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Abstract

The first motion approximation has been unsed to
calculate synthetic seismograms in transversely isotropic,
linear, elastic media. To achieve this end the egquations of
motion have been solved in a gecmetrical optics reginme. .
Formally, this has been accomplished by the use of
asymptotic propagator matrices._ This formalism is
important, since the phase of the JWKB reflection
coefficient can be easily calculated by consideration of the
radiation condition, Calculation of this reflection
_coefficient has shown that the turning point behaviour is
identical to that obtained for an isotropic medium. The
similarity of the turning point behaviour is a direct
consequence of the physical result that :at a turning point
the phase and group velocities are in the same direction,

To understand the results of the first motion
approximation applied to a simple upper mantle model, it is
first necessary to understand the basic physics of
transversely isotropic media. . This has been achieved by
examination of the dispersion relation arising from Newton's
laws for an elastic solid. From the dispersion relation, it
has been demonstrated how the Green‘SM?uncfion can be
constructed using elementary projective geomefry.ﬁ
Subsequehtly, the nature of the Green's Function has been

analyzed. £ The analysis of the Green's Function (wave
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surface) is important because it facilitates comprehension
of any dynamical results.

The synthetic seismograms were calculated using ray
parameter versus distance curves, These curves vere
obtained by integration of the ray eguatiogs derived form
the dispersion relations,. A Gaussian-Kantorovich method was
utilized to perform the required integration. This hybrid
integration technigque proved to be extremely fast and
accurate, When the resulting p-delta curve was used to
calculate the synthetic seismogfam, the main effect of the
anisotropic model considered was a kinematic one - the main

arrivals were earlier than those for an isotropic model. .



iv

Abstract =====-receccrcce——- - e e —— ———— o e e o e ii
Table of Contents ---==--e<cccccccmcccr e —————- iv
List of Pigures —=-=-====-==- e ———— bbbttt v
Forvard =—-—==mecrcccr e ccm e r e e cn et —— .. v e ————e—=F] ]
Acknowledgements =——-—=-e-mecreec e —————— B e 1
Chapter I —-==m-eeeeer e e e e e e e e e 1
Chapter II =<=rm-mcccececcr e cced e c e - ———— ————3

Introduction —=—==rrremecc e e e e e c e mee === 13
Section 1. . Foundations For The Equations Of Motion —-=--14

Section 2. . Solutlons Of The Equations Of Motion ---=--- 27
Chapter IIl =—=—s==emm s e e e e e e s e e —— 52
Introduction ====-==--s-csce e e e e e -=-=52
Section 1. . Ray Theory Part I ----=--=cccccmcemena—a- -=54
Section 2. Ray Theory Part II —----~-------------~----6E
Chapter IV ~--==eos-em oo e e S e e —mm—--==<-=85
INtroduction =—=—= == e e 85

Section 1. Development Of ‘The Bquations Of Hotlon -——-87
Section 2., Details Of The Source =====—wececccecceen.n-99
Section 3. - Solution For The Homogeneous Systenm:
Using Airy Functions ==-==—cmmeemeccc e e e e = 107
Chapter V ~=~--rrecccr e e e r s e e e e -———=136
Introduction ~=====ccmrcc e e - 136
Section 1, . Intuitive Development Of Dlsk Ray Theory - 138
Section 2., Egual Phase Method~J®¥KB--
Reflection Coefficient =~=—wr—mcrccrmmcmmccn e 148
Section 3. Equal Phase ‘Method- Implementation -------155
Section 4., Simple Seismic Calculations e e—————e=168
Conclusions ===ecremrrer e e, ———— - ——— —-—-=198
Bibliography ==-====rre e e e — e r - 200



Figure

1.1

2.2

2.3'

2.6

2.7

2.8

List Of Fiqures

Model for olivine orientation near a ridge

Geometric construction of wave surface fron
the slowness surface

Slowness and wave surface for a transversely
isotropic mediunm

Illustration of the definition of pole and
polar

Construction of the polar reciprocal

Points on the slowness surface sharing a
common tangent

Differing group velocitiy magnitudes in the
neighborhood of points sharing a conmon
tangent

Illustration of wave surface with
singularities

Parametric representation of the slowness
surface

Suite of rays leaving a shot
Acoustic plane waves in a gquartz crystal

Disk intercepting the surface in an
anisotropic mediun

Simple p-delta curve

P-delta curve for compressional waves-no

~anisotropy

P-delta curve for guasi-compressional ‘waves-
10% anisotropy

P-delta curve for guasi-compressional waves-
30% anisotropy

Directivity function {(compressional waves) -
horizontal displacement-no anisotropy

Page

34
35

36

38

40

41
42

46
139
141

142

145
173
174
175

176



5.9
5.10

5.11
5.12

5.14

5.15

5.16

5.17

5.19

Directivity function {quasi-compressional
waves) horizontal displacement- 10%
anisotropy

Directivity function (quasi-compressional
waves) horizontal displacement- 30%:
anisotropy

Directivity function (compressional waves)
vertical displacement-no anisotropy

Directivity function (quasi-compressional
waves) vertical displacement-10% anisotropy

Directivity function {quasi-compressional
waves) vertical displacement-30% anisotropy

Synthetic seismogram of horizontal
displacement for compressional waves
calculated using p-delta curve shown in
figure 5.5 :

Synthetic seismogram of horizontal
displacement for quasi-compressional waves
calculated using p-delta curve shown in
fiqure 5.6 10% anlsotropy

synthetic seismogram of horlzontal
displacement for quasi-compressional waves
calculated using p-delta curve shown in
figure 5.7 30% anisotropy

Synthetic seismogram of vertical displacement
for compressional waves calculated using p-
delta curve shown in figure 5.5

Synthetic seismogram of vertical displacement
for quasi-compressional waves calculated
using p-delta curve shown in fiqure 5.6 10%
anisotropy

Synthetic seismogram of vertical displacement
for quasi-compressional waves calculated
using p-delta curve shown in fiqure 5.6 30%
anisotropy

P-delta curve for quasi-shear waves- 10%:
anisotropy

P-delta curve for guasi-shear waves- 30%
anisotropy

vi

177

178
179
180

181

182

183

184

185

186

187

188

189



5.22

5.23

5.27

5,28

5.29

Directivity function (guasi-shear waves)
horizontal displacement-10% anisotropy

Directivity function (gquasi-shear wvaves) :
vertical displacement-10% anisotropy

Directivity function (gquasi-shear waves)
horizontal displacement-30% :anisotropy

Directivity function {gquasi-shear waves)
vertical displacement-30% anisotropy

Synthetic seismogram of horizontal
displacement for guasi-shear waves,
calculated using p-delta curve shown in
fiqure 5.20-10% anisotropy

Synthetic seismogram of vertical displacement
for quasi-shear waves, calculated using p-
delta curve shown in fiqure 5.20-10%
anisotropy

Synthetic seismogram of horizontal
displacement for guasi-shear waves,
calculated using p-delta curve shown in
figure 5,21-30% anisotropy

Synthetic seismogram of vertical displacement
for guasi-shear waves, calculated using p-
delta curve shown in figure 5.21-30%.
anisotropy

vii

190
191
192

193

194

195

196

197



viii

Forward: Aims, Objectives, And Originality.

The main thrust of the thesis will be the analytic
derivation (using geometrical optics) and numerical
calculation of simple disk ray seismograms in transversely
.isoctropic, vertically inhomogeneous elastic media.  In
Chapter I the main emphasis is the motivation for the study
of anisotropy. This is followed in Chapter II by the
presentation of the basic physics of anisotropic media. . The
objective in this chapter is the development of an
understanding of the wave surface, the Green's ‘Function for
the elastodynamic eguations driven by a poiht source. This
objective is achieved by describing in detail the geometric
constructions, based on projective geometry.. The nature of
the singularities of the wave surface are'ihen analyzed
algebraically..

Chapter IIT useé the physical results of Chapter II to
develop the relevant ray equations, Two diffefent.
approaches are used to obtain these equations. . The
objective in presenting these methods-is to compare them
algebraically, and use the final result in the construction
of an efficient, accurate, ray tracing technique. - The
purpose in developing a good ray-tracing technique is that

p-delta curves may be constructed, and from these, the main
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objective of the thesis may be realized.

Chapter IV is concerned with the the development of a
uniformly valid solution to the equations of motion, This
objective is achieved by using classig asymptotic
techniques, and the turning'point'proﬁlem is solved using
the lLanger transformation..

In Chapter Vv, the main objective of the thesis is
realized, An intuitive derivation of disk ray theory is
presented, This is followed by an evaluation of ‘the JWKB
reflection coefficient , which is then used to obtain the
analytic form for the disk ray theory seismogram. . This
‘analytic form is used to compute seismograms for simple
earth models. In order to delineate the author's
contribution from that existing in the literature, a list of

criginal results is listed below:

1) A clear elucidation of the wave surface slowness surface
correspondence has been demonstrated.

2) A differential geometric proof has been deéeloped to
illustrate how inflection points on the slowness surface
cause cusps on the wave surface;

3) Gaussian integration has been applied to the tau
function; :

4) The method of Rantorovich has been combined with the
Gaussian integration method to produce an accurate, fast
ray-integral calculator;

5) The source term method of Takeuchi and Saito {1972) has
been cast into the up and downgoing wave formalism;

6) The method of asymptotic propagators (Chapman 1974b;
Woodhouse 1978) has been extended to transversely isotropic



media, and, the JWKB reflection coefficients have been
calculated for such media;

7) An intuitive derivation for disk ray theory in
anisotropic media has been presented;

8) An analytic derivation of ‘the disk ray theory seismogranm,
including source effects has been obtained;

9) Seismograms have been calculated for vertical and
horizontal displacements for quasi-shear and quasi -
compressional waves, in the case of a point explosion. .
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Since earliest times, man has been interested in the

study of anisotropy. As Musgrave {1970) remarks:

“"Presumably, Stone age ﬁan-ohserved and very

probably studied, the phencmenon of cleavage--

mechanical as well as anatomical”®

Impetus for the study of anisotropy in geophysics, and
in particular seismology, stems not from any rcmantic
impulse, but rather from petrology. . Only 18 years ago, -
Birch {1960) published his measurements of the velocity of
compressional waves in rocks at a pressure of 10 Kbars,
~using pulsed travel time techniques. . An associate, Vernma
{1960), used pulse~interference methods to measure the
acoustic wave velocity in high density crystals.--in

particular, he found that for olivine, the compressional

wave velocities were as follows:

Direction Veloci ty Lkm /sec.)

X va.xis [ oo] | 9.97
Y axis {o10] 7.73
% axis[oof] . 16s



His results were important, in that a conclusive
demonstration was provided that some of the minerals
comprising the earth were anisotropic, insofar as their
acoustic wave velocities yere concerned, Further stinmulus
to investigate was supplied Sy the first of many ocean
refraction expefimeﬂts performed by Raitt (1963) apd his co--
workers., Raitt?!s initial data uére:uéed by Hess (196#)-to
deri#e the first of many models of the oceanic upper mantle. .

Hess (1964) combined the results of Raitt and Verma and
arrived at a preliminary model.,. The sub-Moho compressional
wave velocity, obtained by Raitt, was determinéd by shooting
along different azimuths iﬁ the neighhourhood'of Mendocino
fracture zone, The maximﬁm velocity (8.7 km/sec,) was
measured parallel to the fracture zone and the nminimun
velocity (8.0 km/sec.) was.perpendicular to the fracture
zone. Hess reasoned, using Verma's data,.that the b-axis of
olivine " (which defines the (0,1,0) plane) should align
perpendicular to thé fracture zcne, and the a-axis should
align parallel to it. This would be achieved by the (0,1,0)
plane gliding along the plane of shear. For such a model
the compressional velocity parallel to the fracturé zone
would be 9.87 km/sec.. and perpendicular to it 7.73 km/sec.
Although the physics of Hess's model appears correct, the
numerical values are considerably off (Fuchs 1977).

A year later Backus {1965) -again looked at Raitt's data

and very elegantly derived an equation relating Pn velocity



to the azimuth of the refraction profile. K The equation,

\/P"—: A+ CCOSa?gﬂ + D sin Q¢ (1.1-1)

+ E cos4p + Fsin¥¢Q@
@= azima thal qngle
Vp= p-wave ve,loci.ty
was derived by application of formal perturbation theory: to

the elastodynamic wave equation, when.the medium was "mildly
anisotropic" (less than 10%). The perturbation to the wave
velocityrwas then expressed as a Fourier series in the
azimuth angle. As Backus demonstrated, (1.1-1) proved to be
very useful in fitting the measured velocity as a function
of the azimuth angle to obtain 5 elastic parameters. Backus
also obtained correction terms to {1.1-1) in the case that
the curvature of the upper mantle was significant. In
conclusion, he pointed out that Heés's model based on
aliénment of olivine drystals could have an alternative,
that ié, the anisqtropy could be due to a static stress
pattern in an isotropic material.

Three years later, Christensen-and Crosson (1968) -
postulated that an olivine-rich ‘upper mantle material moving
vertically in the presence of fracture zones(-woula be
transversely isotropic, with the axis of symmetry inclined
to the vertical., From a study of ultramafic rocks, the
preferred orientation of the b-axis of olivine was

perpendicular to schistosity or banding. Dunite (90%



olivine), in the above orientation, was found to behave like
a transversely isotropic medium for compressional waves. - AsS
well, it was expécted that in ihe case of a transversely
isotropic medium, the maximum compressional wave velocity
should'be perpendicular to the'symmetfy axis. .

The year 1969 provided a further wealth of information
about the oceanic upper mantle. . ﬁaitt and Shor (1969)
obtained more data in the northeast Pacific.. For
interpretation, a modified time térm method was used to
include azimuthal anisotropy. This was achieved by
incorporating Backus' equation (1.1-1) in the time ternm
. method of Berry and West {1966). They found that the
difference in velocity (0.3 km/sec.) parallel and
perpendicular to fracture zones was not as large as that
predicted by Hess. .

Francis (1969) used the results of Raitt and Shor to
offer.an alternative to the modél of Hess, His principal
objection to Hess's model was that translational gliding of
the (0,1,0) face of the crystals was, firstly, impossible,
since the creep of ultramafics should be insignificant away
from the ridge, and secondly, inconceivable, since the
deformational étrain required would have to extend a large
distance away from the ridge, Further, Francis, citing
Rayleigh {1968), stated that for olivine, the predominant
glide mechanism H&S‘(O,k;l)'{1,0,0}, not neccessarily

(0,1,0) {1,0,0]). As a result, the model arrived at to



explain the data of Raitt was that velocity shear, greatest
under the ridge due to convection currents, would cause slip
with (0,%k,1) [1,0,0] the ma jor mechanlsm.h In the simplest
case, the velocity shear orients the olivine so that (0,1,0) .
rlane lies in the plane of flow and the direction of flow is
the (1,0,0) ‘direction. Such a modei {illustrated in Fiqg. 1)
explains the low compressionél"ﬁave velocity pérallel to the
ridge and the high"compressional wave velocity
perpéndicualar to the ridge, although the anisotropy factor
is too large, 20% {Fuchs 1977).

Finally, another model for the oceanic upper»maﬁtle was
developed by Crosson and Christensen (1969) ‘who used Backus?
(1965) formulation-postuléting the existence of a tilted,
~transversely isotropic upper mantle. The data of Raitt
(1963) fitted previously by Backus were refitted using the
tilted transversely isotropic model, The fits obtained
using the transversely isotropic model afe in eicellent
agreement with Backus' fit using general anisotropy.

Since 1969, a number of refraction surveys have been
undertaken‘uith a view to check and réinfotce the initial
discovery of Raitt. . Keen and Tramontini {1970), found that
in the Atlantic Ocean, the Pn velocity uaé-?.? km/sec, with
an anisotropy factor of 8%. Agaim the formﬁla of Backus was
used to fit the data, but also the possibility that
curvature or lateral variationms affected the result was

examined.. It was found that neither of these effects could
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Figure 1.1 Model for olivine orientation near the ridge with
the a-axis, which defines the direction of the fastest p-
vave velocity perpendicular to the ridge strike. After
Francis (1969) ..

explain the observed anisotropy since it was not possible
that in the area of the survey, a lateral variation of 16%
could occur.. Por curvature to affect the results, it was

nécessary that a variation of 7 km in the depth of the Moho



discontinuity exist in the region of the survey. Following
this survey, Keen and Barrett {1971) estiméted oceanic upper
mantle anisotropy in the Pacific, and found that the
direction of maximum compressional wave velocity at an
azimuth of 107°, was not exactly the direction of strike of
the nearest fracture zone, but only approximately S0. .
Again, a value of 8% anisotropy vasfobtained, with a pean
value of the compressional wave velocity computed as 8.07
km/sec. . Host recently a seismic refraction profile parallel
to and perpendicuiar to the Explorer Ridge has been
completed. ., The Pn velocities derived by Clowes and Malecek
(1976) were 7.3 km/sec, parallel to the ridge and 7.85
km/sec., perpendicular to the ridge with an anisctropy of 7%..

Upon consideration of the data presented above, it
appears that for the oceanic upper mantle, an intrinsic
anisotropy of 7% to 8% is obtained, with the direction of
maximum velocity parallel to the fracture zones.. However,
vhy should the anisotropy be restricted to oceanic upper
mantle? As Puchs (1977) points out, the temperatures (800
to 10009°C) :and préssures (10 kbar,) are higher at the
continental crust-mantle boundary than at the oceanic crust-
mantle boundary. Therefore, the higher temperatures and
pressures are more likely to generate the preferred
orientation of olivine, held responsible for fhe azimuthal
anisotropy observed. .

The existence of anisotropy in the continental



lithosphere had been suggested as early as 1966 by Crampin. .
However, it was not until the work of Bamford (1973,1976)
that the existence of large scale continental anisotropy was
observed.  Bamford used data from the Federal Republic of
Germany refraction profiles, and used a modified time ternm
method. to interpret the data.. PFrom the latest analysis

- (1977) ; which included results from the 1972 Rhinegraben
experiment, Bamford obtained an .anisotropy of 6% to 7%, with
the direction of maximum Pn velocity N20° E. ®hat is
interesting about the result is that the magnitude of the
anisotropy is egual to that deduced from oceanic upper
mantle investigations, . However, the direction of maximum
crustal Pn velocity differs by 20° from the oceanic results,
indicating a slight variation in the possible anisotropies

of -the oceanic upper mantle and the crustal upper mantle. .



Petrological Evidence for Anisotropy

The implication of the seismic experiments described in
the previous section is that the sub-Moho is anisotropic.
To reinforce the seismological evidence for the existence of
anisotropy it is essential to consider petrological work
which supports the seismic results, _

After Verma's {1960) measurement of the compressional
and shear wave velocities in olivine, the next significant
work on the subject was by Raleigh {1968), who studied the
mechanisms of plastic deformation of olivine. His analysis
of the slip system for olivine (0,k,1) [1,0,0] was later
used by Francis {1969) in constructing his model of oceanic
upper mantle, More petrclogical results on the deformation
of clivine were obtained by Ave'Lallement and Carter (1970)
They recrystallized olivine at temperatures greater than
1050°C, at pressures of 3 kbar, for a strain rate of
10—-3/sec. . Extrapolation of the results to strain rates and
temperatures typical of oceanic lithosphere (10—24/sec, and
5009C) showed that the b axis (0,1,0) of the new crystals
aligned in the direction of maximum compressive stress. ,
Thus, Ave L'allement and carter deduced that the ‘above
mechanism accounts for the orientation of olivine crystals
in oceanic lithosphere., However, as Puchs (1977) has

pointed out, the proposed mechanism could not explain the
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seismic results for two reasons:

A) The azimuthal velocity dependence would occur

only near the ridge axis where the temperature is

high (5009°C);

B) The b axis would not align perpendicular to the

plane of shear as suggested, since the principal

axis is at 45° to the plane of shear.

The results of Ave'lallement and Carter however, have been
used by some authors (Christensen, 1971) to explain the
orientation of the olivine fabric in the rocks from the Twin
Sisters in Washington,

Farther petrologic studies have been carried out by
Peselnick et al (1974) in the Ivrea zone of the Italian
Alps. This zone is of particular interest, since it may be
the boundary of the mantle and deep crust. Again the
clivine was found to have a preferred orientation. The"
measured velocity anisotropy was 7%,vand wvas independent of
pressure., The direction of minimum velocity was found to be
perpendicular to the foliation plane, and the direction of
maximum velocity was parallel to the foliation plane. .
Peselnick et ‘al favored Francis?' (1969) interpretation for
the generation of ocean upper mantle anisotropy, with the
principal slip mechanism, as described by Raleigh, being
responsibie for preferred orientation of olivine. .

Within the last year, two articles have appeared which

emphatically require intrinsic anisotropy of the upper

mantle to explain the seismic results, . Since the velocity
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and anisotropy of eclogite is toco small to account for that
observed, Bottinga and Allegre {(1976) have deduced that
peridotite, not eclogite, must be the main constituent for
sub-Moho anisotropy. Green and Liebermanmn (1976) state the
following: "It appears to us unlikely that uncertainties in
knowledge or error in prediction of the elastic properties
of minerals and their P,T derivatives are sufficient to

. permit values of Vp28.5 km/sec in petrologically reasonable
rock .types under upper mantle conditions, without appeal to

seismic anisotropy”.
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Other Forms of Anisotropy

The previous sections were concerned with the role of
intrinsic anisotropy in the constituents of the upper
mantle, Hovever, there are other types of anisotropy which
have significance in other strata of the earth. . Such
anisotropy can be generated in two ways: 1) pre-strain
static strain field; and 2) thin layers.

Many geophysicists have been cohcerned wifh ﬁhe thin
layer problen which is important in exploration seismology.
As early as 1950, Thomson investigated the periodic,
isotropic two layered medium, consisting of fine layers,
using the now- famoﬁs propagator matrices., Uhrig and Van
Melle (1955) noted that fine stratifications of alternating
bands of 1imestone and shale, or sand and shale could be
regarded as smoothly anisotropic if the dominant wavelength
was much greater tﬁan the bed thickness. . Potsma (1955)
quantified the above intuitive results by calculation of the
. effective elastic constants of a peiiodic isotropic two-
layered medium. However, the results are specific only fcr
periodic variations.of the layer properties. - Backus (1962)
has given a more general treatment of the finely layered
isotropic medium, which can be modelled as a smooth,

transversely isotropic medium, .
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Introduction

In this chapter the basic elastodynamics of anisotropic
elastic medié will be presented. By examination of symmetry
properties éf the media, the most general equations of
motion can be reduced to simpler and simpler forms. By
substitution of plane wave solutions into the elastodynamic
wave equations, dispersion relations may be derived. These
dispersion relations can be used to construct the Green's
function for the particular elastic material under
consideration., This method of construction is based on
principles of elementary projective geometry, which was at
its peak in the 19th century.. (Klein 1939; Poncelet 1822;
Briot & Bouquet 1896) -

The geometric results of this chapter are important,
since they form the physical basis for the derivation of the
ray equations to be considered Chapter III. These ray
equations provide the basis for the construction of p-delta
curves, which may then be used for the calculation of

synthetic seismogranms.



14

Section 1 Foundations for the Equations of Motion.

The equations of motion are derived on the assumption
that the elastic material is Hookean (Love 1945). . That is,
the free energy about an equilibrium configuration is
expressed as a Taylor's expansion in the strain (Musgrave

1970; Landau-Lifschitz 1959) as follows:

FDEFolnenz F(O) + [—B—F—]elj + l‘[—azL ] elJKQ . |

(2. 1-1)

wvhere A PF=free internal enerqy due to an elastic
deformation, eij is the strain tensor and o refers to
the undeformed state of the solid, 7 Since work must be done
to deform the system AF >0 ,and the right hand side of
- (241-1) must be a positive definite quadratic form. The
work done in deforming an elastic body, equal to the change

in free energy, is:



W =1s) ey (2.1-2)

By comparison of (2.1-1) and {(2.1-2) it is evident that:

vhere 6£J‘is the stress tensor., Equation (2.1-3) is a
constitutive one relating stress to strain in a linear

elastic medium. .  That is,

i = Cijre €yg (2.1-4)

The quantity CEJKQ,,is the fourth order stiffness tensor

with 81 components. Since GCJ:GJ-;,and €yvp= Epy » and

- . z" |
;O/‘J } [;e‘bef“ | (2.1-3)

15
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' 2
(2F ,[} 3 ] (2.1-5)
13¢; 3¢, Ldendeyl, | |
the following symmetry conditions are valid:
C;_\xnfc.iisu | |

Crogy * Cijxe

Hence, C.;J'K@the fourth order stiffness tensor with 81
components can be reduced to 21 independent components, .
Farther reduction of :the number of components is achieQeﬂ by
consideration of greater symmetries for the particnlar
medium involved.

Newton's laws for an elastic solid in the absence of

hody forces becone
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P, . 2 '(c(,-“ag, ) (2.1-7)

Equation (2.1-7) relates the mass times acceleration (in
Cartesian co-ordinates) to the divergence of the stress-
tensor, That the acceleration is related to the divergence
- of -the stress tensor is Qerived by many authors (Love 1945;
. Bullen 1965;YJeffreys 1959)

The study of equation (2.]-7)13111 be the focal point
in this chapter. Of course source ternms will have to be
included in any transient pulse propagation problen
{Takeuchi & saito 1972).

In most seismological problems it is neither essential
nor éossible to consider all 21 components of Cész . . Media
usually under consideration have some degree of symmetry. .
This symmetry may be exploited and the number of cémponents
of the elastic tensor reduced. . These manipulations are
simplified if the basic concepts of group theory are
introduced. .

A group G is defined to consist of a set of elements
A,B,Cy..., with an operation of ccmputation (multiplication)

such that the following axioms are satisfied:
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1) Closure- For any A,B, members of G, AB, is also

a member of G;

2) Associative Rule - For any A4,B,C, members of G
{AB) C=A (BC) =ABC;

3) Identity - There exists an element of G known

as I so that for all A, members of G, AI=IA =A,

4) ‘Inverse - For every element A of G there exists

an inverse A—!, also in G, such that A—1A=AA—1i=1.

To demonstrate the utility of the above abstract
paradigm, consider the elements of the Group associated with
the counterclockwise rotation of a square. . Rotations of 0,

- 90, 180, 270 degrees, can be represented as complex numbers
nilg T 37ifn,
C )' .e B ﬁ . .

is given below. .

. The group multiplication table

l%*‘equ eﬁi{ c?”ﬁ ’
] | e |gm B esru/;
e‘&/l ‘™ g"f ezﬂ"/z; | {2.1-8)
_e;rr‘«. g” - e mi/e | eru/z
Wify e:ﬂ,h ‘ e‘l&' Je ‘ ex‘}f

Here the identity element is 1, and the inverse elements
are obvious from the table. An interesting point to note is
that for the given multiplicatioh-rule, the element of G,
exp(imw/2), can geherate the other elements of -the group.
It is known as the generator of the group., & Since any group
can be defined in terms of its set of generators, it is
sufficient to consider group operations involving only these

generators,
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In the study of the various symmetries of the elastic
tensor the particular transformation of interest is known as
.a point transformation. These transformations leave at
least one point of the elastic medium fixed, and consist of
rotations and reflections. The complete description of all
the symmetries of a particular elastic medium can be
represented by this group, whose elements define the
particular symmetry operations which are allowed. As shown
above'for the simple case of the rotation of the sguare, not
all the elements of the group need be considered. Only the
generators of the group need be involved in any co-ordinate
manipulation.

Application of the above methodology is best
illustrated by an example. ir-‘ir.st, Cl—'jkﬂ, can be
revritten as a second ordér tensor if the following indexing

scheme is used (Daley & Hron 1§77; Musgrave 1970)5

01d Index Pair New Single Index
L 1
22 2
i3 ' 3
23,32 - 4
31,13 5
12,21 . 6

In this scheme the nevw stress- strain relation vwould be
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revwritten as:

& - [c,]e,' (2.1-9)

'with the stress

9
bt

and the strain

33 ' (2.1-11)

‘AP EPRO

Now for a particular symmetry, the application of a
-particular point transformation to generate a new elastic

tensor may be written as (Auld 1973)
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Ciy= My C Py (2.1-12)

where e
Pe; ‘(mll)T :
_ (2.1-13)
. As the transformation has at least one fixed point, (2.1-12)
must hold identically. For a nontrivial example, copsider
an elastic medium with monoclinic symmetry.. The simple
reflection matrix which represents the geherator of this

point group is

-0
(s 6]

{2. 1-14)

o Q™
0
L

For this mirror reflection, the matrix used in {(2.1-12) 1is
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(2. 1-15)

Applying the symmetry condition (Auld 1973), it is found

that

Cn cn.c'l}cu C,‘ c’lb

n C"lcc;cm-.clrc-‘ls .
c Co €S o

CuCuCiCy
CuCu Sy Cu
4}?‘ Ca CU.C'«‘.( v
.c;,‘?cg c,,*c,“t“ c‘.“ b
CL"-CJ;-‘gﬂs-cta-cc: Ci

1\

| €s C'Jz.c'3§cs4'~cssc'39 ' (2.1-16)
IR P -C G

e @ Qg a“
oy _C'a- C‘; c.f; C[; s (3
: "' 'Cm ;ccz (‘, Cu C‘,C“

Hence, é of the elastic éonstants vanish.v This leaves 13
elastic constants, However, there is freedom to choose the
x-y co-ordinates in the reflection plane. This reduces the
degrees of freedom by one, so only 12 constants describe a
ponoclinic -crystal medium, Application of this method for
the case of media with hexagonal symmetry shows that {(Landau
and Lifschitz 1959) there are only 5 independent elastic

constants.
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Intuitive Arquments

The use of group theory in determining the number of
:_}independent elastic constants for a particular crystal is
';,precise, but other means are available to study the elastic
tgnsor‘for media with different symmetries., As Feynman

{1966) states:

" There is a branch of mathematics called *qroup

theory? that deals with such subjects, but usually

you can figqure out what you want with common

sense, "

The simplest elastic material to consider is one that
is homogeneous and isotropic. W®hen this material is

stretched by a force F, the amount of extension Al is

related to the force by Young?®s Modulus

FeYar @117

As well the bar contracts perpendicularly to the direction
of stretch. The change in width per unit width is related

by Poisson's ratio to the change in length per unit length. .
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AW - -& 82 (2. 1-18)
W L

The above sfretching ekperiment can be done in any
orientation, since the medium is isotropic. Hence only two
elastic constants are needed to describe a homogeneous,
isotropic mediunm.

The next type of elastic material to be considered is
one resembling plywood in geometrical structure. it is
composed 6f infinitesimally thin laminae.. Each lamina-cah
be viewed as ;sotropic and hence is symmetric about the z
axis. To deiermine-the rinimum number of elastic constants
for this medium, two experiments suffice. Apply an

extension normal to the laminae
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There are lateral contractions {}, equal ‘and parallel to
the planes of the laminae., ., For this case a Young*s Hodulus
and Poisson iatio can be measured. The amount of extension
in this case is determined by the weakest lamina, and the
lateral contraction g—w is the same along the x and y axes.
Now repeat the experiment with F parallel to the laminae.
The physiéal situation'ié different, sihce it=is the
strongest lamina which détermines the amount of extension.
There are two Poisson ratios, because lateral contraction
perpendicular to the applied force F is béth parallel to and
perpendicular to the symmetry axis of the laminae. These
two éxperiments show that this material (known as

transversely isotropic) has five elastic constants, Backus
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(1962) showed how one could calculate the elastic constants
of a transversely isotropic medium, which is dynamically
equivalent to a finely layered isotropic medium by the
application of an analagous argqument, Also, it is important
to note that the transversely isotropic medium is eguivalent
to a medium with hexagopal'symmetry, since its elastic
properties can be described in terms of five elastic
constants, .

A more complicated type of elastic medium can ‘be now
examined. = It can be viewed as finely-layered, but in three
orthogonal directions. 1In this case an extension along each
of the %, y, and z axes would allow measurement of a Young's
Modulus and two Poisson ratios.. This gives a total of nine
elastic constants, ‘Such an elastic medium is called
orthotropic, . Orthotrbpic materials are especially important
as they are considered to be among the main constituents of

the upper mantle., (Green & Liebermann (1976))
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Section 2 - Solutions of the Equations of Motion

As seen in Section 1, the equations of motion with no

body forces, are written (in Cartesian co-ordinates) as

pll&za‘-' .b_ (Ct'jxgﬂ‘) (2'2-1)
2 =\ 3%

In solving such a system of differential equations, the
salient features can be obtained by using plane waves as

trial solutions. Let

o lPX-t] L (2.2-2)

wvhere A_ is the amplitude,
PK is the slowness
{the summation convention is implied on appropriate repeated

indices). Substitution of (2.2-2) into (2.2-1) gives
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(pSa-ppCind Ay = O (2.2-3)

Equation (2.2-3) has a sclution when the determinant of the
coefficients of Ay vanishes, Thus the solution to {2.2-1)

reduces to the solution of an eigenvalue problem. That is,

dei(ﬂg,.)- Pjpﬁciju)zxo {(2.2-4)

Equation (2.2-4) is a sextic in the components of p. It
also can be viewed as a cubic in Pdfh » This cubic has
three roots, each root describing a gquadratic form in the
components of p, Thus each root of (2,2-4) rebresents a
guadric surface known as the slowness surface. There is a
corresponding eigenvector for each root. The eigenvector
represents the displacement associated with the particular
root. The existence of three roots corresponds to three
different polarizations of displacement, These
polarizations are still orthogonal but are not pure mode

vibrations., (Musgrave (1970)) That is, they do not align

either parallel to or perpendicular to the wave propagation,
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as do P or S waves propagating in an isotropic medium. Por
each polarization of the mbtion, the corresponding gquadric
surface provides a constraint on the components of p i.e. on
the plane waves which are ailoved'to propagate. It is known
that the most general solution of equation (2.2-1) is an
envelope of all pléne waves, which. are allowed by the roots
of (2.2-4) (Kraut 1963; Duff 1975; Courant & Hilbert 1966), .
This ehvelope is known as the wave surface-(Kraut‘1963;

Musgrave 13970).
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Construction of Wave Surface - Analytic Treatment

The analytic construcfion of the ‘wave surface can be
obtained by differentiating the phase function (chosen for
convenience at t=1) with respect to the parameters (the
components of‘thg slowness) subject to the constraint that
the slowness vectors trace out a three sheeted slowness
surface (Fowler. 1929; Lighthill 1960; ‘Duff 1975; Musgrave
1970). et the egquation of:the. 4th sheet of the slowness
surface be G (p)=0.0., The phase function is P Xx—1 =
0 . To find the envelope of all plane waves the
method of Lagrange multiplers is used, and then PK is

eliminated from the two equations:

_SLP_( px:.*- 1 4 KGJ(P)) <0 . (2.2-5)
' LS

and N |
Pﬁxmf':=o
- ’ (2-2"6)

The co-ordinates of the envelope are
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x, = 3G
' Pk«

3G;

P'KBPK : (2.2-7)

Equation (2.2-7) shows that the co-ordinates XK of the wave
surface W are related to the normals of the slowness ‘surface
S. . {Note that j refers go the j'th sheet of the slowness
surface.)

The above calculation is identical to the traditional
stationary phase approach. . That is, it is required to find

the stationary points of the phase

2.2-8

where kL are the components of the wave number. The
angular frequency,W, is related to the wave number by the
dispersion relation obtained by solving for the Jth
eigenvalue, using an eigenvalue equation identical to (2.2-

4) . Therefore, the stationarity condition is
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|
26 :o or Xxn(au.))t
K, . 3Ky

(20 2-9)

But 'D\qékzare the components of the group velocity. .
Equation (2.2-9), which is simply the equation of the rays
for a homogeneous anisotropic medium, demonstrates that the
co—ordinates of the wvave surface at one second can be
obtained by calculatihg the group velocity for all angles
defined by the allowable wave vectors. In general the
vector dw/dKy is not parallel to Ky . This implies that in
a homogeneous anisotropic medium,-the slowness, and hence
the phase velocity, are not in the same direction as the
group velocity, All the physical peculiarities of waves
travelling in such media are derivable from that simple

result,
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Construction of ¥Wave Surface- Geometrical Derivation

The shape of the wave surface may be obtained by a
geometrical argument., 1In the last section, it has been
shown that the componénts of the group velocity generate the
wave surface at t=1 second, Since the direction of the
group velocity is given by the normal to the slowness
surface, the slowness corresponding to the group velocity
(the group slowness) may be easily determined. 1Its
reciprocal is the group velocity. Por the case of a
slcwness curve (slowness surface for a two dimensional
problem in the X-2 plane), the geometric construction

proceeds as follows (Fig 2.1):

1) For the slowness vector OB at an anglee, find
the corresponding unit normal vector @ ; the
components of f are the directional cosines for
the line RS;

2) Find the group slowness, cortespondlng to the
direction of ©i. 1Its magnitude is the
perpendicular distance from the origin to the line
RS and its dlrectlon is given by the angle ¢’,
vhich is arctan(n,/n%),

3) Take the reciprocal of the magnitude of the
group slowness vector OC. The vector OD at the
same angle as OC is the group velocity
corresponding to the slowness vector OB,

If steps one, two, and three are repeated for all angles 8,
the two dimensional wave surface can be traced out.  The
complete slowness surface and wave surface for a

transversely isotropic material are illustrated in
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©\>

O Pxf

Figure 2.1 Geometric construction of wave surface from
slowness surface

Figure 2.2 .

The geometric construction described above has its
origin in projective gecmetry {(Klein 1939; Poncelet 1822;
Napoleoni 1977, personal communication; Courant & Hilbert

1966; Briot £ Bouquet 1896). In the terms of projective

34
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Figure 2.2 Slcwness and wave surface for a transversely
isotropic medium, Polar reciprocal construction was used to
construct the wave surface,

geometry, the slowness surface and wave surface are known as
polar reciprocals with Tespect to the unit sphere (a circle
in two dimensions). To see that, the following definitions

{for the two dimensional case) are in order:



1) "If P,Q are points on the diameter AB of a
circle such that AB:PQ is harmonic and if QR is
drawn parallel to the tangent of A then QR is
called the polar of P with respect to the circle
and P is called the pole of QR." (Fig 2.3 ). 1If
0 is the center of the circle, it follows at once
that OP*0Q = radius squared.” {Durell 1947).

2) A surface W , consisting of a locus of poles
whose polars with respect to the unit circle are
the tangents to a surface S, is said to be the
polar reciprocal of S with respect to the unit
circle, . : ‘

R

Fiqure 2.3 Diagram illustrating definition of pole and
poclar.

To see that definitionv(Z) describes the relation of the
wave surface to the slowness surface, it is sufficient to
show that the construction implied by (2) is identical to
the one described previously, .

First imbed a surface S inside the unit circle as

follcws. . Then
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N
Y

Draw a tangent at P. This tangent cuts the circle at R and

S

)

v

Construct the pole D of RS . Now by symmetry, the line 0D
bisects the angle RDS, and intersects line Ré.at Q in a
right angle. Hence, by definitidn (1) {Napoleoni
1977,personal communication) 0Q0.0D = 1 of 0D is (1/0Q). The

above construction, therefore, is identical to that
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described using arguments of group velocity. 1In three

-
S

Figure 2,4 Construction of the polar reciprocal surface

dimensions, analogous definitions hold. To obtain these
analogies simply substitute the words polar planes, tangent

rlanes, and spheres for polar lines, tangents, and circles.
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Properties of the Wave Surface

Although the derivation of the wave surface from the
slowness surface is based on a simple geometrical
construction, the surfaces that result sometimes have
peculiar features. From a mathematical viewpoint, these
peculiarities are the singular points of the wave surface.
There are two types of singularities: cusps and double
points. It is easier to see how the two types of
singularities arise if a plane section of the slowness
surface is considered.

The first type of singularity to be investigated will
be a double point. {A', B', fig.2.7) In Fiqure 2.5, points
A and B of the slowness surface (one quadrant shown) share
the same tangent line RS with normal 1. Hence, the
correSponding group velocities must be in the same
direction. By the construction shown in figqure 2.4 the
magnitude of the corresponding group velocities is the
reciprocal of the length OP, This proves that the points A
and B map onto the same point of the wave surface. 1In the
three dimensional case, a cone of slowness vectors would
share the same tangent plane and map onto one point of the
wave surface. This phenomenon is known as internal conical
refraction {Landau and Lifshitz 1960). From Fig 2.5, it is

clear that at a neighboring point of A, D, and at a
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Py

Px \ NS

Figure 2.5 Points A and B on slowness surface sharing a
ccmmon tangent, resulting in a double point on the wave
surface. .

neighboring point of B, P, the directions of the group
velocity are the same, but the magnitudes are different.
This is illustrated in Fig. 2.6, where the two tangent

lines XZ and UV are parallel but the perpendicular distance
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from O to the tangent line X2 is less than that to the line

UV. Thus point F has a larger group velocity associated

PJ | \

Y
\ px»

Figure 2.6 Differing group velocity magnitudes in the
neighborhood of points A and B which share a common tangent.

0

with it than point D. The wave surface for Fig. 2.5 is

shown in Fig. 2.7 with the group velocities of the

corresponding slownesses labelled with dashes. The point A!
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D

0 X

Figure 2.7 Illustration of wave surface with singularities
corresponding to slowness surface of figure 2.5

or B? (which is identical) is the double point and here the

wave surface intersects itself, In Fig. 2.7 the octher

singularity mentioned previously is also present, the cusp.
The cusp arises because of an inflection point on the

slcwness curve (or surface)., At the inflection point,
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g, » ﬁ, in fig. 2.5) the tangent beconmes stationary, The
pole of the corresponding tangent must also become
stationary. This pole, which represents the group velocity
at the inflection point of the slownéSS’curve, is the tip of
cusp (&',;i, in Fig. 2.7). If the curve in Pig. 2.7 is
given parametrically by X{(t), and Y(t), then the

stationarity condition described above is simply

X()=0  y(E)eo
“ 2 d/dt

(2.2-10)

From classical differential geometry, {(Fowler 1929;
Eisenhart 1968) equation (2.2-10), is the known condition
for a singular point of a curve. The additional constraint

that
(X)) *(5“))2#0 (2.2-11)

is sufficient to prove that the singular point is indeed a

cusp., .

Let the slowness surface be given parametrically as
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r = f(t) {2.2-12) -
Then
X (t)=£({t) cos {t)
y{t)=£(t)sin(t) {2.2-13)
wvhere x{t), y(t) are the co-ordinates of a point on the
slowness curve for any given t, At an inflection point of

the slowness surface,

, .
dy =o (2. 2-18)
d x*
or parametrically,
5:,5-:)5&:0 (2.2-15)

Using eguation {2,2~13) for the definition of x{t) and v(ty,

it is éasy to show that egquation (2.2-15) beconmes

1 . _
T -ff 26" -0 (2. 2-16)
Equation (2.2-16) is the condition for an inflection point,
when a curve is given in polar co-ordinates {(Fowler 1929).
For the given slowness curve, the corresponding wave surface

(in tvo dimensions) is
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X(£): 4 3% cos(ait)+t)

2

(2.2-17)
yit) = £4 4% sin(ae)+t)
£ : :

where X (t) and Y(t) are the co-ordinates of a point on the
, _

wave surface and A(v) = TAM”("’ {Fig. 2.8)
4

Equation (2.2-17) can be simplified to

) = (§cost + §sint)
- (2.2-18)

yle) =_|Z('{:Cost +Esint)
) £
Now compute X{(t) and Y(t):

X(8) = ~2_'F$_ (feost +fsint) + —\—l[ 2 feost +isink — £5int] (2.2-19)
£ -4 ' |

and
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Figure 2,8 parametric representation of the slowness surface
used to construct the wave surface

y(t) = 72_". ["“'Co:t +€Smtl Li—).[ 'k‘cost +~ 2~$3(1\'¥. +-Fcos+.]. (2.2-20)
; ; |
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Simplifying:

X (&)= =sint [ 26§ +26]

£

g (&) = _cost [§'-£F426']
R

(2.2-21)

However, at the inflection point, at x(t),y (%),
e .l
$'r§f428 =0
{(by equation (2.2-16)). This proves that at the point of
- N - «
the wave surface corresponding to x(t), v{t), }(@ﬂ;)ﬁ}pof
It remains to show that the second derivative is non-zero at

e® A

A
t = t. To do this it is necessary to compute ><Cﬁ)

and 57(2) . VNow X{‘Z) +.}./[tﬂ)2:0 only if, at t = /{,

a (- fr2f):0 (2.2-22)
dt

or

24§55 +34f =0

To prove that equation (2.2-22) cannot hold, it is necessary
to revert to the slowness surface, For the slowness surface

éiz £0. Parametrically,
dx?
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dy . 2Y-y% ~3%(%y-y%) | (2.2-23)
de i3 i4

N
At t = t equation (2.2-23) becones

A
as Xy - yx vanishes identically at t=t., If the parametric

equations of the slowness surface (2.2-13) are used then

&32 = -‘:‘?4’3"“""2"¢ | # O (2.2_25)
clls £t Fr

Thus i2.2-22) cannot be éatisfied, and indeed the sinéular‘
point is a cuspidal one.

Another way of proving the condition for the existence
of the cusp is based on a construction given here in two
dimensions involving the velocity curve (or surface).
Suppose that the phase velocity is specified as a function

of angle
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Y
That is, for each angle C] a plane wave with unit normal k is

propagated and its phase velocity ¢ is measured. To find

the group velocity, rewrite (2.2-26) as
W= \43('9) {(2.2-27)

Following Backus (1970), the group velocity is obtained from
(2.2-27) by differentiation, using the gradient operator in
polar co-ordinates, The components 0f the group velocity in
the © and k directions are given as

Vio* 9 (0) (2.2-28)
V= gte)

From (2.2-28) a physical picture of the group velociiy can
be obtained. The group velqcity is a vector whose k
component is the phase velocity, and whose © component is
3'(9). Thus the angle the group velocity makes with the
phase velocity 1srnu‘%3%eﬂgfeﬂ . This proves the important
result noted by many authors. (Landau & Lifschitz 1960;
Witham 1974). It is clear from figure 2.8 that the group

velccity leads or lags the phase velocity by the angle &,
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Suppose that it leads the phase velocity of the plane wave
propagating at an angle 6 .1 Then with respect to ©=0, the

angle the group velocity makes is

/3 . 641'0..\"(5‘(6); (2.2~29)
_ . a(e

As long as dp/de is >0,the group velocity will lead the
phase velocity. But when dp/lde<0, it will lag. Therefore,

thke critical point is at
o(,:/ale =0 (2. 2-30)

From (2.2-29), it follows that
g"(e) +9(8)% O (2.2-31)
at the critical point, The above condition for a cuspidal
point in the wave surface has been obtained by Witham(1974)
and Potsma(1955) using a slightly different argument.
Musgrave (1957) has also given proofs of the existence of
cuspidal points, but his arguments are somewhat different

from those used here, He has also derived the conditions

1Note: t in figure 2.8 is eguivalent to O » the variable
which relates phase velocity to the angle of propagation,
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that the elastic constants must obey in order that cuspidal
edges exist in the three dimensional problem,

A detailed study of the wave surface, which is the
Green's Function for a point source in homogeneous,
anisotropic media is important, since the gqualitative
features of waves propagating in such media can readily be
derived. The singular points correspond to the focussing of
enerqgy. Thus in computing seismograms in anisotropic media,
it is expected that these focussing effects should appear if

the cusps in the wave surface are large enough.,
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Introduction

Following the discussion of the basic physics of waves
propagating in anisotropic media, it is a straiqghtforward
matter to investigate the kinematics of these waves. 1In
particular, attention will be focussed on transversely
isotropic media . As indicated in Chapter I and II, the
main emphasis of this thesis will be the analytic derivation
and numerical calculation of synthetic seismogranms in
transversely isotropic media,

The study of the kinematics of plane waves is usually
approached via asymptotic ray theory {(Cerveny 1972), or by
the consideration of the jumps in dynamical quantities
across the wavefronts (Vvlaar 1968), As will be shown in
this chapter the two methods are completely equivalent,
although details differ., Once the ray theory has been
developed, p-delta curves (Wiggins 1973; Bullen 1965;
McMechan 1976) will be ccnstructed. These p-delta curves
will then be utilized directly in the next chapter for the
construction of synthetic seismograms .

A visual presentation of the rays is easily obtainable,
once part of the numerical schemes for integration of the
ray equations have bheen derived. A new hybrid scheme of

integration will be developed, based on work of Gauss,



Kantorovich (1934),

Krylov (1962), and Chapman

(1971 .
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Ray Theory Part I

The methods of ray theory have been used in optics
since Newton's time. Not until Hamilton's derivation of the
principle of least action was a connection made between
optics and mechanics. It is precisely this connection which
is utilized so effectively in seismology.

Following the derivation presented in Method

-of

Mathematical Physics Vol II (Courant & Hilbert 1966) many

Russian seismologists (Alekseyev (1961); Yeliseyevnin (1964) ;
Babich 1961) have successfully applied the ray method in
detail and Cerveny (1972) has applied the hethod to general
anisotropic media. The specific case of transverse isotropy
has béen considered by Daley and Hrom (1977). A summary of
their basic results will be outlined below. .

The equations of motion to be considered were derivead

in Chapter I1:

3.1-1)
pUL L2 (Cuudw) ’
dE 315 ax S

The basic assumption of the ray method is that
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{no summation here) wvhere )\is the wavelength under
consideration. With this conditon, it is possible to
express the displacements in terms of an asymptotic

expansion : ‘

o0
iw(t-v) -
W) W, x,x) et : O 3.1-2)
nco (iw) .

vhere
" .
Uy = vector amplitude
T = phase of the wavefront
w = angular frequency.

Substitution of (3, 1-2) into (3.1-1) and consideration of
the terms involving W yields the following eigenvalue

problem:
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( ?szCiju-/)éjs) LL(:?= O
{3.1-3)

o/

= a7
p = oL
Yodxy

The superscript o refers to the zeroth order term of the
asymptotic series (3.1-2). Equation (3,1-3) is identical to
the eigenvalue problem posed in the previous chapter. If

the elastic tensor is scaled by the density, equation(3.,1-3)

becomes:
" (0)_
vhere Q,.ju ~ C.‘Jm

f"
Equation (3.1-4) has three eigenvalues whose numerical
vaiues, wvhen set egual to one, define three orthogonal
eigenvectors, the polarizations of particle motion., In
particular , if the eigenproblem associated with the matrix

[P_j Pe aiJ'K_g,]iS rewritten as
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(Plﬂ%’u[c’ Si')') W=0 - (3.1-5)

then, the condition G=1, corresponds to the equation (3. 1-4)
above. It is instructive to determine the eigenvalues GJ (J'=/, 2/3)
associated with (3.1-5), and set Ga =1, In order

that a sclution of (3. 1-5) exists

- (3.1-6)
det ( PufFijwe” G Sij) =0

Since each Gj is a function of the P, ., a partial

differential equation for the wavefront has been obtained:

(3.1-7)
G.(p,x) =

Equation (3.1 - 7) can be solved by the methods of
characteristics (Courant & Hilbert 1966)., The solution is

defined by the equations
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s p, (3.1-8)

where s is a parameter along the ray.

If equation (3.1 - 8) is to be recast in terms of 7 ’
the phase of the wavefront, an additional result must be
utilized. This result is obtained by application of Eunler's
theorem on homogeneous functions to the eigenvalues 6&,.

That is,

P’.EQM - 2G.
9p: (3.1-9)

or as can be seen from (3.1-2), the phase of the wavefront

is defined by:



= LX)
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(3. 1-10)

Upon differentiation of (3,1-10) with respect to t, the

result obtained is

A combination of (3.1-8), (3.1-9) and

(3.1-11)

{3.1-11) changes the

form of the ray equations. Expressed in terms of the phase

of the wavefront 7 , equations {3.1-8) becone

(3. 1-12)

The above theoretical derivation may be elucidated if

the example of transverse isotropy is considered.  The

elastic tensor (Cerveny & Psencik 1972) for a transversely

isotropic medium is
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T ﬂ

A ©(3.1-13)
a»’
Oy,

With a ra,—2a,,

The ray will lie entirely in the (xulx3) plane if the
source lies in the (X/,Xj) plane and the inhomogeneity
depends only on X;.. With these restrictions, substitution
of (3.1-13) into (3.1-16) yields the following determinantal

equation (Daley and Hron 1977):

det pAr pALS G o FICKLY
0 PA PR, O = O
'P: PJ(A13+ A&.) 0 P;“A-‘; P;AB-q (3.1-1%)

The roots are given by solving the cubic
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(P A BA G Xt A4 PIAZ6) (pPA+PA ~G) (3. 1-15)
- ppi(A+ A“)) =0

One obvious root is (:12: P.A‘,é' p;A55 . The other two

roots are determined by the quadratics

R (3. 1'16)
CG-KG+L =0

wheve k = (A,.+ A_g')p? + (A”-% A,)P;'
L= (Apor+ Ap(A Do+ Apl) - (A, + A:r)LP.‘ P

The solutions to these quadratics are



cﬁ»=:‘_.( Ky KZ'4L )
2

6= L (w=J=ar)
2
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If éa and G% respectively are set equal to one, then each

equation in {3,1-17) is an algebraic relation between the

horizontal and vertical slownesses for compressional and

shear waves respectively. The ray equations describing the

ray trajectory may now be derived using (3.1-7) and (3. 1-

12) : for example, the trajectories for vertically polarized

quasi-compressional waves are

dx o L1 3 (k-1
At 2 JK-4L dp,
dz . I3 (x-1)

(30 1"18)

The two equations in (3.1-18) may be combined into a single

ray eguation
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dx _ P; (Au+ Ag) - [2 AII P},P{L+ R;l(A:; AJ;A;;( A/s+ A;;Y.J } (3. 1-19)
de  p((AgA) -[aApgts sl AASALAT]

Equation (3.1-19) is identical to that inferred fron Cerveny

and Psencik (1972).
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Ray Theory Part II

Another approach to the ray trajectory calculations,
involving considerations of the discontinuities of the
particle velccity across a surface travelling through ><£—
‘'space, has been developed by Vlaar (1968). His approach to
ray theory will be derived below for vertically
inhomogeneous, transversely isotropic media. Cylindrical
cbordinates will be utilized, so that the cylindrical
symmetry of the medium may be exploited. As well, the final
algebraic results will be proven identical to those obtained
in Part I.

As Vlaar's notation will be used throughout, the
following definitions are in order:

a) the wavefront will be denoted by f";

b) A field quantity f, before the wavefront has passed, will
be designated by f-. After the wavefront has passed, the
field guantity will be signified by f+;

¢) The jump in the field gquantity f is shown as (f*)=(f+)-
{f-), with both f+ and f- being evaluated at the appropriate
time and location

d) The position of the wavefront at time t can be written as
| Y(no,2-1=0

Inmediately some results may be derived from the above.

Since
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r, ez) E(r 01 s ‘t’(r,e,u)
= f(r/e,%,tﬁ‘(r,e,%))

then
(s +P€_)
%{_- ( Yi 3 (3.2-1)
V= 13 2.
where (Br v bz)
(dr rde d__>
Y dt dt dt
As well, on the wavefront ‘V(r,e,%) -t=0 -

Differentiation of this relation yields

vkp.vgl {3.2-2)

~

Equation (3.2-2), analogous to (3,1-11) in the last section,
has the following physical interpretation. The gradient of
\V is normal to the wavefront and its components are the
components of the slowness vector. Hence, the velocity of
the wavefront, normal to itself, has a magnitude of

l/lV?/f/ + If the unit normal to the wavefront is denoted by
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hj , then the components of the slowness  are given by

P). L ﬂ)\v PI ’\L}i_

Equation (3.2-1) can be rewritten as

| vl cose =1
V,

A (3.2-3)
or V.~ IVicosx |

where Vj = magnitude of the normal velocity

‘V/ = magnitude of ray velocity
o = angle between ray velocity vector and unit wavefront
normal. .

From (3.2,1-3) and (3) algebraic relations between the
jumps in stress and in particle velocity may be derived.
Since ll:==0,the jump in the particle velocity is zero, it
follows that d—“&jé(t::(? « . On application of this result

to equation (3.2-1) , the ensuing egquation is obtained:
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du = -(Tu)y, (3.2-4)
¥t

3t

where cos % is the same as in (3.2-3). Substitution of

* AR
Vy, for /Vr] Cos oL and noting that I(Vu.;) I x (%l&:‘) if n is
defined as the unit normal to the wavefront, yields the

final result

»n
(3 ‘**L) Vi » T 28 (3. 2-5)

Further reduction of {3.2-5) is essential in inferring the
final algebraic equation relating jumps in particle velocity
across the wavefront to the corresponding jumps in stresses.
This reduction is achieved by multiplying (3.2-5) by the
components of N, nj and using the fact that

qj(Jué'*_ (Vha)f » Then, in component form equation

Se) =

(3.2~5) becones
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* *
(V&DJ ’ \,!,h = -nJ ( aut)
ot
or
¥ _ o ¥
(vu); = -p (%%L)

Equation (3.2-6) relates the jump in the jth ccmponent of
the gradient of particle displacement to the jump in
particle velocity across the wavefront., This equation-is
the desired one required for calculation of ray trajectories
since it is known that the characteristics are carriers of
jumps in dynamical quantities. However, another relation is
needed before the jumps in the stress across the wavefront
can be related to the particle’s velocity. .  Details of the
derivation are given in Vlaar's paper (1968). The reguired
equation which relates the discontinuity in stress across

the wavefront, to the jump in momentunm is

o *._ 302'7
&5 Ny *pals)=0 ( )

Combination of equations (3.2-6) and (3.2-7) will result in
an eigenvalue problem similar to those discussed previously.
As before, a system of partial differential equations

associated with the eigenvalue problem can be elucidated.
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The solution of these equations yields the ray trajectories,

The ray trajectories, obtained indirectly fronm
equations (3.2-6) and (3.2-7) are of oou:se idéntical to
those calculated earlier. To demonstraté the equivalence of
the two approaches, the example of a vertically
inhomogeneous, transversely isotropic medium will again be
examined. 1In this following example, the cylindrical
symmetry of the medium is exploited,

Since the medium is cylindrically symmetric, all 69

derivatives are zero, The strains are given as

€ =3, €&, \_(_3_5,- gﬁ)
Ar 2\3r ¥

€ .:1[3u u,_) €= 123U,

" z(a%u u 33

e}t =z Bui G'so:——u—v (3. 2“8)
d2 Y

Since the jumps of the tractions across the wavefront are
needed in equation (3.2-7), it is necessary to obtain the
jumps in the stresses, Where the discontinunities in
derivatives are required, equation (3.2-6) is used.

Therefore, the required jumps in strain are
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€rz-pliY €,0

(-4:4

L]

» P w P, 4 » X
€r9 = -' Pr(uv) erl1= -| (Pa‘ur) + P'Lul))
2 2
" ‘30 2-9)
» » ¥ ¥ - .
€™ ’Pa(“z) €, "‘2 Pztue)
vhere pPr P; Pe are the components of the slowness.
(u )* (u, )* [a )*are the jumps in particle velocity. The
W, J 2/ ) © . - re
corresponding jumps in the traction are obtained by using
the constitutive relations relating strain and stress

{equation (3.2-9)). These are:

{rt: Cu (- Pr(ar)*) M C’\J(- Pi( QZ)')
PART-N p,,(CL,)") £ 2 C“p,(a,)k-\- C,B(-pe(tle)*)
S22 : ,_J-p,(kl,)*) * Css('_Pz( &)

S Col ~pal k) ) . (3.2-10)

oar = Csrl=pal L:"r)""' Pr (al)*)

St = -cu.("Pr(u'ef)

re =

where CCJ= AcJ (’with A"'J. defined previously. (see 3.1-4,) .
Substitution of (3.2-10) into (3.2-7) and use of the facts

that P,j = Ny and [’9:0 {since J = O ) vields

—

v, 36
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- PSPy Csst/? © TPvfe (€t ¢ (W)
o ~PrCuc P:CJ5+p o (LL")‘ =0
PPy (CetCy) 0 - -Cpi- Csptp ( aé)*
(3.2-11)

Equation (3.2-11) has a solution if the determinant of the
coefficient matrix vanishes. The resultant cubic in

FFZS PéL » is identical to that derived in Part I,
equation (3.1-15). 'To prove this equivalence introduce
again the scaled elastic constants A5J='Cﬂ/?.. Upon

computing the determinant and setting it to zero « the

following cubic is obtained.

("P:Aa-- P Agst |){('P:Au -prAt ')('P;Ass- Pefsst 1) - P:P; (A'3+A~‘)l} =0
(3.2-12)

Equation (3.2-12) becomes equation (3.2-15) of Part I if Pr

and Py are identified with ¢, and P; .. Since equation
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o *
{3.2-12) is a cubic relation between Pe and P , three
solutions of P, as a function of Pr can be obtained, each

of which corresponds to a particular polarization of

particle motion. One obvious solution of (3.2-12) is

P2=,¢/%T(’~p;A“)

$s

This solution can be identified with horizontally polarized

shear waves, The other two solutions are:

P, =i\/b:¢m
2a
where b= (A,3+A,;)1P}‘A33(P:Au~‘) (3.2-13)
= Ay (Aggpt -1)
ax ALA,
C = (A,,p:—l)(hﬂpt"l)

In equation (3.2-13) the outer *+' and '-? signs corresponds
to up or downgoing waves , while the inner *'+' sign can be
identified with gquasi-shear waves, and the inner '-' sign
can be identified with guasi-compressional waves.,  If

. - : ;. 2. £ - =
equation 3.2-13 is written as Pt’ -FL(PUL) FL(PUPE)A o ’

then the corresponding ray equations are {Vlaar 1968):



dr . d@ . oF

4s P ds  OPe (3.2-14)
dp, . -3F AP;: » ~OF

4s - or A4S 22

The equation necessary to compute the ray trajectory is

A . -1 f . -1 2% {3.2-15)
Az 2p2p, 2Jf, e,

wvhere the subscript i refers to the two possible

73

rolarizations of motion. Egquation (3.2-15) is identical to

the ray equations obtained earlier for a planar, vertically

inhcmogeneous, transversely isotropic medium., Since the

medium is cylindrically symmetric, simply replace r by x.
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Calculation of t-delta and p-delta curves.

Theory

‘The results of the previous section allow the
calculation of t-delta curves and p-delta curves which have
found such broad application in the calculation of synthetic

seismograms. Integration of the equation

dr . -_L 23§ (3.3-1)
di 2J/F dp¢

given in the previous section, will determine the distance
to the turning point for a given ray parameter (horizontal
slowness) in a particular vertically inhomogeneous,
transversely isotropic medium. The travel time can be

obtained from the relation

de .t |
Ar T (3.3-2)
di 2N P,

where

N = OF + Eaf_
(P 29, P?’Pz)
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oV
dt . 2pt- p2%i/3p . py+ PY%"_

- 303-3 :
d2 25, z ( )

Note that (3.3-3) can be immediately integrated to give the

one way travel time as

.
t=fx/+Tdf ¥ (3.3-4)

The equations which will be used to calculate both p-delta
and t-delta curves are obtained by multiplying the right
hand side of (3.3-1) and (3.3-3) by (3.3-2), since the
material is laterally homogeneous. .

In order that the calculations of p-delta and t-delta
curves proceed accurately and efficiently, a hybrid
computational scheme based on the work of Chapman (1971) and
Kantorovich (1934) is utilized. Kantorovich's method is
used to subtract out the singularity which can be integrated
analytically. The remainder of the integral is integrated
using a fancy Gaussian integration scheme described in

Approximate Calculation of Integrals. Chapman®s usage of

=

the fancy Gaussian method is extended, in that the technigque
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is applied also to the integrals with sguare root
singularities.

The hybrid technique described above is necessary due
to the singular behaviour of the ray integrals near the
turninglpoint. For example, in the case of an isotropic,

vertically inrhomogeneous medium, the ray integrals are

2 {

t : (3.3-4a)
X(P) = ij d$
JINVG) - p

o

and

. T, :
. | o (3. 3-4b)
.2ﬂp) %[‘kﬁgy p* d4 |

where t{p) is the two-way vertical delay tinme.
The integrand in (3.3-4b) has an integrable singularity

since P= '/b(zt) . That the singularity is integrable

3
can be seen by a change of variable ws L - P + Then,
vi8)
for example,
) - P
XLP)=—2p | d% du |
(o)

1f V(%) is monotonic and smooth olf/du will be smooth, and

the behavior of the integral will be dominated by the
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singularity at u = o, (corresponding to the turning point).
If the function is more complicated, an artifice due to
Kantorovich (1934) may be used. Suppose the integral in

question is of the form

b
I=f¢(9’(:c))dx (3.3-6)

vhere ¢”ﬂ(xv is some composite function. Also suppose that
at x = a, ’l/(;():.O and as a result ¢(o) diverges, i.e.
@(K) could be G%i « The procedure is to expand‘¥(X) about

X = a, to as many terms as desired. For exanmple,

3 3.3-7
Y(x) = %) t Play(x-a) ( )
O
In (3.3-6), then, add and subtract to obtain

b ' oy . o
1’f¢($‘"(a)cx-a-))dx +f¢(w(x))- ¢(W(a)(x-a))d;;. (3.3-8)

Since qg usually is a simple function like \f}? ¢
the first term in (3.3-8) can be integrated analytically. .
The second term is regular about the singqular point, at
least to first order in x., Hence, a numerical method, such

as Gaussian integration may be employed.
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The above technique may now be applied to the
particular ray integral necessary for the calculation of p -
delta curves in transversely isotropic, vertically

inhomogeneous media., Recall that
Ze
X(p)e f -3/9, d$ (3.3-9)
) 'Fl'.

where = the depth at the turning point and

‘F-_ - b L ‘/ b“— 4ac L: ‘ C‘\OOSC + (31 3"901)
L - .

20 L2 choose ~

b= (At3+A$f)1P:-A33(An P:- l) - ASf(AI:P:- ‘)
a= (A Ay)
= (A, pr=t X Agpi-t)

Pe = ray parameter

A'3/'A33)/458 /4,/ are the reduced elastic constants
( C/}/e etc. ).
At the turning point Z; , ;é =O . 1If the wave being
considered is quasi-compressional, then {%=<3 at Zt:with the
corresponding ray parameter chosen to befr* ’i;; .
Conversely, if the wave is a quasi-shear wave, the
corresponding ray parameter is p,-= %&E}. In equation (3.3~

9), the integrand may be rewritten as


file:///J~An

(3.3-10)
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The function in (3.3-10) is now a composite function of the

form mentioned previously with

Py v@R): £

Adherence to the prescription outlined previously

necessitates calculation of dV‘} «. After lengthy
dz I,

algebra, it may be shown that at the turning point

- Cz/b' = C%b
C";r/b1 Cs,

4y
di

where

c,-d {(A“ p:-lXA“pﬁ')}

dz
d

Cﬂ =

3.3-11)
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Expansion of 'T,D about the turning point yields

Y(2)= ¥(2,) +(d_v\(i~zt)

dz,
Y() = Ctb (z-zt) = (A(%’l&) | (3.3-12)
cz |

where w= C.b
<,
r

Substitution of (3.3-12) into (3.3-9), and use of {3.3-8)

yields

2, _‘___ | df
X (p) = | 4% + R
P f./_utz—zj ’ f/(g_‘—tl;) Fa@)
° RAET
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The first term in (3.3-13) may be integrated analytically.,
As mentioned p:eviously, the second term, which is not
singular, can be integrated numerically using a Gaussian
method. However, since the intégrand in the seéond tere in
{(3.3-13) still behaves like ’/O}T” , it is
convenient to recast the integrand in the form l)(g)/JT._
This is first accomplished by a simple change of variables
_ fo(s) _ (\/) , L
V= z%.ﬁz » Then, let FIC ? + . The integrand in

TP
the second term in (3.3-13) "is written as

b (3.3-14)

Equation (3.3-14) is identical to



where

To integrate an integral of the form

]:-: thl av
JV

(3.3-15)

(3.3-17)

a Géussian method is used. The method is slightly more-

elaborate than usual, and the polynomials which are

orthcgonal on (0,1) with respect to the weight function

orthogonal on the interval { ~-1,1 ] with respect to a unit

weight function. The polynomials are (Krylov 1962):

82

a—

4
are closely related to the Legendre polynomials, which are
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Qﬂ(x) = PNL\/;)

vhere Em (x) are the Legendre polynomials of even order.
Given the above formula, the integral (3.3-17) can be

calculated numerically as

hivl dv =i A () (3.3-18)
vV ke

where )(Kare the squares of positive roots of the Legendre
polynomials

and /4K are weights obtainable directly from the weights
us€d in ordinary Gaussian integration,

Usually Xk, and.AK are obtained directly from tables.

| The numerical algorithm elucidated above, a hybrid of
techniques of Kantorovich and Krylov, can also be used in

the calculation of integrals of the fornm

1 :f\/gu) dx | (3. 3-19)

Such integrals arise in the calculation of‘T(R). the

vertical delay time. P-delta curves calculated using the



above method are presented in Chapter V along with the

calculation of synthetic seismogranms. .

84



85

Solutions Of The Eguations Of Motion-

The results in Chapter III were derived so that the
kinematics of the wave propagation could be explained in
terms of rays, p-delta and t-delta curves. These results
will be utilized in Chapter V, which is concerned wifh'the
seismogram calculation., It is‘first necessary to solve the
relevant equations of motion and include the source terns.

The solutions of the equations of motion, in the
elastodynamic case have been known for some time. (Love
1945). Most often the solution is obtained in terms of
plane waves, (Musgrave 1970). In the case of vertically:
inhomogeneous media, the horizontal co-ordinates are Fourier
transformed, and the resultant eguations are a set of
coupled ordinary differential equations, to bé solved as a
function of z. (Chapman 1977b, gives an excellent review of
the method.) These coupled eguations are solved using either
a numerical scheme, (Gilbert & Backus 1966) or an asymptotic
method, which incorporates the wave kinematics described in
Chapter 111,

In the solution of these coupled equations, the

horizontal slowness, p, and the angular frequency w, appear
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as parameters, The solution is then inverse transformed to
obtain displacements and stresses as a function of (r,z,t)..
It is the evaluation of the inverse transform to which much
attention has been paid viz, Chapman (197%a), Wiggins
(1976) , Helmberger (1968), Fuchs and Muller (1971),
Helmberger and Wiggins {(1974).,. Very recently, it has been
discovered that an adequate approximation to the first
motion represented on the seismcqram can be obtained using
the equal phase method (Chapman 1976a) or equivalently disk
ray theory (Wiggins 1976). Chapter V will be concerned with
the application of the above approximation to vertically

inhomogeneous, transversely isotropic, elastic media.
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Section 1. Development of the Equations of Motion

When the earth may be regarded as vertically
inhomogeneous, transversely isotropic, and elastic in its
dynamic response to an applied force, the equations of
motion and stress-strain relations can be readily derived.
In order to incorporate the source description into the-
formulation, it is expedient to use the formalism developed
by Takeuchi and Saito (1972). In the case of a flat earth
and‘the vertical symmetry axis possessed by a transversely
isotropic medium, vector cylindrical harmonics are employed. .

Then the displacement and stresses can be expanded as

follows:
o0
- i - Ll - ™m _ .
u-=e “’tz ;"'_[ kdK { ulgx(r,e) +U, S, (r0)+T Ty (r,e)}
ot °©

cr et L | ak |5, Rners FSrtrer s 2T (01}
N © ‘

where § = stress vector in the z direction

u = displacement vector and



- - .. - ~,,
R, (r,0)= J(krye ~® €,* Y, e,

Seire)= L3 e + L 2YT8, (4. 1-2)
- K ;A K 3!" r Kr 39

[ aad "
Tocrey=0 v, - 12378,

Kr 6 K OY
with é\,.) f/’\g é\z the unit vectors in the r,@, Zz

directions., _
m m m
The cylindrical harmonics BK ,SK ,TK are simplified when

there is a vertical symmetry axis since 5{ =0 (m=0) ..
[}

They becone:

88
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(-]

« = Jo(l(r)s

10

) LK%—(J ()8, (4.1-3)
To=-La e
Toata ) &,

The cylindrical harmonic expansion (4.1-1) can be applied to
the equations of motion and the constitutive relations as
outlined'in the paragraphs below.

Continuing with the formalism of Takeuchi and Saito

{1972) , the strain-displacement relations are given as

e au e = 3_“2 69 -~ ur
vy —-——"—‘Ar [ 57 éE’ ) '\
€=t (e~ Lo €, =1 (3ur, du (4.1-4)
2Ldr ¥ 2( ot dr
€, = 1 %o
2 32

where e£j = ijth component of strain
U; = jth component of displacement.

The above strain-displacement relations are substituted into
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the constitutive relations as outlined below:

A\Bﬁr‘ur) -zNu +F3“

rar - r d2
Soo= ALY (ruy) —2N2U, + FIUs
rar dr 32
S= F Lé_(rur\)+ Cou, i
22 (\" 3 32 {4.1-5)
o/oa = L_a_‘_*_e 6re= —E}
3 br r

0\
h

rz {B“a+l—:}
dr 2

wheére 6£.J' = ijth component of stress (i = r, &, z; j=1r,0,
z), and A, C, 7, N,L are the 5 elastic parameters describing
a transversely isotropic medium. Then egnations {4.1-5) are
substituted into the equations of motion below {4.1-6) to
obtain equations (4.1-7).

The equations of motion are
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__LM x z_f_/m. 4 6 51-6’99+ P‘Fr 3/3 ii.r'
Y . r

£ (uo 1-6)
._966" + _3_‘”4, 2‘;94, /Dge =/.:ue

dr d2 r

é? »8 s £ s AU
S 4 L 4 Lz 4 2
dr d2 r r r

where P = density

)
Y |
fr+» fgs f3 = components of the body forces and,

653 = ijth components of stress.  Substitution of (4.1-5)

into (4.1-6) results in the following set of equations:
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R PR et

N.%_r {_:: A_(rue\} v v pho=pid

(4. 1-7)
3

Equation set (4.1-7) and the constitutive relations

_AlB(rur) ~2Nu, + Fau,

rar r 32
6-.= A‘_ .a__(rur) - ZN?& + FDU,
rar dr d2z |
S = F'(_Ll_(ru.-\)+ Cau, . l (4. 1-8)
r ar Bz .
S = LU Spo= N Bh_c_&g}
X or

6‘.12 {)KI‘LD__C

dr 31
completely define the differential system to be solved.
Before applying the cylindrical harmonic expansion it is
useful to rewrite the two sets of equations (4.1-7), and

(4.1-8) such that all z derivatives appear on the left hand


file:///r.3r
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side and the right hand side has only'gk_ operators and body
force components. Written in this manner, the complete

systenm is

QWU, - Sz — du
TS (4.1-9=1)

dWo= ! Soe (4, 1-9-2)

(u. 1’9’3)

2 (re)-pf, (5. 1-9-1)
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96,2 pur,~Ad (1 2 (ru) -Fé
32 ar{rar } }f’{

(4. 1-9-5)

3= plg- NI f13 (ru@} - pfo

3z orlrar

{4.1-9-86)

The six equations above separate into two systems, a fourth

order system,and a second order system. These are

EUic- f&;— U,

32 L 3r

di= £ 13 (ru,)

a2 C ror (4. 1-10)
b‘ve- pu. -AD2 | l(l"u,)} -F_a_ 2&2} -["Fk

) r{ ¥ ar dr]dz

and
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dug» | &, A p =N [13(rudl-nd
3 T SR TR T N

Equation set (4.1-10) corresponds to the differential systen
describing P-SY waves in an isotropic medium, while the
second order system (4.1-11) is analogous to that describing
SH propagation. 1In the ensuing discussion only the "p-sSy®
system, eguation set (4.1-10), will be considered. .

Now, the formalism developed earlier may be appiied to
equation set (4.1-10). Only one trick is used and that is
the fact that the operator[é:[gFrgé}} has the eigenvalue

- urzp2 . when it is applied to I;(u:pgkrecall k=wp). The
transformed set of equations is then derived by substitution

of (4.1-1) (with m=0) into equation set (4.1-10):. Thus the

following system is obtained
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{(4.1-12)
S = ~ sz Wy~ (A"-g_"X* ‘-‘-’sz)ar“é wP?‘;{' f)gr

QS = — po? i, + “"’F’Ere"ﬁfz

o

o
where (Iz, ‘:Zr are the coefficients of gi and 55 in (4. 1-1a)
—6;1,_, a’t are the coefficients of BZ and _S: in (4.1-1b) and
W = angular frequency
P = horizontal slowness
k = wp = wavenumber.

Alternatively —'L:C-,., LI;,, Z-,-.;_)Z:n can be viewed as the Bessel

transforms of U, , Uz, 6y, 6, This is not strictly

% -
o .
correct, as can be seen by examination of SSK which is
accompanied by the %;f' differential operator. The details
of the source terms will be described below, but first it is

instructive to cast (4.1-12) as the matrix differential

equation
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g' d, Aiz O
T, °
S £ (4. 1-13)
gu "f!
[Al= [0 -wp —E— ©
fw o o |
o <3
-wt (A-Flwipr O —fwpl
<’ 4
e} (o I -f:wz (&)

Equation (4.1-13) can be altered so that w does not appear

at all in[Al That equation is



K]

47 -iw A1 4 pf

<!

A

» [-iwVY,
-L WV,

’

-4 Vg

¢)

/:-(A'F/C—)P ‘

t
0

\
':"b\

~
-y
3

v o O -v

R e

\

R2E!

]
.b< m<'

(4.1-14)
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Section 2. Details of the Source

The power of the vector cylindrical harmonic expansion
was perhaps not too evident in the last section. One could
ask "Why not use Bessel transforms directly?" The answer is
given in this section. A vector cylindrical harmonic
deccomposition is the best one for describing the most
general types of sources. . An expansion identical to that of
(4.1-1) can be written for a point force of magnitude G
acting at (r{>€%,'%°> and pointing in the %“p"

direction, i.e., if

pflr, e;z,ur) = et S(r-v)S(e-0,08(2-3,) m
_ —
(4.2-1)

where M =meE +ME 4+ m. &
then

oo ar "
- ) _ m[= mw — ™. ’j (4.2-2)
R I R S X
o

(]

where
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E = 5(2'2,)f°rdrjd¢ B::".‘Q 5(&'%\5(»’* )

= S (2-2,) my Y:l

rs7o i

06,

and similarly

_“ﬂ(
T

§(z-2) [medYL ™ }1;:"]
. K dr Kr 30 |rv
L A o &
- " :
T = -% zY‘ - mo BY:]
FQ S(z o) ;Ztv' b Ky a e |v=r,

In order to obtain more general sources, only the

superposition of point sources acting in different
directions need be considered. Suppose there exists a point

’ A
force of magnitude G acting in the direction "m" separated
by /SGI

. . . . al
from a force acting in the direction ~m, then
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'P’c: z e'*‘“‘[;(!},vslo)- 3({.\} (4.2-3).
wvhere G = magnitude of the force
L= (%, G, 2.)
j = jth expansion coefficient of the force i.e. coefficient

m m m
of‘gK ; g;' or 2:( in the expansion {(4.1-1). In (4,.,2-3),

which represents a couple force, now multiply and divide the
right hand side by“ﬁ]and 1et5};90. Then, letting Glﬂzlbe

the moment of the couple force it follows that

(4.2-4)

e-xthlSr;‘qf;.Q

where

&
o

3

[

1
>

f% ©o + %, are the source co-ordinates and
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F} = jth component in the cylindrical harmonic expansion of
the force as given in equation (4.2-2) The term on the right
hand side of equation (4.2-4) may be written as a

directional derivative, yielding

/)Tg ‘-'e-‘thlér,é:E-j + n%az“ ‘ (Q.Z-S)
an, d2,

or if unit moment is considered,

-— - t — —
P{' - e_ w a F- * n a F' -
3 ——BY\J, 2 _3 E—‘s {4.2-6)

where



103

Application of the above results to equations (U4.1-14)
of the last section is straightforward since all that is
needed is substitution of i;}) ﬁ;: into (4.2-6) dropping
the explicit time dependence e-cur and then substituting
into (4.1-14). For simplicity expressions ' will be evaluated

for f= 0, =0, Since only the zeroth order term in the

—

cylindrical harmonic expansion is being considered F} and

Fa simplify considerably. Thus from (4.2-2)

K

F =8 -2.){2‘,@_(3;(‘“')\} (. 2-7)
or |

rev
o0,

and

P

F, = S2)fm Snn]

Then substitution of (4.,2-7) into (4.2-6) results in
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Pl =&t {g_ [szzs 2) m,a_(:mm)] |

on

\ K 3"‘ =0
o=, (4,2-8)
+n, 3 [5(2-?1,) mﬁ_(f,(xr))} :
3, L K or e

and

an'

vl > r=r
=6, =9,

/ofz =el"“’t(3_ [mJOLw)S(z-zo)] + n,g_[meSour)Scz-z)]

The following facts are then used to simplify the

expressions in (4.2-8):



() l(Kr)} = |

I":ya:c

=g,

(4.2-9)

(2) j;é\&r)

=0
r-"ozb
©:9,

o

(3) Eﬂ -1l Km 8(2-3) and l_a.F-r-.-"_ngé‘(.z'zo)
) Yo, 2

This results in

{4.2-10)

where: 1) the explicit harmonic time dependence has been

removed;

105

[}
2)”"indicates differentiation with respect to the argument
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of the delta function;

3) ne , Ng, Nz define direction of the couple;

By , Mg , Mgz define direction of the force;

Insertion of (4.2-10) into the source term in equation

(4.1-18) yields

PE: o

O

4,2-11
_'_K(n,m,+ nm, ) $R-~2,) { )
2

nénquSYQ-g)

Addition of three orthogonal couples together produces an

exfplosion source given by

PE - 0
0 |
wp§(2-2,) (- 2712)
-L 8'(z-2,)

where k=wp. It is equation (4.2-12) which will be used as a

source in all seismoqgram calculations in Chapter V.
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Solution of the Homogeneous Systen Using Airy

Punctions

Consider the homogeneous differential system obtained

by dropping the force term in (4.1-14)

d__\f’z-.“w[f\/] \-_/-’ (3;3-1)

|

Q-
w

A fundamental matrix satisfies (4.3-1) {Gilbert & Backus

1966),1.e.

dH] . -<w LAICH] T

de

In order to solve for the fundamental matrix [H] it is
instructive and useful to use the asymptotic formalism

developed by Wasow (1965), Chapman (1974b), and Woodhouse

(1977)
First recall that
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!

[A)- [ o P ©
| -EE”— 0 o e O (8.3-3)

p-(A- Fldp o o FP/C

o @ P ¢

So that algebraic calculations may be later simplified let

Z = p (no relation to depth variable 2z)

(4, 3-4)
¥ = 1/L
Y = pF/C
t = 1/C

FY
p-(A~-F /C)p

¢
]

It is easiest to describe the complicated set of
calculations which follow in a manner analogous to a cooking

recipe.

Step 1: Find a Block Diagonal Transformation for {4.3-2). .
It is desired to find a transformation which puts the

matrix [ﬁ] in {(4.3-2) in block diagonal form. . The
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eigenvalues of each block will be the square of the
eigenvalues in the original matrix 54] {Woodhouse 1977,
persohal communication). The original eigenvalues of EA]
are the up and downgoing vertical wave numbers., Thus for

some matrix WRi=(r,, e, n,r) let

[K][R]‘ Rl[o | O

n_o
o |

®) 2
Ins o

(4. 3-5)

or
Lﬂfﬁ = niy, [A] L7 n/f»&

[A]fz=_rf [Alr,* X5

=1
Frem (4.3 - 5), it is seen that[R][A][g]= Required Block

Diagonal Matrix

To find [R] it is requisite that the eigenvectors of the
-8

matrix [A]lbe found. The matrix[A] is
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2
[A] =/ wxry? o (o] Lzewy
(&) ya* Pt k.‘e-o-wy (]
0 Py+EX XW tya o
AR (o) o pteye

- (14. 3’6)

2 2
The eigenvalues of (4,3-6) are 71.( and %ﬁ {(represented
from here as{42 and {B) , the vertical wave numbers

squared for quasi-compressional and quasi-shear waves. The

eigenvector matrix [R] is

[R1:/ & (ptw-tr-wlhy) 0 0 -8, (t2rwy)
o ~E(tzrwy) E(twn ~tLh2wy) O
o & (ptryz-LR2)  E(-tr2+y'z ~yLB2) 0
Ae,.‘(-pwysy’iz-a LA) | o) o /é‘p(wx +7t -LB2)
(4.3-7)

and its inverse is
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[R]-l:_ /G\‘(f)t"'y%'LAl) (o] o) _2‘(11 "uy)
o eg(‘r)wya y2r-1a2) € (ptw-tE-w taz) o
o G wxayz-182)  €lex +wy) o
' . .
ép(-t.xz ffﬁ-)%ﬁl) O (v _eﬁlew‘_—r‘_gz_wy)
(4.3-8)

The normalization factors have been chosen to satisfy
energy flux conditions, which will be described later.

| So, step 1 is completed, since the required
transformation has been found., Application of the

transformation B4]=[k][H7results in (4.3-2) becoming

d(RMHT _ i {AIR)(H'] (4.3-9) .
d 2 _

or
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ALKH'] . -xw{er\"[A'lLR]-’lR]"dtRl EH’J}
ol A2 {(4.3-10)

The reason for the seccnd term is that the parameters of

density énd stiffness do depend on the depth., Therefore

;Eg;%i Note, however,'that if high frequencies are
2 .
considered, the first term on the right hand side of (4.3~

10) is dominant. Hence,

{4.3-10) is an asymptotic expansion
and can be written as

1
dLH'] =SZ [_m__';][H'] (4.3-11)
At — 5

where

S ~iw
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and [nllf_{ﬂ' (Alle] = o ; ( O
o

O | L8z O

ana M) =(R)" 4
dz

Step 2: Find a Block Diagonal Transformation for all crders
in (4.3-11)

In order to implement this step, it is important to
realize that [R]-'A[RJ has the same form as[R] . This

dz
transformation allows separation of the block diagonal

_ ol
components from the non block diagonal components of Dﬂ 4&]

dz
Following Chapman (1974b) a transformation is constructed

such that
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(W] + [o10HY) (4.3-12)

with the conditions that

1 ol[.Htl,, S [M‘:L] LH1]
di KZ; S
(2) (8] Z s8],
£=0

Now to first order in s, substitution of {4.3-12) into (4.3-

11) gives

48] [HY) « [e)dH - sz E:SJ (Ce10h7)

(4.3-13)
dl Cii 3=°_ .

Substitution of conditions (1) and {2) into (&.3-13), taking

-1
only powers up to S vields
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4083 1 %Q)WJ + (ce;a _L_g_a Jstvi 1 )or)

= (stm) +LM) ) Le) + [_BQ)LH’J
S

‘l‘o 3"1“)

Consideration of coefficients of s and 1 in (4.3-14)

requires that:

») Le)iml=[nlle)]
and ’
(4.3-15)
b) disd , [830m) #[8, 1M = (M8 ¢ IMILS,]
A2

Frem a) it is evident that
[B;:I and Ln’:l:CM::l

and from b)

[m) = Drile LHB ] - L8 1M

Now the structures of the above matrices are known, and
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equations such as
[mid= [m) e [mR,]-[10M]
(4.3-16)
can be solved recursively (Wasow 1965). 1In particular

l=fo v | O

LAZ1 O

o |

O |1 o

[(M]1=[R1dlRl. [q, 0 | o g,
K © 9, 9. ©

o Dzl a3 ©

%41 © o 944

vhere SQi is the 1ijth element of the matrix

As Wasow (1965) and Chapman (1974b) point out, the
matrices have an "anti" block~diagonal structure so that
recurrence formulae may be used to calculate the elements.

The salient features of the above calculation are that
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(uo 3-17)

and that the trace of the blocks is zero, i.e. .
Ju+gy,=0 and 933+{yy=0. The first terms in the
transformation have now been found, and the system {(4.3-11)

may be written as

dtr') . s) (R (4] (4:3719)
oli k=0 S .

where the main concern is with the first two terms in (4.3-
2

18). . Since the [MK] are all block diagonal, the fourth

order system in {4,3-18) decouples into two first order

systems. Symbolically this decoupling is written as

(m]= [m] @[M’*’]

wvhere GB denotes the direct sum. In the system under

consideration
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, :
(M3 =(0 Lm] - (0 I ) (4. 3-19)
LA2 O B2 0
Step 3: Convert each of the decoupled 2 by 2 systems into

the Airy Equation and solve using Hankel Functions

The calculations outlined below will be done for only
one of the two by two systems, the quasi-compressional one.
Consideration of the first two terms in the asymptotic
series on the right hand side of (4.3-18) vields the desired

2 by 2 system of differential equations:

ol[H“] SZ_L_'_S’@ LH*] C (4.3-20)

K=o

wvhere the superscript « indicates that the Qxal systen

corresponding to gquasi-compressional waves is considered and
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Lo =(O ! ) [”.“J’(ﬁu o ) (4.3-21)
LA2 O o o

To convert (4.3-20) into an Airy equation let

(r*] = LAl (8.3-22)
2/3
and e |3 )d
4 let \«' [wam(ﬁ? 5]

ol

vhere w = angular frequency
n, =\VLA& = vertical wave number
Zs = turning point (%"(%“'F):O )

2 = level at which solution is considered

Substitution of the above transformation into (4.3-20)

results in
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d jﬂ:] . (gm)"s [ccl"f n‘:ltcl} [1*]

[S“ dlcd LH* 4 (dh\ [LeX ' LMI[eT]LH= (3723
- c) LH + C M 3LC
o (Tz) [ ]
or

die) - sUmalwd 4 [me10n™] (4. 3-24)

dh
with

(M = (gt_»_»_y' (] (M0
Az |

and

-t
-t -t
[t = (i ' () IM e 1 -1} dead
' A2 o h
In order to evaluate the right hand side of (4.3-24), the
.|

expressions for [C] and (%[%} nust be determined. CC] is
chosen so that the first term on the ﬁight hand side of

. /O 3°‘J /dhY
(4.3-24) is n o) [H , and (ﬁ) can be evaluated frcn

the expression for h (see 4#,3-22). Then,



_di. . w—‘ n:\ \"}2
e

and
©l=f1 o\ o)
o nh" o Wiw
vhere
h's dh
Az
ng = vertical wave number

¥ = angular frequency
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{4.3-25a)

(4.3-25b)

Insertion of the above two expressions into (4.3-24) results

in
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d(f . .;(o \)LH’“] t[(W)g © Ta

I\~ h
A% o 0 (WYq- 1) ol

(4.3-26)

From (4.3-26) it is clear that the first matrix is the
]
coefficient of W in an asymptotic expansion and the second

matrix on the right hand side has powers of w in it from the

-1 .
(h’) terms. Therefore a further transformation may be used
(Fasow 1965; Chapman 1974b) to solve (4.3-26). It is given

as

[ - i "lg_ﬂ hLH (4.3-27)

. 4 d .
and[ﬂ satisfies the equation

diHYg . -2 (0 ‘\[H""‘] (4.3-28)

o

oL
with the[DK ] obtained by substitution of (4.3-27) into

(#.3-26). Again a set of recurrence relations is the

outcome. These are:
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(w0020 - 0090 = LE ] (0.3-29)

with. [E:] =0 when kK=o

] cD;.;l’-—g: CAt

Wasow shows that a system such as (4.3-29) has a solution if

and only if
{._‘,.[_E:l 20 and tr([ﬁ}[”‘lﬂ\ =0 (4.3-30)

Such being the case, relations (4.3-30) can be used to find
the required[b;}._ The principal concern here is to obtain
_Uxf], the first term in the transformation (4.3-27). As can
be seen from (4.3-29), since [Zif]==0 + the most general

ol
solution of [Do ] is

D:1- 3\("\)1 43(\“2)[?’\,’,‘] (4.3-31)

To determine 3‘ and 32‘)the trace relations (4#.3-30)
oL
are used for[E' ] Pirst,it is necessary to calculate E:‘}

wvhich is done from the equation
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{9 = [D:]' - [e21]] (4.3-32)

/
' 3«
Substitution of[M, ],[%cj, and[D:j into (4.3-32) and use

of {4.3-26) results in

I

(E';‘]=(sf 915_ (WYa,g, (MV'3,, i)
5% 9] \ng T ETARE] g finrg, BT

{(4.3-33)

o
Taking the trace of[E, ]and setting it equal to zero vields

g -(n )9.9, + s'.'(“'}-"ﬂ-g\ + 9'(%)_31(‘0) =0

or
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29, . -L')d (“_'\ (4.3-34)
q, w/dh\w
which has the sclution ({assuming (h(z )) = 1)

9, = (hl/w)zzad (4.3-35)
v (h/w)

9 zf‘,mv W) = enthie
nlpit) hi2)

or

whevre

e, = \/R( 2) h'2) '

An identical analysis shows that ﬂz in (4.3-31) must be zero
o . .
in order that [DOJhe regular at 2=%_, , the turning point.

Therefore



[p.]l=¢ nj‘H"(z)( | o) (4. 3-36)
o |

¥hat is left now is the solution of (4.3-28).

Step 8: The solution of Egquation (4.3-28).
In order to solve equation {(4.3-28) consider first a

column of[Hw]. Call it}/ .. Then {4.3-28) beconmes

o, . b
2 = -L[O0 >Z where y =(’;z) (4. 3-37)
dn h O

From (#.3-37) it is observed that

dl)'\ T -4 é)_’l_ = -\\y‘(\r\)
d dh

{4#.3-38)

F

Equation {4.3-38) has the solution

TR
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where-ﬂ and{; are Hankel functions of the 1/3 order and
first and second kind respectively. The constants , and C
may be arbitrarily chosen and, henceC, and(;will be picked
to be a phase factor times other constants which will be

absorbed as the calculation proceeds. Therefore
‘ (] 3/-— - 2 3
y, = h"(c,H.,,(':‘h‘) CH, (?h)) (4.3-39)

To find the other independent solutions, the differential
equation and the properties of the Hankel functions are

used. Thus

,. e | I
- ' H1 + C hH‘
i ) 'gh Pl =Ny (4.3-40)

Y 2 27
+—;—h c'zH‘I:. M C}—\\’\'/s

Application of formulas in (#.1-27) in Abramowitz and Stegun

{1965) for derivatives of the Hankel functions e.q.

Hw) = H(w) - m H ()
()

And of the identity

! amifa b
H.: e H.,
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to (4.3-40) results in

j: (h) '= ( Cl h Hz/scﬂﬂ'—th.‘_ Czh H;Se-zrub)

$Ui/s - N
Choice of C = Q" * and lee‘""‘/”' together with

the relation y&=£)4, yields
4l ! /)] 2
Y, = h(-€" H, + ™Y )

4«
Therefore the columns of[ﬁ J;re

2

[_H“] - hllz eﬂuthl;/J éff&'[nzH‘Is

AT, ~1m f g g2 e (4.3-41)
e H AT €T H

Step 5: Complete solution of the decoupled 2x2 and 4x4
Systems
The complete solution of the 2x2 system for quasi-

compressional waves is obtained by multiplying all the
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transformations and the solution (4.3-41) together.
« Yok

Therefore[Haoj{C] [DOJ[H _], or combining results of

equations (4.3-25) (b, {4.3-36) and (4.3-41) , the.

fundamental matrix solution of the 2x2 system is

Cw

( | o 1) -e\ﬁl‘h‘“(; c:) [K“]

°© nh
(4.3-42)

]|

) 5Tift ! s, 2
el na,:h% e Z—"t\l:‘ e H"l

-1y
'r\de’m/n z/sn & Hz/3

The constant e‘ can be absorbed into the definition of C,

3/4
and Ca_described previously. Also, W "can be ¥ritten as

3y %'l = h 3 Uy -
W - [%fwnquJ T (wQ) é?) . 3-43)

2.

wl-\e re:

3
Q,: jm(ﬂ,SMS

where

¥ = anqular frequency
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. 3/a
Recall also that the argument of the Hankel functions is E-L\ or
(u,Gz*)., Therefore, the fundamental solution (4. 3-42)

becomes

[w]) = _|
2n,

(‘Z— w Q«) 2/ S (wR) €I L Q)
My 1 &
- e:m"/" mH‘y}wQA e” k H“ls(w Qol) N,

{4.3-44)
A completely analagous solution exists for the 2x2 systen

related to quasi-shear waves, That is

[Hzn] < __[_ ( ™ w Qa i ( wqp) e—sm’/uH,’;S( w Qﬁ)
Jan,\2 | e
i _ezh[/znPH;SwQ’) e? h any,LwQP)

Thus, the complete solution for the fundamental matrix,
using only the first term in theLB]transformation Q&J=I,

in equation (4,3-12)), is
(K] = R-I-Lcwl®cw) (4. 3-45)

The columns of[ﬁd are given below

column 1
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[-rrw Q‘]‘hfm{_w -t wlA2) e H) (wQ,) ]
LA (tz+wy) € H,(wQ,)
- LA(pey2-Laz) € tH, (wQ,)
(=pwys+y2-2LA2) e’,“"‘H;,l( wQ«)-

S

column 2

£ [200]" [otw-12- wir) € Hiway
vano L 2 LAk FwWY) €™ (WA, )

LA lptryt-Ad € Hy(WQ,)
L(;P‘w‘, ey €N Hi,s( wQ,)

column 3
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Lo [100. st mneigod)
Jan, L 2 (twx-tB2-wy) e “hH (wQ)
(txrye -yLp)e™PHWQ,)
i ~(B(wx +y2 -LB2) e«m(nH:/,L WQp) ]
colunmn ﬁ

£ [ ———Qﬂ] LLg(t2rwy) €T IHWR) ]
Jeng (twx ,*_ng.wy)e"”‘/"H,/Qw Q, )
(rtxzeyz-y@2) e H LW Q)

(WX +y2 -LB2 O /le,(w Q/’)
(L B) .

Asymptotic expansion of the Hankel functions using the
relations (4.2-3) and (4.2-4) {Abramowitz & and Stegun 1965)
allows the fundamental matrix[HJ to be written in a more

common form.
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(7] = [NJTAL e

where

= Aw @, -~

M O
. A2%h
(:) e <%

and

N -"[Dt;f.‘*»'l’ ) rlér]
with

[ ptw-tE-wlA2 ]
LA(tz+wy)

~LAlpt+ye -LAZ)
~pwWY + Yt -2LAZ




[ ptw -ta-wlA2
LA (t2 +wy)

LA(pt +yz -LA2)
~PWYty2-23LA2

CLe(te +wy)

2
twy - £LB2- WY
~tx2 Y2 -yLB2
<LQ(wx +¥2 ~LB2)

L/

| —LB(tz +wY)
twy - '\:LBI-W)’Z

“txet y’z -ylB2

i (B(wx +yZ2—LB2-
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Where « and |
Zn. Iy

The E:Shave been chosen as normalizations with respect to
unit energy flux (see Chapman 1973 & Biot 1957) .

Both forms of the fundamental matrix [H] and the source
vector obtained in Section 2, will be used in the next

chapter, in the construction of synthetic seismogranms.
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Calculation Of Synthetic Seismograms.

Introduction

In this final chapter, the basic results cf the last
three chapters will be incorporated, These results have
been obtainred with a view to constructing synthetic

iseismograms in transversely isotropic media., Since the
I‘apparatus of ray kinematics has been developed previously,
the seismograms will be calculated on that basis.

Chopra (1958) has established the connection between
ray theory and saddlepoint methods in elastodynamics. He
states that Bromwich was the first to derive a ray series,
and since then the correspondence to geometrical optics-
reflection and refraction has been vell—gualified.. But,
with the advent of faster ccmputers, more elegant techniques
such as Haskell-Thomson propagator matrices, or generalized
ray theory have been employed to solve the linear
elastodynamic wave equations occurring in seismology. It is
interesting to note that developments in synthetic
seismology have come full-circle, since the saddlepoint
method has again come into vogue, 60 years after Bromwich's

work.
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The new saddlepoint technique has been called disk ray
theory (Wiggins 1976) or the egqual phase method (Chapman
1976a). These two approaches were presented simultaneously,
and provide a first motion approximation to the motion.

Both methods of developing this approximation will be
described in the following sections. As well, some
seismograms for simple models will be calculated with a view
to ccmparing the results for isotropic and transversely

isotropic media,
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Section 1 -Intuitive Development of Disk Ray Theory

Wiggins (1976) has described a method for computing
seismograms, based on earlier results (ﬁiqgins and Madrid
1974) . The physical basis for computing the seismograms is
that the amplitude is proportional to the change in the ray
parameter P. Therefore, given a p-delta curve for a
continuous velocity depth model, the steps to compute the

seismogram are:

1) Establish the position and time of the
geometrical arrival at the receiver position;

2) Find the phase arrival times for all rays
leaving the source and arriving at the receiver
position;

Rays other than the geometrical ray arrival will
be delayed in time with respect to it, a
ranifestation of Fermat?’s principle;

3) At some time delay relative to the main
geometric arrival begin computation of dp such
that one digitization unit of delay time is used
up; .

4) Multiply the |dp| by a directivity factor,
generally dependent on p;

5) After completing 3 and 4 for the p-delta curve,
convolve the seismogram with an inverse operator
vhich removes the 1/sqrt(t) behaviour of the
seismogram,

The above methodology will now be applied in detail to the
transversely isotropic medium,

Consider a suite of rays, leaving the source, as in
Fig.5.1. As can be seen, each ray has an associated plane

wave front, which is not orthogonal to the ray trajectory. .
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shot s receivers

Figure 5.1 - Suite of rays leaving shot

Each of the plane waves {disks) will arrive at the receiver

but delayed with respect to the main arrival which is ray 2

in the figure. There may be, however, an objection to using
such a ray repreéentation, as both Lighthill (1960) and

Crampin (1977) point out. The thesis of their argument,
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wvhich is correct, is that in anisotropic media a plane wave
front cannot propagate, since energy must be supplied
parallel to the wavefront., But, since the source under
consideration is a point source, energy is supplied in all
directioné, as shown in chapter IV, PFurther evidence for
the validity of plane wave models has been providéd by the
work of Staudt and Cook (1967) (see Fig.5.2). An emitting
transducer placed beside a quartz crystal has been used to
generate plane wave fronts, which are the vertical lines in
the picture. The direction of -energy flow, the ray
direction, is indicated by the white band in the figure,
which is at 45 degrees to the plane wave fronts. The white
band is indicative of the direction of energy flow, since
this flow affects the optical parameter € ,which affects the
light scattered by the crystal. From the figure, it is
clear that energy has been supplied parallel to the
wavefront, This energy parallel to the wavefront arises
from the fact that there are edge effects from the emitting
transducer, i.e. a plane wave is a purely mathematical
generalization,albeit a useful ocne.

Having established the validity of the disk
superposition model, it is necessary to find the phase delay
time for all disks arriving at the receiver. A simple
gecmetrical arqument is illustrated below. . From Chapter 3,
the arrival time of the disk associated with ray R is

\03 X’G + AF(P.?) . This disk intersects the point Xe&,the
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i
‘ I‘ i
!l‘ Mt
, 3

Figure 5.2 - Acoustic plane waves in a quartz crystal (After
Staudt and Cock 1967)

gecmetrical ray arrival distance at some time earlier than

F3XR3 +'T(P3) . Therefore, time must be subtracted from

P‘b )(’(‘3 + T(PB) . This time is given by
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Figure 5.3 - Disk intercepting surface in anisotropic mediunm

At = AXg
Vr\ (5. 1-1)

where \V, =ray velocity
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AXRJ = distance from the node A to the position

By the law of sines

(Xem %) = AXg,
'M,‘J(ﬂ“ej sin(m-(T/244i¢e)
(5. 1"'2)
or AXe, = sin (1 -QHC’)( X5 %)
Cos e
The time to be subtracted is calculated as
At e ZXR}___ sin("/z-(i*e))(xfxlz (5. 1-3)
V, V. Coge
But WV,(Cosé€ = VP , the phase velocity, and
S'Ln(“/z"él:fe)) = c,os(,‘}-e,) . Therefore
(5.1-4)

ntw cos(ise) (Kyg=%g)
-_— 3 IS
Ve

From the wave surface-slowness surface construction of
Chapter 2, C°S(L'*<’—),_ Ps - the ray parameter of ray R_; .

. Ve
Thus, the arrival time of the disk associated with ray R3

at X= XR is
&
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PRt Elp,) - p3()§,; xz‘)
or = p X, ¢ T p,)

{5. 1-5)

Equation (5.1-5), identical to that obtained in the
isotropic situation, is used to calculate the jdp i
associated with the phase delay (Fig 5.4). .

Application of equation (5.1-5) to the simple p-delta
curve in Fig,.,5.4 demonstrates that the required phase delay

of rayR , With respect to the geometrical ray@x, is

pd = p; Xt Tp) - p Ko~ TP, (5.1-6)

vhere p.d. is the phase delay.
In Fig. 5.4 p.d. is the area of the triangle OUS, 1If the

slope of the p-delta curve is s, then
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Figure 5.4 - Simple p-delta curve
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(5. 1’7)
B T
Pd"’ 5 “é(pg'Pz)
S i
(3
6P= (258t)
where dp = 1-p
dt=p.d.
S=slope of P-Xcurve curve.
As Wiggins points out, the amplitude is given by
F(p)l$p! (5. 1-8)

where F(ﬂg)= directivity at the point P=P,.

To construct.fhe seismogram then, it is necessary to
cdmpute the amount of SP for the phase delays of ng%'where
n is an integer and.gt is the digitization interval. For

the nth position in the seismogram, application of equation

(5.1-7) gives

Sp, (ssdl(\/n‘-‘/n-l ) {5.1-9)

where n is the integer timing index relative to the main-
arrival. There are two important points to note about (5. 1-

9). First, the amplitude is given as
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A, = Flo.) | ép) (5.1-10)

-Ya
Second, the seismogram will have a shape like't since

\n - ¥noy is a finite-difference representation of
-
the derivative of T » Therefore after the calculation of

511 /qh)s has been completed, the seismogram must be ’
convolved with an inverse operator which removes the t-./%L
deéendence.. The necessity of such an operator will be
proved in Section 3. It is important to note that for
computational purposes, Wiggins (1976), has given a 3-point

recursion formula for the operator,
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Section 2 The equal phase method JWKB Reflection Coefficient

In the preceding section, an intuitive approach to the
first motion approximation in transversely isotropic media
vas presented., Here, an alternative representation is
developed, using the fundamental matrix solutions obtained
in chapter IV.,V

To begin wiih a solution of the homogeneous system of
equations, Egquation (4.1-14) must be made valid at the
tﬁrning point,  1In érder to do this, the method of Chapman
(1977a) will be used., In the case of "compressional" waves
‘propagating, the coefficients representing the up and
downgoing components must be chosen in a special way. That

is, the solution to the homogeneous systen,

y = [H] Ce-f:

ce™ } {5.2-1)
(o)
o
where V = solution vector
[}J] = fundamental matrix (H) (4,3-45)
(: = amplitude of up and downgoing p-waves

must obey the radiation condition that

lim V() O

g-»-0

The choice of z— -4 instead of the usual +« is achieved ky

changing co-ordinates, so that the reference point is the
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turning point of the ray.. So the object of the exercise is
to find the value of ¢ in (5.2-1). Prior to this, hovever,
some preliminary analysis neéds to be done on the
representation of the Hankel functions appearing in[H:].

From Abramowitz and Stegun (1965)

Plg) e g | -u T ;;v-> 5 . 2-
}-—f,ﬁ)-e.ﬁ(m( ) F B(LL) (5. 2-2)

where
§ -
u.=(jLPJchyﬁ
3

fom(p,y)ds

Below the turning point u is negative. Therefore, -u is
a

positive, and since B¢ ("M)’L 6(- u,) , for large
values of (-u), it is required that the guantities in
{5.2-1) be chosen so that the BC )5 do not appear in the
final sclution for Y. . This is further illustrated below.

Consideration of the first component of YV will be
sufficient to calculate™, Substitution of the fundamental
matrix values into (5.2-1) results in the first component of

V being calculated as
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(50 2"3)
' —smafa iapd
vV, =be [e”""‘e"‘“H.,,(wQ‘) v e “H',sthA)}

where

a2 |

Insertion of asymptotic forms of the Hankel funciions, into
(5j2..3) ., Neglecting the /4&(—u) vhich are bounded

results in

v, ~ be [ e—(-rr/o-ovsﬂ/:z)i BA' (-u) b e’('rr/o-x-.m/u)x B,i(-u.)] 5. 2-1)

In order that the term in the brackets vanish, it is

regquired that

The value of o has been determined so that the solution
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(5.2-1) is valid at the turning point, where both up and
downgoing waves exist. In order to calculate a reflection
coefficient (incident guasi-compressional vave), egquation
(5.2-1) is premultiplied by[ﬁ].-' the inverse matrix of
eigenvecfors {see Chapman 1977b). This resolves the
physical variables, which are the components of ¥, into up
and downgoing wave components, The first component of
DV]_'X will be the reflection coefficient and the second
component will represent the incident wave {recall that the
origin has been shifted to the turning pbint)., Purthernmore,
since the solution is to be examined far avay from the

turning point,l}*] may be written as

[H] - Q’ [J\_] {4.3-146)

Thus, calculation of the vector, representing all up and
downgoing vwaves above the turning point yields the

following:
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- — T
R = [VYTENVILAD ce.n/" (5.2-5)
R ce "
R o
R o
where Rpp IS tfﬁe.reflection coefficient for incident mpn
vave;
Rip = incident p-wave amplitude;
Rps = reflected "s" wave converted from p; and
Ris = incident "s" wave,

The important result to note about (5.2-5) is that there is
no converted guasi-compressional wave due to the
"reflection™ at the turning point, . To actually obtain the

value of Rpp, the substitution of

[J\l” L O

AwQ
e L4
AM)Q,;

O € ewa

into (5.2-5) yields
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R, =ce”t g%
re =

R - cgiﬂ'/{ e—"“‘)c\’at
P T

{5. 2-6)
In (5.2-6), if a unit incident amplitude is considered,

C = e‘A'TT/x{ eA'U)Qd 5. 2-7)

. 24wy
R,=-<¢€

Equation (5.2-7) is the famous JWKB feflection
coefficient mentiéned 5y Chapman {1976b) and Richards
(1973) . It can be used to construct seismograms as Chapman
has demonstrated. However, as Chapman (1977, personal
communication) has pointed out, the result {(5.2-7) is not
completely general., It-does not obey the relation

which must be true, if the function desired, after an
inverse Fourier transform is performed, is to be real. The

correct reflection coefficient is
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Rep® "4 sgn(w)e (5.2-8)

An analogous coefficient exists for quasi~ shear waves:

< 5.2=9
R ® vésgn(w)ei “ep { )

With the above reflection coefficients, the first motion

approximation may be obtained in a straightforward manner.

154
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Section 3 - The Egqual Phase Method - Inmplementation

With the calculation of the reflection coefficient, the
construction of the seismogram proceeds as indicated below.

First, the inhomogeneous matrix equation (4. 1-14) nust
be solved, and then, the solution is substituted into the
cylindrical harmonic expansion equation (4, 1-1). The
solution of the inhomogeneous matrix equation is given as

(Chapman 1976b)

(5.3-1)

| B i * |
y/‘z)duuﬂ([rw;,ﬂ y(z,)+fLHcS’)J'»y(5>d$) ,

uhere[hﬁ%ﬂ is the fundamental matrix and&/ﬁﬂ is the source
term (4.2-12)., As 2, is arbitrary, the first term can be
neglected, The second term inside the parentheses in {5.3-
1) represents the decompositign of the source vector into
its up and downgoing wave components. Substitution of the
asymptotic form of the fundamental matrix[h] {4.3-46) into
(5.3-1), and integration across the point of discontinuity,

Z,, yields
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S w [-@N,+LAN,) - W(z-2,)
(AN, FLAN,) - (2R ) (5. 3-2)
~(ZN,+ LBN,) - U(z-2,)
1 (2N reny) - U(z,2)

where W = angular frequency
WU (? = heaviside step function
Nij

{ Note: z in ZN” is not the depth but the ray parameter =-

ijth component of[N]in (4.3-46)

(see (4.3-4))
The first element of §, SI" is the amplitude carried by a
downgoing quasi-compressional wave, and the third element is
the amplitude carried by a downgoing quasi-shear wave. 1In
an isotropic mediﬁm SS, and qu/are identically zero, since
the explosion source term (4.2-12) generates no shear waves.
Thus,'in {5.3-2), the first obvious difference bhetween
isctropic and transversely isotropic media Secomes self-
evident,

With an explicit expression for the source, the
solution to (4.1-14) for the vertical and horizontal

displacements becomes

%. = source term * reflection coefficient * appropriate
s
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‘eigenvector components (5.3-3)
vheré

3 = vector of horizontal and vertical displacements
This will be illustrated below for the case of downgoing
guasi-compressiohal vaves,

From (5.3-2), the source term generating downgoing

quasi-compressional waves is

Sy= ~w (2N, +LAN, ) (5.3-4)

The reflection coefficient is given as

o= A 53RLW)CuwQ°‘

The relevant eigenvector components are

N, = € {ptw-£2* wiA2)
Nﬂ.( z & (t2 *Wy)LA

Thus, the solution of eguation (4.1-14) for the components

representing vertical and horizontal displacements is
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(VI) = ~L sqn(w )e’“’w)(‘w (2N + IfA Nzl)(l\!\J}'>

—

~a

(5. 3-5)
— . - - '\—/_
where ViT -ew Vo Vy =-wVa
V} = transformed horizontal displacement
V; = transformed vertical displacement {see {(%.1-13), {4.1-
14))

WJP)= 2 Wy = the vertical delay tinme
Expression of Yﬂ in terms of the elements of’x results in

{5.3 - 5 becoming

(v.) = [ —sgn(w)e™™N,S,
i Sﬁh(w)ewn’)N S (5. 3-6)

where g“=:4L=ZN+LAN
w

The problem is almost solved! Rhat is necessary now is to
insert,xa and ia into the cylindrical harmonic expansion,
and do the integrations regquired. Before proceeding with
those calculations, it is instructive to note some

properties of Bessel functions and their relations to Hankel

functions., .
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The appearance of Bessel functions in the harmonic
expansion, or alternatively, the Bessel transform occurs in
this elastodynamic problem due to cylindrical symmetry. For
example, from (4.1-1) (neglecting constants and the time

dependence)

K or

W =fﬁ(-‘_ M}Kd“
o (S. 3-7)

W =Jw"w‘ J, (v kalk

As Chapman {1977a) has noted, it is expedient to convert
integrals appearing above to ones where W the angular
frequency is real and k=wp. Substitution of k=wp into the

integral for W results in

s jww’P-W(p)jo(wpr)oLp (5.3-8)

Substitution of the relations
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| L
J-o(wpr)z H(wpr) ¢+ Ho(wpr)
2

Ha(-wpr) s - Hwpr)

into (5.3-8) results in

w = -'—wljpwtp)H:,(wpr)oLp (5.3-9)
2 ol

only if w > 0 andW(p) is even in p. For all real W ,

we W] wij(p)H:prr)oLp (5.3-10)
2

The contour is chosen to satisfy the radiation condition
{Chapman 1977a).
A similar analysis can be applied to the integral for u

through use of the relation
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4 i_;];gwgﬂ z - I,(wpr)
wp A r

Then the expression for u beconmes

W= :L'W‘WJPTL(.P) H:(WPV')(‘LP (5.3-11)
2 o

only if &IR> is 0odd in p. Equations (5.3-10) and (5.3-11)
will nov be used below in the calculation of the inverse
transform (or evaluation of the cylindrical harmonic
expansion).

In doing the final inverse transform, it must be
recalled that the results have been derived for a plane wave
of angular frequency W , <Therefore, eguations (5.3-6) nust
be multiplied by the source time function transform.'TYL).
Then the complete solution for (A (the horizontal

displacement) is given as
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w= V=L e wjw]| Tww) dw ‘j-H'(“’Pr’('ssnw)e4wt‘P)M"§"Pd‘P
am
(5.3-12)
and -
W=V, = slﬂzje’*'“"w\w}.r(w)dw 'jHa(wpr)(-153n(w))e"ww) z,g,,po{p
(5.3-13)

wvhere (5.3-6), {5.3-10) and (5.,3-11) have been used and the
inverse time transform has been performed as well.

in order to render (5.3-12) and (5.3-13) in a fornm
suitable for calculation, the asymptotic forms of the Hankel

functions are used:
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Lwpr- LT/q

H, =

©

"

e

2

wepr

H', : [2 pAwer 3T/

werm

These expansions are substituted into expressions {5.3-12)
and (5.3-13), and this fact implies that the curvature of
the wavefront is neglected., Thus, the expressions for Vi

and V2 become

_ =~ -iwt G’A ~3, L r 3
V= |_1 ™ wlw|Tuw)dw - J—- 2 et u?—&sr\(w}) N, S,pdp
8T werf
.. ] i ~a) -
’ {(5.3-14)
and
V, =

8l1T J e wiw Tiw)dw f 2" €™* e Rsgniu)N,S pdp

< ¢ wprm |
{5.3-15)

To further simplify the above expressions the following

"tricks" are used: 1) furl= “f'§}r’(“()

2)6?31%%5 written as 6'0 e1rcﬁ¢

3) the resulting (-1) is absorbed into the W~ integral;
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4) the convolution theorem is used as well as the following

inverse transforms:
—w? e 4
Iy At*
TiL
e™ Vi < HE)
VTt

z

These "tricks™ result in

w=yv, =1 & (T(t)) s He) %/i_'fj "N, 8, pd pdw
: g dt i

{5.3-16)
and
e () e e
g dt* v r
(5. 3-17)

whereéhbﬁpr+?ﬂv)the phase time of all plane waves at the
position r.
_ H(f)= Heaviside step function,

With the calculation at the present state, it is time
to invoke the equal phase method. This is a mathematical
statement of the physics developed in Section 1, in which
thé disk algorithm was explained.‘ The phase@ is expanded
about the equal phase points p; (Chapman 1976b). These fg'
are the ray parameters of rays which, at the receiver
position r, have egdal phase delays reiative to the main
arrival, The contributions from each set of equal phase'ray

parameters are summed and occur in the seismogram at the
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appropriate time. This corresponds exactly to the method
explained in Section 1. VNote also that, in Section 1, an
operator vas described, which had to be convolved with the
seismogram. If one of the j/,'t ‘operators is conéidered with
the ﬂg? term in {5.3-16) or (5. 3-17), then this time

VE

function d Haﬂ is exactly the one described in Section 1. .
dt

For the contribution to the seismogram at the jth egqual

phase point,é%?) is expanded about p= Py

Olp) = 9(p_i) ¥ 9'(pJ~)LP'PJ-7
. {5.3-18)
O(p)-t= ©(p)-O(p;) = G'LPJ-XP'E)

Use of (5.3-18) into (5.3-16) and {5.3-17) results in

u.) tm) f— *“""’»"“ .. 5“ pldpdwo
( w 8113 dt dt

P=p; N
{(5.3-19)
To evaluate the double integral in (5.3-19) two steps are
takeni
1) The limits on the w” integral are replaced K‘cb, ?) to (O, °O)

and this gives twice the real part, i.e.,

IS(P) e;wk(p)dP= QRQJS‘P)exww)dp
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2) The L~fintegra1 is evaluated and the p-integral is
evaluated. Use of the artifices in explicitly doing step

{2) is that:

Re ..Ljf h(P) e‘.web"xf‘ﬁ)dpdw =fh(p)5( o pIp- Pj))d P
by

- -]
and

(2]

Jh(p)&(e'(g-)(p-g))dp = hee
le'(¢)l

~ob

h (P)A= smooth function of p
Implementation of (1), (2), (3), and (4) yields the final

result

(u)=‘_ d [9) %4 A) 8 S, 14
W 242 W dt e\t / v AN/ 181p)]
{5.3-20)
Equation (5.3-20) is identical in all respects to that
obtained by Chifman (1976b) , the only difference being the
source factor SL and the eigenvector componentsﬂﬁl andﬁél.

A completely analogous expression exists for quasi-

shear waves, the differences being that the phase time is
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that appropriate to the wave-type and that the new source

term and eigenvector components are:

(2N, 4LBN,)
3 €0LB(£i1\Uy)
12 % €o (twa-tLB2-wy)

Z
1

(5. 3-21)

Z
'

Equations (5.3-20) and {5.3-21) will be used to generate

seismograms for very simple transversely isotropic media, as

detailed in Section 4.
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Section 4 -Simple Seismic Calculations

Given the complicated theoretical derivation of the
preceding sections, can any simple predictions be made for
seismic waves in the case where ray theory is valid? The
answer is a definite ves,

Por all the calculations of synthetic seismograms in
this section, the velocity model chosen was one
characteristic of the upper mantle, that is, v= 8.1
+.0027#z. Three sets of calculations were done-no
anisotropy, 10% anisotropy, and 30% anisotropy. The
anisotropy in the model was achieved by increasing the
stiffness C by the appropriate amounts., Increasing C would
effectively increase the vertical velocity. For simplicity,
in the following discussion, the model without anisotropy
Qill be referred to as Model 1, those with 10 and 30%
anisotropy as Models 2 and 3 respectively.

In figures 5.5, 5.6, 5.7 p-delta curves for
compressjional waves are plotted for Models 1, 2, and 3. The
rays arrive at earlier times and smaller epicentral
distances with increasing anisotropy.. FPor example, in
fiqure 5.5, the epicentral distance for p=.1 sec./km. is
4400 km,, while in figure 5.7, for the same p, the distance
is 3800 km. Also it is clear from the figures, that apart

from kinematic effects, the anisotropy has not affected the
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basic shape of the p-delta curve.

Before commenting on the synthetic seismogranms
calculated from the p-delta curves, it is helpful to
consider the directivity functions used in the
d. r. t. calculations, The directivity function is taken to
mean the product of the source function, the appropriate
eigenvector component, and the p**1/2 which arises from the
expansion of Bessel function, The directivity function
assigns an initial "amplitude" to each ray.. (Figures 5.8,
5.9, and 5.10 shov the horizontal directivity functions for
guasi-compressional waves,) It is immediately clear that the
anisotropy has had little effect in changing the shape or
magnitude of the directivity function for a given ray
parameter p.. In figures 5.11, 5.12, and 5.13 the
directivities for the vertical displacement are illustrated.
Again, the increasing anisotropy has not significantly
changed the shape of the directivity as a function of p,
~although the magnitude, in the case of Model 3, has been
reduced by about 10%. The most "important point to note is
that the anisotropy has not introduced any extra bumps on
the directivity curve.

Given the above results, it is expected that the main
effect of the anisotropy would simply be the advance in tinme
of the main arrival, as the amount of anisotropy is
increased. The seismogram for Models 1, 2, and 3

(horizontal displacement) are shown in figures 5, 14, 5,15,
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and 5.16, while those for vertical displacement are shown in
figures 5.17, 5.18, and 5.19. It is clear that the
observation of the kinematic effect mentioned-above can be
seen by comparison of figures 5.14 and 5.16. For example,
in figure 5.1&,.at an epicentral distance of 3106 km., the
main pulse arrives at 57 sec. while in fiqure 5.16 it
arrives at 56 sec, The directivify used to construct the
seismogram does not affect the pulse for either horizontal
or vertical displacement, since it is a smooth function and
is not rapidly changing for values of p in the neighbourhood
of .105 sec./km., which correspcnds to a delta of 3200 knm.
1t has'been demonstrated‘that for guasi-compressional
{"p") waves, the effect of anisotropy is mainly a kinematic
one. What happens in the case of quasi-shear waves?
Comparison of p-delta curves shows that for greater
anisotropy the epicentral distances are reducéd {compare
figure 5,21 with 5.20). Hence, the same kinematic effects,
mentioned earlier alsoAaffect guasi-shear waves for the
particular models chosen., However, examination of the
directivity curves for horizontal and vertical displacements
(figures 5.22 and 5.23 for Model 2 and figures 5.24 and 5.25
for Mode1j3), shows that the value of the directivity
function is much less for quasi-shear waves than for quasi-
compressional waves, This is to be expected since in an
isotropic medium, the directivity function for an explosion

source is zero for shear waves, The directivity values are
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somewhat greater for Model 3 than Model 2, since larger
amounts of anisotropy generate a greater quasi-shear
component.‘

The relevant seismograms for quasi-shear vaves are
shown in figures 5.26 - 5.29.. Although the seismograns for
Model 2 are calculated at different epicentral distances
than those in Model 3, it is still clear that the arrivals
for Model 3 are earlier than those for Model 2 due to the
differing p- delta curves (see figures 5.20 and 5.21). It
is evident from the seismograms that the vertical components
are phase shifted 180 degrees relative to the horizontal
components. Again due to the smooth, slowly varying
directivities,the pulse shapes are not affected byvthe
anisctropy.

Given all the evidence presented thus far,it is
possible to ansuer.the question posed at the beginning of
this section, It has been demonstrated that for the simple
models used in the calculations, the effect of the
anisotropy is a kinematic one-the main arrivals are simply
advanced in time. The shaée of the main arrival is not
affected by a smooth, siowly varying directivity function.
.This situation could be altered if a different range of
epicentral distances is considered, or the directivity
effects due to free surface are included. To keep the
results as simple as possible, no surface conversion

coefficient was introduced in the calculation., This may, of
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course, be obtained from the eigenvectors calculated in
Chapter IV, 5ut the algebra is extremely complicated.

Since the effects of a small amount of anisotropy can
be detected using the disk ray method {equal phase method),
it is a valuable adjunct to other synthetic seismogranm
calculation techniques which have been applied to

anisotropic media (Keith & Crampin 1977: Daley & Hron 1877).
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Conclusions

For fast, cheap, and accurate synthetic seismogranr
calculations, in the geometrical optics limit, d.r.t. .
provides an important complement to existing methods. Since
the geometrical optics limit is used, it 1s necessary to
obtain fhe appropriate JWKB reflection coefficient. This
has been achieved by using the Langer transformation and the
radiation condition at infinity.

For the simple cases of anisotropy considered, the main
effect seen on the seismograms is a kinematic one. The main
arrivals for the anisotropic model were advanced in time, as
compared with those for the isotropic model. As in the
isotropic case, care must be taken in delimiting the range
of ray parameters entering in the seismic calculation. In
particular, since the d.r.t. algorithm operates in the far
field, it is necessary that wprd>>1., This is a restriction
on both the freguency content of the waves which are allowed
to propagate and on the range of epicentral distances.

Further studies of the applications of d.r.t. to more
general forms of anisotropy are profitable avenues of future
reseafch. This can be achieved by performing a third
Fourier transform over angle and applying the necessary

asymptotic methods to solve the initial value problen.
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Currently, the author is investigating more complex
transversely isotropic models, in which the wave surface for
gquasi-shear wvaves has a triplication, It is expected that
focussing effects will appear in the seismogram {c.f.Chapter
ITI) at appropriate epicentral distances. .

The possible extensions of the methods used in this
thesis show that indeed in the geometrical optics, far-field
lirit, d.r.t or the equal phase method is as powerful as

Wiggins and Chapman have indicated.
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