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Abstrac t 

The phenomenon of neutrino oscillations has been studied for many years and is quite 

well understood. There remain, however, several issues related to the localization of 

neutrinos in space and time which have not been entirely resolved. In this thesis we 

present a detailed study of several of these issues and we present some novel approaches 

which are useful in their resolution. 

We begin by examining the effects of coherent and incoherent broadening on the 

oscillations of relativistic neutrinos. Such effects are due to distinct physical processes 

which could in principle be controlled at the source. We show under very general as

sumptions that these two types of broadening cannot be distinguished at the detector. 

The consequences of these issues for the oscillations of solar neutrinos is also discussed. 

We then present a novel approach to account for the localization in space and time of 

neutrinos in a typical neutrino oscillation experiment. This is accomplished by modelling 

the source and detector as spatially and temporally localized oscillators. This simple 

model allows us to study the effects due to the mass of the exchanged neutrinos and due 

to the time resolution of the detector. 

We then study the propagation of neutrinos in dense media. It is shown that the 

asymmetry of the dispersion relation as a function of the neutrino's momentum leads 

to several interesting and amusing effects. The dispersion relation has a minimum at a 

non-zero value of the momentum p~pGp, where p is the number density of particles in 

the medium. We show that as a result of this minimum a Dirac (but not Majorana) 

neutrino may be "trapped" by the medium provided its momentum is less than a critical 

value which is of order pGp. 
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Chapter 1 

Introduct ion 

The neutrino has long been an object of fascination for physicists. The neutrino interacts 

so weakly with matter that one might suppose apriori that it is a rather uninteresting 

particle. History, however, has shown this not to be the case. Indeed, the neutrino was 

first postulated by Pauli in 1930 as the resolution to a long-standing puzzle in nuclear 

physics [1]. Prior to Pauli's idea, it had seemed that energy was not conserved in nuclear 

beta decay. Since the decay was thought to be a two-body decay, the outgoing "beta" 

particle (an electron or positron) should have been mono-energetic. What was observed, 

however, was that the beta energy spectrum was continuous [2]. This behaviour was a 

mystery until Pauli suggested that maybe an additional weakly-interacting particle was 

also being emitted and was actually carrying off part of the energy. The discovery of the 

neutrino by Reines and Cowan [3] in 1956 finally confirmed Pauli's idea. 

In the decades since the neutrino's discovery, it has also become clear that it is a major 

player in several other physical processes. For example, it is estimated that neutrinos 

carry off up to 90% of the energy emitted in a supernova explosion [4]. The idea that 

a huge pulse of neutrinos accompanies a supernova burst was verified in 1987 with the 

observation - both visually and via its large neutrino pulse - of Supernova 1987A [5], 

Arguably the most intriguing role of the neutrino is that which it plays in the under

standing of our own sun. As Bahcall has pointed out [6], the photons which we observe 

coming from the sun originate from near its surface, and thus they only give direct infor

mation about the outer 5-10% of the sun's shell. By way of contrast, the neutrinos which 

1 
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we detect from the sun originate from nuclear fusion reactions deep within its core. Since 

the neutrinos interact so weakly, they come streaming out nearly freely and thus provide 

a sensitive probe of the sun's inner workings. A small industry has developed over the 

past 35 years whose aim it is to compute very accurately the fluxes of neutrinos expected 

at the earth due to all of the different nuclear reactions which are assumed to take place in 

the sun [7, 8]. Despite the continued refinements of the "standard solar model," however, 

the four "pioneering" experiments which measure neutrino fluxes [9] have consistently 

measured values which are too small by a factor of two or three. This mismatch between 

the predicted and measured values of the solar neutrino fluxes constitutes the famous 

"solar neutrino problem." 

The solar neutrino problem has steadfastly refused solutions which are based on re

working the standard solar model; indeed, the standard solar model has been found to be 

extremely robust concerning its predictions of neutrino fluxes [8]. While there are several 

alternative ways in which one might hope to solve the problem (see, for example, the 

discussion in Ref. [14]), a very natural solution is a particle physics solution based on the 

work of Wolfenstein [15] and Mikheyev and Smirnov [16]: the so-called " M S W effect." In 

the M S W resolution of the solar neutrino problem, the neutrinos produced in the core of 

the sun, which are "electron" neutrinos, are resonantly converted into "muon" (or "tau") 

neutrinos as they exit the sun. The observed shortage of neutrinos on earth is then ex

plained by the fact that the current experiments are only sensitive to electron neutrinos. 

This hypothesis will be put to the test in the near future when the Sudbury Neutrino 

Observatory (SNO) experiment [17] gets underway, since SNO will have a "flavour-blind" 

mode which will be sensitive to all neutrino types. The SNO detector will contain about 

one kiloton of heavy water and will be able to detect neutrinos through the reaction 

v + d —> u+p + n, (1.1) 
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which has the same cross-section for all neutrino flavours. 

The M S W resolution of the solar neutrino problem requires physics beyond the "Stan

dard Model" [18] of particle physics. In particular, it requires that neutrinos be massive 

and that they be "mixed." Neutrinos which are massive and mixed can in general un

dergo "oscillations," that is, a neutrino produced as a certain "flavour" (electron, muon, 

tau, . . . ) can at some point later in time be detected as a neutrino of a different flavour. 

This rather remarkable possibility was first pointed out by Pontecorvo [19]. The M S W 

effect is an extension of Pontecorvo's "vacuum" oscillations to the case in which the 

oscillations occur in matter. 

Another puzzle in neutrino physics is the "atmospheric neutrino anomaly." Electron 

and muon neutrinos are produced copiously in the earth's upper atmosphere due to the 

decays of charged pions and kaons. The primary decay chains of the ]}ions and kaons are 

7r+, K+—^p+ulj_-^e+ueV^u^ and 7r -, K~—•/.t_F(U—>e_Fez^z^ so that, to a first approxima

tion, one expects about twice as many muon-type neutrinos compared to electron-type 

neutrinos. Extensive Monte Carlo simulations have been performed and the v^jve flux 

ratio may be calculated with an estimated uncertainty of about 5%. Several collabora

tions have measured this ratio and the results have been somewhat confusing. Two of 

the groups consistently measure a value of the v^/ve flux ratio which is consistent with 

the Monte Carlo simulations and the rest of the groups consistently measure a value 

which is about half the expected value [20]. It may be possible to use neutrino oscilla

tions to explain concurrently the solar neutrino problem and the atmospheric neutrino 

anomaly [20, 21]. 

In this thesis we shall examine some of the issues associated with the production, 

propagation and detection of neutrinos, both in vacuum and in matter. In order to 

motivate this study, we begin in Sec. 1.1 with a brief overview of neutrino masses and 

mixings. This is followed in Sec. 1.2 by a discussion of neutrino oscillations and the 
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M S W effect. We also mention briefly the range of parameters which may be used to 

solve the solar neutrino problem and the atmospheric neutrino anomaly. In Sec. 1.3 we 

take a closer look at the idea of "particle oscillations," first by examining the relation 

between neutrino oscillations and the uncertainty principle (Sec. 1.3.1) and subsequently 

by considering an apparent ambiguity which arises in the "conventional" treatment of 

oscillations in the imB — B" system (Sec. 1.3.2). The oscillations in this system are 

analogous to those which may occur in the neutrino system. The ambiguity which arises 

in the B — B system is actually rather dramatic (it involves a relative factor of "2" in the 

value inferred from B — B oscillations for the B# — Bi mass difference.) The ambiguity 

also has a perfect analogy in the neutrino system, which serves as a signal that the 

"conventional" derivation of neutrino oscillations must be treated with some care. We 

conclude the chapter in Sec. 1.4 with a brief outline of the remainder of the thesis. 

1.1 N e u t r i n o Masses and M i x i n g s 

Part of the mystery associated with the neutrino is due to the fact that some of its 

fundamental properties are simply unknown. What is known is that the neutrino interacts 

only very weakly, that it is spin-1/2 and that it is neutral. But there is at least one 

important question which has so far gone unanswered: Is the neutrino strictly massless 

or does it have a finite (possibly very small) mass? As we shall see below, the differences 

between these two scenarios are quite profound, even if the neutrino mass is quite small. 

If the neutrino has a mass, there are further unknowns. For example, since the neutrino is 

electrically neutral, it could be either a Dirac or a Majorana fermion, in contradistinction 

with all of the known elementary fermions, which are Dirac fermions. Furthermore, 

there could be mixing between the different neutrino "flavours" in analogy with the 

known Cabibbo-Kobayashi-Maskawa (CKM) mixing in the quark sector of the Standard 
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Model [18]. 

In this thesis we shall usually work within the context of a minimal extension to 

the electroweak sector of the Standard Model (SM) of particle physics. The "minimal 

extension" which we have in mind is simply that the neutrinos will be allowed to be 

massive, which is not the case in the regular SM. The electroweak sector of the S M is 

based on the gauge group SU(2)L x U(l) which is spontaneously broken via the Higgs 

mechanism down to U(l). The leptons are arranged into left-handed doublets and right-

handed singlets under the original SU(2)L symmetry as follows 

, LR, « = e,/.t,r, (1.2) 

V u ) 
where the subscripts L and R refer to the left- and right-chiral projections of the fields, 

respectively. The simplest way to extend the S M and give masses to the neutrinos is 

to add right-handed singlet fields uaR. The corresponding (Dirac) mass terms in the 

Lagrangian (after spontaneous symmetry breaking) are then of the form 

^ m a s s = ~ M (VL"R + VRVL) . (1.3) 

This procedure has the advantage of being simple and of being in perfect analogy with 

the way masses are given to the other elementary fermions. If the neutrino is nearly 

massless, however, the Yukawa couplings in the neutrino sector need to be several orders 

of magnitude smaller than those in the charged lepton sector of the theory, and it is 

difficult to understand why this should be. In all fairness, however, the existing hierarchy 

of masses among the other fermions - which varies over five orders of magnitude - is also 

not well-understood, so in some sense this procedure is no more troublesome than what 

is already done for the other fermions. 

Another possibility - which arises because neutrinos are electrically neutral - is that 

the neutrino is a Majorana particle, by which we mean that it is its own anti-particle. 
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This condition is expressed in terms of the neutrino field operators as 

v = v ,c _ = CuC - l (1.4) 

where C is the charge conjugation operator [22, pp. 17-30]. In the Majorana case it is 

possible to construct a mass term using only a left-handed field and its charge-conjugate: 

where U^ = (UL)° For more details regarding Majorana neutrinos the reader is referred to 

Appendix A . 

It is generally thought that the SM is most likely to be a low-energy approximation 

to some more fundamental theory whose structure is as yet unknown. Although the SM 

has, for the most part, stood up extremely well under intense experimental investigation 

[23], there are several reasons for thinking that it may not yet be "fundamental" itself 

[24]. It is possible in many such extensions of the SM to generate small neutrino masses 

in a natural way via the so-called "see-saw" mechanism by including mass terms of both 

the Majorana and Dirac types [25]. Consider the simplest case in which we have a single 

left-handed "doublet" field and another right-handed "singlet" field with the following 

mass matrix 

where mD is the Dirac mass term and mM is the Majorana mass term for the singlet 

field. It is easy to verify that if we set mM to be some very large mass (a "normal" mass 

at the energy scale of the new physics) and mo to be a mass on the scale of the charged 

leptons, then diagonalizing the mass matrix yields one very heavy neutrino (with mass 

sufficiently massive, it effectively decouples from the theory and all that is observed at 

(1.5) 

(1.6) 

ITIM) and one very light neutrino (with mass ~ m2
D/mM)- If the heavy neutrino is 
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low energies is the very light neutrino. This is the see-saw mechanism in its simplest 

form. 

At present there is no direct experimental evidence for a non-vanishing neutrino mass. 

The experimental upper bounds on the neutrino masses are given by [26] 

mUe < 15 eV, tritium /? decay (1-7) 

mVii < .17 MeV, vr - y pu^ (1.8) 

mVr < 24 MeV, r -» vT + n7r, (1.9) 

in which the limit on the electron neutrino mass is understood to be only approximate 1 . 

The recent results of the Liquid Scintillator Neutrino Detector (LSND.) experiment [28], 

which has reported evidence for v^-*Ve oscillations, may be regarded as indirect evidence 

for a massive neutrino. The results of this experiment will be summarized briefly in 

Sec. 1.2.2. 

As we have indicated above, if the neutrinos are not all massless, then it is quite 

natural to suppose that there is mixing between the neutrino flavours. By this we mean 

that the neutrino "mass eigenstates" (the states with definite masses and well-defined 

dispersion relations) are not the same as the "flavour eigenstates" (the states which are 

produced in weak interactions in association with the same-flavour charged leptons.) The 

relation between the mass basis and the weak basis is expressed as a relation among the 

neutrino fields as follows 
3 

va{x) = ^UaiVi(x), a = e,p,r, (1.10) 
i=i 

where U is a unitary matrix. In general, some of the phases in U are removable. One finds 

that in the general case of n neutrino flavours there are |(n — l)(n — 2) non-removable 
1 T h e Particle Data Group has recently removed its former limit of mVe <5.1 eV [27], since the trit ium 

/? decay experiments which were used to set the limit have consistently arrived at a value of m2
v which 

is negative. In the current version of the Review of Particle Physics, the limit is stated as only being 
approximate. 
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(CP-violating) phases for pure Dirac neutrinos and \n(n — 1) non-removable phases for 

pure Majorana neutrinos [29]. Furthermore, for exactly massless neutrinos, any mixing 

can be "rotated away" by a suitable redefinition of the fields. 

We point out that while the mixing.expression, Eq. (1.10), is an exact relation among 

the neutrino fields, there exists in general no such relation among the neutrino states; 

in fact, a Fock space of flavour neutrino states does not exist [30]. The states which we 

are referring to here are defined in the mathematical sense of the "single particle states" 

which are obtained by letting canonical creation operators act on the vacuum. No such 

states exist because one cannot define appropriate canonical creation and annihilation 

operators. Thus one ought not to speak of, for example, an "electron neutrino" as being 

produced in a certain experiment. Rather, a v\ is produced with a given amplitude, a v<± 

is produced with a given amplitude, et cetera. The Vi are the "physical" particles which 

are produced and which propagate with well-defined dispersion relations. For relativistic 

neutrinos these considerations may be overlooked, since in that case it is possible to con

struct "approximate" flavour eigenstates [30]. In the conventional treatment of neutrino 

oscillations for relativistic neutrinos, for example, this point may be (and is) ignored 

completely. 

In the remainder of this thesis we shall always assume, unless otherwise stated, that 

neutrinos are both massive and mixed. These assumptions lead quite naturally to the 

phenomenon of "neutrino oscillations." 

1.2 N e u t r i n o Oscillations 

Oscillation phenomena are well-known in physics and typically occur because the initial 

and final states in a given experiment are not eigenstates of the Hamiltonian. Since such 

states are not "stationary," the overlap of the initial state with the time-evolved state 
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is in general not unity, but oscillates in time. Thus, for example, a spin placed in a 

magnetic field precesses if it is not initially aligned with the direction of the magnetic 

field. The same reasoning may be applied in the case of particle oscillations. In the kaon 

system, for example, the initial state produced in an experiment is either the A" 0 or the 

A ' 0 , but the eigenstates of the free Hamiltonian are the Ki and the Kg, which are linear 

combinations of the A" 0 and A ' 0 and which are nearly (but not quite) degenerate in mass. 

If one calculates the probability of detecting a A ' 0 as a function of time, one finds that this 

probability does in fact oscillate. This fact has also been confirmed experimentally [31]. 

1.2.1 N e u t r i n o Oscillations i n V a c u u m 

In the following we outline the "conventional" derivation of the formula describing neu

trino oscillations in vacuum, considering the case in which there are two neutrino flavours 

whose mixing is parametrized by an angle 9. The more general case with extra neutrino 

flavours follows in complete analogy. Taking the mixing relation (1.10) to be a relation 

among states, we have 

where | . 2 ) represent the states with definite masses m\^- Suppose we produce an elec

tron neutrino at time t=0 and we wish to know the probability to detect an electron 

neutrino at some later time. Since the mass eigenstates are eigenstates of the Hamilto

nian, their time development is well-defined and we obtain 

ve) — c o s ^ i ) + sin0|i/2), 

Vp) — — sm9\vi) + cos0|i/2) 

PVt^v.{t) = \(ve\Mt)}\2 = 1 - sin 2 (2fl)siir 2 ( AEt ) (1.11) 
2 
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where AE=-\jp\ + m| — \jpi + ni\. The probability of observing a muon neutrino at time 

t is similarly given by 

^ W ' ) = K^>eW>r2 = sin2(2fl)sin2 ( ^ ) , (1.12) 

so that the sum of the probabilities is unity, as it ought to be. Assuming that the 

neutrinos are produced with equal momentum p and that they are relativistic, we find 

. „ Am2 

A £ ~ — — , 1.13 
2p 

where we have set Am2=m\ — m\. Noting that experimentally one would observe spatial, 

not temporal, oscillations we set £~.t (the neutrinos are relativistic) and obtain the well-

known vacuum oscillation formula 

P™v. (*) - 1 - *in2(20) sin 2 (irx/L™) , (1.14) 

where L™£ is the "vacuum oscillation length", 

L v a c = 4*p „ 2 48 f1-^-) m (1 15) 
osc Am2 ~ \lMeVj {Am2J 1 ' 

Typical energies for solar neutrinos are in the MeV range. Since the mass-squared split

ting is simply unknown, the oscillation length could easily vary from meters (A??^ 2 ~l eV 2 ) 

to hundreds of thousands of kilometers (A?n 2 ~10~ 8 eV 2 .) 

In order for the vacuum oscillations of neutrinos to solve the solar neutrino problem, 

the mixing angle 9 needs to be rather large. Suppose that the mass-squared splitting 

is moderate, so that the oscillation length is small compared to the earth-sun distance. 

Since neutrinos are expected with a range of energies, and since they are produced at 

different initial positions within the sun, the oscillations would tend to be smeared out 

so that all that would be observed on earth would be the average flavour-conserving 

probability 

< P ™ J = l - i s i n 2 ( 2 0 ) . (1.16) 

file:///lMeVj
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At best, this could reduce the initial flux by a factor of one half (although one could 

do better by incorporating another neutrino flavour.) Alternatively, if the mass-squared 

splitting were extremely tiny, then the oscillation length could be on the order of the 

earth-sun distance. In that case one would observe a large loss of flux if the earth-sun 

distance were close to one of the minima of Eq. (1.14). Furthermore, for a sufficiently 

mono-energetic neutrino beam, one could conceivably observe the actual oscillations of 

the electron neutrino flux clue to the 3% annual variation of the earth-sun distance. We 

will examine this possibility, as well as some of the interesting physics questions associated 

with it, in Chap. 2. 

If the mixing angle 0 is small, then it would appear that neutrino oscillations could 

not account for the large deficit of neutrinos from the sun. Following a clever observation 

by Wolfenstein [15], however, Mikheyev and Smirnov [16] showed that it is possible to 

have nearly complete conversion of electron- to muon-type neutrinos inside the sun due 

to a resonant effect, no matter how small the mixing angle, provided the mixing angle 

and mass-squared difference are non-zero. This effect is now known as "the M S W effect." 

1.2.2 M a t t e r Enhanced Oscillations and the M S W Effect 

Neutrinos propagating in some medium interact with it only via the weak interactions. 

The magnitude of the incoherent interaction with the medium is incredibly tiny, since 

the cross-section for scattering is proportional to G2
F, where Gp is the Fermi coupling 

constant. As a result, a neutrino could typically pass through several million suns before 

being scattered even once! One might suppose, then, that the matter in the sun could 

have very little effect on the propagation of a neutrino as it exits the sun's core. As it 

happens, however, there is an effect due to the coherent interactions with the medium 

which can be rather sizeable, since it is proportional to Gp, not Gp. These coherent 

interactions with the medium are not scattering events per se, since by definition coherent 
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interactions must leave the medium in the same state. The net effect of the coherent 

interactions with the background is to give the neutrino an "index of refraction" as it 

passes through the medium. 

The original observation of Wolfenstein [15] was that the indices of refraction corre

sponding to different neutrino flavours in a given medium would in general not be equal. 

The resulting mismatch in the phases of the waves corresponding to different neutrino 

flavours can then lead to a resonant enhancement of the neutrino oscillation formula. 

Thus, even for a small (vacuum) mixing angle, the presence of the medium can lead to 

large-amplitude oscillations. This is rather remarkable! 

For relativistic neutrinos in matter one can derive the formula for the neutrino index 

of refraction in perfect analogy with the derivation of the index of refraction of light in 

a medium [32] to obtain 

= ! + « (1.17) 

where p is the number density of the scatterers in the medium, p is the neutrino's mo

mentum and /(0) is the forward scattering amplitude for the neutrino incident on the 

scatterer 2 . 

In general there are two types of interactions which contribute to n„, those due to 

Z° ("neutral-current") exchange and those due to W± ("charged-current") exchange. 

Fig. 1.1 shows the Feynman diagrams for these two cases. In the case which is typically 

of interest the background contains electrons, but no muons, so that only the electron 

neutrino gets a contribution due to the charged current process. This is what leads to 

the mismatch between the indices of refraction for the electron and muon neutrinos. For 

future reference we note that a simple calculation of the charged current diagram in 

2 F o r non-relativistic neutrinos or for ultra-high densities (like those in a neutron star, for example) 
the "index of refraction" concept is not as helpful. Chap. 4 is devoted to a general analysis which 
examines the propagation of neutrinos under such conditions. 
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V V 

w + z ° 

(a) (b) 

Figure 1.1: Neutrino weak interactions in a medium through (a) charged-current and (b) 
neutral-current exchange. In (b), "f" stands for all fermions in the medium. 

Fig. 1.1(a) yields 

/c.c.(0) = 
Gjp 

(1.18) 

For a constant-density background medium, the neutrino oscillation formula may be 

found by first inserting the neutrino indices of refraction into a Schrodinger-like equation 

as follows [33] 

. d 
ldt 

We) 

\ K) I 2p 
0 

0 p 

( 

\ K) 
(1.19) 

where the mixing matrix U is given by 

^ cos 9 sin 9 
U = (1.20) 

V sin 9 cos 0 

Eq. (1.19) may be diagonalized by setting 

\ue) = cos6m\u?)+smdm\u?nm), 

\u,) = - s i n < y ^ n + cos<? m K), 

where 9M is the neutrino mixing angle in matter, defined by 

(Am 2sin(20)) 2 

sin2(20n 

(A - Ara2cos(26>)r + ( A m 2 sin(20))' 
:i.2i} 
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with 

A = 2p2(nVe - nVii) = 2>/2pGFpe, (1.22) 

in which pe is the number density of electrons in the medium. The key point to note is 

that only the difference between the indices of refraction is important. Since the neutral-

current contributions are equal for the two neutrino flavours, they cancel, leaving only 

the charged-current piece. This is why the expression (1-22) depends only on the density 

of electrons. Proceeding as we did in the case of vacuum oscillations, we find that the 

electron neutrino survival probability in matter has a form similar to Eq. (1.14), 

= 1 " sin2(2flm) sin 2 (nx/L^) , (1.23) 

where the oscillation length in matter is defined to be 

' v a c 
T m a t _ L A U l ^osc (1 OA) 

° s c ~ r o , ^911/2' \X-^J 
(A - Am2 cos(2fl))2 + ( A m 2 sin(2#))21 

Eqs. (1.21) and (1.22) show that sin2(2#m) varies as a function of the background 

density and is equal to unity when 

A = Aies = Am2 cos(20), (1.25) 

that is, when 

When this condition is satisfied, the electron neutrino survival probability varies between 

zero and one, and hence we say that the oscillations have been "resonantly enhanced," 

with Eq. (1.26) defining the resonance condition. 

Mikheyev and Smirnov [16] extended the analysis of Wolfenstein, allowing the density 

of the background medium to vary with position. In particular, they showed that if 

an electron neutrino is emitted in a region of high electron density (Pe^Pl^) and if it 
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A ( e V 2 ) 

Figure 1.2: Plot of the effective mass squared for the two "matter eigenstates" as a 
function of A<xpei with mi —I eV and m2=3 eV. The solid line corresponds to 0=0.1 and 
the dotted line to 6=0. 

propagates across the resonance to a region of low electron density, then it may be almost 

completely converted into a muon neutrino. The efficiency of the conversion depends in 

part on how quickly the density varies in the vicinity of the resonance. Mikheyev and 

Smirnov's main observation follows from a straightforward application of the "adiabatic 

theorem" [34]. The adiabatic theorem says that if a state is prepared in an eigenstate 

of the Hamiltonian at some initial time and if some parameter of the theory is varied 

sufficiently slowly, then the state will "follow" the evolution of the eigenstate. In our 

case this means that if an electron neutrino is emitted at some very high density (so 

that v^vf) and if its propagation across the resonance can be considered "adiabatic," 
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then when it gets to a region of very low density, it will be in the state v-i~vyi (for small 

6.) This phenomenon is demonstrated by the plot in Fig. 1.2, which shows the effective 

mass squared of the neutrino matter eigenstates plotted as a function of A , which is 

proportional to the electron density. A neutrino which undergoes adiabatic conversion 

stays on one of the solid curves as it moves through the resonance from higher to lower 

density. The resonant conversion of electron- to muon-type neutrinos is known as the 

M S W effect. 

It is well-known in general how to calculate corrections to the adiabatic approximation 

[35]. In the neutrino case, the corrections lead to the following expression for the average 

flavour-conserving probability for a neutrino which is emitted in a region of high density 

and which propagates out to the vacuum [33] 

(P^bJ = \ + Q - Pc) cos(2#) cos(2#m), (1-27) 

where Pc is the "jump probability" [36], which gives the probability to have a nonadiabatic 

transition. This probability is calculable and depends on the rate of change of the density 

at resonance. 

Very extensive numerical studies have been performed which examine the M S W effect 

using realistic density profiles for the sun. A l l of the current solar neutrino data can 

be accomodated in a two-neutrino model with just two parameters, Am2 and sin2(2#). 

There are two favoured regions of the parameter space (the so-called "small-angle" and 

"large-angle" solutions), given approximately by [14] 

A m 2 ~ 6 x l ( T 6 e V 2 , sin2(2#) ~ 7 x 10" 3 (solar) (1.28) 

Am2 ~ 2 x l ( T 5 e V 2 , sin2(20) ~ .8 (solar). (1.29) 

Independent fits to the atmospheric neutrino data typically require [37, 20, 21] 

A m 2 ~ (.5 - 5) x 10~ 2eV 2, sin2(2#) ~ (.5 - 1) (atmospheric), (1.30) 
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so that in order to reconcile the two ranges it is necessary to go to a three-neutrino model. 

That this is possible has been shown in Refs. [20, 21]. 

In addition to the above indirect "hints" that neutrinos could be massive and mixed, 

there has also been a recent report of evidence for V^—>Ve oscillations at the Liquid 

Scintillator Neutrino Detector (LSND) experiment at the Los Alamos Meson Physics 

Facility ( L A M P F ) [28]. In this experiment muon anti-neutrinos are produced by the 

decays of anti-muons at rest. The detector, placed about 30 m from the source, searches 

for electron anti-neutrinos via the reaction vep —»• e+n. The LSND collaboration reports 

the observation of 22 such events with a total estimated background of 4.6 ± 0.6 events. 

The main region of the two-neutrino parameter space which is consistent with their data 

is bounded by 5 x 10~2 eV 2<A??i 2<3 eV 2 and 2 x 10~3<sin2(26>)<l, which is marginally 

consistent with the region of parameter space typically used to resolve the atmospheric 

neutrino anomaly (see (1.30).) 

1.3 A Closer Look 

In the preceeding sections we have given a fairly brief overview of neutrino physics, 

having focused in particular on the phenomenon of neutrino oscillations. We have so far 

shown that neutrino oscillations are of interest because, at the very least, they might 

provide the resolutions to two current outstanding problems in physics, namely the solar 

neutrino problem and the atmospheric neutrino anomaly. We would argue, however, that 

the oscillation phenomenon is a fascinating subject in its own right because it involves 

many subtle questions of quantum mechanics and quantum field theory. The more or 

less "standard" derivations presented up to this point gloss over most of these subtleties, 

but now we shall examine some of them in greater detail. 
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1.3.1 N e u t r i n o Oscillations and the Uncerta inty P r i n c i p l e 

The first issue which we will examine has to do with the coherence between the mass 

eigenstates. In our above derivation of neutrino oscillations we assumed that the ampli

tudes for the various mass eigenstates to propagate from the production to the detection 

points should be added coherently. Indeed, if the neutrinos are viewed as "exchange" 

particles in the over-all interaction this would appear to be quite natural. But suppose a 

very precise measurement of the momenta of all of the other particles involved in either 

the production or detection process could be made. This would in principle allow for a 

determination of the mass of the exchanged neutrino and would thus destroy the coher

ence between the various mass eigenstates. If such a measurement could be made, the 

oscillations would somehow have to be wiped out. But what is the mechanism whereby 

this would occur? 

The question of how an accurate measurement of the neutrino's mass destroys the 

oscillations of neutrinos was first considered in a famous paper by Kayser [38]. The 

solution to the problem follows from a straightforward application of the uncertainty 

principle. Suppose that we wish to observe neutrino oscillations as a function of the 

distance between the production and detection points in a given experiment. In order that 

the oscillations not be immediately washed out, we must require that the uncertainties in 

the positions of both the production and detection points be much less than the oscillation 

length, 

Ax<L™. (1.31) 

This in turn requires that the uncertainty in the neutrino's momentum satisfy 

1 ml — m? . 
Ap > — - = - 2 - 1.32 

Life 4vrp 

But now suppose that a very accurate measurement of the energies and momenta of the 
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other particles involved in the production or detection is made, allowing for a determi

nation of the neutrino's mass squared 

ml = !%-£. (1.33) 

If the errors in the momentum and energy are uncorrelated, then the error in the squared 

mass is 

8ml = 2EVAEV + 2pvApv. (1.34) 

In order to be able to differentiate experimentally between the two masses, we require 

that bml<m\ - mf, which, together with (1.34), yields 

2pvApv < 6ml ^ m 2 ~~ m i ) (1.35) 

so that 
m g - m , 

2p 
which violates the relation (1.32) (neglecting a factor of 27r.) Thus, as soon as a sufficient

ly precise determination of the neutrino's mass can be made, the uncertainty principle 

requires the uncertainty in the neutrino's position to be of the same order as the oscilla

tion length and the oscillations are completely washed out. 

The above discussion highlights the fact that any realistic discussion concerning neu

trino oscillations necessarily assumes that the neutrinos involved have some finite width 

in momentum and energy, that is, they may be described by wave packets. This observa

tion follows from our above comments, but is clear also from an extreme example: if the 

neutrinos are taken to have, for example, perfectly well-defined momenta, then they may 

be described by (infinite) plane waves and so it is non-sensical to talk about oscillations 

as a function of distance. In the following subsection, we start to examine the importance 

of adopting a clear and self-consistent approach to particle oscillations by considering an 

example in the B—B system. 
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1.3.2 A n A p p a r e n t A m b i g u i t y i n the B—B System 

Given our discussion in the previous section concerning neutrino oscillations and the 

uncertainty principle, it is clear that any treatment of neutrino oscillations which employs 

only plane waves must be treated with some care. A n amusing example of what can go 

wrong has recently been discussed by Lipkin [39]. Lipkin considers the "conventional" 

treatment of B—B oscillations and shows that there is some ambiguity in how one ought 

to convert the oscillation probability which is calculated - which is a function of time -

into one which is a function of position. The latter probability is one which corresponds 

to something which can be measured in an experiment while the former describes a 

"non-experiment." 

The conventional calculation of B—B oscillations proceeds in the same way as that 

for neutrinos. We shall for simplicity neglect the effects due to CP violation and to the 

finite lifetimes of the two mass eigenstates, Bi and By. We define 

|B°> = (l/y/2)(\BL) + \BH)), 

\W) = (l/y/2)(\BL)-\BH)), 

and suppose that a B° is produced at t=0. In the usual approach, the probability to 

detect a B° as a function of time is then given by 3 

Pl(t) ^ \(W\B\t))f = \\e~^ - e—f = sin 2 (^f^j) , (1-37) 

with EL,j.i — \jv2 + M\ II- I n order to convert this to a function of x, we may take 

*=« = wrkrr (1-38) 
2 V 

JO 3 L i p k i n actually calculates the ratio of the probabilities to detect a B° or a B°, but the essence of 
the argument is unchanged in the case which we examine. 
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where v is the average velocity of the two eigenstates, so that the oscillation probability 

in space is then given by 

\m\j — mV)x 
P i W = sin2 ^ ' " g — (1.39) 

This is the result which is usually obtained. One could alternatively argue that the two 

mass eigenstates will travel at different speeds and so will arrive at a given position at 

different times, with 

x = ^tL = ^-tH. (1.40) 

Thus we could define 

P2(tL,tH) = \\z~lBLtL -e-lE»tH\\ (1.41) 

so that 
or \ • 2 (EgtH -ELtL\ • 2 ((m% ~ m2

L)x\ , P2(x) = sin" ^ J = sin I — I . (1.42) 

The oscillation length in the above expression differs from that in (1.39) by a factor of two! 

This analysis goes through nearly unchanged for the case of neutrinos and again gives 

an ambiguous factor of two in the oscillation length. Furthermore, similar factors of two 

have come up recently in calculations dealing with oscillations in the kaon system [40]; 

in these latter cases, the extra factor of two is argued (incorrectly) to be a real effect. 

Note that in the case of the oscillations of neutral mesons, the presence or absence of the 

factor of two affects the value which is inferred from experiments for the mass-squared 

difference between the mass eigenstates. 

Lipkin's main point in his calculation is to emphasize that the ambiguity in question 

simply does not come up if the calculation is performed directly as a function of distance 

instead of as a function of time. He argues on kinematical grounds that in general the 

energies of the two mass eigenstates should be taken to be the same and that their 

momenta should be taken to be different. When the resulting phase difference between 
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the two mass eigenstates is calculated, it is automatically then a function of distance. 

The oscillation probability resulting from such considerations is found to agree with 

Eq. (1.39), which is the "usual" result with no factor of two. 

The method proposed by Lipkin - in which the energies of the mass eigenstates are 

taken to be equal so that oscillations are calculated directly in space - yields the correct 

result. It does not, however, really provide any insight into what goes wrong with the 

former calculation. Lowe, et al. [42] have recently argued that the ambiguous factor of two 

which appears may be resolved by looking at the wave functions which are interfering in 

order to give rise to the oscillations. In the first approach (see Eq. (1.37)), the terms which 

are interfering correspond to the same space-time point and the resulting expression leads 

to the correct formula for the oscillation probability. In the second case (see Eq. (1.41)), 

the interference terms are due to wave functions corresponding to different space-time 

points. They argue that this is simply incorrect and thus yields the wrong answer. Wave 

functions corresponding to different space-time points cannot interfere 4 . 

But the question remains: How does one correctly model the fact that the two mass 

eigenstates may in general arrive at the detector at different times? The answer is that 

this simply can't be done using plane waves; wave packets are required °. In general 

the two mass eigenstates will arrive at different times, given by ti=x/vi. The oscillating 

piece in the oscillation probability does not come from either of the "peaks" of the wave 

packets, however. It comes from the interference term between the two wave packets and 

4 The situation would appear to be a bit more subtle than this, since amplitudes corresponding to 
different space-time points are routinely allowed to interfere in particle physics. A generic calculation of 
the amplitude for some scattering event involves an integral over all of space-time so that the square of this 
amplitude effectively allows pieces corresponding to different space-time points to interfere. Nonetheless, 
the ad hoc prescription which leads to Eq. (1.42) is incorrect. 

5 Lipkin ' s point of view is that in order for oscillations to be observed, there needs to be nearly a 100 % 
overlap between the mass eigenstate wavepackets [43]. In this case the wave packets may be assumed to 
arrive at the same time. In general, however, the peaks of the wave packets could be separated. 
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thus gets its main contribution from some time intermediate between ti and t-2. A con

sistent approach to calculating the oscillation probability as a function of distance needs 

somehow to give a correct prescription for how one ought to sum up the contributions 

corresponding to different times. 

1.4 Out l ine of the Remainder of the Thesis 

In this chapter we have given a brief introduction to the physics of neutrinos. We have 

noted that if neutrinos are indeed massive, then it is quite natural to suppose that they are 

also "mixed", that is, that the neutrino fields involved in the weak interactions are linear 

combinations of the "mass eigenstate" fields. We have shown that such mixing leads 

quite generally to "neutrino oscillations": if a neutrino of a given flavour is produced, 

there is a non-zero probability that it may be detected as having a different flavour at 

some later time. Furthermore, this probability oscillates with the distance between the 

source and detector. We then considered the generalization of the neutrino oscillation 

formula to the case in which the neutrino propagates in matter. It was shown that the 

coherent scattering off the background could give rise to an enhancement of the neutrino 

oscillations (the M S W effect.) We then discussed how neutrino oscillations could be used 

to resolve the so-called "solar neutrino problem" and "atmospheric neutrino anomaly." 

In Sec. 1.3 we returned to a discussion of neutrino oscillations and examined the 

relation between neutrino oscillations and the uncertainty principle. It was argued that 

any realistic discussion of particle oscillations must assume that the particles themselves 

are localized to some extent, that is, that they should be described by wave packets, 

not plane waves. A n example of what can go wrong in a plane wave approach was then 

examined. It was found that attempting to model the effects due to the localization of 

the particles using only plane waves can lead to errors. In the specific case which we 
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studied, of oscillations in the B — B system, it was found that confused reasoning could 

in fact lead to a relative factor of "two" in the oscillation length. 

The plan of the remainder of the thesis is as follows. We begin in Chap. 2 by consider

ing whether it is possible to observe the oscillations between the sun and the earth of the 

mono-energetic, neutrinos produced by Beryllium decay in the sun. In order to observe 

such oscillations it is necessary that the energy spread of the initial "beam" not be too 

wide. We summarize the various sources of energy broadening for these neutrinos and 

then consider in general whether it is possible to distinguish experimentally between the 

two basic types of broadening-"coherent" and "incoherent" - at the detector. It is shown 

that while such effects are due to distinct physical processes which could in principle be 

controlled at the source, they are in general indistinguishable at the detector. 

In Chap. 3 we construct a simple model of a neutrino source/detector system which 

allows us to rigorously define the oscillation probability in terms of the distance between 

the source and detector. In order to motivate our study, we first examine two other 

approaches to the problem which do not explicitly include the source and detector. In 

both cases we find that there are difficulties which arise and which do not seem to have 

a straightforward solution. We find that the approach which directly employs a source 

and detector has several advantages, the main one of which is that the objects which are 

calculated have very clear physical meanings. Furthermore our approach gives several 

insights into the effects of the time resolution of the detector. 

Chap. 4 contains a study of the propagation of neutrinos in very dense media. We find 

that in general the dispersion relations of such neutrinos have minima at non-zero values 

of the momentum; this feature leads to several amusing results. Furthermore, we observe 

that for Dirac neutrinos the minimum of the dispersion relation is generically below the 

vacuum mass of the neutrino so that neutrinos with small enough energy will be trapped 

by the medium. It is found that Majorana neutrinos are in general not trapped by the 
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medium. 

Chap. 5 contains a brief summary of our main results and some concluding remarks. 
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Coherence Effects i n N e u t r i n o Oscil lations 

2.1 In t roduct ion 

Approximately twenty-five years ago an interesting suggestion was made for probing very 

small values of A m 2 using the 3% annual variation of the earth-sun distance [19, 45]. 

In this case, rather than simply observing a net average decrease in the electron neutrino 

intensity by an amount sin2(2/9)/2 one could observe the actual oscillations of the electron 

neutrino flux. The idea is to use the f e 's from e~ capture on Be 

7Be + e~ ->7 Li + ve (2.1) 

which results in a neutrino energy Ev ~ .86 MeV with a small energy spread. Thus if 

the neutrino oscillation length 

l o , = (2-2) 
Am1 

is within one or two orders of magnitude of the variation Ai?. ~ 5 x 10 1 1 cm of the 

earth-sun distance then, depending on the value of sin2(20), it may be possible to see 

the neutrino oscillations provided A m 2 is in the range 10~9 — 1 0 - u e V 2 . 

In order for the above scenario to work, it is essential that the spread in energy 

AE of the neutrino "beam" is not too wide. This is especially true in this case since 

R/AR > 1. If AE is too large then by the time the neutrinos arrive at the earth the 

oscillation patterns for neutrinos of different energies get sufficiently out of phase to wipe 

out any potentially observable oscillations. This results simply in a decrease of the total 

ve intensity by an amount sin2(26l)/2. A coherence length L m a x is usually defined as 

26 
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the distance at which a neutrino of energy E has undergone one oscillation more than a 

neutrino of energy E + AE. This coherence length is given by 

m a x " {Am1) AE ~ °3C\AE) ( 2 ' 3 ) 

and the total number of complete oscillations will be 

/Y = h^L (<? 4) 
- 'max — j 

Thus when AE j E is larger than about 1/30 we can no longer observe the oscillations 

and a narrow energy range AE is therefore required. 

The above argument assumed that the energy spread of the neutrino beam is incoher

ent in origin in the sense that it is due to slightly different energies of various neutrinos. 

The main origin of this energy spread AE is that the continuum electrons which are cap

tured by the Be have an energy spread AEe ~ kT which translates into a similar spread 

AEV ~ kT of the emerging neutrino energies. Another slightly smaller contribution to 

AEU = AE originates from the different Doppler shifts due to thermal nuclear velocities 

(relative to the line of sight). This phenomenon is an analog of the well-known Doppler 

broadening in atomic spectroscopy[46]. 

It is also possible for "coherent broadening"-by which we mean the quantum mechan

ical spread 8E of a single neutrino - to lead to the loss of the oscillation pattern[47]. 

The well known natural line width in atomic spectroscopy: 

6E ~ T ~ ( T d e e a y ) - 1 : . (2.5) 

is an example of coherent broadening. The finite lifetime rdeCay of the level interrupts the 

classical emission of the wave-train and limits the size of the wave packet 6x to 

Sx = CTdecay (2.6) 
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Another example of coherent broadening is the collisional broadening (also known 

as the "pressure broadening") of the neutrino line. It stems from the interruption of 

coherent emission by collisions of the emitting atoms. The corresponding wave packet 

size is given by an analog of Eq. (2.6) but with r c i e C a y replaced by / c o l l i s i o n ~ the effective 

time interval between "relevant collisions". This (nuclear) collisional broadening effect 

has been extensively studied as the major contributor to the loss of coherence in neutrino 

oscillations. There have been various estimates of the strength of the effect leading to 

estimates of the size of 8x = ci c o i i i s ion[47, 48, 46, 49]. 

A third contribution to the coherent broadening which seems likely to contribute even 

more to the energy spread 6E of the neutrino wave packet is the small size of the wave 

packets of the captured electrons. Since the K electron ionization energy in beryllium 

E-lon = Z2Ry = \QRy ~ 250 eV is small in comparison with the thermal kT ~ keV energy, 

the capture in reaction (2.1) is primarily that of continuum electrons. A n electron wave 

packet of size 8e will traverse the (point like) nucleus in a time 

8t = ^ (2.7) 

where ve is the velocity of the electron. Because the weak interaction underlying the 

capture process (2.1) is local, the time available for the ve emission is 6t and the size of 

the outgoing ve wave packet will be 

6„ = 6txc=—. (2.8) 
Ve 

The thermal kinetic energy of a typical electron is ^mev2 ~ |/cT. Thus 

VE = J™L~.0& (2.9) 

V me 

In order to estimate the appropriate wave packet size 8e to be used in Eq. (2.7), we note 

that the electrons suffer manv random collisions in the hot core which tend to localize 
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the wave function and reduce the wave packet size. If the only information available is 

that the electrons are in thermal equilibrium then 6e is expected to be of the order of the 

thermal wave length, given by 

- 2 n 2 % (2.10) 
meve y/2>mekT 

which then leads to a neutrino wave packet size 

6V = —- ~ 6 x 10- 8cm. (2.11) 
oEv 

This bv is smaller (and the corresponding coherent broadening is larger) than all pre

vious estimates 1 . 

The three mechanisms described above all lead to the conclusion that neutrinos are 

emitted in the sun as wave packets with a rather small size <5„ corresponding to "coherent 

broadening" of the neutrino line by an amount 8E ~ 2ir/8v. This coherent broadening 

also leads to the loss of the oscillation pattern[47] after a coherence length L c o h which 

is precisely equal to the coherence length L m a x derived in Eq. (2.3). This result can be 

derived technically by decomposing the wave packet into plane waves of energy E with 

a probability distribution 

P(E) = \$(E)\2 (2.12) 

and repeating the discussion leading to Eqs. (2.3) and (2.4). This leads to identical 

conclusions but with AE replaced by the energy spread 6E of the distribution. 

There is, however, a simple intuitive explanation for how the oscillations are lost 

in terms of the wave packet of the neutrino in configuration space. This derivation is 

originally due to Nussinov [47]. Suppose an electron neutrino wave packet is emitted at 

1 Since, as we shall show, coherent broadening also leads to the loss of the oscillation pattern, it is 
important to note that 6.E„/.E„~.002<Cl/30, which is the limit above which oscillations could not be 
observed. 
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t = 0 from the solar core. At t = 0 the ve can be written as a superposition of two wave 

packets with identical shape 2 corresponding to the mass eigenstates |z/i) and | zv2). 

\ve{t = 0)) = cos(0)|i/i) + sin(0)|i/2) (2.13) 

This initial wave packet will quickly spread in the directions (x, y) perpendicular to the 

direction of motion but the spreading in the direction of motion (z) is negligible due to 

Lorentz contraction effects. Due to. the different mass of the v\ and v2 their wave packets 

travel with a different (group) velocity 

A m 2 

Av = v2-vl = — (2.14) 

Thus after a time t has elapsed and the neutrino has traveled a distance r ~ t from the 

source the two wave packets move with respect to each other by an amount 

A m 2 

A r = Avt ~ — 5 - r (2.15) 
'IE" 

Neutrino oscillations are simply the "beating" of the two wave packets as they slide 

relative to each other by A r = A with 

A = f (2-16) 

the wavelength of the neutrino. The oscillation length of Eq. (2.2) is then recovered as: 

A 4TVE 

Losc — {value of r for which A?' = A} = — = - — - (2.17) 

Av Am2 

The total number of possible neutrino oscillations is simply the total number of wave

lengths within the wave packet, Nmax = = E/6E. After this number of oscillations 

the two wave packets do not overlap at all and all oscillations are lost. Thus the coherence 

distance L c o h which is the maximum distance over which we see oscillations is given by 
^coh = N m a x L 0 S C = (^j^j Losc (2-18) 

2 T h i s assumption is excellent for relativistic neutrinos, but may not be very good if one of the 
neutrinos is non-relativistic. We shall discuss these issues at length in the following chapter. 
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which is precisely the result of Eqs. (2.3) and (2.4) for the case of incoherent energy 

broadening. Indeed once Ar is greater than the size 8V of the wave packet the v\ and 

the v-2 will have completely separated spatially. We would thus expect that they will not 

interfere3 when interacting locally with an electron or nucleus in a detector. 

The main aim of this chapter is to study whether the two effects discussed above, 

namely the incoherent versus the coherent broadening, can be distinguished. They are 

clearly distinct physical phenomena which can be controlled (at least in principle) at the 

source. In an Atomic Physics analog the Doppler broadening can be controlled relative 

to the natural line width by adjusting the temperature of the system or by confining 

the atoms to a narrow channel transverse to the line of sight[50]. The more interesting 

question is: Can we distinguish these effects at the detector? In this chapter we shall 

show that in all physically interesting situations the answer is "no". We shall discuss 

some simple cases in which this answer is clear and then we shall prove some general 

theorems which will show that under a wide variety of physically attainable situations 

these two effects cannot be distinguished. 

2.2 Coherent versus Incoherent Broadening 

Our goal in this section is to see whether one can distinguish an incoherent ensemble of 

plane waves with a mean energy E and an energy spread AE from an ensemble of wave 

packets each with the same mean energy E and the same energy width 8E = AE. Before 

proceeding we should make one point clear. Even in the "incoherent" case in which we 

have an ensemble of plane waves these waves certainly do not have an infinite extent 

in the z direction (the direction of motion). In fact even if we took each "plane wave" 

(with an energy in the MeV range) to have an energy uncertainty of the order of 10~°eV 

3 We shall see below that this intuitive idea can be incorrect in some circumstances; that is, it is 
possible to revive the oscillations of neutrinos which have separated spatially. 
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(which is certainly a great underestimate for the solar neutrino case) the corresponding 

wave packet would still be only of the order of a cm in size!! Thus when discussing 

"plane waves" we are in fact referring to wave packets which are much larger than those 

discussed in the case of coherent broadening but much smaller than any macroscopic 

scales in the problem. 

2.2.1 A n E x a m p l e 

Our aim will be to show that the two broadening effects discussed above cannot be 

distinguished. We begin with a concrete suggestion for distinguishing these effects and 

we then show what goes wrong with this suggestion. 

Let us suppose that we were able to measure the energy of a neutrino with a precision 

e which is much better than 8E = AE. We then expect that for an incoherent beam 

of neutrinos with energies in a range AE about E we could recover the oscillations by 

measuring the neutrino energy to the precision e <C AE. By plotting the observed 

neutrino count as a function of 

r' = r | (2.19) 

we should see oscillations up to a new distance 

Le = (E/e)Losc > Lmax (2.20) 

with no loss of statistics. Note that AE is replaced by e in Eq. (2.3). 

If, on the other hand, we began with a wave packet with energy spread 8E then, 

at a distance larger than L c o n (Eq. (2.18)), the wave packet of the u\ and the v2
 a r e 

completely separated and one might naively expect that there will be no oscillations 

even if the energy could be measured more accurately. 

This argument turns out to be wrong and we can understand what goes wrong in a 

very intuitive way. If we choose to measure the energy very accurately (to an accuracy 
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e) we require a time t ~ 1/e to make this measurement. If, during this time t, the second 

wave packet arrives at the detector then we will once more see the oscillations4. The 

condition for recovering the oscillations is therefore 

A m 2 

t ~ 1/e > A r ~ — — r (2.21) 
'IE" 

where A?' is the distance between the wave packets and r is the distance from the source 

(Eq. (2.15)). The oscillations thus persist up to a new distance L'e which is the value of 

r for which Eq. (2.21) breaks down. 

L'e = (E/e)Loac (2.22) 

which is precisely the same as the result (2.20) obtained for the incoherent neutrino beam. 

This behavior of the coherent beam is analogous to what occurs for a high Q oscillator 

hit by two successive pulses. The first pulse (in our case the v\ beam) comes along and 

sets the oscillator in motion. It then continues to oscillate for a time t ~ 1/e during 

which time the second pulse (in our case the v2 beam) arrives which then causes the 

oscillator to be further excited. In this way coherence is maintained between the v\ and 

the v-2 beams even when they are spatially separated. What happens is that the accurate 

measurement of the energy picks out the plane wave in the wave packet which has existed 

coherently through both pulses. 

Our main goal will be to understand how general the above result is. In other words, 

to what extent is it true that an ensemble of plane waves will give the same result as 

wave packets. Although there were some initial attempts to distinguish these processes 

it is now widely believed that they are indistinguishable. Our goal in this paper is to 

prove some theorems which clarify the conditions under which this is true and to show 

how general the result is. 
4 T h i s phenomenon will be demonstrated very explicitly in the next chapter when we construct a toy 

model for a neutrino source/detector system. 
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2.2.2 M e a s u r i n g Observables which C o m m u t e w i t h M o m e n t u m 

Before discussing the most general situation we review here the proof that the coherent

ly and incoherently broadened neutrino beams lead to the same total rate and energy 

distributions for both ^e's and v^s. 

Oscil lations i n V a c u u m 

Let us consider two cases representing two possible electron neutrino beams0 leaving 

some region of the sun at time t — 0. In case a we have an incoherent mixture of 

neutrinos each of which is a nearly ideal plane wave (with some extremely small energy 

spread 6Epw<g.6E). In this mixture the probability of finding a neutrino of energy E is 

given by some probability distribution P(E) which is centered about some energy Ey 

with a width AE. In case b all the neutrinos come with the same quantum state. This 

state is a wave packet with amplitude ty(E) for a plane wave component of energy E. 

We choose this amplitude so that the probability distribution |\&(E)|2 precisely matches 

the distribution P(E) of case a. Consequently the widths of the two distributions are 

also equal: 5E = AE. In this section, for simplicity, we shall treat the plane waves of 

case a as ideal plane waves with 8Epw = 0. 

At t = 0 the wave function for the case b is given by: 

W< = 0)> = £ a P , « l 2 M > (2.23) 
p,i 

where the sum (which is actually an integral) is over momenta p in the z direction (the 

direction of motion) and over mass eigenstates i — 1,2 and the apj are chosen to give 

an electron neutrino with the appropriate wave function at t = 0. Since the \p,i) are 

°They could, of course, be any linear combination of electron and muon neutrinos. Electron neutrinos 
were chosen for definiteness only. 
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eigenstates of the Hamiltonian, at a later time t, the wave function is given by 

p.i 

where = ^jp2 + rn'f is the energy of V{ with momentum p. 

Suppose now that at time t we measure an observable Q which commutes with the 

momentum operator. Q may, for example, be the total number of electron neutrinos in 

some range of momenta. This is, in fact, the most common kind of measurement which 

can be made. In this case Q has only diagonal matrix elements in momentum space. 

Therefore the expectation value of Q at time t is given by: 

(m\Q\m) = E (2.25) 

The expression inside the square brackets is precisely the expression for the expectation 

value (Q)p of Q for a plane wave which has a total weight (i.e. normalization) |cvP:i|2 + 

|cvPi212 and a relative amplitude aPti and ap_2 for vy and v2 respectively at t = 0. Thus 

(Q) = T,(Q)P (2-26) 
p 

which is precisely the result one obtains for the incoherent beam of case a. Thus the 

measurement of any observable which commutes with momentum yields the same result 

for case a and case b. 

Although this result may seem trivial it is in fact rather powerful. From this result 

we can verify the result claimed in Sec. 2.1 that if we use the variation in the earth-

sun distance to look for oscillations in the neutrinos from 7Be both the coherent and 

the incoherent neutrino beams give the same oscillation pattern. A-prior i the above 

theorem is not applicable since the experiment involves measuring the spatial dependence 

of the neutrino flux which involves the use of an operator which does not commute with 

momentum. This is however an example for which the conversion of spatial to temporal 
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dependence can be done reliably. Thus, although we measure the spatial variation in 

the neutrino flux, we can compute the temporal dependence of this flux by computing, 

for example, the total number of electron neutrinos with a given energy as a function of 

time. This estimate will be reliable since, as discussed previously, even the plane wave 

is still extremely small (certainly much less than a cm in size) relative to the relevant 

astronomical scales. 

Oscillations in Matter 

The above proof that an ensemble of plane waves cannot be distinguished, at the detector, 

from an ensemble of wave packets with the same energy distribution can be extended to 

the case of neutrino oscillations in matter (the M S W effect)[51]. To this end imagine that 

at t = 0 an electron neutrino is produced (at the origin) in matter in which the density 

of electrons (along the direction of motion of the neutrino) is given by pe(z). (This is of 

course an approximation in which we neglect variations of the density in the transverse 

directions.) The 'Vacuum eigenstates" \v\) and \v2) are no longer eigenstates of this 

system. Instead one can find new eigenstates of the Hamiltonian which include the full 

spatial variation of the density. These eigenstates will of course no longer be momentum 

eigenstates. For relativistic neutrinos one should, in principle, solve the Dirac Equation 

but for the present discussion since spin is not a crucial variable it suffices to consider 

the Klein-Gordon equation[52]: 

where M 0 is the vacuum mass matrix and the matrix Am accounts for the effect of 

charged-current scattering of the ue off the electrons in the medium: 

(2.27) 

(2.28) 
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The eigenstates of this system with energy E will no longer be eigenstates of pz (px 

and py are assumed to be zero) but will be labeled by some other parameter which we 

call 7. We shall call these eigenstates 

| 7 ,1) and |-7,2> (2.29) 

In the regions of space where the density vanishes these eigenstates will behave as plane 

waves6 with some momentum pva,c(j)- They will correspond to vacuum mass eigenstates 

of the system. In a region of space in which the electron density is nonzero but nearly 

constant the eigenstates will again be nearly plane waves but now corresponding to 

the usual neutrino eigenstates i n matter. 

Suppose now that at t = 0 we prepare an electron neutrino in a state described by 

some rather narrow wave packet \ip(t = 0)). (This is the analogue of case b above.) At 

t = 0, in analogy with Eq. (2.23), this state can be expanded in the eigenstates 

described above 

IV<< = 0)} = S>7,«I7,*> (2.30) 

We now allow the state to propagate to a later time t . At this later time the state is 

given by 

l^(*)>=E'a7,.-e","4°il7,«'> • (2-31) 

where is the energy of the state |7 , i ) . In any reasonable case the size of the wave 

packet at time t will be much smaller than the scale of variations in the electron density. 

(This is especially true if the measurement is made in vacuum.) Thus Eq. (2.31) amounts 

to an expansion in the momentum eigenstates of the neutrinos in matter with density p 

equal to the density at the location of the wave packet. Every 7 corresponds to some 

6 I t may in fact be a superposition of an incoming and an outgoing plane wave if there is reflection. 



Chapter 2. Coherence Effects in Neutrino Oscillations 38 

momentum ^(7) which depends on the density p. Thus 

(2.32) 

where for any given value of p and the corresponding value of 7 the coefficients d p . i and 

6/P52 are linear combinations of a 7 i i and ct 7 i2. 

Now suppose that at time £ we measure some operator Q which commutes with (the 

z component of the) momentum. The off-diagonal matrix elements of Q vanish in the 

momentum basis. Thus Q will have only diagonal matrix elements between the various 

\p,i:p) in Eq. (2.32). Since each of these \p,i\p) corresponds to one of the energy 

eigenstates [7, i) it follows that the expectation value of Q is given by 

This expression is analogous to Eq. (2.25) in the previous subsection. Each term in the 

sum is precisely the result which we would have obtained for the expectation value (Q)7 of 

Q for a state which was initially in an approximate momentum eigenstate corresponding 

to 7 but with total weight |a 7 ,i| 2 + |CK-y,212 and a relative amplitude and ft7.2 for v\ 

and v-2 respectively. (Recall that the realistic plane waves are actually extremely narrow 

on the scale of the density variations.) Thus 

which is precisely the result one obtains for the incoherent beam of case a. There is thus 

no difference between the wave packet (case b) and the plane wave (case a) ensemble 

even in matter when only operators which commute with momentum are measured. 

(2.33) 

(Q) = E<<5) 7 (2.34) 
7 

2.2.3 Unreal is t ic Measurements which C A N Identify Wave Packets 

From the above proof it seems that a keen measurement which combines a measurement 

of both position and momentum information might be able to distinguish an ensemble 
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of wave packets from an ensemble of plane waves. The simplest way of doing this would, 

however, require precise knowledge of the point of origin and the time of origin of the wave 

packet. Suppose, for example, that we knew that all the wave packets in our ensemble 

(case b) were centered at the origin (z = 0) precisely at time t = 0. Suppose also that 

in the alternative scenario (case a) we also knew that each (nearly ideal) plane wave 

(which is still a wave packet but with a much larger spatial extent than that of case b) 

in the ensemble was centered at the origin at t = 0. Under these assumptions about 

our previous knowledge and by a careful timing measurement at the earth to determine 

the duration of the neutrino pulse we could distinguish the two cases. (In fact in case b 

there may be two separated pulses.) This scenario is, of course, totally unrealistic and we 

shall see below that if we allow for an uncertainty in the location of the initial packets it 

again becomes impossible to distinguish the two cases by any measurement at the earth. 

There is another scenario under which it is clearly possible to distinguish the two cases. 

Suppose we have a detailed theory for the production mechanisms of the two cases which 

lead to some different observable at the source. Suppose, for example, that the position 

or momentum distributions for the two cases are expected to differ. Then clearly such 

information can be used to decide which mechanism is producing the neutrinos (or, more 

realistically, which mechanism dominates). However in the case of level broadening we 

have no such information. Both the energy and the position distributions are expected 

to be roughly the same. The question which we are asking is: Assume we are given 

two "sources" of neutrinos (or production mechanisms) with the same position (z) and 

momentum (p) distributions. Is it possible to tell by measurements at the detector which 

of the two "sources" produced these neutrinos? 
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2.2.4 Genera l Theorem 

This question can be set up more precisely as follows. Consider the following two modi

fications of the scenarios case a and case b discussed above: 

In case A we have a nearly ideal plane wave which is actually a wave packet of a fairly 

large size Az. (Recall that Az will typically be much less than a cm!). We imagine an 

ensemble of such "plane waves" each of which has a nearly precise momentum (in the z 

direction) centered about po with a spread 8p. Assume that each plane wave has exactly 

the same spatial location. (This is precisely the case a above.) 

In case B we have an ensemble of wave packets. Each wave packet has a spatial size 

8z which is much smaller than Az and a corresponding momentum spread bp — 1/bz 

which is precisely equal to the bp of case A. Up to this point this looks exactly like 

case b above except we now allow each wave packet in our ensemble to be, at t = 0, at a 

different spatial location. We assume that the wave packets are produced in precisely the 

same region Az in which the neutrinos of case A are produced with precisely the same z 

distribution.' The two cases are shown pictorially in Fig. 2.1. 

A l l the above information is given to the experimenter together with the additional 

information that the z and p distributions for both cases are equal at t = 0. The 

statement of the theorem is then the following: With only the above information the 

experimenter cannot distinguish the cases A and B. 

Intuitively one might guess that there should exist some experiment which could 

distinguish the two cases. There should be some way to tell if we are dealing with wave 

packets or with (almost) plane waves! But in fact this is not the case. No experiment 

can distinguish the above two cases. 

7 I n a realistic situation both the "plane waves" of case a and the wave packets of case b will be 
distributed over a region of space much larger than Az. In both cases this excess spread is incoherent. 
It is thus sufficient to prove our result for the case when the wave packet is distributed in z by the size 
Az of the plane wave of case a. 
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Plane Wave 

with Distribution of Momenta 

Az 

Wave Packet 

\ l 1/ 

8z' 
•+ Az • 

Figure 2.1: Pictorial representation of Case A and Case B in Sec. 2.2.4. 

The most general proof of this statement would proceed as follows: 

Step 0. Choose values for 8z = \jbp <C Az and for the mean momentum p0 which 

were defined above. 

Step 1. Begin with an arbitrary (smooth) but fixed expression for the wave function 

of the nearly ideal plane wave of case A. The only constraints on this wave function 

will be that it is centered (say) at the origin, that its spread in position is (a fairly 

large) Az with a correspondingly tiny spread in momentum about some momentum p. 

Then consider an ensemble of such states each with a different momentum p. Choose an 

arbitrary but fixed distribution for these momenta. The constraint on this distribution 

is that it is centered about the momentum po with the given width dp. 
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Step 2. Construct the density matrix for the ensemble described in Step 1 above. 

Step 3. One must now prove that it is always possible to construct the following, 

seemingly completely different ensemble, which, nonetheless, yields a density matrix i -

dentical to the one obtained in Step 2 above. We first construct a wave packet which is 

centered at some location z. We are free to choose the form of the wave function with 

the only constraint that its spread in position is approximately equal to 5z <C Az with 

a corresponding momentum spread 6p = l/6z. We then construct an ensemble of such 

wave packets and choose a distribution of locations z with the only constraint that this 

distribution be centered at the origin with a spread in position approximately equal to 

Az. 

The claim is that we can always choose the distributions in Step 3 so that the density 

matrix for Step 3 is identical to that of Step 2. This then implies that any measurement at 

all which is done on the two ensembles at any t ime t gives the same result! We also claim 

the converse of this theorem namely that given a "wave packet" ensemble constructed as 

in Step 3 it is always possible to find a "plane wave" ensemble as constructed in Step 1 

with the same density matrix. 

Note how the mass eigenstates v\ and v-j appear nowhere in the above discussion. 

The reason for this and, in our opinion, the power of this proof is that it relies entirely 

on properties of the system at t = 0 at which time the state is a pure ve state. 

I l lustrat ion i n the Simplest Case 

We can show the essence of the proof by the following simple example. We model the 

wave packet (of case B) by a superposition of only two momentum eigenstates \p\) and 

\p-2). In Step 1 above we imagine having the state \p\) with probability |a|2 and the state 
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\p-2) with probability \(3\2: (|a|2 + \(3\2 = 1). The density matrix for this system is simply 

\a\2\pi)(pi\ + \P\2\p2)iP2\ (2.35) 

For implementing Step 3 we may construct an analogue of wave packets at two different 

locations as an ensemble consisting of these two states with equal probability: 

|^±)= a\Pl)±P\p2) (2.36) 

The density matrix in this case 

IV+XV'+I + I V ' - W - I (2-37) 

is precisely the same as the density matrix for case A in Eq. (2.35). 

This completes the proof in this simple case. 

Gaussian Dis t r ibut ions 

One case in which the Steps 0-3 above can be carried out explicitly is when all distribu

tions are Gaussian. Thus in Step 1 we choose the "plane wave" of momentum p to have 

a wave function 

Ipjpkme) = 1 i fdl exp ( - ^ r 1 ) 10 (2-38) 
( V ^ r c r j 2 ' \ a / 

where o ~ 1/Az. We then consider an ensemble of these states with a Gaussian distri

bution of momenta p 

> - p ( - ^ ) (2.39) 
v 

where op ~ dp = l/6z > o. The density matrix for this case (case A) is given by 

i i r ^ ^ ^ ^ J (P-PO)2 (i-p)2 V-PT 
PA = ' w * dl dl' dp exp - ^ - W'\ 

(2.40) 
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We now proceed with Step 3 corresponding to case B. Consider a wave packet with 

mean momentum po centered at some location z: 

(l-Po)r 

z; packet) = r J dl e^'exp l - ( j \l) (2.41) 

We shall soon see that the correct choice for &p is 

o\ = o'l + cr2 (2.42) 

which is approximately equal to op = l/6z as required. We then consider an ensemble 

of these states with a Gaussian distribution of positions z centered at the origin of the 

form 

, * x fdzexpf—) (2.43) 

The correct choice for spread in position, oz, will turn out to be: 

2 el 
2 - 1£ (2.44) 

a 2 (a 2 + a 2 ) 

This a . is approximately equal to 1/cr = Az as required. The density matrix for this 

situation (case B) is given by 
r / o_2 (i „ N2 /;/ ^ Y2\ 1 

e-*- /'^|/)(/'| PB = — V ,- —^ j dl dl' dz 
/ 2z 2 (l-p0f (I'-pp) 

6 X P V ^ 4a 2 4a 2 

(2.45) 

With the choices we have made for op and oz in Eqs. (2.42) and (2.44) it turns out that 

the density matrices pA and ps are precisely equal. The calculation is straightforward 

and most easily done by computing the matrix elements (1\PA,D\1')- In order to compute 

the matrix elements of PA only the integral over p must be done. This is a Gaussian 

integral. For pB only the integral over z must be clone. This is simply the Fourier 

Transform of a Gaussian. The result is the same for pA and pg and is given by: 

(1\PA,B\1 ) = / rr-^ \ e x P 7^2 7 ^ Q 9> 9 2.46 

(v^F^p) V 4 ( 7 p 4 c T p 8 < 7 ~ a ' p ) 

We thus establish, for the Gaussian case, that the two ensembles are identical. 
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Genera l P r o o f 

In the Gaussian case described above we did not use the fact that bz <C Az. In the case 

of a more general shape for the "plane wave" and the wave packet we shall present a 

proof which does rely on this approximation. We conjecture that it is possible to slightly 

modify the theorem 8 so that it will be valid for general values of bz and Az but we do 

not have a proof at this time. 

We begin again with Step 1 for which we choose a "plane wave" of momentum p to 

have a wave function 

\p- plane) = j dl fa{l-p)\l) (2.47) 

where the function fa(l — p) has a width o ~ 1/Az. We then consider an ensemble of 

these states with a distribution of momenta p given by some function gCp(p — po) with a 

width crp ~ bp = 1/Sz 3> o. The density matrix for this case (case A) is given by 

pA = fdl dl' dp [fZ(l' -p)U(l-p)fK(p-po)} (2.48) 

We now proceed with Step 3 corresponding to case B. Consider a wave packet with 

mean momentum po centered at some location z: 

|*; packet) = J dl e~ihaap(l - p0)\l) (2.49) 

which has approximately a width op. We then consider an ensemble of these states with 

a distribution of positions z centered at the origin given by some function ha,_(z) with 

a width oz which is approximately equal to 1/cr = Az. The density matrix for this 

situation (case B) is given by 

pB = fdldl'dz [a;p(l'-po^il-po^zp-^-^^il'l 

8 T h e modification we have in mind is to relax the unnecessary restriction that the shape of the wave 
packet is independent of z. It is reasonable to consider an ensemble of wave packets all of which have 
the same width but with slightly different shapes. The same could be done for the "nearly plane waves". 
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= Jdl dl' [<x*ffp(l' -poWp(l -pQ)K{l - I')] \l){l'\ (2.50) 

where ha{l — I') is the Fourier transform of haz(z) which has a width approximately equal 

to o. 

The requirement that the two density matrices are equal is now simply stated as: 

alp{l' - p0)aap(l - po)K(l -l') = j dp ft(l'- p)fff(l - p)g*r{p - p0) (2.51) 

(It is now clear why the theorem, as stated, cannot be true in general. Given arbitrary 

smooth functions ga and fa with the restrictions described previously it is certainly not 

possible, in general, to find functions aap and ha which satisfy Equation (2.51) since the 

integral in (2.51) will not always factorize in the required form.) The result is however 

valid when the width op of ga is much larger than the width a of fa. If o <C o~p and if 

the function g<7p is sufficiently smooth 

fffl - P)fv(l ~ P)9<rP(p ~ Po) = 

./;(/' - p)U{l - p)yJ9<rr{l-pQ)^9ar{V-pQ) + O (2.52) 

Thus 

/ dp f;(l'-p)Ul-p)g„p(p-p0) - Jg*p(l-Po)y/9*P(l'^Po) x / dq f*{q)fa{l — I' + q) 

(2.53) 

Thus if we identify the function aa with the square root of gCp and the function haz(z) 

with the square of the Fourier transform of fa(p) then the equality in Eq. (2.51) is 

satisfied to order Sz/Az as required. 

2.2 .5 Consequences 

Although the result proven above is not entirely general it is sufficient for all cases of 

practical interest. The reason for this is that we have actually proven three things. The 
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result that measurements which commute with momentum could not distinguish coherent 

from incoherent broadening was completely general and did not depend on the shape of 

the wave packet nor on its width. Secondly the proof that for Gaussian wave packets the 

two effects could not be distinguished with any measurement was also general and it did 

not depend on the width of the Gaussians. Thirdly our extension of the proof to arbitrary 

wave packet shapes was possible in the limit 6z <C Az. A practical attempt to distinguish 

the two mechanisms of broadening would likely begin with a theoretical calculation which 

assumes Gaussian wave packets for simplicity. Furthermore it would likely compare the 

wave packets to actual plane waves for which Az —> oo. We have shown that any such 

attempt is doomed to failure. We conjecture that the result is more general so that for 

an arbitrary shape of wave packet it is possible to find an ensemble of nearly plane waves 

which mimic its behavior exactly. 

A n interesting corollary to the result proven in the previous section is that one cannot 

tell, on an event by event basis, whether one has a wave packet or a "plane wave". The 

proof is as follows: Suppose it were possible, on an event by event basis, to distinguish 

a wave packet from a plane wave. It would then be trivially possible to distinguish the 

cases A and B above since in one case we are presented with a plane wave and in the 

other case with a wave packet. In fact in just one event we would know with which case 

we are dealing. But, as we saw in the previous section we cannot do this since the density 

matrices for the two cases are identical. It follows that no such determination can be 

made on an event by event basis. 

This result does not contradict the recent work of several authors[53] on the ability 

to measure the wave function of a single particle via a "protective measurement". There 

are at least two requirements for such a measurement to be possible. The first is that the 

system needs an energy gap so that successive (soft) measurements keep the particle in 

the same state. The second requirement is that it is known a-priori that the system is in 
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an eigenstate of the Hamiltonian. Thus, for example, it is in principle possible to measure 

the ground state wave function of a typical atom even on a single atom but, if we do not 

know whether the atom is in an eigenstate of the Hamiltonian or in a superposition of 

eigenstates then this cannot be determined on a single atom. A n argument very similar 

to that in the previous paragraph can be used to prove this result. In our case neither 

of these conditions are satisfied. We do not have a gap and we certainly are not in an 

eigenstate of the Hamiltonian when we are dealing with a wave packet and/or we start 

with a pure flavor state such as a \ve). 

The theorem presented in the previous section also provides a general tool for under

standing how the size of a quantum mechanical wave packet affects physical results in 

various circumstances. In fact the style of our proof which relies on the initial properties 

of the system rather than on the details of its time evolution is extremely useful. There 

have been several instances in which either careless approximations or faulty logic have 

lead to conclusions which disagree with our very general result. To illustrate this point 

imagine, instead of using our general proof, that we evolve each of the two ensembles to 

a later time t and then compared them. We must, by our theorem, get the same density 

matrix for each ensemble. But in doing this calculation we might make several approx

imations to simplify the calculation. We might, for example, neglect the longitudinal 

spreading of the wave packet. It turns out that even when this spreading is negligible 

compared to the size of the wave packet it has a significant effect on the final density 

matrices and we would find significant differences between the two ensembles. We know 

from our theorem that this cannot be the case. Indeed when the effect of longitudinal 

spreading is included all results computed with p& and ps agree. 



Chapter 2. Coherence Effects in Neutrino Oscillations 49 

2.3 S u m m a r y and Conclusions 

The main focus of this chapter was the question of our ability experimentally (even in 

principle) to distinguish incoherent broadening of a neutrino line (such as the 7Be solar 

neutrino line) from coherent broadening of such a line. Of particular interest was whether 

these two types of broadening would have different effects on neutrino oscillations and the 

M S W effect. We began by identifying processes which contribute to these mechanisms 

of broadening. Coherent broadening results from several processes including the natural 

width of the emitting nucleus, pressure broadening caused by collisions of this nucleus 

and the finite size of the wave packet of the captured electron. We argued that this last 

process leads to the smallest estimate for the spatial size of the neutrino wave packet 

(~ 6 x 10 _ 8cm). Incoherent broadening results mainly from the thermal energy spread 

of the captured electron as well as from the Doppler shift due to the thermal motion of 

the emitting nucleus. 

We then began to present our argument that although the two forms of broadening 

were distinct physical processes which could be controlled at the source they could not 

be distinguished at the detector. We first showed that if the detector had an excellent 

energy resolution not only could oscillations due to an incoherent ensemble of (nearly) 

monoenergetic neutrinos be restored but oscillations of a coherent neutrino beam could 

also be restored despite the physical separation of the v\ and the vi at the detector. We 

then proved that the measurement of any operator which commuted with momentum 

could never distinguish a wave packet from a plane wave. We extended the proof of this 

result to the case in which the neutrino propagates in matter (the M S W effect). 

The next stage was to show that if we had no a-priori knowledge of any difference 

in the properties of the coherent versus the incoherent neutrino "beams" there was no 

measurement which could distinguish them. Our method was to show that it was possible 
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to construct two ensembles, one corresponding to "nearly plane waves" and the other to 

wave packets which had the same density matrix at t = 0. This would imply that the 

density matrices were equal at all later times and that no measurements could distinguish 

the two cases. We presented a complete proof in the case of Gaussian wave packets by 

showing that the density matrix at the source for an ensemble of plane waves with a 

given (Gaussian) energy distribution was equal to that of an ensemble of wave packets 

each with a much narrower z distribution but distributed, incoherently, over the same 

range of positions as the "incoherent" ensemble. We extended this proof to the case of 

non-Gaussian wave packets in the limit that the spatial size of the wave packet was much 

smaller than the spatial size of the "nearly plane wave". We conjectured that the result 

is even more general and that given any ensemble of "nearly plane waves" with a given 

energy and position distribution we can construct an ensemble of wave packets which has 

precisely the same density matrix. 

There have been claims in the literature that wave packets could give different results 

than plane waves with the same momentum distribution. These differences show up either 

when the neutrinos are nearly nonrelativistic or when their momentum distribution is 

extremely broad so that Sp ~ p. This of course implies that some of the components of 

the neutrino wave function are nonrelativistic and that some of the neutrinos are moving 

"backwards". In all these cases it is essential to include the longitudinal spreading of the 

neutrino wave packet. If this is done one confirms the results of our theorem that there 

are no differences between the two scenarios. 

Although we have chosen to focus on neutrinos and neutrino oscillations it is clear 

that the result is much more general. It applies to any particle for which the question 

of the distinguishability of a wave packet from plane waves is relevant. Some examples 

include neutral Kaon oscillations and the effect of wave packets in scattering theory. 



Chapter 3 

N e u t r i n o Oscillations i n a M o d e l w i t h a Source and Detector 

In this chapter we present a rigorous field theoretic derivation of the neutrino oscillation 

probability as a function of the distance between an idealized "source" and "detector." 

Our calculation may be contrasted with the conventional (plane wave) treatment, in 

which an oscillation probability is derived which is a function of the time between the 

production and detection of the neutrino. Since in any realistic experiment one expects 

to measure only the distance between the source and detector and not the time between 

the production and detection of the neutrino, the conventional treatment needs to employ 

some sort of ad hoc prescription to convert the time-dependent oscillation probability into 

a distance-dependent one. Some of the ambiguities associated with such a procedure have 

already been discussed in Chapter. 1. 

One of the first calculations to take the time-versus-distance issue seriously was per

formed by Giunti, K i m and Lee [54], who modeled the neutrino mass eigenstates by 

wavepackets and derived an oscillation probability which was dependent on both dis

tance and time. This expression was then integrated over time in order to obtain an 

expression as a function only of distance. Subsequent papers have improved on this 

calculation by incorporating explicitly the interactions through which the neutrino is 

produced and detected [55, 56, 57]. 

Lately there has been renewed interest in the time-versus-distance question in particle 

oscillations. This interest is due primarily to two recent papers concerned with the 

oscillations of neutral mesons, the first by Lipkin [39] and the second by Srivastava, 

51 
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Widom and Sassaroli [40]. Lipkin argues that there exists some ambiguity as to what is 

the "correct" prescription for converting a probability as a function of time into one as a 

function of distance. Different prescriptions lead to results which differ quite significantly 

from each other: in fact, in the example considered by Lipkin it was found that setting 

t.t=x/vi (vi is the mass eigenstate velocity) independently for the mass eigenstates gave 

a relative factor of "2" in the oscillation length compared to the usual result. As we 

discussed in Sec. 1.3.2, however, the apparent ambiguity in that case can be resolved by 

thinking in terms of wave packets. The second paper, by Srivastava, et al, has actually 

been somewhat controversial. They considered the process ir~p —>• AK° and derived an 

expression for the A'0—JC° oscillation length (and hence for 6m=mK-L—mKs) which differs 

by a factor of at least 2 from the usual result. A subsequent analysis of their calculation 

by Lowe, et al. [42], shows that their result follows from the same sort of reasoning which 

led to the problem in the case which Lipkin discussed. Finally, a recent calculation 

by Ancochea, et al. [58], has avoided the necessity of converting time probabilities into 

distance probabilities by deriving a probability current which can plausibly be integrated 

over time to arrive at the probability as a function of distance. In this manner they arrive 

at the conventional result for the oscillation length, Avith no factor of "2". 

A quick calculation in the neutrino case reveals that there, too, an anomalous factor 

of two shows up in the oscillation length if the "wrong" prescription of converting times 

into distances is followed in the conventional treatment. As we discussed in Sec. 1.3.2, 

the problem in the calculation which leads to the factor of two is that it attempts to 

model wave packet behaviour, namely that the mass eigenstates arrive at the detec

tor at different times, using plane waves. In this chapter we present a calculation which 

accounts correctly for the localization of the source and detector (and hence of the neutri

no "wave packets") and yields a rigorous approach to computing the neutrino oscillation 

probability. 



Chapter 3. Neutrino Oscillations in a Model with a Source and Detector 53 

We begin in Sec. 3.1 by providing a summary of the wave packet approach presented in 

Refs. [54, 59, 22]. In this approach the source and detector are not explicitly incorporated 

into the calculation. We point out some of the insights which this calculation gives as 

well as some its difficulties. The main problem in this approach is that there appears 

to be no real justification for one of the steps in the calculation, in which a probability 

density is integrated over time to yield an oscillation probability as a function of distance. 

Indeed, as we shall see, this procedure leads to some rather provocative results when one 

or more of the mass eigenstates is non-relativistic. 

It would be more appropriate to instead integrate a current density over time in 

order to obtain a distance probability. This is the approach which was taken in the 

kaon system in the recent calculation of Ancochea, et al. [58], and it appears to have 

cleared up the ambiguities in that case. Thus, in Sec. 3.2 we consider whether there 

might exist a current density, defined without reference to any specific process for the 

production or detection of the neutrinos, which satisfies some minimum requirements 

and which may be reliably integrated over time in order to yield a distance probability. 

In the analogous calculation in the kaon system, one may use a current which is closely 

related to the regular quantum mechanical current, Im(0*V'0)/m, since the kaons may

be taken to be non-relativistic. In our case we wish to allow the neutrino mass eigenstates 

to be either relativistic or non-relativistic, so that the above approach does not work. 

Nonetheless, we shall find that it is possible to construct a current density which does 

satisfy some minimum formal requirements. A closer investigation reveals, however, that 

the probability density to which the current is related (by the continuity equation) is not 

positive semi-definite. We shall thus be forced to abandon this approach. 

Sec. 3.3 contains our main calculation. Having found no clear and self-consistent way 

of defining distance probabilities independent of the neutrino production and detection 
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processes1, we turn to a calculation in which the neutrino fields are explicitly coupled 

to an idealized "source" and "detector," modeled in our case by harmonic oscillators2. 

For convenience, we first model the neutrinos by complex scalar fields, leaving a more 

realistic treatment using fermionic neutrinos for the next section. In the source/detector 

approach, the neutrinos themselves are never "observed." Rather, a source is observed to 

decay into its ground state and a detector is observed to be excited into its first excited 

state. 

There are many advantages to treating neutrino oscillations from the point of view 

of a source and detector. First of all, the quantities which we calculate will have clear 

physical interpretations. That is, we calculate the amplitude for the source to decay and 

for the detector to subsequently be excited. From this amplitude we may give a clear 

physical definition of the oscillation probability. This is to be contrasted with the "wave 

packet" and "current" approaches, in which the formal quantities which are calculated do 

not have any clear physical significance 3 . Furthermore, the requisite (in order to observe 

oscillations) localization of the source and detector in space is easily accomplished in our 

approach. This approach also allows for a tempcra/localization of the source and detector. 

Recall from our discussion in Sec. 2.2.1 that we expect a long coherent measurement in 

time to "revive" the oscillations of neutrinos even after the mass eigenstate wave packets 

have separated spatially. Our simple model will allow us to demonstrate this phenomenon 

very explicitly. 
1See, however, the recent calculation of Grossman and Lipkin [43], in which the imposition of an ap

propriate boundary condition allows one to calculate "distance" probabilities. Their calculation assumes 
that the neutrino mass eigenstate wave packets have nearly 100% overlap at the detection point and 
that the neutrinos are relativistic. We are interested in the general case in which the wave packets may 
have separated and in which one or more of the neutrinos may be non-relativistic. 

2 Analogous approaches have been used to successfully resolve ambiguities in other areas of physics. 
For example, Unruh and Wald used a similar idealized detector to study the "Rindler particles" detected 
by an accelerated detector [60]. 

3 The problems with calculating probability densities and currents in relativistic field theories are 
well-known [61]. 
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Another advantage of explicitly coupling the neutrino to a source and detector is that 

it allows for a careful study of the efficiency with which neutrinos of different masses are 

produced and detected. It turns out that in the "wave packet" approach, the oscillation 

probabilities are skewed by factors of 1/v, so that non-relativistic mass eigenstates tend 

to dominate the expression, if they are present. This is justified by the authors by noting 

that "Non-relativistic mass eigenstates dominate . . . because they move very slowly and 

spend more time in the detector" [22, p. 214]. Yet this comment is made without 

anywhere including the detector in the calculation. It is thus important to determine 

whether this effect is observed when the neutrino is explicitly coupled to the source 

and detector. In our model we will find that the efficiency for producing and detecting 

neutrinos can depend on the detector. The origin of this dependence in our case, however, 

will be quite different than is suggested in [22]. Furthermore, for a suitable choice of 

parameters the dependence disappears entirely. 

Another motivation for considering the neutrinos in a given interaction as being ex

changed between a source and a detector is that it completely avoids the problem, pointed 

out by Giunti, et al. (and discussed in Sec. 1.1), that there do not exist weak neutrino 

eigenstates 4 [30]. The flavour neutrinos do not have well-defined dispersion relations and 

it is thus inappropriate to consider them as being the asymptotic initial or final states in 

an interaction. This problem is avoided in a natural way in our formulation, since there 

is never any need to refer to neutrino "flavour" eigenstates. The only eigenstates which 

appear are the "mass" eigenstates, which are each produced and detected with an ampli

tude dictated by the experimental set-up and which propagate between the source and 

detector with well-defined dispersion relations as "on-shell" particles (over macrocopic 

4 For a competing point of view see Refs. [62, 63]. There it is claimed that one can construct such 
eigenstates. While their states do formally satisfy the required relations (they are able to construct 
"flavour" creation and annihilation operators which satisfy canonical anti-commutation relations), we 
believe that their subsequent derivation of corrections to the neutrino oscillation formula is incorrect. 
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distances.) This brings us to the final point which we would like to make concerning our 

source/detector system. Once the characteristics of the source and detector are fixed, 

there is no longer any flexibility regarding the "wave packets" of the neutrino mass eigen

states. In the "wave packet" approach one has to decide, for example, whether or not 

the packets corresponding to each of the mass eigenstates will have the same width in 

momentum space. In our approach these sorts of questions simply don't arise. 

A n analogous point of view to that which we advocate has also been adopted by 

Giunti, K i m , Lee and Lee [55], Rich [56] and Grimus and Stockinger [57]. The calcu

lation in Ref. [56] is performed essentially using second order perturbation theory in 

ordinary quantum mechanics and is confined to relativistic neutrinos, while the calcula

tions in Refs. [55, 57] are performed using field theoretic techniques and appear to treat 

non-relativistic neutrinos much more appropriately. The principle feature which distin

guishes our calculation from theirs is that we have chosen to study a model which is 

completely solvable so that the response of the detector to the source may be studied ex

plicitly without making any approximations (for example, with respect to the spreading 

of the wave packet in the case of non-relativistic neutrinos.) As we shall see, in order to 

derive an expression for the oscillation probability, it is very useful to have a thorough 

understanding of how efficient the source/detector system is at producing and detecting 

neutrinos of different masses. Furthermore, our simple model will allow us to examine 

the dependence of the oscillation probability on the time resolution of the detector. 

In Sec. 3.4 we present a somewhat more realistic - and less transparent - model of a 

neutrino source/detector system which accounts correctly for the neutrino helicities and 

the V — A nature of the production and detection interactions. This final calculation 

will bear some similarities to those discussed in Refs. [55, 57] but will be simpler and 

in principle more amenable to numerical study. Finally, in Sec. 3.5 we provide a brief 

summary of our main results. 
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3.1 A Wave Packet A p p r o a c h 

Our goal is to derive a neutrino oscillation formula which is a function of distance, not 

time, and which deals appropriately with both relativistic and non-relativistic neutrinos. 

The simplest approach which manages to take into account the required spread in the 

neutrino's energy or momentum is to model the neutrino state by a wave packet which is 

evolved in time by the Hamiltonian. The main limitations of this approach are that the 

form for the initial (and final) state is ambiguous and that the probability density which 

is initially derived is a function of distance and time. With respect to the former point, 

it is unclear for example what the relative "widths" of the wave packets corresponding to 

different mass eigenstates should be. Should they be the same? Furthermore, should the 

wave packets be separately normalized (implying that all mass eigenstates are produced 

with the same efficiency) or should there be just one normalization condition which 

sums over the wave packets? Regarding the latter limitation, i.e., that the probability 

density which is derived is a function of distance and time, we note that in the standard 

quantum mechanical interpretation, this probability density, when multiplied by A.r, 

gives the probability to detect a neutrino of a given flavour between x and x + Ax (in 

1 + 1 dimensions.) Thus, integrating this object over x would, in the standard approach, 

yield the probability at a given instant in time to detect a neutrino of a given flavour. 

But how to convert this into a probability as a function of distance? 

In order to find the oscillation probability at location x after a long time has elapsed, 

one would expect that a more fruitful starting point would in fact be to calculate the 

probability current and to integrate it over time, as was done by Ancochea, et al, in the 

kaon system [58]. We will examine this approach in the next subsection and see that this 

seemingly simple idea has several problems. 

In this subsection we will sketch the wave packet approach presented in Ref. [54] (see 
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also [22, pp. 206-215].) Note that the calculation in Ref. [54] is performed in one spatial 

dimension and ignores the different helicities of the neutrinos (which may sometimes be 

a good approximation, even for non-relativistic neutrinos.) 

Suppose a neutrino with flavour a (=e, p, T,...) is produced at the origin at time t—0. 

This neutrino is actually a superposition of mass eigenstates, which will each be taken 

to have a gaussian shape in momentum space. Thus we set 

if>i(x,t; (pi))) = ( v & p ) 1 / 2 j e x P i(px - Ei(p)t) (p-(Pi)f 

where 

(3-1) 

{vi\vj) = 6ij, 

Ei(p) i \/p2 + rnf, 

(3.2) 

(3.3) 

and where op is the width of the gaussian in momentum space. The flavour state may 

then be defined to be 

\M^t)) = EKi\Mx^&))), (3.4) 
i 

where the mean momenta (p^ of the various mass eigenstates are allowed to be different 

(they could in principle be determined by looking at the specific production process), 

but the widths of the various packets are taken to be equal0. The probability density to 

detect a neutrino with flavour (3 is then given by 

P, \x,t) (3.5) 

hi 
5 T h i s assumption is somewhat suspect. If a source emits a neutrino wave train for a fixed time 

interval At, then the various mass eigenstate wave packets would be expected to have sizes of the order 
<rXi~ViAt, where V{ is the associated neutrino's velocity. Thus, more relativistic neutrinos would be 
expected to have broader wave packets in space. This discussion illustrates the ambiguity inherent in 
discussing neutrino wave packets without reference to some type of source. 
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r dpdp' 
.1 ~2~7 exp. i{p - p')x - %{Ei -Efy 

As mentioned above, the conventional interpretation of this probability density is as 

follows: given that a neutrino of flavour a was produced at the origin at time £=0, the 

probability to detect a neutrino of flavour (3 between x and x + Ax at some later time 

t is given by PA^,/3(x,t)Ax. Indeed, as it stands, this probability density is properly 

normalized over x, since one may easily show that 

/ dx P, :x,t) = i . (3.6) 

The authors of Ref. [54] integrate Eq. (3.5) over time instead of over space in order 

to obtain some sort of oscillation probability as a function of distance. We shall see 

below the approximation that they make before doing the integral, but let us note for 

the moment that the time integral may, in fact, be done directly, since the only time 

dependence in (3.5) is in the oscillating exponential. Proceeding in this way yields 

— /dte-^-W = S(E' - Ei) (3.7) 

= 0{™2 - m])^- \s (p! - Jj? + A S J ) + 6 (p' + a /P 2 + A y ) 

+ 6(m) 

IF 
E, 

1)\P\ 
6 (p ~ v V 2 + A T I ) + 6(p + a/P' 2 + A t- , (3-

where 9{z) is the usual Heaviside function (with the convention that 9(0)=l/2) and where 

we have defined 

A{j = mj - mj . (3.9) 

One may use Eq. (3.8) to reduce the time integral of the probability density to a single 

integration over momentum, but there does seem to be some problem for the terms with 

i=j, since one is left with a piece which goes like l/|p| and which therefore diverges at 

the origin. 
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Instead of performing the time integral directly, the authors of Ref. [54] choose to 

approximate the expression (3.1) for the wavefunction to obtain 

\ipi(x,t: (pi))) ~ ( V ^ r a * ) "exp 

where 

i({pi)x - (Ei)t) 
(X - Vjt)2 

(3.10) 

0~T = 

Vi = 

2o.p 

dEi 
dp P={Vi) 

M 
(EiY 

(3.11) 

(3.12) 

The above approximation ignores the spreading of the wave packet in time, which is 

often a reasonable approximation for sufficiently relativistic wave packets6. Inserting the 

expression (3.12) into Eq. (3.5) allows one to perform the time integral7 to obtain 

» 
. k \Vk\ 

2 -1 - 1 

vf + v] 

X y'f + v2 

1/2 
exp 

x2 (v, - V])2 m) - ( f i ) ) 2 

Ao2{v2 + v2) J 4(j2 vf + v2 

in which the factor 

Ik \V*\ 

has been put in by hand in order to ensure that 

\Uak\ - i 

(3.13) 

(3.14) 

0 
(3.15) 

6 I t is also shown in Ref. [54] how to incorporate some spreading should some of the mass eigenstates 
be non-relativistic. 

7 T h e singularity rioted above has disappeared due to the approximation which has been made and 
the integral is now convergent. Also note that the "cross-term" corresponding to the contributions of 
the i t h and jth mass eigenstate combination receives its main contribution from the time t=tijRi(vi + 

Vj)x/(v'f + vj). Thus, as we noted in Sec. 1.3.2, the pieces with i=j get their main contributions from 
x/vi, while those with i^j get their main contributions from some weighted average of the times for the 
ith and jth mass eigenstates. 
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The damping factor for i^j 
x2 (vt - Vj)- . 

exp -—K
 9 2 (3.16) 

is due to the fact that the wave packets corresponding to different mass eigenstates travel 

at different velocities and hence separate spatially as they propagate. The coherence 

length is then given by 

(3-17) Lf = 2a, 
\ 

vf + V2 

(Vi - Vj)2 

which agrees in the relativistic limit with the intuitive result L^h^axj\vi — Vj\ originally 

obtained by Nussinov [47]. 

It is instructive to consider the limit of Eq. (3.13) as rc—>oo. For very large .r,.all of 

the interference terms are damped out, leaving only the terms with i=j. Thus, 

lim i W . T ) = ^ | W ° ' l 2 n 1 E 
. k 

E \u*i\2 ppi\2\vi\ 1, (3.18) 

which differs from the usual result, which is gotten by setting v,-=l in the above expres

sion, 

H m ^ W = E W 2 M2 • (3-19) 
i 

When all of the mass eigenstates are relativistic, the two results coincide. If one or more of 

the mass eigenstates are non-relativistic, however, a substantial departure from the usual 

result occurs. This phenomenon, if it were true, would actually be quite spectacular, 

for it would have the potential to substantially enhance the regular vacuum oscillations. 

Suppose we consider the two-neutrino case, with the two neutrinos being ue and uT, and 

with s'm0 quite small and 7713 quite large (so that ^3 is non-relativistic.) In this case 

(3.18) becomes 

p 
1 ve-*vr 

'cos2 0 sin 2 0s 1 1 
-—- + -—- sin" 9 cos" 9 ~ cos 9, 

>1 \V3 \ 

[3.20) 
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compared to the usual result, which is 

P„e^T~ljm\26). (3.21) 

Thus even a small coupling to a heavy neutrino would seem to be able to produce quite 

a large flavour-changing probability. 

The end result in Eq. (3.20) is due entirely-to the fact that the contributions of the 

various mass eigenstates to the oscillation probability are weighted by 1/v, which in turn 

arises from the fact that the probability density has been integrated over time. 

3.2 A n A p p r o a c h U s i n g a Current 

Since the response of a detector is typically assumed to be proportional to the flux of in

coming particles, the correct approach to calculating the oscillation probability would be 

to integrate an appropriate current density, rather than a probability density, over time. 

Furthermore, as we shall see, employing a conserved two-current (in 1 + 1 dimensions) 

has the desirable result that once the zero-th component is normalized over space, the 

spatial component is automatically normalized over time and thus, in contradistinction 

with the wave packet approach, no normalization factors need to be put in by hand. It 

turns out however that this method, while in some sense correct in spirit, is not without 

its own difficulties. 

It is not apriori obvious how best to define a current corresponding to the probability 

density in Eq. (3.5). In some sense it should reduce to multiplying the various terms of the 

probability density by appropriate factors of v, but which "t>" does one use in the cross-

terms? It turns out that there is a somewhat "natural" candidate for the appropriate 

current if we work within the context of quantum field theory. In order to simplify our 

calculation, it is convenient to disregard the neutrinos' helicity degrees of freedom, as 
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was also clone above, and to model the neutrinos by free complex scalar fields, d>a(x) s. 

If we take as a requirement that our probability and current densities be the zero-th and 

first components of a conserved two-current, then a plausible candidate is given by 

J^p(x,t) = (Mt)\j$(x,0)\Mt)), (3-22) 

which is the expectation value of the current operator 

j$(x,t) = : i<t>l(x,t) & <f>p(x,t) :, (3.23) 

in the wave packet state 

/'CO 

\Ut))^EKk dqke-iE^fk(g)a^\0). (3.24) 
k J0 

(The reader is referred to Appendix B for a more detailed derivation of the results of this 

section.) 

This current has several attractive formal properties. First of all, it is conserved when 

summed over (3 

d^J^{xtt) = 0. (3.25) 
0 

Furthermore, once the zero-th component is normalized over space, the first component 

is automatically normalized over time. That is, 

fdxJ2J^p(x,t) = l => / d t E ^ O M ) ^ , (3-26) 

in contradistinction with the case considered in the previous section, in which a new 

normalization constant needed to be inserted by hand. 

We may then use this current to define a probability as a function of distance as 

follows 

Pa^p(x) = J dtJl
a^(x,t) (3.27) 

8 W e are modeling Dirac neutrinos, so the "charge" in this case is lepton number. 
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(3.28) 

where 

Pij = \]P2 + ^ V (3.29) 

This current appears to be well-behaved. It is straightforward, for example, to evaluate 

this expression in the limit as x—>oo. For large x all of the oscillations damp out, leaving 

only the diagonal contributions, so that 

Thus, integrating a current density, rather than a probability density, over time appears 

to give the usual result, Eq. (3.19), instead of that obtained in the previous section, 

Eq. (3.18). Indeed, this is as one might expect since, roughly speaking, the current is the 

product of the probability density and the velocity: the extra factors of v thus cancel the 

factors of 1/v which came up in the wave packet approach. 

This approach is not without its own difficulties, however. While it appears that the 

current density itself may be well-behaved, the probability density to which it is associat

ed through the continuity equation can have quite strange behaviour. As an example, let 

us consider the two-neutrino case with one relativistic and one non-relativistic neutrino, 

taking 

lim P a ^ p { x ) - E \U*i\2\Upj 

2 (3.30) 

in which we have made use of the normalization condition 

(3.31) 

(3.32) 

(3.33) 
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1 • 2 o a 

~ - s in 20 
1 

The results for the corresponding probability density are, however, quite strange. Inte

grating the flavour-changing probability density over x, for example, we find 

yP + ™i I 

which is negative. Furthermore, the first of the normalization conditions in Eq. (3.26) 

implies that for the flavour-conserving piece we have 

J dxJ^e(x,t) > 1. (3.35) 

It thus appears that this approach should be abandoned, despite its formal appeal. 

3.3 A Toy M o d e l for a N e u t r i n o Source and Detector 

From the discussion in the previous two subsections it is clear that the formal quantities, 

such as the probability density and probability current, which one might attempt to 

manipulate in order to derive an appropriate oscillation formula do not give reliable 

results. It is for this reason that we wish to improve upon such calculations by presenting a 

simple model for a neutrino source/detector system. As we shall see, framing the neutrino 

oscillation problem directly in terms of the source and detector has the advantage that the 

manipulations which we do (such as integrating some expression over time, for example) 

will be related in a clear way to the "experiment" itself. Furthermore, this approach 

removes all ambiguities concerning the relative shapes and sizes of the initial wave packets 

for the various mass eigenstates, since everything is completely determined by the initial 

and final configurations of the source and detector. Finally, in the model which we 

present, almost all of the calculations may be done by hand with no approximation. This 

will allow for a very thorough understanding of the system. 
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In our toy model, we shall couple the neutrino field to two harmonic oscillators, one 

of which is the "source," and the other of which is the "detector." In this section we 

will model the neutrinos by complex scalar fields, which will simplify the calculations 

considerably 9 : in Sec. 3.3 we consider some of the complications which arise in a more 

realistic calculation with fermionic neutrinos. The physical picture which we have in mind 

is the following. We imagine the "source" and "detector" to be microscopic on the scale 

of some macroscopic "bulk" source and detector, but to also be very massive compared 

to the energy of the exchanged neutrino (so that the dynamical degrees of freedom of 

the source and detector may be ignored.) Thus, the source (detector) could represent 

some nucleus inside a bulk sample which undergoes beta decay (inverse beta decay). The 

spatial ''"widths" of the source and detector in our calculation are then widths appropriate 

to, say, nuclear or atomic dimensions. In principle, the oscillation probability which we 

calculate here should subsequently be averaged incoherently over the physical dimensions 

of the source and detector, although we do not perform this average. If the size of the 

macroscopic source and detector are much smaller than the neutrino oscillation length 

(which they need to be in order to observe oscillations), then this averaging would have 

only a very small effect. 

The interactions at the source and detector will be made explicitly time dependent so 

that they may be turned "on" and "off." This is in keeping with our physical picture. In 

general the source and detector will be in an environment which is "noisy," so that the 

coherent emission or absorption of a neutrino gets cut off after some time due to the in

teractions of the source or detector with its surrounding environment. This phenomenon 

was discussed at some length in Sec. 2.1 (see also Ref. [22, pp.203-206].) The explicit 

turning on and off of the source and detector violates energy conservation microscopically, 

9 T h e main drawback of this approach is that it ignores the neutrino's spin and the characteristic 
V — A nature of neutrino interactions. 
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but that is natural since the interactions of the source and detector with their respec

tive environments involve the exchange of energy. If we choose to look at the source or 

detector in isolation, this exchange of energy appears as energy non-conservation. Note 

as well that although we will first study a single (microscopic) detector which turns on 

and off at a given time, our calculation needs somehow to reflect the fact that the bulk 

detector is always "on." That is, at any given point in time, many of the microscopic 

detectors may be "off," but many will also be "on." We shall consider this question in 

detail once we have first performed the calculation for a single detector. 

Our calculation proceeds as follows. We take the initial state of the system to have the 

source in its first excited state and the detector in its ground state. We then calculate 

the probability that, at some time far in the future, the source is found to be in its 

ground state and the detector in its first excited state. We will construct our model in 

such a way that this interaction will correspond to exactly one neutrino being exchanged 

between the source and detector (to first non-vanishing order in perturbation theory.) 

In this approach, then, the neutrinos themselves are not observed, but are simply the 

exchange particles in the source-detector interaction. In Sec. 3.3.1 we study the case 

with a single neutrino coupled to the source and detector. This will allow for a careful 

analysis of the efficiency of our system at producing and detecting neutrinos of different 

masses. Furthermore, it will allow us to derive a self-consistent formalism which models 

the fact that the bulk detector stays "on" even though the microscopic detectors may 

always be turning on and off. In Sec. 3.3.2 we couple several neutrino fields to the source 

and detector. This will give rise in a natural way to oscillations (as a function of the 

distance between the source and detector) in the probability for the source to decay and 

the detector to be excited. These are "neutrino oscillations," but the neutrino itself is 

never observed! Sec. 3.3.3 contains a brief analysis of the non-relativistic case. 



Chapter 3. Neutrino Oscillations in a Model with a Source and Detector 68 

3.3.1 A Single Species of N e u t r i n o 

In order study the characteristics of our source and detector, we first consider the case 

in which they are coupled to only one neutrino field. This will enable us to study, in 

particular, the efficiency of our source and detector at producing and detecting neutrinos 

of different masses. Our model is defined by the following action 

S = j dAx ( £ j + Ant) + / dtL°q, (3.36) 

where 

4 = -^(x)(n + m2)(j>(x), (3.37) 

L°q = - ^^(0^1^) + ^(i)^2(0 - Olg|(0^2(^, (3.38) 

Ant = -e 1 ( t ) (^(x)g 1 ( t ) / i l (x) + ^(x)gl(t)/i1(x)) 

-e2(t) ̂ (x)q2{t)h2(x) + 0(x)g|(i)/i.*(x)) , (3.39) 

and in which 4>(x), qi(t) and q2(t) represent the neutrino, source and detector fields, 

respectively1 0. The functions e,(t) are explicit functions of time which allow us to "turn 

on" and "turn off" the interactions, and the functions hi(x) (h2(x)) are smooth functions 

of x which vanish outside the source (detector.) Note that we are now working in 3 + 1 

dimensions. The time-dependent functions e,(t) are useful for modelling the real-world 

situation since the nuclei which emit and absorb neutrinos do not do so coherently over 

infinitely long time periods. Rather, the coherent emission and detection is typically 

truncated due to the interactions of the nucleus with its surroundings. 

We quantize the (free) fields in the usual way, requiring 

[0(x,t),7r(y,i)] = tf3(x-y), (3.40) 

[*(*),#(<)] = *• (3-41) 
1 0 Here we are using the word "field" rather loosely, since qi(t) and 92(^) a r e n ° t actually fields. 
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A l l other commutators are taken to vanish. The field operators may then be expressed 

in terms of creation and annihilation operators as follows 

<f>(x) = j dk {a{k)e'lk-x + b\k)eik-x) , (3.42) 

= ^ ( A e - ^ + BlWe*1*), (3.43) 

where 

d k = w n s <344) 

and where the annihilation and creation operators satisfy the usual commutation relations 

[a(k),af(k')] = [b(k),tf(k'j\ = (27r)32£<53(k - k'), (3.45) 

[AUA]] = [BUB}] =2a-. (3.46) 

We interpret al(k) and a(k) in the usual way as the operators which create and annihilate, 

respectively, a neutrino state with four-momentum k. tf(k) and b(k) act similarly with 

respect to the anti-neutrino states. The operators A\ and A,- and B\ and Bi interpolate 

between the energy levels of the harmonic oscillators1 1. 

We take as our initial state 

\s, -co) = |0; 1; 0) = |0)«, ® |l)i <g> |0)2 (3.47) 

in which 

|1>« = At|0)t- (3.48) 

represents the first excited state of the oscillator i and in which |0)̂  is the neutrino 

vacuum state. We wish to calculate the amplitude for the process in which the source 

de-excites to its ground state and the detector is excited to its first excited state. That 

1 1 N o t e that we have allowed the <j; to be complex. Had we not done this, the source would have 
emitted both neutrinos and anti-neutrinos when it decayed. 
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is, 

A = (0; 0; l|.s, oo) = (0; 0: l|Texp -i / Hs(t')dt' s, -oo) , (3.49) 

in which Hs represents the Hamiltonian in the Schrodinger picture. The modulus squared 

of this amplitude is the probability for the transition to take place. 

We shall assume the couplings in the interaction Hamiltonian to be sufficiently small 

that the amplitude in Eq. (3.49) is always much less than unity. This is of course always 

the case in the real-world situation which we are attempting to model - neutrino inter

actions are so weak that perturbation theory is always valid. It is then straightforward 

to evaluate (3.49) using standard techniques to obtain, up to an over-all unobservable 

phase, 

where H^t(t) refers to the interaction Hamiltonian evaluated in terms of the free fields 

in the Heisenberg picture at time t. The above expression may be evaluated explicitly 

in terms of neutrino propagators [55, 57] for arbitrary turn-on/off functions e,(t). We 

find it simpler, however, to require that the source and detector turn-on/off functions are 

never on at the same time, and to furthermore require that the source function always 

turns on first, and then the detector function: this is essentially a trick which allows us 

to use only one of the time orderings in the propagator. If the detector were allowed to 

be turned on before the source, there would in fact be some amplitude for the detector 

to become excited by emitting an anti-neutrino, but this amplitude would be very small, 

since it would violate energy conservation. In our calculations, then, we shall always 

be very insistent that the detector turns on after the source so that our calculation is 

simplified. Under the above assumptions, A may be evaluated using Eqs. (3.42), (3.43), 

(3.45), (3.46) and (3.48) to obtain 

—oo 

'OO 

dt'dt"H»t(t')H«t(0 |0;1;0>, (3.50) 

A 
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X 0{ X' > | ( O / > 2 X x > V ) 2 i ( O M x 0 | 0 ; l : 0 ) (3.51) 

dt'dt''d3x'd3x''dke1(t')€2{t")h1(^*2{^') 

x exp [-i(E - Q2)t" + *{E - Qi)t' + ik • (x" - x')]. (3.52) 

Since the amplitude is proportional to (0\4>(x")(jJ (x')\0), it is clear from Eq. (3.42) that 

this interaction corresponds to the creation and subsequent annihilation of a single neu

trino. It is convenient to choose hi, h2 and ei all to be gaussians since this allows many 

of the integrals to be evaluated exactly. Setting 

we obtain 

A = 

hi(x) = ( v ^ f f . a ) " ' e - M a / 2 ' * i , 

h 2(x) = ( ^ a X 2 ) " 3 e - l x - X D | 2 / 2 ^ , 

ei(t) = e ?e- i 2 / 2 < 

2^otl j dt"dke2(t")exp \-i(E - n2)t" - ^(E - fti)2^ 

--(E2-m2)(<T2
Xl+oi2) + ik-xD 

1 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

1^.) I00 dt"e2(t") r dEexp \-i(E - n2)t" - UE - Qifo2 

47TZXD I . / - c o Jm L I 

sm(kxo), 

where 

k = V E 2 nV 

(3.57) 

(3.58) 

Before choosing an explicit form for e2(t"), there are several features of the above 

expression for the amplitude which we may note. First of all, for large XQ, the amplitude 

decreases like x}]1 so that the probability falls like .rTy2, as one might expect on geometric 

grounds in three dimensions. At the origin, however, the amplitude does not diverge 
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(despite the l/xD factor), due to the sine function in the integrand. A second point 

which we note is that conservation of energy at the source and of momentum at both the 

source and detector are governed by the relative sizes of otl, oXl and oX2. This situation 

is in accordance with the uncertainty principle (and is in fact necessary, as discussed 

above, in order to observe oscillations.) In general, neither energy nor momentum need 

be conserved exactly if the source and detector are localized in space and time. The 

specific set-up which we have chosen favours energies close to the energy of the excited 

source, and momenta close to zero. This latter point is due to the fact that our 

souce and detector have no dynamical.degrees of freedom - they cannot recoil when 

a neutrino is emitted or absorbed - and thus the neutrino gets all of its momentum 

from the uncertainties in the positions of the source and detector. In order to avoid the 

problem that low momenta are favoured, we shall typically choose to set otl'^>oXl2 in 

our numerical work below 1 2 . When several neutrino fields are coupled to the source and 

detector, this will mean that the energies of the mass eigenstates will be approximately-

equal, while their momenta will be determined by their energies. Furthermore, the sizes of 

the neutrino wave packets will then be determined more by the amount of time for which 

the source emits an uninterrupted wave-train than by the localization of the source-field 

interaction in configuration space. In Sec. 3.4, when we extend our analysis to fermionic 

neutrinos, we will allow the source to decay by emitting both a neutrino and its associated 

lepton. In this case the neutrino's momentum will no longer be centered about /c~0. 

It will be useful in what follows to consider two different forms for the time-dependent 

function e2. A n obvious choice, given the forms we have chosen for ei, hi and h-2, is to 

take e2 to be a gaussian. This choice is indeed a useful one in many circumstances, and 

1 2 T h i s is a "trick" which we use to get sensible results, but it is also not unreasonable on physical 
grounds. According to our discussion in Sec. 2.1, for example, this condition is satisfied by several 
orders of magnitude if ax is taken to be on the order of nuclear sizes. The reader is also referred to the 
discussion of Lipkin [39], where this same point is emphasized. 
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we thus define 

efuss(t") = e0
2e-(t"'tD)'/2^-. 

Another useful choice is to take e2 to be simply a step function: that is, 

€2
tep(f) = €°29(t2-t")d(t"-h), 

(3.59) 

(3.60) 

where 9(t) is the Heaviside function. The gaussian detector is thus turned on and off 

gradually at a time centered around tD, and the step function detector is turned on 

abruptly at i i and off again abruptly at time t2. The reader might worry about the 

abruptness with which the step function detector is turned on and off 1 3. We shall address 

such concerns once we have studied the detector more carefully. 

It is straightforward to evaluate the amplitudes for both types of detectors and we 

obtain 

•4Sauss = NV2^at2 £ ° dEexV [ - ^ ( £ - fl^cr 2 - 1-{E - n 2 ) V 2 

l-k\ol+ol2)-i(E-Sh)tD sh\{kx (3.61) 

A. step 
NO n f rW s m [ ( ^ - 0 2 ) ( t 2 - t 1 ) / 2 ] 
N(t2 -h) dE 7 r ^ 7 1 TTTTvi e x P 

[(E-n2){t2-ti)/2] 
•-{E-Q,2){h+t2) 

^ i ) 2 4 - \k\a2
Xl + c r 2

2 ) sin(A;.T£)), 

where 

N = 
exe2otl 

(3.62) 

(3.63) 
(27r>V2^-

It is not possible in general to obtain an analytic closed-form solution of these integrals, 

but they are simple to evaluate numerically. In so doing, we obtain exact 1 4 solutions 
1 3 I t is well-known that turning on the detector too quickly can result in the excitation of the detector 

without its absorbing a particle. In our case, the detector would actually emit an anti-neutrino (which 
we cannot observe). This process is usually forbidden by energy conservation, but when the detector is 
turned on too quickly the energy distribution becomes very broad. 

1 4 "Exact" to second order in perturbation theory, that is. As we have argued above, however, second 
order perturbation theory is nearly exact for neutrino interactions. 
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to the problem which we are studying, including all effects due to the spreading of the 

neutrino wave packets. 

As indicated above, it is important to understand the efficiency with which our 

source/detector system produces and detects neutrinos, since this has a direct bearing 

on whether or not some of the mass eigenstates will dominate the oscillation probability. 

We are also interested in examining effects due to the time resolution of the detector (in 

order to see if oscillations may truly be "revived" after the wave packets have separated) 

and in providing a self-consistent formalism which models the fact that the bulk detector 

stays "on" even though the microscopic detectors may always be turning on and off. In 

order to understand these issues, it is convenient to fix most of the parameters of the 

theory and to vary the neutrino mass and the various parameters having to do with 

when and for how long the detector is turned on. For the purposes of the numerical work 

below, then, we fix the following parameters 

n± = 0 2 = 10, (3.64) 

oXl = crT2 = .1, (3.65) 

otl = 1, (3.66) 

where the units are arbitrary, but may be taken to be fixed by, for example, the value of 

fi. Later on we shall also consider the effects of varying oXi. 

Let us study the step function detector first. Recall that the step function detector 

turns on at t\ and off at t2. We define a modified "probability" associated with the 

amplitude in Eq. (3.62) as follows 

T W - W i , ^ ) = \ Astep(xD,t1,t2)\2/N2, (3.67) 

where we have divided through by N2 because the value of that constant (including 

the fall-off as x})2) is not really of interest to us - in any calculation of the oscillation 
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probability N2 always factors out. We will use the step-function detector to model a very 

long "coherent" detection process. That is, each of the microscopic detectors in the bulk 

detector stays "on" for the entire time that the neutrino wave packet passes by. This 

is straightforward to model: we simply fix ti>0 to be some time before the first bit of 

neutrino flux arrives (ti<Xjj — otl) and allow t2 to go to infinity. We will refer to this 

type of a detector as a "coherent" detector, to be distinguished from the "incoherent" 

detector which we shall discuss below. 

Fig. 3.1 shows a plot of the probability in Eq. (3.67) as a function of t2 — t\, which 

is the amount of time for which the detector is turned on. In this figure, the energy 

of the neutrino is fixed to be ~Qi=fi 2 =10 and the the momentum of the neutrino is 

determined by its mass. The various curves correspond to masses ra=l,2,...,9, with 

m=9 being quite close to threshold. Also, the detector is positioned at XD=10 and is 

turned on at time ti=5. We may make several observations concerning this figure. First 

of all, the curves each approach a constant as t2^>-oo. This is as one would hope: after 

a sufficiently long period of time, the entire wave packet has passed the detector and so 

the probability to find the detector in an excited state no longer changes (the subsequent 

decay of the detector would be a higher-order process which we do not consider here.) 

Two other characteristics of these curves which are obvious from the figure are that 

the curves corresponding to higher masses begin their ascent at later times and that 

the asymptotic values of the curves as t2—>oo are larger for larger masses. This latter 

point shows that this source/detector system is more efficient at producing and detecting 

heavier neutrinos. The first property is easy to understand. The more massive neutrinos 

travel more slowly and hence take longer to get to the detector. In order to understand 

the second property, it is convenient to appeal to an approximate form of the limit of 

Eq. (3.62) as t2—>oo (the reader is referred to Appendix C.) This approximation is valid 
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Figure 3.1: Plot of the (unnormalized) probability Vstep (Eq. (3.67)) in the case of a 
single neutrino. The probability is plotted as a function of to —1\, which is the amount of 
time for which the detector is left on. The various curves correspond to the probabilities 
to detect different mass neutrinos, with m=l,2,... ,9, as indicated in the figure. This 
detector is more efficient at detecting heavier neutrinos. 

for masses not too close to the production and detection thresholds (m<<£S7, — l/otl) and 

for tx corresponding to a time before any appreciable amount of flux has arrived at the 

detector and yields 

lim AsteV{xDMM) - -iNirexp lkxD - -{Vt-2 ~ fti)2CT2 

_ - ( f i | - m 2 ) « + < ; (3.68) 



Chapter 3. Neutrino, Oscillations in a Model with a Source and Detector 

where fc=(r2'| — m 2 ) 1 / 2 . Note that the coherent detector "picks out" momenta correspond

ing to the energy Sl2• From the above expression it follows that 

- - P [<">2 - ' » ' 2 ) « + <*>] • (3.69) 
Vstep{m'\xD,thoo) 

demonstrating that indeed the system is more efficient at producing and detecting higher-

mass neutrinos. It has been found numerically that the ratios of the asymptotic values 

(as t-2—>oo) of the curves in Fig. 3.1 are in excellent agreement with the expression in 

Eq. (3.69). 

The mass-dependence of the source/detector system arises due to the fact that our 

source and detector favour neutrino states with momenta close to zero. This feature 

was predicted already in the discussion following Eq. (3.57) and is due to the fact that 

the source and detector in our model cannot "recoil" and thus the neutrino gets all of 

its momentum from the uncertainty in the positions of the source and detector. Thus 

the upper limit on the neutrino's momentum is given by kmax~l/oXl2. Note that the 

preference for non-relativistic neutrinos is essentially a quirk of our model and is not 

due to the fact that non-relativistic neutrinos "spend more time in the detector." The 

mass-dependence of the system can be minimized by setting oXl2 to be much less than 

Qj~2. i n s u c n cases, the step function detector becomes nearly "ideal;" that is, it detects 

neutrinos of different masses with nearly the same efficiency. 

Let us return briefly to the question of the abruptness with which the step function 

detector is turned on and off. Since the probability which is measured by the step 

function detector does not depend on the actual values chosen for t\ and t 2 (provided 

that ti corresponds to a time before the first bit of neutrino flux arrives and that £2 

corresponds to a time after the last bit has passed) we could actually consider ti and t2 

to be smeared out, and the abruptness with which the detector is turned on and off need 

not concern us. 
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We now turn to the gaussian detector and define a modified probability in analogy 

with Eq. (3.67) 

Pgauss(#£>,t£>,<7i2) = |-4gauss(̂ £>, <£>, OU )\̂  /N*• (3.70) 

This expression gives the probability that a given microscopic detector - turned on for 

a time o~t2 centered around the time to - is excited. We need to convert this expression 

into one giving the probability that the bulk detector "detects" the neutrino (i.e., that 

one of the micropscopic detectors is excited.) We assume that the bulk detector is "on" 

for all tD>0 - in the sense that at any given time many of the microscopic detectors are 

"on" - but that the microscopic detectors themselves turn on and off randomly, so that 

the number which are "on" at any given time is roughly constant. Then the probability 

that the bulk detector "detects" the neutrino is proportional to the integral of Eq. (3.70) 

over to10- We thus refer to this type of bulk detector as an "incoherent" detector, since 

we sum the probability incoherently over different times. 

Before integrating Eq. (3.70), let us examine its behaviour as a function of m and 

to. Fig. 3.2 shows a plot of this expression as a function of to for a fixed width ot2 = l. 

We have again placed the detector at .T£) = 10 and the various curves correspond to neu

trino masses m = l , 2 , . . . , 9 , as before. As one might expect, the curves corresponding 

to higher-mass neutrinos are displaced to the right since they travel more slowly. We 

1 5 Consider first a simpler case in which there are N detectors, turning on and off at times centered 
about ti<t2<-• .<*a<. Each of them has probability e to detect the neutrino, but only if one of the 
previous detectors has not already detected it. Then the probability that none of them detects the 
neutrino is (1 — e)N, that the last one detects it is (1 — e) j V _ 1 e , that the second last one detects it is 
(1 — e ) i v _ 2 e , and so on. The probabilities for the A r + 1 distinct possibilities sum to unity, as required. 
The probability that the neutrino is detected is then 1 - (1 - e)N=Ne - N\e2/(N - 2)!2! + . . . ~ i V e 
if iVe<Cl, that is, if the probability of detecting the neutrino in the bulk detector is much less than 
one, which is certainly the case. In the case at hand suppose that ti corresponds to a time before any 
appreciable flux has arrived at the detector and t^=t\ + T to a time after till of the flux has passed. 
Then 

N (M - \ ) N ( N - r i i + T 

Y ^ V i x D ^ ^ ^ - ^ r ^ Y . 9 ^ ^ ) ^ - - ^ - dtDV(xD,tD). (3.71) 
i=i i=i • ' ' i 
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Figure 3.2: Plot of the "modified probability" Pgauss (Eq. (3.70)) for the case of a single 
neutrino. The probability is plotted as a function of tD, for a fixed value of the width, 
<7t2 = l . The various curves correspond to ra=l, 2 , . . . , 9, as indicated in the figure. 

also note that the area under the curves appears to increase for higher masses. For the 

"incoherent" measurements which we have described, this would correspond to having a 

higher probability to detect more massive neutrinos. Finally, note that the probability 

is negligibly small at the origin, as required. 

The time integral of Eq. (3.70) may actually be done explicitly, as we shall now show. 

Let us define the following unnormalized time-integrated probability 

roo 

V\ncoh(xD, at*) = J dtDVg^ss{xD,tD,ot2). (3.72) 

Since the integrand is symmetric under t̂ —>—tr;, we may formally extend the integration 



Chapter 3. Neutrino Oscillations in a Model with a Source and Detector 80 

to negative infinity and divide by two. The time integral then reduces to a delta function 

in energy and allows us to perform one of the energy integrals. As a result, we obtain 

/•CO . 

Vincoh(xD,ot2) = 2ttV 2 / dEexpl-iE-n^ol-iE-^fol 
Jm 

~k2(o2
Xl+ol_)}sm2(kxD). (3.73) 

If m<^£l — otl2 and otl2^>oXl2 (the latter condition is always assumed) then we may 

approximate the above expression by setting sin2(fc.T£>)~l/2 to yield 

Vincoh{xD, ot2) ~ - exp [m2(o2
Xi + o2

Xn)] 
( 4 + 4 + < + 4 J 

x exp - f>2a2 - tiio (3.74) 

Thus, under the above conditions the "incoherent" gaussian detector has the same mass-

dependence as the step function detector does (cf. Eq. (3.69)) 

V\nco\,{m:,xD,at2 exp [(m2 - mr2)(o2
Xi + a 2 j ] . (3.75) 

rP-mcoh(m';xD,ot2 

This fact is rather remarkable and shows again that it is correct to perform the time 

integral in Eq. (3.72). 

Fig. 3.3 shows a plot of the time-integrated probability, Eq. (3.73), as a function 

of the neutrino mass for the same set of parameters as in Fig. 3.2, as well as for the 

case in which aXl2=0.05. This probability may be regarded as giving a measure of the 

efficiency with which the system produces and detects a neutrino of a given mass. For 

convenience, the probabilities have been normalized to their values at m=0. In each case, 

the solid line gives the exact result and the dashed line shows the approximation for non-

threshold masses derived in Eq. (3.74). Clearly the approximation is quite good if the 

mass is not too close to the neutrino production and detection thresholds. Furthermore, 

it is clear that this detector can be made "ideal" (that is, the probability to detect a 
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Figure 3.3: Plot of the "incoherent probability" 7-\ncoh (Eq. (3.73), normalized to its value 
at m=0) as a function of mass for the case of a single neutrino, taking oXl =0.1,0.05. 
In each case, the solid line shows the exact result and the dashed line shows the result 
obtained in the approximation of Eq. (3.74). The dash-dotted line shows a plot of 1 /v(m) 
for comparison. 

neutrino may be made mass-independent) by using suitably small values for oXl2. The 

mass-dependence for large oXl2 occurs for the same reason as in the case of the step 

function detector and is due to the fact that the source and detector in our model cannot 

recoil (cf. the discussion following Eq. (3.69).) For sufficiently small oXl2) neutrinos of 

different masses are detected with nearly the same efficiencies and the detector becomes 

"ideal." The dash-dotted line shows a plot of l/i>(m), which would be the analogous 

efficiency inferred from the calculation in Ref. [54]. 
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Before coupling more neutrino fields to the source and detector, let us first summa

rize our results for the single-neutrino case. We have coupled the neutrino field to two 

harmonic oscillators, one of which acts as a neutrino "source" and the other of which 

acts as a neutrino "detector." These are understood as being microscopic constituents of 

larger macroscopic "bulk" sources and detectors. We have shown that the system is easily 

solved in second-order perturbation theory, which is perfectly adequate when considering 

neutrino interactions. The neutrino in this system is never "observed" directly: rather it 

is the exchange particle which mediates the source-detector interaction. We have taken 

the source and detector to be localized both in space and in time. The uncertainties in 

the turn on/off times and in the spatial couplings of the source and detector lead natural

ly to uncertainties in the energy and momentum of the exchanged neutrino: that is, the 

neutrino is produced as a wave packet, whose characteristics are completely determined 

by the source and detector configurations. This fact will be extremely important when 

we consider neutrino oscillations because the relative characteristics of the wave packets 

corresponding to the various mass eigenstates will be completely determined and need 

not be put in by hand. 

We have considered two different types of macroscopic "bulk" detectors. The first type 

we have called a "coherent" detector, since each of its microscopic constituents makes a 

long coherent measurement of the neutrino wave packet. The second type we have called 

an "incoherent" detector, since in our calculation we have summed incoherently over a 

large number of (microscopically coherent) detection events. In our study of these two 

types of detectors, we have noted that they are not in general "ideal" detectors, since 

they are generally more efficient at detecting low-momentum neutrinos. This effect is 

well-understood and is simply due to the fact that our source and detector are "fixed" in 

the lab system and thus tend to favour neutrino momenta close to zero. Put another way, 

since the neutrino is the only decay particle in this model, all of its momentum comes 
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from the uncertainties in the positions of the source and detector: that is, k<l/oXl 2 . It 

turns out that it is easy to tune the parameters of the theory in such a way that this 

effect is negligible and thus we do not generically get the 1/v dependence suggested by the 

calculation in Ref. [54]. Nevertheless, this simple calculation demonstrates the important 

point that for non-relativistic neutrinos the production and detection efficiencies might 

in general be expected to be mass-dependent. Such a mass dependence could in principle 

skew the oscillation probability such as occurred in Ref. [54]. Finally, we note that the 

formalism which we have developed for the incoherent detector (of integrating over to) 

yields the same mass-dependence of the detection efficiency as is found for the coherent 

detector and this gives us additional confidence that this method is indeed justified. 

3.3.2 Several Neutr inos 

Now that we have studied the characteristics of the source/detector system in the single-

neutrino case, we turn to the case in which there are several neutrino fields coupled to 

the source and detector. Suppose that there are N different neutrino mass eigenstates. 

Then, in order to model the real-life situation, we suppose that there are also several 

different types of sources and detectors, each of which couple to a given unitary linear 

combination of the neutrino mass eigenstates. The action of Eq. (3.36) is then generalized 

to 

S = j d4x ( £ j + A„t) + /dtL° q, . (3.76) 

where 

L°g = £ [ ^ ^ ( 3 J 8 ) 

Ant = - £ [ e i ( < ) ( ^ , 4 ( a ^ ^ 
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+e2(t) (U^d>l(x)q^{t)h2(-x.) + UmUz)Q2\t)h*(x))} , (3.79) 

and in which hi is a unitary matrix. Note that the subscripts "1" and "2" on the functions 

e and h and on the fields q refer, respectively, to the source and detector. These should 

not be confused with the subscripts on the fields <f> which refer to the mass eigenstates. 

Also note that we have taken e and h to be independent of the flavour or mass eigenstate 

in question. In principle there could be such a dependence, but including it would 

unnecessarily complicate our analysis. In what follows, we shall also set P?=f>i, Vce, in 

order to "idealize" our sources and detectors. 

The experimental set-up which we wish to consider is a simple generalization of that 

given in the previous section. In this case we imagine that the initial state of the system 

has an o-fiavour "source" oscillator in its first excited state and that the final state has 

a /3-fiavour "detector" oscillator in its first excited state. The amplitude for this process 

may then be calculated as in the single-neutrino case and we find 

Aa-*p = - E ^ X . i 0 ; 0 ; 1 / ? ! / dt'dt"d3x'd3x"6i(t')e2(t") 

x0 J(:r")^ t(t")^(x")0!(.T')^(t')^i(x')|O: 1„; 0) (3.80) 

= - Y^U&Ki f dt'dt''d3x'd3x''dkei(t')e2(t'')hi(x.')hr2(x'') 

x exp [-i(Ei - Ct2)t" + i(E{ - fii)*' + ik • (x" - x')], (3.81) 

in which we have defined 

Ei = a / ^ 2 + ml (3.83) 

Taking hi, h2 and ei to be gaussians with widths oXl, oX2 and atl as in the single-neutrino 

case (see Eqs. (3.53), (3.54) and (3.55)), we may further simplify this expression 
/2neil<7tl 

A^p = E" /«Wi r d f e ^ rdEexp[-t(E-a2)t" 
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sm(kiXD), (3.84) 

where 

\IE2 - mj. (3.85) 

This expression is clearly just a simple generalization of Eq. (3.57). The final step in our 

calculation is to substitute in the expressions (3.59) and (3.60) for e2(t") in the gaussian 

and step function detector cases. This yields 

Af™ = NV2^ot2Y^K, dEexp 
.inn 

sin(kiXD), (3.86) 

ATJp = Nih-t^^KJ dE 
• 0 ° j r , s m [ ( S - f l 2 ) ( t 2 - * i ) / 2 ] 

[(E — Q 2)(t 2 — ti)/2] 
sm(kiXD) 

x exp --AE - Q.2)(tx + t2) - -(E - Qi)X - TMO\ + al) (3.87) 

where N is defined in (3.63). 

We are finally in a position to define the oscillation probability as a function of distance 

for the two cases. In both cases our definition of the probability is a "physical" one. We 

imagine that the source produces neutrinos of type a (a=e,p,T,...) and that we set a 

/3-neutrino detector at some distance x& from the source. We prepare the source (or an 

ensemble of identically prepared sources) in an excited state, wait a long period of time, 

and then check to see if the detector has been excited. After repeating this experiment 

enough times to get good statistics, we repeat the procedure with a /^'-neutrino detector, 

and so on. The probability to observe a j3 neutrino is then simply the number of events 

observed in "/?-mode" divided by the total number of events in all modes. Since we have 

attempted to make our source/detector system as "ideal" as possible, there are no further 

corrections for detector efficiencies or anything of that nature. The normalized coherent 
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and incoherent oscillation probabilities may then be defined as 

lim (3.88) 
step 2 ' 

2 

VT$(xD,ot2) 
Jo^dtn Af^(xD,tD:oh) (3.89) 2 2 ' 

Zef0°°dtD ATZsp(xD,tD,at2) 

It is understood in the first expression that ti is taken to be some time before the first 

bit of neutrino "flux''' arrives at the detector. 

The expressions which we have derived for our two types of detectors are in forms 

which are amenable to numerical calculation. The coherent probability may be found 

after a single integration over energy and the incoherent probability requires two integra

tions, one over energy and one over time. In the two-neutrino case, the time integral in 

Eq. (3.89) may be done by hand, but this is not possible in general for more neutrinos. 

The reason for this is that the integrand is no longer symmetric under tD^>—tD due to 

the possible presence of phases in the mixing matrix hi. 

Let us examine the case for two flavours in some detail. In that case, the matrix hi 

may be taken to be a real orthogonal matrix parametrized by one angle, 6. The time 

integral in the numerator of (3.89) may be performed explicitly and we find 

x exp [-(E - -{E- n2fol - (E2 - (m? + m 2 ) / 2 ) « + < ) ] . (3.90) 

Fig. 3.4 shows several plots of the flavour-conserving probability Ve^e{xo) as a func

tion of X£, for two relativistic neutrinos, using both the "coherent" and the "incoherent" 

detector. The various parameters chosen for the plot are as indicated in the figure. Re

call that Q,i and 02 (set equal here) are the energies of the excited source and detector, 
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Figure 3.4: Oscillation probabilities as a function of distance. The two curves in (a) 
correspond to the "incoherent" detector with time resolutions ot2 = l,2. The solid curve in 
(b) gives the "incoherent" probability for <ji2=0.1. The dotted curve shows the analogous 
result obtained in the wave packet approach. The solid curve in (c) shows the probability 
measured by the "coherent" detector. 
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respectively. Since we have chosen to set crXi<^ain the energies of the mass eigenstates 

are approximately equal to Q and their momenta are determined by their energies. 

The values employed here for 0, mi and m 2 are chosen merely for the purpose of 

illustration. Note that the curves do not go all the way to xjy=0, since our formalism is 

not valid for very small XQ. The expressions themselves are mathematically well-defined 

but they have no physical meaning 1 6. 

Figs. 3.4(a) and (b) show plots of the probability for detecting the same-flavour neutri

no as emitted in the case of an "incoherent" detector (see Eq. (3.89)) for several different 

values of the time resolution of the detector, oin_. The dotted curve in (b) is the analogous 

result derived using the wave packet approach of Sec. 3.1. This appears to be a good 

approximation to our result in the limit as crt2—»0. It is clear from these plots that the 

coherence length of the oscillations is dependent on the time resolution of the detector: 

that is, as we discussed in the previous chapter, a long coherent measurement in time is 

capable of "reviving" oscillations of neutrinos whose mass eigenstate wave packets have 

become physically separated. This effect is particularly striking in the case of the proba

bility detected by the coherent detector, shown by the solid curve in Fig. 3.4(c). In this 

case the oscillations appear to have been completely revived even after, according to an 

"incoherent" measurement (dotted curve), the wave packets have completely separated. 

We have already discussed to some extent in Sec. 2.2.1 how it is possible for a long 

coherent measurement in time to revive the oscillations of neutrinos even after the mass 

eigenstates have separated spatially. Essentially, the accurate measurement of the energy 

picks out the plane wave in the wave packet which has existed coherently through both 

pulses. Our present approach allows for a complementary way to view the situation. The 

idea that "the mass eigenstates have separated spatially" is based upon the notion that 
1 6 Reca l l that we require the source to turn off before the detector turns on in order that we may drop 

one of the time-ordcrings in the neutrino propagator. The reader is referred to the discussion following 
Eq. (3.50) for more details on this point. 



Chapter 3. Neutrino Oscillations in a Model with a Source and Detector 89 

Figure 3.5: "Snapshots" of two mass eigenstate wave packets using incoherent detectors 
with different time resolutions. The wave packets have been individually normalized over 
Xjy. In (a) the time resolution of the detector is such that the wave packets appear to 
be nearly separated, while in (b) the same wave packets appear to overlap due to the 
broader temporal resolution in that case. 
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the characteristics of the neutrino wave packets are determined at some initial time and 

then are propagated forward in time. In our case, however, there is no need to regard the 

production of the neutrinos as somehow being special compared to their detection. Indeed, 

a cursory examination of the expression for the incoherent probability (see Eqs. (3.89) 

and (3.90)) reveals that it is completely symmetric in the parameters describing the 

production and the detection of the neutrino! There is thus no need in our calculation 

to refer to the neutrino "wave packets" as being objects which have some significance 

on their own, independent of their detection. If indeed we wish to refer to a neutrino 

wave packet, however, we could define it as being what the detector measures in the 

limit as oto,oX2—^0. In this limit the detector sees the wave packets "as they are." 

For non-zero values of ox.2 and ot2, the widths of the detector are "folded in" and the 

detector sees wave packets which have been broadened .somewhat. Thus, whether the 

wave packets corresponding to two mass eigenstates have separated or not depends on 

the temporal and spatial resolution of the detector. We may demonstrate this effect 

by way of an example. To do this, it is instructive to take a "snapshot" of the wave 

packets corresponding to two different mass eigenstates at a fixed time tD = 150 using the 

incoherent detector with different widths, ot2. Figs. 3.5(a) and (b) show the detection 

probabilities (given by Eq. (3.70), but separately normalized over xD) for the two mass 

eigenstates. In (a), the time resolution of the detector is taken to be ou = l and there is 

almost no overlap between the two wave packets. Indeed, comparison with Fig. 3.4(a) 

shows that, for a?rj~150, the oscillations have been almost completely damped out. If the 

detector is taken to have a broader time resolution as in Fig. 3.5(b), however, the wave 

packets appear to have a non-negligible overlap. In this case the width due to the finite 

time resolution of the detector has been added to the original widths of the wave packets. 

Comparison with Fig. 3.4(a) shows that in this case the oscillations have not yet been 

wiped out for xD&150. From this point of view, then, the fact that the conventional "wave 
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packet" approach for relativistic neutrinos agrees with the source/detector approach (see 

Fig. 3.4(b)) for very small ou_ is not that surprising. The wave packet approach simply 

ignores the finite time resolution of the detector. 

The "incoherent" and "coherent" probabilities, Eqs. (3.89) and (3.88) may both be 

reliably approximated in the relativistic limit. Setting 0 = Q i = H 2 for convenience, we 

obtain 1 7 

Vc
atp(xD) ^ ^ YUHUMH^J exp [i(kt - ki)xD + (m 2 + m2)(o2

Xi + a 2 J /2] (3.91) 

and 

J i,3 

X% (l/vt ~ 1/Vjf 

x exp 
4 ( 4 + 4 ) 

for the coherent and incoherent cases, respectively, where we have defined 

(3.92) 

X = E ^ e x p [ m 2 ( c T 2
i + a 2

2 ) , ] (3.93) 

k = ^ 2 - m 2 , (3.94) 

vt = ki/n. (3.95) 

These expressions are identical except for the damping of the cross-terms which occurs in 

the approximation for the "incoherent" case, Eq. (3.74). Note that the oscillation length 

which may be extracted from either of these expressions is exactly what one finds in the 

usual approach, with no spurious factor of "2." The approximation for the "coherent" 

case contains no damping whatsoever, demonstrating that an infinitely long coherent 

measurement does indeed completely revive the oscillations of the neutrinos! We also note 

1 7 W e have used the approximate form of Astep given in Eq. (3.68) in order to derive Eq. (3.91). Also, in 
deriving Eq. (3.92) we have dropped the highly oscillatory terms in the integrand since they are strongly 
damped for xo>atl + crt2. Recall that our calculation is only sensible for X£,<atl + at2-
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that, while our expression for the incoherent case, Eq. (3.74), bears some resemblance to 

the analogous expression obtained in the wave packet approach, Eq. (3.13), our expression 

has an intrinsic dependence on the temporal and spatial resolution of the detector which 

is ignored in the wave packet approach. Finally, we note the absence of factors of l/t>, 

pre-multiplying the exponentials such as occurred in the wave packet approach. 

3.3.3 The Non-re lat iv is t ic Case 

It is worthwhile to consider briefly the oscillations of non-relativistic neutrinos in our toy 

model. Let us assume that one of the mass eigenstates is relatively light and let us study 

the behaviour of the oscillation probability as the mass of the other neutrino (in the 

two-neutrino case) is varied. Furthermore, let us restrict our attention to the case of the 

incoherent detector, which is the more realistic of the two detector types. As the mass 

of the heavier neutrino increases, the packets separate more quickly and, for sufficiently 

non-relativistic neutrinos, the oscillations are damped out almost immediately. It is 

convenient, then, to simply study the asymptotic expression 

C J K ) = J i m , Vi?$(xDlat2). (3.96) 

The main non-relativistic effect in our toy model is the effect due to the model's depen

dence on oXl 2 . Recall from our discussion in Sec. 3.3.1 that our source and detector are 

more efficient at producing and detecting non-relativistic neutrinos (see also Fig. 3.3.) 

This dependence skews the results for the oscillations, as one might expect. 

In Fig. 3.6 we have plotted the probability for a ue to be detected as a ue in the 

limit as xD^oo (V^e in Eq. (3.96)) as a function of the mass of the heavier neutrino. 

The various curves correspond to different values of oXl 2 , the spatial resolution of the 

source and detector. For larger values of oXl,, this probability is indeed skewed quite 

dramatically due to the fact that the heavier mass eigenstate starts to dominate the 
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Figure 3.6: Plot of the constant flavour-conserving probability, V^\e, defined in Eq. (3.96) 
as a function of the mass of the heavier neutrino. The solid lines correspond to spatial 
widths oXl 2 =0.01, 0.05, 0.1,0.15 and the dotted line shows the value obtained in the wave 
packet approach (cf. Eq. (3.18).) 

probability distribution. Recall our earlier explanation as to why this occurs in our 

model. Since our source and detector do not "recoil" when the neutrino is emitted or 

absorbed, the upper limit on the neutrino's momentum is given by kmax^l/oXl 2 (the 

reader is referred to the discussion following Eq. (3.69.) We emphasize, however, that 

this effect is an artifact of our model and would not be expected to occur in more realistic 

models. We shall discuss this point further below when we consider how our approach 

might be extended to the more realistic case in which the neutrino is not the only decay 

particle emitted. Note also that as m2 increases above the production/detection threshold 



Chapter 3. Neutrino Oscillations in a Model with a Source and Detector 94 

all of the solid curves approach the same value of cos2 9. (How abrupt the threshold is 

depends on how large otl and ot2 are, of course.) The dotted curve gives the generic 

result derived in the wave packet approach [54]. We see no evidence in our model for this 

type of 1 jv behaviour. 

3.4 Towards a M o r e Realist ic Calcula t ion 

In this section we show how the bosonic model of the previous section may be modified 

to account correctly for the fermionic nature of the neutrinos (which we shall assume 

to be Dirac neutrinos) and for the V — A nature of neutrino interactions. Once again 

the source and detector will be modelled by harmonic oscillators. This time, however, 

the oscillators will be coupled to the usual V — A leptonic current rather than simply to 

the neutrino field. As a result, the interactions at the source and detection points will 

involve both the neutrino and its associated charged lepton. It is convenient to take the 

initial state to consist only of the source and detector, both in their first excited states. 

The source decays by emitting a neutrino and its associated charged anti-lepton, and the 

detector decays by absorbing the neutrino and emitting another charged lepton: 

This sequence of events is illustrated schematically in Fig. 3.7. The system may be 

described by the following action 

(source)* u(k) + laiPi) + (source) 

u(k) + (detector)* -> lp (p2) + (detector). (3.97) 

(3.98) 

where 

(3.99) 
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Figure 3.7: A schematic illustration of the sequence of events in the source/detector 
system for fermionic neutrinos considered in Sec. 3.4. The .excited source decays by 
emitting a neutrino and its associated anti-lepton. The detector subsequently absorbs 
the neutrino and emits a lepton. 

L°q = E ^ W t f W - n ? ^ (3.100) 
a 

Ant = - £ [ e i ( 0 t f ( 0 M x ) j t o ^ (3.101) 
a 

and where 7° (re) is the zeroth 1 8 component of the leptonic V — A current 

Ja(x) = Uctilaf'PlViix), la = e, p, T, [3.102) 

1 8 I n a more realistic calculation, one might perhaps couple the V — A current to a current representing 
the initial and final nucleus. If these nuclei are sufficiently non-relativistic then it is a good approximation 
to consider only the zeroth component of the current. 
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with PL=(1 — 7°)/2. Once again, e-^2) and hi(2) are functions which parametrize the 

temporal and spatial couplings of the neutrino and lepton fields to the source (detector). 

The calculation of the amplitude proceeds in complete analogy with the calculation 

for the bosonic case and we shall omit most of the details. As above, we take e\{t) 

(e2(t)) to be a gaussian of width atl (<rt2) centered at t=0 (t=tu) and ^i(x) (/).o(x)) to 

be a gaussian of width oXl (oX2) centered at x=0 (x=x 0 ) (see Eqs. (3.53), (3.54), (3.55) 

and (3.59).) Thus, we omit here the case of the (coherent) "step function" detector and 

consider only the (incoherent) "gaussian" detector. Also, recall that the energies of the 

source and detector are 171 and Q2, respectively. The amplitude to detect a neutrino of 

flavour (3 given that a neutrino of flavour a was emitted at the source is then given by 

r cPk f 1 

Aa^0 = (2n)e1€2(Ttlot2 Y,UfcUli J ( 2 7r) 32E- 6 X P ~2^1 ~ E ^ ~ E i ^ a ^ 
1 1 1 

- - ( f i 2 + Ei - E{p2)fol - -|k + p i l 2 ^ - -|k - p 2| 2(J 2
2 - iE(tD + ik • x c 

X Mp2h°PL(Hm)i0PLVa(ih), (3.103) 

in which the subscripts on the u and v spinors refer to their flavours; the spinors also 

have an implicit spin index which has been omitted. 

The above expression for the amplitude is qualitatively similar to the analogous ex

pression, Eq. (3.86), derived previously in the bosonic model, with a few notable excep

tions. On a technical note, we see first that it is no longer possible to perform the angular 

parts of the k integral exactly as was done in the previous case. This occurs because 

of the presence of the momenta of the charged leptons, p i and p 2 , which complicate 

the integrand somewhat. A related point is that now the neutrinos' momenta are not 

centered around zero, as was the case above. Rather, we have for the momenta 

k « - p i , (3.104) 

k « p 2 (3.105) 
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and for the energies 

fii ~ E(Pl) + Eu (3.106) 

Ei + n2 « E(p2), (3.107) 

where Ei is the energy of the ith neutrino mass eigenstate. The relations (3.104)-(3.107) 

are only approximate equalities since the degree to which each of them holds is determined 

by the relative sizes of o~Xl,. .. , au. The fact that the neutrinos' momenta are not centered 

about the origin is rather encouraging because it indicates that this model would not be 

expected to have the (unphysical) feature that it favours non-relativistic neutrinos, as 

was the case in the bosonic model of the previous section. The final difference, compared 

to the bosonic case, is the presence of the matrix element, up .. .va, which contains all 

of the information regarding the neutrinos' spin. It is interesting to note the presence of 

the factor 

( * + m i ) (3.108) 
2Ei •' 

which arises in this case from the sum over spins of the neutrino u spinors, J2S us (kj)us (k(). 

This same factor appears in the field theoretic calculation of Ref. [55], but in that case is 

due to an integral in the complex fco plane which extracts the pole of the propagator [64]. 

We need not do any such integration since we always insist that our source be turned 

"off" before our detector is turned "on." This forces the neutrinos to always be on-shell. 

It would be possible at this point to proceed as we did in the previous section. First 

we could examine the response of the detector to the source by looking very carefully at 

the case in which there is only one neutrino. Armed with this knowledge we could define 

the probability in analogy with the bosonic case and study its behaviour as a function 

of the various parameters of the theory. While this progam might be deserving of future 

study, for now we shall content ourselves with a more qualitative examination of the 

generic features of this model. 
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As we have noted, two of the main qualitative differences between this model and our 

former bosonic model are the different energy-momentum conservation equations and 

the presence of the matrix element in the integrand. A further difference is that in order 

to obtain the oscillation probability, we now need to integrate over the momenta of the 

two outgoing charged leptons. Since the k integral in the expression for the amplitude is 

expected to be dominated by values of k which are parallel to x#, the p i and p2 integrals 

would similarly be dominated by values anti-parallel and parallel, respectively, to x#, due 

to the damping terms in the exponential of Eq. (3.103). In order to get some idea of the 

effect of the matrix element as a function of the neutrino's mass, then, let us evaluate 

it when all of the momenta are parallel (or anti-parallel) to xrj. Choosing an explicit 

representation for the gamma matrices and adopting the normalization conditions of 

Itzykson and Zuber [61, pp. 57, 145-6, 201], we find that only two of the four helicity 

combinations of the leptons survive, yielding 

(E(pi) + ma + pi){E(p2) + m0- p2) 
' 2[Amctm0(E{pl) + ma)(E(p2) + m0f 

(E(pi) + ma- pi)(E(p2) + mp+p2) 
2 [Amamp{E{p1) + ma)(E(p2) + mp) 

where fc=|k|, etc., and where the "++" and " " superscripts refer to the helicities 

of the lepton and anti-lepton. In the limit as the neutrino mass goes to zero, only the 

combination in which both leptons have negative helicity survives, since the exchanged 

neutrino can only have negative helicity in that limit. For non-zero masses it becomes 

possible to also produce lepton pairs with positive helicity. 

The quantities which will occur in the oscillation probability are the squares of the 

matrix elements. Let us define 

hUpirm) = \Mt+p(ni<)\2/\M--p(0)\2, (3.111) 

/ V ^ K ) = \M-Zp(mt)\2l\M~-0(i))\2. (3.112) 

} ^ J 2[4m a m / 3 ( J E(p 1 ) + ^ ) ( ^ ( P 2 ) + m / 3 ) ] 1 / 2 

KA— ( \ <r, • ,.\ {E{pl) + ma-p1){E{p2) + mp+p2) 
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Then h+ (h~) gives some measure of the probability that the source/detector interaction 

gives rise to two leptons with positive (negative) helicity. Since the efficiency of the 

system at producing and detecting neutrinos of a given mass is determined to some 

extent by the functions h±, it is useful to plot them as a function of the mass of the 

exchanged neutrino. 

It turns out that the energy-momentum conservation equations, Eqs. (3.104)-(3.107), 

are over-complete. Thus, for given values of the charged lepton and neutrino masses, for 

example, f2i and SI2 may be found such that all of the conditions are met, but when the 

neutrino mass is varied, at least one of the conditions needs to be violated. This problem 

is related to the difficulty which occurred in the bosonic model (where momenta close to 

zero were favoured) and has its root in the fact that our source and detector are fixed 

and do not recoil. For the purposes of our plot, let us require that Eqs. (3.104), (3.106) 

and (3.107) hold exactly - so that energy and momentum are conserved at the source 

and energy is conserved at the detector - and allow the momentum conservation at the 

detector, Eq. (3.105), to be violated. As in our previous model, this can again be allowed 

by setting uX2 to be somewhat small 1 9 . For the plot let us take a=j3= e, so that both 

the source and detector are sensitive to electron neutrinos. We then set 

ill = 0.6MeV, Q2 = 0.5MeV 

ma = m0 = me = O.Sl lMeV. (3.113) 

Fig. 3.8 shows a plot of h+_+e(m) and h~^e(m) as a function of the neutrino mass. 

The "threshold" in this case is determined by the condition fii=me -f m, where m is the 

neutrino mass. The upper curve corresponds to the negative helicity case and approaches 
1 9 O n physical grounds we would prefer to allow momentum conservation to be violated somewhat 

rather than energy conservation. The reason for this is that in the former case, the small value required 
for ax is still of a reasonable magnitude compared to nuclear scales (it is on the order of several hundred 
fm in the example considered here), but the value which would be required for at would be far too small 
compared to any time scales in the physical problem. 
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Figure 3.8: Plot of the two functions h+_^e and h~_^e as a function of the neutrino mass. 
These provide a measure of the probability to produce electrons and positrons of helicity 
+1 and —1, for h+ and respectively. 

unity as m—>0. The lower curve disappears in the same limit. For neutrino masses closer 

to threshold, fairly substantial deviations from the m=0 case are observed to occur. 

The plot in Fig. 3.8 should of course be treated with some caution, since it shows only 

the square of the matrix element evaluated at some "optimal" energy and momentum 

configuration. In general, the oscillation probability will also receive contributions due 

to energy and momentum configurations which are non-optimal. Furthermore, it has 

been found that the procedure which we have followed can lead to non-sensical results 

if the neutrino mass is taken to be large compared to the lepton mass 2 0 . In any case, 

20 This occurs because, in our prescription, k and P2 need not be the same. For very heavy neutrinos 
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however, the plot does demonstrate something which might be regarded as "typical": for 

non-relativistic neutrinos there will be a non-zero probability to produce charged leptons 

in the final state which have the "wrong" helicity configurations. Thus, particularly if the 

spin of the leptons were to be measured in a certain experiment, one could expect there to 

be quite strong mass effects for non-relativistic neutrinos. In our case, for example, there 

is a suppression of the negative helicity final states for large mass and a mild enhancement 

of the positive helicity ones. 

Since in this model the neutrinos no longer have their momenta centered about the 

(unphysical) value of "zero," one would expect in this case that the non-relativistic 

neutrinos would not be favoured, as was found to be the case in the bosonic model 

studied above. In fact, it is possible that there would be a suppression for non-relativistic 

neutrinos due to the phase space suppression of the final state leptons, for small momenta. 

This question could really only be answered by performing a thorough numerical analysis 

of the model, which we shall not do at this time. 

3.5 S u m m a r y and Conclusions 

In this chapter we have presented a rigorous derivation of the neutrino oscillation prob

ability as a function of the distance between an idealized "source" and "detector." 

In order to motivate our main calculation, we first examined some of the options 

which one might consider which do not make any reference to a source or detector. We 

first considered a fairly standard approach using wave packets, but found that a key step 

in the calculation, in which a probability density was integrated over time, appeared to 

be completely unjustified. Furthermore, this procedure led to some rather provocative 

this starts to cause problems in this approach. 
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behaviour when one or more of the mass eigenstates involved in the interaction were non

relativistic. In Sec. 3.2 we attempted instead to construct a current density which could 

plausibly be integrated over time in order to arrive at a distance-dependent probability. 

The current which we derived appeared formally to satisfy the minimum requirements 

which we might impose. A closer examination revealed, however, that the probability 

density to which the current was related by a continuity equation was not positive semi-

definite. We were thus forced to abandon this approach as well, despite its formal appeal. 

Our main calculation was presented in Sec. 3.3, in which we studied the oscillations 

of "bosonic" neutrinos coupled to an idealized source and detector. It was found that 

the source/detector approach to studying neutrino oscillations had several advantages 

compared to approaches which do not involve the source and detector explicitly. The 

first and most obvious advantage was found to be that the oscillation probability had 

a very clear "physical" definition which could be related directly to the "experiment" 

which was being studied. It was also found that it was quite natural in this approach to 

localize the source and detector both in space and in time. It is well-known that without 

such localization neutrino oscillations cannot be observed. Another advantage of this 

approach was found to be that there was no ambiguity concerning the "initial state" of 

the neutrino wave packet: the relative sizes and shapes of the wave packets corresponding 

to the various mass eigenstates were completely determined by the configurations of the 

source and detector. 

In our investigation of this model we were able to gain some interesting insights into 

the phenomenon of neutrino oscillations. We studied two different types of macroscopic 

detectors, both of which were assumed to be composed of a large number of microscopic 

constituent detectors. In the case of the "coherent" detector, the constituent detectors 

were each taken to make long coherent measurements and in the case of the "incoherent" 

detector, the constituent detectors were each taken to make microscopically coherent 



Chapter 3. Neutrino Oscillations in a Model with a Source and Detector 103 

measurements of some finite temporal resolution which were subsequently summed. It 

was found that both of these detectors were not in general ideal in the sense that their 

detection efficiency was found to be mass-dependent. This behaviour was studied closely 

and the mass-dependence for the two types was found to be the same. Furthermore, 

the mass-dependence of the efficiency was found to be easily understood and was seen 

to be due a quirk in our model which was that the source and detector were "fixed" 

and could not recoil when a neutrino was emitted or absorbed. It was found that it 

was quite straightforward to tune the parameters of the theory in such a way that the 

mass-dependence completely disappeared. 

When the two detector types were used to study neutrino oscillations, it was found 

that they had quite different behaviour. The coherent detector was found never to have 

its oscillations clamped. The incoherent detector did have its oscillations clamped, but the 

coherence length was found to depend on the temporal resolution of the detector. This 

served as an explicit demonstration of an effect which we discussed in Sec. 2.2.1, namely 

that the oscillations of neutrinos could be revived by a long coherent measurement even 

after the various mass eigenstates had separated spatially. In fact we found that this 

toy model allowed for some insights into this problem as well. In our case it was found 

that the oscillation probability depended in a symmetric way on the parameters of the 

source and of the detector. From this point of view, it appeared that the concept of the 

neutrino's "wave packet" was somewhat of an artificial one, since both the source and 

detector contributed to the "width" of the exchanged neutrino. 

We investigated neutrino oscillations, both for relativistic and non-relativistic neutri

nos, in our model. In the relativistic case the results were in agreement with what one 

might expect. The oscillation length was found, not surprisingly, to be given by the usual 

result, with no spurious factor of "2." Furthermore, in the limit as <7i2^0, it was noted 

that our result agreed with the wave packet result. For finite values of at.2, however, it was 
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found that our result would always differ from a wave packet result, since that approach 

ignores the resolution of the detector. In the non-relativistic case we examined the effects 

due to the mass-dependence of our source/detector system. It was found that in fact the 

probability could be skewed quite dramatically. As we have mentioned, however, this is 

to be understood as a quirk of our model which can be controlled by suitably tuning its 

parameters. 

In Sec. 3.4 we constructed a more realistic source/detector model in which the neu

trinos were taken to be Dirac fermions and in which the source and detector were each 

coupled to the usual charged lepton current. We did not solve this model to the extent 

that we did in the bosonic case, but we did derive an explicit expression for the ampli

tude for the interaction to occur and we were able to make some general comments as 

to how the fermionic nature of the neutrino might modify the results obtained above in 

the bosonic case. This model was also more realistic in the sense that non-relativistic 

neutrinos were not favoured, as occurred in the bosonic case. 



Chapter 4 

Coherent N e u t r i n o Interactions i n a Dense M e d i u m 

4.1 In t roduct ion 

Motivated by the effect of matter on neutrino oscillations (the M S W effect), there have 

been several works in recent years aimed at understanding in a more complete way the 

propagation of one or more flavours of massive neutrinos in matter. One of the first 

papers along these lines was the paper of Mannheim in 1987 [65] whose main purpose 

was to show that the MSW effect could be derived from a Field Theoretic starting 

point. Mannheim used second quantization techniques to derive the wave functions and 

dispersion relations of two flavours of both Dirac and Majorana neutrinos propagating 

in a medium in which there was a finite density of electrons. Mannheim then analyzed 

his result in the ultrarelativistic regime and recovered the standard M S W results. 

Both the work of Mannheim and the work of Nieves [66] and of Notzold and Raf-

felt [67] showed that the entire M S W effect could be reliably analyzed with a modified 

Dirac (or Majorana) equation by adding to the frequency of the electron neutrino a 

term proportional to the density (\/2Gfp in the standard M S W scenario). This term is 

analogous to a chemical potential term for the electron neutrino. 

In 1991 Panteleone [68] used such a modified Dirac equation to study the behaviour 

of neutrinos in supernova cores. He first analyzed the case of only one neutrino flavour 

for all neutrino momenta. At this point he discovered a very unusual behaviour of 

the neutrino dispersion relation. The dispersion relation had a minimum at a nonzero 

105 
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neutrino momentum. Thus for a range of neutrino momentum the neutrino's phase 

velocity and group velocity are in opposite directions! Panteleone later analyzed the case 

of two and three flavours of neutrinos. He noticed that the neutral currents did not 

decouple in general though he analyzed his equations only in the high energy regime in 

which they do cancel. 

In this chapter we provide a synthsesis of many of the above results. We are partic

ularly interested in the effects due to the minimum of the dispersion relation at nonzero 

momentum. We begin in Section 4.2 by examining a simple model with only a single 

neutrino flavour in which the neutrino propagates in a background of electrons. We will 

take the neutrino-electron interaction to be mediated only by neutral current interac

tions. This model will allow for a careful analysis of the Field Theory aspects of neutrino 

propagation in a medium. We pay special attention to the minimum of the dispersion 

relation which occurs at non-zero momentum and analyze its effects on neutrino inter

actions. We will find that the minimum energy for Dirac neutrinos in the medium will 

generically be less than the rest mass of the neutrino in the vacuum so that very low 

energy neutrinos are effectively trapped by the medium. A similar effect has been studied 

from a different point of view in the work of Loeb 1[69]. Our analysis of the trapping 

of neutrinos will bring up many interesting questions and puzzles which will need to be 

resolved in order to have a complete understanding of the problem. We will also examine 

the case of Majorana neutrinos and find that in general Majorana neutrinos cannot be 

trapped. 

In Sec. 4.3 we extend our analysis to a more realistic model which has two neutrino 

flavours and in which there are both neutral and charged current interactions. In this 

1 Loeb studies the problem from the point of view of the neutrino's "index of refraction" in the 
medium. He then uses optics arguments to show that neutrinos can have bound orbits in the medium. 
The index of refraction approach gives slightly different results compared to ours. (In particular, the 
dispersion relation gotten from Loeb's Eq . (4) is centered about ;;=0. As a result, Loeb's trapping 
condition is slightly different than ours.) 
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case the dispersion relations are governed by quartic equations for Dirac neutrinos and 

quadratic equations for Majorana neutrinos. We will again be most interested in exam

ining the form of the dispersion relations in the medium and their effects on neutrino 

propagation. Again we will find that the Dirac case leads quite generically to neutrino 

trapping while the Majorana case can have no trapping. We will also make a few remarks 

regarding the oscillations of neutrinos in a medium, noting that even for a single neutrino 

there could in principle be oscillations in the probability to detect the neutrino, due to 

the differing phase velocities of the helicity eigenstates. 

We conclude in Sec. 4.4 with a brief discussion of our results and some concluding 

remarks. 

4.2 A Simple M o d e l w i t h One N e u t r i n o Flavour 

Many of the interesting effects which we will discuss, namely those due to the minimum 

of the dispersion relation which occurs at non-zero momentum, occur already in a simple 

model with only a single neutrino flavour. It is useful, then, to first consider a simplified 

model in which a Dirac neutrino propagates in an electron "gas" to which it couples only 

via the neutral current interaction. The case of a Majorana neutrino is somewhat more 

subtle and will be considered subsequently. Our model may be described by the following 

Lagrangian 2 

2 O u r simple model is not renormalizable, but this does not affect our calculation of the neutrino 
dispersion relations, which are the same as would be obtained in a model similar to the standard model 
in which the masses are generated by a Higgs mechanism and in which only neutral currents are present. 

where 

(4.2) 
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Figure 4.1: Feynman diagram corresponding to the electron density, pe—{ipltpe). 

= dnZv-dyZp. (4.3) 

The chemical potential term in the Lagrangian is included in order to give a non-zero 

value to the electron density; that is 

pe = (4^) # 0.' (4.4) 

The diagram corresponding to (iplipe) is shown in Fig. 4.1. 

In order to study the propagation of a neutrino in this medium, we compute the 

neutrino self-energy. To one loop there are three diagrams, shown in Fig. 4.2. A l l effects 

due to the non-zero electron density come from the electron loop in Fig. 4.2(a) which is 

easily calculated and yields 

E = - ^ G p e 7
0 ( l - 7 5 ) , (4-5) 

in which we have defined G=g2/\/2m2
z in analogy with the usual Fermi coupling constant, 

Gp. From the self-energy one may obtain the neutrino propagator in the usual way 

by summing a geometric series. For constant pe the resulting expression is given in 

momentum space by 
- . . 1 , . 
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If pe depends explicitly on x the propagator may still be formally written in position 

space as 

Gv{x) = 1
 w v (4.7) 

tip — m — T,(x) 
The effective action is then given, to this order, by . 

S e f f = fd^lG^ix)}^ (4.8) 

= J d 4 ; # , [i?-m + V2Gpel°(l - 7

5)] i>v- (4.9) 

Variation of the effective action leads finally to an effective "Dirac equation," given by 

[i$)-m + aj0{l - 7
5 ) ] = 0, (4.10) 

in which we have defined a=\[2Gpe. For constant electron density, the presence of the 

"chiral potential" in this expression leads to a shift in the frequency by a, but only for the 

left-handed (chiral) piece. This shift in the frequency is precisely the "index of refraction" 

familiar from the M S W effect. Once we have derived the dispersion relations, it will be 

clear that the shift in energy for the neutrino is opposite that for the anti-neutrino. If 

the neutrino is "repelled" by the medium, then the anti-neutrino is "attracted" by it. 

We have noted above that the chemical potential pe in the Lagrangian (4.1) gives rise 

to a non-zero electron density, pe=(iplipe). A similar calculation of / ^ ^ ( T / ^ T / v ) for the 

effective Lagrangian defined by Eq. (4.9) shows that, at least naively, there appears also 

to be a non-zero density of neutrinos in this medium. It is clear that this arises due to 

the potential term proportional to 7 0 in the effective Lagrangian, since this term looks 

exactly like a chemical potential for the neutrinos. How one handles this apparent density 

of neutrinos, however, can drastically affect the M S W effect. Suppose, for example, that 

we were to insist that in the sun pu={iplipu)=0. In order to implement this, we would 

have to introduce a "counter" chemical potential into the original Lagrangian which would 

exactly cancel the neutrino density generated by the interactions with the electrons in the 
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Figure 4.2: One-loop diagrams contributing to the neutrino self-energy in the model of 
Sec. 4.2. 

medium. It turns out, however, that this would change the M S W result quite drastically. 

In fact, if our theory had a "vector" instead of a "crural" potential, we would kil l the 

entire M S W effect by doing this. It would seem more appropriate to accept the fact that 

in equilibrium there is a non-zero density of neutrinos of very low momentum. 

Further insight into the physics of our model can be gained by examining the equations 

of motion following from the Lagrangian in Eq. (4.1). Varying the Lagrangian with 

respect to the field leads to 

dvFv» + m2
zZ^1 = -gj", (4.11) 

where 

,P = ^ 7 " ( 1 - 7

5 ) ^ e - 0„7"(1 - 7 5 ) ^ - (4-12) 

If pe={tplipe) is constant, then (4.11) leads to 

(Z°) = (4.13) 
mrz 

that is, the Z° field has gained a vacuum expectation value. The equation of motion for 
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the neutrino field is then given by 

(4.14) 

which is equivalent to the effective Dirac equation of (4.10) once the value for the Z° 

expectation value, Eq. (4.13), is inserted. From this point of view, then, the left-handed 

neutrino sees a mean (coherent) "scalar potential," {Z°). From the point of view of the 

field theoretic calculation above, it is clear why the Z° field has developed a vacuum 

expectation value. The one-loop diagram corresponding to (Z°) is simply the electron 

loop in Fig. 4.1 with a Z propagator attached. This coherent Z° field is similar to the 

electric field which surrounds a static charge distribution and is clue to the net weak 

charge of the medium. 

4.2.1 Solution to the Dirac Equation 

In order to study the propagation of neutrinos over macroscopic distances, it suffices 

to study the effective Dirac equation given in Eq. (4.10). The propagator defined in 

Eq. (4.7) contains the same information, but also encodes the off-shell behaviour of the 

neutrino. 

For a medium with constant density, it is straightforward to solve the Dirac equation 

in momentum space by employing the chiral representation, so that 

in which the upper and lower components correspond to the left and right chiral projec

tions, repectively. In this representation, the Dirac equation becomes 

(4.15) 

(4.16) 
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Without loss of generality we may choose p—pz, so that XL,R ( a n < l hence also ip) may be 

chosen to be eigenstates of 0 3 , the spin projection in the z direction. That is, 

These dispersion relations are plotted in Fig. 4.3 both for m=0 (dashed curves) and 

7717^0 (solid curves.) Several key features of these plots should be noted. First of all, 

the "negative energy" states are, in this case, those which are unbounded from below as 

the momentum is increased. In the second quantized theory the correct energy of such 

a state is just the negative of its energy eigenvalue. We also note that when 777=0 there 

are "level crossings." These are avoided for 777,7^0 by level repulsion due to the mixing of 

the levels. 

The most noteworthy feature of these dispersion relations (discussed previously by 

Pantaleone) is the fact that the minima of the dispersion relations occur at non-zero 

values of the momentum, p=±a, instead of at the origin. One interesting consequence of 

this fact is that the neutrino can have a vanishing group velocity at non-zero momenta. 

Furthermore, for |p|<|o;|, the neutrino's group velocity, dui/dp, is in a direction opposite 

to its momentum! Another interesting feature of these curves is that the minimum energy 

um[n=—a + m is less than the neutrino mass. Thus it is possible to produce a neutrino 

in the medium which has u<m. Such a neutrino will not have enough energy to survive 

in the vacuum and will thus be trapped by the medium. We shall examine these peculiar 

features of the neutrino dispersion relations in detail below. 

Finally, we note that for high momentum, the solution corresponding to spin (and 

0SXL,R = SXL.R, (4.17) 

where s = ± l . Solving for the energy yields four solutions 

(4.18) 
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Figure 4.3: Dispersion relations for the model considered in Sec. 4.2.1, with a=3 and 
m=0,1, in arbitrary units. The dashed and solid curves correspond, respectively, to the 
m=0 and ra^O cases. 

hence helicity) —1 has energy 

m-
u ~ P + 2a, 

2p 

(4.19) 

which is just the usual M S W result. By way of contrast, the positive helicity solution 

approaches its vacuum value of utzp + m2/2p. This illustrates the spin-dependence of the 

interaction. For high momentum, the left-handed (chiral) states are nearly equivalent to 

the negative helicity eigenstates, so the potential (which is left-handed) affects only the 

negative, and not the positive, helicity eigenstates. 
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4.2.2 N e u t r i n o Trapping 

Let us first consider the criterion which must be met in order that a neutrino be trapped. 

We shall assume here for definiteness that a>0, which leads to the trapping of neutrinos. 

One could just as easily suppose that « < 0 , in which case anti-neutrinos would be trapped. 

The analysis in that case would be perfectly analogous. The dispersion relation for a 

negative spin (relative to z) neutrino is given by 

u - -a + y!(p - a)2 + m 2 , (4.20) 

so that the condition for trapping is 

- ct + y/(p - a)2 + m 2 < m (4.21) 

or 

p < p t r a p = a + Vet2 + 2am. (4.22) 

Thus, neutrinos produced in this medium with momentum p<p t r a p will not have enough 

energy to survive in the vacuum and will be trapped. The derivation of p t r a p is illustrated 

graphically in Fig. 4.4. The solid and dashed curves correspond in this case to the 

dispersion relations in matter and in vacuum, respectively. 

Before examining some of the subtler issues involved in the coherent trapping of 

neutrinos, let us first get some idea of the overall magnitude of the effect. Setting G~Gp 

and ? ? 7~10~ 3 eV (which is a mass relevant for the MSW-resolution of the solar neutrino 

problem), we find that p t r a p ~10~ 8 eV in the sun (for which ct~10~ 1 2eV) and p t r a p ~100eV 

in a supernova (for which a~100eV.) The phenomenon of trapping is quite remarkable 

when we consider that the mean free path (which increases with decreasing momentum) 

of a neutrino with p~10~ 8 eV in the sun is on the order of 10 2 0 solar radii. Such a 

neutrino would thus have no chance of being "incoherently" trapped in the sun (say by 
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back-scattering from nuclei), but would still be trapped by the coherent process which 

we are discussing. We note furthermore that in the case of incoherent trapping the 

scattering cross section is typically dependent on the mass of the target particle, whereas 

for coherent trapping this is not the case. Loeb has discussed a similar effect for neutron 

stars and has estimated that in general this effect will add an extra 30 kg to the mass of 

the star [69]. 

In order to study the trapping of neutrinos in more detail, let us consider a situation 

in which the background varies with position, setting 

a(z) = 
a, z > 0 

(4.23) 
0, z<0. 

In the following, we shall treat the Dirac equation as a single-particle wave equation 

and solve for its "classical" solutions. It is well-known that such an approach can lead 

to difficulties, for example in the Klein paradox, which can only be resolved by a more 

complete field-theoretic treatment. The field theory resolution of the Klein paradox still 

employs the classical solutions of the Dirac equation, however, so these solutions are 

useful to have in hand. Nonetheless, one must always exercise caution when interpreting 

the classical solutions of the Dirac equation when a potential term is included. 

The simple density profile which we have chosen allows for an exact solution of the 

Dirac equation. Since the energy and transverse momentum are both good quantum 

numbers, we may set 

4>(t,x) = exp(—iut + ip±- xx) i>{z), (4.24) 

where p± denotes the momentum transverse to the z direction. The Dirac equation then 

becomes 

^ — m u> — (7j_- pj_ + io~$dz 

= 0. (4.25) 
y to + 2a(z) + <7j_ • p± — ia3dz —m 
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For the moment, let us neglect the transverse momentum and set p±=0. In that case, 

XL,R n W again be chosen as eigenstates of c/g, which implies that there is no spin-flip 

induced at the boundary. We study the case in which the spin is in the — z direction, 

so that the incident neutrino has negative helicity. For a given energy u in the medium, 

there are then two solutions for the momentum, given by 

p± = a ± sJ{to + a)2 - m 2 . (4.26) 

If we set p=p+>a, then 

p" = 2a - p. (4.27) 

These solutions may be used to form an incident wave, ip-mc~ex.p(tpz), and a reflected 

wave, ipTef~exp(ip~z). Note that in some cases the reflected wave can have its momentum 

in the same direction as the incident wave, since it is possible to have p _ >0. The group 

velocity corresponding to such a value of the momentum is still negative, however, so 

that wave packets reflected from the boundary always travel in the —z direction. This 

may also be seen by looking at the current 

J = W , (4-28) 

since sign(,^)=sign(j9 — a). A related point to note is that the reflected neutrino has its 

helicity "flipped" depending on whether or not p~>0. This nipping of the helicity is a 

somewhat artificial concept, however, since the spin of the neutrino is conserved in the 

interaction, as we have noted above. 

The solution of the Dirac equation corresponding to a neutrino with spin — 1 incident 

from the left is then given by 

if,(z) = 6{-z) (^ i n c + Aei) + 0 ( * M r a n s , (4.29) 
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in which 

Vine = 

/ o \ 

iO+P 
m 

V 

and where 3 

0 

1 

/ o N 

Dipz m 
0 

I 0 ^ 

w+r. 

pe ip z Vtrans — 
0 

1 

re 
ipz (4.30) 

(4.3i; p = y/to2 — m2. 

The reflection and transmission coefficients, R and T, may then be defined in terms of 

the incident, reflected and transmitted currents as follows 

jref _ - [(.OJ+p-)2 - m2\ |p|2 

R = 

T = 

iinc [(^ + P? - m2} 

Jtrans ~ [\u + p\2 - 7112} \T\2 

(4.32) 

(4.33) 
Jinc [ ( ^ + p)2 ~ m2} 

in which p and r may be determined by matching the solutions in Eq. (4.29) across the 

boundary, yielding 

P 
P-P P~P~ 

p - p - p - p 

One may then show that the current is conserved across the boundary, that is 

R + T=l. 

(4.34) 

(4.35) 

There are three cases which we may consider for the neutrino incident on the bound

ary. The following list enumerates the three cases according to the condition on the 

incident neutrino's momentum (energy) 

(i) p > p t r a p (u>m), 

3 If uj2<m2, the positive imaginary root should be taken, so that the transmitted solution corresponds 
to a decaying exponential. 
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(ii) PKlein <P< Ptrap (w<m, W2<???2), 

(iii) a < p < pKiein {u<m, u2>m2), 

where p t r a p was defined in Eq. (4.22) and where pK\e\n is defined by the condition oj= — m: 

PKiein = ot + v 7 a 2 — 2am. (4.36) 

Case (i), in which p>p traP, corresponds to the "regular" situation in which the neutri

no's energy is greater than its rest mass in the vacuum. In this case the transmitted wave 

is oscillatory and the incident neutrino is primarily transmitted. One should of course 

intrepret the reflection coefficients T and R with some caution, even in this case, since 

they are derived from the classical solutions of the Dirac equation. Cases (ii) and (iii) 

both correspond to the "trapping" of the neutrino. Recall that for |9<ptrap, the neutrino 

is completely reflected at the boundary since it doesn't have enough energy to exist in the 

vacuum, that is, u<m. The difference between the two cases is that in case (ii), uj2<m2, 

while in case (iii), tu2>m2. The case (iii) only occurs if the medium is sufficiently dense 

that a>2m. Let us first look at the "regular" case of perfect reflection which occurs in 

(ii). In that case, since u2<m2, the momentum of the transmitted wave, p, is purely 

imaginary and the transmitted wave is a damped exponential. Furthermore, since 

\u+p\2-m2 = 0 (4.37) 

we see from Eq. (4.33) that T=0 and R=l. It is clear from the classical solution, then, 

that the wave is perfectly reflected at the boundary. In the third case, case (iii), we have 

u<m, but also u2>m2, so that the transmitted momentum p is real, even though the 

neutrino is supposed to be trapped. Furthermore, calculation of the reflection coefficient 

yields R>1, which would seem to imply that the flux of reflected neutrinos is greater 

than that of incident neutrinos! This is of course the classic signal of the famous "Klein 
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paradox" [70]. The oscillatory solution in this case corresponds to a negative energy 

state in the vacuum, which is supposed to be "filled" in the Dirac picture. Clearly 

we are entering here into a many-particle problem. The analogy of our situation with 

Klein's paradox is actually quite close since the Dirac equation which we are solving is 

quite similar to the one originally examined by Klein, the only real difference being the 

(1 — 7 5 ) factor which appears in our case. 

The three different types of solutions which can occur when a neutrino is incid

ent from the left on the boundary with the vacuum, namely, regular transmission of a 

neutrino (p>ptraP), "regular" trapping (pKiein<P<PtraP) and "Klein's paradox" trapping 

(a<p<pKiein) are illustrated in Fig. 4.4. Fig. 4.4(a) shows the dispersion relations in the 

medium (solid curve) and in the vacuum (dashed curve) as well as the three "critical" 

values of the momentum, p=d,pK\e\n a n < l Ptr&p- Fig. 4.4(b) shows a plot of the reflection 

coefficient R as a function of the incident momentum, p, starting at p=a. Note that R 

is greater than unity for a<p<pK\e[n. 

Klein's paradox has been studied extensively since it was first raised in 1929 as a cri

tique of Dirac's equation for spin-1/2 particles. Soon afterwards, a smoothed-out version 

of the original step function potential was proposed and solved exactly by Sauter [71]. 

Sauter found that, although the reflection coefficient was always greater than unity in 

the "paradoxical" region of the parameter space, the amount by which it exceeded unity 

depended on the slope of the potential as it decreased to zero. It was found that for most 

"realistic" potentials, the paradoxical effects were almost negligible in magnitude. As it 

turns out, there is no problem with Dirac's equation itself, but only with the interpreta

tion of it as a single-particle wave equation. A full quantum field theoretic treatment of 

the problem shows that the reflection of the fermions from the boundary of the poten

tial interferes destructively with pair production processes and leads to a new reflection 

coefficient which is exactly unity [72, 73]. 
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Figure 4.4: (a) Dispersion relations and (b) reflection coefficient, B,, which show the 
analogue of "Klein's paradox" which occurs in our model. In these plots we have set 
o=3 and m = l , in arbitrary units. The solid and dashed curves in (a) correspond to the 
disersion relations in matter and in vacuum, respectively. 
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One would expect the same considerations to apply in the case which we are studying. 

Clearly the fact that the. reflection coefficient R can be greater than unity signals the 

breakdown of the interpretation of our Dirac equation as a single particle wave equation. 

One might also expect, in analogy with Sauter's result, that the effect would be negligible 

if the step function density profile was replaced by one in which the density went gradually 

to zero. Regardless of what the "classical" calculation yields, however, the fact remains 

that if a neutrino is produced inside the medium with energy less than m, it will be 

totally reflected from the boundary. 

We have so far taken our medium to be semi-infinite in extent, that is, a(z)=aO(—z). 

In any realistic situation which we may wish to consider, however, the density of the 

medium goes to zero in all directions of space. It is easy to demonstrate that, having 

been totally reflected from the first boundary, the neutrino is subsequently also reflected 

back from the opposite boundary. Recall that when we considered the reflection from the 

boundary on the right, the incident and reflected momenta were determined by choosing 

the two momenta associated with the same energy on the dispersion curve corresponding 

to spin in the —z direction. Since spin is conserved in the interaction, the interaction at 

the left boundary is solved simply by interchanging the two momenta, and so we again 

have perfect reflection4. 

We have so far restricted our attention to the case of normal incidence at the bound

ary; i.e., we have set ]7j_=0. The inclusion of transverse momentum components may be 

accomplished in a straightforward, though interesting, way. In order to solve the Dirac 

equation, Eq. (4.25), in this more general case, it is convenient to seek solutions inside 

the medium which are eigenstates of helicity. Thus we define 

X i ( M ) = h(h,\p\)PWtPlJp", (4-38) 
4 I n order to properly study such "bound states," we should of course put in both boundaries right 

from the start. This would lead to a discretization of the momenta of the bound particles. 
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Xn(h,z) = fR(h,\p\)PWip)eip'z, (4.39) 

in which fLJt are functions and (3^h\p) are two-component helicity eigenstates satisfying 

3 • 0h)(p) = h\p\^h\p), h = ±l. (4.40) 

Solving for the dispersion relations yields four solutions for a given value of |p|, 

w ± = -a ± \/{\p\ + ha)2 + m2, (4.41) 

in obvious analogy with what was obtained in the p±=0 case (cf. Eq. (4.18).) Once 

again the upper and lower signs in the " ± " are interpreted as corresponding to the 

neutrino and anti-neutrino solutions, respectively. The four spinors corresponding to a 

given momentum p are then given by 

' ±[uHhM-hmpw(pi)eiP.^ ( 4 4 2 ) 

V p(h)(p) ) 

The general procedure for constructing classical solutions corresponding to an incident 

wave being reflected from the boundary is then the same as for the normal-incidence case 

studied in detail above. The only added complication is that in this more general case 

the reflected wave can in general have components with two different momenta. Suppose 

for example that the incident wave corresponds to a neutrino with momentum pz and 

negative helicity. The momentum of the reflected wave is found by looking for other 

values of pz (p± is conserved) which give the same energy, u. In general there may be 

two solutions, given by 

p- = -pz, (4.43) 

p- = ±\p2
z + 4a2-2a\p\\ir\ (4.44) 

in which the " ± " sign in the second solution must be chosen judiciously in order to 

correspond to a reflected wave. The first of these solutions always exists if p±^0 and 
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corresponds to a reflected wave with negative helicity relative to —pz). This solution 

was absent in the normal-incidence case since in that case it would have corresponded to 

a reflected wave with its spin flipped. The second solution may or may not correspond to 

an oscillating solution, depending on the magnitude of the transverse momentum. Thus, 

of the two reflected solutions, one always corresponds to an oscillating wave and the other 

may oscillate or be damped out, depending on the angle of incidence. 

4.2.3 The M a j o r a n a Case 

In the case of Majorana neutrinos, there is only a single (left-handed) field, XL- The 

effective Lagrangian is given by 

in the chiral representation. In general one needs to be somewhat careful when dealing 

with Majorana fermions. For example, even at the classical level, the fields need to be 

taken as Grassman-valued, or else the mass term disappears. The dispersion relations 

in this case can be obtained by solving the equations of motion, as was first done by 

Mannheim [65]. The details of this calculation are included in Appendix A . The resulting 

expression for the negative helicity case is given by 

Thus in this case the energy has a minimum value, u=m, which occurs at |p]=2o. In 

fact, the dispersion relation in matter is identical to that in vacuum except for a lateral 

shift to the right. This implies in particular that, in contradistinction to the Dirac case, 

(4.45) 

where 

(4.46) 

(4.47) 
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there is no trapping of Majorana neutrinos in the medium. It is also interesting to note 

that the dispersion relation for Majorana neutrinos in the medium may be obtained from 

that for Dirac neutrinos by first shifting the curve vertically by a and then horizontally, 

also by a. 

4.3 Dispers ion Relations for T w o N e u t r i n o Flavours 

We turn now to consider a more realistic scenario in which there are two neutrino flavours 

and in which there is both neutral current and charged current coupling to the medium. 

We first derive the quartic equation governing the dispersion relations in the Dirac case 

and examine the solutions in some representative cases. It is clear again that in this case 

there is neutrino trapping. We then examine the Majorana case, in which the dispersion 

relations are quadratic and are thus readily analyzed. After this we briefly consider an 

alternative model which has been studied in the literature which has no chiral coupling 

and yet still yields a minimum in the dispersion relation at non-zero momentum. Finally, 

we comment on neutrino oscillations in these models. 

4.3.1 Di rac Case 

We begin with the Dirac Equation in the mass basis for a pair of massive Dirac neutrinos 

with both neutral and charged current coupling to a medium: 

{tf-M + (P- otQ) 7° (1 - 75)} i> = 0 (4.48) 

where M is the diagonal 2 x 2 mass matrix, (5 oc pGp is the contribution of the neutral 

current which couples only to the left handed neutrinos and a oc peGp represents the 

charged current contribution which couples only to ve. This coupling is assured by the 
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mixing matrix 
/ cos2(fl) sin(0)cos(0)\ 

Q = . (4.49) 
\sin(0)cos(0) sin2(0) / 

a and f3 may be calculated by computing the one loop contributions to the neutrino 

self-energy in the background medium. The Feynman diagrams corresponding to these 

processes are shown in Fig. 4.5 and yield [66, 67, 75] 

a = -j=pe (4.o0) 

and 

P = - ^ U ^ ~ 2Q^m%v)Pf (4.51) 

in which the sum in (4.51) runs over all fermions in the medium, T 3 is the third com

ponent of the fermion's weak isospin and is its charge. If there are appreciable 

densities of anti-particles in the medium, then pf needs to be replaced by pf—pj in these 

expressions. 

In the Chiral representation we write 

V- = | ) (4-52) 
\XRJ 

and the Dirac Equation becomes 

(u-ff-p}xR = MXL, {(u + o • p) + 2 (f3 — o>Q)} XL — M X R - (4.53) 

For simplicity we may assume the momentum to be in the z direction in which case the 

solutions to the Dirac Equation will be eigenstates of 0$. 

xi=(t)' x*=u); °r X L = { L ) ' X R = { L ) (4-54) 

leading to the equations: 

{u2-p2 + 2{cuTp)(P-aQ)-M2}L± = 0, • (4.55) 
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Figure 4.5: Density-dependent one-loop diagrams contributing to the neutrino self-energy 
in a realistic model with both neutral-current and charged-current couplings. In (a) the 
"f" stands for the contributions due to all fermions in the medium which have neutral 
current couplings. In (b) we have assumed that the medium contains electrons and 
positrons, but no other charged leptons. 

-ML±. 
(UTP) 

To find the energy eigenvalues we rewrite Eq. (4.55) as: 

[u2 -p2- p? + 2(u T p)P - 2a{u + p)NT} L± = 0 

where p2 = (m2) = (mj + ?n2)/2 is the mean squared mass and 

/ c o s 2 ( 0 ) s i n ( 0 ) c o s ( 0 ) ' 

Vsin((9)cos(#) sin 2 (<9)+£ T 

with 

S=F Aa(u =F p) 

and A 2 = m\ — m\. It thus remains only to find the eigenvalues of A ' T . 

The eigenvalues of N^ are: 

Af = i ( l + V l - 4 £ T ( c o s ( 2 0 ) - ^ ) ) 

A2^ = 1 ( 1 - ^ / 1 - 4 ^ ( 0 0 8 ( 2 6 ) ) - ^ ) ) . 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 
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Plugging these back into the Dirac Equation leads to the following quartic equation for 

the energy eigenvalues: 

[oo2 - p2 - p? + {2(5 - o){io - sp)] = C?{LU - sp)2 - aA2 cos{26){u - sp) + -A2, (4.62) 

in which s = ± l is the eigenvalue of 0 3 , the spin projection in the +z direction. In special 

cases this expression reduces to those found in the papers of Mannheim (in which the 

neutral current contribution has been left out) and Pantaleone (in which one of the masses 

has been set to zero.) 

It may not at first be obvious that all eight of the solutions ou of (4.62) corresponding 

to a fixed value of the momentum are real. This is, however, the case, which may be 

seen as follows. (The proof is equally straightforward for any number of flavours, so we 

will do it immediately in the general case.) In the general case the Dirac Equation in the 

mass basis becomes 

{p1 - M + [p - aUU\ell) 7 0 (1 - 75)} ip = 0 (4.63) 

in which U is the mixing matrix in flavour space and A 7
e=diag(l, 0 , . . . , 0) is also a matrix 

in flavour space. Pre-multiplying this expression by 7 0 leads to the eigenvalue equation 

Afip = uip, (4.64) 

where 

M = 7 ° 7 • p + 7 ° M -[p- aUKNeU) (1 - 7
5 ) . (4.65) 

Since J\f is hermitian for real p, the eigenvalues of Eq. (4.64) are guaranteed to be real. 

This completes the proof. 

It is best to analyze the expression governing the dispersion relations, Eq. (4.62), by 

first considering some special cases. The very simplest case is when m 1 =m 2 =0, which 
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yields 

p + (P-a)(s-l) (4.66) 

UJ •p-(P- a){s + 1) (4.67) 

for the electron neutrinos and 

p + P(s-l) (4.68) 

p-P(s + l) (4.69) 

for the muon neutrinos. These expressions are easy to understand. Four of the dispersion 

relations are unchanged from their values in the vacuum, since positive helicity neutrinos 

are also right-handed (chiral) and are thus unaffected by the left-handed Standard Model 

interactions. The remaining four dispersion relations are displaced vertically from their 

vacuum values by amounts proportional to their couplings to the medium. Note that only 

the dispersion relation corresponding to ve is affected by the charged current contribution, 

a. 

Another simple case occurs when the coupling 9 is set to zero. In this case the 

dispersion relations for ve and decouple, as one would expect, and we find 

for the electron and muon neutrinos, respectively. These expressions are in exact a-

greement with what we found in the single-neutrino case in Sec. 4.2.1. Once again the 

dispersion relations corresponding to the massless case undergo "level repulsion" when a 

finite mass is added. 

(4.70) 

and 

(4.71) 
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Since the equations governing the on-shell behaviour in the two-flavour Dirac case are 

quartic, it is difficult to obtain explicit expressions of the dispersion relations in cases 

which are not straightforward extensions of the single-flavour case. Of course quartic 

equations are analytically solvable and, furthermore, we know that in our case all the 

solutions will be real. In general, however, practically no insight can be gained by ex

amining the expressions of such solutions. One approach which is somewhat helpful if 

the coupling 9 is not too large is to use a graphical approach. In this case one expects 

the solutions of the coupled system to look similar to those of the uncoupled case except 

that there will be level repulsion due to the coupling. This behaviour is demonstrated 

explicitly in Fig. 4.6(a), in which the dotted and solid curves correspond to 9=0 and 0.2, 

respectively. One interesting feature in the two-neutrino case is that the heavier neutrino, 

which would have been trapped for certain cases with no coupling, can now "leak out" 

due to its coupling to the lighter mass eigenstate. That is, only states with energy less 

than the mass of the lightest mass eigenstate are strictly "trapped" now. 

It is also possible to derive approximate solutions of the quartic equations if the 

neutrinos are relativistic. In that case approximate solutions are given by 

2 

/ 2 \ 

mi 

(4ap - A 2 cos(2fl))2 + A 2 sin2(20) 
1 1/2 

(4.72) 

1 1/2 
(4op + A 2cos(20))" + A 2 sin 2 (20) , (4.73) 

u ~ ± ^ + ^ 2 J , (4.74) 

where the corrections to the above expressions go like af.i2/p2, [ip2fp2 and /.i4/p3. Of these 

expressions, (4.72) gives the energy of the negative-helicity particle eigenstates and (4.73) 

gives the energy of the positive-helicity anti-particle eigenstates. These are in agreement 

with the usual result and show that the neutral current contribution "factorizes" in the 

relativistic limit: that is, the difference between the two negative-helicity particle energies 



Figure 4.6: Dispersion relations for two neutrinos in (a) the Dirac case (negative helicity) 
and (b) the Majorana case. In both cases we have set 0=1.0, /3=2.5, m i = 0 . 5 and m 2 = 2 . 0 , 
in arbitrary units. The dotted and solid curves correspond to 6=0 and 0.2, respectively. 
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is independent of (3. Furthermore, it is clear that, if a>0 (which occurs if the background 

This is the well-known M S W resonance. The remaining dispersion relations, given in 

and correspond to the positive-helicity neutrinos and negative-helicity anti-neutrinos. 

4.3.2 M a j o r a n a Case 

The case of Majorana neutrinos is interesting for two reasons. First of all, it is the 

favoured realistic scenario in models which have massive neutrinos, for exam]:>le in mod

els which employ the "see-saw" mechanism. Secondly, it turns out that the equations 

governing the dispersion relations are quadratic rather than qtiartic, which means that in 

principle they should be easier to analyze. 

The calculation proceeds in a manner similar to that followed in Sec. 4.2.3, the only 

complication being the additional mixing in flavour space. We omit the details and simply 

present the result. The negative-helicity dispersion relations in this case are determined 

by the equation 

contains more electrons than positrons) then a resonance can occur when 4ap=A2 cos(20). 

Eq. (4.74), are unchanged from their vacuum values (since the potential is left-handed) 

(4.75) 

where 

A|(P) 
1 • (m 2 + m% + 4p(a - 2(3) + 2a(a - 2(3) + 8/?2) 

±\{ [(™% ~ m\) cos(2#) - 4ap - 4a(a - 2p)f 

+ (m 2 - m i ) 2 [(mi + m 2 ) 2 + 4a-2] sin 2(2#)} 1 / 2 

2 

(4.76) 

Thus the four solutions are 

(4.77) 

(4.78) 
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These again reduce to Mannheim's result if we set (3=0 [65]. It is interesting to note 

that these solutions are not functions only of mf + m\ and m\ — ??i2, as is the case in the 

relativistic regime. 

Fig. 4.6(b) shows a plot of the dispersion relations for Majorana neutrinos in a medi

um. The dotted and solid curves correspond to the cases with no coupling and with 

#=0.2, respectively. Again the curves with non-zero coupling are similar to those with no 

coupling, except for the "level repulsion" which occurs in the former case. The parame

ters in this plot are identical to those in the analogous plot for Dirac neutrinos shown in 

Fig. 4.6(a). Clearly the dispersion relations are quite different in the two cases. This is 

easily understood by recalling the discussion of Majorana neutrinos in the single-neutrino 

case in Sec. 4.2.3. There we noted that the Majorana curve could be obtained from the 

Dirac one by shifting the Dirac curve up and to the right by "a ." In the two-neutrino 

case, the Majorana curves for 0=0 may be obtained in a similar way from the corre

sponding Dirac curves (except that the shifts are different for the two curves since has 

only neutral current contributions and ve has both neutral current and charged current 

contributions.) 

In all cases examined the minimum of the dispersion relations is always greater than 

or equal to the minimum mass and so again there appears to be no trapping in the 

Majorana case. 

For relativistic neutrinos the exact expressions for the energies may be simplified 

somewhat to give 

i 1 \(* A 2 „ „ „ / ' o z i \ \ 2 i ,\2 ^,-.-2(OQ\\ ^" (479) u ~ p - (2(3 - a) + —- ± A 
v 2p 4p 

u ~ -p + (2(3 - « ) - 7 T r 
2p 4p 

1/2 

(iap - A 2 cos(2fl))Z + A 2 sin2(20) 

(Aap- A 2cos(2t?)) 2 + A 2 sin 2 (20) ' , (4.80) 

the first of which is in agreement with the analogous expression, Eq. (4.72), given above 

for the Dirac case. Since a Majorana neutrino is its own anti-particle, there is no analogue 
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here of the expression for the anti-particle energy given in Eq. (4.73) for the Dirac case. 

4.3.3 T h e Vector M o d e l 

In the models considered so far, the fact that the dispersion relations have minima at non

zero values of the momentum is due to the chiral nature of the potential in the effective 

Dirac equation. That is, since the potential depends on the spin, the curves are displaced 

to the right or left depending on whether the neutrino's spin is parallel or anti-parallel 

to its momentum. As we have seen, this phenomenon occurs for a single neutrino flavour 

and persists when another flavour is added. It is amusing to note that it is possible to 

obtain a minimum at non-zero momentum even with a purely vector interaction, although 

this effect requires the presence of at least two neutrino fields. Such a model was studied 

several years ago by Chang and Zia [76]. The effective Lagrangian is in this case given 

by 

{}/> - M - a Q 7
0 } '0 = 0, (4.81) 

where the matrix Q is as defined in Eq. (4.49). The above equation is similar to Eq. (4.48) 

except for the absence of the (1 — 7 5) factor which was present in that case. We have also 

set (3=0 for simplicity. The equations governing the dispersion relations may be derived 

in a manner similar to the Dirac case above to yield 

(u — a cos2 $Y — p2 — ml (u — a sin 2 — p2 — mi, 

= 2a2 sin 2 9 cos2 9 (LO2 + p2 - auo + m i m 2 ) + a4 sin 4 9 cos4 9 (4.82) 

which is independent of the spin and is symmetric under p—>—p. Apriori it might then 

seem impossible to generate a minimum at non-zero p. Indeed, for a single neutrino 

flavour this is the case. For two flavours, however, something very interesting can hap

pen. Suppose we first set 9 to zero and imagine increasing a by so much that the nega

tive energy ve solution overlaps with the positive energy solution. When a non-zero 
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3 

-2 0 2 

P 

Figure 4.7: Dispersion relations in the two-neutrino vector model, with o=3.0, mi=0.5 
and ?772=l-0, in arbitrary units. The dotted and solid curves correspond to 9=0 and 0.2, 
respectively. 

coupling is included, these levels repel each other and minima develop near the former 

crossing points, symmetrically placed about the origin. This feature is illustrated in 

Fig. 4.7. Thus in this case as well it is possible to have minima in the dispersion relations 

at non-zero values of the momentum. Note that this case is still somewhat different from 

the chiral cases which we have studied above, since the first and second derivatives at 

the origin are zero and negative, respectively, corresponding to a negative effective mass 

at the origin. This is not the case in chiral theories. 

4.3.4 N e u t r i n o Oscillations 

We have so far mostly restricted our attention to an investigation of the forms of the 

dispersion relations themselves and have not considered in detail the effects that these 



Chapter 4. Coherent Neutrino Interactions in a Dense Medium 135 

would have on the oscillations of neutrinos. We first note that in the relativistic regime, 

the standard M S W results are recovered: that is, (i) the neutral current contribution 

factorizes and (ii) the negative-helicity states obtain the appropriate dispersion relations 

in matter while the positive-helicity states revert to their vacuum dispersion relations. 

For non-relativistic neutrinos, however, the situation is in some sense far more inter

esting. One novel effect which arises in the Dirac case purely as a result of the chiral 

nature of the potential is that in principle one could observe neutrino oscillations with only 

a single neutrino flavour. This could happen since, for non-relativistic neutrinos, the left-

handed interactions responsible for producing neutrinos would produce both negative-

and positive-helicity neutrinos. Since these propagate with different phase velocities in 

the medium, they would in general get out of phase with each other, producing oscilla

tions in the probability to detect left-handed neutrinos. For relativistic neutrinos this 

effect disappears since the amplitude to produce and detect a positive-helicity neutri

no becomes negligible. Note, however, that the difference in phase velocities remains 

and would lead to oscillations if only positive-helicity neutrinos could be produced and 

detected. 

The generalization of this effect to the two-neutrino case gives the result that in 

general there could be oscillations between four different states. This would lead to an 

oscillation probability which is a superposition of four different oscillation curves. 

4.4 Discussion and Conclusions 

In this chapter we have examined the coherent interactions of a neutrino with a back

ground medium by examining the solutions of the effective Dirac equation for the neutri

no. A close analysis revealed that the dispersion relations corresponding to such a Dirac 

equation have a non-trivial form, even in the simple case in which there is only a single 
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neutrino flavour. In particular, we have examined the interesting effects which arise due 

to the minimum of the dispersion relation which occurs for non-zero momentum. We 

have shown that, quite generally for Dirac neutrinos, the minimum value of the energy 

is less than the neutrino's mass, which implies that for any such background there will 

be trapping of very low energy neutrinos. In order to support our idea that neutrinos 

could be trapped by a medium, we then presented a study of the solutions of the Dirac 

equation and showed that, at least at the classical level, there were solutions correspond

ing to "trapped" neutrinos. In cases in which the strength of the potential exceeded 

twice the rest mass of the neutrino in vacuum, we have had to face the version of Klein's 

paradox which arises in our model. We have argued that, in perfect analogy with the 

usual formulation of Klein's paradox, our problem may also be resolved by a careful field 

theoretic treatment (although we have not here considered this treatment.) Since the 

neutrino in the medium does not have enough energy to exist in the vacuum, it simply 

must be trapped. We point out that there is nothing "special" about our model which 

leads to Klein's paradox: rather, any approach which models the propagation of low-mass 

neutrinos in very dense media would be faced with the same problem. A n analysis of 

the case of a single Majorana neutrino flavour in this medium revealed that in that case 

there is no trapping by the medium. 

We have also presented a study of the dispersion relations for Dirac and Majorana 

neutrinos in the case in which there are two flavours. In these cases we found that 

the trapping phenomenon in the Dirac case persisted and the absence of one in the 

Majorana case also appeared to persist. Furthermore, the neutral current contribution 

to the oscillation probabilities was found to "factorize" in the relativistic regime, but 

not in the non-relativistic case. In the latter case it was shown that in principle there 

could actually exist neutrino oscillations with only a single flavour of neutrino, due to 

the different phase velocities of the helicity eigenstates. 



Chapter 5 

Conclusions 

In this thesis we have considered the propagation and interactions of neutrinos, both 

in vacuum and in matter. In Chap. 1 we gave a brief introduction to the physics of 

neutrinos, noting that if neutrinos are indeed massive, then it is quite natural to assume 

that they are also "mixed." We then showed that the mixing of neutrinos leads quite 

generally to "neutrino oscillations": if a neutrino of a given flavour is produced, there 

will in general be a non-zero probability to detect it some time later as having a different 

flavour. This probability oscillates with the distance between the source and detector. 

In Sec. 1.2.2 we showed that the oscillation probability could be enhanced in matter due 

to a coherent interaction with the background particles. It was noted that the resonant 

enhancement of neutrino oscillations as neutrinos exit the sun (the M S W effect) could 

account for the "missing" neutrinos in the solar neutrino problem. 

In Sec. 1.3 we began to focus on some of the issues which make the subject of "neutri

no oscillations" so fascinating from the point of view of fundamental quantum mechanics. 

We first noted that any discussion of neutrino oscillations in general assumes that the 

neutrinos are localized in space and time: i.e., they are not "plane waves." If the neutri

no's energy or momentum are known "too well" then it becomes possible to identify the 

mass of the neutrino exchanged between the source and detector and the oscillations are 

necessarily destroyed. This point was argued by making an appeal to the uncertainty 

principle. In Sec. 1.3.2 we discussed an apparent paradox in the B — B system which oc

curs when one attempts to convert an oscillation probability in time into one in distance. 
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The error which led to the ambiguity was clear, but the situation did signal the need 

to have a reliable method to calculate oscillation probabilities directly in space. This 

problem was studied in detail in Chap. 3. 

In Chap. 2 we considered coherent and incoherent broadening effects on the oscil

lations of relativistic neutrinos. We began by examining the specific case of the very-

long-wavelength oscillations of the mono-energetic neutrinos produced by beryllium de

cay in the sun. It was noted that in order to observe oscillations with wavelengths on 

the order of the earth-sun distance, it was necessary that the initial beam of neutrinos 

have a very narrow width in energy. Some sources of broadening were discussed and then 

we began to consider whether the two types of broadening - coherent and incoherent -

could be distinguished at the detector. It was found that while such effects are clue to 

distinct physical processes which could in principle be controlled at the source, they are 

in general indistinguishable at the detector. 

In Chap. 3 we returned to discuss some of the issues brought up in Chap. 1. Namely, 

is there a reliable and correct way to calculate neutrino oscillations as a function of 

the distance between the source and detector? We began by examining two approaches 

which do not explicitly incorporate a "source" and "detector," but found them both 

to be unreliable, particularly when non-relativistic neutrinos were involved. We then 

constructed a simple model for bosonic neutrinos which did explicitly involve a source and 

detector and found that such an approach had many advantages. The main advantage 

was found to be that the quantities which one might wish to calculate had real "physical" 

interpretations. This was not the case in the former approaches in which the formal 

quantities such as the probability amplitude or the current density did not have any real 

physical meaning which could be distinguished. 

Our simple model using a source and detector allowed for a systematic approach to 

the problem. We first considered the case with only a single neutrino, which enabled us 
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to understand the efficiency with which the sytem produced and detected neutrinos of 

different masses. We found that in general this efficiency did have a mass-dependence, but 

this dependence was well-understood to be a quirk of our model and could furthermore 

be eliminated by suitably tuning the parameters of the model. Once we had coupled 

more neutrino fields to the source and detector, we were able to define the neutrino 

oscillation probability in a very "physical" way and to study its dependence on both the 

masses of the exchanged neutrinos and on the time resolution of the detector. We verified 

our assertion in Chap. 2 that a long coherent measurement in time could "revive" the 

oscillations of neutrino wave packets that had separated spatially. It was found from 

the point of view of our system that this "reviving" of the oscillations occurs because, 

according to the detector, the wave packets had not separated yet. This point is simple 

and yet quite interesting: the "width" of the wave packet as seen by the detector is 

dependent on the detector's own time resolution. We noted that from the point of view 

of our source/detector system, the concept of the neutrino's "wave packet" is actually 

somewhat artificial. The "width" of the neutrino is determined symmetrically by the 

production and detection events, so there seems no clear reason to interpret the neutrino's 

"wave packet" as being something which is determined by the source. 

We also considered the extension of our formalism to a more realistic model in which 

the neutrinos were modelled correctly as fermions. We discussed some of the extra compli

cations due to the neutrino's spin and noted that in general the efficiency of this system 

at producing and detecting neutrinos would be expected to depend on the neutrinos' 

masses. 

In Chap. 4 we shifted to a discussion of neutrino propagation in very dense media. 

We were particularly interested in examining the effects due to the strange dispersion 

relations which occur in that case. These dispersion relations are odd because they have 

minima at non-zero values of the momentum and, in the case of Dirac (but not Majorana) 
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neutrinos, because their minima generically have values less than the neutrino's mass. 

This latter feature implies that Dirac neutrinos with low enough energy will be trapped 

by the medium. We examined the trapping of neutrinos in some detail by looking at the 

classical solutions of the Dirac equation. It was found that in certain cases we had to face 

"Klein's paradox." Noting that Klein's paradox is not really a paradox at all, but rather 

a signal that the single-particle interpretation of Dirac's equation is breaking down, we 

emphasized that the neutrinos were indeed trapped, even in this case. 

We also noted that, since the interaction with the medium splits the degeneracy in 

the helicity eigenstates, it is generally possible to have neutrino oscillations (for non

relativistic neutrinos) with only a single neutrino flavour. This can occur because the 

left-handed interactions through which neutrinos are produced and detected can pro

duce linear combinations of negative and positive helicity eigenstates, which subsequently 

propagate with a different phase velocity. 
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A p p e n d i x A 

M a j o r a n a Neutr inos 

In this appendix we review some of the properties of Majorana neutrinos. We follow 

closely the treatment given in Ref. [22, pp. 17-30]. (The reader is also referred to the 

discussions in Refs. [77, 78, 79].) In Sec. A.2 we explicitly derive the dispersion relations 

for a Majorana neutrino propagating in a medium in the case in which there is only a 

single flavour, following fairly closely the treatment of Mannheim [65]. 

A . l T h e M a j o r a n a C o n d i t i o n 

One way to see some of the differences between Majorana and Dirac fermions is to look 

at the mode expansion of the field operators. For a Dirac fermion the field operator may 

be expressed in terms of creation and annihilation operators as 

where a and 6̂  annihilate a particle and create an anti-particle, respectively. Since the 

"Majorana condition" involves the behaviour of the field under charge conjugation, let 

us review some of the properties of the charge conjugation operator C . C is a unitary 

operator defined in terms of its operation on single-particle states as follows 

(A. l ) 

C | ^ ( p » ) = T)c\lp(p,s)), 

where r\c is a phase and where 

\ip(p,s)) a (A.3) 
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|^(p,s)> = tf(p,s)\0). (A.4) 

From Eqs. (A.3,A.4) it follows that 

C a t ^ c r 1 = ncb\p,s\ (A.5) 

Cb^p,s)C~l = r?>t(p,5), (A.6) 

so that the charge conjugate of the field ip may be defined as 

r = CtyCT 1 = J E [u(p, sKb{p, s)e~^ + v(p, s)r,*ca\p, s)e«>*] . (A.7) 

The operator C acts only on the creation and annihilation operators. It is also possible 

to define the conjugate field I/JC in terms of a charge conjugation matrix, C , which acts 

only on the spinor indices. The charge conjugation matrix is defined such that 

C + = C~\ CT = -C. (A.8) 

Using the fact that the u and v spinors are related by 

ui (p, s) = CvT(p, s), u(p, s) = Cv1 (p, s), (A.9) 

one may easily show that 

^ c = C ^ C " 1 = r)*CrpT. (A.10) 

The "Majorana condition" on Majorana fermions may be stated as 

*l>M = i>M, (ATI) 

which, from (A.7), implies that 

a(p,s) = n:b(p,s). (A.12) 

Thus, for a Majorana fermion the mode expansion is given by 

Mx) = J T - ^ T i £ [u& s)a& s)e ip'x + v& sKa](P, SV 
s 

A.13) 
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so that there is no longer any distinction between the "particle'" and the "anti-particle." 

There are now only two degrees of freedom compared to the four degrees of freedom 

present in the Dirac case. 

Since Majorana particles have only two degrees of freedom, it is sometimes convenient 

to express their fields directly in terms of two-component spinors instead of in terms of 

four-component spinors Let us work within the "chiral" representation, setting 

( 0 
7° = 

' 0 ^ 

{1 0 
(A.14) 

(A.15) 
-10 

In this representation a left-handed four-component spinor ipL may be expressed in terms 

of a two component spinor XL as follows 

The charge conjugate of tpL is given by 

PL = Crfi = 

XL 

0 
(A.16) 

0 
(A-17) 

so that a Majorana fermion may be expressed in terms of the single two-component 

spinor XL AS 

= ^L + i>L = 
XL 

• • 2 * 

\ -w XL 

(A.18) 

1 I n many cases, however, it is more convenient to stay within the four-component formalism. In 
many supersymmetric field theories, for example, many of the superpartners are Majorana particles. In 
such cases it is convenient, when evaluating Feynman diagrams, to express the fields in terms of four-
component spinors. The Majorana nature of the particles exhibits itself in special counting rules which 
must be applied when evaluating the diagrams. For an extensive discussion of this topic, see Ref. [80]. 
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The Lagrangian for a free Majorana fermion may then be written as 

= XL (ido ~ i° • V) XL + ^ (xWxl ~ XWXL) 

(A.19) 

(A.20) 

It is interesting to note that at the classical level the two mass terms each vanish identi

cally if XL is n ° t taken to be Grassmann-valued. 

A . 2 A M a j o r a n a N e u t r i n o i n M a t t e r 

The effective Lagrangian for a Majorana neutrino propagating in a constant-density 

medium may generically be written as 

£ e f f = tp M ^ (i$- m) + cry°(l - 7 5) 4>. M (A.21) 

= A^-io-V + 2a)xL + ~{xy2xl-xWxL). (A.22) 

Variation of this effective Lagrangian yields the following equation of motion 

(ido - io - V + 2OJ) XL = -imo2x*L. (A.23) 

In order to solve this expression, let us write the field XL in terms of creation and 

annihilation operators as follows [65] 

XL(X) = f J0f2e^ E [PhiP,E)Pw(p)e-iE^t + Nh{p1E)P^eiE^ , (A.24) 

where the creation and annihilation operators are included in P^ and Nh- The two-

component column vectors fi(h){f>) a r e eigenvectors of helicity 

3-pft±)(P) = ±W{±ffl, (A-25) 

It is useful to write out the expressions for explicitly [81, p. 72] 

( cos(0/2)e-^/2 

\ sin(0/2)e Jc/>/2 A-) = 
sin(0/2)e- -i<?/2 \ 

{ cos(0/2)e: i®/2 
(A.26) 
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where 6 and 0 are the polar angles of the vector p with respect to some axis. We may 

use the expressions in (A.26) to derive the following useful relations 

°2Pt+)(-p) = ±Pi+M *2PM-P) = ±Pt-M (A-2?) 

in which the two possible signs arise because we may take 0—»<i>± 7r when we take p-^—p. 

In the following it is important to consistently follow one prescription or the other. 

Applying the equation of motion to the field in Eq. (A.24) gives the following four 

equations 

(Eh+ h\0\+2a) Ph(p,Eh) = m(iN^-p,Eh)), (A.28) 

(Eh-h\p\-2a)(iN^(-p,Eh)) = m(Ph(p,Eh)), (A.29) 

from which we may easily derive the dispersion relations 

Eh = ±^J(\p\ + 2ah)2 + m 2 . (A.30) 



A p p e n d i x B 

Der iva t ion of a Posit ion-dependent P r o b a b i l i t y U s i n g a C u r r e n t 

In this appendix we shall derive an expression for a position-dependent probability by 

integrating the spatial component of a conserved two-current over time. This derivation 

complements the discussion in Sec. 3.2. 

In this approach we shall neglect the neutrinos' helicity degrees of freedom and model 

them by complex scalar fields, which may be written in the usual way in terms of creation 

and annihilation operators as 

<f>Q(x,t) = /dp t [e-^ ' -o ; + c""-rVj\ , (B.l) 
i 

where 

and where al
p and b'J are the operators which annihilate a neutrino and create an anti-

neutrino, respectively, with momentum p. The creation and annihilation operators are 

taken to satisfy the following commutation relations1 

aj j] = '[&<, # ] = ^ E A A V - P')- (B.3) 

We then define the "flavour" current operator in terms of the fields as follows 

%{xj)=:i<l>\{x,t)$>> <j>p{x,t)-., (B.4) 

where 

a Bl b = ad^b - (d^a)b (B.5) 
1 Using commutation instead of anti-commutation relations has no undesireable effects on our 

calculation. 
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and where the colons denote normal ordering of the operators. The sum of this operator 

over 3 satisfies current conservation as a result of the Klein-Gordon equation; that is 

£ W 0 M ) = u, (B.6) 
3 

as may easily be verified. 

We may now construct an ot neutrino single-particle state by letting the creation 

operators off act on the vacuum2 

\Mt)) = EKk j dqke-^fk(q)a^\0). (B.7) 

Finally, we define our idealized two-vector current density to be the expectation value of 

the current operator in the single-particle state (B.7) 

. J^{x,t) = {Mt)\j$(x,0)\ja(t)), (B.8) 

where we have chosen to work in the Schrodinger representation. We interpret the zero-th 

component of the above expression as being the relativistic generalization of the proba

bility density and the first component as being the current density. 

Our expression for the two-vector current density, Eq. (B.8), has several attractive 

features. In the first place, it is easily seen to satisfy current conservation when summed 

over /3 

£ V ^ 0 M ) = O. ' (B.9) 
3 

Integrating this relation over some one-dimensional "volume" yields 

E | r teJl-pM = £ (J<U(*i>0 - 4 ^ ( ^ , 0 ) • (B.io) 

Thus, the rate of change of the probability to find a neutrino in the segment (xi,x-2) 

is equal to the difference of the incoming and outgoing currents, summed over flavours. 
2 I n practice, the functions fk(q) will also depend on a, but that dependence does not in any way 

affect our present calculation. 
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The close tie between the probability and current densities leads to another attractive 

feature of this formalism: once the probability density is normalized over position, the 

current density is automatically normalized over time. 

Let us then examine the normalization condition. Eq. (B.8) may be expanded in 

terms of creation and annihilation operators to give 

0 = £ KkUcdUmUpj f dqkd^dpidp'^i^f^^Pi+p'jY 
i,j,k,l 

X e i (p-p '>- I (^(< ? ) -^(9 ' ) )*(o|a' 9 ,a^a;aJ t |0) . ( B . l l ) 

Employing the commutation relations (B.3), we find that 

(0|<,a^4ajt|0) = ( ^ f E ^ E ^ ^ S i p - q)6(p' - q'), (B.12) 

so that 

(B.13) 

The normalization condition is gotten by requiring that the zero-th component of Eq. 

(B.13) is correctly normalized over position: that is, we require 

fdxYlJa^t) = l. (B.14) 

Inserting (B.13) into this expression yields the normalization condition 

E|W«,-|2/dp,-|/,-(p)|2 = l . (B.15) 

i 

If it is desired that the mass eigenstates be individually normalized, then we could fur

thermore require 

[ dpi\fi(p)\2 = 1, V i . (B.16) 
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We may similarly integrate the first component of (B.13) over time to obtain 

[dtY,JLp(x,t) = E iw«f f dp4mp)f;hm^)et{p-p')x{p+p')m - ED. (B.I?) 
3 i 

In order for this expression to reduce to Eq. (B.15) we need to require that 

MP) = fi(p)0(p), (B.18) 

that is, we need to require that the wavepacket contains only right-moving components. 

The reason for this requirement is easy to understand. J^8(x,t) is a current and as 

such it gets positive contributions from right-moving particles and negative contributions 

from left-moving particles. If our detector is located at some position x to the right of 

the source, then the current can get left-moving contributions from negative times. In 

order to avoid such problems, we shall always require that Eq. (B.18) hold at least 

approximately. Making this assumption, we may use the relation (3.8) to simplify the 

expression for the time integral 

/ dt E JLp(^ t) = E \u*\2 / dpMMp)fnp')(^)(p + P')—KP - P') 

= Eiw«f/w.-(p)r 
i 

= 1, (B.19) 

as advertised. It is worth noting that the factor of 1 fp which comes up when converting 

the energy delta function to a momentum delta function gets exactly cancelled in this 

approach so that there are no problems near the origin in momentum space. This was 

not the case in the approach studied in Sec. 3.1, where doing the time integral exactly 

led to a divergence near the origin (cf. the discussion following Eq. (3.9).) 

It is now straightforward to define an oscillation probability as a function of distance 

Pa-,l3(x) = JdtJ^(x,t). (B.20) 



Appendix B. Derivation of a Position-dependent Probability Using a Current 155 

Finally, we may write this expression out explicitly by employing Eq. (3.8) to obtain 

Pa^{x) = Y,^ctJUptU;]9(m2 - m)) 
hi 

x I ^ ' ^ f A P ^ ^ X ^ + cc. , (B.21) 

where 

V\0 = ^TA~. (B.22) 



A p p e n d i x C 

Der ivat ion of the t2—>oo L i m i t of .4 s tep 

In this appendix we shall derive an approximation for the t2—>oo limit of the integral 

given in Eq. (3.62) and investigate under what circumstances the approximation is valid. 

The form for the integral given in Eq. (3.62) is convenient for numerical work, but 

is not particularly convenient for the limit which we wish to consider. Let us instead go 

back to the definition of this expression, gotten by inserting Eq. (3.60) into Eq. (3.57). 

We may now formally take the limit as £2—>oo by giving 02 a small imaginary piece. This 

yields 

-iN 

1 
f 
J m 

dE 
E -0,0 — ie exp --{E-O.fal 

- / 2 « + O - KE - n 2)*ij sin(fc^), (C. l ) 

where the limit e-*0 + is understood. This integral may be simplified by employing the 

relation 

E - O2 - ie 
= iir6{E - 02) + PP 

1 
E - 0? 

to obtain 

A t e p ( W i , 00) = M r exp - i ( 0 . . 2 - fii)2cr2 - ^(O2 - m 2 ) ( < + a 2
2 ) 

(C.2) 

sm(kx£)) 

r°° dE 
-iNPP T ^ - e x p 

1 
-{E-Oxfal 

• - k 2 K + < ) - K E - 0 2 ) h sm(kx£>] 

where we have defined 

k = 02 ra2. 

(C.3) 

(CA) 
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In order to approximate Eq. (C.3) it is useful to make a change of variables. On the 

interval (0,Q 2) we define E=Vt2 - E and on (S~>2,oo) we define E=E - f>2. Then the 

integral in (C.3) may be approximated by 

where AVl=fl2
 — ^1 and where the only approximation so far is that the interval (S72, oo) 

has been truncated to (f22, 2 i l 2 — ra). This approximation is valid if the major contribution 

to the integral comes from energies close to 0_2. In order to further approximate the 

integral, let us make the ansatz that the integral in (C.5) is dominated by values so close to 

E=0 that is valid to set E=0 in the gaussian pieces. At the end of the calculation we will 

be able to see in which cases this is a reasonable approximation. When dealing with the 

oscillating terms we must be a bit more careful. Writing the sine's in terms of exponentials 

and Taylor-expanding the arguments to first order in E (which essentially amounts to 

ignoring the spreading of the wavepackets) leads to the following approximation for (C.5) 

-1-{(E - Q2f - m 2 ) « + < ) ] sin (y/{E - 9.2)2 - m ^ ) 

- exp -iEtx - i ( E + AVtfo\ 

-\((E + a 2 ) 2 - m 2 ) « + < ) ] sin ( V ( ^ + n 2 ) 2 - m % D ) } , (C.5) 

- J V e x p [ - - ( f t 2 - n i ) X 
1 

a i - ™ 2 ) « + <) 2 

rNex?[...}£2'mf [ e ^ s m ( E - h 

(C.6) 
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where 
2 - ™ 2 

(C.7) 

The final step in the approximation is to note that, if 

^ ± h > oh 

v 
(C.8) 

and if | Ailoh | is of order unity, then we may approximate the sine terms by delta func

tions, since 

(C.9) 

This brings us to the desired result 

sin(rcL) . 
lim = Tro(x). 

Astep(xD,ti,oo) -iNnexp 

1 

ikxD - -(P_.2 - Q,i)2o\ 

( ^ - ™ 2 ) ( < + < ) (C IO ) 

Note that the condition in Eq. (C.8) simply requires that the detector be turned on 

before any appreciable amount of flux reaches it. 


