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ABSTRACT

Approximate gravitational field equations in an alternative
theory of gravity are solved for a class of boundary conditions.
The generation of gfavitational radiation from spatially bounded
sources is analyzed, and it is found that the theory predicts the
emission of dipole gravitational radiétion. However, the dipole

radiation vanishes for slow-motion post-Newtonian sources.
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1. INTRODUCTION

Since Einstein.introduced general relativity as a theory
of space, time and gravitation, many alternative theories of .
relativistic gravitation have been proposed. These theories all

"classical" experimental tests

predict results compatible with the
of general relativity - gravitational redshift of the frequencies of
electromagnetic signals, relativistic perihelion shifts in the
orbits of planets, refraction of electromagnetic waves and time
delay of radar signals due to the Sun's gravitational field.
Various other experiments may be performed to test general relativity
and to possibly eliminate competing theories. For example,
gravimeters have been used to search for anomalous Earth tides
which would indicate "preferred-frame effects'" due to the Earth's
velocity relative to the rest frame of the Universe. Laser ranging
experiments to corner reflectors left on the Moon have been performed
in an attempt to detect different accelerations towards the Sun for
the Earth and the Moon, indicating their departure from geodesic
motion (i.e. the "Nordtvelt effect'"). So far neither preferred-
frame nor Nordtvelt effects have been observed. An experiment is
planned in which the precession of a gyroscope orbiting the earth
will be measured to determine non Newtonian effects [11, [2] ch. 40.
The results of such "solar system" experiments can be
conveniently compared with the predictions of metric theories of

gravitation within the framework of the parametrized post-Newtonian



(PPN) formalism [1], {2] ch. 39. This formaliém summarizes the
first (post-Newtonian) order corrections to Newtonian gravitation
in a large class of metric theories of gravitation in terms of
ten parémeters. Solar system experiments then determine limits
on the sizes of these post-Newtonian parameters. Thus to see
whether a given metric theory of gravitation agrees with experiment,
one computes its post-Newtonian parameters and compares them with
the experimental limits. On this basis, many theories can be
rejected. However, several theories - including the one used

in this thesis - have the same, or almost the same post-Newtonian
parameters as geheral relativity. These are as yet compatible
with all solar system experiments.

To further restrict the class of viable theories of
gravitation, one must consider effects beyond the post-Newtonian.
Advances in technology during the next decade may allow measurements
of higherforder (postfposthewtonian) deviations from Newtonian
gravitation. Refined solar system experiments would be expected
to provide further constraints on the viability of a theory of
gravitation. One should also consider cosmological models predicted
by each theory'aﬁd compare them:-with experiment. For example, the

"constant'" G, and the

constancy of the Newtonian gravitational
cosmological acceleration parameter must fall within current
experimental limits.

Further selection amongst theories 6f gravitation may be

possible by means of gravitational radiation experiments [3].



Some currently viable theories predict speeds of propagation of
gravitational radiation different from that of light. A gravitational
detector may be able to detect gravitational radiation bursts from
nearly supernovae, and.the arrival times of the bursts could then be
compared with those for the corresponding electromagnetic radiation.
In addition, different metric theories of gravitation predict as
many as six polarizafion modes of gravitational radiation - general
relativity predicts only two. Currently feasible detectors may be
able to measure all six possible modes and thus eliminate some
theories of gravity.

The discovery of binary pulsar PSR 1913+16 in 1975
and its subsequént observation have cgused much recent interest
in gravitational radiation calculatioﬁs. The obéerved rate of
decrease of the pulsar's orbital period is attributed to the loss
of energy from the system via gravitational radiation. It has been
claimed that the period decrease is quantitatively accounted for by
the Einstein "quadrupole formula' for gravitational.energy loss
in general relafivity [4]. However, the apprdximations made in
deriving this formula (weak field, slow-motion Newtonian source
consisting of two point masses in Keplerian orbits) [5] may not be
applicable to the binary pulsar. For example, optical observations
indicate- that the cqmpanion.star to the binary pulsar may not be a
compact object and so cannot reliably be treated as a point mass
[6]. In any case the derivation of the formula is purely formal and

the validity of predictions of the rate of period decrease based on



the quadrupole formula have been seriously questioned [7], [8].
Attempts are being made to find more mathematically meaningful
approximation methods for treating systems such asvthe binary
pulsar [9].

One would like to know whether other currently viable metric
theofies of gravitation can successfully predict the rate of period
decrease of the binary pulsar. Calculations for several theories
using weak-field, slowfmotion post-Newtonian source approximations
have been made, and the theories predict dipole gravitational
radiation from gravitionally bound sources as compared to the quadrupole
radiation predicted in genera; ¥elativity. However, the masses of the
bodies and the nature of the companion star in PSR 1913416 are as yet
not sufficiently certain to enable one to select conclusively amongst
the competing theories [10].

In this thesis, the above-mentioned doubts about the validity
of the usual formal manipulations are ignored, and weak-field
approximations are used to linearize the field equations of an
alternative theory of gravity. Solutions of the linearized equations
are found for certain boundary conditions, and the solutions are used
to calculate the gravitational energy radiated from a slowly-moving
spatially bounded system of sources. It is found that the theory
predicts dipole gravitational radiation, but that this vanishes for

slow-motion post-Newtonian sources.



2. The Gravitational Field Equations and Approximate Equations

The theory of gravitation used in this thesis is
described in detail in [11], and is summarized here. The theory
contains a pseudo-Riemannian spaceftime metric tensor field g, and
a pseudo—RiemannianAflat metric fensor field é (i.e., the Riemann
tensor of g vanisheé). In addition there are a covector field
n and a real scalar field ¢. The fields are related by (cf.[11]

(4.3a), (4.4a), (4.8), (4.9), and (4.29)).

n* = 5'“””1/ ’

n* a 3’“"nu = e"“(’ﬁ'“,
~24 s~

.y g 97 (G +1ane 3,

g = B (Faonsnt),

-1 = jwn’n‘/ B

\ M =e>T

>

. L -y _
where T = (~det gﬁ;?, I' = (-det guv)? » lower-case Greek indices
have the range {0,1,2,3} and obey the summation convention. Since
g is a flat metric, there exist charts, called g inertial charts, in

which



where n = -§ , m_ =& , lower—case Latin indices have the range
po mn . mn
{1,2,3} and also obey the summation convention.

In a-é inertial chart where the n, are small (i.e. .

by
(0]

l#;l<<|nol), eq. (2.1) implies that e -n,2 + nn . Thus,

in a region where ¥ < 0 one can choose the nﬁ to be real, and the
space-time metric will differ little from thé "newtonian" metric

g = =6 ezw, g =298 e_zwf In a region whereﬁw > 0, the spacetime
o flo mn mn

metric will be nearly newtonién if the nﬁ are imaginary. However,
the nﬁ cannot be real in one space spacetime region and imaginary in
another, so that if ¢ takes both positive and negative values in a
region of space-time, then the space-time metric cannot be everywhere
nearly newtonian (cf. [11] remarks following (2.2)).

The Lagrangian density of the gravitational field is

given by (cf. [11] (4.14))

(2.3) Z. = FTERNn®Yn.,

2y ;_'_211)
where "N = ﬁunhu= e - e. , semicolons denote covariant derivatives
with respect to the spacetime metric g, and the function F is

(cf. [11] (5.8))
(2.4) F(N) = ~N/lenk (2+N%) = e"“’(l-c‘*“‘)/lbuk(n-e_a“‘) ,

=4 . , . .
where k = Gc.', G is the gravitational constant, and ¢ is the speed

of light. The field equations in a g inertial chart are (cf. [11](7.7)).



(2-5) 5(4/5"17{ - (qu /Snr,r))f = 6__44(‘:[_ nﬂTﬂugﬂv "T"/“Vl/‘) )

where commas denote partial derivatives with respect to the space-

time variables and the functional derivative § corresponds

g withu < v s guv;ﬂ

to the independent fields n , n ,
VRS VP Vigg VAV

with u < v ~ , and the nongravitational fields (i.e. sources)
. v v
whose stress-momentum tensor is T. The componéents T of T

satisfy (cf. [11] (4.15), (4.17)

(2.6) T T,

AV
T*., =0

7

?0 study gravitational radiation in the field equations (2.5)
" are replaced by appfoximate equations which are easier to solve.
Apﬁroximate field équations are presented in detail in [12]. Here
the reduction of the field equation (2.5).to approximate equations
in the case when  y -~ wo:# 0 at spatial infinity in a g inertial
chart is outlined. Gravitational radiation in the case when
¢y > 0 is treated in [12].

Calculations are simplified if new variables qU are

introduced, defined by

(2.7) . Z,«_ = n/‘ (I- C+‘J’ )“'/z .



The transformation (2.7) is non-singular provided that ¢ never
vanishes. The qu are taken to be real, with q, < 0 , Whether ¥
is negative or positive (cf. [12] remarks following (3.1)).

From (2.7) and (2.1) it follows that

(2.8) 5""7}2‘, = -1,

which in a é inertial chart becomes qo2 =1+ 9, Thus ¢

and the q, can be chosen as independent fields, and the Lagrangian
density may be expressed in terms of these variables ([12]
(3.30.

Approximations of fields are made on the basis of "order
of magnitude" assignments. The expression O(n) denotes terms which
are of the order of magnitude Ve ™ of smaller, where V is a typical
speed of the sources. The components of -the stress-momentum of the
mo mn

0ipy> KT~ = 05y, KT

(e.g. an ideal fluid). One also assumes that in the neighborhood

. 00
sources are assumed to satisfy kT =~ = =0

(4)

of the sources, time derivatives are an order of magnitude smaller

00

than space derivatives. Thus kToo,m = 0(2), kT " ",0 = 0(3), etc.
In the case when ¢' > wo at spatial infinity in
a g inertial chart x', one assumes that ¢'- wo,= 0(2) and q¥n=0(3).

Far from the sources, space and time derivatives may be comparable

. . c v, o e v =
in size. Thus it is assumed that Y 0 0(2) and g m,u 0(3)

except at points where TV’ # 0, in which case w'¥0 = 0(3) and

q'ﬁ»b = 0(4). Similar assumptions are made for the higher partial
50 .



derivatives. Such assumptions must be checked later for consistency
with the solutions of the approximate field equations. The

'Lagrangian density i;/ "in the g inertial chart x' is given to seventh
order by [12] (5.11).

Define a new chart x by

(2.9) XM = e’¢°x'” , x° = c+°x'°‘

so that ¢ - wo and guv +‘nﬁv at spatial infinity in =x provided

that the q, are negligible. Note that in the g inertial chart x',
- 'I.

he ¢! =l .
t & v C n

v at spatial infinity even if the q'ﬁ are negligible.

If one assumes the constant wo # 0 and is not small, all functions of
wo appearing in expressions for the fields or field equations are
assigned the order of magnitude 0(0). Thus p - wo = 0(2), T = 0(3),
and so on, in the chart x exactly as assigned in the chart x', since
the expressiops for the fields in x differ from their counterparts in
x' only by factors of order zero.

The field equations to third order in the chart x are

given by [12] (5.14) and (5.15):

(2.10) (1vesb)e® g, . - 2ey, o +(1-ePR) e g, by - 20+e) 0

3

= —lonk (1- ey (1re®P) T+ O
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(2.11) “P;mm +2((+634“'Y.(““‘C“’-eeﬂlb)"l);oo

+4(reBtey (e et gody o = 42k T + Oy -

Qmw, w0
Define a scalar function ¥ by x;b = one Then differentiating
b b} .
(2.10) with respect to X" and summing over m, using
om oo

T = -T " _+0 , and integrating the resulting equation with
;m 5 O (5)

respect to x° gives [12] (5.16):

(2.12) o3t Lom - es‘L" Lo - (1+etb)) b o
= Bak((-e*) "' ((redh) T ¢ . Ocay

where 'f is a function of the spatial coordinates only. Eqs. (2.12)

and (2.11) with qm mo =¥ 06 are a linear system of partial differential
Y 3

equations of X and ¥. Its solutidn is described in the next section.
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'37.Solutions of Approximate Equations

The approximate gravitational field equations (2.10)
and (2.11) are solved in this section. First the system (2.12)

and (2.11) with 9 mo = X 200 is written in matrix form as
s h

(o]

(3.1) +

_ ( 64-4': 1) e—.’a"‘c’o rK -

- z(ea«k - l)-l(e o_ C‘h‘)"* () ic'i‘;b(ca“b‘. ()°'(cl'l-'l'o_ C.BA’— 644*. , ,) +

(&) "554" 1- 00
- kTm 4 O(q_)
= - 4\ﬁ

2(eM-iY'(eP% « VKT - flan * Ogy | .

Multiplying (3.1) on the left by

634)‘.(&44” | ) e}"’"

one obtains
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+ “Z(CG.L"-Q- 13-‘(684”— 644"4- ‘) ,!L&—}"l‘o E%HT'(e”A"— Ceqlb_ eﬂ“"-* () 1 ’Q/
(3.2) +
Uy | -2leoey (o) b kT e et 1) ) (1)
-kT™ + O(q.)
= _ 4’7'(

(1Y (PPr3)edh kToo p * Ow

'

where p = —é3w9f/4ﬂ. The system of equations (3.2) can be

decoupled if the matrix

-2 eB%. eor () L esde(ende B e, )
—2(e™*e) o3t L (cetebe g0t )

can be diagonalized. This is always possible over the complex
numbers, but not necessarily over the reals.

The characteristic polynomial of A is det(A-AI), where
I is the 2 x 2 identity matrix. Thus the ‘eigenvalues of A are

the solutions of the quadratic equation-
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(3.3) 0= A+ 3(e“iaett g™ i)

+ Ze_‘).‘h"o _Zcm“‘ﬁ ‘_4_6(““0_26!14‘0 . zeﬁﬂﬁb

The solutions A, of (3.3) are given by

(3.8) %y = b[-1(e%hi et getein) = A" ]

b

where D = (ettoo (i et 10eMeo (48P o et _ g )
One notes that A = 0 if ¢y, = 0 or Yo = Yo%, where Y, x @ 0.25,

A < 0 if 0 < ¢, < wo*’ and A > 0 for all other Y,

(see Appendix). Thus the matrix A is diagonalizable over the

reals provided Yy, 5 0 . or ¥, 2 Yyx. In the case when

Yo = O, the field equation (2.10) is singular, and in fact

the approximations used to obtain eqs. (2.10) and (2.11) do not

apply if v, ‘is small. However, this case is treated separately

in [12]. Here only the cases when A > 0 and VYo 1s not small
are cénsidered. The eigenvalues Xi' of A are then real and negative

(See Appendix), and can be written as

’

(3.5) Ay = -(e®ii)u,2



where the V- are positive real constants depending oi {,.

A matrix P which diagonalizes A is found to be
(3.6) arf a.p

a4+ d+ a_d.

where the a  are nonzero but othérwise arbitrary constants, and

oy = é_e5¢°(e_"'4'°+l)(e""l"+4~c_4"l'°—5 £ A™)

b

B = (et iy (et emhietdh ),

The matrix inverse of P is given by

(3.7) a»'_p(_ —a'ﬁ

P~ = (dot P)”

—a-i-d‘(' a+p ]

14
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g . : i
where det P = —a+a_e3w0(é“$0 -ﬂl)z(elzyg + 1)(e16wo + elzwo + e”wo + 1)A°.

One checks that

(3.8) Ay o]

PAP =

Multiplying eq. (3.2) on the left by Pfl and using PP—»1 = 1 gives

-

“L ’\lf’ —kT°° + O@,)

(3.9) ¢ +(eak+(74P—kPP-' = —44P"

’X wm ,X- 00 (e‘h!«;__ l)-'(ee'l”+5> 684‘0‘(T°°*P + O(q-) .

J 2

Defining linear combinations ¢ and w of the fields ¥ and x by

and using (3.7) and (3.5), one obtains from (3.9)

X
¢ "k o] rq& | -ady kT°°+(sf) + O
(3111) - = —ax(det P
w , mm D 'U-.—'L‘ (5] ,00 a“'(Y‘f kTw+{Sr) + 0(4) ),



where Ye = Azt (e 1y'(e °+5)c““’(3

If the sources are spatially bounded, i.e.

L = sup { IX]l . T*&,X) # 0 } is finite,
then the matrix wave equation (3.11) has a solution corresponding

to outgoing disturbances:

$(0X) —a{p kS RILT d% + IR p@Y %} + Ocy
(3 .12) = (Jz{,‘ P)’l

w(x",?) a,,{y,,kfR"[T” ;et_Asx' + {SI R-'r(?')a\%(' } + O(.ﬂ J,
where R = [ Zf§'],[T°°]§ét= Too(xofy;le’ig,). Inverting

eq. (3.10) and imposing boundary conditions ¢ =+ ¥, and
X *> 0 at spatial infinity give the solutions to the approximate

field'equations (2.11) and (2.12):

(3.13) +(Xa,?) - 4&; s k (elukﬂyneé«lu. A {)" IRM[TDQJ:et A%’

ST B s o

(3.14) YD) = ke iy e 8™ { gy g [ROLT T A

- d-7(+ (_‘)-' _f R—'[Tm];et Aiﬂ' } + j‘ R-'r(?’\ 43« + O(q.) .

16



The solutions (3.13) and (3.14) may be expressed as

(3.15) Y =Y, = [dox R, Te- &, %) + 5. T00e-2 2] + 0,

Va

(3.16) ‘Lm,m(ﬂ = jd3x/ R"'[e+ T‘°°’D(XD-%+, Y’) 4-é,T°'j°( o_R ;( )] + O“) )

where Sy = ak (et et tyn ey =k k(e ) et N A pT g

To obtain solutions for the gqj, one multiplies eq. (2.11) by

2e3%0(1-"¥9)72 204 eq. (2.10) by - %(1+e8"’°)'l and gets

(317) 72573 by - ’;ﬁ‘_';ff)tfitliff bt e = ET oo
(3.18) %ap, Pwo = ;Lq_m,nn fg‘iaim,ou ’L'f{g:e ‘L"lmnm %%IF.T
Define the Fourier transform {I\J of w—_ll)o by

(3.19)  b&)-, = [dtk Dy ekar”

and define am, :EUVIZ’ similarly. Then the Fourier transforms of eqs.
(3.17) and (3.18) are

6.20) [k BT ] -t g, - S

1-e®h 4, A Bak

* 4“0 A —’4‘? 5"’0
(3.21) ":’%@L Kok, 4 *{-_e? k.k =

k3 -! (. =
n = m ko]‘l +2 |+58¢a e kmknin (—etds

17

+Qqy,

+ 0(4) .

+0O

-"‘—mo

@) >

+Oqy-



Equations (3.20) and (3.21) may be written as a matrix equation:

(3.22) BT = enkT + Oy,

where B = [Buv] is a 4 x 4 symmetric matrix given by

¢
Bou = [ ze—% k"“ 4’0-&““’»?66.&)3&4‘“ ’-] »

Ty T T T ety ((reed) 0
4""0
020 | bueun- - et
6’5"’0 e_s\lb

_e8% '
Ban = [ 55 Kpky = 7m0 K] S+ 4 HERR bk

and ¥ = [Wu], T = [Tu] are four-dimensional column vectors given by

24,
A A e 4 e —_ ) ~
(3.28)  Fo= ¥, Yurdw, Vo g, T, Tw T T

Let {i]-lkm, eélz eéz), define an orthonormal basis for ﬂka
1 '
where |K[= (kmkm)z. Then one has the orthonormality relations

@)
;e ke - e

(3.25) K[ kuku = €500 = e e® - -0
The 4x4 matrix Q = [qu] given by

)

(3.26) Q'u,o > QD/4 = S/uo ; le = \.\:\-lk’h » QM'L: e’uW\) ) Q‘M5 ‘cm

-1
satisfies QT = Q =, where QT denotes the matrix transpose of Q.

18



Defining a new column vector y' by

: 1
(3.27) ’? = QT’Y )
one has
! ! A I / AQ 0N A A VA
(3.28) “&0 = "fl ) ’}, = 1_“ = \k\ |km{m ) '&1_ 3 1_1’-‘ C(,:q_m , '-J(;s 7_2)=€'(ﬁ)1m
and ‘1" satisfies the matrix equation
(3.29) BIA?/ = SﬂkT’ + 0(4_) ,
where
.
Boo ~:§R‘£§| kek, o o)
_lretde ko Lo
e () kpke l¢~¢a"_'rr~['i %kpkr - es«kk:] % 0
(3.30) B'=
; 5%,
o o & okp - g ket 0
o e-awL es% .
O Q ‘z kpkﬁl—ﬁ’?ﬂekc

is found by using the orthonormality relations (3.25), and T' is

given by

(3.31) T.=

A ! ] A
Mo T on e oW Lo
T, Vo ?Tae G T

/A
Ts* Tev

Pl
o ST

19




Writing out eq. (3.29) explicitly, one gets

5“"’ A o 4-
26 4(1-etoy oBI) o3 } ado sh 4,
(3.32) [- (et Kok H e (1o k) - (+e Treot KoknGm = axk;ky T + Oy >

et Kk, o
O S A G e R -

4 @ oA
(3.34) [" -;4°k kp T;T“k ] 1‘_ =;a—:—‘& Cg) T*o -O-O<4_) (J'=I,‘L) R

Multiplying (3.32) by 5 Vo (1-e*¥9)2 (3.33) by —1|%] (14e3¥°) ana

(3.34) by _2e31Po’ one obtains

|_=“0+ ee‘o

A - 44. T "“. A ~
(3.35) [’kmkm ‘.‘ZW ]4’ - ";_ _Ie‘___:._e)_ég;i__)e-$~l’. k“k"‘l’“ = 4xk T°° + O(q) N

(3.36) i(ive™s) kpky ko d “'[e'yl"kpkp*eskke‘}km‘lm - Buk&i T Ll
8o o A
(3.37) [ -kokue 222 k2] 59 - - venk e e@ T L0 (jo10).

Equations (3.35) and (3.36) are the Fourier transforms of

e _ethy et

| -ettore8do
(3'38) \l"m —2“__—.4':"0 +- V+edb e"": 1‘“,’1&0 = 4zak -roo + Q

1+ g8¥e

“)

(3.39) ‘('*E«L’)*"MP +e—s'lh‘l""”‘l’r’ ‘es‘taim,moo = &nk | ~ette T“,o * Oy

where one uses Tom,m = - Too,o + 0(5) ([12](4.5)). Egs. (3.38) and

(3.39) have the solutions (3.15) and (3.16). The Fourier transforms

of the solutions are

20
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- A

A )
(3.40)  J(K) = 4= [S+(kmkm—¢+,k:) Ty +§_ (knkm = k)™ T”(k)} + Oy,

a = 24 2y = _-’ t-' ko 2 o0
(3.41) {0 =~ 4nlenlkukn-1,ke) kodoot) ve (kn-iake)' b Foo0) ] v 0y
Using the Fourier transform of [12](4.5), one obtains

(3 '42) ill(k) =~ 4 {é#(kmk\u" _:_’ck‘;‘)"%_l-’\‘-pu(k) + é_(kuk\u‘ t‘lk:\)—‘% ‘T‘P"(k)] * O«.) .
Equation (3.37) has the solution

(3.43) 9000 = 4xQ(knkn- Lk Y €@ TUY + Oy (§a1,2),

evh 2 _ 1telh

where 9:4—km’ u =—m > 0.

Inverting the change of coordinates eq. (3.27), one has

2 .
(B.48)  f= kndy s Le0qf

€

Substituting the expressions (3.42) and (3.43) for a“ ~and qiﬁ
2

into eq. (3.44) and using the identity ZU_,eg@§7= £W -(ﬁrlkmkp s

one gets

(3.45)  Gulk)= ~tn e, eakn - £0)7 € (ko KLY + B Ckakn- )] %ﬁ%”(k)

470 (kakn- K2V THO(K)  + Oy,

(3046) im(x) = [d*k {m(k)e‘.k“x‘ + O(q.) .
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where one imposes the boundary condintion that the q, 0 at spatial
infinity. Equations (3.15) and (3.46) give solutions to the third-order
field equations (2.10) and (2.11). They are consistent with the
assumptions wao = 0(2) and q, = 0(3).

Three speeds of propagatién appear in the solutions to the
field equations. Two of the speeds, vt and v_, are associated with ¥
and the longitudinal component of'qm, while the transverse components
of q, propagate with speed u. These speeds are distinct from each
other and from the speed of light (see Fig. 1), except in certain

limiting cases noted in Table I (see also the Appendix).

Table I. Limiting values of speeds of propagation vy, v_, u

Limiting case lim vy lim v- lim u
Vo> -0 co ~0.82 o
'\1/0 = O l ! !

oo dogy mo2s most =05

b > 00 i o] = 0.7!




Figure 1. Speeds of propagation vy, v-, u
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Graphs of speeds of propagation as fumctions of the value ¥, of Px) at spatial infinity.

For definitions, see es.(3.5) and (3.43) .
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To calculate higher-order contributions to the fields, one
keeps terms to seventh order in the Lagrangian density and obtains

approximate field equations [12](5.12) and (5.13):

(3.47)  (1ve®) ey p - 2609, o (1reBRY Mg, om - 2liret) 4o

1r et +5e°"’°+e““’° (4 } 3eﬂ4-+7284°+5e'1~@» \L J»
Y8 e iresh) A b+ G-etde)rests) 105w
\+e ‘b
= - l(:'nk —_—‘C“ Fe s 0(5) s

etle 2o wde
(3.48) .\!/,m - {z - 2+e° = - (3 l\%@e_e_&)(il, ‘Lo)]‘L,oo «-[4 (%;:1]“{’,02

ol 4de | qdo, B4 2 14\-_3,_2&14. edo

‘)_e- \-+.e§il.°+ d"il«,mo - = | +e 8% = eJ°[(4'°'i")'"+(¢’“i“)’°]

—‘i‘L 4?4'5‘ 4 64\:_ do -
-2° +\+eﬂ°e : 4"(4’--1*9)7_.«,...0 = Fnk (To2eT™) o+ Oy

If the third-order solutions (3.15) and (3.46) are substituted into

the quadratic terms of eqs. (3.47) and (3.48), one has

(3.49) (1 +€94" e‘;J.Z"'PP —Zeshiu'w *(l-ee#)e-bﬂkip,pm - Z(HB"‘L) ‘Amo

|+e

ad )
= —lenk {gade T7° Oy ,

_oto, oo e | ade, 8d
(3.50) ‘(’mm —Z_-I—l—i—é;—i:“" ‘L,oo 4--‘3‘ e.__“le_ee’r:ﬂ_e"*o Jumo ™ ‘fwk(T°o+Tmn) +o(é.)'

The system of equations (3.49) and (3.50) differs from (2.10) and

(2.11) only by the orders of magnitude of the neglected terms and
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the additional 4nkTmm term in the sources. The solution methods

of this section give the fourth-order solution

(3.51) 46 -4, = .fh? 31[& T*(e- 23 7)) s T e @ ,3)

ST EA )+ T e 2R )] v o

s) »

where 78 = 2K (rehyt g2 pth [y + e3do(iretde) /s] .

The expression (3.16) for is good to fourth order, as are the
P In,m

solutions for the transverse parts of 4, since eq. (3.50) is unchanged

from eq. (2.10). Thus ohe has

. ) A ! LS - '—3-| luyﬂl tkoxe k¥l
(3.52) i {x) = __f? Z][‘”* 'k'!'—k"l'Tnc(k)Lé*e.-Lk"—‘;} e € ko V. ck, M ]e Ke 731

>

T"'o(l(a _"g_‘):g') + O(S) .

b‘( gm



4. Radiation of Gravitational Energy

Once solutions to the gravitational field equations are
known, it is possible to calculate the rate of gravitational energy
radiated away from spatially bounded sources. The components of

the canonical gravitational stress-momentum = ' in a g inertial

G
chart x' are defined by [12] (2.7) to be

(4.1) E_alna— = gﬁfzq’ - (5‘0{6,/8",},0‘) nl,u,n g

If the sources are spatially bounded in ::x' , then the rate of
gravitational energy radiated out of the spherical surface

1
3

x"x"™) = a, where a > ¢ , is given by [12] (3.27):
n ¥ ' - ’ , '
(4.2) Eo(a) = - c_ro A&'Jc 40 ;4,05(3("’,?'))( Srismb |

’ ’ . ! ! 1 . LN ’
where r'=(x"x"™)*  x"av's8’) x*=vr'5in8 casd, x*sr'sinB sind’, r'= 2.

The rate of radiation of gravitational energy is defined by [12]

(3.28) as
(4.3) £ = dm E D .
a-» oo
As noted in [12], terms in Z ' 0 which are O(r'_3) as

G

r' » o do not contribute to E:

26
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In the case of small q , one uses [121(3.10) and (3.11) to

get

- 544’

(4.4)  lbrk =2 = 4L, - vl [ ) Qw59 w0

+(e‘ﬂ'l i- w*ﬁ“)igmq_m,o "(be—“-‘b 4"4'4644’ )(1» +im4”m)+’ﬂ7—’

+ (— i +2) 1’»‘(,»1 ils ‘[’/;o + (-2 "Z'a%v )(1.15»" * ?.l"‘ il”'"‘ > "l/,’o

3

+(- 2~+Ze+)151l\\o‘4’,m v (-2e*42) 1so(+.u"1m4’ )] + O(g ).

T

The results of section 3 imply lp'flpo : (2), xp : (3), qm s = 0(3),

- 0(4). Thus to eighth order, the energy flux is given by
b4

(- ette [( ~ads e«--l, ads

(4.5)  lork T/ =AYb - Tm ) 4'us 1m0

!

"-(c-‘“'—‘_e’ .+ea4b)q_sm‘1.mo _Z(eﬂk 4‘“)‘150 ‘l’:o + 049) -

The coordinate transformation (2.9) and tensor transformation rules

~give
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!

A"s g ﬁ)nfa’x

’oo(xla q.J.,R-il -’«)

(4.6) IX- il Xo- ) Iiﬁf’lj— st 3 )
J% mo - " J’ 4 'wo 2 ';_’ ' .
[Ril—r G- 7)) - CM'J’]’;"_}?‘T (x'°-e «L.__‘}’_, Y

Pl

T = e T™w)
where k' is given by

(4.7) ki, = ebk,, ki, =e*Kk,

o
The solutions (3.51) and (3.52) in x transform to

(4 8) '+(K) + f‘{/ ?/ 5 Too( ‘o g ) 44" Imm(x’a_ﬂl ‘S")

Vi

+§ T (x" - '——5—?1 g ,$7) . e“'""'-», T (o - 'x‘_‘z'! ,_‘5")] + Oy,

d” no - n—’—'
4.9) )« - e [ fanc kel T [ N5 e

LAY

S e n .t
—iky =2 ]etk’,vezkpg P

e ce (L o T e B 1) L o

s) »

20 ot 2o

where.v; = e vy, u=e "Cu. At this point it is convenient to
drop all primes, since the chart x of the last section is no longer
needed. All subsequent expressions are to be‘understood to be
eipressed in a g-inertial chart x;

Define the one-dimensional Fourier transform ¢ of 11;—1[)0 by
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410)  g-do = i Ge, 1) €M7

and define Eﬁ and T similarly. From (4.8) and (4.9), one obtains

r~ 3 l?—
(4.11) xp(k,,m=f%%l[(S+T°°(k,,;)+e*‘b T (ke 3)) e S

=00 b4 mm - -1 n‘—-j—‘
F (LT, 3) + e T )™ | v oy,

L84 (koLg_ -iko'i;i' ko 5F
(4.12) Gy 7) - [75 ( k fda Tl e, e ™ v cpEtE |
L 1 4 ~( LB‘I
-’H,WT °lke,3) B v O

At large distances from the sources, i.e. if |§|= r>> Ikol' n 2,
one has IX-EI =r = xmgm/r + O(r*ly. The expression (4.11) may be

written as
4.13) Ttk ?) = w{e® [ [ 5,720k, 1) v e, Ton(k, )] &
e (B [5. 7001 + ™o TR D] ™ | 10,000,

=_p = e p 1 7 7
where ap » kox [vyr, bP kox /v_r. Identifying the spatial

integrals as inverse Fourier transforms, one writes

(4.14) $(k°’§ )= !%'f{eiapxP [ SQ.-?DO(ko,K) . e-«}oqh—’l‘-nm(ko)z)]

pr)(’

[T B) v e g "w DI} ¢ 04 +062) .
9’
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Similarly, one has
~ X oad b”‘ d no
(4.15) ‘Lm(k"lm o oo 22X { apr?, Sm T""(ka,Z) o oe? ‘. br # (ko D)

re idpx? [d " T"o(k I) —Tmo(ko,d)J} - O(S‘) v OGr?) )

where a = !kol/v+, b = Ikol/vf, dp = —koxp/ur, d = lk;l/u.

If the sources are assumed to move slowly, i.e. if [kol = O(l)

and v4/2 v v_/8 > > lkol, one may expand the Fourier transforms:

(4.16) Tk, )

ey § dig TPk 3 ) e e’

]

(znY? Ll fa’g T'w(ko,i )(—Lk, P)

where in (4.16) and in subsequent expressions, kp is one of ap, b,

dp. Keeping terms to fourth order, one has

iku%oo(ko,u ) = (7-71')_3 fdzz [ Lko?w(ko,g) + kokp—’\‘:oo(ko ,i) EP] + O(S) )

(4.17) ke T™(6,R) = Ga[dPg ke T™(3)  + O,

e T ™ (koK) = Oy .
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The Fourier transform of the conservation law T00 o = =T n + 0(5)
’ >

(cf.[12](4.5)) is

Integrating eq. (4.18) over all space gives

(4.19) Jog kT %e) = Ousy

)

while multiplying eq. (4.18) first by £™ and then integrating over

all space gives

(4.20)  [dg ik TO" (k0 8) = -kot § 25 T°(ko 3)3™  + Ousy .

If one defines the Fourier transform of the dipole moment of the

sources as

~

.20) D™k = (4T %%, )",
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then from eqs. (4.17) and (4.19)-(4.21) one gets

tko T, R ) =

(4.22)

GaY? ko ks, D'lke)  + Oy ,

ke T™ ke K) = ~Gam 2k B™(k)  + Oy

From eqs. (4.14),

.23) kel

(4.24) «Nk,(ko,ﬂ =¥or

(4.25) ke J

(4.15),

ke, 7) =

(ko,-x.) =

3, k 13 - xMxn ~
€ J‘ ?h {etﬂp 64. rl

(4.17) and (4.22) one obtains

LapxP é "' 0 - AN
[ apX 4. x» (ku) +ebpx'°§\_l:§; Dn\(ko)] 4,_<)‘S)+<)('..1.),

lagaf S XM (hoxP 8. X™ .
[CApx vi‘ > P"k.) + e bpx = KT D"‘(k.ﬂ * Oy + D(,.-':.)’

Brke) ¢ e X B,y

4 etder? p [ 22X

Kr":- D (ko) - B"‘(ko)pj + Oy + OGr?) |

. &, xMxN ~ L "
(4.26) T mslko,¥) = —¢‘3J° ke {e‘%x”z _"_r’f__. Bkl » e 6- Py X 5
+elde (ko) - Dw(kﬂ]} + Oy + OG Y,
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The Fourier transform eq. (4.10) may be written
° ~ - {kox® —\knx

421 Yoo = [ _de [Pk D v Pl e™ ]
If the sources consist of a single Fourier component, ie, if

. o £ uv - tKox® 2 uvX - ~ tkax®
(4.28) T0) = THKko,R) e + T, X)) € ,
where ko<0, then so do the fields w-wo and 9 For such cases one has

T A ~\ {2kox®

(4’29) \‘1,5 ‘I’:D = Z'Res\"l",s(ik"(P) + "'l)/s(ik""#)e' " -g )

where Re{z} denotes the real part of a complex number z. Substituting

the expressions (4.23) and (4.24) into (4.29), one obtains

Myn . ~ 5_1. L ~
4.30) P f, = 2 ¥ R {3 X B o Bl B ST S Bk

o[ B eitrde, Sl eitorann® [ BB + T (] )™ ]

* Oqy * oce?) .,

Taking the average over a large region of spacetime compared with the
wavelengths and frequency, the oscillating terms give no net contribu-

tion, and one has

@.31) (4o dod = -2F 5 ReL (&) + 50) 505 BBk} + 0, 06
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where < > denotes the average taken over a large region of spacetime.

Similarly,

(4.32)  (quoqmo? = 2e* FE R A(5 5 -7 ) T DB (k)
_9_ N mx
u D™( o)D (ko)} + O(” + O(r-*) ,
(4 .33) <L]_5|W\q_m, \7 - . Ze Xr’ k; R {(é-) + _Tj _:7(_ m(kp}D“*(ko)} + O(‘)) *’O(Y 5)

(4.38)  {quodod = -2 5 pe { (B8 L &SV B 35 (1) Y + 0y + 06D

If one contracts egs. (4.31)—(4.34).with the unit vector xs/r the

angular variables one obtains

(4.35) fam*’@,,.l,o) K (s E) Bk T™(ke)  + Oyt OG3),
(4.36) faa Clgmsamor® - ertde K (** $E7, 28 )D”‘(k.,)D”(k.J + Opgy* OLr),
4.37) §40%<qimauo) = - L et BT (4§ ) BB ko) + 0rgy +02)
(4.38) [da¥{gode) = -Derh i (B4 ECY By 3Fm) + gy + 00

. 27 T
where Jdﬂ = J da [ 40 sin 6 (cf. (4.2)),lda x™ x™/r2 = (41/3) 8 -
" Jo o
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Substituting eqs. (4.35)-(4.38) into eq. (4.5), one obtains

(4.39) kfnm (Z0Y = kBB 5 (30 5 ) - L b ety

+ e_‘> N 4o »+e*“"($+é+

X[ +EBJ° v_ -li - e H.ea

VY + 0« 06er)

By (4.2) and (4.3), the power lost from sources consisting of a

single Fourier component is

(4.40) E = —;—k ket D"(ko) D™ * (k) { 2.( %’;15 * %—; - o (ieeyr

4o
e (557 ) + & - i@ (5«55~ o,

Vi

For small values of wo < 0, one has

§, = % k2ie(-etyt 4 o) . ey = 2k 3 (et Y« o)

(4.41) ¢ o = 4k0—€¢y' ~ Ol

Ve = |+ O(G-e**)) | u= 1+ O(Q-e%)

and hence



36

(4.42) € = 12k ket D"(ko) 6“*(ko)(l-¢'$°3_'[l*O((l-e“{"’))l * Ocoy

as wo > 0-. Thus the power loss has a physically reasonable sign as
wo > 0-, although it becomes infinitely large. One recalls that the
approximations used to obtain the field equations (2.10) and (2.11)
assumed that wo is not small (cf. [12] remarks following (4.21),
remarks following (5.2) and (5.10) concerning analogous post-Newtonian
equations) and that the approximations are not valid for small wo.
In particular, one cannot assume that q, = 0(3). However, eq. (4.42)
gives some hope that energy is lost rather than gained by gravitational
radiation for at least some wo. Further work (for example, numerical
calculations) would be needed to verify that the energy loss €
remains positive for all admissible values of wo.

Inverting the Fourier transforms (4.23)—(4.26)-give

»

(4.63) o0 = & [EF B8 ) ¢ £L B 5] + 04y « 00

5 ™ . ‘_- _ M-am -
4.48) 00 - RLAT B8y ¢ EFB0e-5)] v 0, + 00y

e¥e XMXR o R MyA e P
(465 o= = S [ B2 BGe- ) ¢ €29 Bre- 1) + 05 Bre-1)

0D (x-5)] + Ogy + OCe-2),
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_ & - yn " & TR X"'K' o

(4.46) g, (1) = e B[40 KU B p ) &KX Ko vy & XA (-6

_9“'“ o Y 2

w D"(x°-T) 1 + Oy + OC2) |

where the dot denote the derivative. One may use (4.43)-(4.46), (4.5),
(4.2) and (4.3) to obtain an expression for the energy loss & from
sources consisting of a smooth distribution of frequencies. One notes

*m, 0 _, *m, O . . '
that cross-terms such as D (x —r/v+) D (x -r/v.) survive in general,
while for periodic sources the cross-terms correspond to best periods
in the expression for E which average zero over a long time
interval.

Integrating the equatibn

(4047) TPO = “Tpm,m - Tooml)lp + 0(6)

(cf. [12](4.5)) over all space, one has

(4.48) BPaeY = - [ T=004,00  + O

Substituting the solution (3.15) for w—wo into eq. (4.48), one gets

(4.49) D) = (58 [[dhdi T D BT T X)) + Oy
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> >1
for slowly moving sources.  Under the interchange of x and x , the

integrand in (4.49) is odd, hence the integral vanishes and one has

(4.50) DPlxe) = O,

Thus to fourth order, the D" vanish and

(4.51) £ = Oy .

No energy is lost by gravitational radiation if terms of ninth order

are negligible.
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5. Conclusgions

It has been shown that the weakffield approximations to the
field equations have wavelike solutions that correspond to three-
speeds of propagation. These solutions satisfy ¢ - wo and
q, 0 at spatial infinity, provided that wo is not too small,
and that A > 0 (see remarks following eq. (3.4)). In the slow-
motion approximation, the leading term in the gravitational energy
loss is due to dipole radiation. However, this term vanishes for
post-Newtonian sources.

The results of this thesié are not incompatible with the
Einsteih quadrupole formula or the measured rate of decrease of
the period of the binary pulsar. Higher-order conttibutions to

the energy loss need to be computed to give more conclusive results.
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Appendix: Expressions depending on wo

In sections3 and 5, several expressions appear which
depend on the boundary value wo. Here the values of vy,

for which the expressions are valid are determined. To simplify

notation, define

(A.1) 7 = edve

so that ¢z > 0 for any real wo

The discriminant A appearing in eq. (3.4) is given by
(a.2) A= k(s-126()

where B() = {7+ 557 - (0%~ 1452 - 37 -9 .

Several cases are considered:

(i) If 0 < ¢ <1, then (¢ - 1)3 < 0, hence A > 0 (to see that
8 (t)-< 0, one notes that £S5 < 3 and 3c” < 33
together imply that

0(g) < -63*- 145> -35 -9 < O ).

(ii)3Tf- ¢z = 1, thenm A = 0
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(iii)For ¢ >'1, one notes that (g - 1)3 >> 0. 06(1) = f32
and limc+® 0(z) = o, the continuousfunction ©(z) must
have.at:least:one positive zero. Resorting to numerical
computation, one_finds the smallest positive zero
L, = 2.79. If 1<¢gcx< g*;;:‘then A<O..

(iv) If ¢ = L, » then A = 0.

(v) DNumerical computation gives .0(z) > 0 for Ty < T < 3.
For ¢ > 3, one checks that =-10¢*-14g%-37¥-9 ¥ - 1633,
thus O(x) > 5+ 35%-16%? = (54 35 -16 ).

One shows that $*+«3¢ -1t > O for T23,
hence 8(z) > 0.
If ¢ > g, them A > 0.

From cases (i) - (v) and eq. (A.l), one concludes that A > 0

if, and only if, o & D ={do: Yo < O or Yo >Pox =340 T = 0.25}.

The eigenvalues A, -~ of the matrix A are given by

(A.3) Ae = 2(-Ax A%,

where /\(;) = 1(s*e8pr-a¢e 3)  (cf. (3.9)).  One finds that

(A.4) A*-A = BY(gtri)gr-¢+ 1) > O
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. 1
for all ¢ > 0, so in particular A > A~ and hence A, < 0
for ¢, & D. A has an absolute minimum at g = 0.84,

for which A = 4.17. Thus A > 0 and X < 0 for

¥, e D. One considers the boundaries of D:
(1) As Y »-wo (5»0.), one has, by (A4), A*-A » O, hence

Ar 20 and A - -ANO) = -} .
(ii) As Yo » 0. (5> 1_), one has A->O, hence A ~» -1NA(1) = -2.
(i11)As o > doe s ($+3xs), One has A>0, hence Ay > ~3 ASk).
(iv) As Yo > 00 (g2a), one has A= 4 4[| + 852 +OG()],

A* = £5*[1-8¢2+ 0], hence .= -432{({-0(sM],

Ao =gt [+ o).

The propagation speeds v, - are given by (cf. (3.5))

(A.5) vy = (52 )M=Y ™"

Since z2 4+ 1> 0 for all ¢ , and A, < 0 for Yy e D,

one can take the ' v - real and positive for wage D. The limiting

values of v, ' corresponding to the boundaries of D are:

.
(1) As dp>-m (§>0.), one has ¥2+1 - | , hence v*_-»,gi/»t(—'z\t\ -
>0
Le.,, ve>00, v_. > (a",—_)'v1 = 0.82 ,

(ii) As x[/.,—»o-(‘g—» i_), one has Trl > 2, hence vy -\,

(iii)As "(’o""“’o!-&- (S_’S*d-)y Vy [?-(S-rz*‘)/l\(g*)]'h: 0.56 .

(v) A5 o> (S2m), vp= o OCs™), v = 257 w06,
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The constants o, ~and B in the P in eq. (3.6), and

the coefficients Y, and 6+' appearing 'in egs. (3.11) and (5.3)

are’all well-defined for wo,e D. Note that since 0 % D,

one has B # 0 and det P # 0 for IVSE D.



