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ABSTRACT

A feedback technique is presented for ;hé reduction
of the Shoenberg magnetic interaction in metals. The method
allows the spin splitting parameter 9. for extremal orbits on
the Fermi surface to be obtained from de Haas-van Alphen
measurements, now essentially free from the oft-times
severe distortions resulting from magnetic interaction. The
feedback technique also offers several advantageous side
effects, the most important one being a simple and reliable
method. for determining absolute amplitudes of de Haas-van
Alphen oscillations. Explicit formulae are derived showing
" the depgndence of several key observable quantities on the
amount of magnetic feedback, and these formulae are found to
be in good agreement with experiment. The technique is
applied to.the detérmihation of_gc for the [110] y oscillations

in Pb.
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CHAPTER ONE

INTRODUCTION

In 1930, de Haas and van Alphen noticed that the
magnetization of bismuth oscillated as a function of an
externally applied magnetic field at low temperatures.
This remained a laboratory curiosity for almost 20 years
until it was realized that this de Haas-van -Alphen (dHvA)
effect could be used as a powerful tool in the study of
the Fermi surface of metals. Valuable information on the
detailed shape of the Fermi surface can be obtained from
the frequency of: the magnetization oscillaticns..in the -.
inverse field domain, and it was éoon found thét the
oscillations are exhibited by most metals fn the periodic
table.

There is also a wealth of information contained in
the harmonic content of the oscillations, in particular
about the spin properties of conduction electrons. Amplitude
measurements of the fundamental<frequency component are

usually straightforward (although absolute determinations



of the amplitude require great care). However; various
difficulties are encountered when studying thé higher
harmonics and these difficulties often make it well-nigh
impossible to obtain meaningful interpretations of the data.
The most serious of these difficulties is the significant
harmonic distortion caused by the Shoenberg magnetic
interaction effect.

In this thesis, we present an original technique for
the minimization of the Shoenberg effect, thereby allowing
the spin parameters to be determined reliably, and without
the use of correction factors. These spin parameters are
Landé spin splitting factors 9. appropriate to cyclotron
orbits in the metal, and the relation of the factors 9. to
the harmonic amplitudes in the dHvA effect is reviewed in
Chapter II.

In Chapter 11l we discuss the magnetic interaction,
how it arises, and how it has been dealt with (to a very
limited extent) by extraordinarily tedious deconvolution of
the experimental data.

In the past, several attempts have been made to reduce
the magnetic interaction experimentally, but these have met
with only modest success. After summarizing these experimental
approaches to the problem, we present in Chapter IV the
principles of the feedback technique which is central to this

thesis.



Putting the idea of feedback to work in thé laboratory
is the subject of Chapter VI. The dependences of various key
observable quantities on the amount of feedback are calculated,
and compared with experiment.

The experimental apparatus used for the feedback
measurements is described in detail in Chapter V. This
section includes the circuitry which the concepts developed
in Chapter IV dictate, along with special design considerations
to make the technique simple, practical, and reliable.

Having developed the procedure for obtaining data which
are essentially free of magnetic interaction, we present in
Chabter VIl the first application of the feedback technique
to the determination of 9. for the y oscillations in lead
along [110].

Recent observation of oscillations of 'very long period in
lead using sound attenuation and the magneto-resistance
(Shubnikov-de Haas effect) prompted a search for similar
oscillations in the dHvVA effect. The detection of such long
period oscillations benefitsgreatly by the use of very large
modulation fields, of an amplitude larger than can be treated
analytically by existing formulations. In Chapter VII1 we
derive an exact solution for the response of dHvA oscillations
to a modulation field of arbitrary amplitude. This is followed
by the details of an experiment in which a concerted but un-

successful-attempt was made to find the long-period oscillations.



Had they been found, the feedback technique woﬁld have
shown them either to be genuine dHvA oscillations, or
oscillations generated by magnetic interaction. The best we
could do was place an upper limit on their amplitude in the
three major symmetry directions [100], [110], and [111].

We conclude with some suggestions for further work,

both.in the technique itself, and its application.



CHAPTER TWO

SPIN SPLITTING OF LANDAU LEVELS IN METALS

In the same year as de Haas and van Alphen's
discovery Landau (1930) -independéntiy remarked that the
magnetization of a metal would be expected to show
oscillations because of the quantization of the helical
orbits of the conduction electrons..

Onsager (1952) predicted on the basis of general
semi-classical arguments that the periodicity was simply
related to extremal areas of the Fermi surface normal
to the magnetic field. Shortly thereafter Lifshitz and
Kosevich (1955) confirmed Onsager's prediction and pro-
ceeded to work out expressions for the amplitudes of the
oscillations. The result of this rather beautiful work,
with some modifications by Dingle, (1952) is.equation [1], the

~general form of the de Haas-van Alphen magnetization:



[1a] M=% LA sinl2mr(s-v) £ /8]

orbits r B
[1b] A= r'3/2 D(B) (rX/sinh rX) exp (—rXTD/T) cos (rms)
[1c] X = 2n2 mk k,T/ehB
[1d] S =g, mZ/Zm

The symbol M refers to the oscillating magnetization,
and does not include the steady magnetization arising from
orbital quantization and spin. The oscillations are periodic
in 1/B, and each orbit has its own characteristic frequency F.
The phase factor m/k is positive for minimal crossectional
areas and negative for maxima. D(B) is a function of the
magnetic induction, and also of Fermi surface parameters.
rX/sinh rX is a measure of the thermal broadening of the
quantized orbits. The imperfections of the crystal result
in a similar broadening, and are characterized by the Dingle
temperature TD of the crystal.

The factor.cos (rmS) = cos (nﬂgcmi/Zm) is the one of
major concern in this thesis since from it 9. itself is
determined.

The electron spin will interact with the applied

magnetic field symmetrically splitting the Landau levels by



the amount g e i B/2m, where m is the mass of the free
electron. g 1is a splitting factor which may differ from its
free electron value (2.0023) because of spin-orbit-coupling.
Each Landau level is thus split, resulting in two séets of

levels each separated by e 4 B/m*, but shifted in pkase by the
amount 27 (g m*/2m). Each set will give similar oscillations

in the magnetization with the same fundamental frequency F,

and half the amplitude of that in the absence of spin splitting.
In 1/B, the 2 sets will be displaced from one another by an

amount gm*/ZmF, so the resulting magnetization will become

1 01 * ~ 0] %
E-[M(E-+ gm”/b4mF) + M(E-i gm”™/hmF) 1.

The cosine spin: factor in the amplitude expression [1b] /i
follows ‘immediately when this average is applied to a wave- "
form of the Kind given in [1a].

To give a clearer-picture of the effect of the spin splitting,
let us examine equations [lal-[1d] at absolute zero (T=0) and in a
perfect crystal (T,=0). In this case, [1b] reduces to

D

cos rmS

which are the Fourier coefficients of a cusplike 'waveform for
S =0. IA discontinuous change in the magnetization occurs

when the uppermost Landau level becomes depleted as it crosses



the Fermi energy. The effect of cos rnS as we have just seen

is to sum the contributions from the two sets of Landau levels
spin split about the value at S = 0. The two sawtooth wave-
forms, along with their sum is shown in.Figure 1. With a
waveform such as that shown in Figure 1, it would be a simple
matter to determine the phase shift between the two sawtooth
waves, and thereby determine S. At temperatures available to

us in the laboratory, the thermal damping factors preferentially
reduce the higher harmonics, resulting in a waveform more like
that shown in Figure 2, which is an experimental recording taken
with typical experimental parameters. The trace is not purely
sinusoidal, but it:i§ quite evident that S cannot be measured
directly from the waveshape.

To exploit the cos rmS dependence in the hopes of extracting
the 9. factor from dHvA amplitude data, it would be convenient to
obtain a method in which the other amplitude factors played little
or no role. Gold and Schmor (1976) showed that witH some mani-
pulation of [Ib] an algorithm could be obtained using the first
three harmon{c amplitudes to determine the value S.

Forming the dimensionless quantity o = Ai/A]AB, [1b]

gives

[2a] o = ao[l + 1/3 tanh? X]
=3/b o, [1+1/3 tanh? X]

where

[2b] a_= (V3/2) (1 - tan? 1$)2/(1 - 3 tan? 75)



Fiqure 1. - The Spin Split Magnetization at Absolute Zero
a, b : contributions from each of the 2 spin
directions c: resultant magnetization
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and the subscripts refer to the limiting cases X - 0 and X »> =,
Using the harmonic content itself as an implicit gauge of
the bath temperature, the hyperbolic functions of X can be

eliminated between [1b] for r = 1, 2 and [2a] to §ive the simple

relation
. 2 2
[3a] Ay/Rg = o, [(AJZA))T = 176 (Ay/A,) ]
where
[3b] IA]/AZ)0 = 2/7 exp (XT,/T) cos wS/cos 2rS

is independent of the temperature T. The value a_ can therefore
be obtained as the slope of a straight line plot of A]/A3 VS,
(A]/Az)2 as the tempe?ature is varied and the field held
constant.

From [2b] it is clear that the solution for S will be
obtained from a quadratic equation in tan2 7S and the solution-
is. therefore multivalued. The physically meaningful solution
can be selected with the aid of relative phase measurements and
a rough estimate of the Dingle temperature TD which can be
obtained from the field dependence of the fundamental amplitude.

This multivalued nature arises from the fact that we do not know
the absolute sign of -the harmonic amplitudes. A further multi-
plicity arises from the periodic nature of tan 7S in [2b].
Equivalent solutions are *S* p where p is an integer. This

difficulty is inherent in the use of quantum oscillations to



determine 9. and arises from the periodicity of
[1b]. One can use a band structure calculation
resolve the ambiguity.

The three harmonic method offers the major
focusing on the S dependence of the amplitude.
require further information about Fermi surface
scattering rates since complete cancellation of

amplitude factors'is not accomplished.

the cosine in

to hopefully

advantage of
Other methods
parameters or

the other

12
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CHAPTER THREE

THE SHOENBERG MAGNETIC-INTERACTION EFFECT

The discussion in the previous chapter assumed that the
oscillations were measured as a function of the magnetic in-
duction B. In practice, the oscillations are measured as a

function of the applied field H, related to B by

[4] B=H+khr (1-8) M

for a second degree surface with H parallel to a principal
axis. § is the demagnetizing factor. In the normal laboratory
situation, L (1-6 YM/H < 10_5, however since B is in the argument
of a rapidly oscillating sinusoid (see [lal), the correction term
often constitutes a large part of one cycle.

The necessity of distinguishing between B and H was first
pointed out by Shoenberg (1962).

The substitution of [4] into [la] results in an implicit
equation for M as a function of H,. convolving the harmonics into
often hopeless contortions, thereby severely modifying the ideal

~amplitudes Ar and the phases of the harmonics. Recovery of the
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ideal amplitudes and phases is the central theme of this
thesis.

There are varying degrees of the severity of this
magnetic interaction (M.1.). In the limit of small M corrections
can be made, but often the distortions are so severe that it is
impossible to extract the ideal amplitudes and phases from the
data.

To see the effects of the term 4w (1-8)M, let us

re-write [1] by setting

_ F_ _ 8mF .
X = 27 (ﬁ- v) K = " (1-8)
z = kM C =«A
r r
Since |bmw(1-8)M|<<H, [1a] becomes
[5] z= 2 C_sin [r(x- z) ¥ n/h]

- This implicit“equation for z can be solved by a series of
succeéssive approximations in a scheme developed by Phillips and

Gold (1969) where the nth approximation is given by

|

z(n) = § Cr sin [r(x—z(n_r)) F w/k)

(0)

and z = 0.
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While the gathering of terms can become quite tedious
after a few steps, the procedure is convenient in that z(n) is
exact to 0(n) in the amplitude factors.

This scheme has been carried out by Phillips and Gold,

and the results are most conveniently displayed as a table of

Fourier coefficients Prs 9, in Table 1, where

n
[6] ﬁ(n) = 2 [pr sin (rx ¥ ©n/b4) + q, cos (rx ¥ n/4)]

r=1

The ’iterationc’ scheme.has .been carried out to many more
orders by Perz and Shoenberg (1976) with the aid of a computer
program designed to perform the algebraic manipulations.

To obtain the amplitudes of the resulting harmonics A;
in the interacting theory, we merely find the magnitude of the

th . . . . .
r h term in the complex Fourier expansion i.e.,

Vo2 2y1/2
Ar - (pr + qr)

For the first 3 harmonics, the result is

[7a] A; = A, +0(3) _
. [~ 1 KA% 1 KA? 2 1/2 ‘
[7b] A2 = AZ L] - /-2- —A—z- + Il- TZ | o+ O(L*)
- 3 [kA.A kA A \?
\ 2 172}, 9 172
[7¢] Al = A D1 - ( )+ Z (
3 3 L V2 A3 L A3




Term | 9(1) 0(2) 0(3) 0(4)
243
P A| |<A]A2 _x AI
2/2 8
kA A
9 + 12
2V2
2
p <A KAA,  K3A
2 A - 173 + - w2p2
2 22 kAL Ay
V2 62
KAZI
92 t — kA A, <3AY
22 + ¥
V2 6v2
P3 As- <A Ay
2/2
273
3KA]A2 3k A]
+ ¥
93 2V2 8
3aL ‘ 2
Py - K A] i 2:<A]A3‘ i KAZ
Y N
kA2 |<3AL]‘ 2¢A | Ag
ay + + + ¥ 2|<2A2]A
2 32 V2
Table | Fourier Coefficients P,q. From Phillips and Gold (1969).

91
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We recover the amplitudes A], A2, A3 of the ideal theory if
these émp]itudes are sufficiently small.

If, as it often happens, the ideal amplitudes are swamped
by the terms generated by M.!., we obtain Shoenberg's ''strong-
fundamental" results. These are found in [7b] and [7c] by

taking the limit as A2 and A3 approach zero, the result is

[8a] A; = A7+ 0(3)

] _ ]_ 2 !
[8b] Ay = - 7 kAT + o(kL)
[8c] Ay = %K;ﬁ + 0(5)

There are other noticeable effects of M.l., besides the
distortion of the harmonic content. If two or more fundamental
dHvA frequencies are present, M.l. acts like a mixer, and
generates sidebands and combination tones. The simplest of
these should be sum and difference frequencies of fundamental
oscillations from different orbits on the Fermi surface. |f we
consider just the fundamentals from two extremal sections, we

have (assuming a long rod § =0).

S F
_ IV . a _
[9] M= Ma‘I-Mb = Aa sin [Zﬂ <H+hw Ha'+ Fq.b) Y;)t n/é]

+ Ab sin [ZTT (——-———Fb - Yb>; W/l}:l
H+hm

(;1a'+ ﬁb)
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where the subscripts refer to the two sections.

Since £ [hn(M_ + M_)1<<1, we can write [9] as
H2 a b

[10] M= A sin (xa - KaM) + A, sin (xb - KbM)
Fa b
where Xa b = 2n(—7T-- Ya,b) + /b
8W2Fa b
and K b=———2—"’—
a, H

From [7a]l we see that for one frequency alone the amplitude
of the fundamental remains unchanged to second order, so that
replacing M on the right side of [10] by the ideal Lifshitz-
‘Kosevich magnetization should! be a-reasonable approximation:

for. calculating the lowest order combination terms. We then obtain

[11] M= Aa sin [xa - KaAa sin (xa) - KaAb sin (xb)]

+ Ab sin [xb - KbAa sin (xa) - KbAa sin (xb)]

Assuming the quantities xA to be small, we keep only the linear

terms in such quantities giving

N aAg K AE
[12] M= - — sin (2xa) - = sin (2xb)
A A

a

Zb [(Ka + Kb) sin (xa + xb)-(Ka - Kb)sin(xa- xb)]
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Thus, to lowest order, the amplitudes of the sum and

differefice frequencies are given by

A_A

; _ab
[]38] AS = 2 (Ka + Kb)
and
AaAb
[13b] Ad = 5 (Ka - Kb)

The results obtained so far apply when the absolute amplitude
of the dHVA oscillations is much smaller than the field spacing,

H? . .
AH = — or in the reduced notation, Cr<<]. There are many cases

F
where this is no longer true. The dHvA magnetization eanapproéch
or even exceed the field spacing. In such cases the magnetization
formally becomes multivalued, and the resulting magnetization is
the one with the greatest thermodynamic stability. When Cr>1
the magnetization is no longer uniform inside the sample, and
Condon domains are formed (see Condon 1966, Condon and Walstedt
1968) .
The M.l. results discussed in this chapter clearly alter

the temperature dependence from that given by the ideal Lifshitz-
Kosevich (L.K.) amplitudes [1b]. For example, in the case of
combination tones generated by M.l., the temperature dependence
of the amplitudes of the sum and difference frequencies from

Xaxb
sinh Xa sinh X

[13a] and [13b] . is Ms,d(T) = ,
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CHAPTER FOUR

REDUCTION OF MAGNETIC INTERACTION USING A

FEEDBACK TECHNIQUE

From the discussions of the previous chapter, it is
evident that magnetic interaction must play only a very small
role if any information from the harmonic content is to be
obtained.

It is clear that the absolute amplitude of the magneti-
zation determines the relative sizes of the M.I. generatéd
harmonics. One might consider reducing these troublesome M.I.
effects by exploiting the temperature dependence. At a high
enough temperature, the absolute amplitude can be made
arbitrarily small, thereby reducing the M.l. harmonics. Un-
fortunately the L.K. second and higher harmonic amplitudes drop
off faster than their M.l. counterparts with increasing
temperature thereby increasing, not decreasing the waveform
distortion.

The dependence on the demagnetizing factor & in [4] has
been used with some success to minimize or control the effects

of M.I. Everett and Grenier (1978) have cut crystals into
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ellipsoids of varying aspect ratios to study the dependence
of the harmonic structure on three different values of 6. In
previous 9. factor measurements, Gold and Schmor (1969) have
cut very thin (0.5 mm) disks with 8§ & 0.9 to reduce M.l. Un-
fortunately, this thin disk method is tedious, and has some
undesirable side effects. The method about to be déscribed
avoids most of the undesirable features of the ''disk method"
and offers some advantages as well.

Experimentally, one usually modulates the quasi-static
background field H with a small perturbation h(t) produced by

a modulation coil so that

[15] B=H+ bhr (1-6) M + h(t).

The fact that the modulation field h(t) enters into the

equation for B in the same way as M is the seed for the feedback

idea. |f we separate h(t) into two components
[16] h(t) = h_ +he
and we let hf = - Bﬁ, where B is an experimentally adjustable

feedback gain, then the equation for B can be made independent

1171 BM-= Ln (1-6) M



the M.1. will be effectively suppressed. It is therefore
necessary to obtain a signal proportional to ﬂ, adjust the gain
accordingly, and apply this signal as a field to the sample.
Suppression of M.l. by means of magnetic feedback was
first achieved by Testardi and Condon (1970) in the course of
their sound velocity measurements in beryllium. In their work,
a coil was wrapped tightly around a cubic sample, and a current
in the coil approximated tHe equivalent surface currents in the
sample and thus could be made to cancel the dHvA magnetization.
The appropriate current was found by imposing a null detection
criterion on an external pickup coil. In the Testardi-Condon
arrangement, the sample could not be rotated, and for a -
cubic sample , the magnetization is inherently non-uniform. We

have developed a different type of technique which allows the

sample to be rotated, and in which the dHvA effect itself is used

to establish the correct amount of feedback. There are several
such criteria, and the ones which are easiest in practice will

be discussed in turn.

1. Minimization of M.i. Combination Terms

As we have seen, M.l. acts as a mixer in the sense that
if two genuine frequencies F] and F2 are present, M.l. generates
nFl + sz where n and m are integers. These terms are not
present in the ideal theory, of course, and the criterion

becomes the minimization (ideally the zeroing) of these

combination frequencies.

22
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2. Mass Plots

The temperature dependence of the L.K. harmonics is given

by

X _
sinh rX

Ar(T) a vxe X
where X = Ami T/H and A = 272 kg/efi.
The M.1. terms have a different temperature dependence
for each harmonic, so that optimum feedback is found when plots

of In A/T vs. T/H for the first, second, and third harmonic are

straight lines with the slopes precisely in the ratio 1:2:3.

3. The Beat Envelope

When 2 signals are close in frequency, all the harmonics
beat. The M.l. terms generally beat at the difference frequency
of the first harmonic because it is the strongest in amplitude.
The feedback can be adjusted to make the harmonics beat at

their proper frequencies.

L4, Phase Information

The relative phases of the harmonics of the ideal L.K.
terms are easily calculated, and since the M.l. terms add in a
different phase, one need simply adjust g until the L.K. phase

relationships are established.

. . 2
5. Linearity of A]/A3 vs. (AI/AZ)

As discussed in Chapter Two, (see [3a]), a plot of A]/A3
vs. (A]/Az)2 should yield a straight line if the harmonic
amplitudes follow the ideal L.K. form. Curved plots are obtained

in the presence of M.1.
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As presented, the feedback technique seems to accomplish
the same desirable objectives which have previously been
attained by exploiting the demagnetizing field. |

Perhaps the most tedious feature in the disk-method is the
actual preparation of the sample. In each sample, only one

direction can be studied, the one perpendicular to the plane of

the sample. The demagnetizing field is very sensitive to
orientation, so that special care must be taken to ensure that
the external field H is precisely perpendicular to the plane
of‘the disk. Disk-shaped samples are fragile, and when using
soft materials such as lead, it is difficult to keep the sample
free of strain. The sensitivity of the detection apparatus is
also dependent on (1-8), so that reducing M.l. reduces the
sensitivity by the same factor.

The above drawbacks are all rélated to the requirement
that the sample be a thin disk. 1In the feedback method there
is no such constraint, and any ellipsoid can be used. The
ellipsoidal shape is necessary only to achieve a uniform
induction field, and it is felt that for some applications of
the feedback technique, the sample need not even be ellipsoidal
(discrimination between genuine dHvA terms and M.I. terms; see
below). In the case of a spherical sample all directions in
the crystal can be studied in the same experiment, and only one
sample need be prepared. The spherical sample is evidently not
subject to the precise orientation requirement of the disk, and
a sphere is the optimum shape for mechanical stability. Finally,

the sphere has a large filling factor for solenoidal pick-up

coils, and it can be shaped quite precisely.
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There is a distinct advantage to the feedback system when
one is faced with the problem of deciding whether or not an

observed frequency is genuine, or generated by M.l. Increasing

the feedback gain from zero causes the M.l. generated terms

to fall in amplitude, while the genuine dHvA frequencies stay
the samé or rise in amplitude. This can be very helpful in .
cases where M.|. generates tens of sidebands,many of which may
be larger than the genuine frequency (c.f. van Weeren and
An?erson, 1973). To acquire the same information unambiguously
from the disk method, one would have to make at least two disks
with different aspect ratios!'

A valuable side effect of using feedback is that the
absolute amplitude of the dHvA oscillation can be very easily
measured. In the past, careful measurement of sample volume
and geometrical couplinj constants between the sample and the
detection coil were required, as well as the net gain of the
amplification system, with all its filters. (c.f. Knecht 1975)
Using feedback, the only calibration constant which is required
is the Gauss to amp ratio <y of the modulation coil. When
optimum feedback is attained, one simply measures the amplitude
of the feedback current If in the modulation coil, and the dHvA

~

magnetization M s given absolutely by

Yle 3vie
-5 -~ "B (for a sphere)

X

[18]

where 8§ is the demagnetizing factor.
The feedback principle could be used with advantage in

measurements of the quantum oscillations in other electronic



properties of metals eq. Shubnikov-de Haas effect, ultrasdnic
attenuation etc. One would still need to measure the dHvA
magnetization oscillations in order to obtain the required
feedback signal.  For example, fgedback could be used to.
determine whether a set of quantum oscillations in, say, the
ultrasonic attenuation are genuine ones or generated by M.I.
As we shall see, an integrator is present in the
feedback loop, bringing inevitable drifts in the zero level
of the feedback signal. When this occurs, there is a D.C.
current added to the modulation field which appears as a D.C.
shift in the external field H. In our experiment, this drift
could easily be kept below 5 Gauss during the course of the

measurements,which was insufficient to materially affect the

26

amplitude data. However, these drifts make the phase information

less reliable.

A slight imbalance in the pickup coil does not turn out
to be a problem since this would simply increase or decrease
the modulatfon range. The coils could easily be balanced to
reject the homogeneous modulation field to 1 part in 103, SO
that a modulation range of 1 kGmighthave been altered by at

most * | Gauss.
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CHAPTER FIVE

EXPERIMENTAL DETAILS

5.1 Sahple Preparation

The experiments were performed on single crystals of lead.
Previous use of the Czochralski method for crystal growth (c.f.
Phillips and Go]d 1969) showed its great success in producing
single crystals of extremely low Dingle temperatures. The
apparatus centers around a melt of zone refined lead (6NT grade)
from Cominco Ltd., electrically heated in a vacuum of 10_6 to 10-7
Torr. A single crystal seed is dipped into the melt, and the
heat conduction through the seed is enough to keep all but the
submerged portion solid. In the process of reaching equilibrium,
the meniscus turns upward, and the seed is slowly pulled from the
melt. Typical growth rates are 0.5-1.0 cm/hr., 0.5 being the
slowest possible. The diameter of the restlting single-crystal
cylinder was found to be rather insensitive to pulling speed,
but critically dependent on melt temperature. Figure 3 shows the
dependence of crystal diameter on heater voltage. The crystal

diameter is very sensitive to heater voltage, and this dictates

the need for a rather high degree of long term stability and
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measurement accuraéy. The more direct measurement of temperature
with the use of a thermocouple. had inherent thermal lag and
irreproducibility drawbacks, requiring the operator's constant
attention during the growth process. In the voltage measurement,
. one need only set the voltage to obtain a crystal of any pre-
determined diameter. Four figure accuracy was required in the
absolute (A.C.) voltage measurement and a Sola 5008 constant
voltage transformer provided the required stability. To
adjust the voltage, a variac was used in conjunction with two
rheostats. The fine control had a range of * 1 part in 103 of the
absolute voltage. Crystals ranging in diameter from 1 to 10 mm
were pulled reproducibly using this method. The experiment
required a spherical crystal of roughly 7 mm diameter, so that
crystals pulled for the feedback experiment had a diameter
slightly larger than this.

After pulling a crystal roughly 5 cm long, .it
was separated from the melt by raising the voltage on the heater.
Once the cylinder was removed from the growing apparatus,
it was carefully mounted in a rotating chuck. A hollow copper
circular cylinder was used as a spark cutting tool. The wall was
kept below 0.010 in, and the tool was rotated during the cutting
procedure since the tool erodes as well as the sample. As the
rotating tool was lowered with its axis perpendicular to the
rotating crystal cylinder, a spherical sample resujted if the

i

axes intersected.
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The Whtersection was closer than 0.002. in, as this could
be carefully adjusted during the final cutting stages by making
sure that the tool wascutting oﬁ all of the circle inscribed
in the crystal.

When the sphere was near completion, there remained
two points or ''ears'' on which the tool was cutting. One held
the sphere to the unused part of the crystal cylinder, the other
holds the éndpiece to the sphere. It was desirable for the
latter to cut through first, so the tool axis was positioned
5° away from being perpendicular to the crystal axis, keeping
both axes coplanar. Using this cutting procedure, crystals
forming better than 1%spheres were usually obtained.

Since lead is a strong absorber of X-rays, the surface
of the crystal must be very good in order to obtain adequate
Laue back-reflection photographs. A suitable etching procedure
was needed to remove the pitted surface layer generated by the
spark erosion process. This procedure consisted of a 45 minute
etch in strong etchant (250 cc glacial acetic acid, 187.5 cc

distilled HZO’ and 62.5 cc 30% HZO ) immediately followed by a

2
wash in ethanol.

After carefully mounting the crystal on a goniometer,
5 minute Polaroid X-ray photographs could be taken for orientation.
The X-ray process included rotating to major symmetry directions

to ensure both a single crystal, and an unambiguous final

orientation.
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5.2 Detection Apparatus

In the inductive method for measuring magnetic susceptibility
the sample is placed in a balanced pickup coil and also a separate
modulation coil. The latter provides a time dependent (often
sinusoidal) deviation in the steady background field, and the
pickup coil is balanced to be insensitive to this change. Any

net magnetization inside the balanced pickup coil induces a

~

voltage in it proportional to %%-. The balanced pickup coil
consists of two coils, one for the detection of the total
induction (the pickup coil) and the other to buck out the
contribution from the modulation field (the bucking coil).

Since large modulation was envisaged, mechanical rigidity
was of primary concern since in this regime vibrations are the
major source of noise. To this end, the modulation coil took
the form of a long solenoid, mechanically fixed inside the bore
of the main magnet providing the steady background field.

The pickup coil and the counter-wound bucking coil, again
to achieve maximum mechanical rigidity, were wound as two con-
centric solenoids directly on top of one another. The centre
tap was made available to fine tune the balance when the coils
were cooled. |t is frue that some sensitivity is lost in this
arrangement because the flux due to the magnetization of the
sample threads both the pickup and the bucking coils. For the
worst case of a long rod sample, this loss for our coils is less

than a factor of 2, but the gain in signal-to-noise is well worth

it.



32

Some thought was given to the size of the wire which
should be used. A simple calculation taking into account the
Johnson noise given by the Nyquist equation and the total in-
duced signal S gives the signal to noise ratio S/N as a function

of the radius of the wire r.

N _d h -1/2 1.
[19] SIN R 4 [4mM] (-h-)(llkBTAf) ﬁrTW (r)
where M is the magnetization of the sample

h is the height of the coil
w is the width of the coil
T is the temperature-
Af is the frequency bandwidth
and p is the resistivity of the wire.

[19] has no maximum as a function of r, so that r should
be made as small as possible, with only the mechahica] strength
of the wire to be considered. The resistivity dependence suggests
pure copper wire or superconducting wire.

When this solenoid-on-solenoid arrangement is used, one
must carefully calculate the ratio of turns in the pickup to
that in the bucking coil, as the combined width of the coils is
limited by the available space. One must also be careful to
overwind the bucking coil so that in the process of batancing,
turns need be removed, not added.

In the final model, the pickup-bucking coil pair

had an inside diameter of 0.300" and an outside diameter of 0.500".
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The pickup coil had 9500 turns, and the bucking coil had 6016%
turns of #46 copper wire. (0.0017 inches in diameter, insulation
included) .

The balancing was done by constructing a modulation coil
similar to that in the cryostat, and placing the sample-bucking
coil arrangement inside. Turns were removed from the bucking
coil until zero pickup resulted. This could be done to an
accuracy of % turn (’\:]i'nlO5 at room temperature but worsening to
~ 1 in IOh upon cooling to 4.2K). For best noise immunity, the
connection to the outermost winaings was put at ground potential.

The spherical sample (radius a) and balanced pickup coil
form* a very convenient detection arrangement. The sphericity
of the sample ensures a uniform magnetizing field inside, and
concurrently forms a spatially inhomogeneous dipole magnetizing
field outside the sphere as shown in Figure 4.

The coil former for the sample coil (a full description
is given in Appendix A) formed the housing of an intricate
rotation system designed to rotate the sample about an axis
90° away from the only direction of access. Pippard and
Sadle (1969) describe a system which uses very little space in
the sampleregion by employing a Mylar gear wheel. Several
modifications to this design were made to accommodate our
spherical sample, and compactness requirements. The details

of the construction are presented in Appendix A.
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Although [19] gives a 1/p dependence to the signal
to noise ratio, we were working in the regime where the
total noise was predominantly determined by the input
noise of the front end differential amplifier. For fre-
quency response considerations, however, (see section 5.5)
a superconducting sample coil was wound. Unfortunately,
it turned out that the large modulation employed in our
measurement techniques rendered the coil normal in parts

2
of the modulation cycle where 9—%— was large. The second

derivative is important since ?E, along with the self
capacitance of the coil determines the internal induced
currents. A calculation performed after the coil was
wound and used showed that these induced currents exceeded

the critical current for the wire at the fields in which

we were working.
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5.3 Modulation Coil and Superconducting Magnet

Both the use of the feedback technique, and the detection
of long period dHvA oscillations benefit greatly from the use
of large modulation. Hoﬁogeneous modulation of >1 kG peak to
peak amplitude could be achieved with the final apparatus.
Wrapped by Richard Christie, the coil took the form of an 0.0602m
long solenoid with an 0.00986 m inner radius. Four layers of
316 turns each were wound using a niobium 48% titanium alloy
superconducting wire (0.0065 inches in diameter, insulation in-
cluded). The finite solenoid equation gives a Gauss-to-amp ratio
of y=251 for this geometry. In-order to modulate with amplitudes
of 2 1 kG, several amps are required to power the coil. Since
the transmission of this current would be a major heat leak to
the helium bath, a simple calculation was done to optimize the
diameter of the leads to the modulation coil. Taking the re-
sistive heating and conduction into account, copper and brass
wire gave roughly the same heat leak for typical currents (the
optimum diameters were, of course, very different). Brass was
chosen because of its smaller temperature coefficient of resistance.
For typical‘cﬁrrents, the heat leak was estimated to be 0.1 Watt
for the 1.4 mm optimized diameter brass wire. Superéonducting
wire was continﬁously soldered to the brass up to the maximum
level of the helium bath.

In addition to screw mounts, grease was used as a .

low temperature glue to énsure the rigidity of the mount. The
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main magnet was built by American Magnetics (A.M.l. #10066)
and was rated at 80 kG with a homogeneity of 1 part in 105
over a 1 cm diameter sphere at its centre. Vapour cooled
current leads were used to minimizethe heat loss; the current
at peak field was 65 Amperes. The flow rate of helium through
these leads could be constantly monitored while running. The
Gauss to amp ratio of the main magnet was 1229. The assembly

included a persistent current switch, which allowed the magnet

to run without an external power supply once it was energized.

5.4 The Cryogenic Apparatus

Housing the main magnet is an Oxford liquid helium dewar
with the usual liquid nitrogen jacket. The vacuum spaces
contain super insulation for maximum thermal isolation. Inside
this outer dewar is an inner dewar with a tail extending into
the main magnet core, inside the modulation coil.

Built by Peter Haas in the Physics machine shop at U.B.C.,
the inner dewar featured an externally controlled vacuum tight
valve which when opened allowed a transfer of liquid helium from
the outer dewar to this inner dewar. Not only does this make
the transfer process more convenient, but the helium transferred
to the inner dewar (and sample) could be filtered to remove solid-
air particles..  The vacuum jacket of the inner dewar allowed
the pumping of the helium inside tolattain temperatures of about
1.2K. For best noise immunity, the inner dewar was isolated

mechanically from the main magnet, and modulation coil. This



TRANSFER
VALVE

INNER DEWAR
HELIUM
FILTER

38

LEVEL
DETECTORS

inner Dewar

QOuter Dewar

LIQUID HELIUM
(T=4.2 K)

LIQUID HELIUM
(L,2K=<T<4.2K)

INNER DEWAR

h

[

HELIUM
RESERVOIR OF
OUTER DEWAR

SUPERCONDUCTING
MODULATION COIL

Figure 5.

MAIN MAGNET COIL

General Schematic Cryogenic Assembly



39

isolation could be checked externally with a contact
resistance test. Both the outer and inner dewars contain
liquid helium level detectors manufactured by American Magnetics.

Figure 5 shows a composite drawing of the cryogenic apparatus.

5.5 Signal Processing

As previously discussed (Section 5.2), the pickup coil
consisted of 2 counter-wound solenoids balanced at room temperature
to be insensitive to uniform fields. A lead from the centre tap
of these coils was made available at the top of the cryostat to
fine tune the balance as the coils were cooled.

The major consideration in the design of the detection
circuitry was the elimination of any frequency dependent com-
ponents in the feedback network. Since the pickup coils, and
modulation coils would have considerable inductance, the following
procedures were used to eliminate possible phase shifts caused
by their reactance. Care was taken in the design of the fine
tuning circuit to ensure that the coils were not léaded to the
point where phase shifts might be important at the maximum
frequency.

The pickup coil's inductance was calculated to be 18 mH as
an upper limit, and 500 Hz was chosen as the maximum freguency
to be handled by the feedback network.

The balancing arrangement is shown in Figure 6. The equi-

valent circuit for the balancing circuit is shown in Figure 7.
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The external load on the centre tap (C.T.) is at most R].

If R is the parallel combination of R2 + R3 and Ri’

Ri(RZ + R3)

Ri + R2 + R3
ViR
Rs+JwL2+R]+R

Then v
o

VR (Rg+R +R - jul,)

]
2 2
(RS+R]+R) + (wLZ)

[21]

The phase shift is

-wk
- “ho
[22] ¢ = tan [R;Tm]

The D.C. resistance of the counterwound coil was Rs = 429

at 4.2K hence, for a phase shift of <1° at 500 Hz,

R1~+ R > 450 @

As it turns out, the self capacitance of the coil was the
determining factor. The self capacitance of a coil can to a
good approximation, be represented by a parallel capacitor shown®
as Cs in Figure 6.

The fact that this capacitance was the dominating influence

on the frequency characteristics was ascertained by unbalancing

the fine tuning slightly, and observing the frequency response
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of the pickup coils to the modulation field. When performing
this measurement, with R]>> 450 @, the frequency response of the
pickup coil rolled off to -3db at 90 Hz.

When the self capacitance is taken into account, the

voltage Vé in Figure 6 is given by

. .
- - 4 [
[23] Vo T wC Ty 1 Vi
s \j{wL- Zﬁ? + Rs
where L = L] + L2. Hence
1

[24] Xg 1-w?LC - jRwC

)

i (1-02LC)2 + (wRC)?
If we assume L is negligibly small,

v 2
o _ 1
V. I 1+(wRScS)2

From the frequency characteristics, Cs was determined to
be 25.8 uF. Using the full equation [24] with L = 18 mH did not
change the rolloff frequency, proving our assumption that L is
negligible. The frequency characteristic of the coil is the
limiting factor in the feedback loop, and in fact sets the upper
bound to the usable feedback band.

The modulation c6il was energized with a Crown M600 D.C.
amplifier. The coil was placed in a series combination with a

5 @ non-inductive monitor resistor. The inductance of the coil
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produced a large phase shift even for frequencies as low as

50 Hz. This situation is easily remedied by using current
feedback. A tap was taken between the 5 Q resistor, and the
modulation coil (see Figure 9), and used to provfde a feedback
voltage for the operational amplifier feeding the Crown amplifier.
The Crown amplifier gain is then immaterial so long as it is large
enough and the current gain of the op-amp-Crown configuration is
determined by only 2 resistors. Using this idea, the phase

shifts were eliminated up to1 kHz, above which the gains needed
would set the system into oscillations.

There is a safety precaution which must be emphasized at
this point. Since the Crown amplifier can deliver enough current
to damage the apparatus, its gain, while still being sufficient
to assure linearity, must be kept below the point where
accidental disconnection of the feedback resistor results in
catastrophe. The Crown gain setting can be used as a limit,
without harming the overall open-loop gain, since the op-amp
provides most of the gain and merely saturates if the Crown cannot
deliver the current needed (see Figure'9). The Crown gain was
set to deliver the maximum allowable output current for a 15V
input signal.

The voltage appearing on the well-balanced pickup coils is
proportional to %%u M can be retrieved easily by analogue
integration. The signal proportional to M was then added to the
modulation signal and fed to the modulation coil as a current.

A block diagram of the apparatus appears in Figure 8. The circuit

diagram appears in Figure 9.
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A simple arrangement was used for testing the frequency
response of the entire circuitry. The procedure involved un-
balancing the pickup coil slightly, and observing the signai
after integration on one channel of a dual-trace oscilloscope.
The feedback path was broken at the adder, so that only the
modulation signal was fed to the modulation coil. The modulation
signal from the oscillator was monitored on the second trace of
the 'scope. The two traces were carefully superimposed at some
low frequency, and then the frequency of the modulation was
increased until a seﬁaration between the 2 traces became
noticeable. The wusable feedback band determined in this way
was 0.2 to 79 Hz. It must be pointed out that this limited
bandwfdth is not very restrictive. The low frequency limit was
imposed by a 10 sec time constant on the integrator which could
be increased in the future. In the procedure used here, the
lowest frequency is that of the field modulation and dHvVA terms
can always be ﬁade to appear at higher time frequencies.

Initially the lead sphere was oriented close to the [110]
direction. So oriented, lead exhibits a pair of strong vy
oscillations with FY&I7.9, and a single.o oscillation with Fa'QQBO MG.
We were most: fortunate to dbtainuthe use of a digital spectrum:
analyzer (Hp3582A): which is“essenﬁf&le“anronrlinemFourier trans-
former. 'WhenvapprOpriately.set up, this computer could resolve
the harmonics of the 'y doublet,. as. wellas the sjdebandsgappearing
at F, i'nFY-due to M.1. This "appropriate'" setup wiill now be

described.
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A triangular wave was used to provide a ramp in the
modulation field, and its amplitude was chosen to sweep through
enough dHvVA osci]lationé for the resolution of the analyzer to
exceed FY = 18 MG. When a Hanning window is used, (see Appendix
B) 4 oscillations of the fundamental were enough to easily
resolve all the harmonics. In practice it was not difficult to
sweep through about 5 fundamental y'oscillations at 60 kG; this

number of cycles could be increased by working at lower fields
2

_because of the,H2 dependence of the field spacing AH & %—.
At 60 kG, the field at which most of the work was done,
AHY = 200 G, and a peak to peak ramp of 1 kG sweeps through 5
v oscillations.
The spectrum analyzer obtained its input directly from
the front-end differential amplifier (see Figure 8).
The modulation frequency was chosen to be 1 Hz, hence
the time window on the analyzer should‘be a little less than
0.5 sec, triggered at the beginning of the rising ramp of
the triangular modulation. Figure 10 shows the synchronizafion
of the trigger and the time window.
If a limited number of cycles is considered, the oscilla-
tions are essentially periodic in H, and a linear field ramp

will transform the dHvA oscillations to the time domain where

their time frequency is given by

h F fmod
[25] f=— ’

H2D



48

+ 500 GAUSS I~

FIELD
MODUL ATION

~500 GAUS

TRIGGER

SIGNAL

TIME

WINDOW OPEN —}— CLOSED —}—— OPEN ——]|
L 1 1 L
0] 0.5 (. 1.5

TIME (SEC)

Figure 10. Syhchronization-of the Time Window



L9

where
H is the steady background field
h is the P-P modulation ramp amplitude
mod is the modulation frequency
F is the dHvA frequency
and D is the duty cycle of the modulation waveform.

For a triangular wave, the duty cyclé is 1/2 so that

2h F fmod
H2

f =

For fmod = 1 Hz, H = 60 kG, h =1 kG, the y oscillations

appear at a frequency of ~ 10 Hz, the a's at " 89 Hz.
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CHAPTER SIX

EXPERIMENTAL TEST OF THE FEEDBACK TECHNIQUE

6.1 Preliminary Considerations

initial experiments were performed on a single crystal
lead sphere oriented with the total applied field along [110].
tn  this-.direction; lead exhib'its strong y oscillations con- -
sisting of two frequencies separated by 0.42 MG at FY é 18 MG.
These 2 frequencies ya, yb have approximately equal amplitudes
of A?ﬂ §~A$-'§ 1,. Gauss at 1.2K in a field of 60 kG. There
are also somewhat weaker a oscillations at a frequency of 160 MG,
and under the above conditions, Aa N 6;03>539552 Thgse
oscillations are shown in Figure 11 (H ) kG,'T.& 1.2 k)

It turned out that the expansion parameter KAY was about
0.4 in the conditions under which we-usually worked, SO we
expected the harmonic distertion to be quite high.

In this chapter, we interpret the dependence of several
observable quantities on feedback gain. The technique appears
to agree well with the expected results for no M.l. at the

optimum feedback gain using the criteria presented in Chapter 1V,

Much of what follows, therefore is the analysis of the quantities

under non-optimal feedback conditions, to ensure an understanding
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~of the mechanisms involved, and at the same time, it clearly

shows the véry téﬂioﬁs mathématics one avoids B? using thé
feedback technique. While it is important to check this -once, one
must remember that at the optimum feedback position, the
correction factors in any of the results are no longer.needed.
For each quantity discussed, we shall, in turn, look at the
cases of no feedback, non-optimum feedback and optimum feedback.

In some cases, a variety of feedback settings were used.

6.2 Minimization of Sidebands

In order to obtain an idea where the optimum feedback
setting was, the minimization-of-sidebands criterion was used
first. It is the simplest and perhaps also the most dramatic.
Using the triangular modulation, about 5 fundamental ¥y
oscillations were swept out, and analyzed by the spectrum analyzer.
About seven sidebands at Fu * nFY were easily resolved. Using
the minimization of sidebands criterion, the object was to adjust
the feedback gain until these sidebands reached a minimum.
Changing the gain from zero in either direction produced the
expected resu]fs, the sidebands decreased for negative feedback,
and increased for positive feedback. Examples of the Fourier
amplitude spectrum for several feedback settings appear in
Figure 12. Figure 13 is a quantitative presentation of the
dependence of the d, d~+y, and o-y amplitudes on the feedback

~gain.
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To compare the observed amplitude with theory, ‘let us

use the convenient-notation:

2m F % 1.
R 1) A = Lm(l—d).’M
Y50 y2 Y O Y,0
-1 - B . M = hn(1-8)M
& - b (1-8 Y0 TT( ) Y0

We expect the strongest M.l. contribution. from the effect of
the v term on a. The fundamental dHvA magnetization fori o
is given by

, F

= " 1 _0('_'.'. -
[26] M, = Aa sin [2ﬂ(B+h_  1/2) n/k]

k(!\\:)

where h is a small change in H.

The phase factors need not concern us for thepresent, and

F h
we can expand the denominator for —_ << 1 to obtain a first
H
order approximation
M(]) = A cos [f (h+eA cos f_h)]
o o Y Y

assuming that the dominant contribution to the total magnetization
in B is Ai cos fyh. This can immediately be decomposed into

harmonics
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[27] M(l) = K; Jo(fa eﬁi) cos f h
- K; Jl(fa eﬁi)[sin(fa+ fY) h + sin(fa; fY)h]
- A9, (F, eAi)[sin(fu+ 2€ ) h + cos(f - 2f )h]
v K& J5(F, eﬁi)[sin(fa+ 3f ) h + sin(f - 3f )h]

where Jv(x) is the Bessel function of the first kind of order
v and argument X.

~ This first.step generates.sidebands+around fa,'and~the

next step in the calculation is to allow these sidebands and
fu itself to interact with the y oscillations. The equations
are identical to those in the first step with the subscripts™:
referring to the corresponding reversed roles. One only

needs careful bookkeeping. This step is carried out only to
the J] contributions. For example, when fa interacts with v,

we get terms in f and fu-y: The result is as follows:

oty
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(2) _ oAk o * _ . -
[28] M - Ay Jl(fy eAa+Y)cos[fY (fu+ fy)l terms at fre-
quency fd

+ AY U (Ff eAt )[-cos{f +(f - f )}]
Y o o-y Y oy

- AT J (f eK) sin (F+ f)
. o Y o terms at fre-
) guency fu+

ol

+ A" J](f eA ) sin (f - f

Y T oat+2y Yy at+2y v

terms at fre-

uenc f
) q Yy a-y

- A® Jl(fy sA&) sin (fy— fa)

+ A% J. (f eA”

y ity a-Zy) sin (fY+ fq_

2y

-

+ AF J(f €A&+Y)['C05(f§+ fa+y)] terms at fre-

quency fu+

<
<

% % _ _ 2y
+ AT J.(f EAu+3y)[ cos(fY fuf3y)]

<
=2

+ AT J (F eA® )cos(f - f )
o=y Y a-y

a

terms at fre-
) quency fu-ZY
-3y

+ A J](fY EAG—BY)COS(fY+ £

(2)

in this second step.- M , the amplitudes Aare to be taken

from those generated in the first step M(]).

This éXpénsion should 'be ' a reasonable-approximation to the
gain dependence in our plots of the sideband amplitude (Figure 13).
The expansion reducesS to the simpler form given earlier

([13al,[13b]) if we consider only the first 2 combination fre-

quencies, and allow only v to interact with oo. We then obtain
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AMY = Aa J](fagAY) + AY Jl(fyeAa)

and using the small argument approximation

J](x) = g-, x<< 1, this-reduces to .

N sAZAi )

Aa+y S (fa+fY
Similarly, o

. eA A"

A e =2 X (f )

o=y 2 o Y

ot

A& remains unchanged in this approximation. This is the simplified
result obtained earlier with e=1 for no feedback (see [13al,[13b]).
We immediately see that the simple approximation is insufficient
to describe the large effect M.l. has on our data, since AE does
indeed chanée, and the sidebands do not rise linearly as this
predicts.

In order to use the more detailed formulae [28], we must
find the absolute magnetization of at least one of the fundamental
terms. This can be done in a few ways. The most satisfying way
is to measure N; by dbserving the feedback field at the optimum B.
The relative magnitudes of N; and N; canbe read directly off the
Fourier transform. An alternate method is to fit the gain dependence
of the o oscillations to Jo(faEK:) . When there is no feedback,
e = 1, and the magnetization at this point is Ma

e=1-5y Jo(fdAf‘Y).
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At optimum feedback, € = 0, and M. . = A , hence
“a,e=0 o
Na=1
o = Jo(quy)

which yields A";. |

Using the feedback technique and [18], Ai was measure to be
6.2 Gauss in a field of 61.82 kG. (Keep in mind that 4n(1-8) is
ihcluded in this notation). An independent fit to the JO curve
yielded 6.0 Gauss. This is good agreement especially since in
these early stages, the feedback was not set particularly care-
fully. The amplitude of the o oscillations was  then obtained
by their relative strength in the Fourier transform.
This gave;A§‘%.0u]89 Gauss. . !

Using the derived formulae for NE, A

oty ? and Aa-y’ we obtain

the feedback dependence:

[28] Aa(e) 5Aa(,o) Jo(faeAY)
[29] Aui_Y(e) = Aa(o) J](faeAY) + AYJ](fyeAa) + AYJ](fue Aa+zy(e))

% % X % A‘.‘:
Aa(o) J](fueAY) + AYJ][fYAuJO(fae Y)]

1+

Ale[fyAaJZ(faeAy)] .

The results of this calculation are shown as solid curves along with
the measured data in Figure 13. |t should be mentioned that there

are no adjustable parameters in the sense that all the quantities
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needed for the calculations were measured by independent means.
The agreement is exceptionally good for AZ, and the generalitrends
for the sidebands seem correct.

An independent check on the Ai(e) dependence is conveniently
afforded by Aoki and Ogawa (1978) who used rod shaped samples.
In their data the a oscillations have a very small amplitude, and
only the sidebands appear in the transform. We expect Az « Jo(faA:)'
We measure'Ai = 6.0 Gauss, for a sphere, (6=1/3), so that for a rod
(6=0), A% will have increased by the ratio (T:%7§) = 3/2. The

argument of the Bessel function becomes
far - 2160 MO
Y (61.82 kG6)

This is very close to the first zero of Jo» Which is 2.4o5.

(3/2) (6.0) ~ 2.36.

Extrapolating our data, which was possible at a later date from an
amplitude vs. field measurement, (see Figure 27) we can obtain a

more realistic estimate at the field used by Aoki and Ogawa.

At their field, 50.5 kG, we measure K; 4.10. For their field,

£ AR = Zﬂilég_ﬂgl.(3/z)(h_]o)v

o 5 2.42
Y (50.5)

which again is in good agreement with their observation of small
fundamental a amplitude.

We notice from Figures 12 and 13 that the sidebahds heVer»qom-
pletely disappear. There are many reasons why this might occur,
the most obvious being a frequency dependence of the feedback network.

There is a clue to the origin of this imperfection in the



amplitudes of the sidebands fa+y and fa-y relative to each other.
The data show a change in their relative amplitude, so thénechaniSm
must explain this change.

The frequency response of the feedback network might be such
. a mechanism if the time frequency of the y term is correctly fed
back, but that of the higher a term is not; however, this is not
the case, as was shown by a simple experiment. Decreasing the
modulation frequency by a factor of 10 decreases all the feedback
components by the same amount. There is no doubt that the system's
response is very flat below 10 Hz, yet even when o was made to
appear at only 7 Hz, the sidebands at optimum feedback still
appeared with the same amplitude;.

It was thought that a spatially inhomogeneous feedback
field might also cause the residual sidebands. While the feed-
back field itself is only of the order of 1 Gauss, the super-
imposed triangular modulation was about 500 Gauss at its peak
value. This inhomogeneity would not however, cause the relative
sideband amplitudes to change. Even if the field is spatially
inhomogeneous, there would be no dependence of the feedback field
on orbit i.e. FY and Fa would both be fed back the same. This
inhomogeneity may impose a limit on the minimum amplitude of the
sidebands, but would not change their relative amplitudes. Eddy
currents induced in the sample would cause a similar inhomogeneity.
The magneto-resistance of lead gives it a skin depth of about
1 meter for our typical fields and frequencies. The skin depth,

then should not be a problem, but if eddy current inhomogeneities

61
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were present, they would not account for the non-vanishing
sidebands.

The most likely explanation is phase smearing in the
sample. This sample had been thermally cycled between room
temperature and 4.2K three times before these data were taken.
If dislocations and strain had built up, the change in electron
density would change the frequency of the orbits in the
immediate area, making the optimum feedback a function of the

oscillations under consideration.

6.3 The Mass Plots
The ‘temperature dependence of one dHvA harmonic amplitude
is given by (see [1b])
X 5

= 2 x
Ar(T) R X =27 m kB T/(e f B).
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In the high temperature limit (X 2 3), the hyperbolic sine function

can be replaced with its exponential approximation: sinh X % ex.

1
2
Then, letting

A= 2n2m]%/(efi) = 146.9 %ﬁ, we have

s
w

| .
[31] Ar(T) a1 T L

hence, a plot of &n %-vs. T/H should yield a straight line of
slope =riAu. This approximation usually holds, but in the case
of the fundamental y oscillations at [110], the value of X at
1°K and a field of 60 kG is about 1.4, and the error in the
exponential approximation becomes about 6%. A simple correction
term can be used, and it follows from an iterative scheme to
determine u from data which arenot satisfactorily far into the

high thermal smearing limit (X 2 3). To develop this scheme,

we start with the basic hyperbolic form S

[ A S

-rX
_ rX _ 2rXe

CTA_ = = e
1-e

r sinh rX

where C is a temperature independent constant. Then at constant

field we have
A

n (7;) + on (]_e-ZrX) + constant = -rX
or
_."2rixu T/H
2n {Ar(' s —)} = - T/H .
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(n)

if n is the order of iteration, the value u is obtained

from
_ woeny (M=) 0
where U(O) + <, Convergence is achieved when u(n-]) = u(“)

to the desired degree of accuracy.

When the vy oscillations are observed without feedback, a
plot of &n %—vs. T/H results in curves for all but the first
harmonic. This is shown in Figure 14. Application of near-
optimal feedback promptly straightens out these curves as
shown in Figure 15. Table 1l shows the effective masses
measured with near optimal feedback in the [110] direction,

along with their counterparts derived from data given by Phillips

and Gold (1969);

Table I

Effective Mass for Observed Oscillations in Pb:H[] [110]

0scillation u(Measured) u(Derived)

o 1.08 1.10£0.01
oty , o=y 1.74 1.66+0.02
v fundamental 0.565 0.56+0.01
Y 2nd Harmonic 1.00 1.12+£0.02
vy 3rd Harmonic 1.35 1.68+0.03

[values of n (measured) are derlved from the slopes of Figure 15
for non-optimal feedback]
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The agreement for the fundamental oscillations is good, which

is to be expected because they are essentially unaffected by M.I.

The combination terms. d+y, ° a-Yy, are generated by M.l., and

in the simple approximation

A A

= 2 Y
AOLJ_rY > (fa + fY) .

The temperature dependence is

“A(u +p_ )T/H
_ 22 oy
[33] Aye (T) = T2 e

Our measured value comes from the slope of a plot of . -

A

oty
T2
In the -ideal -theory, the ratio u]:uz:u3 is 1:2:3. The derived

n

vs. T/H, and the derived value is the sum of Hy and By

values in Table Il are Hys Zp] and 3u], since My can be measured
with minimal interference from M.l. Upon measurement of these
values, we found them not in accord with this ratio suggesting
the presence of residual M.l. In order to take account of the
residual M.l., present because the feedback gain was not set to
optimum, the conventional theory of M.l. is applicable.

In the conventional theory, if A represents the L.K. amplitude,
and A' is the interacting amplitude,

2 2\ 2 }1/2

: K E A] KEA]
[34] A, = A, 11 - : + 12
. Y2~ A, /5'A2
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To find the amount of M.l. still present, we calculate
Aé from [34] adjusting € wuntil the temperature dependence plot
yields the ideal effective mass.
e - =X _ -2X
Writing AI g] X e and A2 = 52 X e

to extract the temperature dependence, we obtain

[35] Ay = &, X e Knigx + 172 g2 X2

K E E?
where L =

V2 £,
and

Ay
[36] n
[ X[1-2x+1/22%X°] '/2]

Plotting the left side of this equation against T/H should
yield an ideal slope of -2>\uY = 165. A numerical calculation gave
the value z = 0.62 as the best fit line with the desired slope.
With this value of ¢, the correction factor [1-zX + VZI;ZXZ]V2
attains the values 1.47 to 0.71 between 3.4K and 1.2K, respectively
which is appreciable, but not drastic enough to warrant further
terms in the expansion. \

The same treatment can be applied to the third harmonic.

‘The conventional interacting theory in the presence of feedback

gives (see [7c]).

3k e A A 3k e A' 2 2
[37] 3 =Agdl - ——=+ 172
V2 3 : V2 A3
KE A 2 2A3 2 1/2
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As before A3 = £3 X e_3x, and introducing
2
52 )
n ==, the equation becomes
5153
[38] Ay = AgL1=3TnX + V2 (B3znX) 2 [1-v2 ex1+ (37 £ nx?) 2} V2

The curly brackets give the correction factor, so that plotting

A

n __3_772 vs. T/H should give a slope of —3AuY for the appropriate

cho?ie}of n. Using the value of ¢ calculated béfdre, a value of
n = 1.1 yields the correct slope for the third harmonic temperature.
dependence.

The agreement of the calculation with the expected results
suggests we correctly understand the mechanics of the non-optimal
feedback setting, and hence we can use the slopes of the mass plots
as a criterion for realizing optimum feedback. The mass plots made
at optimum feedback are shown in Figure 16. The largest source
of scatter was the temperature measurement; this is indicated in
Figure 16 by a systematic shift in the points of each line which
were taken at the same temperature. The ratio of the slopes.are now
1:2:3 within 4%. The Y data were known to be insufficiently far

into the high thermal smearing limit, and the correction term

developed earlier was employed in their analysis.

6.4 The Beat Pattern
The dominant contribution to magnetic interaction usually

comes from the fundamental dHvA frequency since it is usually the
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strongest. |If there are two neighbouring frequencies present,
and beating occurs, the terms from M.i. at the second harmonic
frequency will beat with a frequency equal to that of the funda-
mental beats rather than at twice the fundamental beat frequency
as would normally be expected. The same is true for all the M.I.
harmonics. As a result, the beat frequency will only be pro-
portional to the harmonic index (r) if there is no M.i. present.

In lead along [110], we have such a situation with the ¥y
frequencies (see Figure 11). The fundamental is about a factor
of 10 stronger than the second harmonic, and the fundamental
beat frequency is roughly 0.42 MG. In the ideal theory we can
represent the magnetization due to the two y frequencies

b
(+v,y) by

M3 = z Ai sin [Zwr(thF'- v) - w/h]
r
M = Y A? sin [2ﬂr(F1fF - v + n/k]
and Mtotalr= M2+ Mb
where 8F = F - F* and FOF

The sign reversal of the phase factor w/k is required since the
area of one of the corresponding Fermi surface areas is a maximum,
while the other is a minimum. (see Ogawa and Aoki (1978)).

A . .
If we let n = b’ then elementary trigonometric

manipulations lead to
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[39] ytotal, ) (Ai+A|‘i)‘/§:.{(1+r,2)+(1-nz)sin(ZwraF/B)‘}'/2
r
x sin [27r (g -y + wr]
where b, = tan_]{n tan (ﬂ:fF‘- m/4)}
= _ Fa + Fb
and F =

2

Unfortunately, the phase of the beats is very sensitive
to orientation. This is clearly shown by the large spread in
field values of the minima reported in the literature. This
sensitivity results from the relatively low symmetry in the ¥y
oscillations along [110]. Beats in oscillations corresponding
to orbits of higher symmetry such as B at [100] do not appear to
be so sensitive.

The beat envelopes for thefirst three y harmonics without
feedback are shown in Figure 17. The envelope of the first °
harmonic appears as we expect, however that of the second
harmonic clearly has the periodicity of the first. The third
harmonic beat envelope has a part which is beating at thrice
the fundamental beat frequency however, the position at the
field corresponding to a first harmonic maximum has higher
amplitude, indicating that at least some of the amplitude is
due to terms generated from M.l.

With near-optimal feedback, shown in Figure 18, the second
harmonic appears to be approaching a beating pattern at twice
the fundamental frequency. The third harmonic is still

affected by M.l. effects.
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Figure 17. Beat Envelopes Without Feedback
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Concentrating on- the second harmonic, we observe a
sequence of alternating large and small beat maxima. The
apparent beat period also alternates.

To explain these results we can call upon a result derived
earlier (see [7b]) for the second harmonic amplitude in the

presence of M.l., and feedback, namely,

. 1 «e Azl Ke A%ZI/Z
[hO] AZ = AZ[]‘/Z— —A-Z——-'+ ]/Li ( Az ) ]
2
where K = 8“2F
H

If we take the limit as A2 approaches zero, we obtain Shoenberg's

"strong fundamental'' result
[41] A, = A% ke

Upon - substitution of “the beating amplitude of the fiindamental
A into [41], we can find the contribution of A, at the second
harmonic.
We see from Figure 17 that it is a good approximation to
take the amplitudes of the individual <y oscillations to be equal,

Aia) = Aib). The magnetization due to the fundamentals is then

F - SF
R(') - A]'{sin [2n¢( m z _ ) - n/h]
- 8
F-5

-y + WA

+ sin [27(

H
or

[42] M o ZAI{sin[Zﬂ(E:- ¥)] cos[ZN(S%J - n/4]}
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The envelope is given by ..

27m8F
ZA] [of0 1 [T TT/‘-’]

so that the magnetization amplitude appearing at the second
harmonic due to the first is

w2 K w2 cos? [2n(Eh) - w1}
or

[43] ﬁ(z) = K A% e{l + cos [Zﬂ(%;) - w/21}

The genuine second harmonic gives

A=A, {sin [ZN(ZFJGF - 24) - w/b]’

+ sin [Zﬂ(ZF—SF

=5 - 2y) + /D

or

[44] X F

M= 2A2‘sin [ZH(%F - 2v)] cos-(ZEHQE - w/h)

Adding the 2 contributions gives the total magnetization
amplitude at the second harmonic

[45] H = 2, cos (ZﬁfF - a/b) -

KE A% [+ cos(21fF - n/2)]

The contribution from the first harmonic can be verified by
using an alternate approach.

From [12] for two frequencies, the
contribution at the sum frequency is
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K € A2 %EAZ
__a a _. _ b _.
[46] ASUM = 3 sin (Zxa) 7 sin (2xb)

€AaAb S .
: 7 E@é + Kb) sin (Xa + Xb)]

Substitution of the two y fundamental frequencies gives:

2
-k Ae —
Asum = >— {sin [2n(gf—ﬁ—§5 - 2v) - /4]
+ sin [zn(Zi;—‘*E- 2y) + 1/41}
A?E 2F. ,
- —— © 2k sin [2m (*Ff— 2v) 1. s

Elementary trigonometric ménipulations lead to:

[47] M=-xe A% [cos (ZifF - m/2)+1]sin[2m
which reproduces the amplitude in [43].
The intéracting result [45] should fit the near-optimal feedback
data. In order to obtain values for A] and A2 to fit the curve,
one can find the zeros, and match the period ratio, that is, insist

that every other beat period be shorter by the observed amount.

The zeros of the calculated second harmonic amplitude are determined

from
2A, cos (2n%§~- w/h) - ke A?'{l+cos(21fF -1/2)} =0
or
2h, 2m6F 218F
[48] o —=  cos ( 1{ - /b)) =1 + cos ( Tl - w/2)
2
K A] € .
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[48] is a transcendental equation which can be solved nﬁmerical]y,
and iteration leads to a value of -;2%; for which the ratio of the
beat periods agree with the observed response. The details are
simply clerical and will not be included, however, a plot of the
ratiozof the two apparent second harmonic beat periods as a function
of-ggif appears in Figure 19. At € = 0 which is equivalent to
sa;ing there is no M.l., the corresponding ordinate is 1,

indicating the equivalence of all beat periods. The value of

0.737 on the ordinate corresponds to that observed in the
near-optimal feedback setting of Figure 18. This ordinate corres-

ponds to

2A

N

= 4.91

A

I
- PN

€

A similar calculation was done assuming A2<O which yields the

result:

2A
2 = -
— = 3.41,

KAIE
Using these solutions, the calculated interacting second harmonic
was plotted along with the calculated first harmonic beat envelope
in Figure 20. The biggest difference between the positive and
negative solutions for Eér- is the relative.phase of the second
harmonic minima with re:glci to the first harmonic minima. Upon

comparison with the measured data (see Figure 18), it becomes

obvious that A2 is indeed negative. With the negative solution
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the agreement is really quite good, especially in the relative
phase of the first harmonic minimum with respect to the second
harmonic minimum. The calculation predicts the 2 minima of the
second harmonic to bg displaced from a fundamental minimum by

2n78F
2H

Figure 16 is A (

) = 0.748 rad and 4.33 rad . The observed result from

2n8F
2H

A (

) = 0.75 rad and 4.5 rad.

The calculation of the interacting result for the third
harmonic follows similar calculations, but the complexity is
much greater, especially in the transcendental equations
determining A3. Since the procedure worked well with the second
harmonic, the third harmonic equations were solved by computer.
An option in the program enabled us to take the Fourier transform
at each field setting requested which is more in keeping with the
way the data was obtained experimentally. This program is in-
cluded in Appendix C.
One could correct the temperature dependence of the near-
optimal feedback data by extracting this dependence from the
calculated interacting result. This was done at a field corresponding
to a maximum in the ideal second harmonic beat envelope. At this fixed
field Ho’ the arguments of the cosines in the interacting results
are constant, and the temperature dependence is extracted from
A] and AZ' H0 is independent of feedback gain since it is the

field at a maximim of the ideal beat envelope. The temperature

dependence is:
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2A

[49] A;(T) d 2 cos (2:6F~_ n/4)4{1+co§(2:6F'— m/2)}
KA]; 0 o}
K Aze
a 2A 4{cos(2ﬂ5F - w/h) + . [1+cos(21T6F - 1/2)1}
2 H 2A H
(o} 2 o
but
« AZe KE2e X2 Kk E.e
] = ] = ] ..l.
28, 2€ X 2, "X

The quantity X = Au T/H contains all the temperature dependence,

so, letting XO be the value of X where

K A%e KA%E
TV (ZA )o (= -3.41 in our case)
2 2
then
2
K A]e ] 5_ 1
ZA2 Xo 2A2
kAze
1"/o
letting a = (zﬂsF - w/h)
o
and b =1{1+ co (21T6F - n/2)} - ]
H 2A
o 2
KAZE

we obtain a temperature dependence of

1
A

,(T) = 2, [a + bX]

hence, plotting
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. A2
n [iTS?EYT] vs. T/H
should yield a slope of -2\yu.

In our data, a = 0.642, b = 0.352,
and we obtain. a slope of 167. kG/K which corresponds to ﬁ = 0.568.
This result, calculated from the second harmonic near-optimum feedback
data is in éxcellent agreement with that derived from the fundamental
amplitude (see Table I1).

The above agreement again demonstrates the understanding of the
detailed mechanisms involved in near-optimal feedback, and we now
move on to the optimum feedback position, the results appearing in
Figure 21. With optimum feedback, the beat frequencies of the first
three harmonics are in the ratio 1:2:3.

From the ideal non-interacting beat envelopes which are now
available to us thanks to the use of optimum feedback, it appears
that there is a favoured field setting within each fundamental beat
cycle where the three beat envelopes are simultaneously close to
their maximum values, and the slopes are not very large. This occurs
at roughly 1/3 of the way into.the beat envelope plotted against
1/H (shown as l/H] in Figure 22). These positions, affectionately
called ''magic fields' are the optimum fields to perform a three
hafmonic measurement. The amplitudes of the harmonics are close
to but not at their beat maxima, so that a field dependence
measurement is needed to determine the actual relatfve amplitudes
from those measured at the ''magic field". Simulation of such a plot

appears in Figure 22, with the correctionﬁfoffhé.fuhdamentalshoWn
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Figure 21. The Beat Envelope With Optimum Feedback
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The corresponding empirical result for the fundamental appears

in Figure 27.

6.5 Phase Information

The value.of the argument of the sinusoid describing the
dHvA effect is quite large (®10h). Absolute phase measurements
thus require great precision in field and orientationvif they are
to be considered reliable. Fortunately, the phase relationships
between harmonics can be measured reliably. However, since we are
considering different frequencies (i.e., Fis F2=2F], F3=3F]), the
relative phase must be defined with some care.

The standard definition of the phase shift between a variation
of the form sin (wt+wl) and its rt" harmonic sin(rwt+¢r) involves
the construction of a reference sinusoid with frequency w crossing
zero with a posftive slope at some arbitrary t = 0 (any convenient
t = Zmﬂ/w‘where m=1, 2, 3... would also do). Associated with
this fundamental reference is another at a frequency rw crossing
zero with a positive slope at the same t = 0. |f the phase
difference between the fundamental sfgnal and the reference is ¢]
and the corresponding quantity for the rth harmonic is ¢f, then the
quantity r¢] - ¢r is a constant and serves as the definition of the
phase difference.

When dealing with a signal which is the sum of two close
frequencies, the short-range modulation may not be enough to resolve
the individual frequencies in the Fourier transform. In this case,
one must calculate the resultant phase in order to compare with the

experiment.
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We Have already presented the results of a numerical
substitution in the enve]ope-équation for a pair of béating
oscillations (see [39] plotted in Figure 22). The two inverse .
fields ]/H] and_l/H2 corresp&nd to Figures 23 and 24 where the
individual oscillations are plotted out to determine the relative phase.
With reference to Figure 22, both the second and third harmonics
have undergone one zero crossing between I/H]and I/H2 but the first
has not. At I/H2 we therefore expect the second and third harmonics
to have the opposite phase relationship to the first harmonic when
compared to that at I/H]. This is indeed shown in Figures 23 and
2k, I/HI corresponds to one of the '"Magic fields' (see section
6.4). Figure 23 shows that at the first of these fields i.e. the
one with the lowest value of 1/H, the phase difference between.the
first three harmonics is zero. Generalizing [6] to allow for the

phases wr in the presence of beats, and feedback, we obtain

[50] Ay = A, sin (2xkp,) = 12 ce A sin(2x42y)) .
In addition, from [39] for small n we see that ¢] and wz can attain
only 2 values,:0 and m. This makes the two terms in [50] either in
phase or m out of phase depending on the sign of A2, and the value of
¢2. If the two terms compete in the bresence of M.l., we expect

a phase reversal of the measured phase of A; if the magnitude of

the second term in [50] exceeds that of the first. In any case the
measured phase difference should for small n (narrow beat waists) be

0 or m. The measured phase difference as a function of feedback gain



Figure 23. Individual Oscillations Nearthe''Magic Field"
l/H] of Figure 22
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Figure 24k, Individual Oscillations Near
I/H2 of Figure 22
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PHASE DIFFERENCE

Figure 25, Measured Phase Difference and Amplitude of Yoy
at a Magic Field (61.739 kG)
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at a magic field appears in Figure 25. Included in this figure
is the second harmonic amplitude dependence. From [50] we see
that A2 should be a linear function of ¢ for small n in [39].
Phase.measurements at other parts of the beat cycle were
not reliable since the amplitudes of the oscillations were
changing quickly, and the large modulation smears the phase.

6.6 The Linearity of A /A, vs. (A]/AZ)Z

3

In Chapter Il, we found that information leading to the 9o

factor comes from the straight line plot of A]/A Vs, (A]/AZ)Z.

3

This line is straight only if the ideal L.K. behaviour is realised.

Figure 26 shows plots of this kind for data without feedback and
with optimum feedback. The linearity and low scatter in the graph
with feedback is surprisingly good to one who has made these plots

using other techniques to deal with M.l. This figure shows very
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dramatically the drastic way in which M.l. interferes with amplitude

information, and how this interference has been successfully

removed by the feedback technique.

6.7 Conclusions

Before using the feedback technique to measure quantities
such as the 9. factor, we must be confident that the technique is
working properly, and know the limits within which we can work.
This chapter demonstrates the consistency and the effectiveness

which feedback has in reducing M.I.
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The calculations involving non-optimum and near-optimum
feedback give consistent agreement with the experimental results,
demonstrating the understanding of the role of feedback in the
experiment. Only for the o + vy sideband amplitude (Figure 13)
do we find a systematic deviation from theoretical expectation.
This is presumably related to the non-vanishing of the a + ¥y
and o -y sidebands at optimum feedback, and is not yet fully
understood. In every othér case of optimum feedback, the data
conform to the results expected for ideal L.K. behaviour, and it
must be stressed that in each section of this chapter, the
phrase ''optimum feedback'' refers to the same feedback gain i.e.,
the optimum setting for one experiment is the same for all the
others. This consistency gives one confidence that the same
optimuim feedback setting will give reliable 9. factor measurements.

While most of the chapter deals with non-optimum feedback,
it clearly demonstrates that at the optimum feedback gain no

corrections for M.l. need be applied.



94

CHAPTER SEVEN

EXTRACTION OF 9. FACTOR FROM

2
A‘/A3 vs. (A]/Az) PLOTS

To apply the algorithm presented in Chapter Il let us

recall a few results:

2

' 2
[3a] AI/A3 =a [(A]/AZ) - l/h(A]/AZ)O]
[3b] | (A]/AZ)0 = 2V/2 exp (XTD/T) cos TS/cos 2mS
22
[2b] o_ = (/3/2) (1-tan? 75)%/(1-3 tan” 7S) = lim ( -2
) X > o A.A

(AI/AZ)O is independent of the temperature T.

From [3a] we see that the slope of the graph of IA]/A3l vs.

(AI/A2)2 (holding the field H constant, and varying the temperature

T) isie . [2b] can easily be inverted to give

[51] tan? 78 = 1 - /3 o [f - E]
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The value ]awIAfrom a least squares fit to the points in
Figure 26 is {dwl = 0.392. The square root in [51] yiéids an
imaginary result for o =+ 0.392 so we must conclude that dm= -0.392.
This implies A]/A3‘< 0. The real solutions of [51] are
S =0.330 or 0.197. These values are modulo 1 because of the
periodicity of the function tan2 1S. To decide betweén thésé two
principal values for S we measure the abscissa intercept in
Figure-26.to obtéin;‘l/h-(A]/Az)z..aSucan;be seen from [3al.
[3b] can easily be inverted to give Dingle temperatures
corresponding to the two solutions for S. |

(A]/AZ)O cos 2wS]

[52] Ty = o an | y=
cos w$
From the least squares fit to the points in Figure 26,
1/4 (A]/Az)é = 91.0. Using [52] and the experimental parameters
used in the experiment, along with the effective mass Q found in
Chapter VI, our previous solutions for S correspond to the

following Dingle temperatures

w
i

0.330, T

1.42K, A]/.AZ <0

w
]

0.197, T

0.749K, A,]./A2 >0

The Dingle temperature can also be obtained from the field
dependence of the fundamental amplitude and [1b]; only a rough
estimate is necessary. In the approximation X 2 3, the complete

field and temperature dependence is given by
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A a(T/VB) exp {- xu(T/B) (1 + TD/T)}
so that

[53] zn(A]/E) = -au (T/B) (1 + Tp/T)

From [53] we see that a plot of &n (A]/E) vs. 1/B can

give the Dingle temperature. The fact that A, is beating does

1
not change this, as long as the points used on the graph are
at the same position in the beat cycle. The obvious choice
is to use the field and the amplitude at the maxima of the
beat pattern.

Figure 27 shows a plot of A] vs. 1/H, and a least squares

fit to the maxima for T = 1.25K gives
flu(T/B)(l+TD/T) = -164.5 or T = 0.750K

It is quite evident that S = 0.197 is the proper principal value.
The phase measurements give A]/A2 > 0 consistent with this choice.
We are thus left with only the trigonometric multiplicity
accordihg to which possible solutions are S = + 0.197 i'P, Pel
éach of which gives idéntical experimenta]vrésults.

For simple metals such as lead, where the band structure
can be derived from a weak pseudopotential together with the
spin-orbit interaction, a physical argument given by Pippard (1969)

restricts the range of possible values of S according to the
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inequality
S f.(mﬁ_/m) + (s/2)

where.s is the number of Bragg reflections undergone by an
electron in one cyclotron orbit. This value is 3 for the
r orbit normal to [110] which gives rise to the y oscillation,

so that with mi/m = 0.560, we have
0<$S < 2.06

Of the 4 values of S which fall into this interval (0.197,
1.197, 0.803, 1.803) two give A]/A2 < 0 which is inconsistent
with the phase and Dingle temperature criteria. We are thus

Jeft with the two possible solutions.
S=g, mc/2m = 0.197 and 1.803
corresponding to 9. = 0.704 and 6.4h4 respectively.

The ultimate choice between these 2 relies on a band

calculation which includes the spin-orbit interaction.
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CHAPTER EIGHT

A SEARCH FOR THE 4MG OSCILLATIONS

8.1 Preliminary Remarks

Quantum oscillations of unusually long period (v hMG)
have been observed recently in lead using the Shubnikov-
de Haas effect (Tobin et. al., 1969) and sound attenuation
(1vowi and Mackinnon, 1976).

1t has been suggested that these long oscillations
might arise from small pockets of electrons in the kth
Brillouin zone. While pockets of this kind appear in. the
empty lattice band structure, all realistic band calculations
fitted to the Fermi surface data show the 4th zone to be
empty. (c.f. Anderson and Gold, 1965). We are thus led to
wonder whether the long oscillations might be an artifact
generated by M.I.

A concerted effort was made to detect similar oscilla-
tions in the dHvA effect with the hope that they could then be
studied with the feedback technique. Unfortunately, no
evidence for these long oscillations could be found, so that only

an upper limit on their amplitude resulted. In the process of
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the search, some useful ideas were developed including the

exact solution to the problem of large modulation.

8.2 Review of the Standard Weak-Modulation Solution

Field modulation, followed by phase-sensitive detection,
is the most widely used technique for observation of the de
Haas van Alphen effect. The problem of calculating the e.m.f.
induced in a pick-dp coil surrounding the sample has been solved
in detail for weak modulation fields. There are, however,
circumstances which warrant rather large modulation fields,
large enough so that some of the approximations made in the
weak-modulation treatment may no longer be valid. One such
circumstance is the detection of long-period oscillations such
as those reported by Tobin et.al. (1969) having frequencies
F &'b MG. It isithen desirable to modulate with an amplitude
2 1 kG which is a sizeable fraction of the quasi-static back-
ground field. We first review the standard formulation for
weak‘modulation, and then develop an exact, explicit solution
for arbitrary strength of modulation field.

In its present widely-used form, the modulation field  :h
is sinusoidal, small with respect to the large background field
H, and is parallel to it. Thus, the sample experiences a net
field H+ h sin wt. The large background field is made to
sweep slowly, so that in treating the modulation field, we can

regard the background field as essentially constant. The
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criterion for this assumption is

dh, . dH
(dt RMS < dt

The treatment for weak modulation is well known, and will
just be outlined here.

Without loss of generality, we can ignore various
constant phase factors, and write the oscillatory part of

the magnetization simply as:

M=sin [ 2mF ]
H + h(t)

where h(t) = h sin wt and w is the modulation angular fre-
quency. The equation is for a .reduced magnetization, with
the amplitude factors incorporated into it. We might also
add that we must work at a low enough frequency w so that
we have no field inhomogeneity due to eddy currents.

In the‘conVentiona1‘approximétion,athé.denominator is ex-

panded, and only the linear term in a-is retained, so that

i sin (B (- 2Ly,

Since the approximation is made in the argument of a rapidly
. . . . 27F 3 .
oscillating sine function, (55—~ 107 typically) one must be

H

careful to state the justification correctly.



The criterion to be satisfied must assure that the
argument is at most first order in E-. This is true if and
only if the second order term is very much less than 27.

The second order term is:
27F (h(t))Z
H H

So the justification is

Zﬂth << o
H3
or simply
2
Fh3 < 1
‘H

If this inequality is not satisfied, the argument of the
sine must be taken to be at least quadratic in h. This
"Wweak modulation' criterion is usually met in the normal
laboratory situation, and M can be developed in a Fourier

series as follows

W= sin[2™ (- -h—(ﬁt—))]

H
27F ., . \ 27TF 2nF,, . . 2TF
R R fﬁf‘(hSlnwt) ST - ‘Hz\hSInwt) B
S 72 \° € e e

102
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Using the identity"
cShusiny o § g et Y

we obtain

27F 27F
LJ H z J (ZHFH) e-lnwt_e-l H ZJ (ZWFh) elnw%
n H2 n H2

=
e -
N —

The coil surrounding the sample gives a voltage pro-

portional to %%-. Taking this derivative,

Q.
=4

27Fh 27F
=) cos (—ﬁ—- nwt)

o
ct

N- oY onwJ
n
n=-w H

We now separate the t and H dependencés; . and find after a

little manipulation:-

|
2
!
It ©~18

T
2nw J (Zth)sin(ZTTF + nz)sin(nut + nt
n' 2 H 2 2
1 H
This is the conventional result: for weak modulation. We
note in passing that the same result is obtained if the sign
T

of the two phase factors %f-is reversed.
8.3 Large Modulation

By large modulation we mean that our initial assumption
about the linearity of the sine argument breaks down. In

particular, for the long oscillations having F ~ b MG in an
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applied field of 50 kG, for maximum response, we should

modulate over something like one cycle of the waveform which
makes h ~ 325 Gauss. Our criterion for neglect of the second,

and high order terms was
h << VA3/F

Any such long oscillation in the dHvA effect would be swamped

by the strong y oscillations with a frequency of 17 MG, making
YH3/F % 2.7 kG (H = 50 kG)

For this situation, it cannot be said that h is then very
much less than VH3/F, and it was felt that a deeper study into
the effects of the quédratic, and higher order terms, was
warranted. A common practice is to exploit the zeros of the
Bessel functions to eliminate the unwanted oscillations. Our
object, in part, is to determine possible shifts of these
zeros when using large modulation fields.

We now present an exact Fourier decomposition which is

valid for any strength of modulation. In our basic equation,

27F

M= sin [H+hcosmt

]

we can use the cosine phase of the modulation without loss of

generality, since the result cannot be dependent on the origin
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of time. This choice of phase makes M an even funétion of
time t which simplifies the planned Fourier expansion of the
sine argument.

Because only the even, cosine terms can survive, we

can write the expansion as:

_2f___ _§
H + hcoswt 3, cos nut
n=0
where )
2m/w
-2 | T
o m H + hcoswt
0
and 21/
w
an—‘ﬂ H_TZ:_CEW cos nwt dt
0

These integrals may be reduced to standard form, and we readily

obtain (Gradshyeyn and Ryzhik, 1965)

2TF

, h
 hrF .]_(%) -
a: =——- _—
n ‘[—?F—E—' h
HY!-
where
A NS
_I-I(H) "

P =%/ = n h
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and

0 <p <1

We now write for M

sin[ZaO(l/Z - p cos wt + p2cos 2wt - p3cos 30t + ...)]

=
"

ia -2ia,pcoswt 2ia p2c052wt -2ia p3cos3wt
I 0] 0 - 0 0
n e e e e .o

Making use of the identity

efiucosy - 2 (_i)n Jﬁ(U) e-iny
n= -«

and its complex conjugate

eiucosy - f (i)" Jn(u) e.iny

n=-w

We obtain the following

M= Im {e'aO 70" J_ (2a0p) e inut 020 (i)" Jn(ZaOpz)e,zinwt”.}
ia, T Y IonAar. |
]’ 2 - .

[ it l2((-)k kn, ]}
e

Again, we need the time derivative, which is easily obtained:
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v ia, n L0l
3_rt4= n {e on ; L [(,E)E k] [(_)kODD k][klr’n (Zaopkil

1°M2 k
()%
iwt_ - rk )
X [e E ][m D) (')k knk]}
k=1
g:’i i that
This 1is the exact solution for t°? gtven a
M=sin [ Al I

H + hcosuwt

The solution is valid for arbitrary h, provided only that %-<l.

In order to obtain a tractable and useful formula for
%%-, it is necessary to find suitable approximations for the
infinite sums and products in the exact solution. This can be.
done to any desired accuracy. We are usually interested in the
phasé-sensitive detection at a particular harmonic of the
modulation frequency w. For the nth time harmonic (nw), the
required integers (*n) are related to the various integral
indices occurring in the exact result by:

n= f (-)kk N

k=1

where n, can be any integer between - and . This equation
determines all the sets {nk} for any desired time-harmonic nw,
each set giving one term in the solution. A procedure will now

be given for ranking these sets in order of importance.
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The part of the solution which determines the relative

magnitude of a particular time harmonic is

([ =]

k
J  (2a,p")

In most cases, 2a0pk<<] for k2. In all cases, Zaopk<<l for

a large enough value of k, since O<p<l. For smaller values of

k, all Jnk(Zaopk) are of order 1, and all must be considered.

In the normal laboratory situation, there is but one such term.
When ZaOpk<<l, which is usually the case for k22, one may

rank the sets by their result in the following order of magnitude

estimate. Given the set'{nk} , the corresponding term is

approximately:

n
(aopk) k
nk!

rol =R

where the product starts at a value kc, which is the lowest in*
teger satisfying ZaOpk<<] (typically kC = 2). In practice, nk#o
only for small k(k$3), making this a quick method of ranking.
One can see that the order depends somewhat on the values of
ay and .p-

Table 111 is an example of this ranking, along with the
order of magnitude of the corresponding terms. It is done for

the second time harmonic, and typical values were chosen for

a and p.
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n=2,a =5x 102, p = 1073

TABLE 111

Ranking The Terms

Order of Mag. n n, n3 ny
1 +2 0 0 0
1073 0 +1 0 0
1073 £l £] 0 0
1076 +2 +2 0 0
107® 31 0 1 0
1079 £l +3 0 0
1072 +1 +] +] 0
107 73 £ 51 0
1079 13 3l 5] 0
The next term is of order 10-12.

The most important term is invariably n, = *n, N = 0
for k # 1. We shall now calculate it separately, and compare

it to the result for weak modulation.
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dM ., "%, .\n L ky -inwt, ,
o Im {e (-i) Jn(Zaop) g Jo(Zaop ) e (-inw)
Tao AN AN e, D k inwt ,,

+ e (i) () Jn(Zaop)H JO(ZaOp ) e (inw )3
2

. . v e Ky o ¥oos gm0
2nw sin(nwt) Jn(Zaop ) g-Jo(Zaop ) hﬂ{l:l-( i) e _}

nm
5 )

a1}

© k . .
2nw Jn(ZaOp) g JO(ZaOp ) sin(nwt) snn(aO

To compare this to the earlier conventional result, which

started with the sine phase of the modulation, let us sub-

. kil
stitute t >~ t 20 to get

df o @ Ky . Sy _nn

Tl 2nw Jn(ZaOp) g JO(ZaOp ) sin{not 2 )sun(a0 —E—)
- bt k . nm . nm
= -2nw Jn(ZaOp) g JO(Zaop ) sin(nwt + 7?-)Sln(a0 + 5

By contrast, the result for weak modulation is

dM _
T 2nw Jn(

2TFh
H

. nm . (27F | nm
) sin (nwt + 2) sin( Tt 2)
In comparison, there are two differences.
Firstly and perhaps most importantly, the measured dHvA

frequency is different. The conventional result is F, whereas

the exact result gives
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—F
———eTrT;- .
+ —
Jl. 7
This means that there is a second order correction in the
measured frequency. Under most circumstances, this shift is
small, but given the high degree of accuracy which dHvA work
boasts, this in some cases may be important. It is important
to note that although only the first term in the solution
was taken, this frequency correction is exact, that is, none

of the higher terms change this result.

The other difference is the amplitude correction

T (2a pk).
k=3 0 0 _
Since 2a0p”% 1, 2a0pk <<1 for k > 1. One can show that
this infinite product converges to < 1. ~.In  the first
order. . :term, we can say that the amplitude for strong

modulation is smaller than the conventional result, and also
that it does not shift the zeros of the Bessel function.
The obvious alternative to expansion in a Fourier series

is an expansion in a Taylor series, namely

X
]

<in ___ZI_F____]
H + hcoswt

sin [ZEE-(I - b-coswt + (EJZ coszwt - (EJB cos3wt + ...)]

H H

\

Gathering all the terms for any harmonic nw is a formidable

. . h
task, but if we retain terms only to second order in (HJ, we
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note that the dHvA frequency becomes

2TF 1. /hy2
T (1 + Eﬂ(ﬁo )
which are the leading terms in a Taylor series of our exact

result

Z'ITF[ 1 ]
i Jl - (ﬂ)é
. H

8.4 Modifications to the Apparatus and Analysis for the

Fn b MG Search

The major consideration in the design of the detection
apparafus was sensitivity and signal to noise. The shift in
emphasis from the frequency response dictated several modi-
fications. While the sample-detection coil arrangement
remained the same, its output now drove the primary of a
transformer (P.A.R. Model AM-1) to take advantage of the low
output impedence (¢ 1002) of the detection coils. The signal
was detected on the second harmonic of a 41.7 Hz sinusoidal
modulation field with a P.A.R. 124 phase-sensitive detector.
Its notch filter (Q=50) was used to block the fundamental
and a Krohn-Hite (model 3322R) bandpass filter (Q=1) was
centered on the second harmonic.

The amplitude of the modulation was made to vary as H2

which kept this amplitude spanning the same number of dHvA
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cycles-at any field H. Using the zeros of the Béssél fﬁnction
response of thé observed magnetization on the modulation
amplitude (see section 8.3), the dominant oscillations in any
direction could be attenuated by about a factor of 50, allowing
an increase in sensitivity of the same factor without
saturation. The resulting signal was digitially recorded with
20 bit resolution on magnetic tape. These data were sub-
sequently Fourier transformed with the use of the main U.B.C.
computer (Amdahl 470) and a program outlined in Appendix C.
With this arrangement, all of.the oscillations in lead seen
previously were easily identified, however, no sign of the L MG
oscillations appeared. The search included examination of the
Fourier transforms at the second harmonic (v 8 MG) to allow

for the possibility of a spin splitting zero at the first
harmonic.

The result of this negative experiment places an upper
bound on the amplitude of these long period oscillations in
magnetization. |In each of the three major symmetry directions
[100],[110], [111], their amplitude must be less than 1 part
in ]04 of the magnetization of the dominant oscillations in
each direction. This 1imit in absolute terms is about
Apug < 200 u G.

The oscillations of Ivowi and Mackinnon (1976) and Tobin
et.al.(1969) thus remain an enigma. It is felt that this area
of study would benefit greatly by a collaboration of the feedback
technique with the Shubnikov-de Haas effect or sound attenuation,

where these oscillations appear vividly.
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APPENDIX A

FLEXIBLE GEAR ROTATOR

An apparatus was built to rotate the sample about an
axis which was 90° away from the axis of the magnet bore
(the only direction of access) based on an idea given by
Pippard and Sadler (1969). The modifications made to the
original design were extensive enough to warrant further
description in this appendix. Our compactness requirement
restricted the size of the apparatus to a degree where the
mechanisms would be substantially smaller than any that had
previously been built successfully.

The entire apparatus is constructed from nylon rod
except for a Mylar gear. This circular Mylar gear was cut
from a piece of 0.003 inches thick sheet. A special jig was
made to cut 32 triangular teeth with a razor blade in roughly
circular starting material. A square hole (side length
0.075 inch) was cut in the centre with a punch. Through the
square hole, a retainer fastened a ring to the gear so that

the axis of the ring was perpendicular to the gear axis, and
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intersecting it(see Figure 28). The retainer, so placed,

was welded to the ring with a soldering iron. Thé sqﬁare
hole ensured the absence of slipping when the gear was turned.
The spherical sample was glued to the ring with a small drop
of G.E. varnish. Care was taken to apply a minimum amount

of varnish to the sample as differential contraction would
cause strain upon cooling.

After allowing 24 hours for the varnish to dry, the
assembly was placed inside a cylindrical tube by bending the
Mylar gear to conform to the shape of the tube. When in place,
small axle pins held the gear axis stationary while still
allowing it to rotate. As the gear rotates, it flexes to
retain its cylindrical shape, and rotates the sample about
the axis of the gear. Only the teeth at the top of the gear
protrude from the cylinder, where they mesh with a driving
gear. The 16 tooth drivinglgear was made by pushing a hot
brass negative into a cylindrical nylon blank, and subsequent
machining provided a coupling to the top of the cryostat. The
body of the coil former held the driving gear in the proper
place to mesh with the Mylar gear. In order to keep the
teeth of the driving gear identical to those of the Mylar gear,
one finds that the driving gear must rotate about an axis which
is off centre. The driving gear with the rotator assembly and
coil former is shown in Figure 29. A beryllium-copper spring

was used to ensure intimate contact of the gears when cooled
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) BeCu Spring

D Slots in both sides
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1.000"
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w_ 10 mate Mylar gear
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0.853
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716 —-20 NF
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Sample Rotator With Driving Gear,
and Coil Former
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fo liquid helium temperatures. The cy]indér holding the
sample was inserted into the bottom of the coil former and
held rigidly with a 7/16-20 (NF) nylon bolt. The location of
its proper rotational position was found by pushing a
temporary wire through a small hole in the bottom of the
coil former, and into a slot milled into the base of the
sample cylinder. This wire was removed after tightening
the nylon bolt.

The entire assembly was inserted into the tail of
the inner dewar shown in Figure 5. At the top of the
cryostat, .. provision was made to rotate the crystal either

by hand, or by electric motor.
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APPENDIX B

THE DISCRETE FOURIER TRANSFORM

Since both the spectrum analyzer, and the computer
programs use discrete Fourier transforms, the basic de-
finitions will be presented in this appendix. The discrete

Fourier transform is defined by

N-1 ..
AK) = e-2ﬂ|J k/N

X, k=0,1, ... , N-1

il ~3

where Xj’ j=0,1, ... , N-1 is a set of complex numbers .
The inverse transform is
N-T- .
. 27ij .
B(j) = 2 A(k) e ™' k/N j=0, 1, ... N-1
k=0
where B(j) = ij.
The fast Fourier transform programs supplied by libraries
often require the input data to be either symmetric or anti-
symmetric. Any set of data can be separated into its anti-

symmetric and symmetric components. |If the set Xi contains
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the original data values, then the antisymmetric values are

given by

a 1

Xay241-5 =7 Cnjo-jer = Xnzzejer) 372 -0 W2 20

a _ ,a _
X] = XN/Z 0.
A sine transform can then be applied to x?. The symmetric

values X? are given by

S

.1 ~ ]
X'Nj2+1-5 = 2 ) j=2, ... N/2 - 1

(XN/2+j+] - xN/2-j+]

s s
X1 = X X2 ©

1 X

N/2.

A cosine transform can then be applied to Xs.

Applying a window to the original data values usually
results in a tradeoff of resolution and sidelebes. The large
sidelobes  encountered in the use of a square window can hide
frequencies of smaller amplitude which are actually far away
in the space of the variable k.

The Hanning window is a good compromise, since not much
resolution is lost, but the sidelobe amplitude decays very
quickly in k space. |If the original data is in time t,
application of a Hanning window simply involves multiplication

of the original data by sinz[ﬂ(t-to)/T] where t_ is the
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smallest value of t and T is the duration of the
record. In effect, the Hanning window rounds off the sharp
corners on the edges of the data where the window is opened

and closed.
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APPENDIX C

"COMPUTER PROGRAMS

The computer programs used to generate the results
in the body of this thesis are listed in this appendix.
For the most part, the programs are written to be self
explanatory in regards to their use.

The ''Data Reading and Adjusting' program reads the
data from the Stevenson interface* after it has been converted
to EBDIC from ASCII. The conversion was done by a standard
translation routine (*TRANS) in the U.B.C. Computer library.
After reading the data, the Fortran brogram, by use of the
function sub-programs, allows the user to create the proper
x and y coordinates from the available data. The program then
converts the data to a format compatible with all of the
remaining programs.

The "Synthetic Data Generator'' program allows the user

to create any data he pleases and puts it-in the proper format.

This program was largely used to test the other programs, and

“Built by A. Stevenson presently at TRIUMF.
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chéck the resolution.

The "Window' program was used to cut down the sidé -
lobes of the transform. Instead of using the Hanning window,
the data were multiplied by a simple sine function spanning
O0-m over the window. This gives more resolution than the
Hanning window, and the sidelobes are still not too large.
This sine window was used because the data at one end of the
window (the high field end) were the most important, and they
were not cut off so drastically as with the Hanning window.

The analysis program takes the Fourier transform of the
data prepared by the earlier routines. One can choose the
resolution and the window in k space for the transform.

The power spectrum feature was most often used.

The "Plotting' program accepts data from all of the
previous routines so that real space and Fourier space data
can be plotted. Plotting can be done on the printer, the
graphics terminal, or the hard copy Calcomp plotter. The 1/H
axis is labelled in the printer plots.

The M.1. Simulation program uses the formulae developed
for M.1. in Chapter ||, and calculates the result of our

experiment described in Chapter VI.



-
QDO PN AL N -

24
Data Reading and Adjusting 12

HTMENSION A(50),D(50)
NATA CHARL/'A'/
NATA CHAR2/'D'y
* PRINY 314
314 FORMAT(' NUM3ER OF RECIRNS? (#25aNUMIER OF NaTa PT PallS) (I4) ')
. READ 31S,NNN
315 FIRMAT(TY)
NPPI2GRNNN
WRITE(2.91)INPP
91 FORIMAT(IS)
20 20 LINEZ1,NNN
QEAN(3,1)(A(T),N(1),121,50)

1 FORMAT(SO(AL,1X.F8,0))
no 2 131,50,2
11=2let | .
¢ TF(ACTI\NE,CHARY ,ORLALT1)NE,CHAR2) PRINTI,LINE
4 FORMAT (' ABNJRWALITY Iy LINE',I3)

NETY=YFUNEDCIL).N(T))
ACI1)=XFUN(D(I1Y,0(1))
? CONTINUE
WRITE(2,291)¢D(1),0(T=1),122,50,2)
21 FORMAT(2614,7)
20 CQNTI\IUE
§TOP -
END : ‘
FUNCTION 'VF'N(l.V)
YFUNSYRI(O,
JETURN
END .
FUNCTTION XFUN(x,Y)
XFUNS1,/7(1,229#%)
RETURN
END
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Synthetic Data Generator

NTYENSION PY(t0N0)
P133,1415926
PRINT 200
200 FORMAT(' ENTER NUMBER nF DATA POINT PAIRS(I4)')
QEAD 201 ,NNN
201 FNRMAT(T4)
WRTTE (2,205INNN
208 FARMAT(IS)
PRINT 202 )
202 FORMAT(! ENTER WMIN,HMaX IN M5, (2F6,0)!)
READ 203 ,MMIN, = MAX
203 FNRMAT(2F6,0)
HINCS(HUAXaHMINY/FLOAT (NUN)
DO 100 I=s1,1000

PT(1)s0,

100 CNANTINUE
PRINT {

1 FNRMAT('TN CIEATE THE syv OF TAEXP(~34714C33(2,4PT#AxT= “aNYeoaTzlsm'/
17 ENTER R,4,0,..(3F6,0y,,.,0R ZERA TO STAP!)

6 READ 2,R,A, o

2 FARMAT(1F6,0)

IF(A EQ,0.) 30 TO 99
PRINT 7,B,4,)
7 FOR*AT(SE!O.!)
HSHMAYX
S NN 3 1=31,NNN
H=H=HTNC
Ts1,/n ]
PT(T)=PT(1)+T2gXP(eBaT )2 dS(2, 4PTxA2Te))
3 CAONTINVUE
GO TO &
99 MEhMAY
T2, /M
nO 101 T=1,NNN
HaHaWINE
Ty, /4
WRITE(2,4)T,3T(1)
4 FORMAT(2E14,T)
101 CONTINUE
sTOP
END
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Window

[ ]

NIMENSION X€1000),Y(1000)
P133,1415026

READ (3,1 )INNN
FORMAT(15)Y
WRITE(2,6)NNN
FARMAT(1S)

No 2 131,NNN 4
QEADCT,IX(TI YD)
FNARMAT(2E14,7)
CONTINUE )
FePI/(X{NNNY=X (1))
no 4 131,NAN

YCIIaY (1) aSTNIFRa(X(T)=x(1)))

WRITEC245)% (1), Y(T1)
FORMAT (2E14,T7)
CONTINUE

srop’

END

126



OB N E N

127

Analysis Program

318

99

70

437

12

13
i1

34

32

L3

QEAL I(inOO).PT(IOOO)
P12m2,.+3,14159265
QEAD(3,31SINNN

PORMAT(S)

XNNNSPFLOAT(NNN)

N 9 131 ,NNN
READ(3,103T71),2T(])
FORMAT(PEL14.,.T7)

CONTINUE.

PRINT 1 L

FORMAT ('OANALYSTYS?!)

READ 2,INAL

FORMAT(TY)

GO 70(350.5.617,99).14AL

STOP

PRINT T0 : ,
FORMAT ('OFOURTER REAL TRANSFQARMI/! FMIN,FMAX,NUMF2(2F8,0,14)")
QEAD 8, FMIN,FuaX,NUuF
FORMAT(2F6,0, T4

wRITE (2,437 INUVF

FORVAT(IS)
FINCE(FMAXaFUIN)/PLOAT (NUMF)
FsFMIN

no 11 I3, NUWP

guIMs0,

NO 12 Jsy,NNN

SUMSSUMSPT (J)*CnSIPI2apaT(J]))
CONTINUE

SUMEZSUM/XNNN

WRITE(2,13) Fa3uM
FORMAT(2E14,.T7)

FaF +FINC

CONTINUE

§TOP

PRINY 34 - , A
FORMAT(TOPFOUITER TMAGINARY TRANSFORMI/! FMIN,FYAX,NUMF2(2F6,0,14)")
READ R,FMIN,FMAY ,NUMP
ARTTEC2,43TINUUF
FINCa(FMAX®RMINY/FLOAT (NJUF)
F=FMIN

N 31 I3 ,NUUF

ERLEL

no 32 J=t,.NNN

3 IMIGUMPT(J)#C0S(PI2wraT(J))
CONTINUE

SUMISUM/XNNN

ARITE(2413)F,SUM

FaF+P INC

CANTINUE

srQpP

PRINT S4 _
ENRMAT (1 OPOWER SPECTRUW'/! FMIN,FMAX,NUMF2(2F6,0,14)")
EAD A,FMIN,FMAXY, NUMF
WRITE(2,U437)INUMF
FINCB(FMAX®FUYINY/FLOAT (NJYF)
FaFMIN

nO 51 Iat,NUMF
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st

74

72

71

94

10S

106

92

91

SyMtiso,

quU2s0,

nn S2 J=my,NNN

S IMIzSUMI$PT(J)ACOS(PTRaFaT ()
SUM2ESUMA4PT(J)aSIN(PIDaFeT (]))
CONTINUE

QUME(SUML /XNNNYan24(SUM2/XNNNY*#2
AALTECR413)F,8UM

FaF+FINC

CONTINUE

sTYQP

PRINTY 74

FORMAT ('ALAPLACE TRANSFNRMY/t SMIN,SUAX,NUUSP(2F6,0,14)")

READ 8,8MIN,3MAY, NUMS
~RITEC2,437)NUug
SINCE(SMAX@SUINY/FLOAT (N jUS)
S3SMIN

CLERSUR € AW (VAL

SLJNSO.

nY 72 Jmq,NNN
SIMEGUMSPT () *EXP (=S#T (1))
CONTINUE

SUMBSUM/XNNN
WRITE(2,13)8,3uUm

§33+3INE

CONTINUE

sTOP

PRINT 94

128

FORMAT ('OLAPLACFaPOWER SPECTRJH' /! SMIN,SYAX ,NUMS?(2F6,0,Tu4) 1)

READ 8,SMIN,SYaY,VUMS

WRITE(2,437)NUVS

PRINT 105

FORMAT (' THE ANGULAR FRREQJIENCY?')

READ 106,4A

FORMAT (Fe,0)
SINCR(IMAX@SUINY/PLOAT (NJMS)

SaSVIN

DO 91 Iat,NUvS

SliMLan,

SUMZBOQ

D0 92 J=q,NNN )
SUMISSUMI4PTCIIREXP (=SaT (1)) 2COS(ART(]))
SUM2SSUM2PT(JIAEXP(aSaT(J))aSIN(ART(]))

. CONTINUE

SUMI(SUMI/XNNN)wn2+(SUM2/XNNN)Y##Q
wRITF(2,13)8,S50u

S=2S+8INC

CANTINUE

STOP

END



[P T (P (P P
OP N NEVWN—=2ODODIT AL WN ~

N
-

NN
& v

Plotting

c

c

c

C

3

11

14

1S
12
9

16
17

NIMENSION X(100n0),Y(1000),CHAR(2)
LOGICAL#t QUE
REAL L(78) .
NATA CHAR/' 1,140/

QEAD IN THE nATA
READ(3,2)N
FORMAT(1S)
XMAX=w] ,E+50
YMAXBXMAX
XMINay ,E+S0O
YMINZXMIN
no 3 Ist,N )
READ(3,4)X(I),Ye1)
FORMAT(2E14,.7)
IF(X(I),Lr.x4!uaxntN=x(r)
TFOXCT),GT XMAXYXMAXaX(T)
IF(YCT) LT, YMINYYUINRY (T)
TFCYCT) . GT, YMAXIYMAXSY (D)
CAONTINUE

FIND SCALING FACTORS
X328,/ (XMAXaXMIN)
YS3B,/(YMAXeYMIN)
X3P=50,%#XS/8,
vy3P=aS0,*YS/8,

PRINTER PLOY
PRINT 7
FNIMAT(Y NO YNy WISH A PRINTER PLAT?2,..KIVDLY ENTER Y IR N!)
READ R”,QUE
FORMAT (A1) Lo
TF(LCOMECYL,RJE,fYT) NE 0)G0 T3 9
PRINT 10 ‘
FORMAT (' WOW MANY PRINTER PAGES #OULD YOU LIKE?,,.(1201)
READ {1,NP
FORMAT(I12)
INCBN/(NPR&0)
bn 14 124,75
L{IY=sCHARCY)
CAONTINUE
IPNT =
NN 12 I=1,N,INC
LCIPNTIZCHAR (1)
IPNTSIFIX((Y(I)aYMIN)RYSP&L)
LCTPNT)3CHAR(2)
ARITE(2,15)X (), Y(I),(
FORMAT (! ¥, 2(F14,7,1X)
CONTINUE
PRINT 16
FORMAT (! DO YOy WISH A PEN PLIT?, ., (Y, D")
READ 17.QUE
FORMAT (ALY L
IFCLCOME(Y,0UE, YY), NE L 0)STOP

PLOY ] )
CALL PLOT(XS#(X(1)=XMIN),YSA(Y(1)eYMIN),3)
DO S =2,N .
CALL PLOT(XSa(XfI)aXMIN),YS2a(Y(I)eYMIN),2)
CONTINUE
cCALL PLOTND

L03),J31,75)
L1, 7541)
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Simulation

N

10

7

8

DIMENSION XA1(S00),XAa2(500),XA3(500)
DTIMENSION XM(512),X1(256),X2(256)
REAL M, NUD,xAPPA,NCYC
INTEG!R Y.SM
COMMON XAIMAX,XA2MAX,XAZUAX, HIMAX  HIVIN
NATA V/'v'/
P%I(RDU*):AYANfrTAuTAN(P;.Rouq-oELFtar-px/u 1)
ACRDU, AADU):(AAHU*AADJ-(?.'ETA)/(! $ETAYIA(SART(2,)/2. )%
1G3RT( (1 ¢ETAQETA) # (1, =g TARETA)2SIN(2, 2P #ROUADELF A1)
vvaUD ALPHAn)llltSINtlopsttl ))
CUeA2N(SINC2,*X$PS1(2,))a0,5+4NUIRSIN(2, AX$2,4PSTC1,)))
T 24A43a(8INC3, thPﬂI(S.)).\ SiNUJtALPHAD'
Y (SIN(3, tloDSIc'.)oPst(z 1)=0,25aNUNASIN(T, 2x¢34PSI(1,))))
AT(AB,BR,AL, 3L):SQRT((AB#SIN(AL)#BBﬁSIV(dL))t'Z
1 +(AR«COS(AL)+RI*COS(RL)I*2)
PYa3 14159
PRINT t
FORMAT(S DLEASE ENTERIAMPLITUNES OF THE HIGHFST FRERAUENCY!/
1IFIRST,SECOND, AND THIgh HARMANTIC (IN GAJSS), AND ETA,,.(d4F4,0)')
READ 2,8A4,442,A07,ETA
PORMAT(UFU,0)
AA{3AAL/Zt00N
AA2SAAZ/Y100N0,
AA33AAT/1N00,
PRINT 3
FORMAT(! PLFASE ENTER EPSTLAN,AN) )ELTA,..(?FU 0y")
READ 4,EPSIL,DEITA
FORMAT(2F4,0)
PRINY S
FBRMAT(' PLEASE ENTER TtHE MEAN FREQUENCY F, ty
{1t AND THE DIFFERENCE 1w FQEQUEVCY DELFC(IN *G!...(?Fa o)1)
READ 6,F,NELF
FORMAT(2F4,0)
Fat000, tF
DELFs= 1000 *DELF
HKAPPAXB #PTaPTa(l, «DE{'TA)2F
PRINT 9
FORMAT (' DO vOu wWISH A NJN=SMEARED PLIT2. oY M)
READ 10,MSM
FARMAT(AY )
1F(NSM NE,.Y)50 T0 200
PRINT 7 i
FORMAT (' PLFASE ENTER AMIN,HMAX (IN K3) ,MUMH, . (2F4 0,131 ")
QEPAND ],HMIN, dMAX , NUMKH
FORMAT(2FU,0,13)
CALCULATE THE NJN-SMEARED AwPLIT OE
HIMINa], /HMAX
H!NAX:! JHMIN
H!XNCI(HIMAX-HIMIN)/FLoAr(NUMq)
HYSHIMIN
XAiMAXED,
XA2MAXSO,
XAIMAYSO,
PO 100 Tat,NJMH
MISHIeHTIING
KAPPASHKAPPAAMT aMl
A18A(1,,AAL)



100
1014
102
103
{04
1ns
10e
107
108
109
110
111
112
113
114
115
tte
117

100

131

XAl (l)aAg,

IFCXALCT).GT XATMAX) XA MAXSXAL(T)

4224(2,,442)

P312aPST(2,)

PSTI1=P31(1t,)

XAZ(I)BAT(AZ.- SHKAPPALA{¥AL#EPSTIL,PST2,2,#PST1)
IFCXA2(T) . GT XAPMAX)XAMAXEXA2(Y)

AIBA(Y,, 241

PS13aPS1(3,)

. AINTSAT(].,-O zquAPPA.AytAl/AZ!EPSIL.DSIlO"SIZ.3.'93111

PSTINTIATAN(C(COS(PST1#+0S12) 0 25#XAPPARALA1/424EPST L COS (3, «PST]

i | Y)Y/ (SIN(PST|+0872)=0,25#KAPPARA I nAL /A24EPST L #SIN(3 #PSTI

23))
XAS{I)-ASaAT(l;:-l.S-A?tAZ/(Alﬁﬂs)-KA?PAtAl~A1/A2tE’SILtArNT.PSIl
1,PSIINT)

!F(xA3tI) GT XAIMAX)IXAZHaAXSXAT(])

CANTINUE

C MNORwaALIZFE

101

nO 101 l=1,NjMA
XAt(I!-XA\tt)/xALMAxaqo,
XA2(1)BXA2(1)/xa24aX 10,
XA3(1)aXAZ(1)/xA3¥4AXYp,
CONTIVVE

c Puny

102

103

104

XSCALE=1S. /FLOAT (NUMY)

caLl °LST?(ETA,F°SIL)

CALL PLOT(2,,Xa1(1),3)

NO 102 T=2,NJMy

CALL PLOT(XSCALF#FLNAT(T)42,,xA1(1),2)
CONTINUE .

CALL PLOT(2,,XA2(1),3)

cALL PLOT(XSCALFaFLOAT(TY+2,,XA2(1),2)
CONTINUE s )

caLl 2L0T¢2,,%Xa3(1),3)

PO 104 T=2,NJM4

CALL PLOT(XSCALE*FLOAT (1y+2,,XA3(1),2)
CINTINUE

C SMEARED aMPLITUDE

200
1
12

15
16

17

18

1F(NSwv, EO Y)CALL PLOY(?E.,O.,-S)
PRINT {1 _
FORMAT(Y NO yvOy WISH A SWEARED PLAT?,¢s(Y, NIV
NEAD 12,8M

FORMAT(AL)

IF(SMLNE,Y)IGD Tn 999
PRINT 15 '
FORMAT(? ENTER THE PeP MADULATION IN K5 (F4,0)'")
READ 16, ?PMOD
FORMAT(F4,0)
PRIMY 17

FORMAT(' PLEASE ENTERQ 4MIN,HMaX (INV KG),AND NUMH o)
1i¢2Fa’,0,13)%)
READ {8,HMIN,HVAX,NUMUH
FORMAT (2F4,0,13)
HIN!Nll /H“Ax
HI“AXll /HMIN
CALL PLSTR(ETA,FPSIL)
PMQDsPPMAN/2,
HIIVC:(H[MAX-HIMIN)/FLOAT(NUMH)
HI sSHIMIN


http://i8.HMIN.HmaX.NUMH

118
119
120
121
172
123
124
125
126
127
178
129
130
134
132
133
134
135
136
137
138
139
140
1414
142
143
{dy
14as
146
147
1148
149
150
151
152
153
154
188§
156
187
158
159
160
161
162
1463
164
16S
Y
167
168
169
170
171
172
173
174
175
176
177

c

c

c
o

o0

XAIMAXBO,

YA2MAYZO,

XA3Max30,

NN 390 ts1,NJM4

HI:HI@HTIVC

WIMINCE(1./(1, /“1'9“003-1./(1 JHT4PMOD) Y /512,
HANFaPT/(HIMINCS12,)

HIMS=31,/(1,/41+PM0D)

HIMSHIMS

GENERATE THE ST3NAL FROW gNE MODJLATTON SWfFEP

pn 301 I1=1,512
HIMSHIMeWIMING
KAPPASHXAPPARHT a4 ]

at3A(1,.481)

423A(2,,442)
A3134(3,,AA3)
X=2, -DIi(F-HtW- S)

THF SINE IN THE NEXT LINE 13 THE HANNING ~TNDOA

30t

XM(JISMIEPSTL*KAPPARAL A1 /A2,A2%42/ (21243 )
{SINCHANF a (HTV=r1MS))
CONTINUE

SEPARATE XM INTD 178 ANTUGYUMETRIC (X1),AND SYUMETRIC
COMPONENTS

302

nh 302 Js2,255
X1(257=J)s (X287« YaXu(257¢]Y)/2,
X2(287=J)3(XM(25T=J)+Xu(257+J1))/2,
CONTINUE

x1013)=20, |

X1(2561=0,

X2(1)sXM(1)

X2(256)2XM(256)

TAKE THE FOURIER TRANSFIRM

caLl SSt2¢x1,X1)
caLl CcSta(x2,x%2)

CALCULATE THE FIELD SPACING OF THE FTYRST <ARMONIC

FSPist,/(HIaxIaF)

THE NUMBRER OF CYCLES PER vnD SWEEP,,,

NCYCIPPMOD/F3PY

THTS [S AHERE THE FIQST HaQuONIC IS IN THE TRANSFORM
FORM WINNOWS

IuLi_vCYCI? *l, .
TAL23NCYC#1,5+,
1AL 3ISNCYC 2, :#1,
1~R!=VCYCt3 St

FIND THE MAXIMA OF THE AMBLITUDE SPECTRUM,

310

311

XMAX=20,

N 31N J=IWLY,TwWL2
A*P:saﬂy(ll(J)ttEOXZ(JﬁﬁtZT
IF (AVP ,GT XYAXIYXMAXSAVP
CAONTINUE ’

XAI(X)!XMAX

tF(XMAX,.GT, !Al“AX)XA1ﬂAX=XNlX
XMAX30,

DO 311 J=TAl2,1wWlY
AMP:SQRT(XI(J)-aZtX?(J\t-E)
1F(AMP, GY XMAXYYMAXSAMUD
CANTINUFE

XAZ(!\:XMA!
IF(XMAX.GY.XAPWAX)XAZ*AllXHAX
XMAX20,

(x2)



178
179
1RO
181
1R2
183
‘184
{188
186
187
188
189
190
191
192
193
194
19§
196
197
198
199
200
201
202
20y
204
208
206
207
1208
209
210
211
212
213y
2t
218§
216
217
218
219
220
221
222
223
224
223
226
227

312

300

OO0 0

320

C PLor

403
999

DO 312 JalwL3,1wR3
AVPZSQRT (X1 () an2eX2 (] we2)
IF(AMP GT.XMaX)YMAXSAMD
CONTINUE

XA (IY3XMAX )

TFEXMAX GT  XAIMAXIXATUAXaXMAX
CONTINUE

DLOT...

FIRST HARMONIC IN SQUARES,

SECAND HARMONIC IN TaxAvGng,

THIRD HARMONIC IN X'S )

NORMALIZE

no 320 st ,NUMH

Xat(1y= XA\(T)/lAl“AXﬂlo.
XA2(1V=XA2(T)/xa2MAXx10,
XA3(I)=XAZ(T)/xa3UAXlg,
CONTINVE

XSCALES1S, /FLOAT(NUMS)
DO 40 T3 ,NUMK )
XxPNTzxSCALERFLOAT(I) 2, .
CALL SYMBOL(XPNT,Xa1(T),, 14,0,0,,1)

CALL SYMBOL(XPNT,XA2(1Y,,14,2,0,4,=1)

CALL SYMROL (XPNT,XA3 (1), 14,4,0,,1)

CONTINUE

caLL PLOTND

§TOP

END

SURRONTINE PLOTR(ETA,EDST1L)

CAMMON XAl“AX.XAZ“AX XAZVAX , HTMAX,HIMUIN

calL AXYS(l.,O.. FIRST HARMONIC AMPLITUDE',24,10,,90,,

!0..!A1NAXt100 )

CALL AXTS(1.5,0%,'SECOND HARMAONTC AMPLITUDE',25,10,,
190..0..!A?*Axtlno )
CALL AXTS(2%.,0,,'THIRD HaRMONIC AMPLITJOE',24,10,,

'°0.u0..XA3MAKﬁ!OO ) )

CALL AXTS(2.,0,,'1/H(KBoeel) !, o11,15,,0,0,4IMIN,
1(H1“A!-HI“IN)/1§ )

caLL PLOTIZ..XO..S)

CALL OLOTI17,410,,2)

CALL PLOT(17,,0.,2) .

CALL SY¥RNL (17, ?,10...?“ 22,0,,=1)
CALL SY¥ROL (17,48, lﬂ..,?ﬂ ter,0,,1)
CALL NUMRFR(17,76,10,,.298,ET4,0,,2)
caLL SYvBAL(17,>, 9,7.29,20,0,,=1)
cALL SYVBOL (17,48, °.,,>n 13',0041)
calt “U“RF?(17 7649%.4.28, EPSIL' ot 2)
RETURN

END

1
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