with the help of the

f
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Fig. 54 - Zero temperature longitudinal acoustic phonon dispersion

calculated from [8] using the experimental electron-phonon
coupling constant
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q dependent polarizability expression [11]. |If one assumes a g
independent coupling constant g, then the perturbed longitudinal
acoustic phonon spectrum is given by the solid line in Fig.54,.
for (hypothetical) metallic TTF-TCNQ at zero temperafure. The
dashed line is the unperturbed phonon frequency. The small Kohn
anomaly in Fig.54 is much too small to account, in the mean field
theory (Rice and Strassler 1973) for the observed metal-insulator
transition temperature. Thi; discrepancy may not be unreasonable
since the mean field model is not expected to be very accurate.

" Nevertheless, it is interesting to pursue some of the implications

of the small Kohn anomaly in Fig.54, in the framework of the mean

field theory.

The electron-phonon coupling constant g would havevto be about
a factor of five bigger, in order that the Kohn anomaly in the
acoustic phonon be large enough to account for the observed metal-
insulator transition temperature. |f the larger value of g is sub-

stituted into [11] then the large zero temperature softening of the

acoustic phonon mode shown in Fig.55 results. Such a drastic softening

is not observed in the inelastic neutron scattering measurements of
Shapiro et al (1977). |In fact the Kohn anomaly observed by neutron

scattering resembles the much smaller anomaly in Fig.54. These ob-

servations suggest that the metal-insulator transition in TTF-TCNQ is
caused by a static distortion in a combination of intramolecular modes

as proposed by Rice and Lipari (1977). |If a metal-insulator transition
can be produced by coupling of the conduction electrons to intramolecular

modes in addition to the intermolecular acoustic modes, then it will be
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more difficult to stabilize the low temperature metallic state of

an organic solid, especially if the material is composed of extended

molecules.

Even though the model described above seems to be in excellent
agreement with the low frequency sound velocity measurements below
the metal-insulator transition, the calculations were made in the
quantum limit for well defined phonon and electron states. That is,
the lifetime broadening of the electron and phonon states has been
implicitly assumed to be negligible. In reality for the frequencies
uséd in the experiments g€ « 1 (recall £ is the electron mean free
path), and therefore the lifetime broadening of the electronic ex-
citations is enormous compared to hw. This broadening has a drastic
effect on the ultrasonic attenuation where transition rates for energy
conserving transitions must be calculated. However, in the present
case we are only interested in virtual transitions to a continuum of
electron states. The fact that the electron states are much broader
than the energy change involved in an electron-phonon scattering pro-.
cess is not important since energy does not need to be conserved in
virtual transitions anyway. On the average we expect the virtual
transitions to coincide with the well defined quanfum transition, and

the quantum result should still be valid at low frequencies.

Another equally non-rigorous argument can be made for the validity
of the quantum result at low frequencies. In nearly free electron
models the unperturbed phonon frequency is .the lattice plasma frequen-

cy Qp = (lnme‘?/M)J‘r where M is the ion mass. The effect of adding
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electrons, which will interact with the ions in such a way so as to
screen the ions, is to reduce the plasma frequency to Qp//:;-. The
new phoﬁon branch now has a linear dispersion down to zero frequency
(Pines and Nozieres 1966). The dielectric constant €q can be calcu-
lated from the polarizability using the same quantum limit approacﬁ
and the same approximation that we have used in calculating the change
in phonon frequency. The dielectric constant approach.leads to the
correct low frequency sound velocity. By analogy, éur calculation of

the phonon frequencies should also lead to the correct low frequency

velocity.

(ii) . Thermodynamic Limit

These difficulties with the applicability of the quantum formalism
in the low frequency limit all vanish 'if instead we approach the
problem from the point of view of calculating a static elastic constant.
Thé elastic constants for a material in thermodynamic equilibrium are
determined by taking second order strain derivatives of an appropriate
thermodynamic potential, as discussed in Section 3.1 above. For
electrons the thermodynamic limif is valid provided that g€ « 1 (see
Part A, Chapter |) which is always well satisfied in the experiment
described here. As pointed out in the previous section it is primarily
the highest occupied electron energy bands which determine the elastic
constants. In order to calculate the total contribution of the electrons
to the elastic constants we need to know the dependence of the electron

energy bands on strain, to second order in the strain. However, if we
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Fig. 56 - Band structure of TTF-TCNQ discussed in the téext. The

dashed line shows the effect of an exaggerated b axis
compression
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can be satisfied with calculating the small change in elastic con-
stants brought about by a metal-insulator transition, then the problem
is easier. In this case it is not necessary to know the strain depen-
dence of all of the band parameters to second order, provided the
features which lead to a change in the elastic constant at the metal-

insulator transition are correctly described.

We consider the following simple model for the strain dependence
of the band structure. The energy bands for the TTF and TCNQ chains
are taken to be one dimensional tight-binding bands with band para-
meters as calculated by Berlinsky et al (1974). In this band structure
the TTF(TCNQ) band has a maximum {(minimum) at k = 0 (see Fig. 56).
The Fermi ]evei for the two bands is determfned by assuming a charge
trainster p of .53. in the spirit of the tight-binding approximation
we assume identical strain dependences for the two bandwidths and
strain independent centres of gravity. That is, a one dimensional
strain in the conducting direction is assumed to scale the width of
both the TTF and the TCNQ bands and their energy gaps in the insulating
state, by the same factor exp(-Bz), where ¢ is the b axis strain and
B is a dimensionless parameter. In this model a strain will have no
effect on the Fermi energy but will change the Fermi wavevector kf and
hence the charge transfer. The effect of a b axis compression on the
density of occupied states is illustrated in Fig.57 for the tight-binding
band structure shown in Fig.56. Note the additional charge transfer

from the TTF to the TCNQ band.
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We now investigate the effect of this small strain dependent
charge transfer on the elastic modulus cyp. As discussed in the
previous chapter the experiment measures the adiabatic moduli, and
the temperature of the sample will be strain dependent. However,
the lattice specific heat is very much larger than the electronic
specific heat. For this reason the temperature of the sample will
be determined by the requirement that the lattice entropy be a
constant and not the electronic entropy. Since the electrons are
thermally coupled to the lattice, their temperature will be de-
termined by the phonon heat bath. Accordingly the contribution of
the conduction electrons will be somewhere between adiabatic and
isothermatl. ~Since the difference between the two modu]i is not
expected tc be very significant we will take thc casiest approach

and calculate the isothermal modulus.

The isothermal contribution to the modulus cp, is determined from

the b axis strain dependence of the free energy density

[13] F =4 c5p 22 - kT Jﬂn@ +eXP<TI§é»[NF(€’C) + NQ(e,c)}de

where all contributions to the elastic modulus not connected with
electron transfer have been incorporated into the first term. We
have taken the Fermi energy to be zero for convenience. The TTF

and TCNQ bands have strain dependent density of states functions

given by NF(e,g) and NQ(E,E) respectively. The Brillouin zone

boundary follows the strain selfconsistently.
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The elastic constant c,, is obtained by differentiating the

free energy [13] twice with respect to ¢. The result is

[14] Cop = ¢35, - B2 J [(e + nF>2 NF(E). + (e + nQ)2 NQ(e)] <- %E—) de
+ g2 J [NF(E) + NQ(E)] e f (e) de

where n_ and n, are the energies of the centre of the TTF and TCNQ

F Q

bands respectively. Since the relative position of the two bands is
determined by the charge transfer p, the positions of the band centres
‘ . _ o . .

are given by "E(Q) 2tF(Q) cos (2 ) as shown in Fig.57 where QItF[
and hItQI are the appropriate bandwidths. We now examine the be--
haviour of the last two terms in [14] when an Chorgy gap opeins up

in the density of states and the material becomes an insulator.

The last term decreases by an amount proportional to g2 [Ag NF(O) +
Aé NQ(oi] where AF and AQ are the energy gaps on the two chains.

2

. NF(o) +

Similarly the second last term decreases in magnitude from B2 [n
na NQ(O)] to zervo at zero temperature. ~Clearly this change is much
bigger than the change in the last term in [14] since(?F/nF>2,
(AQ/nQ)Z « 1. If the last term in [14] is neglected the elastic

modulus will increase by
Ac Av B2
—22 =2 22 _ —5— 2 N (o) +n2 N o-]
€22 V22 c22 [nF F() i) Q()
in cooling from the metallic phase, through the metal-insulator tran-

sition towards zero temperature.
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We now approximate the longitudinal bulk wave velocity in the b
direction, vy by the b axis elongational velocity at T =0, and use

t_ = .05 ev and t

F = -.11 ev for the overlap parameters (Berlinsky

Q
et al 1974). In this case B = 4.1 gives agreement with the observed
low temperature velocity anomaly. This value for 8 may be compared
with B ~ 6 inferred from the molecular orbital calculation of the

overlap parameters. The agreement between the observed and calculated

B is considered to be excellent.

The much smaller anomaly in the modes involving only shear moduli
can now be explained as follows. Since there is no voluﬁe change
associated with shear modes, there is no fifst order change in the
lattice constants due to strain and hence a correspondingly smaller
strain dependence to the bandwidths. The charge transfer mechanism

will then play only a minor role in determining-the shear moduli.

There afe at least two possible explanations for the low temperature
anomaly in the tempéerature dependence of the a axis elongational mode.
The first possibility is that the anomaly is due to coupling to the
b axis molecular overlap. This coupling could result from a libration
of the molecules about, for example, the a axis caused by a strain
along the a direction. A second possibility is that a strain in the
a direction also tends to favour a change in the charge transfer be-
tween chains, perhaps by altering the electrostatic Madelung energy
(Torrance and Silverman 1977). This change in charge transfer could
be modelled by pos;ulating that an a axis strain produces a rigid

shift of the TTF and TCNQ bands relative to one another. As in the



b axis case the strain dependent charge transfer would diéappear
in the insulating phase, leading to a stiffer lattice, and a low

temperature velocity anomaly.

It is instructive to consider some of the implications of the
above model of the low temperature elastic anomaly. The dominant
term in the expression for the electronic softening of the elastic
modulus in [14] is practically identical to the expression for the

Pauli spin susceptibility except that p_ is replaced by BnF and Bn,..

B Q

This similarity is more general than the particular model used here
(o]

suggests, and is due to the dependence of both phenomena on the den-

sity of thermally accessible states near the Fermi level. The apparent

lack 6f an anomaly in the sound velocity near the phase transition
at 38K is consistent with the corresponding spin susceptibility data
(Scott et al 197@); Also the small positive curvature in the tempe-
rature dependence of the b axis elongational velocity in the range

of 200K-300K (see Fig.h6) is consistent with the temperature depen-

dence of the spin susceptibility over the same temperature range.

Another feature of the charge transfer model proposed here is
that it predicts a pressﬁre dependence of the charge transfer and of
the associated Fermi wavevector. If we neglect the pressure depen-
dence of the bulk modulus, use the experimentally determined value
of B and consider only the b axis strain contribution to the charge
transfer, then the pressure dependence of kF is 3x10°3 %—/Kbar
corresponding to an additional charge transfer of 1%/Kbar. In this

model one would also expect a change in charge transfer to result

198
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from thermal expansion. The expected change in kF between 0K and
300K is consistent with the temperature dependence of the 4 kF
anomaly observed in X-ray measurements by Kagoshima et al (1976)

and Pouget et al (1976).

In conclusion, the elastic measureménts show a small stiffening
at temperatﬁres below 52K for modes of vibration which are associated
with a volume change. The stiffening is interpreted as arising from
a strain induced charge transfer between the TTF-TCNQ conduction
bands. This charge transfer softens the lattice in the metallic
phase above 52 K but is inhibited in the low temperature insulating
phase by the appearance of an energy gap in the electron energy

bands.

(iii) Comment on Acoustic Absorption

The charge transfer model suggests an additional acoustic loss
mechanism for the longitudinal modes. The idea is that it takes
time for the charge transfer between chains to occur and during
this time the elastic modulus relaxes from c5, before the charge
transfer can take place, to c,, (see [14]) after equilibrium is
reached. The contribution of this relaxation process to the
damping is (Zener 1948)

CEZ - Co2 wT

-1 = —_—
[15] Q Coo ‘] + szz

This expression is analogous to [13] in Chapter |!, the expression

for thermoelastic damping. The relaxation time T is the time re-
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quired for the charge transfer between chains to take place.

Intuitively one would expect the charge transfer relaxation
time to be comparable with the a axis dielectric relaxation time
(hnea /oa) where €, = L, (Barry and Hardy 1977) is the a axis di-
electric constant and o4 is the a axis conductivity. From d.c.
conductivity measurements (Tiedje 1975) o, = 3.8 (-cm)~1 at 60K.
The corresponding dielectri; relaxation time is 1.5x10"1ls. At
60K we estimate from Fig. 49 that Ac,p/c3, is 3%. With these
numbers, and the 261 khz longitudinal resonance frequency of
vSample #23 We can use [15] to ;alculate the absorption. We find
that Q-! = 0.8x107% at 60K whereas the observed absorption is
about 107%. We concludé from this result that the contribution
of the charge transfer mechanism toAthe damping.is probably not

important in the temperature regime in which the sample is metallic.

At first glance one might expect this contribution to the ab-
sorption to be independent of temperature below the metal-insulator
transition because Acyy/c5, decreases exponentially as the tem=-
perature is lowered and the dielectric relaxation time increases
exponentially, while the damping depends on the product. However,
as discussed in the preceeding section Acjyy/c3, is expected to be
proportional to the spin susceptibility whereas the dielectric re-
laxation time will depend on the conductivity. Since the activation
energy for the susceptibility (Torrance et al 1977) is lower (90K) than
the activation energy (180K) for the conductivity (Eldridge 1977) one

would expect the temperature dependence of the relaxation time to



SAMPLE 710 ®

0O | l | ] | | |
O 10 20 30 40 50 60 70

T(K)

“Fig. 58 - Low temperature loss peak for a ldhgitudinal mode.
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dominate and the damping to increase below the metal-insulator
transition. Eventually at very low temperatures when wt > 1 or
the temperature dependence of the conductivity becomes dominated
by impurities the damping should either decrease or become tem-

perature independent.

The temperature dependence of the damping in the insulating phase
is shown in Fig. 58 for the fundamental longitudinal mode of Sample
#10 at low temperatures. If we postulate that the excess fow tem-
perature absorption above the absorption minimum near 60K is due to
the charge transfer contribution then we can estimate the relaxation
time 1. For convenience consider a temperature of 35K where Sample
#10 resonates at 384 khz. At this temperature we estimate from |
Fig. 49 that Acyp/cS, is 0.6% and from Fig. 58 that the édditional
absorption is 5x10=%. With these nuhbers we can use [15] to cal-
culate 1. We find T = 3x10"8s. From d.c.'conductivity measurements
(Tiedje 1975) o5 = 0.03 (@-cm)~! at 35K, and the corresponding
dielectric relaxation time is 2x10“9s._ This relaxation time is an
order of magnitude shorter than the time inferred from the absorption

data.

However, one could argue that this dielectric relaxation time is
an underestimate of the true relaxation time because the correct con-
ductivity to use is smaller than the a axis conductivity. The reason
is that the a axis conductivity arises from a series connection of an
extended molecule which has little or no resistance and a high re-
sistance (low conductivity) element which defermines the charge trans-

fer relaxation time.
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Although the above argument is certainly not conclusive it
cannot be ruled out as a possible explanation of the anomalous

low temperature sound absorption in TTF-TCNQ.
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SUMMARY

1. The Main Results of this Work

The electronic contribution to the attenuation of ultrasonic
waves }n one and two dimensional metals has been calculafed for
arbitrary qf using a transport equation approach. Thg attenuation
is found to be anomalously low and strongly temperature dependent
in one dimensional metals. In the quantum limit, when ‘the electron
mean free path is long compared to an acouétic wavelength, the
attenuation in one and two dimensional metals depends strongly on
the direction of propagation of the acoustic wave. On the other
hand- the attenuation of sound in non-degenerate electron gases
(semiconductors) is independent of the dimensionality of the electron
gas. A much simpler method of solving the Boltzmann transport
equation, to obtain the amplification of sound in the presence of

a d.c. electric field, has been discovered.

A capacitive technique has been developed for making sound velocity
and attenuation measurements on small samples. In this technique an
rf carrier signal is used as a probe to detect small displacements
of the sample. The rf carrier method is shown to be superior to the
conventional vibration pickup which is based on applying a d.c. bias

voltage to the pickup capacitor.

Three different elastic constants for TTF-TCNQ have been measured

as a function of temperature. TTF-TCNQ is found to be slightly stiffer
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perpendicular to the conducting direction than parallel to the con-
ducting direction. Although the material is very anisotropic
electrically, elastically it is not far from being isotropic. The
strong temperature dependence of the elastic constants is attributed
to the importance of molecular librations and intramolecular modes
in the lattice entropy of TTF-TCNQ above 20K. The bulk modulus at
zero temperature, the pressure dependence of the bulk modulus, the
Gruneisen constant and the room temperature specific heat are esti-

mated.

A small anomaly in the tempefature dependence of the Young's moduli
at low temperatures is interpreted as being due to the freezing out of
the Eonduction electrons below the metal-insulator trans:tion. The
low temperature anomaly gives a direct measure of the q - 0 electron-
phonon coupling constant. The interpretation of'the elastic anomaly
suggests an explanation for the temperature dependence of the hkF
spots observed by X-ray scattering. Within the resolution of the
measurements, no small discontinuities in the temperature dependence
of the velocities, of the type envisaged by Phillips (1977), were

observed.

A method is proposed for determining the ¢ axis thermal conductivity
of TTF-TCNQ by measuring the frequency dependence of the damping of

low frequency flexural vibrations.

For a summary of the experimental results on TTF-TCNQ see Table X

below. -
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TABLE X

Summary of the Experimental Results

Room Temperature Percent lIncrease
Modulus? Elastic Moduli? From R.T. to OK 3
. (1011 dynes/cm?)
Ea 3.1 0.7 37
Ep 1.27 + 0.09 58.0
Ce6 0.5 £ 0.1 37
- Gruneisen constant " 2.6
Room temperature heat capacity (c) 4 35R
Pressure derivative of bulk modulus (3B/3P)° 16%2
Average deformation potential 6 0.38ev
Pressure dependence of kg 7 - 0.5%/kbar

For an explanation of these labels see Part B Section 2.2.
These are adiabatic moduli. For the difference between the
adiabatic and isothermal Young's moduli see p.148.

See Figs. U6 and 48. |

See p.174.

See p.175

See p.186

See p.198

N oo & ow
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2. Suggestions for Further Work

in the calculation of the attenuation of sound in a one dimensional
metal we have assumed a perfectly one dimensional metal, with non-zero
conductjvity in only one direction. However, in real materials there
is always some conductivity in all directions. It would be worthwhile
to check that the very small attenuation in the g« 1 limit is not an
artifact of the perfectly one dimensional limit that we havg considered
here. This calculation could be done by allowing the electronic band
structure to have some three dimensional character, and then calcu-
‘lating the attenuation using the method of Rice and Sham (1370) for

example.

Methods for measuring small displacements havevréceived a consider-
able amount of attention recently in connection.with the detection of
gravitational radiation. From the discussion in Section 1.2 of Part B,
it appears that a displacement sensitivity of 10-16 - 10~17 Vav cm could
be obtained, using the capacitive technique described in this thesis,
simply by using a larger pickup capacifance and suﬁerconducting, LC
resonant circuits. This sensitivity is comparable with the highest
sensitivity obtained to date in current gravitational radiation de-
tectors. More experiments are required to determine the real limits

to the sensitivity of the capacitive vibration pickup.

In Section 3.2 of Part B, we have proposed two different interpre-
tations of the low temperature anomaly in the Young's moduli. One is

based on a quantum mechanical calculation of the velocity of sound in
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the presence of an arbitrary deformation potential electron-phonon
interaction. The other interpretation is based on an electron-

phonon interaction which is peculiar to the band structure of TTF-
TCNQ. If it is legitimate to egtrapo]ate the quantum calculation

to q ~.0, then one would expect a similar velocity anomaly more or
less independent of the exact nature of the band structure, in other
materials which undergo Peierls transitions. On the other hand if

the second mechanism (change transfer) really is necessary to ex-
plain the low temperature anomaly then one would only expect to see
.similar anomalies in materials in which there is a possibility of
electron transfer from one part of the energy band to another. The
ambiguity might be resolved by looking for velocity anomalies in other
mateiiais which undergo Peieris transitions, but nave a different band
structure, such as TaSjy (Sambongi et al 1977). TSeF-TCNQ would also be

an interesting material to look at.

More measurements should be made of the damping of longitudinal
modes to determine the nature of the absorption anomalies near 52K
and 150K. Also careful measurements of the damping of the low fre-
quency flexural modes could be used to obtain the transverse thermal

diffusivity.

At temperatures well below the metal insulater transition the
microwave conductivity of TTF~TCNQ is known to be several orders of
magnitude larger than the d.c. conductivity. A strong frequency
dependence might be expécted if the low temperature conductivity

were dominated by localized carriers hopping between pinning sites.
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A measurement of the frequency dependence of the conductivity in
the range 0-1 Ghz could give some information about the hopping
time. The measurement might be done with substantially the same

apparatus as that used in the acoustic resonance experiments.



§ 1.

Diode #D2755

Diode Temperature Sensor Calibration

)

T(K
L.2
p)

6
7
8

9
10

1
12
13

14
15
16
17
18

19
20
21
22

23

24
25
26
27
28

Current 10uA

Vol tage

NNNDNDDN

— et d d b — h ch b b — ot —t - —t emd ok wmeh - [ N S ypp— Y — h ot —

.1956
. 1581
.1123
.0688
.0286

-9917
.9585
.9290
.9023
.8772

.8514
.8226
-7903
. 7543
- 7099

.6516
5791
. 4951
.4063
.3228

.2549
.2076
-1735
. 1496
-1335

.1223
1140
.1022

-0939
.0873

.0819
.0765
.0644
.0523
.0400

APPENDI X

T(K)

60
65
70
75

80
90
100
110
120

130
140
150
160
170

180
190
200
210
220

230
240
250
260
270

280
290
300

Voltage

1.0273
1.0143
1.0011
.9877
.9814

L9742
.9468
.9192
.8916
.8639

.8361
.8083
. 7803
.7522
L7241

.6959
.6677
-6393
.6108
.5824

-5539
.5259
. 4985
4710
CLh3h

4155
.3869
.3578
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"§ 2. Circuit Diagrams

(#) Diode Detector Circuit

TWO FERROXCUBES

500pf
)} )

ch‘ 10pf == % 3.9K ; 33K
/ |

FERROXCUBE TOROIDAL INDUCTOR

ouT

L8

DIODE: HP 5082-2800 Schottky Barrier Diode

(ii) MOSFET Preamplifier

&= =12V

g 27K 1K .27

0.27 oyt

I
A

1
1

¢

b,

0.082 15K 100K 68 0.082 0.082 15K 100K . 100

( all capacitances in microfarads )



(iiv)

Preamplifier Specifications

MOSFET Tl 3N211
3db Bandwidth .05-12 Mh;
Gain 20db
Output Impedance 50Q
Output Power - -8dbm

Phase Shifter (designed by S. Knotek)

Specifications

MOSFET Tetrodes 3N128
Bandwidth .05-15 th
Input 18-30dbm
Output Impedance 500
Output Power 7dbm

(Circuit diagram, next page)
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(iv) Lorentzian Generator

10K(ten turn)

68K Signal Averager
741 — V- ®  Sweep Output
10K DIODE: HP 5082-2800
ANV
o CRT

VCG
=— .005 10K

{
3

( fo = 2.8Mhz Q = 66 )

(v) Signal Averager Input Amplifier

= -ty
10M*
100 F W7 F
IN ouT
270K
* low noise resistors BJT's 2NA4LO3

Gain 180 Bandwidth 0.03-50 000hz

214



§ 3.

T

300
290
. 280
270
260

250
240
230
220
210

200
190

180

170
160

150
140
130
120
110

100
30
80
70
60

50
4o
30
20
10

Thermal Expansion Correction

(Jericho et al 1977)

b axis

AL/E(Z)

N NN DNNON DN DN-—

0

.10
.21
.31
b2

.52
.63

.73
.83

.93

.03
.13

.22

.32
L

.51
.60
.70
.78
.87

.95
.02
.09
.16
.21

.25
.29
.31
.33
.34

.34

a and c axis expansion:

(X.a.

~

O’C = .3 ab
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