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Abstract

Some recent developments in topological quantum field theory have focused on local

ization techniques using equivariant cohomology to reduce functional integrals to finite-

dimensional expressions from which physical and mathematical characteristics are readily

deduced. In this thesis we examine the applicability of these localization techniques by

analysing in detail the geometric constraints that these methods assume. After an exten

sive review of the relevant background material, we focus on the applications of equivari

ant localization techniques to phase space path integrals and classify the 2-dimensional

Hamiltonian systems with simply-connected phase spaces to which these formalisms can

be applied using their fundamental geometric constraints. We show that for maximally

symmetric phase spaces the localizable Hamiltonian systems all appear in harmonic os

cillator forms, while for non-homogeneous spaces the possibilities are more numerous. In

the latter cases the Riemannian structures become rather complicated. We show that

these systems all share the common property that their quantum dynamics can be de

scribed using coherent states, usually associated with coadjoint Lie group orbits, and we

evaluate the associated character formulas.

We then show how these results generalize to the case where the phase space is

a multiply-connected compact Riemann surface. After discussing how the previous for

malisms should be appropriately modified in this case, we show that the partition function

for the localizable Hamiltonian systems describes a rich topological field theory which

represents the first homology of the phase space. The coherent states in this case are also

constructed and it is shown that the Hubert space is finite-dimensional. The wavefunc

tions carry a projective representation of the phase space homology group and describe

modular invariants of the quantum theory.
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Finally, we discuss some geometric methods for analysing corrections to the semi

classical approximation for dynamical systems whose path integrals do not localize. We

show that the usual isometric symmetry needed for localization can be replaced by a

weaker conformal symmetry requirement. We then introduce an alternative method to

the ioop expansion for obtaining corrections to the semi-classical approximation which

expresses the correction terms as Poincaré dual forms of homology cycles of the phase

space.

In
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Chapter 1

Introduction

In this thesis we will discuss some new geometric methods of solving exactly for the spec

trum of a quantum system using the functional integral and the relation between these

ideas and the properties of integrable and topological quantum field theories. Among

other things, these techniques tie in with some other modern ideas in quantum field the

ory as well as some interesting mathematics, all of which will be extensively discussed in

the following.

The idea of path integration was introduced by Feynman [40] in the 1940’s as a novel

new approach to quantum theory. Symbolically, the fundamental path integral formula

is

TL[Cqqi] (1.1)
Cqqi

where the ‘sum’ is over all paths Cqq between the points q and q’ on the configuration

space of a physical system, and L[Gqq] is the length of the path. The quantity on the left-

hand side represents the probability amplitude for the system to evolve from a state with

configuration q to one with configuration q’ in a time span T. One of the great advantages

of the path integral formulation is that it gives a global (integral) solution of the quantum

problem in question, in contrast to the standard approach to quantum mechanics based

on the Schrödinger equation which gives a local (differential) formulation of the problem.

Of utmost significance at the time was Feynman’s generalization of the path integral to

quantum electrodynamics from which a systematic derivation of the famous Feynman

rules, and hence the basis of most perturbative calculations in quantum field theory, can

be carried out [63].

1



Chapter 1. Introduction 2

The problem of quantum integrability, i.e. the possibility of solving analytically for

the spectrum of a quantum Hamiltonian and the corresponding eigenfunctions, is a non

trivial problem. This is even apparent from the point of view of the path integral, which

describes the time evolution of wavefunctions. Very few quantum systems have been

solved exactly and even fewer have had an exactly solvable path integral. At the time

that the functional integration (1.1) was introduced, the only known examples where it

could be evaluated exactly were the harmonic oscillator and the free particle. The path

integrals for these 2 examples can be evaluated using the formal functional analog of the

classical Gaussian integration formula [1391
n i7r/2 !

f [J dx’
= (2ir e )2 e2

(1.2)
k=1 i/detM

where M = [M] is a non-singular symmetric n x n matrix. In this way, the Feynman

propagator (1.1) can be evaluated formally for any field theory which is at most quadratic

in the field variables. If this is not the case, then one can expand the argument of the

exponential in (1.1), approximate it by a quadratic form as in (1.2), and then take the

formula (1.2) as an approximation for the integral. For a finite-dimensional integral this

is the well-known stationary phase (otherwise known as the saddle-point or steepest-

descent) approximation [54]. In the framework of path integration, it is usually referred

to as the Wentzel-1<ramers-Brillouin (or WKB for short) approximation [83, 116]. Since

the result (1.2) is determined by substituting into the exponential integrand the global

minimum (i.e. classical value) of the quadratic form and multiplying it by a term involv

ing the second variation of that form (i.e. the fluctuation determinant), this approach

to functional integration is also called the semi-classical approximation. In this sense,

(1.1) interprets quantum mechanics as a sum over paths fluctuating about the classical

trajectories of a dynamical system. When the semi-classical approximation is exact, one

can think of the Gaussian integration formula (1.2) as a ‘localization’ of the complicated

looking integral on the left-hand side of (1.2) onto the global minimum of the quandratic

form there.
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For a long time, these were the only examples of exactly solvable systems. In 1968

Schulman [115] found that a path integral describing the precession of a classical spin

vector was given exactly by its WKB approximation. This was subsequently generalized

by Dowker [32] who proved the exactness of. the semi-classical approximation for the

path integral describing free geodesic motion on compact group manifolds. It was not

until the late• 1970’s that more general methods, beyond the restrictive range of the

standard WKB method, were developed. In these methods, the Feynman path integral

is calculated rigorously in discretized form (i.e. over piecewise-linear paths) by a careful

regularization prescription [76], and then exploiting information provided by functional

analysis, the theory of special functions, and the theory of differential equations (see

[26] and references therein). With these tricks the list of exactly solvable problems has

significantly increased over the last 15 years, so that today one is able to essentially

evaluate analytically the path integral for any quantum mechanical problem for which

the Schrödinger equation can be solved exactly. We refer to [75] and [52] for an overview

of these methods and a complete classification of the known examples of exactly solved

quantum mechanical path integrals to present date.

The situation is somewhat better in quantum field theory, which represents the real

functional integrals of interest from a physical standpoint. There are many non-trivial

examples of classically integrable models (i.e. ones whose classical equations of motion

are ‘exactly solvable’), for example the sine-Gordon model, where the semi-classical ap

proximation describes the exact spectrum of the quantum field theory [139]. Indeed,

for any classically integrable dynamical system one can canonically transform the phase

space variables so that, using Hamilton-Jacobi theory [48], the path integral can be for

mally manipulated to yield a result which if taken naively would imply the exactness of

the WKB approximation for any classically integrable system [116]. This is not really

the case, because the canonical transformations used in the phase space path integral do

not respect the ordering prescription used for the properly discretized path integral and
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consequently the integration measure is not invariant under these transformations [25].

However, as these problems stem mainly from ordering ambiguities in the discretization

of the path integral, in quantum field theory these ordering ambiguities could disappear

by a suitable renormalization, for instance by an operator commutator ordering prescrip

tion. This has lead to the conjecture that properly interpreted results of semi-classical

approximations in integrable field theories reproduce features of the exact quantum spec

trum [139]. One of the present motivations for us is to therefore develop a systematic

way to implement realizations of this conjecture.

Another class of field theories where the path integral is exactly solvable in most

cases is supersymmetric theories and topological quantum field theories (see [17] for a

concise review). Topological field theories have lately been of much interest in both the

mathematics and physics literature. A field theory is topological if it has only global

degrees of freedom. This means, for example, that its classical equations of motion

eliminate all field theoretic degrees of freedom from the problem (so that the classical

action vanishes). In particular, the theory cannot depend on any metric of the space on

which the fields are defined. The observables of these quantum field theories therefore

describe geometrical and topological invariants of the space which are computable by

conventional techniques of quantum field theory and are of prime interest in mathematics.

Physically, topological quantum field theories bear resemblances to many systems of

longstanding physical interest and it is hoped that this special class of field theories might

serve to provide insight into the structure of more complicated physical systems and a

testing ground for new approaches, to quantum field theory. There is also a conjecture

that topological quantum field theories represent different (topological) phases of their

more conventional counterparts (e.g. 4-dimensional Yang-Mills theory). Furthermore,

from a mathematical point of view, these field theories provide novel representations of

some global invariants whose properties are frequently transparent in the path integral

approach.
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Topological field theory essentially traces back to the work of Schwarz [117] in 1978

who showed that a particular topological invariant, the Ray-Singer analytic torsion, could

be represented as the partition function of a certain quantum field theory. The most

important historical work for us, however, is the observation made by Witten [131] in

1982 that the supersymmetry algebra of supersymmetric quantum mechanics describes

exactly the DeRham complex of a manifold, where the supersymmetry charge is the

exterior derivative. This gave a framework for understanding Morse theory in terms of

supersymmetric quantum mechanics in which the quantum partition function computed

exactly the Euler characteristic of the underlying manifold, i.e. the index of the DeRham

complex.

Witten’s partition function computed the so-called Witten index [132], the difference

between the number of bosonic and fermionic zero energy states. In order for the super-

symmetry to be broken in the ground state of the supersymmetric model, the Witten

index must vanish. As supersymmetry, i.e. a boson-fermion symmetry, is not observed

in nature, it is necessary to have some criterion for dynamical supersymmetry breaking

if supersymmetric theories are to have any physical meaning. Witten’s construction was

subsequently generalized by A1varez-Gaum [4], and Friedan and Windey [42], to give

supersymmetric field theory proofs of the Atiyah-Singer index theorem [35]. In this way,

the partition function is reduced to an integral over the underlying manifold M. This

occurs because the supersymmetry of the action causes only zero modes of the fields, i.e.

points on M, to contribute to the path integral, and the integrals over the remaining

fluctuation modes are Gaussian. The resulting integral encodes topological information

about the manifold M and represents a huge reduction of the original infinite-dimensional

path integration.

This field began to draw more attention around 1988 when Witten introduced topo
logical field theories in a more general setting [134]. A particular supersymmetric non
abelian gauge theory was shown by Witten to describe a theory with only global degrees
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of freedom whose observables are the Donaldson invariants, certain differential invari

ants which classify differentiable structures on 4-manifolds, Subsequent work then put

these ideas into a general framework so that today the formal field theoretic structures

of Witten’s actions are well-understood [17]. Furthermore, because of their topological

nature, these field theories have become the focal point for the description of topological

effects in quantum systems using quantum field theory, for instance for the description

of holonomy effects in physical systems arising from the adiabatic transports of particles

[119] and extended objects such as strings [13] (i.e. Aharonov-Bohm thype effects). In

this way the functional integral has in recent years become a very popular tool lying on

the interface between string theory, conformal field theory and topological quantum field

theory in physics, and between topology and algebraic geometry in mathematics. Because

of the consistent reliability of results that path integrals of these theories can produce

when handled with care, functional integration has even acquired a certain degree of

respectability among mathematicians.

The common feature of topological field theories is that their path integrals are

described exactly by the semi-classical approximation. It would be nice to put semi-

classically exact features of functional integrals, as well a.s the features which reduce

them to integrals over finite-dimensional manifolds as described above, into some sort

of general framework. More generally, we would like to have certain criteria available

for when we expect partition functions of quantum theories to reduce to such simple

expressions, or ‘localize’. This motivates an approach to quantum integrability in which
one can systematically study the properties of integrable field theories and their conjec

tured semi-classical “exactness” that we mentioned before. In this approach we focus on
the general features and properties that path integrals appearing in this context have in
common. Foremost among these is the existence of a large number of (super-)symmetries
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in the underlying dynamical theory, so that these functional integrals reduce to Gaus

sian ones and essentially represent finite-dimensional integrals’. The transition between

the functional and finite-dimensional integrals can then be regarded as a rather drastic

localization of the original infinite-dimensional integral, thereby putting it into a form

that is useable for extracting physical and mathematical information. The mathematical

framework for describing these symmetries, which turn out to be of a cohomological na

ture, is equivariant cohomology and the approach discussed in this paragraph is usually

called ‘equivariant localization theory’.

Historically, this subject originated in the mathematics literature in 1982 with the

Duistermaat-Heckman theorem [33], which established the exactness of the semi-classical

approximation for finite-dimensional oscillatory.integrals (i.e. finite-dimensional versions

of (1.1)) over compact symplectic manifolds in certain instances. The symmetry respon

sible for the localization here is the existence of a global Hamiltonian torus action on the

manifold, Atiyah and Bott [8] showed that the Duistermaat-Heckman localization was

a special case of a more general localization property of equivariant cohomology (with

respect to the torus group action in the case of the Duistermaat-Heckman theorem).

This fact was used by Berline and Vergne [14, 15] at around the same time to derive a

quite general integration formula valid for Killing vectors on general compact Riemannian

manifolds.

The first infinite-dimensional generalization of the Duistermaat-Heckman theorem is

due to Atiyah and Witten [7], in the setting of a supersymmetric path integral for the

index (i.e. the dimension of the space of zero modes) of a Dirac operator. They showed

that a formal application of the Duistermaat-Heckman theorem on the loop space LM

of a manifold M to the partition function of N = supersymmetric quantum mechanics

(i.e. a supersymmetric spinning particle in a gravitational background) reproduced the

1The exact solvability features of path integrals in this context is similar to the solvability features of
the Schrödinger equation in quantum mechanics when there is a large symmetry group of the problem.
For instance, the 0(4) symmetry of the 3-dimensional Coulomb problem is what makes the hydrogen
atom an exactly solvable quantum system [83]
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well-known Atiyah-Singer index theorem correctly. The crucial idea was the interpre

tation of the fermion bilinear in the supersymmetric action as a ioop space symplectic

2-form. This approach was then generalized by Bismut [18, 19], within a mathematically

rigorous framework, to twisted Dirac operators (i.e. the path integral for spinning par

ticles in gauge field backgrounds), and to the computation of the Lefschetz number of a

Killing vector field V (a measure of the number of zeroes of V) acting on the manifold.

Another nice infinite-dimensional generalization of the Duistermaat-Heckman theorem

was suggested by Picken [110] who formally applied the theorem to the space of loops

over a group manifold to localize the path integral for geodesic motion on the group, thus

establishing the well-known semi-classical properties of these systems.

It was the beautiful paper by Stone [123] in 1989 that brought the Duistermaat

Heckman theorem to the attention of a wider physics audience. Stone presented a super-

symmetric derivation of the Weyl character formula for SU(2) using the path integral for

spin and interpreted the result as a Duistermaat-Heckman localization. This supersym

metric derivation was extended by Alvarez, Singer and Windey [3] to more general Lie

groups using fiber bundle theory, and the supersymmetries in both of these approaches

are very closely related to equivariant cohomology. At around this time, other important

papers concerning the quantization of spin appeared. Most notably, Nielsen and Rohrlich

[94] viewed the path integral for spin from a more geometrical point of view, using as

action functional the solid angle swept out by the closed orbit of the spin. This approach

was related more closely to geometric quantization and group representation theory by

Alekseev, Faddeev and Shatashvili [1, 2], who calculated the coadjoint orbit path integral

for unitary and orthogonal groups, and also for cotangent bundles of compact groups,

Kac-Moody groups and the Virasoro group. The common feature is always that the

path integrals are given exactly by a semi-classical localization formula that resembles

the Duistermaat-Heckman formula.

The connections between supersymmetry and equivariant cohomology in the quantum
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mechanics of spin were clarified by Blau in [21], who related the Weinstein action invariant

[130] to Chern-Simons gauge theory using the Duistermaat-Heckman integration formula.

Based on this interpretation, Blau, Keski-Vakkuri and Niemi [25] introduced a general

supersymmetric (or equivariant cohomological) framework for investigating Duistermaat

Heckman (or WKB) localization formulas for generic (non-supersymmetric) phase space

path integrals, leading to the fair amount of activity in this field which is today the

foundation of equivariant localization theory. They showed formally that the partition

function for the quantum mechanics of circle actions of isometries on symplectic manifolds

localizes. Their method of proof involves formal techniques of Becchi-Rouet-Stora-Tyupin

(or BRST for short) quantization of constrained systems [11]. Roughly speaking, BRST

quantization of gauge theories is carried out by introducing a nilpotent BRST operator

Q, Q2 0, associated with a local gauge symmetry of a theory and representing the

gauge variation of any functional 0 of the fields as a graded commutator {Q, Q} with

the fermionic charge Q. The physical (i.e. gauge-invariant) Hilbert space consists of those

states ‘P which are annihilated by Q, Q’JI = 0, and any state of the form ‘P’ = ‘P + Qx is

regarded as equivalent to ‘I’, for any other state x Thus the physical Hubert space here is

the space of BRST-cohomology classes. In the case of the localization formalism for phase

space path integrals, the operator Q is identified as the ioop space equivariant exterior

derivative of the underlying equivariant cohomological structure, and the “Hubert space”

of physical states consists of loop space functionals which are invariant under the flows

of some vector field. BRST-cohomology is also the fundamental structure in topological

field theories. In particular, a topological action is a Witten-type action if the classical

action is BRST-exact, while it is a Schwarz-type action if the gauge-fixed, quantum action

is BRST-exact (but not necessarily classically) [17]. This BRST supersymmetry is always

the symmetry that is responsible for localization in these models.

Although we shall mention at appropriate instances the extensive applications of the



Chapter 1. Introduction 10

equivariant localization formalism to supersymmetric quantum mechanics, cohomolog

ical field theories and 2-dimensional Yang-Mills theory, in this thesis we shall explore

the geometric features of the localization formalism for phase space path integrals. In

particular, we shall focus on how these models can be used to extract information about

integrable and topological quantum field theories. In this sense, the path integrals we

study can be thought of as “toy models” serving as a testing ground for ideas in some

more sophisticated field theories. The reasoning behind this is as follows. First of all,

because path integral manipulations are frequently known to produce correct (meaning,

for instance, topologically or physically correct) results, any definition of, or approach

to, the functional integral should be able to reproduce the results which follow and to

incorporate these techniques in some way. Secondly, the kinds of theories we shall study

here allow one to study kinematical (i.e. geometrical and topological) aspects of the path

integral in isolation from their dynamical properties. This stands in contrast to the situa

tion in interacting field theories, which are typically kinematically linear but dynamically

highly non-linear. Our theories will be dynamically linear (i.e. free field theories) but

kinematically highly non-linear, and the entire non-triviality of the theories resides in this

kinematical non-linearity. Finally, in principle at least, the techniques we shall discuss

are also applicable to theories with field theoretical degrees of freedom, in the sense that

they provide alternative approximation techniques to the usual perturbative expansion.

This will be true, in particular, of the generalized WKB approximation techniques based

on the Duistermaat-Heckman theorem and the more geometrical localization aspects of

our formalism.

There is another important localization technique that has been of interest lately and

is quite different from the equivariant localization formalism, although we are not really

interested in it from the point of view of what we are trying to accomplish here. This

is the Mathai-Quillen formalism [22, 24, 29, 82, 98], a technique that is used to build

partition functions for topological field theories that by construction have a localizable
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form. This method is based on an extension of the idea of the Witten complex [131] and it

constructs some natural representatives for the equivariant cohomology known as Thom

classes. Using these equivariant cohomology classes, one then constructs regularized

Euler classes of infinite-dimensional vector bundles (e.g. the ioop space LM —+ M over

a manifold M or the bundle A —* A/G of gauge connections on a principal G-bundle) and

uses them to build topological partition functions. The localization can then be thought

of as the sort of localization which is represented by the classical Gauss-Bonnet-Chern and

Poincaré-Hopf theorems, i.e. the representation of the Euler number of a manifold M as

both an integral over M of a density constructed from the curvature of some connection

on M, and in terms of some alternating sum over the isolated zero point set of a vector

field V on M. The relations between the BRST picture of equivariant cohomology and

Thom classes [67] leads to new insights and techniques for certain topological field theories

[103], such as 4-dimensional topological Yang-Mills theory, the prototype of a (Witten

type) cohomological field theory [17]. Although the BRST-symmetric structure which

leads to so-called BRST fixed points [24] ties in with some of the framework of equivariant

localization, this is more of a ‘constructive’ localization technique and therefore has no
use for our analysis where we shall focus on properties of fairly generic phase space path
integrals.

We shall approach the localization formalism for path integrals in the following man
ner. Focusing on the notion of localizing a quantum partition function by reducing it
using the large symmetry of the dynamical system to a sum or finite-dimensional integral
in analogy with the classical Gaussian integration formula (1.2), we shall first analyse
the symmetries resposible for the localization of finite-dimensional integrals (where the
symmetry of the dynamics is represented by an equivariant cohomology). The main fo
cus of this thesis will then be the formal generalizations of these ideas to phase space
path integrals, where the symmetry becomes a “hidden” supersymmetry of the dynamics
representing the infinite-dimensional analog of equivariant cohomology. A subsequent
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generalization, the real hope of localization theory, would be then to extend these no

tions to both Poincaré supersymmetric quantum field theories (where the symmetry is

represented by the supersyrnmetry of that model) and topological quantum field theories

(where the symmetry is represented by a gauge symmetry). The hope is that then these

serve as testing grounds for the more sophisticated quantum field theories of real phys

ical interest. This gives a geometric framework for studying quantum integrability, as

well as insights into the structure of topological and supersymmetric field theories, and

integrable models. In particular, from this analysis we can hope to uncover the reasons

why some quantum problems are exactly solvable, and the reasons why others aren’t.

Briefly, the structure of this thesis is as follows. In chapters 2 and 3 we go through

some of the mathematical background, in particular equivariant cohomology and the
Duistermaat-Heckman theorem, which will be the basis for the later chapters. Chapter

4 then goes through the formal supersymmetry and loop space equivariant cohomology
arguments establishing the localization of phase space path integrals when there is a
Riemannian structure on the phase space which is invariant under the classical dynamics
of the system. Depending on the choice of localization scheme, different sets of phase
space trajectories are lifted to a preferred status in the integral. Then all contributions

to the functional integral come from these preferred paths along with a term taking into
account the quantum fluctuations about these selected loops. Chapters 5 and 6 then
use the isometry condition to construct examples of localizable path integrals. Here we
encounter numerous examples and gain much insight into the range of applicability of
the localization formalism in general. We also see here many interesting features of the
localizable partition functions when interpreted as topological field theories, and we dis
cuss in detail various other issues (e.g. coherent state quantization and coadjoint orbit
character formulas) which are common to all the localizable examples that we find within
this setting. Chapter 7 then takes a slightly different approach to analysing localizable
systems, this time by some geometric constructs of the full loop-expansion on the phase
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space. In particular, we shall see here that the equivariant cohomological symmetry in the

conventional localization formalism can be enlarged, and we introduce some geometric

methods that deduce geometric properties of the dynamical systems which localize. We

also show how to use the isometric condition locally to formulate a geometric approach

to obtaining corrections to the standard WKB approximation for non-localizable parti

tion functions. The analysis of this final chapter is the first step towards a systematic,

geometric understanding of the reasons why the localization formulas may not apply to

a given dynamical system.

Finally, we close this introductory chapter with some comments about the style of

this thesis. Although we have attempted to keep things self-contained and at places

where topics aren’t developed in full detail we have included ample references for further

reading, we do assume that the reader has a relatively solid background in many of

the mathematical techniques of modern theoretical physics such as topology, differential

geometry and group theory. It would be impossible to go through these techniques in any

sort of detail here, and so we indicate places where most of the mathematical material

can be found. All of the group theory that is used extensively in this thesis can be found

in [128] (or see [461 for a more elementary introduction), while most of the material

discussing differential geometry, homology and cohomology, and index theorems can be

found in the books [51, 27, 92] and the review articles [17, 35]. For a more detailed

introduction to algebraic topology, see [81]. The basic reference for quantum field theory

is the classic text [63]. Finally, for a discussion of the issues in supersymmetry theory

and BRST quantization, see [11, 17, 58, 95, 122] and references therein.



Chapter 2

Equivariant Cohomology and the Localization Principle

In this preliminary chapter, we shall begin by introducing some of the mathematical

notions that will form the basis for this thesis. The central theme will be the description

of the topology of a space when there is an action of some Lie group acting on it. This

theory is called equivariant cohomology and it is the “right” cohomology theory which

takes into proper account of the group action. It is defined in a manner such that if the

group action is trivial, the cohomology reduces to the usual cohomological ideas of the

classical DeRham theory. We shall develop these ideas starting with a quick review of the

DeRham theory and ultimately end up discussing the important localization property of

integration in equivariant cohomology. We will see later on that the localization theorems

are then fairly immediate consequences of this general formalism. Throughout we shall

be working with an abstract topological space (i.e. a set with a collection of open subsets

which is closed under unions and finite intersections), and we always regard 2 topological

spaces as the same if there is an invertible mapping between the 2 spaces which preserves

their open sets, i.e. a bi-continuous function or- ‘homeomorphism’. To carry out calculus

on these spaces, we shall have to introduce some smooth structure on them (i.e. one

that is infinitely-continuously differentiable — or C°° for short). We shall then generalize

these constructions to the case where there is a Lie group (a continuous group with

a smooth structure whose group multiplication is also smooth) acting on the space.

The construction of topological invariants for these spaces (i.e. structures that are the

same for homeomorphic spaces) will then be the foundation for the derivation of general

integration formulas in the subsequent chapters.

14
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2.1 DeRham Cohomology

To introduce some notation and to provide a basis for some of the more abstract concepts

that will be used throughout this thesis, we begin with an elementary ‘lightning’ review

of DeRham cohomology theory and how it probes the topological features of a space.

Let M be a C°° manifold of dimension n, i.e. M is a paracompact Hausdorif topological

space which can be covered by open sets U, M = UEI U, each of which is homeomorphic

to n-dimensional Euclidean space 1R and the local homeomorphisms so used induce C

coordinate transformations on the overlaps of patches in 1R. This means that locally,

in a neighbourhood of any point on M, we can treat the manifold as a copy of the more

familiar 1R’, but globally the space M may be very different from Euclidean space. One

way to characterize the global properties of M, i.e. its topology, which make it quite

different from 1R is through the theory of homology and its dual theory, cohomology.

Of particular importance to us will be the DeRham theory [27]. We shall always assume

that M is orientable and path-connected (i.e. any 2 points in M can be joined by

a continuous path in M). We shall usually assume, unless otherwise stated, that M

is compact. In the ion-compact case, we shall assume certain regularity conditions at

infinity so that results for the compact case hold there as well.

Around each point of the manifold we choose an open set U which is a copy of 1R’. In

lR7 we have the natural notion of tangent vectors to a point, and so we can use the locally

defined homeomorphisms to define tangent vectors to a point x E M. Using the local

coordinatization provided by the homeomorphism onto IR, a general linear combination

of tangent vectors is denoted as

V = V(x)— (2.1)

where throughout we use the Einstein summation convention for repeated upper and

lower indices. A linear combination such as (2.1) will be refered to here as a vector field.

Its components V(x) are C°° functions on M and are specified by the introduction of
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local coordinates from 1R’. The local derivatives {} span an n-dimensional vector

space over IR which is called the tangent space to M at x and it is denoted by TIM.

The disjoint union of all tangent spaces of the manifold,

TM
= Li TM (2.2)

rEM

is called the tangent bundle of M.

The tangent bundle is an example of a more general geometric entity known as a fiber

bundle. This consists of a quadruple (E, M, F, 7r), where E is a topological space called

the total space of the fiber bundle, M is a topological space called the base space of the

fiber bundle (usually we take M to be a manifold), F is a topological space called the

fiber, and r: E —+ M is a surjective continuous map with ir1(x) = F, Vx E M, which

is called the projection of the fiber bundle. A fiber bundle is also defined so that locally

it is trivial, i.e. locally the bundle is a product U x F of an open neighbourhood U C M

of the base and the fibers, and 7t U x F —+ U is the projection onto the first coordinate.

In the case of the tangent bundle, the fibers are F = TM = 1R and the projection map

is defined on TM —+ M by it TM —÷ x. In fact, in this case the fibration spaces are

vector spaces, so that the tangent bundle is an example of a vector bundle. If the fiber

of a bundle is a Lie group C, then the fiber bundle is called a principal fiber bundle with

structure group G. A right-action of C on the total space E and the base M then gives

a local representation of the group in the fibers (see the next section).

Any vector space W has a dual vector space W* which is the space of linear functionals

HomR(W IR) on W —* IR. The dual of the tangent space TM is called the cotangent

space TM and its basis elements dx are defined by

dxIL (_) = (2.3)

The disjoint union of all the cotangent spaces of M 1,

T*M
= U TM (2.4)

rEM

tThe topology on the total spaces E = LIEM ir1 (z) of fiber bundles is usually taken as the induced
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is a vector bundle called the cotangent bundle of M. The space (TM)®k is the space of

n-rnultilinear functionals on TM x• • x TM whose elements are the linear combinations

T = Tl...k(x)dx” 0... 0 dx (2.5)

The object (2.5) is called a rank-(k, 0) tensor and its components are C°° functions of

x E M. Similarly, the associated dual space (TM)® consists of the linear combinations

=

___

... ® (2.6)

which are called (0, £) tensors. The elements of (TM)®k 0 (TM)®e are called (k, £)
tensors and one can deftne tensor bundles analogously to the tangent and cotangent

bundles above2. Under a local C°° change of coordinates on M represented by the

diffeomorphism x —* x’(s), (2.5) and (2.6) along with the usual chain rules

‘-, I_Ix ‘, I_,x ,),
x =jX

imply that the components of a generic rank (k, £) tensor field T::’(x) transform as

‘ 9T’)’1t(x1 ... “ “ ... T””’(x) (2 8)P1”Pk 9JLi 94t lpi öx’Pk ‘1”’k

Such local coordinate transformations can be thought of as changes of bases (2.7) on the

tangent and cotangent spaces.

We are now ready to define the DeRham complex of a manifold M. Given the

tensor product of copies of the cotangent bundle as above, we define a multi-linear anti-

symmetric multiplication of elements of the cotangent bundle, called the exterior or wedge

topology from the erection of points from M. However, Atiyah has shown that continuous functors, when
applied to sets of vector bundles, yield vector bundles, which immediately gives (2.4) and its topology
in a much neater way.
2Actually, one properly defines vector and tensor fields as ‘sections’ of the associated bundles, i.e.

smooth maps s : M —+ E which take a point s E M into the fiber ir’(x) over x. Although we shall be
a bit abusive in our discussion by considering these as genuine functions on M, for simplicity and ease
of notation, it should be kept in mind that it is only locally where these objects admit such a functional
interpretation.
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product, by

dx’ A A dx’ = sgn(P)dx”(’) 0 0 dx’(’) (2.9)
PESk

where the sum is over all permutations F of 1,... , k and sgn(P) is the sign of F, defined

as (_l)t(P) where t(F) is the number of transpositions in P. For example, for 2 cotangent

basis vector elements

dxAdy=dx®dy—dy®dx (2.10)

The exterior product is antisymmetric and formally the space of all linear combinations

of the basis elements (2.9),

a
= k,l...1Lk(x) A ... A dx (2.11)

is the antisymmetrization A(TM) of the k-th tensor power of the cotangent bun

dle. The disjoint union, over all x E M, of these spaces is a vector bundle A’M called

the k-th exterior power of M. Its elements (2.11) are called differential k-forms whose

components are C functions on M which are completely antisymmetric in their in

dices pd,.. . Notice that by the antisymmetry of the exterior product, if M is

n-dimensional, then A’M = 0 for all k > n. Furthermore, A°M = C°°(M), the space

of infinitely continuously-differentiable functions on M —* IR, and A1M = T*M is the

cotangent bundle of M.

The exterior product of a p-form a and a q-form 3 is the (p + q)-form a A /3

(pq)!(a A A ... A dx+q with local components

(a A /3)iii...ppq(X) = (2.12)
PESpq

The exterior product of differential forms makes the direct sum of the exterior powers

AM=eAICM (2.13)

into a graded-commutative algebra called the exterior algebra of M. In AM, the exterior
product of a p-form a and a q-form /3 obeys the graded-commutativity property

a A /3 = (—l)/3 A a , a M’M,/3 E MM (2.14)
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On the exterior algebra (2.13), we define a linear operator

d: AkM —÷ A’’M (2.15)

on k-forms (2.11) by

(da)l...k+l(x) = (2.16)
PESk+l

and da
= (k+1)!

(da)1
••k+1

(x)dx’ A••• A dx+1. The operator d is called the exterior

derivative and it generalizes the notion of the differential of a function

df =0dxhL
, f E A°M = C°°(M) (2.17)

to generic differential forms. It satisfies the Leibniz property

d(aA)=daA+(—1)Ad , (2.18)

and it is nilpotent3,

d2 = 0 (2.19)

which follows from the commutativity of multiple partial derivatives of C°° functions.

Thus the exterior derivative allows one to generalize the common notion of vector calculus

to more general spaces other than lR . The collection of vector spaces {A’M}0and

nilpotent derivations d form what is called the DeRham complex A*(M) of the manifold

M.

There are 2 importailt subspaces of the exterior algebra (2.13) as far as the map d is

concerned. One is the kernel of d,

ker d = {a AM : da = O} (2.20)

3Actually, in the mathematics literature the term ‘nilpotent’ usually means that some power of that
quantity vanishes. The proper terminology for the property (2.19) would be to say that d is of order
2. However, following the standard supersymmetry and topological field theory terminology, we shall
throughout refer to this property as nilpotency.
4These constructions can in fact all be generalized to an arbitrary topological space using the so-called

DeRham-Sullivan complex.
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whose elements are called closed forms, and the other is the image of d,

imd={6éAM:3=da for some aEAM} (2.21)

whose elements are called exact forms. Since d is nilpotent, we have im d C ker d. Thus

we can consider the quotient of the kernel of d by its image. The vector space of closed

k-forms modulo exact k-forms is called the k-th DeRham cohomology group (or vector

space) of M,

H’(M; IR) = ker dIAkM/im dIAk_1M (2.22)

The elements of the vector space (2.22) are the equivalence classes of differential k-forms

where 2 difFerential forms are equivalent if and only if they differ only by an exact form, i.e.

if the closed form a E A’M is a representative of the cohomology class [a] e Hk(M; Ia),

then so is the closed form a + d/3 for any differential form 3 E Ac_lM. One important

theorem in the context of DeRham cohomology is Poincaré’s lemma. This states that

if d = 0 in a star-shaped region of the manifold M (i.e. one in which the points can

be connected together by an affine transformation of the coordinates, such as a simplex

— see below), then one can write w = dO in that region for some other differential form

0. Thus each representative of a DeRham cohomology class can be locally written as an

exact form, but globally there may be an obstruction to extending the form 9 over the

entire manifold in a smooth way depending on whether or not [w] 0 in the DeRham

cohomology group.

The DeRham cohomology groups are related to the topology of the manifold M as

follows. Consider the following q-dimensional subspace of 1R’,

= {(x0x1.. .,Xq) e x O,Exj = i} (2.23)

which is called the standard q-simplex. Geometrically, is the convex hull generated

by the vertices placed at unit distance along the axes of We define the geometric
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boundary of the standard q-simplex as

= (_l)) (2.24)

where is the (q — 1)-simplex generated by all the vertices of L except the i-th one,

and the sum on the right-hand side is the formal algebraic sum of simplices (where a

minus sign signifies a change of orientation). A singular q-simplex of the manifold M is

defined to be a continuous map u : 1q M. .A formal algebraic sum of q-simplices with

integer coefficients is called a q-chain, and the collection of all q-chains in a manifold M

is called the q-th chain group Cq(M) of M. It defines an abelian group under the formal

addition. The boundary of a q-chain is the (q — 1)-chain

ôu = E(—1) q (2.25)
(;)

which is easily verified to give a nilpotent homomorphism

8: Cq(M) _+ Cq_i(M) (2.26)

of abelian groups. The collection of abelian groups {Cq(M)}q+ and nilpotent homo

morphisms 8 form the singular chain complex C(M) of the manifold M.

Nilpotency of the boundary map (2.26) means that every q-chain in the image of

8ICq1 the elements of which are called the q-boundaries of M, lies as well in the kernel

of 8jCq whose elements are called the q-cycles of M. The abelian group defined as the

quotient of the group of all q-cycles modulo the group of all q-boundaries is called the

q-th (singular) homology group of M,

Hq(M; 7Z) = ker äICq/im 0ICql (2.27)

These groups are homotopy invariants of the manifold M (i.e. invariant under contin

uous deformations of the space), and in particular they are topological invariants and

diffeomorphism invariants (i.e. invariant under C°° invertible bi-continuous mappings
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of M). Intuitively, they measure whether or not a manifold has ‘holes’ in it or not. If

Hq(M; ) = 0, then every q-cycle (intuitively a closed q-dimensional curve or surface)

encloses a q + 1-dimensional chain and M has no ‘q-holes’. For instance, if M is simply-

connected (i,e. every ioop in M can be contracted to a point) then Hi(M; ZZ) = 0.

Given the abelian groups (2.27), we can form their duals using the universal coefficient

theorem

H(M; ) Homzz (Hq(M; ), ZZ) Ext(Hq_i(M; ), ) (2.28)

which is called the q-th singular cohomology group of M with integer coefficients. Here

Homiz(Hq(M; ), ) = H(M; )* is the free part of the cohomology group, and Ext is

the torsion subgroup of H(M; 7Z). The DeRham theorem then states that the DeRham

cohomology groups are naturally isomorphic to the singular cohomology groups with real

coefficients,

H(M; IR) = H(M; ) 0 Ia = Hq(M; IR)* (2.29)

where the tensor product with the reals means that H is considered as an abelian group

with real instead of integer coefficients, i.e. a vector space over IR (this eliminates the

torsion subgroup in (2.28)).

The crux of the proof of DeRham’s theorem is Stokes’ theorem,

jdw = , w E MM , CE Cq+i(M) (2.30)

which relates the integral of an exact (q+1)-form over a smooth (q+1)-chain c in M to an

integral over the closed q-dimensional boundary ôc of c. In particular, (2.30) generalizes

to the global version of Stokes’ theorem,

(2.31)

which relates the integral of an exact form over M to an integral over the closed (n —

1)-dimensional boundary M of M. Here integration over a manifold is defined by
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partitioning the manifold up into open sets homeomorphic to ]R’, integrating a top form

(i.e. a differential form of highest degree n on M) locally over 1P as usual5, and then

summing up all of these contributions6.In this way, we see how the DeRham cohomology

of a manifold measures its topological (or global) features in an analytic way suited for

the differential calculus of C°° manifolds. We refer to [81] and [27] for a more complete

introduction to this subject.

2,2 The Cartan Model of Equivariant Cohomology

Many situations in theoretical physics involve not only a differentiable manifold M, but

also the action of some Lie group C acting on M, which we denote symbolically by

GxM-*M

(g, x) —+ g’ x (2.32)

By a group action we mean that g x = x, Vx E M if g is the identity element of C,

and the group action represents the multiplication law of the group, i.e. g’• (g . x) =

(gig) ‘ x,Vgi,g2 E 0. We shall throughout assume that C is connected and that its

action on M is smooth, i.e. for fixed g E G, the function x —* g ‘x is a diffeomorphism

of M. Usually G is taken to be the symmetry group of the given physical problem.

The common (infinite-dimensional) example in topological field theory is where M is the

space of gauge connections of a gauge theory and G is the group of gauge transformations.

The space M modulo this group action is then the moduli space of gauge orbits. Another

example is in string theory where M is the space of metrics on a Riemann surface and

C is the semi-direct product of the Weyl and diffeomorphism groups of that 2-surface.

Then M modulo this group action is the moduli space of the Riemann surface. In such

instances we are interested in knowing the cohomology of the manifold M given this

5The integral over M of a p-form with p < dimM is always understood here to be zero.
6Again, the notion of integration and Stokes’ theorem generalize to an arbitrary topological space via

the DeRham-Sullivan complex.
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action of the group G. This cohomology is known as the G-equivariant cohomology of

M. Given the G-action on M, the space of orbits M/G is the set of equivalence classes

where x and x’ are equivalent if and oniy if x’ = g• x for some g E G (the topology of

M/G is the induced topology from M). If the G-action on M is free, i.e. gx = x if and

only if g is the identity element of G, Vx € M, then the space of orbits M/G is also a

differentiable manifold7of dimension dim M — dim G and the G-equivariant cohomology

is defined simply as the cohomology of the coset space M/G,

H(M) = H’(M/G) (2.33)

However, if the group action is not free and has fixed points on M, the space M/G

can become singular. In a neighbourhood of a fixed point, the dimension of M/G can

be smaller than the dimension dim M — dim G of other fixed-point free coordinate neigh

bourhoods (because then the isotropy subgroup {g E G g p = p} of that fixed point p
is non-trivial), and there is no smooth notion of dimensionality for the coset M/G. A

singular quotient space M/G is called an orbifold. In such instances, one cannot define
the equivariant cohomology of M in a smooth way using (2.33) and more elaborate meth
ods are needed to define this cohomology. There are many approaches to defining the
equivariant cohomology of M, but there is only one that will be used extensively in this
thesis. This is the Cartan model of equivariant cohomology and it is defined in a man
ner similar to the analytic DeRham cohomology which was reviewed in the last section.
However, the other models of equivariant cohomology are equally as important — the Weil
algebra formulation relates the algebraic models to the topological definition of equiv
ariant cohomology using universal bundles of Lie groups [8, 28, 67, 82], while the BRST
model relates the Cartan and Weil models and moreover is the basis for the superspace
formulation of topological Yang-Mills theory in 4-dimensions and other cohomological
field theories [29, 67, 103].

In fact, with some other technical restrictions, this defines a principal G-bundle M —* M/G.
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We begin by generalizing the notion of a differential form to the case where there is

a group action on M as above. We say that a map f : M1 - M2 between 2 manifolds

with G-actions on them is equivariant with respect to the group action if

f(g..x)=g.f(x) VxM1 , VgG (2.34)

We want to extend this notion of equivariance to differential forms. Consider the sym

metric polynomial functions from the Lie algebra g of G into the exterior algebra AM of

the manifold M. These maps form the algebra S(g*) 0 AM, where S(g*) is called the

symmetric algebra over the dual vector space g* of g and it corresponds to the algebra

of polynomial functions on g. The action of g G on an element a E S(g*) 0 AM is

given by

(g a)(X) = g• (a(g’xg)) (2.35)

where X E g. Here we have used the natural coadjoint action of G on g* and the induced

G-action on AM from that on M as dictated by the tensor transformation law (2.8) with

x’(x) = g• x. From this it follows immediately that the equivariance condition (2.34) is

satisfied for the polynomial maps a : g —÷ AM in the G-invariant subalgebra

AGM = (S(g*) 0 AM)G (2.36)

where the superscript G denotes the (infinitesimal) G-invariant part. The elements of

(2.36) are called equivariant differential forms [14, 16].

Elements of C are represented in terms of elements of the Lie algebra g through the

exponential map,

g = e (2.37)

where a are constants and xa are the generators of g obeying the Lie bracket algebra

[Xa,X(] = fabcxc (2.38)

with fabc the antisymmetric structure constants of g. Here and in the following we shall

assume an implicit sum over the Lie algebraic indices a, b, c In the context of the
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relation (2.37), the generators X span the tangent space to the identity on the group

manifold of C and so the Lie algebra g can be regarded as the tangent space to the group

manifold of the Lie group C.

The smooth C-action on M can be represented locally as the continuous flow

gt x = x(t) t E (2.39)

where g is a path in C starting at the identity gto. The induced action on differential

forms is defined by pullback, i.e. as

(gt . a)(x) = a(x(t)) (2.40)

For example, we can represent the group action on C functions by diffeomorphisms on

M which are connected to the identity, i.e.

(gt f)(x) = f(x(t)) = ettf(x)
, f E A°M (2.41)

The action (2.41) represents the flow of the group on C°° functions on M, where V(x) =

V’(z) is a vector field on M representing a Lie algebra element. It is related to the

flows (2.39) on the manifold by

= V(x(t)) (2.42)

which defines a set of curves in M which we will refer to as the integral curves of the

group action. If v’ is the vector field representing the generator Xa of g, then the Lie

algebra (2.38) is represented on C°° functions by

[Va, V’] (h) = fabcvc(h) , Vh A°M (2.43)

with Lie bracket represented by the commutator bracket. This defines a representation of

C by vector fields in the tangent bundle TM. In this setting, the group G is represented

as a subgroup of the connected diffeomorphism group of M whose Lie algebra is generated

by all vector fields of M with the commutator bracket.
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The infinitesimal (t —* 0) action of the group on A°M can be expressed as

V(f) = ivdf (2.44)

where

iv : A’M —* Av_lM (2.45)

is the nilpotent contraction operator, or interior multiplication, with respect to V and it

is defined locally on k-forms (2.11) by

iva
= (k — l)!V2..( A A dx (2.46)

The infinitesimal G-action on the higher-degree differential forms is generated by the Lie

derivative along V

Lv : A’M 4 AkM (2.47)

where

(2.48)

generates the induced action of G on AM. This can be verifed by direct computation

from expanding (2.40) about t = 0 using (2.8) and (2.42), and by noting that

[Lva,Lv&](a) = fabcLvc(a) , Va E AM (2.49)

Thus the Lie derivative in general defines a representation of G on AM. The local

components of LT for a general (k, £) tensor field T are found by substituting into

the tensor transformation law (2.8) the infinitesimal coordinate change X1L(X) = x(t) =

x + tVIL(x). Furthermore, the Lie derivative action on contractions is

[iva,Cvb] (a) = fabcivc(a) (2.50)

We are now ready to define the Cartan model for the G-equivariant cohomology of

M [16, 28, 82]. We assign a -grading to the elements of (2.36) by defining the degree

of an equivariant differential form to be the sum of its ordinary form degree and twice
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the polynomial degree from the S(g*) part. Let {a}din11G be a basis of g* dual to the

basis {X}1G of g. With the above grading, the basis elements have degree 2. We

define a linear map

Dg : AM —* A’M (2.51)

on the algebra (2.36) by

Dgg 0 , Dgci (1 ® d — ® i7G)O ; a e AM (2.52)

The operator Dg is called the equivariant exterior derivative. Its definition (2.52) means

that its action on equivariant differential forms a E AGM is

(Dga)(X) = (d - iv)(a(X)) (2.53)

where V = caVa is the vector field on M representing the Lie algebra element X =

caXa E g. Dg is not nilpotent in general, but its square is given by the Cartan-Weil

identity

= — 0 (dja + ivad) = — ® £va (2.54)

Thus the operator Dg is nilpotent on the algebra AM of equivariant differential forms.

The set of G-invariant algebras {AM}kE+ and nilpotent derivations Dg thereon defines

the G-equivariant complex A(M) of the manifold M. Both the Lie derivative and the

equivariant exterior derivative obey a Leibniz rule (2.18) just like the ordinary exterior

derivative.

Thus, just as in the last section, we can proceed to define the cohomology of the

operator Dg. The space of equivariantly closed forms, i.e. Dga = 0, modulo the space of

equivariantly exact forms, i.e. a = Dg/3, is called the G-equivariant cohomology group

of M,

H(M) = ker DgIA/im Dg1_1 (2.55)

With this definition, the cohomology of the operator Dg for a fixed-point free G-action

on M reduces to the DeRham cohomology of the quotient space M/G, as in (2.33). The

definition (2.55) of equivariant cohomology is known as the Cartan model [16, 28, 82].
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We close this section with a few remarks concerning the above construction. First of

all, it follows from these definitions that H(M) coincides with the ordinary DeRham

cohomology of M if G is the trivial group consisting of only the identity element (i.e.

V 0 in the above), and that the G-equivariant cohomology of a point is the algebra of

G-invariant polynomials on g, HG(pt) = S(g*)G, of the given degree. Secondly, if a form

a AGM is equivariantly exact, a = Dg/3, then its top-form component a(nL) AM is

exact in the ordinary DeRham sense. This follows because the v part of Dg lowers the

form-degree by 1 so there is no way to produce a top-form by acting with iv. Finally, in

what follows we shall have occasion to also consider the C°° extension AM of AGM

to include G-invariant smooth functions from g to AM. In this extension we lose the

-grading described above, but we are left with a2-grading corresponding to the

differential form being of even or odd parity [16].

2.3 Equivariant Characteristic Classes

In the ordinary DeRham theory, we have already introduced the notion of a fiber bundle

which ‘pins’ some geometrical or topological object on each point of a manifold M (e.g.

a vector space in the case of a vector bundle). For instance, if M 1R’, then the

tangent bundle Tilt” associates the vector space W = IR to each point of IR”. In fact

in this case, the tangent bundle is globally given by TIR” = lEt” x W, the product of

its base and fibers. In this case we say that the bundle is trivial, in that the erecting of

points into vector spaces is done without any ‘twistings’ of the fibers. However, a general

vector bundle is only locally trivial and globally the fibers can twist in a very complicated

fashion. One way to characterize the non-triviality of fiber bundles is through special

cohomology classes of the base manifold M called characteristic classes [85]. A non-trivial

characteristic class in this sense signifies the non-triviality of the vector bundle.

It is possible to extend these notions to the case of the equivariant cohomology of

a manifold which signifies the non-triviality of an equivariant bundle. First, we define
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what we mean by an equivariant bundle [14, 15]. We say that a fiber bundle E —-* M

is a G-equivariant bundle if there are G-actions on both E and M which are compatible

with each other in the sense that

g• ir(x) 7r(g. x) Vx e E , Vg E C (2.56)

This means that the bundle projection ir is a G-equivariant map. The action of the group

G on differential forms with values in the bundle is generated by the Lie derivatives £va.

Recall that in the ordinary DeRham case, one defines a connection F as a geometrical

object (such as a 1-form) defined over M with values in E whose action on tensors of the

bundle specifies their parallel transport along fibers, as required when there are ‘twists’

in the given bundle. The parallel transport is generated by the covariant derivative

associated with F,

V=d-i-F (2.57)

For example, if the bundle is a principal fiber bundle, then F is a connection 1-form A,
otherwise known as a gauge field. Another case is where the bundle is the tangent bundle

TM equipped with a Riemannian metric g. Then F is the (affine) Levi-Civita-Christoffel

connection F,(g) associated with g. When the bundle being considered is an equivariant

bundle, we assume that the covariant derivative (2.57) is C-invariant,

[V,Ca] = 0 (2.58)

Mimicking the equivariant exterior derivative (2.51), we define the equivariant covariant
derivative

Vg = 1 0 V — çt 0 jVa (2.59)

which is considered as an operator on the algebra AG(M, E) of equivariant differential
forms on M with values in E. In a local trivialization E = U x W, U C M, this algebra
looks like

AG(U, E) =(8(g*) 0 AU ®W)G (2.60)
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Recalling the Cartan-Weil identity (2.54), we define the equivariant curvature of the

connection (2.59)

Fg (Vg)2+cØva (2.61)

which, using (2.58), then satisfies the equivariant Bianchi identity

[Vg,Fg] = 0 (2.62)

Notice that if G is the trivial group, these identities reduce to the usual notions of

curvature, etc. Expanding out (2.61) explicitly using (2.58) gives

Fg1®F+/A (2.63)

where

aØIva_fr/a®jva,1®V] (2.64)

is called the moment map of the G-action with respect to the connection V. Here F = V2

is the ordinary curvature 2-form of the connection V, and from (2.62) and (2.63) we see

that the moment map i is a G-equivariant extension of F from a covariantly-closed

2-form, [V, F] = 0, to an equivariant one in the sense of (2.62).

When evaluated on an element X E g, represented by a vector field V e TM 0 W,

we write

Fg(X)F+iu(X)F+pvFv (2.65)

where

= Cv — [iv, V] (2.66)

generates the induced G-action on the fibers of the bundle. The moment map in this

way can be regarded locally as a function i AU 0 W -+ g*• Furthermore, using the

equivariant Bianchi identity (2.62) we see that it obeys the important property

Vpv ivF (2.67)
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Later on, we shall encounter 2 important instances of equivariant bundles on M, one

associated with a Riemannian structure, and the other with a symplectic structure. In the

latter case the moment map is associated with the Hamiltonian of a dynamical system.

Now we are ready to define the notion of an equivariant characteristic class. First,

we recall how to construct conventional characteristic classes [85]. Given a Lie group

H with Lie algebra h, we say that a real- or complex-valued function P is an invariant

polynomial on h if it is invariant under the natural adjoint action of H on h,

P(h’Yh) = P(Y) \/h e H,VY h (2.68)

An invariant polynomial P can be used to define characteristic classes on principal fiber

bundles with structure group H. If we consider the polynomial P in such a setting as a

function on h-valued 2-forms on M, then the H-invariance (2.68) of P implies that

dP(a) = rP(Va) , a A2M 0 h (2.69)

where r is the degree of P. In particular, taking the argument a to be the curvature

2-form a = F = V2 on the principal H-bundle E —-* M (which is locally an h-valued

2-form), we have

dP(F) 0 (2.70)

as a consequence of the Bianchi identity for F. This means that P(F) defines a (DeRham)

cohomology class of M.

What is particularly remarkable about this cohomology class is that it is independent

of the particular connection V used to define the curvature F. To see this, consider the

simplest case where the invariant polynomial is just P(a) = tr a 8, with tr the invariant

Cartan-Killing linear form of the Lie algebra h (usually the ordinary operator trace).

Consider a continuous one-parameter family of connections V, t IR, with curvatures

8Occasionally, for ease of notation, we shall denote exterior products of differential forms as though
they were just ordinary multiplication of functions. For instance, we define cr”
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F = V. Then

= [v v] (2.71)

and applying this to the invariant polynomial tr F gives

= tr (-F) F1 n tr {vL (v) F’] = d tr (-vt) F1 (2.72)

where d is the exterior derivative and in the last equality we have applied (2.69). This

means that any continuous deformation of the 2u-form tr F’ changes it by an exact form,

so that the cohomology class determined by it is independent of the choice of connection.

In general, the invariant polynomial P(F) E AM is called a characteristic class of the

given H-bundle.

This notion and construction of characteristic classes can be generalized almost ver

batum to the equivariant case [16]. Taking instead the G-equivariant curvature (2.61) as

the argument of the G-invariant polynomial P, (2.70) generalizes to

DgP(Fg) = rP(VgFg) = 0 (2.73)

and now the resulting equivariant characteristic classes P(Fg) of the given G-equivariant

bundle are elements of the algebra AGM. These are denoted by Pg(F), or when evaluated

on an element X e g with associated vector field V TU 0 W, we write

Pg(F)(X) P(Fv) Pv(F) (2.74)

The equivariant cohomology class of Pg(F) is independent of the chosen connection on the

bundle. Consequently, on a trivial vector bundle M x W we can choose a flat connection,

F = 0, and then

PM)<W(Fg)(X) = PMl(pv) = P(p(X)) (2.75)

where p is the representation of G defined by the C-action on the fibers W.

There are 4 equivariant characteristic classes that commonly appear in the localization

formalism for topological field theories, all of which are to be understood as elements of
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the completion AM. These can all be found and are extensively discussed in [16]. The

first one is related to the invariant polynomial tr ea and is used for G-equivariant complex

vector bundles (i.e. one in which the fibers are vector spaces over the complex numbers

C). It is called the G-equivariant Chern character

chg(F) = tr Fg (2.76)

Note that this is a polynomial on a finite-dimensional manifold because then A’M = 0

for k > dim M. The other 3 are given by determinants of specific polynomials. On a

G-equivariant real vector bundle we define the equivariant Dirac A-genus

I

______

Ag(F) = det
sin(F)

(2.77)

where the inverse of an inhomogeneous polynomial of differential forms is always to be

understood in terms of the power series

(1 + x)1 = (l)kxk (2.78)

On a complex fiber bundle, the complex version of the equivariant A-genus is the equiv

ariant Todd class

tdg(F) = det [ F’g_ (2.79)

When 0 is the trivial group, these all reduce to the conventional characteristic classes

[85]. Just as for the ordinary A-genus and Todd classes, their equivariant generalizations

inherit the multiplicativity property under Whitney sums of bundles,

AeF = A:A , td = td td’ (2.80)

Finally, on an orientable real bundle we can define the equivariant generalization of

the Euler class,

Eg(F) = Pfaff(Fg) (2.81)
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where the Pfaffian (or Salam-Mathiews determinant) of a 2N x 2N antisymmetric matrix

M = [M1} is defined as

Pfaff M l’”2NM12 M2_12 2NN sgn(P) ñ MP(2k_1),P(2k) (2.82)
PES2N k=1

with the property that

det M = (Pfaff M)2 (2.83)

The sign of the Pfaffian when written as the square root of the determinant as in (2.83)

is chosen so that it is the product of the upper skew-diagonal eigenvalues in a skew

diagonalization of the antisymmetric matrix M. In (2.82), 1”iN is the antisymmetric

tensor with the convention 123
= Pfaffians arise naturally, as we will see, as

fermionic determinants from the integration of fermion bilinears in supersymmetric and

topological field theories. Transformations which change the orientation of the bundle

change the sign of the Pfaffian. When F = R is the Riemann curvature 2-form associated

with the tangent bundle TM (which can be regarded as a principal SO(n)-bundle) of

a closed manifold M of even dimension 2n, the integral over M of the ordinary Euler

class is the integer

(M)
= (! IM E(R) (2.84)

where

x(M) = E(_1)kdimRHk(M;1R) (2.85)

is the famous topological invariant called the Euler characteristic of the manifold M.

That (2.85) can be written as an integral of a density in (2.84) is a celebrated result of

differential topology known as the Gauss-Bonnet-Chern theorem.

Similarly, with F = FA the curvature of a gauge connection A on a principle H

bundle over a 2k-dimensional manifold M, the integral over M of the k-th term in the

expansion of the conventional version of the Chern class (2.76) (which defines the k-th

Chern class) is the number

Ck(M) = (__)Jtr F (2.86)
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which is a topological invariant of M called the k-th Chern number of M (or, more

precisely, of the complex vector bundle (E, M, W, 7r)). The Chern number is always

an integer for closed orientable manifolds. Thus the equivariant characteristic classes

defined above lead to interesting equivariant generalizations of some classical topological

invariants. We shall see that they appear in most interesting ways within the formalism

of topological field theory functional integration.

2.4 The Equivariant Localization Principle

We now discuss a very interesting property of equivariant cohomology which is the funda

mental feature of all localization theorems. It also introduces the fundamental geometric

constraint that will be one of the issues of focus in what follows. In most of our applica

tions we will be concerned with the following situation. Let M be a compact orientable

manifold without boundary and let V be a vector field over M corresponding to some

action of the circle group G = U(l) ‘—‘ S’ on M. In this case the role of the multiplier

e S(u(1)), which is a linear functional on the 1-dimensional Lie algebra of U(l),

will not be important for the discussion that follows. Indeed, we can regard as just

some external parameter in this case and ‘localize’ algebraically by setting 4 = —1. As

shown in [8], the operations of evaluating ç on Lie algebra elements and the formation of

equivariant cohomology commute for abelian group actions, so that all results below will

coincide independently of the interpretation of 4. The corresponding equivariant exterior

derivative is then denoted as

D(1) D = d + v (2.87)

and it is now considered as an operator on the algebra

AM = {a E AM = O} (2.88)

It was Atiyah and Bott [8] and Berline and Vergne [14, 15] who first noticed that

equivariant cohomology is determined by the fixed point locus of the G-action. In our
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simplified case here, this is the set

Mv = {x e M V(x) = O} (2.89)

This fact is at the very heart of the localization theorems in both the finite dimensional

case and in topological field theory, and it is known as the equivariant localization prin

ciple. In this section we shall establish this property in 2 analytic ways. For a more

algebraic description of this principle using the Well algebra and the topological defini

tion of equivariant cohomology, see [8].

Our first argument for localization involves an explicit proof at the level of differential

forms. Given an integral fM a over M of an equivariantly closed differential form a E

AvM, Dva = 0, we wish to show that this integral depends only the fixed-point set (2.89)

of the U(l)-action on M. To show this, we shall explicitly construct a differential form

A on M — Mv satisfying DvA = a. This is just the equivariant version of the Poincaré

lemma. Thus the form a is equivariantly exact away from the zero locus Mv, and we

recall that this implies that the top-form component of a is exact. Since integration

over M picks up the top-form component of any differential form, and since aM = 0
by hypothesis here, it follows from Stokes’ theorem (2.31) that the integral fM a only

receives contributions from an arbitrarily small neighbourhood of Mv in M.

To construct A, we need to impose the following geometric restriction on the manifold

M. We assume that M has a globally-defined U(1)-invariant Riemannian structure on

it, which means that it admits a globally-defined metric tensor

1
g = g,(x)dx’ ® dx” (2.90)

which is invariant under the U(1)-action generated by V, i.e. for which

£vg = 0 (2.91)

or in local coordinates on M,

g,j.xt9,,V>’ + + = 0 (2.92)
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Alternatively, this Lie derivative constraint can be written as

gxV,V’ + gVV’ = 0 (2.93)

where V is the covariant derivative (2.57) constructed from the Levi-Civita-Christoffel

connection

= gP
(ãg + — äpg1w) (2.94)

associated with g on the tangent bundle TM. Here gV is the matrix inverse of g, and

the covariant derivative acts on the vector field V in the usual way as

VV = + FV (2.95)

with a plus sign for (0, k)-tensors and a minus sign for (k, 0)-tensors in front of F, as in

(2.95). Notice that the Levi-Civita-Christoffel connection is torsion-free, P = F, and

it is compatible with the the metric g, VAg, = 0.

The equivalent equations (2.91)—(2.93) are called the Killing equations and in this

case we say that V is a Killing vector field of the metric g. Since the map V —+ L is

linear, the space of Killing vectors of a Riemannian manifold (M, g) generate the Lie

algebra of a Lie group acting on M by diffeomorphisms which is called the isometry

group of (M, g). We shall describe this group in more detail in chapters 5 and 6. The
Killing equations here are assumed to hold globally over the entire manifold M. If both

M and G are compact, then such a metric can always be obtained from an arbitrary

Riemannian metric h on M by averaging h over the group manifold of G in its Haar
measure. However, we shall have occasion to also consider more general vector field flows

which aren’t necessarily closed or when the manifold M isn’t compact, as are the cases

in many physical applications. In such cases the Lie derivative constraint (2.91) is a
very stringent one on the manifold. This feature of the localization formalism, that the
manifold admit a globally defined metric with the property (2.91) whose components
gv(x) = g(x) are globally-defined C°° functions on M, is the crux of all finite- and
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infinite-dimensional localization formulas and will be analysed in detail later on in this

thesis. For now, we content ourselves with assuming that such a metric tensor has been

constructed.

Any metric tensor defines a duality between vector fields and differential 1-forms, i.e.

we can consider the metric tensor (2.90) as a map

g : TM -÷ T*M (2.96)

which takes a vector field V into its metric dual 1-form

= g(x)Vi(x)dx (2.97)

Non-degeneracy, det g(x) 0, Vx e M, of the metric tensor implies that this defines an

isomorphism between the tangent and cotangent bundles of M. The 1-form 3 satisfies

(2.98)

since £V = 0 and V is a Killing vector of g. This means that @ is an equivariant

differential 1-form. Furthermore, we have

Dv13 = K + (2.99)

where K is the globally-defined C°°-function

K = g(V, V) = gp(x)V(x)VUf(x) (2.100)

and

1v =d3=dg(.) (2.101)

is the 2-form with local components

(1V)v = — gVV’ (2.102)

Consequently, away from zero locus Mv of the vector field V, the 0-form part K of

Dv/3 is non-zero and hence Dv/3 is invertible on M — Mv. Again we understand here
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the inverse of an inhomogeneous differential form with non-zero scalar term in analogy

with the formula (2.78).

We can now define an inhomogenous differential form by

(2.103)

on M — Mv, which satisfies Dv = 1 and £v = 0 owing to the equivariance (2.98) of 3.

Thus we can define an equivariant differential form A = ea, and since a is equivariantly

closed it follows that

a = 1 a = (Dv)a = Dv(a) (2.104)

Thus, as claimed above, any equivariantly closed form is equivariantly exact away from

Mv, and in particular the top-form component of an equivariantly closed form is exact

away from Mv. This establishes the equivariant localization property mentioned above.

The other argument we wish to present here for equivariant localization is less explicit

and involves cohomological arguments. First, consider an ordinary closed form w, dw = 0.

For any other differential form A, we have

J (+dA)=J w (2.105)
M M

by Stokes’ theorem (2.31) since OM = 0. This means that the integral fM w of a closed

form w depends only on the cohomology class defined by w, not on the particular repre

sentative. Since the map w —f fM w in general defines a linear map on A’M —÷

it follows that this map descends to a map on H’(M; lit) —+ H°(pt; lit) = lit. The same

is true for equivariant integration. Since, for a general C-action on M, integration of

a differential form picks up the top-form component which for an equivariantly exact

form is exact, for any equivariantly-closed differential form a we can again invoke Stokes’

theorem to deduce

j(a+DgA)=Ja (2.106)

so that the integral of an equivariantly closed form depends only on the equivariant

cohomology class defined by it, and not on the particular representative. Note, however,
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that equivariant integration for general Lie groups C takes a far richer form. In analogy

with the DeRham case above, the integration of equivariant differential forms defines a

map on HG(M) —+ Hc(pt) S(g*)G. This we define by

(IM a) (X)
= fM

a(X) , X E g (2.107)

with integration over the AM part of a in the ordinary DeRham sense. Later on, we

shall also consider the dual Lie algebra elements in a more ‘dynamical’ situation where

they are a more integral part of the cohomological description above. We shall see then

how this definition of integration should be accordingly modified.

Given that the integral JM a depeilds only on the equivariant cohomology class defined

by a, we can choose a particular representative of the cohomology class making the

localization manifest. Taking the equivariant differential form 3 defined in (2.97), we

consider the integral

Z(s)
= j a e_8 (2.108)

viewed as a function of s e 1R. We assume that (2.108) is a regular function of s E fl{
and that its .s —+ 0 and s — oc limits exist. Its s —+ 0 limit is the integral of interest,

i’M a, while from the identities (2.99) and (2.100) we see that the integrand of (2.108) is

an increasingly sharply Gaussian peaked form around Mv C M as s —+ oc. The crucial
point here is that the equivariant differential form which is the integrand of (2.108) is
equivariantly cohomologous to a for all .s E 1R, This can be seen by applying Stokes’
theorem to get

Z(s) =
— JM

a(Dv)

— JM
{Dv(ai3 — /3Dv(a e8)} (2.109)

= IM a3(Cv/3) e_8 = 0

where we have used the fact that a is equivariantly closed and the equivariance property
(2.98) of . Therefore the integral (2.108) is independent of the parameter s E 1R, and
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so its s —* 0 and s —+ 00 limits coincide. Hence, we may evaluate the integral of interest

as

I a = urn I a (2.110)
JM S+cXJM

which establishes the localization of fM a to Mv.

It should be pointed out though that there is nothing particularly unique about the

choice of 3 in (2.110) — indeed the same steps leading to (2.110) can be carried out for

an arbitrary equivariant differential form ,6, i.e. any one with the property (2.98). In this

general case, the localization of fM a is onto the subspace of M which is the support

for the non-trivial equivariant cohomology of a, i.e. fM a localizes to the points where

Dv13 = 0. Different choices of representatives 3 for the equivariant cohomology classes

then lead to potentially different localizations other than the one onto M. This would

lead to seemingly different expressions for the integral in (2.110), but of course these must

all coincide in some way. In principle this argument for localization could also therefore

work without the assumption that V is a Killing vector for some metric on M, but it

appears difficult to make general statements in that case. Nonetheless, as everything

at the end will be equivariantly closed by our general arguments above, it is possible

to reduce the resulting expressions further to Mv by applying the above localization

arguments once more, now to the localized expression. The localization formula (2.110)

is the basis for the recent applications of equivariant cohomology in physics.

2.5 The Berline-Vergne Theorem

The first general localization formula using only the general equivariant cohomological

arguments presented in the last section was derived by Berliüe and Vergne [14, 15].

This formula, as well as some of the arguments leading to the equivariant localization

principle, have since been established in many different contexts suitable to other finite

dimensional applications and also to path integrals [8, 9, 16, 18, 19]. The proof presented

here introduces a method that will generalize to functional integrals. For now, we assume
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the fixed-point set Mv of the U(1)-action on M consists of discrete isolated points,

i.e. Mv is a submanifold of M of codimension n = dim M . We shall discuss the

generalization to the case where Mv has non-zero dimension later on.

We wish to evaluate explicitly the right-hand side of the localization formula (2.110).

To do this, we introduce an alternative way of evaluating integrals over differential forms.

We introduce a set of nilpotent anticommuting variables , ,u = 1,.. . ,

ILl1 = (2.111)

which generate the exterior algebra AM. The variables are to be thought of as the

basis vectors dx of A’M = T*M with the exterior product of differential forms replaced

by the ordinary product of the i variables with the algebra (2.111). The k-th exterior

power AvM is then generated by the products j’ .
. -,Pk and this definition turns AM

into a graded Grassmann algebra with the generators having grading 1. For instance,

suppose the differential form a is the sum

a = a° + a’ + . .. + a , a(k) E AkM (2.112)

with a(k) the k-form component of a and a° (x) its 0-form component which is a

function on M. The k-form component of a for k > 0 then has the form

= a) (x)’ •,
, k >0 (2.113)

and from this point of view differential forms are functions a(x, ) on the exterior bundle

which is now the 2n-dimensional supermanifold M 0 AM with local coordinates (x, q).

The integration of a differential form is now defined by introducing the Berezin rules

for integrating Grassman variables [12],

J dr i = 1 , Jdr 1 = 0 (2.114)

9We shall assume here that n is even. This restriction is by no means iiecessary but it will allow us
to shorten some of the arguments in this section.
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Since the ‘s are nhlpotent, any function of them is a polynomial in i and consequently

the rules (2.114) unambiguously defines the integral of any function of the anticommuting

variables i. For instance, it is easily verified that with this definition of integration we

have

Jd = Pfaff M (2.115)

where d dr d—’ . . . dr1. This is the fermionic analog of the Gaussian integration

formula (1.2), and the Berezin integral in (2.115) is invariant under similarity transfor

mations.

Given these definitions, we can now alternatively write the integral of any differential

form over M as an integral over the cotangent bundle M 0 A’M. Thus given the

localization formula (2.110) with the 1-form /3 in (2.97) and the identities (2.99)—(2.102),

we have

JM
a =

IM®A1M
dtmx d a(x, 77) exp (_sgv(x)v(x)vv(x)

—

(2.116)

where the measure dx d on M ØA’M is coordinate-independent because the measures

dx dx A . . A dx and d transform inversely to each other. To evaluate the large-s

limit of (2.116), we use the delta-function representations

n/2

S(V)
= () v/i;;:;;: _s,wVV’ (2.117)

= Pfaff 1v
(2.118)

as can be seen directly from the respective integrations in local coordinates on M and

A1M. Notice that from the Killing equations (2.93), the matrix (fv)1w is given by

I A= 2gV,V (2.119)

Thus using (2.117) and (2.118) we can write (2.116) as

fM

(_)n/2.j dTx d77 a(x,)(V(x))S(77) (2.120)
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The integration over A’M in (2.120) kills off all k-form components of the form a except

its C°°-function. part a(°)(x) a(x, 0), while the integration over M localizes it onto a

sum over the points in Mv. This yields

J —

— n/2 a(°)(p) Pfaff Iv(p) 2 121
M pEMv P detg(p)

where the factor det dV(p) I comes from the Jacobian of the coordinate transformation

x —÷ V(x) used to transform S(V(x)) to a sum of delta-functions pEMv (x—p) localizing

onto the zero locus Mv. Substituting in the identity (2.119) and noting that at a point

p Mv we have VV(p) = dV(p), the expression (2.121) reduces to

a(°)( )
IM a = (2ir2 E Pfaff dV(p)

(2.122)
pEM v

where we emphasize the manner in which the dependence of orientation in the Pfaffian

has been transfered from the numerator to the denominator in going from (2.121) to

(2.122) (note that a change of orientation on M by definition changes the sign of det g).

This is the (non-degenerate form of) the Berline—Vergne integration formula, and it is our

first example of what we shall call a localization formula. It reduces the original integral

over the n-dimensional space M to a sum over a discrete set of points in M and it is

valid for any equivariantly-closed differential form a on a manifold with a globally-defined

circle action (and Riemannian metric for which the associated diffeomorphism generator

is a Killing vector). In general, the localization formulas we shall consider will always at

least reduce the dimensionality of the integration of interest. This will be particularly

important for path integrals, where we shall see that localization theory can be used

to reduce complicated infinite-dimensional integrals to finite sums or finite-dimensional

integrals.

We close this chapter by noting the appearence of the operator in the denominator

of the expression (2.122). For each p E Mv, it is readily seen that the operator dV(p)

appearing in the argument of the Pfaffian in (2.122) is just the invertible linear transfor

mation Lv(p) induced by the Lie derivative acting on the tangent spaces TM, i.e. by
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the induced infinitesimal group action on the tangent bundle. Explicitly, this operator is

defined on vector fields W = W(x)I E TM by

Lv(p)W =
(2.123)

x

Note however that dV(p) is not covariant in general and so this is oniy true right on

the tangent space TM and not in general on the entire tangent bundle TM. A linear

transformation on the whole of TM can only be induced from the Lie derivative by

introducing a (metric or non-metric) connection F of TM and inducing an operator

from VV, as in the matrix (2.119). We shall return to this point later on in a more

specific setting.



Chapter 3

Finite-dimensional Localization Theory

We shall now proceed to discuss a certain class of integrals that can be considered to be

toy models for the functional integrals that we are ultimately interested in. The advan

tage of these models is that they are finite-dimensional and therefore rigorous theorems

concerning their behaviour can be formulated. We shall be interested in certain oscilla

tory integrals IM du eiT representing the Fourier transform of some smooth measure djA

on a manifold M in terms of a smooth function H. The common method of evaluating

such integrals is the stationary phase approximation which expresses the fact that for

large-T the main contributions to the integral come from the critical points of H. The

main result of this chapter is the Duistermaat-Heckman theorem [33] which provides a

criterion for the stationary phase approximation to an oscillatory integral to be exact. Al

though this theorem was originally discovered within the context of symplectic geometry,

it turns out to have its most natural explanation in the setting of equivariant cohomology

and equivariant characteristic classes [8],[14]—[16]. The Duistermaat-Heckman theorem,

and its various extensions that we shall discuss towards the end of this chapter, are

precisely those which originally motivated the localization theory of path integrals.

For physical applications, we shall be primarily interested in a special class of differ

entiable manifolds known as ‘symplectic’ manifolds. The application of the equivariant

cohomological ideas to these manifolds leads quite nicely to the notion of a Hamilto

nian, as well as some standard ideas in the geometrical theory of classical integrability.

Furthermore, the configuration space of a topological field theory is typically an (infinite

dimensional) symplectic manifold (or phase space) [17] and we shall therefore restrict our.

47
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attention for the remainder of this thesis to the localization theory for oscillatory inte

grals over symplectic manifolds. We shall discuss all of these finite dimensional aspects

of equivariant cohomology on symplectic manifolds in this chapter.

3.1 Symplectic Geometry

Symplectic geometry is the natural mathematical setting for the geometrical formulation

of classical mechanics and the study of classical integrability [5]. It also has applications

in other branches of physics, such as geometrical optics [55]. In elementary classical

mechanics [48], one is introduced to the Hamiltonian formalism of classical dynamics as

follows. For a dynamical system defined on some manifold M (usually 1R) with coor

dinates (q’,. ..

, qfl), we introduce the canonical momenta p1 conjugate to each variable

q from the Lagrangian of the system and then the Hamiltonian H(p, q) is obtained by

a Legendre transformation of the Lagrangian. In this way one has a description of the

dynamics on the 2n-dimensional space of the (p, q) variables which is called the phase

space of the dynamical system. With this construction the phase space is the cotangent

bundle M ® A’M of the configuration manifold M. The equations of motion can be

represented through the time evolution of the phase space coordinates by Hamilton’s

equations. For most elementary dynamical systems, this description is sufficient. How

ever, there are very few examples of mechanical systems whose equations of motion can

be solved by quadratures and it is desirable to seek other more general formulations of

this elementary situation in the hopes of being able to formulate rigorous theorems about

when a classical mechanical system has solvable equations of motion, or is ‘integrable’.

Furthermore, the above notion of a ‘phase space’ is very local and is strictly speaking only

globally valid when the phase space is 1R2, a rather restrictive class of systems. tVloti

vated by the search for more non-trivial iutegrable models in both classical and quantum

physics, theoretical physicists have turned to the general theory of symplectic geometry

which encompasses the above local description in a coordinate-free way suitable to the
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methods of modern differential geometry. In this section we shall review the basic ideas

of symplectic geometry and how these descriptions tie in with the more familiar ones of

elementary classical mechanics.

A symplectic manifold is a differentiable manifold M of even dimension 2n together

with a globally-defined non-degenerate closed 2-form

w = A dx1’ (3.1)

called the symplectic form of M. By closed we mean as usual that

d = 0 (3.2)

or iii local coordinates

Ow + + = 0 (3.3)

Thus w defines a DeRham cohomology class in H2(M; IR). By non-degenerate we mean

that the components w,(x) of w define an invertible 2n x 2n antisymmetric matrix

globally on the manifold M, i.e.

det(x) 0 Vx E M (3.4)

Thus when considered as a map on TM —* T*M, the symplectic 2-form defines an

isomorphism of the tangent and cotangent bundles of M. The manifold M together

with its symplectic form w defines the phase space of a dynamical system, as we shall see

below.

Since ‘ is closed, it follows from the Poincar lemma that locally there exists a 1-form

0 = 0,(x)dx (3.5)

such that

w = dO (3.6)

or in local coordinates

= — O0 (3.7)



Chapter 3. Finite-dimensional Localization Theory 50

The locally-defined 1-form 0 is called the symplectic potential or canonical 1-form of

M. Diffeomorphisms of M that leave the symplectic 2-form invariant are called canon

ical or symplectic transformations. These are determined by C°°-maps that act on the

symplectic potential as

6—--OF=6+dF (3.8)

or in local coordinates

O,L(x) --* OF,(x) = O(x) + a,F(x) (3.9)

so that by nilpotency of the exterior derivative it follows that w is invariant under such

transformations,
F

w=dO—+wF=dOFw (3.10)

The function F(x) is called the generating function of the canonical transformation.

The symplectic 2-form defines a bilinear function {., : A°M ®A°M —+ A°M called

the Poisson bracket. It is defined by

{f,g} =w1(df,dg) , f,g E A°M (3.11)

or in local coordinates

{f,g}, = w’(x)9f(x)ãg(x) (3.12)

where wy” is the matrix inverse of w. Note that the local coordinate functions them

selves have Poisson bracket

{x, x’} = ‘(x) (3.13)

The Poisson bracket is anti-symmetric,

{f,g}, = —{g,f} (3.14)

it obeys the Leibniz property

{f, gh} = g{f, h} + h{f, g} (3.15)
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and it satisfies the Jacobi identity

{f, {g, + {g, {h, f}} + {h, {f, g}} = 0 (3.16)

This latter property follows from the fact (3.3) that is closed. These 3 properties of

the Poisson bracket mean that it defines a Lie bracket. Thus the Poisson bracket makes

the space of C°°-functions on M into a Lie algebra which we call the Poisson algebra of

(M,w).

The connection with the elementary formulation of classical mechanics discussed

above is given by a result known as Darboux’s theorem [55], which states that this con

nection is always possible locally. More precisely, Darboux’s theorem states that locally

there exists a system of coordinates (pa, q)1 on M in which the symplectic 2-form

looks like

= dp A dq’ (3.17)

so that they have Poisson brackets

{p,,p11} {qlLqiI}
= 0

,

{p,qL} = (3.18)

These coordinates are called canonical or Darboux coordinates on M and from (3.18) we

see that they can be identified with the usual canonical momentum and position variables

on the phase space M [48]. In these coordinates the symplectic potential is

O=pdq (3.19)

and the transformation (3.8) becomes

0 = pdq’ -+ 0 + dF = 0F = PdQu (3.20)

where (Pu, Qj1 are also canonical coordinates according to (3.10). It follows that

pdq — P,LdQ = dF (3.21)
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where both (pu, qj and (P,, Q) are canonical momentum and position variables on

M. (3.21) is the usual form of a canonical transformation determined by the generating

function F [48].

Smooth real-valued functions H on M (i.e. elements of A°M) will be called classical

observables. Exterior products of w with itself determine non-trivial closed 2k-forms on

M. In particular, the 2n-form

dpL = w’/n! = /detw(x) d2x (3.22)

defines a natural volume element on M which is invariant under canonical transforma

tions. It is called the Liouville measure, and in the local Darboux coordinates (3.17) it

becomes the familiar phase space measure [48]

(_1)_12/n! = dp1 A A dp A dq’ A• A dq’ (3.23)

3.2 Equivariant Cohomology on Symplectic Manifolds

In this section we shall specialize the discussion of chapter 2 to the case where the dif

ferentiable manifold M is a symplectic manifold of dimension 2n. Consider the action

of some connected Lie group 0 on M generated by the vector fields va with the com

mutator algebra (2.43). We assume that the action of G on M is symplectic so that it

preserves the symplectic structure,

= 0 (3.24)

or in other words G acts on M by symplectic transformations. Since w is closed this

means that

dja = 0 (3.25)

Let L —+ M be a complex line bundle with connection 1-form the symplectic potential

0. If 0 also satisfies

£vaO 0 (3.26)
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then the associated covariant derivative V = d + 8 is C-invariant, and according to the

general discussion of section 2.3 this defines a G-equivariant bundle.

The associated moment map H : M g* evaluated on a Lie algebra element X e g

with associated vector field V is called the Hamiltonian corresponding to V,

H Lv — [iv,V] = ivO (3.27)

From (3.6) and (3.26) it then follows that

dJJ = —ivw (3.28)

or equivalently this follows from the general property (2.67) of the moment map since w

is the curvature of the connection 0. In local coordinates, this last equation reads

OHv(x) = V’(x)(x) (3.29)

In particular, the components H of the moment map

(3.30)

satisfy

dH ZVaW (3.31)

Comparing with the symplecticity condition (3.25) on the group action, we see that this

is equivalent to the statement that the closed 1-forms iVaw are exact. If H’(M; IR) 0

this is certainly true, but in the following we will want to consider multiply connected

phase spaces as well. We therefore impose this exactness requirement from the onset

on the action of C on M, or alternatively the equivariance requirement (3.26) on the

symplectic potential 0. When such a Hamiltonian function exists as a globally-defined

C°°-map on M, we shall say that the group action is Hamiltonian. A vector field V which

satisfies (3.28) is said to be the Hamiltonian vector field associated with H, and we shall

call the triple (M,w, Hv), i.e. a symplectic manifold with a Hamiltonian G-action on it,

a Hamiltonian system or a dynamical system.
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The integral curves (2.42) defined by the flows (or time-evolution) of a Hamiltouian

vector field V as in (3.29) define the Hamilton equations of motion

= ww(x(t))OHv(x(t)) = {x’, Hv} (3.32)

Iii particular, iii the canonical coordinates defined by (3.17) the equations (3.32) read

_

OH . OH
q’ — P1 = (3.33)

which are the usual form of the Hamilton equations of motion encountered in elementary

classical mechanics [48]. Thus we see that the above formalisms for symplectic geom

etry encompass all of the usual ideas of classical Hamiltonian mechanics in a general,

coordinate-independent setting.

The equivariant curvature of the above defined equivariant bundle is given by the

equivariant extension of the symplectic 2-form,

wgl®w+cbL®Ha (3.34)

and evaluated on X E g we have

(Dgwg)(X) (d iv)(W + Hv) 0 (3.35)

which is equivalent to the definition (3.28) of the Hamiltonian vector field V. In fact, the

extension (3.34) is the unique equivariant extension of the symplectic 2-form w [103], i.e.

the unique extension of w from a closed 2-form to an equivariantly-closed one. Thus, we

see that finding an equivariantly-closed extension of w is equivalent to finding a moment

map for the G-action. If w defines actually an integer cohomology class [w] H2(M; ),
then the line bundle L —+ M introduced above can be thought of as the prequantum

line bundle of geometric quantization [136], the natural geometric framework (in terms of

symplectic geometry) for the coordinate independent formulation of quantum mechanics.

Within this framework, the equivariant curvature 2-form WV = Wg(X) above is refered
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to as the preqtiantlLlm operator. We shall say more about some of the general ideas of

geometric quantization later on.

From (3.31) it follows that the Poisson algebra of the Hamiltonians H is given by

{ Ha, H’} (va, Vb) = wVV = £aH’ = _LHa (3.36)

From the Jacobi identity (3.16) it follows that the map H — Va is a homomorphism of

the Lie algebras (A°M, {., •}) —+ (TM, [, .J) since

= [Va, V”] (337)

However, the inverse of this map does not necessarily define a homomorphism. The

Hamiltonian function which corresponds to the commutator of 2 group generators may

differ from the Poisson bracket of the pertinent Hamiltonian functions as

{ Ha, Hb} = fabCHc + c (3.38)

where ab c(X”, Xb) is a 2-cocycle in the Lie algebra cohomology of G [64], i.e.

c([X1,X2],X3)+c([X2,X3],Xi)-i-c([X3,X1],X2)= 0 ‘v’X1,X2,X3Eg (3.39)

IfH2(G) = 0 then we can set ab = 0 and the map xa Ha determines a homomorphism

between the Lie algebra g and the Poisson algebra of C°°-functions on M.

The appearence of the 2-cocycle cdzb in (3.38) is in fact related to the possible non

invariance of the symplectic potential under G (c.f. eq. (3.26)). From the symplecticity

(3.24) of the group action and (3.31) it follows that

(3.40)

locally in a neighbourhood Al in M wherein w = dO and v’ 0. Here the locally-defined

linear functions ga g(xa) = + iO obey the consistency condition

{H(Xi),g(X2)}— {H(X2),g(Xi)} = g([X1,X2]) VX1,X2E g (3.41)
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However, if there exists a locally-defined function f such that

gd = {H’1,f} , a = 1,... ,dimG (3.42)

then we can remove the functions ga by the canonical transformation 0 —* O = 0 + df so

that the symplectic potential O is G-invariant. Indeed, the 1-form Oj obeys

f.vaOj = 0 (3.43)

which implies that in the neighbourhood ,

ivaOf = Hd + C (3.44)

where C is a constant. This constant is irrelevant here because we can introduce functions

Ka in dV such that

{Ha, Ja} = = 1 (3.45)

and defining Fd = f + CK we find

iVaOFa = Hd (3.46)

However, notice that the G-invariance (3.46) of the symplectic potential in general

holds only locally in M, and furthermore the canonical transformation 0 —+ O above does

not remove the functions ga for the entire Lie algebra g, but only for a closed subalgebra

of g which depends on the function f and on the phase space M where G acts [55, 100].

In this subspace, the symplectic potential is G-invariant and the identity (3.27) relating

the Hamiltonians to the symplectic potential by Hd = iVaS holds. In general though, on

the entire Lie algebra g, defining hd = _jadFd in the above we have

iVaO = H + hd (3.47)

and then the Poisson bracket (3.36) implies that the 2-cocycle appearing in (3.38) is given

by

= fabchc — £vah6 + £h’ (3.48)
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It is only when c°1’ = 0 for all a, b that the G-action of the vector fields V lifts isomor

phically to the Poisson action of the corresponding Hamiltonians H’ on M. Notice that

this is certainly true on the Cartan subalgebra of the Lie algebra g (i.e. the maximal

commuting subalgebra of g), since H2(U(1)) = H2(S’) = 0. We shall see in chapter 4

that the dynamical systems for which the equivariance condition (3.27) holds determine

a very special class of quantum theories.

3.3 Stationary-phase Approximation and the Duistermaat-Heckman Theo

rem

We now start examining localization formulas for a specific class of phase space inte

grals which can be thought of as finite-dimensional versions of the functional integrals

that we consider later on. It is best to proceed first with a finite-dimensional analysis

because there everything is well-defined and rigorous theorems can be formulated. In

the infinite-dimensional case, although the techniques used will be standard methods of

supersymmetry and topological field theory, a lot of rigor is lost due the ill-definedness

of infinite-dimensional manifolds and functional integrals. A lot can therefore be learned

by looking closely at some finite-dimensional cases. We shall concentrate for now on the

case of an abelian circle action on the manifold M, as we did in section 2.5. We shall also

assume that the Hamiltonian H defined as in the last Section is a Morse function. This

means that the critical points p of the Hamiltonian, defined by dH(p) = 0, are isolated

and the Hessian matrix of H,
82 H (x)

7-1(x)
=

[Ox14ãxv] (3.49)

at each critical point p is a non-degenerate matrix, i.e.

det’H(p) 0 (3.50)

The Hamiltonian vector field V is defined by (3.29) and it represents the action of some

1-parameter group on the phase space M. We shall assume here that the orbits (2.42)



Chapter 3. Finite-dimensional Localization Theory 58

of V generate the circle group U(1) ‘S-’ S1. Later on we shall consider more general cases.

Notice that the critical points of H coincide with zero locus Mv of the vector field V.

There is an important quantity of physical interest for the statistical mechanics of a

classical dynamical system called the partition function. It is constructed as follows. Each

point x of the phase space M represents a classical state of the dynamical system which

in canonical coordinates is specified by its configuration q and its momentum p. The

energy of this state is determined by the Hamiltonian H of the dynamical system which

as usual is its energy function. According to the general principles of classical statistical

mechanics [114] the partition function is built by attaching to each point x E M the

Boltzmann weight eiTH(2) and ‘summing’ them over all states of the system. Here the

parameter iT is ‘physically’ to be identified with —/3/kB where kB is Boltzmann’s constant

and /3 is the inverse temperature. However, for mathematical ease in the following, we

shall assume that the parameter T is real. In the canonical position and momentum

coordinates we would just simply integrate up the Boltzmann weights. However, we

would like to obtain a quantity which is invariant under transformations which preserve

the (symplectic) volume of the phase space M (i.e. those which preserve the classical

equations of motion (3.32) and hence the density of classical states), and so we integrate

using the Liouville measure (3.22) to obtain a canonically invariant quantity. This defines

the classical partition function of the dynamical system,

Z(T)
= IM i eiTI

= IM d2x detw(x) eiT) (3.51)

The partition function determines all the usual thermodynamic quantities of the dynam

ical system [114], such as its free energies and specific heats, as well as all statistical

averages in the canonical ensemble of the classical system.

However, it is very seldom that one can actually obtain an exact closed form for

the partition function (3.51) as the integrals involved are usually rather complicated.

But there is a method of approximating the integral (3.51), which is very familiar to

physicists and mathematicians, called the stationary-phase approximation [55, 61, 136].
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This method is often employed when one encounters oscillatory integrals such as (3.51)

to obtain an idea of its behaviour, at least for large T. It works as follows. Notice

that for T —+ oo the integrand of Z(T) oscillates very rapidly and begins to damp to 0.

The integral therefore has a large-T expansion in powers of l/T. The larger T gets the

more the integrand tends to localize around its stationary values wherever the function

H(x) has extrema (equivalently where dH(p) = 0)1. To evaluate these contributions,

we expand both H and the Liouville density in (3.51) in a neighbourhood U,, about

each critical point p E M in a Taylor series, where as usual integration in U can be

thought of as integration in the more familiar fl2• We expand the exporential of all

derivative terms in H of order higher than 2 in the exponential power series, and in

this way we are left with an infinite series of Gaussian moment integrals with Gaussian

weight determined by the bilinear form defined by the Hessian matrix (3.49) of H at p.

The lowest order contribution is just the normalization of the Gaussian, while the k-th

order moments are down by powers of 1/T’ compared to the leading term. Carrying out

these Gaussian integrations, taking into careful account the signature of the Hessian at

each point, and summing over all points p E M, in this way we obtain the standard

lowest-order stationary-phase approximation to the integral (3.51),

Z(T) = ()(_i) eiTH( + O(1/T) (3.52)

where ).(p) is the Morse index of the critical point p, defined as the number of negative

eigenvalues in a diagonalization of the symmetric Hessian matrix of H at p. We shall

always ignore a possible regular function of T in the large-T expansion (3.52). The

higher-order terms in (3.52) are found from the higher-moment Gaussian integrals [106]

and they will be discussed in chapter 7. For now, we concern ourselves only with the

lowest-order term in the stationary-phase series of (3.51).

1UsuaIly one argues that the phase will concentrate around the points where H is minimized since
this should be the dominant contribution for T —* oo. However, the localization is properly determined
by the points where dH(p) = 0 since the contribution from other extrema turn out to be of the same
order of magnitude as those from the minima [61].
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The field of equivariant localization theory was essentially born in 1982 when Duis

termaat and Heckman [33] found a general class of Hamiltonian systems for which the

leading-order of the stationary-phase approximation gives the exact result for the parti

tion function (3.51) (i.e. for which the O(1/T’) correction terms in (3.52) all vanish).

Roughly speaking, the Duistermaat-Heckman theorem goes as follows. Let M be a com

pact symplectic manifold. Suppose that the vector field V defined by (3.29) generates

the global Hamiltonian action of a torus group T = (Sl)m on M (where we shall usually

assume that m = 1 for simplicity). Since the critical point set of the Hamiltonian H

coincides with the fixed-point set M of the T-action on M we can apply the equiv

ariant Darboux theorem to the Hamiltonian system at hand [55]. This generalization of

Darboux’s theorem tells us that not only can we find a local canonical system of coordi

nates in a neighbourhood of each critical point in which the symplectic 2-form looks like

(3.17), but these coordinates can further be chosen so that the origin p1 = q = 0 of the

coordinate neighbourhood represents the fixed point p of the given compact group action

on M. This means that in these canonical coordinates the torus action is (locally) linear

and has the form [33]

(pizq’) , pEMv (3.53)
q

where A1(p) are weights that will be specified shortly. From the Hamilton equations

(3.29) it follows that the Hamiltonian near each critical point p can be written in the

quadratic form
n iA (p)H(x)=H(p)+> (p+q) (3.54)

In these coordinates the flows determined by the Hamilton equations of motion (3.33)

are the circles p(t), q(t) et about the critical points, which gives an explicit

representation of the Hamiltonian T-action locally on M and the group action preserves

the Darboux coordinate neighbourhood. Thus each neighbourhood integration above

is purely Gaussian and so all higher-order terms in the stationary-phase evaluation of
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(3.51) vanish and the partition function is given exactly by the leading term in (3.52) of

its stationary-phase series. This theorem therefore has the potential of supplying a large

class of dynamical systems whose partition function (and hence all thermodynamic and

statistical observables) can be evaluated exactly.

Atiyah and Bott [8] pointed out that the basic principle underlying the Duistermaat

Heckman theorem is not that of stationary-phase, but rather of the more general lo

calization properties of equivariant cohomology that we discussed in the last chapter.

Suppose that the Hamiltonian vector field V generates a global, symplectic circle action

on the phase space M. Suppose further that M admits a globally defined Riemannian

structure for which V is Killing vector, as in section 2.4. Recall from the last section that

the symplecticity of the circle action implies that w + H is the equivariant extension of

the symplectic 2-form w, i.e. Dv( + H) = 0. Since integration over the 2n-dimensional

manifold M picks up the 2n-degree component of any differential form, it follows that

the partition function (3.51) can be written as

Z(T)
= IM a (3.55)

where a is the inhomogeneous differential form

1 1 ‘n
a — eiT(I — eiTH ‘ I (3 56

— (iT) — (iT)n k=O k!

whose 2k-form component is a(21c) = eiTHwk/(iT)n_kk!. Since H + w is equivariantly

closed, it follows that Dva = 0. Thus we can apply the Berline-Vergne localization

formula (2.122) to the integral (3.55) to get -

/2iri\ eiTFI(P)
Z(T)

= —-) Pfaff dV(p)
(3.57)

In the case at hand the denominator of (3.57) at a critical point p is found from the

Hamilton equations (3.29) which give

dV(p) =w1(p)7-t(p) (3.58)
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and so we see how the determinant factors appear in the formula (3.52). However, we

have to remember that the Pfaffian also encodes a specific choice of sign when taking

the square root determinant. The sign of the Pfaffian Pfaff dV(p) can be determined by

examining it in the equivariant Darboux coordinates above in which the matrix w(p) is

skew-diagonal with skew-eigenvalues 1 and the Hessian 7-1(p) which comes from (3.54) is

diagonal with eigenvalues iA,(p) each of multiplicity 2. It follows that in these coordinates

the matrix dV(p) is skew-diagonal with skew-eigenvalues iA,(p). Introducing the eta-

invariant (7t(p)) of H(p), defined as the difference between the number of positive and

negative eigenvalues of the Hessian of H at p, i.e. its spectral asymmetry, we find

2sgn iA(p) (3.59)

which is related to the Morse index of H at p by

= 2n — 2A(p) (3.60)

Using the identity +1 = it follows that

sgn Pfaff dV(p)
= fl sgn i(p) = = = (—i) (3.61)

and so substituting (3.58) and (3.61) into (3.57) we arrive finally at the Duistermaat

Heckman integration formula

Z(T)
=

eiT :; (3.62)

Recall from section 2.5 that dV(p) is associated with the anti-seif-adjoint linear op

erator Lv(p) which generates the infinitesimal circle (or torus) action on the tangent

space TM. From the above it then follows that the complex numbers A, (p) introduced

in (3.53) are just the weights (i.e. eigenvalues of the Cartan generators) of the complex

linear representation of the circle (or torus) action in the tangent space at p and the

determinant factors from (3.57) appear in terms of them as the products

e(p) = (_1))/2 fi A,(p) (3.63)
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as if each unstable mode contributes a factor of i to the integral for Z(T) above. Given

the remarkable cohomological derivation of the Duistermaat-Heckman formula above
which followed from the quite general principles of equivariant cohomology of the last
chapter, one could hope to develop more general types of localization formulas from these

general principles in the hopes of being able to generate more general types of integration

formulas for the classical partition function. Moreover, given the localization criteria of
the last chapter this has the possibility of expanding the set of dynamical systems whose

partition functions are exactly solvable. We stress again that the crucial step in this

cohomological derivation is the assumption that the Hamiltonian flows of the dynamical
system globally generate isometries of a metric g on M, i.e. the Hamiltonian vector field
V is a global Killing vector of g. This condition and a classification of the dynamical
systems for which these localization constraints do hold true will be one of the main
topics of this thesis. The extensions of the Duistermaat-Heckman localization formula
using the geometric conditions above will be the focus of the remainder of this chapter, as
will be the various applications of the formalism of equivariant cohomology for dynamical
systems.

3.4 Morse Theory and Kirwan’s Theorem

There is a very interesting and useful connection between the Duistermaat-Heckman
theorem and the Morse theory determined by the non-degenerate Hamiltonian H. Morse
theory relates the structure of the critical points of a Morse function H to the topology
of the manifold M on which it is defined. We very briefly now review some of the basic
ideas in Morse theory (see [92] for a comprehensive introduction). Given a Morse function
H as above, we define its Morse series

MH(t) (3.64)
pEM v
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which is a finite sum because the non-degeneracy of H implies that its critical points are

all discrete and the compactness of M implies that the critical point set Mv is finite.

The topology of the manifold M now enters the problem through the Poincaré series of

M, which is defined by

FM (t; IF’)
=

dimp Hk(M; IF)tk (3.65)

where IF is some algebraic field (usually IR or C). The fundamental result of Morse theory

is the inequality

MH(t) PM(t; IF) (3.66)

for all fields IF. If equality holds in (3.66) for all fields IF’, then we say that H is a

perfect Morse function. The inequality (3.66) leads to many different relations between

the critical points of H and the topology of M. These are called the Morse inequalities,

and the oniy feature of them that we shall really need in the following is the fact that

the number of critical points of H of a given Morse index k 0 is always at least the

number dim11 Hk(M; IR). This puts a severe restriction on the types of non-degenerate

functions that can exist as C°°-maps on a manifold of a given topology.

Another interesting relation is obtaIned when we set t = —1 in the Morse and Poincaré

series. In the former series we get

MH(—l) = sgndett(p) (3.67)
pEM v

while (2.85) shows that in the latter series the result is the Euler characteristic x(M)
of M. That these 2 quantities are equal is known as the Poincaré-Hopf theorem, and

employing further the Gauss-Bonnet-Chern theorem (2.84) we find

sgndet7(p) = (,JE(R) (3.68)
pEM v

with E(R) the Euler class constructed from a Riemann curvature 2-form R on M. This

relation gives a very interesting connection between the structure of the critical point
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set of a non-degenerate function and the topology and geometry of the phase space

M. We remark that one can also define equivariant versions of the Morse and Poincaré

series using the topological definition of equivariant cohomology [92] which is suitable

to the equivariant cohomological ideas that we formulated earlier on. These equivariant

generalizations which localize topological integrals such as (3.68) onto the zero locus of

a vector field is the basis of the Mathai-Quillen formalism and its application to the

construction of topological field theories [22, 24, 29, 67, 82, 98].

In regards to the Duistermaat-Heckman theorem, there is a very interesting Morse

theoretical result due to Kirwan [72]. Kirwan showed that the only Morse functions for

which the stationary phase approximation can be exact are those which have only even

Morse indices A(p). This theorem includes the cases where the Duistermaat-Heckman

integration formula is exact, and under the assumptions of the Duistermaat-Heckman

theorem it is a consequence of the circle action (see the previous section). However,

this result is even stronger — it means that when one constructs the full stationary-

phase series as described in the last section [106], if that series converges uniformly in

1/T to the exact partition function Z(T), then the Morse index of every critical point

of H must be even. From the Morse inequalities mentioned above this furthermore

gives a relation between equivariant localization and the topology of the phase space

of interest — if the manifold M has non-trivial cohomology groups of odd dimension,

then the stationary phase series diverges for any Morse function defined on M and in

particular the Duistermaat-Heckman localization formula for such phase spaces can never

give the exact result for Z(T). In this way, Kirwan’s theorem rules out a large number

of dynamical systems for which the stationary phase approximation could be exact in

terms of the topology of the underlying phase space where the dynamical system lives.

Moreover, an application of the Morse lacunary principle [92] shows that, when the

stationary-phase approximation is exact so that H has only even Morse indices, H is in

fact a perfect Morse function and consequently its Morse inequalities become equalities.
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We shall not go into the rather straightforward proof of Kirwan’s theorem here, but refer

to [72] for the details. In the following we can therefore use Kirwan’s theorem as an

initial test using the topology of the phase space to determine which dynamical systems

will localize in the sense of the Duistermaat-Heckman theorem. In chapter 7 we shall see

the direct connection between the higher order terms in the saddle-point series for the

partition function and Kirwan’s theorem, and more generally the geometry and topology

of the manifold M.

3.5 The Height Function of a Riemann Surface

It is instructive at this stage to finally present some concrete examples of the equivariant

localization formalism presented above. One of the most common examples in both

Morse theory and localization theory is the dynamical system whose phase space is a

compact Riemaun surface of genus g (i.e. a closed surface with g ‘handles’) and

whose Hamiltonian hEg is the height function on > [24, 70, 92, 106, 120]. For instance,

consider the Riemann sphere °
= S2 of unit radius viewed in 1R as a sphere standing on

end on the xy-plane and centered at z = a symmetrically about the z-axis. We introduce

the usual spherical polar coordinates x = sin 0 cos , y = sin 6 sin and z a — cos 6 for

the embedding of the sphere in 3-space as S2 = {(x, y, z) E 1R3 : x2 + y2 + (z — a)2 =

where 0 0 it and 0 75 2ir. The symplectic 2-form is the usual volume form on S2

wEo = dcos 0 A d (3.69)

induced by the Euclidean metric g. = J, of 1R3 from the embedding. of S2 in 3-

dimensional space. We wish to consider the U(1)-action + o, ‘o E [0, 2ir),

associated with rigid rotations of 52 The vector field generating this compact group

action on 32 is V = , so that the corresponding moment map is

hEo(0,cb) = a—cos0 (3.70)
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which is just the height function z restricted to the sphere. Notice that the associated

circle action leaves fixed the north pole, at 0 = ir, and the south pole, at 0 = 0.

The partition function can be evaluated directly and it gives

ZEO(T)
=

w: eiT0

= 21rf dcosO eT(a_c0s6) (3.71)

= (e(+ — eiT(1_)
= 4ir

e_iTa sin T

The last line in (3.71) shows that the result for the partition function is precisely that

anticipated from the Duistermaat-Heckman theorem. It can be expressed as a sum of

2 terms which each correspond to the 2 isolated non-degenerate critical points of the

Hamiltonian (3.70) — one from the north pole 9 = ir, which is the maximum of (3.70),

and the other from the south pole 9 = 0, which is its minimum. The relative minus sign

in the last line of (3.71) comes from the fact that the Morse index of the maximum 9 = 71

is 2 while that of 0 = 0 is 0, i.e. the maximum of hEo is unstable in 2 directions, each

of which, heuristically, contributes a factor of i. Finally, the factor 2iri/T comes from

the one-loop determinants from expanding aroulld 0 = 0, r. Note also that the Poincaré

series of the 2-sphere is2

Ps2(t;) = dimFHk(S2;F)tk = 1 +t2 (3.72)

which coincides with the Morse series (3.64) for the height function hEo. Thus, consistent

with Kirwan’s theorem, we see that ho is a perfect Morse function with even Morse

indices.

Notice that the Hamiltonian vector field V = here generates an isometry of the

standard round metric dO ® dO + sin2 0 d4 ® d4 induced by the flat Euclidean metric

of 1R3. The differential form (2.103) with this metric is = d, which as expected is

21n general, if M is path-connected, as we always assume here, then Ho(M; 71) 71 and if M is
closed, then H2,, (M; 71) = 71. The intermediate homology groups depend on whether or not M has
‘holes’ in it or not.
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ill-defined at the 2 poles of S2. Now the partition function can be written as

ZEo(T)=—4-J (3.73)
iT o

thus receiving contributions from only the critical points 0 = 0, 7t, the endpoints of the

integration range for cos 0, in agreement with the explicit evaluation above.

As we shall see later on, the above example for the Riemann sphere is essentially

the only Hamiltonian system to which the geometric equivariant localization constraints

apply on a simply-connected phase space (i.e. Hi(M; ZZ) = 0). The situation is much

different on a multiply-connected phase space, which as we shall see is due to the fact

that the non-trivial first homology group of the phase space severely restricts the allowed

U(1) group actions on it and hence the Morse functions thereon. For example, consider

the case of a genus 1 Riemann surface [70, 106, 120], i.e. E’ is the 2-torus T2 = 5’ x

The torus can be viewed as a parallelogram in the complex plane with its opposite edges

identified. We take as horizontal edge the line segment from 0 to 1 along the real axis

and the other slanted edge the line segment from 0 to some complex number r in the

complex plane. The number T is called the modular parameter of the torus and we can

take it to lie in the upper complex half-plane

C={zéC:Imz>0} (3.74)

Geometrically, r determines the inner and outer radii of the 2 circles of the torus, and it

labels the inequivalent complex structures of ‘ .

We view the torus embedded in 3-space as a doughnut standing on end on the xy

plane and centered symmetrically about the z-axis. If (4,, g5) are the angle coordinates

on 51 x 51, then the height function on can be written as

hEl @1, 2) = r2 — (ri + Tm r cos i) cos (3.75)

31n algebraic geometry one would therefore say that C is the Teichmflhler space of the torus. The
Teichmüller space of a simply-connected Riemann surface is a point, so that there is a unique complex
structure (i.e. a unique way of defining complex coordinates) in genus 0. This is a consequence of the
celebrated Riemann uniformization theorem. We refer to [92] and [121] for an elementary introduction
to Teichmüller spaces in algebraic geometry, while a more extensive treatment can be found in [62].
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where r1 = IRe TI + Tm 7 and r2 IRe ri + 2 Tm r label the inner and outer radii of

the torus. The symplectic volume form on T2 is just that induced by the identification

of as a parallelogram in the plane with its opposite edges identified, i.e. the Darboux

2-form

WD = dqi A dçb2 (3.76)

The associated Hamiltonian vector field for this dynamical system has components

Vi =—(ri+Tmrcosi)sin2 , V1 =ImrsinS1cos42 (3.77)

The Hamiltonian (3.75) has 4 isolated non-degenerate critical points on 8’ x 8’ — a

maximum at (çS,, 2) (0, ir) (top of the outer circle), a minimum at (0, 0) (bottom of

the outer circle), and 2 saddle points at (?r, 0) and (ir, ir) (corresponding to the bottom

and top of the imner circle, respectively). The Morse index of the maximum is 2, that of

the minimum is 0, and those of the 2 saddle points are both 1. According to Kirwan’s

theorem, the appearence of odd Morse indices, or equivalently the fact that

= 7ZE3 (3.78)

with each 7Z labelling the windings around the 2 independent non-contractable loops as

sociated with each S’-factor, implies that the Duistermaat-Heckman integration formula

should fail in this case. Indeed, evaluating the right-hand side of the Duistermaat

Heckman formula (3.62) gives

TpEM

eiThE;(P) = [rh/2 (i + e2iTr2) + IRe TI1/2e2iTTmT (i — e2iT[)J

(3.79)

which for the parameter values iT = 1 and r = 1 + i gives the numerical value

2ir e3 (= sinh 3+2 cosh i) 1849.33 (3.80)

On the other hand, an explicit evaluation of the partition function gives
2ir 2,r 2r

ZE1(T) = j j dçbi dç2 eiThE1(1,2) = 2ir er2 f dq, J0 (iT(ri + Tm Tcosci)) (3.81)
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with J0 the regular Bessel function of order 0 [50]. For the parameter values above, a

numerical integration in (3.81) gives ZE1 -‘ 2117.13 , contradicting the result (3.80).

Thus even though in this case the Hamiltonian hEl is a perfect Morse function, it doesn’t

generate any torus action on the phase space here.

This argument can also be extended to the case where the phase space is a hyperbolic

Riemann surface , g> 1 [120]. For g > 1, = ‘#. . . #E’ is the g-fold connected

sum of 2-tori and therefore its first homology group is

2g

(3.82)

It can be viewed in 1R3 as g doughnuts stuck together on end and standing on the zy

plane. The height function on now has 2g +2 critical points consisting of 1 maximum,

1 minimum and 2g saddle points. Again the maximum and minimum have Morse indices

2 and 0, respectively, while those of the 2g saddle points are all 1. As a consequence the

perfect Morse function hEg generates no torus action on

The above nOn-exactness of the stationary-phase approximation (and even worse the

divergence of the stationary-phase series for (3.75)) is a consequence of the fact that the

orbits of the vector field (3.77) do not generate a global, compact group action on

Here the orbits of the Hamiltonian vector field bifurcate at the saddle points, and we shall

see explicitly in chapter 7 why its flows cannot generate isometries of any metric on

and how this makes the stationary phase series diverge. The extension of the equivariant

localization principle to non-compact group actions and to non-compact phase spaces are

not always immediate [24]. A version of the Duistermaat-Heckman theorem appropriate

to both abelian and non-abelian group actions on non-compact manifolds has been pre

sented recently in [111]. The above examples illustrate the strong topological dependence

of the dynamical systems to which equivariant localization is applicable. The height func

tion restricted to a compact Riemann surface can only be used for Duistermaat-Heckman

4A11 numerical integrations in this thesis were performed using the mathematical software package
MA THEMA TICA.
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localization in genus 0, and the introduction of more complicated topologies restricts even

further the class of Hamiltonian systems to which the localization constraints apply. We

shall investigate this phenomenon in a more detailed geometric setting later on when we

consider quantum localization techniques.

3.6 Equivariant Localization and Classical Integrability

In this section we discuss an interesting connection between the equivariant localization

formalism and integrable Hamiltonian systems [69, 70]. By an integrable dynamical

system we mean this in the sense of the Liouville-Arnold theorem which is a generalized,

coordinate independent version of the classical Liouville theorem that dictates when a

given Hamiltonian system will have equations of motion whose solutions can be explicitly

found by integrating by quadratures [30, 48]. The Liouville-Arnold theorem is essentially

a global version of Darboux’s theorem and it states that a Hamiltonian is integrable if

one can find canonically conjugated action-angle variables (I,,

{J,u} = (3.83)

defined almost everywhere on the phase space M, such that the Hamiltollian H = H(I) is

a functional of only the action variables [5]. The action variables themselves are supposed

to be functionally-independent and in involution,

{I,I}=O (3.84)

and from the Hamilton equations of motion (3.32) it follows that

1,(t) = {I, H(I)} = 0 (3.85)

so that the time-evolution of the action variables is constant. Consequently, (3.84) implies

that the action variables generate a Cartan subalgebra (S1)n of the Poisson algebra of

the phase space, and the I, therefore label a set of canonically invariant tori on the phase
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space which are called Liouville tori. The motion of H(I) is constrained to the Liouville

tori, and the system is therefore integrable in the sense that we have found n independent

degrees of freedom for the classical motion. The symplectic 2-form in the action-angle

variables is

w = dl,, A dçb’ (3.86)

and the corresponding symplectic potential which generates the Hamiltonian as the mo

ment map of a global U(1) group action on M as in (3.46) is

OFO+dF=I,dcYL (3.87)

The connection between integrability and equivariant localization now becomes rather

transparent. The above integrability requirement that H be a functional of some torus

action generators is precisely the requirement of the Duistermaat-Heckman theorem.

Recall that one of the primary assumptions in the localization framework above was that

the phase space admit a Riemannian metric g which is globally invariant under the U(l)

action on it. A U(l)-invariant metric tensor always exists locally in the regions where

H has no critical points. To see this, introduce local equivariant Darboux coordinates

(p’,. .
. ,p,, q’,. . .

, qfl) in that region in which the Hamiltonian vector field generates

translations in q1. This means that H = p is taken as the radius of this equivariant

Darboux coordinate system. The U(1)-invariant metric tensor can then be taken to be

any metric tensor whose components are independent of the coordinate q’ (e.g. =

However, there may be global obstructions to extending these local metrics to

metrics defined globally on the entire phase space in a smooth way. This feature is

just equivalent to the well-known fact that any Hamiltonian system is locally integrable.

This is easily seen from the local representation (3.53),(3.54) where we can define p,, =

I,, cos 4, qIL
= I,, sin 4. Then H I and V generates translations

in the augle variables (rigid rotations of the local coordinate neighbourhood). Then

locally the metric tensor components g,. should be taken to depend only on the action

variables I,, (i.e. g is radially symmetric in the coordinate neighbourhood).
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However, local integrability does not necessarily ensure global integrability. For the

latter to follow, it is necessary that the neighbourhoods containing the conserved charges

I be patched together in such a way as to yield a complete set of conserved charges

defined almost everywhere on the phase space M. Furthermore, global integrability also

implements strong requirements on the behaviour of H in the vicinity of its critical points.

As we shall see later on, the isometry group of a compact Riemannian manifold is also

compact, so that the global existence of an invariant metric tensor in the above for a

compact phase space is equivalent to the requirement that H generates the global action

of a circle (or more generally a torus). This means that the Hamiltonian vector field V is a

Cartan element of the algebra of isometries of the metric g (or equivalently H is a Cartan

element of the corresponding Poisson algebra). In other words, H is a globally-defined

action variable (or a functional thereof), so that the applicable Hamiltonians within the

framework of equivariant localization determine integrable dynamical systems. Thus it is

the isometry condition that puts a rather severe restriction on the Hamiltonian functions

which generate the circle action through the relation (3.28). These features also appear

in the infinite-dimensional generalizations of the localization formalism above and they

will be discussed at greater length in chapters 5 and 6.

We note also that for an integrable Hamiltonian H we can construct an explicit

representation of the function F which appears in (3.46) and (3.87) above. Indeed, the

function K in (3.45) can be constructed locally outside of the critical point set of H by

assuming that a given action variable I, is such that

OH(I)
0 (3.88)

In this case, the function K can be realized explicitly by

K(1, ) = cb. ()
-1

(3.89)

and the condition (3.46) becomes

V0F = + {H, F} = H (3.90)
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which is satisfied by

F=K (H_I) +Gn (3.91)

where G(I) is an arbitrary function of the action variables. Consequently, in a neigh

bourhood where action-angle variables can be introduced and where H does not admit

critial points, we get an explicit realization of the function F in (3.46) and thus a locally

invariant symplectic potential OF.

In fact, given the equivariantly closed 2-form Ky + civ introduced in (2.99), we note

that civ is a closed 2-form (but not necessarily non-degenerate) and that the function

Ky satisfies

dKv = —ivciv (3.92)

as a consequence of (2.101) and (2.98), respectively. It follows, that

V’ = ci7a,Kv = w’öH (3.93)

and so the classical equations of motion for the 2 Hamiltonian systems (M, w, H) and

(M, civ, Ky) coincide5,

th(t) = {x, H} = {x#, Kv} (3.94)

This means that these 2 dynamical systems determine a bi-Hamiltonian structure. There

are 2 interesting consequences of this structure. The first follows from the fact that if

H = H(I) as above is integrable, then these action-angle variables can be chosen so

that in addition K = Kv(I) is an integrable Hamiltonian. We can therefore replace H

everywhere in (3.88)—(3.91) by the function K and .‘ by civ, and after a bit of algebra

we find that the 1-form oY above which generates 11v satisfies

(V)Ky + civ = DVOF (3.95)

5Here we assume that fly is non-degenerate on M except possibly on submanifolds of M of codi
mension at least 2, since when it is degenerate some of the equations in (3.92) should be considered
as constraints. On these submanifolds, the Hamiltonian Ky must then vanish in order to keep the
equations of motion non-singular [5].
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and likewise

H+w=DVOF (3.96)

Since both H + w and K + 1v are equivariantly closed, we see that for an integrable

bi-Hamiltonian system we can solve explicitly the equivariant version of the Poincaré

lemma. The global existence of the 1-forms OF and is therefore connected not only

to the non-triviality of the DeRham cohomology of M, but also to the non-triviality

of the equivariant cohomology associated with the equivariant exterior derivative D.

Note that this derivation could also have been carried out for an arbitrary equivariant

differential 1-form 3 with the definition (2.99). This suggests an intimate relationship

between the localization formalism, and more generally equivariant cohomology, and the

existence of bi-Hamiltonian structures for a given phase space.

Furthermore, it is well-known that the existence alone of a bi-Hamiltonian system is

directly connected to integrability [5, 30]. If the symplectic 2-forms w and 1v are such

that the rank (1,1) tensor

L = (3.97)

is non-trivial, then one can straightforwardly show [69] that

L = VãL = [L, dV] (3.98)

which is just the Lax equation, so that (L, dV) determines a Lax pair [30]. Under a certain

additional assumption on the tensor L it can then be shown [69] that the quantities

I, = tr LIL (3.99)

give variables which are in involution and which are conserved, i.e. which commute

with the Hamiltonian H. If these quantities are in addition complete, i.e. the number

of functionally independent variables (3.99) is half the phase space dimension, then the

Hamiltoniart system (M, , H) is integrable in the sense of the Liouville-Arnold theorem.

We refer to [69] for more details of how this construction works. Therefore the equivariant
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localization formalism for classical dynamical systems presents an alternative, geometric

approach to the problem of integrability.

3.7 Degenerate Version of the Duistermaat-Heckman Theorem

In these last 3 sections of this Chapter we shall quickly run through some of the gener

alizations of the Duistermaat-Heckman theorem which can be applied to more general

dynamical systems. The first generalization we consider is to the case where H isn’t

necessarily non-degenerate and its critical point set Mv is now a submanifold of M of

co-dimension r = dimM — dim Mv [8, 14, 16, 18, 19, 33, 98). In this case some modifi

cations are required in the evaluation of the canonical localization integral (2.116) which

was used in the derivation of the Berline-Vergne theorem with the differential form a

given in (3.56). The Hessian of H now vanishes everywhere on M (because dH = 0

everywhere on Mv), but we assume that it is non-vanishing in the directions normal to

the critical submanifold Mv [92]. This defines the normal bundle ./Vv of Mv in M, and

the phase space is now locally the disjoint union

M = Mv U A/v (3.100)

so that in a neighbourhood near Mv we can decompose the local coordinates on M as

= x + x (3.101)

where x0 are local coordinates on Mv, i.e. V(xo) = 0, and x± are local coordinates on

A/v. Similarly, the tangent space at any point x near Mv can be decomposed as

TM TMv TAI7 (3.102)

where TWA/v is the space of vectors orthogonal to those in TxMv. We can therefore

decompose the Grassmann variables which generate the exterior algebra of M as

= + ij (3.103)
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where i generate the exterior algebra AMy and i generate AiVy,

Under the usual assumptions used in deriving the equivariant localization principle,

it follows that the tangent bundle, equipped with a Levi-Civita-Christoffel connection

F associated with a U(1)-invariant metric tensor g as in (2.94), is an equivariant vector

bundle. Recall that the Lie derivative Lv induces a non-trivial action of the group on

the fibers of the tangent bundle which is mediated by the matrix dv. More precisely,

this action is given by

= + dV’i — dV (3.104)

and so the moment map associated with this equivariant bundle is the Riemann moment

map [16]

itv = VV (3.105)

which as always is regarded as a matrix acting on the fiber space. Given the Killing

equations for V, this moment map is related to the 2-form 1v by

(lv)zi = 2g(tv) (3.106)

and the equivariant curvature of the bundle is

RvtR+pv (3.107)

where the Riemann curvature 2-form of the tangent bundle is

= R(x)7?’,)” (3.108)

and

= 9iLl’T — OJ’ +FF — FF (3.109)

are the components of the associated Riemann curvature tensor 1? = dF+PAI’. Note that,

from the decomposition (3.102), the normal bundle inherits a U(1)-invariant connection

from TM, and the curvature and moment map on TAIr are just the restrictions of the

corresponding objects defined on TM.
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Given these features of the 2-form Iv, it follows that the generators i of AMy

satisfy

(V)(Xo)i = 2(gãVj(xo)r’ = 0 (3.110)

since ,j lie iii a direction cotangent to Mv. For large s E in (2.116) the integral will

localize exponentially to a neighbourhood of Mv, and so, in the linearization (3.101) of

the coordinates perpendicular to My wherein we approximate this neighbourhood with

a neighbourhood of the normal bundle J.fy, we can extend the integration over all values

of Xj there. We now introduce the scaled change of integration variables

x =4+x , =+i (3.111)

and expand the argument of the large-s exponential in (2.116) using the decompositions

(3.111). The Jacobian determinants from the anticommuting i’ variables and the com

muting x variables cancel each other, and so the integral (2.116) remains unchanged

under this coordinate rescaling. A tedious but straightforward calculation using observa

tions such as (3.110) shows that the large-s expansions of the argument of the exponential

in (2.116) is given by [98]

y)(Xo) + + O(1/)

1 (3.112)
sKy (tv)(xo)(f v)pv(xo)x.4 + O(1//)

where we have expanded the C°°-functions in (3.112) in their respective Taylor series.

Thus with the coordinate change (3.111), the integration over the normal part of the

full integration domain

M ØA1M (Mv ®A’Mv) Li (AIv ØAhJ\Iv) , (3.113)

i.e. over (x±, ,j.) in (2.116), is Gaussian and can be carried out explicitly. The result is
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an integral over the critical submanifold

Z(T) = I d0 d
Pfaff 1v(xo)

\ T I JMvØA’Mv detv(xo)(iv(xo) + R(xo,i10))

—

(2iri/2 chv(iTw)IM
— \T) JMv Ev(R),jv

(3.114)

where we have identified the equivariant Chern and Euler characters (2.76) and (2.81)

of the respective fiber bundles. In (3.114) the equivariant Chern and Euler characters

are restricted to the critical submanifold M, and the determinant and Pfaffian there

are taken over the normal bundle J’fv. Note that the above derivation has assumed

that the critical submanifold Mv is connected. If Mv consists of several connected

components, then the formula (3.114) means a sum over the contributions from each of

these components.

There are several comments in order here. First of all, notice that if M consists

of discrete isolated points, so that r = 2n, then, since the curvature of the normal

bundle of a point vanishes and so the Riemann moment map v coincides with the

usual moment map dV on TM calculated at that point, the formula (3.114) reduces to

the non-degenerate localization formula (3.57) and hence to the Duistermaat-Heckman

theorem. Secondly, we recall that the equivariant characterstic classes in (3.114) provide

representatives of the equivariantly cohomology of M and the integration formula (3.114)

is formally independent of the chosen metric on M. Thus the localization formulas

are topological invariants of M, as they should be, and they represent types of ‘index

theorems’. This fact will have important implications later on in the formal applications

to topological field theory functional integration. However, we shall see later on that naive

ambiguities can nevertheless arise from the explicit metric dependence of the localization

formulas. Finally, we point out that Kirwan’s theorem generalizes to the degenerate case

above [72]. In this case, since the Hessian is a non-singular symmetric matrix along the

directions normal to M, we can orthogonally decompose the normal bundle, with the
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aid of some locally-defined Riemannian metric on Mv, into a direct sum of the positive-

and negative-eigenvalue eigenspaces of H. The dimension of the latter subspace is now

defined as the index of Mv and Kirwan’s theorem now states that the index of every

connected component of Mv must be even when the localization formula (3.114) holds.

The Morse inequalities for this degenerate case [92] then relate the exactness or failure

of (3.114) as before to the homology of the underlying phase space M. One dynamical

system to which the formula (3.114) could be applied to is the height function of the

torus when the torus is now viewed in 3-space as a doughnut sitting on a dinner plate

(the xy-plane). This function has 2 extrema but they are now circles, instead of points,

which are parallel to each other and one is a minimum and the other is a maximum. The

critical submanifold of T2 in this case consists of 2 connected components, T = S1 U 5i

3.8 The Witten Localization Formula

We have thus far only applied the localization formalism to abelian group actions on

M. The first generalization of the Duistermaat-Heckman theorem to non-abelian group

actions was presented by Guilleman and Prato [53] in the case where the induced action

of the Cartan subgroup (or maximal torus) of G has only a finite number of isolated fixed

points i and the stabalizer {g E G : g•pt = pj} of all these fixed points coincides with the

Cartan subgroup. The Guilleman-Prato localization formula reduces the integrals over

the dual Lie algebra g* to integrals over the dual of the Cartan subalgebra using the so

called Weyl integral formula [24]. With this reduction one can apply the standard abelian

localization formalism above. This procedure of abelianization thus reduces the problem

to the consideration of localization theory for functions of Cartan elements of the Lie

group G, i.e. integrable Hamiltonian systems. Recently, Witten [135] proposed a more

general ilon-abehan localization formalism and used it to study 2-dimensional Yang-Mills

theory. In this section we shall outline the basic features of Witten’s localization theory.

Given a Lie group G acting on the phase space M, we wish to evaluate the partition
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function with the general equivariant extension (3.34),

= IM —- e®’ (3.115)

where as usual the Boltzmann weights are given by the symplectic moment map of the

0-action on M. There are 2 ways to regard the dual algebra functions 4) in (3.115). We

can give the qY fixed values, regarding them as the values of elements of S(g*) acting

on algebra elements, i.e. the ç&’ are complex-valued parameters, as is unambiguously

the case if G is abelian [8] (in which case we set 4) = —iT in (3.115)). In this case

we are integrating with a fixed element of the Lie group 0, i.e. we are essentially in

the abelian case. We shall see that various localization schemes reproduce features of

character formulas for the action of the Lie group G on M at the quantum level. The

other possibility is to regard the 4) as dynamical variables and integrate over them. This

case allows a richer intepretation and is the basis of non-abelian localization formulas

and the localization formalism in topological field theory.

To employ this latter interpretation for the symmetric algebra elements, we need a

definition for equivariant integration. The defintion (2.107) gives a map on AGM —+

S(g*)G, but in analogy with ordinary DeRham integration we wish to obtain a map on

AGM — C. The group 0 has a natural 0-invariant measure on it, namely its Haar

measure. Since g is naturally isomorphic to the tangent space of G at the identity,

it inherits from the Haar measure a natural translation-invariant measure. Given this

measure, the definition we take for equivariant integration is [135]

1 dimGdla
a = lim j fl —-- e2J a (3.116)Møg* s—+oo vol(G) g*

a=1 2ir M

for a e AGM, where vol(G) is the volume of the group G in its Haar measure. The

parameter s R in (3.116) is used to regulate the possible divergence on the completion

AM. The definition (3.116) indeed gives a map on AGM —+ C, and the 4J’s in it can be

regarded as local Euclidean coordinates on g* such that the measure there coincides with

the chosen Haar measure at the identity of 0. Setting a = in (3.116), with Wg the
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equivariant extension (3.34) of the symplectic 2-form of M, and performing the Gaussian

-integrals, we arrive at Witten’s localization formula for the partition function (3.115),

/ \dimG/2 ‘.

ZG = urn (-f— ‘ I — e1Za(”2 (3.117)
-4°o \.2irJ vol(G) JM n!

The right-hand side of (3.117) localizes onto the extrema of the square of the moment

map a()2 The absolute minima of this function are the solutions to H = a ® H’ =

0. The contribution of the absolute minimum to ZG (the dominant contribution for

s —+ oc) is given by a simple cohomological formula [135]

2
hmG/2

lim J w+e (3.118)s—*oo vol(G) M0

where M0 H’ (0)/G is the Marsden-Weinstein reduced phase space [80] (or symplectic

quotient) and t3 is a certain element of the cohomology group H4(M; IR) (we refer to

[135] for the details). The localization of the global minima onto M0 is a consequence of

the G-equivariance of the integration in (3.116). Thus the Witten localization formula

can be used to describe the cohomology of the reduced phase space M0 of the given

symplectic G-action on M.

However, the contributions from the other local extrema of a(-)2,which corre

spond to the critical points of H as in the Duistermaat-Heckman integration formula, are

in general very complicated functions of the limiting parameter s E IR+. For instance, in

the simple abelian example of section 3.5 above where G = U(1), M = S2 and H = hEo

is the height function (3.70) of the sphere, the Witten localization formula (3.117) above

becomes

1/2 +1
zo

=
Urn () j dcos e_3(c0s9)2/2= ]j (1 — I(s) — I_(.s)) (3.119)

where we have assumed that al < 1 and I±(s) are the transcendental error functions [50]

1/2 ±oo
I±(s) = ± () 1±1 dx e_8(a_x)2/2 (3.120)
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The 3 final terms in (3.119) are the anticipated contributions from the 3 critical points

of h0 = (cos 0 — a)2 — the absolute minimum at cos 0 = a contributes +1, while the

local maxima at cos 0 = ±1 contribute negative terms —1± to the localization formula.

The complicated error functions arise because here the critical, point at cos 0 = a is a

degenerate critical point of the canonical localization integral in (2.116). The appearence

of these error functions is in marked contrast with the elementary functions that appear

as the contributions from the critical points in the usual Duistermaat-Heckman formula.

Another interesting application of the Witten localization formalism is that it can be

used to derive integration formulas when the argument of the Boltzmann weight in the

partition function is instead the square of the moment map. This can be done by reversing

the arguments which led to the localization formula (3.117), and further localizing the

Duistermaat-Heckman type integral (3.115) using the localization principle of section

2.4. The result (for finite s) is then a sum of local contributions Zm Zm(S), where the

functions Zm() can only be determiiled explicitly in appropriate instances [65, 135, 137].

Combining these ideas together, we arrive at the localization formula

1
(i7\dimGI2

I —
ejTZa(1a)2

vol(G) ‘ ir I JM n!
1 dimG .-LJ.a flI f —,- (19J 1 (a\2 I w

= I II e ‘ I e (3.121)vol(G) Jg*
a=1 2- JM n!

= 1
lim J

dimG

f — e__3Dg)
vol(G) g*

a=1 2ir M

where ) E AbM and we have applied the localization principle to the Duistermaat

Heckman type integral over M on the right-hand side of the second line of (3.121). The

localization 1-form ) is chosen just as before using a C-invariant metric on M and the

Hamiltonian vector field associated with the square of the moment map.

Witten used the formal infinite-dimensional generalization of this last localization for

mula to evaluate the partition function of 2-dimensional Yang-Mills theory [135]. There

M is the space A of gauge connections A over a Riemann surface, which has on it a
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natural symplectic structure, and the moment map H(A) = FA is the field strength

tensor of A. Thus the square of the moment map in this case is just the Yang-Mills

action and the symplectic quotient M0 is the moduli space of flat gauge connections

modulo gauge transformations associated with the gauge group G, i.e. the moduli space

of solutions to the classical Yang-Mills field equations. In this way, Witten’s non-abelian

localization formula yields intersection numbers of the moduli space of flat connections

on a 2-surface from the solution of Yang-Mills theory on . This approach to 2-

dimensional Yang-Mills theory has been studied in detail for genus 0 recently in [86] and

has been generalized to the G/G Wess-Zumino-Witten model in [20, 23]. In this context,

the approach above to using a generalization of the Duistermaat-Heckman integration

formula to problems with non-abelian symmetries is equivalent to a relation between

physical and topological gauge theories [135].

Finally, we point out the work of Jeffrey and Kirwan [65] who rigorously derived,

in certain special cases, the contribution to ZG from the reduced phase space M0

H’(O)/G in (3.118). Let Hc C G be the Cartan subgroup of G, and assume that the

fixed points p of the induced Hc-action on M are isolated and non-degenerate. Then

for any equivariantly-closed differential form o of degree dim M0 in AGM, we have the

so-called residue formula [65]

f = Res [e_ø’
(n/3)

(3.122)
pEMHc

e(p)

where 3 are the roots associated to H C G, and Res is Jeffrey-Kirwan-Kalkman residue,

defined as the coefficient of where q is the element of the symmetric algebra 5(g*)

representing the induced Hc-action on M (see [65] and [68] for its precise definition).

This residue, whose explicit form was computed by Kalkman [68], depends on the fixed-

point set MH of the Hc-action on M and it can be expressed in terms of the weight

determinants e(p) in (3.63) of the Hc-action and the values H(p) = ç6a ® Ha(p). It is
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in forms similar to (3.122) that the first non-abelian generalizations of the Duistermaat

Heckman theorem due to Guilleman and Prato appeared [53]. The residue formula can

explicitly be used to obtain information about the cohomology ring of the reduced phase

space M0 above [65, 68].

3.9 The Wu Localization Formula

The final generalization of the Duistermat-Heckman theorem that we shall present here

is an interesting application, due to Wu [137], of Witten’s localization formula in the form

(3.121) when applied to a global U(1)-action on M. This yields a localization formula for

Hamiltonians which are not themselves the associated symplectic moment map, but are

functionals of such an observable H. This is accomplished via the localization formula

1 / 1 \h/2 p2ir j

Zu(l)(T) = I — ea’2
= . ) lim I d4 e j — e_H(

JM n! \ 4inTj S—*cJo M

(3.123)

The final integral on the right-hand side of (3.123) is just that which appears in the

canonical localizatioll integral (2.108) used in the derivation of the Duistermaat-Heckman

formula. Working this out just as before and performing the resulting Gaussian ç-integra1

yields Wu’s localization formula for circle actions [137]

Zu(l)(T) =

P?v
j ds sfl eiT H(p)2 + j eL’/4T

M0
(3.124)

where F = dA is the curvature of an abelian gauge connection on the (non-trivial)

principal U(1)-bundle H’(O) —* M0. The formula (3.124) can be used to determine

the symplectic volume of the Marsden-Weinstein reduced phase space M0 [137]. This

gives an alternative localization for Hamiltonians which themselves do not generate an

isometry of some metric g on M, but are quadratic in such isometry generators. As

we shall see, the path integral generalizations of Wu’s formula are rather important for

certain physical problems.



Chapter 4

Quantum Localization Theory

In quantum mechanics there are not too many path integrals that can be evaluated ex

plicitly and exactly, while the analog of the stationary phase approximation, i.e. the semi

classical approximation, can usually be obtained quite readily. In this chapter we shall

investigate the possibility of obtaining some path integral analogs of the Duistermaat

Heckman formula and its generalizations. A large class of examples where one has an

underlying equivariant cohomology which could serve as a structure responsible for lo

calization is provided by phase space path integrals, i.e. the direct loop space analogs of

(3.51). Of course, as path integrals in general are mathematically awkward objects, the

localization formulas that we will obtain in this way are not really definite predictions

but rather suggestions for what kind of results to expect. Because of the lack of rigor

that goes into deriving these localization formulas it is perhaps surprising then that some

of these results are not only conceptually interesting but also physically reasonable.

Besides these there are many other field-theoretic analogies with the functional in

tegral generalization of the Duistermaat-Heckman theorem, the common theme being

always some underlying geometrical or topological structure which is ultimately respon

sible for localization. We have already encountered one of these in the last chapter,

namely the Witten localization formula which is in principle the right framework to ap

ply equivariant localization to a cohomological formulation of 2-dimensional quantum

Yang-Mills theory. Another large class of quantum models for which the Duistermaat

Heckman theorem seems to make sense is N = supersymmetric quantum mechanics

[7]. This formal application, due to Atiyah and Witten, was indeed the first encouraging

86
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evidence that such a path integral generalization of the rigorous localization formulas

of the last chapter exists. Strictly speaking though, this example really falls into the

category of the Berline-Vergne localization of section 2.5 as the free loop space of a con

figuration manifold is not quite a symplectic manifold in general [16]. More generally, the

Duistermaat-Heckman localization can be directly generalized to the infinite-dimensional

case within the Lagrangian formalism, if the loop space defined over the configuration

space has on it a natural symplectic structure. This is the case, for example, for geodesic

motion on a Lie group manifold, where the space of based loops is a Kähler manifold

[112] and the stationary phase approximation is well-known to be exact [32, 115]. This

formal localization has been carried out by Picken [1101.

We will discuss some of these other models later on this chapter, but we are really

interested in obtaining some version of the equivariant localization formulas available

which can be applied to non-supersymmetric models and when the partition functions

cannot be calculated directly by some other means. The Duistermaat-lleckman theorem

in this context would now express something like the exactness of the one-loop approxi

mation to the path integral. These functional integral formulas, and their connections to

the finite-dimensional formulas of chapter 3, will be discussed in this chapter. The formal

techniques we shall employ throughout use ideas from supersymmetric and topological

field theories, and indeed we shall see how to interpret an arbitrary phase space path

integral quite naturally both as a supersymmetric and as a topological field theory par

tition function. In the Hamiltonian approach to localization, therefore, topological field

theories fit quite naturally into the loop space equivariant localization framework. As we

shall see, this has deep connections with the integrability properties of these models. In

all of this, the common mechanism will be a fundamental cohomological nature of the

model which can be understood in terms of a supersymmetry allowing one to deform the

integrand without changing the integral.
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4.1 Phase Space Path Integrals

We begin this chapter by deriving the quantum mechanical path integral for a bosonic

quantum system with no internal degrees of freedom. For simplicity, we shall present

the calculation for n = 1 degree of freedom in Darboux coordinates on M, i.e. we

essentially carry out the calculation on the plane 1R2. The extension to n > 1 will then

be immediate, and then we simply add the appropriate symplectic quantities to obtain

a canonically-invariant object on a general symplectic manifold M to ensure invariance

under transformations which preserve the density of states.

To transform the classical theory of the last chapter into a quantum mechanical one

(i.e. to ‘quantize’ it), we replace the phase space coordinates (p, q) with operators (, )
which obey an operator algebra that is obtained by replacing the Poisson algebra of the

Darboux coordinates (3.18) by allowing the commutator bracket of the basis operators

(j3, ) to be simply equal to the Poisson brackets of the same objects as elements of the

Poisson algebra of C°°-functions on the phase space, times an additional factor of ih

where h is Planck’s constant,

(4.1)

The operators (j3, ) with the canonical commutation relation (4.1) make the space of

C°°-functions on M into an infinite-dimensional associative algebra called the Heisen

berg algebra1. This algebra can be represented on the space L2(q) of square integrable

functions of the configuration space coordinate q by letting the operator act as multi

plication by q and j3 as the derivative

(4.2)

This representation of the Heisenberg algebra is called the Schrödinger picture and the

elements of the Hubert space L2(q) are called the wavefunctions or physical states of the

1More precisely, the operators (i3, ) generate the universal enveloping algebra of an extended affine
Lie algebra which is usually identified as the Heisenberg algebra.
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dynamical system2.

The eigenstates of the position and momentum operators are denoted by the usual

Dirac bra-ket notation

Iq)=qlq> (4.3)

These states are orthonormal,

(qlq’) = — q’) (pip’) = 6(p
—

p’) (4.4)

and they obey the momentum and position space completeness relations

too joo

J dp p)(p J dq Iq)(qI = 1 (4.5)
-00 -00

with 1 the identity operator on the respective space. In the representation (4.2) on

L2-fuñctions the momentum and configuration space representations are related by the

usual Fourier transformation

— f dP —ipq/h 4 6
2rh

which identifies the matrix element

(pjq) = (qp)* = e’h (47)

and the basis operators have the matrix elements

(pIIq)==q(pIq) (pi3q)=p(pIq)=ih-(pq) (4.8)

All observables (i.e. real-valuedC00-functions of (p, q)) now become Hermitian operators

acting on the Hubert space. In particular, the Hamiltonian of the dynamical system now

becomes a Hermitian operator ft H(13, ) with the matrix elements

(pHq) = H(p,q)(plq) = H(p,q) (4.9)

2Strictly speaking, these function spaces should be properly defined as distribution spaces in light of
the discussion which follows.
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and the eigenvalues of this operator determine the energy levels of the physical system.

We shall henceforth assume that the Hamiltonian of the dynamical system does not

depend explicitly on time, so that the energy of the system is a constant of the motion.

The time evolution of any quantum operator is determined by the quantum mapping

above of the Hamilton equations of motion (3.32). In particular, the time evolution of

the position operator is determined by

= [, fij (4.10)

which may be solved formally by

(t) = euft/!(O) e_uIt’h (4.11)

so that the time evolution is determined by a unitary transformation of the position oper

ator j(0). In the Schrödinger representation, we treat the operators as time-independent

quantities using the unitary transformation (4.11) and consider the time-evolution of the

quantum states. The configuration of the system at a time t is defined using the unitary

time-evolution operator in (4.11) acting on an initial configuration Iq) at time t = 0,

q,t) = eIttu’q) (4.12)

which is an eigenstate of (4.11) for all t.

An important physical quantity is the quantum propagator

K(q’,q;T) = (q’,Tq,0) = (q9 e_iRTjq) (4.13)

which, according to the fundamental principles of quantum mechanics [83], represents

the probability of the system evolving from a state with configuration q to one with

configuration q’ in a time interval T. The propagator (4.13) satisfies the Schrödinger

wave equation

q; T) = 1IC(q’, q; T) (4.14)
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where the momentum operators involved in the Hamiltonian H on the right-hand side of

(4.14) are represented in the Schrödinger polarization (4.2). The Schrödinger equation is

to be solved with the Dirac delta-function initial condition

q; T = 0) = S(q’ — q) (4.15)

Thus the propagator represents the fundamental quantum dynamics of the system and

the stationary state solutions to the Schrödinger equation (4.14) determine the energy

eigenvalues of the dynamical system.

The phase space path integral provides a functional representation of the quantum

propagator in terms of a ‘sum’ over continuous trajectories on the phase space. It is

constructed as follows [116]. Between the initial and final configurations q and q’ we

introduce N — 1 intermediate configurations qo,. . . , qi’r with qo q and qjy q’, and each

separated by the time interval

Lt = T/N (4.16)

Introducing intermediate momenta p1, . . . , PN and inserting the completeness relations

jdqj_1 dq dp = 1 , j = 1,... ,N (4.17)

into the matrix element (4.13) we obtain

q; T) = (q’I( e_itTh)q)

= J fi dq_1 dq dp (q’Iq)(qI 418_ooj=1 (. )
N-1 Nd. N

=L1dq 1-I1
exp{(pii 1

_H(Pi,qi))/t}

x5(qo — q)S(qN — q’)

where we have used the various identities quoted above. In the limit N —+ oo, or equiv

alently zt —+ 0, the discrete points (pj, qj) describe paths (p(t), q(t)) in the phase space
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between the configurations q and q’, and the sum in (4.18) becomes the continuous limit

of a Riemann sum representing a discretized time integration. Then (4.18) becomes

D’ N-i Nd, 1 pT

q; T) = lim J [J dq3 [J —- exp
- j dt (p(t)j(t) — H(p, q))

j= L., II’ 0 (4.19)

x6(q(0) — q)5(q(T)
— q’)

Note that the argument of the exponential in (4.19) is just the classical action of the

dynamical system, because its integrand is the usual Legendre transformation between

the Lagrangian and Hamiltonian descriptions of the classical dynamics [481. Notice also

that, in light of the Heisenberg uncertainty principle zqLp ‘ 2rh, the normalization

factors 2ith there can be physically interpreted as the volume of an elementary quantum

state in the phase space.

The integration measure in (4.19) formally gives an integral over all phase space paths

defined in the time interval [0, T]. This measure is denoted by

[dp dq] = ‘ll
dp3

fi dq3
tET]

dq(t) (4.20)

and it is called the Feynman measure. The last equality means that it is to be understood

as a ‘measure’ on the infinite-dimensional functional space of phase space trajectories

(p(t), q(t)), where for each fixed time slice t [0, T], dp(t) dq(t) is ordinary Riemann

Lebesgue measure. Being an infinite-dimensional quantity, it is not rigorously defined,

and some special care must taken to determine the precise meaning of the limit N —* cc

above. This has been a topic of much dispute over the years and we shall make no

attempt in this thesis to discuss the ill-defined ambiguities associated with the Feynman

measure. Many rigorous attempts at formulating the path integral have been proposed

in constructive quantum field theory. For instance, it is possible to give the limit (4.20)

a somewhat precise meaning using the so-called Lipschitz functions of order which

assumes that the paths which contribute in (4.19) grow no faster than O(\/’) (these
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functional integrals are called Wiener integrals)3. We shall at least assume that the

integration measure (4.20) is supported on C°° phase space paths and that the quantum

mechanical propagator given by (4.19) is a tempered distribution, i.e. it can diverge with

at most a polynomial growth. This latter restriction on the path integral is part of the

celebrated Wightman axioms for quantum field theory which allows one to at least carry

out certain formal rigorous manipulations from the theory of distributions.

However, a physicist will typically proceed without worry and succeed in extracting

a surprising amount of information from formulas such as (4.19) without the need to

investigate in more detail the implications of the limit N —* above. To actually

carry out functional integrations such as (4.19) one uses formal functional analogs of the

usual rules of Riemann-Lebesgue integration in the straightforward sense, where all time

integrals are treated as continuous sums on the functional space (i.e. the time parameter

t is regarded as a continuous index).

If we set q = q’ and integrate over all q, then the left-hand side of (4.19) yields

dq (qi e_iETq) tr e_iTI = dE e_iET (4.21)

where E are the energy eigenvalues of ft and the symbol
.

will be used to emphasize

that the matrix of interest is considered as an infinite dimensional one over either the

Hilbert space of physical states or the functional trajectory space. On the other hand,

the right-hand side of (4.19) becomes

Z(T) = J[dp dq] exp { dt (p(t)(t) - H(p, q))} (q(0) - q(T)) (4.22)

which is called the quantum partition function. From (4.21) we see that the quantum

partition function describes the spectrum of the quantum Hamiltonian of the dynamical

system and that the poles of its Fourier transform

G(E)
= j dT eiETZ(T) (4.23)

3Note that the transition from the multiple integral representation in (4.18) to the representation
(4.19), (4.20) in terms of phase space paths requires that these trajectories can at least be approximated
by piecewise-linear functions.
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give the bound state spectrum of the system [83]. The quantity (4.23) is none other than

the energy Green’s function which is associated with the Schrödinger equation (4.14).

Thus the quantum partition function is in some sense the fundamental quantity which

describes the quantum dynamics (i.e. the energy spectrum) of a Hamiltonian system.

Finally, the generalization to an arbitrary symplectic manifold (M, w) of dimension

2n is immediate. The factor p becomes simply p,4ij in higher dimensions, and, in view

of (3.19), the canonical form of this is O(x) in an arbitrary coordinate system on M.

Likewise, the phase space measure dp A dq according to (3.23) should be replaced by the

canonically-invariant Liouville measure (3.22). Thus the quantum partition function for

a generic dynamical system (M,w, H) is just

Z(T)
= =

tT]

IIw(x(t))II e5 (4.24)

where

S[x] = jdt (O(x)th — H(x)) (4.25)

is the classical action of the Hamiltonian system. Here and in the following we shall

set h 1 for simplicity, and the functional integration in (4.24) is taken over the loop

space LM of M, i.e. the infinite-dimensional space of paths x(t) : [0, T] —+ M obeying

periodic boundary conditions x(0) = x(T). Although much of the formalism which

follows can be applied to path integrals over the larger trajectory space of all paths, we

shall find it convenient to deal exclusively with the loop space over the phase space. The

partition function (4.24) can be regarded as the formal infinite-dimensional analog of

the classical integral (3.51), or, as mentioned before, the prototype of atopological field

theory functional integral regarded as a (0 + 1)-dimensional quantum field theory. In

the latter application the discrete index sums over i contain as well integrals over the

manifold on which the fields are defined.

Notice that the symplectic potential 0 appearing in (4.24),(4.25) is only locally de

fined, and so some care must be taken in defining (4.24) when w is not globally exact.
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We shall discuss this procedure later on. Note also that the Liouville measure in (4.24),

which is defined by the last equality in (4.20), differs from that of (4.22) in that in the

latter case there is one extra momentum integration in the phase space Feynman measure

(4.20), so that the endpoints are fixed and we integrate over all intermediate momenta.

Thus one must carefully define appropriate boundary conditions for the integrations in

(4.24) for the Schrödinger path integral measure in order to maintain a formal analogy

between the finite and infinite dimensional cases, a point which we shall return to later

on. A discussion of this and the proper discretizations and ordering prescriptions that

are needed to define the functional integrations that appear above can be found in [116]

and [76].

4.2 Loop Space Symplectic Geometry and Equivariant Cohomology

Following the lessons we have learned in the finite dimensional cases of the last 2 chap

ters, we shall now focus on some geometric methods of determining quantum partition

functions of dynamical systems. Given the formulation of the path integral above on

a general symplectic manifold, we can treat the problem of its exact evaluation within

the geometric context of chapter 3. For this, we need a formulation of exterior and

symplectic differential geometry on the loop space LM over the phase space M. This

will ultimately lead to a formal, infinite-dimensional generalization of the equivariant

localization priniciple for path integrals, and thus formal conditions and methods for

evaluating, exactly these functional integrations which in general are far more difficult

than their classical counterparts. As with the precise definition of the functional inte

grals above, we shall be rather cavalier here about the details of the geometry of the

infinite-dimensional manifold LM.

Given any functional F[x] of closed paths on the loop space LM, we define functional
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differentiation, for which functional integration is the anti-derivative thereof, by the rule

x(t)
F[x(t’)] = 6(t - t’)F’[x(t’)] (4.26)

We define the exterior algebra LAM by lifting the Grassmann generators of AM to

anti-commuting periodic paths j(t) which generate LAM and which are to be identified

as the basis dx(t) of ioop space 1-forms. With this, we can define ioop space differential

k-forms

a = jTdt •dt al...k[x;tl,. . . ,t},’(t) •,(t) (4.27)

and the ioop space exterior derivative is defined by lifting the exterior derivative of the

phase space M,

dL
= 1T

dt i7(t)
6x(t) (4.28)

The ioop space symplectic geometry is determined by a loop space symplectic 2-form

T 1
= j

dt dt’ [x;t,t1iL(t)r(t1) (4.29)

which is closed

dL = 0 (4.30)

or in local coordinates x’(t) on LM,

+ [] + [,] 0 (4.3fl

Thus we can apply the infinite-dimensional version of Poincaré’s lemma to represent Q

locally in terms of the exterior derivative of a ioop space 1-form

=
1T

t[x;t](t) (4.32)

as

(4.33)

We further assume that (4.29) is non-degenerate, i.e. the matrix ft[x; t, t’] is invertible
on the loop space.
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The canonical choice of symplectic structure on LM which coincides with the loop

space Liouville measure introduced in (4.24) is that which is induced from the symplectic

structure of the phase space,

[x;t,t9 = — t’) (4.34)

which is diagonal in the ioop space indices t, t’. We shall use similar liftings of other

quantities from the phase space to the ioop space. In this way, elements cr(x) of LAM

(or LTM) at a loop x LM are regarded as deformations of the loop, i.e. as elements of

AM (or TM) restricted to the loop x’(t) such that a[x; t] E A()M (or T()M). This

means that these vector bundles over LM are infinite-dimensional spaces of sections

of the pull-back of the phase space bundles to [0, T] by the map x(t) : [0, Tj —÷ M.

In particular, we define loop space canonical transformations as ioop space changes of

variable F[x(t)J that leave f invariant. These are the transformations of the form

t (4.35)

Thus in the context of the loop space symplectic geometry determined by (4.34), the

quantum partition function is an integral over the infinite-dimensional symplectic mani

fold (LM, f) with the loop space Liouville measure there determined by the canonically

invariant closed form on LM given by exterior products of f with itself,

[dL(x)] = [dx] det )1 (4.36)

The loop space Hamiltonian vector field associated with the action (4.25) has com

ponents

V[x;t} =fTdt’ c[x;tt’]) = - V(x(t)) (4.37)

with V = as usual the Hamiltonian vector field on M. The zeroes of Vs

LMs = {x(t) LM : Vg[x(t)] = 0} (4.38)
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are the extrema of the action (4.25) and coincide with the classical trajectories of the

dynamical system, i.e. the solutions of the classical Hamilton equations of motion. The

loop space contraction operator with respect to a loop space vector field W [x; tj is given

by
1T

W[x;t]() (4.39)

Thus we can define a loop space equivariant exterior derivative

Qw = dL + iw (4.40)

whose square is the Lie derivative along the loop space vector field W,

Q = dLiw + iwdL
= fT

dt (w-/_ + (4.41)

When W = Vs is the ioop space Hamiltonian vector field, we shall for ease denote the

corresponding operators above as iv, is, etc.

The partition function can be written as in the finite-dimensional case using the

functional Berezin integration rules to absorb the determinant factor into the exponential

in terms of the anti-commuting periodic fields j(t),

ç jçT
Z(T)

= J [d2x} [d2N1 exp iS[xJ +
— J dt w(x(t))r(t)ij”(t)

LMØLA’M 2
(442)

= J [d2x] [d27]
LMLA1M

so that in this way Z(T) is written in terms of an augmented action S + on the super-

loop space LM 0 LA1M. From this we can now formally describe the S’-equivariant

cohomology of the loop space.

The operator Qs is nilpotent on the subspace

LA5M = {cv E LAM : £so = 0} (4.43)

of equivariant loop space functionals. The loop space observable S[x} defines the loop

space Hamiltonian vector field through

dLS = —isfZ (4.44)
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from which it follows that the integrand of the quantum partition function (4.42) is

equivariantly closed,

Qs(S + 11) (dL + is)(S + 1) = 0 (4.45)

and so the augmented action S + can be locally represented as the equivariant exterior

derivative of a 1-form ,

T / - 1
S + 1 = Qst9

= J di + (4.46)
o 2

From (4.45) we find that

Q9 = = 0 (4.47)

and so t lies in the subspace (4.43). If g is some globally defined ioop space 0-form

with

£s(dLs) = 0 (4.48)

then we see that 9 is not unique but the augmented action (4.46) is invariant under the

loop space canonical transformation

+ (4.49)

Thus the partition function (4.42) has a very definite interpretation in terms of the loop

space equivariant cohomology H5(LM) determined by the operator Qs on LAsM.

4.3 Supersymmetry and the Loop Space Localization Principle

The fact that the integrand of the partition function above can be interpreted in terms

of a loop space equivariant cohomology suggests that we can localize it by choosing an

appropriate representative of the ioop space equivariant cohomology class determined

by the augmented action S + 1. However, the arguments which showed in the finite

dimensional cases that the partition function integral is invariant under such deformations

cannot be straightforwardly applied here since there is no direct analog of Stokes’ the

orem for infinite-dimensional manifolds. Nonetheless, the localization priniciple can be
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established by interpreting the equivariant cohomological structure on LM as a “hidden”

supersymmetry of the quantum theory. In this way one has a sort of Stokes’ theorem in

the form of a Ward identity associated with this supersymmetry, where we interpret the

fundamental localization property (2.106) as an infinitesimal change of variables in the

integral. The partition function (4.42) can be interpreted as a BRST gauge-fixed path

integral [17] with the (t) viewed as fermionic ghost fields and x(i) as the fundamental

bosonic fields of the model. The supersymmetry is suggested by the ungraded structure

of Qs on LA5M which maps even-degree ioop space forms (bosons) into odd-degree

forms (fermions). Since the fermion fields t) appear by themselves without a conju

gate partner, this determines an N = supersymmetry (the N in general denoting the

number of adjoint fermion pairs and corresponding supersymmetry charges QiQi). The

N = supersymmetry algebra Q = £s implies that Qs is a supersymmetry charge

on the subspace LAsM, and the augmented action is supersymmetric, Qs(S + 1) = 0.

Thus here LAM coincides with the BRST complex of physical states, and the BRST

transformations of the fundamental bosonic fields x(t) and their superpartners t)

are4

Qsx’ = , Qsri V (4.50)

This formal identification of the equivariant cohomological structure as a hidden su

persymmetry allows one to interpret the quantum theory as a supersymmetric or topo

logical field theory. It was Blau, Keski-Vakkuri and Niemi [25] who first realized that a

4Actually, in supersymmetric quantum field theories the BRST transformations of operators and
fields are represented by a graded BRST commutator [Qs, ]. This commutator in the case at hand can
be represented by the Poisson structure of the phase space as follows. We introduce periodic trajectories
A(t) on LM conjugate to x(t) and anticommuting periodic paths (t) conjugate to ‘(t), i.e.

{.\,,(t), z”(t’)} = {(t), ?]“(t’)} = 6(t — t’)

which are to be identified as the Poisson algebra realization of the operators .\(t) and ,(t)

--y acting in the usual way. This gives a Poisson bracket realization of the actions of the operators dL
and is, and then the action of Qs is represented by the BRST commutator {Qs, In the following, one
can keep in mind this representation which maintains a complete formal analogy with supersymmetric
theories.
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quite general localization principle could be formulated for path integrals using rather for

mal functional techniques introduced in the BRST quantization of first class constrained

systems [95]. In these theories a BRST transformation produces a super-Jacobian on the

super-loop space LM 0 LA’M whose corrections are related to anomalies and BRST

supersymmetry breaking. The arguments below are therefore valid provided that the

Qs-supersymmetry above is not broken in the quantum theory.

The argument for infinite-dimensional localization proceeds as follows. Consider the

1-parameter family of phase space path integrals

ZX) I [d21x] [d2r1] (4.51)
JLM®LA’ M

where A e IR and LAM is a gauged fermion field which is homotopic to 0 under the

supersymmetry transformation generated by Qs. As in the finite-dimensional case, we

wish to establish the A-independence of this path integral. This amounts to a choice of

representative of S+ in its ioop space equivariant cohomology class and different choices

of non-trivial representatives then lead to the desired localization schemes. Consider an

infinitesimal variation A -4 A + SA of the argument of (4.51). Let i,b — b + &iJ’ with

(4.52)

and consider the infinitesimal supersymmetry transformation on the super-loop space

parametrized by the gauge fermion S’b E LA’M,

=x’+8x’
(4.53)

—* ii+ö i+Qs +‘4L

Since Qs(S+1) = £s’cb = 0, the argument of the path integral (4.51) is BRST-invariant.

However, the corresponding super-Jacobian arising in the Feynman measure in (4.51)

on LM 0 LA1M is non-trivial and it has precisely the same functional form as that in a

standard BRST transformation [95]. The pertinent super-Jacobian here is given by the
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super-determinant

[d2] [d2] = sdet {d2x] [d2] (4.54)

and the path integral (4.51) is invariant under arbitrary changes of variables. For in

finitesimal 6\, the identity

triog IIAH = log det MAIl (4.55)

implies that the super-determinant in (4.54) can be computed in terms of the super-trace,

the ioop space sum of the diagonal entries in (4.54), as sdetIIAII = 1 + strilAll. This gives

[d2] [d2N]
{1 +

di ((ñb)ii + V)} [d2x] [d2N]

= {i +
1T

di (/— + v;/_) s} [d2x] [d2’] (4.56)

= (1 + QsSb)[d2x][d2N] e8[d2x][d2]

Thus substituting the change of variables (4.53) with super-Jacobian (4.56) into the

path integral (4.51) we immediately see that

Z) = Z(A + 5A) (4.57)

which establishes the independence of the path integral (4.51) under homotopically-trivial

deformations which live in the subspace (4.43). This proof of the A-independence (or the

&-independence more generally) of (4.51) is a specialization of the Fradkin-Vilkovisky

theorem [95] to the supersymmetric theory above, which states that local supersymmet

nc variations of gauge fermions in a supersymmetric BRST gauge-fixed path integral

leave it invariant. Indeed, the addition of the BRST-exact term Qs can be regarded

as a gauge-fixing term (the reason why is termed here a ‘gauge fermion’) which renor

malizes the theory but leaves it invariant under these perturbative deformations. The

addition of this term to the action of the quantum theory above is therefore regarded as
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a topological deformation, in that it does not change the value of the original partition

function which is the A —+ 0 limit of (4.51) above. This is consistent with the general

ideas of topological field theory, in which a supersymmetric BRST-exact action is known

to have no propagating degrees of freedom and so can only describe topological invariants

of the underlying space. We shall discuss these more topological aspects of BRST-exact

path integrals, also known as Witten-type topological field theories [17], in due course.

In any case, we can now write down the ioop space localization principle

Z(T) = lim I [d2x] [d2’] (458)
)—*oo JLMØLA’M

so that the quantum partition function localizes onto the zeroes of the gauge fermion

field .

Given the localization property (4.58) of the quantum theory, we would now like

to pick a suitable representative ib making the localization manifest. As in the finite

dimensional cases, the localizations of interest both physically and mathematically are

usually the fixed point locuses of loop space vector fields W on LM. To translate this

into a ioop space differential form, we introduce a metric tensor G on the ioop space and

take /, to be the associated metric-dual form

jT
dt’ G[x;t,t’]W[x;tJi(t’) (4.59)

of the ioop space vector field W. The supersymmetry condition £S’c/ = 0 is then equiva

lent to the Killing equation £sG = 0 and the additional requirement £sW 0 on W ,

where

£sw
= jT

dt ( — W[x : t] (4.60)

There are many useful choices for W obeying such a restriction, but we shall be concerned

5We also require that the combination (4.59) be such that it determines a homotopically trivial
element as above, so that it introduces no extra topological effects into the path integral (4.58) when
evaluated on contractable loops. For the most part, we shall be rather cavalier about this requirement
and discuss it only towards the end of this thesis.
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mostly with those which can be summarized in

W[x;t] = r(t) — sV’(x(t)) (4.61)

where the parameters r, s are chosen appropriate to the desired localization scheme.

As for the metric in (4.59), there are also many possibilities. However, there oniy

seems to be 1 general class of ioop space metric tensors to which general arguments and

analyses can be applied. To motivate these, we note first that the equivariant exterior

derivative Qs can be written as

Qs=Q—iv=dL+i—iv (4.62)

and the square of the operator Q is just the generator of time translations

iT d
= = dLiI + ithdL

= j dt — (4.63)
o dt

This operator arises when we assume that the ioop space Hamiltoriian vector field gen

erates an S’-flow on the ioop space, parametrized by a parameter T E [0, 1] so that the

flow is x’(t) — x’(t; r) with x’(t; 0) = x(t; 1), such that in the selected ioop space

coordinates x(t) the flow parameter r also shifts the ioop (time) parameter t —* t + r.

In this case we have
Ox(t r”

Vs[x;tJ= ‘
=L(t) (4.64)

T0

and the supersymmetry transformation (4.50) becomes

Qthx = , Qr = (4.65)

In particular, the effective action is now (locally) of the functional form

+
= 1T

di (8(xW + w(x(t))ii) = (dL + i)t9 = (4.66)

and the topological invariance of the quantum theory, i.e. the invariance of (4.66) under

BRST-deformations by elements of the subspace LAM, is according to (4.63) deter

mined by arbitrary globally defined single-valued functionals on LM, i.e. b(0) =
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This form of the U(1)-equivariant cohomology on the ioop space is called the model-

independent circle action.

We shall therefore demand that the localization functionals in (4.59) be invariant

under the model-independentS1-action on LM (i.e. rigid rotations x(t) —* x(t + r) of

the loops). This requires that the loop space metric tensor above obey £G = 0, or

equivalently that G[x; t, t’] = G,[x; t — t’J is diagonal in its loop space indices. Since

the quantum theory is to describe the dynamics of a given Hamiltonian system for which

we know the underlying manifold M, the best way to pick the Riemannian structure on

LM is to lift a metric tensor g from M so that G takes the ultra-local form

G,[x; t, t’] g,(x(t))5(t— t’) (4.67)

and its action on ioop space vector fields is given by

G(Vi;V2)= jdt g(x(t))V1[x;t]V[x;t] (4.68)

Because of the reparametrization invariance of the integral (4.68), the metric tensor G

is invariant under the flow generated by k. The Lie derivative condition on G is then

equivalent to the Lie derivative condition (2.91) with respect to the Hamiltonian vector

field V on M. Thus infinite dimensional localization requires as well that the phase space

M admit a globally-defined U(1)-invariant Riemaiinian structure on M. As discussed

before, the condition that the Hamiltonian H generates an isometry of a metric g on M

(through the induced Poisson structure on (M, w)) is a very restrictive condition on the

Hamiltonian dynamics. Essentially it means that H must be related to the global action

(2.32) of a group G on M. We shall analyse this feature of equivariant localization very

carefully in the following.

As we mentioned earlier, the infinite dimensional results above, in particular the eval

uation of the super-Jacobian in (4.56), are as reliable as the corresponding calculations

in standard BRST quantization, provided that the boundary conditions in (4.51) are also
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supersymmetric. Provided that the assumptions on the classical properties of the Hamil

tonian are satisfied (as for the finite-dimensional cases), the above derivation will stand

correct unless the supersymmetry Q = £s is broken in the quantum theory, for instance

by a scale anomaly in the rescaling of the metric —+ ). G, above. Recently, Ners

essian [93] has naturally incorporated the geometrical objects of the Batalin-Vilkovisky

formalism [10, 17, 58, 95] (i.e. a Grassmann-odd degree symplectic structure and a cor

responding nilpotent Hamiltonian operator) into the equivariant localization formalism.

The presence of supersymmetric bi-Hamiltonian dynamics with even and odd symplectic

structures allows novel proofs of the localization principles that eludes many of the ge

ometric restrictions above of the standard equivariant localization constraints. It does,

however, require a rather large supersymmetric structure in the quantum theory, but it

leads to a derivation of the localization principle via the Batalin-Vilkovisky formalism

instead of the standard BRST approach above. For a discussion of the connection this

implies between the BRST model of equivariant cohomology and the Batalin-Fradkin

Vilkovisky approach to Hamiltonian BRST quantization of constrained systems, see [103].

4.4 The WKB Localization Formula

We shall now begin examining the various types of localization formulas that can be

derived from the general principles of the last section. The first infinite-dimensional

localization formula that we shall present is the formal generalization of the Duistermaat

Heckman integration formula, whose derivation follows the loop space versions of the

steps used in sections 2.5 and 3.3. We assume that the action S has isolated and non

degenerate critical trajectories, so that the zero locus (4.38) consists of isolated classical

loops in LM. We further assume that the determinant of the associated Jacobi fields

arising from a second-order variation of S is non-vanishing on these classical trajectories.



Chapter 4. Quantum Localization Theory 107

Under these assumptions, we set r = s = 1 in (4.61), so that

=
jT

, Qs
1T

[g,wv:v + (g,ö — + vg) ij

(4.69)

Proceeding just as in the finite-dimensional case, the evaluation of the localization integral

(4.58) gives

Z(T) J[d2nx] ISVsI6(Vs) e1

J [dx] det Ilh/det6Ot — — iLVo H) etj
LM

det II(x(t))II eiS[l

r(t)ELMs det IIat — 8H)I
(4.70)

where here and in the following the symbol ‘- will be used to signify the absorption

of infinite prefactors into the determinants which arise from the functional Gaussian

integrations. We shall discuss the regularization and evaluation of these infinite factors

and functional determinants [84] in (4.70) in the next section.

This is the famous WKB approximation to the partition function [116], except that

it is summed over all classical paths and not just those which minimize the action S. If

we reinstate the factors of h, then it is formally the leading term of the stationary phase

expansion of the partition function in powers of h as h —+ 0. The limit h —+ 0 is called

the classical limit of the quantum mechanics problem above, since then according to

(4.1) the operators J3 and behave as ordinary commuting c-numbers as in the classical

theory. For h —+ 0 we can naturally evaluate the path integral by the stationary-phase

method discussed in section 3.3, i.e. we expand the trajectories x(t) = xo(t) + x(t) in

the action, with xo(t) LM and Sx(t) the fluctuations about the classical paths xo(t)

with x(0) = Sx(T) = 0, and then carry out the leading Gaussian functional integration

over these fluctuations. Indeed, this was the way Feynman originally introduced the

path integral to describe quantum mechanics as a sum over trajectories which fluctuate

around the classical paths of the system. This presentation of quantum mechanics thus
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leads to the dynamical Hamilton action principle of classical mechanics [48], i.e. the

classical paths of motion of a dynamical system are those which minimize the action, as

a limiting case. If the classical trajectory were unique, then we would only obtain the

factor ei’[xl/h above as h —+ 0. Quantum mechanics can then be interpreted as implying

fluctuations (the one-loop determinant factors in (4.70)) around this classical trajectory.

The higher-loop quantum fluctuation terms when (4.70) is not the exact result will be

discussed in chapter 7.

We should point out here that the standard WKB formulas are usually given for

configuration space path integrals where the determinant (det IILs(x(t))II)1”2appearing

in (4.70) is the so-called Van Vleck determinant which is essentially the Hessian of S in the

configuration space coordinates q. Here the determinant is the functional determinant

of the Jacobi operator which arises from the usual Legendre transformation to phase

space coordinates (p, q). This operator is important in the Hamilton-Jacobi theory of

classical mechanics [5, 48], and this determinant can be interpreted as the density of

classical trajectories. The result (4.70) and the assumptions that went into deriving it,

such as the non-vanishing of the determinant of the Jacobi fields and the existence of

an invariant phase space metric, are certainly true for the classic examples in quantum

mechanics and field theory where the semi-classical approximation is known to be exact,

such as for the propagator of a particle moving on a group manifold [32, 110, 115]. The

above localization principle yields sufficient, geometric conditions for when a given path

integral is given exactly by its WKB approximation, and it therefore has the possibility

of expanding the set of quantum systems for which the Feynman path integral is WKB

exact and localizes onto the classical trajectories of the system.
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4.5 Degenerate Path Integrals and the Niemi-Tirkkonen Localization For

mula

There are many instances in which the WKB approximation is unsuitable for a quan

tum mechanical path integral, such as a dynamical system whose classical phase space

trajectories coalesce at some point. It is therefore desirable. to seek alternative, more

general localization formulas which can be applied to larger classes of quantum systems.

Niemi and Palo [98] have investigated the types of degeneracies that can occur for phase

space path integrals and have argued that for Hamiltonians which generate circle ac

tions the classical trajectories can be characterized as follows. In general, the critical

point set of the action S with non-trivial periodic solutions x’(T) = x’(0) = 4 lie on a

compact submanifold LM of the phase space M. In this context, LMs is referred to

as the moduli space of T-periodic classical solutions and it is in general a non-isolated

set for only some discrete values of the propagation time T, For generic values of T

the periodic solutions with x(T) = x(0) = 4 exist only if 4 lies on the critical sub-

manifold Mv of the Hamiltonian H. Then the classical equations of motion reduce to

= V = w’’OH = 0 and so the moduli space LMg coincides with the critical point

set M C M. We shall see some specific examples of this later on.

With this in mind we can derive a ioop space analog of the degenerate Duistermaat

Heckman formula of Section 3.7. We decompose LM and LA1M into classical modes

and fluctuations about the classical solutions and scale the latter by 1/’X,

x(t) = (t) + x(t)// , i(t) = t) + (4.71)

where (t) E LM are the solutions of the classical equations of motion, i.e. Vs((t))

— w()OH() = 0, and (t) d(t) E A’LM span the kernel of the loop space

Riemann moment map,

(I = 0 (4.72)
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where

= dLb
= 1T

dl (gV’) (4.73)

with given in (4.69). In particular, this implies that i(l) are Jacobi fields, i.e. they

obey the fluctuation equation

(c58 — dV’’()) = 0 (4.74)

The fluctuation modes in (4.71) obey the boundary conditions x(0) = x(T) = 0 and

r(0)=(T)=0.

The super-loop space measure with this decomposition is then

[d2x] [d2i7]=d2(t)d2(t) fJ d2xj(t)d2rf(t) (4.75)
tE[O,T]

where as usual the change of variables (4.71) has unit Jacobian because the determinants

from the bosonic and fermionic fluctuations cancel (this is the powerful manifestation

of the “hidden” supersymmetry in these theories). The calculation now proceeds analo

gously to that in section 3.7, so that evaluating the Gaussian integral over the fluctuation

modes localizes the path integral to a finite-dimensional integral over the moduli space

LMs of classical solutions,

det w() e5’1
Z(T) J d2(t) (4.76)

LM Pfaff)IStOt
— (s)() — R()U LILM5

where I.Ls = 1s and R is as usual the Riemann curvature 2-form of the metric

g evaluated on LM. In (4.76) the Pfaffian is taken over the fluctuation modes x(t)

about the classical trajectories L(t) LM (i.e. along the normal bundle J/LM in

LM), and the measure there is an invariant measure over the moduli space of classical

solutions which is itself a symplectic manifold. The localization formula (4.76) is the loop

space version of the degenerate localization formula (3.114) in which the various factors

can be interpreted as loop space extensions of the equivariant characteristic classes. In

particular, note that in the Limit where the solutions to the classical equations of motion
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V(x(t)) = 0 become isolated and non-degenerate paths the integration formula (4.76)

reduces to the standard WKB localization formula (4.70).

However, the degenerate localization formula (4.76) is hard to use in practise be

cause in general the moduli space of classical solutions has a complicated, T-dependent

structure6.We would therefore like to obtain alternative degenerate localization formu

las which are applicable independently of the structure of the moduli space LM above.

Given the form of (4.76), we could then hope to obtain a localization onto some sort of

equivariant characteristic classes of the manifold M. The first step in this direction was

carried out by Niemi and Tirkkonen in [101]. Their localization formula can be derived

by setting s = 0, r = 1 in (4.61) so that

= 1T
dt , Qs’

= j
dt {gu( — V) + (ga + gpFP) qv]

(4.77)

Here the zero locus of the vector field (4.61) consists of the constant loops = 0, i.e.

points on M, so that the canonical localization integral will reduce to an integral over

the finite-dimensional manifold M, rather than a sum or integral over the moduli space

of classical solutions as above.

To evaluate the right-hand side of (4.58) with (4.77), we use a trick analogous to that

used above. We decompose LM and LA’M into constant modes and fluctuation modes

and scale the latter by 1/VX,

x(t) =4+ (t)// , ,(t) = + i(t)/v’ (4.78)

where
1 tT 1 tT

4=jJ dtx(t)
, ,=—J dt(t)

T T (4.79)

j
dt5(t)=f dt(t)=0

6Some features of the space of T-periodic classical trajectories for both energy conserving and non
conserving Hamiltonian systems have been discussed recently by Niemi and Palo in [96, 99].



Chapter 4. Quantum Localization Theory 112

The decomposition (4.78) is essentially a Fourier decompostion in terms of some complete

sets of states {x(t)}kE7z and {(t)}kE, so that

(t) = Esx(t) , ,(t) = (t) (4.80)
kO kO

and the Feynman measure in the path integral is then defined just as before as

[d2x] [d2] d2’’x0d2,i0 fi d2(t)d2(t) = d2”x0d2r10 [J d2”sk d2uk (4.81)
tE[O,T] kO

With the rescaling in (4.78) of the fluctuation modes, the gauge fixing term Qsb is

T 1
Qsb

= j dt {x ((fv),wOt —
x + + + Q(1/v5) (4.82)

where we have integrated by parts over t and used the periodic boundary conditions.

In (4.82) we see the appearence of the equivariant curvature of the Riemannian man

ifold (M,g). Since Qv and R there act on the fluctuation modes, as usual they can

be interpreted as forming the equivariant curvature of the normal bundle of M in LM.

With the above rescaling the fluctuation and zero modes decouple in the localization limit

A —+ 00, just as before. The integrations over the fluctuations are as usual Gaussian, and

the result of these integrations is

Z(T) IM chv(—iTw) A (det’IIJ9t — (Rv)II)112 (4.83)

where the prime on the determinant means that it is taken over the fluctuation modes with

periodic boundary conditions (i.e. the determinant with zero modes excluded). This form

of the partition function is completely analogous to the degenerate localization formula

of section 3.7, and it is also similar to the formula (4.76), except that now the domain of

integration has changed from the moduli space LM s of classical solutions to the entire

manifold M. This makes the formula (4.83) much more appealing, in that there is no

further reference to the T-dependent submanifold LM of M. Note that (4.83) differs

from the classical partition function for the dynamical system (M,w, H) by a one—loop
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determinant factor which can be thought of as encoding the information due to quantum

fluctuations.

Notice also that here the infinite-dimensional Pfaffian arising from the fermionic in

tegration cancels from the result of the infinite-dimensional Gaussian integral over the

bosonic fluctuation modes. Thus, just as in the finite-dimensional case, the sign de

pendence of the Pfaffian gets transferred to the inverse square root of the determinant.

The spectral asymmetry associated with the sign of the infinite-dimensional Pfaffian

(see (3.61)) has to be regulated and is given by the Atiyah-Patodi-Singer eta-invariant

[35, 124] of the Dirac operator — Rv,

— Rv)
=

(4.84)

where the integration (and/or sum) is over all non-zero eigenvalues ) of öt — R. This

eta-function regularization has been discussed in some detail recently in [84].

The localization formula (4.83) can be written in a much nicer form by evaluating

the determinant using standard supersymmetry regularizations [4, 42] for first-order dif

ferential operators defined on a circle. The most convenient such choice is Riemann

zeta-function regularization. The non-constant eigenfunctions of the operator 9 on the

interval [0, T] with periodic boundary conditions are e2t/T, where k are non-zero in

tegers. Since the matrix Rv is antisymmetric, it can be skew-diagonalized into n 2 x 2

skew-diagonal blocks R5 with skew eigenvalues .j, where j 1,. . . , n. For each such

block R, we get the formal contribution to the determinant in (4.83),

det’IIöt — RII = fl
(2irik

+ .) (2rik — = g(T\/21ri)g(—T/27ri) H
(2lri)2

k#O kO

(4.85)

where we have defined the function g(z) as the formal product

g(z) fJ(k + z) (4.86)
kO

We can determine the regulated form of the function g(z) by examining its logarithmic

derivative g’(z)/g(z) [42]. This is, as a function of z E D, a function with simple poles of
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residue 1 at z = k a non-zero integer. Thus we take g’(z)/g(z) = ir cot irz — 1/z + b with

b a constant related to the eta-invariant (4.84), and integrating this we get

g(z) = sin irz e/7rz (4.87)

where we have normalized g(z) so that g(0) = 1.

The infinite prefactor in (4.85) is regularized using the Riemann zeta-function

c(s) = (4.88)

which is finite for s > 0 with C(0) = —1/2 [50]. We find that

(2 - (21ri) - (2.)4(° A)Is=o - (21ri)4(O) - (27ri)2
(489)

and thus the block contribution (4.85) to the functional determinant in (4.83) is

det’lat —

= 1 (sin)2
= (-)2det

[su1)]
(4.90)

Multiplying the blocks together we see that the fluctuation determinant appearing in

(4.83) is just given by the equivariant A-genus (2.77) with respect to the equivariant

curvature fly, and the localization formula (4.83) becomes

Z(T) j chv(—iTw) A Av(TR) (4.91)

The formula (4.91) is the Niemi-Tirkkonen localization formula [101] and it expresses

the quantum partition function as an integral over the phase space M of equivariant

characteristic classes in the U(1)-equivariant cohomology generated by the Hamiltonian

vector field V on M. The huge advantage of this formula over the localization formula of

the last section is that no assumptions appear to have gone into its derivation (other than

the standard localization constraints). It thus applies not only to the cases covered by

the WKB localization theorem, but also to those where the WKB approximation breaks

down (e.g. when classical paths coalesce in LM). Indeed, being a localization onto
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time-independent ioops it does not detect degenerate types of phase space trajectories

that a dynamical system may possess.

In fact, the localization formula (4.91) can be viewed as an integral over the equivari

ant generalization of the Atiyah-Singer index density of a Dirac operator with background

gravitational and gauge fields, and it therefore represents a sort of equivariant general

ization of the Atiyah-Singer index theorem for a twisted spin complex. Indeed, when

H, V —* 0 the effective action in the canonical localization integral is

(S + + AQs)IH=v=o
= fT

dt + O + Ag,V + (4.92)

where V is the covariant derivative along the ioop x(t) induced by the Riemannian

connection V on M (see (4.77)). On the other hand, the left-hand side of the localization

formula (4.58) becomes

Z(T)H=o = tril e_iHTI
T-O

dim7-tM (4.93)

which is an integer representing the dimension of the free Hilbert space associated with

S(H = 0) and which can therefore only describe the topological characteristics of the

manifold M. The action (4.92) is the supersymmetric action for a bosonic field x(t)

and its Dirac fermion superpartner field q(t) in the background of a gauge field O,,

and a gravitational field g, i.e. the action of N = Dirac supersymmetric quantum

mechanics. Moreover, the integer (4.93) coincides with the V = 0 limit of (4.91) which is

the ordinary Atiyah-Singer index for a twisted spin complex (the ‘twisting’ here associated

with the usual symplectic line bundle L —+ M). Thus the localization formalism here

reproduces quite beautifully the celebrated Atiyah-Singer index theorem which states

that the index of a Dirac operator, representing the dimension of the space of its zero

modes (or equivalently its spectral asymmetry (4.84)), is a topological invariant of the

background fields [35, 124].

This feature is not that surprising, for the above just reproduces the original infinite

dimensional application of the Duistermaat-Heckman theorem due to Atiyah and Witten
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[7], and the later generalizations to twisted Dirac operators by Bismut [18, 19] and Jones

and Petrack [66]. It is well-known that the Atiyah-Singer index on the twisted spin

complex of M can be evaluated as above from the action (4.92) representing a BRST

gauge-fixed path integral in the proper-time gauge [4, 42]. The supersymmetry here is

given by (4.65) representing the model independent S’-equivariant cohomology. The

N = supersymmetry algebra Q = L is in this context a canonical realization of the

graded constraint representing the zero mode equation for the pertinent elliptic Dirac

operator D Q, on a compact even-dimensional Riemannian manifold, and the ) —+ co

limit of the canonical localization integral (4.58) is just the path integral representation

of the analytical index of this Dirac operator via the Witten index

index D dim ker D—dim ker D = urn trII(_1)F eI = urn tr1175(e_ e_At)I

(4.94)

for the corresponding supersymmetric model [132]. Here F is the fermion number opera

tor and is the Dirac chirailty matrix. Moreover, from (4.66) we see that this action is

BRST-exact, as anticipated for a bilinear supersymmetric field theory, so that the path

integral actually describes a cohomological Witten-type topological field theory [17]. We

shall describe this cohomological field theory in more detail later on, but we point out

here that this is one of the essential features of the localization formalism which leads to

this path integral derivation of the Atiyah-Singer index theorem7.

In fact, one could even proceed in the opposite direction to analyse a generic super-

symmetric field theory using the canonical loop space symplectic geometry defined in

section 4.2 above. This has been argued to be possible for any Poincaré supersymmetric

quantum field theory, in addition to the N = model above [60, 88, 89, 104]. If the

supersymmetric field theory is bilinear in the fermionic degrees of freedom, then the path

7This analogy, as well as the localization of the quantum partition function in general, requires that
boundary conditions for the path integral be selected which respect the pertinent supersymmetry. We
shall say more about this requirement later on.
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integral induces a ioop space symplectic structure from Berezin integration of the bilin

ear, the periodic bosonic fields define the ioop space coordinates, and the BRST-charge

yields the equivariant cohomological structure. This construction has been carried out

explicitly for various models such as N = 1 DeRham supersymmetric quantum mechan

ics [88, 89, 131], the N = 1 Wess-Zumino model and N = 1 supersymmetric Yang-Mills

theory [89]. Recently, Palo [104] has generalized this ioop space symplectic structure to

include the case of general N = 1 supermultiplets and applied it to the supersymmetric

non-linear sigma-model. This underlying symplectic geometry of supersymmetry pro

vides a convenient, conceptual geometric approach to Poiricaré supersymmetric quantum

field theories. This way of looking at these models provides some additional insights

and flexibility in the evaluation of the path integrals. The equivariant cohomological

structure of these theories is consistent with the topological nature of supersymmetric

models (the basic topological field theories — see section 4.9 below) and they yield certain

topological invariants of the underlying manifolds such as the Atiyah-Singer and Callias

indices [59]8. We shall dispense with further discussion of these topological features of

equivariant localization until section 4.9.

4.6 Connections with the Duistermaat-Heckman Integration Formula

In this section we shall point out some relations between the path integral localiza

tion formulas derived thus far, and, in particular, the relations to the finite-dimensional

Duistermaat-Heckman formula. Since the localization formulas are all derived from the

same fundamental geometric constraints, one would expect that, in some limits at least,

they are all related to each other. In particular, when 2 localization formulas hold for

a certain quantum mechanical path integral, they must both coincide somehow. We

8The Callias index theorem is the analog of the Atiyah-Singer index theorem for a Dirac operator on
an odd-dimensional non-compact manifold. Basically, one computes this index from the path integral for
a higher-dimensional Atiyah-Singer index by introducing a simple first class constraint that eliminates
the extra dimensions. The ensuing BRST-quantized canonical action then admits a superloop space
interpretation as above to which the localization techniques become directly applicable.
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can relate the various localization formulas by noting that the integrand of (4.91) is an

equivariantly closed differential form on M (being an equivariant characteristic class)

with respect to the finite-dimensional equivariant cohomology defined by the ordinary

Cartan derivative Dv = d + v. Thus we can apply the Berline-Vergne theorem (in

degenerate form — compare with section 3.7) of section 2.5 to localize the equivariant

Atiyah-Singer index onto the critical points of the Hamiltonian H to obtain

Z(T)
JMV

A Av(TR)
Mv

(4.95)

Note that this differs from the finite-dimensional localization formula (3.114) only in the

appearence of the equivariant A-genus which arises from the evaluation of the tempo

ral determinants which occur. This factor therefore encodes the quantum fluctuations

about the classical values, and its appearence is quite natural according to the general

supersymmetry arguments above. Furthermore, the localization formula (4.95) follows

from the moduli space formula (4.76) for certain values of the propagation time T (see

the discussion at the beginning of the last section).

The connection between the WKB and Niemi-Tirkkonen localization formulas is now

immediate if we assume that the critical point set Mv of the Hamiltonian consists of

only isolated and non-degenerate points (i.e. the Hamiltonian H is a Morse function).

Then in the canonical localization vector field (4.61) we can set r 0 and s = —1 so

that

= ivg
1T

dt , Qs
=

j
dt [(v)1i1 + (thu —

Vv)] (4.96)

We use the rescaled decomposition (4.78) again which decouples the zero modes from the

fluctuation modes. The Gaussian integration over the fluctuation modes then yields

Z(T) IMd2x0 e_iT a t’
1S(V)

pv
A(Tv) (4.97)

where the (ordinary) Dirac A-genus arises from evaluating the temporal determinant in

(4.97) as described above and we recall that v(p) = 2dV(p) = 2w1(p)R(p) at a critical
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point p E Mv. Thus under these circumstances we can localize the partition function

path integral onto the time-independent classical trajectories of the dynamical system,

yielding a localization formula that differs from the standard Duistermaat-Heckman for

mula (3.62) only by the usual quantum fluctuation term.

The localization formula (4.97) of course also follows directly from the degenerate

formula (4.95) in the usual way, and it can be shown [70] to also follow from the WKB

formula (4.70) using the Weinstein action invariant [21, 130] which probes the first co

homology group of the symplectomorphism group of the symplectic manifold (i.e. the

diffeomorphism subgroup of canonical transformations). This latter argument requires

that M is compact, the classical trajectories are non-intersecting and each classical tra

jectory can be contracted to a critical point of H through a family of classical trajectories

(for instance when H1(M; IR) = 0), and that the period T is such that the boundary

condition x(0) = xIA(T) admits only constant ioops as solutions to the classical equations

of motion. The localization onto the critical points of the Hamiltonian is not entirely

surprising, since as discussed at the beginning of the last section for Hamiltonian cir

cle actions on M the zero locuses LM and M in general coincide. Drawing from

the analogy of (4.97) with the Duistermaat-Heckman theorem (i.e. that the equivariant

Atiyah-Singer index (4.91) is given exactly by its stationary phase approximation), one

can, in particular, in this case conclude from Kirwan’s theorem that the Hamiltonian H

is a perfect Morse function that admits only even Morse indices [70].

We have therefore seen that localization formulas and various Morse theoretic argu

ments (such as Kirwan’s theorem) follow (formally) exactly for path integrals in the same

way that they followed for ordinary finite-dimensional phase space integrals. For the re

mainder of this chapter we shall discuss some more formal features of the localization

formalism for path integrals, as well as some extensions of them, in parallel to the last

few sections of chapter 3 above.
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4,7 Equivariant Localization and Quantum Integrability

We have shown in chapter 3 that there is an intimate connection between classical in

tegrability and the localization formalism for dynamical systems. With this in mind,

we can use the localization formalism to construct an alternative, geometric formulation

of the problem of quantum integrability [41, 97] (in the sense that the quantum parti—

tion function can be evaluated exactly) which differs from the usual approaches to this

problem [30]. As in section 3.6 we consider a generic integrable Hamiltonian which is a

functional H = H(I) of action variables Ja which are in involution as in (3.84). From

the point of view of the localization constraints above, the condition that H generates a

circle action which is an isometry of some Riemannian geometry on M means that the

action variables 1a generate the Cartan subalgebra of the associated isometry group of

(M,g) in its Poisson bracket realization on (M,w).

For such a dynamical system, we use a set of generating functionals Ja(t) to write

the quantum partition function as

Z(T) = exp
(fT

H
[i(t)])

det III exp {ij dt (Oth — JaIa)}

(4.98)

To evaluate the path integral in (4.98), we consider an infinitesimal variation of its action

—

JJ)
=

— jaja (499)

with the infinitesimal Poisson bracket variation

6a{Ja1L} = _a,,,IwOIa (4.100)

where are infinitesimal coordinate-independent parameters. The transformation (4.99),

(4.100) corresponds to the leading order infinitesimal limit of the canonical transformation

e10xea + { 1a} + {{xt Ja} , ib} +... (4.101)
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and it gives — JlJa) = aja (4.102)

after an integration by parts over time. Since the Liouville measure in (4.98) is invariant

under canonical transformations, it follows that the only effect of the variation (4.102)

on the ioop space coordinates in (4.98) is to shift the external sources as ja
.

Ja + a

Note that if we identify Ja(t) as the temporal component A of a gauge field then this

shift has the same functional form as a time-dependent abelian gauge transformation

[97]. Thus if for some reason the quantum theory breaks the invariance of the Liouville

measure under these coordinate transformations, we would expect to be able to relate

the non-trivial Jacobian that arises to conventional gauge anomalies [118].

Thus if we Fourier decompose the fields J(t) into their zero modes J and fluctuation

modes Ja(t) as in (4.78), we can use this canonical transformation to ‘gauge’ away the

time-dependent parts of ja in (4.98) so that the path integral there depends only on the

constant modes J of the generating functionals and the partition function is given by

Z(T) = exp (_iTH {1---]) j [d2’x] det IciIexp{ijTctt (Oth1’ — JJa)}

(4.103)

Since the Hamiltonian JI in the action in (4.103) generates an abelian group action on

we can localize it using the Niemi-Tirkkonen formula (4.91) to arrive at

Z(T) exp (_iTH [--]) I chjia(—iTw) A Ajia(TR) (4.104)

and so the path integral now localizes to a derivative expansion of equivariant characteris

tic classes. The localization formula (4.104) is valid for any integrable Hamiltonian system

whose conserved charges JJa generate a global isometry on M, and consequently the

localization formalism can be used to establish the exact quantum solvability of generic

integrable models.

Indeed, there are several non-trivial examples of integrable models where the WKB

localization formula (4.70) is known to be valid, and this has lead to the conjecture
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that for a large class of integrable field theories a “proper” version of the semi-classical

approximation should yield a reliable reproduction of the features of the exact quantum

theory [139]. The formula (4.104) is one such candidate, in that its right-hand side could

be expanded out in powers of 1/T and corrections to the WKB approximation could hence

be studied. We shall return to this point in chapter 7. However, one may also hope that

the localization principle of section 4.3 above could be used to derive weaker versions

of the localization formulas above for some dynamical systems which are not necessarily

completely integrable [70] (in the sense thai the localization formalism above does not

carry through). For this, we consider a Hamiltonian with r < n conserved charges P’

which are in involution as in (3.84),(3.85), and which have the classical equations of

motion = 0. We then set

T T .2

= j dt iaoiai , Qb
= j dt (ij (4.105)

in the canonical localization integral (4.58). The cohomological relation Q/, = 0

follows from the involutary property of the charges P. Then the right-hand side of (4.58)

yields a localization of the path integral onto the constant values of the conserved charges
Ia

Z(T) = j [d2x] det 1Z llS(P) e1 (4.106)

The formula (4.106) is a weaker version of the above localization formulas which is

valid for any non-integrable system that admits conserved charges. It can be viewed as

a quantum generalization of the classical reduction theorem [6] which states that con

served charges in involution reduce the dynamics onto the symplectic subspace of the

original phase space determined by the constant values of the integrals of motion P.

When H is completely integrable this subspace coillcides with the invariant Liouville tori

discussed in section 3.6. Thus even when there are corrections to the various localization

formulas above (e.g. the WKB approximation), the supersymmetry arguments of section

4.3 can be used to derive weaker versions of the localization formulas. Notice that, as
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anticipated, the localization formula (4J06) does not presume any isometric structure

on the phase space (see the discussion of section 3.6). Equivariant cohomology might

therefore provide a natural geometric framework for understanding quantum integrabil

ity, and the localization formulas associated with general integrable models represent

equivariant characteristic classes of the phase space. For more details about this and

other connections between equivariant localization and integrability, see [69] and [70].

4.8 Localization for Functionals of Isometry Generators

Ill the last section we considered a particular class of Hamiltonians which were functionals

of action variables and we were able to derive a quite general localization formula for these

dynamical systems. It is natural to explore now whether or not localization formulas could

be derived for Hamiltonians which are more general types of functionals. We begin with

the case where the Hamiltonian of a dynamical system is an a priori arbitrary functional

F(H) of an observable H which generates an abelian isometry through the Hamiltonian

equations for H in the usual sense. Thus we want to evaluate the path integral [102]

Z(TIF(H)) = M[d21 det exp {1T
dt (O — F(H))} (4.107)

We shall see shortly that such path integrals are important for certain physical applica

tions. Note, however, that although such functionals may seem arbitrary, we must at least

require that F(H) be a semi-bounded functional of the observable H [125]. Otherwise,

a Wick rotation off of the real time axis to imaginary time may produce a propagator

trI e_iTF(F)11 which is not a tempered distribution and thus eliminating any rigorous

attempts to make the path integral a well-defined mathematical entity.

The formalism used to treat path integrals such as (4.107) is the auxilliary field

formalism for supersymmetric theories [60, 88, 89] which enables one to relate the ioop

space equivariant cohomology determined by the derivative Qs to the more general model

independent S’ ioop space formalism, i.e. that determined by the equivariant exterior
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derivative Q. We recall from section 4.3 that in this formulation the path integral action

is BRST-exact, as required for supersymmetric field theories. Here the auxilliary fields

that are introduced turn out to coincide with those used to formulate generic Poincaré

supersymmetric theories in terms of the model-independent Si loop space equivariant

cohomology which renders their actions BRST-exact.

To start, we assume that there is a function q) such that the quantity eL F(H)

is a Gaussian functional integral transformation of it,

exp (_jT dt = j[dei exp { JT
dt (2 - (e)H) } (4.108)

Locally such a function g) can always be constructed, but there may be obstructions to

constructing 4(e) globally on the ioop space LM, for the reasons discussed above. The

transformation
— 4 which maps the Gaussian in to a non-linear functional of g is

just the Nicolai transformation in supersymmetry theory [17], i.e. the change of variables

that maps the bosonic part of the supersymmetric action into a Gaussian such that the

Jacobian for this change of variables coincides with the determinant obtained by inte

grating over the bilinear fermionic part of the supersymmetric action. This observation

enables one to explicitly construct a localization for the path integral (4.107).

Notice that when .F(H) is either linear or quadratic in the observable H, the Nico
T 2

lai transform e fo dt is directly related to the functional Fourier transformation of

e_iftm,

exp (_ 1T
dt F(H))

=
exp (_ 1T

dt E()) exp (_ 1T

dt H) (4.109)

However, for more complicated functionals F(H) this connection is less straightforward.

In particular, if we change variables —+ in the Gaussian transformation (4.108), we

find

exp (_fT dt F(H))
= LR teT]

exp {fT dt (2()
- H) } (4.110)
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so that the effect of this transformation is to isolate the isometry generator H and make

it contribute linearly to the effective action in (4.107). This allows one to localize (4.107)

using the general prescriptions of section 4.3 above.

Substituting (4.110) into (4.107), we then carry out the same steps which led to the

Niemi-Tirkkonell localization formula (4.91). However, now there is an auxilliary field 5

which appears in the path integral action which must be incorporated into the localization

procedure. These fields appear in the terms çbH above and are therefore interpreted as the

dynamical generators of S(u(1)*). We introduce a superpartner for the auxilliary field

4 whose Berezin integration absorbs the Jacobian factor in (4.110). The path integral

(4.107) thus becomes a functional integral over a extended superloop space. One can

introduce an extended BRST-operator incorporating the super-multiplet (4, ) such that

the partition function is evaluated with a BRST-exact action whose argument lies in

the BRST-complex of physical states and the Niemi-Tirkkonen localization of section 4.5

above becomes manifest. We remark that this extended BRST-operator is the so-called

Weil differential whose cohomology defines the BRST model for the U(1)-equivariant

cohomology [82, 103]. This more sophisticated technique is required whenever the basis

elements 4 of the symmetric algebra S(g*) are made dynamical, as is the case here.

This extended superspace formalism is also the building block for the Mathai-Quillen

construction of topological field theories [22, 82, 98].

We shall not enter into the cumbersome details of this extended superspace evaluation

of (4.107), but merely refer to [102] for the details. The final result is the integration

formula

Z(TIF(H)) ‘- j d (q) eiTe(0)/2J ch0v(—iTw) AA0v(TR) (4.111)

where g are the zero modes of the auxilliary field q. (4.111) is valid (formally) for

any semi-bounded functional F(H) of an isometry generator H on M. Thus even for

functionals of Hamiltonian isometry generators the localization formula is a relatively

simple expression in terms of equivariarit characteristic classes. The only computational
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complication in these formulas is the identification of the function () (or the functional

Fourier transform F()). We note that when F(H) = H, we have () = 1 and (4.111)

reduces consistently to the Niemi-Tirkkonen localization formula (4.91). In the important

special case .T(H) = H2, we find q) = (i.e. fr(qS) = q2) and the localization formula

(4.111) becomes

Z(TH2)
‘- j dçbo eiT2J ch0v(—iTw) AA0v(TR) (4.112)

which is the formal path integral generalization of the Wu localization formula (3.124).

In fact, the above dynamical treatment of the multipliers ç suggest a possible non

abelian generalization of the localization formulas and hence a path integral generaliza

tion of the Witten localization formula of section 3.8 [127]. At the same time we generalize

the localization formalism of section 4.7 above to the case where the Hamiltonian is a

functional of the generators of the full isometry group of (M, g), and not just simply

the Cartan subgroup thereof. We consider a general non-abelian Hamiltonian moment

map (3.30) where the component functions H are assumed to generate a Poisson algebra

realization of the isometry group G of some Riemannian metric g on M. As mentioned

in section 3.8, when the are fixed we are essentially in the abelian situation above and

this case will be discussed in more detail in the subsequent sections. Here we assume that

the multipliers are time-dependent and we integrate over them in the path integral

following the same prescription for equivariant integration introduced in section 3.8. This

corresponds to modelling the G-equivariant cohomology of M in the Weil algebra using

the BRST formalism [103, 127]. When the are fixed parameters, the action (4.25)

generates the action of S1 on LM in the model independent circle action described in

section 4.3 above. However, when the gSa are dynamical quantities, S generates the action

of the semi-direct product LGxS’, where the action of 5’ corresponds to translations

of the loop parameter t and LG = C°°(S’, 0) is the loop group of the isometry group 0.
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These actions are generated, respectively, by the ioop space vector fields

fT

th(t)(t)
(4.113)

VLG = fdt (t)(x(t)) (SX)Ha)
x(t)

= jdt (i)Va(t)

The commutator algebra of the vector fields (4.113) is that of LGxiS1 on LM,

[Vi, VLG]
= jT

dt ca , [va(t), Vb(t)} = fabcvc(t)6(t
— t’) (4.114)

The equivariant extension of the symplectic 2-form on LM is therefore S + fI.

If the multipliers gY (now regarded as local coordinates on Lg*) are integrated over

directly, then the isometry functions H’ become constraints because the a appear lin

early in the action and so act as Lagrange multipliers. In this case we are left with a

topological quantum theory (i.e. there are no classical degrees of freedom) with vanishing

classical action, in parallel to the finite-dimensional case of Section 3.8. Alternatively, we

can add a functional F F(ç) to the argument of the exponential term in the partition

function such that the quantity S + + F is equivariantly closed. We then introduce

a non-abelian generalization of the procedure outlined above [127]. As remarked there,

from supersymmetric manipulations of the path integral one derives an extended equiv

ariant BRST operator QT, which is here the non-abelian version of that above, for the

semi-direct product action of LGxiS1 on LM. QT is then the sum of the BRST operator

for the equivariant cohomology of LM and the model-independent 51 BRST charge Q.
It turns out that S + Q + F is equivariantly closed with respect to QT only for either

F = 0 or F .(a)2, where the latter is the invariant polynomial corresponding to the

quadratic Casimir element of G. Note that this is precisely the choice that was made

in our definition of equivariant integration in Section 3.8. With these modifications the

total extended superloop space action ST + f + is BRST-closed with respect to

Qr, so that ST is the moment map for the action of LGiS’ on LM. Furthermore,

£v(H + w) = 0, so that the action of LGxiS’ on LM is symplectic. Thus within this
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framework we can reproduce ioop space generalizations of the cohomological formulation

of Section 3.2 for the Hamiltonian dynamics. We refer to [103] and [127] for the details

of this approach.

The rest of the localization procedure now carries through parallel to that above and

in the Niemi-Tirkkonen localization, and it yields the localization formula [127]

dim G

Z(T)
‘ J [J dq eiT)2/2J ch1va(—iTw) A Av(TR) (4.115)

g a=1 M

which is a non-abelian version of the quadratic localization formula (4.112) and is the

path integral generalization of the Witten localization formula presented in Section 3.8.

As such, it can be applied to problems such as geodesic motion on group manifolds, and

in particular it reproduces the results of Picken [110] in the Hamiltonian framework [127].

In these cases there is the natural G-invariant metric g = tr\ ® A) defined on the group

manifold of 0, where A = h’dh is the adjoint representation of the Cartan-Maurer 1-

form which takes values in the Lie algebra g of G. It therefore also applies to the basic

integrable models such as 2-dimensional Yang-Mills theory, supersymmetric quantum

mechanics and Calegero-Moser type theories. These describe the quantum mechanics of

integrable models related to Harniltonian reduction of free field theories [38, 49]. Notice

that, however, the primary difference between this non-abelian localization and its abelian

counterpart is that in the latter the functional F() is a priori arbitrary.

4.9 Topological Quantum Field Theories

In this last Section of this Chapter, we return to the case where the dual basis elements

of S(g*) are fixed numbers. We wish to study the properties of the quantum theory

when the effective action is BRST-exact as in (4.46) locally on the ioop space [70, 100].

In this case the quantum theory is said to be topological, in that there are no physical

degrees of freedom and the remaining partition function can only describe topological

invariants of the space on which it is defined [17]. We shall see this explicitly below,
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and indeed we have already seen hints of this in the expressions for the path integral

in terms of equivariant characteristic classes above. To get a flavour for this, we first

consider a quantum theory that admits a model independent circle action globally on the

loop space, i.e. whose ioop space Hamiltonian vector field generates a global constant

velocity U(1) action on LM, so that its action is given locally by (4.66). In this case, the

determinant that appears in the denominator of the WKB localization formula (4.70) is

det fr2S = det IIS(c. th)I det IIQãtII (4.116)
r=O X=o

where the localization is now onto the constant ioops xo e M. Since the determinants

on the right-hand side of (4.70) now cancel modulo the factor det only the zero

modes of O can contribute. Thus the (degenerate) WKB localization formula in this

case becomes

Z(T) IMd2x0 IötIIi/det II=oII (4.117)

and only the zero modes of the symplectic 2-form contribute. Since, as discussed in Sec

tion 4.5 above, this path integral yields the topological Witten index of the corresponding

supersymmetric theory [132], the localization formula identifies the loop space charac

teristic class which corresponds to the Witten index of which the ensuing Atiyah-Singer

index counts the zero modes of the associated Dirac operator. This is one of the new

insights gained into supersymmetric theories from the equivariant localization formal

ism. In Section 4.5 we argued that this was a purely cohomological representative of the

manifold M which contained no physical information.

We now consider the general case of an equivariantly-exact action (4.46). Note that

this is precisely the solution to the problem of solving the loop space equivariant Poincaré

lemma for S + ft If we assume that the symplectic potential is invariant under the global

U(l)-action on M, as in (3.26), then the Hamiltonian is given by H = and the loop

space 1-form t9 in (4.46) is given by

=
1T

O(x(t))(t) (4.118)
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The ioop space localization principle naively implies that the resulting path integral

should be trivial. Indeed, since the 1-form (4.118) lies in the subspace (4.43), the partition

function can be written as

Z(T)
= f [d2’x] [d2N] e’ (4.119)

LMØLA’ M

and it is independent of the parameter A E 1R. In particular, it should be independent

of the action S.

However, the above argument for the triviality of the path integral assumes that 0

is homotopic to 0 in the subspace (4.43) under the supersymmetry generated by Qs,

i.e. that (4.46) holds globally for all loops. For the remainder of this Chapter we will

assume that the manifold M is simply connected, so that H’(M; IR) = 0. Then the

above argument presumes that the second DeRham cohomology group H2(M; IR) = 0 is

trivial. If this is not the case, then one must be careful about arguing the A-independence

of the path integral (4.119). Consider the family of symplectic 2-forms

= AdO = (4.120)

associated with the action in (4.119). We consider a closed ioop 7 in the phase space

M parametrized by the periodic trajectory x(t) : [0, Tj — M. Since by assumption 7
is the boundary of a 2-surface E1 in M, Stokes’ theorem implies that the kinetic term
e(A)

= A0 in (4.119) can be written as

1T
O(x(t))th(t) = jo()

=
(4.121)

For consistency of the path integral (4.119), which is expressed as a sum over closed loops

in M, the phase (4.121) must be independent of the representative surface > spanning

7, owing to the topological invariance of the partition function Z(T) over LM. Thus if

we introduce another surface 2 with boundary 7 and let E be the closed surface (sphere)

which is divided into 2 halves >i and E2 by 7, we must have

= e*12L (4.122)
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and consequently the integral of over any closed orientable surface E in M must

satisfy a version of the Dirac or Wess-Zumino-Witten quantization condition [133j

--51 =
-- 51 w E ZZ (4.123)

2lrE 2lrE

This means that w” is an integral element of H2(M; Ia), i.e. it defines a integer

cohomology class in H2(M; ), which is possible only for certain discrete values of ) e
1R. It follows that a continuous variation S.) of ). cannot leave the path integral (4.119)

invariant and it depends non-trivially on the localization 1-form t9 and thus also on

the action S.

Thus the path integral (4.119) defines a consistent quantum theory only when the

symplectic 2-form (4.120) defines an integral curvature on M. However, if we introduce

a variation 0 —* 0 + 0 of the symplectic potential in (4.119) corresponding to a variation

— ‘+w with w = da a trivial element ofH2(M; IR) in the subspace (4.43), then the

localization principle implies that the path integral remains unchanged. Thus the path

integral depends only on the cohomology class of w in H2(M; IR), not on the particular

representative w = dO, which means that the partition function (4.119) determines a

cohomological topological quantum field theory on the phase space M.

Furthermore, we note that within the framework of the Niemi-Tirkkonen localization

formula, the BRST-exact term QsRcb + 9), with z given by (4.118) and ib given in

(4.77), gives the effective action in the canonical localization integral (4.51). We showed

in Section 4.5 that the Qj-exact piece of this action could be identified with a Dirac

operator D in the background of a U(1) gauge field O and a gravitational field. The

remaining terms there, given by the iv-exact pieces, then coincide with the terms that one

expects in a supersymmetric path integral representation of the infinitesimal Lefschetz

number (or equivariant G-index)

indexH(D; T) = urn trI eiTH( e_t) — e_At)I (4.124)

for the Hamiltonian H [16, 18, 19, 97, 101]. This number is a regulated measure of the
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number of zeroes of H (fixed points of Consequently, in the case of Hamiltonian

systems for which £vg £vO = 0, the Niemi-Tirkkonen localization formula (4.91)

reproduces the Lefschetz fixed point formulas of Bismut [18, 19] and Atiyah, Bott and

Singer [35], provided that boundary conditions for the path integral have been properly

selected. Thus a purely bosonic theory can be related to the properties of a (functional)

Dirac operator defined in the canonical phase space of the bosonic theory, and this

analogy leads one to the hope that the above localization prescriptions can be made

quite rigorous in a number of interesting infinite-dimensional cases. Note also that the

path integral (4.119) has the precise form of a Witten-type or cohomological quantum

field theory, which is characterized by a classical action which is BRST-exact with the

BRST charge Qs representing gauge and other symmetries of the classical theory. These

types of topological field theories are known to have partition functions which are given

exactly by their semi-classical approximation — more precisely, they admit Nicolai maps

which trivialize the action and restrict to the moduli space of classical solutions [17].

Thus the topological and localization properties of supersymmetric and topological field

theories find their natural explanation within the framework of ioop space equivariant

localization.

Of course, the above results rely heavily on the symplecticity condition (3.26) for the

symplectic potential 0. In the general case, we recall from Section 3.2 that we have the

relation (3.46) which holds locally in a neighbourhood .iV in M away from the critical

points of H and in which w = dO. In this case, (3.46) gives a solution to the equivariant

Poincaré lemma and although the action is locally BRST-exact, globally the quantum

theory is non-trivial and may not be given exactly by the WKB approximation. Then

the path integral (4.51) has the precise form of a gauge-fixed topological field theory,

otherwise known as a Schwarz-type or quantum topological field theory [17], with Qs the

BRST charge representing the gauge degrees of freedom. With t as in (4.118), the ioop
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space equivariant symplectic 2-form can be written in the neighbourhood LJ/ as

S + 1 = Qs( + dLF)
— j dF(x(t)) (4.125)

and the path integral can be represented locally as

Z(T)
= J [d2xJ [d2] ei dLF)_ij dF)

(4.126)
LM®LA’ M

If we assume that M is simply connected, so that H1(M; IR) = 0, then the dF term in

(4.126) can be ignored for closed trajectories on the phase space9. Since from (4.125) we

have

+ dLF) = Qs(S + 1) = 0 (4.127)

it follows that i9 + dLF E LAM and the effective classical action S + Q is equivariantly

exact in the neighbourhood LIV. If we interpret the coefficient in front of the Qs-exact

term as Planck’s constant /l, then this is just another way of seeing that the semi-classical

approximation for these supersymmetry-type models is exact.

The non-triviality of the path integral now depends on the non-triviality that oc

curs when the local neighbourhoods Al above are patched together. In particular, we

can invoke the above argument to conclude that the partition function (4.126) depends

only on the cohomology class of w in H2(M; IR), in addition to the critical point set

of the action S. Thus the partition function in the general case locally determines a

cohomological topological quantum field theory. From the discussion of Section 3.6 we

see that this is consistent with the fact that the theory is locally integrable outside of

the critical point set of H. We recall also from that discussion that in a neighbourhood

Al where action-angle variables can be introduced and where H does not have any crit

ical points, we can construct an explicit realization of the function F above and hence

an explicit realization of the topological quantum theory (4.126). For integrable models

9This term is analogous to the instanton term F A F in 4-dimensional Yang-Mills theory which can
be represented as a locally exact 1-form and is therefore non-trivial only for space-times which have
non-contractable loops [1181.
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where action-angle variables can be defined almost everywhere on the phase space M,

the ensuing theory is topological, i.e. it can be represented by a topological action of the

form (4.125) almost everywhere on the loop space LM. Notice that all of the above ar

guinents stem from the assumption that H’ (M; IR) = 0. In Chapter 6 we shall encounter

a cohomological topological quantum field theory defined on a multiply-connected phase

space which obeys all of the equivariant localization criteria. We also remark that in the

general case above, when ‘ is not globally exact, the Wess-Zumino-Witten prescription

above for considering the action (4.25) in terms of surface integrals as in (4.121) makes

rigorous the definition of the partition function on a general symplectic manifold, a point

which up until now we have ignored for simplicity. In this case the required consistency

condition (4.123) means that w itself defines an integral curvature, which is consistent

with the usual ideas of geometric quantization [136]. We shall see how this prescription

works on a multiply-connected phase space in Chapter 6.



Chapter 5

Equivariant Localization on Simply Connected Phase Spaces

When the phase space M of a dynamical system is compact, the condition that the

Hamiltonian vector field V generate a global isometry of some Riemannian geometry on

M automatically implies that its orbits must be closed. This feature is absolutely essen

tial for the finite-dimensional localization theorems, but within the loop space localization

framework, where the arguments for localization are based on formal supersymmetry ar

guments on the infinite-dimensional manifold LM, the flows generated by V need not

be closed and indeed many of the formal arguments of the last Chapter will still ap

ply to non-compact group actions. For instance, if we wanted to apply the localization

formalism to an n-dimensional potential problem, i.e. on the non-compact phase space

M 2n, then we would certainly be allowed to use a Hamiltonian vector field which

generates non-compact global isometries. As we have already emphasized, the underlying

feature of equivariant localization is the interpretation of an equivariant cohomological

structure of the model as a supersymmetry among the physical, auxilliary or ghost vari

ables. But as shown in Section 4.2, this structure is exhibited quite naturally by arbitrary

phase space path integrals, so that, under the seemingly weak conditions outlined there,

this formally results in the equivariant localization of these path integrals. This would

in turn naively imply the exact computability of any phase space path integral.

Of course, we do not really expect this to be the case, and there is therefore the

need to explore the loop space equivariant localization formalism in more detail to see

precisely what sort of dynamical systems will localize. In this Chapter we shall explore

the range of applicability of the equivariant localization formulas, a problem that was

135
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first tackled in some generality in [34] and in [125]. As we shall see, the global isometry

condition on the Hamiltonian dynamics is a very restrictive one, essentially meaning that

H is related to a global group action (2.32). The natural examples of such situations are

the harmonic oscillator and free particle Hamiltonians on IR2, and the quantization of

spin [94] (i.e. the height function on the sphere), or more generally the quantization of

the coadjoint orbits of Lie groups [3, 21, 70, 102, 123, 125] and the equivalent Kirillov

Kostant geometric quantization of homogeneous phase space manifolds [1, 2]. Indeed,

the exactness of the semi-classical approximation (or the Duistermaat-Heckman formula)

for these classes of phase space path integrals was one of the most important inspirations

for the development of quantum localization theory and these systems will be extensively

studied in this Chapter, along with some generalizations of them. We shall see that the

Hamiltonian systems whose phase space path integrals can be equivariantly localized

essentially all fall into this general framework, and that the localization formulas always

represent deep, group-theoretical invariants called characters, i.e. the traces tr g =

tr eca evaluated in an irreducible representation of a group 0 which are invariant

under similarity transformations representing equivalent group representations, and they

reproduce, in certain instances, some classical formulas for these characters [71]. In our

case the group G will be the group of isometries of a Riemannian structure on M.

As it is essentially the isometry group G that determines the integrable structure of

the Hamiltonian system in the equivariant localization framework, we shall study the

localization framework from the point of view of what the possible isometries can be for

a given phase space manifold. A detailed analysis of this sort will lead to a geometrical

characterization of the integrable dynamical systems from the viewpoint of localization

and will lead to topological field theoretical interpretations of integrability, as outlined

in Section 4.9. It also promises deeper insights into what one may consider to be the ge

ometrical structure of the quantum theory. This latter result is a particularly interesting

characterization of the quantum theory because the partition functions considered are
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all ab initio independent of any Riemannian geometry on the underlying phase space (as

are usually the classical and quantum mechanics). Nonetheless, we shall see that for a

given Riemannian geometry, the localizable dynamical systems depend on this geometry

in such a way so that they determine Hamiltonian isometry actions.

Most of what is said in this Chapter and the next is only true for a 2-dimensional phase

space, as will become clear from the ensuing analysis. The reason for this is two-fold.

First of all, the topological and geometrical classifications of Riemann surfaces is a com

pletely solved problem from a mathematical point of view. We may therefore invoke this

classification scheme to in turn classify the Hamiltonian systems which fit the localization

framework. Such a neat mathematical characterization of higher dimensional manifolds

is for the most part an unsolved problem (although much progress has been made over

the last 7 years or so in the classification of 3- and 4-manifolds), so that a classification

scheme such as the one that follows does not generalize to higher-dimensional models.

In 2-dimensions, in fact, we shall see that from certain points of view all the localizable

Hamiltonians represent “generalized” harmonic oscillators, a sort of feature that is an

ticipated from the previous integrability arguments and the local forms of Hamiltonians

which generate circle actions. These seemingly trivial behaviours are the essence behind

the reduction of the complicated functional integrals to Gaussian ones.

Secondly, the restriction to 2-dimensions allows us to carry out functional integra

tions rather straightforwardly without some of the annoyances that appear from the

higher-dimensionality of a problem. Thus we can analyse in full detail the localization

formulas of the last Chapter, which will therefore give explicit examples of the coho

mological and integrable models that appear quite naturally in ioop space equivariant

localization theory. This analysis will also provide new integrable quantum systems, as

we shall see, which fall into the class of the generalized localization formulas (e.g. the

Niemi-Tirkkonen formula (4.91)), but not the more traditional WKB approximation.

Such examples represent a major, non-trivial advance of localization theory. We shall
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also encounter a naive ambiguity in the localization formulas which in general manifests

itself in a coordinate singularity and makes the characteristic class representation of the

partition function appear to be explicitly metric-dependent [34, 125].

At the same time we can address some of the issues that arise when dealing with phase

space path integrals, which are generally regarded as rather aisreputable because of the

unusual discretization of momentum and configuration paths that occurs (in contrast to

the more conventional configuration space (Langrangian) path integral [116]). For in

stance, we recall from Section 4.1 that the general identification between the Schrödinger

picture path integral and loop space Liouville measures was done rather artificially, ba

sically by drawing an analogy between them. For a generic phase space path integral

to represent the actual energy spectrum of the quantum Hamiltonian, one would have

to carry out the usual quantization of generic Poisson brackets {x’, x’} =

However, unlike the Heisenberg canonical commutation relations (4.1), the Lie algebra

generated by this procedure is not necessarily finite-dimensional and so the representa

tion problem has no straightforward solution when the phase space is not a cotangent

bundle M 0 A’M [79], as is the case for a Euclidean configuration space. This approach
is therefore hopelessly complicated and in general hardly consistent. One way around
this, as we shall see, is to use instead coherent state path integrals. This enables one to
obtain the desired identification above while maintaining the original phase space path
integral, and therefore at the same time keeping a formal analogy between the finite
dimensional and loop space localization formulas. Furthermore, because of their classical
properties, coherent states are particularly well-suited for semi-classical studies of quan

tum dynamics. We shall see that all the localizable dynamical systems in 2-dimensions

have phase space path integrals that can be represented in terms of coherent states, thus
giving an explicit evaluation of the quantum propagator and the connection with some
of the conventional coadjoint orbit models.
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In this Chapter we shall in addition confine our attention to the case of a simply-

connected phase space, leaving the case where M can have non-contractible loops for the

next Chapter. In both cases, however, we shall focus on the construction of localizable

Hamiltonian systems starting from a generic phase space metric, which will illustrate

explicitly the geometrical dependence of these dynamical systems and will therefore give

a further probe into the geometrical nature of (quantum) integrability. In this way, we

will get a good general idea of what sort of phase space path integrals will localize and

what sort of topological field theories the localization formulas will represent.

5.1 Coadjoint Orbit Quantization and Character Formulas

There is a very interesting class of cohomological quantum theories which arise quite

naturally within the framework of equivariant localization. These will set the stage for

the analysis of this Chapter wherein we shall focus on the generic equivariant Hamiltonian

systems with simply connected phase spaces. For a (compact or non-compact) semi-

simple Lie group G (i.e. one whose Lie algebra g has no abelian invariant subalgebras),

we are interested in the coadjoint action of G on the coset space MG = G/Hc, where

Hc is the Cartan subgroup of 0 . The coadjoint orbit

= {Ad*(g)AI : g e G} MG (5.1)

is the orbit of maximal dimensionality of 0. Here Ad*(g)A denotes the coadjoint action

of 0 on A’, i.e.

(Ad*(g)AI) (y) = A’(g17g) , V7 g (5.2)

We assume henceforth that H2(G) = 0. There is a natural G-invariant symplectic struc

ture on the coadjoint orbit (5.1) which is defined by the Kirillov-Kostant 2-form [1, 2].

This 2-form at the point A g* is given by

WA = A([T ) (5.3).

‘The coset obtained by quotienting a Lie group by a maximal torus is often called a flag manifold.
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where T is a 1-form with values in the Lie algebra g which satisfies the equation

cIA = ad*(T)A (5.4)

and ad*(T) denotes the infinitesimal coadjoint action of the element ‘T E g.

The 2-form (5.3) is closed and non-degenerate on the orbit (5.1), and by construction

the group G acts on °A’ by symplectic (canonical) transformations with respect to the

Kirillov-Kostant 2-form. Its main characteristic is that the Poisson algebra with respect

to (5.3) isomorphically represents the group G,

{Xl(A),X2(A)}WA = [X1,X2](A) (5.5)

where X: E g are regarded as linear functionals on the orbit °A’ with X(A) A(X).

Alekseev, Faddeev and Shatashvili [1, 2] have studied the phase space path integrals

for such dynamical systems with Hamiltonians defined on the coadjoint orbit (5.1) (e.g.

Cartan generators of g) and have shown that, quite generally, the associated quantum

mechanical matrix elements correspond to matrix elements of the Hamiltonian generator

of g in some irreducible representation of the group G. We shall see this feature explicitly

later on.

There is a much nicer description of the orbit space (5.1) using its representation

as the quotient space MG = G/H0 [57]. The orbit (5.1) has the topological features

H’(MG; ZZ) = 0 and H2(MG; 7Z) r where r = dimHc is the rank of G and
r corresponds to the lattice of roots of H [128]. We can introduce local complex

coordinates (zn, 2) on MG which are generated by a complex structure on MG 2 The

cohomology classes in H2(MG; ZZ) are then represented by the r closed non-degenerate

2-forms

= g(z, )dz A d (5.6)

2Here the complexification of the group G is defined by exponentiating the complexification g ® C of
the finite-dimensional vector space g.
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The components g of (5.6) deftne Hermitian matrices, g = g, and the non-degeneracy

condition implies that they define metrics on MG by

() =g(z,)dz’®dY (5.7)

The closure condition on the 2-forms (5.6) can be written in terms of the holomorphic

and anti-holomorphic components

d=o+O (5.8)

of the exterior derivative as

9w = = 0 (5.9)

The holomorphic exterior derivative 0 is called the Dolbeault operator, and the analogue

of the Poincaré lemma for the Dolbeault operator is the Dolbeault-Grothendieck lemma.

Since the 2-forms in the case at hand are closed under both 0 and 0, the Dolbeault

Grothendieck lemma implies that locally they can be expressed in terms of C°°-functions

F(t) on MG as

= —i0OF (5.10)

or in local coordinates

() — 02F()(z, )g(z,z)
=

(5.11)

In general, a complex manifold (i.e. one where the C°° overlap functions on can

be taken to be holomorphic) with a symplectic structure such as (5.6) is called a Kähler

manifold. The closed 2-forms (5.6) are then referred to as Kähler classes or Kähler 2-

forms, the associated metrics (5.7) are called Kähler metrics, and the locally-defined

functions F(z) in (5.11) are called Kähler potentials. For an elementary, comprehensive

introduction to complex manifolds and Kähler structures, we refer to [35] and [51]. In

the case at hand here, the above construction yields a G-action on MG by symplectic

(canonical) transformations [57], i.e. holomorphic functions f(z) on MG which act on

the Kähler potentials by

F)(z, ) fr()(z, ) = F(z, ) + f() + J() (5.12)
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Consequently, the closed 2-forms w1 define G-iuvariant integral symplectic structures on

MG. Since H2(G; IR) = 0, the 2-cocycles in (3.38) vanish and this G-action determines

group homomorphisms into the Poisson algebras of M. This also follows directly from

the property (5.5) of the Kirillov-Kostant 2-form above.

The generators of 0 in the Cartan basis have the non-vanishing Lie brackets

NcEa+p ,

[H:,EaJ=ajEa , [Ea,E] r (5.13)

where a, 3 are the roots of g, H: = H, i = 1,. . . , r, are the generators of the Cartan

subalgebra h 0 C of g 0 C, and Ea = EL are the step operators of g which act as

raising operators by a > 0 (relative to some Weyl chamber) on the representation states

which diagonalize the Cartan generators. The unitary irreducible representations of 0

are characterized by highest weights A, i = 1,... , r, which is an eigenvalue of H whose

eigenvector is annihilated by all the E0, for a> 0. Corresponding to each highest weight

vector A = (A1,. . . , Ar) we introduce the G-invariant symplectic 2-form

=
(5.14)

The symplectic potentials associated with (5.14) are

=
— d) + dF (5.15)

To construct a topological path integral from this symplectic structure, we need to

construct a Hamiltonian satisfying (3.27), i.e. a Hamiltonian which is given by generators

of the subalgebra of g which leave the symplectic potential (5.15) invariant. These are

the canonical choices that give well-defined functions on the coadjoint orbit (5.1). As

remarked at the end of Section 3.2, there usually exists a choice of function F(z, ) in

(5.15) for which this subalgebra contains the Cartan subalgebra h of g. Let H be the

generators of h in the representation with highest weight A. Then the Hamiltonian

=

(5.16)
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satisfies the required conditions and the corresponding path integral will admit the topo

logical form (4.119). Note that this is also consistent with the integrability arguments of

the previous Chapters, which showed that the localizable Hamiltonians were those given

by the Cartan generators of an isometry group G. Thus the path integral for the above

dynamical system determines a cohomological topological quantum field theory which

depends only on the second cohomology class of the symplectic 2-form (5.14), i.e. on the

representation with highest weight A = X1,. . . ,Ar).

To apply theequivariant localization formalism to these dynamical systems, we note

that since the Kähler metrics g() above are G-invariant, the metric

gP) =
Ag(i) (5.17)

obeys the usual localization criteria. We shall soon see that these group theoretic struc

tures are in fact implied by the localization constraints, in that they are the only equivari

ant Hamiltonian systems associated with homogeneous symplectic manifolds as above.

We want to apply the Niemi-Tirkkonen localization formula (4.91) to the dynamical

system above. The tangent and normal bundles of °A’ in g* are related by [16]

TA,g* = TOAI .A/OA’ = OA’ x (5.18)

From the construction of the coadjoint orbit it follows that the normal bundle AIOA’

in g* is a trivial bundle with trivial C-action on the fibers, and product °A’ x g* is a

trivial bundle with the coadjoint action of G in the fibers. Thus using (2.75) and the

multiplicativity property (2.80), we can write the C-equivariant A-genus of the orbit °A’

as

__________________

I adX 1
= Idet . (5.19)

sinh(ad X) j(ad X)

where ad X is the Cartan element X E h in the adjoint representation of g. If we now

choose the radius of the orbit to be the Weyl shift of the weight A, i.e. A’ = A + p where

1
(5.20)

‘ a>O
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is the half-sum of positive roots of G, then the localization formula (4.91) is none other

than the celebrated Kirillov character formula [71]

trx
= 1

j
(w(X))n

eiTH (5.21)
Jj(ad TX) O+

where try, denotes the trace in the representation with highest weight A and is the

Hamiltonian (5.16) associated with the Cartan element X E h. If we further apply

the finite-dimensional Duistermaat-Heckman theorem to the Fourier transform of the

orbit on the right-hand side of (5.21) (i.e. the localization formula (4.97)) we arrive at

the famous Harish-Chandra formula [16, 56]. These applications of the Duistermaat

Heckman theorem have been exploited recently in unitary matrix models to prove the

Itzykson-Zuber formula and its generalizations [87].

The resulting character formula associated with the Harish-Chandra formula for the

Fourier transform of the orbit is the Weyl character formula of G [1]—[3],[44, 71, 94,

113, 123]. Let W(Hc) N(Hc)/Hc be the Weyl group of H, where N(Hc) is the

normalizer subgroup of H, i.e. the subgroup of g e 0 with hgHc = gHc, Yh E

so that N(H) is the subgroup of fixed points of the left action of H on the orbit

MG G/Hc. Given w nH E W(H), with n = eiN E N(H), let X(w) = n’Nn

be the respective adjoint representation = n’ The Weyl character formula

can then be written as

trA eiTX = ‘ 2 na(X(m)) (5.22)
wEW(H) 2

where a(X(w)) are the roots associated to the Cartan elements X(u). We shall see explic

itly later on how these character formulas arise from the equivariant localization formulas

of the last Chapter, but for now we simply note here the deep group theoretical signifi

cance that the localization formulas will represent for the path integral representations

of the characters tr eITX. Note that the Weyl character formula writes the character of

a Cartan group element as a sum of terms, one for each element of the Weyl group, the
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group of symmetries of the roots of the Lie algebra g. In the context of the formalism of

Chapter 4, the Weyl character formula will follow from the coadjoint orbit path integral

over LOA+. It was Stone [123] who first related this derivation of the Weyl character

formula to the index of a Dirac operator from a supersymmetric path integral and hence

to the semi-classical WKB evaluation of the spin partition function, as we did quite gen

erally in Section 3.5 above3. The path integral quantization of the coadjoint orbits of

semi-simple Lie groups is essential to the quantization of spin systems. One important

feature of the above topological field theories is that there is a one-to-one correspondence

between the points on the orbits G/Hc and the so-called coherent states associated with

the Lie group G in the representation with highest weight vector A [108]. The above

character formulas can therefore be represented in complex polarizations using coher

ent state path integrals. We shall discuss these and other aspects of the path integral

representations of character formulas later on in this Chapter.

We close our general discussion of these important classes of cohomological quantum

field theories with a technical poillt concerning the above derivation. From the point

of view of path integral quantization, the necessity of performing a Weyl shift A —

A + p in the above is rather unsatisfactory. As we shall see, the Weyl character formula

follows directly from the WKB formula for the spin partition function [123], and a proper

discretization of the trace in (5.21) really does give the path integral over the orbit 0,,

[2, 94]. The Weyl shift is in fact an artifact of the regularization procedure [2, 84, 94, 113,

126] utilized in Section 4.5 in evaluating the fluctuation determinant there which lead

to the Niemi-Tirkkonen localization formula (4.91), which leads directly to the Kirillov

character formula (5.21). As the A-genus is inherently related to tangent bundles of

real manifolds, the problem here essentially is that the regularization used in Section 4.5

does not respect the complex structure defined on the orbit. We shall see later on how

a coherent state analysis avoids this problem, but for now we note that the proper way

3The derivation of Stone has been generalized by Perret [109] to the Weyl-Kac character formula for
Kac-Moody algebras (i.e. loop groups).
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to carry out the regularization procedure here is to attach different signs to the factors

of b in Section 3.5 (see (4.87)) corresponding to the holomorphic and antiholomorphic

sectors in the regularization (4.85),(4.87) [84]. This restores the holomorphic properties

of the path integral wherein the skew-eigenvalues (Aj, —As) of the block R3 correspond,

respectively, to the holomorphic and anti-holomorphic components of the equivariant

curvature 2-form. The correct way to treat the complex tangent bundle here is to then

restrict to the holomorphic component of this curvature [16, 31, 84]. In doing this, the

fluctuation determinant in (4.83) is not under a square root in this complex case, because

now it arises from Berezin integration over complex Grassmann variables.

Taking the fluctuation regularization factor of Section 4.5 to be b = , the evaluation

of the fluctuation determinant in (4.83) leads instead to the equivariant Todd class (2.79)

of the complex tangent bundle. Then we arrive at a character formula without an explicit

Weyl shift,

tr eiTX
= J chv (—iTw) A tdv(A) (TRw) (5.23)

which can be derived as well from the coadjoint orbit path integral over LOA (as opposed

to LO+ as in (5.21)). We shall discuss the topological interpretation of (5.23) in section

5.4. The choice of regulating factor b = above is also consistent with a careful evalua

tion of the effect of the eta-invariant (4.84) associated with the phase of the fluctuation

determinant [84].

5.2 Isometry Groups of Simply Connected Riemannian Spaces

Given the large class of localizable dynamical systems of the last Section and their novel

topological and group theoretical properties, we now turn to an opposite point of view

and begin examining what Hamiltonian systems in general fit within the framework of
equivariant localization. For this we shall analyse the fundamental isometry condition
on the physical theory in a quite general setting, and show that the localizable systems
“essentially” all fall into the general framework of the coadjoint orbit quantization of the
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last Section. Indeed, this will be consistent with the integrability features implied by the

equivariant localization criteria.

We consider a simply-connected, connected and orientable Riemannian manifold

(M, g) of dimension d (not necessarily symplectic for now) and with metric g of Eu

clidean signature, for definiteness. The isometry group I(M,g) is the diffeomorphism

subgroup of C°° coordinate transformations x —+ z’(x) which preserve the metric distance

on M, i.e. for which g(x’) = g,(x’). The generators of the connected component4of

I(M, g) form the vector field Lie algebra

JC(M,g) = {V E TM : £vg = O} (5.24)

whose generators va obey the commutation relations (2.43). For a generic simply-

connected space, the Lie group I(M, g) is locally compact in the compact-open topology

induced by M [57]. In particular, if M is compact then so is I(M,g).

We shall now quickly run through some of the basic facts concerning isometries of

simply-connected Riemannian manifolds, all of whose proofs can be found in [36, 37, 57,

125, 129]. First of all, the number of linearly independent Killing vectors (i.e. generators

of (5.24)) is bounded as

dimK(M,g) <d(d + 1)/2 (5.25)

when M has dimension d, so that the infinitesimal isometries of (M, g) are therefore

characterized by finitely-many linearly independent Killing vectors in JC(M, g). There

are 2 important classes of metric spaces (M, g) characterized by their possible isometries.

We say that a metric space (M, g) is homogeneous if there exists infinitesimal isometries

V that carry any given point x M to any other point in its immediate neighbourhood.

(M, g) is said to be isotropic about a point x E M if there exists infinitesimal isometries

V that leave the point x fixed, and, in particular, if (M, g) is isotropic about all of its

4Here and in the following we shall always ignore the discrete isometries of (M, g), such as reflections,
since these cannot be represented as continuous flows of vector fields on M and so are not of particular
use to us.
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points then we say that it is isotropic. The homogeneity condition means that the metric

g must admit Killing vectors that at any given point of M take on all possible values (i.e.

any point on M is geometrically like any other point). The isotropy condition means

that an isotropic point x0 of M is always a fixed point of an I(M,g)-action on

V(xo) = 0 for some V E K(M,g), but whose first derivatives take on all possible values,

subject only to the Killing equation £vg = 0.

It follows that a homogeneous metric space always admits d = dim M linearly in

dependent Killing vectors (intuitively generating translations in the d directions), and

a space that is isotropic about some point admits d(d — 1)/2 Killing vector fields (in

tuitively generating rigid rotations about that point). The connection between isotropy

and homogeneity of a metric space lies in the fact that any metric space that is isotropic

is also homogeneous. The spaces which have the maximal number d(d + 1)/2 of linearly

independent Killing vectors enjoy some very special properties, as we shall soon see. We

shall refer to such spaces as maximally symmetric spaces. The above dimension counting

shows that a homogeneous metric space that is isotropic about some point is maximally

symmetric, and, in particular, any isotropic space is maximally symmetric. The converse

is also true, i.e. a maximally symmetric space is homogeneous and isotropic. We shall

therefore also refer to maximally symmetric spaces as simply homogeneous. In these

cases, there is only one orbit under the I(M, g)-action on M, i.e. M can be represented

as the orbit M = I(M, g) . x of any element x E M, and the space of orbits M/I(M, g)

consists of only a single point. In this case we say that the isometry group I(M, g) acts

transitively on M.

We shall now describe the rich features of maximally symmetric spaces. It turns

out that these spaces are uniquely characterized by a special curvature constant K.

Specifically, (M, g) is a maximally symmetric Riemannian manifold if and only if there

exists a constant K JR such that the Riemann curvature tensor of g can be written
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locally almost everywhere as

— gpg)) (5.26)

In dimension d 3, Schur’s lemma [57] states that the existence of such a form for the

curvature tensor automatically implies the constancy of K. For d = 2, however, this

is not the case, and indeed dimension counting shows that the curvature of a Riernann

surface always takes the form (5.26). In this case K is called the Gaussian curvature

of (M, g) and it is in general not constant. The above result implies that the Gaussian

curvature K of a maximally symmetric simply connected Riemann surface is constant.

The amazing result here is the isometric correspondence between maximally symmet

ric spaces. Any 2 maximally symmetric spaces (M1,gi) and (M2,g) of the same dimen

sion and with the same curvature constant K are isometric, i.e. there exists a diffeomor

phism f : M1 —* M2 between the 2 manifolds relating their metrics by gi(x) =g2(f(x)).

Thus given any maximally symmetric space we can map it isometrically onto any other

one with the same curvature tensor (5.26). We can therefore model maximally symmetric

spaces by some “standard” spaces, which we now proceed to describe. Consider a flat

(d + 1)-dimensional space with coordinates (x’s, z) and metric

1 1
71d+1 = 0 dxL + kdz 0 dz (5.27)

where K is a real-valued constant. A d-dimensional space can be embedded into this

larger space by restricting the variables XL and z to the surface of a (pseudo-)sphere,

sgn(K)x2+ z2 = 1 (5.28)

Using (5.28) to solve for z(x) and substituting this into (5.27), the metrjc induced on the

surface by this embedding is then

(dx 0 dx + ® dxv) for K >

gK= for K<O (5.29)

dx,Odx for K=O
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These 3 cases represent, respectively, the standard metrics on the d-sphere S’ of radius

K112, the hyperbolic Lobaschevsky space Hd of constant negative curvature K, and

Euclidean d-space lRd with its usual flat metric liEd.

From the embedding condition (5.28) and the manifest invariances of the embedding

space geometry (5.27) it is straightforward to show that the above spaces all admit a

d(d + 1)/2-parameter group of isometries. These consist of d(d — 1)/2 rigid rotations

about the origin and d (quasi-)translations. The first set of isometries always leave some

points on the manifold fixed, while the second set translate any point on M to any

other point in its vicinity. The 3 spaces above are there the 3 unique (up to isometric

equivalence) maximally symmetric spaces in d-dimensions, and any other maximally

symmetric space will be isometric to one of these spaces, depending on whether K = 0,

K> 0 or K < 0. It is this feature of maximally symmetric spaces that allows the rather

complete isometric correspondence that follows. The Killing vector fields that generate

the above stated isometries are, respectively,

(cxv + c [i
— sgn(K)x2]h/2)

—— for K
VK

= a (5.30)
(1x”+c)— for K=0

where = — and &‘ are real-valued parameters. These Killing vectors generate the

respective isometry groups

I(S”) = SO(d + 1) , 1(1..1d)
= SO(d, 1) , I(lRj = Ed (5.31)

where Ed denotes the Euclidean group in d-dimensions, i.e. the semi-direct product of

the rotation and translation groups in Rd SO(d + 1) is the rotation group of Rd,

and SO(d, 1) is the Lorentz group in (d + 1)-dimensional Minkowski space. From this

we see therefore what sort of group actions should be considered within the localization

framework for maximally symmetric spaces. Note that the maximal symmetry of the

spaces Sd and d are actually implied by that of 1W’, because S’ can be regarded as the

one-point compactification of Rd i.e. 5d = Rd U {oo}.
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Our final general result concerning Killing vectors on generic d-dimensional simply

connected manifolds is for the cases where the isometry group of (M,g) has the op

posite feature of maximal symmetry, i.e. when Z(M, g) is 1-dimensional. Consider a

1-parameter group of isometries acting on the metric space (M, g). Let V = V(x)

TM be a generator of I(M,g), and let x(x) be differentiable functions on M such that

the change of variables x’ = x(x) has non-trivial Jacobian

det 0 (5.32)

For u = 2,.. . , d we can choose the diffeomorphisms x(x) to in addition be the d — 1

linearly independent solutions of the first order linear homogeneous partial differential

equation

V() = Vvax = 0 , (5.33)

given by the constant coordinate lines X(x) = constant embedded into M from 1R’.

The functions x(x) for u = 2,. . . , d also have an invertible Jacobian matrix since then

rank2<,<d j—;- =d—1 (5.34)

which owes to the existence of paths under the flow of the isometry group such that

dx1 dx2 dx°
(5.35)

as implied by (5.33) and the flow equation (2.42).

If we now choose the function x’(x) so that 0 for = 1,. . . , d, then the

coordinate transformation x —+ x’(x) = x(x) changes the components of the vector

field V to

= VM__XI (5.36)

It follows from (5.33) that in these new x’-coordinates V therefore has components V”

0 and V’ = 0 for ,ii = 2,. . . , d. Now further change coordinates x’ —+ x” defined by

‘ dx”
X =

V’1(x’)
x” = x’ = x for = 2,. . . , d (5.37)
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where x0 is a fixed basepoint in M. In this way we have shown that, in the case of a 1-

parameter isometry group action on (M, g), there exists a local system of x”-coordinates

defined almost everywhere on M in which the Killing vector of the isometry group has

components

V”1=1 , V”=O for =2,...,d (5.38)

Furthermore, an application of the Killing equation (2.92) shows that (M, g) admits a

Killing vector if and only if there are local coordinates x” on M in which the metric

tensor components g(x”) are independent of the coordinate x”1,

= 0 (5.39)

and then the integral curves of x”1 parametrize the paths of the infinitesimal isometry and

of the finite total isometry according to (2.42). Moreover, the above derivation also shows

that 2 distinct isometries V1 and V2 of (M, g) cannot have the same path, since they can

be independently chosen to have the single non-vanishing components l/!1 = 0.

These results mean that locally any isometry of g looks like translations in a single

coordinate, and this therefore gives the representation of a 1-parameter isometry as an

explicit R1-action on (M,g) (which is either bounded or is a U(1)-action when M is

compact). We shall refer to this system of coordinates as a preferred set of coordinates

with respect to a Killing vector field V.

For simplicity, we shall now concentrate on the cases where M is a simply connected

2-dimensional symplectic manifold with metric g. The advantage of this insofar as the

localization formalism is concerned is that the Riemann uniformization theorem [62, 92,

121] tells us that g,(x) has globally only 1 independent component. This situation is

therefore amenable to a detailed analysis of the equivariant localization constraints in

terms of the single degree of freedom of the metric g. Defining complex coordinates

= x1 + ix2, we can represent the metric as

g = A(dz+,ud)Ø(d2+idz) (5.40)
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where

A =( tr =(gn —g22+2ig12)/4A (5.41)

Orientation-preserving diffeomorphisms of M which only change the function A > 0

above are called conformal transformations. The function determines the complex

structures of M, and therefore the set of inequivalent complex structures of M is in a

one-to-one correspondence with the space of conformal equivalence classes of metrics on

M. A complex coordinate w is said to be an isothermal coordinate for g if g pdw 0 d

for some function p > 0. Using the tensor transfromation law for g, it follows from (5.40)

that an isothermal coordinate w for g exists if and only if the Beltrami partial differential

equation
8w 8w

(5.42)

has a C”°-solution w(z, 4 Such a solution always exists provided that the function

u(z, ) is uniformly bounded as I[L < 1. A complex structure on M can therefore be

identified with the conformal structure represented by the Riemannian metric g.

The simple-connectivity of a 2-manifold M implies that via a diffeomorphism and

Weyl rescaling g —÷ &‘g of the coordinates the metric can be put globally5 into the

isothermal form

g(x) = or g = es0,dz ® d (5.43)

where (x) is a globally-defined real-valued function on M which we shall refer to as the

conformal factor of the metric. This means that there is a unique complex structure on

the Riemann surface M which we can define by the standard local complex coordinates

z, = x1 ±ix2, Notice that these remarks are not true if H’(M; ) 0, because then the

metric has additional degrees of freedom from moduli parameters (see the torus example

in Section 3.5), i.e. (5.43) should be replaced by

g = e(r) (5.44)

5The fact that this holds globally follows from an application of the classical Riemann-Roch theorem,
or the more modern Atiyah-Singer index theorem [35, 51, 92].
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where r labels the additional modular degress of freedom of the metric. We shall discuss

the case of multiply-connected phase spaces in the next Chapter.

With this complex structure we define Vz = V’ ± iV2 for any vector field V, and

we set a, c = (r + ia). The Killing equations (2.92) in these complex coordinates

can be written as

Dy2 + + VOcp + V = 0 (5.45)

The first set of equations in (5.45) are the Cauchy-Riemann equations and they imply

that in these local coordinates the Killing vector field V2 is a holomorphic function on

M. The other equation is a source equation for V2 and V that explicitly determines the

Killing fields in terms of the single degree of freedom of the metric g (i.e. the conformal

factor ).
The Gaussian curvature scalar K(x) of (M,g), which is always defined by (5.26) in

2 dimensions, can be written in these isothermal coordinates as

K(x) = _- e(x)V2(x) (5.46)

where V2 = DO is the 2-dimensional scalar Laplacian on M associated with the metric

(5.43). This follows from noting that the only non-vanishing connection coefficients of

the metric (5.43) are

= a (5.47)

The Gaussian curvature of (M, g) then uniquely characterizes the isometry group acting

on the phase space. If K is constant, then (M, g) is maximally symmetric with 3 linearly

independent Killing vectors. Moreover, in this case (M, g) is isometric to either the 2-

sphere S2, the Lobaschevsky plane H2 or the Euclidean plane 1R2. We shall soon examine

these 3 distinct Riernannian spaces in detail. Notice, however, that if M = h is a

compact Riemann surface of genus h, then the Gauss-Bonnet-Chern theorem (2.84) in

the case at hand reads

Jh dvol(g(x)) K(x) = 4ir(l — h) (5.48)
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where dvol(g(x)) = d2x det g(x) is the metric volume form of (M, g). Thus a maximally

symmetric compact Riemann surface of constant negative curvature must have genus

h 2. It follows, under the simple-connectivity assumption of this Chapter, that when

K = 0 or K> 0 the phase space M can be either compact or non-compact, but when

K < 0 it is necessarily non-compact.

The other extremal case is where (M, g) admits only a 1-parameter group of isome

tries. From the above general discussion it follows that in this case there exist 2 differ

entiable functions x’ and x2 on M and local coordinates x’ on M such that

V—x2(x1,x2) = 0 , x’2 =x2(x1,x2) (5.49)

and in these coordinates the Killing vector field has components V’1 = 1, V’2 = 0.

Moreover, the characteristic curves of the coordinate x’2 = x2, defined by the initial data

surfaces of the partial differential equation in (5.49), can be chosen to be orthogonal to

the paths defined by the isometry generator V, i.e. we can choose the initial data for the

solutions of (5.49) to lie on a non-characteristic surface. This means that in these new

coordinatesg2(x’) = 0. Thus in this case the metric can be written locally as

=g1dx” ® dx” + gdx’20 dx’2 (5.50)

and from (5.39) it follows that g1 and g are functions only of x’2. The phase space

therefore describes a surface of revolution, for example a cylinder or the ‘cigar-shaped’

geometries that are described in typical black hole theories [129].

The only other case left to consider here is when (M, g) has a 2-dimensional isometry

group. In this case we have 2 independent vector fields V, = and V2 =

which obey the Lie algebra (2.43) with a, b, c = 1,2. There are 2 possibilities for this Lie

algebra — either the isometry group is abelian, f = 0, or it is non-abelian, f 0 for

some a, b, c. Since V, and V cannot have the same path in M, we can choose paths for the

constant coordinate lines so that V2 = 1’’ = 0. In the abelian case, the commutativity
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of V1 and V2

[V1,V2j=o (5.51)

implies that 141 is a function of x1 alone and V? is a function only of x2. As above,

we can choose local coordinates almost everywhere on M in which V11 = V = 1. In

these coordinates, the Killing equations imply that the metric components g,(x) are all

constant. Thus in this case (M, g) is isometric to flat Euclidean space, which contradicts

the standard maximal symmetry arguments above.

In the non-abelian case, we can choose linear combinations of the isometry generators

V1 and V2 so that their Lie algebra is

{V1,V2} = V1 (5.52)

which implies that

01 V2 = 0 , 82 log V11 = (5.53)

and so we can choose local coordinates almost everywhere on M in which I2 = 1 and

= e. The Killing equations then become

829141, = ‘9igii = 0 , 01912 = 9ii , 81922 = 2912 (5.54)

which have solutions

gu =c , 912 =ax1 +/ , g22 =a(x1)2+2/3x1+-y (5.55)

where a, /9 and -y are real-valued constants. It is then straightforward to compute the

Gaussian curvature of g from the identity

K(x) = —R1212(x)/detg(x) (5.56)

which gives K(x) as the constant K = a/(/92 — cv7), again contradicting the maximal

symmetry theorems quoted above.
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Thus a 2-dimensional phase space is either maximally symmetric with a 3-dimensional

isometry group, or it admits a 1-parameter group of isometries (or, equivalently, has a

single 1-dimensional maximally symmetric subspace), because the above arguments show

that it clearly cannot have a 2-dimensional isometry group. The fact that there are only

2 distinct classes of isometries in 2 dimensions is another very appealing feature of these

casesfor the analysis which follows. For the remainder of this Chapter we shall analyse the

equivariant Hamiltonian systems which can be studied on each of the 4 possible isometric

types of spaces above and discuss the features of the integrable quantum models that

arise from the localization formalism. This will provide a large set of explicit examples

of the formalism developed thus far, and at the same time clarify some other issues that

arise in the formalism of path integral quantization.

5.3 Euclidean Phase Spaces and Holomorphic Quantization

We begin our study of general localizable Hamiltonian systems with the case where the

phase space M is locally flat, i.e. K = 0. The conformal factor ço in (5.43) and (5.46)

then satisfies the 2-dimensional Laplace equation

V2y(z, 2) = 9tcp(z, ) = 0 (5.57)

whose general solutions are

y(z, ) = f(z) + J() (5.58)

where f(z) is any holomorphic function on M. The Riemannian manifold (M, g) is

isometric to the flat Eudidean space (1R2,i) and from the metric tensor transformation

law it follows that this coordinate change z —+ w taking the metric (5.43) to dw 0 dtii

satisfies

+ = = e.(z) ej(r) , = = 0 (5.59)Oz 9z az 9z az 9z öz az

It follows from (5.59) that this isometric transformation is the 2-dimensional conformal

transformation z —+ wf(z) (i.e. an analytic rescaling of the standard flat Euclidean metric
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of the plane) where

wf(z)
= f d e’ (5.60)

and C c M is a simple curve from some fixed basepoint in M to z. From the last Section

(eq. (5.30)) we know that the Killing vectors of (Ia2, ]E2) in the complex coordinates

(w, tZ’) take on the general form

V = —i1w + cv , V = iIhi’ + a (5.61)

where e Ia and cv E C are constants. The Killing vectors (5.61) follow directly

from (5.45) with y = 0 there, and they generate the groups of 2-dimensional rotations

w —p ew and translations w —÷ w + a whose semi-direct product forms the Euclidean

group E2 of the plane.

In these local complex coordinates on JR2 the Hamiltonian equations dH = —ivw

take the form

9H = w,z)V , = _w(w,th)Vw (5.62)

where

= w(w, ‘ii)dw A dz13 (5.63)

The symplectic 2-form (5.63) can be explicitly determined here by recalling that the

Hamiltonian group action on the phase space is symplectic so that £vw = 0. In local

coordinates this means that

— O(v) = 0 (5.64)

for each and 11. Requiring this symplecticity condition for the full isometry group

action of E2 on 1R2, we substitute into (5.64) each of the 3 linearly independent Killing

vectors represented by (5.61) (corresponding to = 0, cv’ = 0 and a2 = 0 there). The

differential equations (5.64) for the function w(w, t3) now easily imply that it is constant

on 1R2 with these substitutions. Thus w(w, zZ) is the Riemannian volume (and in this case

the Darboux) 2-form globally on 1R2, Substituting the Darboux value w(w, ti) = 1 and
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the Killing vectors (5.61) into the Hamiltonian equations above and integrating them up

to get H(w, tb), we see that the most general equivariant Hamiltonian on a planar phase

space M is

Ho(z, ) = c2wj(z)z5j() + OWf(Z) + athj() + C0 (5.65)

where C0 E IR is a constant of integration and wj(z) is the conformal transformation

(5.60) from the flat Euclidean space back onto the original phase space.

The fact that the symplectic 2-form here is uniquely determined to be the volume

form associated with the phase space geometry is a general feature of any homogeneous

symplectic manifold. Indeed, when a Lie group G acts transitively on a symplectic

manifold there is a unique G-invariant measure [57], i.e. a unique solution for the d(d —

1)/2 functions w from the d(d—1)•d(d+1)/4 differential equations (5.64). Thus w’/n!

is necessarily the maximally symmetric volume form of (M, g) and the phase space is

naturally a Kähler manifold, as in Section 5.1. We shall soon see the precise connection

between maximally symmetric phase spaces and the coadjoint orbit models of Section

5.1. In the present context, this is one of the underlying distinguishing features between

the maximally symmetric and inhomogeneous cases. In the latter case w is not uniquely

determined form the requirement of symplecticity of the isometry group action on

leading to numerous possibilities for the equivariant Hamiltonian systems. In the case at

hand here, the Darboux 2-form on 1R2 is the unique 2-form which is invariant under the

full Euclideari group, i.e. invariant under rotations and translations in the plane, and on

M it is the Kähler form associated with the Kähler metric (5.43) and (5.58).

The form (5.65) for the planar equivariant Hamiltonian systems illustrates how the

integrable dynamical systems which obey the localization criteria depend on the phase

space geometry which needs to be introduced in this formalism. These systems are all,
however, holomorphic copies of the same initial dynamical system on JR2 defined by the
Darboux Hamiltonian

; zEC (5.66)
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or identifying z, = p ± iq with (p, q) canonical momentum and position variables, these

dynamical Hamiltonians are of the form

H(p,q) cl(p2 + q2) + a1p +a2q+ Co (5.67)

Thus the dependence on the phase space Riemannian geometry is trivial in the sense that

these systems all lift to families of holomorphic copies of the planar dynamical systems

(5.66). This sort of trivial dependence is to be expected since the (classical or quantum)

dynamical problem is initially independent of any Riemannian geometry of the phase

space. It is also anticipated from the general topological field theory arguments that we

presented earlier. Nonetheless, the general functions Ho(z, ) in (5.65) illustrate how the

geometry required for equivariant localization is determined by the different dynamical

systems, and vice versa, i.e. the geometries that make these dynamical systems integrable.

This probes into what one may consider to be the geometry of the classical or quantum

dynamical system.

Thus essentially the only equivariant Hamiltonian system on a planar symplectic

manifold is the displaced harmonic oscillator Hamiltonian

H = IZ(z + a)( + a) = 1 {(p + ai)2 + (q +a2)2} + Co (5.68)

and in this case we can replace the requirement that H generate a circle action with the

requirement that it generate a semi-bounded group action. To compare the localization

formulas with some known results from elementary quantum mechanics, we note that

the Hamiltonian (5.67) can only describe 2 distinct 1-dimensional quantum mechanical

models. These are the harmonic oscillator = (p2 + q) wherein we take = and

a = 0 in (5.66) and apply either the WKB or the Niemi-Tirkkonen localization formulas

of the last Chapter, and the free particle p2 where we take Il = 0 and a = 1/2/ in

(5.66) and apply the quadratic localization formula (4.112) (or equivalently (4.104)). In

fact, these are the original classic examples, which were for a long time the only known

examples, where the Feynman path integral can be evaluated exactly because then their
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functional integrals are Gaussian. For the same reasons, these are also the basic examples

where the WKB approximation is known to be exact [116].

It is straightforward to verify the Niemi-Tirkkonen localization formula (4.91) for the

harmonic oscillator. In polar coordinates z = r e6 with r E IR+ and 0 [0, 2ir], we have

= r, (fV)9r = —2r and R = 0 on flat 1R2, and so the integral in (4.91) gives

Zharm(T) J dr T
e_iTr2I2 =

. T (5.69)
o 2sin- 2sin--

That this is the correct result can be seen by noting that the energy spectrum determined

by the Schrödinger equation for the harmonic oscillator is Ek = k + , k E [83], so

that

tnt e_iT22)1t2II =

=

e_iT()
= 2i ri

(5.70)

This result also follows from the WKB formula (4.70) after working out the regularized

fluctuation determinant in a manner similar to that described in Section 4.5. Here the

classical trajectories determined by the flows of the vector field VZ = iz/2 are the circular

orbits z(t) = z(0) et/2. Note that the only way these orbits can be defined on the loop

space LC is to regard z(t) = z(O) eit/2 and (t) = (T) ei(T)/2 as independent complex

variables. This means that the functional integral should be evaluated in a holomorphic

polarization. We shall return to this point shortly. Alternatively, we note that for

T 4Trn the only T-periodic critical trajectoies of this dynamical system are the critical

points z, = 0 of the harmonic oscillator Hamiltonian z and one can easily derive (5.70)

from (4.97). For the discretized values T = 4Trn any initial condition z(0) E C leads to T

periodic orbits, and the moduli space of critical trajectories is non-isolated and coincides

with the entire phase space M = 1R2. In that case the degenerate path integral formula

(4.76) yields the correct result (5.70). These results therefore all agree with the general

assertions made at the beginning of Section 4.5 concerning the structure of the moduli

space T-periodic classical trajectories for a Hamiltonian circle action on the phase space.

For the free particle partition function, we have R = = 0, and so the A-genus

term in the localization formula (4.112) contributes 1. The qo-integral in (4.112) is thus
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a trivial Gaussian one and we find

Zfree(T) dp dq dq5o eiT_T /2 L, dp dq e_iTP2/2 (5.71)

which also coincides with the exact propagator tril e_iT2/2II in the phase space repre

sentation. In this case the Hamiltonian p2 is degenerate on ]R2, so that the WKB

localization formula is unsuitable for this dynamical system and the result (5.71) follows

from the degenerate formula (4.76) by noting that LM lEt2 in this case.

There is another way to look at the path integral quantization of the Darboux Hamil

tonian system (5.66) which ties in with some of the general ideas of Section 5.1 above.

The Heisenberg-Weyl algebra gHw [83] is the algebra generated by the usual harmonic

oscillator raising and lowering operators

(5.72)

in the canonical quantum theory associated with the phase space lEt2 and the operator

algebra (4.1). The Lie algebra gHw is generated by the operators à, a and N àâ
1(32 + 2

— 1) with the commutation relations

{&t,&] — 1 (5.73)

The (infinite-dimensional) Hilbert space which defines an representation of these oper

ators is spanned by the bosonic number basis Ia), n E , which form the complete

orthonormal system of eigenstates of the number operator N with eigenvalue n,

Nm) = âa)n) = I) (5.74)

and on which à and a act as raising and lowering operators, respectively,

âIn)=v’1n—1) (5.75)

We now define the canonical coherent states [39, 83, 108] associated with this repre

sentation of the Heisenberg-Weyl group 0HW as

Iz) etI0) = __In) ; z E C (5.76)
n=O
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These states are normalized as

(zlz) = e (5.77)

with (zi z)t, and they obey the completeness relation

r d2z z)(zI r
—

zm
I— =j— e In)(m

J 2ir (zz) 2ir n,m

1 ° rm 2ir
=

— j dr r e_r2

/TJ j dO e(n_m)oIn)(mI (5.78)

1
°° n+m 00

=
dr r e_r

/!!
.27r ln)(mI = = 1

where we have as usual written z = r e9. The normalized matrix elements of the algebra

generators in these states are

(zlàtàjz) —
- (zjalz) — - (zlâIz)

— z 5 79(zlz) — ‘ (zz) — ‘ (zz)
Thus the 3 independent terms in the Darboux Hamiltonian (5.66) are none other than

the normalized canonical coherent state matrix elements of the Heisenberg-Weyl group

generators. These 3 observables represent the Poisson Lie group action of the Euclidean

group E2 on the coadjoint orbit GHW/HC = GHw/U(1) = C1 with the Darboux Poisson

bracket

{z, }wD = 1 (5.80)

which is the Poisson algebra representation of the I-leisenberg-Weyl algebra (5.73). This

correspondence with the coset space G/Hc and the general framework of Section 5.1 is

not entirely surprising, since it is well-known that homogeneous symplectic manifolds are

in general essentially coadjoint orbits of Lie groups [57], as exemplified by this system and

the others that we shall encounter in this Chapter. The integrable Hamiltonian systems

in this case are functionals of Cartan elements of gHw (e.g. the harmonic oscillator âtà

or the free particle (a + at)2).

The canonical coherent states (5.76) are those quantum states which minimize the
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Heisenberg uncertainty principle LSq /p [83], because they diagonalize the annihi

lation operator , alz) = zlz), and they can be generalized to arbitrary Lie groups [108],

as we shall soon see. The Darboux 2-form

WD = dz A d (5.81)

is defined globally on C and, since 1R2 is contractable and hence H2(1R2;) 0, it can

be be generated globally by the symplectic potential

=
—- (dz — zd) (5.82)

The canonical 1-form (5.82) and the flat Kähler metric associated with (5.81) on 1R2 can

be written in terms of the coherent states (5.76) as

OD
=

(5.83)

— IIdIz)II IdIz)II (zdIz) (zldlz)*
g = dz 0 dz

=

_____ _____

— (zlz) (zlz)
(5.84)

and the Kähler potential associated with (5.82) is

FR2(z,) (5.85)

The path integral here then coincides with the standard coherent state path integral

tr
= f (zI e_iTIz)

= j
dz(t) d(t)

exp
1rT

dt (z — — H(z, ))2ir (z)z) LR2 te[o,TJ
27r Jo

(5.86)

where

H(z,) = (zHIz)/(zz) (5.87)

is the coherent state matrix element of some operator ? = (â, &t) on the underlying

representation space of the Heisenberg-Weyl algebra. The derivation of (5.86) is identical

to that in Section 4.1 except that now we use the modified completeness relation (5.78)
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for the coherent state representation. This manner of describing the quantum dynamics

goes under the equivalent names of holomorphic, coherent state or Kähler polarization.

One of its nice features in general is that it provides a natural identification of the path

integral and ioop space Liouville measures. We recall from (4.20) that in the former

measure there is one unpaired momentum in general and, besides the periodic bound

ary conditions, there is a formal analog between the measures in (4.20) and (4.24) only

if the initial configuration of the propagator depends on the position variables q and

the final configuration on the momentum variables p, or vice versa. In the holomorphic

polarization above, however, the initial configuration depends on the z variables, the

final one on the 2 variables, and the path integral measure is the formal N —÷ cc limit

of dz d2/2ir. Since the number of z and 2 integrations are the same, we obtain

the desired formal identifications. Besides providing one with a formal analog between

the path integral localization formulas and the Duistermaat-Heckman theorem and its

generalizations, this enables one to also ensure that the ioop space supersymmetry en

countered in Section 4.3, which is intimately connected with the definition of the path

integral measure (as are the boundary conditions for the propagator), is consistent with

the imposed boundary conditions.

Thus on a planar phase space essentially the only equivariant Hamiltonian systems

are harmonic oscillators6,generalized as in (5.65) to the inclusion of a generic flat geom

etry so that the remaining Hamiltonian systems are merely holomorphic copies of these

displaced oscillators defined by the analytic coordinate transformation (5.60). These sys

tems generate a topological quantum theory of the sort discussed in Sections 4.8 and 5.1,

with the Darboux Hamiltonian (5.66) related to the symplectic potential (5.82) by the

usual topological condition Hf = ivR2 OD reflecting the fact that (5.82) is invariant under

the action of the rotation group of the plane. It is not, however, invariant under the

61n the Kähler polarization, the correct physical zero-point energy E0 = of the harmonic oscillator
is obtained only with a specific choice of regularization scheme for the fluctuation determinant [84].
This is similar to the Weyl shift effect discussed in section 5.1 above in the path integral evaluation of
character formulas.
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translation group action, so that the translation generators do not determine a Witten

type topological field theory like the harmonic oscillator Hamiltonians do. This means

that there are noE2-invariant symplectic potentials on the plane, i.e. it is impossible

to find a function F in (5.15) that gives an invariant potential simultaneously for all 3

of the independent generators in (5.66). In any case, the harmonic oscillator nature of

these systems is consistent with their global integrability properties. The holomorphic

polarization of the quantum theory associates the canonical quantum theory above with

the topological coadjoint orbit quantum theory of Section 5.1 and the coherent state

path integral (5.86) yields character formulas for the isometry group of the phase space.

This will be the general characteristic feature of the localizable systems we shall find. In

the case at hand, the character formulas are associated with the Cartan elements of the

Heisenberg-Weyl group.

5.4 Coherent States on Homogeneous Kahier Manifolds

Before carrying on with our geometric determination of the localizable dynamical systems

and their path integral representations, we pause to briefly discuss how the holomorphic

quantization introduced above on the coadjoint orbit 1R2 can be generalized to the action

of an arbitrary semi-simple Lie group G [12, 74, 108]. This representatioll of the quantum

dynamics proves to be the most fruitful on homogeneous spaces G/Hc, and later on we

shall even generalize this construction to apply to non-homogeneous phase spaces and

even non-symmetric multiply connected phase spaces. As the coherent states are those

which are closest to “classical” states, in that they are the most tightly peaked ones

about their locations, they are the best quantum states in which to study the semi

classical localizations for quantum systems. In the next Chapter we shall see that they

are also related to the geometric quantization of dynamical systems [136].
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Given any irreducible unitary representation D(G) of the group G and some normal

ized state 10) in the representation space, we define the (normalized) state jg) by

l) = D(g)IO) (5.88)

If dg denotes Haar measure of G, then Schur’s lemma [128] and the completeness of the

representation D(G) implies the completeness relation

dimD(G) r
I dg Ig)’gI = 1 (5.89)vol(G) JG

Following the derivation of Section 4.1, it follows that the partition function associated

with an operator 7-1 acting on the representation space of D(G) can be represented by

the path integral

trD(G) e2

= IG dg (g e_iTg)

j
dimD(G)

dg(t) ex{iJ (gldlg) - iJdt (9II)}
LGtE[OT] VO ( ) y(g) 0

(5.90)

However, if we take 10) to be a simultaneous eigenstate of the generators of H C G

(i.e. a weight state), then the ‘coherent’ states g) associated with any one coset of

G/H are all phase multiples of one another. Thus the set of coherent states form a

principal Hc-bundle over G/Hc and the coherent state path integral (5.90) is in fact taken

over paths in the homogeneous space G/Hc. This geometrical method for constructing

irreducible representations of semi-simple Lie groups as sections of the principal fiber

bundle 0 —÷ G/Hc is known as the Borel-Weil-Bott method [112].

What is most interesting about the character representation (5.90) is that it is closely

related to the Kähler geometry of the homogeneous space G/Hc. To see this, we first

define the Borel subgroups B± of G which are the exponentiations of the subalgebras 13±
spanned by H h 0 C and Ea for a > 0 and a <0, respectively. The complexification

of the coadjoint orbit MG is then provided by the isomorphism G/fIc G’/B where
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GC is the complexification of G [128]. Almost any g E G can be factored as a Gaussian

decomposition

g = C+hC_ (5.91)

where h H and

= ea>o , = ea<o& (5.92)

Here za E C, and if we now apply the representation operator D(g) to a lowest weight

state, then J acts as the identity and the set of physically distinct states are in a one-

to-one correspondence with the coset space Gd/B+. Since 13+ is a closed subalgebra of

g 0 C, the parameters za E C define a complex structure on MG. In this way, we can

now write down coherent state path integral representations of the character formulas

of Section 5.1 above. The choice of 0) above as a lowest weight state ensures that the

coherent states z) C+ 0) are holomorphic. Note that their coherency follows from the

fact that Eaz) zalz) for > 0.

The Kähler potentials are now given by the normalizations

= (zz) (0g0) = (0hl0) (5.93)

with the potentials F()(z, ), i = 1,.. . , r, each associated with the Cartan generator

H in (5.93) (compare eqs. (5.77) and (5.85)). From this it follows that the associated

Kh1er metrics g() and symplectic potentials (:) can be represented as coherent state

matrix elements as in (5.83) and (5.84). In this way the kinetic term in the coherent

state path integral (5.90) coincides with the usual one induced by the symplectic Kähler

structures of the homogeneous space MG and the path integral measure becomes the ioop

space Liouville measure. Moreover, the symplectic line bundle L’’ —* MG associated

with the principal G-bundle C —+ MG with connection 1-form ) defines a twisted

(covariant) Dolbeault derivative ã., = 0+ O which annihilates the normalized coherent

states Iz)/(zIz) Then the equivariant index of is the Lefschetz number

indexH(A)(0;T) = limtrll e_1TF( ei8A
— e)jI (5.94)
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which is equal to the character (5.23) represented by the equivariant Riemann-Roch

Hirzebruch index7. We recall from section 4.9 that the Atiyah-Singer index contribution

to (5.21) evaluates the spectral asymmetry of the zero mode representation of g deter

mined by the pertinent Dirac operator, while the Lefschetz number coincides with the

character of that representation of the spin complex. From the formulas (5.23),(5.94),

however, we see that the character of a Lie group G is a Lefschetz number related to the

G-index theorem of the holomorphic Dolbeault complex [16, 84, 123], rather than to the

Atiyah-Singer index theorem of the spin complex.

5. Spherical Phase Spaces and Quantization of Spin Systems

We are now ready to continue with our general isometric classification. The next case we

consider is when the phase space M has a positive constant Gaussian curvature K> 0.

In this case the conformal factor solves the Liouville field equation

V2(z,) = —2K e°’ (5.95)

which is a completely integrable system [30] whose general solutions are

- af(z)af()
o(z,z)=log

- 2 (5.96)
( + f(z)f())

By the essential uniqueness of maximally symmetric spaces, we know that in this case

(M,g) is isometric to the sphere S2 of radius K”2 with its standard round metric

given in (5.29). From the transformation law of the metric tensor g and (5.96) it is

straightforward to work out the explicit diffeomorphism (z, ) —* (w(z, ), zi(z, )) which

accomplishes this isometric correspondence.

TTaking V —* 0 in this sort of localization formula represents the Atiyah-Singer index theorem for
the elliptic Dolbeault exterior derivative. In this context, it is usually referred to as the Riemann-Roch
Hirzebruch index theorem [35, 92].
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First of all, we rewrite the spherical metric in (5.29) in complex coordinates w, t =

x1 + ix2, with x the spherical coordinates defined in (5.29), to get

gs2=— dwødw+
W

dØd+2(2+ w)dd (5.97)4K l—ww l-ww l—ww

where w 1. If we view the unit sphere as centered in the x’y’-plane fl2 and

symmetrically about the z’-axis, then we can map 32 onto the complex plane via the

standard stereographic projection from the south pole z’ = —1,

2w’ - 1—w’z’
= , z = — ww = (5.98)

1+w’z3’ 1+w’i’

This gives a diffeomorphism of 52 with the compactified plane C U {oo}. From (5.97),

the metric tensor transformation law and (5.96) we find after some algebra that the

coordinate transformation above must satisfy

1 (!
— K (z’)

— K
af(z)9j()

(5 99)(1 + w’w’) \ 9z öz t3z 9z) ( + f(z)f())

From (5.99) and (5.98) it then follows that the desired coordinate transformation from

(M,g) to S2 with the standard round metric (5.97) is given by

4K112f(z)
w(z, z)

= 1 + 4K_1f(z)f()
(5.100)

The mapping (5.100) is just a generalized stereographic projection from the south pole

of S2 where f(z) maps (M, g) onto the entire complex plane with the usual Kähler

geometry of 32 defined by the coordinates in (5.98),

gs2 = 4aaFS2(Z, )dz 0 d
=

- dz 0 d
(1 + zz)2

2
(5.101.)

dzAd
(1+zz)2

where the associated Kähler potential is

Fs2(z, ) = log(1 + z) (5.102)
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Notice that the diffeomorphism (5.100) obeys w’th 1, as required for (w, t3) E S2, and

that the Kähler metric gs2 in (5.101) coincides with the original phase space geometry

(5.43) when f(z) = K”2zin (5.96) above.

From our general considerations of Section 5.2 above we know that the Killing vectors

of the metric (5.97) are

= —iw + a(1 — wt)hh’2 , V = ifi + ã(1 — wtj)h/2 (5.103)

The Killing vectors (5.103) generate the rigid rotations w —+ ew of the sphere and

the quasi-translations w — w + cr(1 — wtö)1/2 (i.e. translations along the geodesical

great circles of S2), and they together generate the Lie group SO(3). Requiring the

symplecticity condition (5.64) again under the full 50(3) group action generated by

(5.103) on the symplectic 2-form (5.63), we find after some algebra that the equations

(5.64) are uniquely solved by

= 1/K(1 — wt)1”2 (5.104)

This symplectic 2-form is again the volume form associated with (5.97). It is a non

trivial element of H2(52;) = ZZ and it coincides with the Kähler classes in (5.101) in

the stereographic coordinates (5.98). We now substitute (5.103) and (5.104) into the

Hamiltonian equations (5.62), which are easily solved on 52 in the w-coordinates above,

and then apply the generalized stereographic projection (5.100) to get the most general

equivariant Hamiltonian on a spherical phase space as

H ( ) -
( - f(z)f()) + af{) + f(z)

C 5105+ ZZ
+f(z)J() +f(z)J()

I

Thus, again the Riemannian geometry of the phase space M is realized (or even

determined) by the equivariant Hamiltonian systems which can be defined on M. The

transformation to Darboux coordinates on M, defined as usual as those coordinates

(v, i) in which the symplectic 2-form is locally WS2 = -dv A dt5, can be found from
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the fact that WS2 is the (Kähler) volume form associated with (5.96) and applying the

tensor transformation law (2.8) for w, After some algebra we find that the local Darboux

coordinates on M are defined by the diffeomorphism (z, ) —* (v(z, ), 3(z, i)), where the

function

v(z,)
= f(z)

1 2 (5.106)
(+f(z)f()) /

maps M onto the unit disc

D2={zEC:z<1} (5.10’7)

which is the Darboux phase space associated with a general spherical phase space ge

ometry. Thus, applying the transformation (5.106) to (5.105), we see that the general

Darboux Hamiltonians in the present case are

H(z, ) = fz + (ãz + a)(1 — z)h/2 + Co ; z D2 (5.108)

which correspond to the quasi-displaced harmonic oscillators

H(z, ) = f [z + a(1 — z)1’2] [ + ä(1 — z)h/’2j (5.109)

with compactified position and momentum ranges. Thus here the criterion of a (compact)

circle action cannot be removed, in contrast to the case of the planar geometries of Sectkn

5.3 where the Darboux phase space was the entire complex plane C. Notice that all

translations in the planar case become quasi-translations in the spherical case, which is

a measure of the presence of a curved Riemannian geometry on M.

The mapping onto Darboux coordinates above shows that once again all the general

spherical Hamiltonians are holomorphic copies of each other, as they all define the same

Darboux dynamics. We shall therefore focus our attention to the quantum dynamics de

fined on the phase space S2 (i.e. f(z) = K112z/2 above), and for simplicity we normalize

the coordinates so that now K = 1, i.e. 52 has unit radius. First of all, we write the 3

independent observables appearing in (5.105) above as

=
+

, J(z,) = 2j1 , J(z,) 2j1 (5.110)
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where the parameters j will be specified below. Using (5.101) we define the Kähler 2-form

= jWS2 (5.111)

and working out the associated Poisson algebra of the functions (5.110)

{Ji),
= {4, = (5.112)

shows that they realize the SU(2) (angular momentum) Lie algebra [128]. The functions

(5.110) therefore generate the Poisson-Lie group action of the S2 isometry group 50(3)

on the coadjoint orbit

G/Hc = SU(2)/U(1) 53/51 52 (5.113)

and we obtain the usual coadjoint orbit topological quantum theory by choosing the

Hamiltonian to be an element of the Cartan subalgebra u(1) of su(2). Notice that,

comparing (5.110) with the stereographic coordinates (5.98), we see that these observables

just describe the precession of a classical spin vector of unit length J = +1. The coadjoint

orbit path integral associated with the observables (5.110) will therefore describe the

quantum dynamics of a classical spin system, e.g. the system with Hamiltonian H = J3

describes the Pauli interaction between a spin J and a uniform magnetic field directed

along the z-axis. Thus in this case 52 is actually naturally the configuration space for a

spin system, which has on it a natural symplectic structure and so the corresponding path

integral can be regarded as one for the Lagrangian formulation of the theory, rather than

the Hamiltonian one [110]. This is also immediate from noting that the stereographic

complex coordinates above can be written as

= etan(O/2) (5.114)

in terms of the usual spherical polar coordinates (0, 4), so that the observable J3 in

(5.110) coincides with the height function (3.70) of 82 with a = 1 (up to an additive

constant), and the Kähler geometry above becomes the standard round geometry of 52
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To construct a topological Hamiltonian along the lines of the theory of Section 5.1,

we consider an irreducible spin-j representation of SU(2), where j = , 1, , 2,... [128].

The state space for this representation with heighest weight j is spanned by the complete

set of orthonormal basis states j, m), where m are the magnetic quantum numbers with

the range m = —j, —j + 1,. .
.
,j — 1,j. The SU(2) generators act on these states as

J31i,m)=mli,m) , J±j,m)=(j+m)(j±m+1)j,m±1) (5.115)

Following the last Section, we define the SU(2) coherent states by successive applications

of the raising operator J to the lowest weight (vacuum) state Ii, —j) [39, 108],

‘

3 i 2j \
Iz) = e3 ezj,_j) = e3’ j zmn[j,m) ; z (5.116)

m—j \J+mJ

where for n, m 7Z with n m the binomial coefficient is defined by

fn’

_______

I I = (5.117)
\m) m!(n—m)!

and where the function p(z, ) is an arbitrary phase which as we shall see is related to

the function F(z, ) in (5.15). It is easily verified that then the SU(2) generators (5.110)

are the normalized matrix elements of the operators l3, J in the coherent states (5.116),

respectively.

The coherent states (5.116) are normalized as

(z2Izi) = (1 +z12)2’eP2,z2)1,z1)] (5.118)

where we have used the binomial theorem

n

(x + y)fl = ( ) kyn—k
, (5.119)

k=O

and they obey the completeness relation

Id3’(z,.) = (5.120)(zlz)
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where i) is the identity operator in the spin-j representation of SU(2) and the coherent

state measure is
- i 2j+1 -d”(z,z)=— _2dzAdz (5.121)

2ir(l +zz)

which coincides with the symplectic 2-form of the spin system above. The identity (5.120)

follows from a calculation analogous to that in (5.78). Note that, as explained in the last

Section, the Kähler structure is generated through the identity (zlz) = e2jFs2 (z,)

We want to evaluate the propagator

)C(z2,zi;T) = (z21 e_iTIzl)/\/(z2Iz2)(zlIzl) (5.122)

for some SU(2) operator ? given the one-to-one correspondence between the points on

the coadjoint orbit SU(2)/U(1) = S2 C U {oo} and the SU(2) coherent states (5.116).

Dividing the time interval in (5.122) up into N segments and letting N —÷ oc, following

the analogous steps as in Section 4.1 using the completeness relation (5.120) we arrive

at the coherent state path integral

z1; T) = 1 2
dz(t) d(t) det (i) exp {j log(1 + Z22) + j log(1 + Zii)

LR
tE[O,T]

+i dt ( — z) — ii ( +
— H(z, )] } (5.123)

where

= lim
‘ 2j + 1

(5.124)
N—*oo

k=1 2jir

is a normalization constant and H(z, ) denotes the matrix elements (5.87) in the coherent

states (5.116). Here we see once again the formal equivalence of the path integral and

Liouville measures defined by the Kähler polarization above. In particular, the local

symplectic potential generating the Kähler structures (5.111) are

= 1
(dz — zd) — ijdp (5.125)



Chapter 5. Equivariant Localization on Simply Connected Phase Spaces 176

and they coincide with the standard coherent state canonical 1-forms (5.83). Similarly,

the Kähler structure (5.101) can be represented in the standard coherent state form

(5.84).

The Wess-Zumino-Witten quantization condition (4.123) applied to w) implies that

j must be a half-integer, since j c = 4r, corresponding to the unitary irreducible

representations of G = SU(2) [128]. To construct a topological quantum theory (or

equivalently an integrable quantum system) as described in Sections 4.8 and 5.1, we need

to choose the phase function p(z, ) in the above so that H. This problem

was analysed in detail by Niemi and Pasanen [100] who showed that it is impossible to

satisfy this integrability requirement simultaneously for all 3 of the generators in (5.110).

Again, this means that there are no SU(2)-irivariant symplectic potentials on the sphere

S2. However, such 1-forms do exist on the cylindrical representation of SU(2) [100],

i.e. the complex plane with the origin removed, which is conformally equivalent to the

Kähler representation of S2 above under the transformation z = e81+82 which maps

(s’, 2) E JR x S1 to z e C — {0}. In this latter representation, the Hamiltonian in (5.123)

can be taken to be an arbitrary linear combination of the SU(2) generators, and the

coherent state path integral (5.123) determines a topological quantum field theory with

p = 0 in (5.125). This is not true, however, in the Kähler representation above, but we do

find, for example, that the symplectic invariance condition can be fulfilled by choosing

the basis H(z, ) J(z, ) of the Cartan subalgebra u(1) and p(z, ) = 1og(z/).

The ensuing topological path integral (5.123) then describes the quantization of spin.

To evaluate this spin partition function, we set p = 0 above. Although the ensuing

quantum theory now does not have the topological form in terms of a BRST-exact action,

it still maintains the Schwarz-type topological form described in Section 4.8, since the

Hamiltonian then satisfies (3.44) with C = j and the function K in (3.45) is

K(z,) = log () (5.126)

so that (5.123) is a topological path integral of the form (4.126), i.e. the quantum theory
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determines a Schwarz-type topological field theory, as opposed to a Witten-type one as

above. We first analyse the WKB localization formula (4.70) for the coadjoint orbit path

integral (5.123). We note first of all that the boundary conditions in (5.123) are z(0) =

and (T) = z2. In particular, the final value z(T) and the initial value (0) are not

specified, and the boundary terms in (5.123) ensure that with these boundary conditions

there is no boundary contribution to the pertinent classical equations of motion

(5.127)

In general, if z(t) and (t) are complex conjugates of each other, then there are no

classical trajectories that connect z(0) = z1 with (T) = 2 on the sphere 32• But if

we view the path integral (5.123) instead as a matrix element between 2 configurations

in different polarizations, then there is always the following solution to the equations of

motion (5.127) with the required boundary conditions for arbitrary z1 and 2,

z(t) = z1 et , (t) = 2
e_i(T_t) (5.128)

The solution (5.128) is complex, and hence z(t) and (t) must be regarded as independent

variables. This is one of the characteristic features behind the holomorphic quantization

formalism that makes it suitable to describe topological field theories. The trajectories

(5.128) are therefore regarded as describing a complex saddle-point of the path integral

[38, 70, 113]. We shall see other forms of this later on.

Substituting the solutions (5.128) into the WKB formula (4.70) we find the propagator

1-i i — —iT2j —ijT
i-i-ziz2e e

(5.129)
(1 + zi.i)3(1 + 22)3

The exact propagator from a direct calculation is

(1 + zii)i(1 +z22)i
m-3 (j m)

(zi2 e_iT)i+m e (5.130)

which coincides with (5.129) upon application of the binomial theorem (5.119). In par

ticular, setting z1 = z2 = z and integrating over z E C using the coherent state measure
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(5.121), we find the partition function

( —iT 33
I () — ze z

Zsu(2)(T) =j du (z,z)
Iz z

(5.131)

= I dr r2
+ 1)(1 + r2 e_iT)2i e_ijT = sin ((2j+ 1))

Jo (1 +r2)23 sin

which also coincides with the exact result

iTj -iTj
tre = e m

1— e_jT3+1_ eiT3
(5.132)

m—3

Note that the right-hand side of (5.132) is precisely what one anticipates from the Weyl

character formula (5.22). The roots of SU(2) are ci = ±1 [128], and the Cartan subalgebra

is u(1) consisting of the single element J3. The Weyl group is W = 7Z2 and it has 2

elements, the identity map and the reflection map J3 —+ —J3. Thus the formula (5.132)

is simply the Weyl character formula (5.22) for the spin-j representation of SU(2).

In the framework of the Duistermaat-Heckman theorem, the terms summed in (5.132)

are each associated with one of the poles of the sphere S2, i.e. with the critical points

of the height function on S2. Indeed, since this Hamiltonian is a perfect Morse function

with even Morse indices, we expect that the Weyl character formula above coincides with

the pertinent stronger version (4.97) of the localization formulas. Because of the Kähler

structure (5.101) on S2 (see (5.47)), the Riemann moment map has the non-vanishing

components

(itvj) = —(i’vu) = iJ(z,)/j (5.133)

and consequently the Dirac A-genus is

T j(i)

= sin (fj3)) (5.134)

Substituting these into the localization formula (4.97) yields precisely the Weyl character

formula (5.132). This localization onto the critical points of the Hamiltonian, as for the
harmonic oscillator example of Section 5.3, agrees with the general arguments at the
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beginning of Section 4.5. Substituting the stereographic projection map (5.114) into the

classical equations of motion (5.127) gives

OsinO=0 (5.135)

For T 27rn, n E , the only T-periodic critical trajectories of coincide with the critical

points of the Hamiltonian j(1 — cos 0), i.e. 8 = 0, ir, and in this case the critical point

set of the action is isolated and non-degenerate. However, for T = 2rn, n E , we find

T-periodic classical solutions for any initial value of 0 and 1 in (5.135) and the critical

point set of the classical action coincides with the original phase space S2. Thus the

moduli space of classical solutions in this case is LM s = S2, and the localization onto

this moduli space is now easily verified from (4.76) to give the correct anticipated result

above. From the discussion of Section 4.8, it also follows that the sum of the terms in

(5.132) describes exactly the properly normalized period group of the symplectic 2-form

on the sphere [70], i.e. the integer-valued surface integrals of as in (4.123). We

shall see in the next Chapter that quantizations of the propagation time T as above lead

to interesting quantum theories in certain other instances of the localization framework.

It is an interesting exercise to work out the Niemi-Tirkkonen localization formula

(4.91) for the above dynamical system. For this we note that, again because of the Kähler

geometry of 52, the Riemann curvature 2-form has the non-vanishing components

= —R = (5.136)

and so combined with (5.133) we see that the equivariant A-genus here is

T J(i)_(j)
Av(3)(TR) =

IT (i) (5.137)
sin -(J3 —

The equivariant extension of ) is

11— z 2i . fi — —

J?’ =j I —. =j I ‘‘1 (51381+z (1+z)2 ) 1+z+ip)
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where we have redefined the Grassmann variables i —+ i. The Niemi-Tirkkonen

localization formula (4.91) can then be written as

ZsU(2)(T) J dz d d d L(z + ,p) (5.139)

where
rJL 1

L(y)
=

exp [_iT (‘ +
j] (5.140)

Using the Parisi-Sourlas integration formula [107]

JR2®A1R2
d2x di d L(x2 + i)

= j du
dL(u)

= L(oo) — L(0) (5.141)

we obtain from (5.139) the partition function

Z(T) sin(Tj)/ sin(T/2) (5.142)

Introducing the Weyl shift j —+ j + in (5.142) then yields the correct Weyl character

formula (5.131) for SU(2) 8 Note that (5.141) shows explicitly how the localization in

(5.139) comes directly from the extrema of the height function at z = 00 and z = 0.

As a final application for the above dynamical system, we examine the quadratic

localization formula (4.112). Now the (degenerate) Hamiltonian is

F(j(i)) (j(i))2
=

2 (1 z)2

(5.143)

Following the same steps as above, the localization formula (4.112) can be written as

ZS[J(2)(T(J3))2) J dz d d d L(0,z + ) (5.144)

where
T0 l—y

L(40,y)
= sin (Tcs(1))

exp — ijTo ( j] (5.145)

80f course, we could alternatively obtain the Weyl character formula using instead the G-index
localization formula (5.23) without having to perform this Weyl shift.



Chapter 5. Equivariant Localization on Simply Connected Phase Spaces 181

and we have redefined —+ . Using the Parisi-Sourlas integration formula

(5.141) again and introducing the Weyl shift j — j + , we find

Zsu(2)(T (j(i) ) 2) L db0 eiT4
Sifl[(J+)To]

(5.146)

mj /L d0 e_iTm eiT4

= mj

eTm2

which is again the correct character tr3 e_tT.

Thus on a spherical phase space geometry the equivariant Hamiltonian systems pro

vide a rich example of the topological quantum field theories discussed in Section 4.8,

and they are the natural framework for the study of the quantum properties of classical

spin systems. The character formula path integrals above describe the quantization of

the harmonic oscillator on the sphere, and therefore the only integrable quantum system,

up to holomorphic equivalence (i.e. modification by the general geometry of the phase

space), that exists within the equivariant localization framework on a general spherical

geometry is the harmonic oscillator defined on the reduced compact phase space D2.

5.6 Hyperbolic Phase Spaces

The situation for the case where the phase space is endowed with a Riemannian geometry

of constant negative Gaussian curvature K < 0 parallels that of the last Section, and we

only therefore briefly discuss the essential differences [125]. The phase space M is now

necessarily a non-compact manifold, and we can map it onto the maximally symmetric

space 7.12, the Lobaschevsky plane (or pseudo-sphere) of constant negative curvature,

with its standard curved hyperbolic metric g2 [36, 37, 57]. The Killing vectors of this

metric have the general form

V = —ifw + a(1 + w)hul’2 , V = i1ii + (1 + w)’/2 (5.147)

and they generate the isometry group SO(2, 1). The rest of the analysis at the beginning

of the last Section now carries through analogously to the case at hand here, where we
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replace the K factors everywhere by —IKI and the K”2 factors by IKI”2.
In particular, with these changes, the generalized stereographic coordinate transfor

mation (5.100) is the same except that now the holomorphic function f(z) there maps the

phase space onto the Poincaré disk of radius IKI”2,i.e. the disk D2 with the Poincaré

metric
4

g72 =
- dz®d (5.148)

(1 — zz)2

which defines a Kähler geometry on the disk for which the associated symplectic 2-form

is the unique invariant volume form under the transitive 50(2, 1)-action. The Poincaré

disk is the stereographic projection image for the Lobaschevsky plane when we regard

it through its embedding in 1R3 as the pseudo-sphere, so that we can represent it by

pseudo-spherical coordinates as (r, ) IR x [0, 2ir] by x1 = sinh r cos q, x2 = sinh r sin q

and z = cosh r. The stereographic projection is again taken from the projection center

z’ = —1, and the boundary of the Poincaré disc corresponds to points at infinity of the

hyperboloid The pseudo-sphere itself is represented by the interior of the disc. The

explicit transformation in terms of pseudo-spherical coordinates is

= 1 1
etanh(r/2) (5.149)

We also note here that the Poincaré disc is conformally equivalent to the upper half plane

C via the Cayley transform - z = (—i)/(+i) which takes C onto the Poincaré

disk, and the Poincaré metric (5.148) on the (Poincaré) upper-half plane is

92 = Im()2d0 d (5.150)

The path integral over such hyperbolic geometries arises in string theory and studies of

quantum chaos [26].

The most general localizable Hamiltonian in a hyperbolic phase space geometry is

therefore
-

- (ll + f(z)f()) aJ() + f(z)H(z,z)=
-f(z)f() +1-f(z)f()

+C0 (5.151)
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The transformation to Darboux coordinates on M is now accomplished by the diffeo

morphism

v(z,)
= f(z)

(5.152)
(1

- f(z)J())”2

which maps M onto the complement of the unit disc C — int(D2) in 1R2. The general

Darboux Hamiltonians are therefore

H(z, ) = + (ãz + a)(1 + z)1l’2 ; z E C — int(D2) (5.153)

We note that here there are 2 inequivalent Hamiltonians, corresponding to a choice of

“spacelike” and “timelike” Killing vectors, but the generic hyperbolic Hamiltonians are

again all holomorphic copies of one another, again reducing to a quasi-displaced harmonic

oscillator. However, given that the Darboux phase space is now non-compact, we can

again weaken the requirement of a global circle action on the phase space to a semi-

bounded group action.

Considering therefore the quantum problem defined on the Poincaré disc of unit

radius, we write the 3 independent observables in (5.151) as

S(z,) = k , S(z,) = 2k1 , S(z,) = 2k1 (5.154)

Defining the Kähler 2-form w(k) = kw2, we see that the associated Poisson algebra of

these observables is just the SU(1, 1) Lie algebra

{ s}(k) = {s, }(k) = 233 (5.155)

The Hamiltonians in (5.151) are therefore functions on the coadjoint orbit

SU(1,1)/U(1) (5.156)

of the non-compact Lie group SU(1, 1), and the generators (5.154) are the normalized

matrix elements of the SU(1, 1) generators in the SU(1, 1) coherent states

(2k+n+1Y12
Iz) = eIk,O) = I I z’k,rt) ; z int(D2) (5.157)

n=O\ fl J
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for the discrete irreducible representation of SU(l, 1) characterized by k = 1, , 2, ,.

[108]. The (infinite-dimensional) representation states k,n) defined here are the eigen

states of the generator S3 with eigenvalues

sIk,n) = (k+n)Ik,n) (5.158)

and the coherent states (5.157) have the normalization

(z2Izi) = (1 —z12)21 (5.159)

where we have used the binomial series expansion

1 00 fm+n—1’
11 = > ( ) xm (5.160)
iX1 m=O\ m j

which is valid for n E and IxI < 1.

Again, the integrable Hamiltonian systems are obtained by taking H = S, which

is the height function on .)t2, and the corresponding coherent state path integral yields

the quantization of the harmonic oscillator on the open infinite space 7L2 (and up to

holomorphic equivalence these are the only integrable systems on a general hyperbolic

phase space). It is straightforward to analyse the localization formulas for the coherent

state path integral just as in the last Section. For instance, the WKB localization formula

for the coadjoint orbit path integral

Zsu(l,l)(T) = j [dcoshr] [d] exp {ijTd (kcoshr — k(1 + coshr))} (5.161)

can be shown to coincide with the exact Weyl character formula for SU(1, 1) [44, 113]
00 —iT(k--i)

Zsu(l,l)(T) = trk e_TS3 = e_iT(l 2i_e T_2 (5.162)
n=O Sifl

Some higher-dimensional examples of these coadjoint orbit models and an explicit ver

ification of the Duistermaat-Heckman localization formula have been worked out re

cently in [45] for SU(N) coherent states on complex N-dimensional projective space
pN 52N+1/5N (i.e. the set of complex lines through the origin in C’’), and their

non-compact hyperbolic counterparts (i.e. SU(N — 1, 1) coherent states), and in [43] for

U(N) coherent states on Grassmann manifolds U(N)/(U(n) x U(N
—

n)).
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5.7 Quantization on Non-homogeneous Phase Spaces

In this final Section of this Chapter we consider the final remaining possible class of

Riemannian geometries on the phase space M, i.e. those with a Gaussian curvature K(x)

which is a non-constant function of the coordinates on M, so that dimK(M,g) = 1.

The 2-dimensional geometries which admit only a single Killing vector are far more

numerous than the maximally symmetric ones and it is here that one could hope to

obtain more non-trivial applications of the localization formulas. Another nice feature

of these spaces is that the corresponding Hamiltonian Poisson algebra will be abelian, so

that the Hamiltonians so obtained will automatically be Cartan elements, in contrast to

the previous cases where the 3-dimensional Lie algebra JC(M, g) was non-abelian. Thus

the abelian localization formulas of the last Chapter can be applied straightforwardly, and

the resulting propagators will yield character formulas for the isometry group elements

defined in terms of a topological field theory type path integral. It is possible to study

non-abelian localization formulas using the formalisms developed in Sections 3.8 [135]

and 4.8 [127], but here we wish to focus on the properties of integrable quantum systems

corresponding to Cartan element Hamiltonians so that we can study the appropriate

classical character formulas.

Given a 1-parameter isometry group acting on (M, g), we begin by introducing a set

of preferred coordinates (x”, x’2) defined in terms of 2 differentiable functions x’ and

x2 as described in Section 5.2, so that in these coordinates the Killing vector V has

components V” = 1, V’2 = 0. For now, the function x’ is any non-constant function on

M, but we shall soon see how, once a given isometry of the dynamical system is identified,

it can be fixed to suit the given problem. For a Hamiltonian system (M, , H) which

generates the flows of the given isometry in the usual way via Hamilton’s equations, the

defining condition (5.49) for the coordinate function x2 now reads

{x2,H} = 0 (5.163)
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which is assumed to hold away from the critical point set of H (i.e. the zeroes of V) almost

everywhere on M. This means that x2 is a conserved charge of the given dynamical

system, i.e. a function of action variables. In higher dimensions there would be many

such possibilities for the conserved charges depending on the integrability properties of

the system. However, in 2-dimensions this requirement fixes the action variable to be

simply a functional of the Hamiltonian H,

2=F(H) (5.164)

and so even in the non-maximally symmetric cases we see the intimate connection here

between the equivariant localization formalism and the integrability of a (classical or

quantum) dynamical system. We note that this only fixes the requirement (5.163) that

the coordinate transformation function be constant along the integral curves of the Killing

vector field V. The isometry condition (5.64) on the symplectic 2-form now only implies

that, in the new x’-coordinates, c(x’) is independent of x’1 (just as for the metric).

The Hamiltonian equations with V’1 = 1, V’2 = 0 must be solved consistently now using

(5.164) and an associated symplectic structure. Notice that this construction is explicitly

independent of the other coordinate transformation function x’ used in the construction

of the preferred coordinates for V (c.f. Section 5.2).

Thus for a general metric (5.43) that admits a sole isometry, the general “admissible”

Hamiltonians within the framework of equivariant localization are given by the function

als in (5.164) determined by the transformation x —+ x’ to coordinates in which the (circle

or translation) action of the corresponding Killing vector is explicit. The rich structure

now arises because the integrability condition £W = 0 for the Hamiltonian equations

does not uniquely determine the symplectic 2-form w, as it did in the case of a maximally

symmetric geometry. The above construction could therefore be started with any given

symplectic 2-form obeying this requirement, with the hope of being able to analyse quite

general classes of Hamiltonian systems. This has the possibility of largely expanding the
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known examples of quantum systems where the Feynman path integral could be evalu

ated exactly, in contrast to the maximally symmetric cases where we saw that there was

only a small number of few-parameter Hamiltonians which fit the localization framework.

However, it has been argued that the set of Hamiltonian systems in general for which

the localization criteria apply is still rather small [34, 125]. For instance, we could from

the onset take w to be the Darboux 2-form on M = lR and hope to obtain localizable

examples of 1-dimensional quantum mechanical problems with static potentials. These

are defined by the Darboux Hamiltonians

HQM(p, q) = + U(q) (5.165)

where U(q) is some potential which is a C°°-function of the position q E 1R1. It was

Dykstra, Lykken and Raiten [34] who first pointed out that the formalism outlined in

Chapter 4 above, which naively seems like it would imply the exact solvability of any

phase space path integral, does not work for arbitrary potentials U(q).

To see this, we consider a generic potential U(q) which is bounded from below. By

adding an irrelevant constant to the Hamiltonian (5.165) if necessary, we can assume

that U(q) > 0 without loss of generality. We introduce a “harmonic” coordinate y E IR

and polar coordinates (r, 0) E IR x S1 by

p rsinO , U(q) = 12 = r2cos2O (5.166)

In these coordinates the Hamiltonian (5.165) takes the usual integrable harmonic oscilla

tor form H = r2, so that the function x2 above defines the radial coordinate r in (5.166)

and .T(H) = /ti in (5.164). The Hamiltonian vector field in these polar coordinates

has the single non-vanishing component

V6 = (5.167)

The metric tensor (5.43) will have in general have 3 components grr, goe and ger under

the coordinate transformation (5.166), and the Killing equations (2.92) become

V69egee+2geeOeV6= 0 , öe(greV6)+geeãrV6= 0 , V6aegrr+2groarV6 0 (5.168)
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The 3 equations in (5.168) can be solved in succession by integrating them and the general

solution has the form

= (V6)2 = 4$j dO’ Or (7) + ,
=
2g6+ k(r) (5.169)

where f(r), h(r) and k(r) are arbitrary C°°-functions that are independent of the angular

coordinate 0.

Note that, as expected, there is no unique solution for the conformal factor p in (5.43),

only the requirement that it be radially symmetric (i.e. independent of 0). However, the

equations (5.169) impose a much stronger requirement, this time on the actual coordinate

transformation (5.166). If we impose the required single-valuedness property on the

metric components above, then the requirement that grs(r, 0) = gre(r, 9+2ir) is equivalent

to the condition
0 2rrj9

ä-i:J’c =0 (5.170)

or equivalently that
2ir dn

I dO — = constant (5.171)
Jo dy

However, the only solution to (5.171) is when the function is independent of the radial

coordinate r, which from (5.166) is possible only when y = —q, so that U(q) = q2 and

HQM is the harmonic oscillator Hamiltonian. Thus, with the exception of the harmonic

oscillator, equivariant localization fails for all 1-dimensional quantum mechanical Hamil

toriians with static potentials which are bounded below, due to the non-existence of a

single-valued metric satisfying the Lie derivative constraint in this case.

Even for the harmonic oscillator, which is considered trivial from the point of view

of localization theory, there are some ambiguities that arise in the above formalism due

to the fact that there is a large degree of freedom remaining in the metric tensor which

is not determined by the equivariant localization constraints. To see this, we note first

that the Hamiltonian vector field (5.167) in this case is V6 = 1 which generates a global

S’-action on M = 1R2 given by translations of the angle coordinate 0. Thus one would
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expect the localization formulas to be exact for the harmonic oscillator using any radially

symmetric geometry (5.43) to make manifest the localization principle. This is certainly

true of the WKB formula (4.70) which does not involve the metric tensor at all, but

the more general localization formulas, such as the Niemi-Tirkkonen formula (4.91), are

explicitly metric dependent through, e.g. the A-genus terms, although not manifestly so.

Explicitly, the non-vanishing components of the metric tensor (5.43) under the coordinate

transformation (5.166) in the case at hand are

grr = e’ , gee = r2 e’ (5.172)

and it is straightforward to work out the Riemann moment map and curvature tensor

which with V8 = 1 lead to the non-vanishing components

(V)8r = (1V)r8 = e (2+rT))
, R0r0r —(v)sr-log(r) (5.173)

where we have introduced the function

= e(1v)or/2r (5.174)

Substituting the above quantities into the Niemi-Tirkkonen formula (4.91) with WrO =

r and working out the Grassmann and 0 integrals there, after some algebra we find the

following expression for the harmonic oscillator partition function,

Zharm(T) Jdr ( . = lli (r)
(5.175)z o dr \slnTA(r) J r-+O sin TA(r)

Comparing with (5.69), we see that this result coincides with the exact result for the

harmonic oscillator partition function only if the function (5.174) behaves at the origin

r = 0 as

= (5.176)

which using (5.173) and (5.174) means that the phase space metric must satisfy, in

addition to the radial symmetry constraint, the additional constraint

limr—(r) = 0 (5.177)
r-+O dr
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The requirement (5.177) means that the conformal factor (r) of the Riemannian geom

etry must be an analytic function of r about r = 0, and this restriction on the general

form of the metric (5.43) (i.e. on the functional properties of the conformal factor )
ensures that the partition function is independent of this phase space metric, as it should

be.

This analyticity requirement, however, simply means that the metric should be chosen

so as to eliminate the singularity at the origin of the coordinate transformation to polar

coordinates (r, 0) on the plane. That this transformation is singular at p = q = 0 is easily

seen by computing the Jacobian for the change of variables (5.166) with the harmonic os

cillator potential (or by noting that cc.’ and g are degenerate at r 0 in these coordinates).

Since the equivariant Atiyah-Singer index which appears as the Niemi-Tirkkonen formula

for the quantum mechanical path integral is an integral over characteristic classes, it is

manifestly invariant under Cc deformations of the metric on M. The transformation

to polar coordinates is a difl’eomorphism only on the punctured plane 1R2 — {0}, which

destroys the manifest topological invariance of the partition function (at r = 0 anyway).

To obtain a properly defined metric-independent quantity, one should instead consider

the quantum theory as defined on the punctured plane, but this is a multiply-connected

phase space, since the loops which encircle the origin are non-contractable, so that some

of the localization formalism described above must be suitably modified (see the next

Chapter). We shall return to some of these points in Chapter 7. As discussed in [34]

and [125], this appears to be a general feature of the generalized localization formulas,

and one must essentially know the quantum theory ab initio in order to resolve the am

biguities associated with the arbitrariness of the metric (5.43). Indeed, in the set of

preferred coordinates for V it has no zeroes and so the critical points are “absorbed” into

the symplectic 2-form and in general also the metric g. Thus the preferred coordinate

transformation for V is a diffeomorphism only on M — M in general. Nonetheless, this

simple example illustrates that quite general, non-homogeneous geometries can still be



Chapter 5. Equivariant Localization on Simply Connected Phase Spaces 191

used to carry out the equivariant localization framework for path integrals and describe

the equivariant Hamiltonian systems which lead to topological quantum theories in terms

of the generic phase space geometry.

Although the above arguments appear to have eliminated a large number of inter

esting physical problems, owing to the fact that their Hamiltonian vector fields do not

generate well-defined orbits on the 0-circle, it is still possible that quantum mechanical

Hamiltonians with unbounded static potentials could fit the localization framework. Such

dynamical systems indeed do represent a rather large class of physically interesting quan

tum systems. The first such attempt was carried out by Dykstra, Lykken and Raiten

[34] who considered the equivariant localization formalism applied to the 1-dimensional

hydrogen atom Hamiltonian [78]

Hh(p,q) =

—

(5.178)

The eigenvalues of the associated quantum Hamiltonian form a discrete spectrum with

energies

E=—1/2n2 , n=1,2,... (5.179)

which resembles the bound state spectrum of the more familiar 3-dimensional hydrogen

atom [83]. What is even more interesting about this dynamical system is that the clas

sical bound state orbits all coalesce at the phase space points q = 0, p = ±oo on 1R2, so

that a localization onto classical trajectories (like the WKB formula) is highly unsuitable

for this quantum mechanical problem. This problem could therefore provide an exam

ple wherein although the standard WKB approximation cannot be employed, the more

general localization formulas, like the Niemi-Tirkkonen formula, which seem to have no

constraints on them other than the usual isometry restrictions on the phase space M,

could prove of use in describing the exact quantum theory of the dynamical system.

The key to evaluating the localization formulas for the Darboux Hamiltonian (5.178)
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is the transformation to the hyperbolic coordinates (r, -r) with —oo <r, r

i= Irlsinhr , q= 2/rlrlcosh2T (5.180)

so that the Hamiltonian is again Hh = — and the Hamiltonian vector field has the

single non-vanishing component

VT = —rcoshr (5.181)

Now the Killing equations have precisely the same form as in (5.168), with (r, 0) replaced

by (r, T) there, and thus the general solutions for the metric tensor have precisely the

same form as in (5.169). However, because of the non-compact range of the hyperbolic

coordinate r in the case at hand, we do not encounter a single-valuedness problem in

defining the components g,.,- as C°3 functions on 1R2 and from (5.169) and (5.181) we find

that it is given explicitly by the perfectly well-defined function

12f(r) / sinhr 1
. ‘\ h(r)

grT
= T4VT 2cosh2r

+ arctan(sinhr) + --- (5.182)

In the context of our isometry analysis above, we again choose the coordinate trans

formation function x2 above so that F(H) = /H in (5.164). The other coordinate

function x1 x” is determined by noting that the above (r, r) coordinates are the x’

coordinates in (5.37) from which we wish to define the preferred set of x”-coordinates

for the Hamiltonian vector field V. There we identify (x’1,x’2) = (r, r) according to that

prescription. Carrying out the explicit integration over = r using (5.181), and then

substituting in the transformation (5.180) back to the original Darboux coordinates, after

some algebra we find

2
—3/2

2 1/2

x’(p,q) = —

_2
[PlI

_2 +2arctan ( 2 21/2)]
(5.183)

I

Thus the Hamiltonian (5.178) is associated with the phase space metric tensor (5.43)

which is invariant under the translations x’ —* x’ + a0 of the coordinate (5.183). The
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discussion above shows explicitly that the phase space indeed does admit a globally well-

defined metric which is translation invariant in the variable (5.183). It is also possible to

evaluate the Niemi-Tirkkonen localization formula for this quantum problem in a similar

fashion as the harmonic oscillator example above. We shall not go into this computation

here, but refer to [34] for the technical details, The only other point we wish to make here

is that one encounters in the same way as above a metric ambiguity such as (5.176), which

imposes again certain regularity requirements on the conformal factor of the metric (5.43).

These conditions are far more complicated than above because of the more complicated

form of the translation function (5.183), but they are again associated with the cancelling

of the coordinate singularities in (5.180) which make the equivariant Atiyah-Singer index

in (4.91) an explicitly metric dependent quantity. With these appropriate geometric

restrictions it is enough to argue that the quantum partition function for the Darboux

Hamiltonian (5.178) has the form [34]

Zh(T) e’2 (5.184)

which from (5.179) we see is indeed the exact spectral propagator for the 1-dimensional

hydrogen atom [78].

This example shows that more complicated quantum systems can be studied within

the equivariant localization framework on a simply connected phase space, but only for

those phase spaces which admit Riemannian geometries which have complicated and

unusual symmetries, such as translations in the coordinate (5.183) above. Thus aside

from the above noted problem of having to resolve the explicit metric ambiguity in the

localization formulas, there is the further general problem as to whether or not a geometry

can in fact possess the required symmetry (e.g. for Hamiltonians associated with bounded

potentials, there is no such geometry). It is not expected, of course, that any Hamiltonian

will have an exactly solvable path integral, and from the point of view of this Chapter

the cases where the Feynman path integral fails to be effectively computable within the

framework of equivariant localization will be the cases where a required symmetry of the
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phase space geometry does not lead to a globally well-defined metric tensor. Nonetheless,

the analysis in [34] for the 1-dimensional hydrogen atom is a highly non-trivial success

of the equivariant localization formulas for path integrals which goes beyond the range

of the standard WKB method.

We conclude this Chapter by showing that it is possible to relate the path inte

grals for generic dynamical systems on non-homogenous phase spaces which fall into the

framework of loop space equivariant localization to character formulas for the associ

ated 1-parameter isometry groups [125]. For this, we need to introduce a formalism for

constructing coherent states associated with non-transitive group actions on manifolds

[73, 125]. We consider the isothermal metric (5.43) in the preferred x’-coordinates for a

Hamiltonian vector field V on M. Using these coordinates, we define the complex coor

dinates z = x’2 e”, in analogy with the case where V defines a rotationally symmetric

geometry (as for the harmonic oscillator). Let f(z) be an invariant analytic solution of

the ordinary differential equation

d(z)d(z)
log f(z) = e’° (5.185)

For the symplectic 2-form of the phase space, we take the invariant volume form associ

ated with (M,g),

w
= id()Zd() log f(z)dz A d (5.186)

whose associated symplectic potential is

= 2d()
log f(z) (dz — zd) (5.187)

This definition turns the phase space into a non-homogeneous Kähler manifold with

Kähler potential

F(z, ) = log f(z) (5.188)

Let N, 0 < oo, be the integer such that the function f(z) admits the Taylor



Chapter 5. Equivariant Localization on Simply Connected Phase Spaces 195

series expansion

f(z) = (5.189)

and let p(z) be an invariant integrable functioll whose moments are

1P 1
J d(z.) (z)’p(z.) =

-
, 0 n Nç, (5.190)

0 fn

where P is a real number with 0 < P < oo. Let &t and a be bosonic creation and anni

hilation operators on some representation space of the isometry group (as in Section 5.3

above), and let Ia), u e be the complete system of eigenstates of the corresponding

number operator, â&In) = I)- The desired coherent states are then defined as

N

z) = zn) (5.191)

The states (5.191) have the normalization

(zlz) = f(z) = eFM (5.192)

and they obey a completeness relation analogous to (5.120) in the isometry invariant

measure

d(z,) = f(z)p(z)0(P — z)dz A d (5.193)

where 0(x) denotes the step function for x e IR. The completeness of the coherent

states (5.191) follows from a calculation analogous to that in (5.78) using the definitions

(5.189)—(5.191) above.

Notice that for the functional values f(z) = e, (1 + z)2i and (1 — z.)_2Iv (5.191)

reduces to, respectively, the Heisenberg-Weyl group, spin-i SU(2) and level-k SU(1, 1)

coherent states that we described earlier. Moreover, in that case we consistently find, re

spectively, the weight functions p(z) = e with P = oo, p(z.) = (2j+1)(1+z)_2(i+1)

with P = cc, and p(z) = (2k — 1)(1 — z)2(Ic_1) with P = 1. This is anticipated from

(5.185), as then the isothermal metrics in (5.43) correspond to the standard maximally

symmetric Kähler geometries described earlier. Here the isometry group acts on the
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states (5.191) as h(T)Iz) = etrz), h(T) E I(M,g), r E 1R1, which ensures that a Hamil

tonian exists (as we shall see explicitly below) such that a time-evolved coherent state

remains coherent in this sense, regardless of the choice of p [73]. The (holomorphic)

dependence of the non-normalized coherent state vectors Iz) on oniy the single complex

variable z is, as usual, what makes them amenable to the study of the isometry situation

at hand. Notice also that the metric tensor (5.43) and canonical 1-form (5.187) can as

usual be represented in the standard coherent state forms (5.84) and (5.83), respectively.

Considering as usual the coherent state matrix elements (5.87) with respect to (5.191),

using (5.187) and (5.193) we can construct the usual coherent state path integral

Z’)(TI.F(H))
= f [J dp’)(z(t),(t))

LMtE[OTJ
(5.194)

exp {jT dt
[2d(z)

log f(z) (z
- ) - F(H)] }

where we have again allowed for a possible functional F(H) of the isometry generator

H. The observable H(z, ) in (5.194) can be found by substituting (5.186), written back

in the x’-coordinates using the standard radial form for z = x’2 ei2 given in (5.172),

and V” = a0, V’2 = 0 into the Hamiltonian equations. Thus the equivariant localization

constraints in these cases determine H in terms of the phase space metric as

d (zIât&Iz)H (z,) = aozz )logf(zz) + Co = a0
(zlz)

+ C0 (5.195)

where the function f(z) is related to the metric (5.43) by (5.185). Notice that (5.195)

reduces to the usual harmonic oscillator height functions in the maximally symmetric

cases of Sections 5.3, 5.5 and 5.6 above. Thus (5.195) can be considered as the general

localizable Hamiltonian valid for any phase space Riemannian geometry, be it maximally

symmetric or otherwise (the same is true, of course, for the coherent state path inte

gral (5.194)). This is to be expected, because the localizable Hamiltonian functions in

the case of maximal symmetry are simply displaced harmonic oscillators, and these os

cillator Hamiltonians correspond to the rotation generators of the isometry groups, i.e.
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translations in arg(z) = x’ (this also agrees with the usual integrability arguments). In

fact, (5.195) shows explicitly that the function H is essentially just a harmonic oscillator

Hamiltonian written in terms of some generalized phase space geometry.

The main difference in the present context between the maximally symmetric and

non-homogeneous cases lies in the path integral (5.194) itself. In the former case the

coherent state measure dz(’)(z, ) which must be used in the Feynman measure in (5.194)

coincides with the the volume form (5.186), because as mentioned earlier if the isometry

group acts transitively on the Riemannian manifold (M,g) then there is a unique left-

invariant measure (i.e. a unique solution to (5.64)) and so dt(c0) = yields the standard

Liouville measure on the ioop space LM. In the latter case du(° w(’), and (5.194)

is not in the canonical form (4.107) for the quantum partition function associated with

the loop space symplectic geometry. Nonetheless, by a suitable modification of the ioop

space supersymmetry associated with the dynamical system by noting that the coherent

state measure in (5.193) is invariant under the action of the isometry group on M, it

is still possible to derive appropriate versions of the standard localization formulas with

the obvious replacements corresponding to this change of integration measure. Of course,

we can alternatively follow the analysis of the former part of this Section and use the

standard Liouville path integral measure, but then we lose the formal analogies with

the Duistermaat-Heckman theorem and its generalizations. It is essentially this non

uniqueness of an invariant symplectic 2-form iii the case of non-transitive isometry group

actions which leads to numerous possibilities for the localizable Hamiltonian systems

defined on such geometries, in marked contrast to the maximally symmetric cases where

everything was uniquely fixed. If one consistently makes the “natural” choice for w as

the Kähler 2-form (5.186), then indeed the only admissible Hamiltonian functions H are

generalized harmonic oscillators.



Chapter 6

Equivariant Localization on Multiply Connected Phase Spaces

In the last Chapter we deduced the general features of the localization formalism on a

simply-connected 2-dimensional symplectic manifold. We found general forms for the

Hamiltonian functions in terms of the underlying phase space Riemannian geometry

which is required for their Feynman path integrals to manifestly localize. This feature

is quite interesting from the point of view that, as the quantum theory is always ab

initio metric-independent, this analysis probes the role that the geometry and topology

plays towards the understanding of quantum integrability. For instance, we saw that

the classical trajectories of a harmonic oscillator must be embedded into a rotationally-

invariant geometry on JR2 and that as such its orbits were always circular trajectories

on the plane. For more complicated systems these quantum geometries are less familiar

and endow the phase space with unusual Riemannian structures. In any case, all the

localizable Hamiltoniaris were essentially harmonic oscillators (e.g. the height function

for a spherical phase space geometry) and their quantum partition functions could be

represented naturally using coherent state formalisms associated with the Poisson-Lie

group actions of the isometry groups of the phase space. In the non-homogeneous cases

we saw, in particular, that to investigate equivariant localization in general one needs to

determine if a Riemannian geometry can possess certain symmetries imposed by some

rather ad-hoc restrictions from the dynamical system. In practice, the introduction of

such a definite geometry into the problem is highly non-trivial, although we saw that it

was possible in some non-trivial examples. These results also impose restrictions on the

classes of topological quantum field theories and supersymmetric models which fall into

198
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the framework of these geometric localization principles.

In this Chapter we shall extend the analysis of Chapter 5 to the case when the phase

space M is multiply-connected. The first such extension of the loop space equivariant

localization formalism with a detailed analysis as in the last Chapter was carried out in

[120]. In particular, we shall consider a compact Riemann surface of genus h 1, again

because of the wealth of mathematical characterizations that are available for such spaces.

We shall explore how the localization formalism differs from that on a simply-connected

manifold. Recall that much of the formalism developed in Chapter 4, in particular that

of Section 4.9, relied quite heavily on this topological restriction. We shall see that

now the topological quantum field theories that appear also describe the non-trivial

first homology group of the Riemann surface, and that it is completely independent of

the geometrical structures that are used to carry out the equivariarit localization on

M, such as the conformal factors and the modular parameters. This is typically what

a topological field theory should do (i.e. have only global features), and therefore the

equivariant Hamiltonian systems that one obtains in these cases are nice examples of how

the localization formalism is especially suited to describe the characteristics of topological

quantum field theories on spaces with much larger topological degrees of freedom. Again

the common feature will be the description of the quantum dynamics using a coherent

state formalism, this time associated with some non-symmetric spin system and some of

the ideas from geometric quantization [17, 136]. We shall in addition see that the coherent

states span a multi- but finite-dimensional Hilbert space in which the wavefunctions carry

a non-trivial representation of the discrete first homology group of the phase space. We

shall verify the localization formulas of Chapter 4 in a slightly modified setting, pointing

out the important subtleties that arise in trying to apply them directly on a multiply

connected phase space.

Although we shall attempt to give a quite general argument for what the localizable

dynamics are on these spaces, most of our arguments will only be carried explicitly for
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genus 1, i.e. on the 2-torus T2 = 51 x S1, as will become apparent as we go along. In

particular, we shall view the torus in a way best suited to describe its complex algebraic

geometry, i.e. in the parallelogram representation of Section 3.5, so that we can examine

the topological properties of the quantum theory we find and get a good idea of the

features of the localization formalism on multiply-connected spaces in general. Another

more explicit way to view the torus is by embedding it in ]R3 by revolving the circle

(y — a)2 + x2 = b2 on the xy-plane around the x-axis, where 0 <b < a, i.e. embedding

T2 in 3-space by x = bsin4i, y (a + bcos1)sin2and z = (a + bcosi)cos42.

The induced metric on the surface from the flat Euclidean metric of 1R3 is then b2d41 0

db1 + (a + b cosq1)2dq20 dqS2, and the modular parameter r E of the parallelogram

representation of T2 is (c.f. Section 3.5)

r = ib/V”a2
— b2 (6.1)

If we now introduce the coordinate

O=e(l)=j1d (6.2)

then it is straightforward to verify that w = q + iO is an isothermal coordinate for the

induced metric on T2 for which its isothermal form is p(O)(d2odq2+d9odO). This defines

a complex structure on T2. Since this metric is invariant under translations in we

could heuristically follow the analysis of Section 5.7 to deduce that one class of localizable

Hamiltonians are those which are functions only of
. In order that these Hamiltonians

be well-defined on T2 = x Si, we require in addition that these be periodic functions of

çb. As we shall soon see, this is consistent with the general localizable dynamical systems

we shall find. Topological invariance of the associated quantum theory in this context

would say something like the invariance of it under certain rescalings of the modular

parameter (6.1), i.e. under rescalings of the radius parameters a or b corresponding to a

‘shift’ in the local geometry of T2. A topological quantum theory shouldn’t detect such

shifts which aren’t considered as ones modifying the topological properties of the torus.
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In other words, the topological quantum theory should be independent of the phase space

complex structure. We shall see this in a more algebraic form later on in this Chapter.

6.1 Isometry Groups of Multiply Connected Spaces

To describe the isometries of a generic path connected, multiply-connected Riemannian

manifold (M,g), we lift these isometries up into what is known as the universal covering

space of the manifold. The multiple-connectivity of M means that it has ioops in it which

cannot be contracted to a point (i.e. M has ‘holes’ in it). This is measured algebraically

by what is called the fundamental homotopy group Tri(M) of M, a similar but rather

different mathematical entity as the first homology group Hi(M; ). Roughly speaking,

this group is defined as follows. We fix a basepoint xo M and consider the ioop space

of periodic maps o : [0, 1] —* M with cr(0) = (1) = XO. For any 2 loops c and r

based at x0 in this way, the product ioop r r is defined to be the ioop obtained by first

going around u, and then going around r. The set iri(M) is the space of all equivalence

classes [o] of loops, where 2 loops are equivalent if and only if they are homotopic to each

other, i.e. there exists a continuous deformation between the ioops. It can be shown

that the above multiplication of loops then gives a well defined multiplication in iri(M)

and turns it into a group with identity the homotopy class of the trivial ioop [0, 1] —+ xo

and with inverse defined by reversing the orientation of a ioop. In general, this group

is non-abelian and discrete, and it is related to the first homology group Hi(M; ) as

follows. Let [G, G] denote the commutator subgroup of any group G, i.e. [G, C] is the

normal subgroup of C generated by the products ghg’h’, g, h E G. The homology

group Hi(M; ) is then the abelianization of the fundamental group,

Hi(M;ZZ) = lri(M)/[lri(M),7r1(M)} (6.3)

If iri(M) is itself abelian, then the homology and homotopy of M coincide. We refer to

[81] for a more complete exposition of homotopy theory and how homology, in the sense
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of (6.3), is the natural approximation of homotopy.

The universal covering space of M is now defined as the smallest simply connected

manifold M covering M. By a covering space we mean that there is a surjective con

tinuous map ir : — M such that its restriction to any neighbourhood of M defines a

local diffeomorphism. This means that locally on M we can lift any quantity defined on

it to its universal cover and study it on the simply connected space M. The manifold

M and its universal covering space M are related by the homeomorphism

M M/iri(M) (6.4)

where the fundamental group acts freely on .A1 through what are known as deck or

covering transformations [81], i.e. the diffeomorphisms ci : M —* M such that ir(a(x)) =

ir(x), Vx e .,A1. Thus in this setting, the universal covering space is a principal fiber

bundle where the total space .At is locally regarded as the space of all pairs (x, [Cr]),

where Cr is a curve in M from x0 to x and [Cr] is its homotopy class1. The structure

group of the bundle is 71-i(M) and the bundle projection M M takes a homotopy

class of curves to their endpoint, ir: [Cr] —+ x. Clearly, M is its own universal cover if it

is simply connected, i.e. iri(M) = 0. We shall see some examples in due course.

Consider now a Riemannian metric g defined on M, and let lr*g be its inverse im

age under the canonical bundle projection of .A1 onto M. Then (M, lr*g) is a simply-

connected Riemannian manifold, and from the discussion of the last Chapter we are well

acquainted with the structure of its isometry groups. It is possible to show [77], from the

principal fiber bundle interpretation (6.4) above, that to every isometry h E I(M, g) one

can associate an isometry J I(M, Tr*g) which is compatible with the universal covering

projection in the sense that

iroh=hoqr (6.5)

a homotopy class of curves [Cr] can be identified with an element of iri(M) by choosing another
basepoint x and a grid of standard paths from z to any other point in M. Then the associated
homotopy class is represented by the loop [x, xo] U Cr U [x, zJ.
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To prove this one needs to show that the lifting h lr*h gives a diffeomorphism of M

which is a well-defined function on the homotopy classes of curves used for the definition

of .A1 [77]. Thus the isometries of the Riemannian manifold (M, g) lift to isometries of

the simply connected space (M, *g) of which we have a complete description from the

last Chapter. It should be kept in mind though that there may global obstructions from

the homotopy of M to extending an isometry of M projected locally down onto M by

the bundle projection ir. We shall see how this works in the next Section.

6.2 Equivariant Hamiltonian Systems in Genus One

Our prototypical model for a multiply-connected symplectic manifold will be the 2-torus

T2 = 5’ x S1 which we first studied in Section 3.5. Notice that the circle is multiply-

connected with in(S1) = 7Z with the integers labelling the number of times that a

map a : S $1 ‘winds’ around the circle, i.e. to each homotopy class [a] E in(S1)

we can associated an integer which we call the winding number of the loop a (where

a change of sign signifies a change in the direction of traversing the loop). We can

describe the homotopy of the torus by introducing 2 loops a and b, both fixed at the

same basepoint on 51 x 5’, with a looping once around the inner circle of the torus

(i.e. a : 51
(qi, 0) e 5’ x 5’) and b looping once around the outer circle (i.e.

b : S —+ (0, q) E 51 x S’). Since clearly any other ioop in T2 is homotopic to some

combination of the loops a and b, it follows that they generate the fundamental group

iri(T2) of the torus, and furthermore they obey the relation

aba’b’ = 1 (6.6)

which is easily seen by simply tracing the loop product in (6.6) around 51 x 5l (6.6)

means that iri(T2)is abelian and therefore coincides with the first homology group (3.78).

Thus the ioops a and b defined above are also generators of the first homology group

Hi(E’; W), and they will henceforth be referred to as the canonical homology cycles
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of the torus. Note that any homology cycle in 2 which defines the homology class a

(respectively b) can be labelled by the angle coordinates (respectively c2). Thus any

homology class of a genus 1 compact Riemann surface is labelled by a pair of integers

(n, m) which represents the winding numbers around the canonical homology cycles a

and b.

Recall from Section 3.5 the description of the torus as a parallelogram with its opposite

edges identified in the plane, and with modular parameter r E C which labels the

inequivalent complex analytic structures on the torus (or equivalently the conformal

equivalence classes of metrics on T2) [92, 121]. This means that it can be represented as

the quotient space

= C/( r) (6.7)

where the quotient is by the free bi-holomorphic action of the lattice group ZZ on

the simply-connected complex plane C. In other words, the lattice group is the discrete

automorphism group of the complex plane and it acts on C by the translations2

-÷ z + 2ir(n + rm) , — + 2ir(n + m) ; n, m e ZZ (6.8)

under which the canonical bundle projection C —- 2’ is invariant. That the plane is

the universal cover of the torus is easily seen by observing that the real line 1R1 is the

universal cover of the circle S’ with the bundle projection ir(x) = e2 for x é 1R1.

With the identification (6.7), we can now consider the most general Euclidean signa

ture metric on E1. From our discussion in Section 5.2, we know that the most general
metric on C can be written in the global isothermal form (5.43). The covering projection

in (6.7) in this way induces the most general metric on the torus, which can therefore be
written in terms of a flat Kähler metric as

= dz 0 d. (6.9)Im T

2For an exposition of the various equivalent ways, such as above, of describing compact Riemann
surfaces in different geometric forms, see [91].
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or in terms of the angle coordinates (ci, q2) S’ x S’

e12) 1 1 Re r\

= Im T Re r hi2 ) (6.10)

The complex structure on E’ is now defined by the complex coordinates z qi +rçS2, =

1 + which are therefore considered invariant under the transformations (6.8). The

conformal factor (z, ) is now a globally defined real-valued function on (i.e. invariant

under the translations (6.8)), and the normalization in (6.9) is chosen for simplicity so

that the associated metric volume of the torus

volgr(E’) j d2 detgT
=

d2 e12) E (2)2v (6.11)

is finite and independent of the complex structure of E’ with v IR a fixed volume

parameter of the torus. The metric (6.9) is further constrained by its Gaussian curvature

scalar

K(gT) = — Im(r) e’V (6.12)

which by the Gauss-Bonnet-Chern theorem (5.48) for genus h = 1 must obey

d2çb V(qi,2)= 0 (6.13)

where V = Do is the scalar Laplacian

=
O + ri 282 + 2 Re(r)lrl2D1O2 (6.14)

associated with the Kähler structure in (6.9).

Given this general geometric structure of the 2-torus, following the analysis of the

last Chapter we would like to find the most general localizable Hamiltonian system on it

which obeys the localization criteria. First of all, the condition that the Hamiltonian H

generates a. globally integrable isometry of the metric (6.9) implies that the associated

Hamiltonian vector fields V(x) must be single-valued functions under the windings (6.8)
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around the non-trivial homology cycles of E. This means that these functions must

admit the convergent 2-dimensional harmonic mode expansions

V(q51,2)= l (6.15)
n,m= —00

In other words, the components of V must be C°°-functions which admit a 2-dimensional

Fourier series plane wave expansion (6.15) appropriate to globally-defined periodic func

tions on x 51 As we shall now demonstrate, these topological restrictions from the

underlying phase space severely limit the possible Hamiltonian systems to which the

equivariarit localization constraints• apply.

From (2.92) it follows that the Killing equations for the metric (6.10) are

281V’ + 2 Re(r)ö,1V2+ Vi9cp = 0

2 Re(r)9.2V’ + 2IrI2ã2V2+ ITI2Vöy = 0 (6.16)

92V1 + Re(r)(ö2V2+ö1V’) + rI281V2+ Re(r)VOy 0

Substituting in the harmonic expansions (6.15) and using the completeness of the plane

waves there to equate the various components of the expansions in (6.16), we find after

some algebra that (6.16) generates 2 coupled equations for the Fourier components of

the Hamiltonian vector field,

(IrI2n
— Re(r)m)m = 1T12(m

— Re(r)n)m
(6.17)

(m
— Re(r)n)Vm = {( Re(r)2 — Im(r)2)n

— Re(r)m] 1m

which hold for all integers n and m. It is straightforward to show from the coupled

equations (6.17) that for r E , lm = = 0 unless n = m = 0. Thus the oniy

non-vanishing components of the harmonic expansions (6.15) are the constant modes,

(6.18)

and the only Killing vectors of the metric (6.9) are the generators of translations (by

V IR) along the 2 independent homology cycles of >‘. Notice that this result is
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completely independent of the structure of the conformal factor y in (6.9), and it simply

means that although the torus inherits locally 3 isometries from the maximally symmetric

plane, i.e. local rotations and translations, only the 2 associated translations on are

global isometries. The independence of this result on the conformal factor is not too

surprising, since this just reflects the fact that given any metric on a compact phase

space we can make it invariant under a compact group action by averaging it over the

group in its Haar measure. The above derivation gives an explicit geometric view of how

the non-trivial topology of E’ restricts the allowed global circle actions on the phase

space, and we see therefore that the isometry group of any globally-defined Riemanriian

geometry on the torus is U(1) x U(l).

The invariance condition (5.64) for the symplectic structure can be solved by imposing

the requirement of invariance of WEI independently under the 2 Killing vectors (6.18).

This implies that the components must be constant functions, i.e. that w must be

proportional to the Darboux 2-form WD, and thus we take

WE1 = vd1 A d42 (6.19)

to be an associated metric-volume form on for the present Riemannian geometry (c.f.

(6.11)). It is straightforward to now integrate up the Hamiltonian equations with (6.18)

and (6.19), and we find that the Hamiltonian HE’ is given by displacements along the

homology cycles of ,

HE1(1,2) = h’1 +h22 (6.20)

where

= vV , (6.21)

are real-valued constants. Note that, as anticipated from (6.7), the invariant symplectic

structure here is uniquely determinedjust as for maximally symmetric phase spaces which

have 3 (as opposed to just 2 as above) linearly independent Killing vectors. Thus we see

here that the localizable Hamiltonian systems in genus 1 are even more severely restricted
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by the equivariant localization constraints as compared to the simply-connected cases.

Note that the Hamiltonian (6.20) does not give a globally-defined single-valued function

on a point which we shall return to shortly.

6.3 Homology Representations and Topological Quantum Field Theory

The Hamiltonian (6.20) defines a rather odd dynamical system on the torus, but besides

this feature we see that the allotted Hamiltonians as determined from the geometric

localization constraints are in effect completely independent of the explicit form of the

phase space geometry and depend only on the topological properties of the manifold E1,

i.e. (6.20) is explicitly independent of both the complex structure r and the conformal

factor y appearing in (6.9). From the analysis of the last Chapter, we see that this is in

marked contrast to what occurs in the case of a simply connected phase space, where the

conformal factor of the metric entered into the final expression for the observable H and

the equivariant Hamiltonian systems so obtained depended on the phase space geometry

explicitly (and for non-homogeneous phase spaces this dependence occured in a non

trivial way). In the present case the partition function with the Hamiltonian (6.20) and

symplectic 2-form (6.19) obtained as the unique solutions of the equivariant localization

constraints can be thought of in this way as defining a topological quantum theory on the

torus which is completely independent of any Riemannian geometry on E’. Furthermore,

the symplectic potential associated with (6.19) is

= (q1d42— qS2Ø1) (6.22)

which we note is only locally defined because it involves multi-valued functions in this

local form, so that wi is a non-trivial element ofH2(’;) = 7Z. The Hamiltonian (6.20)

thus admits the local topological form HE1 = iv1Oi, so that the corresponding partition

function defines a cohomological field theory and it will be a topological invariant of the

manifold ‘.
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To explore some of the features of this topological quantum field theory, we note that

(6.20) is not defined as a global C°°-function on E. However, this is not a problem

from the point of view of localization theory. Although for the classical dynamics the

Hamiltonian can be a multi-valued function on , to obtain a well-defined quantum

theory we require single-valuedness, under the windings (6.8) around the homology cycles

of E, of the time evolution operator e_tT1 which defines the quantum propagator

(and also of the Boltzmann weight ezT1 if we wish to have a well-defined classical

statistical mechanics). This implies that the constants h’ in (6.20) must be quantized,

i.e. h’ E h7L for some h e IR, and then time propagation in this quantum system can

only be defined in discretized intervals of the base time h1, i.e. T = NTh’ where

NT E . Such quantizations of coupling parameters in topological gauge theories is

a rather common occurence to ensure the invariance of a quantum theory under ‘large

gauge transformations’ when the underlying space has non-trivial topology [17].

In the quantum theory, the Hamiltonian (6.20) therefore represents the winding num

bers around the homology cycles of the torus, and therefore to each homology class of En

we can associate a corresponding Hamiltonian system obeying the equivariant localization

constraints. The partition function is now denoted as

Z1 (k, £; NT) j [d2] exp { j dt (v21 + h(k1 + £2)) } (6.23)

where k and £ are integers. This path integral can be evaluated directly by first integrating

over the loops 42(t), which gives

Nh’
Zi(k,; NT) j[d1]£(v1 + ht)exp {ij dt hki(t)} e_i/2v (6.24)

Thus the partition function of this quantum system represents the the non-trivial homol

ogy classes of the torus, through the winding numbers k and £ and the time evolution

integer NT. In fact, (6.24) defines a family of 1-dimensional unitary irreducible represen

tations of the first homology group of E1 through the family of homomorphisms

Zl(.,.;NT) Hi(E’;) —* U(1)®U(1) (6.25)
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from the additive first homology group (3.78) into a multiplicative circle group. Notice

that the associated homologically-invariant quantum theory is trivial, in that the sum

over all winding numbers of the partition function (6.24) vanishes,

Zl(k,e;NT) C — e/2v
+

1— ei12v
— i) = 0 (6.26)

k=—oo

This sum over all winding numbers is analogous to what one would do in 4-dimensional

Yang-Mills theory to include all instanton sectors into the quantum theory [118].

However, it is possible to modify what we mean by the quantum propagator on a

multiply-connected phase space so that we obtain a partition function which is indepen

dent of the homology representative class defined by the Hamiltonian using a modification

of the definition of the path integral over a multiply connected space [116]. In general,

if the phase space M is multiply connected, i.e. iri(M) 0, then the Feynman path

integral representation of the quantum propagator can contain parameters x([oi) which

are not present in the classical theory and which weight the homotopy classes [o-] of

inequivalent time evolutions of the system3,

Zhom(T) = x([1) J [d2’x] det e (6.27)
[ie’ri(M)

Unitarity and completeness of the quantum theory (i.e. of the propagator (4.13)) yield,

respectively, the constraints that the parameters x([oi) are phases,

x([oi)*x([oi) = 1 (6.28)

and that they form a 1-dimensional unitary representation of iri(M),

x([oi)x([oi) = x([o ‘j) (6.29)

Note that the restriction of the path integration to homotopy classes as in (6.27) makes

well-defined the representation of the partition function action S with a local symplectic
3This definition could also be applied to the full quantum propagator K(x’, x; T) between 2 phase

space points. Then the sum in (6.27) is over all homotopy classes of curves [C’J from x to ‘ which
are identified with elements of iri(M) using a standard mesh of paths.
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potential following the Wess-Zumino-Witten prescription of Section 4.9. In particular, we

can invoke the argument there to conclude that over each homotopy class [u] E

the path integral depends only on the second cohomology class defined by .

In the case at hand, the partition function (6.24) is regarded as that obtained by

restricting the path integration in (6.23) to loops in the homology class labelled by

(k,e) E 2 In particular, we can add to the sum in (6.26) the phases x(k,e) = e(k,)

for each (k, £) E which from (6.29) would then have to satisfy

a(k + k’, £ + £‘) = (k, £) + c(k’, £‘) (6.30)

The condition (6.30) means that the phase a(k,) define a u(1)-valued 1-cocycle of

the fundamental (or homology) group ZZ of > as required for them to form a

representation of it in the circle group S’. When they are combined with the character

representation (6.24) and the resulting quantity is summed as in (6.26), we can obtain a

propagator which is a non-trivial homological invariant of and which yields a character

formula for the non-trivial topological groups of the phase space. We shall see how to

interpret these character formulas in a group-theoretic setting, as we did in the last

Chapter, in the next Section. Notice that, strictly speaking, the volume parameter v

in (6.24) should be quantized in terms of h, k and £ so that the partition function

yields a non-zero result when integrated over the space of T-periodic trajectories. In

this way, (6.24) also represents the cohomology class defined by the symplectic 2-form

(6.19) through the parameter v. We recall from Section 4.9 that for a simply-connected

phase space, the localizable partition functions depend only on the second cohomology

class defined by w. Here we find that the multiple-connectivity of the phase space makes

it depend in addition on the first homology group of the manifold. Thus the partition

function of the localizable quantum systems on the torus yield topological invariants of

the phase space representing its (co-)homology groups.

The expression (6.24) for the partition function also follows directly from substituting

into the Boltzmann weight etS’[x] the value of the action in (6.23) evaluated on the classical
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trajectories th(t) = V1 for the above quantum system, which here are defined by

(6.31)

Thus the path integral (6.23) (trivially) localizes onto the classical loops as in the WKB

localization formula (4.70), except that now even the i-loop fluctuation term vanishes

and the path integral is given exactly by its tree-level value. This also independently

establishes the quantizations of the propagation time T and the volume parameter v,

in that T-periodic solutions to the classical equations of motion with the degenerate

structure of the Hamiltonian (6.20) only exist with the discretizations of the parameters

h and T above. This is consistent with the discussion at the beginning of Section

4.5 concerning the structure of the moduli space of classical solutions, and again for

these discretizations the path integral can be evaluated using the degenerate localization

formula (4.76) while for the non-discretized values the critical trajectory set (trivially)

coincides with the critical point set M of the Hamiltonian. Furthermore, the fact that

the conformal factor cp is not involved at all in the solutions of the localization constraints

just reflects the fact that the torus is locally flat (as is immediate from its parallelogram

representation) and any global ‘curving’ of its geometry represented by p in (6.9) can

only be done in a uniform periodic fashion around the canonical homology cycles of E’

(c.f. eq. (6.13)). However, the Niemi-Tirkkonen formula (4.91) does depend explicitly

on p. It is here that the geometry of the phase space enters explicitly into the quantum

theory, as it did in Chapter 5, if we demand that the metric (6.9) making the equivariant

localization manifest be chosen so that the localization formula (4.91) coincides with the

exact result (6.24), as of course it should.
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In the case at hand (4.91) becomes

Zi (k, £; NT) j chv1 (—iNTwE1 /h) A A1(NTRT/h)

= j dçb Jd2q exp (HE1(k,) —

(6.32)

d
NT(2(VT)Vl + (RT)rP)/4h

X e
sinh (NT(2(v)v1+ (RT)Prii1P)/4h)

Again, because of the Kähler structure of (6.9), the Riemann moment map and curvature

2-form have the non-vanishing components

= —(v1)= ViO + V1O , R —R = Im(r) e’V ip (6.33)

We substitute (6.18)—(6.21) and (6.33) into (6.32) and carry out the Berezin integrations

there. Comparing the resulting expression with the exact one (6.24) for the partition

function, we arrive after some algebra at a condition on the conformal factor of the

metric (6.9),

I d24 e_iNT1+2) 1
— N(ö1’— ka2)2 =

(6.34)JE’ 4v2 sinh2 (!z(eo1y
— k01s2co)) NTv

The Fourier series constraint (6.34) on the metric is rather complicated and it represents

a similar sort of metric ambiguity that we encountered in Section 5.7 before. It fixes the

harmonic modes of the square-root integrand in (6.34) which should have an expansion

such as (6.15). Notice, however, that (6.34) is independent of the phase space complex

structure T, and thus it only depends on the representative of the conformal equivalence

class of the metric (6.9). This is typical of a topological field theory path integral [17].

The condition (6.34) can be used to check if a given phase space metric really does

result in the correct quantum theory (6.24), and this procedure then tells us what (repre

sentatives of the conformal equivalence classes of) quantum geometries in this sense are

applicable to the equivariant localization of path integrals on the torus. For example,

suppose we tried to quantize a flat torus using equivariant localization. Then from (6.12)
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the conformal factor would have to solve the Laplace equation Vy = 0 globally on

Since ço is assumed to be a globally-defined function on E’, it must admit a harmonic

mode expansion over as in (6.15). From (6.14) and this Fourier series for y we see

that the Laplace equation implies that all Fourier modes of ço except the constant modes

vanish, and so the left-hand side of (6.34) is zero. Thus a flat torus cannot be used to

localize the quantum mechanical path integral (6.23) onto the equivariant Atiyah-Singer

index in (4.91). This means that a flat Kähler metric (6.9) on E’ does lead to a ho

motopically trivial localization 1-form & iv1gT on the loop space L2’ within any

homotopy class (c.f. Section 4.3). This simple example shows that the condition (6.34),

along with the Riemannian restrictions (6.11) and (6.13), give a very strong probe of the

quantum geometry of the torus. Moreover, when (6.34) does hold, we can represent the

equivariant characteristic classes in (4.91) in terms of the homomorphism (6.24) of the

first homology group of ‘.

6.4 Holomorphic Quantization and Non-symmetric Coadjoint Orbits

In this Section we shall show that it is possible to interpret the topological path integral

(6.23) as a character formula associated with the quantization of a coadjoint orbit corre

sponding to some novel sort of spin system described by E1, as was the situation in all

of the simply connected cases of the last Chapter. For this, we examine the canonical

quantum theory defined by the symplectic structure (6.19) in the Schrödinger picture

representation. We first rewrite the symplectic 2-form (6.19) in complex coordinates to

get the Kähler structure

V -

wEt = . dz A dz = —zö9FE1 (6.35)2z Im r

with corresponding local Kähler potential

FE1 (z, ) = vz/Im r (6.36)
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We then map the corresponding Poisson algebra onto the associated Heisenberg algebra

by the standard commutator prescription (c.f. beginning of Section 5.1). With this we

obtain the quantum commutator

[, ] = 2 Im(r)/v (6.37)

We can represent the algebra (6.37) on the space Hol(’; r) of holomorphic functions

P(z) on by letting act as multipication by the complex coordinate z = i +r2 and

as the derivative operator
2ImTa

(6.38)

With this holomorphic Schrödinger polarization, the operators and with the com

mutator algebra (6.37) resemble the creation and annihilation operators (5.72) of the

Heisenberg-Weyl algebra with the commutation relation (5.73). In analogy with that

situation, we can construct the corresponding coherent states

Iz) e(_’2 Tm T)Zo) ; z (6.39)

which are normalized as

(zlz) = e_(v/2 Im T)Z
e’

(z,)/2 (6.40)

and obey the completeness relation

ç dz Iz)(zI
Ji (2ir)2 (zlz) —

These coherent states are associated with the quantization of the coadjoint orbit U(1) x

U(1) = S1 x S’. However, since E1 is a non-symmetric space, it cannot be considered as a

Kãhler manifold associated with the coadjoint orbit of a semi-simple Lie group, as was the

case in the last Chapter. The orbits above are, however, associated with the action of the

isometry group U(1) x U(1) on E’, which has an interesting Lie algebraic structure that

we shall discuss below. In the Schrödinger representation (6.38), we consistently find the
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action of the operator on the states (6.39) as Iz). The holomorphic representation space

Hol(2; r) in this context is then regarded as the space of entire functions ‘11(z) = (zI’IJ)
for each state ‘Ti) in the span of the coherent states (6.39). An inner product on Hol(E’; r)

is then determined from the completeness relation (6.41) and the normalization (6.40) as

(1I2)
= (2ir) = ()2

e2 Tm T)zf((z) (6.42)

With the inner product (6.42), we find that the operator = is the adjoint of , as

it consistently should be. An operator H acting on the space of coherent states (6.39)

can now be represented on Ho1(’; r) as usual by an integral kernel as in (5.87) with the

identification of with the derivative operator (6.38).

The advantage of working with the holomorphic representation space Hol(E1;r) is

that we shall want to discuss the explicit structure of the Hubert space associated with

the localizable quantum systems we found above. With the Kähler structure defined by

the symplectic 2-form wi above, the Hubert space of the quantum theory is then the

space of holomorphic sections of a complex line bundle L —+ E’ called the prequantum

line bundle over ‘. As such, wi represents the first Chern characteristic class of L, and

so such a bundle exists only ifE1 is an integral 2-form on This method of quantizing

the Hamiltonian dynamics in terms of the geometry of fiber bundles is called geomet

ric quantization [136]. In light of the requirement of single-valuedness of the quantum

propagator that we discussed in the last Section, we require, from the point of view of

equivariant localization, that the wavefunctions ‘11(z) change only by a unitary transfor

mation under the winding transformations (6.8) on E, so that all physical quantities,

such as the probability density ‘TThTi, are well-defined C°°-functions on the phase space

and respect the symmetries of the quantum theory as defined by the quantum Hamil

tonian, i.e. by the supersymmetry making the dynamical system a localizable one. In

this setting, the multivalued wavefunctions, regarded as sections of the associated line

bundle L —+ 2’ where the structure group 7r1(E’) = 7Z ZZ acts through a unitary rep

resentation, are single-valued functions on the universal cover C of the torus and so they
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can be thought of as single-valued functions of homotopy classes [u] of loops on ‘. This

also ensures that the coherent states (6.39) remain coherent under the time evolution

determined by the localizable Hamiltonians of the last Section (i.e. under the action of

I(’; gr)) which will lead to a consistent coherent state path integral representation of

(6.23).

To explore this in more detail, we need a representation for the discretized equivariant

Hamiltonian generators above of the isometry group I(’; g,-) on the space Hol(E’; r)

[13, 120]. Note that translations by a E C on z are generated on functions of z by the

operator e, and likewise on functions of by e. On the holomorphic representa

tion space Hol(E’; r), we represent the latter operator using the commutation relation

(6.37) as e(1/2 Tm T)z, in accordance with the coherent state representation above. Thus

the generators of large U(1) transformations around the homology cycles of ‘ in the

holomorphic Schrödinger polarization above are the unitary quantum operators

/ 0 ‘irv
U(n,m) = exp 2ir(n+mr)—+

Tm
(n+mr)z ; n,m ZZ (6.43)

which generate simultaneously both of the winding transformations in (6.8). By the

above arguments, the quantum states should be invariant (up to unitary equivalence)

under their action on the Hubert space. Solving this invariance condition will then

give a representation of the equivariant localization constraints (i.e. of the pertinent

cohomological supersymmetry) and of the coadjoint orbit system directly in the Hilbert

space of the canonical quantum theory.

In contrast with their classical counterparts, the quantum operators (6.43) do not

commute among themselves in general and their products differ from the opposite-ordered

products by a u(1)-valued 2-cocycle. The Baker-Campbell-Hausdorff formula,

= e_[X,’2 eX e’ when [X, [X, Y]] = [Y [X, Y]] = 0 (6.44)

implies

eX e’ = e_[X,’1’2 e1’ eX (6.45)
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Applying (6.45) to products of the operators (6.43) and using the commutation relation

(6.37) with (6.38), we find that they obey what is called a clock algebra,

U(ni, mi)U(n2,m2) = m2)U(ni, mi) (6.46)

To determine the action of the operators (6.43) explicitly on the wavefunctions ‘11(z), we

apply the Baker-Campbell-Hausdorff formula (6.44) to get

U(n, m) = exp (inn + mn2 + (n + m)z)j e2+mT (6.47)

so that the action of (6.47) on the quantum states of the theory is

U(n, m)(z) exp [‘ (inin + mn2 + (n + m)z)] (z + 2in(n + mn)) (6.48)

If the volume parameter v = volg(’)/(2K)2is an irrational number, then it follows

from the clock algebra (6.46) that the U(1) generators above act as infinite-dimensional

raising operators in (6.48) and so the Hubert space of quantum states in this case is

infinite-dimensional. However, we recall the necessary quantization requirements for the

parameters of the Hamiltonian system required for a consistent quantum theory. With

this in mind, we instead consider the case where the volume of the torus is quantized so

that

= v1/v2 ; Vl,V2 E (6.49)

is rational—valued. Alternatively, such a discretization of v is required in order that the

symplectic 2-form WE1 define an integer cohomology class, as in (4.123). In this case,

the cocycle relation (6.46) shows that the operator U(v2n,v2m) commutes with all of the

other U(1) generators and the time evolution operator, and so they can be simultaneously

diagonalized over the same basis of states. This means that their action (6.48) on the

wavefunctions must produce a state that lies on the same ray in the Hilbert space as that

defined by ‘11(z), i.e.

U(v2n,v2m)’I’(z) = eim)’11(z) (6.50)
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for some phases (n, m) S1. The invariance condition (6.50), expressing the symmetry

of the wavefunctions under the action of the (non-simple) Lie group U(1) x U(1), is called

a projective representation of the symmetry group. It must obey a particular consistency

condition. The composition law for the group operations induces a composition law for

the phases in (6.50),

U(v2(ni + n2),v2(mi +m2))W(z)

= U(v2ni,v2m1)U(v2n2,v2m2)’I’(z) (6.51)

= ei 1+n2m1+m2)IJ(z) exp [i{(n1,mi) + i(n2,m2)
—

i(n1 + u2,m1 + m2)}]

If the last phase in (6.51) vanishes, as in (6.30), then the projective phase (n, m) is

a 1-cocycle of the symmetry group U(1) x U(1) and the wavefunctions carry a unitary

representation of the group, as required [64]. The determination of these 1-cocycles

explicitly below will then yield an explicit representation of the homologically-invariant

partition function (6.27).

Comparing (6.50) and (6.48), we see that the invariance of the quantum states under

the U(1) action on the phase space can be expressed as

W(z+2v2(n+mr)) = exp [ii(n,m)
—

(vn + mn2 + (n + m)z)} (z) (6.52)

The only functions which obey quasi-periodic conditions like (6.52) are combinations of

the Jacobi theta functions [51, 90, 121]

8(D)
(c)

(zill) = exp [in(n + Ce)H(P + ) + 2i(n + c)(zt + di)] (6.53)
d {nf}EZZD

where ci, d E [0, 1]. The functions (6.53) are well-defined holomorphic functions of

{zt} CD for D x D complex-valued matrices II = [Hip] in the Siegal upper half-plane

(i.e. Tm H > 0). They obey the doubly semi-periodic conditions

0(D)
(c)

(z + s + H till) = exp [2icis — itillitP — 2iti(zi + di)] 0(D) () (zill)

(6.54)
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where s {st} and t = {t} are integer-valued vectors, and

+ all till) = exp [ ia2ttHtP
— 2iat(z + di)] 9(D) (C ) (zill) (6.55)

for any non-integer constant a E IR. We remark here that the transformations in (6.54)

can be applied in many different steps with the same final result, but successive applica

tions of (6.54) and (6.55) do not commute [13]. In the context of the action of the unitary

operators U(n, m) above, when these transformations are applied in different orders in

(6.52), the final results differ by a phase which forms a representation of the clock algebra

(6.46). To avoid this minor ambiguity, we simply define the operators U(n, m) by their

action on the states 111(z) with the convention that the transformation (6.54) is applied

before (6.55).

After some algebra, we find that the algebraic constraints (6.52) are uniquely solved

by the V1V2 independent holomorphic wavefunctions

C c+27rvlp+v2r

p,r
(d)

(z) = Im T)z20(1) ( 2viv ) (vizI2viv2r) (6.56)

where p = 1,2,.. . , v and r = 1,2,. . . , v1. The phases in (6.50) are the non-trivial

1-cocycles

j(n, m)/2ir = en — dm + irv1v2nm (6.57)

of the global U(1) x U(1) group acting on here. Furthermore, the winding transfor

mations (6.48) can be written as

fc\ fc\
U(n, m)’Pp,r ( J (z) = [U(n, m)]ppi11’p’,r ( 1(z) (6.58)

\dJ p’=l \dJ

where the finite-dimensional unitary matrices

[U(n, m)]i = exp (en — dm + irvin(m + 2p))] öp+m,p’ (6.59)

form av2-dimensional projective representation, which is cyclic of period v2, of the clock

algebra (6.46). The projective phase here is the non-trivial U(1) x U(1) 1-cocycle

7(P)(, m)/2ir = (cn — dm + irvin(m +2p))/v2 (6.60)
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which could also therefore be used to construct an unambiguous partition function as in

the last Section by

Zhom(T) = > e’Zl(k,.;NT) (6.61)
k,-oo

Thus the Hubert space isv1v2-dimensional and the quantum states carry av2-dimensional

projective representation of the equivariant localization constraints via the clock algebra

(6.46) which involves the u(1)-valued 2-cocycle

e(1,m1;n2,m2)/2ir =v1(n2mi — nim2)/v2 (6.62)

of the U(1) x U(1) isometry group of Y2’. This shows explicitly how the U(1) equivari

ant localization constraints and the topological toroidal restrictions are realized in the

canonical quantum theory, as then these conditions imply that the only invariant oper

ators on the Hubert space here are essentially combinations of the generators (6.43). In

particular, this implies, by construction, that the coherent state wavefunctions (6.56) are

complete. This is much different than the situation for the coherent states associated

with simply-connected phase spaces where there are no such topological symmetries to be

respected for the supersymmetric localization of the path integral and the Hilbert space

is 1-dimensional. Intuitively, the finite-dimensionality of the Hubert space of physical

states is expected from the compactness of the phase space E’.

Notice though that the wavefunctions (6.56) contain the 2 free parameters c and d.

We can eliminate one of them by requiring that the Hamiltonian (6.20) in this basis of

states does indeed lead to the correct propagator (6.24), i.e. that (6.24) be equal to the

trace of the time evolution operator on the finite dimensional vector space spanned by

the coherent states (6.56),

tr = e_iNT1MVp,r) (6.63)
p=1 r=1

where the coherent state inner product is given by (6.42). With this inner product, it is

straightforward to show that the states (6.56) define an orthonormal basis of the Hubert
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space,

(11p1,r1\11p,r) =‘5p1,p25r1,r2 (6.64)

Substituting the identity e_iNT1(k,)/h = [U(, _k)]NT12/2h1 into (6.63) and using

(6.58), (6.59) and (6.64) we find

tr e”T i(kMI1
= ( i)ktNT eiNTk+,h1 (6.65)

Comparing the result (6.65) with the exact one (6.24), we find that the parameter d

appearing in the wavefunctions (6.56) can be determined as

d (keNT — 2ck)/2 (6.66)

Another way to eliminate the parameters c and d appearing in (6.56) is to regard

the quantum theory as a topological field theory. The above construction produces a

Hubert space 71T of holomorphic sections of a complex line bundle LT for each

modular parameter r. If we smoothly vary the complex structure r, then this gives a

family of finite-dimensional Hubert spaces which can be regarded as forming in this way

a holomorphic vector bundle over the Teichmiiller space C of the torus for which the

projective representations above define a canonical projectively-flat connection. This is

a typical feature of the Hubert space for a Schwarz-type topological gauge theory [17].

Equivalent complex structures (i.e. those which generate the same conformal equivalence

classes as (6.9)) in the sense of the topological field theory of this Chapter should be

regarded as leading to the same quantum theory, and this should be inherent in both

the homological partition functions of the last Section and in the canonical quantum

theory above. It can be shown [92] that 2 toroidal complex structures r, r’ E C+ define

conformally equivalent metrics (i.e. g.3- = pg, for some p > 0) if and only if they are

related by the projective transformation4

r
= +

. with o, ,6,7, S e 7Z , oS — /37 1 (6.67)

4That the 2 associated tori are conformally isomorphic can be seen intuitively by representing each
as a parallelogram in the complex plane and tracing out this transformation.
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on C —+ C. The transformations (6.67) generate the action of the group SL(2, 7Z)/2

on C, which is a discrete subgroup of the Möbius group SL(2, C)/2 of linear fractional

transformations of C wherein we take cv, /3,7, E C in (6.67). We call this discrete group

the modular or mapping class group DEl of the Riemann surface E’ and it consists of

the discrete automorphisms of D’ (i.e. the conformal diffeomorphisms of ‘ which aren’t

connected to the identity and so cannot be represented as global flows of vector fields).

The Teichmüller space C modulo this group action, i.e. the space of inequivalent com

plex structures on is called the moduli space M> C+/1El of ‘. The topological

quantum theory above therefore should also reflect this sort of full topological invariance

on the torus, because it is independent of the conformal factor y in (6.9).

Under the modular transformation (6.67), it is possible to show that, up to an overall

phase, the 1-dimensional Jacobi theta functions in (6.53) transform as [90]

(‘)
(c)

(zlr) e(’) (z’Ir’) = + ei2 7T+9(1)
(c)

(zlr) (6.68)

where

= + T’q2 z/-yr + ) (6.69)

is the new (but equivalent) complex structure defined by (6.67) and the new parameters

c’ and d’ are given by

= tc — 7d — , d’ = ad — /3c — a/3/2 (6.70)

Using (6.68) we find after some algebra that the wavefunctions (6.56) transform under

the modular transformation of isomorphic complex structures as

p,r () (z) yPr (,) (z’) (6.71)

with

= Yc — 7d — 1rv1v276 , ci’ = ad — /3c — irviv2cv/3 (6.72)
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It follows that a set of modular invariant wavefunctions can exist oniy when the combina

tion v1v2 is an even integer, in which case the invariance condition requires c d = 0. For

v1v2 an odd integer, we can take c, d e {0, }, and then the holomorphic wavefunctions

carry a spinor representation of the modular group as defined by (6.71). These choices

of c and d correspond to the 4 possible choices of spin structure on the torus [51] (i.e.

representations of the 2-dimensional spinor group U(l) in the tangent bundle of E1), and

it increases the number of basis wavefunctions (6.56) by a factor of 4.

It is in this way that one may adjust the parameters c and d so that the wavefuiictions

(6.56) are modular invariants, as they should be since the topological quantum theory

defined by (6.23) is independent of the phase space complex structure. We note also that

these specific choices of the parameters in turn then fix the propagation time integers NT

by (6.66), so that these topological requirements completely determine the topological

quantum field theory in this case. Thus one can remove all apparent ambiguities here

and obtain a situation that parallels the topological quantum theories in the simply

connected cases, although now the emerging topological and group theoretical structures

are far more complicated. In any case, with these appropriate choices of parameter values,

the propagator (6.63) then coincides with the coherent state path integral

•
dz(t) d(t)

ZE1k€NT)’j 2L
tE[o,T]

(2ir)
(6.73)

1 1 NTh1 —. . — —

xexp12.1j dt [(zz_zz)+ih((_rk)z_(_rk)z)]

The coherent state path integral (6.73) models the quantization of some novel, unusual

spin system defined by the Hamiltonians (6.20) which are associated with the quantized,

non-symmetric coadjoint Lie group orbit U(1) x U(1) = S’ x S’. Notice that, by adding

appropriate constants to the 2 independent Hamiltonian generators H’, H2 in (6.20),

their Poisson algebra generates the u(1) u(1) Lie algebra

{H1,H2} =0 (6.74)
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of the non-simple torus group U(1) x U(1). Consequently, this abelian orbit is an unre

duced one as it already is its own maximal torus. We can think of this spin system

therefore as 2 independent planar spins tracing out circles. The points on this orbit

are in one-to-one correspondence with the coherent state representations above of the

projective clock algebra (6.46) of the discrete first homology group of the torus. The

associated character formula represented by (6.73) gives path integral representations

of the homology classes of ‘, in accordance with the fact that it defines a topological

quantum field theory, and these localizable quantum systems are exactly solvable via

both the functional integral and canonical quantization formalisms, as above. In this

latter formalism, the Hubert space of physical states is finite-dimensional and the basis

states carry a non-trivial projective representation of the first homology group of the

phase space, in addition to the usual representation ofH2(M; ZZ).

We close this Section with a brief discussion about the possibilities of using function

als F(HE1) of the isometry generator (6.20) for localization as in Section 4.8. Here the

arbitrariness of these functionals is not as great as it was in the simply connected cases

of Chapter 5. There we required generally only that F be bounded from below, while

in the case at hand the discussion of Section 6.3 above shows that we need in addition

the requirement that F be formally a periodic functional of the observable (6.20). In

general, this will not impose any quantization condition on the time translation T, as it

did above. For such functionals, however, it is in general rather difficult to determine

explicitly the Nicolai transform in (4.110) required for the localization (4.111). Alter

natively, one can try to localize the system using (4.104) and the above description of

the quantum theory as a topological one to interpret the independent Hamiltonians in

(6.20) as conserved charges of some integrable dynamical system with phase space the

torus. These remarks imply, for example, that one cannot equivariantly quantize a free

particle or harmonic oscillator (with compactified momentum and position ranges) on
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the torus, so that the localizable dynamical systems do not represent generalized har

monic oscillators as they did in the simply connected cases. The same is true of the

torus height function (3.75), as anticipated. However, in these cases the periodicity of

the Hamiltonian function leads to a much better defined propagator in the sense of it

being a tempered distribution represented by a functional integral. Notice that this also

shows explicitly, in a rather transparent way, how the Hamiltonian functions on T2 are

restricted by Kirwan’s theorem.

6.5 Generalization to Hyperbolic Riemann Surfaces

We conclude this Chapter by indicating how the above features of equivariant localization

could generalize to the case where the phase space is a hyperbolic Riemann surface [120],

although our conclusions are somewhat heuristic and more care needs to be exercised in

order to study these examples in more detail. Since for h > 1, E1z can be regarded as h

tori stuck together, its homotopy can be described by the 2h loops a, b, i = 1,... ,

where each pair a, b2 loop abound the 2 holes of the i-th torus in the connected sum

representation of . The constraint (6.6) on the fundamental homotopy generators now

generalizes to
h

aba1b1= 1 (6.75)

and so the commutator subgroup of iri(E”) for h> 1 is non-trivial and the fundamental

group of a hyperbolic Riemann surface is non-abelian. It’s first homology group is given

by (3.82), and, using an abusive notation, we shall denote its generators as well by a, b,

i = 1,. . . , h and call them a canonical basis of homology cycles for

According to the Riemann uniformization theorem [92], there are only 3 (compact or

non-compact) simply-connected Riemann surfaces — the 2-sphere S2, the plane C and the

Poincaré upper half-plane 7t2, each equipped with their standard metrics as discussed in

the last Chapter. The sphere is its own universal cover of course (being simply-connected

and having a unique complex structure), while C is the universal cover of the torus. The
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hyperbolic plane ?I2 is always the universal cover of a Riemann surface of genus h 2,

which is represented as

= (6.76)

where Fh = (‘‘) is in this context refered to as a discrete Fuchsian group. The quo

tient in (6.76) is by the fixed-point free bi-holomorphic action of Fh on 2• The group

of analytic automorphisms of the upper half-plane 7(2 is PSL(2, IR) = SL(2, 1R)/W2,the

group of projective linear fractional transformations as in (6.67) except that now the coef

ficients a, 3, ‘y, S are taken to be real-valued. Then iri(E”) is taken as a discrete subgroup

of this PSL(2, IR)-action on H2 and the different isomorphism classes of complex analytic

structures of Y2” are essentially the different possible classes of discrete subgroups. Note

that this generalizes the genus 1 situation above, where the automorphism group of C

was the group FSL(2, C) of global conformal transformations in 2-dimensions and iri(E’)

was taken to be the lattice subgroup. Indeed, it is possible to regard as a 4h-gon in

the plane with edges identified appropriately to give the ‘holes’ in E’.

It is difficult to generalize the explicit construction of the last few Sections because

of the complicated, abstract fashion in (6.76) that the complex coordinatization of

occurs. For the various ways of describing the Teichmiiller space and Fuchsian groups of

hyperbolic Riemann surfaces without the explicit introduction of local coordinates, see

[621. The Teichmüller space of can be naturally given the geometric structure of a non-

compact complex manifold which is homeomorphic toC3h_3,so that the coordinatization

of h is far more intricate for h 2 because it now involves 3h — 3 complex parameters,

as opposed to just 1 as before. Nonetheless, it is still possible to deduce the unique

localizable Hamiltonian system on a hyperbolic Riemann surface and deduce some general

features of the ensuing topological quantum field theory just as we did above.

We choose a complex structure on for which the universal bundle projection in

(6,76) is holomorphic (as for the torus), and then the metric g induced on E’ by

this projection involves a globally-defined conformal factor p as in (6.9) and a constant
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negative curvature Kähler metric (the hyperbolic Poincaré metric — c.f. Section 5.6). The

condition now that the Killing vectors of this metric be globally-defined on means

that they must be single—valued under windings around the canonical homology cycles

{ae, b}1 E H1 (h; ), or equivalently that

dV = dV = 0 , (6.77)

Using this single-valued condition and the Killing equations

gyh(dV,.) = —ivdgh (6.78)

we can now deduce the general form of the Killing vectors of >. For this, we apply the

Hodge decomposition theorem [17, 27] to the metric-dual 1-form g(V.)

g(V.)=dx+*d+Ah (6.79)

where x and are C°°-functions on E’ and Ah is a harmonic 1-form, i.e. a solution of

the zero—mode Laplace equation for 1-forms,

(*d*d+d*d*))h = 0 (6.80)

In the above, * denotes the lodge duality operator and, on a general d-dimensional

Riemannian manifold (M, g), it encodes the Riemannian geometry directly into the DeR

ham cohomology. It is defined as the map

*: AcM 4 (6.81)

which is given locally by

*a
(d — k)!

g(x)gj1A,(x) . . .

kd k(x) 1d_kh1.Ikailik(x)dx31 A ... A dx_k

(6.82)

and satisfies

(*)2 (1)(d_1)k
(6.83)



Chapter 6. Equivariant Localization on Multiply Connected Phase Spaces 229

on AkM. It defines an inner product fM a A */3 on each vector space AkM. Using this

inner product it is possible to show that a differential form ‘\h as above is harmonic if

and only if

d.)h = d*Ah 0 (6.84)

and the lodge decomposition theorem (6.79) (which can be generalized to arbitrary

degree differential forms in the general case) implies that the DeRham cohomology groups

of M are spanned by a basis of harmonic forms.

The Hodge decomposition (6.79) is unique and the components involved there are

explicitly given by

x=
Vh ,

= —*dg(I/ç.) (6.85)

where the scalar Laplacians Vh *d*d in (6.85) are assumed to have their zero modes

removed. The 1-form Ah in (6.79) can be written as a linear combination of basis elements

of the DeRham cohomology group H1(E’; IR). According to the Poincaré-Hodge duality

theorem [27], we can in particular choose an orthonormal basis of harmonic 1-forms

{a, E H1(E1; IR) which are Poincaré-dual to the chosen canonical homology basis

{a,b}1 E Hi(M;) above, i.e.

= = j cvi’ = /ei = 0 (6.86)

We remark here that the local parts of the decomposition (6.79) simply form the de

composition of the vector g (17,.) into its curl-free, longitudinal and divergence-free,

transverse pieces as VEhX + VEh x . The harmonic part Ah accounts for the fact that

this 1-form may sit in a non-trivial DeRham cohomology class of H’(; jpj•

We can now write the general form of the isometries of As before, Eh inherits

3 local isometries via the bundle projection in (6.76) from the maximally symmetric

Poincaré upper half-plane. However, only the 2 quasi-translations on 7-t2 become global

isometries of and they can be expressed in terms of the canonical homology basis
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using the above relations. This global isometry condition along with (6.77) and (6.78)

imply that Hodge decomposition (6.79) of the metric-dual 1-form to the Hamiltonian

vector field VEh is simply given by its harmonic part which can be written as

g(Vh,.) = (v1ta+ v) (6.87)

The harmonic decomposition (6.87) is the generalization of (6.18). Indeed, on the torus

we can identify the canonical harmonic forms above as a = dqi/27r and /3 = d2/2ir.

The Killing vectors dual to (6.87) generate translations along the homology cycles of ,

and the isometry group of E’ is fl U(1). The usual equivariance condition = 0

on the symplectic 2-form of E’ now becomes

divhw = d ( * {v + y/3}) = 0 (6.88)

where (x) is the C°°-function on E” defined by w,(x) = x), and (6.88) implies

that it is constant on , just as in (6.19).

Integrating up the Hamiltonian equations we see therefore that the unique equivariant

(Darboux) Hamiltonians have the form

HEh(x)=J (ha+h/3) (6.89)

where h are real-valued constants and C C is a simple curve from some fixed

basepoint to x. The Hamiltonian (6.89) is multi-valued because it depends explicitly on

the particular representatives a,/e of the DeRham cohomology classes in H’(”; IR) =

jp2h As before, single-valuedness of the time-evolution operator requires that h =

for some e ZZ and h E IR, and the propagation times are again the discrete

intervals T = NTh’. Thus the Hamiltonian (6.89) represents the windings around

the non-trivial homology cycles of and the partition function defines a topological

quantum field theory which again represents the homology classes of through a family

of homomorphisms from ZZ into U(1)®2’. Again, the partition function path integral
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should be properly defined in the homologically-invariant form (6.27) to make the usual

quantities appearing in the associated action S well-defined by restricting the functional

integrations to homotopically equivalent loops. We note that again the general conformal

factor involved in the metric gy obeys Riemannian restrictions from the Gauss-Bonnet

Chern theorem and a volume constraint similar to those in Section 6.2 above. When

the volume parameter is quantized as in (6.49), we expect that the Hubert space of

physical states will be (v1v2)3’—3dimensional (one copy of the genus 1 Hilbert spaces

for each of the 3h — 3 modular degrees of freedom in this case) and the coherent state

wavefunctions, which can be expressed in terms of D = 3h — 3 dimensional Jacobi theta

functions (6.53), will in addition carry a (v2)3’3dimensional projective representation

of the discrete first homology group of Eh (i.e. of the equivariant localization constraint

algebra). The explicit proofs of all of the above facts appear to be difficult, because of the

lack of complex coordinatization for these manifolds which is required for the definition

of coherent states associated with the isometry group action U(1) = 5’ on the

non-symmetric space = (S1 x S1)#.

Thus the general feature of abelian equivariaut localization of path integrals on multi

ply connected compact Riemann surfaces is that it leads to a topological quantum theory

whose associated topologically invariant partition function represents the non-trivial ho

mology classes of the phase space. The coherent states in the finite-dimensional Hilbert

space also carry a multi-dimensional representation of the discrete first homology group,

and the localizable Hamiltonians on these phases spaces are rather unusual and even more

restricted than in the simply-connected cases. The invariant symplectic 2-forms in these

cases are non-trivial elements of H2(E’; ZZ) = , as in the maximally-symmetric cases,

and it is essentially the global topological features of these multiply-connected phase

spaces which leads to these rather severe restrictions. The coherent state quantization

of these systems shows that the path integral describes the coadjoint orbit quantization

of an unusual spin system described by the Riemann surface. These spin systems are
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exactly solvable both from the point of view of path integral quantization on the ioop

space and of canonical holomorphic quantization in the Schrödinger polarization. The

integrable systems one obtains in these cases are rather trivial in appearence and are

associated with abelian isometry groups acting on the phase spaces which makes them

automatically integrable and topological in the usual sense of this Thesis. However, these

quantum theories probe deep geometric and topological features of the phase spaces, such

as their complex algebraic geometry and their homology. This is contrast with the topo

logical quantum field theories that we found in the simply-connected cases, where at best

the topological path integral could only represent the possible non-trivial cohomology

classes in H2(M; ). It is not completely clear though how these path integral rep

resentations correspond to analogs of the standard character formulas on homogeneous

symplectic manifolds which are associated with semi-simple Lie groups, since, for in

stance, the usual Kähler structure between the Riemannian and symplectic geometries

is absent in these non-symmetric cases.



Chapter 7

Geometrical Characteristics of the Semi-classical Expansion

In this final Chapter of this Thesis, we shall examine a different approach to the problem

of localization [106]. We return to the general finite-dimensional analysis of Chapter 3

and consider a Hamiltonian system whose Hamiltonian function is a Morse function1.

From this we will construct the full f-expansion for the classical partition function, as

we outlined briefly in Section 3.3. A proper covariantization of this expansion will then

allow us to determine somewhat general geometrical characteristics of dynamical systems

whose partition functions localize, which in this context will be the vanishing of all terms

in the perturbative loop expansion beyond i-loop order. The possible advantages of

this analysis are numerous. For instance, we can analyse the fundamental isometry

condition required for equivariant localization and see more precisely what mechanism

or symmetry makes the higher-order terms disappear. This could then expand the set of

localizable systems beyond the ones we have already encountered that are predicted from

localization theory, and at the same time probe deeper into the geometrical structures

of the phase space or the whole dynamical system thus prividing richer examples of

topological field theories. Indeed we shall find some noteworthy geometrical significances

of when a partition function is given exactly by its semi-classical approximation. This

approach to the Duistermaat-Heckman integration formula using the perturbative loop-

expansion has been discussed in a different context recently in [138].

In particular, we shall find that the condition that the Hamiltonian be a Killing vector

1The extension to degenerate Hamiltonians is fairly straightforward. In what follows all statements
made concerning the structure of the discrete critical point set Mv of H will then apply to the full
critical submanifold.

233
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of some globally-defined Riemannian geometry on M can be replaced by the weaker

condition that it be only a conformal Killing vector [105], i.e. the localization metric

g need only be invariant under the flows of V up to rescaling by some globally defined

C-function T(x) on M, so that the basic isometry condition £vg 0 is replaced by

the weaker conformal symmetry requirement £vg = Tg. We shall discuss this feature

in some detail in this Chapter, in particular what it implies for the general localization

principle.

Recalling that the isometry condition can always be satisfied at least locally on M, we

then develop a novel geometric method for systematically constructing corrections to the

Duistermaat-Heckman formula. Given that a particular system does not localize, the idea

is that we can “localize” in local neighbourhoods on M where the Killing equation can

be satisfied. The correction terms are then picked up when these open sets are patched

back together on the manifold, as then there are non-trivial singular contributions to

the usual l-ioop term owing to the fact that the Lie derived metric tensor cannot be

defined globally in a smooth way over the entire manifold M. Recalling from Section

3.6 that the properties of such a metric tensor are intimately related to the integrability

properties of the dynamical system, we can explore the integrability problem again in a

(different) geometric setting now by closely examining these correction terms. In fact, we

shall see that, in 2-dimensions at least, they can be interpreted as giving a different, non

trivial representative of the DeRham cohomology class iv H’ (M; 1R). As we shall

see, this is because the correction term can be represented as an intersection number of

the phase space and the 1-form has to sit in the same cohomology class as a 1-form

which is the Poincaré dual of a certain set of homology 1-cycles in M in order for the

higher-order correction terms to vanish. This provides a highly non-trivial geometric

classification of the localizability of a dynamical system which is related to the homology

of M, the integrability of the dynamical system, and is moreover completely consistent

with Kirwan’s theorem. We shall illustrate all of these geometrical characterizations with
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several explicit examples.

Unfortunately, the generalization to path integrals is not yet known, but we discuss

the situation somewhat heuristically at the end of this Chapter and indicate how our

analysis could prove of use. Nevertheless, given the large amount of progress that was

made in quantum localization theory from relatively direct generalizations of the finite-

dimensional localization theorems, this is a non-trivial first step to a full analysis of

corrections to path integral localization formulas (e.g. corrections to the WKB approxi

mation), and to uncovering systematically the reasons why these approximations aren’t

exact. The first step in this direction was carried out in [1061.

7.1 The Loop Expansion and the Duistermaat-Heckman Formula Revisited

Throughout this Chapter we return to the situation of Section 3.3 where the Hamiltonian

H is a Morse function on a (usually compact) symplectic manifold M. For now we

assume that M = 0, but later we shall also consider manifolds with boundary. We now

explicitly work out the full stationary phase series whose construction we briefly outlined

in Section 3.3 [61]. We first expand the C°°-function H in a neighbourhood U of a given

critical point p E Mv in a Taylor series

H(x) = H(p) + 9t(p)xx/2 +g(x;p) , x E U (7.1)

where x, r
—

p e U,, are the fluctuation modes about the extrema of H and g(x; p)

is the Gaussian deviation of H(x) in the neighbourhood U (i.e. all terms in the Taylor

series beyond quadratic order). The determinant of the symplectic 2-form which appears

in (3.51) is similarly expanded in U as

detw(x) = detw(p) +
. .

.x1 akdet(x) , x E U (7.2)

We substitute (7.1) and (7.2) into (3.51), expand the exponential function there in

powers of the Gaussian deviation function, and then integrate by parts within each
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of the neighbourhoods U,. In this way we arrive at a series expansion of (3.51) for

large-T in terms of Gaussian moment integrals over the fluctuations x, with Gaussian

weight eiT(P), associated with each open neighbourhood U,, for p E Mv. The

Gaussian moments (X1 . . . X) can be found from the Gaussian integration formula

(1.2) in the usual way by applying the operator to both sides of (1.2) and

then setting all the A’s to 0. The odd-order moments vanish, since these integrands

are odd functions, and the 2k-th order moment contributes a term of order Q(1/TT).

Rearranging terms carefully, taking into account the signature of the Hessian at each

critical point, and noting that for large-T the integral will localize around each of the

disjoint neighbourhoods U,,, we arrive at the standard stationary-phase expansion2

Z(T)
= (2)fl

(_))‘(P) e1TH(1?)
A(j)

(73)
pEMv

where

Ae(p)
= det(p) 2ij!(+j)!

((p)ôO (g(x;p)3detw(x)) (7.4)

and ?t(x)” is the matrix inverse of 7-{(x).

Of course, if the stationary-phase series diverges (e.g. applying Kirwan’s theorem

in appropriate instances), then (7.3) is to be understood formally order by order in

the +-expansion. Borrowing terminology from quantum field theory, we shall refer to

the series (7.3) as the loop-expansion, because each of the 2 + 1 terms in (7.4) can

be understood from pairing fluctuation modes xx (i.e. a loop) associated with each

derivative operator there. Indeed, the expansion (7.3),(7.4) is just the finite-dimensional

version of the perturbation expansion (for large-T) in quantum field theory. We shall

call the O(1/T) contributions to the series (7.3) the ( + 1)-loop term.

In this Chapter we shall be interested in extracting information from the loop

expansion. In particular, we will want to focus on the k-loop contributions for k > 1.

2See [61] for the generalization of this formula to the case where H is a degenerate function.
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However, let us see first how to interpret more geometrically the lowest order (i-loop)

contribution Ao(p) above [8], i.e. the Duistermaat-Heckman formula (3.62). We recall

from Chapter 3 that, under the usual assumptions of the Duistermaat-Heckman theorem,

the Pfaffian Pfaff dV(p) which appears in (3.57) was none other than the equivariant Eu

ler characteristic class Ev(A/,) = Pfaff RvIg of the normal bundle .Ai; in M of each

critical point p E Mv. This defines an equivariant cohomology class in Hl)(M). From

(3.53) it follows that the induced circle action on .Ai is through non-trivial irreducible

representations and we can therefore decompose the normal bundle at p E M into a

direct (Whitney) sum of 2-plane bundles,

(7.5)

From (3.53) it then follows that the equivariant Euler class of N$) is simply Ev(N4)) =

iA(p)/2. Taking into account the proper orientation of .14 induced by the Hamiltonian

vector field near x = p and the Liouville measure, and using the multiplicativity of the

Euler class under Whitney sums of bundles [16], we find that the equivariant Euler class

of the normal bundle at p is

Ev(V) = II Ev(N) e(p) (7.6)

which is just the weight product (3.63). Thus, for Hamiltonians that generate circle

actions, the i-loop contribution to the series (7.3) (i.e. the Duistermaat-Heckman formula

in the form (3.57)) describes the equivariant cohomology of the phase space with respect

to the Hamiltonian circle action on M. The particular value of the Duistermaat-Heckman

formula depends on the equivariant cohomology group H1)(M) of the manifold M.

In the next Section, we shall attempt similar sorts of geometrical and topological

characterizations of the loop expansion (7.3) with the hope of being able to interpret the

terms there in the context of topological and global geometrical features of the under

lying phase space. This will give us a very interesting interpretation of the symmetries

responsible for localization as well as some new localization mechanisms.
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7.2 Geometry of the Loop Expansion

Motivated by the above geometrical and topological interpretation of the lowest order

contribution Ao(p) to the loop-expansion in terms of equivariant cohomology, we shall

now try to do the same for the rest of the terms in the series (7.3). Of course, given

our experience now with the Duistermaat-Heckman theorem, we will remove any require

ments on the flows of the Hamiltonian vector field and leave these as quite arbitrary for

now. When these orbits describe tori, we already have a thorough understanding of the

localization in terms of equivariant cohomology, and we shall therefore look at dynamical

systems which do not necessarily obey this requirement. Thus any classification that we

obtain below that is described solely by the vanishing of higher-loop contributions will

for the most part be of a different geometrical nature than the situation that prevails in

Duistermaat-Heckman localization. This then has the possibility of expanding the coho

mological symmetries usually resposible for localization. We shall see this in a somewhat

more general setting in Section 7.4.

The perturbative series (7.3), however, must be appropriately modified before we can

put it to use. This is because, although the original partition function (3.51) is coordinate-

independent (i.e. manifestly a topological invariant) and has a well-defined +-expansion,
the loop-expansion (7.3) is explicitly coordinate-dependent, a result of having to pick local

coordinates on M to carry out explicitly the Gaussian integrations in 1R2’. For each order

of the f-expansion we should have a manifestly coordinate independent quantity, i.e. a

scalar. To write the contributions (7.4) in such a fashion so as to be manifestly invariant

under local diffeomorphisms of M, we have to introduce a Christoffel connection

on the tangent bundle of M which makes the derivative operators appearing in (7.4)

manifestly covariant objects, i.e. write them in terms of covariant derivatives V = d + F.

Because dH(p) = 0 at a critical point p E Mv, the Hessian evaluated at a critical

point is automatically covariant, i.e. VVH(p) = 7(p). This process, which we shall call

‘covariantization’, will then ensure that each term (7.4) is manifestly a scalar. We note



Chapter 7. Geometrical Characteristics of the Semi-classical Expansion 239

that the Morse index of any critical point is a topological invariant in this sense.

Our first observation is that it is enough for our purposes here to restrict attention

to only the 2-loop correction A1(p) in (7.3). To see this, we first cycle out the symplectic

factors in (7.4) to get

Ae(p) = Ao(p) 2ij!(+j)! g(x; p) (7.7)

where

__________

A
detw(p)

(7 8)oPj —

det7-t(p)

is the Duistermaat-Heckman (i-loop) contribution to (7.3), and

(7.9)

where we have introduced the one-component connection

7=hL1dhL (7.10)

and

hL(x) = detw(x) (7.11)

is the Liouville volume density. The derivative operator V transforms like an abelian

gauge connection under local diffeomorphisms x —÷ x’(x) of M,

V(x) —- V(x’) = A(x’) [V(x’) + tr A_1(xI)8A(x!)] (7.12)

where

A’(x) = [] E GL(2n,IR) (7.13)

is the induced change of basis transformation on the tangent bundle.

Since H is a Morse function, we can apply the Morse lemma [92] to the correction

terms (7.7), i.e. there exists a sufficiently small neighbourhood U, about each critical

point p in which the Hamiltonian looks like a “harmonic oscillator”,

H(x) = H(p) —

(x’)2
— (x2)2—.. .

— (x))2 + (x+1)2+. . . + (x2 , x E U (7.14)
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so that the critical point p is at x = 0 in this open set in M. We shall call these

harmonic coordinates, and this result simply means that the symmetric matrix ?-t(x)

can be diagonalized constantly in an entire neighbourhood of the critical point. Given

that the quantity (7.7) must be independent of coordinates (although not manifestly), we

can evaluate it in a harmonic coordinate system. Then the Gaussian deviation function

g(x; p) vanishes identically in the neighbourhood U and only the j = 0 term contributes

to (7.7). Then the series (7.3) is simply

Z(T)
= ()fl

()A(p) eiTH(P)Ao(p) (e_r(x)7()
. 1) (7.15)

pEM v

It follows that if the2-loop term vanishes in the entire neighbourhood of the critical point

p (and not just at x = p), i.e.

p)D(x)V(x) 0 for x e U (7.16)

then, as all higher-loop terms in these coordinates can be written as derivative operators

acting on the 2-loop contribution Ai(p), all corrections to the semi-classical approxima

tion vanish. Thus, for the sake of localization arguments, we shall examine only the

2-ioop term A1(p), and when we require that corrections to the WKB approximation

vanish, we shall require them to vanish in an entire neighbourhood of each critical point.

This feature is actually anticipated, because, as we shall see, the condition (7.16) irn

poses some conditions that a given dynamical system must obey, and if the higher-order

terms in the loop-expansion weren’t related to this one in some way, then the vanishing

of corrections could in principle impose an infinite set of conditions on the dynamical

system. This would then greatly limit the possibilities for localization.

We now covariantize the expression (7.7) for £ = 1. We expand out the 3 terms

there in higher-order derivatives of H and the connection y, noting that only third- and

higher-order derivatives of g(x; p) when evaluated at x = p are non-vanishing. After some



Chapter 7. Geometrical Characteristics of the Semi-classical Expansion 241

algebra, we arrive at

Ai(p) = Ao(P)()#v {V(x)7(x)
— (p)P

(8aaH(x) +47(x)OOöH(x)

‘1t( )a3

+ {3ôOãvH(x)OpOcröH(x) + 2aaaH(x)avaaiH(x)])}

(7.17)

It is easily checked, after some algebra, that this expression is indeed invariant under local

diffeomorphisms of M. To manifestly covariantize it, we introduce an arbitrary torsion-

free connection F on the tangent bundle TM. For now, we need not assume that

I’ is the Levi-Civita connection associated with a Riemannian metric on M. Indeed,

as the original dynamical problem is defined only in terms of a symplectic geometry,

not a Riemannian geometry, the expression (7.17) should be manifestly covariant in its

own right without reference to any geometry that is external to the problem. All that is

required is some connection that specifies parallel transport along the fibers of the tangeilt

bundle and allows us to extend derivatives of quantities to an entire neighbourhood,

rather than just at a point, in a covariant way.

The Hessian of H can be written in terms of this connection and the associated

covariant derivative as

VVH(x) + F,(x)öxH(x) (7.18)

and, using d V — F, we can write the third and fourth order derivatives appearing in

(7.17) in terms of V and P by taking derivatives of (7.18). Substituting these complicated

expressions into (7.17), after a long and quite tedious calculation we arrive at a manifestly

covariant expression for the 2-loop correction,

A ( ) (?-(( )AP7(( )a3
Ai(p) =

°8
?-I(p) j 3

[3VVvVH(x)VaVVpH(x)

— E(p)VV,V,VAH(x) (7.19)

+4 (v + — (p)APVVvH) &(x) + R(P)}
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where

R(F) — + — 1’,F (7.20)

is the (symmetric) Ricci curvature tensor of I’ and we have introduced the 1-form Li =

z)dx with the local components

= -y,(x) — F(x) = VloghL(x) (7.21)

It is intriguing that the covariantization of the 2-ioop expression simply involves replacing

ordinary derivatives d with covariant ones V, non-covariant connection terms ‘y with the

1-form , and then the remainder terms from this process are simply determined by the

curvature of the Christoffel connection F which realizes the covariantization. Note that if

1’ is in addition chosen as the Levi-Civita connection compatible with g, i.e. Vg = 0, then

= O log1/Ij and the 1-form components (7.21) become L = log det(g_1 w).

The expression (7.19) in general is extremely complicated. However, besides being

manifestly independent of the choice of coordinates, (7.19) is independent of the cho

sen connection F, because by construction it simply reduces to the original connection-

independent term (7.17). We can exploit this degree of freedom by choosing a connection

that simplifies the correction (7.19) to a form that is amenable to explicit analysis. To

motivate a specific choice of connection, consider the following situation. Suppose that F

is the Levi-Civita connection associated to some globally-defined metric tensor g on M,

and consider the rank (1,1) tensor field

J = gw (7.22)

In 2-dimensions, it is easily seen that (7.22) defines a linear isomorphism J : TM —* TM

satisfying J2 = —1. In general, if such a linear transformation J exists then it is called

J an almost complex structure of the manifold M [35, 51]. This means that there is a

local basis of tangent vectors in which the only non-vanishing components of J are

J1 = i6.L , J14’ = —i (7.23)
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so that there is “almost” a separation of the tangent bundle into holomorphic and anti

holomorphic components. However, an almost complex structure does not necessarily

lead to a complex structure — there are certain sufficiency requirements to be met before

J can be used to define local complex coordinates in which the overlap transition functions

can be taken to be holomorphic [17]. One such case is when J is covariantly constant,

VJ 0 — actually this condition only ensures that a sub-collection of subsets of the

differentiable structure determine a local complex structure (but recall that any Riemann

surface is a complex manifold). Again in 2-dimensions this means that then Vw 0

and the pair (g, ) define a Kähler structure on M (again note that any 2-dimensional

symplectic manifold is automatically a Kähler manifold for some metric defined by ).
Given these facts, suppose now that g and define a Kähler structure on the 2n-

dimensional manifold M with respect to an almost complex structure J, i.e. det w =

det g, g is Hermitian with respect to J,

= (7.24)

and is determined from g by (7.22). In the local coordinates (7.23), this means the

usual Kähler conditions that we encountered before, i.e. g = = 0, g = g and

= —ig. In this case, the flows of g under the action of the Hamiltonian vector field

v,

(Lvg),i = g V’OH + gVw’8H + w”(gxVVH + gxVVH) (7.25)

can be written using the almost complex structure as the anti-commutator

£vg = [VVH, (7.26)

Thus if V is a global Killing vector of a Kähler metric on M, then the covariant Hessian

of H is also Hermitian with respect to J, as in (7.24). Since the Kähler metric of a

Kähler manifold is essentially the unique Hermitian rank (2,0) tensor, it follows that the
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covariant Hessian is related to the Kähler metric by a transformation of the form

VVH = (7.27)

where K is some non-singular (1,1) tensor which commutes with J. In 2-dimensions, the

Hermiticity conditions imply that both the Hessian and g have only 1 degree of freedom

and (7.27) gets replaced by the much simpler condition

VVH = (7.28)

where c(x) is some globally-defined C°°-function on M.

Of course from the fundamental equivariant localization principle we know that this

implies the vanishing of the 2-loop correction term, i.e. the Duistermaat-Heckman theo

rem. We shall soon see this in a more transparent way which isn’t based on the cohomo

logical principle. Indeed, from the analysis of the last 2 Chapters we have seen that most

of the localizable examples fall into these Kähler-type situations. But we what we are

really interested in is the symmetry this implies between the Hessian and metric tensors.

In the above sense, the Hessian essentially defines a metric on M. This is also apparent

in the correction term (7.19), where the inverse Hessians contract with the other tenso

rial terms to form scalars, i.e. the Hessians in that expression act just like metrics. This

suggests that the non-degenerate Hessian of H could be used to define a metric which

is compatible with the connection F’ used in (7.19). Of course, this in general cannot

be done globally on the manifold M, because the signature of 1-t(x) varies over M in

general, but for a C°° Hamiltonian H it can at least be done locally in a sufficiently

small neighbourhood surrounding each critical point. For now, we concentrate on the

2-dimensional case. Then motivated by the situation above, in general we define a metric

tensor g that is ab initio proportional to the covariant Hessian as in (7.28), for which

the connection F used in the covariant derivatives V is the Levi-Civita connection for g.

This means that, given a Hamiltonian H on M, we try to solve the coupled non-linear
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partial differential equations

g(x)g,LV(x) Oã,H(x) — F(x)O,H(x)

1 (7.29)
= _gJkP

(8,g + &gp, — ãpgiw)

consistently for g (or F).

This may seem somewhat peculiar, and indeed impossible in the general case. But let

us give some indication as to why it should be possible to solve (7.29) for g or F ‘almost’

all of the time. The covariant constancy condition on g in (7.29) implies that

= RôH = ROH/2 (7.30)

where R g’-”’R, is the scalar curvature of g. (7.30) follows from the defining identity

for the Riemann curvature tensor,

VVVAH VVV>H + RVH (7.31)

Given H, (7.30) determines locally in terms of g. This means that the above ansatz

can be written as an equation for the associated connection coefficients F,,,

V,VVH = R,VAH (7.32)

If these equations are going to determine a well-defined 2-dimensional metric tensor

locally, then that metric will admit a local isothermal form (5.43). Recalling from Chapter

5 that this implies that the only non-vanishing components of the Ricci curvature tensor

are

p :i-’ PZ 1?
— — zz —

we find after a little bit of algebra that (7.32) is solved by the connection3

= ‘9 log 82H + f(z)/öH (7.34)

3Note that this connection, and the metric that follows from it below, is singular at the critical points
of H. This is merely another manifestation of the coordinate singularities that we encountered in Section
5.7 from a naive choice of coordinate neighbourhood on M. As we saw there, this does not change the
overall conclusions.
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where f(z) is an arbitrary locally-defined holomorphic function on M. Substituting

(7.34) back into (7.32), we find that in general only f(z) 0 is fully consistent with

the set of equations (7.29). However, in general we find that the required relations in

(7.33) are not satisfied. But they are satisfied for any Hamiltonian H = H(z) which

is a function only of the radius of the isothermal coordinate system (z, ). As all Morse

functions admit a form of this sort (c.f. eq. (7.14)), this metric can be locally constructed

for a ‘large’ class of Hamiltonian functions. We shall see various examples of this later

on in this Chapter.

In the case that H = H(z), we can solve (7.29) using the identity F O log to

get the metric in isothermal coordinates as

gz(z,.) = H’(z) (7.35)

The main advantage of using the inductively-defined metric in (7.29) is that all third

order derivatives of H in (7.19) now vanish when evaluated at p M. The fourth order

derivatives contribute curvature terms according to (7.32), which are then cancelled by

the curvature tensor already present in (7.19). The final result is an expression involving

oniy the Liouville and Levi-Civita connections, which after some algebra we find can be

written in the simple form

A1 (p)
=

(7.36)

Therefore, requiring that this correction term vanish leads to the condition that

= 0 (7.37)

in some neighbourhood of the given critical point p, so that

) = gz(z, )[f(z) + J()J (7.38)

However, the holomorphic function f(z) can really only contribute to here in the

constant term of its Taylor expansion. This is because there is another set of special
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coordinates, namely Darboux coordinates, that exist for which the function ) in

(7.38) must become a constant locally (in possibly some smaller neighbourhood than

we are already in). We see from (7.38) that the Jacobian for the Darboux coordinate

transformation would involve the inverse of the combination involving f(z) there. Even

if this Jacobian would turn out to be non-singular, it does not appear that H will have

a nice smooth form in those Darboux coordinates. For instance, if 9z = 1, so that the

Hamiltonian H = z is expressed in local harmonic coordinates, then the transformation

z —* w(z, ) to Darboux coordinates has Jacobian

Owth Owöz -

—
= f(z) + f() (7.39)

If we take, for example, f(z) = —2z in (7.39), then the local diffeomorphism w is w(z, ) =

z — — z and the Hamiltonian becomes H(w, zii) = —(w + zii). Thus this set of

coordinates leads to a degenerate Hamiltonian function, a rather undesirable feature.

Thus we take f(z) to be a real-valued constant, so that w and g locally define a Kähler

structure.

The Lie derivative (7.25) of the metric (7.29) is now easily seen to be zero in a

neighbourhood of the critical point. Conversely, if the Lie derivative of the metric in

(7.29) vanishes on M, then it induces a Kähler structure (i.e. Vw = 0). This is not that

surprising, given the way things have turned out. If we solve the Hamiltonian equations

in the local isothermal coordinate system above, we find that the Hamiltonian vector

field is just locally the rotation generator VZ = iz. Recalling from Section 3.3 the proof

of the Duistermaat-Heckman theorem using solely symplectic geometry arguments, we

see that this is the same sort of mechanism that occured there. The main feature there

of the localization was the possibility of simultaneously choosing harmonic and Darboux

coordinates. This same feature occurs similarly above, when we map onto local Darboux

coordinates. The new insight gained here is the geometric manner in which this occurs

— the vanishing of the ioop expansion beyond leading order gives the dynamical system

a local Kähler structure (see (7.16)). Whether or not this extends to a global geometry
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depends on many things. First of all, a non-trivial Kähler structure on M exists (i.e.

[w] 0) only if all the even degree cohomology groups of M are non-trivial. Thus the

topology of M restricts the possibilities for extending the above structure to a globally

defined Kähler geometry on the whole of M, and in this way the loop expansion probes

the topology of M. Secondly, the coefficient function c(x) in (7.28) must be so that

the metric defined by that equation has a constant signature on the whole of M. If H

has odd Morse indices )(p), then it is impossible to choose the function g in (7.28) such

that, say, g has a uniform Euclidean signature on the whole of M. But if the correction

terms above vanish, then Kirwan’s theorem implies that H has only even Morse indices

and it may be possible to extend this geometry globally. In this way, the examination of

the vanishing of the ioop expansion beyond leading order gives insights into some novel

geometrical structures on the phase space representing symmetries of the localization.

We shall encounter similar sorts of geometric structures in the next Section. Moreover,

if such a metric is globally-defined on M, then £vg = 0, and these classes of localizable

systems fall into the same framework as those we studied before.

For n > 1 degree of freedom, the equation (7.28) should be replaced by the more

complicated relation (7.27) appropriate to higher dimensions. However, this relation

does not kill off the Hamiltonian terms in (7.19) as nicely as it did in 2-dimensions, and

it is difficult to make general statements in higher-dimensions. Nonetheless, the covariant

form (7.19) of the loop-correction terms still indicates some novel properties of the ways

in which localization can occur. In particular, note that the symplectic connection (7.10)

is reminescent of the connection that appears when one constructs the Fubini-Study

metric using the geometry of a holomorphic line bundle L —+ M [35]. If we choose such

a line bundle over M and view the Liouville density (7.11) as a metric in the fibers of

this bundle, then from it one can construct a Kähler structure on M from the curvature

2-forms of the associated connections (7.10), i.e.

= —i(a + = —ia9 log hL (7.40)
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where we have restricted to the holomorphic and anti-holomorphic components of the

connection (7.10). If M itself is already a Kähler manifold, then whether or not (7.40)

agrees with the original Kähler 2-form will depend on where it sits in the DeRham

cohomology of M. If we further adjust the Christoffel connection I’ so that it is related

to the Liouville connection by the boundary condition F -y,, i.e. L = 0, then the

correction term (7.19) will involve only derivatives on the Hamiltonian, but now the

vanishing of the correction term can be related to the geometry of a line bundle L —* M.

It would certainly be interesting to examine more geometric implications implied by

the covariantized loop expansion by generalizing the arguments above. The key step

is to produce ‘Morse theory’ type arguments, i.e. extract global information about a

manifold from local properties of a C°°-function (or other differentiable structures), but

for Hamiltonians with multi-critical points this is usually immediate in order for the

above construction to work in each patch U,. This is as far as we shall go with a general

geometric interpretation of localization from the covariant loop expansion. The above

discussion shows what deep structures one may uncover from such an analysis.

7.3 Conformal Symmetry and Kähler Structures

In this Section we shall show, directly from the loop-expansion, that it is possible to

extend the fundamental symmetry requirement of the localization theorems we encoun

tered earlier on [105, 106]. In the next Section we shall put this into the context of a new

generalized sort of localization principle. Let g be a globally-defined metric tensor on M,

and consider its flows under the Hamiltonian vector field V. Instead of the usual assump

tion that V be an infinitesimal isometry generator for g, we weaken this requirement and

assume that instead V is globally an infinitesimal generator of conformal transformations

with respect to g, i.e.

£vg = Tg (7.41)
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where T(x) is some C°°-function on M. Intuitively, this means that the diffeomorphisms

generated by V preserves angles in the space, but not distances. The function T can be

explicitly determined by contracting both sides of (7.41) with g’ to get

T = V,V/n = Vw8H/n (7.42)

which we note vanishes on the critical point set Mv of the Hamiltonian H. This implies,

in particular, that either T 0 almost everywhere on M (in which case V is an isometry

of g) or T(x) is a non-constant function on M corresponding to non-homothetic trans

formations (i.e. constant rescalings of g are not possible under the flow of a Hamiltonian

vector field). Killing vector fields in this context arise as those which are covariantly

divergence-free, VV = 0.

We shall prove that with the conformal symmetry requirement (7.41), the covari

ant 2-ioop correction vanishes and so the partition function undergoes a Duistermaat

Heckman type localization, although the symmetry causing this is much different than

that encountered in the earlier Chapters. For simplicity, we shall prove this for a 2-

dimensional symplectic manifold — in the next Chapter we shall see that it generalizes to

higher dimensions. To do this, let I’ above be the Levi-Civita connection associated with

the metric g which obeys (7.41) everywhere on M. We write out the 3 components of

the conformal Killing equations (7.41). Notice that, in contrast to the ordinary Killing

equations, one of these will be an ideiltity since one of the Killing equations tells us that

V is covariantly divergence-free with respect to g (see (5.45)). After some manipulation

with the other 2 equations, it is not difficult to see that the components of the Riemann

moment map have the tensorial structure

(1Lv) = -- (v1v’ — V2V2) gw + (vv) (7.43)
2g12 2

so that

detiv = ((v1v’ —V2V2)/2g12)2detg+ (vAVA)2/4 (7.44)
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and substituting these into the covariant Hamiltonian equations in the form

VVH = + VV (7.45)

we arrive at an expression for the covariant derivatives of H,

V,VH = VV’x — (tr i-tv/2) w,, — gp (7.46)

where

____________________

/dettzv — (tr Rv/2)2
(747)

V detg

is a scalar density of weight I.

From (7.46) the covariant derivatives of H appearing in (7.19) are now easily found

on the critical point set M to be

VAVV,H(p) = —Vv twgxV(tr itv/2) — V), (Ev’ ) g
VVVVH(p) = —VpVV’ã g — v (Ev) (7.48)

—V,(tr itv/2)V,w — V,V,, g,1’

Furthermore, since VH(p) = 0 for p E M we have

(p)V,VVH(p) = p)”’VV,VH(p) = (7.49)

which using (7.48) gives

Vvä(p) = 0 and V,E(p) = 0 (7.50)

Note that the first condition in (7.50) is just LSp) = 0. In addition, we can use the

commutation properties of covariant derivatives,

— VVVL,VpH)(p) = (7.51)

to eliminate the curvature terms in (7.19). Combining this with (7.48) and (7.50), we find

at A1(p) = 0 at each critical point p E Mv. Requiring that (7.41) hold globally on M
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then ensures that the 2-ioop correction vanishes in neighbourhoods of each of the critical

points, and thus that the stationary-phase approximation to the partition function (3.51)

is exact, as claimed.

Note that the localization here has occured rather non-trivially, i.e. the vanishing of

the 2-loop correction is not an immediate consequence of (7.41), as would be the case

if, say, Ai(p) could be written as some sort of combination of the terms £vg — Tg. To

explore the precise mechanism for localization here, consider the above derived identities

in the case when V is an isometry of g, i.e. tr pv = 0. Then the Killing equation £vg = 0

is equivalent to the Hermiticity condition (7.24) with

J = (detv)”2(v) (7.52)

which we find then coincides with the almost complex structure (7.22). In general, (7.52)

is not covariantly conserved, but (7.50) shows that VJ = 0 on the critical point set of

the Hamiltonian. This gives a nice geometric interpretation to the mechanism behind

the standard localization property in the above context. In that case (i.e. when £vg = 0

globally on M), the Riemann moment map v = VV defines a local Kähler geometry

about each critical point p E M. If the topology of M allows this to be globally

extended away from M, then the Riemannian geometry so introduced induces a global

Kähler structure with respect to the canonical symplectic structure of M ‘.

Indeed, in the Kähler case when Vw = 0, (7.45) shows that the almost complex struc

ture (7.22),(7.52) coincides with the covariantly constant Kih1er one there and moreover

that the covariant Hessian of H coincides with the Kähler metric up to a proportionality

term K or as in the last Section. Now, though, these proportionality functions are

explicitly determined from (7.45) in terms of the Riemann moment map, e.g. we find

4The existence of an almost complex structure J for which the symplectic 2-form w is Hermitian and
for which the associated Kähler metric g = J w is positive-definite is not really an issue for a symplectic
manifold [135]. Such a J always exists (and is unique up to homotopy) because the Siegal upper-half
plane is contractible. Thus the existence of a Kähler structure for which z = V log hL = 0 is not a
problem. However, for the Killing equation for g = J w to hold, J itself must be invariant under the
flows of the Hamiltonian vector field V, i.e. £vJ = 0.
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= /det v. In particular, on a homogenous Kähler manifold, i.e. one with a constant

scalar curvature R, we can in addition integrate up (7.30) which then determines the

moment map as a linear functional of the Hamiltonian H,

c(x) = Co + RH(x)/2 = ./det pV(x) (7.53)

This was observed for the height function on the sphere at the end of Section 5.5. Again,

these Kähler structures that we find from the vanishing of the 2-ioop terms is completely

consistent with most of the localizable examples we have found. But the above shows

the way that the vanishing of the higher-order terms in the ioop expansion really lead

to (at least local) Kähler structures. It is in this way that the localization of the parti

tion function probes the topology and geometry of M and thus can lead to interesting

topological quantum field theories.

The above comments are true for globally-defined systems with £vg = 0, which as we

saw in earlier Chapters almost uniquely fixed w to be the Kähler 2-form associated with

g. The induced Kähler structures above however do not come about completely when the

general conformal Killing equation (7.41) holds, i.e. tr uv 0, so that V is a conformal

Killing vector. Now, we do not get a Kähler structure on M, because Vw 0 would

automatically imply the vanishing of the function T(x) in (7.41). Thus this new sort of

novel Hamiltonian dynamics is not associated with any others that we have encountered

thus far, such as the homogenous phase spaces associated with coadjoint orbits of Lie

groups. This conformal symmetry of the dynamics really represents some new classes

of dynamical systems whose partition functions are given exactly by the semi-classical

approximation.

This sort of dynamics is rather intriguing. In order to construct examples of sys

tems with a non-trivial conformal symmetry, one has to look at spaces which have a

Riemannian metric g for which the Hamiltonian vector field V is a generator of both

the conformal group Conf(M,g) and the symplectomorphism group Sp(M,w). From

the past few Chapters we have a relatively good idea of what the latter group looks like.
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The conformal group for certain Riemannian manifolds is also well-understood [47]. For

instance, the conformal group of a flat Euclidean space of dimension at least 3 is locally

isomorphic to SO(d + 1, 1), where d is its dimension. The (global) conformal group of

the Riemann sphere C U {oo} was encountered already in Chapter 6 (albeit in a different

context), namely the group SL(2,C)/2 SO(3, 1) of projective conformal transforma

tions. In these cases, the conformal group consists of the usual isometries of the space,

along with dilatations or scale transformations (e.g. translations of r in z = r e°) and the

d dimensional subgroup of so-called special conformal transformations. More interesting

is the case of the flat complex plane C. Here the conformal algebra is infinite-dimensional

and its Lie algebra is just the classical Virasoro algebra [47]. Indeed, the conformal Killing

equations in this case are just the first set of equations in (5.45) (the other one represents

the divergence-free condition tr 1uv = 0). This means that the conformal Killing vectors

in this situation are the holomorphic functions VZ = f(z), V = J(). The Hamiltonian

flows of these vector fields are therefore the arbitrary analytic coordinate transformations

= f(z) , (7.54)

The conformal flows (7.54) determine a very intriguing sort of dynamics for the Hamil

tonian system.

Unfortunately, it appears difficult to construct examples of such conformal dynamical

systems. For instance, in the simple example above, the conformal transformation z —+

f(z) must also be a canonical transformation of some symplectic structure on M = C. A

little experimentation shows that one encounters unavoidable singularities in the solutions

of £vw = 0 for w (e.g. a behaviour near the origin), which then lead to highly singular

Hamiltonian functions on C [105]. Some more sophisticated spaces need to be considered,

and this construction could entail either starting from the conformal group of a given

Riemannian space and finding a non-singular symplectic structure, or conversely starting

from a given symplectomorphism group of a symplectic manifold and trying to construct

a given conformal geometry on that space. Both approaches appear to be rather difficult.
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In any case, this new feature may shed light on the localization properties of many new

integrable field theories, and as well one might be able to develop other more general

formalisms and interpretations for the path integral other than the usual homogenous

spaces that we studied before. This indeed opens up a whole new aspect of localization

theory which encompasses a much larger class of integrable systems.

7.4 The Extended Localization Principle

The last few Sections have dealt primarily with attempting to deduce geometric features

of a localizable system from the covariant loop expansion. We found that in fact there

was a very intimate connection with the possible Kähler structures that the phase space

can possess, which leads to the hope that one can construct topological field theories

which probe deeper, more complicated geometrical and topological characteristics of a

manifold. We shall now take a rather different approach [106] to examining corrections

to the Duistermaat-Heckman formula which will accomplish a number of things. First of

all, in this Section we shall establish the conformal symmetry property in a very general

setting [105], much in the same way that the canonical localization theorems followed

from more general principles of equivariant cohomology. Then in the next Section we

shall present an alternative to the conventional loop-expansion which focuses on more

geometrical arid topological features of the phase space of the given dynamical system.

This will, among other things, put Kirwan’s theorem, whose proof is based on a rather

formal complex analytic argument [72], into a much clearer topological perspective. It

will also give a much simpler way to compute corrections to the lowest order terms of the

stationary-phase series for H which does not involve having to carry out the evaluation

of the cumbersome derivative expressions in (7.3) and (7.4).

Throughout this Section we will work within the rather general framework of Sections

2.4 and 2.5, and, in particular, we consider the integral Z(s) in (2.108). Again we assume

that cv is any equivariantly-closed differential form under the flows of an (arbitrary) vector
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field V, but now we do not require that 3 be an equivariant differential form, i.e. £v/3 # 0

in general. We also assume, for full generality, that the manifold M can have a boundary

M. Then the second line of (2.109) and the identity

r d
Z(0) = lim Z(s) — I ds —Z(s) (7.55)s-+oo Jo ds

implies that the integral fM a can be determined through the identity

J a = urn J a e_8 + J ds a e_8 + sJ a(v) e_s} (7.56)
M S-+QO M 0 EM M

There are a couple of things to be learned from the general expression (7.56), both

of which can be thought of as extensions of the equivariant localization principle of

Section 2.4. The first is the effect of the boundary contribution in (7.56). If we choose

/3 E AvM, then the second integral on the right-hand side of (7.56) vanishes. If we

furthermore assume that the group action represented by the flows of the vector field V

preserves the boundary of M (i.e. g = ÔM) and that the action is free on

then the s-integral of the boundary term in (7.56) can be carried out explicitly and we

find

I a = lim I a —

/3 A a
(757)

JM s*oo Lw JSM Dv/3
In particular, taking 3 = ivg to be the metric-dual 1-form of V with respect to an

invariant Riemannian geometry of M, the large-s limit in (7.57) localizes to the usual

Berline-Vergne localization formula (2.122) and (7.57) is therefore an extension of that

localization formula to manifolds with boundary. In this context 3 is the connection 1-

form for the induced group action on the boundary OM, because as we have seen d/3 is the

moment map for this action. This boundary term can be determined using the Jeffrey

Kirwan-Kalkman residue that was introduced when we discussed the Witten localization

formula back in Section 3.8, i.e. the coefficient of in the quantity (/3 A a)/Dv/3, where

4 is the element of the symmetric algebra S(g*) representing the given circle action [68].

Next, assume for the moment that everything is pretty much arbitrary, except that

the zero locus Mv consists of only isolated fixed points. We can then work out the



Chapter 7. Geometrical Characteristics of the Semi-classical Expansion 257

large-s limit integral in (7.56) in the same way as in Section 2.5 to arrive at the same

expression (2J21), except that now the 2-form fv = d/3 there is given quite arbitrarily

as

= . — (7.58)

and the formula (7.56) becomes

IM = (_2r)f/2 > I
Pfaff (dV(p) - g(p)’vg(p)/2)

pEM v

+ j ds / + j ds sJ a(v/3) (7.59)

If we now assume that OM = 0 then the first integral on the right-hand side of (7.59)

vanishes. If we further assume that instead of the usual Killing equation, the Riemannian

metric g is only conformally Lie-derived by the vector field V as in (7.41), then the second

integral on the right-hand side here also vanishes because then £v/ = Ti3 and so the

integrand there involves the exterior product of the 1-form 3 with itself. Thus the

integral i’M a again localizes onto the zero locus Mv of the given group action on M.

In particular, if T(p) = tr dV(p)/n = 0 for all p e Mv (as is the case for a Hamiltonian

vector field V), then the localization formula (7.59) is identical to the Berline-Vergne

localization formula (2.122).

Thus the localization properties of equivariant cohomology are even stronger than we

saw before. Indeed, the result carried out in (2.109) still applies to any differential form

that lives in the subset

A0fM {,6 e AM : = T6 for some T e C°°(M)} (7.60)

of the exterior algebra AM. Then the algebra of equivariant differential forms AvM

represents a very small subalgebra of the set A0fM of differential forms which are in

variant under the group action represented by V up to rescaling by a C°°-function on

M. This construction can clearly be generalized to the case of a non-abelian group

action on M as well, where Lv above would get replaced by 4’ 0 La. This can be
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thought of as an extended localization priniciple for equivariant cohomology. The crucial

difference, however, is that it is not a cohomological symmetry that can be interpreted

as the independence of an integral on the choice of equivariant cohomology class, as the

differential forms 3 E A0fM here are not equivariant differential forms and so do not

lie in the domain of some exterior derivative operator. Note this establishes quite gen

erally the conformal symmetry arguments of the last Section. It would be interesting

to see if there is some deeper sort of cohomological structure connected with this gen

eralized conformal symmetry. Indeed, it is quite intriguing that there is a large mixture

of topological (i.e. an equivariant cohomology class [a] Hv(M)) and geometrical (i.e.

conformally-invariant localization forms j3) symmetries that are ultimately responsible

for localization, and not merely just the previous equivariant cohomological symmetries.

In this sense, the localization properties of equivariant cohomology are very strong5.

The fact that this conformal symmetry does not lead directly to an immediate equiv

ariant cohomological structure is itself interesting and makes this requirement rather

different than other geometrical alternatives to the Lie derivative condition £vg = 0

that have been considered. For instance, in [69), Kärki and Niemi considered the alter

native condition

VVV = 0 (7.61)

to the Killing equation, which means that the Hamiltonian flows are geodetic to g. After

some algebra, it is straightforward to show that (7.61) is equivalent to [69]

Dv(Kv/2 + Iv) 0 (7.62)

so that the dynamical systems (Kv, !v) and (H, ) determine a bi-Hamiltonian struc

ture. Moreover, in this case it is also possible to solve the equivariant Poincaré lemma

5The fact that a conformal symmetry leads to a localization onto Mv as before is not that surprising
in light of the proof of the equivariant localization principle of section 2.4. It is essentially a consequence
of the fact that the differential form /3 above is a connection 1-form that specifies a splitting of the
tangent bundle involving a component over Mv. This is implicit in the proof by Atiyah and Bott in [8]
using the Weil algebra.
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[69], just as we did in Section 3.6. Thus given that Kv + is an equivariantly-closed

differential form, the condition (7.61) has the potential of leading to possibly new local

ization formulas.

However, there are 2 things to note about the geometric condition (7.61). The first

is its connection with a non-trivial conformal Killing equation £vg = Tg, which follows

from the identity
VVg(Jg),y = VV.Va + gVKv/2 (7.63)

Contracting both sides of (7.63) with gV leads to

TK = (7.64)

when (7.41) holds, This implies that if (7.61) is satisfied, then T 0 away from the

zeroes of V. Thus T 0 everywhere on M and so the geometric condition (7.61) can

only be compatible with the Killing equation, and not the inhomogeneous conformal

Killing equation.

Secondly, the exact 2-form divg is degenerate on M, because an application of

the Leibniz rule and Stokes’ theorem gives

n! J d2x det v(x)
= IM = IM d (ivg A _1)

= 0 (7.65)

when ÔM 0. Thus det12v(x) = 0 on some submanifold of M, and thus the Hamilto

nian system determined by (Kv, fv) is degenerate. As mentioned in Section 3.6, this

isn’t so crucial so long as the support of det V(x) is a submanifold of M of dimension

at least 2. It would certainly be interesting to investigate these geometric structures in

more detail and see what localization schemes they lead to.

7.5 Poincaré Duality and Corrections to the Duistermaat-Heckman Formula

We now go back and look at an arbitrary dynamical system, and assume for now that

the symplectic manifold M can have a non-empty boundary ÔM. Given that, as always,
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cv = eiT(I)/(iT)n is equivariantly-closed with respect to the Hamiltonian vector field

V, we can apply the extended localization formula (7.59) to give

Z(T)
= (2)fl

e(det (1 — 1wg’vg/2) (p)

00 eTH_3Kh1

+(iT)nj ds
(n—i)!

g(V,)A(iTwsv)

1 00 eiTH_3

+(iT)fl j ds s IM ( — 1)!
g() A (vg)(V,) A (iTw

—

(7.66)

which holds for an arbitrary Riemannian metric g on M. Again, we see explicitly

how the conformal Lie derivative condition (7.41) collapses this expression down to the

Duistermaat-Heckman formula (3.62) when 9M = 0, as we saw by more explicit means

in Section 7.3 above. Note that we cannot naively carry out the s-integrations quite yet,

because the function Ky = g(V, V) has zeroes on M.

The expression (7.66), although quite complicated, shows explicitly how the Lie

derivative conditions make the semi-classical approximation to the partition function

exact. This is in contrast to the loop-expansion we studied earlier, where the corrections

to the Duistermaat-Heckman formula were not just some combinations of Lie derivatives.

(7.66) therefore represeilts a sort of resummation of the loop-expansion that explicitly

takes into account the geometric symmetries that make the i-loop approximation ex

act. We shall see soon that it is quite consistent with the results predicted from the

loop-expansioll, and moreover that it gives many new insights.

In particular, the formula (7.66) suggests a geometric approach to the evaluation of

corrections to the Duistermaat-Heckman formula in the cases where it is known to fail.

Recall that there is always locally a metric tensor on M — Mv for which V is a Killing

vector (see the discussion at the beginning of Section 3.6). For the systems where the

semi-classical approximation is not exact, there are global obstructions (usually from the

topology of M) in extending these locally invariant metric tensors to globally-defined
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geometries on the phase space which are invariant under the full group action generated

by the Hamiltonian vector field V on M, i.e. there are no globally defined single-valued

Riemannian geometries on M for which V is globally a Killing vector. This means that

although the Killing equation £vg = 0 can be solved for g locally on patches covering the

manifold, there is no way to glue the patches together to give a single-valued invariant

geometry on the whole of M (c.f. Section 5.7). We shall now use the expression (7.66)

in this sense to evaluate the corrections to the sum over critical points there, and we

shall see that not only does this method encompass much more of the loop-expansion

than the term-by-term analysis of the last Section, but it also characterizes the non-

exactness of the Duistermaat-Formula in a much more transparent and geometric way

than Kirwan’s theorem. In this way we will obtain an explicit geometric picture of the

failure of the Duistermaat-Heckman theorem and in addition a systematic, geometric

method for approximating the integral (3.51). Furthermore, the ensuing analysis will

show explicitly the reasons that for certain dynamical systems there are no globally

defined Riemannian metric on the given symplectic manifold for which any given vector

field with isolated zeroes is a Killing vector, and as well this will give another geometric

description of the integrability properties of the given dynamical system.

The idea is to define a set of patches covering M in each of which we can solve the

Killing equations for g, but for which the gluing of these patches together to give a glob

ally defined metric tensor is highly singular. The non-triviality that occurs when these

subsets are patched back together will then represent the corrections to the Duistermaat

Heckman formula, and from our earlier arguments we know that this will be connected

with the integrability of the Hamiltonian system. We introduce a set of preferred coor

dinates x” for the vector field V following Section 5.2. In general, this diffeomorphism

can only be defined locally on patches over M and the failure of this coordinate transfor

mation in producing globally-defined C°°-coordinates on M gives an analytic picture of

why the Hamiltonian vector field fails to generate global isometries. Notice in particular
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that these coordinates are only defined on M — Mv. In this way we shall see geo

metrically how Kirwan’s theorem restricts dynamical systems whose phase spaces have

non-trivial odd-degree homology and explicitly what type of flow the Hamiltonian vector

field generates.

Recall that the coordinate functions x” map the constant coordinate lines (xg,. . . , x) e

1a2n1 onto the integral curves of the isometry defined by the classical Hamilton equa

tions of motion th’(t) = V’(x(t)), i.e. in the coordinates x”(x), the flows generated by

the Hamiltonian vector field look like

x”(t) = xj + t ; x”(t) = , ,u > 1 (7.67)

In general, the coordinate transformation function will have singularities associated with

the fact that there is no Riemannian metric tensor on M for which the Lie derivative

condition £vg = 0 holds. Otherwise, if these transformation functions were globally

defined on M — Mv, then we could take the metric on M to be any one whose com

ponents in the x”-coordinates are independent of x”1, and thereby solving the Killing

equations directly and hence from (7.66) the WKB approximation would be exact. For

a non-integrable system, there must therefore be some sort of obstructions to defining

the x”-coordinate system globally over M. In light of the above comments, these singu

larities will partition the manifold up into patches F, each of which is a 2n-dimensional

contractable submanifold of M with boundaries lIP some other (2n — 1)-dimensional

submanifolds of M induced by the constant coordinate line transformation from 1R21

above. By dropping some of these coordinate surfaces if necessary, we can assume that

these patches induced from the singularities of the above coordinate transformation form

a disjoint cover of the manifold M, M = U ]J 6 Then we can write the partition

function as

Z(T)
= (7.68)

6Here we assume that M is compact, but we shall see that this formalism can a’so be extended to
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where as usual a is the equivariantly-closed differential form (3.56).

By the choice of the patches F, in their interior there is a well-defined (bounded)

translation action generated by V”. Since the patches F are diffeomorphic to rectangles

in 1R2, we can place a Euclidean metric on them,

gp = 0 dx”’ (7.69)

where the conformal factor yp(x”) is a globally-defined real-valued C°°-function on F. If

we choose it so that it is independent of the coordinate x”1, then the metric (7.69) satisfies

the Killing equation on F. Thus on each patch F, by the given choice of coordinates,

we can solve the Lie derivative constraint, even though this cannot be extended to the

whole of M. Then each integral over P in (7.68) can be written using the formula (7.66),

restricted to the patch F, to get

I a = (_(P) I detw(p)
eiT

ii’ T ) pEMvflP N det?-t(F)
(7.70)

1 0 eiTH_811
. n—i

+(iT)flj ds £ (n—i)!
g(.)A(zT—sQv)

The first term here, when (7.70) is substituted back into (7.68), represents the lowest-

order term in the semi-classical expansion of the partition function over M, i.e. the

Duistermaat-Heckman term Z0(T) in (3.62), while the boundary terms give the general

corrections to this formula and represent the non-triviality that occurs rendering inexact

the stationary-phase approximation. The result is

Z(T) = Z0(T) + Z(T) (7.71)

where

1 °° eiThI_1
SZ(T)

= (iT) j ds
(n — 1)!

g(V,.) A (iTw — Sv)1 (7.72)

The contributions from the patch terms in (7.72) therefore represent an alternative geo

metric approach to the loop-expansion of the earlier Sections of this Chapter.



Chapter 7. Geometrical Characteristics of the Semi-classical Expansion 264

To evaluate the correction term SZ(T), we recall from Section 5.2 (eqs. (5.33),(5.37))

that the coordinate functions x(x) for z = 2,.. . , 2n are local conserved charges of the

Hamiltonian system, i.e.

{x, H} = 0 (7.73)

Thus we can take one of them, say x2, to be a functional of the Hamiltonian, which we

choose to be x”2(x) = x2(x) = JH(x), where by adding an irrelevant constant to H we

may assume that it is a positive function on the (compact) manifold M. Then, using

the metric tensor transformation law, we find that the metric (7.69) when written back

into the original (unprimed) coordinates has the form

gp =

((V
l)2OXX + ôHOH + Eaxaavxa) dx 0 dxv (7.74)

so that the metric-dependent quantities appearing in (7.72) can be written as

gp()
=

, Kv(x)p = gp(V V) (7.75)

ep(x)
VIP

= 2(VO’)2
{ax’ (övôx1 — 8vö1)

+V>’äx’ (OypOv1 — O,pO,x1)} dx A dxv (7.76)

When these expressions are substituted back into the correction term (7.72), we find

that the integrands of Z(T) depend only on the coordinate function x’(x). This is

not surprising, since the only effect of the other coordinate functions, which define local

action variables of the dynamical system, is to make the effect of the partitioning of M

into patches above non-trivial, reflecting the fact that the system is locally integrable,

but not globally (otherwise, the partition function localizes).

In general, the correction term (7.72) is extremely complicated, but we recall that

there is quite some freedom left in the choice of x’ All that is required of this function is

that it have no critical points in the given coordinate neighbourhood. We can therefore

choose it appropriately so as to simplify the correction Z(T) somewhat. Given this
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choice, in general singularities will appear from the fact that it cannot be defined globally

on M, and we can use these identifications to identify the specific regions P above. The

form of the function x’ is at the very heart of this approach to evaluating corrections

to the Duistermaat-Heckman formula. We shall see how this works in some explicit

examples in the next Section. Notice that a similar phenomenon to what occured in

Section 5.7 has happened here — the function Ky in (7.75) is non-zero, as the zeroes

of the vector field V have been absorbed into the metric term gp(V,.) thereby making

it singular. We can therefore now carry out the explicit s-integral in (7.72), as the

singularities on Mv are already present in the integrand there. Although this may seem

to make everything hopelessly singular, we shall see that they can be regulated with

special choices of the function x1 thereby giving workable forms. We shall see in fact

that when such divergences do occur, they are actually predicted by Kirwan’s theorem

which we recall dictates also when the full stationary-phase series diverges for a given

function H.

There does not seem to be any immediate way of simplifying the patch corrections

SZ(T) above due to the complicated nature of the integrand forms. However, as usual

in 2-dimensions things can be simplified rather nicely and the analysis reveals some very

interesting properties of this formalism which could be generalized to higher-dimensional

symplectic manifolds. To start, we notice that in 2-dimensions, if M is a compact

manifold, then the union above over all of the patch boundaries a C M will in general

form a sum over 1-cycles a Hi(M; ). Next, we substitute (7.75) and (7.76) into (7.72)

with n = 1, and after working out the easy s-integration we find that the 2-dimensional

correction terms can be written as

1 iTH(x)
Z(T) = (7.77)

As for the function x1 we need to choose one which is independent of the other coordinate

transformation function x2 to ensure that these 2 functions truly do define a (local)

diffeomorphism of M. The simplest choice, as far as the evaluation of (7.77) is concerned,
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is to choose x1 as the solution of the first-order linear partial differential equation

V1(x)l3i’(x) =V2(x)O2’(x) (7.78)

With this choice of x1, the functions x1 and x2 are independent of each other wherever

0, jt, v = 1,2, which follows from working out the Jacobian for the coordinate

transformation defined by x and using their defining partial differential equations above.

With this and the Hamiltonian equations dH = —ivw, the correction terms (7.77)

become

SZ(T)
= Fcj (7.79)

where we have introduced the 1-form

F = 12(x) eiT)(8)dx’
— OiH(x))

(7.80)

The expression (7.79) leads to a nice geometric interpretation of the corrections above

to the Duistermaat-Heckman formula. To each of the homology cycles a Hi(M; ),
there corresponds a cohomology class H1 (M; IR), called their Poincaré dual [27],

which has the property that it localizes integrals of 1-forms a E A1M to a, i.e.

jIatJlt (7.81)

Defining

= e H’(M;lFt) (7.82)
£

we see that the correction term (7.79) can be written as

SZ(T)=_-JFAq (7.83)

Noting also that the original partition function itself can be written as

Z(T)=fFAdH (7.84)
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it then follows from Z(T) = Z0(T) + Z(T) that

IM F A (iTdH + 2)
=

eiTH (7.85)

Thus in this sense, the partition function represents intersection numbers of M associated

to the homology cycles a.

This last equation is particularly interesting. It shows that the corrections to the

Duistermaat-Heckman formula generate the Poincaré duals to the homology cycles which

signify that the Hamiltonian vector field does not generate a globally well-defined group

action on M. When the correction 1-form r1/iT is added to the 1-form dH = —.,(V,.)

which defines the flow of the Hamiltonian vector field on M, the resulting 1-form is

enough to render the Duistermaat-Heckman formula exact for the new “effective” parti

tion function. This means that although the initial Hamiltonian flow dH doesn’t ‘close

enough’ to satisfy the conditions required for the Duistermaat-lleckman theorem, adding

the cohomological Poincaré dual to the singular homology cycles of the flow is enough to

close the flows so that the partition now is given exactly by the lowest-order term Z0(T)

of its semi-classical expansion. One now can solve for the vector field W satisfying the

“renormalized” Hamiltonian equations

dH +27/iT = —w(W.) (7.86)

We can consider W as a “renormalization” of the Hamiltonian vector field V which ren

ders the stationary-phase series convergent and the Duistermaat-Heckman formula exact.

Note that since the symplectic form w hence defines a cohomology class in H2(M; Ia),

this just corresponds to choosing a different representative in H’(M; IR) for w(V,) (recall

E H1(M; IR)). Thus in our approach here, the corrections to the Duistermaat-Heckman

formula computes (possibly) non-trivial cohomology classes of the manifold M and ex

presses geometrically what is missing from the original dynamical system that prevents its

saddle-point approximation from being exact. The explicit constructions of the Poincaré
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duals above are well-known [27) — one takes the embedding a : S —+ M of S1 in M

which corresponds to the loop a, and constructs its DeRham current which is the Dirac

delta-function 1-form P”)(x, at(y)) E A’M(x) 0A1M(y) with the property (7.81).

There is one crucial point that needs to be addressed before we turn to some explicit

examples. In general we shall see that there are essentially 2 types of homology cycles

that appear in the above when examining the singularities of the diffeomorphisms x
that prevent them from being global coordinate transformations of M. The first type

we shall call ‘pure singular cycles’. These arise solely as a manifestation of the choice

of equation satisfied by x’• The second type shall be refered to as ‘critical cycles’.

These are the cycles on which at least one of the components of the Hamiltonian vector

field vanish, V(x) = 0 for = 1 or 2. On these latter cycles the above integrals in

Z(T) become highly singular and require regularization. Notice in particular that if,

say, V’(x) = 0 but V2(x) 0 on some cycle a, then the equations (7.73) and (7.78)

which determine the functions x’ implies thatö2(x) = 0 while leaving the derivatives

Oi(x) undetermined. Recall that it was precisely at these points where the Jacobian

of the coordinate transformation defined by x vanished.

In this case one must regulate the 1-form F defined above by letting 8x’ and 82X1

both approach zero on this cycle a in a correlated manner so as to cancel the resulting

divergence in the integrand of (7.77). Note that this regularization procedure now requires

that x1 and x2 transform identically, particularly under rescalings, so that the tensorial

properties of the differential form F are unaffected by this definition. In this case, the

1-form F which appears above gets replaced by the 1-form

Faf = V2(x)
(dx’ + dx2) eiT)

=
(dx’ + dx2) eT) (7.87)

winch follows from the general expression (7.77). This procedure for defining F can

be thought of as a quantum field theoretic ultraviolet regularization for the higher-loop

corrections to the partition function. In general, we shall always obtain such singularities

corresponding to the critical points of the Hamiltonian because, as mentioned before,
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the diffeomorphism equations above become singular at the points where V(x) = 0.

Note that (7.87) will also diverge when the cycle a crosses a critical point, i.e. on

a fl M. Such singularities, as we shall see, will be just a geometric manifestation of

Kirwan’s theorem and the fact that in general the stationary-phase expansion does not

converge for the given Hamitltonian system. We shall also see that in general the pure

singular cycles do not contribute to the corrections, as anticipated, as they are only a

manifestation of the particular coordinate system used, of which the covariant corrections

should be independent. It is only the critical cycles that contribute to the corrections

and mimick in some sense the sum over critical points series for the partition function.

7.6 Examples

In this Section we illustrate some of the formalism of this Chapter with 2 classes of

explicit examples. The first class we shall consider is the height function of a Riemann

surface, a set of examples which we have become well-acquainted with. These were first

studied in Section 3.5, and in the case of the Riemann sphere we have little to add at

this point since the height ftmction (3.70) localizes. The oniy points we wish to make are

that its partition function (3.71) represents the equivariant cohomology classes in7

H(l)(S2)= 7Z (7.88)

Intuitively, (7.88) follows from the fact that the single Lie algebra generator q5 E IR and

the invariant volume form of 52 are linearly independent. Furthermore, the covariant

Hessian with respect to the standard Kähler geometry of 32 (see Section 5.5) is related

to the Kähler metric gs2 by

VVh0 = 2J+
j3’®

d = 2(1 — ho)gs (7.89)

7Equivariant cohomology groups are usually computed using so-called classifying bundles of Lie groups
(the topological definition of equivariant cohomology) — see [92], for example.
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which is in agreement with the analysis of Sections 7.2 and 7.3. This shows the precise

mechanism (i.e. the Hessian of hEo generates covariantly the Kähler structure of S2) that

makes the loop corrections vanish.

An interesting check of the above formalisms is provided by a modified version of the

height function hEo which is the quadratic functional

h) = hEo — h0 = (1 — cosO) —(1 — cosO)2
=

— (i)2 (7.90)

which has the same critical behaviour as hEo. Now we find that the metric equations

(7.29) are solved by (7.35), as anticipated, so that

VVh2
= (1
3(z— l)dz®d=g2dz®d (7.91)

As (7.91) does not coincide with the standard Kähler geometry of 52, the i-ioop approx

imation to the partition function in this case is not exact, as expected. However, the

partition function still localizes, in the sense that it can be computed via the Gaussian

integral transform

Z(T)
= JM

dL eiT_2)

= L e_i2/2

IM dzL ei(T_2iI (7.92)

of the usual equivariant characteristic classes. Thus since (7.90) is a functional of an

isometry generator (i.e. a conserved charge), it is still localizable, as anticipated from

the discussions in Sections 4.7 and 4.8. This is also consistent with the formalism of

Section 7.5 above. In this case, the preferred coordinates for the Hamiltonian vector field

are 0 and x = S/(1 — cos 0). Although these coordinates are singular at the poles of S2

(i.e. the critical points of (7.90)), the correction terms 6Z(T) do not localize onto any

cycles and just represent the terms in the characteristic class expansion for Z(T) here.

This just reflects the fact that S2 is simply connected, and also that the geometric terms

6Z(T) detect the integrability features of a dynamical system (as (7.90) is of course an

integrable Hamiltonian).
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Next, we consider the height function on the torus, with the Kähler geometry in

Section 6.2 adjusted so that cp 0 in (6.9) and v = 1 in (6.35). The covariant Hessian of

the Hamiltonian (3.75) in this case is

7-L(, 2) = Im r cos qSi cos2dq1 0 dq1 — 2 Tm r sin 4 sin q52dqS1 0 d€b
(7.93)

+(ri + Tm r cos çiSi)cosç2dq2 0 dqS2

Clearly in the complex coordinatization used to define the Kähler structure this Hessian

is not of the standard Hermitian form and the analysis used to show the exactness of

the stationary phase approximation in the case of the height function on S2 using the

loop-expansion will not work here. Indeed, we do not expect that any metric on T2 to

be defined from the covariant Hessian as we did in Section 7.2, and we already know

that the Duistermaat-Heckman formula is not exact for this example. This is because of

the saddle-points at c2) = (0, 7r) and (ir, 7r). The Hessian at these points will always

determine an indefinite metric which is not admissible as a globally-defined geometry on

the torus.

This is also apparent from examination of the connection (7.10) and its associated

Fubini-Study geometry defined by (7.40). Tn this case y 0 and the curvature (7.40) is

trivial. The 2-form f does not determine the same cohomology class as the Kähler 2-form

of does, so that there is not enough “mixing” of the Hessian and Liouville terms in

the loop expansion to cancel out higher-order corrections. For the sphere, a little bit of

algebra shows that the Fubini-Study metric coincides with the standard Kähler metric

and thus the appropriate mixing is there to make the dynamics integrable. Tt is the lack

of formation of a non-trivial Kähler structure on the torus here that makes almost all

dynamical systems on it non-integrable.

Although the failure of the Duistermaat-Heckman theorem in this case can be un

derstood in terms of the non-trivial first homology of T2 via Kirwan’s theorem, we can

examine analytically the obstructions in extending the Hamiltonian vector field (3.77)

to a global isometry of the standard Kähler metric (6.9) of T2 which defines the unique
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Riemannian geometry for equivariant localization on the torus. We shall find that the

local translation action defined by the vector field (3.77) cannot be extended globally in

a smooth way to the whole of T2. The set of coordinates (x, y) on the torus in which the

components of the Hamiltonian vector field are V = 1 and Vi” = 0 as prescribed before

are first defined by taking x2(&, c’2) to be the square root of the height function (3.75)

and x1@i, 42) to be the C°°-function with non-vanishing first order derivatives which is

the solution of the partial differential equation (7.78). In the case at hand (7.78) can be

written as
a1 a1

—(ri + Tm T cos )--— = m r sin q cot (7.94)
UY2

which is solved by

X’@i, k2) = log(ri + Tm r cos 4i) — log(cos 42) (7.95)

and integrating (7.95) as in (5.37) yields the desired set of coordinates (x, y). This gives

1 2 Tm r I /Re TI \ log (tan )arctan tan—I —

__________

2 Im T Vr2IRe r sin 2 v r2 2 j cos

y@1,2) = /r2 — (r1 + Tm rcosqi)cosq2 (7.96)

which hold provided that Re r 0.

Tn the coordinates defined by the diffeomorphism (7.96) the Hamiltonian vector field

generates the local action of the group IFt’ of translations in x. Clearly, however, this

diffeomorphism cannot be extended globally to the whole of T2 because it has singularities

along the coordinate circles

a1 = {(r/2,q5) E T2} , a2 = {(3ir/2,S) T2} (797)

= {(,o) E T2} , b2 = {(,7r) E T2} (7.98)

This means that VE’ cannot globally generate isometries of any Riemannian geometry on

T2. Although translations in the coordinate x represent some unusual local symmetry
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of the torus, it shows that the existence of non-trivial homology cycles on T2 lead to

singularities in the circle action of the Hamiltonian vector field on T2. These singularities

do not appear on the Riemann sphere because any closed ioop on S2 is contractable,

so that the singular circles above collapse to points which can be identified with the

critical points of the Hamiltonian function. In fact, as we saw in Chapter 6, the only

equivariant Hamiltonians on the torus are precisely those which generate translations

along the homology cycles of T2, and so we see that the Hamiltonian (3.75) generates

a circle action that is singular along those cycles which are exactly those needed for

a globally equivariantly-localizable system on the torus. This is equivalent to the fact

the flow generated by VE1 bifurcates at the saddle points of hEl, and the above shows

analytically why there is no single-valued, globally-defined Riemannian geometry on the

torus for which the height function hEl generates isometries.

The local circle action defined by the diffeomorphism (7.96) however partitions the

torus into 4 open sets P which are the disjoint sets that remain when one removes the

2 canonical homology cycles discussed above. Each of these sets P is diffeomorphic to

an open rectangle in JR2 on which the Hamiltonian vector field VE1 generates a global

IR’-action. Thus the above formalism implies that the corrections to the Duistermaat—

Heckman formula for the partition function in this case is given by (7.77) evaluated on

the pure singular cycles a1 and a2 above, and on the critical cycles b and 62 (see the

last Section). Summing the 2 contributions from the 1-form F in (7.80) along the pure

homology cycles shows immediately that Faj + a2
F2 = 0, as anticipated. As for

the integrals along the critical cycles, taking proper care of orientations induced by the

contractable patches, we find that the contributions from b and 62 are the same and that

the corrections can be written as

1 / e’2’ Tm TCos iT Tm rcos
SZT2(T)

—, ( e’ J dçb .
— ezTfr21) J dS

e
iT Tm r o sin4 o sin

(7.99)

After a change of variables we find that the integrals in (7.99) can be expressed in terms
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of the exponential integral function [50]

e_t
Ei(x) =

—

dt -.---- (7.100)

which diverges for x 0. Here the integral denotes a Cauchy principal value integration.

After some algebra we find

1 iTIrnT

ZT2(T)
jT Tm T

[T2_nl) { e
2

(Ei(_2iT Im r) — Ei (_2iT Im rcos2

-iT Tm ‘re
2

(Ei (2iT Tm rsin2 — Ei(2iT Im r))}

-iT Tm
— eiT2+n1) { e

2
(Ei(2iT Tm r) — El (2iT Im rcos2

iT Tm T—_e
2

(El (_2iT Tm r sin2 — Ei(—2iT Tm T)) }]
(7.101)

where y = — and —+ 0 is used to regulate the divergence of the integrals in (7.99) at

= 0 and 4 = ir.

The correction term (7.101) tells us quite a bit. First of all, note that it is a sum

of 4 terms which can be identified with the contributions from the critical points of the

Hamiltonian hEl. However, these terms are resummed, since the above correction terms

take into account the full loop corrections to the Duistermaat-Heckman formula. Next,

the terms involving are divergent, and the overall divergence of 6ZT2 (T) is anticipated

from Kirwan’s theorem, which says that the full saddle-point series for this Hamiltonian

diverges. The exponential integral function can be expanded as the series [50]

Ei(x)=7+logx+---1 (7.102)
n1

where -y is the Euler number. Thus the divergent pieces in (7.101) can be explicitly

expanded in powers of , giving a much simpler way to read off the coefficients of the

loop-expansion (note the enormous complexity of the series coefficients in (7.3) for this

Hamiltonian — a direct signal of the messiness of its stationary-phase series). Finally,



Chapter 7. Geometrical Characteristics of the Semi-classical Expansion 275

the finite terms (those independent of the regulator ), can be evaluated for T = —i and

T = 1 + i, and we find SZT2 = 123.086. From Section 3.5 we saw that the exact value

of the partition function for this dynamical system was 2117.12, while the Duistermaat

Heckman formula gave Zo = 1849.327. Thus Z0 + 5ZT2 = 1972.41, which is a better

approximation to the partition function than the Duistermaat-Heckman formula. Of

course, given the large divergence of the stationary phase series, we do not expect that

the finite contributions in (7.101) will give the exact result for the partition function, but

we certainly do get much closer. As the function x’ which generates the set of preferred

coordinates is by no means unique, perhaps a refined definition of it could lead to a better

approximation Z0 + Z. Then, however, we lose a lot of the geometrical interpretation

of the corrections that we gave in the last Section.

The second set of examples we consider here are the potential problems (5.165) defined

on the plane 1R2, where U(q) is a C°° potential which is a non-degenerate function. In

this case the equation (7.78) becomes

p-i-- = —U’(q)- (7.103)

which is solved by

x1(q,p) = p2/2 — U(q) (7.104)

Then proceeding as above the local coordinates (, ) in which the Hamiltonian vector

field generates translations is

(q,
= pU(q)

(qU’(q) — 2) , (q, p) = + U(q) (7.105)

Thus here there are only critical ‘cycles’ given by the infinite lines

P = {(o,q) E p2} , = {(p,qi) E 1R2} (7.106)

where qj are the extrema of the potential U(q).
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Since for the Darboux Hamiltonian (5.165), V’ and V vanish on the ‘cycles’ P and U,

respectively, we must use the renormalized version of (7.80), namely (7.87). Combining

(7.87) with (7.79) we find, for a symmetric potential, that the corrections are

1 iTU(q) eiTP2I2
SZR2(T) =

—- {J U’(q)
— ( eiT’)) j dp } (7.107)

and we note the manner in which the divergences are cancelled here. From this we

immediately see that for the harmonic oscillator potential U(q) = aq2, the corrections

(7.107) vanish (note that the integration measures in (7.107) contain implicit factors

of L4)12 that maintain covariance). Similarly, it is easily verified, by a simple change of

variables, that for a potential of the form U(q) = aq + bq2 these correction terms vanish,

again as expected. Finally, for a quartic potential U(q) = + -, a numerical integration

of (7.107) for T = i gives ZR2 = —0.538 and the Duistermaat-Heckman formula yields

Z0 2ir. A numerical integration of the original partition function gives Z = 4.851, which

differs from the value Z9 + SZR2 = 5.745. The corrections do not give the exact value

here, but again at least they are a better approximation than the Duistermaat-Heckman

formula. Of course, here the expression (7.107) is rather formal, since our derivations

of the last Section mostly assumed a compact phase space. Again, a refinement of the

preferred coordinates could lead to a better approximation. The method of the last

Section has therefore “stripped” off any potentially divergent contributions to the loop-

expansion but at the same time approximated the partition function in a much better

way. Nevertheless, these last few examples illustrate the applicability and the complete

consistency of the geometric approach of the last Section to the saddle-point expansion.

Indeed, we see that it reproduces the precise features of the loop-expansion but avoids

many of the cumbersome calculations in evaluating (7.3).

We would next like to check if, following the analysis of Section 5.7, if there are any

conformally-invariant geometries for this dynamical system when the potential U(q) 0

is bounded from below. In the harmonic-polar coordinates (5.166), the conformal Killing

equations (7.41) can be determined by setting the right-hand sides of the Killing equations
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(5.168) equal to instead (VeV°)g, = (ö9V9 +F6V°)g,,. After some algebra, we find

that they generate the 2 equations

ãelog ( °)2g86)
= 2Or1ogV° (7.108)

grr grr

aeiog(v9) =8r1ogV (7.109)
g,e g,o

(7.109) can be formally solved as

6

gre = —V°g99f dO’ 8rV°’ + f(r) (7.110)

from which we see that again single-valuedness go(r, 0 + 2ir) = gre(r, 0) holds oniy when

(5.171) is true, i.e. when U(q) is the harmonic oscillator potential with V6 = 1. Even for

the harmonic oscillator, the equations (7.108) and (7.109) only seem to admit radially-

symmetric solutions g, g,v(r) so that V9 = 1 is a global isometry of g. Thus, even

though we lose the third equation in (5.168) which established the results of Section 5.7

using the Killing equations, we still arrive at the conclusion that there are no single-

valued metric tensors obeying the conformal Lie derivative requirement for essentially

all potentials which are bounded from below (and the harmonic oscillator only seems

to generate isometries). Thus the conformal symmetry requirement in the case at hand

does not lead to any new localizable systems.

Finally, we examine what can be learned in these cases from the vanishing of the

2-ioop correction (7.16) in harmonic coordinates. In these coordinates, the connection

1-form (7.10) has components

= 0
dq

(7.111)

and the condition (7.16) reads

= —-y (7.112)

There are 2 solutions to (7.112). Either ‘Y!J = 0, in which case U(q) is the harmonic

oscillator potential, or = (y + a)’, where a is an integration constant. This latter
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solution, however, yields q(y) = C1y2 + ay + C0, which gives a potential U(q) which is

not globally defined as a C’-function on JR2. Thus the only potential which is bounded

from below that leads to a localizable partition function is that of the simple-harmonic

oscillator. This example illustrates how the deep geometric analyses of this Chapter

serve of use in examining the localizability properties of dynamical systems. As for these

potential problems, it could prove of use in examining the localization features of other

more complicated integrable systems [49].

7.7 Generalizations to Path Integrals

The generalization of the ioop expansion to functional integrals is not yet known in the

literature, although some formal suggestive techniques for carrying out the full semi

classical expansion can be found in [76] and [116]. It would be of utmost interest to carry

out an analysis along the lines of this Chapter for path integrals for several reasons.

There the appropriate loop space expansion should again be covariantized, but this time

the functional result need not be fully independent of the loop space coordinates. This

is because the quantum corrections could cause anomalies for many of the symmetries

of the classical theory (i.e. of the classical partition function). It would be interesting

to know if the extended localization principle could be generalized to the loop space.

There the quite large algebra A0fM, and hence the far more numerous possibilities for

localization, would have to represent some new sort of symmetry of the path integral. As

this symmetry in the finite-dimensional case is not represented by a nilpotent operator,

such as an exterior derivative, one would need some sort of generalized supersymmetry

arguments to establish the localization with these sorts of symmetries.

Much of the general analysis we have carried out throughout this Thesis has been

restricted to 2-dimensional phase spaces. In order to establish to what extent the lo

calization formulas for path integrals are trustworthy and serve as reliable calculational
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tools, other (higher-dimensional) examples need to be worked out. The isometric analy

sis that we have carried out does not straightforwardly generalize to higher-dimensional

symplectic manifolds, because there a Riemannian metric tensor can have more than

1 degree of freedom (in addition to its possible modular degrees of freedom), and the

structure of the isometry groups becomes rather involved as well (as they can then have

up to n(2n + 1) generators in general and M can contain several smaller maximally-

symmetric subspaces). Another path that is of interest to explore is when, instead of

circular actions, one considers the Poisson action of some non-abelian Lie group acting

on the phase space. Then the non-abelian generalizations of the equivariant localization

formulas, discussed a bit in Sections 3.8 and 4.8, might lead to richer structures in the

quantum representations discussed earlier and one might then obtain intriguing path

integral representations of the groups involved.

In any case, we have shown that the equivariant localization formalism is an ex

cellent, conceptual geometric arena for studies of supersymmetric and topological field

theories, and more generally of (quantum) integrability. Given that the Hamiltonians

in an integrable hierarchy are functionals of action variables alone [87], the equivariant

localization formalism might yield a geometric characterization of quantum integrability,

and perhaps some deeper connection between qiiantum-integrable bosonic theories and

supersymmetric quantum field theories. This is particularly interesting from the point

of view of examining corrections to the localization formulas, which in this Chapter we

have seen reflect global properties of the theory. This would be of particular interest to

analyse more closely, as it could then lead to a unified description of localization in the

symplectic loop space, the supersymmetric loop space and in topological quantum field

theory.

Quite generally though, one also has to keep in mind that the loop space localization

formulas are rather formal. We have overlooked several formal functional aspects, such

as difficulties associated with the definition of the path integral measure. There may be
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anomalies associated with the argument in Section 4.3 that the path integral is indepen

dent of the limiting parameter ). e IR, for instance the supersymmetry may be broken in

the quantum theory (e.g. by a scale anomaly in the rescaling of the phase space metric

g . g). The same sort of anomalies could also break the large conformal symmetry we

have found for the classical theory above, although it doesn’t look like they would have

anything to do with supersymmetry breaking. However, even if the localization formulas

are not correct as they stand, it would then be interesting to uncover the reasons for

that. This could then provide one with a systematic geometric method for analysing

corrections to the WKB approximation.

The ideas in this Chapter are a small step forward in this direction. In particular, it

would be interesting to generalize the construction of Section 7.5, as this is the one that is

intimately connected to the integrability features of the dynamical system. The Poincaré

duality interpretation there is one possible way that the construction could generalize to

path integrals. For path integrals, we would expect the feature of an invariant metric

tensor that cannot be extended globally to manifest itself as a local supersymmetry of the

theory which is dynamically broken globally on the loop space. This has been discussed

recently by Niemi and Palo [99] in the context of the supersymmetric non-linear sigma-

model. Another place where the metric could enter into a brakdown of the localization

formulas is when the localization 1-form b iwg does not lead to a homotopically-trivial

element under the supersymmetry transformation described by Qs. Then additional

input into the localization formalism should be required on a topologically non-trivial

phase space to ensure that Qs’/’ indeed does reside in the trivial homotopy class. These

inputs could follow from an appropriate 1oop space extension of the correction terms

6Z(T) discussed above, which will then always reflect global properties of the quantum

theory.

Other directions could also entail examining the connections between equivariant lo

calization and other ideas we have encountered in this Thesis. One is the Parisi-Sourlas
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supersymmetry that we encountered in the evaluation of the Niemi-Tirkkonen localiza

tion formula for the height function on the sphere, although this feature seems to be more

intimately connected to the Kähler geometry of S2, as we showed above. The Kähler

symmetries we constantly found would be a good probe of the path integral correction

formulas, and it would interesting if they could also be generalized to some sort of super-

symmetric structure. Another line one could take is examining further the connection

between localization and the Lagrangian anti-field formalism first discussed in [93]. In

deed, the manner in which the equivariant exterior derivative acts is more so like the

situation in Lagrangian BRST quantization [17]. This is were the possible connections

with topological field theories lies. Finally, the connection between localization and the

constructive Mathai-Quillen formalism is yet to be clarified, as the latter relies on quite

different cohomological symmetries than the ordinary BRST supersymmetries responsi

ble for equivariant localization [98]. This might give a more direct connection between

localization and some of the more modern theories of quantum integrability [30], such

as R-matrix formulations and the Yang-Baxter equation. This has been discussed some

what in [49]. These connections are all important and should be found in order to have

full understandings of the structures of topological and integrable quantum field theories

from the point of view of ioop space equivariant localization.
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