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A B S T R A C T 

A feedback technique is presented fo r the reduction 

of the Shoenberg magnetic in terac t ion in metals. The method 

allows the spin s p l i t t i n g parameter g c for extremal o rb i t s on 

the Fermi surface to be obtained from de Haas-van Alphen 

measurements, now e s s e n t i a l l y f ree from the o f t - t imes 

severe d i s t o r t i on s re su l t i ng from magnetic i n te rac t i on . The 

feedback technique a l so o f f e r s several advantageous s ide 

e f f e c t s , the most important one being a simple and r e l i a b l e 

method for determining absolute amplitudes of de Haas-van 

Alphen o s c i l l a t i o n s . E x p l i c i t formulae are derived showing 

the dependence of several key observable quant i t ie s on the 

amount of magnetic feedback, and these formulae are found to 

be in good agreement with experiment. The technique is 

appl ied to the determination of g c for the [110] y o s c i l l a t i o n s 

in Pb. 
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CHAPTER ONE 

INTRODUCTION 

In 1930, de Haas and van Alphen not iced that the 

magnetization of bismuth o s c i l l a t e d as a funct ion of an 

ex terna l l y appl ied magnetic f i e l d at low temperatures. 

This remained a laboratory c u r i o s i t y for almost 20 years 

un t i l i t was rea l i zed that th is de Haas-van Alphen (dHvA) 

e f f e c t could be used as a powerful tool in the study of 

the Fermi surface of metals. Valuable information on the 

deta i l ed shape of the Fermi surface can be obtained from 

the frequency o f : the magnetizatton o scM la t i ons i . i n the -

inverse f i e l d domain, and i t was soon found that the 

o s c i l l a t i o n s are exhib i ted by most metals in the per iod i c 

tab le . 

There is a l so a wealth of information contained in 

the harmonic content of the o s c i l l a t i o n s , in p a r t i c u l a r 

about the spin propert ies of conduction e lec t rons . Amplitude 

measurements of the fundamental frequency component are 

usual ly stra ightforward (although absolute determinations 
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of the amplitude require great care ) . However, various 

d i f f i c u l t i e s are encountered when studying the higher 

harmonics and these d i f f i c u l t i e s often make i t we l l -n igh 

impossible to obtain meaningful in terpretat ions of the data. 

The most serious of these d i f f i c u l t i e s is the s i g n i f i c a n t 

harmonic d i s t o r t i o n caused by the Shoenberg magnetic 

in terac t ion e f f e c t . 

In th i s thes i s , we present an o r i g i na l technique for 

the minimization of the Shoenberg e f f e c t , thereby al lowing 

the spin parameters to be determined r e l i a b l y , and without 

the use of cor rec t ion f a c to r s . These spin parameters are 

Lande spin s p l i t t i n g factors g c appropriate to cyc lot ron 

o rb i t s in the metal, and the re l a t i on of the factors g c to 

the harmonic amplitudes in the dHvA e f f e c t is reviewed in 

Chapter I I. 

In Chapter I I I we discuss the magnetic i n t e r a c t i o n , 

how i t a r i s e s , and how i t has been dealt with (to a very 

l imited extent) by ex t r ao rd ina r i l y tedious deconvolution of 

the experimental data. 

In the past, several attempts have been made to reduce 

the magnetic in teract ion experimental ly, but these have met 

with only modest success. A f ter summarizing these experimental 

approaches to the problem, we present in Chapter IV the 

p r i n c i p l e s of the feedback technique which is centra l to th i s 

thes i s. 
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Putting the idea of feedback to work in the laboratory 

is the subject of Chapter VI. The dependences of various key 

observable quant i t ies on the amount of feedback are ca l cu l a ted , 

and compared with experiment. 

The experimental apparatus used for the feedback 

measurements is described in de ta i l in Chapter V. This 

sect ion includes the c i r c u i t r y which the concepts developed 

in Chapter IV d i c t a t e , along with spec ia l design cons iderat ions 

to make the technique simple, p r a c t i c a l , and r e l i a b l e . 

Having developed the procedure for obta in ing data which 

are e s s e n t i a l l y f ree of magnetic i n te rac t i on , we present in 

Chapter VII the f i r s t app l i ca t i on of the feedback technique 

to the determination of g c for the y o s c i l l a t i o n s in lead 

along [110]. 

Recent observation of o s c i l l a t i o n s o f ' v e r y long period in 

lead using sound attenuation and the magneto-resistance 

(Shubnikov-de Haas e f fec t ) prompted a search for s im i l a r 

o s c i l l a t i o n s in the dHvA e f f e c t . The detect ion of such long 

period o s c i l l a t i o n s benef i t s g rea t l y by the use of very large 

modulation f i e l d s , of an amplitude larger than can be treated 

a n a l y t i c a l l y by ex i s t i ng formulat ions. In Chapter VIII we 

der ive an exact so lu t ion for the response of dHvA o s c i l l a t i o n s 

to a modulation f i e l d of a rb i t r a r y amplitude. This is fol lowed 

by the d e t a i l s of an experiment in which a concerted but un­

successful attempt was made to find" the long-period o s c i l l a t i o n s . 
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Had they been found, the feedback technique would have 

shown them e i ther to be genuine dHvA o s c i l l a t i o n s , or 

o s c i l l a t i o n s generated by magnetic i n te rac t i on . The best we 

could do was place an upper l imi t on the i r amplitude in the 

three major symmetry d i rec t i ons [100], [110], and [ i l l ] . 

We conclude with some suggestions for fur ther work, 

both in the technique i t s e l f , and i t s app l i c a t i on . 



CHAPTER TWO 

SPIN SPLITTING OF LANDAU LEVELS IN METALS 

In the same year as de Haas and van Alphen's 

d iscovery Landau (1930) independently remarked that the 

magnetization of a metal would be expected to show 

o s c i l l a t i o n s because of the quant izat ion of the h e l i c a l 

o rb i t s of the conduction e lec t rons . 

Onsager (1952) predicted on the basis of general 

semi - c l a s s i ca l arguments that the p e r i o d i c i t y was simply 

re lated to extremal areas of the Fermi surface normal 

to the magnetic f i e l d . Short ly thereaf ter L i f s h i t z and 

Kosevich (1955) confirmed Onsager's p red ic t i on and pro­

ceeded to work out express ions for the amplitudes of the 

o s c i l l a t i o n s . The resu l t of th i s rather beaut i fu l work, 

with some modif icat ions by Dingle, (1952) is equation [I], 

general form of the de Haas-van Alphen magnetization: 
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[la] M = I I A r s in [2irr(f- - Y ) ± 'n/k] 
orbits r 

[lb] A r= r " 3 / 2 D(B)(rX/sinh rX) exp (-rXTp/T) cos (rirS) 

[ lc] X = 2TT2 m* k DT/efiB 

C D 

[Id] S = g c m*/2m 

The symbol M refers to the o s c i l l a t i n g magnetization, 

and does not include the steady magnetization a r i s i n g from 

o r b i t a l quant izat ion and sp in . The o s c i l l a t i o n s are per iod ic 

in 1/B, and each o rb i t has i t s own c h a r a c t e r i s t i c frequency F. 

The phase factor TT/A is po s i t i ve for minimal crossect ional 

areas and negative for maxima. D(B) is a funct ion of the 

magnetic induct ion, and a l so of Fermi surface parameters. 

rX/sinh rX is a measure of the thermal broadening of the 

quantized o r b i t s . The imperfections of the c ry s ta l resu l t 

in a s im i l a r broadening, and are character ized by the Dingle 

temperature T^ of the c r y s t a l . 

The factor cos (TTTS) = cos (rirg m"/2m) is the one of 
c c 

major concern in th i s thes is s ince from i t g c i t s e l f is 

determi ned. 

The e lect ron spin w i l l interact with the appl ied 

magnetic f i e l d symmetrical ly s p l i t t i n g the Landau leve l s by 
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the amount g e 1i B/2m, where m is the mass of the f ree 

e l ec t ron , g is a s p l i t t i n g fac tor which may d i f f e r from i t s 

f ree e lec t ron value (2.0023) because of s p i n - o r b i t - c o u p l i n g . 

Each Landau level is thus s p l i t , re su l t ing in two sets of 

levels each separated by e fi B/m", but sh i f ted in phase by the 

amount 2TT (g m"/2m). Each set w i l l g ive s im i l a r o s c i l l a t i o n s 

in the magnetization with the same fundamental frequency F, 

and ha l f the amplitude of that in the absence of spin s p l i t t i n g . 

In 1/B, the 2 sets w i l l be d isp laced from one another by an 

amount gm"/2mF, so the resu l t ing magnetization w i l l become 

]r [M(-+ gm"/4mF) + M( - - gm* AmF) ] . 
Z Q :B 

•The cosine spin< factor " i n the amplitude expression [lb] ' ' i ^ 

fol lows immediately when th i s average is appl ied to a. wave1- ' 

form of the kind given in [la] . 

To give a c l ea re r p ic ture of the e f f e c t of the spin s p l i t t i n g , 

let us examine equations [ 1 a ] - [ 1d] at absolute zero (T=0) and in a 

per fect c ry s ta l (T n=0). In th is case, [lb] reduces to 

A r = D(B) r " 3 / 2 cos nrS 

which are the Four ier c o e f f i c i e n t s of a cusp l ike waveform for 

S = 0. iA discontinuous change in the magnetization occurs 

when the uppermost Landau level becomes depleted as i t crosses 
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the Fermi energy. The e f f e c t of cos TTTS as we have jus t seen 

is to sum the contr ibut ions from the two sets of Landau levels 

spin s p l i t about the value at S = 0. The two sawtooth wave­

forms, along with the i r sum is shown in Figure 1. With a 

waveform such as that shown in Figure 1, i t would be a simple 

matter to determine the phase s h i f t between the two sawtooth 

waves, and thereby determine S. At temperatures ava i l ab le to 

us in the laboratory, the thermal damping fac tors p r e f e r e n t i a l l y 

reduce the higher harmonics, resu l t ing in a waveform more l i ke 

that shown in Figure 2, which is an experimental recording taken, 

with typ ica l experimental parameters. The trace is not purely 

s i nu so ida l , but i t ;is qu i te evident that S cannot be measured 

d i r e c t l y from the waveshape. 

To exp lo i t the cos nrS dependence in the hopes of ext rac t ing 

the g c f ac tor from dHvA amplitude data, i t would be convenient to 

obtain a method in which the other amplitude factors played l i t t l e 

or no ro l e . Gold and Schmor (1976) showed that with some mani­

pu lat ion of [lb] an algorithm could be obtained using the f i r s t 

three harmonic amplitudes to determine the value S. 

Forming the dimens ion 1 ess quantity a = A^/AjA^, [lb] 

g i ves 

[2a] a a [1 + 1/3 tanh 2 X] 
o 

Ilk a [1 + 1/3 tanh 2 X] 

where 

[2b] a 
CO 

(/3/2)(l - t an 2 ^ S ) 2 / ( l - 3 t a n 2 ^S) 



Figure 1. The Spin S p l i t Magnetization at Absolute Zero 
a, b : contr ibut ions from each of the 2 spin 
d i rec t i on s c: resu l tant magnetization 



Figure 2. The dHvA Magnetization at F i n i t e 
Temperature 
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and the subscr ipts refer to the l im i t i ng cases X -»• 0 and X °°. 

Using the harmonic content i t s e l f as an imp l i c i t gauge of 

the bath temperature, the hyperbol ic funct ions of X can be 

el Imki a ted between [lb] for r = 1, 2 and [2a] to give the simple 

re l a t i on 

[3a] A ] / A 3 = a . [ ( A j / A ^ 2 - 1/4 ( A ^ ) * ] 

where 

[3b] ( V V f j = 2 / 2 " 
exp (XTp/T) cos TTS/COS 2TTS 

is independent of the temperature T. The value a M can therefore 

be obtained as the slope of a s t ra i ght l i ne p lot of A^/A^ vs. 

2 

(A j /A£) as the temperature is var ied and the f i e l d held 

constant. 

From [2b] i t is c lear that the so lut ion for S w i l l be 
2 

obtained from a quadrat ic equation in tan TTS and the so lut ion­

is^ therefore mult iva lued. The phys i ca l l y meaningful so lu t ion 

can be se lected with the aid of r e l a t i v e phase measurements and 

a rough estimate of the Dingle temperature T^ which can be 

obtained from the f i e l d dependence of the fundamental amplitude. 

This mult ivalued nature ar i ses from the fact that we do not know 

the absolute sign of the harmonic amplitudes. A further m u l t i ­

p l i c i t y ar i ses from the per iod ic nature of tan irS in [2b]. 

Equivalent so lut ions are ± S ± p where p is an integer. This 

d i f f i c u l t y is inherent in the use of quantum o s c i l l a t i o n s to 



determine g c and a r i ses from the p e r i o d i c i t y of the cosine in 

[ l b ] . One can use a band s t ructure ca l cu l a t i on to hopeful ly 

resolve the ambiguity. 

The three harmonic method o f fe r s the major advantage of 

focusing on the S dependence of the amplitude. Other methods 

require fur ther information about Fermi surface parameters or 

sca t ter ing rates s ince complete cance l l a t i on of the other 

amplitude factors is not accomplished. 
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CHAPTER THREE 

THE SHOENBERG MAGNET IC-INTERACTI ON EFFECT 

The d iscuss ion in the previous chapter assumed that the 

o s c i l l a t i o n s were measured as a funct ion of the magnetic i n ­

duction B. In p r a c t i c e , the o s c i l l a t i o n s are measured as a 

funct ion of the appl ied f i e l d H, re lated to B by 

[k] B = H + 4TT (1-6) M 

for a second degree surface with H p a r a l l e l ' t o a pr inc ipa l , 

ax i s . <5 is the demagnetizing f a c t o r . In the normal laboratory 

s i t u a t i o n , 4TT(1 -6)M/H i 10 ^, however s ince B is in the argument 

of a rap id ly o s c i l l a t i n g s inusoid (see [ l a ] ) , the co r rec t i on term 

often const i tutes a large part of one c y c l e . 

The necess i ty of d i s t ingu i sh ing between B and H was f i r s t 

pointed out by Shoenberg (1962). 

The subs t i tu t ion of [k] into [la] resu l t s in an i m p l i c i t 

equation for M as a funct ion of H',, convolving the harmonics into 

often hopeless contor t ions , thereby severely modifying the ideal 

amplitudes A and the phases of the harmonics. Recovery of the 



ideal amplitudes and phases is the centra l theme of th is 

thes i s. 

There are varying degrees of the sever i ty of th is 

magnetic in terac t ion (M.I.). In the l im i t of small M corrections 

can be made, but often the d i s t o r t i on s are so severe that i t is 

impossible to extract the ideal amplitudes and phases from the 

data. 

To see the e f fec t s of the term 4-rr(1 -6)M, le t us 

re-wr i te [1] by se t t ing 

x = 2TT (jf "" Y ) 

Z = KM 

Since | ku (1 - 6 ) M | « H , [ la] becomes 

[5] z = I C R s in [r(x-z) + -n/h] 
r 

Thi:s impl i c i t ' e q u a t i o n for z can be solved by a ser ies of 

success ive approximations in a scheme developed by P h i l l i p s and 

Gold (1969) where the n ^ approximation is given by 

z ( n ) = I C s in [ r ( x - z ( n _ r ) ) + T T A ] 
r=l r 

and z ( 0 ) = 0 . 

8TT 2F / . . \ 
K = — (1-6) 

H 2 

C = KA 
r r 
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While the gathering of terms can become quite tedious 

(n) 

a f te r a few steps, the procedure is convenient in that z is 

exact to 0(n) in the amplitude f ac to r s . 

This scheme has been ca r r ied out by P h i l l i p s and Gold, 

and the resu l t s are most conveniently d isp layed as a table of 

Four ier c o e f f i c i e n t s p r > q r in Table 1, where 

/ \ n 
[6] M W = I [p r s in (rx + TT/4) + q cos (rx + TT/4) ] 

r=l r 

The i 'terationc" scheme-has been ca r r i ed out to many more 

orders by Perz and Shoenberg (1976) with the a id of a computer 

program designed to perform the a l gebra ic manipulat ions. 

To obtain the amplitudes of the re su l t ing harmonics 

in the in terac t ing theory, we merely f i nd the magnitude of the 

t h 
r term in the complex Four ier expansion i . e . , 

A' = ( P

2

 + q 2 ) , / 2 

r K r M r 

For the f i r s t 3 harmonics, the resu l t is 

[7a] 

[7b] 

[7c] 

A, = A 1 + 0(3) 

A„ = A, 

A 3 = A 3 1 

1 

/ f 

3 

/2 

1/2 

+ 0(4) 

8/2 
+ 0(5) 



Term 0(1) 0(2) 0(3) 0(h) 

P l A l 
icA | ic^ A | 

2/2 8 

Q 1 
KA A 

+ Z 

2/2 

P 2 

K A 2 

A l-
2 2/2 

icA«A— K A« 
1 3 + 1 - K 2 A , 2 A 2 

/2 6/2 1 2 

Q 2 

K A 2 

+ 
2/2 

K A . A K 3A 1} 
± — — + -

/2 6/2 

P3 
3KA.A. 

A 3 " - p ^ 
2/2 

q3 

3KA,A 3<2A3 
± + -

2/2 8 

K 3A 1} 2KJA.A. K A 2 

A. + L Ul _ _ i . 
^ 3/2 /2 

% 
K A 2 ^ A 1 } 2 K A . A . 

± 2 ± ' ± ' 3 + 2 < 2 A 2 A 0 

/2 3/2 /2 1 2 

Table 1 Four ier Coe f f i c i en t s p,q. From P h i l l i p s and Gold (1969). 



We recover the amplitudes A^ , A^, A^ of the ideal theory i f 

these amplitudes are s u f f i c i e n t l y smal l . 

If, as i t often happens, the ideal amplitudes are swamped 

by the terms generated by M.I., we obtain Shoenberg's " s t rong -

fundamental" r e su l t s . These are found in [7b] and [7c] by 

taking the l im i t as and A^ approach zero, the resu l t is 

[8a] A] = A 1 + 0(3) 

[8b] A^ = - j K A 2 + 0(4) 

[8c] A 3 = | k A i + 0 ( 5 ) 

There are other not iceable e f fec t s of M.I., besides the 

d i s t o r t i o n of the harmonic content. If two or more fundamental 

dHvA frequencies are present, M.I. acts l i ke a mixer, and 

generates sidebands and combination tones. The simplest of 

these should be sum and d i f f e rence frequencies of fundamental 

o s c i l l a t i o n s from d i f f e r e n t o rb i t s on the Fermi sur face. If we 

consider ju s t the fundamentals from two extremal sect ions , we 

have (assuming a long rod 6 =0). 



18 

where the subscr ipts refer to the two sect ions . 

Since —• [4ir(M + M,)]<<1, we can wr i te [9] as 
H 2 a b 

[10] M = A s in (x - K m) + A, s in (x, - K , M ) 
a a a b b b 

F a b 
where x , = 2TT (—r* v L) + 

a ,b H a ,b 

8TT2F . 
1 a ,b 

and K . = — — a,b ,2 

From [7a] we see that for one frequency alone the amplitude 

of the fundamental remains unchanged to second order, so that 

rep lac ing M on the r ight s ide of [10] by the ideal L i ' f s h i t z -

Kosevich magnetization should) be a reasonable approximation 

for c a l c u l a t i n g the lowest/order combination terms. Vie then obtain 

[11] M = A s in [x - k A s in (x ) - K A, s in (x, )] 
a a a a a a b b 

+ A, s in [x, - K , A s in (x ) - K . A s in (x, )] • 
b b b a a b a b 

Assuming the quant i t ies KA to be smal l , we keep only the l inear 

terms in such quant i t ies g iv ing 

K A 2 K A 2 

[12] M V " s i n < 2 x J - - V ^ s i n (2x.) 
2 a 2 b 

A a A b 
- — ^ — [(K + K , ) s in (x + x, )-(K - K , ) s i n ( x - x , ) ] 

l a b a b a b a b 
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Thus, to lowest order, the amplitudes of the sum and 

d i f fe rence frequencies are given by 

[13a] A 
s 

A A, a b 
2 ( i e a + K b ) 

and 

[13b] 
A A, 

a b 
2 

The resu l t s obtained so far apply when the absolute amplitude 

of the dHvA o s c i l l a t i o n s is much smaller than the f i e l d spacing, 

AH - — or in the reduced notat ion, C r<<l. There are many cases 

where th i s is no longer t rue. The dHvA magnetization can approach 

or even exceed the f i e l d spacing. In such cases the magnetization 

formal ly becomes mult iva lued, and the resu l t ing magnetization is 

the one with the greatest thermodynamic s t a b i l i t y . When C r>l 

the magnetization is no longer uniform ins ide the sample, and 

Condon domains are formed (see Condon 1966, Condon and Walstedt 

The M.I. resu l t s discussed in th is chapter c l e a r l y a l t e r 

the temperature dependence from that given by the ideal L i f s h i t z -

Kosevich (L.K.) amplitudes [ l b ] . For example, in the case of 

combination tones generated by M.I., the temperature dependence 

of the amplitudes of the sum and d i f f e rence frequencies from 

1968). 

X X 
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CHAPTER FOUR 

REDUCTION OF MAGNETIC INTERACTION USING A 

FEEDBACK TECHNIQUE 

From the d iscuss ions of the previous chapter, i t is 

evident that magnetic in terac t ion must play only a very small 

ro le i f any information from the harmonic content is to be 

obta i ned. 

It is c lear that the absolute amplitude of the magneti­

zat ion determines the r e l a t i v e s izes of the M.I. generated 

harmonics. One might consider reducing these troublesome M.I. 

e f f ec t s by exp lo i t i ng the temperature dependence. At a high 

enough temperature, the absolute amplitude can be made 

a r b i t r a r i l y smal l , thereby reducing the M.I. harmonics. Un­

for tunate ly the L.K. second and higher harmonic amplitudes drop 

o f f f a s te r than the i r M.I. counterparts with increasing 

temperature thereby increas ing, not decreasing the waveform 

d i s tor t ion. 

The dependence on the demagnetizing factor 6 in [k] has 

been used with some success to minimize or control the e f fec t s 

of M.I. Everett and Grenier (1-978) have cut c r y s t a l s into 
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e l l i p s o i d s of varying aspect rat ios to study the dependence 

of the harmonic s t ructure on three d i f f e r e n t values of 6 . ln 

previous g c f ac tor measurements, Gold and Schmor (1969) have 

cut very thin ( 0 .5 m m ) disks with 6 % 0.9 to reduce M.I. Un­

fo r tuna te ly , th i s th in disk method is tedious, and has some 

undesirable s ide e f f e c t s . The method about to be described 

avoids most of the undesirable features of the "d i sk method" 

and o f f e r s some advantages as w e l l . 

Experimental ly, one usua l ly modulates the q u a s i - s t a t i c 

background f i e l d H with a small perturbat ion h(t) produced by 

a modulation c o i l so that 

[15] B = H + 4TT ( 1 - 6 ) M + h(t) . 

The fact that the modulation f i e l d h(t) enters into the 

equation for B in the same way as M is the seed for the feedback 

idea. If we separate h(t) into two components 

[16] h(t) = h m + h f 

and we let h^ = - 3R, where 3 is an experimental ly adjustable 

feedback ga in, then the equation for B can be made independent 

of M, i . e . , i f 

[17] BM-= 4TT ( 1 - 6 ) M 
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the M. i . w i l l be e f f e c t i v e l y suppressed. It is therefore 

necessary to obtain a s ignal proport ional to M, adjust the gain 

accord ing ly , and apply th i s s ignal as a f i e l d to the sample. 

Suppression of M.I. by means of magnetic feedback was 

f i r s t achieved by Testard i and Condon (1970) in the course of 

the i r sound v e l o c i t y measurements in bery l l i um. In t h e i r work, 

a c o i l was wrapped t i g h t l y around a cubic sample, and a current 

in the c o i l approximated the equiva lent surface currents in the 

sample and thus could be made to cancel the dHvA magnetization. 

The appropriate current was found by Imposing a nu l l detect ion 

c r i t e r i o n on an external pickup c o i l . In the Testardi-Condon 

arrangement, the sample could not be rotated, and for a . 

cubic sample , the magnetization is inherent ly non-uniform. We 

have developed a d i f f e r e n t type of technique which allows the 

sample to be rotated, and in which the dHvA e f f e c t i t s e l f is used 

to e s t ab l i sh the cor rect amount of feedback. There are several 

such c r i t e r i a , and the ones which are eas ies t in p rac t i ce w i l l 

be discussed in turn. 

1. Minimization of M.I. Combination Terms 

As we have seen, M.I. acts as a mixer in the sense that 

i f two genuine frequencies F 1 and F 2 are present, M.I. generates 

nFj ± mF2 where n and m are integers . These terms are not 

present in the ideal theory, of course, and the c r i t e r i o n 

becomes the minimization ( i d e a l l y the zeroing) of these 

combination f requencies . 



2. Mass P lots 

The temperature dependence of the L.K. harmonics is given 

by 

A (T) a . r* „ % X e " r X 

r smh rX 

where X = Xm* T/H and X = 2ir2 k D /e f i . 
C D 

The M.I. terms have a d i f f e r e n t temperature dependence 

for each harmonic, so that optimum feedback is found when p lots 

of In A/T vs. T/H fo r the f i r s t , second, and th i rd harmonic are 

s t ra i gh t l ines with the slopes p rec i se l y in the r a t i o 1:2:3. 

3- The Beat Envelope 

When 2 s igna ls are c lose in frequency, a l l the harmonics 

beat. The M.I. terms genera l ly beat at the d i f f e rence frequency 

of the f i r s t harmonic because i t is the strongest in amplitude. 

The feedback can be adjusted to make the harmonies beat at 

t h e i r proper f requenc ies . 

4. Phase Information 

The r e l a t i v e phases of the harmonics of the ideal L.K. 

terms are e a s i l y c a l c u l a t e d , and s ince the M.I. terms add in a 

d i f f e r e n t phase, one need simply adjust 8 un t i l the L.K. phase 

re la t ionsh ips are e s tab l i shed . 

2 
5. L i nea r i t y of Aj/A^ vs. ( A j / A ^ 

As discussed in Chapter Two, (see [3a]), a p lot of A^/A^ 

2 

vs. (A^/A^) should y i e l d a s t ra i gh t l i ne i f the harmonic 

amplitudes fol low the ideal L.K. form. Curved p lots are obtained 

in the presence of M.I. 



As presented, the feedback technique seems to accomplish 

the same des i r ab le object ives which have prev ious ly been 

at ta ined by exp l o i t i n g the demagnetizing f i e l d . 

Perhaps the most tedious feature in the disk-method is the 

actual preparat ion of the sample. In each sample, only one 

d i r e c t i o n can be s tud ied, the one perpendicular to the plane of 

the sample. The demagnetizing f i e l d is very s en s i t i ve to 

o r i e n t a t i o n , so that spec ia l care must be taken to ensure that 

the external f i e l d H is p rec i se l y perpendicular to the plane 
4 

of the d i sk . Disk-shaped samples are f r a g i l e , and when using 

so f t mater ia l s such as lead, i t is d i f f i c u l t to keep the sample 

f ree of s t r a i n . The s e n s i t i v i t y of the detect ion apparatus is 

a l so dependent on ( 1 - 6 ) , so that reducing M.I. reduces the 

s e n s i t i v i t y by the same f a c t o r . 

The above drawbacks are a l l re lated to the requirement 

that the sample be a th in d i sk . In the feedback method there 

is no such cons t ra in t , and any e l l i p s o i d can be used. The 

e l l i p s o i d a l shape is necessary only to achieve a uniform 

induction f i e l d , and i t is f e l t that fo r some app l i ca t ions of 

the feedback technique, the sample need not even be e l l i p s o i d a l 

(d i scr iminat ion between genuine dHvA terms and M.I. terms; see 

below). In the case of a spher ica l sample a l l d i rec t i on s in 

the c ry s ta l can be studied in the same experiment, and only one 

sample need be prepared. The spher ica l sample is ev ident ly not 

subject to the prec i se o r i en ta t i on requirement of the d i sk , and 

a sphere is the optimum shape fo r mechanical s t a b i l i t y . F i n a l l y , 

the sphere has a large f i l l i n g fac tor fo r so leno ida l p ick-up 

c o i l s , and i t can be shaped qu i te p r e c i s e l y . 



There is a d i s t i n c t advantage to the feedback system when 

one is faced with the problem of deciding whether or not an 

observed frequency is genuine, or generated by M.I. Increasing 

the feedback gain from zero causes the M.I. generated terms 

to f a l l in amplitude, while the genuine dHvA frequencies stay 

the same or r i s e in amplitude. This can be very helpful in . 

cases where M.I. generates tens of sidebands,many of which may 

be larger than the genuine frequency ( c f . van Weeren and 

Anderson, 1 9 7 3 ) . To acquire the same information unambiguously 

from the disk method, one would have to make at least two disks 

with d i f f e r e n t aspect r a t i o s . 

A valuable side e f f e c t of using feedback is that the 

absolute amplitude of the dHvA o s c i l l a t i o n can be very e a s i l y 

measured. In the past, careful measurement of sample volume 

and geometrical coupling constants between the sample and the 

detection c o i l were required, as well as the net gain of the 

a m p l i f i c a t i o n system, with a l l i t s f i l t e r s . ( c f . Knecht 1 9 7 5 ) 

Using feedback, the only c a l i b r a t i o n constant which is required 

is the Gauss to amp r a t i o y of the modulation c o i l . When 

optimum feedback is attained, one simply measures the amplitude 

of the feedback current 1^ in the modulation c o i l , and the dHvA 

magnetization M is given absolutely by 

Y I F 3 Y I F  

[ , 8 ] M = M l - f i ) = ~ 8 t T ( F O R A S P H E R E ) 

where 6 is the demagnetizing factor.' 

The feedback p r i n c i p l e could be used with advantage in 

measurements of the quantum o s c i l l a t i o n s in other e l e c t r o n i c 



propert ies of metals eg. Shubnikov-de Haas e f f e c t , u l t r a son i c 

attenuat ion e t c . One would s t i l l need to measure the dHvA 

magnetization o s c i l l a t i o n s in order to obtain the required 

feedback s i g n a l . For example, feedback could be used to 

determine whether a set of quantum o s c i l l a t i o n s i n , say, the 

u l t ra son ic attenuat ion are genuine ones or generated by M.I. 

As we sha l l see, an integrator is present in the 

feedback loop, br ing ing inev i tab le d r i f t s in the zero level 

of the feedback s i g n a l . When th i s occurs , there is a D.C. 

current added to the modulation f i e l d which appears as a D.C. 

s h i f t in the external f i e l d H. In our experiment, th i s d r i f t 

could e a s i l y be kept below 5 Gauss during the course of the 

measurements,which was i n s u f f i c i e n t to mate r i a l l y a f f e c t the 

amplitude data. However, these d r i f t s make the phase information 

less r e l i a b l e . 

A s l i gh t imbalance in the pickup c o i l does not turn out 

to be a problem s ince th i s would simply increase or decrease 

the modulation range. The c o i l s could e a s i l y be balanced to 

3 

re ject the homogeneous modulation f i e l d to 1 part in 10 , so 

that a modulation range of 1 kG might have been a l te red by at 

most ± 1 Gauss. 
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CHAPTER FIVE 

EXPERIMENTAL DETAILS 

5.1 Sample Preparation 

The experiments were performed on s ing le c ry s t a l s of lead. 

Previous use of the Czochralski method for c ry s ta l growth ( c f . 

P h i l l i p s and Gold 1969) showed i t s great success in producing 

s ing le c r y s t a l s of extremely low Dingle temperatures. The 

apparatus centers around a melt of zone ref ined lead (6NT grade) 

from Cominco L t d . , e l e c t r i c a l l y heated in a vacuum of 10 ^ to 10 

Torr . A s ing le c ry s ta l seed is dipped into the melt, and the 

heat conduction through the seed is enough to keep a l l but the 

submerged port ion s o l i d . In the process of reaching equ i l i b r ium, 

the meniscus turns upward, and the seed is slowly pul led from the 

melt. Typica l growth rates are 0.5-1.0 cm/hr., 0.5 being the 

slowest poss ib le . The diameter of the resu l t ing s i n g l e - c r y s t a l 

cy l inder was found to be rather in sens i t i ve to pu l l i n g speed, 

but c r i t i c a l l y dependent on melt temperature. Figure 3 shows the 

dependence of c ry s ta l diameter on heater vo l tage. The c ry s ta l 

diameter is very sens i t i ve to heater vo l tage, and th i s d i c ta te s 

the need for a rather high" degree of long term s t a b i l i t y and 





measurement accuracy. The more d i r ec t measurement of temperature 

with the use of a thermocouple had inherent thermal lag and 

i r rep roduc ib i1 i t y drawbacks, requir ing the operator ' s constant 

a t tent ion during the growth process. In the voltage measurement, 

one need only set the voltage to obtain a c ry s ta l of any pre­

determined diameter. Four f i gure accuracy was required in the 

absolute (A.C.) voltage measurement and a Sola 5008 constant 

voltage transformer provided the required s t a b i l i t y . To 

adjust the vo l tage, a var iac was used in conjunction with two 

3 

rheostats. The f i ne contro l had a range of ± 1 part in 10 of the 

absolute vo l tage. Crys ta l s ranging in diameter from 1 to 10 mm 

were pu l led reproducibly using th i s method. The experiment 

required a spher ica l c ry s ta l of roughly 7 mm diameter, so that 

c r y s t a l s pu l led for the feedback experiment had a diameter 

s l i g h t l y larger than t h i s . 

A f te r pu l l i n g a c ry s ta l roughly 5 cm long, i t 

was separated from the melt by r a i s i ng the voltage on the heater. 

Once the cy l i nder was removed from the growing apparatus, 

i t was c a r e f u l l y mounted in a rotat ing chuck. A hollow copper 

c i r c u l a r cy l i nder was used as a spark cut t ing t o o l . The wall was 

kept below 0.010 i n , and the tool was rotated during the cut t ing 

procedure s ince the tool erodes as well as the sample. As the 

rotat ing tool was lowered with i t s axis perpendicular to the 

ro ta t ing c ry s ta l c y l i n d e r , a spher ica l sample resu l ted i f the 

axes in te r sec ted . 
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The in ter sec t ion was c loser than 0.002. in , as th i s could 

be c a r e f u l l y adjusted during the f i n a l cut t ing stages by making 

sure that the tool wascutt ing on a l l of the c i r c l e inscr ibed 

in the c r y s t a l . 

When the sphere was near completion, there remained 

two points or " ea r s " on which the tool was cu t t i n g . One held 

the sphere to the unused part of the crys ta l c y l i n d e r , the other 

holds the endpiece to the sphere. It was des i rab le for the 

l a t t e r to cut through f i r s t , so the tool axis was pos i t ioned 

5° away from being perpendicular to the c rys ta l ax i s , keeping 

both axes coplanar. Using th i s cut t ing procedure, c ry s ta l s 

forming better than l%spheres were usual ly obtained. 

Since lead is a strong absorber of X-rays, the surface 

of the c ry s ta l must be very good in order to obtain adequate 

Laue back - re f l ec t i on photographs. A su i tab le etching procedure 

was needed to remove the p i t ted surface layer generated by the 

spark erosion process. This procedure consisted of a 45 minute 

etch in strong etchant (250 cc g l a c i a l a ce t i c a c i d , 187.5 cc 

d i s t i l l e d h^O, and 62.5 cc 30% immediately followed by a 

wash in ethanol . 

A f te r c a r e f u l l y mounting the c rys ta l on a goniometer, 

5 minute Polaro id X-ray photographs could be taken for o r i e n t a t i o n . 

The X-ray process included rotat ing to major symmetry d i rec t i ons 

to ensure both a s ing le c r y s t a l , and an .unambiguous f i n a l 

o r i e n t a t i o n . 
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5.2 Detection Apparatus 

In the induct ive method for measuring magnetic s u s c e p t i b i l i t y 

the sample is placed in a balanced pickup c o i l and a l so a separate 

modulation c o i l . The l a t t e r provides a time dependent (often 

s inusoida l ) dev iat ion in the steady background f i e l d , and the 

pickup c o i l is balanced to be i n sens i t i ve to th i s change. Any 

net magnetization ins ide the balanced pickup c o i l induces a 

dM 

voltage in i t proport ional to . The balanced pickup c o i l 

cons i s t s of two c o i l s , one for the detect ion of the tota l 

induction (the pickup c o i l ) and the other to buck out the 

cont r ibut ion from the modulation f i e l d (the bucking c o i l ) . 

Since large modulation was envisaged, mechanical r i g i d i t y 

was of primary concern s ince in th is regime v ibra t ions are the 

major source of noise. To th is end, the modulation c o i l took 

the form of a long so leno id , mechanical ly f ixed ins ide the bore 

of the main magnet providing the steady background f i e l d . 

The pickup c o i l and the counter-wound bucking c o i l , again 

to achieve maximum mechanical r i g i d i t y , were wound as two con­

c e n t r i c solenoids d i r e c t l y on top of one another. The centre 

tap was made ava i l ab le to f i n e tune the balance when the c o i l s 

were cooled. It is true that some s e n s i t i v i t y is lost in th i s 

arrangement because the f lux due to the magnetization of the 

sample threads both the pickup and the bucking c o i l s . For the 

worst case of a long rod sample, th is loss for our c o i l s is less 

than a fac tor of 2, but the gain in s i gna l - to -no i se is well worth 

i t . 
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Some thought was given to the s i ze of the wire which 

should be used. A simple c a l c u l a t i o n taking into account the 

Johnson noise given by the Nyquist equation and the to ta l i n ­

duced s ignal S gives the s ignal to noise r a t i o S/N as a funct ion 

of the radius of the wire r. 

[19] S/N £ [ 4 T r M ] ( £ ) ( 4 k B T A f ) " 1 / 2 & (1) 

where M is the magnetization of the sample 

h is the height of the c o i l 

w is the width of the c o i l 

T is the temperature 

Af is the frequency bandwidth 

and p is the r e s i s t i v i t y of the wire. 

[19] has no maximum as a funct ion of r, so that r should 

be made as small as pos s ib le , with only the mechanical strength 

of the wire to be cons idered. The r e s i s t i v i t y dependence suggests 

pure copper wire or superconducting wire. 

When th i s so leno id-on-so lenoid arrangement is used, one 

must c a r e f u l l y c a l cu l a te the r a t i o of turns in the pickup to 

that in the bucking c o i l , as the combined width of the c o i l s is 

l imi ted by the ava i l ab l e space. One must a l so be carefu l to 

overwind the bucking c o i l so that in the process of ba lanc ing, 

turns need be removed, not added. 

In the f i n a l model, the pickup-bucking c o i l pa i r 

had an ins ide diameter of 0.300" and an outs ide diameter of 0.500". 
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The pickup c o i l had 9500 turns, and the bucking c o i l had 60163* 

turns of #46 copper wire. (0.0017 inches in diameter, insu la t ion 

included). 

The balancing was done by construct ing a modulation c o i l 

s im i l a r to that in the c ryos ta t , and p lac ing the sample-bucking 

c o i l arrangement in s ide . Turns were removed from the bucking 

c o i l un t i l zero pickup resu l ted. This could be done to an 

accuracy of h turn (^ l in lO^ at room temperature but worsening to 

^ 1 in 10 upon cool ing to 4.2K) . For best noise immunity, the 

connection to the outermost windings was put at ground p o t e n t i a l . 

The spher ica l sample (radius a) and balanced pickup c o i l 

form" a very convenient detect ion arrangement. The spher i c i t y 

of the sample ensures a uniform magnetizing f i e l d ins ide, and 

concurrent ly forms a s p a t i a l l y inhomogeneous d ipo le magnetizing 

f i e l d outs ide the sphere as shown in Figure k. 

The c o i l former for the sample c o i l (a f u l l desc r ip t ion 

is given in Appendix A) formed the housing of an i n t r i c a t e 

rotat ion system designed to rotate the sample about an axis 

90° away from the only d i r e c t i o n of access. Pippard and 

Sadler (1969) descr ibe a system which uses very l i t t l e space in 

the sample region by employing a Mylar gear wheel. Several 

modi f icat ions to th i s design were made to accommodate our 

spher ica l sample, and compactness requirements. The d e t a i l s 

of the construct ion are presented in Appendix A. 
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Figure 4. Detection Arrangement 



Although [19] gives a 1/p dependence to the s ignal 

to noise r a t i o , we were working in the regime where the 

tota l noise was predominantly determined by the input 

noise of the f ront end d i f f e r e n t i a l a m p l i f i e r . For f r e ­

quency response cons iderat ions , however, (see sect ion 5-5) 

a superconducting sample c o i l was wound. Unfortunate ly, 

i t turned out that the large modulation employed in our 

measurement techniques rendered the c o i l normal in parts 

d 2 h 
of the modulation cyc le where —=- was large. The second 

dt 

de r i va t i ve is important s ince i t , along with the s e l f 

capacitance of the c o i l determines the internal induced 

currents . A c a l cu l a t i on performed a f te r the c o i l was 

wound and used showed that these induced currents exceeded 

the c r i t i c a l current for the wire at the f i e l d s in which 

we were working. 
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5.3 Modulation Coi l and Superconducting Magnet 

Both the use of the feedback technique, and the detect ion 

of long period dHvA o s c i l l a t i o n s benef i t g reat ly from the use 

of large modulation. Homogeneous modulation of >1 kG peak to 

peak amplitude could be achieved with the f i n a l apparatus. 

Wrapped by Richard C h r i s t i e , the c o i l took the form of an 0.0602m 

long solenoid with an O.OO986 m inner radius. Four layers of 

316 turns each were wound using a niobium h$% t i tanium a l l oy 

superconducting wire (0.0065 inches in diameter, insu la t ion i n ­

c luded). The f i n i t e solenoid equation gives a Gauss-to-amp r a t i o ' 

of y=251 for th i s geometry. In order to modulate with amplitudes 

of £ 1 kG, several amps are required to power the c o i l . Since 

the transmission of th i s current would be a major heat leak to 

the helium bath, a simple c a l c u l a t i o n was done to optimize the 

diameter of the leads to the modulation c o i l . Taking the re­

s i s t i v e heating and conduction into account, copper and brass 

wire gave roughly the same heat leak for t yp i ca l currents (the 

optimum diameters were, of course, very d i f f e r e n t ) . Brass was 

chosen because of i t s smaller temperature c o e f f i c i e n t of res i s tance. 

For typ ica l currents , the heat leak was estimated to be 0.1 Watt 

for the 1.4 mm optimized diameter brass wire. Superconducting 

wire was continuously soldered to the brass up to the maximum 

level of the helium bath. 

In add i t ion to screw mounts, grease was used as a 

low temperature glue to ensure the r i g i d i t y of the mount. The 



main magnet was b u i l t by American Magnetics (A.M.I. #10066) 

q 

and was rated at 80 kG with a homogeneity of 1 part in 10 

over a 1 cm diameter sphere at i t s centre. Vapour cooled 

current leads were used to minimizethe heat loss ; the current 

at peak f i e l d was 65 Amperes. The flow rate of helium through 

these leads could be constant ly monitored whi le running. The 

Gauss to amp r a t i o of the main magnet was 1229. The assembly 

included a pers i s tent current switch, which allowed the magnet 

to run without an external power supply once i t was energized. 

5.4 The Cryogenic Apparatus 

Housing the main magnet is an Oxford l i q u i d helium dewar 

with the usual l i qu id nitrogen jacket . The vacuum spaces 

contain super insu la t ion fo r maximum thermal i s o l a t i o n . Inside 

th i s outer dewar is an inner dewar with a t a i l extending into 

the main magnet core, ins ide the modulation c o i l . 

B u i l t by Peter Haas in the Physics machine shop at U.B.C., 

the inner dewar featured an ex terna l l y cont ro l l ed vacuum t i ght 

valve which when opened allowed a t rans fer of l i q u i d helium from 

the outer dewar to th i s inner dewar. Not only does th i s make 

the t rans fer process more convenient, but the helium trans ferred 

to the inner dewar (and sample) could be f i l t e r e d to remove s o l i d 

a i r p a r t i c l e s . . The vacuum jacket of the inner dewar allowed 

the pumping of the helium ins ide to a t t a in temperatures of about 

1.2K. For best noise immunity, the inner dewar was i so lated 

mechanically from the main magnet, and modulation c o i l . This 
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Figure 5- General Schematic Cryogenic Assembly 
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i s o l a t i on could be checked ex te rna l l y with a contact 

res i s tance t e s t . Both the outer and inner dewars contain 

l i qu id helium level detectors manufactured by American Magnetics. 

Figure 5 shows a composite drawing of the cryogenic apparatus. 

5.5 Signal Processing 

As previous ly discussed (Section 5.2), the pickup c o i l 

consisted of 2 counter-wound solenoids balanced at room temperature 

to be i n sens i t i ve to uniform f i e l d s . A lead from the centre tap 

of these c o i l s was made ava i l ab l e at the top of the cryostat to 

f i ne tune the balance as the c o i l s were cooled. 

The major cons iderat ion in the design of the detect ion 

c i r c u i t r y was the e l iminat ion of any frequency dependent com­

ponents in the feedback network. Since the pickup c o i l s , and 

modulation c o i l s would have cons iderable inductance, the fo l lowing 

procedures were used to e l iminate poss ib le phase s h i f t s caused 

by the i r reactance. Care was taken in the design of the f i ne 

tuning c i r c u i t to ensure that the c o i l s were not loaded to the 

point where phase s h i f t s might be important at the maximum 

frequency. 

The pickup c o i l ' s inductance was ca lcu la ted to be 18 mH as 

an upper l i m i t , and 500 Hz was chosen as the maximum frequency 

to be handled by the feedback network. 

The balancing arrangement is shown in Figure 6. The equ i ­

valent c i r c u i t for the balancing c i r c u i t is shown in Figure 7. 
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The external load on the centre tap (C.T.) is at most R̂  

If R is the pa ra l l e l combination of R„ + R_ and R., 
2 3 i 

R (R + R ) 
R = — 

R. + R„ + R, i 2 3 
V.R 

Then V = 1 

[21] 

o Rg+jiol_2+Rj+R 

V.R (R +R +R - M 2 ) 
(Rg+R^R) 2 + ( o j L 2 ) 2 

The phase s h i f t is 

[22] <|> = tan 
R̂ +R̂ +R 

The D.C. res is tance of the counterwound c o i l was R̂  = h2ti 

at 4.2K hence, for a phase s h i f t of <1° at 500 Hz, 

Rj + R > 450 ti 

As i t turns out, the s e l f capacitance of the c o i l was the 

determining f ac to r . The s e l f capacitance of a c o i l can to a 

good approximation, be represented by a p a r a l l e l capac i tor shown 

as C<. in Figure 6. 

The fact that th i s capacitance was the dominating inf luence 

on the frequency c h a r a c t e r i s t i c s was ascerta ined by unbalancing 

the f i n e tuning s l i g h t l y , and observing the frequency response 



of the pickup c o i l s to the modulation f i e l d . When performing 

th i s measurement, with R j » 450 fi, the frequency response of the 

pickup c o i l r o l l e d o f f to -3db at 90 Hz. 

When the s e l f capacitance is taken into account, the 

voltage in Figure 6 is given by 

[23] V = - -JL 
o coC J c s ( j ( a , L - J _ ) + R s ) V i 

where L = Lj + l Hence 

[24] ^o = l-a)2LC - jRcoC 
V i ( l - U

2 L C ) 2 + (wRC)2 

If we assume L is neg l i g i b l y smal l , 

v 2 

o 
V. 

i 

1 
2 1 + U R S C S ) 

From the frequency c h a r a c t e r i s t i c s , was determined to 

be 25.8 yF. Using the f u l l equation [24] with L.= 18 m.H did not 

change the r o l l o f f frequency, proving our assumption that L is 

n e g l i g i b l e . The frequency c h a r a c t e r i s t i c of the c o i l is the 

l im i t i n g factor in the feedback loop, and in fact sets the upper 

bound to the usable feedback band. 

The modulation c o i l was energized with a Crown M600 D.C. 

a m p l i f i e r . The c o i l was placed in a se r ie s combination with a 

5 fi non- induct ive monitor r e s i s t o r . The inductance of the c o i l 
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produced a large phase s h i f t even for frequencies as low as 

50 Hz. This s i t ua t i on is e a s i l y remedied by using current 

feedback. A tap was taken between the 5 r e s i s t o r , and the 

modulation c o i l (see Figure 9), and used to provide a feedback 

voltage for the operat ional amp l i f i e r feeding the Crown a m p l i f i e r . 

The Crown amp l i f i e r gain is then immaterial so long as i t is large 

enough and the current gain of the op-amp-Crown conf i gurat ion is 

determined by only 2 r e s i s t o r s . Using th is idea, the phase 

s h i f t s were el iminated up to 1 kHz, above which the gains needed 

would set the system into o s c i l l a t i o n s . 

There is a safety precaution which must be emphasized at 

th i s po int . Since the Crown amp l i f i e r can d e l i v e r enough current 

to damage the apparatus, i t s ga in, whi le s t i l l being s u f f i c i e n t 

to assure l i n e a r i t y , must be kept below the point where 

acc identa l d isconnect ion of the feedback re s i s t o r resu l t s in 

catastrophe. The Crown gain se t t ing can be used as a l i m i t , 

without harming the overa l l open-loop ga in, s ince the op-amp 

provides most of the gain and merely saturates i f the Crown cannot 

de l i ve r the current needed (see Figure 9)• The Crown gain was 

set to de l i ve r the maximum al lowable output current for a 15V 

input s i gna l . 

The voltage appearing on the wel l -balanced pickup c o i l s is 

dM 

proport ional to -pp M can be retr ieved ea s i l y by analogue 

in tegra t ion . The s ignal proport ional to M was then added to the 

modulation s ignal and fed to the modulation c o i l as a current . 

A block diagram of the apparatus appears in Figure 8. The c i r c u i t 

diagram appears in Figure 9. 
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A simple arrangement was used fo r tes t ing the frequency 

response of the en t i r e c i r c u i t r y . The procedure involved un­

balancing the pickup c o i l s l i g h t l y , and observing the s ignal 

a f te r integrat ion on one channel of a dua l - t race o s c i l l o s c o p e . 

The feedback path was broken at the adder, so that only the 

modulation s ignal was fed to the modulation c o i l . The modulation 

s ignal from the o s c i l l a t o r was monitored on the second trace of 

the 'scope. The two traces were c a r e f u l l y superimposed at some 

low frequency, and then the frequency of the modulation was 

increased un t i l a separat ion between the 2 traces became 

not iceab le . The usable feedback band determined in th i s way 

was 0.2 to 79 Hz. It must be pointed out that th i s l imi ted 

bandwidth is not very r e s t r i c t i v e . The low frequency l im i t was 

imposed by a 10 sec time constant on the integrator which could 

be increased in the fu ture . In the procedure used here, the 

lowest frequency is that of the f i e l d modulation and dHvA terms 

can always be made to appear at higher time frequencies. 

I n i t i a l l y the lead sphere was or iented c lose to the [110] 

d i r e c t i o n . So o r i en ted , lead exh ib i t s a pa i r of strong y 

o s c i l l a t i o n s with F̂ 'v 17.9, and a s ing le a o s c i l l a t i o n with F^d& O M G . 

We wene most fortunate to bb.ta i n^the use of a d i g i t a l^ spectrum 

analyzer (Hp3582A). wh-ich is essent ia 11 y' an on-1 i ne, Four ier t r an s ­

former. • When appropr ia te ly set up, th i s computer could resolve 

the harmonics of the y doublet, as well as the sidebands appearing 

at F ± nF due to M.I. This " appropr ia te " setup wiell now be 
cx y 

descr ibed. 
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A t r i angu la r wave was used to provide a ramp in the 

modulation f i e l d , and i t s amplitude was chosen to sweep through 

enough dHvA o s c i l l a t i o n s for the reso lut ion of the analyzer to 

exceed ^ = 18 MG. When a Hanning window is used, (see Appendix 

B) h o s c i l l a t i o n s of the fundamental were enough to e a s i l y 

resolve a l l the harmonics. In p rac t i ce i t was not d i f f i c u l t to 

sweep through about 5 fundamental y o s c i l l a t i o n s at 60 kG; th i s 

number of cyc les could be increased by working at lower f i e l d s 

2 H 2 

because of the H dependence of the f i e l d spacing AH % y . 

At 60 kG, the f i e l d at which most of the work was done, 

AH^ * 200 G, and a peak to peak ramp of 1 kG sweeps through 5 

y osci11 at ions. 

The spectrum analyzer obtained i t s input d i r e c t l y from 

the front-end d i f f e r e n t i a l amp l i f i e r (see Figure 8). 

The modulation frequency was chosen to be 1 Hz, hence 

the time window on the analyzer should be a l i t t l e less than 

0.5 sec, t r iggered at the beginning of the r i s i n g ramp of 

the t r i angu la r modulation. Figure 10 shows the synchronizat ion 

of the t r i gger and the time window. 

If a l imi ted number of cyc les is cons idered, the o s c i l l a ­

t ions are e s s e n t i a l l y per iod i c in H, and a l inear f i e l d ramp 

w i l l transform the dHvA o s c i l l a t i o n s to the time domain where 

the i r time frequency is given by 

h F f , 
[25] f = , m ° d 

H I 
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where 

H is the steady background f i e l d 

h is the P-P modulation ramp amplitude 

^mod ' s t ' i e m ° d u l a t i o n frequency 

F is the dHvA frequency 

and D is the duty cyc le of the modulation waveform. 

For a t r i angu lar wave, the duty cyc le is 1/2 so that 

2h F f , 
^ _ mod 

H 2 

For f m o d = 1 Hz, H = 60 kG, h = 1 kG, the y o s c i l l a t i o n s 

appear at a frequency of ^ 10 Hz, the a ' s at ^ 89 Hz. 
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CHAPTER SIX 

EXPERIMENTAL TEST OF THE FEEDBACK TECHNIQUE 

6.1 Prel iminary Considerations 

I n i t i a l experiments were performed on a s ing le c ry s ta l 

lead sphere or iented with the to ta l appl ied f i e l d along [110]. 

In th i s d irect ion:, lead exh ib i t s strong y osci 11 at i ons con­

s i s t i n g of two frequencies separated by 0.42 MG at F^ ^ 18 MG. 

These 2 frequencies y 3 , have approximately equal amplitudes 

of A a : % A b £ 1,. Gauss at 1.2K in a f i e l d of 60 kG. There 
Y Y 

are a lso somewhat weaker a o s c i l l a t i o n s at a frequency of 160 MG, 

and under the above cond i t ions , A^ £ 0.03 Gauss. These 

o s c i l l a t i o n s are shown in Figure 11 (H ^ 60 kG, T ^ 1.2 k) 

It turned out that the expansion parameter KA^ was about 

0.4 in the condit ions under which we usual ly worked, so we 

expected the harmonic d i s t o r t i o n to be quite high. 

In th i s chapter, we interpret the dependence of several 

observable quant i t ies on feedback gain. The technique appears 

to agree well with the expected resu l ts for no M.I. at the 

optimum feedback gain using the c r i t e r i a presented in Chapter IV. 

Much of what fo l lows, therefore is the ana lys i s of the quant i t ie s 

under non-optimal feedback cond i t ions , to ensure an understanding 
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Pb M || [110] y oscillations 

or , y plus M.I. generated c r i m y 
Figure 11. de Haas-van Alphen O s c i l l a t i o n s in Pb:H|J [110] . . 

Above: y o s c i l l a t i o n s , below: ^ 4 y o s c i l l a t i o n s 
which were experimental ly suppressed to br ing out 
the a o s c i l l a t i o n s and M.I. sidebands 
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of the mechanisms involved, and at the same time, i t c l e a r l v 

shows the very tedious mathematics one avoids by usinq the 

feedback technique. While i t is important to check th is once, one 

must remember that at the optimum feedback p o s i t i o n , the 

cor rec t ion factors in any of the resu l t s are no longer needed. 

For each quantity d iscussed, we s h a l l , in turn, look at the 

cases of no feedback, non-optimum feedback and optimum feedback. 

In some cases, a va r ie ty of feedback sett ings were used. 

6.2 Minimization of Sidebands 

In order to obtain an idea where the optimum feedback 

set t ing was, the minimizat ion-of-s idebands c r i t e r i o n was used 

f i r s t . It is the simplest and perhaps a l so the most dramatic. 

Using the t r i angu la r modulation, about 5 fundamental y 

o s c i l l a t i o n s were swept out, and analyzed by the spectrum analyzer. 

About seven sidebands at F i nF v were e a s i l y resolved. Using 

the minimization of sidebands c r i t e r i o n , the object was to adjust 

the feedback gain un t i l these sidebands reached a minimum. 

Changing the gain from zero in e i ther d i r e c t i o n produced the 

expected re su l t s , the sidebands decreased for negative feedback, 

and increased for po s i t i ve feedback. Examples of the Fourier 

amplitude spectrum for several feedback sett ings appear in 

Figure 12. Figure 13 is a quant i ta t i ve presentat ion of the 

dependence of the a , a + y , and a-y amplitudes on the feedback 

gain. 
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To compare the observed amplitude with theory, let us 

use the convenient notat ion: 

2TT F 

f = A" = 1m (1-6) M 

e =• 1 - 7 — 7 ^ — r - M = 4TT(1-6)M 
4IT(1-6) Y,<* Y,« 

We expect the strongest M.I. cont r ibut ion from the e f f e c t of 

the Y term on a. The fundamental dHvA magnetization fo r a 

is given by 

F 
[26] M = A" s in [2ir(-=^-> 1/2) - TT/4] a a D+n 

where h is a small change in H. 

The phase factors need not concern us for the present, and 
F h 

we can expand the denominator for << 1 to obtain a f i r s t 
H 2 

order approximation 

M = A cos [f (h+eA cos f h)] 
a a Y Y 

assuming that the dominant contr ibut ion to the tota l magnetization 

in B is A'̂  cos f h. This can immediately be decomposed into 

harmon i cs 
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[27] M ( l ) = A J n ( f e A " ) cos f h 
a 0 a y a 

- A* J , ( f e A * ) [ s i n ( f + f ) h + s i n ( f - f )h] 
a I a Y a y a y 

- A* J 0 ( f e A * ) [ s i n ( f + 2f ) h + cos(f - 2 f ) h ] 
a 2 a y a y a y 

+ A* J , ( f e A * ) [ s in ( f + 3f ) h + s i n ( f - 3f )hj 
a 3 a Y a Y a y 

where J (x) is the Bessel funct ion of the f i r s t kind of order 
v 

v and argument x. 

This f i r s t . s t e p generates sidebands around f , and the 

next step in the ca l cu l a t i on is to allow these sidebands and 

f i t s e l f to interact with the y o s c i l l a t i o n s . The equations 
a 

are ident i ca l to those in the f i r s t step with the subscr ipts 

r e fe r r i ng to the corresponding reversed ro les . One only 

needs carefu l bookkeeping. This step is ca r r ied out only to 

the cont r ibut ions . For example, when f interacts with y, 

we qet terms in f and f '. The resu l t is as fo l lows: 
a+Y a-y 
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[28] M ( 2 ) = A* J 
Y 

+ A" J 
Y 

A" J 
Y 

+ A" J 
Y 

- A'"' J Y 

+ A x J 
Y 

+ A" J 
Y 

+ A" J 
Y 

+ A" J 
Y 

+ A" J 
Y 

f eA* )cos[ f - ( f + f •)•] 
Y a+Y Y a Y 

f eA" ) [-cos{f +(f - f ')}] 
Y a-y y a y 

f eA* ) s in (f + f ) 
Y a y a 

f eA* ) s in (f - f ) 
Y a+zy Y a+zy 

f eA*) s in (f - f ) 
Y a y a 

f eA* . ) s in (f + f , ) 
Y a-zy Y a-2Y 

f eA*^ ) [-cos(f + f ^ )] 
Y a+Y Y c +Y 

f eA* ) [ - co s ( f - f )] 
Y a+3y Y a+3y 

f eA* )cos(f. ~ f ) 
Y a-y Y OL-y 

f eA* . )cos( f + f . ) 
Y a~3Y Y a ~ 3 Y 

terms at f re ­
quency f 

terms at f re -
quency f a + y 

terms at f re ­
quency f 

a-Y 

terms at f re ­
quency f a+2y 

terms at f r e -

q U e n C y f a - 2 Y 

(2) 

In th i s second step M , the amplitudes A are to be taken 

from those generated in the f i r s t step M ^ . 

This expansion should be a reasonable approximation to the 

gain dependence in our p lots of the sideband amplitude (Figure 13) 

The expansion reduces, to the simpler form, given e a r l i e r 

([13a], [13b]) i f we consider only the f i r s t 2 combination f r e ­

quencies, and allow only y to interact with a. We then obtain 
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A" t = A J . ( f eA ) + A" J . ( f E A ) 
a+y a 1 a Y y \ y a 

and using the small argument approximation 

J i ( x ) - TT , x<< 1, th i s reduces to 

e A" A" 
A* « — f J t ( f + f ) 

a+Y 2 a Y 

S i m i l a r l y , , , 
eA wA' c 

A" ~- - f J t ( f . f ) 
oi-y 2 a y 

A'̂  remains unchanged in th i s approximation. This is the s i m p l i f i e d 

resu l t obtained e a r l i e r with e = l for no feedback (see [ 13a] , [ 13b]) . 

We immediately see that the simple approximation is i n s u f f i c i e n t 

to descr ibe the large e f f e c t M.I. has on our data, s ince A* does 
3 ' • a 

indeed change, and the sidebands do not r i s e l i n e a r l y as th i s 

pred i c t s . 

In order to use the more de ta i l ed formulae [28], we must 

f ind the absolute magnetization of at least one of the fundamental 

terms. This can be done in a few ways. The most s a t i s f y i n g way 

is to measure A'̂  by observing the feedback f i e l d at the optimum 3 . 

The r e l a t i v e magnitudes of A5^ and A'̂  canbe read d i r e c t l y o f f the 

Four ier transform. An a l ternate method is to f i t the gain dependence 

of the a o s c i l l a t i o n s to J (f eA" ) . When there is no feedback, 
o a Y 

e = 1, and the magnetization at th i s point is M , = A" J (f A" ) • 
' a,e = l a o a Y 
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At optimum feedback, e = 0, and M n = A , hence r a,e=0 a 

T T ^ = J (f A ) M „ o a y e=0 

which y i e l d s A". 

Using the feedback technique and [18], A' was measure to be 

6.2 Gauss in a f i e l d of 61.82 kG. (Keep in mind that 4TT(1-<$) is 

included in th i s notat ion) . An independent f i t to the J curve 
o 

y ie lded 6.0 Gauss. This is good agreement e s p e c i a l l y s ince in 

these ear ly stages, the feedback was not set p a r t i c u l a r l y care ­

f u l l y . The amplitude of the a o s c i l l a t i o n s was then obtained 

by the i r r e l a t i v e strength in the Four ier transform. 

This gave A* to 0.189 Gauss. 
Using the derived formulae for A" , A" , , and A" , we obtain • a' a+Y a - Y 

the feedback dependence: 

A*(e) = A*(0) J (f eA* ) a a o a y 

A* - (e) = A*(0) J . ( f eA" ) ± A * J . ( f eA" ) ± A *J , ( f e A* (e a±y a l a y y 1 y a y 1 a a+2y 

= A*(0) J . ( f eA") ± A * J . [ f A * J n ( f eA" )] a l a y y 1 Y a 0 a y 

+ A" J . [ f A" J_( f eA" )] . 
y 1 y a 2 a y 

The resu l t s of th i s c a l cu l a t i on are shown as s o l i d curves along with 

the measured data in F igure 13. It should be mentioned that there 

are no adjustable parameters in the sense that a l l the quant i t ie s 

[28] 

[29] 
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needed for the calculations were measured by Independent means. 

The agreement is exceptionally good for A q , and the general trends 

for the sidebands seem correct. 

An independent check on the A^(e) dependence is conveniently 

afforded by Aoki and Ogawa (1978) who used rod shaped samples. 

In their data the a osci l lat ions have a very small amplitude, and 

only the sidebands appear in the transform. We expect A* a ^ Q ^ a ^ ' 

We measure A^ = 6.0 Gauss, for a sphere, (6=1/3), so that for a rod 

(6=0), A ^ w i l l have increased by the ratio (].j/3) = 3/2. The 

argument of the Bessel function becomes 

f A * = 2* 0 60 MG) ( 3 / 2 ) { 6 Q ) ^ 2 > 3 6 >  

a Y (61.82 kG) 2 

This is very close to the f i r s t zero of J q , which is 2.405. 

Extrapolating our data, which was possible at a later date from an 

amplitude vs. f i e ld measurement, (see Figure 27) we can obtain a 

more rea l i s t i c estimate at the f ie ld used by Aoki and Ogawa. 

At their f i e l d , 50.5 kG, we measure A* = 4.10. For their f i e l d , 

f A* = 2 7 7 ( 1 6 0 " G ) (3/2) (4.10)'= 2.42 
a Y (50.5) 2 

which again is in good agreement with their observation of small 

fundamental a amplitude. 

We notice from Figures 12 and 13 that the sidebands never com­

pletely disappear. There are many reasons why this might occur, 

the most obvious being a frequency dependence of the feedback network. 

There is a clue to the origin of this imperfection in the 
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amplitudes of the sidebands f , and f r e l a t i v e to each other. 
r a+Y a-y 

The data show a change in t h e i r r e l a t i v e amplitude, so the mechan i'sm 

must expla in th i s change. 

The frequency response of the feedback network might be such 

a mechanism i f the time frequency of the y term is c o r r e c t l y fed 

back, but that of the higher a term is not; however, th i s is not 

the case, as was shown by a simple experiment. Decreasing the 

modulation frequency by a fac tor of 10 decreases a l l the feedback 

components by the same amount. There is no doubt that the system's 

response is very f l a t below 10 Hz, yet even when a was made to 

appear at only 7 Hz, the sidebands at optimum feedback s t i l l 

appeared with the same amplitude. 

It was thought that a s p a t i a l l y inhomogeneous feedback 

f i e l d might a l so cause the res idual sidebands. While the feed­

back f i e l d i t s e l f is only of the order of 1 Gauss, the super­

imposed t r i angu la r modulation was about 500 Gauss at i t s peak 

value. This inhomogeneity would not however, cause the r e l a t i v e 

sideband amplitudes to change. Even i f the f i e l d is s p a t i a l l y 

inhomogeneous, there would be no dependence of the feedback f i e l d 

on o r b i t i . e . F and F would both be fed back the same. This 
Y a 

inhomogeneity may impose a l im i t on the minimum amplitude of the 

sidebands, but would not change the i r r e l a t i v e amplitudes. Eddy 

currents induced in the sample would cause a s im i l a r inhomogeneity. 

The magneto-resistance of lead gives i t a skin depth of about 

1 meter fo r our t yp i ca l f i e l d s and f requencies . The skin depth, 

then should not be a problem, but i f eddy current inhomogeneities 
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were present, they would not account for the non-vanishing 

s idebands. 

The most l i k e l y explanation is phase smearing in the 

sample. This sample had been thermally cyc led between room 

temperature and 4.2K three times before these data were taken. 

If d i s l oca t ions and s t r a i n had b u i l t up, the change in e lect ron 

density would change the frequency of the o rb i t s in the 

immediate area, making the optimum feedback a funct ion of the 

o s c i l l a t i o n s under cons iderat ion. 

6.3 The Mass Plots 

The temperature dependence of one dHvA harmonic amplitude 

is given by (see [lb]) 

\ ( T ) a 7 f n F 7 x X = 2 * 2 < k B T / ( e * B ) . 
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In the high temperature l im i t (X ~ 3), the hyperbo l ic s ine funct ion 

1 X 

can be replaced with i t s exponential approximation: s inh X £ 2 

Then, l e t t i n g 

\ = 21r2m'kB/(e'R ) = 146.9 ^ , we have 

[31] A r (T ) a T e ' r X y T / H y = ^ 
1 m 

hence, a p lot of £n ^ vs. T/H should y i e l d a s t ra i gh t l i n e of 

s lope -rAy. This approximation usua l ly ho lds , but in the case 

of the fundamental y osci11 at ions at [110], the value of X at 

1°K and a f i e l d of 60 kG is about 1.4, and the er ror in the 

exponential approximation becomes about 6%. A simple co r rec t i on 

term can be used, and i t fol lows from an i t e r a t i v e scheme to 

determine y from data which arenot s a t i s f a c t o r i l y f a r into the 

high thermal smearing l im i t (X ^ 3)• To develop th i s scheme, 

we s t a r t with the bas ic hyperbo l ic form , 

CTA = rX = 2 r X e " r X 

r sinh rX . -2rX 
1-e 

where C is a temperature independent constant. Then at constant 

f i e l d we have 
A 2 r v 

£n ( y ) + £n ( l - e A ) + constant = -rX 

or 

) A ( l - e " 2 r X y T / H ) 
Jin < A r U 6 _ ' ? = - rXy T/H 



If n is the order of i t e r a t i o n , the value y is obtained 

from 

[32] 
4 h ^ ( l - B - 2 r X w ( n ' l ) T / M \ } - r X y ( n ) T / H 

, (0) _ , . . , (n-1) (n) 
where y ->- °°. Convergence is achieved when y = y 

to the des ired degree of accuracy. 

When the y o s c i1 l a t i on s are observed without feedback, a 

p lot of Jin j vs. T/H resu l t s in curves for a l l but the f i r s t 

harmonic. This is shown in Figure 14. App l i ca t i on of near-

optimal feedback promptly stra ightens out these curves as 

shown in Figure 15. Table I I shows the e f f e c t i v e masses 

measured with near optimal feedback in the [110] d i r e c t i o n , 

along with the i r counterparts derived from data given by P h i l l i p s 

and Gold (1969). 

Table II 

E f f e c t i v e Mass for Observed O s c i l l a t i o n s in Pb:HJj [110] 

Osc i11 at ion y(Measured) y(Derived) 

a 1.08 1.1010.01 

a+y , a-y 1.74 1.66±0.02 

y fundamental 0.565 0.56±0.01 

Y 2nd Harmonic 1.00 1 .12±0.02 

Y 3rd Harmonic 1.35 1.68±0.03 

[Values of y (measured) are derived from the slopes of Figure 15 
for non-optimal feedback] 



Figure 14. Mass Plots With No Feedback 
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Near-Optimal 
Feedback 

Figure 15- Mass Plots With Near-Optimal Feedback 
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The agreement for the fundamental o s c i l l a t i o n s is good, which 

is to be expected because they are e s s e n t i a l l y unaffected by M.I. 

The combination terms ot+y, ' a -y, are generated by M.I., and 

in the simple approximation 

A A 
A - «JC (f ± f ) 

a± y 2 a y 

The temperature dependence is 

-A(y +y )T/H 
[ 3 3 ] A a ± y ( T ) = T e 

Our measured value comes from the s lope of a p lot of 

A 
In '"TY VS. T/H, and the derived value is the sum of y and y . . 

T 2 Y 

In the ideal theory, the r a t i o y ^ r y ^ y ^ is 1 : 2 : 3 . The derived 

values in Table II are y^, 2y^ and 3yj> s ince y^ can be measured 

with minimal in ter ference from M.I. Upon measurement of these 

va lues, we found them not in accord with th i s r a t i o suggesting 

the presence of res idual M.I. In order to take account of the 

res idual M.I., present because the feedback gain was not set to 

optimum, the conventional theory of M.I. is app l i c ab le . 

In the conventional theory, i f A represents the L.K. amplitude, 

and A 1 is the in terac t ing amplitude, 

[ 3 4 ] A^ = A 2 ] l 
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To find the amount of M . I . s t i l l present, we calculate 

A^ from [34] adjusting e unti l the temperature dependence plot 

yields the Ideal effective mass. 

-X . . _ .. -2X Writing A C, X e and A 2 = ^ 2 X e 

to extract the temperature dependence, we obtain 

[35] 

where 

and 

[36] 

A 2 = K2 X e" 2 X {l-?X + 1/2 £ 2 X 2 } 1 / 2 

In 
X[1-SX+1/2S 2X 2] 1 / 2 

Plotting the left side of this equation against T/H should 

yield an ideal slope of -2Xy^ - 165. A numerical calculation gave 

the value 5 = 0.62 as the best f i t line with the desired slope. 

With this value of ?, the correction factor [1-?X + V 2 t ; 2 X 2 ] 1 / 2 

attains the values 1.47 to 0.71 between 3.4K and 1.2K, respectively 

which is appreciable, but not drastic enough to warrant further 

terms in the expansion. 

The same treatment can be applied to the third harmonic. 

The conventional interacting theory in the presence of feedback 

gives (see [7c]). 

[37] 
3K E AjA 2 

+ 1/2 
3< e AjA 2 

ft A3 

3 < 2 e 2 A ; V " / 2 

8A„ 
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- 3X 

As before = ^ X e , and introducing 

n = F , the equation becomes 

[38] A^ = A 3 { l -3?nX + 1/2 (3?nX ) 2 [ l - l/2 a] + ( 3 / 4 ? 2 n X 2 ) 2 } 1 / 2 

The cur ly brackets give the cor rec t ion f a c t o r , so that p l o t t i n g 
A 3 

SLn r - / 9 vs. T/H should give a slope of ~3Xy for the appropriate 
x{ y u Y 

choice of r\. Using the value of t, ca l cu la ted before, a value of 

n = 1.1 y i e ld s the cor rect slope for the th i rd harmonic temperature. 

dependence. 

The agreement of the c a l cu l a t i on with the expected resu l t s 

suggests we c o r r e c t l y understand the mechanics of the non-optimal 

feedback s e t t i n g , and hence we can use the slopes of the mass p lots 

as a c r i t e r i o n for r e a l i z i n g optimum feedback. The mass p lots made 

at optimum feedback are shown in Figure 16. The largest source 

of sca t ter was the temperature measurement; th i s is indicated in 

Figure 16 by a systematic s h i f t in the points of each l i n e which 

were taken at the same temperature. The r a t i o of the slopes are now 

1:2:3 with in h%. The y^ data were known to be i n s u f f i c i e n t l y far 

into the high thermal smearing l i m i t , and the cor rec t ion term 

developed e a r l i e r was employed in the i r ana l y s i s . 

6.4 The Beat Pattern 

The dominant contr ibut ion to magnetic in terac t ion usua l ly 

comes from the fundamental dHvA frequency s ince i t is usua l ly the 



Figure 16. Mass Plots at Optimum Feedback 
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strongest. If there are two neighbouring frequencies present, 

and beating occurs, the terms from M.I. at the second harmonic 

frequency w i l l beat with a frequency equal to that of the funda­

mental beats rather than at twice the fundamental beat frequency 

as would normally be expected. The same is true fo r a l l the M.I. 

harmonics. As a r e su l t , the beat frequency w i l l only be pro­

port iona l to the harmonic index (r) i f there is no M. i . present. 

In lead along [ 1 1 0 ] , we have such a s i tua t i on with the y 

frequencies (see Figure 1 1 ) . The fundamental is about a fac tor 

of 10 stronger than the second harmonic, and the fundamental 

beat frequency is roughly 0 .42 MG. In the ideal theory we can 

represent the magnetization due to the two y frequencies 

(•Ya,yb) by 

M a = I A a s in [27rr(£ip - y) -

r 

M b = I A* s in [ 2 T r r ( ^ p - - y) + TT/4] 
r 

. -.total ..a , ..b 
and M = M + M 

where 6 F = F a - Fb and F ^ F 1 3 

The sign reversal of the phase fac tor IT/4 is required s ince the 

area of one of the corresponding Fermi surface areas is a maximum, 

whi le the other is a minimum.(see Ogawa and Aoki ( 1 9 7 8 ) ) . 

A a - A b 

If we let n = 1 , then elementary tr igonometr ic 
A a + A b 

manipulations lead to 
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[39] M t 0 t a 1 = I (A;|+Ab

r)Vf {(l+n 2) + ( l - n 2 ) s i n(2T : r 6 F / B ) } 1 / 2 

r 

x s in [2irr - v) + if^l 

where = tan '{n tan ( i r r
D

S F - ir A ) } 
r u B 

and F = r — 

Unfortunately, the phase of the beats is very s en s i t i ve 

to o r i e n t a t i o n . This is c l e a r l y shown by the large spread in 

f i e l d values of the minima reported in the l i t e r a t u r e . This 

s e n s i t i v i t y resu l t s from the r e l a t i v e l y low symmetry in the y 

o s c i l l a t i o n s along [110]. Beats in o s c i l l a t i o n s corresponding 

to o rb i t s of higher symmetry such as 3 at [100] do not appear to 

be so sen s i t i ve . 

The beat envelopes fo r t h e f i r s t three y harmonics without 

feedback are shown in Figure 17. The envelope of the f i r s t 

harmonic appears as we expect, however that of the second 

harmonic c l e a r l y has the p e r i o d i c i t y of the f i r s t . The th i rd 

harmonic beat envelope has a part which is beating at t h r i c e 

the fundamental beat frequency however, the pos i t ion at the 

f i e l d corresponding to a f i r s t harmonic maximum has higher 

amplitude, ind ica t ing that at least some of the amplitude is 

due to terms generated from M.I. 

With near-optimal feedback, shown in Figure 18, the second 

harmonic appears to be approaching a beating pattern at twice 

the fundamental frequency. The th i rd harmonic is s t i l l 

a f fected by M.I. e f f e c t s . 
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Pb y oscillation envelopes H|| C MO] 
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'/H (kG" 1 ) —*> 

Figure 17. Beat Envelopes Without Feedback 
(A., A_, A in Gauss) 
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Figure 18. Beat Envelopes With Near-Optimum Feedback 
(A,, A „ , A_ in Gauss) 



75 
Concentrating on- the second harmonic, we observe a 

sequence of alternating large and small beat maxima. The 

apparent beat period also alternates. 

To explain these results we can ca l l upon a result derived 

ear l ier (see [7b]) for the second harmonic amplitude in the 

presence of M.I., and feedback, namely, 

, 1 i c e A 2 K E A? 2 1/2 

. 8TT2F where K = — = — 
H 

If we take the limit as A 2 approaches zero, we obtain Shoenberg's 

"strong fundamental" result 

[Al] A 2 = ± A 2
 K e 

Upon substitution of the beating amplitude of. the fundamental 

Aj into [4l], we can find the contribution of Aj at the second 

harmonic. 

We see from Figure 17 that i t is a good approximation to 

take the amplitudes of the individual y osci l lat ions to be equal, 

A ( a ^ = A ( ^ . The magnetization due to the fundamentals is then 

f - 6F 

M ( l ) = A^ {sin £2TT( H
 2 - y)- TT/4] 

p" - — , 
+ sin [2TT( h

 2 - Y) + TT/4]} 

or 

[42] M^) = 2A1{sin[2^(^- - y) ] COS[2TT(JI) - TT/4]} 
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The envelope is given by .. 

2A, cos [ ^ - IT A ] 

so that the magnetization amplitude appearing at the second 

harmonic due to the f i r s t is 

~M(2) = " J L L { / ( A 2 C O S2 [ 2 ^ ^ ) _ 

or 

[43] M ( 2 ) = - K A 2 e{l + cos [2u(~) - TT/2]} 

The genui.ne second harmonic gives 

M = A 2 ( s i n [2^(2I+iI - 2y) - TTA] 

+ s in [2ii - 2y) + if A ] } 

or 

[44] M = 2A 2 s in [ 2 7 T ( ^ f - 2y)] cos - irA)' 

Adding the 2 contr ibut ions gives the to ta l magnetization 

amplitude at the second harmonic 

[45] M = 2A 2 cos - * A ) - KB A 2 [1 + c o s ( ^ F - - ir/2) ] 

The cont r ibut ion from the f i r s t harmonic can be v e r i f i e d by 

using an a l te rna te approach. From [12] for two f requenc ies , the 

cont r ibut ion at the sum frequency is 
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A 2 O 

[ 4 6 ] ASUM = s i n ( 2 x a } " -V- S i n ( 2 V 

e A a A b 
- — f — [ ( K A + K B ) s in (x a + x b ) ] 

Subst i tut ion of the two y fundamental frequencies g ives: 

^2 

A S U M = { S l n [ 2 T T ( 2 F + 6 F - 2 Y) - TT/4] 

+ s in [ 2 T T ( 2 F " 6 F - 2 Y) + } 

n 

A 2

£ 

- 4" " 2 k s i n f 2 ' 7 7 ( 2 7 f - 2 Y ) 1 -

Elementary tr igonometr ic manipulations lead to: 

[47] M = - K E A 2 [cos ( ^ L - Tr/2) + 1Isinl2Tr 

which reproduces the amplitude in [43]. 

The in terac t ing resu,lt [45] should f i t the near-optimal feedback 

data. In order to obtain values fo r Aj and to f i t the curve, 

one can f ind the zeros , and match the period r a t i o , that i s , i n s i s t 

that every other beat period be shorter by the observed amount. 

The zeros of the ca lcu la ted second harmonic amplitude are determined 

from 

2A 0 cos (2TT~ F _ - TT/4) - K e A? { l + c o s C 2 ^ - TT/2) } = 0 z n I n 

or 
2A 

[48] -J- cos - Tr/4) = 1 .+ cos - TT/2) 
K A* e

 H H 
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148] Is a transcendental equation which can be solved numerically, 
2A2 

and iteration leads to a value of — - r for which the ratio of the 
tcAjC 

beat periods agree with the observed response. The details are 

simply c ler ica l and wi l l not be included, however, a plot of the 
ratio of the two apparent second harmonic beat periods as a function 

K A 2 E 

of — appears in Figure 19. At e = 0 which is equivalent to 

saying there is no M.I., the corresponding ordinate is 1, 

indicating the equivalence of a l l beat periods. The value of 

0.737 on the ordinate corresponds to that observed in the 

near-optimal feedback setting of Figure 18. This ordinate corres­

ponds to 

2A 
— | =4.91 
KA J e 

A similar calculation was done assuming A2<0 which yields the 

result: 

2A„ 
— | = - 3.41. 
KAJE 

Using these solutions, the calculated interacting second harmonic 

was plotted along with the calculated f i r s t harmonic beat envelope 

in Figure 20. The biggest difference between the positive and 
2A2 

negative solutions for — j - ' s t n e relative phase of the second 
KAJ e 

harmonic minima with respect to the f i r s t harmonic minima. Upon 

comparison with the measured data (see Figure 18), i t becomes 

obvious that A 2 is indeed negative. With the negative solution 
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the agreement is r e a l l y qu i te good, e s p e c i a l l y in the r e l a t i v e 

phase of the f i r s t harmonic minimum with respect to the second 

harmonic minimum. The ca l cu l a t i on pred ic t s the 2 minima of the 

second harmonic to be displaced from a fundamental minimum by 

A ( f^ H

L L) = 0.748 rad and 4.33 rad . The observed resu l t from 

Figure 16 is A (-^fp) = 0.75 rad and 4.5 rad. 

The c a l c u l a t i o n of the in terac t ing resu l t for the th i rd 

harmonic fol lows s im i l a r c a l c u l a t i o n s , but the complexity is 

much greater, e spec i a l l y in the transcendental equations 

determining • Since the procedure worked well with the second 

harmonic, the th i rd harmonic equations were solved by computer. 

An option in the program enabled us to take the Four ier transform 

at each f i e l d se t t ing requested which is more in keeping with the 

way the data was obtained exper imental ly. This program is i n ­

cluded in Appendix C. 

One could correct the temperature dependence of the near-

optimal feedback data by ext rac t ing th i s dependence from the 

ca l cu la ted in terac t ing r e su l t . This was done at a f i e l d corresponding 

to a maximum in the ideal second harmonic beat envelope. At th i s f ixed 

f i e l d H q , the arguments of the cosines in the in terac t ing resu l t s 

are constant, and the temperature dependence is extracted from 

A.j and A^. H q is independent of feedback gain s ince i t is the 

f i e l d at a maximum of the ideal beat envelope. The temperature 

dependence i s : 
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A 2 ( j ) a 
2A„ 

2 
K A j£ 

COS {~T^~~. ~ T T A ) + { 1 + C 0 S ( 2
T ^ - TT/2)} 

2 
K A £ 

a 2A 2 {cosC2^ - TT/4) + -^A- []+cos(^- - TT/2)]} 
o 2 o 

but 

K A^E K £ 2 e X 2 K 5 -|E i 

2A, 2? 2X 2 E 2 

The quantity X = Ay T/H contains a l l the temperature dependence, 

so, l e t t i n g X be the value of X where 
• o 

2 2 
K A , £ K A j £ 

2A, 
( -^—) Q ( = ~3.4l in our case) 

then 

K A 2e 

2A„ 
X 
X '2A 2 

> K A 2 £ j 

l e t t i n g a = cos (^rr— ~ TT/4) H O 

and b = {1 + cos - TT/2)} 
f2A, 

2 
KA^ e 

we obtain a temperature dependence of 

A 2 (T ) = 2A 2 [a + bXj 

hence, p l o t t i n g 
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In vs. T/H 

should y i e l d a s lope of -2Xy. 

In our data, a = 0.642, b = 0.352, 

and we obtain, a slope of 167 kG/K which corresponds to y = 0.568. 

This r e su l t , ca l cu la ted from the second harmonic near-optimum feedback 

data is in exce l lent agreement with that derived from the fundamental 

amplitude (see Table l l ) . 

The above agreement again demonstrates the understanding of the 

deta i l ed mechanisms involved in near-optimal feedback, and we now 

move on to the optimum feedback p o s i t i o n , the resu l t s appearing in 

Figure 21. With optimum feedback, the beat frequencies of the f i r s t 

three harmonics are in the r a t i o 1:2:3. 

From the ideal non- in teract ing beat envelopes which are now 

ava i l ab le to us thanks to the use of optimum feedback, i t appears 

that there is a favoured f i e l d se t t ing with in each fundamental beat 

cyc le where the three beat envelopes are simultaneously c lose to 

their maximum va lues, and the slopes are not very large. This occurs 

at roughly 1/3 of the way into. the beat envelope p lot ted against 

1/H (shown as 1/H^ in Figure 22). These pos i t i on s , a f f e c t i o n a t e l y 

ca l l ed "magic f i e l d s " are the optimum f i e l d s to perform a three 

harmonic measurement. The amplitudes of the harmonics are c lose 

to but not at t h e i r beat maxima, so that a f i e l d dependence 

measurement is needed to determine the actual r e l a t i v e amplitudes 

from those measured at the "magic f i e l d " . Simulation of such a p lot 

appears in Figure 22, wi th the correct ion = .for the fundamental shown 
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Figure 21. The Beat Envelope With Optimum Feedback 
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The corresponding empir ica l r e su l t for the fundamental appears 

in Figure 27. 

6.5 Phase Information 

The value of the argument of the s inusoid descr ib ing the 

dHvA e f f e c t is qu i te large (^10^). Absolute phase measurements 

thus require great p rec i s i on in f i e l d and o r i en ta t i on i f they are 

to be considered r e l i a b l e . Fortunate ly , the phase re la t ionsh ips 

between harmonics can be measured r e l i a b l y . However, s ince we are 

cons ider ing d i f f e r e n t frequencies ( i . e . , F^, F^=2F^ , F^=3F^), the 

r e l a t i v e phase must be defined with some care. 

The standard d e f i n i t i o n of the phase s h i f t between a va r i a t i on 

of the form s in (u)t+ij>j) and i t s r**1 harmonic sin(roit+ij^) involves 

the construct ion of a reference s inusoid with frequency u> cross ing 

zero with a po s i t i ve s lope at some a r b i t r a r y t = 0 (any convenient 

t = 2mir/cj where m = 1, 2, 3 . . . would a l so do). Associated with 

th i s fundamental reference is another at a frequency no cross ing 

zero with a po s i t i ve s lope at the same t = 0. If the phase 

d i f f e rence between the fundamental s ignal and the reference is <f» j 

and the corresponding quant ity for the r t h harmonic is , then the 

quantity r ^ - ^ is a constant and serves as the d e f i n i t i o n of the 

phase d i f f e r e n c e . 

When deal ing with a s ignal which is the sum of two c lose 

f requenc ies , the short-range modulation may not be enough to resolve 

the ind iv idua l frequencies in the Four ier transform. In th i s case, 

one must c a l cu l a te the resu l tant phase in order to compare with the 

experiment. 
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We have a lready presented the re su l t s of a numerical 

sub s t i tu t i on in the envelope equation fo r a pa i r of beating 

o s c i l l a t i o n s (see [33] plotted in Figure 2 2 ) . The two inverse 

f i e l d s 1/Hj and l/h^ correspond to Figures 23 and 2k where the 

ind iv idua l o s c i l l a t i o n s are p lot ted out to determine the r e l a t i v e phase. 

With reference to Figure 2 2 , both the second and th i r d harmonics 

have undergone one zero cross ing between 1/Hjand 1/H 2 but the f i r s t 

has not. At l/h^ we therefore expect the second and th i rd harmonics 

to have the opposite phase re l a t i on sh ip to the f i r s t harmonic when 

compared to that at 1/H^. This is indeed shown in Figures 23 and 

2k. 1/Hj corresponds to one of the "Magic f i e l d s " (see sect ion 

6 . 4 ) . Figure 23 shows that at the f i r s t of these f i e l d s i . e . the 

one with the lowest value of 1/H, the phase d i f f e rence between the 

f i r s t three harmonics is zero . Genera l iz ing [6] to al low for the 

phases i|>r in the presence of beats, and feedback, we obtain 

150] A 2 = A 2 s in (2x+^ 2 ) - 1/2 KC A 2 s i n ( 2 x + 2 ^ 1 ) . 

In add i t i on , from [39] Tor small n we see that and i|>2 can a t t a i n 

only 2 values,^-0 and TT. This makes the two terms in [50] e i ther in 

phase or TT out of phase depending on the s ign of A 2 , and the value of 

T(>2. If the two terms compete in the presence of M.I., we expect 

a phase reversal of the measured phase of A 2 i f the magnitude of 

the second term in [50] exceeds that of the f i r s t . In any case the 

measured phase d i f f e rence should fo r small n (narrow beat waists) be 

0 or TT. The measured phase d i f f e rence as a funct ion of feedback gain 



F igure 23. Ind iv idua l Osci11 at ions Near the "Mag i c F i e l d " 
l/H, of F igure 22 



Figure 2k. Individual O sc i l l a t i on s Near 
1/H 2 of Figure 22 



Figure 25. Measured Phase D i f ference and Amplitude of y 
at a Magic F ie ld (61.739 kG) 
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at a magic f i e l d appears in Figure 25. Included in th is f i gu re 

is the second harmonic amplitude dependence. From 150] we see 

that should be a l i near funct ion of e for small n in [39]. 

Phase measurements at other parts of the beat cyc le were 

not r e l i a b l e s ince the amplitudes of the o s c i l l a t i o n s were 

changing qu i ck l y , and the large modulation smears the phase. 

6.6 The L i nea r i t y of A j / A ^ vs. ( A j / A ^ 
In Chapter I I, we found that information leading to the g c 

2 

factor comes from the s t ra i gh t l i n e p lot of A^/A^ vs. (h^/A^) . 

This l i ne is s t ra i gh t only i f the ideal L.K. behaviour is r e a l i s e d . 

Figure 26 shows plots of th is kind for data without feedback and 

with optimum feedback. The l i n e a r i t y and low sca t ter in the graph 

with feedback is su rp r i s i ng l y good to one who has made these p lots 

using other techniques to deal with M.I. This f i gu re shows very 

dramat ica l ly the d r a s t i c way in which M.I. i n te r fe res with amplitude 

information, and how th i s inter ference has been succes s fu l l y 

removed by the feedback technique. 

6.7 Conclusions 

Before using the feedback technique to measure quant i t i e s 

such as the g c f a c t o r , we must be conf ident that the technique is 

working proper ly , and know the l im i t s with in which we can work. 

This chapter demonstrates the consistency and the e f fect iveness 

which feedback has in reducing M.I. 
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XlO' 

100 
500 

Figure 26. 

1000 1500 2000 

Aj/A^ vs (A,/A 2)' With and Without Feedback. 

H is constant at 61.13k kG, and the bath 
temperature T is va r ied . 
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The ca l cu la t i ons involv ing non-optimum and near-optimum 

feedback give cons istent agreement with the experimental r e su l t s , 

demonstrating the understanding of the ro le of feedback in the 

experiment. Only for the a + y sideband amplitude (Figure 13) 

do we f ind a systematic dev iat ion from theoret i ca l expectat ion. 

This is presumably re lated to the non-vanishing of the a + y 

and a -y sidebands at optimum feedback, and is not yet f u l l y 

understood. In every other case of optimum feedback, the data 

conform to the resu l t s expected for ideal L.K. behaviour, and i t 

must be stressed that in each sect ion of th is chapter, the 

phrase "optimum feedback" refers to the same feedback gain i . e . , 

the optimum set t ing fo r one experiment is the same for a l l the 

others. This consistency gives one confidence that the same 

optimum feedback se t t ing w i l l g ive r e l i a b l e g c f ac tor measurements. 

While most of the chapter deals with non-optimum feedback, 

i t c l e a r l y demonstrates that at the optimum feedback gain no 

correct ions for M.I. need be app l ied . 
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CHAPTER SEVEN 

EXTRACTION OF g FACTOR FROM 

A^/A^ vs. {A}/A2)2 PLOTS 

To apply the a lgor ithm presented in Chapter II le t us 

r e c a l l a few r e s u l t s : 

2 2 

[3a] A , / A 3 = am [ ( A ^ r - 1/4 ( A , / A 2 ) ] 

[3b] ( A 1 / A 2 ^ 0 = 2 ^ 6 X P ( X T D / T ^ C O S i r S / c o s 2 i t S 

A? 

[2b] a - (/3/2)( l-tan nS) /(1-3 tan »S) - Um ( — ) 
OO 

X » 

( A ^ / A 2 ) Q is independent of the temperature T 

X + » A j A 3 

From [3a] we see that the slope of the graph of |A^/A 3| vs. 

2 

(Aj/A,,) (holding the f i e l d H constant, and varying the temperature 

T) is . [2b] can e a s i l y be inverted to give 

[51] t a n 2 rrS = 1 - /3 <v V ±^~-W 
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The value |a } from a least squares f i t to the points in 

Figure 2 6 is '|'a ] = 0.392. The square root in [ 5 1 ] y i e l d s an 

imaginary resu l t for a = + 0.392 so we must conclude that a =-0.392, 

This implies A ^ / A ^ < 0. The real so lut ions of [51] are 

S = 0.330 or 0 . 1 9 7 . These values are modulo 1 because of the 

2 

p e r i o d i c i t y of the funct ion tan TTS. T O decide between these two 

p r i n c i p a l values for S we measure the absc issa intercept in 

Figure 26 to obtain, 1 /4 (A / A ) . as can be seen from [3a]. 

1 2 0 

[3b] can ea s i l y be inverted to give Dingle temperatures 

corresponding to the two so lut ions for S . 

u (A./An)n cos 2TTS 
[ 52 ] T = - f - £n [ ( 1 2 ° ] 

D X » 2 / 2 cos TTS 

From the least squares f i t to the points in Figure 26, 

2 

1 /4 ( A J / A 2 ) Q = 9 1 . 0 . Using [ 5 2 ] and the experimental parameters 

used in the experiment, along with the e f f e c t i v e mass p found in 

Chapter VI, our previous so lut ions for S correspond to the 

fo l lowing Dingle temperatures 

S = 0.330, T D = 1 . 4 2 K , A T /A < 0 

S = 0.197, T D = 0 . 7 4 9 K , A. T/A 2 > 0 

The Dingle temperature can a l so be obtained from the f i e l d 

dependence of the fundamental amplitude and [ l b ] ; only a rough 

estimate is necessary. In the approximation X * 3, the complete 

f i e l d and temperature dependence is given by 
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Aj cx(T//B) exp {- Xy ( T / B ) ( l + Tp/T)} 

so that 

[ 5 3 ] Jln(A 1/B) = -Xy (T/B) (1 + Tp/T) 

From [ 5 3 ] we see that a p lot of In ( A J / B ) vs. 1/B can 

give the Dingle temperature. The fact that A^ is beating does 

not change t h i s , as long as the points used on the graph are 

at the same pos i t i on in the beat c y c l e . The obvious choice 

is to use the f i e l d and the amplitude at the maxima of the 

beat pat tern. 

Figure 2 7 shows a p lot of A^ vs. 1 / H , and a least squares 

f i t to the maxima for T = 1 . 2 5 K gives 

-Xy ( T / B ) ( 1 + T D / T ) = - 1 6 4 . 5 or JQ = 0 . 7 5 0 K 

It is quite evident that S = 0.197 is the proper p r i nc i pa l va lue. 

The phase measurements give A ^ / A 2 > 0 cons i s tent with th i s choice. 

We are thus l e f t with only the tr igonometr ic m u l t i p l i c i t y 

according to which poss ib le so lut ions are S = ± 0 . 1 9 7 ± P, P e 1 

each of which gives ident i ca l experimental r e su l t s . 

For simple metals such as lead, where the band s t ructure 

can be derived from a weak pseudopotential together with the 

sp in -o rb i t i n t e r a c t i o n , a physical argument given by Pippard (1969) 

r e s t r i c t s the range of poss ib le values of S according to the 
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inequal i ty 

S 1 (rn* /m) + (s/2) 

where, s is the number of Bragg re f l e c t i on s undergone by an 

e lectron in one cyc lot ron o r b i t . This value is 3 for the 

t, o rb i t normal to [110] which gives r i s e to the y o s c i l l a t i o n , 

so that with rrT/m = 0.560, we have 

0 < S < 2.06 

Of the 4 values of S which f a l l into th i s interva l (0.197, 

1.197, 0.803, 1.803) two give A]/A2 < 0 which is incons is tent 

with the phase and Dingle temperature c r i t e r i a . We are thus 

l e f t with the two poss ib le so lu t ions . 

S = g m"/2m = 0.197 and 1.803 
c c 

corresponding to g c = 0.704 and 6.44 r e spec t i ve l y . 

The ult imate choice between these 2 r e l i e s on a band 

ca l cu l a t i on which includes the sp i n - o rb i t i n te rac t i on . 



CHAPTER EIGHT 

A SEARCH FOR THE 4MG OSCILLATIONS 

8.1 Prel iminary Remarks 

Quantum o s c i l l a t i o n s of unusually long period 4MG) 

have been observed recent ly in lead using the Shubnikov-

de Haas e f f e c t (Tobin e t . a l . , 1969) and sound attenuation 

(ivowi and Mackinnon, 1976). 

It has been suggested that these long o s c i l l a t i o n s 

might a r i se from small pockets of e lectrons in the 4th 

B r i l l o u i n zone. While pockets of th i s kind appear in the 

empty l a t t i c e band s t ruc ture , a l l r e a l i s t i c band ca l cu l a t i on s 

f i t t e d to the Fermi surface data show the 4th zone to be 

empty, ( c f . Anderson and Gold, 1965). We are thus led to 

wonder whether the long o s c i l l a t i o n s might be an a r t i f a c t 

generated by M.I. 

A concerted e f f o r t was made.to detect s im i l a r o s c i l l a ­

t ions in the dHvA e f f e c t with the hope that they could then be 

studied with the feedback technique. Unfortunately, no 

evidence for these long o s c i l l a t i o n s could be found, so that on 

an upper l im i t on the i r amplitude resu l ted. In the process of 
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the search, some useful ideas were developed inc luding the 

exact so lu t ion to the problem of large modulation. 

8.2 Review of the Standard Weak-Modulation Solut ion 

F i e l d modulation, followed by phase-sens i t ive de tec t i on , 

is the most widely used technique for observation of the de 

Haas van Alphen e f f e c t . The problem of c a l cu l a t i n g the e.m.f. 

induced in a pick-up c o i l surrounding the sample has been solved 

in de ta i l for weak modulation f i e l d s . There are, however, 

circumstances which warrant rather large modulation f i e l d s , 

large enough so that some of the approximations made in the 

weak-modulation treatment may no longer be v a l i d . One such 

circumstance is the detect ion of long-period o s c i l l a t i o n s such 

as those reported by Tob i ri e t . a 1 . (rl 969) havfing frequencies 

F ^ li MG. It is- then des i rab le to modulate with an amplitude 

~ 1 kG which is a s i zeab le f r a c t i o n of the q u a s i - s t a t i c back­

ground f i e l d . We f i r s t review the standard formulation for 

weak modulation, and then develop an exact, e x p l i c i t so lu t ion 

for a rb i t r a r y strength of modulation f i e l d . 

In i t s present widely-used form, the modulation f i e l d h 

is s i nu so ida l , small with respect to the large background f i e l d 

H, and is p a r a l l e l to i t . Thus, the sample experiences a net 

f i e l d H + h s in ait. The large background f i e l d is made to 

sweep s lowly, so that in t reat ing the modulation f i e l d , we can 

regard the background f i e l d as e s s e n t i a l l y constant. The 
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c r i t e r i o n for th is assumption is 

(dh.) , < < dJi 
dt R M S dt 

The treatment for weak modulation is well known, and w i l l 

ju s t be out l ined here. 

Without loss of genera l i t y , we can ignore various 

constant phase f ac to r s , and wr i te the o s c i l l a t o r y part of 

the magnetization simply as: 

M • r 2 T r F i 
M = S m [H + h ( t ) ] 

where h(t) = h s in cot and u> is the modulation angular f r e ­

quency. The equation is for a .reduced magnetization, with 

the amplitude factors incorporated into i t . We might a l so 

add that we must work at a low enough frequency to so that 

we have no f i e l d inhomogeneity due to eddy currents . 

In the conventional approximation, the denominator is ex­

panded, and only the l inear term in 77 is re ta ined, so that 
rl 

M ^ s i n [ * f (1 - ^ ) ] 

Since the approximation is made in the argument of a rap id ly 

o s c i l l a t i n g s ine funct ion , (—rr~' X j 10^ t y p i c a l l y ) one must be 
n 

carefu l to s tate the j u s t i f i c a t i o n c o r r e c t l y . 



102 

The c r i t e r i o n to be s a t i s f i e d must assure that the 

argument is at most f i r s t order in •p- . This is true i f and 

only i f the second order term is very much less than 2TT. 

The second order term i s : 

2TTF , h j t h 2 

H V H ; 

So the j u s t i f i c a t i o n is 

H 

or simply 

Fh 2 . 
— « 1. 

If th i s inequa l i ty is not s a t i s f i e d , the argument of the 

s ine must be taken to be at least quadrat ic in h. This 

"weak modulation" c r i t e r i o n is usua l ly met in the normal 

laboratory s i t u a t i o n , and M can be developed in a Four ier 

ser ies as fol lows 

~ . r 2 TTF h(t ) \ 1 
M .= s i n [ — (1 — ) ] 

2TTF /, . v 2TTF 2TTF,, . ^ . 2TTF 
(hsinwt) .--rr— : —r - (hs inwt) i 

1 i H2-^'=» - i H - i H 2 H -r-r Ve e -e e 
2i 
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Us^ng the ident i ty 

00 - i n y - i u s in y 
I J>> " e 

we obtain 

2TTF 

e 
H -intot - i H 

-e 

The c o i l surrounding the sample gives a voltage pro-

dM 
port ional to . Taking th i s d e r i v a t i v e , 

• J - % - I no) J (—r—) cos (-rj n u t ) 
dt n ,,Z H 

n=-°° H 

We now separate the t and H dependences; , and f ind a f t e r a 

l i t t l e man ipulat ion 

This is the conventional resu l t • for weak modulation. We 

note in passing that the same resu l t is obtained i f the sign 

of the two phase factors ' s reversed. 

8 . 3 Large Modulation 

By large modulation we mean that our i n i t i a l assumption 

about the l i n e a r i t y of the s ine argument breaks down. In 

p a r t i c u l a r , for the long o s c i l l a t i o n s having F ̂  k MG in an 

dM „ v „ • /27TFhx . ,2TTF TI\ . , NTU 
— % - V 2nco J S i n (-rj- + n;d s i n (ntot + — ) 
at , n ,,c n L C 

n=l " H 
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appl ied f i e l d of 50 kG, for maximum response, we should 

modulate over something l i k e one cyc le of the waveform which 

makes h ^ 325 Gauss. Our c r i t e r i o n for neglect of the second, 

and high order terms was 

h « /P /F 

Any such long o s c i l l a t i o n in the dHvA e f f e c t would be swamped 

by the strong y o s c i l l a t i o n s with a frequency of 17 MG, making 

/P7F % 2.7 kG (H = 50 kG) 

For th is s i t u a t i o n , i t cannot be sa id that h is then very 

much less than / H 3 / F , and i t was f e l t that a deeper study into 

the e f f ec t s of the quadrat ic , and higher order terms, was 

warranted. A common prac t i ce is to exp lo i t the zeros of the 

Bessel functions to e l iminate the unwanted o s c i l l a t i o n s . Our 

ob jec t , in par t , is to determine poss ib le s h i f t s of these 

zeros when using large modulation f i e l d s . 

We now present an exact Four ier decomposition which is 

v a l i d fo r any strength of modulation. In our bas ic equat ion, 

M = s i n [rjrr r j 
H+hcoso3t 

we can use the cosine phase of the modulation without loss of 

genera l i t y , s ince the resu l t cannot be dependent on the o r i g i n 
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of time. This choice of phase makes M an even funct ion of 

time t which s i m p l i f i e s the planned Four ier expansion of the 

s ine argument. 

Because only the even, cosine terms can surv ive , we 

can wr i te the expansion as: 

2TTF r 
u . L. T = Z a cos ncot 
H + hcoscot „ n 

n=0 

where 
2TT/CO 

a = 
2co_ 
TT 

2TTF 
H + hcoscot 

dt 

and 

CO 
a n = 7 

2TT/CO 

2TTF 
H + hcoscot 

cos ncot dt 

These integra l s may be reduced to standard form, and we read i l y 

obtain (Gradshyeyn and Ryzhik, 1965) 

ao = 
2TTF 

ATTF 

h_ 
H 

- 2 v n < - ' n 

where 

P =" h/H 
H nr. 
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and 

0 < p < 1 

We now wri te for M 

2 3 
M = s i n [ 2 a 0 ( l / 2 - p cos uit + p cos 2wt - p cos 3^t + . . . ) ] 

2 3 
( i a Q -2iagpcosa)t 2 ' a

Q P cos2cot - 2 i a Q p cos3<*>t 
= Im, { e e e e . . . 

Making use of the i den t i t y 

e - i y c o s y = J ( . „ " J n ( v ) e - m y 

n=-co 

and i t s complex conjugate 

e . y co sy = l ( l ) n ^ e - n y 

n = - » 

We obtain the fo l lowing 

M = In, Je'a° I ( - i ) n J n(2a 0p) e , m t J ( i ) n J n ( 2 a o p 2 ) a 2 i n u t 

( n r n 2 . . . = -«>L k - i n k 

[ e

i B t ^ - ) k k n k ] } 

Again, we need the time d e r i v a t i v e , which is e a s i l y obtained: 
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dM 
dt 

= Im 

r iwt | (-)H] 
X I 6 

This is the exact so lu t ion for 
dM 
dt 

, given that 

M = sin [• 2TTF 
•I H + hcoswt 

h 
The solution is valid for arbitrary h, provided only that j | < l -

In order to obtain a tractable and useful formula for 
dM 

, it is necessary to find suitable approximations for the 

inf in i te sums and products in the exact solution. This can be 

done to any desired accuracy. We are usually interested in the 

phase-sensitive detection at a particular harmonic of the 

modulation frequency OJ. For the nth time harmonic (nw), the 

required integers (±n) are related to the various integral 

indices occurring in the exact result by: 

where n^ can be any integer between -«° and °°. This equation 

determines a l l the sets {nk> for any desired time-harmonic nu>, 

each set giving one term in the solution. A procedure wi l l now 

be given for ranking these sets in order of importance. 

n 
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The par t of the s o l u t i o n which determines the r e l a t i v e 

magnitude of a p a r t i c u l a r t ime harmonic is 

f J (2a p K ) 
k=l n K 0 

In most c a s e s , 2agp' < -«l f o r k i 2,. In a l l c a s e s , 2agP^<<l f o r 

a la rge enough va lue of k, s i n c e 0<p<l. For sma l l e r va lues of 

k, a l l J n (2a^p' <) are of order 1, and a l l must be cons ide red . 
k 

In the normal l abo ra to ry s i t u a t i o n , there is but one such term. 

k > When 2agP « 1 , which i s u s u a l l y the case f o r k—,2 , one may 

rank the se ts by t h e i r r e s u l t in the f o l l o w i n g order of magnitude 

e s t i m a t e . Given the set (n^} , the cor responding term i s 

approx imate ly : 

» (a.p ) 
If — — . 
k n k ! 

c 

where the product s t a r t s at a va lue k c > which i s the lowest i n ­

teger s a t i s f y i n g 2aQp^« l ( t y p i c a l l y k c = 2 ) . In p r a c t i c e , n ^ O 

on ly f o r smal l k(k~3), making t h i s a qu ick method of rank ing . 

One can see that the order depends somewhat on the va lues of 

ag and ,p . 

Table III i s an example of t h i s r ank ing , a long w i th the 

order of magnitude of the cor responding terms. It i s done f o r 

the second t ime harmonic, and t y p i c a l va lues were chosen f o r 

ag and p. 
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n = 2 , a = 5 x l 0 2 , p = TO 

TABLE III 

Ranking The Terms 

Order of Mag. nl n 2 n 3 nk 

1 +2 0 0 0 

1 0 ' 3 0 ±1 0 0 

10" 3 ±k ±1 0 0 

10 - 6 ±2 ±2 0 0 

io"6 ;i 0 ±1 0 

IO-9 ±4 ±3 0 0 

10 " 9 ±1 ±1 ±1 0 

10" 9 

;3 ±1 ±1 0 

10" 9 

+3 +i ±1 0 

The next term is of order 10 

The most important term is invariably n̂  = ± n, n^ = 0 

for k ^ 1. We shall now calculate it separately, and compare 

it to the result for weak modulation. 
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l m | e ' a ° ( - i ) n J n ( 2 a 0 p ) n J ^ a / ) e " ' n U t (-i na>) 

+ e , a ° ( i ) " ( - ) " j n ( 2 a 6 p ) n J Q ( 2 a 0 p K ) e 1™ (ina, )j 

oo k ( ' a n l 
= 2nw s !n (nut ) J n-(2a Q P ) n JQ(2aQp ) lm.7i, I • ( - J ) n

 e 

= 2nu J n ( 2 a Q p ) n J 0 ( 2 a Q p ) sin(nuit) s i n ( a Q - y - ) 

To compare t h i s to the e a r l i e r convent iona l r e s u l t , which 

s t a r t e d w i th the s i n e phase of the modu la t ion , l e t us sub-

s t i t u t e t -> t - ^ to get 

^ £ -2no> J n ( 2 a Q p ) n < l 0(2a 0 p k ) s in(nwt - ^ ) s i n ( a 0 - !f) 

k\ . / ^ . nir \ . / . nir - -2naj J n ( 2 a Q p ) n J Q ( 2 a o p K ) s in(nwt + !f )s\n(aQ + >f ) 

By c o n t r a s t , the r e s u l t f o r weak modulat ion is 

dM _ . /2TrFhx . i ^ . niTv . /2TTF , 

= -2nu J n ( — — ) s i n (nut + —) s i n (-q— + —) 

In compar ison, there are two d i f f e r e n c e s . 

F i r s t l y and perhaps most impor tan t l y , the measured dHvA 

frequency is d i f f e r e n t . The convent iona l r e s u l t i s F, whereas 

the exact r e s u l t g ives 



This means that there i s a second order c o r r e c t i o n in the 

measured f requency. Under most c i r cums tances , t h i s s h i f t i s 

s m a l l , but g iven the high degree of accuracy which dHvA work 

boas t s , t h i s in some cases may be important . It i s important 

to note that a l though on ly the f i r s t term in the s o l u t i o n 

was taken , t h i s f requency c o r r e c t i o n i s e x a c t , that i s , none 

of the h igher terms change t h i s r e s u l t . 

The o ther d i f f e r e n c e is the ampl i tude c o r r e c t i o n 

\ J 0 ( 2 a ( A 
= i - k 

S ince 2aQp' % 1, 2a Q p « 1 f o r k > 1. One can show that 

t h i s i n f i n i t e product converges to S 1. In the f i r s t , 

o r d e r : te rm, we can say that the ampl i tude f o r s t rong 

modulat ion i s sma l l e r than the convent iona l r e s u l t , and a l s o 

that i t does not s h i f t the zeros of the Bessel f u n c t i o n . 

The obvious a l t e r n a t i v e to expansion in a Fou r i e r s e r i e s 

i s an expansion in a T a y l o r s e r i e s , namely 

Gather ing a l l the terms f o r any harmonic nco i s a fo rmidab le 

t ask , but i f we r e t a i n terms on ly to second order in (77), we 

c o s t o t + (TJ) c o s tot - (77) c o s tot + . 



note t h a t t h e dHvA f r e q u e n c y becomes 

w h i c h a r e the l e a d i n g terms i n a T a y l o r s e r i e s o f our e x a c t 

r e s u l t 

8.4 M o d i f i c a t i o n s t o t h e A p p a r a t u s and A n a l y s i s f o r the 

F ^ 4 MG Se a r c h 

The major c o n s i d e r a t i o n i n the d e s i g n o f the d e t e c t i o n 

a p p a r a t u s was s e n s i t i v i t y and s i g n a l t o n o i s e . The s h i f t i n 

emphasis from t h e f r e q u e n c y r e s p o n s e d i c t a t e d s e v e r a l modi­

f i c a t i o n s . W h i l e the s a m p l e - d e t e c t i o n c o i l arrangement 

remained t h e same, i t s o u t p u t now d r o v e t h e p r i m a r y o f a 

t r a n s f o r m e r (P.A.R. Model AM-l) t o t a k e advantage o f the low 

o u t p u t impedence lOOfi) o f t h e d e t e c t i o n c o i l s . The s i g n a l 

was d e t e c t e d on t h e second harmonic o f a 41 .7 Hz s i n u s o i d a l 

m o d u l a t i o n f i e l d w i t h a P.A.R. 124 p h a s e - s e n s i t i v e d e t e c t o r . 

I t s n o t c h f i l t e r (Q=50) was used t o b l o c k t h e fundamental 

and a K r o h n - H i t e (model 3322R) bandpass f i l t e r (Q=l) was 

c e n t e r e d on the second harmonic. 
2 

The a m p l i t u d e o f t h e m o d u l a t i o n was made t o v a r y as H 

whic h kept t h i s a m p l i t u d e s p a n n i n g the same number o f dHvA 
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c y c l e s at any f i e l d H. Using the zeros o f the Bessel f u n c t i o n 

response of the observed magnet iza t ion ori the modulat ion 

ampl i tude (see s e c t i o n 8 . 3 ) , the dominant o s c i l l a t i o n s in any 

d i r e c t i o n cou ld be at tenuated by about a f a c t o r of 5 0 , a l l o w i n g 

an inc rease in s e n s i t i v i t y of the same f a c t o r w i thout 

s a t u r a t i o n . The r e s u l t i n g s i g n a l was d i g i t i a l l y recorded w i th 

20 b i t r e s o l u t i o n on magnetic tape. These data were sub­

sequent ly F o u r i e r t ransformed w i th the use of the main U . B . C . 

computer (Amdahl 470 ) and a program o u t l i n e d in Appendix C. 

With t h i s arrangement, a l l of the o s c i l l a t i o n s in lead seen 

p r e v i o u s l y were e a s i l y i d e n t i f i e d , however, no s ign o f the k MG 

o s c i l l a t i o n s appeared. The search inc luded examinat ion of the 

Fou r i e r t ransforms at the second harmonic (^ 8 MG) to a l l ow 

fo r the p o s s i b i l i t y of a sp in s p l i t t i n g zero at the f i r s t 

harmonic. 

The r e s u l t of t h i s negat ive experiment p laces an upper 

bound on the ampl i tude of these long per iod o s c i l l a t i o n s in 

magne t i za t i on . In each of the three major symmetry d i r e c t i o n s 

[ 1 0 0 ] , [ 1 1 0 ] , [ i l l ] , t h e i r ampl i tude must be less than 1 par t 

in 10 of the magnet iza t ion of the dominant o s c i l l a t i o n s in 

each d i r e c t i o n . Th is l i m i t in abso lu te terms i s about 

\ M G 2 0 0 U G ' 

The o s c i l l a t i o n s of Ivowi and Mackinnon ( 1976) and Tobin 

e t . a 1 . ( 1 9 6 9 ) thus remain an enigma. It i s f e l t that t h i s area 

of study would bene f i t g r e a t l y by a c o l l a b o r a t i o n of the feedback 

technique w i th the Shubnikov-de Haas e f f e c t o r sound a t t e n u a t i o n , 

where these o s c i l l a t i o n s appear v i v i d l y . 



APPENDIX A 

FLEXIBLE GEAR ROTATOR 

An apparatus was b u i l t to ro ta te the sample about an 

a x i s which was 90° away from the a x i s of the magnet bore 

(the on ly d i r e c t i o n of access) based on an idea g iven by 

Pippard and Sad le r (1969). The m o d i f i c a t i o n s made to the 

o r i g i n a l des ign were ex tens i ve enough to warrant f u r t h e r 

d e s c r i p t i o n in t h i s appendix . Our compactness requirement 

r e s t r i c t e d the s i z e of the apparatus to a degree where the 

mechanisms would be s u b s t a n t i a l l y sma l l e r than any that had 

p r e v i o u s l y been b u i l t s u c c e s s f u l l y . 

The e n t i r e apparatus i s cons t ruc ted from nylon rod 

except fo r a Mylar gear . Th is c i r c u l a r Mylar gear was cut 

from a p iece of 0.003 inches t h i c k shee t . A s p e c i a l j i g was 

made to cut 32 t r i a n g u l a r teeth w i th a razor b lade in roughly 

c i r c u l a r s t a r t i n g m a t e r i a l . A square hole (s ide length 

0.075 inch) was cut in the cen t re w i th a punch. Through the 

square h o l e , a r e t a i n e r fas tened a r i ng to the gear so that 

the a x i s o f the r i ng was pe rpend icu la r to the gear a x i s , and 



Figure 28. Sample Rotator Assembly 



i n t e r s e c t i n g i t ( s e e F igure 28). The r e t a i n e r , so p l a c e d , 

was welded to the r i ng w i th a s o l d e r i n g i r o n . The square 

ho le ensured the absence o f s l i p p i n g when the gear was tu rned . 

The s p h e r i c a l sample was glued to the r i ng w i th a smal l drop 

of G . E . v a r n i s h . Care was taken to apply a minimum amount 

of va rn i sh to the sample as d i f f e r e n t i a l c o n t r a c t i o n would 

cause s t r a i n upon c o o l i n g . 

A f t e r a l l ow ing 2k hours f o r the v a r n i s h to d ry , the 

assembly was p laced i n s i d e a c y l i n d r i c a l tube by bending the 

Mylar gear to conform to the shape of the tube. When in p l a c e , 

smal l a x l e p ins held the gear a x i s s t a t i o n a r y wh i l e s t i l l 

a l l o w i n g i t to r o t a t e . As the gear r o t a t e s , i t f l e x e s to 

r e t a i n i t s c y l i n d r i c a l shape, and ro ta tes the sample about 

the a x i s o f the gear . Only the teeth at the top of the gear 

prot rude from the c y l i n d e r , where they mesh w i th a d r i v i n g 

gear . The 16 tooth d r i v i n g gear was made by pushing a hot 

brass negat ive in to a c y l i n d r i c a l nylon b lank , and subsequent 

machining prov ided a coup l ing to the top of the c r y o s t a t . The 

body of the c o i l former held the d r i v i n g gear in the proper 

p lace to mesh w i th the Mylar gear . In order to keep the 

teeth of the d r i v i n g gear i d e n t i c a l to those of the Mylar gear , 

one f i n d s that the d r i v i n g gear must ro ta te about an a x i s which 

is o f f c e n t r e . The d r i v i n g gear w i th the r o t a t o r assembly and 

c o i l former i s shown in F igure 29. A be ry l l i um-coppe r sp r i ng 

was used to ensure in t imate contact of the gears when coo led 



117 

BeCu Spring 

Slots in both sides 

2 - 5 6 Bolt to fit in slots 

»ff centre 
driving gear (16 teeth) 
to mote Mylar gear 

0 . 5 0 0 " 

0.281" c ^ 

i 1 1 

i/32 hole for 
positioning 

Coil former 

0 .853 

Teeth of 
Mylar gear 

Axle pins 

Slot in base 
for positioning 

Threaded inside 

^ 1 6 - 2 0 NF 

Spherical Sample 
in sample ring 

JIR-20 NF 

Figure 29. Sample Rota tor With D r i v i n g Rear , 
and Coi1 Former 



to l i q u i d hel ium temperatures. The c y l i n d e r ho ld ing the 

sample was i nse r ted in to the bottom of the c o i l former and 

held r i g i d l y w i th a 7/16-20 (NF) nylon b o l t . The l o c a t i o n of 

i t s proper r o t a t i o n a l p o s i t i o n was found by pushing a 

temporary w i re through a smal l ho le in the bottom of the 

c o i l former, and in to a s l o t m i l l e d in to the base of the 

sample c y l i n d e r . Th is w i re was removed a f t e r t i g h t e n i n g 

the nylon b o l t . 

The e n t i r e assembly was inse r ted in to the t a i l of 

the inner dewar shown in F igure 5- At the top of the 

c r y o s t a t , p r o v i s i o n was made to ro ta te the c r y s t a l e i t h e r 

by hand, or by e l e c t r i c motor. 
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APPENDIX B 

THE DISCRETE FOURIER TRANSFORM 

Since both the spectrum a n a l y z e r , and the computer 

programs use d i s c r e t e F o u r i e r t rans fo rms , the b a s i c de­

f i n i t i o n s w i l l be presented in t h i s appendix . The d i s c r e t e 

Fou r i e r t ransform is de f ined by 

A(k) = V X. e " 2 i r I j k / N k = 0, 1, . . . , N-l 
j=0 J 

where X j , j = 0 , 1, . . . , N-l i s a set of complex numbers . 

The inverse t ransform i s 

B ( J ) = V A(k) e 2 l V i j k / N j = 0, . . . N- l 
k=0 

where B( j ) = NX j . 

The f a s t Fou r i e r t ransform programs supp l i ed by l i b r a r i e s 

o f ten requ i re the input data to be e i t h e r symmetric or a n t i ­

symmetr ic . Any set of data can be separated in to i t s a n t i ­

symmetric and symmetric components. If the se t X. con ta ins 
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the o r i g i n a l data v a l u e s , then the ant isymmetr ic va lues are 

g iven by 

X N /2+ l - j = I ( X N /2 - j + l " X N /2+j+ l ) j = 2 ' • • • N / 2 " 1  

x 3 = X N / 2 = °' 

g 

A s i n e t ransform can then be app l i ed to X . The symmetric 

S 

va lues X. are g iven by 

S 1 
X N/2+1-j = 2 ( X N/2+j+l = X N / 2 - j + l ) j = 2 ' • • ' N / 2 " 1 

S S 
XI = X T X N /2 = X N / 2 . 

s 

A cos ine t ransform can then be app l i ed to X . 

App ly ing a window to the o r i g i n a l data va lues u s u a l l y 

r e s u l t s in a t r adeo f f of r e s o l u t i o n and s i d e f e b e s . The la rge 

s i d e l o b e s encountered in the use of a square window can h ide 

f requenc ies of sma l l e r ampl i tude which are a c t u a l l y f a r away 

in the space of the v a r i a b l e k. 

The Hanning window is a good compromise, s i n c e not much 

r e s o l u t i o n is l o s t , but the s i d e l o b e ampl i tude decays very 

q u i c k l y in k space. If the o r i g i n a l data i s in t ime t , 

a p p l i c a t i o n of a Hanning window s imply i nvo lves m u l t i p l i c a t i o n 
2 

of the o r i g i n a l data by s i n [ T r ( t - t g ) / T ] where t i s the 



sma l l es t va lue of t and T is the du ra t i on of the 

reco rd . In e f f e c t , the Hanning window rounds o f f the sharp 

corners on the edges of the data where the window is opened 

and c l o s e d . 
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APPENDIX C 

COMPUTER PROGRAMS 

The computer programs used to generate the r e s u l t s 

in the body of t h i s t h e s i s are l i s t e d in t h i s appendix . 

For the most p a r t , the programs are w r i t t e n to be s e l f 

exp lana to ry in regards to t h e i r use. 

The "Data Reading and A d j u s t i n g " program reads the 

data from the Stevenson i n t e r f a c e a f t e r i t has been converted 

to EBDIC from ASCI I . The convers ion was done by a standard 

t r a n s l a t i o n rou t ine ("TRANS) in the U . B . C . Computer l i b r a r y . 

A f t e r reading the d a t a , the For t ran program, by use of the 

f u n c t i o n sub-programs, a l lows the user to c rea te the proper 

x and y coord ina tes from the a v a i l a b l e d a t a . The program then 

conver ts the data to a format compat ib le w i th a l l of the 

remaining programs. 

The " S y n t h e t i c Data Genera to r " program a l lows the user 

to c rea te any data he p leases and puts i t in the proper format . 

Th is program was l a r g e l y used to t e s t the other programs, and 

B u i l t by A. Stevenson p resen t l y at TRIUMF. 



check the r e s o l u t i o n . 

The "Window" program was used to cut down the s i d e -

lobes of the t rans fo rm. Instead of us ing the Hanning window, 

the data were m u l t i p l i e d by a s imple s i ne f u n c t i o n spanning 

0—r r over the window. Th is g i ves more r e s o l u t i o n than the 

Hanning window, and the s ide lobes are s t i l l not too l a r g e . 

Th is s i ne window was used because the data at one end of the 

window (the h igh f i e l d end) were the most impor tant , and they 

were not cut o f f so d r a s t i c a l l y as w i th the Hanning window. 

The a n a l y s i s program takes the F o u r i e r t rans fo rm of the 

data prepared by the e a r l i e r r o u t i n e s . One can choose the 

r e s o l u t i o n and the window in k space f o r the t rans fo rm. 

The power spectrum fea tu re was most o f ten used. 

The " P l o t t i n g " program accepts data from a l l of the 

prev ious rou t ines so that rea l space and Fou r i e r space data 

can be p l o t t e d . P l o t t i n g can be done on the p r i n t e r , the 

g raph ics t e r m i n a l , or the hard copy Calcomp p l o t t e r . The 1/H 

ax i s i s l a b e l l e d in the p r i n t e r p l o t s . 

The M. I . S imu la t i on program uses the formulae developed 

fo r M. I . in Chapter I I , and c a l c u l a t e s the r e s u l t of our 

experiment desc r ibed in Chapter V I . 



Data Reading and Adjust ing 
}2h 

1 DIMENSION 4t5O)7Dt50) 
2 T4T4CH4R1/'*'/ 
3 04T4 CHAR2/'0'/ 
4 " P R I N T 3 U 

5 314 F 0 R * A T (' M : J"9ER OF RECORDS? C*25aNJ M < * E R OF o»T4 PT P M ? 3 ) (14) •) 
b READ 315.NNN 
7 3t5 F0R*4T(T4) 
8 vjPPa2S*N'gM 
9 - R l TE f 3. <91 )NPP 

10 91 F3RMATCT5) 
1 1 00 20 LTNFi l ,M*N 
12 R E 4 0 ( 3 , l ) ( 4 ( T i » n ( I ) . I « l . S O ) 
13 t F0R««4T(50(41,lx;F8,0n 
14 M J U l , 5 0 , 2 
15 n a m , 
16 C IF(4(I),NE,CHAR1.0R.*(Tt1.NE,Crl4R2) PRJ.NT3 , L I*E 
17 3 FORMATC A8MDR**I»ITY I s L.TNE',13) 
18 o m a v F u > i ( 0 ( i n l D ( I ) > 

19 OtIl)sXFUM(0 ( I n,0(in 
20 2 c r i M T t M U E 
21 w R T T E ( 2 . 2 i ) f 0 f I i . 0 ( T - l l . t s 2 , 5 ( i , 2 ) 
22 21 F0R"4T(2F.14.7) 
23 20 cnNTjvjJE 
24 3T0P 
?5 E^O 
26 FUNCTION VFUM(X.Y) 
27 vFUMsvolo'. 
26 5 E T 'J R ̂  
29 ENO 
30 FilMCTTON XF'JM(K.V) 
31 XFUSal , / ( l . 22<»*y ) 
32 PETJHS 
33 END 
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Synthetic Data Generator 

1 DIMENSION PTCtonOl 
2 PTs3.1«15926 
J PRINT 200 
4 200 F0R*AT(» ENTER NU MBER 1? OAT* POINT P A I R S C i a ) ' ) 
5 READ 201,NNN 
6 201 FTRMAT(TU) 
7 W9IT£(2,2051MN\) 
8 205 FORMATCIS1 
9 PRINT 202 

10 202 FORMAT ( • ENTER H"IN,MM4X TN MS, (2F6,0)>) 
11 READ 203,HMTN,MMAX 
t2 205 FORMATC2F6.0) 
1J H T N C a ( H « A X - H M l N ) / F t . O A T ( N M N ) 

i a DO 100 1=1,1000 
15 P T ( T ) s 0 ' . 
16 100 CONTINUE 
17 PRINT J 
IB 1 FORMATC'TO CREATE THE J U M OF T * E * P (-3*n «C13 t 2. « B T * A * T « 0 } . . , Ts 1 / M ' / 

19 1' ENTER fl.A.3.'.'. C5F6.0l'.'.'.OR ZER3 TO STOP' ) 
20 6 READ ?,B,A,0 
21 2 FORMATC5F6.0) 
22 IMA.EQ'.o'.) 30 TO 99 
23 PRINT 7.3,A,3 
?U 7 F0R*AT(3E10.3) 
25 MSHMAX 
26 5 00 3 T s l . N N N 

27 HsH-HTNC 
28 T s l . / M 
2R PT(I)sPT(I)+T*EXP(-B * T)*C0SC2.*PI*A» T-3) 
30 5 CONTINUE 
31 GO TO 6 
32 99 M = h " A X 

33 Tsl'./M 
3a no 101 I « I , N V J N 

35 HsH-HINC 
36 Tsl'./M 
37 *RlTEC2 . ' 4U,'TtT) 
38 « F O R M A T (2E1«.7) 
39 101 CfNTlMUE 
U 0 S T O P 

U l E NO 
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Wi ndow 

t DIMENSION X(100n),V(1000) 
2 PT3i,tUt5"26 
J READ(5,1)NNN 
U 1 F0RM»T(I51 
5 W9ITE(2,6)NNN 
j, 6 FTRMATdSl 
7 00 2 T»1,NNN 
B R E A D n , 5 i x m . v i r n 
<t ^ C O R M A T (2E10.7) 

10 2 CONTIMU6 
11 FsPI/<X(NNNl-XM 
12 OO a T3l,\iNN 
15 ya)sv(T)*STNfF*fX(T)-x(l ))1 
ltt *RITE(2.5)X(I),Y(I) 
15 5 F0RMAT(2El'a'.7) 
tfc 0 CONTINUE 
17 STOP 
18 E NO 

I' 



1 2 1 

Ana l y s i s Program 

1 REAL T(1000),°Tf1000) 
2 PI2»2'.*3, 1415^265 
3 REA0(3,315)NNN 
a 315 P 0 R"ATO5) 
5 XNMN«FLOAT(NN)N) b 00 "» t»t»NNN 
7 QEAO(3»tO)TfI),BT(I) 
8 10 FORMAT (?E1<»'.7) 
9 9 CONTINUE 

10 PRINT 1 
11 1 F 0 R " A T ( ' 0 A N A I > S T S ? » ) 
12 REAO ?,INAL 
1 3 ? FORMAT(Il) 
1 4 GO T0r3.4.5,b,7. (><>).mi IS 99 STOP 
tb 
17 

3 
FORHIT!'OEOURIEP "EAL TRANSFORM'/' F M I N. F« A X , N'JMF ? ( 2F b . 0 . t 4 ) ' ) tb 

17 70 FORHIT!'OEOURIEP "EAL TRANSFORM'/' F M I N. F« A X , N'JMF ? ( 2F b . 0 . t 4 ) ' ) 
18 READ 8» FMIN.FMAX.NIMF 
1 9 A F 0 R « A T ( 2 F b , 0 , l 4 ) 
20 *RITE(2.437)^UMF 
21 437 F 0 R M A T ( I 5 ) 
?2 FT^CsfFMAX-FMlMi/FLOATfM.IMF) 
23 F s F ^ I N 
2a 00 I t Ht.NUMF 
25 9IJMS0'. 
2b 00 12 J*l.NMN 
27 S J M s S U ^ + P T ( J ) * C P S ( P I 2 * F * T ( J ) ) 
28 12 CONTINUE 
29 SlJMsSU M/XNNN 
30 *RITE(2.13) F.3UM 
31 13 F0RMAT(2Eia'.7) 
32 FsF*FINC 
33 11 CONTINUE 
34 STOP 
35 
36 

4 
3tt 

PRINT 34 
FORHATCOFOURIER IMAGINARY TRANSFORM/' FMIM,FHAx.NUMF?(2F6 . 0 ,14 ) 

37 READ 8,FMIN,FM 4 1 < ,NSJMr 

38 *RTT£(2.4371\IIHF 
39 FnC»CFHAX-FMlsjl/FLOAT (MJMF) 
ao FsFMTN 
41 00 31 Iat.NUMF 
U2 SJ M»0'. 
«3 00 32 Jsl.MMM 
au S.JM33!JH*PT(J)*CPS(PI2*F»T(J)) 
US 32 CONTINUE 
"6 S;J13SL)M/XNMN 
47 WRITE(2 I13)F,3JM 
48 F«F*PINC 
U9 31 CONTINUE 
50 STOP 
51 5 PRINT 54 
52 54 FORMAT ( ' OPOWER SPECTRLJW,'/' FM T N, F* A X , NJMF ? (2F6 , 0 , I« ) ' ) 
53 9EA0 R,FMTN,FMAX,NUMF 
54 wRlTEf2.a37)NUMF 
55 FINCB(FMAX-FHIN)/FLOAT(NJMF) 
5b F»FMT.N 
57 00 51 Ist.NUMF 
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i 
SB 3'J^loO, 
59 SUM2aO, 
60 DO 52 J«t,NNS 
61 S J M l s S U ^ l * P T ( J ) * C 0 S ( 9 T 2 * r * T ( J ) ) 
62 S U M 2 s S U " 2 * P T ( J ) « S I N ( P l 2 * M T U ) ) 
65 52 CONTINUE 
6a 3UM«(SU*1 /XNNN)**2*(3UM2/XNNN1**2 
65 wRITE(2.15)F,3UM 
66 FaF+FINC 
67 5 1 CONTINUE 
6B STOP 
69 6 PRINT 7U 
70 7a FORMAT ('OLAPlACC TRANSFORMI/I 3M IN,3MA X,NJ*3?(2F6,0,I a ) • ) 
71 REAO 8,SMTN,9MAX,NUM3 
72 «RITEC2.U37)\|JMS 
75 S T N C « ( 3 M A X - 3 M I N I / F L O A T ( N j M S ) 
7a SSS^IN 
75 OD 71 Ixl.NUMS 
76 3UMaO'. 
77 00 72 J•1,NNN 
7B SJM«3UM*PT(.n*EXP(-3*T(J)) 79 72 CONTINUE 
«0 SJ Ma3J M/XNNN 
SI W9ITE(2.13)3,SUM 
82 Sa3*3INC 
«S 71 CONTINUE 
Bit 3T0P 
85 7 PRINT 9tt 
86 9a FORMAT('OLAPL*CF- B0*ER SPECTRUM'/' 8MIM,3MA X,NJMS?C?F6.0, 
87 READ 8,SMtN,SMAX,NJMS 
88 wRITEf2.U37)NUMS 89 PRINT 105 
90 105 FOR^AT(> THE ANGULAR *RE3'IENC Y? ' ) 
91 READ 106,A 
92 1 06 FORMAT(F6'.01 
93 STNC«f 3MAX-3MlN1/ri.0AT(NjM3) 
9U SaS"IN 
95 00 91 Ial.NUMS 
96 SUMlaO, 
97 SUM2oO, 
98 00 92 Jsi.NNN 
99 S ' J M l s S U M i + P T ( J ) * E X P ( - 3 * T ( T ) l * C 0 3 ( A * T ( J ) ) 

100 S'JM2 = S U « 2 * P T ( J ) * E X P ( - S * T ( J ) ) « S I N ( A * T ( J ) 1 
101 92 . CONTINUE 
102 SUMa(3UMl/XNNN)*«2+(3JM2/XNNN)**2 
105 wRITF(2,15)3,SJM 
l o a SsS*3TNC 
105 91 CONTINUE 
106 STOP 
107 END 
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P lo t t i ng 

t DIMENSION xnoon),YUOo<n,CH4nm 
2 L O G I C A l M QUE 
J REAL l<75) 
4 OAT A CHAR/• 1,1*1/ 
5 C REAO IN THE DAT* 
6 READ(3.2)N 
7 2 FORMAT(151 
8 X M 4 X « . 1 '.E*50 
9 YMAXaXMAX 

10 XMIN«1,E*S0 
t l YMJNsXMIN 
12 OO 3 T 31» N 
is REAO(3.«)x(n.yi ,n 
14 . a FORMAT(2El«'.71 
15 IF(X(I)'.LT.XMlMlXMTNaXfT) 
16 IF(X(t)^GT.XMAxiXMAXaX(I) 
17 I F ( V ( T ) . L T . V M l N 1 Y M t N i Y ( t ) 
1R IF (Y(t)'.GT.YMAXlYMAX»Yf I) 
19 3 CONTINUE 
20 C F J NO SCALING FACTORS 
21 X3»8,/(XMAX-XMIN) 
22 YSa8./(YMAX-YMIN) 
23 XSRs50,*XS/8. 
2tt Y S P « 5 0 , * Y S / 8 . 
25 C PRINTER PLOT 
26 PRINT 7 
27 7 F 0 R M A T ( • 00 YO'J '*ISH A PRINTER P L 0 T ? , . , K I N 0 L Y ENTER Y OR N') 

f 28 REAO 9,.QUE 
29 A F O R M A T U i l 
30 IF (LCOMC (1 , 0 J E , »V« T.NE'.OlGO TO 9 
31 PRINT 10 
32 10 FORMAT ( i HOW MANY PRINTER PAGES wOULO YOU LIKE?'. .,(121 ' 1 
33 REAO 11,NP 
34 11 F0RMAT(I2) 
35 TNC»N/(NP*60) 
36 00 l a I•1.75 
37 L(I)=CHAR(11 
38 ta CONTINUE 
39 IPNTst 
UO 00 12 1=1.N,INC 
a i L ( I P N T ) s C H A R ( t 1 
42 I?NTaIFIX((Y(I)-YMIN ) *v3P*t1 
U3 L ( T F N T ) a C H A R ( 2 l 
44 w R I T E ( 2 . 1 5 1 x r l ) . Y ( I 1 , ( L ( J 1 , J a t , 7 5 1 
US 15 FORMAT(I i , 2 ( E l U , 7 , I X ) , • (', 754 1 ) 
«6 12 CONTINUE 
U7 9 PRINT 16 
48 16 F0RMAT ( * 00 YOj WISH 4 PFN PLOT?,,,(Y,N)•) 
49 RE40 17.QUE 
50 17 F0RM4T(4H 
51 IF(LCOMC (t »QJE, ' Y i ) ' . NE'.0)STOP 
52 C PLOT 
53 CALL P L 0 T ( X S * ( X ( l ) - X M l N ) , Y S * ( Y ( 1 ) - Y M I N ) , 3 ) 
5a 00 5 I82.N 
55 CALL P L 0 T ( X S * ( x m - X M ! N l , Y S * ( Y C I ) » Y M T . N ) , 2 1 
56 5 CONTINUE 
57 C»LL PLOTNO 
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M.I . S imu la t i on 

1 DIMENSION X»l (5O0),XA2f500)> XA3C500) 
2 DIMENSION XM(5l?),Xl(25«>),X2C256) 
3 SEAL M,NliD,K4PP4,NCYC 
a INTEGER y . s w 
5 COMMON XA1M»K,XA2MAX,XA3MAX,HTM4X.MIMIN 
6 DATA Y/'Y'/ 
7 PSI(RDUM)aATiNfETA*TAN(Pt*BDUM*DELf*MT-PI/«.)) 
ft A f R D U , A A D U ) » ( A A D U * A A D J * ( 1 . - E T A ) / ( l . * E T A n f t ( S r j P T ( 2 . ) / 2 . ) * 
9 133RTm.*ETA*ETA ) t U.-ETA*ETA)»SIN(2,»Pi»KDU*DELF*HI)) 

10 M(NU0.ALPHAn)«Ai*8IN(X*P3t(l.)J 
11 . t+A2*CSINf2,*X*PSI ( 2 . n.0.5*NUD * S INC2.*X*2>PSI f I . ) ) ) 
12 ?*A'3'*fSlNf 3 , » X » P 3 I ( 3 . ) ) . 1 . 5 * N U 0 » A L P H A ! 3 » 
13 3 (SIN(3'.*X*P3I (1 . )*P3I (2.5 )-0.25*NUO*3lN(3.*X*3*PSI ( l . 1 ) ) ) 
i a A T ( A B . B f l , A L . 3 L ) s S 3 R T ( ( A 8 * S I N ( A L ) + 3 8 * S l M ( B L ) ) * * 2 
15 1 •(AR *CO3(AL)*«9 *C0S rBL))**2) 
16 PT»3 ,1«I59 
17 PRINT 1 

18 1 FORMAT (' PLEASE E N T E R l A M B L l T ' J O E S OF TM£ HI3HFST FREQUENCY'/ 
19 1 'FIRST,3EC0ND, AND THll?0 HAR*TNTC (IN S A J 3 S ) , AND ETA...CUFU.0) ' ) 
20 READ 2.AA1,AA2,AA3,ETA 
21 2 PORMAT(UFa.O) 
22 A A l s A A l / 1 0 0 0 . 
23 AA23AA2/1OOn. 
2U AAJ3AA3/1000. 
25 PRINT J 
26 3 FOR«AT<» PLEASE ENTER £P 8 T L ON . A N1 JEL T A , . ( ?Fa . 0 ) ' ) 
27 READ a.EPSlL.OEl TA 

I 28 a F0RMATC2FU.0) 
29 PRINT 5 
30 5 FORMAT (' PLEASE ENTER T ME MEAN FREQUENCY F,'/ 
31 1 ' AND THE DIFFERENCE IM FREQUENCY OELF (IN M G ) ( 2 F U . 0 )') 
32 READ 6,F,DELF 
33 6 F0R M A T ( 2 F « , 0 ) 
34 PB1000,*F 
35 DELFsi000'.*DELF 
56 H K A P P A « 8 . * P T * P t « ( t ,-OEi_'TA)*F 
37 PRINT 9 
58 9 F 0 R M A T ( ' DO YOU "ISH A NON-SMEARED PL 3 T ?.'. . f Y , N 1 ' ) 
39 READ 10.NSM 
UO 10 FORM AT(Al^ 
01 IF(NSM,ME.Y)SO TO 200 
U2 PRINT 7 
U5 7 F 0 R M A T ( ' PLEASE ENTER ,^TN,HMAX < I n '< 31 , NUMH , ' , , ( 2Fa . 0 , I 3 ) ' ) 
ait READ 3,MMIN,HMAX,NUMH 
U5 8 F 0 R M A T C 2 F a ,0,131 
U6 C CALCULATE THE NQN.sMEAREO A x P L l T J O E 

HIMINsl'./HMAX 
US HIMAX«l'./HMIS 
U9 H r i N C » ( H I M A X - H I M l N ) / F L O A T ( N U M M ) 
50 HlaMIMIN 
51 XA1MAXB0, 
52 XA2MAX80. 
53 XA3MAX30, 
SO DO 100 Tal.NjMH 
55 HTaHI*HTINC 
56 KAPPAaHKAPPA«MI*MI 
57 A 1 a A ( l a ( A A l ) 
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58 X A t m a A l 
50 I F C X A t m'.GT.XAT^AXmi'MiXsXAHI) 
60 A2=A(2,,AA2) 
61 P S I 2 a P S I ( 2 . ) 
62 P 3 I l s P S l M . ) 
63 XA2(I)»AT (Aa,-'.s*KAPP4*Al *A1 *EPSIL» B3Ta.2.*P311 1 
6U IF(XA?CT)'.GT.XA?«AX)XA2H 4X = XA2(I) 
65 A3»A(3 , .AA3) 
66 PSI3aPSIC3.) 
67 AlNTaATn'..-0.25*«APPA . A|*Al/A2*EPSIti psn*o 3i2,3,.pgTn 
6S P S I I N T 3 A T A N C ( C 0 3 ( P 3 I l * o S i a ) » 0 ' , a 5 « i < A P P A * A l * A l / A a * E o 3 l L * C 0 S C 3 . * P S t l 
69 1 ) ) / C S l M ( P 3 n * B S l 2 ) - 0 . 2 5 * K A P P A * A l * A l / A a * E P S I L * S l N ( 3 . * P 3 I l 
70 2 ) ) ) 
71 XA3(I1=A3*AT(l,.-1.5 * A?*A2/(Al*A3)«<APPA*Al*At / A a*EPSII.»AlNT,P3I3 
72 l . P S I I N T ) 
73 I F ( X A 3 ( ! ) ' . G T . X A 3 M A X ) X A 3 M A X s X A 3 ( I ) 
7u too CONTINUE 
75 C NORMALIZE 
76 00 101 I s l , N J * n 
77 X A t ( I ) s X A t ( I ) / X A l * A X * l 0 . 
78 X A ? t I ) a X A 2 ( n / X « 2 M A X * l o , 
79 X A 3 U ) » X A 3 ( I ) / X A 3 < » A X * l o . 
80 101 CONTINUE 
81 C PLOT 
82 XSCALE»15'./FLOAT (NUM4) 
S3 C»LL °ISTR(ETA,FP9IL) 
8U CALL PL0Tf2'.,XA1 ( 1 ) , 3 ) 
85 00 102 T=2,NJM4 
86 CALL P L 0 T ( X S C A L ' F » F L 0 A T ( I ) » 2 , , X A i m . 2 ) 
87 102 CONTINUE 
88 C*LL PL0T(2.,XA2 ( 1).3) 
89 DO 103 T = 2 ,N J M H 
90 CALL PLOT(XSCALF*FLOAT(T)+2,,XA2tI)•2) 
91 103 CONTINUE 
92 CALL 3 L 0 T ( 2 ' . , X A 3 ( t ) . 3 ) 
93 no 10fl T a 2 # N J » M 
oii CALL P L 0 T f X S C A L F * F L 0 A T ( I ) + 2 . , X A 3 ( I ) . 2 ) 
95 10a CONTINUE 
96 C SMEARED AMPLITUDE 
97 200 IFCNSM.EO'.YICALL PLOT ( ? 2 . .0,,-3) 
9fl PRINT 11 
99 11 FOR MAT(' 00 VOiJ «*ISH A SMEARED PL 0 T ? . . . ( Y , N 1 ' 1 

100 PEAO 12.SM 
101 12 FORMAT(Al) 
102 IF(SM'.NE.Y)GO TO 999 
103 PRINT 15 
10K 15 FORMATC' ENTER THE P-P MODULATION IN <3 (Fd'.O)') 
105 READ 16. PPMOD 
106 16 FORMATCFo'.O) 
107 PRINT 17 
108 17 FORMAT( 1 PLEASE ENTER HMTN.HMAX (IN <G),AND NUMH . , ,1 , 
109 1 1 (2F«'.0.13) • ) 
110 READ I8.HMIN.HMAX.NUMH 
111 18 FORMAT(2Fa,0,I 3) 
112 HIMINB1),/HMAX 
113 HTMAXal./HMTN 
110 CALL PL9TR(ETA,FP3IL) 
115 PM00sPPM0P/2. 
116 H I I N C a ( H I M A X . H I H l N ) / F L O » T ( N U M H ) 
117 HI aHIMIN 

I 

http://i8.HMIN.HmaX.NUMH
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U S KA l^AXaO. 
119 XA2MAXX0. 
120 XA3HAXaO. 
121 OO 300 Ts1 ,NJMM 
122 HlsHI*MTINC 
123 HTMINC»(l'./f r./Hl-PHOOj-l *./(t'./Ht*PM00n/512. 
12<l HAMF«PI/(HIMINC#512») 
125 HTMS«J,/(1,/MI*PMOD) 
126 MT^iHIMS 
127 C GENERATE TME ST3NAI. FROM j)NE MOOULATTON 9*EE<> 
128 DO 301 T=1.512 
129 Hl*3HTM+HIMINC 
130 KAPPAsHKAPPA*HT*Ml 
131 A 1 aA ( 1 , « A A 1 ) 
1 3 2 A 2 » A ( ? , , A A 2 ) 

133 A3aA(3,.AA3) 
13U Xs2.»ol * cF*HtM. ,.5) 
135 C THF SINE IN THE NpxT LINE T3 THE MANNING *TNDO* 
136 X M(J)sMfEP3rL*!<»P PA*AUAl/A2,A2*A2 /CA l*A3-n* 
137 13INtHANF*tMIM-HIM3)) 
138 301 CONTINUE 
139 C SEPARATE XM INTO ITS ANTI3V" METflTC (Xt),AND SYMMETRIC fX2) 
mo c CO MPONENTS 
1 a 1 00 302 Ja2,255 
1U2 XI (257-J )3(XM ( 2 s 7 -J1-X-(257 + jn/2. 
U 3 X2(25 7-J)s(XM(25 7-J) + XM(257*jn/2. 
1UU 302 CONTINUE 
t"5 XKllao'. 
1«6 X1C256) = 0'. 
1«7 X2C1 )sXM(i) 
ll«8 X2t2S6)sXM(256) 
1U9 C TAKE THE FOURIER TRANSFORM 
150 CALL S 5 t 2 f X 1 , X n 
151 CALL C512(X2,X2i 
152 C CALCULATE THE FIE|.n SPACING OF THE FTRST HAR"ONTC 
153 FSPlal,/(HI*Ml»F) 
150 C THE NUMBER OF CYCLES PER "«30 SWEEP,'.. 
155 NCYCaPPM00/F3Pl 
156 C THIS IS rfHERE THE FIRST HAR«ONIC IS IN THE TRANSFORM 
157 C FORM WINDOWS 
1 5 8 I*L'SNCYC / 2 ' * l ' . 
159 T*iL2aMCYC*l , 5 * l ' 
160 H L 3 = NCYC * 2 , 5*1, 
161 lxR3a.NCYC*3.5*l . 
162 C FIND THE MAXIMA OF THE A*9L!TU0E SPEC T RU *,'., 
163 XMAXsO, 
16U DO 3in JatWLlitwL? 
165 A«PaS3RT(Xl(J)**2*X2(J1 * » 2 ) 
166 IF (A-P'.GT.XMAXIXHAXSAMP 
167 310 CONTINUE 
168 XA1 (I)aXMAX 
169 IF(XMAX'.GT,XA1MAX)XA1MAXSXMAX 
170 XMAXaO, 
171 DO 311 JsT^I. 2» rwLl 
172 AMP«S3RT(X1(J1**2*X2(J^**2) 
173 IFfAMP.GT*. XMAX)XMAX3AMp 
17U 311 CONTINUF 
175 XA2(I13XMAX 
176 IF(XM4X'.GT,XA2MAX)XA2MAX«XMAX 
177 XMAXaO, 
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1 78 00 31? Jat"(L3.tw»3 
179 A«PsS3RT(Xl(.n**2*X2(!)*«2) 
180 IF(AMP,GT'.XMAX)XMAXaAM8 
181 312 CONTINUE 
182 X 4 J(I1» X M 4 X 
183 IF(XMAX'.GT,XA3MAX)XA3*AXaXMAX 
18(1 300 CONTINUE 
IRS C °LOT'..'. 
lSfc C FIRST HARMONIC IN SQU4RE9, 
187 C SECOND HARMONIC IN TRIANGLES. 
188 C THIRO HARMONIC IN X'S 
189 C 
190 C N0RM4LIZE 
191 00 320 Ial,NUMH 
t92 X41(I ) SXA1(I)/XA1MAX *10 . 
193 x42(I)aX42(T)/X42MAX»lo, 
19« X43msXA3(T)/XA3M4X*lo. 
195 320 CONTINUE 
\ab C "LOT 
197 XSCALEa15'./FL'14T(NUMH) 
199 00 003 Ia1,NJMH 
199 xRNTsX3C4LE*FL04T(I)*2'. 
200 CALL STMBr)LfXPNT,XAl{t),. l«.0.0'.,-n 
201 CALL 8YMBOL(XPNT,XA2(n,.lO,2,0.,-l) 
202 CALL SYMROL(XPNT.XA3(h..lO,O.0.,-l) 
203 003 CONTINUE 
200 999 CALL PLOTNO 
205 STOP 
20(, E NO 
207 SUBROUTINE PLSTR(ETA,E = STL ) 
|208 C O M M O N X A 1 M A X , X A 2 M A X , X A 3 - A X , M I M 4 X , M I M I N 
209 CALL 4XrS(l'.,0..'FIRST HARMONIC AMPLITJ0E'« 20. 10.,90,, 
210 10'. ,XA1MAX*100.) 
211 CALL 4X13(1.5,0'. # 'SECOND H4RM0NIC 4MP LITJOE',25.1 0 , , 
212 1 90. , O'. , XA2MAXMO0'. ) 
213 CALL 4X13(2'., 0.."'THIRD HARMONIC 4MPLITJOE' ,20, 1 0 . , 
210 190,,0'.,XA3MAX*100.) 
215 CALL AXIS(2 ,.,0. t'l/H(<5*«-l)i.-ll,15.,0.0.HlMlN. 
216 1(HI«4X-HIMIN)/JS.) 
217 CALL PLOT(2 ,.,lo ' . ,3) 
218 CALL °L0TM7..10,,2) 
219 C4LL "LOT(17,,o'.,2) 
220 CALL 9T«ROL(1 7.?,~10.,.?8,22,0'.,-n 
221 CALL S V * 8 O L ( l 7 , u 8 , 1 0 . , , 2 » . , = , , 0 , , l ) 
222 CALL NUMflFR(l7.76,10.,.29,ETA,0.,2) 
223 CALL SYMBOLd?.?."., .2R.20 .0. .-1) 
220 CALL SY-BOLd 7.UR.9. , . ?R, ts ' , 0 . , 1 ) 
??5 CALL NUMRER( l7 .76 ,9.,.28,EP3lL,n . . 2 ) 
2?6 RETURN 
227 END 
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